
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Eichinski, Philip & Roe, Paul
(2016)
Datatrack: An R package for managing data in a multi-stage experimental
workflow: data versioning and provenance considerations in interactive
scripting. In
Proceedings of the 2016 IEEE 12th International Conference on e-Science
(e-Science 2016), IEEE, Baltimore, Md, pp. 147-154.

This file was downloaded from: https://eprints.qut.edu.au/101510/

c© Copyright 2016 IEEE

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1109/eScience.2016.7870895

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/78104947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eprints.qut.edu.au/view/person/Eichinski,_Philip.html
https://eprints.qut.edu.au/view/person/Roe,_Paul.html
https://eprints.qut.edu.au/101510/
https://doi.org/10.1109/eScience.2016.7870895

Datatrack: An R package for managing data in a
multi-stage experimental workflow

Data Versioning and Provenance Considerations in Interactive Scripting

Philip Eichinski, Paul Roe
Science and Engineering Faculty

Queensland University of Technology
Australia

philip.eichinski@qut.edu.au

Abstract—In experimental research using computation, a
workflow is a sequence of steps involving some data processing or
analysis where the output of one step may be used as the input of
another. The processing steps may involve user-supplied
parameters, that when modified, result in a new version of input
to the downstream steps, in turn generating new versions of their
own output. As more experimentation is done, the results of these
various steps can become numerous. It is important to keep track
of which data output is dependent on which other generated data,
and which parameters were used. In many situations, scientific
workflow management systems solve this problem, but these
systems are best suited to collaborative, distributed experiments
using a variety of services, possibly batch processing parameter
sweeps. This paper presents an R package for managing and
navigating a network of interdependent data. It is intended as a
lightweight tool that provides some visual data provenance
information to the experimenter to allow them to manage their
generated data as they run experiments within their familiar
scripting environment, where it may not be desirable to commit
to a fully-blown comprehensive workflow manager. The package
consists of wrapper functions for writing and reading output data
that can be called from within the R analysis scripts, as well as a
visualization of the data-output dependency graph rendered
within the R-studio console. Thus, it offers benefit to the
experimenter while requiring minimal commitment for
integration in their existing working environment.

Keywords—computational science; data provenance; R
language; R package, workflow;

I. INTRODUCTION
Exploratory data analysis research is often performed in

interactive scripting environments such as R, Matlab, Octave or
Python. These are popular because they afford the opportunity
for researchers who do not necessarily have a strong software
engineering or coding background to interactively manipulate
data through a read–eval–print loop (REPL). They offer the
flexibility of a programming language while allowing swift
manipulation, inspection and visualization of data, enabling
researchers to quickly roll-out experiments.

Exploratory data analysis in such scripting environments is
often performed in a conceptual “workflow” where several
distinct steps of data transformation are involved, each taking

one or more data objects, and later outputting some result data
to be used as input for a subsequent downstream step.

In computational workflows, recording the data provenance
- the dependencies, processes, parameters and people
responsible for the creation of the data - is important, as it helps
interpretation, verification, or tracing the origin of results [2].

When the research undertaken involves designing these
analysis processes, inspecting the results of each step, tweaking
code and reprocessing, the workflow is often not run in a single
end to end execution, but rather, an individual step may be run
in isolation, relying on saved intermediate data.

This necessitates that the input data objects be selected by
the user, rather than piped in by the preceding step in the
workflow. To make this selection, the user must be informed
by the provenance metadata associated with all the potential
candidates for selection.

Thus, data provenance is not only important from the point
of view of reproducibility and debugging, but also to assist
online decision-making during the execution of each step of the
workflow. Having this provenance information easily available
within the interactive scripting environment is of great benefit.

Existing solutions to workflow data provenance tracking
normally involve scientific workflow management systems
(SWfMS) such as Vistrails [3] or Kepler [4]. These systems
are well suited to distributed systems, collaborative research
and batch processing across a wide range of parameters, and
are hugely advantageous for automating the cycle of moving
data to a supercomputer for analysis or simulation, launching
the computational processes and managing the storage of the
output [5]. When working within a SWfMS, the workflow is
formalized using a workflow language, which may be
generated through a graphical user interface, and the
management system invokes the processes of the workflow.
This means that they are best suited where these processes are
mature and stable.

However, exploratory research performed in interactive
scripting environments, where the code that performs the
analysis is being constantly modified, does not always lend
itself to integration with a SWfMS. Even in circumstances

where a SWfMS could be used, it may be resisted by the
researcher because integration will often draw the researcher
out of the environment that they are comfortable working in
and require additional effort to learn a new system. When the
research calls for frequent modification to the code that runs
the data processing steps, working in an SWfMS means
effectively working in two environments possibly with two
scripting languages.

Under these circumstances, a solution for automated data
provenance recording is required for use in interactive scripting
environments that do not use a SWfMS. Some tools have been
proposed (discussed in section II), however while they address
the aspects of data provenance related to verification and
reproducibility, they are not aimed at online user decision-
making, as discussed above.

This paper introduces Datatrack, a prototype R package
that [6] manages the dependencies and versioning of data
generated in R. It was created to address the problems with
data provenance tracking in the interactive exploratory research
performed in our lab. The purpose of Datatrack is not to
formalize the workflow but rather to provide a way to automate
some record-keeping of data generation and assist the
experimenter in selecting the correct input data when executing
a process. While it doesn’t offer many of the features of most
scientific workflow management systems, it has the advantage
that it has minimal configuration and operates within the R
programming environment, reducing the barrier to entry for
researchers.

II. RELATED WORK
With the growing importance of e-science and

computational science, standards for provenance have
emerged. In computationally intensive science, large amounts
of data are generated. Data provenance allows the scientist to
determine all necessary information about the input data,
processes, computing environments and contributors involved
in the generation of data output in order to be able to reproduce
it. Broadly speaking data provenance captures the identities and
relationships between what was created, how it was created
and who played a role in its creation.

Standard models for how this information should be
structured have emerged, such as the Open Provenance Model
(OPM) developed following the International Provenance and
Annotation Workshop in 2006 [1] and PROV-DM a more
recent standard, endorsed by the W3C in 2012 [7]. Both these
standards list three types of core ‘objects’ that represent the
what, how and who of provenance, albeit with differing
terminology: respectively, Artefacts, Processes, Agents in the
case of OPM and Entities, Activities and Agents in the case of
PROV-DM. They also define a number of causal relationships
between them, such as “was derived from”, “was controlled
by”, “was triggered by” amongst others. The standards specify
how to model provenance and not how to implement the
model.

Most research into the issues of data provenance has been
focussed on Scientific Workflow Management Systems
(SWfMS) [8]. There is a huge variety of these SWfMS, but
generally they have the following functionality: workflow

composition, mapping the workflow onto resources or services,
executing the workflow and recording the provenance metadata
to allow the final output to be reproduced in the future [5]. As
discussed in section I, SWfMS are well suited to large,
collaborative, distributed analysis and simulations, a situation
where good provenance recording is indeed vital.

Until recently, literature in data provenance tracking
outside of SWfMS has been scarce. Part of the reason for this
may be that research on a scale small enough that a SWfMS is
not required means that keeping track of data provenance may
be assumed to be trivial. Yet, in our experience, simple, user-
friendly tools for automatically maintaining a record of
dependencies of data outputs has proved hugely useful.

NoWorkflow [9] is a command line tool for recording
detailed provenance metadata from python scripts. Its authors
note that outside of a SWfMS, provenance capture is
challenging due to the fact that the workflow sequence is
encoded by the scripts themselves. NoWorkflow works by
using software engineering techniques such as abstract syntax
tree analysis, to determine this workflow from the scripts
themselves and record provenance information during their
execution.

The YesWorkflow [10] toolkit is another tool that offers
some of the provenance recording functionality of a SWfMS to
users of scripting languages such as R and Python.
YesWorkflow allows the scientist to insert annotations as code-
comments in the scripts that they write. The toolkit can then
parse the codebase and interpret and convert these comments
into a form that can be queried to answer questions about data
objects created.

These tools share with Datatrack the benefit of minimal
intrusion into the programming practices that the user is
comfortable with. However, Datatrack comes from a slightly
different angle, with emphasis put on provenance information
for decision-making during invocation of sections of the
workflow in isolation.

III. MOTIVATION CONTEXT
The development of Datatrack was motivated by needs

arising in the research undertaken at the Ecoacoustics Research
Group at the Queensland University of Technology, which
partly entails designing automated and semi-automated
methods of acoustic analysis for environmental monitoring.
These methods may involve several data processing steps such
as pre-processing, feature extraction, silence removal,
clustering and sample ranking, for example. Each processing
step performs a series of operations on the output of one or
more previous steps, and outputs one or more of its own data
files. The R language has often been chosen within the Eco-
acoustic Research Group at QUT because it offers the power
and flexibility of a programming language but is easy to learn
and provides very quick methods for manipulating and
visualizing data.

A change at any particular point along the pipeline will
generate new versions of all intermediate data downstream to
the change. A new idea by the researcher might mean creating
a new process that shares some upstream data as a dependency,
and creates new branches downstream. A particular step may

take multiple input data objects. For example, a classifier will
read in both a model on which to base the classification as well
as the data points to classify. Both of these inputs will have
been generated by one or more earlier processes.

Although such a sequence of steps comprises a
“workflow”, it has not been formally specified in a dedicated
workflow language. Fig. 1 shows an example of the kind of
workflow used.

The workflow is not necessarily run from start to finish:
one step of the workflow may be invoked in isolation. This
may be because the code for that step may have been modified,
or different parameters used. Running a process at a particular
point along the pipeline after such changes should not require
regeneration of the upstream data, and therefore it is normally
desirable to save all intermediate input/output data. Not only
does this ‘caching’ of intermediate data save the time needed to
compute it, but it allows inspection of the output of each step in
order to evaluate and improve the process that created it.

With every modification to parameters of any process in the
workflow, the number of saved data objects in this

interdependent network increases, and keeping track of them
can become unwieldy. Obviously, in the absence of automated
management, diligent manual recordkeeping would be
necessary to ensure reliable reproducibility.

But the primary motivator to the development of Datatrack
was to assist selection of input data. When invoking a
particular processing step in the workflow, the researcher must
decide which data to use as input out of a large number of
possible inputs available (generated from variations of
upstream processes). Without an easy method for the
researcher to ascertain the dependencies of a particular data
object, their interaction with their software is less user-friendly.
Easily accessible provenance metadata at the time that they are
selecting the input data makes this interaction quicker and less
error-prone.

Git version control is used to track changes in the codebase
over time. While this offers a fair degree of retrospective
examination of how past results were generated, additional
metadata of how the data is related to the code in the repository
is required.

IV. DATATRACK FRAMEWORK
In this section, we discuss the prototype package that

addresses some of the problems detailed above. The package
has been developed iteratively to address specific needs that
have arisen during our ecological acoustics research.

A. Overview
From the user’s perspective, Datatrack provides wrappers

for reading and writing data in R. When these are used instead
of the native R functions (such as write.csv), additional
metadata can be supplied. Datatrack records this supplied
metadata as well as some additional information that can be
determined from the data and environment. An interactive
visual graph representation of the dependencies is available. It
is automatically displayed when reading data to allow the user
to specify which version of available data objects should be
used.

The philosophy behind this simple approach is that the user
should not be restricted in their coding style. It does not force
the researcher into a particular set of conventions, or to work in
an unfamiliar environment.

Notably, there is no formal workflow language or authoring
tool. In effect, R is the workflow language as well as the
language of the processes that perform the analysis tasks
themselves.

Datatrack is completely data-centric. It does not attempt
infer the workflow by interpreting source code. Instead it
records the data flow, i.e. the dependencies between data
objects. This is in line with its goals to provide the necessary
information to the user at the time that data is read in.

B. Writing Data
When Datatrack is used to save the output of an analysis

process, several pieces of information are supplied to it:

• Name

• Dependencies

Fig. 1. Example of a workflow for ecological audio analysis
experimentation. Rectangles denote processes and ellipses denote data
objects that are input and output to these process.

• Parameters

• Annotations

The name is an arbitrary string used to refer to the data at a
later stage. It would typically describe the data object that has
been generated or the process that generated it, for example
“clustering.result” or “ranked.samples”.

Dependencies are a list of names and version-numbers of
the data objects that were read in and used in the processing
step that created the data being written. This is the mechanism
that defines the dependency graph of data output for the
workflow.

Parameters are a set of name-value pairs, and refer to the
parameters used by the process that created the output data.

Annotations are also name value pairs that the user can
supply to be stored as the metadata of the process.

During experimentation, dependencies or parameters might
be altered by the user on separate invocations of a processing
step. When writing data of a particular name, Datatrack will
save a separate version of the output for each unique
combination of dependencies and parameters. The versioning
is handled internally to the package. It is not possible to save
output data that has the same name, dependencies and
parameters as a previous version has, and doing so will result
in a user-prompt asking for approval to overwrite the existing
file. The distinction between annotations and parameters is that
annotations do not affect versioning. Example R code is for
writing data is shown in Fig. 2.

C. Reading Data and the Data Dependency Graph
When reading in upstream data in any step of the pipeline,

the name is specified in a Datatrack function (Fig. 3). There
may be many versions of available data objects with a given
name, each having been generated with a unique combination
of dependencies and parameters.

Execution is paused until the user inputs the desired
version, which is chosen from a list of available versions. This
is done made with the aid of a visual graph of data

dependencies and associated metadata, which is presented to
the user at the time data is being read through Datatrack. It is a
directed acyclic graph (DAG) where the nodes are data objects,
and the edges are dependencies, with the vertical position
denoting the direction of the dependencies (dependencies are
above the data objects that depend on them). Nodes are
grouped by their name. The dependency graph is shown for the
purpose of assisting the user in their selection. The user can
easily see the versions of the potential inputs available, the
parameters used when generating them, and the annotations
attached to the data, as well their dependencies. The graph also
provides the user with convenient access some information that
can be derived directly from the data object, such as the
column names of saved CSVs, which can also help in their
choice of which version to read in.

Because multiple versions of saved data objects are shown
simultaneously for comparison, the number of relevant data
nodes on the graph can be quite large. This has motivated the
design decisions aimed at minimising clutter in the dependency
graph.

Fig. 4 shows an example of a graph. In this example, there
are three groups of data objects that do not have any
dependencies: “weather”, “radar.wthr” and “audio”. These
names are defined by the user as the ‘name’ argument to the
writeDataobject function (Fig. 2). Each of the numbered cells
in the groups below the group name is a node of the graph and
represents a data object. For instance, in the example shown in
Fig. 4 there are six versions of “event.features.1” available,
each created with different dependencies and/or parameters. By
hovering the mouse over a node, the user can inspect the
metadata attached to that version and easily ascertain its
dependencies and dependents. In the example, the mouse
pointer is hovering over version 1 of “event.features.1” and the
direct dependency (version 1 of “events”) and indirect
dependency (version 1 of “audio”) are highlighted. The directly
dependent nodes (versions 1 and 3 of “clustering”) and
indirectly dependent nodes (version 1 of “ranking”) are also
highlighted. This graph is interactive and is displayed within
the viewer of R-Studio (Fig. 5), a popular integrated
development for R [11].

Nodes can be filtered by name, hiding nodes that do not
have any direct or indirect links to any node in the group with
the selected name. Fig. 5 shows the same graph as Fig. 4 but
filtered by name “event.features.2”. When reading data of a
particular name, this filtering is performed to remove nodes
that are irrelevant to the choice the user needs to make. Within
a group, nodes are ordered by their created date-time, and a
range can be specified to filter nodes of the selected group by
date-time

Important to note is that the conceptual workflow
conceived by the researcher and implemented in R will
resemble the groups and their relationships in this graph,
however the Datatrack data dependency graph is not based
directly on any workflow designed by the user, but rather only
on the dependencies declared at the time of writing the data
through the data object’s name. No assumptions are made
about the workflow, and no attempt at inferring the workflow
through code inspection is made. The user is free to choose

params <- list(k = 240, alg = ‘kmeans’)

dep <- list(segment_features = seg$version)

datatrack::writeDataobject(mydata,
 name = ‘clustering.1’, �
 params= params,
 dependencies = dep,
 annotations = list())

Fig. 2. Example R code for saving data

datatrack::readDataobject(‘clustering.1’)

Fig. 3. Example R code for reading data

whatever name they like, although normally it would refer in
some way to the step of the workflow. This means that the
working style of the user is not impacted at all by using
Datatrack for reading and writing data.

While giving the user the provenance information at the
time that data object is being read in to a process is useful when
that step of the workflow is being run in isolation, if multiple
steps of the workflow are being executed in sequence or if the
workflow is being executed from start to finish, there is no
need to prompt the user to select the correct version of data.
Unless instructed otherwise, Datatrack will automatically select
the last accessed version of a data object of a particular name
(read or written), instead of prompting for user selection. This
allows an entire workflow of reading and writing data to be run
without user input at each step.

D. Considerations and Tradeoffs
 Datatrack is not designed to offer all the data provenance

features of a Scientific Workflow Management System,
because its primary aim is centered around user decision-
making assistance and data versioning. In this section, we
discuss features and their implications for usability of
Datatrack.

1) Tracking of users: the “who” of provenance
The Open Provenance Model and PROV-DM

specifications define a number of ‘objects’ that do not show up
as nodes on the Datatrack dependency graph, namely the
“who” (which users) and the “how” (which processes), leaving
only the dependencies between the “what” (the generated data).
This difference can be seen by comparing the toy example
given in the OPM specification (Fig. 6) [1]. As well as
displaying artefacts (e.g. ‘cake’), it also shows the process
“bake” and the agent “John”.

Fig. 4. Example of a graph of data dependencies showing parameters used when generating data.). Each group of nodes (*1) represents a type of data object
arbitrarily named by the user. This example shows eight different types of data object. Each node (*2) represents a data object. The nodes are numbered by
their version. Dependencies between nodes are represented by the lines. When the mouse hovers over a node, metadata information is for that node is shown,
and the dependency chain to and from that node is highlighted. Note: the dashed lines are figure labels and are not part of the graph visualization.

In making design decisions about what should recorded and
what should be present as nodes in the dependency graph,
some trade-offs were made between simplicity and
completeness. The aim of Datatrack is to only include nodes in
the dependency graph that are central to satisfying the needs
for which it was built, namely providing on-the-fly assistance
in selecting the correct input when running a process. Other
provenance metadata is recorded in the background, such that
at a later stage it can be recovered for debugging purposes.

Complete provenance tracking includes information
regarding who was responsible for a process that generated
intermediate data. This is desirable in collaborative
environments, however it requires more configuration by the
experimenter. By allowing arbitrary user-supplied metadata to
be recorded when data is written (passed to Datatrack’s write
function as annotations), this “who” information can be
optionally recorded. This metadata may help a user to navigate
through the dependency tree by giving extra information, but is
not included as nodes in the dependency graph unlike a fully
compliant OPM graph. This decision was made to simplify the
graph for readability.

2) Tracking of code versions and environment information
For provenance tracking to be complete, the experiment

should be completely reproducible. This requires that all the
algorithms that played a role in the creation of the output data,
as well as the environment in which they were run, should be
recorded in the provenance metadata.

Datatrack keeps things simple and lightweight by simply
recording the date that the data object was generated, and a
stack trace of function calls leading to the writing of data. In
conjunction with a versioning system (in our case Git), this

does reasonably well in allowing the details of the processes
responsible for generating output at any later date to be
discovered if necessary.

For completeness, Datatrack also records information about
the environment including

• The operating system

• The version of R

• The loaded packages and their versions

On the dependency graph, this information is all recorded
as annotations on a data node, rather than as their own nodes.
Again, while this deviates from provenance graphs favored by
the OPM specification, it was primarily done in order to keep
the dependency graph as visually uncluttered as possible so as
to produce a more useable tool.

The decision to keep the processes (the ‘how’ of data
provenance) as annotations of data nodes, rather as their own
nodes, was made because Datatrack is essentially data-centric:
the user only interacts with it through reading and writing data.
For this reason, while the processes are part of the workflow
and would conceptually fit into the dependency graph
(connecting two data nodes), there actually is no requirement
as far as Datatrack is concerned to formally name the
processes.

3) Generating versions and overwriting data.
Core to the aim of Datatrack is assisting the researcher in

selecting version of the input data for a process they are
running. Numerous versions suitable data might be available,
each having been generated by the same earlier process but
with different parameters or using different inputs.

As detailed in section B, Datatrack will write multiple
versions of the same name, provided they have a unique
combination of dependencies parameters. Version numbers are
automatically assigned. If the same script is run with different
parameters, this parameter information will be passed on to
Datatrack and a new version will be saved. Similarly, if the
same process is run with different input data, this dependency
information will be passed on when writing the output data and
a new version of it will be saved.

Fig. 5. Data dependency graph within the R-Studio viewer

Fig. 6. Example of a workflow graph that adheres to the OPM
specification [1]

If modifications are made to the code that generates the
data, or if the process is run in a different environment, such as
with different versions of packages loaded, then this does not
constitute a new version.

This is done for the simple reason that changes to the code
that defines the process is most likely done to improve output
results. Essentially, this coupling of a workflow model with a
constantly evolving codebase of processes creates this
situation.

However, this decision is certainly debatable, and it may be
desirable incorporate changes to the source code and loaded
packages and into the data versioning system. However, this
presents a number of implementation challenges and may
complicate the user’s interaction with the data dependency
graph. At this stage of the prototype, we have decided to keep
it simple and not have changes to code generate new versions
of data. If the user decides that the two versions of a process
should result in two versions of the output, they can consider
representing this information as a parameter or modifying the
name of the output.

4) Potential for illogical data dependencies
Datatrack’s intentional simplicity is designed to allow it to

fit into a wide variety of coding styles, but means that there is
no inbuilt checking that the dependencies declared by the user
actually make sense. Cyclic data dependencies could in theory
be generated. It is up to the user to select the correct data to use
as dependencies and to name the output data in a way that
conforms to their conceptual workflow. If done in a sensible
way, dependency cycles will be absent.

E. Technical implementation of Datatrack package
As the Datatrack package is a prototype, these

implementation details are neither set in stone nor as important
as the design considerations and motivations behind the
packages, and as such this description has been kept brief.

A Datatrack project is simply a directory containing the
provenance metadata and the data objects themselves. The
minimum configuration for a Datatrack project is the path to
this Datatrack project directory. Configuration is stored as a
json file in the working directory.

The package records all provenance and versioning
metadata in a CSV (comma separated values) file on disk. A
relational database would also have been appropriate and
possibly more efficient, however it was deemed that running
and interfacing with the database was an unnecessary
complexity, and would require greater user configuration. By
storing all metadata available as a text file, the user can
manually inspect it if need be, using familiar spreadsheet
programs rather than requiring database management software
or SQL knowledge.

Data output files are saved in a central location, the path to
which is specified through user configuration, with file names
automatically generated by the Datatrack version numbering
system.

The visualization of the dependency graph is written in
Javascript, html and css using the D3 Javascript library [12].
The “HTML widgets” R package [13] was used to display this

graph within the RStudio console. For maintainability reasons,
the visualization tasks were abstracted to a separate R package,
on which Datatrack depends.

V. FUTURE WORK

A. Improving interactive features of the dependency graph
The visual interface of the graph used to help the user

choose between potential inputs is currently interactive to a
limited degree:

• The user can select a date range to limit the number of
nodes shown.

• Only the data nodes, grouped by name, are shown in the
graph. The metadata that actually informs the decision-
making is displayed through user interaction (in the
form of a mouse rollover).

While this works well, greater control over what is shown
would be better. The key is to offer as much information as
possible while continuing to allow easy comparison between
many data objects displayed side-by-side.

Currently, the user can filter nodes by name, which will
exclude any group that does not have at least one node linked
directly or indirectly to a node in the group with the given
name. Nodes of the selected group can be filtered by created
date. Finer-grained control of which nodes are displayed may
be useful if the graph become very large, however the need for
this has not yet arisen in our use cases.

B. Integration with Git
Currently, in order to inspect the source code used to

generate a data object after the code has been modified, the Git
repository can be used. This requires taking the stack trace and
timestamp available in the Datatrack metadata and examining
the Git repository, but this is not integrated and is done
manually. This is both somewhat tedious and unreliable, since
there could be multiple branches and information about the
branch used for generation of a data object is currently not
available in the provenance metadata.

Integration with Git version control will be added to solve
this problem. By allowing Datatrack attach the Git repository
version number, branch and commit status data object’s
metadata, accessing this retrospective provenance information
will be smoother and less ambiguous.

C. Invalidating downstream data
Let us consider the following scenario. The source code of

a particular step of the process is modified, for example to fix a
bug. Currently, if this step is run after these changes, Datatrack
will overwrite its output data objects (if the dependencies and
parameters are the same).

However, this presents a problem if there are any existing
downstream data objects that depend on these overwritten data
objects. A modification to the code of a step in the workflow
has an effect not only on its output data objects, but also on
everything downstream to that step.

A proposed solution is as follows. Upon overwriting, first
check if the new data is the same as the existing. If it is

different, check if there are any downstream dependent data
objects. If so, they should be either deleted or flagged as
invalid and archived, after confirming with the user.

VI. CONCLUSION
This paper has discussed some of the provenance tracking

and data versioning requirements of research that uses
interactive exploratory scripting involving a data workflow,
where the nature of the work does not lend itself to integration
with a scientific workflow management system.

Although our solution has been developed to cater for the
requirements of our specific ecological acoustics research,
solving actual problems as they arise, these requirements are
reasonably general.

Datatrack addresses these needs by offering a lightweight
alternative to using a fully featured scientific workflow
management system to researchers whose computational
experiments are contained within the single interactive
programming environment such as R, and involve constant
revisions to the source code.

By automating the generation of provenance metadata in a
way that provides almost no modifications to the normal
coding practices of the researcher, it succeeds in its goal to be
accessible to users from a wide range of computational
experimentation practices. Most importantly, it provides a tool
to allow the user to select the appropriate input data for their
processes quickly and reliably without needing to leave the
scripting environment.

REFERENCES
[1] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, et al., "The

open provenance model core specification (v1. 1)," in Future generation
computer systems, vol. 27, pp. 743-756, 2011.

[2] S. Miles, P. Groth, M. Branco, and L. Moreau, "The Requirements of
Using Provenance in e-Science Experiments," in Journal of Grid
Computing, vol. 5, pp. 1-25, 2007.

[3] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and
H. T. Vo, "VisTrails: visualization meets data management," in ACM
SIGMOD international conference on Management of data, 2006, pp.
745-747.

[4] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock,
"Kepler: an extensible system for design and execution of scientific
workflows," in 16th International Conference on Scientific and
Statistical Database Management, 2004, pp. 423-424.

[5] E. Deelman, D. Gannon, M. Shields, and I. Taylor, "Workflows and e-
Science: An overview of workflow system features and capabilities," in
Future Generation Computer Systems, vol. 25, pp. 528-540, 2009.

[6] P. Eichinski, "Datatrack," 1.0.0-beta.1
https://github.com/peichins/datatrack
http://dx.doi.org/10.5281/zenodo.60582

[7] P. Missier, K. Belhajjame, and J. Cheney, "The W3C PROV family of
specifications for modelling provenance metadata," 16th International
Conference on Extending Database Technology, Genoa, Italy, 2013.

[8] K. A. C. S. Ocana, V. Silva, D. d. Oliveira, and M. Mattoso, "Data
Analytics in Bioinformatics: Data Science in Practice for Genomics
Analysis Workflows," in IEEE 11th International Conference on e-
Science, 2015, pp. 322-331.

[9] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire,
"noworkflow: Capturing and analyzing provenance of scripts," in
Provenance and Annotation of Data and Processes, ed: Springer, 2014,
pp. 71-83.

[10] T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame, K.
Bocinsky, et al., "Yesworkflow: A user-oriented, language-independent
tool for recovering workflow information from scripts," in CoRR, vol.
abs/1502.02403, 2015.

[11] RStudio-Team, "RStudio: Integrated Development for R. ,"
http://www.rstudio.com/.

[12] M. Bostock, V. Ogievetsky, and J. Heer, "D3; Data-Driven Documents,"
in IEEE Transactions on Visualization and Computer Graphics, vol. 17,
pp. 2301-2309, 2011.

[13] R. Vaidyanathan, Y. Xie, J. Allaire, J. Cheng, and K. Russell,
"htmlwidgets: HTML Widgets for R," R package version 0.6
https://cran.r-project.org/package=htmlwidgets

