
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Li, Fengfeng, Cholette, Michael E., & Ma, Lin
(2016)
Reliability modelling for electricity transmission networks using mainte-
nance records. In
Proceedings of the 10th World Congress on Engineering Asset Manage-
ment (WCEAM 2015), Springer International Publishing, Tampere, Fin-
land, pp. 397-406.

This file was downloaded from: https://eprints.qut.edu.au/99980/

c© Copyright 2016 Springer International Publishing Switzerland

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-27064-7_38

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1007/978-3-319-27064-7_38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/78103567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eprints.qut.edu.au/view/person/Cholette,_Michael.html
https://eprints.qut.edu.au/99980/
https://doi.org/10.1007/978-3-319-27064-7_38


Reliability Modelling for Electricity 
Transmission Networks Using 
Maintenance Records 

Fengfeng Li1, Michael E. Cholette1, Lin Ma1 

Abstract Maintenance decisions for transmission network assets (TNAs) require 
accurate reliability prediction. However, there are a large number of operating, de-
sign and environmental variables that potentially influence their reliability. This 
paper presents a new reliability prediction method for TNAs. Failure times were 
identified by extracting significant unplanned maintenance events for critical fail-
ure modes. A regression tree-based grouping analysis was utilized to analyse the 
influences by variety of factors on future unplanned maintenance. These results 
were then used to build the reliability prediction model allowing a decision maker 
to have an estimate of future unplanned maintenance requirements. A case study 
using real industry data was conducted to test the proposed reliability prediction 
model. The results demonstrate the feasibility of using this approach for TNA 
maintenance decision support. 

Keywords – Reliability • Maintenance decision support • Regression tree 

1 Introduction 

Electricity transmission networks are a crucial part of the national infrastruc-
ture. Failure of transmission network assets (TNAs) can lead to significant conse-
quences including: megawatt losses, regulatory penalties, and safety hazards. De-
spite their criticality, making informed replacement decisions prior to failure 
remains challenging, primarily due to the difficulty in assessing and predicting the 
dynamic condition of transmission network assets.  

Decision-making can be supported by accurate reliability modelling for com-
plex repairable systems which can assess and predict the future condition of 
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TNAs. Reliability analysis and predictions can give decision makers nuanced in-
formation such as identification of likely network hot spots (i.e. areas that require 
more maintenance attention) and enable “what if” analysis.  

However, reliability analysis and prediction is complicated by the fact that 
TNAs are linear assets (as opposed to discrete assets) which require specific mod-
elling approaches for reliability and risk assessment. Additionally, the reliability 
prediction model needs to be based on actual data since the failure risk will not be 
uniform across the transmission network. There are many factors may influence 
the risk of failure.  Structure characteristics (e.g. conductor type), voltage, load, 
and the operating environment (mechanical loading, wind, temperature, pollutants 
and humidity) are but a few examples of potential variables that can alter a sec-
tion’s risk profile, and these factors need to be accounted for in order to predict 
risks accurately. 

This situation is further complicated by the fact that unambiguous failures are 
extremely rare. The majority of reliability analysis of TNAs treated outages as 
failure (Billinton and Kumar 1981, Amjady and Ehsan 1999, Yong and Singh 
2010, Vaiman, Bell et al. 2012, Albert and Hallowell 2013). However, in many 
cases, outages are transient and the network is restored to service within a small 
time interval (often less than one minute). Also, avoiding long term outages are 
not the sole performance goal of network management. Safety and regulatory 
compliance are also important goals that are not captured by defining outage as 
failure. Therefore, outage data is of limited utility in providing significant mainte-
nance events and costs for evaluating potential maintenance policies. Providing a 
workable definition of “failure” for TNAs represents a significant contribution of 
this work. 

This paper details a new reliability prediction model for TNAs. Instead of using 
outage data, failure times are identified by extracting significant unplanned 
maintenance events for critical failure modes. A regression tree based grouping 
analysis was integrated with a reliability prediction model to analyse the influ-
ences by the variety of factors on future unplanned maintenance. A case study was 
conducted using real industry data to test the proposed reliability prediction mod-
el. The results demonstrate the feasibility the proposed approach for TNAs 
maintenance decision support. 

2 Methodology 

The decision support framework proposed in this study can be seen in Figure 1. 
The key contribution of this work is the definition and prediction of maintenance 
triggering events (MTEs), which we define as: 



F. Li et al. - Reliability Modelling for Electricity Transmission Networks 3 

An event record (work order/notification) that requires immediate maintenance 
action due to network performance, safety, or regulatory compliance. 

Essentially, an MTE defines an event that drives maintenance costs and risk 
and can be thought of as “failure” in a general sense. In this work, we use mainte-
nance notifications and work orders to identify MTEs from historical records. 
However, these data contain all types of maintenance actions, including inspection 
and replacement, for every structure, equipment, or part for any reason. Since only 
some of these notifications trigger significant events, expert knowledge was em-
ployed to identify which of these events require immediate action. Despite the 
large number of notification and work orders, only a small subset of them consti-
tuted MTEs and experts were easily able to identify the relatively small number of 
notification types and priorities that would require immediate action. 

 

Figure 1: Decision support framework for transmission network assets 

The remainder of this section details the construction of the reliability model 
for the prediction of MTEs, an overview of which can be seen in Figure 2. MTEs 
were identified from a sample of transmission network data. Subsequently, for 
each MTE the structures are “grouped” together according to the variables that in-
fluence the MTE statistics (e.g. coastline distance for corrosion MTEs) and a haz-
ard model is fitted to the empirical hazard calculated from the data (Sections  2.1 
and 2.2). The prediction of the expected number of MTEs is then conducted with-
in each group and amalgamated into a total network MTE prediction (Section 2.3). 
Importantly, the amalgamation can be skipped and future “hotspots” can be pre-
dicted. Finally, the prediction of the effects of different maintenance actions is ad-
dressed by prediction the MTEs after maintenance action or by applying a mainte-
nance policy for the prediction horizon (Section 2.4). 
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Figure 2: Overview of the MTE prediction methodology 

2.1 MTE (Hazard) Rate Modelling 

A discrete hazard-based modelling method was developed by Sun et al. (2008) 
for linear assets, where it was assumed that the lifetimes of assets followed a 
piecewise hazard function, which is given by 

ℎ(𝑡) = �
𝜆            , 0 ≤ 𝑡 < 𝜉

𝜆 + 𝛽(𝑡−𝜉)𝛽−1

𝛼𝛽
, 𝑡 ≥ 𝜉,𝛼 > 0,𝛽 > 1

                                                  (1) 

where λ is a constant failure rate, ξ indicates the wear-out point, ξ = 1,2, …, α 
and β are the scale and shape parameters of the Weibull distribution, respectively.  

We propose the use of (1) to model the MTE rate, which is defined as the num-
ber of specific failure mode MTEs in time period 𝑡 per network structure, which is 
essentially a distributed hazard rate. Therefore, we set 𝑀𝑀𝑀 𝑅𝑅𝑡𝑅 = ℎ(𝑡). To es-
timate the model in Eq. (1), Non-linear regression is utilised to estimate the pa-
rameters λ, α and β and ξ using the empirical MTE. The Empirical MTE Rate is 
defined as the number MTEs per structure, per unit time which is obtained from 
the notification and work order data.  

2.2 Grouping 

The network contains a number of built sections. These built sections and their 
constituent segments (structures, conductors, insulators, etc.) can follow different 
degradation processes (i.e. have different parameters in in their hazard models). 
While analysis is ideally conducted for an individual structure, the number of 
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MTEs for an individual structure is normally insufficient for any meaningful sta-
tistical analysis. To compromise between data availability and specificity, lines 
with the same or similar characteristics are grouped to form an analysis popula-
tion. In this study, a non-parametric decision tree technique, Classification and re-
gression trees (CART) is used to split data into homogeneous groups by examin-
ing all independent variables. The selection of significant variables was conducted 
using expert advice and trial and error. 

2.3 Prediction of Future Maintenance Triggering Events 

Under the assumption of minimal repair, which is appropriate when one repairs 
a small part of a large system, the expected number of MTEs of type 𝑝 for each 
Structure i for the time (age) interval [0, t] is given by: 

𝐻𝑖,𝑝,𝑔(𝑡) = �
𝜆𝑡           , 0 < 𝑡 < 𝜉

𝜆𝑡 + 1
𝛼𝛽
∙ �(𝑡 − 𝜉)𝛽�, 𝑡 ≥ 𝜉,𝛼 > 0,𝛽 > 1                           (2) 

and the expected number of MTEs for each structure i in group 𝑔, over the age in-
terval [𝑡, 𝑡 + 𝛥𝑡] is given by the difference between 𝐻𝑖,𝑝,𝑔(𝑡) and 𝐻𝑖,𝑝,𝑔(𝑡 + ∆𝑡), 

𝑀𝑀𝑀𝑖 ,𝑝,𝑔
𝑠 (𝑡, 𝑡 + 𝛥𝑡) = 𝐻𝑖,𝑝,𝑔(𝑡 + ∆𝑡) − 𝐻𝑖,𝑝,𝑔(𝑡)                                      (3) 

where structure i is located in group g. The expected number of MTEs for each 
built section 𝑗 ∈ 𝑔 over the time interval [𝑡, 𝑡 + 𝛥𝑡], 𝑀𝑀𝑀�𝑗,𝑝,𝑔

𝐵𝐵 (𝑡, 𝑡 + 𝛥𝑡), is given 
by 

𝑀𝑀𝑀�𝑗,𝑝,𝑔
𝐵𝐵 (𝑡, 𝑡 + 𝛥𝑡) = �𝑀𝑀𝑀𝑖 ,𝑝,𝑔

𝐵 (𝑡, 𝑡 + 𝛥𝑡)
𝑖∈𝑗

                                        (4) 

where 𝑖 ∈ 𝑗 (in a slight abuse of notation) indicates the structure i belongs to sec-
tion j. The expected number of MTEs for each network section 𝑗 ∈ 𝑔 between 
dates 𝑀1 and 𝑀2 can be computed as 

𝑀𝑀𝑀𝑗 ,𝑝,𝑔
𝐵𝐵 (𝑀1,𝑀2) = 𝑀𝑀𝑀�𝑗,𝑝,𝑔

𝐵𝐵 �𝑀1 − 𝑏𝑏𝑖𝑏𝑏 𝑏𝑅𝑡𝑅𝑗 ,𝑀2 − 𝑏𝑏𝑖𝑏𝑏_𝑏𝑅𝑡𝑅𝑗�   (5) 

where 𝑏𝑏𝑖𝑏𝑏 𝑏𝑅𝑡𝑅𝑗 indicates the build date of built section j. The total expected 
number of MTEs between dates 𝑀1 and 𝑀2 is given by 

𝑀𝑀𝑀𝑝(𝑀1,𝑀2) = ��𝑀𝑀𝑀𝑗,𝑝,𝑔
𝐵𝐵 (𝑀1,𝑀2)

𝑗∈𝑔𝑔

                                     (6) 
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where 𝑗 ∈ 𝑔 (slightly abusing notation again) indicates the built section j belongs 
to group g.  

2.4 Evaluation of Replacement Policies 

To use the MTE predictions for decision support (as proposed in Fig. 1), we 
propose presenting the decision maker with an expected number of MTEs for two 
types of replacement policies: Age-based and threshold-based. In age-based re-
placement, a built section is replaced when it reaches a certain age during the 
planning horizon T. Different cut-off ages can be specified for each different 
group g. In a threshold-based replacement policy, a built section will be replaced 
when its predicted number of MTEs reaches a certain value (𝑡ℎ𝑟𝑅𝑟ℎ𝑜𝑏𝑏). For in-
stance, if 𝑡ℎ𝑟𝑅𝑟ℎ𝑜𝑏𝑏 = 20, the predicted numbers of corrosion MTEs of three 
built sections are greater than 20 in 2015, then these built sections will be replaced 
at 2015 based on the threshold-based replacement policy.  

3 Case Study 

The proposed reliability prediction model was applied to the prediction of cor-
rosion maintenance events for an electricity transmission network in Australia. 
Using the available data and expert analysis, significant corrosion maintenance 
notifications were identified for further analysis. It was found that the distance 
from the coast has a strong influence on the corrosion MTE rate. The MTE rate 
decreases as the costal distance increase until approximately 100km inland. 
Through data grouping analysis (Section 2.2), the transmission line system is clas-
sified into three groups, AveCoastDis ≤ 6km, 6km<AveCoastDis ≤ 55.48km, 
and AveCoastDis > 55.48km. 

Figure 3-5 show the empirical and fitted corrosion MTE rate as a function of 
age for the three groups. It can be clearly seen that TNAs closer to the coast have 
higher corrosion MTE rates. Using the methodology in Section 2.3, we can predic-
tion the number of corrosion MTEs in each calendar year, based on the (clearly 
non-uniform) age of the different assets. Figure 6 displays the expected number of 
corrosion MTEs (computed using Eq. (6). Prior to calendar year 0, the MTE num-
ber are known and displayed as bars, but after year 0, the MTE values represent 
predictions. The information can be disaggregated to display a geographical dis-
tribution of the MTEs (as shown in the bottom two plots in Fig. 6). 
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Figure 3 Prediction of significant corrosion MTE rate for 𝐴𝐴𝑅𝐴𝑜𝑅𝑟𝑡𝐴𝑖𝑟 ≤ 6𝑘𝑘 

 

 

Figure 4 Prediction of significant corrosion MTE rate for 6𝑘𝑘 < 𝐴𝐴𝑅𝐴𝑜𝑅𝑟𝑡𝐴𝑖𝑟 ≤
55𝑘𝑘 
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Figure 5 Prediction of Corrosion (Level 3 & 4) MTE for 𝐴𝐴𝑅𝐴𝑜𝑅𝑟𝑡𝐴𝑖𝑟 > 55𝑘𝑘 

3.1 Prediction of Notifications under Repair Policies 

In this section, the MTE prediction methodology is used to evaluate the effective-
ness of different repair policies. The prediction of the effects based on age-based 
maintenance policies for the predicted MTEs is demonstrated in this section. The 
threshold for replacement age can be different for each group and the policy 
demonstrated is as follows: Group (1): AveCoastDis ≤ 6km, replace when age 
>60 years; Group (2):  6km < AveCoastDis ≤ 55km, replace when age >65 
years; Group (3): AveCoastDis > 55km, replace when age >65 year. Figure 7 
shows prediction of average number of significant corrosion MTEs for each cal-
endar year under the different policies. 

 

Figure 6 Prediction of Average Number of significant corrosion MTEs with calendar 
year (Top), the prediction of significant corrosion MTEs  for each TNA section at T=5 yrs 
(Middle) and T=15 yrs (Bottom) 



F. Li et al. - Reliability Modelling for Electricity Transmission Networks 9 

  

 

Figure 7 Prediction of Average Number of Corrosion MTEs (Level 3 & 4) with calendar 
year using age-based replacement policy 

Instead of replacing on age, one can utilise the prediction of the expected num-
ber of MTEs, i.e. if the expected number of MTEs for a built section exceeds a 
threshold, the built section will be replaced.  For corrosion MTEs, the results of 
this policy for two different thresholds can be seen in Figure 8 (𝑡ℎ𝑟𝑅𝑟ℎ𝑜𝑏𝑏 = 10). 
We see that the threshold-based policy has a similar number of MTEs, but far 
fewer replacements over the time horizon.  

 

Figure 8 Effects of corrosion MTEs prediction based on the threshold-based replacement 
policy (𝑡ℎ𝑟𝑅𝑟ℎ𝑜𝑏𝑏=10) 

4 Conclusion 

Electricity transmission networks are long-life, reliable and linear assets, which 
require innovative reliability modelling approaches to support maintenance deci-
sions. This paper details a methodology that extracting significant unplanned 
maintenance events for critical failure modes, termed Maintenance Triggering 
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Event (MTE), and introduces a new reliability prediction model for their predic-
tion. A regression tree based grouping analysis is integrated with the reliability 
model to analyse the influences by variety of factors on future unplanned mainte-
nance, where it was found that age and geography have significant effects on par-
ticular corrosion MTEs. These results were then used to build the reliability pre-
diction model allowing a decision maker to have an estimate of future unplanned 
maintenance requirements.  

Though only corrosion maintenance event prediction was demonstrated here, 
this model is also capable to predict future unplanned maintenance requirements 
for other failure modes. Two different replacement policies have been integrated 
with the model and it was demonstrated how maintenance actions can be evaluat-
ed in the framework. A case study was conducted using real industry data to test 
the proposed reliability prediction model. The results demonstrate the feasibility 
and benefits of using this approach for TNA maintenance decision support. 
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