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Abstract 

Urbanisation around the world has exerted enormous pressure on water resources and 

has polluted them with a myriad of pollutants including recently identified 

Environmentally Persistent Pharmaceutical Pollutants (EPPPs). The EPPPs pollution 

is widespread in the water column and has even contaminated the sediment bed. The 

Brisbane River in South East Queensland (SEQ) is no exception to this type of 

degradation. Being one of the major rivers in SEQ, the Brisbane River is surrounded 

by urbanisation and is polluted by EPPPs. Additionally, the region is also 

experiencing population growth and an increase in ageing population which is prone 

to consume more pharmaceutical drugs. However, there are no past studies of 

sediment pollution by EPPPs in the Brisbane River, which highlights a knowledge 

gap to be addressed. The current study was undertaken to address the knowledge gap 

of EPPPs pollution of the Brisbane River sediments to attain a better understanding 

of the extent of such pollution. The study was based on the hypothesis that 

urbanisation and ageing population in SEQ in combination introduce EPPPs into the 

Brisbane River and accordingly understanding the relationship between urbanisation 

and occurrences of EPPPs in the river sediments is important to safeguard its 

environmental values. 

The study was initiated with a thorough critical review of research literature that 

concluded that studies into sediment testing for the presence of EPPPs were very 

limited compared to surface waters due to the complex nature of the sediment matrix. 

Furthermore, there is no reported research study into sediment pollution by EPPPs in 

Australia. This highlighted the need for method development for extraction of EPPPs 

from sediments and for identification and quantification of EPPPs using the mass 

spectrometry instrument – Liquid Chromatography-Mass Spectrometer (LCMS/MS). 

Accordingly, developing methods for extraction and quantification was a primary 

objective of the research study. As a result, a rapid, reliable Multiple Reaction 

Monitoring (MRM) method with R2 value of 0.99 was developed for EPPPs from 

five therapeutic classes which were selected after critically reviewing the information 

from Australian Bureau of Statistics (ABS) and Pharmaceutical Benefit Scheme 

(PBS). 
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The analysis of target EPPPs confirmed the occurrence of psychoactive drugs in the 

Brisbane River sediments concluding that the developed methods were reliable. 

However, it was also concluded that the methods developed required further 

refinement, in particular, the extraction method, to be able to quantify other target 

EPPPs.  

The discovery of psychoactive drugs in the Brisbane River sediments was a 

significant finding in this study since these drugs are highly active affecting the 

central nervous system of living organisms. Studies conducted around the world have 

concluded that psychoactive drugs do not readily degrade and hence bio-accumulate 

in aquatic organisms such as fish. This is a serious concern since this creates a 

potential risk of such drugs entering into the food chain and being consumed by 

human beings. This study also concludes that wastewater treatment techniques in 

SEQ are unable to remove EPPPs and therefore are releasing these compounds into 

the Brisbane River. Data analysis also concluded that consumption of psychoactive 

drugs by the growing urban population in Queensland is on the rise.  

It is hypothesised that wastewater effluents discharged from sewage treatment plants 

(STPs) situated along the Brisbane River in SEQ to be the primary source for the 

occurrence of EPPPs. This would mean that recycled water derived from STPs also 

act as a source of EPPPs. Additionally, the study of sewerage network map of SEQ 

postulates that leaks from the sewer lines that are located along the length of the 

Brisbane River could also be acting as a source for EPPPs pollution in the Brisbane 

River sediments. Therefore, this study has not only addressed an emerging pollution 

problem but has also contributed new knowledge to the existing knowledge base in 

relation to EPPPs pollution in the aquatic environment in Australia.  

The knowledge derived from this study would be important for future research into 

EPPPs pollution of the sediment environment. This study also provides baseline 

information that would contribute to the decision-making process in relation to the 

use of recycled water for domestic consumption. It can also be concluded from this 

study that monitoring of EPPPs in Australian aquatic environments is essential in 

order to implement regulations and guidelines in relation to EPPPs pollution in 

Australia. 
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Chapter 1 Introduction 
 

1.1 Background 

Research and development in the health sectors have resulted in the manufacture of 

pharmaceuticals that have eradicated a significant number of diseases around the 

world. Whilst these pharmaceuticals have been able to improve human health, the 

occurrence of their residues and transformed products in the environment poses a 

threat to aquatic flora and fauna (Daughton and Ruhoy, 2008). 

The occurrence of pollutants which are termed as environmentally persistent 

pharmaceutical pollutants (EPPPs) has risen alarmingly, which could be the result of 

economic developments and associated urbanisation. Today, cities around the world 

have become the major hubs of economic developments and provide increasing 

opportunities for wellbeing and growth to billions of people. This has resulted in the 

exodus of people from rural areas into cities in search of improved livelihoods, 

enhanced opportunities for employment and education and better access to health 

care. Such rapidly occurring economic developments have caused greater 

concentrations of the population giving rise to the conversion of previously 

agricultural land to urban areas. Urbanisation and economic development advance 

hand in hand as a country’s prosperity improves.  

Consequently, land use undergoes changes due to escalating need to provide shelter 

for the growing influx of population into urban areas. This has resulted in reduced 

green vegetation due to residential and industrial developments. Activities such as 

building construction and infrastructure provision are part and parcel of urbanisation 

that is required to accommodate and satisfy the needs and demands of the burgeoning 

urban population. These developments and growing urban population have exerted 

significant stress on natural resources in particular water for domestic and 

commercial purposes. Water is being extracted in increasing amounts to meet this 

high and growing demand. Unfortunately, this has threatened the sustainability and 

quality of this extremely important resource that underpins life on earth.  
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Australia has been experiencing significant economic and population growth in 

recent decades. This has resulted in inevitable stress on the surrounding environment 

(Hatfield-Dodds et al., 2015).  It has been estimated that about 90% of Australia’s 

population will be living in urbanised areas by 2020 (WHO, 2015). This highlights 

the significant stress that Australia’s natural resources will be subjected to, 

particularly the water environment. Being the driest inhabited continent, Australia 

has experienced significant and long-lasting droughts in its recorded history. 

Therefore, an ever increasing demand for water for domestic and industrial purposes 

is likely to exert enormous pressure on the water resources in Australia. Therefore, it 

is imperative that available water resources are stringently safeguarded. 

Water pollution is a serious and major consequence of urbanisation due to the 

pollutants generated by anthropogenic activities common to urban areas. The 

developmental activities that are carried out as a consequence of urbanisation result 

in extensive impervious areas that lead to flushing of pollutants such as heavy metals 

and hydrocarbons into the receiving water environments (Goonetilleke and Thomas, 

2003; Stewart et al., 2014) causing pollution and inhibiting stormwater from 

percolating back into the ground resulting in groundwater depletion (WWDR, 2015). 

Another major consequence of urbanisation is the change in lifestyle which demands 

more resources. 

There is a significant change in lifestyle in urban areas compared to rural areas. This 

lifestyle has been observed to be responsible for the creation of a diversity of organic 

micro-pollutants commonly referred to as “Emerging contaminants”. This a 

consequence of the affluent urban lifestyle which has resulted in increased 

consciousness about personal health and grooming which gives rise to an increased 

use of pharmaceutical drugs like anti-inflammatories, analgesics, psychiatric drugs, 

lipid regulators, β-blockers and antibiotics (Ellis, 2006). These pharmaceutical  

compounds are commonly not completely absorbed by the body and part of the 

compounds are excreted and end up in wastewater effluent (Camacho-Muñoz et al., 

2013). Consequently, wastewater effluents act as a source for the occurrence of 

EPPP compounds in water environments when discharged into receiving waters.  

Therefore, the increase and multiplication of emerging pollutants such as EPPPs in 

receiving waters can be attributed to the spread of urbanisation. 
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Water pollution due to urbanisation continues to remain a serious problem across the 

globe and the continuing addition of new pollutants such as EPPPs has exacerbated 

the issue because of the environmental ramifications of these pollutants (Daughton, 

2004). In fact, major research projects have been undertaken in Europe and the US in 

order to understand and expand the fundamental knowledge about EPPPs such as 

their occurrence, persistence and impacts and to develop better wastewater treatment 

practices for reducing the loads of such pollutants (Ternes et al., 2004). Similar 

research projects need to be undertaken in Australia too, to better understand the 

potential impacts of EPPPs on human and ecosystem health and to develop 

management strategies for mitigation. 

However, currently there is a dearth of information about the potential dangers of 

EPPPs to the environment which has made these pollutants not being regulated in 

Australia, which is compounding issue because there is a risk that these compounds 

being overconsumed and discharged in the environment untreated. Thus, it is very 

important to understand the behaviour of these pollutants. This chapter discusses the 

research problem, hypothesis, aims, objectives and scope of the research project 

undertaken. 

1.2 Research problem 

Pollution of the Brisbane River has been a problem for many years as a result of 

rapid urbanisation. Pollutants such as polycyclic aromatic hydrocarbons (PAHs) and 

polychlorinated biphenyls (PCBs) have been detected in the Brisbane river and its 

sediments (Kayal and Connell, 1989; Minnery and Barker, 1998; Ogogo, 2013; Shaw 

and Connell, 1980). Recently a study conducted by Scott et al. (2014) reported the 

occurrence of EPPPs compounds in the surface waters of the Brisbane River 

indicating that the Brisbane River is being continuously polluted with  numerous 

pollutants. 

The current study was to identify EPPPs in the sediments of the Brisbane River 

which was hypothesised to be occurring as a result of urbanisation associated with 

population growth as well as because of the ageing population in Queensland. 

Urbanisation has played a pivotal role in transforming peoples’ lives for good. 

However, it has left an environmental footprint in the form of pollution caused by 
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compounds such as pesticides, heavy metals, hydrocarbons and recently recognised 

‘Emerging contaminants’ - EPPPs. These anthropogenic pollutants are being released 

into the environment via different sources and are occurring throughout the 

environment in varied concentrations.  

The occurrence of EPPPs in the environment, in particular, is a serious problem 

which needs urgent attention (Murray et al., 2014) because of the following 

characteristics that these pollutants possess: 

i. Anthropogenic: because they are formulated organic compounds, they are 

capable of reacting with the surrounding environment.  

ii. Target specific: since they are biologically active and designed to target 

specific tissues, organs, metabolic pathways, eg; cholesterol controlling 

drugs, painkillers and anti-depressants. 

iii. Low concentrations: in that they are capable of inducing impacts at very low 

concentrations, eg. antibiotics  

iv. Accumulate: as these compounds can bioaccumulate and biomagnify in 

aquatic organisms (Daughton and Ternes, 1999; Fent et al., 2006; Suárez et 

al., 2008) 

Analysing wastewaters, surface waters and groundwater for EPPPs would provide 

credible information about the pollution level caused by such pollutants over a 

particular period of time. Therefore, the analysis of environmental samples is useful 

in monitoring the pollutants. This is because, when the pollutants are in surface 

waters, they are likely to dilute and undergo photo-degradation or react with other 

substances or get flushed away. However, this is less likely in sediments because 

pollutants are more likely to remain attached to the media. 

Sediment analysis would provide wide and comprehensive information about 

pollution in an aquatic environment. Below are the reasons that explain why 

sediment analysis is important. 

i. Analysing sediments at different depths provide information about the time 

period of pollution occurring in that area.  
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ii. Analysing sediments are important as it provides habitat for many aquatic 

organisms. All the aquatic flora and fauna dwell and breed on the sediments 

(Choi et al., 2014). Therefore, any contamination in the sediments is likely to 

have adverse impacts on sediment habitat and eventually affect the flora and 

fauna in those habitats.  

iii. When a polluted sediment bed is disturbed due to natural events like flooding 

including high flow velocities or anthropogenic activities such as dredging, 

the pollutants in the sediments can be released back into the environment. 

Therefore, an understanding of pollutants present in the sediment is 

important.  

iv. EPPP compounds accumulate on sediments and occur in very low 

concentrations of ppb and ppt (Antonić and Heath, 2007; Camacho-Muñoz et 

al., 2013; Chen and Zhou, 2014; Silva et al., 2011). Sediments are a sink for 

such pollutants. Since EPPPs might be potentially harmful (Camacho-Muñoz 

et al., 2013) even in such low concentrations, analysing sediments for such 

pollutants becomes important.  

As noted above, it is evident that the occurrence of EPPPs in the sediment 

environment can be significant and poses a potential threat to the health of the 

aquatic environment. Unfortunately, there has been limited research into EPPPs in 

Australia and it appears to be limited to surface waters and wastewaters (Birch et al., 

2015; Watkinson et al., 2009). The complex nature of the sediments, lengthy sample 

preparation process and requirement of advanced analytical techniques to quantify 

the minute concentrations (Kolpin et al., 2002) make analysis of EPPPs in sediments 

difficult and resource intensive. This could be the reason for a limited number of 

studies reported in Australia investigating EPPPs. However, in order to understand 

the full extent of EPPP pollution and its potential impacts to the Australian aquatic 

environments, it is necessary to investigate EPPPs in sediments.  

 

1.3 Research hypothesis 

Australia is one of the most urbanised countries in the world with an appreciable 

population growth (ABS, 2013). In regards to South East Queensland (SEQ), there 
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has been rapid urbanisation (BITRE, 2013; QueenslandTreasury, 2016). The region 

is also experiencing population growth, growth in ageing population and there is an 

increase in consumption of EPPPs as a result of the increasing ageing population 

(ABS, 2011, 2015a; Peter Atkins et al., 2015). Additionally, increasing urbanisation 

has resulted in pollution of the Brisbane River. Along with the above mentioned 

pollutants, continuous ingestion and excretion of EPPPs by the growing and ageing 

population in SEQ is likely to be releasing these micropollutants to the Brisbane 

River via various sources. Accordingly, the research study hypothesised that 

urbanisation and ageing population in SEQ together introduce EPPPs into the 

Brisbane River and a robust analytical method capable of quantifying very low 

concentrations would enable in detecting these micropollutants.  

1.4 Aims and objectives 

As evident from Sections 1.2 and 1.3, quantifying organic micropollutants such as 

EPPPs in complex environments such as sediments is a difficult task. Moreover, the 

lack of research in Australia and unavailability of robust testing methods highlights 

the need for method development. Therefore, it was important in this study to 

develop a robust testing method that could extract these micropollutants efficiently 

from the sediment matrix and quantify in order to achieve the aim of this research 

study.  

Aim: To study the relationship between the occurrence of EPPPs in the Brisbane 

River sediments and urbanisation using a reliable and robust method for 

quantification. 

Objectives:  

The primary objective was to develop a method for extraction and quantification. 

Development of extraction method for extracting EPPPs from sediment was also 

equally important for accurate quantification of EPPPs and studying the occurrence 

and distribution of these emerging pollutants. 

1.5 Innovation and contribution to the knowledge 
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Urbanisation has resulted in a change in lifestyles and has caused the concentration 

of population in urban areas, thereby exerting stress on natural resources and 

particularly the water resources. The Brisbane River which is the main waterway 

running through the major part of the urban area of South East Queensland, is being 

polluted by numerous kinds of pollutants (eg. trace elements, heavy metals and 

hydrocarbons) (Kayal and Connell, 1989), the sources of which could be attributed to 

anthropogenic activities related to urbanisation. Thus, the pollution of the Brisbane 

River is an ongoing problem.  

Recently, the Brisbane River has been investigated and found to be polluted with 

EPPPs (Scott et al., 2014). The occurrence of these micropollutants could be 

attributed to urbanisation due to urban lifestyle and ageing population in SEQ 

consuming EPPPs in significantly high amounts (ABS, 2011, 2014, 2015c), thereby 

leading to the release of these substances into the River mainly via wastewater. 

Studies (Antonić and Heath, 2007; Daughton and Ternes, 1999; Ternes et al., 2004) 

have concluded that current wastewater treatment methods are to be blamed for the 

occurrence of EPPPs in aquatic environments since these are not capable of 

removing these substances from wastewaters. EPPP pollution of aquatic 

environments is concerning because of the ability of these compounds to be active 

even in minute concentrations (ppb, ppt) and to be able to accumulate and cause 

detrimental effects on the surrounding aquatic environment (Daughton and Ternes, 

1999; Henschel et al., 1997). Therefore, investigating the presence of EPPPs is 

crucial to understand the extent of pollution caused by these pollutants and the 

possible environmental impacts these may have on the aquatic ecosystem.  

While it is known that the Brisbane River water is polluted with EPPPs, there is no 

reported study investigating EPPPs in the sediments of the Brisbane River. 

Investigating EPPPs in the sediments of the Brisbane River is important as this 

would facilitate in providing a comprehensive overview of the extent of pollution in 

the waterway, thus, contributing to the enhancement of the knowledge base in 

relation to EPPP pollution. 

Investigation of EPPPs in the sediments of the Brisbane River required the 

development of test methods for the detection, quantification and extraction which 

would further contribute to knowledge in method development for EPPPs analysis. 
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In addition, studying the relationship between urbanisation and EPPPs occurrence in 

the Brisbane River was also a new approach that would help to understand the entire 

scenario of EPPP pollution in the Brisbane River.  

1.6 Scope  

The research study was aimed at investigating the relationship between EPPPs 

occurrence and urbanisation along the Brisbane River because of two important 

reasons: first being the potential environmental concerns regarding the occurrence of 

these emerging organic and biologically active micropollutants in the aquatic 

environment and second, because of the dearth of information on EPPPs occurrence 

in Australian aquatic environment. The study reviewed and evaluated research 

literature and statistical information which led to the conclusion that the growing 

urban and ageing population due to urbanisation in South East Queensland consumes 

significant amount of EPPP compounds particularly those belonging to the classes - 

psychiatric (to treat mental health conditions), β-blockers (to treat high blood 

pressure), lipid regulators (to control cholesterol levels), anti-inflammatory and 

analgesics (painkillers), and antibiotics (to treat infections).  

Consequently, the study selected target EPPPs that are increasingly consumed in 

South East Queensland from the respective five therapeutic classes mentioned above 

and developed test methods for determining these selected EPPP compounds in the 

sediments. The developed method led to the quantification of the three target EPPP 

compounds, namely, carbamazepine, diazepam and lorazepam. The developed 

method can be applied for determining the target EPPPs in the sediment 

environment.  

Urbanisation has a strong influence on the occurrence of EPPPs in the aquatic 

environment. The knowledge developed on urbanisation and EPPP occurrence has 

contributed to the knowledge of EPPP pollution in the Brisbane River and provides 

baseline information for undertaking mitigation measures. Furthermore, the 

developed knowledge is applicable to other areas of environmental research such as 

the use of recycled water for domestic consumption.  

1.7 Thesis outline 
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This thesis consists of six chapters. Chapter 1 is the introductory chapter and 

includes the background and context to the project, and discusses the research 

project. The chapter also discusses the hypothesis for this research study, its aims and 

objectives and contribution to knowledge. Chapter 2 presents a critical review of 

research literature on EPPPs in relation to its occurrence, distribution, sources and 

impacts on the aquatic ecosystem. Further, the chapter also discusses the relationship 

between EPPP occurrence and urbanisation associated with population growth and 

ageing population in South East Queensland. 

Chapter 3 discusses the selection of pollutant compounds for this research study, the 

research design and method development for detection of the selected compounds 

and the results obtained. The chapter also discusses the statistical methods used to 

analyse the data. Chapter 4 discusses in detail the study area, selection of sampling 

areas and sampling. 

Chapter 5 summarises the findings of the research study. The chapter has analysed 

the results obtained and discusses the causes and the likely sources for the occurrence 

of EPPPs in the Brisbane River. 

Chapter 6 summarises the conclusions drawn from Chapter 5 and provides 

recommendations for future research.  



  
 

Chapter 1 Introduction  34 

 



  
 

Chapter 2 Environmentally Persistent Pharmaceutical Pollutants (EPPPs) in the urban water 
environment                                                                                                                           35 

Chapter 2 Environmentally Persistent 
Pharmaceutical Pollutants (EPPPs) 
in Urban Water Environment 

 

2.1 Overview 

Anthropogenic activities such as industrialisation, urbanisation and along with 

population growth are part and parcel of the social and economic development of a 

country. Unfortunately, these developments are not carried out in a sustainable way 

and therefore result in degradation of resources such as water environments 

(WWDR, 2015). Water is a precious natural resource and it is essential for life on 

earth, but anthropogenic activities such as urbanisation, in particular, have resulted in 

abuse of water resources. Water resources have been exploited to meet the ever 

increasing demand by the growing population due to urbanisation. Additionally, it is 

being polluted by harmful and toxic pollutants such as heavy metals, hydrocarbons, 

nutrients (nitrogen, phosphorus), trace pollutants (organochlorines, pesticides) and 

EPPPs (WWDR, 2015).  

This study was undertaken to test the hypothesis that urbanisation causes EPPP 

pollution of rivers. Therefore, the focus of the study was on studying the occurrences 

of EPPPs in the Brisbane river sediments which is exposed to urbanisation. Details 

about studying the occurrences of EPPPs in the sediments and the selection of the 

Brisbane River are discussed in Chapter 4.  A critical review of research literature 

was carried out to identify knowledge gaps. The literature review was divided into 

five sections  - (1) EPPPs in the environment (2) Occurrence and distribution of 

EPPPs around the world; (3) Bioaccumulation and toxicity of EPPPs; (4) Removal of 

EPPPs (5) Urbanisation and sources of EPPPs(6) Analytical methods for analysis of 

EPPPs. 

2.2 EPPPs in the environment 
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This section discusses the rising interest in pharmaceuticals as environmental micro-

pollutants and the developing research in this area. EPPPs are pharmaceutical drugs 

that are consumed for the treatment of temporary or chronic health conditions in 

both, humans and animals (Khetan, 2014). EPPPs constitute of organic chemical 

compounds, transformed metabolites and preservative chemical compounds from 

pharmaceutical drugs that are persistent in the aquatic environment and have recently 

gained considerable attention of the scientific world (Daughton, 2004; Daughton and 

Ternes, 1999). Jjemba (2006) in his study described EPPPs as natural or 

manufactured chemicals or materials occurring in the environment that are highly 

biologically active affecting the biochemical and physiological functions of the body. 

Accordingly, pharmaceutical substances can be defined as ‘Environmentally 

persistent, biologically active, organic micropollutants derived from anthropogenic 

sources’. 

Study of EPPPs is complex as it spreads across various disciplines and therefore 

requires expertise from these disciplines – pharmacy, chemistry, environmental 

engineering, hydrology, toxicology, medicine and social psychology (Daughton, 

2009). The occurrence of EPPPs in water affirms the close relationship between 

human behaviour and the environment (Daughton, 2009). In-depth research into 

EPPPs commenced in the 1990s and the majority of the research was carried out in 

the US and Europe (Daughton, 2004, 2009; Daughton and Ternes, 1999). However, 

recently it  has spread to many other countries of the world (Beretta et al., 2014; 

Ternes et al., 2002; Vazquez-Roig et al., 2010) with studies being conducted into 

wastewater, soils, sediments, drinking water and marine environments (Arpin-Pont et 

al., 2014; Pal et al., 2010). 

Having being identified and defined as environmental pollutants, pharmaceuticals 

have been classified under many different terms with one such term classifying these 

substances are ‘Emerging Contaminants (ECs)’. The term ‘Emerging contaminants 

(ECs)’ is commonly applied to pharmaceuticals because of their recent emergence as 

environmental pollutants and due to the dearth of information about their possible 

adverse environmental impacts (Sauve and Desrosiers, 2014; Silva et al., 2011). ECs 

is a broad term that encompasses a range of substances including personal care 

products (PCPs) such as soaps and cosmetics, fragrances, flame retardants, endocrine 
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disrupting compounds (EDCs) and pharmaceuticals and therefore, does not 

specifically identify pharmaceuticals. Hence, the use of this term, particularly to this 

study, was not considered appropriate. In addition, according to Daughton (2004), 

the word ‘emerge’ is primarily applied to organic micropollutants that have just been 

recognised and discovered in the aquatic environment. Most of the target EPPPs that 

will be investigated in the current study have already been found to have negative 

impacts on the environment and are therefore of concern. Hence, the use of the term 

‘ECs’ in this study was not considered to be suitable to describe the target EPPPs. 

There are many different terms that have been used to describe pharmaceuticals, such 

as, ‘Priority Pollutants’, ‘persistent bioaccumulative toxics’ (PBT), ‘persistent 

organic pollutants’(POPs) and ‘Bioaccumulative chemicals of concern’ by the EU 

and US national water pollution control programmes (Ellis, 2006). These terms 

describe the nature and explain the characteristics of organic pollutants. However, 

the terms do not specifically relate to pharmaceuticals. For example, the term ‘PBT’ 

has been broadened to include pollutants that are persistent, can accumulate in living 

organisms and are toxic to the environment. Pharmaceutical substances are 

persistent, but not all of them are bioaccumulative and toxic. In fact, there are limited 

studies that explain the toxicity or bioaccumulative nature of these compounds which 

means more research is required to address this knowledge gap. Therefore, this term 

was not considered relevant to this research study. In  their study, Kolpin et al. 

(2002) classified pharmaceuticals under the term ‘Pharmaceutically Active 

Compounds (PhACs)’, whereas Stewart et al. (2014) used ‘Organic waste 

contaminants (OWC)’ to describe pharmaceuticals. ‘PhACs’ highlights 

pharmaceuticals and encompasses a broad range of pharmaceutical substances such 

as hormones, whereas ‘OWCs’ distinguishes pharmaceuticals by pinpointing the 

source of these compounds, but it is still a broad term and was created according to 

the focus of the study undertaken. 

Again, in other studies, Shareef et al. (2008) assessed pharmaceuticals under the term 

‘Organic contaminants of Emerging Concern,’ whereas Li (2014) termed them as 

‘Emerging Organic Contaminants,’ respectively. Both these terms are quite general 

that embodies a myriad of pollutants and therefore do not specifically recognise 

pharmaceuticals. Scott et al. (2014) identified pharmaceuticals as ‘Trace Organic 
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Contaminants’ (TrOCs), which is similar to the terms used in previous studies 

discussed by Shareef et al. (2008) and Stewart et al. (2014). This term again 

highlights only one characteristic of pharmaceutical micropollutants, which is the 

organic nature of these compounds. However, the term does not include the 

persistent nature of these compounds. Therefore, an appropriate term was required to 

define the target pharmaceutical micropollutants relevant to this study. 

Whilst there are many terms used to identify pharmaceuticals in the environment, the 

term considered by the Strategic Approach to International Chemical Management 

(SAICM) in 2011 as ‘Environmentally Persistent Pharmaceutical Pollutants (EPPP)’ 

(Koekkoek, 2015) fits appropriately to this research study. This term takes into 

account the two important characteristics associated with pharmaceuticals, namely: 

(1) it precisely highlights pharmaceuticals as environmental pollutants; and (2) 

describes the persistence of these compounds in the environment, the most important 

and concerning characteristic of pharmaceutical pollutants. Accordingly, this term 

was chosen to describe the target compounds studied in this research study. 

EPPP substances are used in the preparation of medicinal drugs. Approximately 3000 

different bioactive pharmaceutical substances are present in modern day medicines, 

such as the lipid regulators, β- blockers, analgesics, psychiatric and antibiotics in the 

European Union alone (Ellis, 2006; Fent et al., 2006; Nebot et al., 2015; Silva et al., 

2011) and the trend to use such substances is escalating globally as a result of 

increasing concern about personal health and grooming (Ternes et al., 2004). Table 

2.1 below presents the different therapeutic classes and the common drugs under 

each of these classes that are particularly threatening to the environment.  
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Table 2.1 EPPPs of different therapeutic classes 

Therapeutic group of 

EPPPs 
Compounds present in the group 

Psychiatric drugs 
diazepam, carbamazepine, primidone, 

lorazepam 

Lipid regulators 
clofibric acid, bezafibrate, fenofibric acid, 

etofibrate, gemfibrozil, atorvastatin 

β- blockers 
atenolol, propranolol, timolol, sotalol, 

metoprolol 

Analgesics and anti-

inflammatory 

ibuprofen, diclofenac, fenoprofen, 

acetaminophen, naproxen, acetylsalicylic 

    

 Antibiotics 
amoxicillin,cefalexin, trimethoprim, 

erythromycin, lincomycin, chloramphenicol 

Source: Adapted from (Ellis, 2006). 

The drugs listed in Table 2.1 are among the most widely consumed drugs across the 

world and have been occurring in wastewaters, surface waters and sediments 

(Camacho-Muñoz et al., 2013; Shareef et al., 2008; Zhang et al., 2008). Santos et al. 

(2010) in their review concluded that the occurrence of different  types of EPPPs in 

the environment have negative impacts on non-target organisms such as bacteria, 

algae, crustaceans and fishes affecting their growth, reproduction and mobility in 

some cases. Therefore, these drugs have been considered as the pollutants of 

environmental concern because of their widespread occurrence across the various 

environmental compartments and their negative impacts on the aquatic ecosystem.  

The drugs listed in Table 2.1 are being consumed here in Australia too. National 

health expenditure on prevailing health conditions – cardiovascular, respiratory, 

mental, neurological and musculoskeletal has increased over the period from 2004-

05 to 2011-12 (Fig 2.1) and the drugs that are consumed to treat these conditions 

(Table 2.1) are being increasingly prescribed and have been detected in the 

environment (Birch et al., 2015; Scott et al., 2014). It is understood that the diseases 

on which the financial resources have been spent are prevalent and increasing in 



  
 

Chapter 2 Environmentally Persistent Pharmaceutical Pollutants (EPPPs) in the urban water 
environment                                                                                                                           40 

Queensland as well (CHO Report, 2014). Therefore, Figure 2.1 is also considered to 

be illustrative of the health condition of Queenslanders and their consumption of 

EPPP compounds. 

 

Figure 2.1 Health expenditure on various health conditions during the period 
2004-05 to 2011-12. 

Source: Adapted from, (CHO Report (2012), 2014)) 

Figure 2.1 shows a steady increase in the allocated expenditure on the diseases 

especially cardiovascular, mental and musculoskeletal. This indicates an increase in 

the consumption of drugs such as β- blockers, psychiatric and anti-inflammatory and 

analgesics which are sold under a number of different brand names in Australia 

(Table 2.2). Thus, it can be concluded from Figure 2.1, Table 2.1 and Table 2.2 that 

the drugs listed are of specific environmental concern and need to be investigated. 
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Table 2.2 Therapeutic drugs commonly consumed in Australia to treat various 
health conditions 

Therapeutic group  Drugs Brand  names Health conditions 

Psychiatric Carbamazepine, 

diazepam, 

lorazepam 

carbamazepine Sandoz, 

diazepam elixir, 

ranzepam 

Types of seizures, 

neurological 

conditions,  pain 

such as trigeminal 

neuralgia 

β-blockers Propranolol, 

atenolol 

Atenolol Gh, atenolol 

An, atenolol Rbx, 

atenolol Sandoz, 

atenolol aft, Apo-

propranolol 

high blood 

pressure and in the 

prevention of heart 

attacks 

lipid regulator Atorvastatin 

 

Apo- atorvastatin, Apo- 

simvastatin, Apo- 

rousvastatin, Apo- 

pravastatin 

Lowering 

cholesterol 

Anti-inflammatory 

and analgesics 

Ibuprofen, 

diclofenac 

Apo-

diclofenac, Diclofenac 

An, Diclofenac 

Sandoz, Diclofenac-ga 

reduce pain and 

inflammation 

Antibiotics Amoxicillin, 

Cephalexin 

Amoxicillin –An, 

Amoxicillin generic 

health, Amoxicillin 

Ranbaxy, amoxicillin 

Sandoz,  and 

Amoxicillin- ga. Apo-

cephalexin, Cephalex 

250, Cephalex 

500, Cephalexin 

An, Cephalexin Generic 

health 

Treating bacterial 

infections 

Source:   Adapted from (Pharmaceutical Benefit Scheme, 2014) . 

In addition, health surveys undertaken by the Australian Bureau of Statistics (ABS) 

have reported that 68% of adults in Australia have been experiencing low 

http://www.pbs.gov.au/pbs/search?term=apo-diclofenac&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=apo-diclofenac&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=diclofenac+an&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=diclofenac+an&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=diclofenac+sandoz&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=diclofenac+sandoz&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=diclofenac-ga&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=apo-cephalexin&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=apo-cephalexin&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=cephalex+250&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=cephalex+250&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=cephalex+500&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=cephalex+500&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=cephalexin+an&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=cephalexin+an&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=cephalexin+generichealth&analyse=false&search-type=medicines
http://www.pbs.gov.au/pbs/search?term=cephalexin+generichealth&analyse=false&search-type=medicines
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psychological distress and 11.7% population aged 18+ experiencing very high level 

of psychological distress (ABS, 2015c). This increase in mental health issues 

suggests that there would be increased consumption of psychiatric drugs to treat 

these conditions. The survey also reports an increase in musculoskeletal conditions 

from 11.3% to 18.3% in the past year indicating the rising consumption of anti-

inflammatory and analgesics. An increase was also seen in cardiovascular conditions, 

hypertension and cholesterol, inferring in higher consumption of drugs such as β-

blockers and lipid regulators (ABS, 2011-12a, 2015c).  Therefore, it can be 

concluded that mental health, cardiovascular and, musculoskeletal health conditions 

are increasingly prevalent in the Australian society and that the drugs like β-blockers, 

lipid regulators, psychiatrics are consumed more frequently and regularly by 

Australians.  

Changing lifestyle associated with urbanisation has been stated as the cause for the 

increase in the above diseases by the AIHW (2014). According to the AIHW (2014) 

report, the lifestyle of Australians has become sedentary with very low to no physical 

activity at all and a significant fraction of the population do not consume a healthy 

diet, thereby giving rise to chronic and mental health conditions. Only about 43% of 

Australians undertake moderate physical activity and only 48.5% of Australian adults 

consume a proper diet. The report (AIHW, 2014) also strengthens the findings of the 

report by ABS (2015c) that the present population of Australia face emotional, 

mental and physical stress on an everyday basis, which in turn is directly linked to a 

range of health conditions. These conditions are considered can be directly extended 

to the population in South East Queensland. 

The notable increase in chronic and mental health illnesses in the past few years 

(ABS, 2012, 2015c), can be directly attributed as the reason behind the increasing 

occurrence of EPPP compounds, because the occurrence of any EPPP compound in 

sediments of aquatic environments is a result of long-term and regular consumption 

of such drugs (Daughton and Ternes, 1999). It is clear from the above statistics and 

reported studies (CHO Report, 2014), that mental, cardiovascular and 

musculoskeletal are the major health conditions that are prevailing in South East 

Queensland (SEQ) and are likely to be contributing to the pollution by EPPPs of the 

Brisbane River. Additionally, increase in the prescription of antibiotics such as 
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amoxicillin (ABS, 2010), would also contribute to the occurrence of such compounds 

in sediments given that antibiotics are consumed frequently by broader population 

groups. Therefore, population growth and changing lifestyle associated with 

urbanisation appears to be the likely cause for the increase in chronic health 

conditions and furthermore for the increased consumption of EPPPs making these 

compounds ubiquitous in the environment. Therefore, it can be hypothesised that 

urbanisation in SEQ is possibly the reason for the occurrence of EPPPs in the 

Brisbane River sediments. 

Whilst urbanisation in SEQ is responsible for the occurrence of EPPPs in the aquatic 

environment, there are other factors contributing to EPPPs occurrence. As stated 

earlier, changing lifestyle is one of the causes. Together with this, it is understood 

that the ageing population in Queensland is increasing and is more vulnerable to such 

chronic health conditions (CHO Report, 2014). The CHO Report (2014) has noted 

that the number of older population aged above 65 is rising markedly.  According to 

the report by the AIHW (2014), the population of Australia is growing and the 

growth has been stronger among the older age groups 45-64years and 65+ years than 

the younger 15-24 years group. The population in the age bracket 65 and above has 

tripled from 1.1 million to 3.3 million between 1973 and 2013, whereas the growth in 

population in the age group 85 and above has increased from 73,100 to 439,600. This 

clearly demonstrates that Australia’s population has been ageing over the past half a 

century. Furthermore, these older Australians are most likely to be affected by 

chronic diseases such as cardiovascular, elevated blood pressure, musculoskeletal 

problems and cholesterol issues (AIHW, 2014). It can be concluded that the ageing 

population of Australia consumes more therapeutic drugs to treat the above said 

diseases. In the case of SEQ too, the occurrence of EPPPs in the Brisbane River 

could likely be influenced by both urbanisation and ageing population.  

Having discussed the likely reasons for EPPPs occurrence in the Brisbane River,   it 

is also important to understand how these drugs enter the waterways in the first 

place. According to Daughton (2004), every manufactured drug has the potential to 

enter the environment from the very first day it is introduced into commerce. 

Pharmaceutical drugs go through various metabolic reactions after ingestion by 

humans or animals where they either remain unchanged or are broken down to active 
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metabolites. Such metabolised drugs are then excreted from the body through urine 

and faeces into sewage. Some of these drug compounds escape the sewage treatment 

processes and remain in the effluent and are discharged into the waterways 

(Daughton and Ternes, 1999; Khetan and Collins, 2007) resulting in the presence of 

these drugs in the aquatic environment. Prolonged consumption of such drugs causes 

regular ingestion and excretion from the human body into wastewater effluent, which 

results in the persistence of EPPPs in the aquatic environment. Therefore, the 

occurrence of EPPPs in aquatic environments can be attributed to two major reasons: 

(1) increased consumption of EPPPs; and (2) lack of effective wastewater treatment 

methods to remove such pollutants.  

While increased consumption is the major factor contributing to the occurrence of 

EPPPs, the chemical and physical properties such as octanol/water partition 

coefficient (log Kow) and acid dissociation constant (pKa) also play an important role 

in the persistence of such drugs in the environment. Log Kow can be defined as the 

ratio of a chemical’s concentration in the octanol phase to its concentration in the 

aqueous phase of a two phase octanol/water system. Log Kow value of a drug is 

helpful in correlating its solubility in water, affinity to adsorb to solid matrices and 

bioaccumulation in aquatic flora and fauna. Therefore, higher the log Kow value, 

more the adsorption to sediments and the relatively high possibility of 

bioaccumulation. The pKa value, on the other hand, affects absorption of the drug 

and determines the acidity of a compound, meaning lower the pKa value, the higher 

is the absorption and strong acid. This means, the release of EPPPs with higher log 

Kow value and lower pKa are potentially harmful to the environment since such 

compounds are most likely to be adsorbed to flora and fauna and environmental 

matrices. 

A clear correlation between the occurrence of EPPPs in sediments and their log Kow 

could be drawn from the study undertaken by Vazquez-Roig et al. (2010). It was 

found that the log Kow and pKa values of carbamazepine and lorazepam readily 

correlated with the occurrence of these compounds in the sediments in the Valencia 

region in Spain. It is because of such correlation that these values are now used to 

assess EPPPs in the environment and is required by organisations such as United 

States Food and Drug Administration (USFDA) in assessing EPPPs (Jjemba, 2006). 
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While these values are critical in assessment studies and in determining the fate of 

EPPPs, the direct correlation between the two is not well explained yet and 

highlights a knowledge gap that needs to be studied. 

In order to understand the potential threat posed by EPPPs to the environment, it is 

necessary to understand how these substances are metabolised. A drug after its 

absorption in the body is transformed or breaks down into different other 

intermediate metabolites and this is called ‘biotransformation’. Biotransformation of 

a pharmaceutical compound occurs through two phases: Phase I and Phase II. In 

Phase, I the transformation occurs through the addition of a functional group such as 

-OH, -SH,(>C)2O, -NH2, and –COOH, whereas in Phase II conjugations occur to 

form O-, N- glucuronides, sulphates, acetate esters, carboximides and glutathyionyl 

products. For example, the clofibric acid in phase II of biotransformation conjugates 

to form clofibric-O-b-acylglucoronide. Thus, whilst these converted metabolites 

might not be harmful to the human body, its excretion into the environment might 

pose risks to the other living organisms because of their biologically active nature 

(Ionescu and Caira, 2005; Khetan and Collins, 2007).  

About 70% of the biotransformed pharmaceutical compounds get excreted through 

urine and 30% are excreted in the faeces (Khetan and Collins, 2007). For example, 

65% of diclofenac is excreted through urine and in the case of ibuprofen, the drug 

becomes polar on excretion as a result of Phase I and II reactions (Khetan and 

Collins, 2007). Atenolol and propranolol are excreted in parent form from the human 

body where atenolol, in particular, can be absorbed fully and pass through the 

placenta (Heel et al., 1979; Khetan and Collins, 2007; Nałęcz-Jawecki et al., 2008). 

On the other hand, biotransformation of diazepam results in slow excretion from the 

body and results in accumulation of the drug in the body (Greenblatt et al., 1983), 

whereas antibiotics such as amoxicillin and cephalexin can potentially accumulate 

because of their long half-lives (Khetan and Collins, 2007) suggesting possible 

bioaccumulation of such compounds in the bodies of the target organisms. Thus, the 

occurrence of such EPPPs in the Brisbane River sediments is concerning given that 

these drugs are being consumed widely here in SEQ. 

In this discussion urbanisation and ageing population in SEQ have emerged out to be 

the likely reasons for the increased EPPPs consumption and in turn for their 
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occurrence in the Brisbane River.  It was further understood that the occurrence of 

EPPP compounds in waterways is resultant of inadequate wastewater treatment 

methods which leads to the release of such compounds via wastewater effluent. In 

addition, the critical review of the literature has revealed that physical and chemical 

properties, increased consumption and metabolic processes all together play a vital 

role in defining EPPPs as environmental pollutants and their fate in the environment. 

These findings identify the need to investigate as to how widespread the issue of 

EPPP pollution is around the world. The next section discusses the occurrence and 

distribution of EPPPs across different aquatic environments around the world.   

2.3 Occurrence and distribution of EPPPs 

As pointed out earlier in Section 2.2, EPPPs are being consumed widely around the 

world. Such continuous and widespread consumption of these formulated products 

by people has resulted in the common presence of these substances in the 

environment (Daughton and Ruhoy, 2008; Daughton, 2009). This section discusses 

the outcomes of the review of literature on the occurrence and distribution of EPPPs. 

Firstly, derived knowledge on the extent and spread of EPPPs contamination around 

the world and in various compartments of the aquatic environment, for example, 

water, sediments, wastewaters and soil. Secondly, to understand the extent of EPPP 

pollution in the Brisbane River and provide background knowledge for suitable 

mitigation action to be undertaken.  

The interest in research into EPPPs is increasing in the scientific world considering 

the bioactive nature of these organic pollutants (Daughton and Ternes, 1999). Several 

recent studies have investigated EPPPs in wastewaters, surface waters such as rivers, 

lakes, and drinking water (Balmer et al., 2003; Bu et al., 2013; Carmona et al., 2014; 

Evgenidou et al., 2015) and soil (Andreu Pérez et al., 2011; Jelić et al., 2009), but 

few studies have been undertaken in sediments  (Beretta et al., 2014; Camacho-

Muñoz et al., 2013; Silva et al., 2011). This has resulted in the common conclusion 

that EPPPs are becoming ubiquitous in all compartments of the environment, 

highlighting the knowledge gap in relation to the study of sediment for EPPPs in 

Australia. As noted in Section 2.2, the widespread occurrence of such compounds in 

different compartments of the environment are related to urbanisation and the 

increased consumption by the population and this finding  corresponds to the claims 
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made by Ternes et al. (2004), Ellis (2006) and Stewart et al. (2014) that the increase 

in urbanisation and concerns about personal health and grooming has led to increased 

consumption of EPPPs.  

Pollution of aquatic environments by EPPPs is serious given the negative impacts 

these micropollutants impose on smaller living organisms (Henschel et al., 1997; 

Santos et al., 2010). Studying the occurrence of EPPPs in various aquatic systems 

around the world would facilitate in deriving a comprehensive understanding of the 

extent of EPPP pollution around the world. The discussion below evaluates studies 

that have been undertaken around the world to investigate EPPPs in water 

environments.  

China is the most populous country in the world and is experiencing tremendous 

economic growth. However, it is also facing a serious issue of environmental 

pollution as a result of its large population and growing economic development. 

Studies conducted in the recent past in China, have confirmed EPPP contamination 

of the aquatic environments across the eastern regions which are more developed and 

urbanised (Bu et al., 2013). 

For example, studies undertaken by Chen et al. (2012), Dai et al. (2014), Zhu et al. 

(2013)) have reported frequent detections of trimethoprim, erythromycin A, 

norfloxacin, ofloxacin, atenolol and diclofenac in the Hangzhou metropolitan and 

Linan  regions of Southeast China along with gemfibrozil, mefenamic acid and 

trimethoprim in wastewater effluents, hospital effluents and surface waters in Beijing 

and caffeine (23.8 - 344.7 ng/L) in Qingshan Lake in the east. It was interesting to 

note that the study areas selected were from urbanised areas. Although Chen et al. 

(2012) selected areas with varying urbanisation levels, their definition of 

urbanisation is questionable. Chen et al. (2012) claim that hospital effluents were 

concentrated sources of EPPPs in the Hangzhou metropolitan and Linan regions of 

Southeast China, but failed to show any correlation between urbanisation and 

occurrence of EPPPs.    

In another study, Chen and Zhou (2014) reported on the occurrence of antibiotics in 

sediments in the aquatic environments of Huangpu River, Shanghai, while Chen et 

al. (2013) demonstrated the occurrence of EPPPs in the sediments of Ou, Min and 
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Jiulong rivers in Southeast China. It is understood from the above studies from China 

that EPPPs are common in the various compartments of the aquatic environment 

including surface waters and sediment beds of the rivers which are important sources 

of water. A similar scenario is present in Europe and the US where the majority of 

the research into EPPPs has been carried out.  

In the case of European countries, the presence of ~3000 bioactive pharmaceutical 

compounds in everyday consumed medications explains the ubiquitous presence of 

EPPPs in different compartments of the aquatic ecosystems. Research into EPPPs in 

Europe started about two decades ago with the discovery of lipid regulators, 

analgesics, antibiotics, antiseptics and β- blockers in sewage (Heberer and Stan, 

1997). Studies from different parts of Europe (Antonić and Heath, 2007; Castiglioni 

et al., 2006; Clara et al., 2004; Kosma et al., 2014; Ternes et al., 2002; Zorita et al., 

2009) have investigated the occurrence, fate and removal of these compounds in the 

environment. Many other studies have been reported on method development, 

analysis and removal from surface waters, sediments, soil, wastewaters and risk 

assessments of EPPPs in these aquatic environments (Andreu Pérez et al., 2011; 

Camacho-Muñoz et al., 2013; Carballa et al., 2008; Ginebreda et al., 2010; Moreno-

González et al., 2015; Silva et al., 2011; Suárez et al., 2008; Vazquez-Roig et al., 

2010) explaining the widespread occurrence of EPPPs. The occurrence of EPPPs 

from a range of therapeutic classes (anti-inflammatory, psychiatric, lipid regulators, 

antibiotics, estrogens, nervous stimulants,  and β- blockers) were found in surface 

waters and sediments of Doñana National Park (Camacho-Muñoz et al., 2013) and 

Ebro River (Silva et al., 2011), demonstrating a strong urban influence. 

Research investigations of these pollutants in the US (Kümmerer, 2008) have 

resulted in many review studies discussing the occurrence, fate, risks and removal of 

EPPPs (Boxall et al., 2012; Christensen, 1998; Daughton, 2011; Daughton and 

Ruhoy, 2008; Daughton, 2004, 2009; Daughton and Ternes, 1999).  There are studies 

reporting on the application of the developed methods (Darwano et al., 2014; Ferrer 

and Furlong, 2002; Schultz and Furlong, 2008; Vanderford et al., 2003) for 

quantifying EPPPs in the US surface waters, wastewaters, and sediments (Kolpin et 

al., 2004), which confirms the widespread EPPP pollution in the US.   
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Apart from Europe and the US, studies have also been reported from other parts of 

the world e.g. Japan (Azuma et al., 2015) in river water, Taiwan (Jiang et al., 2014) 

in coastal waters, Brazil (Beretta et al., 2014) in sediments, Hong Kong (Gulkowska 

et al., 2008) in sewage treatment plants (STPs) and Canada (Khan and Nicell, 2015) 

in drinking waters. The above studies reveal that EPPPs pollution is widespread in 

various compartments of the aquatic environments around the world which is a 

concern. As noted previously, the occurrence of EPPPs in aquatic environments pose 

negative impacts on the flora and fauna (Henschel et al., 1997; Zhao et al., 2015) and 

their occurrence  in drinking waters is concerning for human health (Carmona et al., 

2014; Khan and Nicell, 2015). Therefore, it is important to evaluate studies into fresh 

and marine waters for a better understanding of the extent of EPPPs pollution across 

different aquatic environments. EPPPs from STPs often discharged into marine 

waters via rivers, streams form direct discharge points (Beretta et al., 2014; Gaw et 

al., 2014), thereby posing potential threats to the marine ecosystem. Marine 

environments are equally important and need to be studied for EPPPs contamination 

due to the risk of ingestion of EPPPs through seafood (Gaw et al., 2014). 

However, studies investigating EPPPs in the marine environment are limited (Arpin-

Pont et al., 2014; Fabbri and Franzellitti, 2015; Gaw et al., 2014) compared to those 

conducted in other aquatic environments such as freshwater. The possible reason for 

the limited research into EPPPs in the marine environment is attributed to the low 

concentrations of EPPPs due to high dilution rate, which makes the analysis a 

difficult process (Arpin-Pont et al., 2014).  

The review undertaken by Bialk-Bielinska et al. (2016) discussed the challenges in 

developing analytical methods for quantification of EPPPs in marine environments, 

stating that the analysis of EPPPs in marine sediments and water is a complex 

process and requires further enhancements. Evaluation of the above review of the 

literature provided a detailed overview of research investigations carried out in 

marine environments and confirms the widespread pollution by EPPPs of the marine 

environment. Research into EPPPs in the marine environment is important 

particularly in the estuarine areas, coastal and bay areas where most of the world’s 

population resides.  
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The Brisbane River forms an estuary opening into the South Pacific Ocean and is 

surrounded by urbanisation and rapidly growing population (BITRE, 2013; Yu et al., 

2014). Therefore, it is likely to be polluted by EPPPs. In recent studies undertaken by 

Borecka et al. (2015), Hedgespeth et al. (2012), Klosterhaus et al. (2013), Spongberg 

et al. (2011)) and Long et al. (2013), 89 EPPPs were reported highlighting the 

pollution of the marine environment and the growing interest in this area.  

Within Australia, two studies have recently been published that reported on the 

occurrence of EPPPs in urban influenced estuarine and coastal environments (Birch 

et al., 2015; French et al., 2015) confirming the strong anthropogenic influences 

resulting from urbanisation and population growth (Bialk-Bielinska et al., 2016; Gaw 

et al., 2014). Along with investigative studies into the marine environment which 

mainly focused on the occurrence and distribution, studies have also confirmed the 

bioavailability and bioconcentration of EPPPs in marine organisms (Gaw et al., 

2014; Gomez et al., 2011; Klosterhaus et al., 2013; McEneff et al., 2014), thereby 

identifying the bioaccumulative nature of these environmentally concerning 

compounds. Therefore, it can be concluded from the above analysis of the literature 

that EPPPs are common in marine aquatic environments and bioaccumulate in 

aquatic organisms raising environmental concerns. While these findings may not 

pose an immediate threat to ecosystems and humans, it is likely to cause chronic 

impacts. 

In regards to freshwater environments, studies investigating EPPPs in freshwaters are 

numerous and this is rightly because rivers provide freshwater for the living beings 

on earth. Researchers have focused their attention on the occurrence and distribution 

to understand the fate of these pollutants in freshwater since there are still knowledge 

gaps about the fate of these pollutants which needs to be addressed. Several studies 

have been conducted in freshwaters in the past few years studying the occurrence, 

fate and distribution of EPPPs in drinking waters, lakes, rivers and sediments of the 

freshwater resources.  Pal et al. (2010) in their review have reported 16 

pharmaceuticals that are frequently reported in studies carried out during the period 

2006-09, thereby concluding the widespread consumption of these drugs across 

various countries and their presence in the environment.  Studies (Proia et al., 2013; 

Zhao et al., 2015) have reported on the bioaccumulation of analgesics and anti-
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inflammatory drugs on autotrophs in Mediterranean rivers and antibiotics in fish 

tissues, thereby raising environmental concerns and potential toxic impacts on the 

freshwater ecosystems. The above research literature provides evidence of the 

widespread occurrence of EPPPs in various compartments of the environment 

thereby highlighting the need for more research in this area. Research into EPPPs in 

Australia has been limited. Studies undertaken by Le Corre et al. (2012), Watkinson 

et al. (2009) have reported on the occurrence of antibiotics in municipal and hospital 

wastewaters. Recently, studies from Australia (Birch et al., 2015; French et al., 2015; 

Scott et al., 2014; Watkinson et al., 2009) have reported on the occurrence of EPPPs 

in Australian estuarine environments and in rivers. EPPPs have also been discovered 

in marsh frog tadpoles (Melvin et al., 2014), thereby confirming widespread 

occurrence of EPPPs in Australian surface waters and highlighting bioaccumulation 

of these pollutants in native organisms. 

It can be concluded from the literature review that research into EPPPs in Australia is 

not as extensive as it is in other parts of the world and it is has just gained 

momentum in recent years. Another significant finding is that there has been no 

reported study into the investigation of EPPPs in river sediments which confirms the 

need to study the presence of EPPPs in the Brisbane River sediments. Such a study, 

therefore, is critical to obtain a comprehensive knowledge about EPPP pollution in 

the aquatic environment.  

This section has discussed the various regions in the world where EPPPs have been 

occurring and in the different compartments of the aquatic environment. The most 

important finding in this section was the lack of research studies into EPPPs in 

Australia. Whilst there are a few studies reported regarding EPPPs in surface waters, 

there is no research into EPPPs in the sediment environment in Australia. It is 

important to investigate the occurrence of EPPPs in sediments in the Brisbane River 

so as to derive a comprehensive understanding of EPPPs pollution. 
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2.4 Bioaccumulation and toxicity of EPPPs 

As explained earlier, EPPPs, unlike other pollutants, are foreign to the environment. 

Hence, prolonged exposures to such pollutants are likely to have adverse impacts on 

the environment. Since EPPPs have been lately discovered and identified as 

‘emerging’ pollutants, there is limited information regarding their potentially harmful 

effects. The possible reasons for limited research into monitoring and assessment of 

EPPPs for adverse impacts: 

a) Lack of sophisticated and advanced analytical instruments and lack of robust 

methods for quantification of such pollutants since these occur in very small 

concentrations (ppb and ppt levels)  

b) Lack of substantial evidence of adverse impacts 

c) Lack of regulations and legislations relating to the management of such 

pollutants  especially in Australia  and  

d) The fact that the research is emerging and ongoing with more focus on 

understanding the fate of EPPPs in various chambers of the environment. 

For any given environment, smaller organisms are generally the most vulnerable to 

the anthropogenic influences. Such organisms have simple cell structures. 

Nevertheless, they are very important to the ecosystem and for biodiversity. They act 

as reliable bio- indicators of environmental health for two predominant reasons, 

a) These small live forms are most sensitive and susceptible to minute 

changes in the environment because of their simple cell structures; and  

b) The smaller live forms are in abundance in the environment, thereby 

ensuring easy availability. In addition, frequent sampling with good 

sample size is possible without threatening the population. For example, 

microorganisms, aquatic fauna such as fish, biological samples such as 

cell lines are present abundantly in nature and can be used for assessing 

environmental health .  

Studies conducted around the world have reported on bioaccumulation of certain 

EPPPs in aquatic organisms (Gaw et al., 2014). Studies undertaken by Gomez et al. 
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(2011), Klosterhaus et al. (2013), McEneff et al. (2014), Wille et al. (2011) have 

reported bioaccumulation of pharmaceuticals in marine mussels. Bioaccumulation of 

EPPPs has also been found in other aquatic organisms such as in fish liver, 

autotrophs in surface waters (biofilms), wild fish and marsh frog tadpoles and 

biological tissues (Kwon et al., 2008; Melvin et al., 2014; Proia et al., 2013; Tanoue 

et al., 2014; Vernouillet et al., 2010; Zhao et al., 2015).  Amongst the 

ecotoxicological studies conducted, carbamazepine appears to be persistent in the 

environment and highly bioaccumulative in aquatic organisms making it one of the 

most concerning EPPPs  and qualifying as an ‘anthropogenic marker’(Clara et al., 

2004). Carbamazepine was found to be easily bioaccumulated in algae when exposed 

to 150mgL-1  of concentration (Vernouillet et al., 2010). The bioaccumulation of 

EPPPs in a range of aquatic organisms demonstrates the persistence of these 

pollutants in the environment which is primarily due to continuous discharge from 

wastewater effluents to water environments.  

However, apart from the wastewaters, desorption of these pollutants from the 

sediment environment back into the surface environment also plays an important role 

in the persistence of these pollutants. The process of desorption of EPPPs from 

sediments is enhanced by the benthic invertebrates that affect the equilibrium of the 

desorption process which results in greater bioavailability of these pollutants to the 

aquatic organisms (Gilroy et al. (2012). A Similar finding was concluded by 

Goedkoop et al. (2003) in their study where they stated that the burrowing and 

feeding activity of aquatic organisms affects the sediment environment thereby 

affecting the sorption/desorption process of EPPPs. Martínez-Hernández et al. (2014) 

on the other hand concluded that the ionisation of EPPPs affects the 

sorption/desorption process thereby noting that many factors affect the 

sorption/desorption processes in the sediments which need to be addressed. The 

bioavailability and bioaccumulation of EPPPs in the sediment environment further 

contribute towards the toxicity of the sediment in which they occur (Tamura et al., 

2013). 

The studies discussed above further confirm the pollution of the marine environment 

by EPPPs and their accumulation in aquatic life forms. Such studies are important 

and necessary for regulating the occurrence of EPPPs and would prove beneficial in 
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providing relevant knowledge for the development of appropriate removal techniques 

for EPPPs. Additionally, studies on bioaccumulation and bioavailability of EPPPs 

provide in-depth knowledge about the behaviour of a particular compound which is 

helpful in assessing the risk and toxicity of the pollutant. 

Risk assessment provides vital information about the toxicity of a specific EPPP to 

the environment, thereby facilitating in implementing appropriate mitigation 

measures and regulations (Liebig et al., 2014). Values such as EC50- the half 

maximal effective concentration at which a drug can induce a response after a 

specified exposure time, RQ – risk quotients and predicted environmental 

concentration (PEC) are determined to understand the potential risks and harmful 

effects of an environmental pollutant to its surrounding environment and the living 

organisms. Henschel et al. (1997) followed the risk assessment procedure according 

to the EU guidelines (CEC III/ 55004/ 94 draft 4) and calculated the EC50 values for 

paracetamol, clofibric acid and methotrexate towards daphnia, algae and biological 

samples like fish cell lines and embryos and concluded that paracetamol and clofibric 

acid are toxic to the environment.  

Camacho-Muñoz et al. (2013), Ellis (2006) and Hernando et al. (2006) in their 

studies assessed the risks of target EPPPs by determining the risk quotients (RQ). 

The assessed target EPPPs were reported to pose potential risks to the organisms in 

the aquatic ecosystems where these drugs were detected. Ferrari et al. (2003),  on the 

other hand, determined the environmental risk based on the ratios of predicted 

environmental concentration (PEC)/predicted no-effect environmental concentration 

(PNEC), measured environmental concentration (MEC)/PNEC and risk quotients for 

carbamazepine, clofibric acid and diclofenac. The above risk assessment techniques 

were applied in assessing risks of pharmaceuticals from domestic wastewater 

(Backhaus et al., 2014; Kosma et al., 2014), freshwater (Ginebreda et al., 2010; Wu 

et al., 2014; Zhu et al., 2013) and hospital wastewater (Escher et al., 2011; Hernando 

et al., 2006). Among the risk assessment studies reviewed, the majority of the 

research appear to be undertaken in Europe. Unfortunately, unlike in Europe, there 

are no guidelines in Australia in relation to the occurrence of EPPPs. This could also 

be another reason for current limited number of studies on EPPPs in Australia.  
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2.5 Removal of EPPPs  

This section discusses the possible alternative wastewater treatment techniques that 

could be adopted to reduce the load of EPPPs from wastewaters. There is a need to 

improve the existing wastewater treatment techniques or potentially introduce novel 

treatment techniques to eliminate EPPPs and prevent their entry into the receiving 

water environment.  Studies (Castiglioni et al., 2006; Lin et al., 2009; Zorita et al., 

2009) have compared the concentrations of selected EPPPs from influents, effluents 

in between the treatment stages to assess the removal rate of EPPPs during the 

treatment process in wastewater treatment plants (WWTPs). Castiglioni et al. (2006) 

and Lin et al. (2009) concluded that the treatments were not effective in removing 

antibiotics and they also found the removal rates for selected EPPPs varied across the 

different STPs. However, longer retention times during the treatment process were 

found to be effective in better removal of EPPPs (Lin et al., 2009). Zorita et al. 

(2009) noted that the tertiary treatment process in sewage treatment plants (STP) in 

Sweden could eliminate two of the three selected EPPP compounds except for 

diclofenac. Thus, the current wastewater treatment techniques are not able to fully 

eliminate all of the EPPPs present in wastewater. 

Understanding the inadequacy of the wastewater treatment processes in eliminating 

EPPPs, research studies have also been undertaken to remove EPPPs from water 

(Akhtar et al., 2016; Nebout et al., 2016; Omidvar et al., 2015). Akhtar et al. (2016), 

reviewed the literature relating to different adsorbents that are used to remove EPPPs 

and the mechanisms of adsorption. The study concluded that while different 

adsorbents have different removal rates, an effective adsorption of EPPPs actually 

depends largely on the active functional groups present on these compounds. Nebout 

et al. (2016), investigated the use of activated carbon, ozonation and the coupling of 

both methods. They concluded that coupling of ozone/activated carbon resulted in 

relatively rapid removal of EPPPs. Although the number of EPPPs removed by these 

techniques was relatively quite low compared to the large numbers of EPPPs present 

in the environment, studies are ongoing in investigating the efficacy of various 

techniques. 

Research studies have also demonstrated that the sludge retention technique (SRT) 

which is an important step in wastewater treatment is ineffective for the removal of 
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pharmaceutical compounds such as carbamazepine and diclofenac, which are highly 

resistant to degradation (Clara et al., 2004; Zhang et al., 2008). This section discusses 

different removal techniques such as activated carbon, membrane filtration, sludge 

treatment, adsorption and oxidation proposed in studies to remove EPPPs (Bu et al., 

2013; Li, 2014; Suárez et al., 2008; Westerhoff et al., 2005). 

Removal techniques such as granulated activated carbon (GAC), advanced oxidation 

process (AOP) and activated sludge treatment analysed in studies (Ternes et al., 

2004; Ternes et al., 2002; Ternes et al., 2003) were found to be effective in removal 

of EPPPs. For example, the activated sludge treatment technique has been found to 

be effective in the removal of diclofenac, 17 α – ethinylestradiol and roxithromycin. 

The above studies agree with Suárez et al. (2008) about implementing a treatment 

technique following the conventional wastewater treatment process and go on to 

propose the above- mentioned removal techniques- (GAC), (AOP) and activated 

sludge treatment to be effective post-treatment techniques for removal of EPPPs.  In 

the same vein, Tijani et al. (2013) in their review found AOP technique to be more 

environmentally friendly with no additional chemicals being used and less complex. 

However, additional research into removal of EPPPs is needed. Ternes et al. (2004) 

in their study proposed that hospital waste should be treated separately from other 

wastewaters such as domestic wastewater.  

Ozonation treatment proposed by Rosal et al. (2010) was another removal technique 

stated to be efficient in the removal of compounds such as carbamazepine, 

diclofenac, atenolol and propranolol indicating another addition to the list of post-

treatment measures. While the proposed post- treatment techniques such as 

ozonation, GAC and AOP have proved effective, the likelihood of implementation of 

these techniques in the real world is challenging given that these techniques are 

expensive. 

The implementation of post-treatment techniques is difficult considering the cost 

associated. While this is true, the introduction of better house-keeping practices in 

hospitals and medical centres, and the controlled administration of prescribed and 

non-prescribed drugs that are potentially toxic to the environment and generating 

awareness amongst people about EPPP pollution would help to minimise the risk of 

EPPP pollution of waterways (Fisher et al., 2013). 
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On the other hand, it also understood that while some treatment techniques can 

effectively remove certain harmful pollutants, but cannot guarantee the removal of 

other potentially environmentally threatening micropollutants into the future. This is 

because: 

a) Research and development are ongoing in the pharmaceutical industry. 

Therefore, there will be additional new drugs with new discoveries all the 

time. 

b) The removal techniques are a proactive approach to control and 

potentially stop EPPPs from entering the environment, which is primarily 

through wastewater effluents. While this is true and can be effectively 

applied to eliminate such micropollutants, its application is restricted to 

only wastewaters. Meaning the pharmaceutical compounds that are 

present in the soil, groundwater and sediments would not be removed. 

This is a serious concern given the fact that these micropollutants are 

persistent in the environment and bioaccumulate. For example, the 

bioaccumulation of antibiotics can result in antibiotic resistant species. 

c) Processes such as activated sludge treatment have been successful in 

eliminating pharmaceutical compounds such as diclofenac. However, 

application of such sludge to the land, possibly agricultural land, would 

release these micropollutants back into the environment (Boxall et al., 

2012). 

d) Processes such as ozonation, activated oxidation process (AOP) causes 

oxidation of pharmaceutical compounds that can change them into 

intermediate compounds. These intermediate compounds might not be 

harmful to human beings, but could be harmful to other living organisms 

(Suárez et al., 2008). 

2.6 Urbanisation and sources of EPPPs  

Urbanisation leads to a significant demand for water thereby impacting on the 

quantity of the resource and affects the quality by causing pollution (Goonetilleke 

and Thomas, 2003; WWDR, 2015). As discussed in the previous sections, 



  
 

Chapter 2 Environmentally Persistent Pharmaceutical Pollutants (EPPPs) in the urban water 
environment                                                                                                                           58 

urbanisation appears to be causing EPPPs pollution in water environments. Thus, it is 

important to understand how urbanisation causes this pollution and through what 

sources in the environment. As stated in Sections 2.2 and 2.3, urbanisation around 

the Brisbane River is increasing markedly and the river has been reported to be 

polluted by EPPPs (QueenslandTreasury, 2016; Scott et al., 2014). Therefore, it was 

necessary to investigate the sources of EPPPs in the Brisbane River to understand 

and study the relationship between the two. 

The process of urbanisation results in outcomes such as concentration of population, 

changing lifestyles and wastewater generation which contribute towards EPPP 

pollution. Urbanisation causes continuous migration of population into cities mainly 

for better infrastructure, health, education and employment (Liu et al., 2015). In a 

recent report by the UN (2014), 54% of the world’s population is already residing in 

urban areas. Such an increase in urban population has given rise to distinct urban 

lifestyle, which has resulted in increased consciousness about personal health and 

wellbeing and in the consumption of EPPPs substances (Ellis, 2006; Yuanjia et al., 

2007), together with increased generation of wastewater (Sato et al., 2013). Studies 

(Ellis, 2006; Jiang et al., 2014; Stewart et al., 2014) have reported about the presence 

of EPPPs in urban-influenced aquatic environments, thereby confirming the role of 

urbanisation on EPPPs pollution. Therefore, this study which aimed to investigate the 

relationship between urbanisation and EPPP contamination of the Brisbane River is 

expected to provide the baseline information that would contribute to the 

implementation of mitigation measures.  

Since, EPPPs present in wastewaters (Heberer, 2002; Zorita et al., 2009) are 

discharged into the surrounding waterways after conventional treatment (Daughton 

and Ternes, 1999), it was important to understand the link between water 

consumption and wastewater generation. Figure 2.2 and 2.3 below illustrate the 

increase in water consumption and waste generation in Australia. 
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Figure 2.2 water consumption in Australia by industry and households during 
2008-09 to 2012-13 

Source: (ABS, 2015b) 

Water consumption in Australia increased by 23% in 2012-13 compared to the year 

2011-12 (Figure 2.2). While the agriculture sector was the largest consumer of water, 

the water consumption by the household sector in Queensland increased by 6% in 

past five years from 2008-09 to 2012-13. Queensland was the third among the states 

in Australia followed by Australian Capital Territory (ACT) and Victoria to show an 

increase in water consumption, indicating a high demand for water due to population 

growth (ABS, 2015b).  
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Figure 2.3 waste generation in Australia across major sectors during 2009-10 to 
2010-11 

Source: (ABS, 2015b) 

It can be understood from Figure 2.3 that waste generation has increased in the past 

few years in all major sectors including households. The increase in household waste 

generation directly correlates to population growth, which implies an increase in 

wastewater generation too. Having understood the relationship between urbanisation 

– population growth – wastewater generation and EPPPs, it was now essential to 

understand the different sources of EPPPs in the environment. Studies (Fisher et al., 

2013; Li, 2014) have separated the sources of EPPPs into two categories: (1) Point 

sources, and (2) Diffuse sources.  

Wastewaters originating from hospitals and municipal treatment plants are the main 

source for EPPPs pollution (Castiglioni et al., 2006; Wu et al., 2015). These sources 

generate and release large volumes of wastewaters (Li, 2014) which are likely to be 

discharging high amounts of EPPPs into the aquatic environment. Wastewater 
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effluents released from municipal wastewater plants contain excreted EPPPs 

substances (Antonić and Heath, 2007; Camacho-Muñoz et al., 2013; Daughton and 

Ternes, 1999; Fisher et al., 2013; Jelić et al., 2009; Kolpin et al., 2002; Li, 2014), and 

when such effluents are released into surrounding water bodies, they release these 

micropollutants into that environment.  

Wastewaters are sent for treatment to the WWTPs before being discharged into 

waterways. However, the majority of the EPPPs escape this treatment process as 

current treatment processes are ineffective in eliminating these substances from 

wastewaters (Daughton and Ternes, 1999; Rosal et al., 2010). Thus, wastewater 

effluents generated from WWTPs act as point sources of EPPPs pollution (Boyd et 

al., 2003; Chen et al., 2012; Daughton and Ternes, 1999; Fisher et al., 2013; Li, 

2014; Pal et al., 2010; Richardson and Ternes, 2014). 

Hospital wastewaters are another important point source. These are more 

concentrated sources of EPPPs to the environment.  Past research studies have 

determined the load of EPPPs from hospital wastewaters and their potential risks 

(Escher et al., 2011; Le Corre et al., 2012; Ort et al., 2010), thereby confirming 

hospital effluents as important point sources of environmentally concerning EPPPs.  

Diffuse sources, on the other hand, constitute improper or accidental disposal of 

pharmaceuticals, agricultural runoff, sewer leaks, leachates from domestic waste 

landfills and septic tanks, veterinary drugs and their residues from aquaculture and 

animal carcases (Boxall et al., 2012; Fisher et al., 2013; Kümmerer, 2008). Sewer 

leaks, leachates from domestic waste landfills and septic tanks could also be 

releasing EPPPs into the groundwater and to soil (Li, 2014; Ternes et al., 2004), 

thereby polluting these environments. These diffuse sources contribute fewer 

amounts of EPPPs, but in concentrated forms. Sewer leaks, leachates from domestic 

waste landfills and septic tanks could possibly be considered as potential diffuse 

sources in developed countries such as Australia. Septic tanks and sewerage leakages 

were stated to be the potential sources for EPPPs occurrence in Ebro River basin in 

Spain and Sydney estuary in Australia (Birch et al., 2015; Silva et al., 2011), thereby 

confirming that EPPPs pollution of water environments occurs via diffuse sources. 

The evaluation of above research literature shows that the spread of urban areas is 

conducive to more EPPPs use and thus, contributing increasing amounts of EPPPs to 
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aquatic environments via point and diffuse sources. It can also be concluded that 

inadequate wastewater treatment processes are also responsible for EPPPs presence 

in the surrounding aquatic environments. 

In regards to Australia, increasing and ageing population and their inclination 

towards the use of EPPPs suggest that the aquatic systems in Australia are likely to 

be polluted by these micropollutants. Such contamination is likely to continue to 

pollute the water bodies. Considering this situation and the fact that EPPPs have been 

reported in the Brisbane River (Scott et al., 2014; Watkinson et al., 2009) recently, it 

would be interesting to know whether they occur in the sediments as well.  

2.7 Analytical methods for analysis of EPPPs 

Interest in research about the fate, occurrence, behaviour and environmental impacts 

of EPPPs in aqueous environments has gained considerable attention in past 10-15 

years (Daughton and Ternes, 1999). Mass spectrometry along with advancements in 

sample enrichment techniques and coupled with liquid and gas chromatography has 

enabled the identification and detection of these pollutants in trace amounts 

(Daughton, 2001; Daughton, 2004; Hernández et al., 2014). As a result, many 

methods have been developed over the years for determining EPPPs present in 

various environmental matrices (Borecka et al., 2015; Boyd et al., 2003; Jelić et al., 

2009; Löffler and Ternes, 2003; Snow et al., 2013). 

Although many methodologies have been developed and applied for the analysis of 

EPPPs, there are still many challenges to be addressed (Bialk-Bielinska et al., 2016) 

in order to fully understand the behaviour and fate of these substances in the 

environment. Limited studies into the analysis of EPPPs present  in sediments (Bialk-

Bielinska et al., 2016) explain that methods need to be improved and developed 

because of the complex nature of the matrix. This, in turn, has resulted in the 

determination of a limited number of pharmaceutical compounds present in the 

sediment environment. Therefore, method development for the determination of 

EPPPs in sediments is discussed in this section. 

The analysis of EPPPs involves three important stages. These include sample 

preparation, extraction and clean up and finally, analysis using GCMS/MS or 
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LCMS/MS. Figure 2.4 below describes the analysis process for EPPPs. After 

extraction and clean-up, the samples can be analysed using either of the analytical 

instruments – GCMS/MS or LCMS/MS. However, in some cases of GCMS analysis, 

target analytes are required to be transformed into similar compound meaning 

derivatised in order to be quantified. 

 

Figure 2.4 Diagrammatic representation of EPPPs analysis. 

Source: Adapted from Pietrogrande and Basaglia (2007) 
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2.7.1 Sample preparation 

As described in Figure 2.4 above, sample preparation is the first step in the analysis 

of EPPPs. It is the most elaborate stage in the analysis of EPPPs and it is the most 

tedious and time -consuming step. Sample preparation involves sample storage, 

freeze drying, grinding and sieving. Since these micropollutants are in ppb, ppt 

concentrations, any sample loss during sample preparation can result in large errors 

and significantly affects the analytical results (Babic and Pavlovic, 2013). Sample 

preparation for water samples does not involve the grinding and sieving steps and 

therefore, the analysis is faster and less complex than that for sediments. 

Environmental samples used in the analysis of micropollutants must be stored at sub 

-zero temperatures such as -200C at which the reaction rate is negligible (Darwano et 

al., 2014). Freeze drying of environmental samples such as sediments is necessary 

where all the moisture is eliminated under high pressure. This process which is also 

known as lyophilisation is critical and safe as it facilitates good contact between the 

target compounds and the matrix (Babic and Pavlovic, 2013). Certain organic 

micropollutants degrade at high temperature. Therefore, lyophilising sediment matrix 

is best practice than oven drying (Runnqvist et al., 2010) since thermally sensitive 

compounds are protected from degrading thereby avoiding sample loss. Grinding and 

sieving follow the freeze drying step where the sediment matrix is ground into 

smaller particle sizes allowing more surface area for the compounds to adsorb to the 

particles (Babic and Pavlovic, 2013). Therefore, the sample preparation stage in the 

EPPPs analysis is crucial as this step facilitates in retention of the target compounds 

and proper adsorption to the sediment matrix. Studies conducted into sediments (Bu 

et al., 2014; Stewart et al., 2014; Vazquez-Roig et al., 2010) have followed the 

sample preparation steps by storing sediment samples at -200C, freeze drying and 

sieving before extraction. It is concluded that careful sample preparation ensures in 

minimum sample loss, thereby generating accurate results. 

2.7.2 Extraction 

Extraction is the next step illustrated in Figure 2.4, which is again a key step because 

only an efficient extraction will recover most of the EPPP compounds from 

environmental matrices. This, in turn, facilitate in obtaining accurate results. There 
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are different extractions methods such as ultrasonication extraction method, soxhlet, 

and microwave assisted extraction (MAE) and accelerated solvent extraction (ASE). 

This section has evaluated and compared different extraction methods which enabled 

the selection of the most appropriate extraction technique for EPPPs analysis in the 

current study. 

Many studies have applied ultrasonication method for extracting EPPPs from 

different environmental matrices (Beretta et al., 2014; Camacho-Muñoz et al., 2013; 

Chen and Zhou, 2014; Chen et al., 2015; Langdon et al., 2011; Löffler and Ternes, 

2003) with recoveries ranging from 42% -352%. Ultrasonication appears to be a 

quick and reliable technique for EPPPs extraction. It was recommended in method 

1694 developed by the USEPA (2007) for EPPPs analysis. Despite being a standard 

method, it was concluded that the USEPA method is time -consuming with high 

possibility of sample loss. Therefore, its application was not considered to be 

feasible.  

A number of research studies, on the other hand have developed what is referred to 

as quick, easy, cheap, effective, rugged and safe (QuEChERs) methods where EPPPs 

are extracted with simple vortexing yielding recoveries from 40-90%. Therefore, it is 

concluded from the above studies that ultrasonication and vortexing are easy 

extraction methods which yield good recoveries. However, it is to be noted that the 

application of these techniques is likely to induce more human error and sample loss 

since it involves a lot of manual handling.  

Another extraction method, ASE, which is approved by EPA (Mitra, 2003) for 

extraction has lately gained popularity as it is quick with minimum chances of error. 

The method was also found to be efficient, resulting in increased recoveries of 

EPPPs compared to ultrasonic, soxhlet, MAE extraction methods (Antonić and 

Heath, 2007). However, according to Antonić and Heath (2007), MAE consumed 

less solvent and time compared to ASE stating how other factors affect the efficiency 

of an extraction technique. MAE was chosen for EPPPs analysis in Krka river 

sediments in Slovenia over ASE. However, it is to be noted that the efficiency of any 

extraction method depends on other important factors such as the selection of the 

appropriate organic solvent, temperature, and pressure. For example, Vazquez-Roig 

et al. (2010) analysed EPPPs using ASE method and used water as an extracting 
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solvent which is environmentally safe and obtained satisfactory recoveries of 34-

105% for the target compounds. 

Several studies have reported to have employed ASE for extracting EPPPs from 

various environmental samples with satisfactory recoveries ranging from 43-116% 

(A.kinney et al., 2006; Bu et al., 2014; Ferrer and Furlong, 2002; Krogh et al., 2008; 

Silva et al., 2011; Stewart et al., 2014).  Runnqvist et al. (2010) and  Vazquez-Roig 

et al. (2010) state that ASE in tandem with SPE clean-up yields high recoveries and 

is a preferred method of extraction for sediment samples because it facilitates in  

proper desorption of EPPP substances from the complex matrix when accompanied 

by appropriate organic solvents (Bialk-Bielinska et al., 2016). Thus, it was concluded 

that ASE is an effective extraction method.  

As mentioned earlier, ASE method employs organic solvents or water as extracting 

solvents. Organic solvents such as methanol, acetone and acetonitrile can be used for 

extractions of polar compounds such as EPPPs (Jelić et al., 2009). Darwano et al. 

(2014) used a combination of two organic solvents- methanol and acetone (3:1 v/v) 

for extracting EPPPs from sediment samples using ultrasonication method of 

extraction and reported recoveries ranging from 40-102% suggesting that 

combination of organic solvents could also be used in the extraction of EPPPs. The 

selection of solvent to be used in extraction depends on the polarity of the compound 

and the instrument on which these compounds are going to be analysed. Besides 

solvents used in extraction, another factor that affects the efficiency of the process is 

temperature. 

Temperature is a critical factor in extraction processes particularly in the case of the 

ASE method. High temperature during extraction facilitates good solubility of the 

analytes in the solvent and aids in complete extraction of the analytes. Runnqvist et 

al. (2010), stated that a temperature range of 500 C-1000C aids in efficient extraction 

of analytes thereby demonstrating that increasing temperature improves recoveries of 

the analytes. However, the stability of the compounds at increased temperatures 

needs to be considered prior to extraction in order to avoid degradation of the 

compounds.  
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High pressure is another parameter which is essential for smooth flowing of the 

solvent through the cell and proper distribution of the solvent throughout the matrix 

sample. The pressure is generally kept high to aid in the proper solvent distribution 

and flow through the system. However, Runnqvist et al. (2010) cites in their review 

that increase in pressure from 870-2175psi has a negligible effect on the extraction 

process, but increasing time and static cycle ensures efficient extraction of analytes 

as it enables the breakdown of the analyte-matrix complex due to increased solvent -

analyte contact. 

2.7.3 Clean up  

The use of SPE method has increased in the last few years mainly because of the 

increasing need for reducing the use of organic solvents in laboratories due to 

environmental concerns (Hennion, 1999). Studies around the world have employed 

SPE method for EPPPs analysis (Boyd et al., 2003; Jiang et al., 2014; Pietrogrande 

and Basaglia, 2007; Scott et al., 2014; Vazquez-Roig et al., 2010; Zhao et al., 2015). 

Therefore, SPE was the method chosen for the clean-up of extracts for EPPPs 

analysis. However, method development is still necessary given the fact that research 

into EPPPs is still very new, there is a dearth of literature and standardised methods 

and guidelines for an efficient extraction and clean-up (Hennion, 1999). While SPE 

is the preferable method of clean-up, the use of cartridges in SPE clean - up plays a 

vital role in method development for EPPPs analysis. A review by Primel et al. 

(2012) states that the use of cartridges in SPE clean-up significantly affects the 

recovery. C18 is the common cartridge used for clean-up of EPPP extracts, but the 

use of  Oasis HLB cartridge by Waters in combination with C18 has been found to 

result in increased recoveries of EPPP compounds (Bialk-Bielinska et al., 2016; 

Primel et al., 2012). It was evident from the review of research literature that ASE in 

tandem with SPE is most efficient and reliable sample preparation technique and use 

of appropriate cartridges for SPE clean-up is critical for high recoveries.  

2.7.4 Analytical instruments 

There has been a dearth of literature reporting a standardised analytical method that 

could be applied to a wide range of EPPP compounds. In addition, the analytical 

methods developed thus far are sensitive to certain groups of EPPPs only (Comerton 
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et al., 2009). Therefore, it is required to develop a sensitive analytical method that 

could be applied across a wide range of compounds which also means it could save a 

lot of time in terms of analysis.  Application of such analytical methods on the high 

end, sophisticated instruments such as LCMS/MS and GCMS/MS results in sensitive 

and selective quantification of EPPPs.  

Advanced and sophisticated analytical instruments have now facilitated in easy 

detection and quantification of organic micropollutants such as pharmaceuticals. As 

stated in Section 2.7, liquid chromatography and gas chromatography in tandem with 

mass spectrometry has been the preferred choice for the analysis of pharmaceutical 

compounds. Gas chromatography was initially the first choice for organic 

micropollutants such as EPPPs. However, the use of gas chromatography gradually 

became restricted since it could only analyse non-polar and volatile compounds 

(Ternes et al., 2004). Analysis of polar EPPPs on gas chromatograph is possible but 

requires derivatisation of EPPP compounds into a volatile form which lengthens the 

analytical process. This was when the use of liquid chromatography gained 

momentum as a result of its capability to analyse a varied range of polar EPPP 

compounds at the same time (Comerton et al., 2009; Primel et al., 2012).  

Lately there have been studies that employed LCMS/MS method for the analysis of 

pharmaceuticals and other organic micropollutants in environmental samples 

indicating increasing preference and reliability of such instruments (Azuma et al., 

2015; Primel et al., 2012; Schultz and Furlong, 2008) because LCMS/MS facilitates 

in selective and accurate detection the target compounds. Quantification of the target 

compounds on LCMS/MS is possible by employing the technique of multiple 

reactions monitoring (MRM) where in the target analytes are smashed into numerous 

fragments and two transitions are selected unique to the target compound. The two 

transitions are used as quantitative and qualitative transitions to confirm accurate 

detection of the compound (Comerton et al., 2009; Hernández et al., 2014; 

Pietrogrande and Basaglia, 2007).   

The accurate selection of target compounds is possible when LCMS/MS is combined 

with the (Electrospray Ionisation) ESI mode / atmospheric pressure chemical 

ionisation (APCI) mode. However, the ESI suits better because of its ability to 

analyse a broad range of compounds – low and high polar and non-volatile organic 
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compounds (Pietrogrande and Basaglia, 2007). While ESI remains the choice of 

mode for EPPPs analysis, it is susceptible to matrix effects originating from complex 

environmental samples such as sediments and soil. The matrix effect, therefore, may 

result in suppression of signals thus, affecting the sensitivity of the method (Jahnke 

et al., 2004; Pietrogrande and Basaglia, 2007). 

Analytical technique of Multiple Reaction Monitoring (MRM) in positive and 

negative Electrospray Ionisation (ESI) mode ensures accurate and sensitive 

determination and quantitation of the target compounds. Developing such MRM 

technique is again a time -consuming process, but ensures accurate quantification of 

target analytes. Past research studies (Chen and Zhou, 2014; Chen et al., 2013; 

Vazquez-Roig et al., 2010) have applied the Multiple Reaction Monitoring (MRM) 

techniques for EPPPs analysis and claim that the technique is sensitive, accurate and 

reliable. The MRM technique is explained in detail Section 3.3.2. Accordingly, the 

analysis of EPPP compounds involves the use of multiple techniques such as ASE, 

SPE and MRM in tandem with analytical instruments such as GCMS/MS and 

LCMS/MS. 

2.8 Conclusions 

It is understood from Sections 2.1 and 2.2 that the aquatic ecosystems around the 

world are contaminated with various kinds of pollutants. Now there is an addition of 

a new set of pollutants that include pharmaceuticals. The critical review of research 

literature led to the adaptation of the term ‘Environmentally Persistent 

Pharmaceutical Pollutants’ (EPPPs) proposed by SAICM that was the most relevant 

to this study. Discussions in Section 2.3 led to the conclusion that EPPPs are 

ubiquitous in all the compartments of the aquatic environment around the world, 

including fresh and marine waters. A direct linkage can be noted between 

urbanisation, population growth, waste generation and increased consumption of 

pharmaceutical compounds (refer Section 2.6) in Australia and Queensland which 

was a key finding of this study. This finding provides a strong base for conducting 

the EPPPs analysis in Brisbane River sediments. 

EPPPs are bioaccumulative posing potential threats to aquatic organisms (refer 

Section 2.4) which implied that the removal of EPPPs from the environment is 
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important. It can be concluded from Section 2.5 that while the introduction of novel 

and post treatment techniques such as ozonation, GAC and AOP significantly 

remove a number of such micropollutants, they are inefficient in removing all the 

pharmaceuticals present in the environment. Section 2.7 evaluated the various 

analytical methods used in the EPPPs analysis, which led to the conclusion that 

investigation of EPPPs occurrence in sediments required developing a method for 

detection and quantification. Accordingly, it was concluded that the application of 

ASE-SPE methods and the use of LCMS/MS-ESI results in the sensitive and 

accurate quantification of EPPP compounds. Method development was therefore, the 

next and crucial part of this study and it is discussed in Chapter 3. 
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Chapter 3 Research Design and Methods 
 

3.1  Overview 

It was concluded in Chapter 2 that urbanisation, population growth and inefficient 

wastewater treatment methods are the main causes for the ubiquitous occurrence of 

EPPPs across different compartments of the aquatic environment. The critical review 

of research literature in Section 2.2 and 2.3 also concluded that EPPPs analysis in 

sediment samples is complex requiring sensitive analytical methods. High cost and 

lack of sophisticated instrumentation are likely to have attracted fewer researchers to 

study EPPPs and this seems quite possible in the case of Australia in particular and 

also Queensland.  

Evidence from the literature suggests that urbanisation in South East Queensland due 

to population growth and that population due to ageing is susceptible to 

cardiovascular, musculoskeletal and mental health issues (ABS, 2015a; BITRE, 

2013). It is worth noticing that the population in Queensland is also ageing markedly 

(CHO Report, 2014) and health expenditure on medicines has increased (ABS, 2011, 

2014) thereby implying increased pharmaceutical consumption which has resulted in 

the occurrence of EPPPs in the Brisbane River (Scott et al., 2014). Literature review 

in section 2.3 highlighted the lack of study into EPPPs in the aquatic environments of 

Australia particularly sediments and therefore this study was undertaken to 

investigate the occurrences of EPPPs in the Brisbane River sediments. The results of 

the investigation into the occurrence of EPPPs in Brisbane River sediments are 

discussed in Chapter 4.  

3.2 Research design 

A robust research design for this study was critical in achieving the aims and 

objectives.  Accordingly, the research design focused on the following six areas: 

• Critical review of  research literature 

• Selection of pharmaceutical compounds for analysis 

• Study area and sites for collecting samples for EPPPs analysis 
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• Sampling, storage and preparation  of samples for EPPPs analysis 

• Method development and test methods for quantification of EPPPs 

analysis 

• Data Analysis 

3.2.1 Critical review of research literature 

The critical review of research literature is crucial for a research study in identifying 

the knowledge gaps and for understanding the research problem and thereby in 

developing the research methodology. The literature review primarily evaluated 

research literature in the following key areas; 

• EPPPs in the environment 

• Their occurrence and distribution around the world 

• Risks and removal techniques of EPPPs 

• Sources of EPPPs and its link to urbanisation 

• Analytical and laboratory test methods for quantification of EPPPs 

The critical analysis of research literature enabled in developing an understanding of 

research problems associated with EPPPs pollution of aquatic environments and 

facilitated in identifying the knowledge gaps in relation to the occurrence of EPPPs 

in the Brisbane River sediments. The literature review was beneficial in 

understanding the linkage between urbanisation around Brisbane, population growth, 

ageing population and pharmaceutical consumption leading to EPPPs pollution in 

Brisbane River which further helped in the process of selection of target compounds, 

study area, sampling sites and test methods for analysis of EPPPs. 

3.2.2 Selection of compounds for investigation 

A set of target compounds was required for analysis in this research study to 

investigate the occurrence of EPPPs in the Brisbane River sediments. The selection 

of target analytes was based on the aim of this study. A critical review of research 

literature and evaluation of the statistical data from Australian Bureau of Statistics 

(ABS) and Pharmaceutical Benefit Scheme (PBS), revealed the health status of 

Queenslanders (Section 2.2). The reports state that Australians aged 65 years and 

above are more susceptible to chronic health conditions such as cardiovascular 
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conditions, musculoskeletal conditions and a broader age group of (18-65) is prone to 

mental health issues. This finding led to the conclusion that drugs used to treat such 

health conditions are the most likely to be consumed in Australia and thereby in 

Queensland. In addition, information about expenditure on medicines, the most 

widely prescribed medicines, urbanisation and population proved essential in 

substantiating the conclusion and facilitated in establishing a relationship between 

urbanisation and EPPPs occurrence in the aquatic environment. The information and 

knowledge obtained, proved decisive in selecting the appropriate EPPP compounds 

for this study.  

3.2.3 Study area and sites for collecting samples for EPPP analysis 

A stretch of Brisbane River was selected as the study area and the selection of 

sampling sites along the selected stretch was based on careful observation of satellite 

imagery of Brisbane City. Considering the aim of this study and based on the review 

of the research literature in Section 2.3 and 2.5, this study required careful selection 

of a study area that exhibits urbanisation and population growth. Inferences drawn 

from careful observations of satellite images of Brisbane City and the Brisbane River 

facilitated in the selection of the appropriate sampling sites for collection of 

representative sediment samples for EPPPs analysis in the Brisbane River. The 

selection of study area and sampling sites are further discussed in detail in Chapter 4. 

3.2.4 Sampling, storage and preparation of samples for analysis of EPPPs  

Research literature was critically reviewed for suitable sampling technique to collect 

representative samples of sediments from the Brisbane River. A literature review 

revealed that sample storage and sample preparation are the preliminary stages in 

EPPPs analysis. Storing samples at low temperatures was understood to be critical. 

The techniques of freeze drying, grinding and sieving in sample preparation 

explained the significance in the analysis of micropollutants such as EPPPs. This 

information led to the selection of appropriate measures for storing sediment samples 

and undertaking sample preparation for analysis of selected target EPPP compounds 

(Runnqvist et al., 2010).  The sample storage and sample preparation of EPPP 

compounds are further discussed in detail in Section 3.3.3. 

3.2.5 Method development and test methods for EPPPs analysis 
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Analysis of EPPPs in sediment samples was necessary to study the occurrence of 

EPPPs in the Brisbane River (refer Section 2.2). Further, this analysis was important 

for studying the relationship between urbanisation and EPPPs occurrence in the 

Brisbane River. The investigation of EPPPs, however, required the development of 

an appropriate extraction method and method for detection and quantification for the 

analytical instrument – LCMS/MS. Critical analysis of research literature (Section 

2.6) resulted in the selection and development of MRM method for detection and 

quantification on Shimadzu LCMS/MS instrument and test methods such as 

Accelerated Solid Extraction (ASE) and Solid Phase Extraction (SPE) for extraction 

and cleaning up of sediment extracts for EPPP analysis (Runnqvist et al., 2010). The 

selected MRM method and test methods are discussed in detail in Section 3.3.2 and 

3.3.3, respectively.  

3.2.6 Data analysis 

The raw MRM data obtained after running the sediment samples on mass 

spectrometer were processed and analysed for selective identification and 

quantification of the target compounds using the Skyline software. The Skyline 

software is used in building MRM methods and analysing resulting mass 

spectrometer data. Univariate data analysis such as mean, median, minimum, 

maximum and standard deviation were chosen for analysing the results to obtain 

information about the occurrence and spread of EPPPs in the Brisbane River.   

3.3 Research methods 

3.3.1 Selection of EPPP compounds 

Selection of target compounds for analysis was crucial to study the occurrence of 

EPPPs compounds in the Brisbane River sediments and further understand the 

relationship with urbanisation. This section discusses how the target compounds 

were selected for this study. 

In-depth analyses of research literature led to the conclusion that heart-related 

conditions, cholesterol, mental health conditions and hypertension are prevalent in 

Australia (ABS, 2015c) and the drugs used to treat these conditions predominantly 

belong to therapeutic classes of lipid regulators, psychiatric and β- blockers, 
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respectively (ABS, 2010, 2011, 2014). According to the statistical data from (ABS 

(2010), 2011), 2014)) and (CHO Report (2012), 2014)), there has been rise in 

prescription of the drug atorvastatin (lipid regulator), amoxicillin (antibiotic), 

cephalexin (antibiotic), propranolol (β- blockers)  and ibuprofen (analgesic).  

As far as Queensland is concerned, there is no direct information available about 

medicine consumption. However, it can be implied from the health reports (CHO 

Report, 2012, 2014), that there has been an increase in consumption of 

pharmaceuticals given the fact that most of the population is ageing and suffering 

from cardiovascular, musculoskeletal and mental health conditions. Cardiovascular, 

respiratory followed by neurological disorders continue to remain the main cause for 

the rise in health expenditure. In fact the rate of stroke and coronary diseases is 8-9% 

higher in Queensland compared to Australia (CHO Report, 2014). This information 

led to selection of pharmaceutical drugs from the therapeutic classes of lipid 

regulators and β- Blockers.   

The risk assessment of EPPP compounds undertaken in studies (Camacho-Muñoz et 

al., 2013; Henschel et al., 1997) led to the selection of propranolol and clofibric acid. 

In addition, increased prescription of drugs such as atorvastatin, atenolol, amoxicillin 

and cephalexin in past  years from 2010-2014 (ABS, 2010, 2014) led to the selection 

these drugs for analysis in this study. Table 3.1 below shows the most widely 

prescribed drugs in Australia. 

Table 3.1 Most commonly used and prescribed pharmaceutical drugs in 
Australia 

Pharmaceutical class Name of the drug Reference 

Lipid regulator Atorvastatin (ABS, 2011, 2014) 

β- Blocker Atenolol (ABS, 2010) 

Antibiotic Amoxicillin, Cephalexin (ABS, 2011, 2014) 

1  
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It is obvious from the above Table 3.1 that the drugs, namely, atorvastatin, atenolol, 

amoxicillin and cephalexin are mostly commonly prescribed and therefore widely 

consumed by the growing population.  This suggests that the likelihood of these 

drugs being released by wastewater effluents into the neighbouring aquatic 

environments is high. Therefore, these compounds were selected for this study. The 

following Table 3.2 below displays the therapeutic drugs selected for this study.  

Table 3.2 Selected target pharmaceuticals for analysis in this study 

Pharmaceutical 

group 

Compounds in the group Therapeutic use 

β – Blockers  Atenolol, Propranolol High blood pressure, cardiovascular 

diseases. 

Lipid regulators Atorvastatin, Clofibric acid High cholesterol. 

Antibiotics  Amoxicillin, Cephalexin Bacterial infections. 

Anti-

inflammatory 

and analgesics 

Ibuprofen, Diclofenac Musculoskeletal problems such as back 

pain. 

Psychiatric 

Drugs 

Carbamazepine, Diazepam, 

Lorazepam 

Depression, anxiety, seizures. 

Sources: Adapted from (ABS (2010), 2011), 2014), 2015c); Pharmaceutical Benefit 

Scheme (2015)) 

A total of eleven target compounds were selected from five different therapeutic 

classes. The selection of analgesics and anti-inflammatory drugs such as diclofenac 

and ibuprofen was based on the fact that these drugs are non-prescription drugs and 

are easily available over the counter in pharmacies and consumed by a wider group 

of population (Khan and Ongerth, 2004). Diclofenac and ibuprofen are generally 

consumed to treat the musculoskeletal problem which explains its widespread 

consumption since it is also available over the counter.  
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The selection of psychiatric drugs: carbamazepine, lorazepam and diazepam were 

primarily based on the conclusions drawn from the literature review. Unlike other 

drugs, there is no current data available about the consumption of psychiatric drugs 

in Australia or Queensland. However, based on the statistical data from ABS and  a 

limited number of other studies (Hollingworth and Eadie, 2010; Khan and Ongerth, 

2004; Roberts et al., 2015; Scott et al., 2014), it was clear that psychiatric drugs are 

present in the aquatic environments in Australia. Therefore, it was decided to include 

psychiatric drugs also in this study. Diazepam (psychiatric therapeutic drug) is 

prescribed to treat severe muscle spasms (Pharmaceutical Benefit Scheme, 2015), 

which increases its chances of consumption and thereby its occurrence in the 

Australian aquatic environments. 

While the literature review and ABS statistical data were the primary sources in 

deciding the target compounds, another source; the Pharmaceutical Benefit Scheme 

(PBS) also proved effective in substantiating the selection of compounds for this 

study. PBS is a scheme managed by the Australian Government with the objective to 

provide reliable and affordable access to necessary medicines to Australians 

(Pharmaceutical Benefit Scheme, 2015). The drugs under this scheme are subsidised 

for easy affordability. Therefore, the availability of above selected pharmaceutical 

drugs from the therapeutic classes of lipid regulators, psychiatric, antibiotics and β – 

Blockers (refer Table 3.2) under the Pharmaceutical Benefit Scheme was considered 

to be another important factor for the possible occurrence of the target 

pharmaceutical compounds in the Brisbane river sediments. 

The selected target compounds required a selective and sensitive method for 

identification and quantification. Therefore, the next section discusses the method 

development and test methods employed in the analysis of the selected target 

compounds. 

3.3.2 Method development for detection and quantification – Multiple 
Reaction Monitoring (MRM) 

The aim of the study was entirely dependent on the method development for EPPPs 

analysis and therefore formed an important part of this research study. The method 

development involved developing MRM technique for the detection and 

quantification of EPPPs that can be applied on a triple quadrupole (QqQ) mass 
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spectrometers (Kasprzyk-Hordern et al., 2007). An MRM method was developed for 

the selected compounds on the Shimadzu LCMS-MS 8050 (Figure 3.1) under 

Electron Ion Spray (ESI) mode for EPPPs analysis. 

 

Figure 3.1Shimadzu LCMS/MS 8050 used for EPPPs analysis in this study 

The prominent characteristic of MRM is that it allows analysis of multiple precursor 

ions and all at the same time (Hernández et al., 2014). For this study, a 10 minute 

quick quantitative and qualitative method using MRM technique was developed on 

the Shimadzu LCMS-MS 8050, which was robust, sensitive and with less dwell time, 

making the process of analysis faster. The accuracy of the MRM technique, however, 

depends on a detailed product ion scan. Performing Product Ion Scan (PIS) during 

MRM method development ensures sensitive and accurate selection of target 

analytes (Schultz and Furlong, 2008). 

Therefore, the first step in the process of developing the MRM method was 

performing PIS of each target compound. This required obtaining the molecular 

formulae of the selected compounds (Table 3.3) and determining their molecular 

weights since it is a prerequisite in a Product Ion Scan (PIS). The molecular weight is 

the mass of the compound. During a PIS, each compound is smashed into multiple 

small fragments, also called transitions. These transitions are monitored and two 

transitions with strong signal strength are selected. One of the selected transition is 

used for identification and quantification of the compound hence, called quantitative 
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transition. The second of the two selected transitions is used for confirming the 

identified compound that is for qualitative purpose, hence, called qualitative 

transition. A quantitative and qualitative transition of a compound is unique and 

therefore, are a part of quality control and assurance procedure. 

Table 3.3 Molecular formula and structures of selected target compounds 

Therapeutic 
group 

PPCP compound Formula Structure 

β- Blockers Atenolol C14H22N203 
 

Propranolol C16H21NO2.ClH 

 
Lipid 
Regulators 

Clofibric acid C10H11ClO3 
 

Atorvastatin C33H34FN2O5.0.0.5C
a.1.5H20 

 
Antibiotics Amoxicillin C16H19N3O5S.3H20 

 
Cephalexin C16H17N3O4S 

 
Analgesics 
and Anti-
inflammatory 

Ibuprofen C13H18O2 
 

Diclofenac C14H10ClNNaO2 

 
Psychiatric Carbamazepine C15H12N20 

 
Diazepam C16H13ClN2O 

 
Lorazepam C15H12Cl2N2O2 

 
(Source: Adapted from 
http://www.sigmaaldrich.com/catalog/product/fluka/34228?lang=en&region=AU) 

However, prior to PIS, 10µl injections of the mix stock of higher concentration 

(10000ppb) were injected using ESI mode. In the ESI source, the compounds were 

scanned through Q1 quadrupole for most intense signals in both modes – positive 

and negative. Compounds, carbamazepine, lorazepam, diazepam, amoxicillin, 

cephalexin, atorvastatin, propranolol and atenolol gave intense signals in positive 

mode whereas ibuprofen, diclofenac and clofibric acid gave intense signals in 

http://www.sigmaaldrich.com/catalog/product/fluka/34228?lang=en&region=AU


  
 

Chapter 3 Research Methods and Design                                                                                                                                             
                                                                                                                                              80 

negative mode. Table 3.4 shows the modes in which the target compounds have been 

analysed. The classifications of target compounds in the positive and negative mode 

were key steps in the PIS scan. 

After optimising the ESI as a source, the next step in the process of PIS was injecting 

a mixed stock of target compounds through the mass spectrometer for monitoring the 

different fragments or transitions of each compound. 1µl injections of mix stock 

(conc 10,000 ppb) of compounds prepared in 5% Acetonitrile –Methanol in 10mM 

Ammonium acetate solution were sprayed under high voltage in the ESI mode 

through to the three quadrupoles where the molecules were scanned in Scanning 

quadrupole (Q1) and then smashed into Collision cell quadrupole (Q2).  

The preparation of solution - 5% Acetonitrile –Methanol in 10mM Ammonium 

acetate was prepared by mixing the mobile phases A (acetonitrile – methanol 

60/40v/v) and B (10mM ammonium acetate) used on the LCMS/MS because these 

mobile phases facilitated in selective quantification of target compounds in the 

standards by enhancing the signals. Additionally, the methanol concentration was 

reduced to <5% (Jelić et al., 2009) to achieve better signals. Later this solution was 

also used to resuspend the SPE cleaned sediment extracts for analysis using the 

LCMS/MS. 

The PIS process ended with scanning in quadrupole (Q3) where all the transitions of 

the target compounds were monitored. The transitions were monitored at different 

collision energies. The collision energies were optimised for intense transition 

signals. Then the optimised collision energies for each compound was recorded and 

used in the MRM method. Table 3.4 displays the optimised collision energies for 

each target compound. Amongst all the transitions, two transitions of higher mass 

and unique to each target compound (refer Table 3.4) were selected and monitored in 

the MRM method for accurate and sensitive detection of target compounds.  
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Table 3.4 Qualitative and Quantitative transitions of the target compounds at 
optimum collision energies on the Shimadzu LCMS/MS 

Compound 
name 

Quantitative 
transition 

Collision 
energy  
(eV) 

Retention 
time 

Qualitative  
transition  

Collision 
energy  
(eV) 

ESI mode 

Amoxicillin 398.25>349.15 -22 1.602 398.25>160.0 -22 Positive 

Cephalexin 348.00>158.00 -12 1.635 348.00>160.00 -18 Positive 

Atenolol 267.25>190.10 -19 1.569 267.25>225.2 -16 Positive 

Atenolol-d7 274.25>190.10 -19 1.566 274.25>225.2 -17 Positive 

Clofibric acid 213.20>127.10 16 2.02 213.20>85.00 10 Negative 

Propranolol 260.25>74.00 -22 2.156 260.25>155.0 -22 Positive 

Carbamazepine 237.20>194.20 -19 2.46 237.20>192.1 -23 Positive 

Diclofenac 294.20>249.80 12 2.548 294.20>214.2 19 Negative 

Lorazepam 321.00>303.00 -15 2.614 321.00>275.0 -15 Positive 

Atorvastatin 559.15>440.15 -23 2.82 559.15>466.1 -17 Positive 

Ibuprofen 205.30>161.20 10 2.927     Negative 

Ibuprofen d3 208.30>164.20 10 2.928     Negative 

Diazepam 285.00>154.00 -26 3.34 285.00>193.00 -32 Positive 

The sign “>” in Table 3.4 is used to point out the quantitative and qualitative 

transition selected for that particular compound. For example, in the case of 

diazepam, the mass of diazepam is 285.00. During the MRM process, diazepam was 

smashed into fragments also called ‘transitions’. Further, the obtained transitions 

were monitored and two transitions of 154.00 and 193.00 that gave strong signal 

strength were selected. These transitions were used for quantification and qualitative 

purpose. Therefore, in Table 3.4 the quantitative transition of diazepam is 

represented as 285.00>154.00 and qualitative transition for diazepam is represented 

as 285.00>193. 

The two transitions act as quantitative and qualitative transitions. The detection of 

both transitions confirms the detection of the compound. Thus, a sensitive, selective 

MRM technique was developed for the selected compounds. Once the MRM method 

was developed, calibration standards of the target compounds were prepared to 

obtain a calibration curve. The purpose behind a obtaining a calibration curve for 
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each compound was to check the reliability and sensitivity of the MRM method and 

to establish a range within which the target compounds will be quantified. The 

developed MRM method was successful in the quantification of psychiatric 

compounds. However, in order to derive a comprehensive knowledge of EPPPs 

pollution in the Brisbane River, further refining and development of the MRM 

method was imperative.  

The MRM technique followed PIS. In the MRM method, two transitions unique to 

each target compound were selected. Then, the selected transitions were monitored 

for detection and quantification of target compounds during the sediment sample 

analysis. Figure 3.2 below explains the process of product ion scan (PIS) and 

multiple residues monitoring (MRM).  Figure 3.2 (A) describes the PIS process 

where the multiple transitions of a compound are monitored following ionisation in 

the ESI source, scan in the Q1 and smashing in Q2. Two transitions of higher masses 

compared to other transitions and unique to the target compound were selected from 

the PIS scan. Following the PIS, only the two selected transitions for each target 

compound were then monitored for detection and quantification in MRM as 

described in Figure 3.2 (B). 
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Figure 3.2 (A) PIS technique (B) MRM technique (Adapted from 
source: http://science.sciencemag.org/content/sci/312/5771/212/F1.large.jpg) 

Considering the limited research in Australia on EPPPs, a broad calibration range 

was selected for this study similar to the study by Vazquez-Roig et al. (2010) of 0.1 

ppb – 300ppb. The calibration curves developed had R2 values ranging from 0.4 to 1. 

Table 3.5 shows the calibration equations for all the target compounds. 

  

http://science.sciencemag.org/content/sci/312/5771/212/F1.large.jpg
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Table 3.5 Linear equations and R2 values of the target compounds 

After developing the MRM method, the next step in method development was to 

develop an extraction method for extracting EPPPs from the sediment samples.  An 

efficient and working extraction method should be able to extract most of the target 

analytes adsorbed to the sediment particles (Babic and Pavlovic, 2013). Such an 

extraction method could be employed in the analysis of the samples. The extraction 

method development is discussed in the Section 3.3.3 in detail. 

3.3.3 Test methods 

This section explains the test methods for sample preparation, extraction and clean 

up in the analysis of EPPPs from the Brisbane River sediments.  

• Sample storage and preparation 

• Accelerated Solvent Extraction and 

• Solid Phase Extraction (Clean-up method) 

Compound Equation R2 value 
Amoxicillin y = 33.933x + 175.07 0.9966 

 
Cephalexin y = 11.619x + 2672.9 0.4135 

 
Propranolol y = 730.06x + 679.68 0.9986 

 
Carbamazepine y = 6218.2x + 4261.6 0.9997 

 
Lorazepam y = 9986.6x - 48774 0.998 

 
Atorvastatin y = 13985x - 7394 1 

 
Diazepam y = 22513x + 57471 0.9985 

 
Atenolol y = 812.06x + 5193.3  0.9999 

 
Atenolol  D7 y = 3093.6x + 3636.2 0.9998 

 
Clofibric acid y = 125.19x + 481.35 0.9993 

 
Diclofenac y = 122.56x + 1092.8 0.995 

 
Ibuprofen N/A N/A 

Ibuprofen D3 y = 225.53x - 122.12 0.9993 
 

x  - concentration and y - peak area 
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3.3.3.1 Sample storage and preparation  

The sediment samples collected from the Brisbane River were stored in eskys 

containing ice during transportation to the laboratory. Then the samples were stored 

at -200C in the laboratory until analysis. The stored sediment samples were then 

subjected to freeze drying for at least 2-4 days depending on the moisture content in 

the sample. The sediment samples were transferred into wide mouth glass containers 

of the freeze dryer Christ Alpha 1- 4 by John Morris Scientific (Figure 3.3) and then 

fitted with suction caps. The freeze drying was carried out for 2 days initially and 

then continued for 2 more days to remove any traces of moisture at -500C.  

Following freeze drying, the next step in sample preparation was grinding the frozen 

sediment samples and then sieving. Since the collected sediment samples contained 

dried foliage and lumps of clay and gravel, they were sieved. A sieve of size 250µm 

was used to obtain fine particles of sediment samples. The sieved samples were 

stored back at -200C until extraction. 
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Figure 3.3Christ 1-4 Freeze dryer 

3.3.3.2 Accelerated solvent extraction  

As stated in Section in 3.3.3, the analysis of EPPPs in this study also involved 

developing an extraction method. Extraction is an additional, but critical step in the 

analysis of sediments for micropollutants such as EPPPs where the desired 

compounds are desorbed from the matrices with the help of solvent under increased 

temperature and pressure.  In this study, the extraction of EPPPs from sediments was 

carried out using Dionex ASE 350 (Figure 3.4). 



  
 

Chapter 3 Research Methods and Design                                                                                                                                             
                                                                                                                                              87 

 

Figure 3.4 Dionex ASE 350 instrument used in extraction of target compounds 
in this study 

Although the instrument is capable of extracting different pollutants at high pressure 

and temperature, it was necessary to determine the appropriate temperature that 

could aid in the optimum recovery of all selected EPPP compounds. Therefore, an 

extraction method suitable for selected target compounds was required for this study.  

To begin with the extraction method development, extraction methods developed by 

Jelić et al. (2009) and Vazquez-Roig et al. (2010)) were attempted. Section 3.3.3.4 
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discusses the attempted extraction methods to obtain optimum recoveries for the 

target compounds in this study. 

3.3.3.3 Solid phase extraction (clean-up method)   

In a SPE technique, the extracts obtained from the extraction process are subjected to 

clean up, to remove any unwanted co-extracts from the sample using different types 

of cartridges as cited in the review by Babic and Pavlovic (2013). A SPE was 

performed after the ASE extraction, using Phenomenex strata SAX and Oasis HLB 

cartridges.  

 

Figure 3.5 SPE clean -up experiment set-up. 

Figure 3.5 above illustrates the experimental set up for SPE clean-up. The EPPP 

extracts obtained after extractions (approximately 100 mL) were first subjected to 

vacuum concentration where the volume of the extract was reduced by evaporating 

the organic solvent to approximately 10mL. Then the reduced extracts were cleaned 

using a SAX cartridge followed by HLB cartridge. The clean-up was performed by 

applying vacuum which facilitated in slow filtration of the extracts. Slow filtration 

(dropwise filtration) was maintained by adjusting the maximum contact between 
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analytes in the extract and cartridge which allow trapping of unwanted co-extracts 

and release only EPPPs analytes. 

The next step in the analysis involved concentrating the SPE cleaned extracts under a 

gentle stream of nitrogen and filtering it through PTFE filters (0.20µm). Then the 

filtered extracts were resuspended in the solution (5% acetonitrile - methanol in 

10mM ammonium acetate) in which calibration standards were prepared.  

3.3.3.4 Attempted extraction experiments for pharmaceuticals 

This section discusses the different extraction methods that were attempted. The 

preparations for the extraction experiments were done by studying and reviewing 

research literature.  

The procedure involved a mixed standard of known concentration (100ppb) of target 

compounds that was used to spike acid cleaned sand. Acid washed sand was used as 

a representative of the sediment sample. A 5gm of the representative sand sample 

was weighed into a glass beaker and then spiked with 1mL of the mixed standard 

(conc - 100ppb). The sample size of 5gms was chosen against 3gms as in the study 

by Vazquez-Roig et al. (2010) and after studying the USEPA method for easy 

calculations and assuming that a bigger sample size would allow extraction of 

compounds in minute concentrations.  

Following the spike, 5gms of diatomeaous earth (DE) was weighed and added to the 

above mixture. The purpose of adding the DE was to allow the even distribution of 

the sand particles throughout the cell. Such an even distribution of the sand particles 

facilitates sufficient contact between each sand particle and extracting solvent, 

thereby allowing efficient extraction of the compounds. 

A 33 mL stainless steel (ss) cell was used for extraction. The cell was initially 

washed with detergent and cleaned with acetone to remove any residual organics and 

dried at approximately 1100C for one hour to be used for transferring the above 

mixture. The mixture of spiked sand and DE was then transferred into the 33mL ss 

cell fitted with glass fibre filters at the bottom.  The lid of the cell was closed tightly 

and labelled accordingly. The cell was then placed in the instrument along with a 

collection bottle (250mL) placed corresponding to the cell number.   
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Calibration standards and quality control (QC) samples were run with every batch of 

the extracted samples from each extraction method attempt as part of quality control. 

The batch of extraction method attempt samples on the mass spectrometer was set 

with at least 3 runs of QC samples followed by calibration standard run and then 

sample run. A QC sample was randomly placed in between the samples to check the 

accuracy and performance of the mass spectrometer. Each extraction method was run 

in triplicate to check the consistency of the extraction method. The extraction method 

did not involve the use of internal standards. 

Extraction method 1 

The first attempt at extraction was according to the extraction method applied in the 

study  conducted by Vazquez-Roig et al. (2010).  

The extraction method was then loaded on the ASE instrument with required settings 

given in Table 3.6. An SPE clean-up using the SAX and HLB cartridges was carried 

out for all the extracts. The clean-up samples were then filtered using a 0.2µm filter 

to eliminate any suspended particles, if any. The recoveries of the extraction method 

obtained are given in Table 3.6 below. 

The extraction method gave low recoveries <50% for all the target compounds. The 

recoveries for cephalexin (41.7%) and diclofenac (31.7%) was comparatively higher 

than for the rest of the target compounds while still <50%.   

Whilst the extraction method was followed exactly as in the study by Vazquez-Roig 

et al. (2010), the analysis of the compounds on the instrument varied with respect to 

the selection of the mobile phase on the LCMS-MS and the instrument itself. For the 

sake of simplicity and quick analysis, only one mobile phase of Acetonitrile – 

Methanol (60/40 v/v) and 10mM Ammonium acetate was used in both positive and 

negative modes. However, the choice of using only mobile phase may have possibly 

resulted in poor signals for the compounds and in turn showed low recoveries. 

Secondly, the matrix effect could also be a likely cause for the suppression of signals 

of the target compounds. 

The choice of the extraction solvent could also be a reason as water has a neutral pH. 

Since the target compounds have different polarities, the neutral pH of water might 
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possibly have resulted in low recoveries. The lack of internal standards for correcting 

the loss was also be considered to be a likely cause for low recoveries in this attempt. 
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Table 3.6 Recoveries obtained from the Extraction Attempt 1 

Extraction method 1 : Solvent - Water; Temperature - 900C; Heat - 5min; Static - 7 min; Cycles - 3 

Volume flush - 100%; Purge - 60s. 
SPE  Clean up :  SAX and HLB cartridge  
Name Precursor 

Mz 
Product Mz Fragment 

Ion 
Retention 
Time 

Area Background Concentration Recovery 

Amoxicilin  398.25 349.1495 QUAN 1.32 17 0 4.84 4.84 
Cephalexin  347.9995 157.9995 QUAN 1.34 233 0 41.77 41.77 
Propranolol 260.2495 73.99945 QUAN 1.78 32 87 0.73 0.73 
Carbamazepine 237.1995 194.1995 QUAN 1.97 1363 6748 0.54 0.54 
Lorazepam 320.9995 302.9995 QUAN 1.96 3194 3761 1.91 1.91 
Atorvastatin 559.1495 440.1495 QUAN 2.14 18 0 -0.32 -0.32 
Diazepam 284.9995 153.9995 QUAN 2.31 31 0 -2.18 -2.18 
Atenolol 267.2495 190.0995 QUAN 1.33 8374 520 16.67 16.67 
Clofibric acid 213.1995 127.0995 QUAN 1.52 90 40 -0.11 -0.11 
Diclofenac 294.1995 249.7995 QUAN 1.89 4444 3187 31.78 31.78 
Ibuprofen 205.2995 161.1995 QUAN 1.86 647 1060 5.50 5.50 
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Extraction method 2 

The second attempt at extraction and SPE clean-up was according to the study by 

Jelić et al. (2009). The SPE clean-up of the extracts obtained from this extraction was 

performed using only the HLB cartridge. The cleaned extracts were filtered through 

0.22µm (PTFE) filters. Table 3.7 below shows the parameters for this extraction and 

the recoveries obtained. 

The recoveries obtained for this extraction attempt were low. The possible reasons 

for the low recoveries could be attributed to the same reasons as stated in extraction 

attempt 1. Though the pH was not changed in this extraction, the pH was slightly 

acidic due to the addition of methanol to the water and its influence on the 

recoveries. The extraction method resulted in recoveries which were < 70%. Hence, 

this extraction method was rejected as it failed to recover all the target compounds.   
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Table 3.7 Recoveries obtained from Extraction attempt 2 

Extraction method 2 : Solvent - MeOH:Water ( 1/2= v/v) ; Temperature - 1000C ; Heat - 5min;  

Static - 7min; Cycles - 3:volume flush - 100%: Purge - 60s 

SPE Clean up - HLB cartridge 

 Name Precursor 
Mz 

Product Mz Fragment 
Ion 

Retention 
Time 

Area Background Peak 
Rank 

concentration Recovery 

Amoxicilin  398.25 349.149451 QUAN 1.44 54 0 2 3.39 3.39 
Cephalexin  347.9995 157.999451 QUAN 1.36 348 0 1 18.53 18.53 
Propranolol 260.2495 73.999451 QUAN 1.94 11 27 2 -38.27 -38.27 
Carbamazepine 237.1995 194.199451 QUAN 1.89 25636 1237 1 8.71 8.71 
Lorazepam 320.9995 302.999451 QUAN 1.99 17811 9449 1 4.60 4.60 

Atorvastatin 559.1495 440.149451 QUAN 1.99 16737 96 1 3.37 3.37 
Diazepam 284.9995 153.999451 QUAN 2.29 28992 374 1 3.43 3.43 
Atenolol 267.2495 190.099451 QUAN 1.38 13156 572 1 9.18 9.18 
Clofibric acid 213.1995 127.099451 QUAN 1.49 4161 261 1 16.65 16.65 
Diclofenac 294.1995 249.799451 QUAN 1.98 497 553 1 5.09 5.09 
Ibuprofen 205.2995 161.199451 QUAN 2.07 893 1975 1 9.59 9.59 
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Extraction method 3  

In this extraction attempt, the temperature of the extraction process was reduced to 

900C with the ratio of methanol MeOH: Water as (1:1). The remaining parameters 

were the same as in extraction attempt 2.  The method was modified by changing the 

temperature to 900C. The solvent ratio of MeOH: Water was also changed to 1:1 with 

the objective that the equal volumes of the solvents would facilitate an efficient 

extraction.  After SPE clean-up using HLB, the sample was filtered through a 0.2µm 

filter.  

This extraction method (Table 3.8) also failed to yield good recoveries for the target 

compounds except for clofibric acid (62.3%). It was concluded that the combination 

of MeOH: Water in the ratio 1:1 at 900C probably does not facilitate extraction of the 

target compounds. Due to low recovery, the investigation of different extraction 

methods was continued. 
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Table 3.8 Recoveries obtained from Extraction Attempt 3 

 Extraction method 3: Solvent - MeOH:Water(1:1); Temperature - 900C ; Heat - 5min;  

Static - 7min; Cycles - 3; Volume Flush - 100%; Purge - 60s 

SPE Clean-up - HLB cartridge 

Name Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time 

Area Background Concentration Recovery 

Amoxicilin  398.25 349.1495 QUAN 1.29 254 1 24.25 24.25 

Cephalexin  347.9995 157.9995 QUAN 1.51 76 0 5.87 5.87 

Propranolol 260.2495 73.99945 QUAN 1.8 332 0 1.64 1.64 

Carbamazepine 237.1995 194.1995 QUAN 1.94 171 1042 0.15 0.15 

Lorazepam 320.9995 302.9995 QUAN 1.96 7721 4790 5.49 5.49 

Atorvastatin 559.1495 440.1495 QUAN 2.21 14 0 -0.32 -0.32 

Diazepam 284.9995 153.9995 QUAN 2.33 203 0 -2.16 -2.16 

Atenolol 267.2495 190.0995 QUAN 1.33 7732 530 15.22 15.22 

Clofibric acid 213.1995 127.0995 QUAN 1.49 13604 562 62.32 62.32 

Diclofenac 294.1995 249.7995 QUAN 1.89 1746 1484 2.42 2.42 
Ibuprofen 205.2995 161.1995 QUAN 1.91 255 580 -10.28 -10.28 
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Extraction method 4 

The fourth extraction attempt consisted of a combination of organic solvents of 

methanol and acetonitrile in the ratio 60/40 v/v.  The MeOH-ACN combination is the 

mobile phase used to analyse the standards on the LCMS-MS. MeOH-ACN ratio 

60/40 v/v was used as mobile phase in the negative mode in the analysis of clofibric 

acid, diclofenac and ibuprofen (Vazquez-Roig et al., 2010). The parameters for 

extraction in the ASE were the same as in the extraction attempt 3. Table 3.9 shows 

the parameters chosen for the extraction and the recoveries obtained for the 

compounds. The SPE clean-up procedure also remained unchanged using SAX and 

HLB cartridges and later filtered through a 0.2µm filter.  

It is evident from Table 3.9 that the choice of mobile phase as an extracting solvent 

yields good recoveries for most of the target compounds. While the recoveries were 

still low (<70%), it indicated that the use of acetonitrile facilitates extraction of the 

target compounds. Since this solution was able to detect and give good signals for the 

target compounds, it was chosen as an extracting solvent so as to see whether it aids 

in extracting the target compounds. 
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Table 3.9 Recoveries obtained from Extraction attempt 4 

 

 

Extraction method 4 : Solvent - MeOH:ACN (60/40 v/v); Temperature - 900C ; Heat - 5min;  

 Static - 7min; Cycles - 3; Volume Flush - 100%; Purge - 60s 

SPE Clean-up -  SAX and HLB cartridge 

Name Precursor 
Mz 

Product Mz Fragment 
Ion 

Retention 
Time 

Area Background Concentration Recovery 

Amoxicillin 398.25 349.149451 QUAN 1.33 253 0 24.17 24.17 

Cephalexin  347.999451 157.999451 QUAN 1.52 111 0 13.87 13.87 

Propranolol 260.249451 73.999451 QUAN 1.91 18494 340 56.91 56.91 

Carbamazepine 237.199451 194.199451 QUAN 1.9 136555 2684 44.98 44.98 

Lorazepam 320.999451 302.999451 QUAN 2 65679 17552 51.31 51.31 

Atorvastatin 559.149451 440.149451 QUAN 2.03 91921 1048 17.50 17.50 

Diazepam 284.999451 153.999451 QUAN 2.33 447197 5475 46.60 46.60 

Atenolol 267.249451 190.099451 QUAN 1.33 13730 632 28.74 28.74 

Clofibric acid 213.199451 127.099451 QUAN 1.49 7827 197 35.63 35.63 

Diclofenac 294.199451 249.799451 QUAN 1.79 3332 1074 19.68 19.68 

Ibuprofen 205.299451 161.199451 QUAN 1.9 1746 1794 49.74 49.74 
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Extraction method 5  

The extraction attempt 5 was an in-cell extraction using methanol and acetonitrile 

(60/40 v/v) using the same set of parameters as in extraction attempt 4. This 

extraction method was quick since the clean-up was in- cell using Florosil. The 

recoveries obtained from this extraction also yielded good recoveries for a few of the 

compounds ranging from 10% - 96%. However, the recoveries obtained from this 

extraction were found to be inconsistent. Table 3.10 shows the recoveries for the 

target compounds. 
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Table 3.10 Recoveries obtained from Extraction Attempt 5 

Extraction method 5 : Solvent - MeOH:ACN ( 60/40= v/v) ; Temperature - 900C ; Heat - 5min; 

 Static - 7min; Cycles - 3; Volume Flush - 100%; Purge - 60s 
SPE Clean up -  Florosil 

Name Precursor 
Mz 

Product Mz Fragment 
Ion 

Retention 
Time 

Area Background Concentration Recovery 

Amoxicillin  398.25 349.149451 QUAN 1.22 57 0 8.12 8.12 
Cephalexin  347.999451 157.999451 QUAN 1.33 54 0 0.84 0.84 

Propranolol 260.249451 73.999451 QUAN 1.91 20276 162 62.33 62.33 

Carbamazepine 237.199451 194.199451 QUAN 1.9 172773 3064 56.89 56.89 

Lorazepam 320.999451 302.999451 QUAN 2.01 56543 25689 44.09 44.09 
Atorvastatin 559.149451 440.149451 QUAN 2.04 57371 560 10.80 10.80 

Diazepam 284.999451 153.999451 QUAN 2.33 659588 7799 69.77 69.77 

Atenolol 267.249451 190.099451 QUAN 1.33 14712 755 30.96 30.96 
Clofibric acid 213.199451 127.099451 QUAN 1.5 18714 732 85.92 85.92 
Diclofenac 294.199451 249.799451 QUAN 1.88 4178 2398 28.88 28.88 
Ibuprofen 205.299451 161.199451 QUAN 1.9 2911 2357 96.63 96.63 
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Extraction method 6 

The sixth extraction attempt used only acetonitrile as the extracting solvent with the 

rest of the parameters set exactly as in extraction attempt 4. The extract obtained was 

cleaned up using SPE technique through SAX and HLB cartridges. The sample was 

filtered through a 0.2um filter and analysed and checked for recoveries. The selection 

of acetonitrile as a solvent of extraction resulted in improved and higher recoveries 

(above 70%) for 3 of the 11compounds analysed. 

Table 3.11 shows that the extraction method yielded acceptable recoveries of >70% 

for psychiatric drugs such as the Carbamazepine, Lorazepam and Diazepam. It also 

worked well for atenolol (19%) and propranolol (43%). Therefore, the above 

extraction method was chosen in the analysis of EPPPs. 
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Table 3.11 Recoveries obtained from Extraction attempt 6 

Extraction method 5 : Solvent - Acetonitrile ; Temperature - 900C ; Heat - 5min;   

 Static - 7min; Cycles - 3; Volume Flush - 100%; Purge - 60s     
SPE Clean-up -  SAX and HLB cartridge           
Name Precursor 

Mz 
Product 
Mz 

Fragment 
Ion 

Retention 
Time 

Area Background Concentration Recovery 

Amoxicillin  398.25 349.1495 QUAN #N/A #N/A #N/A #N/A #N/A 
Cephalexin  347.9995 157.9995 QUAN 1.36 4765 0 -43.3051 -43.30508 
Propranolol 260.2495 73.99945 QUAN 1.83 42828 1208 43.29975 43.299755 
Carbamazepine 237.1995 194.1995 QUAN 1.91 741499 8292 70.17141 70.17141 
Lorazepam 320.9995 302.9995 QUAN 2.02 634406 23513 66.11259 66.112593 
Atorvastatin 559.1495 440.1495 QUAN 2.1 411 251 -0.36844 -0.368442 
Diazepam 284.9995 153.9995 QUAN 2.34 2156011 21218 72.05639 72.05639 
Atenolol 267.2495 190.0995 QUAN 1.33 24333 718 19.07783 19.077827 
Clofibric acid 213.1995 127.0995 QUAN #N/A #N/A #N/A #N/A #N/A 
Diclofenac 294.1995 249.7995 QUAN #N/A #N/A #N/A #N/A #N/A 
Ibuprofen 205.2995 161.1995 QUAN 2.16 227133 267875 #N/A #N/A 
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It was understood from the above extraction attempts that the use of acetonitrile 

significantly improved the recoveries of the target compounds (Table 3.9 and Table 

3.10). However, the use of only acetonitrile as an extracting solvent yielded better 

recoveries of above 70% for psychiatric group of compounds (Table 3.11). Whilst 

the recoveries improved with the introduction of acetonitrile, the method still had 

two major limitations in its application.  

The extraction method resulted in recoveries for psychiatric compounds. Therefore, 

although the method was selected for the analysis of EPPPs, it required major 

refinement and improvement so as to obtain better recoveries for all the target 

compounds.  The second limitation of applying this method is the use of acetonitrile 

for extraction because acetonitrile is highly toxic to humans and the environment. 

Therefore, utmost care is required to be taken while handling the solvent and in its 

disposal. 

It is to be noted that although this extraction method resulted in extraction of only 

psychiatric compounds, the recoveries for these compounds were high and stayed 

consistent when the extraction method was repeated three times. On the other hand, 

the previous extraction methods although extracted more target compounds, were 

resulting in recoveries that were inconsistent. This was one of the major reasons for 

the selection of extraction attempt 6 for analysing EPPPs. The extraction solvents, 

temperature and clean-up procedures were the only factors that were modified and 

changed in order to derive better recoveries of the target compounds. The rest of the 

factors such as pressure, pH, static cycles, volume flush and purge remained the 

same. The pH did change slightly with the change in the extraction solvent.  

However, it was not changed manually.  
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3.4 Pharmaceutical analysis 

The current study was able to detect and quantify three of the crucial target EPPPs – 

carbamazepine, lorazepam and diazepam by applying the developed methods. This 

section, discusses the occurrence and distribution of the target compounds in the 

Brisbane River sediments. Table 3.12 below shows the method detection limit 

(MDL), limit of detection (LOD) and limit of quantification (LOQ) of the quantified 

analytes and relative standard deviation (RSD).  The lower MDLs of the target 

compounds suggest that the method is reliable for the analysis of the compounds 

quantified below.  

Table 3.12 MDL, LOD, LOQ values of target compounds 

Target compound 
MDL 
ngg-1 

LOD 
ngg-1 

LOQ 
ngg-1 

RSD 
% 

Carbamazepine 0.22 0.67 2.23 3.03 – 40.4 

Diazepam 0.26 0.78 2.59 0.2-113 

Lorazepam 0.04 0.12 0.39 3.3-33 
 

The MDL values in Table 3.12 indicated that the developed method was sensitive in 

detecting the target compounds. Compared to the MDL values reported by Jelić et al. 

(2009) in their study for lorazepam (3.20 ngg-1), diazepam (0.8 ngg-1) and 

carbamazepine (0.03 ngg-1), the MDL value for lorazepam (0.04 ngg-1) in the current 

study was higher whereas that for carbamazepine (0.22 ngg-1) and diazepam were 

lower. On the other hand, the MDL value for diazepam was found to be higher in 

comparison to the MDL value reported by Vazquez-Roig et al. (2010) in their study 

as 0.8ngg-1. The MDL value of carbamazepine in the current study was found to be 

lower by 0.02 ngg-1 than that reported in the study (Vazquez-Roig et al., 2010) as 0.2 

ngg-1. MDL for lorazepam was significantly higher than that reported by Jelić et al. 

(2009), confirming that the method developed is more sensitive in detecting 

lorazepam. It was therefore concluded that the method developed was sensitive and 

selective and was applicable for the analysis of the above detected target compounds.  
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In addition to MDL values, the RSD which explains the variation in the data for the 

above three compounds were also low, which means that the results obtained are 

reliable. The RSD values of < 20% demonstrate the reproducibility and reliability of 

the developed method. However, the RSD values were higher (>20%) for a few of 

the sites, the concentrations of which need to be considered cautiously. The 

developed method, therefore, was applied to 39 sediment samples. The sediment 

samples were analysed under total gradient flow of 4000mL/min and with oven 

temperature at 600C using Phenomenex kinetex 100A 100 x 2.1 µm column. The 

concentrations of carbamazepine, diazepam, and lorazepam in the sediment samples 

are listed below in Table 3.13. 
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Table 3.13 Concentrations of target analytes in per gram of sediment sample. 

Results of samples in ng/g of sediment 
  
Sampling batch/sites Carbamazepine Diazepam Lorazepam 

B1-1 1.99 <MDL 0.22 
B1-2 1.26 <MDL <MDL 
B1-3 1.01 <MDL 0.31 
B1-4 4.56 <MDL 0.13 
B1-5 2.43 <MDL 0.10 
B1-6 1.07 <MDL 0.17 
B1-7 1.93 <MDL 0.30 
B1-8 0.96 <MDL 0.11 
B1-9 <MDL <MDL 0.10 

B1-10 0.56 <MDL <MDL 
B1-11 <MDL <MDL 0.17 
B1-12 0.96 <MDL 0.15 
B1-13 <MDL <MDL 0.23 
B2-1 1.07 <MDL 0.50 
B2-2 6.39 <MDL 0.10 
B2-3 3.54 <MDL 0.21 
B2-4 2.52 <MDL 0.12 
B2-5 0.98 <MDL 0.26 
B2-6 2.73 <MDL 0.08 
B2-7 0.53 <MDL 0.21 
B2-8 0.25 <MDL 0.32 
B2-9 1.01 <MDL 0.74 

B2-10 0.96 <MDL 0.12 
B2-11 0.84 <MDL 0.18 
B2-12 1.04 <MDL 1.78 
B2-13 <MDL <MDL 0.07 
B3-1 0.84 <MDL 0.31 
B3-2 4.90 <MDL 0.25 
B3-3 2.09 <MDL 0.24 
B3-4 1.99 <MDL 0.14 
B3-5 1.21 <MDL 0.22 
B3-6 0.83 <MDL 0.30 
B3-7 0.58 <MDL 0.39 
B3-8 0.45 <MDL 0.16 
B3-9 0.43 <MDL 0.31 

B3-10 0.59 <MDL 0.25 
B3-11 1.20 <MDL 0.27 
B3-12 1.77 <MDL 0.98 
B3-13 <MDL <MDL 0.21 
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3.5 Data analysis 

3.5.1 Skyline software for raw data analysis 

Skyline is mostly employed in the field of biology, particularly in peptide MRM data 

analysis. The functionality of Skyline is its ability to pick the peaks of multiple target 

compounds and optimise the collision energy, simultaneously. The raw MRM data 

obtained after running the calibration standards, extracts of attempted extractions and 

the sediment samples were imported into Skyline software. Such raw MRM data 

imported from the LCMS-MS into skyline was then analysed for optimising the 

collision energies for each transition of the target compounds. 

Figure 3.6 and 3.7 below demonstrate the collision energy optimisation and MRM 

data analysis in skyline software. 

 

Figure 3.6 Collision energy optimisation in skyline 

When the raw MRM data from the LCMS/MS is imported into Skyline, it optimises 

the collision energies at which each transition of the target compounds gives a better 

signal in order to obtain a clear chromatogram.  
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Figure 3.7 MRM data in skyline 

The qualitative and quantitative transitions obtained for each target compound were 

checked at different collision energies simultaneously by Skyline (Figure 3.6). The 

process ended up in the selection of collision energies at which both the transitions 

gave intense signals thus, resulting in selective and sensitive quantification of target 

compounds (Figure 3.7). 

In the case of calibration standards, the MRM data after collision energy optimisation 

in skyline was exported into Microsoft excel to obtain values. These values were 

then used to develop calibration curves for each target compound (Refer Table 3.5).  

The raw MRM data derived from the sediment sample analysis using the LCMS/MS 

was imported into Skyline. This raw MRM data of the sediment samples were 

compared with the MRM data of calibration standards in Skyline.  

The MRM data of each target compound was compared with its respective MRM 

data of the calibration standard. For example, the MRM data of carbamazepine 

derived after sediment sample testing was compared with the MRM data of its 

calibration standard for retention times. The standard sample of carbamazepine elutes 

between retention times 1.88-1.9. If the MRM data from the tested sediment sample 

shows a peak between retention times 1.88-1.9, it confirms the presence of 

carbamazepine compound in the sample.  
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The identification of each target compound was confirmed in a similar way by 

comparing the MRM data with their respective MRMs of standards. The MRM data 

of the confirmed target compounds were then exported into Microsoft excel to obtain 

values. These values were further used in the developed calibration equations (Refer 

Table 3.5) to calculate the concentrations in the sediment samples. The 

concentrations were expressed in ngg-1. 

3.5.2 Univariate analysis of the results 

The results obtained from the analysis of sediment samples were analysed using 

univariate analysis such as median, minimum (min) and maximum (max), standard 

deviation (STD).  The largest and smallest values in the data were explained by 

minimum and maximum values. 

3.6 Summary 

This chapter has reviewed the two key aspects of this study. These are the selection 

of the compounds and the method development. The chapter started with discussing 

the design of the research project which included field study and laboratory work in 

Section 3.2. Selection of target EPPPs compounds which were one of the key aspects 

in this chapter was discussed in detail in Section 3.3.1. Section 3.3.2 further 

discussed the second important aspect, method development. The Chapter has 

explained the necessity for the development of a method for target EPPPs analysis in 

this study. The development of the MRM method applied in the quantification of 

target EPPPs was explained in detail. The selected test methods namely, sample 

preparation, ASE, SPE, were explained in detail in Sections 3.3.3.   

The analysis of the data obtained from testing the sediment samples was discussed in 

Section 3.4. The section explained the use of skyline software for raw data analysis 

which was obtained from testing the sediment samples. The section further discussed 

the analysis of results using Univariate methods.  
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Chapter 4 Study Area and Sample Collection 
 

4.1 Overview 

Brisbane is Australia’s third largest city after Sydney and Melbourne. It is also 

among the fastest growing cities in Australia (BITRE, 2013; Stimson and Taylor, 

1999). With a subtropical climate, good infrastructure, business and career 

opportunities, Brisbane is rapidly undergoing urbanisation. According to the CHO 

Report (2014), the population of Queensland has grown rapidly in the past years. 

Figure 4.1 below shows the population trends in Queensland by age group from 

1971. While the population of Queensland appears to be increasing, it is interesting 

to note that the ageing population has also increased noticeably and the trend 

continues to be increasing. 

 

Figure 4.1 Population trends in Queensland - the past and projected increase 
from 1971-2036 (Source: CHO Report (2014) 

The population of Queensland has grown in the past five years from 4.4 million in 

2011 to 4.6 in 2013 (CHO Report, 2012, 2014). Between June 2012 and 2013, 

Queensland’s population increased by 2% making it the third fastest growing city in 
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Australia (CHO Report, 2014). Consequently, the dwelling trends have also 

increased to accommodate the burgeoning population. According to the Queensland 

Treasury (2016) report, dwelling units approval rose by 1.1% in December 2015. 

Figure 4.2 below shows the increasing trend in dwelling approvals in past five years 

from 2010 – 2015. In fact, the dwelling approval trends rose only in Victoria (1.6%) 

and Queensland (1.1%)  in the last year, whereas it fell in other states (ABS, 2016), 

thereby highlighting significant urbanisation in Queensland.  

 

Figure 4.2 Dwelling units approval trend in Queensland (Decemner 2010- 2015) 

(Source: Queensland Treasury (2016). 

In addition, the review of research literature undertaken in Chapter 2 also concluded 

that population growth associated with urbanisation in Queensland and ageing 

population is responsible for the increased consumption of pharmaceutical drugs. 

Brisbane River is the major river flowing right through the urbanised areas of 

Brisbane (Figure 4.4). Therefore, it is likely that the Brisbane River and its sediments 

would be polluted with EPPPs. This chapter, therefore, is focused on the selection of 

study area and sample collection in the Brisbane River. 
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4.2  Selection of study area 

The Brisbane River is the major river in SEQ and used for transport and recreational 

activities. It flows through the Brisbane City and finally meets the Moreton Bay. 

Hence, significant urban and residential complexes and businesses can be seen along 

both the banks of the river. Such an exposure to urbanisation and population growth 

is likely to have impacted the aquatic environment of the Brisbane River and the 

sediment bed. Figure 4.4 below shows the existing urban areas in Brisbane. 

According to the estimates by BITRE (2013), about 88% of population growth and 

89% of dwelling approvals occurred within the existing urban footprint boundary, 

thereby highlighting the significant urbanisation along the selected study area of the 

Brisbane River.  

Population growth associated with urbanisation in SEQ has led to an increase in 

population density in the existing urban area during 2001-2011. Figure 4.3 below 

shows the change in population density in SEQ from 2001-2011. An increase in 

population and density has occurred in the urbanised area along the Brisbane River, 

thereby resulting in the increase in the urban area. 
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Figure 4.3 Change in population density in SEQ during the period 2001-2011 

(Source: BITRE (2013). 

A stretch of Brisbane River that is subjected to urbanisation and population growth 

(Figure 4.4) was thus selected for sediment sampling in order to achieve the aim and 

objectives of this study. 
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Figure 4.4 Existing urban areas along the Brisbane River 

(Source: http://www.qgso.qld.gov.au/about-statistics/existing-urban-area/index.php) 
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It can be concluded from the above Figure 4.4, that urbanisation is relatively less 

upstream towards Karana Downs and increases significantly downstream of the river, 

thereby implying greater population density downstream than upstream of the 

Brisbane River. Therefore, such an extensive urbanisation along the Brisbane River 

is likely to cause EPPPs pollution in the river as noted by Ellis (2006) and Stewart et 

al. (2014). Investigating the sediments for the presence of EPPPs was crucial in order 

to derive a holistic view of EPPPs pollution in the Brisbane River. Hence, after the 

critical review of the literature and assessment of Figure 4.3, a length of the Brisbane 

River stretching  from upstream near Karana Downs to downstream to the mouth of 

the river was selected. The selected stretch was 56km in length. 

After finalising the study area, sampling sites were selected. In total 13 sites were 

selected and numbered from upstream to downstream as shown in Figure 4.5. 
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Figure 4.5: Digital map of Brisbane city (Source: Google earth). 
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4.3 Selection of sampling sites 

The sampling sites for this study were selected to obtain representative sediment 

samples of the entire study area. The sampling sites were chosen such that they 

showed varying degree of urbanisation, less upstream and increasing downstream. 

This was to understand the possible influence that urbanisation has on the occurrence 

of EPPPs. The coordinates of the sites were obtained for easy location of the sites for 

sampling sediments. The list of the sampling sites is given below in Table 4.1. 
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Table 4.1 Sampling sites along the Brisbane River 

Name Code Latitude Longitude 
Land use 

characteristics 

Karana Downs  SP1 27°32'10.13"S 152°50'53.15"E 
Suburban area 

Confluence of Bremer and 

Brisbane River 
SP2 27°34'36.33"S 152°51'4.46"E 

Suburban area 

Confluence of Woogaroo 

Creek and Brisbane River 
SP3 27°36'20.05"S 152°54'10.65"E 

Urban area 

Confluence of Pullen Creek 

and Brisbane River 
SP4 27°33'12.89"S 152°54'6.45"E 

Urban area 

Confluence of Oxley Creek 

and River 
SP5 27°31'36.03"S 152°59'38.65"E 

Urban/ industrial area 

West end   SP6 27°28'7.31"S 153° 1'0.60"E 
Urban/ commercial 

area 

QUT GP SP7 27°28'48.95"S 153° 1'54.24"E 
Urban/ commercial 

area 

Story Bridge SP8 27°28'36.60"S 153° 2'41.17"E 
Urban/ commercial 

area 

Confluence of Norman 

Creek and Brisbane River 
SP9 27°28'45.69"S 153° 2'58.27"E 

Urban/ commercial 

area 

Confluence of Breakfast 

creek and Brisbane River 
SP 10 27°28'21.16"S 153° 3'12.68"E 

Commercial area 

Near the Gateway Motorway 

Bridge 
SP11 27°26'13.07"S 153° 6'56.40"E 

Commercial area 

Confluence of Bulimba 

creek and Brisbane River 
SP12 27°26'26.49"S 153° 7'27.70"E 

Commercial/ industrial 

area 

Mouth of Brisbane River SP 13 27°21'42.13"S 153° 9'21.08"E 
Commercial/ industrial 

area 

Sites SP1 to SP5 are extended throughout the upstream of the study area until the 

Brisbane CBD area, whereas sites SP6 to SP13 are located downstream of the river 

from the CBD area to its estuary. Sites SP6, SP7, SP8, SP9, and SP10 are located in 

Brisbane CBD area whereas, sites SP11, SP12and SP13 are around the Brisbane Port 

area. Sites SP3, SP4, SP5, SP9, SP10 and SP12 were selected near the confluence of 

creeks (Table 4.1) and the Brisbane River to identify any possible sources for the 

EPPPs loads. 
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4.4 Sampling 

In any environmental study, sampling is an important stage.  Collection of samples 

such as sediments is difficult since it is the deepest section of the water column 

(Cowgill, 1994). A sediment bed acts as a sink for the pollutants discharged to the 

water environment (Antonić and Heath, 2007), and it also provides habitat for  the 

lowest aquatic flora and fauna (Choi et al., 2014). Therefore, the occurrence of 

pollutants such as EPPPs in the sediment environment is concerning as these 

micropollutants are likely to interfere with the lifecycles of the organisms dwelling in 

such environments causing negative impacts (Choi et al., 2014; Santos et al., 2010).  

Studying sediments of the Brisbane River was therefore particularly crucial after a 

recent study (Scott et al., 2014) which showed the occurrence of EPPPs in the 

surface waters of Brisbane River. In addition, the literature review in Chapter 2 

highlighted the knowledge gap that there has been no study into sediments of the 

Brisbane River for EPPPs. Thus, understanding the potential threats of EPPPs to the 

environment and the fact that Brisbane River is polluted by EPPPs, this study was 

therefore focused on investigating the occurrence of EPPPs in the sediments of the 

Brisbane River. The aim was to obtain a holistic picture of EPPPs pollution in the 

urbanisation influenced stretch of the Brisbane River system. Sampling of sediments 

was carried in three episodes; in July 2014, September 2014 and in December 2014. 

The sampling events spread across dry and wet seasons in order to study any possible 

seasonal effects. Sediments from the uppermost layer are the most exposed to 

pollution, thereby acting as a sink for pollutants. Thus, the collection of sediment 

samples from this top layer is suitable for environmental studies (Cowgill, 1994), 

such as this study. Collection of sediment samples is possible using appropriate 

sampling techniques and sampler. 

The collection of the sediment samples was carried out by applying a grab sampling 

technique as used in the studies undertaken by (Chen and Zhou (2014); Vazquez-

Roig et al. (2010)). This is a preferred technique for investigative analysis in 

environmental studies and in particular for sampling surface sediments (Cowgill, 

1994). Accordingly, the selected sampling sites were accessed using a boat and the 

sediments were collected using a Van Veen Grab Sampler (Figure 4.6). A Van Veen 
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Grab sampler is stainless steel equipment designed to collect sediment samples from 

the depths of the waterbodies. The equipment is heavy for the easy descent into the 

sediment bed. The grab sampler has two jaws that are locked while being dropped 

into the water. As the grab sampler hits the sediment bed, the jaws open allowing the 

sediment to be collected inside the sampler. As the sampler is raised, the jaws close 

preventing the collected sediment from escaping (Figure 4.7). The jaws are opened 

again for transferring the collected sediment sample into the container (Figure 4.8). 

 

Figure 4.6  The stainless steel Van Veen Grab sampler used in sediment 
sampling 
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Figure 4.7 Sampling of sediment using the Van Veen Grab sampler 

 

 

Figure 4.8 Opened jaws of the Van Veen Grab Sampler  
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The collected sediment samples were transferred into a clean stainless steel container 

and then using a clean stainless steel spoon, the samples were transferred into 250mL 

wide mouth clean glass jars (Figure 4.9).  The glass jars were labelled appropriately 

including the sampling location, date and time of sampling. Gloves were worn and 

changed after each sediment sampling to avoid cross contamination. 

 

Figure 4.9 Transferring the collected sediment sample into acetone washed wide 
mouth glass containers 

The glass jars were immediately freeze stored in ice in eskys (Figure 4.10) and 

during entire transportation to the laboratory where they were stored at -20oC in a 

freezer until further analysis.  
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Figure 4.10 Storage of the sediment sample bottles during the sampling event. 

4.5 Summary 

This Chapter discussed the importance of selecting Brisbane River as the study area 

which was an essential requirement in order to achieve the aim of this study. The 

study area in the Brisbane River stretched approximately to a distance of 56 km 

where significant urbanisation was evident. In addition, the selected stretch also 

included the confluence of Bremer River from southwest and creeks that originate 

from the urban areas. The sampling sites selected were located along the selected 

stretch of the river which facilitated in obtaining representative sediment samples.  

Analysis of sediment samples was intended to provide an in -depth understanding of 

the occurrence and distribution of the target EPPPs in the Brisbane River sediments. 

The sediment samples from the selected sampling sites were collected using a grab 

sampling technique which was found to be the most appropriate technique for this 

type of investigative study. The application of grab sampling technique using Van 

Veen Grab sampler resulted in the collection of representative sediment samples for 
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this study. The collected sediment samples were then analysed for target EPPPs and 

the results obtained have been discussed in the following Chapter 5.  
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Chapter 5 Results and Discussions 
 

5.1 Overview 

EPPPs are the ‘emerging contaminants’ of concern. These contaminants have been 

receiving considerable attention from the scientific community lately (Beretta et al., 

2014; Chen and Zhou, 2014; Choi et al., 2014; Kolpin et al., 2004; Scott et al., 2014; 

Vazquez-Roig et al., 2010). Although these micropollutants have been occurring in 

very low concentrations (ppb, ppt) in different environmental compartments, they are 

potentially harmful and toxic to the environment (Daughton and Ternes, 1999; 

Hernando et al., 2006). EPPPs substances can bioaccumulate in aquatic flora and 

fauna (Henschel et al., 1997; Vernouillet et al., 2010), thereby posing a potential risk 

to the entire aquatic ecosystem.  

In Australia, research into EPPPs has been limited to surface waters. In fact, there is 

only one reported study by Scott et al. (2014) which demonstrates EPPPs occurrence 

in the surface waters of the Brisbane River. However, in order to understand the 

EPPPs pollution in the entirety of the Brisbane River system and to assess its 

potential risks to its aquatic environment, it is critical to study their occurrence in 

sediments. Hence, this study aimed at detection and quantification of target EPPPs in 

the Brisbane river sediments. This chapter discusses the analysis of the target EPPPs 

in the Brisbane River sediments and the results obtained. 

5.2 Pharmaceutical analysis 

As pointed out previously, there has been no investigation of EPPPs in the Brisbane 

River sediments, probably because sediments are complex matrices (Babic and 

Pavlovic, 2013), which makes an analysis of EPPPs difficult. Therefore, in order to 

investigate the occurrence of EPPPs in the Brisbane River sediments, this research 

required method development for quantification of the target EPPPs. Thus, an 

extraction and MRM method was developed with R2 values of 0.99 which mean the 

method was reliable. The method was applied to 39 sediment samples which resulted 
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in quantification of psychiatric compounds of carbamazepine, diazepam and 

lorazepam.  

The raw data obtained after testing the sediments was analysed using the skyline 

software. The identification of the target compounds were confirmed by comparing 

the retention times, quantitative and qualitative peaks of the target compounds with 

their respective calibration standards. The confirmed target analytes were then 

quantified using the calibration equations. The relative standard deviation (RSD) of 

the concentrations of the detected target analytes ranged from <20% for most of the 

samples as reported in other studies (Chen et al., 2013; Moreno-González et al., 

2015; Vazquez-Roig et al., 2010), thereby demonstrating the precision of the 

instrument, repeatability and reliability of the extraction method for the detected 

target EPPPs. However, the RSD values for a few samples, particularly diazepam 

were high, with up to 113% indicating possible matrix effect. This means that the 

concentration results for these samples are required to be considered cautiously. 

Higher RSD values were reported in a study conducted by Nebot et al. (2015) 

wherein the RSD values ranged from 0-464% for the target analytes. 

Statistical analysis of the results of the detected target EPPPs was performed using 

univariate analysis which resulted in minimum, maximum and mean concentrations 

of the target analytes. Table 5.1 below shows the minimum, maximum 

concentrations of the detected target compounds.  

Table 5.1 Minimum, maximum and mean concentrations in ngg-1of detected 
target EPPPs in the Brisbane River sediments 

Compound Minimum  Maximum Mean 

Carbamazepine <MDL 6.39 1.07 

Diazepam <MDL <MDL <MDL 

Lorazepam <MDL 1.78 0.22 

The values given in Table 5.1 were compared with the values reported in other 

studies conducted around the world in order to understand the extent and seriousness 

of EPPPs pollution in the Brisbane River sediments. Table 5.2 below shows the 

concentrations of detected target compounds reported by studies conducted in 
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different environmental compartments around the world. The occurrence and 

distribution of target compounds namely; carbamazepine, diazepam and lorazepam 

in various environmental matrices demonstrates that these EPPPs are ubiquitous in 

the environment. 
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Table 5.2 Occurrence and distribution of target compounds in various 
environmental compartments around the world 

Author EPPPs Concentrations Media Region/country 
(Jelić et al., 
2009) 

Carbamazepine,  10.1- 12.7ngg-1 WWTP Sludge Tudela, Arazuri 
-Spain Diazepam 3.2 – 8.5 ngg-1 

(Azuma et al., 
2015) 

Carbamazepine 22 ngl-1 Stream( surface water) Yodo River 
basin, Kansai-
Japan 

25  ngl-1 Tributary ( surface 
water) 

96  ngl-1 STP effluent 
2 ngl-1 STP effluent ( after 

ozonation) 
(Beretta et al., 
2014) 

Carbamazepine,  0.41 ngg-1 Sediments Todo os Santos 
Bay and North 
coast Salvador, 
Bahia,Brazil 

Diazepam 0.39  ngg-1 

(Birch et al., 
2015) 

Carbamazepine < LOD – 2.7  ngl-1 Sydney estuary Sydney,Austral
ia 

(Darwano et 
al., 2014) 

Carbamazepine 3 ngg-1 River  Montreal, 
Canada <MDL Sediment 

70  ngg-1 WWTP influent 
147  ngg-1 WWTP effluent 

(Du et al., 
2014) 

Carbamazepine 140-160  ngl-1 WWTP influent Waco, Texas, 
USA 

(Kasprzyk-
Hordern et al., 
2007) 

Carbamazepine <MDL – 9  ngl-1 River Taff Wales,UK and 
Poland 311 – 794  ngl-1 River Warta 

(Ferguson et 
al., 2013) 

Carbamazepine 0.5 -10  ngl-1 Lake Michigan Michigan city, 
USA 

(French et al., 
2015) 

Carbamazepine 0.1- 0.5  ngl-1 Wastewater and surface 
water  

Darwin, 
Australia 

(Roberts et al., 
2015) 

Carbamazepine 57 g/day STP Effluent load  Canberra, 
Australia 

(Jiang et al., 
2014) 

Carbamazepine Not detected – 3.83  
ngl-1 

seawater Southwestern 
Taiwan 

(Klosterhaus 
et al., 2013) 

Carbamazepine,  5.2- 44.2 ngl-1 Surface Water San Francisco, 
USA 
 

Not detected  ngg-1 Sediments 
1.3- 5.3  ngg-1 Mussels 

Diazepam <reporting limit – 
0.5  

Surface Water 

< reporting limit Sediments 
< reporting limit Mussels 

(Kolpin et al., 
2004) 

Carbamazepine 0.002-0.263  Surface Water Iowa, USA 
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Table 5.2 Occurrence and distribution of target compounds in various 
environmental compartments around the world (continued from previous page) 

The mean concentration of carbamazepine (Table 5.1) in the current study was 

higher than the mean concentrations reported by Beretta et al. (2014) in sediments 

and by Moreno-González et al. (2015) in surface waters. On the other hand, the mean 

concentrations for lorazepam was again found to be higher when compared with the 

mean concentration in surface waters reported by Moreno-González et al. (2015), 

whereas the mean concentration of diazepam was found to be below MDL compared 

to 0.39ngg-1 reported in the study by Beretta et al. (2014). The increased mean 

concentrations of carbamazepine and considerably lower values for lorazepam and 

diazepam suggest possible increased consumption of carbamazepine here in 

Queensland. Additionally, the higher mean concentrations of carbamazepine also 

demonstrate resistance of the drug to wastewater treatment, thereby remaining 

persistent in the environment as stated by Ternes et al. (2004) and Clara et al. (2004). 

The obtained concentrations were then displayed on the selected study area of the 

Brisbane River (Figure 5.1) in order to study the occurrence and distribution of the 

target EPPPs along with the degree of urbanisation. The target compounds were 

distributed along the entire length of the study area surrounded by urbanisation from 

Author EPPPs Concentrations Media Region/country 
(Kosma 
et al., 
2014) 

Carbamazepine < detection limit – 
54  ngl-1 

WWTP influents Greece 

(Vazque
z-Roig et 
al., 
2010) 

Carbamazepine 
 

1.43-5.77  ngg-1 Soil Valencia, Spain 

1.43 – 6.85  ngg-1 Sediment 

Diazepam 4.65  ngg-1 Soil  
2.50 – 3.72  ngg-1 Sediment 

(Wu et 
al., 
2015) 

Carbamazepine 45  ngl-1 WWTP Influent Huangpu River, 
China 35  ngl-1 WWTP Effluent 

25  ngl-1 River water 
<LOQ Drinking water 

Diazepam 9.5  ngl-1 WWTP Influent 
9.7  ngl-1 WWTP Effluent 
24.3  ngl-1 River water 
1.9  ngl-1 Drinking water 

Lorazepam 35.8  ngl-1 WWTP Influent 
<LOQ WWTP Effluent 
4.0  ngl-1 River water 
 Not detected Drinking water 



  
 

Chapter 5 Results and Discussions                                                                                                                                            
                                                                                                                                               
                                                                                                                                           132 

upstream to downstream indicating urban influence on the occurrence of the 

compounds.  
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Figure 5.1 Occurrence and distribution of target analytes in the selected stretch of the Brisbane River sediments. 

             Source: Google earth
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The detection of the psychiatric compounds suggested EPPPs occurrence in the 

Brisbane river sediments and this addresses the knowledge gap about their presence 

in the river. Moreover, it can be concluded from the literature review (chapter 2) and 

Section 3.3.1 that occurrence of psychiatric compounds in the Brisbane river 

sediments raises concerns about potential toxicity to the aquatic flora and fauna in 

the River.  

5.3 Discussion 

The objective of this research was to detect and quantify the target EPPPs in the 

Brisbane River sediments to achieve the aim about its relationship to urbanisation. 

As stated in Figure 4.3, the population density increased significantly in inner city 

and middle suburbs (east and west) which are located around the sampling sites in 

the study area of the current research. Figures 5.2 and 5.3 below show the Brisbane 

sectors and regions and the population density changes in these areas from 2001-

2011. The changes indicate rapid urbanisation and population growth along the 

Brisbane River. 
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Figure 5.2 Regions, sectors, suburbs and statistical areas in South East 
Queensland (Source: Adapted  (BITRE, 2013). 

 

Figure 5.3 Population density in Brisbane sectors from 2001-2011 Source: 
(BITRE, 2013) 
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The study area of the Brisbane River falls right in this urbanised areas. Therefore, the 

occurrence of target EPPPs in the sites exposed to such increased population density 

shows a direct correlation between urbanisation and EPPPs occurrence thus, 

achieving the aim of the current research. 

While urbanisation plays a crucial role in EPPPs occurrence, the release of these 

pollutants is not direct. In fact, there are many factors and sources that release these 

micropollutants and affect its occurrence and distribution. Therefore, the discussion 

of the results is divided into two sections according to two major hypotheses.  

Literature review confirmed that weather events such as rainfall and tides impact the 

occurrence of EPPPs in aquatic environments. Since EPPPs occur in low 

concentrations of ppb and ppt, any change in the environment is likely to impact its 

fate in the environment. Thus, the first section discusses the possible impacts of 

weather events on the occurrence and distribution and the second part discusses the 

possible impacts of sewerage system on the occurrence and distribution of the target 

EPPPs. Studying the sewerage system of Brisbane was appropriate since wastewaters 

in the sewerage system are a point source for excreted unmetabolized EPPPs into the 

aquatic environment (Fent et al., 2006; Kosma et al., 2014). 

5.3.1 Impacts of weather events on distribution of detected target EPPPs in the 

Brisbane River sediments 

The target EPPP compound carbamazepine was detected in all the sites along the 

Brisbane River (Figure 5.1). The concentrations of carbamazepine in the current 

study was found to be in line with the concentrations stated by Stewart et al. (2014) 

in their study (<2 ngg-1) on the sediments of urban environments in New Zealand 

thereby suggesting an urban influence on the occurrence of such EPPPs here in 

Brisbane River sediments.  In regards to Australia, there is no data about recent 

consumption rate of carbamazepine, but according to the statistical information from 

ABS (2015c), information from CHO Report (2012; 2014)), and from above Figure 

5.1, it can be concluded that carbamazepine is a widely prescribed and consumed 

drug to treat mental health problems in Australia. Such widespread consumption by 

the population associated with urbanisation is likely to be the reason behind its 
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occurrence in the Brisbane River sediments. Furthermore, it also demonstrates that 

urbanisation acts as a catalyst in the EPPPs pollution.  

In regards to diazepam, the concentrations were quite low (<MDL) compared to the 

concentrations reported by Vazquez-Roig et al. (2010) in sediments in Spain, 

whereas it was not detected in sediment samples analysed by Silva et al. (2011) and 

Moreno-González et al. (2015). The low concentrations could mean that diazepam is 

comparatively less consumed and therefore gets diluted leaving very limited 

opportunity for accumulation in sediments. However, there is no information about 

diazepam consumption in Australia to support this hypothesis. Moreover, diazepam 

is photodegradable (Calisto et al., 2011; Straub, 2008). Therefore, although it might 

be present in the surface waters of the Brisbane River, it is highly likely that 

diazepam might have been degraded in surface waters under solar radiation leading 

to its dilution and therefore limited availability for accumulation in sediment. Hence, 

this could be the possible reason for <MDL concentrations in the Brisbane River 

sediments.  

Similar reasoning could be true for the low concentrations of lorazepam in the 

Brisbane River sediments given it belongs to the same class as diazepam 

(benzodiazepines) and it is photodegradable (Calisto et al., 2011). Lorazepam 

concentrations were found to be higher as compared to the results of the studies by  

Jelić et al. (2009), Moreno-González et al. (2015) and Silva et al. (2011), where 

lorazepam was not even detected in the sediments. It can be therefore concluded that 

diazepam and lorazepam are significantly consumed in Australia compared to other 

countries, but possibly less compared to carbamazepine. Additionally, their 

susceptibility to photodegradation might also have impacted on its occurrence in the 

Brisbane River sediments. While these drugs are susceptible to photodegradation, the 

efficiency of the process is dependent on seasons and other constituents in the water 

(Fent et al., 2006) and therefore, more information is required to support this 

hypothesis. 

The occurrence of psychiatric drugs in the Brisbane River sediments also reflects on 

the health of the Queenslanders and the impact of urbanisation. As pointed out in the 

literature review, psychiatric compounds are a serious threat to the environment 
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(Fent et al., 2006; Straub, 2008), particularly with carbamazepine being so ubiquitous 

since it is bioaccumulative and lethal to smaller living organisms in aquatic 

environments (Clara et al., 2004; Vernouillet et al., 2010). Having concluded the fact 

that the Brisbane River is polluted by EPPPs, it was now important to understand the 

variation in the occurrence of these compounds in the sediments. 

It was interesting to note that out of the three sampling episodes conducted in the 

current study, the concentration of carbamazepine decreased from upstream to 

downstream suggesting dilution of the target EPPPs. The concentrations also 

decreased with every sampling episode suggesting a possible effect of weather 

conditions on the occurrence of these pollutants. Sampling of the sediments was 

carried out in July 2014, September 2014 and December 2014. Each sampling event 

fell into different seasons of winter, spring and summer, respectively. Figure 5.4 

illustrates the influence of rainfall events in different seasons on the distribution of 

the detected target EPPPs along the Brisbane River. The Y axis (Figure 5.4) 

represents the concentrations of carbamazepine, diazepam and lorazepam.  Figures 

5.5, 5.6 and 5.7 show the average rainfalls in Queensland in the respective months of 

July, September and December 2014. 

 

Figure 5.4 Comparison of mean concentrations of detected target EPPPs with 
rainfall events in respective seasons 
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Figure 5.5 Rainfall in South East Queensland July 2014  

Source: http://www.bom.gov.au/web03/ncc/www/awap/rainfall/decile/month/colour/
history/qd/2014070120140731.gif 

http://www.bom.gov.au/web03/ncc/www/awap/rainfall/decile/month/colour/history/qd/2014070120140731.gif
http://www.bom.gov.au/web03/ncc/www/awap/rainfall/decile/month/colour/history/qd/2014070120140731.gif


  
 

Chapter 5 Results and Discussions                                                                                                                                            
                                                                                                                                               
                                                                                                                                           140 

 

Figure 5.6 Rainfall in Queensland in September 2014  

Source: http://www.bom.gov.au/web03/ncc/www/awap/rainfall/decile/month/colour/
history/qd/2014090120140930.gif 

http://www.bom.gov.au/web03/ncc/www/awap/rainfall/decile/month/colour/history/qd/2014090120140930.gif
http://www.bom.gov.au/web03/ncc/www/awap/rainfall/decile/month/colour/history/qd/2014090120140930.gif
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Figure 5.7 Rainfalls in Queensland in December 2014  

Source: http://www.bom.gov.au/web03/ncc/www/awap/rainfall/decile/month/colour/
history/qd/2014120120141231.gif 

It can be understood from Figures 5.5 and 5.6 that rainfall in Queensland was much 

below average suggesting less dilution which compliments with the higher 

concentrations of the target EPPPs, particularly carbamazepine in those months 

compared to third sampling in December 2014. Figure 5.7, on the other hand, shows 

significant rainfall in December compared to July and September which might have 

played a role in the dilution of the target EPPPs in the Brisbane River resulting in 

relatively lower concentrations.  

Additionally, low rainfalls in SEQ impacted the flows of the major rivers in SEQ 

which include Bremer and Brisbane Rivers (BOM, 2014). The flow in the rivers 

http://www.bom.gov.au/web03/ncc/www/awap/rainfall/decile/month/colour/history/qd/2014120120141231.gif
http://www.bom.gov.au/web03/ncc/www/awap/rainfall/decile/month/colour/history/qd/2014120120141231.gif
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might have resulted in comparatively higher concentrations of target EPPPs in the 

first two sampling events. Such phenomenon was noted by Silva et al. (2011) where 

the concentrations of target EPPPs were found be lower downstream due to high 

flow when compared to upstream with low flow suggesting that concentrations of 

EPPPs were possibly impacted by flowrate. In regards to the current research, the 

higher concentrations of the target EPPPs could be attributed to the lower than 

average flowrate in the Brisbane and Bremer rivers in the year 2013-14 owing to low 

rainfall (Figure 5.8, 5.9). 

 

Figure 5.8 Monthly flow along Bremer River during the year 2013-14  

Source: http://www.bom.gov.au/water/nwa/2014/seq/contextual/wateroverview.shtm
l#major_water_initiatives 

http://www.bom.gov.au/water/nwa/2014/seq/contextual/wateroverview.shtml#major_water_initiatives
http://www.bom.gov.au/water/nwa/2014/seq/contextual/wateroverview.shtml#major_water_initiatives
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Figure 5.9   Monthly flow along the Brisbane River during the year 2013-14 

Source: http://www.bom.gov.au/water/nwa/2014/seq/contextual/wateroverview.shtm
l#major_water_initiatives 

Figure 5.8 and 5.9 show lower than average flow for the Bremer and Brisbane rivers 

which might have impacted on the occurrence of target EPPPs in the Brisbane River 

sediments. Thus, it can be stated from the above discussions that record low rainfalls 

in SEQ associated with lower flowrates in the Bremer and Brisbane Rivers resulted 

in high concentrations during the initial sampling events upstream of the study area. 

However, despite the decreasing trend in concentrations, the concentration of 

carbamazepine at B2- SP2 was significantly high (6.39 ngg-1) compared to the first 

sampling event, the occurrence of which remains unexplained. The next section 

discusses the other possible sources such as the sewerage network contributing 

towards the occurrence of these target EPPPs in the Brisbane River sediments. 

  

http://www.bom.gov.au/water/nwa/2014/seq/contextual/wateroverview.shtml#major_water_initiatives
http://www.bom.gov.au/water/nwa/2014/seq/contextual/wateroverview.shtml#major_water_initiatives
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5.3.2 The sewerage network of Brisbane and EPPPs occurrence 

It is evident from the discussion in Section 5.3.1 that EPPPs are present in the 

Brisbane River sediments which leads to the conclusion that these pollutants are 

continuously being released into the river. Therefore, it was important to know what 

sources contribute to the persistence of these target EPPP pollutants. As pointed out 

in Section 2.5, wastewater effluents originating from the WWTPs act as point 

sources of EPPPs pollution in aquatic environments whereas sewer leaks act as 

diffuse sources. In addition, the evidence produced in Section 2.5 also confirmed that 

the increasing and ageing population in urbanised Queensland consumes target 

EPPPs regularly. These facts, therefore, conclude that the target EPPPs are being 

discharged via wastewater effluents from neighbouring WWTPs and septic tanks into 

the Brisbane River.  

While the above interpretation was logical, it was essential to study the sewerage 

network which would support this inference. Thus, the Brisbane sewerage network 

was studied (Figure 5.10), which covers the entire Brisbane region. On careful 

observation of the network, it could be stated that wastewater effluents could be the 

possible cause for EPPPs occurrence in the Brisbane River sediments. Besides, the 

STPs are also built close to the Brisbane River. 
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Figure 5.10 The sewerage network of Brisbane along the Brisbane River  (Source: (QUU, 2014), Google earth). 
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The sewerage network of Brisbane shows seven WWTPs and two advanced STPs 

that are situated along the Brisbane River (QUU, 2014). Studies undertaken by 

Moreno-González et al. (2015), Silva et al. (2011) and Stewart et al. (2014) report 

the occurrence of EPPPs in sites in proximity to WWTPs. The Brisbane River is also 

in proximity of the sewerage network and therefore it can be implied that the 

sewerage system of Brisbane could likely be releasing EPPP pollutants to the 

Brisbane River.  

While the WWTPs are point sources of EPPPs pollution, the likelihood of these 

treatment plants releasing these pollutants to the Brisbane River is quite low because 

there are no discharge points for release into the Brisbane River. Instead, the sewers 

carry the treated wastewater to the mouth of the river where they get released into the 

Pacific Ocean (Figure 5.10). However, there could be leaks in the sewers that could 

possibly be releasing sewage into the Brisbane River and this seems quite possible 

since EPPPs could be seen present in the sites, particularly, around Brisbane CBD 

(SP7, SP8, SP9, SP10, and SP11) which has no WWTPs in its proximity.   

The target EPPPs were quite spread out in the River and there was variation in the 

concentrations of these pollutants which was critical to study. The occurrence of the 

target EPPPs upstream particularly at sites SP1, SP2 and SP3 could be attributed to 

three possible sources – Karana Downs WWTP, Bremer River, sewer leaks and leaks 

in the pipelines carrying recycled water. The sewer leaks and the location of WWTP 

at Karana Downs could possibly be the source for the occurrence of target EPPPs at 

site SP1.  

The Bremer River, which flows upstream from Ipswich and joins Brisbane River at 

site SP2 could be carrying the wastewaters from the WWTPs upstream of the river 

and releasing it into the Brisbane River thereby possibly adding to the EPPPs 

released upstream of the River. In addition, residential properties upstream of the 

Brisbane and Bremer rivers have septic tanks and these are likely to release EPPPs 

into the groundwater which leach into the river carrying the pollutants downstream. 

While this could be the case, the possibility of sewer leaks cannot be denied. The 

concentration of carbamazepine at SP2 from the second sampling episode was the 
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maximum at 6.39ngg-1, which could be possibly from a sewer leak. Figure 5.11 

below shows the maximum concentration of carbamazepine detected at site SP2.  

 

Figure 5.11 Concentrations in ngg-1 of carbamazepine in the Brisbane River 
sediments during the three sampling event. (B1- First sampling batch; B2 – 
Second Sampling batch; B3- Third Sampling batch) 

The concentrations of carbamazepine were also higher than its mean concentration at 

sites SP4 in first and second sampling, SP3 in second sampling. Site SP4 lies in 

proximity to sewer lines and a pump station that pumps the collected sewage into the 

sewers. Possible leaks from the sewers and pump station or accidental outflow due to 

high load of sewage could be the likely cause for higher than mean concentrations at 

this site. Site SP3, on the other hand, is downstream of the WWTP. Therefore, any 

leaks or accidental outflow of effluents from this WWTP might have resulted in 

higher than mean concentrations of carbamazepine at this site. Additionally, 

downstream to Karana Downs WWTP, EPPPs occur at sites SP3 and SP4. Adjacent 

to these sites there are pipelines carrying recycled water (Figure 5.9). Recycled water 

will also contain EPPPs since the treatment methods are not designed to remove such 

pollutants (Antonić and Heath, 2007). Therefore, these pipelines could also be 

leaking out EPPPs.  

Carbamazepine was quantified <MDL at sites SP9 (at the confluence of Norman 

creek and Brisbane River), SP11 (near Gateway Motorway) during the first sampling 
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event (Figure 5.10), which could possibly be because of dilution of these pollutants 

at these sites. However, more information is required to support this hypothesis. 

However, the concentration of carbamazepine remained <MDL at site SP13 in all the 

sampling episodes suggesting possible dilution since this site lies at the mouth of the 

river.  The mean, minimum and maximum concentrations for diazepam were <MDL 

at all the sites which is likely to be because of previously discussed reasons of low 

consumption, dilution along the river and photodegradation. 

Although the EPPPs have been detected throughout the length of the River, their 

concentrations have been found to be decreasing downstream. Downstream of the 

river, from the CBD to the mouth of the River, there is no WWTP in the proximity of 

the sites SP7, SP8, SP9, and SP10. This implies that the occurrence of target EPPPs 

could possibly be because of leaks from the sewers and pump stations. In addition to 

this, another possible reason for the occurrence of target EPPPs could be dilution of 

these pollutants along the river from upstream to downstream as stated in section 

5.3.1 and in a review by Gaw et al. (2014), where it was noted that dilution of the 

discharged effluents also affects the occurrence of EPPPs.  

Although sewer leaks, which are diffuse sources, the possible continuous infusion of 

these pollutants through leaks into the river might have led to the persistence of 

EPPPs in the Brisbane river sediments. In addition, the lower than average flow of 

the river might have impacted the dilution which led to the detection of these target 

EPPPs.  

In regards to lorazepam, Figure 5.12 below shows the distribution of the pollutant 

along the Brisbane River. Site SP12 has the highest concentration at 1.78 ngg-1. 
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Figure 5.12 Distribution of Lorazepam in ngg-1along the Brisbane River (B1- 
First Sampling batch; B2-Second Sampling batch; B3- Third Sampling batch) 

B2-12 shows the maximum concentration of lorazepam during the second sampling 

event and B3-12 shows higher than mean concentration in third sampling event. It is 

to be noted that there are two STPs in proximity to the site SP12. Higher 

concentrations of EPPPs in the wastewater effluents would result in high 

concentrations in the waters where it is released (McEneff et al., 2014)  and  higher 

outflow of effluents could also be releasing high loads of pollutants (Gaw et al., 

2014).  Therefore, considering the hypothesis that higher outflow of effluents from 

these two STPs near site SP12, this could possibly be the reason for increased 

concentrations of lorazepam. In other words, higher concentrations of lorazepam in 

the released effluents could also be likely due to higher consumption.   

Although these hypotheses may be true, leaks from the sewers originating from these 

WWTPs could also be considered as a source for the increase in concentrations. 

Interestingly, site SP12 lies at the confluence of Bulimba creek and Brisbane River 

where there is a main sewer that carries the sewage to the neighbouring STPs. A 

possible leak in this main sewer might also have resulted in higher than mean 

concentrations of lorazepam. The lowest concentration of lorazepam was detected at 

site SP13, the site after SP12 in the second sampling event suggesting rapid dilution 

at this site. The dilution at SP13, which is located at the mouth of the river seems to 

be high due to its proximity to the ocean.  

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

C
on

ce
nt

ra
tio

n 
ng

g-1
 

Distribution of Lorazepam along the Brisbane River 



  
 

Chapter 5 Results and Discussions                                                                                                                                            
                                                                                                                                               
                                                                                                                                           150 

5.4 Summary 

This chapter has confirmed the occurrence of the three target EPPPs pollutants in the 

Brisbane River sediments. It has also established a direct correlation between 

urbanisation and EPPPs occurrence in the Brisbane River sediments thereby 

achieving the aim of the current research. The concentrations of the target EPPPs are 

comparable with the concentrations reported in other studies (Beretta et al., 2014; 

Vazquez-Roig et al., 2010). The occurrence and distribution of EPPPs in the 

Brisbane River sediments were discussed considering the hypotheses - sewer leaks, 

proximity to WWTPs, weather events, flow rate and photodegradation. Sewer leaks 

and proximity to WWTPs appear to be the major sources for EPPPs occurrence in 

the Brisbane River which complements with the findings of Birch et al. (2015) in 

their study in Sydney estuary. Furthermore, this hypothesis was explained in detail 

with the sewerage network plan of Brisbane (Fig 5.10). While sewer leaks seem to be 

the likely cause in this particular research study, other factors that contribute to 

EPPPs pollution – flow of the river, effluent outflow and weather events such as 

rainfall were also discussed and considered as possible causes for the occurrence of 

target EPPPs in the Brisbane River sediments.  

An interesting inference that was made in this chapter was of recycled water being a 

possible source of target EPPPs occurrence in the upstream sites of the Brisbane 

River. This conclusion came after careful observation of the sewerage network 

(Figure 5.10) and critical review of the literature (Chapter 2), which suggests that 

recycled water can contain EPPPs. In this particular study, flow volume in the river 

and rainfall appear to be the second most likely sources of EPPPs occurrence and 

distribution in the Brisbane River sediments. It can be implied from the discussions 

that urbanisation is the reason for the occurrence of EPPPs. Increasing urbanisation 

along the Brisbane River has resulted in increased consumption of EPPPs and 

continuous ingestion and excretion of such drugs has consequently resulted in their 

occurrence in the sewage and thereby in the Brisbane River sediments. 
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Chapter 6 Conclusions and Recommendations 
 

6.1 Conclusions 

This research has confirmed EPPPs pollution in the Brisbane River sediments. The 

study succeeded in establishing a relationship between urbanisation and EPPPs 

pollution, thereby achieving the aim of this research. The study identified three target 

EPPPs that were quantified by applying a method that was developed during this 

study. This research has addressed the knowledge gap about the lack of research on 

EPPPs in Brisbane River sediments and thus, has provided comprehensive 

knowledge about EPPPs pollution of Brisbane River by extracting important 

information about urbanisation, population growth, an ageing population and 

pharmaceutical consumption. This information was crucial and supported the 

hypothesis of this study that pharmaceuticals are present in the Brisbane River 

sediments. The study, therefore, involved selecting target EPPPs for analysis of the 

sediments, developing a method for extraction, detection and quantification of target 

pharmaceuticals from the Brisbane River sediments.  

Selecting target analytes for analysis in the sediment samples was a primary and 

crucial requirement of the study, which involved a critical review of the literature, 

studying of statistical data on pharmaceutical consumption and population. In 

addition, critical information on drug use and health conditions was obtained from 

PBS and CHO reports from Queensland Government, respectively. All of this 

extracted information was vital and proved decisive in the selection of eleven target 

EPPP compounds from five therapeutic classes. The selected target compounds were 

then analysed by applying the method developed. 

Method development was one of the objectives of this study. The developed method 

resulted in linear equations for all the target EPPP compounds with R2 values being 

0.99 for most of the compounds.  The application of this method led to the detection 

of three important target EPPPs. The concentrations of the detected target EPPPs 

have been reported with 95% confidence level. The quantification of the target 
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EPPPs was carried out by applying Skyline software for analysis of the raw MRM 

data for the standards and sediment testing. The developed method was quick, 

selective and sensitive in the quantification of target analytes – carbamazepine, 

diazepam and lorazepam. 

It can be concluded from the findings that carbamazepine is the most commonly 

occurring psychiatric drug resistant to degradation and removal techniques (Clara et 

al., 2004; Ternes et al., 2004), while on the other hand, diazepam and lorazepam 

despite belonging to the same therapeutic class, are susceptible to photo-degradation 

(Calisto et al., 2011) to some extent. This is possibly why carbamazepine was found 

to be occurring in all the sites of the Brisbane River compared to the other two 

compounds. Diazepam and lorazepam were also detected in most of the sites below 

MDL and in concentrations lower than that of carbamazepine. Proximity to WWTPs 

and sewer lines and sewer leaks are claimed to be the major sources for the 

occurrence of these EPPPs pollutants in the Brisbane River sediments. 

The analysis undertaken in this study has contributed to the existing knowledge of 

EPPP pollution here in Australia. The methods used in the current study could be 

applied elsewhere for the analysis of psychiatric compounds. However, a major 

limitation of the developed method was its inability to quantify other target analytes 

which led to the conclusion that the method still needs to be further developed and 

improved so as to be able to quantify the remaining target analytes of environmental 

concern. The next section, therefore, discusses the recommendations for further 

method development.  

6.2 Recommendations for further research 

In addition to knowledge created in relation to EPPPs pollution scenarios in the 

Brisbane River sediments, this research study also identified several opportunities for 

future research. Further research in these areas can potentially contribute to the 

knowledge base created by the current study.   

Further research is necessary in the area of method development. The method 

requires to be further refined, such that it enables the investigation of the remaining 

target EPPPs of environmental concern. Therefore, the study needs to be extended 
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using an improved method that could quantify the remaining target EPPPs and 

contribute to the existing knowledge of EPPPs pollution. Figure 6.1 displays 

additional suggestions for further developing the current method that was employed 

in this study.  

 

Figure 6.1 Recommendations for further method development at different 
stages of sediment analysis 

It was understood that developing a robust method for EPPPs analysis is quite 

complex particularly when it is designed to quantify pharmaceuticals across multiple 

classes. This is because the chemical and physical properties of the pharmaceuticals 

differ with each group. Figure 6.1 shows some of the suggestions that would help 

Suggestions for the sample 
preparation stage 
 
• Use of Amber bottles to avoid photo 

degradation. 
• Store sample strictly at -200C. 

Suggestions for the extraction and clean 
up 
• Use of polar organic solvents or 

combination of two organic solvents in 
different ratios 

• Extraction at different temperatures. 
• Use of  other SPE catridges/ reagents such 

as florosil  

Suggestions for the analysis on 
LCMS/MS 
• Use of two mobile phases might help in 

giving better signals and lower 
interfereance. 

• Use of different source than ESI such as 
APCI because, ESI is susceptible to 
matrix effect. 

• Use of column with bigger particle size. 
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refine the method. Since, these compounds are highly active organics, preservation 

of these compounds in amber bottles at -200C is recommended because some of the 

compounds are sensitive to light. Storing the standards in such a way would 

minimise the degradation and therefore, loss of the target compound which means 

the concentrations of the standards remain constant. Having the concentrations 

steady and constant is critical during method development on the LCMS/MS because 

the instrument (LCMS/MS) should be able to record the right concentration.  

The next stage for refinement is the extraction method. There are various factors that 

affect the extraction of the EPPPs such as temperature, pH and organic solvents. In 

this study, extraction recovery was largely affected by the choice of the solvents 

used. Therefore, it is recommended to try different organic solvents and combination 

of organic solvents as a step towards achieving better recovery of EPPP compounds. 

While the selection of organic solvents might help improve the recovery, 

experimenting with other factors such as temperature and pH might also prove 

critical in deriving better recovery.  

The Clean-up stage in the EPPPs analysis is also important. The clean-up process is 

followed up immediately by the extraction process. Therefore, it is difficult to state 

whether the extraction or clean-up process requires to be refined. This is because 

SPE cartridges in the clean-up process allows selective filtration of desired target 

EPPP compounds from the extracts derived from the extraction method. It is, 

therefore, recommended to test the extracts after extraction for the concentration of 

target EPPP compounds in order to check the efficiency of extraction method first 

and then proceed with clean-up. Performing such test would facilitate in determining 

which of the processes are working and efficient and further allow direction for 

refinement. 

In regards to the quantification of the EPPPs compounds using the LCMS/MS, it is 

recommended to use a column of larger particle size. This recommendation needs to 

be considered seriously, in particular, while working with a complex matrix such as 

sediment. Use of one column is highly recommended because the change in the 

column affects the efficiency of the MRM method which is critical particularly when 

dealing with minute concentrations such as that of EPPPs (ppb and ppt). The 
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sediment extracts have a large number of impurities as compared to other extract 

samples. Using a column of larger particle size would allow these impurities to pass 

through the column and not block it, thereby saving the column. 

Although the above recommendations would enable in developing an improved 

method, it is important to note that the method development, particularly, in the case 

of pharmaceuticals, is an ongoing process due to the following reasons which need to 

be accounted for in research studies for method development. 

a) Addition of new drugs  

Research in finding a cure to diseases and drug designing will produce new and 

modified drugs. This would either replace the existing ones or add to the already 

available range of medicines. Therefore, the introduction of any new drugs into the 

market is ultimately going to be released into the waterways and being introduced 

into the environment. Analysis of such newly added drugs would require further 

method development so that the method could be applied across multiple classes of 

pharmaceuticals. 

b) Studies on the impacts of toxicity of drugs on the environment 

At present, there are limited toxicological studies about pharmaceuticals in the 

environment. Part of this limited work could be related to the lack of guidelines and 

regulations surrounding this issue. Some drugs that are not identified as toxic now, 

might be toxic at a later date. The quantification of such drugs would be important 

which then means refining the method again to accommodate such drugs. 

Therefore, developing a method that could quantify EPPPs across multiple 

therapeutic classes would be an important area for further investigation. Such a 

method would help investigate a broad range of EPPPs in a single analysis and 

facilitate in further research such as toxicological studies. In addition, such a method 

would save a lot of time which otherwise is the case in the analysis of such 

micropollutants. 

In regards to data analysis in this study, it is recommended that further and future 

research would require use of other parameters such as land use characteristics, 
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rainfall runoff parameters, data regarding the river flow and population density. Such 

information is necessary for studying the distribution and occurrence in the river 

adjoining an urban environment. 
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Table A.1 Carbamazepine data from first sampling batch 

Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background   SP Concentration 

ngg-5 R.C.C 

Carbamazepine 237.199 194.2 QUAN 1.9 46282 4559 1445.18 STD    
Carbamazepine 237.199 194.2 QUAN 1.9 47650 8233 47701.00 AVG B1-1 6.99 9.95 

Carbamazepine 237.199 194.2 QUAN 1.89 49171 7523 3.03 RSD    
Carbamazepine 237.199 194.2 QUAN 1.9 29499 6334 2038.16 STD    
Carbamazepine 237.199 194.2 QUAN 1.88 32897 8036 31848.00 AVG B1-2 4.44 6.32 

Carbamazepine 237.199 194.2 QUAN 1.9 33148 7477 6.40 RSD    
Carbamazepine 237.199 194.2 QUAN 1.89 26836 14118 1636.02 STD    
Carbamazepine 237.199 194.2 QUAN 1.89 24420 12886 26265.00 AVG B1-3 3.54 5.04 

Carbamazepine 237.199 194.2 QUAN 1.89 27539 15268 6.23 RSD    
Carbamazepine 237.199 194.2 QUAN 1.88 98000 7659 5620.35 STD    
Carbamazepine 237.199 194.2 QUAN 1.89 104388 9748 103864.00 AVG B1-4 16.02 22.82 

Carbamazepine 237.199 194.2 QUAN 1.9 109204 9114 5.41 RSD    
Carbamazepine 237.199 194.2 QUAN 1.89 53307 13586 3808.20 STD    
Carbamazepine 237.199 194.2 QUAN 1.89 57361 14436 57195.33 AVG B1-5 8.51 12.13 

Carbamazepine 237.199 194.2 QUAN 1.89 60918 20070 6.66 RSD    
Carbamazepine 237.199 194.2 QUAN 1.89 25032 6768 2693.87 STD    
Carbamazepine 237.199 194.2 QUAN 1.89 30403 9765 27595.00 AVG B1-6 3.75 5.35 
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background   SP Concentration 

ngg-5 R.C.C 

Carbamazepine 237.199 194.2 QUAN 1.89 27350 12930 9.76 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 47477 9350 2192.66 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 47962 12218 46461.33 AVG B1-7 6.79 9.67 

Carbamazepine 237.199 194.2 QUAN 1.89 43945 15590 4.72 RSD    

Carbamazepine 237.199 194.2 QUAN 1.88 24273 13224 814.87 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 25237 12451 25134.33 AVG B1-8 3.36 4.78 

Carbamazepine 237.199 194.2 QUAN 1.89 25893 13623 3.24 RSD    

Carbamazepine 237.199 194.2 QUAN 1.9 7294 8516 1311.42 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 8957 7583 8711.00 AVG B1-9 0.72 1.02 

Carbamazepine 237.199 194.2 QUAN 1.89 9882 11058 15.05 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 15033 9455 2666.78 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 15031 13134 16571.67 AVG B1-10 1.98 2.82 

Carbamazepine 237.199 194.2 QUAN 1.89 19651 14743 16.09 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 7388 12176 1200.93 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 9362 12145 8770.00 AVG B1-11 0.72 1.03 
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background   SP Concentration 

ngg-5 R.C.C 

Carbamazepine 237.199 194.2 QUAN 1.9 9560 11578 13.69 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 27454 21982 2332.17 STD    

Carbamazepine 237.199 194.2 QUAN 1.9 25605 17287 25293.33 AVG B1-12 3.38 4.82 

Carbamazepine 237.199 194.2 QUAN 1.89 22821 13990 9.22 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 6073 8133 1127.47 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 4569 7107 4836.00 AVG B1-13 0.09 0.13 

Carbamazepine 237.199 194.2 QUAN 1.89 3866 12203 23.31 RSD    
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Table A.2 Carbamazepine data from second sampling batch 

Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C 

Carbamazepine 237.199 194.2 QUAN 1.89 27589 4166 1372.47016 STD    

Carbamazepine 237.199 194.2 QUAN 1.88 29070 6954 27662.3333 AVG B2-1 3.76 5.36 

Carbamazepine 237.199 194.2 QUAN 1.89 26328 8561 4.96151261 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 133624 12672 9259.33498 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 145345 13751 143623.333 AVG B2-2 22.41 31.94 

Carbamazepine 237.199 194.2 QUAN 1.89 151901 15317 6.44695731 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 78306 12796 4475.4078 STD    

Carbamazepine 237.199 194.2 QUAN 1.9 86541 12094 81411 AVG B2-3 12.41 17.68 

Carbamazepine 237.199 194.2 QUAN 1.89 79386 14767 5.49730111 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 54770 14989 4064.99606 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 59920 15452 59161 AVG B2-4 8.83 12.58 

Carbamazepine 237.199 194.2 QUAN 1.89 62793 13980 6.87107396 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 25245 21027 1028.113 STD    
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C 

Carbamazepine 237.199 194.2 QUAN 1.89 24813 19352 25609.3333 AVG B2-5 3.43 4.89 

Carbamazepine 237.199 194.2 QUAN 1.89 26770 18001 4.01460273 RSD    

Carbamazepine 237.199 194.2 QUAN 1.88 56903 12196 5957.39291 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 66444 12404 63733.6667 AVG B2-6 9.56 13.63 

Carbamazepine 237.199 194.2 QUAN 1.89 67854 16302 9.34732493 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 12624 13412 2881.72194 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 16534 14647 15801.3333 AVG B2-7 1.86 2.64 

Carbamazepine 237.199 194.2 QUAN 1.89 18246 17526 18.2372074 RSD    

Carbamazepine 237.199 194.2 QUAN 1.88 5193 13440 3943.75473 STD    

Carbamazepine 237.199 194.2 QUAN 1.88 11803 18784 9740.33333 AVG B2-8 0.88 1.26 

Carbamazepine 237.199 194.2 QUAN 1.89 12225 22827 40.4889093 RSD    
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background   SP Concentration    

ngg-5 R.C.C 

Carbamazepine 237.199 194.2 QUAN 1.88 24767 10393 1371.36769 STD    
Carbamazepine 237.199 194.2 QUAN 1.88 27121 10908 26350.3333 AVG B2-9 3.55 5.06 

Carbamazepine 237.199 194.2 QUAN 1.89 27163 9574 5.20436561 RSD    
Carbamazepine 237.199 194.2 QUAN 1.89 25906 12618 1259.77419 STD    
Carbamazepine 237.199 194.2 QUAN 1.88 23763 11183 25217 AVG B2-10 3.37 4.80 

Carbamazepine 237.199 194.2 QUAN 1.89 25982 13510 4.99573378 RSD    
Carbamazepine 237.199 194.2 QUAN 1.89 24519 12723 1936.57559 STD    
Carbamazepine 237.199 194.2 QUAN 1.89 22369 13253 22514 AVG B2-11 2.94 4.18 

Carbamazepine 237.199 194.2 QUAN 1.88 20654 16244 8.60165047 RSD    
Carbamazepine 237.199 194.2 QUAN 1.88 26751 19978 1141.189 STD    
Carbamazepine 237.199 194.2 QUAN 1.88 26048 14442 27026.3333 AVG B2-12 3.66 5.22 

Carbamazepine 237.199 194.2 QUAN 1.89 28280 14641 4.22250768 RSD    
Carbamazepine 237.199 194.2 QUAN 1.91 4735 18256 926.680276 STD    
Carbamazepine 237.199 194.2 QUAN 1.87 6118 30671 5782.66667 AVG B2-13 0.24 0.35 

Carbamazepine 237.199 194.2 QUAN 1.9 6495 25523 16.0251373 RSD    
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Table A.3 Carbamazepine data from third sampling batch 

Compound Precursor Product Fragment 
Ion 

Retention 
Time Area Background   SP Concentration 

ngg-5 R.C.C 

Carbamazepine 237.199 194.2 QUAN 1.89 20195 11672 2092.14372 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 24079 8775 22586.3333 AVG B3-1 2.95 4.20 

Carbamazepine 237.199 194.2 QUAN 1.89 23485 13486 9.26287453 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 106834 9569 4878.26735 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 116462 14459 111192.333 AVG B3-2 17.19 24.50 

Carbamazepine 237.199 194.2 QUAN 1.89 110281 11955 4.38723355 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 47010 9331 3873.77882 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 54228 6205 49806.3333 AVG B3-3 7.32 10.44 

Carbamazepine 237.199 194.2 QUAN 1.89 48181 6340 7.7776832 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 40538 5442 6159.84488 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 51115 8716 47650 AVG B3-4 6.98 9.94 

Carbamazepine 237.199 194.2 QUAN 1.89 51297 7648 12.9272715 RSD    

Carbamazepine 237.199 194.2 QUAN 1.88 31294 12364 30606.6667 AVG B3-5 4.24 6.04 

Carbamazepine 237.199 194.2 QUAN 1.89 33244 9982 9.9319829 RSD    
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Compound Precursor Product Fragment 
Ion 

Retention 
Time Area Background   SP Concentration 

ngg-5 R.C.C 

Carbamazepine 237.199 194.2 QUAN 1.89 23295 12458 2739.12127 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 19215 16318 22310.3333 AVG B3-6 2.90 4.14 

Carbamazepine 237.199 194.2 QUAN 1.89 24421 16634 12.277366 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 12927 10377 3852.27327 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 20625 14412 16867.6667 AVG B3-7 2.03 2.89 

Carbamazepine 237.199 194.2 QUAN 1.89 17051 14573 22.8382108 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 16588 16930 2861.37735 STD    

Carbamazepine 237.199 194.2 QUAN 1.88 10988 11729 14128.3333 AVG B3-8 1.59 2.26 

Carbamazepine 237.199 194.2 QUAN 1.89 14809 21766 20.2527593 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 10473 15840 2769.14644 STD    
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background   SP Concentration    

ngg-5 R.C.C 

Carbamazepine 237.199 194.2 QUAN 1.89 14377 12378 13559 AVG B3-9 1.50 2.13 

Carbamazepine 237.199 194.2 QUAN 1.89 15827 13194 20.42294 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 15276 10292 1925.34361 STD    

Carbamazepine 237.199 194.2 QUAN 1.88 19126 18147 17222 AVG B3-10 2.08 2.97 

Carbamazepine 237.199 194.2 QUAN 1.89 17264 11853 11.1795587 RSD    

Carbamazepine 237.199 194.2 QUAN 1.88 29205 14784 1245.79867 STD    

Carbamazepine 237.199 194.2 QUAN 1.88 31679 13496 30527.3333 AVG B3-11 4.22 6.02 

Carbamazepine 237.199 194.2 QUAN 1.89 30698 12739 4.08092859 RSD    

Carbamazepine 237.199 194.2 QUAN 1.89 42426 23401 1475.34075 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 44552 21128 42898.3333 AVG B3-12 6.21 8.85 

Carbamazepine 237.199 194.2 QUAN 1.89 41717 21350 3.43915634 RSD    

Carbamazepine 237.199 194.2 QUAN 1.9 4985 12148 1300.22934 STD    

Carbamazepine 237.199 194.2 QUAN 1.89 5717 9371 6071.33333 AVG B3-13 0.29 0.41 

Carbamazepine 237.199 194.2 QUAN 1.9 7512 14936 21.415878 RSD    
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Table A.4 Diazepam data from first sampling batch 

Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C 

Diazepam 284.9995 153.999 QUAN 2.33 1382 187 133.2454 STD    

Diazepam 284.9995 153.999 QUAN 2.33 1163 352 1316.333 AVG B1 -1 0.06 0.08 

Diazepam 284.9995 153.999 QUAN 2.33 1404 298 10.12247 RSD    

Diazepam 284.9995 153.999 QUAN 2.33 861 153 92.42474 STD    

Diazepam 284.9995 153.999 QUAN 2.32 742 107 760.6667 AVG B1-2 0.03 0.05 

Diazepam 284.9995 153.999 QUAN 2.33 679 104 12.15049 RSD    

Diazepam 284.9995 153.999 QUAN 2.34 1898 143 237.7485 STD    

Diazepam 284.9995 153.999 QUAN 2.33 1431 354 1690.333 AVG B1-3 0.07 0.10 

Diazepam 284.9995 153.999 QUAN 2.33 1742 0 14.06518 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 4652 419 368.4725 STD    

Diazepam 284.9995 153.999 QUAN 2.32 4746 431 4488 AVG B1-4 0.20 0.27 

Diazepam 284.9995 153.999 QUAN 2.33 4066 595 8.210172 RSD    

Diazepam 284.9995 153.999 QUAN 2.33 1892 319 120.3786 STD    
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C 

Diazepam 284.9995 153.999 QUAN 2.32 1684 145 1823 AVG B1-5 0.08 0.11 

Diazepam 284.9995 153.999 QUAN 2.32 1893 9 6.603323 RSD    

Diazepam 284.9995 153.999 QUAN 2.18 510 348 536.2558 STD    

Diazepam 284.9995 153.999 QUAN 2.32 1516 121 905.6667 AVG B1-6 0.04 0.06 

Diazepam 284.9995 153.999 QUAN 2.34 691 199 59.21117 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 1728 590 471.1946 STD    

Diazepam 284.9995 153.999 QUAN 2.32 2320 555 1812.333 AVG B1-7 0.08 0.11 

Diazepam 284.9995 153.999 QUAN 2.32 1389 979 25.99933 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 645 107 89.83874 STD    

Diazepam 284.9995 153.999 QUAN 2.33 604 187 574 AVG B1-8 0.03 0.03 

Diazepam 284.9995 153.999 QUAN 2.32 473 193 15.65135 RSD    
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration    

ngg-5 R.C.C 

Diazepam 284.9995 153.999 QUAN 2.16 327 160 183.6773 STD    
Diazepam 284.9995 153.999 QUAN 2.49 65 1 270.3333 AVG B1-9 0.01 0.02 

Diazepam 284.9995 153.999 QUAN 2.33 419 52 67.94473 RSD    
Diazepam 284.9995 153.999 QUAN 2.13 253 59 61.40304 STD    
Diazepam 284.9995 153.999 QUAN 2.34 354 176 283.3333 AVG B1-10 0.01 0.02 

Diazepam 284.9995 153.999 QUAN 2.16 243 291 21.67166 RSD    
Diazepam 284.9995 153.999 QUAN 2.32 663 17 260.1621 STD    
Diazepam 284.9995 153.999 QUAN 2.33 502 0 439.6667 AVG B1-11 0.02 0.03 

Diazepam 284.9995 153.999 QUAN 2.13 154 345 59.17258 RSD    
Diazepam 284.9995 153.999 QUAN 2.33 683 86 93.12536 STD    
Diazepam 284.9995 153.999 QUAN 2.32 750 365 666.3333 AVG B1-12 0.03 0.04 

Diazepam 284.9995 153.999 QUAN 2.32 566 216 13.97579 RSD    
Diazepam 284.9995 153.999 QUAN 2.14 125 0 29.1376 STD    
Diazepam 284.9995 153.999 QUAN 2.52 68 0 93 AVG B1-13 0.00 0.01 

Diazepam 284.9995 153.999 QUAN 2.25 86 3 31.33076 RSD    
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Table A.5 Diazepam data from second sampling batch 

Compound Precursor 
Mz 

Product 
Mz Fragment Ion Retention 

Time Area Background   SP Concentration 
ngg-5 R.C.C 

Diazepam 284.9995 153.999 QUAN 2.12 89 31 541.8213 STD    

Diazepam 284.9995 153.999 QUAN 2.31 1044 56 714.3333 AVG B2-1 0.03 0.04 

Diazepam 284.9995 153.999 QUAN 2.32 1010 81 75.84993 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 4993 118 418.6884 STD    

Diazepam 284.9995 153.999 QUAN 2.32 4323 478 4803 AVG B2-2 0.21 0.29 

Diazepam 284.9995 153.999 QUAN 2.32 5093 298 8.717227 RSD    

Diazepam 284.9995 153.999 QUAN 2.33 5502 65 14.29452 STD    

Diazepam 284.9995 153.999 QUAN 2.33 5474 347 5489.667 AVG B2-3 0.24 0.33 

Diazepam 284.9995 153.999 QUAN 2.32 5493 125 0.26039 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 1647 261 267.9409 STD    

Diazepam 284.9995 153.999 QUAN 2.33 2159 251 1857.333 AVG B2-4 0.08 0.11 

Diazepam 284.9995 153.999 QUAN 2.32 1766 335 14.42611 RSD    

Diazepam 284.9995 153.999 QUAN 2.33 534 35 209.2136 STD    

Diazepam 284.9995 153.999 QUAN 2.25 140 0 377.6667 AVG B2-5 0.02 0.02 
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Compound Precursor 
Mz 

Product 
Mz Fragment Ion Retention 

Time Area Background   SP Concentration 
ngg-5 R.C.C 

Diazepam 284.9995 153.999 QUAN 2.33 459 43 55.39637 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 1724 478 429.7895 STD    

Diazepam 284.9995 153.999 QUAN 2.32 1973 219 1611 AVG B2-6 0.07 0.10 

Diazepam 284.9995 153.999 QUAN 2.32 1136 661 26.67843 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 754 50 55.80621 STD    

Diazepam 284.9995 153.999 QUAN 2.13 728 179 709.6667 AVG B2-7 0.03 0.04 

Diazepam 284.9995 153.999 QUAN 2.32 647 127 7.863722 RSD    

Diazepam 284.9995 153.999 QUAN 2.23 126 43 275.2278 STD    

Diazepam 284.9995 153.999 QUAN 2.33 587 140 269.6667 AVG B2-8 0.01 0.02 

Diazepam 284.9995 153.999 QUAN 2.33 96 86 102.0622 RSD    
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Compound Precursor 
Mz 

Product 
Mz Fragment Ion Retention 

Time Area Background   SP Concentration    
ngg-5 R.C.C 

Diazepam 284.9995 153.999 QUAN 2.11 103 105 720.4506 STD    
Diazepam 284.9995 153.999 QUAN 2.32 1536 277 863 AVG B2-9 0.04 0.05 

Diazepam 284.9995 153.999 QUAN 2.34 950 336 83.4821 RSD    
Diazepam 284.9995 153.999 QUAN 2.33 1337 414 568.3933 STD    
Diazepam 284.9995 153.999 QUAN 2.14 216 313 831 AVG B2-10 0.04 0.05 

Diazepam 284.9995 153.999 QUAN 2.33 940 269 68.39872 RSD    
Diazepam 284.9995 153.999 QUAN 2.11 584 329 199.8533 STD    
Diazepam 284.9995 153.999 QUAN 2.32 596 211 474.6667 AVG B2-11 0.02 0.03 

Diazepam 284.9995 153.999 QUAN 2.43 244 0 42.10392 RSD    
Diazepam 284.9995 153.999 QUAN 2.32 550 380 34.0196 STD    
Diazepam 284.9995 153.999 QUAN 2.32 482 513 516.6667 AVG B2-12 0.02 0.03 

Diazepam 284.9995 153.999 QUAN 2.35 518 592 6.584439 RSD    
Diazepam 284.9995 153.999 QUAN 2.57 73 1 27.51363 STD    
Diazepam 284.9995 153.999 QUAN 2.15 99 0 100 AVG B2-13 0.00 0.01 

Diazepam 284.9995 153.999 QUAN 2.3 128 20 27.51363 RSD    
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Table A.6 Diazepam data from third sampling site 

Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C 

Diazepam 284.9995 153.999 QUAN 2.31 1168 0 296.1064 STD    

Diazepam 284.9995 153.999 QUAN 2.33 764 137 841 AVG B3-1 0.04 0.05 

Diazepam 284.9995 153.999 QUAN 2.33 591 113 35.20885 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 4821 192 53.10681 STD    

Diazepam 284.9995 153.999 QUAN 2.32 4740 367 4760.667 AVG B3-2 0.21 0.29 

Diazepam 284.9995 153.999 QUAN 2.32 4721 407 1.115533 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 4852 274 339.9799 STD    

Diazepam 284.9995 153.999 QUAN 2.32 4339 706 4724.333 AVG B3-3 0.21 0.29 

Diazepam 284.9995 153.999 QUAN 2.33 4982 83 7.196357 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 1948 152 29.36551 STD    

Diazepam 284.9995 153.999 QUAN 2.32 1890 236 1916.333 AVG B3-4 0.08 0.12 

Diazepam 284.9995 153.999 QUAN 2.32 1911 74 1.53238 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 1095 79 165.004 STD    
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C 

Diazepam 284.9995 153.999 QUAN 2.31 817 148 904.6667 AVG B3-5 0.04 0.06 

Diazepam 284.9995 153.999 QUAN 2.32 802 251 18.23921 RSD    

Diazepam 284.9995 153.999 QUAN 2.32 771 225 283.3284 STD    

Diazepam 284.9995 153.999 QUAN 2.27 416 265 466 AVG B3-6 0.02 0.03 

Diazepam 284.9995 153.999 QUAN 2.11 211 134 60.80009 RSD    

Diazepam 284.9995 153.999 QUAN 2.13 118 148 556.6929 STD    

Diazepam 284.9995 153.999 QUAN 2.35 1007 13 756 AVG B3-7 0.03 0.05 

Diazepam 284.9995 153.999 QUAN 2.32 1143 400 73.63663 RSD    

Diazepam 284.9995 153.999 QUAN 2.35 523 368 257.405 STD    

Diazepam 284.9995 153.999 QUAN 2.21 51 186 227.6667 AVG B3-8 0.01 0.01 

Diazepam 284.9995 153.999 QUAN 2.13 109 91 113.0622 RSD    
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Compound Precursor 
Mz 

Product 
Mz Fragment Ion Retention 

Time Area Background  SP Concentration    
ngg-5 R.C.C 

Diazepam 284.9995 153.999 QUAN 2.31 521 86 80.01458 STD    
Diazepam 284.9995 153.999 QUAN 2.31 363 167 449.3333 AVG B3-9 0.02 0.03 

Diazepam 284.9995 153.999 QUAN 2.33 464 6 17.8074 RSD    
Diazepam 284.9995 153.999 QUAN 2.32 474 209 214.3113 STD    
Diazepam 284.9995 153.999 QUAN 2.63 70 49 313.3333 AVG B3 -10 0.01 0.02 

Diazepam 284.9995 153.999 QUAN 2.1 396 349 68.39722 RSD    
Diazepam 284.9995 153.999 QUAN 2.32 1311 879 333.7669 STD    
Diazepam 284.9995 153.999 QUAN 2.31 1090 604 1018.667 AVG B3-11 0.04 0.06 

Diazepam 284.9995 153.999 QUAN 2.32 655 812 32.76507 RSD    
Diazepam 284.9995 153.999 QUAN 2.33 1821 305 468.5968 STD    
Diazepam 284.9995 153.999 QUAN 2.33 884 558 1358 AVG B3-12 0.06 0.08 

Diazepam 284.9995 153.999 QUAN 2.33 1369 199 34.50639 RSD    
Diazepam 284.9995 153.999 QUAN 2.32 250 37 89.93887 STD    
Diazepam 284.9995 153.999 QUAN 2.31 107 30 147 AVG B3-13 0.01 0.01 

Diazepam 284.9995 153.999 QUAN 2.24 84 0 61.1829 RSD    
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Table A.7 Lorazepam data from first sampling batch 

Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C R.C.C.B F.C.C 

Lorazepam 320.9995 302.9995 QUAN 2 16218 15785 3057.136 STD      

Lorazepam 320.9995 302.9995 QUAN 2 18979 22576 19173.33 AVG B1-1 6.80 10.29 9.21 1.09 

Lorazepam 320.9995 302.9995 QUAN 2 22323 23119 15.94473 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 11289 9288 2025.701 STD      

Lorazepam 320.9995 302.9995 QUAN 2 11365 9609 12496.33 AVG B1-2 6.14 9.28 9.21 0.07 

Lorazepam 320.9995 302.9995 QUAN 2 14835 16729 16.21036 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 23048 17090 2083.774 STD      

Lorazepam 320.9995 302.9995 QUAN 2 23612 21837 22138 AVG B1-3 7.10 10.74 9.21 1.53 

Lorazepam 320.9995 302.9995 QUAN 2 19754 18323 9.412659 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 15196 21055 1481.428 STD      

Lorazepam 320.9995 302.9995 QUAN 2 15421 21401 16161.33 AVG B1-4 6.50 9.84 9.21 0.63 

Lorazepam 320.9995 302.9995 QUAN 2.01 17867 21938 9.166499 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 13019 16038 2912.785 STD      
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C R.C.C.B F.C.C 

Lorazepam 320.9995 302.9995 QUAN 2 14127 22546 15224 AVG B1-5 6.41 9.69 9.21 0.49 

Lorazepam 320.9995 302.9995 QUAN 2 18526 26136 19.13285 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 19468 28361 1705.008 STD      

Lorazepam 320.9995 302.9995 QUAN 2 17772 32589 17766 AVG B1-6 6.66 10.08 9.21 0.87 

Lorazepam 320.9995 302.9995 QUAN 2 16058 34863 9.597028 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 18125 39104 5291.248 STD      

Lorazepam 320.9995 302.9995 QUAN 2 27831 51205 21760.67 AVG B1-7 7.06 10.68 9.21 1.48 

Lorazepam 320.9995 302.9995 QUAN 2 19326 35800 24.31565 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 15549 18285 797.1357 STD      

Lorazepam 320.9995 302.9995 QUAN 2 16243 10266 15481.67 AVG B1-8 6.43 9.73 9.21 0.53 

Lorazepam 320.9995 302.9995 QUAN 2 14653 20701 5.148901 RSD      
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration    

ngg-5 R.C.C R.C.C.B F.C.C 

Lorazepam 320.9995 302.9995 QUAN 2 14686 17167 1523.486 STD      

Lorazepam 320.9995 302.9995 QUAN 2 17192 24458 15438.67 AVG B1-9 6.43 9.73 9.21 0.52 

Lorazepam 320.9995 302.9995 QUAN 2 14438 18386 9.867989 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 10796 26534 1322.267 STD      

Lorazepam 320.9995 302.9995 QUAN 2 12987 27379 12319 AVG B1-10 6.12 9.25 9.21 0.05 

Lorazepam 320.9995 302.9995 QUAN 2 13174 25498 10.73355 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 16760 13548 3384.432 STD      

Lorazepam 320.9995 302.9995 QUAN 2 14631 14353 17550.33 AVG B1-11 6.64 10.05 9.21 0.84 

Lorazepam 320.9995 302.9995 QUAN 2 21260 19592 19.28415 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 16457 27628 2913.667 STD      

Lorazepam 320.9995 302.9995 QUAN 2 14384 20757 16992.67 AVG B1-12 6.59 9.96 9.21 0.75 

Lorazepam 320.9995 302.9995 QUAN 2 20137 29753 17.14662 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 20936 8173 1384.296 STD      

Lorazepam 320.9995 302.9995 QUAN 2 18225 8748 19742.67 AVG B1-13 6.86 10.38 9.21 1.17 

Lorazepam 320.9995 302.9995 QUAN 2 20067 14267 7.011695 RSD      
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Table A.8 Lorazepam data from second sampling batch 

Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C R.C.C.B F.C.C 

Lorazepam 320.9995 302.9995 QUAN 2 27747 9409 2158.156 STD      

Lorazepam 320.9995 302.9995 QUAN 2 27079 10271 28644 AVG B2-1 7.75 11.73 9.21 2.52 

Lorazepam 320.9995 302.9995 QUAN 2 31106 10389 7.53441 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 10907 20886 4322.393 STD      

Lorazepam 320.9995 302.9995 QUAN 2 15976 23217 15463 AVG B2-2 6.43 9.73 9.21 0.52 

Lorazepam 320.9995 302.9995 QUAN 2 19506 24761 27.95313 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 17799 13265 2328.473 STD      

Lorazepam 320.9995 302.9995 QUAN 2 21620 21902 18941 AVG B2-3 6.78 10.26 9.21 1.05 

Lorazepam 320.9995 302.9995 QUAN 2 17404 12370 12.2933 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 13849 15358 2380.12 STD      

Lorazepam 320.9995 302.9995 QUAN 2 15319 14164 15891 AVG B2-4 6.48 9.79 9.21 0.59 

Lorazepam 320.9995 302.9995 QUAN 2 18505 20553 14.97779 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 20439 15243 2116.876 STD      
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C R.C.C.B F.C.C 

Lorazepam 320.9995 302.9995 QUAN 2 22823 12954 20621 AVG B2-5 6.95 10.51 9.21 1.30 

Lorazepam 320.9995 302.9995 QUAN 2 18601 12364 10.26563 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 14528 18397 937.2653 STD      

Lorazepam 320.9995 302.9995 QUAN 2 13821 26086 14675.67 AVG B2-6 6.35 9.61 9.21 0.40 

Lorazepam 320.9995 302.9995 QUAN 2 15678 29351 6.386527 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 15706 12962 3195.39 STD      

Lorazepam 320.9995 302.9995 QUAN 2 18685 16166 18827.67 AVG B2-7 6.77 10.24 9.21 1.03 

Lorazepam 320.9995 302.9995 QUAN 2 22092 13288 16.97178 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 21690 19137 757.9743 STD      

Lorazepam 320.9995 302.9995 QUAN 2 23195 13344 22495 AVG B2-8 7.14 10.79 9.21 1.59 

Lorazepam 320.9995 302.9995 QUAN 2 22600 12510 3.369523 RSD      
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C R.C.C.B F.C.C 

Lorazepam 320.9995 302.9995 QUAN 1.85 44666 31650 12159.09 STD      

Lorazepam 320.9995 302.9995 QUAN 1.85 42375 30330 36531.67 AVG B2-9 8.54 12.92 9.21 3.71 

Lorazepam 320.9995 302.9995 QUAN 2 22554 40766 33.28371 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 18681 29310 3225.031 STD      

Lorazepam 320.9995 302.9995 QUAN 2 12392 28153 15950 AVG B2-10 6.48 9.80 9.21 0.60 

Lorazepam 320.9995 302.9995 QUAN 2 16777 25468 20.21963 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 21159 35493 3033.82 STD      

Lorazepam 320.9995 302.9995 QUAN 2 15236 27631 17817.33 AVG B2-11 6.67 10.09 9.21 0.88 

Lorazepam 320.9995 302.9995 QUAN 2 17057 29663 17.02735 RSD      

Lorazepam 320.9995 302.9995 QUAN 1.85 69279 36633 2932.552 STD      

Lorazepam 320.9995 302.9995 QUAN 1.85 68574 34991 70607.33 AVG B2-12 11.95 18.08 9.21 8.88 

Lorazepam 320.9995 302.9995 QUAN 1.86 73969 41433 4.153324 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 15033 11419 902.6367 STD      

Lorazepam 320.9995 302.9995 QUAN 2 14890 11510 14442 AVG B2-13 6.33 9.57 9.21 0.37 

Lorazepam 320.9995 302.9995 QUAN 2 13403 9782 6.250081 RSD      
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Table A.9 Lorazepam data from third sampling batch 

Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C R.C.C.B F.C.C 

Lorazepam 320.9995 302.9995 QUAN 2 20674 6836 2525.331 STD      

Lorazepam 320.9995 302.9995 QUAN 2 20890 10513 22238.67 AVG B3-1 7.11 10.76 9.21 1.55 

Lorazepam 320.9995 302.9995 QUAN 2 25152 7104 11.35559 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 18857 16083 3388.38 STD      

Lorazepam 320.9995 302.9995 QUAN 2 24283 26139 20398 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 18054 17732 16.61134 RSD B3-2 6.93 10.48 9.21 1.27 

Lorazepam 320.9995 302.9995 QUAN 2 17067 12347 3996.82 STD      

Lorazepam 320.9995 302.9995 QUAN 2 24373 23479 19783.67 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 17911 18200 20.20262 RSD B3-3 6.86 10.38 9.21 1.18 

Lorazepam 320.9995 302.9995 QUAN 2 17983 16407 1421.107 STD      

Lorazepam 320.9995 302.9995 QUAN 2 15145 10137 16608.67 AVG B3-4 6.55 9.90 9.21 0.70 

Lorazepam 320.9995 302.9995 QUAN 2 16698 10299 8.556421 RSD      

Lorazepam 320.9995 302.9995 QUAN 2 18538 13490 642.5398 STD      
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C R.C.C.B F.C.C 

Lorazepam 320.9995 302.9995 QUAN 2 19510 11941 19266.67 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 19752 15710 3.334981 RSD B3-5 6.81 10.31 9.21 1.10 

Lorazepam 320.9995 302.9995 QUAN 2 21049 30548 786.6857 STD      

Lorazepam 320.9995 302.9995 QUAN 2 21955 20191 21873.33 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 22616 23166 3.596551 RSD B3-6 7.07 10.70 9.21 1.49 

Lorazepam 320.9995 302.9995 QUAN 2 23581 12034 3043.351 STD      

Lorazepam 320.9995 302.9995 QUAN 2 22494 18570 24766.33 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 28224 20674 12.28826 RSD B3-7 7.36 11.14 9.21 1.93 

Lorazepam 320.9995 302.9995 QUAN 2 14639 12574 2299.846 STD      

Lorazepam 320.9995 302.9995 QUAN 2 18960 17696 17254.67 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 18165 16216 13.32883 RSD B3-8 6.61 10.00 9.21 0.79 
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Compound Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background  SP Concentration 

ngg-5 R.C.C R.C.C.B F.C.C 

Lorazepam 320.9995 302.9995 QUAN 2 23371 18868 1378.743 STD      

Lorazepam 320.9995 302.9995 QUAN 2 20676 19689 22192 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 22529 15165 6.212794 RSD B3-9 7.11 10.75 9.21 1.54 

Lorazepam 320.9995 302.9995 QUAN 2 19613 38193 2867.49 STD      

Lorazepam 320.9995 302.9995 QUAN 2 23214 41362 20125 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 17548 23442 14.2484 RSD B3-10 6.90 10.44 9.21 1.23 

Lorazepam 320.9995 302.9995 QUAN 2 21724 53517 1178.199 STD      

Lorazepam 320.9995 302.9995 QUAN 2 21548 41903 20957.67 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 19601 41236 5.621803 RSD B3-11 6.98 10.56 9.21 1.36 

Lorazepam 320.9995 302.9995 QUAN 1.85 43427 35106 1308.984 STD      

Lorazepam 320.9995 302.9995 QUAN 1.85 44136 37843 44509 AVG      

Lorazepam 320.9995 302.9995 QUAN 1.85 45964 36370 2.940942 RSD B3-12 9.34 14.13 9.21 4.92 

Lorazepam 320.9995 302.9995 QUAN 2 19791 11072 992.0546 STD      

Lorazepam 320.9995 302.9995 QUAN 2 17832 10189 18902.33 AVG      

Lorazepam 320.9995 302.9995 QUAN 2 19084 11804 5.248318 RSD B3-13 6.78 10.25 9.21 1.04 
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Appendix B Method Detection Limit, Limit of 
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Detected Target Compounds  
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Table B.1  MDL, LOD, LOQ values of Carbamazepine

CARBAMAZEPINE: MDL,LOD,LOQ 

Name Precursor 
Mz 

Product 
Mz 

Fragment 
Ion 

Retention 
Time Area Background Peak 

Rank 
Concentration  

ngg-1  
Carbamazepine 237.1995 194.19945 QUAN 1.91 3383 1534 1 0.07  
Carbamazepine 237.1995 194.19945 QUAN 1.91 2355 1297 1 -0.26  
Carbamazepine 237.1995 194.19945 QUAN 1.89 2447 648 1 -0.23  
Carbamazepine 237.1995 194.19945 QUAN 1.89 2118 1054 1 -0.33  
Carbamazepine 237.1995 194.19945 QUAN 1.89 1359 1060 1 -0.58  
Carbamazepine 237.1995 194.19945 QUAN 1.91 1083 684 1 -0.67  
Carbamazepine 237.1995 194.19945 QUAN 1.76 842 656 1 -0.75  

       STD 0.22 MDL 

       STDx3 0.67 LOD 

       STDx10 2.23 LOQ 



  
 

Appendix B                                                                                                                                        
                                                                                                                                               
                                                                                                                                                                                                                                   209 

Table B.2 MDL, LOD, LOQ values of Diazepam ngg-1 

DIAZEPAM : MDL, LOD, LOQ 

Name Precursor 
Mz Product Mz Fragment 

Ion 
Retention 

Time Area Background Peak 
Rank 

concentration 
ngg-1  

Diazepam 284.9995 153.999451 QUAN 2.33 3300 1095 2 0.19  
Diazepam 284.9995 153.999451 QUAN 2.32 3130 872 1 0.16  
Diazepam 284.9995 153.999451 QUAN 2.57 49 223 2 -0.49  
Diazepam 284.9995 153.999451 QUAN 2.33 2899 619 2 0.11  
Diazepam 284.9995 153.999451 QUAN 2.33 1506 374 2 -0.19  
Diazepam 284.9995 153.999451 QUAN 2.32 936 544 2 -0.31  
Diazepam 284.9995 153.999451 QUAN 2.3 1793 721 2 -0.12  

       STD 0.26 MDL 

       STDx3 0.78 LOD 

       STDx10 2.59 LOQ 
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Table B.3 MDL, LOD, LOQ values of Lorazepam 

  

LORAZEPAM: MDL,LOD,LOQ 

Name Precursor 
Mz Product Mz Fragment 

Ion 
Retention 

Time Area Background Peak 
Rank 

Conc. 
ngg-1  

Lorazepam 320.999451 302.999451 QUAN 2 10789 5878 2 5.96  
Lorazepam 320.999451 302.999451 QUAN 2 11447 6080 1 6.03  
Lorazepam 320.999451 274.999451 QUAL 2 11602 2353 2 6.05  
Lorazepam 320.999451 274.999451 QUAL 1.99 11525 2799 2 6.04  
Lorazepam 320.999451 302.999451 QUAN 2 10820 10079 2 5.97  
Lorazepam 320.999451 302.999451 QUAN 2 10879 7226 2 5.97  
Lorazepam 320.999451 274.999451 QUAL 2 10735 2812 2 5.96  

       STD 0.04 MDL 

       STDx3 0.12 LOD 

       STDx10 0.39 LOQ 
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Table B.4 Results of EPPPs analysis in Brisbane River sediments from first sampling batch 

  

Results for sampling from first batch  
Analytes concentration= ng/g of sediment  

SAMPLING SITES CARBAMAZEPINE DIAZEPAM LORAZEPAM 

B1-1 1.99 0.01 0.22 

B1-2 1.26 0.01 0.01 

B1-5 1.01 0.01 0.31 

B1-7 4.56 0.04 0.13 

B1-12 2.43 0.02 0.10 

B1-13 1.11 0.01 0.15 

B1-14 1.07 0.00 0.17 

B1-15 1.93 0.00 0.00 

B1-16 0.96 0.01 0.11 

B1-18 0.56 0.00 0.01 

B1-19 0.21 0.00 0.17 

B1-20 0.96 0.01 0.15 

B1-21 0.20 0.00 0.10 

B1-22 0.02 0.03 0.23 
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Table B.5 Results of EPPPs analysis in the Brisbane River sediments from second sampling batch 

  

Results for sampling from second batch  
Analytes concentration= ng/g of sediment  

SAMPLING SITES CARBAMAZEPINE DIAZEPAM LORAZEPAM 

B2-1 1.07 0.01 0.50 

B2-2 6.39 0.04 0.00 

B2-5 3.54 0.05 0.21 

B2-7 2.52 0.02 0.12 

B2-12 0.98 0.00 0.26 

B2-14 2.73 0.00 0.08 

B2-15 0.53 0.01 0.21 

B2-16 0.00 0.00 0.32 

B2-17 1.01 0.00 0.00 

B2-18 0.00 0.00 0.12 

B2-19 0.84 0.01 0.18 

B2-20 1.04 0.00 1.78 

B2-22 0.07 0.00 0.07 

B2-8 4.65 0.03 0.27 

B2-9 2.76 0.00 0.26 
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Table B.6 Results of EPPPs analysis in the Brisbane River sediments from third sampling batch 

 

Results for sampling from third batch  
Analytes concentration= ng/g of sediment  

SAMPLING SITES CARBAMAZEPINE DIAZEPAM LORAZEPAM 

B3-1 0.84 0.00 -0.36 

B3-2 4.90 0.04 0.25 

B3-5 2.09 0.04 0.24 

B3-7 1.99 0.02 0.14 

B3-12 1.21 0.01 0.22 

B3-14 0.83 0.00 0.30 

B3-15 0.58 0.00 0.39 

B3-16 0.45 0.00 0.16 

B3-17 0.43 0.00 0.31 

B3-18 0.59 0.00 0.25 

B3-19 1.20 0.00 0.27 

B3-20 1.77 0.00 0.98 

B3-22 0.08 0.00 0.21 
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