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a b s t r a c t

The first investigation is made of designs for screening experiments where the response
variable is approximated by a generalised linear model. A Bayesian information capacity
criterion is defined for the selection of designs that are robust to the form of the linear
predictor. For binomial data and logistic regression, the effectiveness of these designs for
screening is assessed through simulation studies using all-subsets regression and model
selection via maximum penalised likelihood and a generalised information criterion. For
Poisson data and log-linear regression, similar assessments are made using maximum
likelihood and the Akaike information criterion for minimally-supported designs that are
constructed analytically. The results show that effective screening, that is, high powerwith
moderate type I error rate and false discovery rate, can be achieved through suitable choices
for the number of design support points and experiment size. Logistic regression is shown
to present a more challenging problem than log-linear regression. Some areas for future
work are also indicated.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An important problem in scientific discovery is to find those variables (or factors) that have a substantive influence on
an observed response through experiments on a possibly large set of potentially important variables. There has been much
research into such variable screening, or model selection, focussed on the design and analysis of experiments in which the
response variable is adequately approximated by a linear model (see Draguljić et al., 2014 andWoods and Lewis, 2016, and
references therein). Such experiments are used increasingly in scientific research and product development, for example, in
the pharmaceutical and chemical industries.

In many practical applications, for example when binary or count data are observed, a generalised linear model (GLM;
McCullagh and Nelder, 1989) may be needed to describe a response. Previous research on designs for model selection for
GLMs has focussed on experiments involving only a few variables through pairwise comparisons of a small number of
models (see, for example, López-Fidalgo et al., 2007 and Waterhouse et al., 2008). Hence, such methods are not applicable
to, or easily generalisable for, the screening problem. In the literature, the majority of multi-variable experimentation with
GLMs has employed (fractional) factorial designs, including examples on solder-joint defects (Hamada and Nelder, 1997),
windshield moulding, non-conforming tiles and semi-conductor defects (see Lewis et al., 2001). Although such designs are
effective for both model selection and estimation for normal-theory linear models, they have been shown to be inefficient
for experiments that provide non-normal data (Woods et al., 2006).
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In common with other non-linear models, for the GLMs considered in this paper the performance of a design depends
on the unknown values of the parameters in the model. One approach to overcoming this problem is to assume a particular
value for each parameter and hence obtain a ‘‘locally optimal’’ design; that is, a design that is optimal under a given
criterion provided the assigned parameter values are correct.We adopt the alternative approach ofmaking the less stringent
assumption of a prior distribution for each model parameter from which we obtain a ‘‘pseudo-Bayesian’’ design (Atkinson
and Woods, 2015).

In this paper, we investigate variable screening for GLMs with q independent variables, labelled x1, . . . , xq. In the jth
run (j = 1, . . . ,N) of the experiment, a treatment or combination of variable values xj = (x1j, . . . , xqj)T is applied to an
experimental unit and a univariate response, yj, is observed. We assume that |xij| ≤ 1 for i = 1, . . . , q; j = 1, . . . ,N .

The aim of the experiment is to identify those active variables having a substantial effect on the response variable and
to estimate efficiently a GLM involving those variables alone. For j = 1, . . . ,N , the yj have independent exponential family
distributions with expectation µj related to a linear predictor ηj = f (xj)Tβ via a link function, g(µj) = ηj. The vectors f (x)
and β are p × 1 vectors of known functions of x and unknown model parameters, respectively. We also assume that the
experimental units are exchangeable, in the sense that the distribution of the response to a treatment does not depend on
the unit to which the treatment is applied.

For canonical link functions, the log-likelihood may be written as

l(β; y) =

N
j=1


yjηj − b(ηj) + c(yj)


, (1)

where b(·) and c(·) are known functions of the linear predictor and response, respectively. For the binomial distribution and
the logistic link, b(ηj) = −nj log(1 + eηj) and c(yj) = log(nj!/[yj!(nj − yj)!]), with nj the number of Bernoulli trials made at
the jth run. For the Poisson distribution and the log link, b(ηj) = eηj and c(yj) = − log(yj!).

Maximum likelihood estimators (MLEs) β̂ can be found via (numerical) maximisation of (1). For small data sets, however,
the MLEs may have considerable bias. For sparse data, such as binomial data with small numbers, nj, of trials for each run,
one or more maximum likelihood estimates may be infinite, for example, as the result of separation of the responses into
zeros and ones via a hyperplane in the linear predictor (Silvapulle, 1981). To remove this bias and guarantee the existence
of estimates for GLMs with a canonical link function, Firth (1993) defined penalised maximum likelihood estimators β̃ as
maximisers of

l⋆(β; y) = l(β; y) +
1
2
log det


XTWX


, (2)

where X is the N × p model matrix with jth row f (xj)T and W = diag{var(yj)} (see also Kosmidis and Firth, 2009). This
estimation procedure is equivalent to finding the posterior mode of β assuming the Jeffreys prior distribution.

The information matrix XTWX , which is the asymptotic inverse variance–covariance matrix for both β̂ and β̃, is used to
define the D-optimality criterion. This criterion specifies selection of a design that maximises the objective function

φD(ξ) =
1
p
log det


XTWX


, (3)

where

ξ =


x1 · · · xn
ω1 · · · ωn


, (4)

x1, . . . , xn are the distinct treatments in the design (assumed, without loss of generality, to be applied to the first n runs
of the experiment), ωk > 0 ∈ N, and

n
k=1 ωk = N , the total number of runs. For the GLMs considered in this paper, (3)

depends on β through the matrix W and hence selection of a D-optimal design requires knowledge of the values of these
parameters. Thus a locally optimal design is obtained.

The relative performance of two designs, ξ1 and ξ2, under D-optimality may be assessed using relative D-efficiency,
defined as

DEff(ξ1, ξ2) = exp {φD(ξ1) − φD(ξ2)} , (5)

where 0 ≤ DEff(ξ1, ξ2). If ξ2 is a D-optimal design that maximises (3), then (5) provides an absolute measure of the
performance of design ξ1.

In this paper, we address the screening problem of model selection and estimation of parameters in the selected model.
We define, in Section 2, a Bayesian information capacity criterion that generalises D-optimality to provide model-robust
designs for GLMs. We also present and discuss a model selection strategy that uses all-subsets regression and suitable
penalties for model complexity. Sections 3 and 4 describe simulation studies of logistic and log-linear regression modelling,
respectively, which demonstrate and assess the effectiveness of the methods. In Section 5, we present some avenues for
future work to further develop methodology for screening experiments with non-normal data.
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Fig. 1. Boxplots of D-efficiencies for Bayesian information capacity designs (left column) and locally D-optimal designs for the maximal model (right
column) for logistic regression with n = 6 support points and three prior distributions (κ = 1, 2, 3) for the model parameters.

2. Information capacity designs and model selection

Consider a set M ofM = |M| distinct candidate models, each of which have the same link function. The linear predictor
for themth model and jth run is given by

ηm
j = β0m +

q
i=1

βimxijI(i,m), (6)

where the βim are the values of the parameters in model m, I(i,m) = 1 if variable i is in model m, and I(i,m) = βim = 0
otherwise. Hence, the number of parameters in modelm is pm = 1 +

q
i=1 I(i,m).

2.1. Bayesian information capacity

Information capacity (IC) was introduced as a linear-model design selection criterion by Sun (1993). It has been further
developed and applied by, for example, Wu (1993) (supersaturated designs), and Li and Nachtsheim (2000) (model-
robust factorial designs). In essence, this criterion seeks a design whose projections onto subsets of the variables produce
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Fig. 2. Boxplots of D-efficiencies for Bayesian information capacity designs (left column) and locally D-optimal designs for the maximal model (right
column) for logistic regression with n = 30 support points and three prior distributions (κ = 1, 2, 3) for the model parameters.

sub-designs having good estimation properties for the corresponding submodels. This is achieved by selecting a design that
maximises a weighted average of the D-criterion objective function for each submodel.

For GLMs, Woods (2010) employed the criterion of Woods et al. (2006) to find locally optimal information capacity
designs for an example having five variables. Designs were found that maximised

Ψ (ξ) =

M
m=1

1
pm

log det

XT
mWmXm


, (7)

where Xm and Wm are the respective model and weight matrices for themth model in M.
We define the Bayesian IC criterion which incorporates into (7) uncertainty in the parameter values assumed for each

model. This criterion selects a design that maximises the objective function

Φ(ξ) =

M
m=1

1
pm


Bm

log det

XT
mWmXm


πm(βm) dβm, (8)

where Bm ⊂ R is the parameter space for model m, βm = (β0m, . . . , βqm)T, and πm(βm) is the prior distribution for βm.
The choice of π(βm) and Bm, and the evaluation of (8), are discussed in Section 3.1 for logistic regression. For log-linear
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Fig. 3. Average power, type I error rate and FDR for logistic regression with κ = 1 and N = 30, 50, 80, 100 runs.

regression, we make use of results in the literature that enable analytical construction of minimally-supported D- and
Bayesian D-optimal designs, see Section 4.1.

2.2. Model selection

A variety of model selection procedures exist for determining the most appropriate GLM from a set of models, including
Bayesian (Chen et al., 2008) and shrinkage methods (Park and Hastie, 2007). To focus investigations on the impact of design
selection, we restrict attention to all-subsets regression and use an information criterion to adjust for the bias inherent
from in-sample estimation of the prediction error (see Burnham and Anderson, 2002, ch. 2). When maximum likelihood
estimation is employed, we use the Akaike information criterion (AIC; Akaike, 1974) as the model selection criterion, and
choose a model that minimises

AIC(m; β̂) = −2lm(β̂; y) + 2pm, (9)

where lm(·; ·) is the log-likelihood function (1) for modelm.
Whenβ is estimated via penalisedmaximum likelihood (see (2)), AIC is no longer an appropriate criterion. This is because

the effective number of parameters is reduced, equivalent to the inclusion of prior information (Gelman et al., 2014). The
reduction depends on the number (N) of runs, with a smaller number of effective parameters for smaller N . Hence when N
is small, use of AIC will over-penalise larger models. To avoid this problem, we use a generalised information criterion (GIC;
Konishi and Kitagawa, 1996) that relaxes the assumptions of (i) estimation via maximum likelihood, and (ii) inclusion of the
true model in M. Hence, we select the model that minimises

GIC(m; β̃) = −2lm(β̃; y) + 2tr

J−1(β̃)I(β̃)


, (10)

where

J(β̃) = −
1
N

∂2l⋆m(β; y)
∂β∂βT


β̃

, I(β̃) =
1
N

∂ l⋆m(β; y)
∂β

∂ lm(β; y)
∂βT


β̃

,
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Fig. 4. Average power, type I error rate and FDR for logistic regression with κ = 3 and N = 30, 50, 80, 100 runs.

with l⋆m(·; ·) the penalised log-likelihood function (2) for modelm; see also Murata et al. (1994) and Zhang et al. (2010). The
evaluation of J(β̃) and I(β̃) is straightforward for the GLMs and penalised likelihood estimation method used in this paper.
The performance of the GIC is investigated in Section 3.2.

Following analysis of the data from an experiment, those variables found to be involved in the selectedmodel are deemed
to be active. In simulation studies to assess the performance of the model selection strategies, we use three summary
measures: (i) power: the proportion of truly active variables that are correctly identified as active by the model selection
strategy; (ii) type I error rate: the proportion of inactive variables (i.e. those not included in the true model) that are
incorrectly identified as active by themodel selection strategy; and (iii) false discovery rate (FDR): the proportion of variables
identified as active by the model selection strategy that are truly inactive (i.e. not in the true model).

3. Designs and model selection for binomial response and logistic regression

To investigate the performance of the methodology for logistic regression we study a five variable example, with linear
predictors of the form (6).We assume that any subset of these variablesmay be the set of active variables. Therefore there are
31 possible models. The models are ordered lexicographically within eachmodel size and assigned labels 1, . . . , 31. Models
1, . . . , 5 have linear predictors that contain a single variable, 1, . . . , 5, respectively; models 6, . . . , 15 have two variables,
1, 2; 1, 3; . . . , 4, 5. Similarly, models 16, . . . , 25 are three variable models, 26–30 are four-variable models and model 31
contains all five variables.

To find optimal designs and perform subsequent simulation studies, the model parameters βim are assumed to have
independent prior distributions of the form

βim ∼


Uniform(κ, 5) for i = 1, 3, 4 and I(i,m) = 1,
Uniform(−5, −κ) for i = 2, 5 and I(i,m) = 1, (11)

where κ = 1, 2, 3 and we assume β0m = 0 and βim = 0 if I(i,m) = 0 for m = 1, . . . ,M . The adoption of bounded
uniform prior distributions prevents the occurrence of parameter vectors in the support of the prior for which no design has
a non-singular information matrix (cf. Waite, 2015).
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Fig. 5. Average power, type I error rate and FDR for logistic regressionwith κ = 1,N = 30, 50, 80, 100 runs and a locallyD-optimal design for themaximal
model.

3.1. Information capacity designs

We relax the assumption in (4) that ωk is integer (k = 1, . . . , n) and consider approximate designs (e.g. Atkinson et al.,
2007, ch. 9). An approximate Bayesian IC design for logistic regression maximises

ΦĎ(ξ) =

M
m=1

1
pm


Bm

log det


n

k=1

ω̃kvar(yk)fm(xk)fm(xk)T


πm(βm) dβm, (12)

where 0 < ω̃k = ωk/N ≤ 1 and fm(xk)Tβm is the linear predictor for the mth model. Clearly, an optimal choice of
approximate Bayesian IC design can bemade independently of the total experiment sizeN . Finding approximate designs also
substantially reduces the computational burden of the design optimisation. We found designs using simulated annealing
(Haines, 1987) where the integral in (12) was evaluated numerically as a summation across a quasi-Monte Carlo sample
(Lemieux, 2009, ch. 5). The simulated annealing algorithmemployedwas a cyclic descent algorithm that proposed, evaluated
and accepted moves for one coordinate of the design at a time; see Woods (2010). Such ‘‘coordinate exchange’’ algorithms
are standard in the design of experiments, and solve difficult, high-dimensional, optimisation problems via a series of one-
dimensional optimisations. Use of a stochastic optimisation algorithm such as annealing has the advantage of helping to
escape local optima which we have found is a particular issue when each coordinate can take values in a continuous range.

Figs. 1 and 2 (left columns) summarise the D-efficiencies of the Bayesian IC designs for n = 6 and n = 30 support
points, respectively. For each choice of prior distribution for κ = 1, 2, 3 from (11), the plots are obtained using (i) 500
random draws of βm values from distribution (11); (ii) the locally D-optimal design for each value of βm, again found using
simulated annealing; and (iii) calculation of efficiency (5) to compare the Bayesian IC design with the locally D-optimal
design. In general, the efficiencies decrease with model size. For n = 6, the efficiencies are highly variable between models,
even formodels of the same size. It is not uncommon for a Bayesian design for logistic regression to require a large number of
support points (see Chaloner and Larntz, 1989, andWoods and Lewis, 2011). This variability is also evident in the simulation
results for model selection. Hence, in the next section, we present only assessments of the designs with n = 30 support
points.
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Fig. 6. Average power, type I error rate and FDR for logistic regressionwith κ = 3,N = 30, 50, 80, 100 runs and a locallyD-optimal design for themaximal
linear model.

For comparison, Figs. 1 and 2 (right columns) also present the D-efficiencies of locally D-optimal designs for themaximal
model containing all five variables (model 31) and with each parameter set to its prior expectation. With the obvious, and
expected, exception of model 31, the D-efficiencies are more variable and generally lower than those obtained from the
Bayesian IC design.

3.2. Model selection results

To assess the performance of the designs for model selection, a simulation study was performed for each Bayesian IC
design inwhich (i) each of themodels, in turn, was used as the truemodel for the data generating process; (ii) 1000 data sets
were generated independently by simulating values of βm from the prior distribution, followed by simulation of responses y
from a Binomial distribution; (iii) for each data set, each of themodels inM was fitted usingmaximumpenalised likelihood,
and themodel selected thatminimises GIC (10); and (iv) power, type I error rate and FDRwere calculated for each simulated
data set. The optimal approximate designs were converted into exact designs via roundingωk to the nearest integer. Results
are provided for N = 30, 50, 80, 100 in Figs. 3 and 4, for κ = 1, 3 respectively. The results for κ = 2 (not shown) are similar
to those for κ = 3.

For all three prior distributions, high power is achieved for all experiment sizes: greater than 80% for N = 30, 50, and
greater than 90% for N = 80, 100. Generally, there is a slight downward trend in power as the size of the true model
increases. With the exception of the model including all five variables, a similar trend was observed for D-efficiency. The
type I error rate is, unsurprisingly, an increasing function of the number of variables in the data-generating (true) model, as
there are fewer inactive variables (smaller denominator) for larger true models. The maximum type I error rate of about 0.5
occurs for those true models involving four variables and corresponds to identifying, on average, less than one additional
active variable. In contrast, FDR is a decreasing function of true model size, as again there are fewer inactive variables for
larger true models. The maximum FDR of approximately 0.5 occurs when N = 30 for true models that contain a single
variable, and corresponds to identifying one fewer additional active variable on average.

The results are fairly similar for the different prior distributions. The major difference is lower type I error rates when
κ = 3, where there is a greater distinction between the sizes of the model coefficients for active and inactive variables. For
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Fig. 7. Boxplots of the GIC penalty from (10) with κ = 1 and data generated from models 1 (variable 1 only) and 16 (variables 1 and 2 only).

comparison, we present results obtained from using the locally D-optimal design for model 31 (Fig. 5 for κ = 1 and Fig. 6
for κ = 3). In general, the average power is lower and average Type I error and false discovery rates higher for this design
than for the Bayesian IC designs. For κ = 3, the locally optimal design has particularly poor performance for some models
having three or four variables.

Another obvious comparator for the Bayesian IC designs are locally optimal IC designs, i.e. designs that maximise (7)
with parameters βm set equal to the mean of prior distribution (11) (m = 1, . . . ,M). For this example, the Bayesian IC and
locally optimal IC designs have almost identical D-efficiency distributions and model selection results, with the Bayesian
IC designs displaying very slightly less variable D-efficiencies when there are n = 6 support points. These results (which
are not shown) further illustrate the generally good performance of IC designs for model selection. We anticipate greater
differences between Bayesian and locally optimal IC designs for examples where the prior distribution does not specify a
known sign for each model parameter.

A key determinant of the model selection findings is the size of the GIC penalty term in (10). Our numerical studies
have shown that this depends not only on the size, pm, of the model but also on the estimated model parameters and the
goodness of fit, with better-fitting models having a smaller penalty. Fig. 7 shows the distributions of the penalties obtained
when model 1 (variable 1) and model 16 (variables 1 and 2) are true for N = 30, 100 and κ = 1. In general, the penalty
is somewhat less than 2pm, although it increases with N and hence does not penalise larger models to the same degree as
AIC. Models that include the correct variables have smaller penalty than other models. Further research on the use of this
penalty is needed.

4. Design and model selection for Poisson response and log-linear regression

To investigate the performance of the methodology for log-linear regression, simulation studies were performed for
two examples. Both assume the log link, g(µ) = η, and linear predictors of the form (6). In the first example, there are
again q = 5 variables that may affect the response (31 possible models) and prior distribution (11) is assumed. In the
second example, there are q = 10 variables but, in line with factor sparsity (Box and Meyer, 1986), we consider only linear
predictors including at most three active variables (175 possible models). Prior distributions for βim are given by (11) for
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Fig. 8. Boxplots of D-efficiencies for robust designs for log-linear regression: five variables (a) κ = 1, (b) κ = 2 and (c) κ = 3; 10 variables (d) κ = 1, (e)
κ = 2 and (f) κ = 3. For the 10 variable case, only results for every sixth model are displayed.

i = 1, . . . , 5 and for the remaining parameters by

βim ∼


Uniform(κ, 5) for i = 6, 8, 9 and I(i,m) = 1,
Uniform(−5, −κ) for i = 7, 10 and I(i,m) = 1.

Again, β0m = 0, βim = 0 if I(i,m) = 0 and κ = 1, 2, 3.

4.1. Minimally-supported designs

We restrict attention to designs that are minimally supported with respect to the maximal model, that is, where the
number, n, of distinct support points is q + 1. For this class of designs, Russell et al. (2009) and McGree and Eccleston
(2012) presented analytical design construction methods. Atkinson and Woods (2015) showed that for these designs with
−1 ≤ xij ≤ 1 and E(βim) ≥ 1, for anym = 1, . . . ,M ,

BM

log det

XT
mWmXm


πm(βm) dβm = log det


XT
mW

⋆
mXm


,

whereW ⋆
m = diag{eη⋆

jm} with η⋆
jm = f (xj)Tβ⋆

m and β⋆
m = E(βm), the prior expectation of βm. Hence, numerical integration is

no longer required for design evaluation. To exploit the available theory, we find designs that maximise

ΦD(ξ) = log det

XT
MW ⋆

MXM

. (13)
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a

b

c

d

e

f

Fig. 9. Boxplots of D-efficiencies for fractional factorial designs for log-linear regression: five variables (a) κ = 1, (b) κ = 2 and (c) κ = 3; 10 variables
(d) κ = 1, (e) κ = 2 and (f) κ = 3. For the 10 variable case, only results for every sixth model are displayed.

Maximisation of (13) defines a (pseudo-) Bayesian D-optimality criterion for themaximal model. A heuristic justification
for using this criterion to find model-robust designs was given by McGree and Eccleston (2012) who pointed out that,
assuming common prior distributions, the levels included for each variable in the minimally-supported Bayesian D-optimal
design for each individual model m are the same. Only the numbers of replications of each variable value differ between
the designs. Hence the sub-designs defined as projections of the minimally-supported design for the maximal model into
a subset of the variables will contain the same values of the variables as a minimally-supported optimal design for that
subset of variables but with different replication. Typically, designs defined in this way display less balance in the variable
levels than the D-optimal designs for the sub-models. The advantage of maximising (13) is that no numerical optimisation
is required for design selection, and hence large examples (e.g. 10 variables) can be investigated.

We replicate minimally-supported Bayesian D-optimal designs that maximise (13) to obtain designs with N = 16 runs
for five variables and N = 32 runs for 10 variables. Fig. 8 summarises, for each model, the D-efficiencies (5) for the five
variable and 10 variable designs, calculated as described in Section 3.1 except that, in step (ii), the locally D-optimal designs
obtained from the theorem of Russell et al. (2009) are used. In general, the efficiencies are somewhat higher than those
achieved by the equivalent five variable designs for logistic regression.

There are three main points of interest: (1) the D-efficiencies are higher for the five variable design due to the smaller
number of variables in the maximal model leading to less imbalance in the variable values in the sub-designs; (2) for both
the five-variable and 10-variable designs, the D-efficiency increases with the size of the model, reflecting the construction
method of maximising (13) for themaximal model; and (3) the spread of the D-efficiencies decreases as κ increases, making
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a b

Fig. 10. Power, type I error rate and FDR for log-linear regression for κ = 1: (a) five variables and N = 16; (b) 10 variables and N = 32.

the prior distributionmore concentrated. In both examples and for all κ values, theminimumefficiency is greater than∼0.4,
and the mean efficiency is greater than ∼0.55. For smaller κ and models with larger numbers of variables, the designs often
have much higher D-efficiencies.

For this example, we also assess the performance ofminimumaberration fractional factorial designs of resolution V (with
N = 16 runs for five variables) and resolution IV (with N = 32 runs for 10 variables), see Fig. 9. Although these designs
are D-optimal for the linear model, they perform uniformly poorly under log-linear regression, and much worse than the
robust minimally-supported designs. Their efficiencies are particularly low for the larger values of κ , where the variance of
the response is least constant.

4.2. Model selection results

Simulations to assess the performance of the designs for model selection were conducted as described in Section 3.2
except that, in step (iii), the model parameters were estimated using maximum likelihood and a model was chosen using
AIC. Fig. 10 shows the results for five variable and 10 variable studies with κ = 1. Results in both cases are very encouraging,
with almost uniformly high power and low type I error rates (<0.2). For data-generating models with only one active
variable (models 1–5 for the five variable experiment and models 1–10 for the 10 variable experiment), the truly active
variable is occasionally missed, and another variable is identified as active. These errors lead to slightly lower power for
these models, and non-zero FDR. For models with larger numbers of variables, all active variables are successfully identified
(power equal to 1). For the five variable study, the FDR is consistently just below 0.3, corresponding to a maximum of about
one non-active variable being incorrectly identified as active. For the 10 variable study, no screening errors are made for
models containing three active variables (model 56 onwards). For both studies, the somewhat counter-intuitive result that
performance improves for true models containing more active variables is explained by the construction method of the
design (see Section 4.1), which focusses on the model containing the maximum number of variables.

For this example, the model selection performance of the two fractional factorial designs was very similar to that of the
robust designs. Hence, the factorial designs would be effective for discrimination between the competingmodels but would
provide poor estimation of the selected model.

5. Discussion and further research

This paper provides the first investigation of designs for screening variables under a generalised linearmodel. The results
demonstrate that effective screening (high powerwith onlymoderate type I error rate and FDR) is achievable. For a binomial
response and logistic regression, both design and model selection are more challenging than for a Poisson response, and
larger designs are required to achieve good model selection results. For a binomial response, the results presented here can
easily be extended to linear predictors that include products of variables representing interactions.

Future work is needed to investigate in more detail the use of the GIC penalty with maximum penalised likelihood. In
some experiments, it may also be necessary to choose the link function in addition to the linear predictor. Compromise
designs for this situation were found by Woods et al. (2006). In this paper, we have restricted the size of the model space
under consideration by applying the principle of factor sparsity or by restricting the number of variables. For larger model
spaces, the curse of dimensionalitymay prevent an all-subsets approach tomodel selection and alternativemethods, such as
sampling themodel space (Smucker and Drew, 2015) or shrinkage regression (Friedman et al., 2010), would then need to be
employed. Clearly, the choice of design, and any resultant ‘‘confounding’’ of model effects, will have an impact on anymodel
selection procedure, including Bayesian and shrinkage methods. Investigations into the performance of these methods is
another area for future work.
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In the binomial and Poisson examples, we chose designs that ensured all models were estimable. This strategy is in
contrast to the use of a design criterion tailored to model discrimination alone such as T -optimality (Atkinson and Fedorov,
1975), where the requirement of model estimability is often not met for nested models. An alternative approach is to
generalise to multiple models those design selection methods that focus on both estimation and discrimination, such as
the use of compound criteria (Atkinson, 2008) or hybrid designs (Waterhouse et al., 2008).
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