
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

An, Ziwen, Drovandi, Christopher C., & Nott, David J.
(2016)
Accelerating Bayesian synthetic likelihood with the graphical lasso.

[Working Paper]
(Unpublished)

This file was downloaded from: https://eprints.qut.edu.au/102263/

c© Copyright 2016 [please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://eprints.qut.edu.au/view/person/An,_Ziwen.html
https://eprints.qut.edu.au/view/person/Drovandi,_Christopher.html
https://eprints.qut.edu.au/102263/

Accelerating Bayesian Synthetic Likelihood with

the Graphical Lasso

Ziwen An?,†, David J. Nott‡, and Christopher C. Drovandi?,†

?School of Mathematical Sciences, Queensland University of Technology, Australia

†Australian Research Council Centre of Excellence for Mathematical and Statistics
Frontiers

‡Department of Statistics and Applied Probability, National University of
Singapore

ziwen.an@hdr.qut.edu.au

May 8, 2017

Abstract

Simulation-based Bayesian inference methods are useful when the statistical model
of interest does not possess a computationally tractable likelihood function. One such
likelihood-free method is approximate Bayesian computation (ABC), which approx-
imates the likelihood of a carefully chosen summary statistic via model simulation
and non-parametric density estimation. ABC is known to suffer a curse of dimension-
ality with the size of the summary statistic. When the model summary statistic is
roughly normally distributed in regions of the parameter space of interest, Bayesian
synthetic likelihood (BSL), which uses a normal likelihood approximation for a sum-
mary statistic, is a useful method known to be more computationally efficient than
ABC. However, BSL requires estimation of the covariance matrix of the summary
statistic for each proposed parameter, which requires a large number of simulations
to estimate precisely using the sample covariance matrix when the summary statistic
is high dimensional. In this paper we propose to use the graphical lasso to provide
a sparse estimate of the precision matrix. This approach can estimate the covari-
ance matrix accurately with significantly fewer model simulations. We discuss the
non-trivial issue of tuning parameter choice in the context of BSL and demonstrate
on several complex applications that our method, which we call BSLasso, provides
significant improvements in computational efficiency whilst maintaining the ability to
produce similar posterior distributions to BSL.

Keywords: approximate Bayesian computation (ABC), covariance matrix estimation, Markov
chain Monte Carlo (MCMC), pseudo-marginal methods, shrinkage estimators

1

1 Introduction

Across many different disciplines such as genetics, ecology, biology and finance, the growth
of datasets and computing power has led to more complex and realistic statistical models
being proposed. A critical step in testing and developing these models is to estimate the
parameters based on the data collected from the true underlying process. It is important
also to quantify the uncertainty in the parameter estimates. The Bayesian framework
provides a principled framework to perform this task. However, for many complex models
of interest, the likelihood function is computationally intractable, preventing the routine
use of standard Bayesian computational methods.

However, a collection of likelihood-free methods has been developed for applications where
model simulation is computationally cheap in comparison to likelihood evaluation. The
most well-known likelihood-free Bayesian method is approximate Bayesian computation
(ABC, see for example Beaumont et al. (2002), Beaumont (2010) and Marin et al. (2012)).
For each proposed value of the parameter, ABC may be thought of as approximating the
density of a summary statistic believed to be informative about the model parameter using
non-parametric density estimation (Blum, 2010). The method requires specification of a
distance function that compares the observed and simulated summary statistics, a kernel
weighting function and its bandwidth (often referred to as the ABC tolerance). Due to the
non-parametric density estimation, ABC scales poorly with the dimension of the summary
statistic. Thus practitioners must often resort to dimension reduction methods (Blum
et al., 2013), where ultimately information from the full dataset is lost. Further, ABC can
involve significant tuning, especially in trying to select a suitable distance function and
value for the ABC tolerance.

It is of interest, then, to seek methods that scale better to an increase in the dimension of
the summary statistic. When the selected summary statistic has roughly a multivariate
normal distribution under the model in parameter regions of interest, the intractable
summary statistic likelihood may be replaced with a multivariate normal density (Wood,
2010). When implemented in a Bayesian framework, Price et al. (2017) refer to this as
Bayesian synthetic likelihood (BSL). Price et al. (2017) demonstrate that BSL is more
computationally efficient and requires significantly less tuning than ABC, at the expense
of making a parametric approximation to the summary statistic likelihood. Further, Price
et al. (2017) demonstrate empirically that BSL shows robustness to some departure away
from normality. For each proposed parameter value in a Bayesian algorithm, such as
Markov chain Monte Carlo (MCMC), BSL requires estimating the covariance matrix of
the summary statistic. This is done by performing n independent simulations in parallel
and computing the sample covariance matrix. It is well known that the sample covariance
matrix is unbiased but for small to moderate n it performs poorly as an estimator with
respect to a variety of loss functions (see, for example, Ledoit and Wolf (2004)). Thus,
when the summary statistic is high dimensional, the value of n must be set large to achieve
reasonable performance with BSL, thus making the overall procedure computationally
intensive despite the efficiency improvements over ABC.

In this paper we propose to use the graphical lasso (glasso, Friedman et al. (2008)) as an
alternative estimator of the covariance matrix required in BSL. The glasso assumes that
there is sparsity in the inverse covariance matrix, which implies conditional independence
amongst some of the selected summary statistics. Intuitively this seems to be a reasonable
assumption for many complex likelihood-free applications. Although the resulting estima-
tor of the covariance matrix is no longer unbiased, it can have a significantly smaller risk for

2

small to moderate values of n. This is important in the context of complex likelihood-free
applications, as fewer model simulations may be required to approximate the posterior.
The amount of sparsity in the glasso estimator is controlled by a penalty parameter. We
demonstrate an approach for selecting this tuning parameter so that reasonable mixing
can be ensured in the MCMC algorithm. This is an important and non-trivial part of the
contribution of the present work, since the considerations involved in tuning parameter
choice are quite different in BSL applications compared to the usual ones when applying
the glasso.

This paper is organised as follows. In Section 2 we cover the BSL method. Details of
the glasso and how we can use this to accelerate BSL are provided in Section 3. The
improvements afforded by our method are demonstrated on several examples in Section
4. We close the paper with a summary and discussion in Section 5.

2 Bayesian Synthetic Likelihood

Assume that the problem of interest is estimating the parameter θ ∈ Θ ⊆ Rp of a statistical
model with a likelihood function p(y|θ) where y ∈ Y is the observed data and p is the
number of parameters. We assume that p(y|θ) is not tractable to compute pointwise as a
function of θ with y fixed. However, we assume that it is comparatively straightforward
to simulate data, x ∼ p(·|θ), for a range of θ that is supported by the data, and we aim to
use simulation as a surrogate for likelihood evaluation. In such ‘likelihood-free’ settings,
it is common practice to reduce the full dataset down to a set of summary statistics,
sy ∈ S ⊆ Rd, where d is the number of summary statistics and d ≥ p (see Blum et al.
(2013) for a review of dimension reduction methods in likelihood-free applications). The
smaller the value of d, the less computation required to estimate θ. However, information
in the full data may be lost by reducing d.

In a Bayesian framework, a prior distribution, p(θ), is placed on θ and interest is in
sampling from the posterior distribution

p(θ|sy) ∝ p(sy|θ)p(θ),

so that expectations of the form E[f(θ)|sy] can be estimated for some integrable function
f(·).
Wood (2010) propose to approximate p(sy|θ) with a multivariate normal density, with the
mean, µ, and covariance matrix, Σ, depending on θ, leading to the synthetic likelihood
(SL) approximation

p(sy|θ) ≈ pA(sy|θ) = N (sy;µ(θ),Σ(θ)). (1)

There may be several reasons to appeal to the normal distribution. Firstly, the central
limit theorem may justify a normal approximation for some summary statistics. Secondly,
various one-to-one transformation can be applied to improve the normality assumption.
Thirdly, some summary statistics may be chosen on the basis of indirect inference (II). In
II (Smith, 1993) parameter estimates or the score of a tractable alternative model that
still provides a reasonable description of the data might be considered. Under some mild
conditions there is theory that such summaries are asymptotically normal. Of course,
the relationship between (µ,Σ) and θ will generally be unknown. However, they can

3

be estimated by simulation. If we draw x1:n = (x1, . . . ,xn)>, where xi
iid∼ p(·|θ) for

i = 1, . . . , n, we can calculate the summary statistic for each dataset, s1:n = (s1, . . . , sn)>,
where si is the summary statistic for xi, i = 1, . . . , n. Unbiased estimates of µ and Σ can
be obtained using the sample of summary statistics

µn(θ) =
1

n

n∑
i=1

si,

Σn(θ) =
1

n− 1

n∑
i=1

(si − µn(θ))(si − µn(θ))>.

(2)

The estimates in (2) can be plugged into the SL into (1) to estimate the SL asN (sy;µn(θ),Σn(θ)).
Together with the prior, p(θ), this approximate likelihood can be used as a replacement
to the intractable p(sy|θ) in a Bayesian algorithm such as MCMC (see Algorithm 2 in
Appendix A). We denote the implied posterior distribution of this method as

pA,n(θ|sy) ∝ pA,n(sy|θ)p(θ),

where

pA,n(sy|θ) =

∫
Sn
N (sy;µn(θ),Σn(θ))

{
n∏
i=1

p(si|θ)

}
dsi.

As n→∞ we obtain pA,n(θ|sy) = pA(θ|sy) ∝ pA(sy|θ)p(θ).

Despite the fact that µn(θ) and Σn(θ) are unbiased estimators, N (sy;µn(θ),Σn(θ)) is
not an unbiased estimator of N (sy;µ(θ),Σ(θ)). Andrieu and Roberts (2009) demonstrate
that if a non-negative and unbiased estimator of a likelihood is used in an MCMC algo-
rithm the target distribution is remarkably unchanged. Such approaches are referred to
as pseudo-marginal methods. This highlights that the target distribution pA,n(θ|sy) does
indeed depend on n. Price et al. (2017) consider using an unbiased estimator of the multi-
variate normal density under the assumption that the model summary statistic is exactly
normal. They call this method uBSL, which is theoretically unaffected by the value of n.
Here we use the vanilla BSL method as in the next subsection we consider an alternative
estimator of the covariance matrix, for which it would appear infeasible to construct an
unbiased estimator of the multivariate normal density. We do not see this as a major
drawback, since Price et al. (2017) demonstrate with substantial empirical evidence that
the target distribution of MCMC BSL is remarkably insensitive to n.

Given the insensitivity of the BSL target to n, it is of interest to choose n to maximise
computational efficiency. The larger the value of n, the more accurately the SL is esti-
mated, which increases the acceptance rate of the MCMC. However, more computation
time is required per iteration. Price et al. (2017) demonstrate that there is a wide range
of n values that lead to relatively efficient performance, but values of n too large or too
small lead to poor results, due to large computing times per iteration and too small ac-
ceptance rate, respectively. Further, it is not surprising that a larger value of n is required
as the dimension of the summary statistic is increased. Thus, BSL still involves many
model simulations and is computationally very intensive in complex applications with
high dimensional summary statistics.

Ong et al. (2016) propose to use a variational Bayes (VB) implementation of BSL (VBSL),
which reduces the computing time significantly. However, VB requires the pre-specification

4

of a parametric form for the posterior distribution that depends on several hyperparam-
eters (Ong et al. (2016) consider a multivariate normal approximation of the posterior).
Such a parametric approximation may not be reasonable for some applications and fur-
thermore the number of hyperparameters to estimate grows with an increase in the number
of parameters, p. In this paper, we consider a different approach to accelerate BSL that
does not resort to parametric approximations of the posterior. This involves replacing
the unbiased sample covariance matrix with one formed by the glasso, which we describe
in the following subsection. We note, however, that our approach could also be used to
increase the speed of VBSL even further. We plan to investigate this elsewhere.

3 BSL with the Graphical Lasso

3.1 Graphical Lasso

In this subsection we discuss different estimators for the covariance matrix of the multi-
variate normal distribution with a mean vector µ and a covariance matrix of Σ. For this
subsection, we drop the dependence of Σ on θ for notational convenience. Without loss
of generality, we may assume that the mean µ is given by a vector of zeros.

Assume that s1:n is an iid sample of size n from a normal distribution with covariance
matrix Σ. The log-likelihood function for fixed s1:n is given by

log p(s1:n|Σ) = K + log |Σ−1| − tr(Σ−1S),

where K is a constant independent of Σ and S is given by

S =
1

n

n∑
i=1

sis
>
i .

The maximum likelihood estimate (MLE) for Σ is Σ̂ = S. The MLE is close to being
unbiased for moderate n. However, when n is small, the MLE can perform poorly according
to a variety of loss functions. In the context of BSL, an estimator of the covariance matrix
with high variability may lead also to an SL estimator with high variability, negatively
impacting the mixing of the MCMC.

Fortunately, there has been and still is a significant amount of research performed on
estimating covariance matrices from small sample sizes. We do not provide a full literature
review here but refer to the reader to a review paper by Fan et al. (2016) for a more detailed
discussion. In this paper we investigate the computational gains that can be achieved by
assuming that the inverse covariance matrix, or precision matrix, Ω = Σ−1, is sparse.
Denote the (i, j)th element of Ω as ωij . From a graphical modelling perspective, if ωij = 0
for i 6= j, it implies that the ith and jth variables are conditionally independent given
all the other variables. By making this assumption we can obtain, for relatively small
values of n, estimates of the precision matrix, and also the covariance matrix, with much
better risk behaviour compared with the MLE. The main idea of this paper is that for a
given value of n, the number of model simulations, the SL can be estimated with a lower
variance. Hence a smaller value of n can be used without sacrificing the mixing properties
of the MCMC.

A popular approach for estimating a sparse precision matrix is the glasso (Friedman et al.,
2008). This involves maximising the following penalised log-likelihood

log p(s1:n|Ω) = K + log |Ω| − tr(ΩS)− λ||Ω||1, (3)

5

over the space of all positive-definite matrices. Here ||Ω||1 =
∑

i

∑
j |ωij | is the L1 norm

of Ω. There is not an analytical solution to the maximisation of (3) but it is a convex
optimisation problem and we use the approach of Friedman et al. (2008) to determine a
numerical solution. The glasso also has a Bayesian interpretation. It is the posterior mode
when placing a prior on Ω that has a double exponential prior with parameter λ on the
upper triangular elements and an exponential prior on the diagonal components of Ω (see
for example Wang (2012)). The penalty parameter λ controls the sparsity of the estimated
precision matrix, with increasing λ leading to more sparsity. For a given dataset s1:n, the
penalty parameter λ may be chosen using various information criteria and cross validation
(see Gao et al. (2012) for example). However, incorporating the glasso estimator in our
MCMC BSL algorithm requires different considerations for choosing λ that we discuss in
the next subsection.

In (3), we penalise the L1 norm of the precision matrix, which means all elements are
equally penalised. When the summary statistics have significantly different scales, it is
natural to standardise before applying the glasso. Suppose sij is the (i, j)th element in
dataset s1:n. We define the standardised value of sij as s̃ij = (sij− s̄j)/ηj , where s̄j and ηj
are the mean and standard deviation of the jth column of s1:n, respectively. Note that the
sample covariance matrix of the standardised statistics is simply the sample correlation
matrix. Thus, when the glasso is applied in the standardised case, we do not penalise the
diagonal elements so that the result of the glasso has all of its diagonal elements equal to
one.

3.2 BSLasso

We refer to our BSL procedure of using the glasso to estimate the covariance matrix Σ(θ)
from the s1:n as BSLasso. Incorporating the corresponding estimate of the SL within an
MCMC method creates the MCMC BSLasso algorithm.

The BSLasso approach requires the choice of an additional tuning parameter, λ. Ideally,
we wish to choose λ as small as possible so that the results can be expected to be close to
that obtained in the standard BSL. However, we also wish to limit the value n to achieve
computational gains. We choose the value of λ on the basis that, for a particular value of
n, we would like to achieve a reasonable acceptance rate in the MCMC.

In order to explain exactly how we select λ, it is instructive to first consider pseudo-
marginal algorithms (Andrieu et al., 2010). In pseudo-marginal methods, an unbiased
likelihood estimator is used as a replacement to the exact intractable likelihood in an
MCMC algorithm. Remarkably, the MCMC procedure retains the exact posterior as
its limiting distribution. However, the stochasticity of the estimator impacts negatively
on the mixing relative to the corresponding ideal MCMC algorithm that uses the exact
likelihood if it were available. The major issue is that the pseudo-marginal MCMC chain
can exhibit significant stickiness when the log-likelihood is grossly overestimated. Under
the assumption that the log-likelihood estimator has a normal distribution, Doucet et al.
(2015) show that reasonable mixing of pseudo-marginal MCMC can be achieved if the
standard deviation of the log-likelihood estimator at a value of θ with reasonable posterior
support is roughly 1.

Even though technically our approach is not a pseudo-marginal method, as the likelihood
estimator we use is not an unbiased estimator of the SL if we knew µ(θ) and Σ(θ), we
can still use the results from pseudo-marginal methods as guidance for so-called noisy
MCMC algorithms (Alquier et al., 2016) more generally. Interestingly, Price et al. (2017)

6

find that the value of n that leads to the best mixing relative to computing time per
iteration is the one that produces an estimated log SL with a standard deviation of roughly
1.5-2. In our experience, it is also the distribution of the log-likelihood estimator, not
just the standard deviation, that has an impact on the mixing. When the log-likelihood
estimator is roughly normally distributed, we may follow the advice for pseudo-marginal
methods and aim for a standard deviation closer to 1. However, we have also observed
that the distribution of the log SL estimator can be skew left, which inflates the standard
deviation. Underestimated log-likelihood estimates have a milder consequence on the
mixing compared to overestimation. In these cases, a standard deviation closer to 2 could
still be suitable.

We assume a reasonable point estimate of the parameter θ has been found. This point
estimate may by informed by experts, obtained from previous analyses or from some
initial experimentation and pilot runs. Note that we do not necessarily see this as a
drawback of our method relative to other similar likelihood-free methods. Both MCMC
ABC (Marjoram et al., 2003) and MCMC BSL require the discovery of a suitable starting
value as they suffer from very slow convergence when starting from a poor initial value
(Lee and Latuszyński, 2014; Price et al., 2017).

Our approach for selecting the penalty is shown in Algorithm 1. The user needs to select a
value of n that will subsequently be used in the MCMC BSLasso algorithm. The value of
n could be chosen based on computational considerations and relative to the dimension of
the summary statistic, d. It is possible to test a collection of n values in an efficient manner.

Denote the largest tested n value as nmax. We generate simulations s1:nmax

iid∼ p(s|θ) and
for any n < nmax we take a random sample of size n from s1:nmax without replacement.
Then, the glasso method is used to estimate the covariance matrix across a path of penalty
values λ1, . . . , λK that is pre-specified. In practice, the user can firstly choose a coarse
grid of penalty values to identify a particular region of penalty values to focus on. This
process can be iterated a few times if necessary. It is important to note that the same set
of simulations can be used for each λ value. This process is repeated M times to produce
a set of log SL estimates {log pn,λkA (sy|θ)}Mm=1 for each value of λk, k = 1, . . . ,K. By
inspecting the distribution of log SL estimates a suitable value of the standard deviation σ
is chosen that is expected to lead to reasonable mixing in MCMC BSLasso. Then we are
required to find the corresponding λ that produces an estimated standard deviation close
to σ. We use a value of σ = 1.5 in this paper as we find it works well in the examples, see
Section 5 for more discussion on selecting λ. If a lower value of λ is desired, then a larger
value of n is required. The approach is summarised in Algorithm 1.

There are other standard approaches to select the penalty in glasso when performing a
data analysis, such as the Bayesian information criterion (BIC) and cross validation (CV).
We use BIC and CV error (see Gao et al. (2012) for the relevant formulae) to determine
the penalty values and compare them with those from Algorithm 1. We adopt the same
number of iterations, M = 300, and average the BIC and CV error for different values of n
and λ. Let BIC(λ, n|θ) and CV(λ, n|θ) be the averaged BIC and 10-fold CV error, where
θ is a point estimate with reasonable posterior support. The optimal values of λ from BIC
and CV are chosen such that λBIC = argmin

λ
BIC(λ, n|θ), λCV = argmin

λ
CV(λ, n|θ).

7

Input : Parameter value with reasonable posterior support, θ0, the number of
simulations that will be performed per iteration in the MCMC BSLasso,
n, a sequence of potential penalty values, λ1, . . . , λK , and the number of
log SL estimates obtained, M .

Output: A penalty parameter λ to be used in the MCMC BSLasso algorithm.
1 for m = 1 to M do

2 Generate a collection of summary statistics s1:n
iid∼ p(s|θ0)

3 Compute the sample mean µn(θ0) = 1
n

∑n
i=1 si

4 Use the glasso to obtain Σλk
n (θ0) for each k = 1, . . . ,K based on the same

simulations {si}ni=1

5 Use the estimated mean µn(θ0) and the collection of covariance matrix

estimates {Σλk
n (θ0)}Kk=1 to estimate the log SL log{pn,λkA (sy|θ0)}Kk=1

6 end
7 By inspecting the distribution of log SL estimates choose a suitable value of the

standard deviation σ that will achieve reasonable mixing in the MCMC BSLasso
algorithm and return the corresponding λk that produces an estimated standard
deviation close to σ

Algorithm 1: Procedure to select the penalty value λ for use within MCMC BSLasso

4 Examples

Below we consider applications of varying complexity. The examples shed light on the
considerations that need to be made when using BSLasso. Further, the examples investi-
gate the quality of approximation and the computational gains that can be achieved by
BSLasso relative to standard BSL.

We attempt to avoid the impact of the MCMC proposal distribution on the comparisons.
This is quite difficult to do since the approximate posterior obtained can depend on the
penalty parameter λ and also potentially on the choice of n. Therefore, for each individual
approximation to the posterior, we perform pilot runs to obtain what we believe to be an
efficient proposal distribution. The examples that we consider are low dimensional in
terms of the number of the parameters so we use a multivariate normal random walk
proposal with a covariance matrix that is estimated from the pilot runs. To measure the
computational efficiency we empirically compute the effective sample size (ESS) from the
MCMC output, divide it by the total number of model simulations used and then multiply
the result by a constant large scalar to increase the magnitude of the numbers to facilitate
comparison.

We run the MCMC algorithms for a sufficiently large number of iterations T so that the
results are not dominated by Monte Carlo error. Since we assume a reasonable point
estimate of the parameter has been found, we do not use any burn-in.

We acknowledge that even though we find the glasso method to be fast, it is still slower
than computing the sample covariance matrix. However, in complex applications where the
computation is dominated by model simulations, for example when the summary statistic
is high-dimensional and/or model simulation is even moderately expensive, the additional
time introduced by glasso will be small. According to Friedman et al. (2008), the speed of
the glasso decreases with an increase in the dimension of the covariance matrix and also
with a decrease in the amount of sparsity that is being assumed. However, we find that

8

the glasso method runs quickly in the examples of this paper.

Below we consider two simulated examples and a real data example. For illustration
purposes, the proportion of partial correlations below particular thresholds in the ‘true’
covariance matrix by performing many model simulations at either the true parameter
value and one with high posterior support are shown in Table 1. The second example has
a very high degree of potential sparsity. The first example also has an inverse covariance
matrix that may be approximated well with a sparse version. The third example only has
some potential sparsity.

Table 1: The proportion of partial correlations below certain thresholds in the true co-
variance matrices for the three examples in this paper.

Example/Threshold 0.01 0.02 0.05 0.10 0.20 0.50 0.75

Example 1: MA(2) model 0.81 0.81 0.85 0.92 0.96 0.96 0.96
Example 2: Cell biolgy model 0.83 0.94 0.98 ≈1 1 1 1

Example 3: Multivariate g-and-k model 0.03 0.06 0.17 0.38 0.61 0.83 0.89

We display the posteriors with different combinations of n and λ in the three individual
examples. We suggest that the posterior distributions are mainly impacted by the λ
value, however we cannot eliminate the possibility of n influencing the results. Therefore,
in Appendix B, we show that BSLasso is very insensitive to n by testing different n values
with fixed λ in the three examples.

4.1 MA(2) Example

Firstly we consider a simple example that has a tractable likelihood function. The model
in question is a standard MA(2) time series model, and has been considered in other
likelihood-free research (see for example Marin et al. (2012)). The process evolves accord-
ing to the following

yt = zt + θ1zt−1 + θ2zt−2, for t = 1, . . . , L,

where zt
iid∼ N (0, 1) for t = −1, 0, . . . , L. The parameter of interest is θ = (θ1, θ2)

> and
the parameter space is restricted to Θ ≡ {R2 : −2 < θ1 < 2, θ1 + θ2 > −1, θ1 − θ2 < 1} to
ensure that the time series process is invertible.

We take as the ‘observed’ data, y = (y1, y2, . . . , yL)>, a simulated dataset with θ1 = 0.6,
θ2 = 0.2 and L = 50. We use as the summary statistic the full dataset so that the
dimension of the summary statistic is also L = 50. Notice that marginally yt ∼ N (0, θ21 +
θ22) for t = 1, . . . , L, so that the summary statistics are already on the same scale.

For standard BSL we trial n values of n = 200, 250, 300, 500 and 750. Consistent with the
extensive empirical evidence provided in Price et al. (2017), we find that the approximate
posterior is very insensitive to n. We find that choosing n = 500 gives the highest efficiency
out of the trialled values of n. Thus, we do our efficiency comparisons of BSLasso with BSL
based on n = 500. Unsurprisingly, the BSL posterior is very close to the true posterior as
the full dataset does indeed have a multivariate normal distribution (results not shown).

We trial BSLasso with n = 50, 150, 300 and 500. We first need to determine a suitable
penalty parameter λ to use for each value of n. For Algorithm 1 we use M = 300 and
the true value of θ. For illustration, we use a sequence of log-uniformly distributed values

9

of e−8, e−7.9, . . . , e0.5 for λ within Algorithm 1. In practice, a more coarse grid of penalty
values can initially be chosen to find a region of λ values to focus on. We find that the
distributions of the log-likelihood estimated are roughly symmetric but that there is a
slight tendency for outliers in the left tail that may inflate the standard deviation of the
log SL (see Section 5 for a discussion). We choose to select λ values that lead to σ ≈ 1.5
for each value of n, noting that the desired value of λ will be smaller for increasing n.
The exact values of λ that we use in MCMC BSLasso are shown in Table 2. It is evident
that we are able to select a lower value of λ as the value of n is increased. Figure 1 shows
the comparison of Algorithm 1 , BIC and CV methods for selecting the penalty value λ.
Algorithm 1 and CV give similar values of λ for n = 50, 150, 300, 500, while the λ values
chosen by the BIC method are slightly larger.

-8 -6 -4 -2 0
0

50

100

150

200
n = 50

 = 0.301

-8 -6 -4 -2 0
3000

3500

4000

4500

5000

5500

B
IC = 0.407

-8 -6 -4 -2 0

log()

0

2

4

6

8

C
V

 e
rr

or

104

 = 0.183

-8 -6 -4 -2 0
0

1

2

3

4

5

6
n = 150

 = 0.082

-8 -6 -4 -2 0
0.8

0.9

1

1.1

1.2

1.3
104

 = 0.202

-8 -6 -4 -2 0

log()

0.8

0.9

1

1.1

1.2
104

 = 0.082

-8 -6 -4 -2 0
0

0.5

1

1.5

2

2.5

3
n = 300

 = 0.025

-8 -6 -4 -2 0
1.6

1.8

2

2.2

2.4
104

 = 0.135

-8 -6 -4 -2 0

log()

1.4

1.6

1.8

2

2.2

2.4
104

 = 0.05

-8 -6 -4 -2 0
0

0.5

1

1.5

2
n = 500

 = 0.009

-8 -6 -4 -2 0
2.5

3

3.5

4
104

 = 0.1

-8 -6 -4 -2 0

log()

2.5

3

3.5

4
104

 = 0.033

Figure 1: Comparing the methods of selecting the penalty for the MA(2) example. The
first row is the standard deviation of the log SL, the second row is the average BIC and
the third row is the average CV error.

We first focus on the results for computational efficiency. The normalised ESS values for
BSLasso and standard BSL are shown in Table 2. It is clear that introducing the glasso
with a suitably large penalty allows us to obtain quite high acceptance rates even for small
n. This results in much larger normalised ESS values. Furthermore, it is evident that our
strategy for selecting λ seems to be effective as the acceptance rate is similar regardless of
the choice of n.

We have demonstrated the relative computational efficiency of BSLasso but have not
considered the accuracy. As is evident from Table 2, we are able to decrease the penalty
value without sacrificing on the acceptance rate by increasing the value of n. Thus we
expect the accuracy (in the sense of closeness to the standard BSL posterior) to improve as
n is increased. However, the significant computational gains come from small n, so there is
interest in how small we can take n and not lose much accuracy. Figure 2 shows BSLasso
posteriors for a select few n values and compares them with the standard BSL posteriors.
It is clear when we increase the value of n (hence decrease the value of λ), that the BSLasso
posterior gets closer to the standard BSL posterior. The effect of the approximation for
larger λ appears to be a posterior with an inflated variance, i.e. conservative. Although
the greatest computational gain is obtained with n = 50, the quality of the posterior

10

Table 2: Normalised ESS values and MCMC acceptance rates for standard BSL and
BSLasso for the MA(2) example. Also shown are the different combinations of n and λ
trialled for BSLasso. The first row corresponds to standard BSL, which does not require
a λ value.

n λ acc. rate (%) ESS θ1 ESS θ2
500 - 15 39 38

50 0.300 31 243 265
150 0.080 29 162 123
300 0.025 27 89 79
500 0.009 26 67 66

approximation may not be considered reasonable depending on the decisions that might
be made on the basis of these results. However, n = 300 provides a much more reasonable
approximation and the computational gains are still substantial.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

θ
1

0

0.5

1

1.5

2

2.5

3

BSL n = 500
BSLasso λ = 0.3
BSLasso λ = 0.08
BSLasso λ = 0.025
BSLasso λ = 0.009

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

θ
2

0

0.5

1

1.5

2

2.5

3

BSL n = 500
BSLasso λ = 0.3
BSLasso λ = 0.08
BSLasso λ = 0.025
BSLasso λ = 0.009

Figure 2: Posteriors for the MA(2) example with standard BSL and BSLasso with various
values for λ (based on the values in Table 2).

4.2 Cell Biology Example

We consider an example in collective cell spreading, which has important biological appli-
cations in wound healing and skin cancer growth (Swanson et al., 2003; Dale et al., 1994).
We follow the study in Price et al. (2017), who developed a simulated version of the real
data analysis conducted in Johnston et al. (2014). We briefly describe the experimental
set-up in Johnston et al. (2014), but refer the interested reader to their paper for more
details. Initially, a population of cells is placed in a dish and a scratch is made down
the middle. Images of the cell population are taken every 5 minutes until the cells have
re-filled the hole made by the scratch (last image at 12 hours).

Johnston et al. (2014) develop a discrete-time stochastic model to try to explain the
evolution of the cell population. A square lattice is constructed where the size of each
lattice site is approximately equal to the average diameter of a cell. In each small time
step of the simulator, each cell is given an opportunity to move to a neighbouring lattice
site (chosen randomly) with probability Pm, with the move aborted if a cell is already

11

present at the proposed lattice site. Similarly, during the small time step, each cell is
given an opportunity to give birth and deposit a daughter cell at a neighbouring lattice
site (chosen randomly) with probability Pp, where again the proposal is rejected if there is
already a cell present at the desired location. The parameters Pm and Pp can be converted
into biologically relevant parameters, the cell diffusivity and the cell proliferation rate, via
suitable transformations (see Johnston et al. (2014) for more details). We denote the
parameter as θ = (Pm, Pp)

>.

Johnston et al. (2014) consider only 3 of the 144 images (excluding image at time 0)
for ABC parameter estimation. The reason for this is two-fold: (1) the image analysis
for the observations relies on some manual processing to map the cells onto a square
lattice so it is comparable with the simulation model and (2) the dimension of the data is
substantially reduced facilitating an ABC analysis with less computational burden. Price
et al. (2017) consider a simulation experiment that attempts to utilise the information from
all images to see if more precise estimates of θ can be obtained. The summary statistics
developed are the collection of Manhattan distances between adjacent binary matrices and
the number of cells present at the end of the experiment (145 statistics), with the former
designed to be informative about cell motility and the latter being informative about cell
proliferation. Price et al. (2017) demonstrate that BSL with a suitably large value of n
is able to accommodate this high-dimensional summary statistic. The aim of our analysis
is to see if we can produce similar inferences for θ with a much smaller value of n. The
simulated dataset of Price et al. (2017) uses Pm = 0.35, Pp = 0.001 and 100 cells at time
0.

Price et al. (2017) find that n = 5000 produces the most efficient BSL results (out of
the values n = 2500, 3750, 5000, 7500 and 10000). We use Algorithm 1 with M = 300
to determine the potential penalty values for n values of 500, 1000, 1500 and 2000. We
determine the λ values from e−1.5, e−1.4, . . . , e3 for MCMC BSLasso to correspond with
σ ≈ 1.5. These λ values are shown in Table 3. Plots of σ, the BIC and the 10-fold CV
error against log λ are presented in Figure 3. It can be seen that BIC produces a much
larger value of λ than our approach. This suggests that the BIC gives values of λ that are
too conservative, in the sense that MCMC mixing should not be an issue but the larger λ
value will lead to a worse BSLasso approximation. The CV approach produces values of
λ that are also larger than that of Algorithm 2 and are thus also too conservative.

From Table 3 it is evident that, again, our approach to determine λ can result in a
consistent acceptance rate for different n values. Significant efficiency gains can be achieved
since a reasonably high acceptance rate can be attained for relatively small n values.

Table 3: Normalised ESS values and MCMC acceptance rates for standard BSL and
BSLasso for the cell biology example. Also shown are the different combinations of n and
λ trialled for BSLasso. The first row corresponds to standard BSL, which does not require
a λ value.

n λ acc. rate (%) ESS Pm ESS Pp
5000 - 21 8 8

500 4.50 16 55 63
1000 2.20 17 36 22
1500 1.10 16 16 19
2000 0.74 16 14 16

12

-1 0 1 2 3
0

1

2

3

4

5

6
n = 500

 = 4.482

-1 0 1 2 3
4

4.1

4.2

4.3

4.4

4.5

B
IC

105

 = 18.174

-1 0 1 2 3

log()

3.95

4

4.05

4.1

4.15

C
V

 e
rr

or

105

 = 6.05

-1 0 1 2 3
0

1

2

3

4
n = 1000

 = 2.226

-1 0 1 2 3
8

8.1

8.2

8.3

8.4

8.5

8.6
105

 = 13.464

-1 0 1 2 3

log()

7.95

8

8.05

8.1
105

 = 4.055

-1 0 1 2 3
0

0.5

1

1.5

2

2.5
n = 1500

 = 1.105

-1 0 1 2 3
1.2

1.21

1.22

1.23

1.24

1.25

1.26
106

 = 11.023

-1 0 1 2 3

log()

1.195

1.2

1.205

1.21
106

 = 3.32

-1 0 1 2 3
0

0.5

1

1.5

2
n = 2000

 = 0.741

-1 0 1 2 3
1.6

1.61

1.62

1.63

1.64

1.65

1.66
106

 = 9.025

-1 0 1 2 3

log()

1.59

1.595

1.6

1.605

1.61

1.615
106

 = 2.718

Figure 3: Comparing the methods of selecting the penalty for the cell biology example.
The first row is the standard deviation of the log SL, the second row is the average BIC
and the third row is the average CV error.

The posterior distributions for most combinations of n and λ in Table 3, in comparison
with standard BSL, are shown in Figure 4. In this example it is apparent that very little
accuracy is lost (relative to standard BSL) even for relatively large λ values. This is not
surprising given the high amount of potential sparsity shown in Table 1 for this example.

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39

P
m

0

5

10

15

20

25

30

35

40

45

50

BSL n = 5000
BSLasso λ = 4.5
BSLasso λ = 2.2
BSLasso λ = 1.1
BSLasso λ = 0.74

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
p

×10-3

0

500

1000

1500

2000

2500

BSL n = 5000
BSLasso λ = 4.5
BSLasso λ = 2.2
BSLasso λ = 1.1
BSLasso λ = 0.74

Figure 4: Posteriors for the cell biology example with standard BSL and BSLasso with
various values for λ (based on the values in Table 3).

4.3 Multivariate g-and-k Example

Finally, we move on to fitting a multivariate g-and-k model to currency exchange data.
The marginal distribution of a multivariate g-and-k distribution is a univariate g-and-k
distribution. Following Drovandi and Pettitt (2011), we model the dependency of the
variables with a Gaussian copula, see also Ong et al. (2016).

13

A g-and-k distribution (Rayner and MacGillivray (2002)) has 5 parameters a, b, c, g and
k, where c is fixed at 0.8 in this paper, so that θ = (a, b, g, k)>. These four parameters
grant the g-and-k distribution with considerable flexibility, controlling location, scale,
skewness and kurtosis respectively. However, the distribution does not possess a closed
form expression for the probability density function. Simulation can be achieved easily by
plugging a uniform random number between 0 and 1 into the quantile function, Q(p), p ∈
(0, 1). The quantile function of a g-and-k distribution is given by

Q(p|θ) = a+ b

(
1 + c

1− exp(−gz(p))
1 + exp(−gz(p))

)
(1 + z(p)2)kz(p),

where a ∈ R, b > 0, g ∈ R, k > −0.5 and z(p) = Φ−1(p) is the standard normal quantile
function.

Suppose y is a n× q observation matrix from n observations, i.e. y = (y1, . . . ,yn)>. The
dependency structure between marginals is modelled by a Gaussian copula with a q × q
correlation matrix ∆. The only free parameters in ∆ are the non-diagonal elements in
the upper triangular matrix of ∆. Let δi,j be the (i, j)th element of ∆. We define the
following non-standard vectorisation operator (column-stacked) accordingly

vec(∆) = (δ1,2, δ1,3, δ2,3, δ1,4, . . . , δ3,4, . . . , δ1,q, . . . , δq−1,q)
>.

The parameter of the multivariate g-and-k distribution is defined as θ = (θ>1 , . . . ,θ
>
q , vec(∆)>)>,

where θj = (aj , bj , gj , kj)
>, j = 1, . . . , q is the parameter for the jth marginal. The density

function for one observation can be written as

f(yi|θ) = |∆|−1/2 exp(z>i (Iq −∆−1)zi)

q∏
j=1

f(yi,j |θj), i = 1, . . . , n,

where Iq is the q × q identity matrix, zi = (z(F (yi,1|θ1)), . . . , z(F (yi,q|θq)))> and F (·|θ)
is the cumulative distribution function of the univariate g-and-k distribution given θ.

We consider a trivariate dataset, i.e. q = 3, of foreign currency daily exchange rates
between June 1, 2007 and 31 December, 2013 (1652 trading days) from US dollar, Euro
and Japanese Yen to Australian dollar (dataset obtained from http://www.rba.gov.au/

statistics/historical-data.html). Let x be the 1652×3 observation matrix with row
being the time index and column representing each currency. Assume that the log daily re-
turn dt,i = log(xt+1,j/xt,j), t = 1, . . . , 1651, j = 1, 2, 3 follows a trivariate g-and-k distribu-
tion. There are 15 parameters to estimate, θ = (a1, b1, g1, k1, a2, b2, g2, k2, a3, b3, g3, k3, δ12, δ13, δ23)

>.

We consider a re-parametrisation so that we can sample over an unrestricted parame-
ter space. Pinheiro and Bates (1996) introduce a spherical parametrisation that always
produces a positive definite covariance matrix upon back-transformation, also see Ong
et al. (2016) for another description. For simplicity, we only consider the q = 3 case.
Let w = (w1, w2, w3)

> be the unconstrained parameter and ∆ = LL> be the proposed
correlation matrix. Let γj = π/ (1 + exp(−wj)) for j = 1, 2, 3 and

L =

 1 0 0
cos(γ1) sin(γ1) 0
cos(γ2) sin(γ2) cos(γ3) sin(γ2) sin(γ3)

 .

14

We also follow Ong et al. (2016) and re-parametrise the marginal parameters θj → θ̃j =
(ãj , b̃j , g̃j , k̃j)

>. By using the following transformations

ãj = log

(
aj + 0.1

0.1− aj

)
, b̃j = log

(
bj

0.05− bj

)
, g̃j = log

(
gj + 1

1− gj

)
and k̃j = log

(
kj + 0.2

0.5− kj

)
,

we are able to sample over an unconstrained parameter space. The vector of parameters
after transformation is θ̃ = (θ̃>1 , θ̃

>
2 , θ̃

>
3 ,w

>)>. The prior distribution for θ̃j , j = 1, 2, 3 is
N (04, 2

2I4) and the prior distribution for w is N (03, 1.752I3), respectively, where 0q is a
vector of q zeros.

We use a 15-dimensional summary statistic for q = 3, s = (s>1 , s
>
2 , s

>
3 , s

>
cor)
>, where sj =

(sa,j , sb,j , sg,j , sk,j)
> for j = 1, 2, 3 is the vector of robust summary statistics (Drovandi

and Pettitt (2011)) from the jth marginal distribution. The four components in the robust
summary statistic are given by

sa,j = L2,j , sb,j = L3,j−L1,j , sg,j =
L3,j + L1,j − 2L2,j

sb,j
and sk,j =

E7,j − E5,j + E3,j − E1,j

sb,j
.

In the above equations, Li,j and Ei,j are the ith quantile and octile from the jth marginal,
respectively.

Correlation between variates is summarised by the Gaussian rank correlation (GRCor) or
normal score, see Boudt et al. (2012) for details. The GRCor has a range between −1 and
1, so when there exists a strong correlation between variables, the normality assumption
might be violated. Thus, we adopt the Fisher transformation (Fisher (1915)) to transform
the estimated correlations to approximate normality,

ρ̃g =
1

2
log

(
ρg + 1

1− ρg

)
,

where ρg is the estimated GRCor.

In this example, the components of the summary statistic are not on a similar scale. The
diagonal elements of the precision matrix range from 103 to above 108. For instance, the
diagonal elements corresponding to sa,1 and sb,1 are both of the order 108, whilst the
diagonal elements corresponding to sg,1 and sk,1 are of the order 103. Thus, we perform
glasso on the standardised summary statistic. For a summary statistic of 15 dimensions,
we choose n = 15, 20, 30, 50 for comparison of the BSLasso posteriors. We use M = 300
iterations to determine λ via Algorithm 1, as well as to compare with the BIC and CV
methods. The results for the three approaches are shown in Figure 5. Note, with respect
to the CV method, we use 7 folds for n = 15 and 10 folds for all other values of n. The
candidates for λ are e−6, e−5.8, . . . , e0. It is evident that the BIC is minimised near zero and
thus will produce penalty values that lead to a log SL with a very large variance and hence
poor MCMC mixing. Penalties by CV are very similar to Algorithm 1. Table 4 shows our
choice of the λ values, and we only show the ESS values for a subset of the parameters
for brevity. The dimension of the summary statistic is relatively large in this example,
however, the acceptance rate is still very high. The n used in BSL is 60, which appears to
be the most efficient choice out of the tested values n = 20, 30, 40, 50, 60, 75, 100, 125, 150.
Posteriors by BSLasso are not substantially different from those by BSL considering there is

15

not a very high level of sparsity in this example. BSLasso generally gives more conservative
posteriors comparing to BSL, in the sense that the posterior variances are inflated. The
smaller the penalty value the closer the BSLasso approximation is to the BSL posteriors,
as expected.

-6 -5 -4 -3 -2 -1 0
0

10

20

30

40
n = 15

 = 0.25

-6 -5 -4 -3 -2 -1 0
-2200

-2100

-2000

-1900

-1800

B
IC = 0.0025

-6 -5 -4 -3 -2 -1 0

log()

-2500

-2000

-1500

-1000

-500

0

500

C
V

 e
rr

or

 = 0.2

-6 -5 -4 -3 -2 -1 0
0

5

10

15
n = 20

 = 0.14

-6 -5 -4 -3 -2 -1 0
-2800

-2750

-2700

-2650

-2600

-2550

-2500

 = 0.0025

-6 -5 -4 -3 -2 -1 0

log()

-3000

-2800

-2600

-2400

-2200

-2000

 = 0.17

-6 -5 -4 -3 -2 -1 0
0

1

2

3

4

5

6
n = 30

 = 0.06

-6 -5 -4 -3 -2 -1 0
-4150

-4100

-4050

-4000

-3950

-3900

-3850

 = 0.0025

-6 -5 -4 -3 -2 -1 0

log()

-4300

-4200

-4100

-4000

-3900

 = 0.09

-6 -5 -4 -3 -2 -1 0
0.5

1

1.5

2

2.5

3
n = 50

 = 0.01

-6 -5 -4 -3 -2 -1 0
-7000

-6900

-6800

-6700

-6600

 = 0.0025

-6 -5 -4 -3 -2 -1 0

log()

-7200

-7100

-7000

-6900

-6800

-6700

 = 0.05

Figure 5: Comparing the methods of selecting the penalty for the multivariate g-and-k
example. The first row is the standard deviation of the log SL, the second row is the
average BIC and the third row is the average CV error.

Table 4: Normalised ESS values and MCMC acceptance rates for standard BSL and
BSLasso for the multivariate g-and-k example using σ = 1.5. Also shown are the different
combinations of n and λ trialled for BSLasso. The first row corresponds to standard BSL,
which does not require a λ value.

n λ acc. rate (%) ESS a1 ESS b1 ESS g1 . . . ESS δ12 ESS δ13 ESS δ23
60 - 23 545 601 522 · · · 626 653 622

15 0.55 36 1615 1917 2222 · · · 2540 1861 2604
20 0.30 37 1526 1597 1774 · · · 1859 1640 1910
30 0.11 34 1225 1235 1258 · · · 1372 1221 1309
50 0.04 34 812 873 808 · · · 947 893 930

5 Discussion

In this paper we have presented an approach to accelerate the BSL method of Price
et al. (2017) by using the glasso estimator for the covariance matrix of a set of summary
statistics rather than using the sample covariance matrix. We have demonstrated that
significantly less model simulations are required to form an approximate posterior. The
accuracy of the resulting posterior relative to standard BSL will be application dependent.
We expect our approach to be most effective in applications where the computation time is
dominated by model simulation (in the presence of a high dimensional summary statistic

16

Figure 6: Posteriors for the multivariate g-and-k example using σ = 1.5 with standard
BSL and BSLasso with various values for λ (based on the values in Table 4).

17

and/or an expensive model simulator) and where the joint distribution of the summary
statistic is regular enough in non-negligible posteriors regions so that it can be reasonably
approximated with a multivariate normal distribution.

It is clear that the major drawback of SL methods is the multivariate normal assump-
tion, despite the fact that Price et al. (2017) provide empirical evidence to show that
BSL is partially robust to this assumption. One approach that we may consider to help
verify if the normal assumption is reasonable is the marginal adjustment method of Nott
et al. (2014). The approach of Nott et al. (2014) partially involves determining accurate
estimates for each of the posterior marginals by focussing on statistics relevant only for
individual parameters, which is likely to be low-dimensional. The marginal posteriors from
BSL could then be compared to the ABC marginal adjustments. In future research, we
plan to develop methods to relax the multivariate normal assumption whilst maintaining
our capability of using various shrinkage estimators of the covariance matrix.

In this paper we have determined an off-line approach for choosing an appropriate penalty
value λ to use in MCMC BSLasso that is tied in with a particular choice of n. However,
an adaptive MCMC strategy that could select this penalty on-the-fly would be useful. We
leave that for future research.

Our main conclusion is that standard approaches for selecting λ in a typical data analysis
are not appropriate for use within an MCMC algorithm as we do. We suggest that the
value of λ should be chosen as small as possible such that reasonable MCMC acceptance
rates can still be expected assuming that a reasonable proposal distribution is selected.
We use σ = 1.5 throughout the three examples, however, larger σ is also worth considering
if the distribution of the estimated log SL has noticeable skewness. In particular, we are
more concerned about left skewness rather than right skewness as θ values that produce
small log SL are likely to be rejected so that the Markov Chain will not get stuck. We use
boxplots (see Appendix C) to investigate the behaviour of the distribution of the estimated
synthetic log-likelihood when the value of σ is between 1 and 3, which might be considered
reasonable values for σ. For visualisation purposes, we only consider a small number of
penalty values in the boxplots. For instance, in Figure 10 of the web appendix C, the
boxplots of the estimated log SL of the MA(2) example show approximate symmetry for
the chosen n and λ values. Boxplots for the cell biology example are roughly symmetric
as well, we omit the figure for brevity. Boxplots for the multivariate g-and-k example in
Figure 11 of the web appendix show a tendency for left skewness in the distribution of the
log SLs. The standard deviation of the log SL in this example could be inflated. In this
example we also expect reasonable posterior results with slightly larger σ values. Results
regarding σ = 2 are shown in Appendix D. The BSLasso posteriors using σ = 2 are more
accurate than those using σ = 1.5 at the expense of losing a small amount of efficiency.

Acknowledgements

CCD was supported by an Australian Research Council’s Discovery Early Career Re-
searcher Award funding scheme (DE160100741). ZA was supported by a scholarship un-
der CCDs grant DE160100741 and a top-up scholarship from the Australian Research
Council Centre of Excellence for Mathematical and Statistics Frontiers (ACEMS). DJN
was supported by a Singapore Ministry of Education Academic Research Fund Tier 2
grant (R-155-000-143-112). Computational resources and services used in this work were
provided by the HPC and Research Support Group, Queensland University of Technology,

18

Brisbane, Australia.

Supplementary Material

Appendices Further discussions regarding (A) sensitivity to n and (B) multivariate g-
and-k example with σ = 2 (.pdf file)

Matlab Code Matlab implementation of the BSLasso method for the MA(2) example.
Please see the README.txt file for details on how to run the code (.zip file)

References

Alquier, P., Friel, N., Everitt, R., and Boland, A. (2016). Noisy Monte Carlo: Convergence
of Markov chains with approximate transition kernels. Statistics and Computing, 26(1-
2):29–47.

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72(3):269–342.

Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte
Carlo computations. The Annals of Statistics, 37(2):697–725.

Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology.
Annual Review of Ecology, Evolution, and Systematics, 41:379–406.

Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). Approximate Bayesian compu-
tation in population genetics. Genetics, 162(4):2025–2035.

Blum, M. G. B. (2010). Approximate Bayesian computation: a non-parametric perspec-
tive. Journal of the American Statistical Association, 105(491):1178–1187.

Blum, M. G. B., Nunes, M. A., Prangle, D., and Sisson, S. A. (2013). A comparative re-
view of dimension reduction methods in approximate Bayesian computation. Statistical
Science, 28(2):189–208.

Boudt, K., Cornelissen, J., and Croux, C. (2012). The Gaussian rank correlation estimator:
robustness properties. Statistics and Computing, 22(2):471–483.

Dale, P. D., Maini, P. K., and Sherratt, J. A. (1994). Mathematical modeling of corneal
epithelial wound healing. Mathematical Biosciences, 124:127–147.

Doucet, A., Pitt, M. K., Deligiannidis, G., and Kohn, R. (2015). Efficient implementation
of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika,
102(2):295–313.

Drovandi, C. C. and Pettitt, A. N. (2011). Likelihood-free Bayesian estimation of multi-
variate quantile distributions. Computational Statistics and Data Analysis, 55(9):2541–
2556.

Fan, J., Liao, Y., and Liu, H. (2016). An overview of the estimation of large covariance
and precision matrices. The Econometrics Journal, 19(1):C1–C32.

19

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in
samples from an indefinitely large population. Biometrika, 10(4):507–521.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441.

Gao, X., Pu, D. Q., Wu, Y., and Xu, H. (2012). Tuning parameter selection for penalized
likelihood estimation of Gaussian graphical model. Statistica Sinica, 22:1123–1146.

Johnston, S., Simpson, M. J., McElwain, D. L. S., Binder, B. J., and Ross, J. V. (2014).
Interpreting scratch assays using pair density dynamic and approximate Bayesian com-
putation. Open Biology, 4(9):140097.

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional co-
variance matrices. Journal of Multivariate Analysis, 88(2):365–411.

Lee, A. and Latuszyński, K. (2014). Variance bounding and geometric ergodicity of
Markov chain Monte Carlo kernels for approximate Bayesian computation. Biometrika,
101(3):655–671.

Marin, J.-M., Pudlo, P., Robert, C. P., and Ryder, R. J. (2012). Approximate Bayesian
computation methods. Statistics and Computing, 22(6):1167–1180.

Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003). Markov chain Monte Carlo
without likelihoods. Proceedings of the National Academy of Sciences, 100(26):15324–
15328.

Nott, D. J., Fan, Y., Marshall, L., and Sisson, S. (2014). Approximate Bayesian computa-
tion and Bayes linear analysis: toward high-dimensional ABC. Journal of Computational
and Graphical Statistics, 23(1):65–86.

Ong, V. M., Nott, D. J., Tran, M.-N., Sisson, S. A., and Drovandi, C. C. (2016). Variational
Bayes with synthetic likelihood. arXiv preprint arXiv:1608.03069.

Pinheiro, J. C. and Bates, D. M. (1996). Unconstrained parametrizations for variance-
covariance matrices. Statistics and Computing, 6(3):289–296.

Price, L. F., Drovandi, C. C., Lee, A., and Nott, D. J. (2017). Bayesian synthetic likelihood.
Journal of Computational and Graphical Statistics.

Rayner, G. and MacGillivray, H. (2002). Weighted quantile-based estimation for a class of
transformation distributions. Computational statistics & data analysis, 39(4):401–433.

Smith, Jr., A. A. (1993). Estimating nonlinear time-series models using simulated vector
autoregressions. Journal of Applied Econometrics, 8(S1):S63–S84.

Swanson, K. R., Bridge, C., Murray, J. D., and Jr, E. C. A. (2003). Virtual and real brain
tumor: using mathematical modeling to quantify glioma growth and invasion. Journal
of the Neurological Sciences, 216:1–10.

Wang, H. (2012). Bayesian graphical lasso models and efficient posterior computation.
Bayesian Analysis, 7(4):867–886.

Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems.
Nature, 466:1102–1107.

20

Web Appendices for Accelerating Bayesian Syn-
thetic Likelihood with the Graphical Lasso by An
et al 2017

A MCMC BSL Algorithm

Input : Summary statistic of the data, sy, the prior distribution, p(θ), the
proposal distribution q, the number of iterations, T , and the initial value
of the chain θ0.

Output: MCMC sample (θ0,θ1, . . . ,θT) from the BSL posterior, pA,n(θ|sy). Some
samples can be discarded as burn-in if required.

1 Simulate x1:n
iid∼ p(·|θ0) and compute s1:n

2 Compute φ0 = (µn(θ0),Σn(θ0)) using (2)
3 for i = 1 to T do
4 Draw θ∗ ∼ q(·|θi−1)
5 Simulate x∗1:n

iid∼ p(·|θ∗) and compute s∗1:n
6 Compute φ∗ = (µn(θ∗),Σn(θ∗)) using (2)

7 Compute r = min
(

1,
N (sy ;µn(θ∗),Σn(θ∗))p(θ∗)q(θi−1|θ∗)

N (sy ;µn(θi−1),Σn(θi−1))p(θi−1)q(θ∗|θi−1)

)
8 if U(0, 1) < r then
9 Set θi = θ∗ and φi = φ∗

10 else
11 Set θi = θi−1 and φi = φi−1

12 end

13 end
Algorithm 2: MCMC BSL algorithm.

B Sensitivity to n

In the main paper, we show that the accuracy of the BSLasso posterior distributions
is affected by the choice of penalty value. However, it is unclear if the BSLasso target
posterior distribution is also sensitive to n. It is of interest to see if the property of
insensitivity to n of BSL (Price et al. (2017)) carries over to BSLasso. For this purpose,
we trialled different values of n with penalty value fixed at our choice in each example.
Figures 7, 8 and 9 show the comparison of posteriors at each λ chosen for the MA(2), cell
biology and multivariate g-and-k examples, respectively. The number of MCMC iterations
in every trial is taken to be large enough so that the Monte Carlo error does not dominate.

Figures below imply that BSLasso is also insensitive to n. Thus we can conclude that the
estimated BSLasso posterior distributions shown in Figures 2, 4 and 6 of the main paper
are mainly influenced by λ not n.

21

-0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

 =
0.

3

BSLasso n = 40
BSLasso n = 100
BSLasso n = 150

-1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5
BSLasso n = 40
BSLasso n = 100
BSLasso n = 150

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 =
0.

08

BSLasso n = 100
BSLasso n = 300
BSLasso n = 500

-1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2
BSLasso n = 100
BSLasso n = 300
BSLasso n = 500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

 =
0.

02
5

BSLasso n = 200
BSLasso n = 500
BSLasso n = 800

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2
BSLasso n = 200
BSLasso n = 500
BSLasso n = 800

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

 =
0.

00
9

1

BSLasso n = 300
BSLasso n = 700
BSLasso n = 1100

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5
2

BSLasso n = 300
BSLasso n = 700
BSLasso n = 1100

Figure 7: Posteriors for the MA(2) example with standard BSL and BSLasso with different
values of n and λ. Results show that the BSLasso posterior is not sensitive to n.

22

0.3 0.32 0.34 0.36 0.38 0.4
0

10

20

30

40

50

 =
4.

5

BSLasso n = 500

BSLasso n = 750

BSLasso n = 1000

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500
BSLasso n = 500

BSLasso n = 750

BSLasso n = 1000

0.3 0.32 0.34 0.36 0.38 0.4
0

10

20

30

40

50

 =
2.

2

BSLasso n = 1000

BSLasso n = 1400

BSLasso n = 1800

0 0.5 1 1.5 2 2.5

10-3

0

500

1000

1500

2000

2500
BSLasso n = 1000

BSLasso n = 1400

BSLasso n = 1800

0.3 0.32 0.34 0.36 0.38 0.4
0

10

20

30

40

50

 =
1.

1

BSLasso n = 1500

BSLasso n = 2250

BSLasso n = 3000

0 0.5 1 1.5 2 2.5

10-3

0

500

1000

1500

2000

2500
BSLasso n = 1500

BSLasso n = 2250

BSLasso n = 3000

0.28 0.3 0.32 0.34 0.36 0.38 0.4
0

10

20

30

40

50

 =
0.

74

P
m

BSLasso n = 2000

BSLasso n = 3000

BSLasso n = 4000

0 0.5 1 1.5 2 2.5

10-3

0

500

1000

1500

2000

2500
P

p

BSLasso n = 2000

BSLasso n = 3000

BSLasso n = 4000

Figure 8: Posteriors for the cell biology example with standard BSL and BSLasso with
different values of n and λ. Results show that BSLasso posterior is not sensitive to n.

23

0
0.

5
1

1.
5

-3

0

50
0

10
00

15
00

20
00

 =0.55

7.
35

7.
4

7.
45

7.
5

7.
55

7.
6

-3

0

50
00

10
00

0

15
00

0

-0
.2

-0
.1

8
-0

.1
6

-0
.1

4
-0

.1
2

-0
.1

0102030

0.
05

0.
1

0.
15

05101520

0.
62

0.
64

0.
66

0.
68

0.
7

010203040

B
S

La
ss

o
n

=
 1

0

B
S

La
ss

o
n

=
 2

5

B
S

La
ss

o
n

=
 5

0

0
0.

5
1

1.
5

10
-3

0

50
0

10
00

15
00

20
00

 =0.3

7.
35

7.
4

7.
45

7.
5

7.
55

7.
6 10

-3

0

50
00

10
00

0

15
00

0

-0
.2

-0
.1

8
-0

.1
6

-0
.1

4
-0

.1
2

-0
.1

0102030

0.
05

0.
1

0.
15

05101520

0.
62

0.
64

0.
66

0.
68

0.
7

010203040

B
S

La
ss

o
n

=
 1

5

B
S

La
ss

o
n

=
 4

0

B
S

La
ss

o
n

=
 8

0

0
0.

5
1

1.
5

10
-3

0

50
0

10
00

15
00

20
00

25
00

 =0.11

7.
35

7.
4

7.
45

7.
5

7.
55

7.
6 10

-3

0

50
00

10
00

0

15
00

0

-0
.2

-0
.1

8
-0

.1
6

-0
.1

4
-0

.1
2

-0
.1

0102030

0.
05

0.
1

0.
15

0510152025

0.
62

0.
64

0.
66

0.
68

0.
7

01020304050

B
S

La
ss

o
n

=
 2

0

B
S

La
ss

o
n

=
 5

0

B
S

La
ss

o
n

=
 1

00

0
0.

5
1

1.
5

10
-3

0

50
0

10
00

15
00

20
00

25
00

 =0.04

a
1

7.
35

7.
4

7.
45

7.
5

7.
55

7.
6 10

-3

0

50
00

10
00

0

15
00

0
b

1

-0
.2

-0
.1

8
-0

.1
6

-0
.1

4
-0

.1
2

-0
.1

0102030
g

1

0.
05

0.
1

0.
15

0510152025
k

1

0.
62

0.
64

0.
66

0.
68

0.
7

01020304050
12

B
S

La
ss

o
n

=
 3

0

B
S

La
ss

o
n

=
 8

0

B
S

La
ss

o
n

=
 1

50

Figure 9: Posteriors for the multivariate g-and-k example with standard BSL and BSLasso
with different values of n and λ. Results show that BSLasso posterior is not sensitive to
n.

24

C Boxplots of Log Synthetic Likelihoods

Boxplots of the log SL estimates for the MA(2) and multivariate g-and-k examples are
shown in Figures 10 and 11 respectively.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-40

-20
n = 50

0.01 0.03 0.05 0.07 0.08 0.09 0.1 0.11 0.12 0.13

-40

-35

-30

-25

n = 150

0.005 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

-36

-34

-32

-30

-28

-26

-24

n = 300

0.001 0.004 0.007 0.01 0.013 0.016 0.019 0.022 0.025 0.028

-32

-30

-28

-26

-24

n = 500

Figure 10: Boxplots of the estimated log SL estimates obtained for different combinations
of n and λ for the the MA(2) example based on θ = (0.6, 0.2)>. The x-axis of each plots
shows the λ value and the corresponding y-axis is the estimated log SL.

D Multivariate g-and-k Example with σ = 2

In this section, we re-run the multivariate g-and-k example using σ = 2. The data and
methods are the same as Section 4.3 of the main paper. Figure 12 shows the posterior
distributions with λ chosen on the basis of σ = 2. The selected penalty values are shown
in Table 5 together with the ESS values for a subset of the parameters. Given that a σ
value of 2 leads to smaller values of λ compared with σ = 1.5, the BSLasso posteriors are

25

0.17 0.2 0.25 0.3 0.37 0.45 0.55 0.67 0.82 1

58

60

62

64

66

68

70

72

74

n = 15

0.11 0.14 0.17 0.2 0.25 0.3 0.37 0.45 0.55 0.67

60

62

64

66

68

70

72

74

76
n = 20

0.04 0.05 0.06 0.07 0.09 0.11 0.14 0.17 0.2 0.25

62

64

66

68

70

72

74

76

n = 30

0.01 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.09

64

66

68

70

72

74

76
n = 50

Figure 11: Boxplots of the estimated log SL estimates obtained for different combinations
of n and λ for the multivariate g-and-k example based on the currency exchange data.
The x-axis of each plots shows the λ value and the corresponding y-axis is the estimated
log SL.

26

more accurate in the sense that plots in Figure 12 are closer to the BSL posteriors than
Figure 6. As expected, there is a decrease in the acceptance rate and ESS values for the
larger σ, however the efficiency gains of the BSLasso approach remain clear.

Table 5: Normalised ESS values and MCMC acceptance rates for standard BSL and
BSLasso for the multivariate g-and-k example using σ = 2. Also shown are the different
combinations of n and λ trialled for BSLasso. The first row corresponds to standard BSL,
which does not require a λ value.

n λ acc. rate (%) ESS a1 ESS b1 ESS g1 · · · ESS δ12 ESS δ13 ESS δ23
60 - 23 545 601 522 · · · 626 653 622

15 0.25 29 1692 1813 1748 · · · 2000 1781 2031
20 0.14 28 1406 1467 1442 · · · 1708 1604 1704
30 0.06 27 1034 1093 1061 · · · 1145 1064 1143
50 0.01 25 644 685 615 · · · 797 768 788

27

Figure 12: Posteriors for the multivariate g-and-k example using σ = 2 with standard BSL
and BSLasso with various values for λ (based on the values in Table 5).

28

