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  

Abstract—When processing video, it is normally assumed 

that cameras are vertically oriented such that people appear 

upright, which helps simplify subsequent processing such as 

person detection. In real situations, due to the need to provide 

maximum coverage of the viewing space, cameras are usually 

placed with arbitrary orientations so the apparent vertical axis 

of the videos captured may not correspond to the true vertical 

direction of the captured scene.  To rectify this situation, we 

propose a classification-based system, which normalizes the 

video compensating for the camera orientation. We 

demonstrate the performance of the system for outdoor sports 

video. Our system works as follows: From an arbitrary set of 

sports videos, we first automatically create a training/testing 

image dataset, in which players have various orientations. Our 

classifier is a stacked autoencoder connected to a softmax 

output layer, which is trained using this dataset for estimating 

the orientation of players. The orientation of an input video is 

normalized according to the orientations of player patches, 

whose angles of orientation are estimated by the above trained 

classifier. The experiments conducted on hockey field video 

dataset show that the proposed system is able to estimate the 

true vertical axis of an input video accurately.  

  

Keywords — sparse autoencoder, video orientation 

normalisation, human detection 

 

I. INTRODUCTION 

Human detection is one of the fundamental challenges in 

human-centred vision systems [1-3]. While calibration is 

invariably helpful in this task, most uncalibrated methods 

assume that the image’s vertical axis is roughly aligned with the 

true vertical axis of the scene, or the 'up' direction [4, 5]. 

However, this assumption may not be valid in real cases. For 

example, in most camera installations, maximizing camera 

coverage is often more important than an obtaining a correct 

viewing orientation so that cameras may have arbitrary 

rotations, and the vertical axis of the videos captured may not 

correspond to the true vertical direction of the scene.  

 
 

Camera used for capturing outdoor sports scene usually 

suffer from above issues because they need to cover the entire 

play area. Furthermore, camera calibrations information is 

usually not available in these situations to normalize the 

acquired video. The performance of human detectors may be 

degraded when applied to rotated cameras because the detection 

algorithms are mostly based on the assumption that the scene 

and the camera vertical axis are aligned. 

Several efforts have been made to counter the problems faced 

by sports videos with a non-normalized vertical axis. Feature-

based methods [6, 7] have been proposed that can recover the 

vertical direction by making some assumptions about the scene, 

such as field marking, or geometric lines on playing area. Given 

that the cues on sports scene are sparse, not unique, and 

susceptible to noise, player occlusion, and deformation, camera 

calibration usually fails. Modeling based methods counter un-
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Figure 1: The overview of our approach for vertical axis detection 
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normalized vertical axis by fitting a human to a particular model 

for example built by color of the uniform, and histogram of 

gradients [8]. While these methods can be hand-crafted with 

success for some specific sport scenes and tasks, applying such 

approaches to a new scene or sport usually requires domain 

knowledge owing to the changes in the view angle, field 

marking, illumination or color of players’ uniform. 

Furthermore, the features visible in a camera view are often 

inadequate for any feature-based matching approach, or even 

manual identification. Examples are shown in Figure 2, where 

the distinguishable surface features are absent or ambiguous. 

In sports video analytics, recovering the true direction of the 

video will greatly reduce the difficulty of detecting and 

modelling players. To our best knowledge, there is no detailed 

study on recovering vertical axis in outdoor video so far. Our 

paper proposes an efficient way to achieve this task. 

Figure 1 depicts the flow chart of our technique to determine 

the true vertical direction of video acquired using a camera with 

arbitrary rotation. The proposed system consists of three 

components. First, we automatically extract from a sports 

video, human images whose orientation correspond to one of 

eight uniformly spaced directions (i.e.: 45ᵒ apart) in the vertical 

plane. The true vertical direction is manually annotated 

(according to the eight 45ᵒ bins) such that this database can be 

used for training and testing a classifier. The annotation is based 

the assumption that when the players are in their upright 

position, the true orientation of each payer will be in the vertical 

direction. We call this data set “person orientation dataset.” 

Next, we design a stacked autoencoder which contains a 

softmax classifier layer and train the classifier using images 

selected from our person orientation dataset.  Subsequently, the 

testing images are employed to evaluate the performance of the 

classifier on the dataset and report the accuracy of the 

classification. Finally, we show how to normalize a given 

unseen video by estimating the true vertical direction using our 

classifier. 

The main contribution of this paper is an efficient way to 

recover the true vertical axis in an unseen video. Experiments 

conducted demonstrate that our proposed detector works well 

to effectively normalize the vertical axis of a video. Although 

demonstrate the use of this approach for an outdoor sports 

scene, the technique is equally applicable to videos captured 

from other scenes.  

The remainder of this paper is organized as follows: in 

Section II we describe how we create the person orientation 

dataset for training and testing our classifier. In Section III, we 

describe our classifier. Section IV describes the experimental 

setup for training/testing and presents/discusses the results. 

Section V conclude the paper.  

II. THE PERSON ORIENTATION DATASET 

In this section, we describe our process of creating the person 

orientation database by extracting image patches from a sports 

video.  

The video data was collected by a sporting body and consists 

of eight field hockey videos captured from eight fixed cameras 

in the same match. Each camera captures data at 25 frames per 

second, at a resolution of 1888 × 1062, and with a static 

background, which contains only a few illumination variations 

and small amounts of noise. Representative frames from these 

eight views are shown in Figure 2. The selected frames 

highlight the variations among of athlete’s uniform and angle 

of view. Five different kinds of uniform appear in these videos. 

They are two teams’ players, a referee, and two goals keeper 

respectively. One may see that these eight fixed cameras have 

been placed in different corners around playing area, and the 

true vertical direction of videos are compromised by the need 

                            
 

Figure 2: Example samples from field hockey video dataset. 

  

  

 
             
 

Figure 3: Some representative images in personal orientation dataset.  
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to provide maximum coverage of playing filed. 

The person orientation dataset created from the sporting 

videos consists of 14704 person images. Each person image is 

automatically extracted from the sporting videos, to enable the 

evaluation of the true vertical direction, which is based 

assumption players tend to move approximately upright. Figure 

3 displays some representative images in this dataset. All 

images are transformed into gray space and the size of all 

images is scaled to 50 50  pixels. 

A. Image patch extraction 

To create the person orientation dataset, we first need to 

extract image patches of players with different orientation from 

the sport video data. A Gaussian mixture model based method 

[6] is used to detect foreground in each frame. In the Gaussian 

mixture model, each pixel in a video is modeled by a mixture 

of K Gaussian distribution. The probability that a certain pixel 

has intensity 
tx  at time t  is estimated as: 
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where 
jw , 

j , and 
j  is the weight, the mean, and covariance 

of the jth Gaussian distribution respectively. The first B 

distributions, which are used as a model of the background of 

the scene, is computed as: 
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where threshold T is the fraction of the total weight which is set 

for background model. Subsequently, background subtraction 

is performed by marking any pixel that is more than 2.5 

standard deviations away from any of the B distributions. A 

foreground mask with the coarse position of players is obtained 

for each frame in videos. Figure 4 shows binary foreground 

mask after background subtraction and original frame 

respectively. 

Once a foreground mask has been generated for the 

estimation of player position, we analyze the blobs using 

morphological operations to remove noise and connect 

separated areas of player on foreground mask. 

Since the detected blobs contains several holes due to the 

impact of the noise, an eight-point square neighborhood is used 

to identify an individual player included in foreground mask as 

one region. Then, the binarized foreground mask is processed 

by closing and opening operations to obtain a refined mask 

showing only the players in the scene. The closing and opening 

operator are respectively represented as: 

 ( ) ,A B A B B     (3) 

 ( ) ,A B A B B    (4) 

where A is a binary mask, B is structural element [7] and   

represent dilation and erosion operation respectively. 

In practice, not all blobs detected above are suitable for 

inclusion in the dataset, largely because there is some 

misdetection caused by noise. Rapid change in intensity among 

a few frames may lead to unstable background and blobs of 

noise. Thus, we need to filter out these erroneous blobs to 

prevent false candidates from being included in the dataset. To 

achieve this, each blob is constrained into a bounding box 

according to its centroid. Subsequently, bounding boxes whose 

sizes are too small or are too large are eliminated. Furthermore, 

bounding boxes with improper aspect ratio are also deleted 

from binarized foreground mask. In experimental setting, the 

proper size of bounding box is set to 900 to 4000 pixels squared 

to filter out small blobs of noise and the aspect ratio is 

constrained to the range [0.6 1.4]. In final processing, some 

blobs only appear in a few discontinuous frames and these are 

removed as well. The remaining blobs are therefore reliable to 

form the person orientation dataset. 

Next, the image patches that contains reliable blobs are 

manually inspected and classified into one of eight directions. 

The diagram of directions in our classification is shown in 

Figure 5. The  angle between each adjacent direction pair is 45 

degrees. 

B. Dataset augmentation and labelling 

Since the number of samples in each category is not the same, 

the distribution is not appropriate to train a robust and reliable 
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Figure 5: 8 vertical directions of player in our dataset.   

  
 

(a) Foreground mask          

                       

 
            

(b) Original frame 
 

Figure 4: Representative frame of foreground mask (a) and original frame (b). 
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classifier for estimating the true vertical direction of videos.  

The easiest and most common method to address the issue is 

to artificially enlarge the dataset using a transformation [8-10]. 

The form of data augmentation used here is to generate image 

rotations. Each image is augmented such that seven extra 

images are generated, by applying seven rotations of 45 , i.e. 

the transformation increases the size of our dataset by a factor 

of eight. Due to rotating, we cannot avoid losing pixels at the 

boundary of the image, and the pixels that are lost are replaced 

with the mean value of the image.  

III. LEARNING STACKED SPARSE AUTOENCODER  

For classification, we use a sparse auto-encoder. In this 

section, we review principles of a typical three-layer 

autoencoder and then describe the stacked sparse autoencoder 

used as the classifier. At the end of this section, the reasons for 

choosing stacked sparse autoencoder are enumerated. 

A. Typical sparse autoencoder 

A sparse autoencoder (AE) [11] is an unsupervised feature 

learning algorithm which aims to generate a sparse feature 

representation of high-dimensional input data. A simple, sparse 

autoencoder is usually represented as a neural network 

consisting of three layers, in which the number of neurons in 

the input layer is the same as that of the output layer, trained by 

a back-propagation algorithm. The cost function to be 

minimized can be written as: 
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The first term is an average sum-of-squares error term where 

N is the number of training images, 
iX  is the ith input image, 

W, and b represent weights and biases parameters in the whole 

sparse autoencoder respectively. Here, 
, ( )W b ih X  is defined as 

the output of the sparse autoencoder, which may be obtained 

through a forward propagation of the neural network. The 

second term is a regularization term that tends to decrease the 

magnitude of the weights, and helps prevent overfitting. In the 

third term, 
hl , is the number of neurons in the hidden layer, and 

ˆKL( || )j  is the Kullback-Leibler (KL) divergence between

ˆ
j , i.e. the output value of the neuron j in the hidden layer and 

presetting sparsity parameter,  .  ,   are the weight factors 

of the second term and the third term respectively. 

 

B. The stacked autoencoder with softmax layer 

A stacked autoencoder (SAE) [11] is a deep neural network 

consisting of multiple basic sparse autoencoders. In this paper, 

a stacked autoencoder with two basic sparse autoencoder (AE) 

layers and a softmax layer is used for classification of a person’s 

vertical orientation. Figure 6 illustrates the architecture of the 

SAE utilized. 

The set of training images are denoted as
1{ }N

i iI 
. For the first 

AE in the SAE system, the cost function shown in Eq.(5) is 

minimized over parameters 1W  and 1b   via image set 
1{ }N

i iI 
, 

where superscript 1 of 1W and 1b indicates that they are the 

parameter model in the first SAE. We assume that 1

1W  and 1

1b

are the weight and the bias between the input layer and the 

hidden layer respectively. Thus, the feature of each image, 
1

iF , 

extracted by the first SAE can be written as 

 1 1 1

1 1( ), 1,2, ,i iF f W I b i N     (6) 

where f is defined by a sigmoid logistic function as 

( ) 1/ (1 exp( ))f x x   . 

Almost repeating the same process as the first SAE, we can 

get a new feature set 2

1{ }N

i iF 
 from the old feature set 1

1{ }N

i iF 
 

through the second SAE in our system. The new feature set is a 

further abstract representation of the original image set at which 

data has lower dimensionality and better classification 

performance. 
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Figure 6: Two layer stacked autoencoder used for testing performance of up direction dataset. 
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In the last layer, we link these two basic AE with a softmax 

layer, which is an output layer used in classification task, to 

estimate the probability of each category. 

There are several reasons for selecting such a stacked 

autoencoder. As shown in figure 3, lots of patches are 

synthesized by a rotating operation and hence the difference 

between them is only the orientation of the person within them, 

and slight illumination variation. Traditional image 

classification methods which using a combination of hand-

crafted features and a classifier largely depend on proper feature 

descriptor and knowledge of the specific tasks. In our case, it is 

difficult to choose a proper descriptor to obtain discriminative 

features, and more advanced classification algorithms based on 

unsupervised feature learning are needed to classify images in 

this dataset. 

Since we have a large the number of samples in the dataset is 

14, 704, it is possible for us to train a classifier with a complex 

structure. The autoencoder, which is a mature deep learning 

architecture, is easier to train and has more concise structure 

than other deep learning methods (e.g. deep belief network, 

convolutional neural network, etc.). Thus, autoencoder 

classifier is utilized in our dataset under consideration of the 

balance of performance and efficiency. 

Another reason for choosing autoencoder as a classifier is 

due to the fact that the last layer, which is a softmax layer, may 

output probability of each category of one image. The next 

subsection will describe how to compute the angle of true 

vertical direction according to the probabilities of the reliable 

image patches. 

 

C. Normalization of Video  

Suppose that there is a reliable image patch A extracted from 

a test video to estimate the vertical direction. After being 

processed by the stacked autoencoder, eight probabilities
8

1{ }i iP 

in descending order which corresponding to categories 
8

1{ }i ic   

may be obtained. In practice, three cases may occur when 

computing angle are shown in Figure 7 and illustrated as 

follows. 

1. Classes c1 and c2 are adjacent. This case is the simplest 

case when computing angle. One may compute the angle    

from c1 to c2 as follows: 

 2

1

45 ( ).
c

c

P

P
     (7) 

2. The first two classes c1 and c2 are in opposite direction or 

nearly opposite direction. The third largest probability c3 is 

introduced to assist in angle computation. By comparing c1 with 

c3 and c2 with c3, the class whose direction is far away from that 

of the others is deleted and then compute angle using the 

probabilities of reaming two classes like Eq. (7).  

3. c1 is orthogonal to c2. If the third class is in the middle of 

the first two, the angle from c2 to c1 may be computed as 

 3 2

1 1 3

45 (1 )( ).
c c

c c c

P P

P P P
   


  (8) 

For those the third class is not in the middle of c2 and c1, we 

ignore them. 

Finally, the true vertical axis of video may be computed as 

the average of the angles of the reliable image patches. 

IV. EXPERIMENTAL DESIGN AND RESULTS 

The person orientation dataset created above contains 14, 704 

images which have 8 direction classes. For each class, 80 

percent of each class are randomly selected for training and the 

remaining images are used for testing. 

Since the size of images is 50×50, the number of neurons in 

the input layer for vectorized image is set to 2500. Two SAE 

layers for intermediate feature extraction contains 600 and 100 

neurons respectively. In the last softmax layer, 8 neurons are 

employed to output the probability of each category. The 

architecture of the used autoencoder is shown in Figure 6. 

We employ a greedy layer-wise approach for pre-training 

SAE by training two AE and one softmax layer in order. After 

pre-training is done, all three layers are combined together to 

form a compact SAE system. Finally, fine tuning is applied to 

the SAE system to get a classification model which has good 

accuracy. 

The classification results evaluated by the stacked 

autoencoder are shown in Figure 8 via confusion matrix. The 

rows of this confusion matrix plot the predicted class of vertical 

direction, and the columns show the true class. The diagonal 

 

 
Fig. 8: The confusion matrix of classification results from the vertical direction 

dataset trained by the stacked autoencoder.  
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(a)                                (b)                                          (c) 

Fig. 7: The diagram of computing angles of player’s orientation. (a) The two 

categories c1 and c2 are adjacent. (b) c1 and c3 are in opposite direction. (c) c1 is 

orthogonal to c2, and c3 is in the middle of c1 and c2 
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cells display where the true class and predicted class match. 

Other cells in off-diagonal show instances where the classifier 

has made errors. One may see that the misclassified samples are 

concentrated around the true class they should be. It should be 

noted that there is a small amount of error in the ground truth 

labels due to the difficulty of the manual annotation. The large 

variation in player pose, e.g. running, squatting, makes the data 

be difficult to label. Thus the method should achieve a higher 

accuracy than its classification accuracy based on the manual 

annotation. The right-most column shows the accuracy for each 

predicted class, while the row at the bottom of the plot shows 

the accuracy for each true class. The cell in the right-bottom of 

the plot shows the overall accuracy 85.1%. This accuracy 

indicates that the performance with the dataset is acceptable. It 

should be noted that there are still a few samples that are 

misclassified into opposite direction. In the real case, their 

correct angle may be computed by the strategy proposed above. 

The learned stacked autoencoder filters are shown in Figure 

9. An intriguing pattern is observed in the filters. One may see 

that all the filters attempt to capture the directional pattern of 

the players and the details of uniform as well as background are 

ignored automatically by the filters. When there is some 

background in images, several filters become low-pass, to 

secure the responses from background images. 

The normalizing vertical axis for any given test video is 

based on the classifier trained above. The normalization is 

based angles estimated by the stacked autoencoder classifier. 

Fig. 10 shows the results of the estimated angle for a particular 

video. One may see that only reliable patches are used for the 

estimation of angles. From left to right, the estimated angles are 

40.853°, 27.398°, 0.67059°, -34.702°, 0.0005° respectively. We 

compute the angle of the (true) vertical axis of the video as the 

average of above angles, i.e. 6.3568°. The normalization is done 

by rotation operation on original video as illustrated in Fig. 11. 

Rotating the video rectifies the camera rotation to recover the 

true vertical axis. This simplifies further automatic processing 

of the video, for example for person detection tasks, as well as 

provide a good view of the scene for human perception. 

 

V. CONCLUSION AND FUTURE WORKS 

This paper has proposed the semi-automatic creation of a 

person orientation image dataset from sports video data and 

proposes a method for estimating the true vertical axis of a 

given video to normalize the orientation of the video to further 

analytics and to provide improved video for human perception. 

Evaluation of our classifier on test data shows an accuracy of 

over 85%. The experiments conducted on hockey field video 

dataset show that the proposed system is able to estimate the 

true vertical axis of an input video accurately. In future work, 

the normalised video, which is more in line with human vision 

expectations and the assumptions applied in training various 

object classifiers, will be used for camera calibration.  

 

 

 

 

 

 

 

 

 
 

Fig. 10: Estimation of angles in video via patches. From left to right, the 
estimated angles of players are 40.853°, 27.398°, 0.67059°, -34.702°, 0.0005° 

respectively. The angles are computed in clockwise from the class 1 shown in 

figure 4 to the class 8. 

 

 

 
 

Fig. 9: Visualization of 600 neurons from the first layer of the SAE. As 

expected, the plot shows detailed boundary features of player and orientation 

of player. 

 

 
 

Fig. 11: Rotated video which has normalized the world vertical axis.   
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