
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Suddrey, Gavin, Eich, Markus, Maire, Frederic D., & Roberts, Jonathan M.
(2016)
Learning functional argument mappings for hierarchical tasks from situa-
tion specific explanations. In
Kang, Byeong Ho & Bai, Quan (Eds.)
AI 2016: Advances in Artificial Intelligence, Springer International Publish-
ing, Hobart, Tas, pp. 345-452.

This file was downloaded from: https://eprints.qut.edu.au/99654/

c© 2016 Springer International Publishing AG

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1007/978-3-319-50127-7_30

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/78103304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eprints.qut.edu.au/view/person/Suddrey,_Gavin.html
https://eprints.qut.edu.au/view/person/Eich,_Markus.html
https://eprints.qut.edu.au/view/person/Maire,_Frederic.html
https://eprints.qut.edu.au/view/person/Roberts,_Jonathan_M.html
https://eprints.qut.edu.au/99654/
https://doi.org/10.1007/978-3-319-50127-7_30

Learning Functional Argument Mappings for
Hierarchical Tasks from Situation Specific

Explanations

Gavin Suddrey, Markus Eich, Frederic Maire, Jonathan Roberts

School of Electrical Engineering and Computer Science,
Science and Engineering Faculty, Queensland University of Technology,

Gardens Point, Brisbane, QLD, 4000, Australia
{g.suddrey,f.maire}@qut.edu.au

Abstract. Hierarchical tasks learnt from situation specific explanations
are typically limited in how well they generalise to situations beyond the
explanation provided. To address this we present an approach to learning
functional argument mappings for enabling task generalisation regardless
of explanation specificity. These functional argument mappings allow
subtasks within a hierarchical task to utilise both arguments provided
to the parent task, as well as domain knowledge, to generalise to novel
situations. We validate this approach with a number of scenarios in which
the agent learns generalised tasks from situation specific explanations,
and show that these tasks provide equal performance when compared to
tasks learnt from generalisable explanations.

1 Introduction

In using natural language to explain complex tasks, it is intuitive to describe
such tasks as collections of smaller, more manageable tasks, called subtasks. For
example, the task of hosting a dinner party might include subtasks such as setting
the table, and preparing the meal. Each subtasks can then itself decomposed into
its own collection of subtasks. Describing tasks as collections of subtask forms
the basis of Hierarchical tasks.

A key challenge in learning hierarchical tasks from natural language involves
determining how parameters for any given subtask should be mapped. Prior ap-
proaches have constrained mapping these parameters to either constants [7], or
parameters of the parent task [9]. The inability to exploit domain knowledge
however limits the generalisability of these tasks. Other work has sought to ad-
dress this limitation by introducing the ability to map parameters to functions
of parameters of the parent task, using what we call functional argument map-
pings [10]. These functional argument mappings enable tasks to generalise to a
broader range of situations by taking advantage of domain knowledge.

While functional argument mappings provide increased generalisability, they
currently depend on the user providing generalisable explanations, containing
predicate relations, to generate the correct mappings. For instance, the gener-
alisable explanation for clearing a table would be “put away everything on the

table”, where the objects being put away are a function of the table. Conversely,
in the situation specific explanation, “put away the three cups”, it is unclear how
the cups relate to the table, in which case the agent will forever link clearing the
table with putting away the three cups, regardless of where they are located.

To remove the dependence on users giving generalisable task explanations,
this paper presents an approach to learning functional argument mappings di-
rectly from situation specific explanations. Importantly, we show that our ap-
proach allows agents to learn functional argument mappings to enable task gen-
eralisation with only a) a small number of examples, and b) domain knowledge.

2 Related Work

Previous work has demonstrated the use of natural language as means for com-
manding robots to complete complex real-world tasks including both manipula-
tion tasks [12], and navigation tasks [11]. Research has also shown that agents
can make use of natural language in learning everyday tasks from sources in-
cluding the World Wide Web [13], and situated interactions with users [9].

There exists many different approaches to representing tasks learnt from
natural language. This includes representing tasks as sequences of behaviours,
in which repeated demonstrations and conditional branching are used to provide
generalisability [6, 7, 3]. Other approaches involves representing each task, not as
a sequence of behaviours, but rather as a goal state for a planning problem, and
generating a new plan each time the task is executed. [8].

Task hierarchies provides a means for combining tasks, creating new and
more complex tasks [7, 9]. However, the degree to which these approaches are
able to generalise depends on how parameters of subtasks are mapped. This may
involve limiting the mapping of parameters within these hierarchies to constant
values [7]. These tasks however are then restricted to acting only on the set of
objects used during training. Less restrictive approaches add the ability to map
parameters of subtasks to the parameters of their respective parent tasks [9].
However, any parameter that cannot be mapped to a parameter of the parent
task must still be mapped to a constant, limiting overall generalisability.

More recent work has sought to address this limitation by adding the ability
to explain tasks using binary relations, which allow parameters of a subtask to
map to functions of parameters of the parent [10]. While this approach allows
tasks to generalised to a broader variety of situations however, it depends on the
user articulating any relational predicates necessary to ensuring generalisation
of the task while avoiding the use of situation specific examples.

3 Hierarchical Tasks

Hierarchical tasks provide a mechanism for decomposing complex everyday tasks,
such as serving dinner, into sequences of smaller, more manageable tasks, called
subtasks. Formally, a task hierarchy is composed of a collection of tasks, methods
and operators. The following definitions define tasks and methods.

Fig. 1: A decomposition tree for a simple clearing task. This task is initiated with
the instruction “clear the table” and demonstrates iteration over a set of objects.

Definition 1. A task is any activity that can be undertaken by the agent, and
is comprised of a name and a parameter list [5]. A task is either compound,
and can be decomposed into subtasks through the use of associated methods; or
primitive, and maps to operators that enables the agent to act within its world.

By definition, a task does not specify how it should be accomplished, rather,
this information is deferred to its associated methods or operators. The following
formal definition for methods is based on previous work in learning generalisable
tasks from natural language [10].

Definition 2. A method details how to implement a given compound task. We
define a method as a 5-tuple, m = (N,P,E,Π,Σ), where N is the name of the
task T ; P is the set of preconditions for m; E is the set of positive and negative
effects of m; Π is a sequence of subtasks providing a partial plan for completing
T ; and Σ contains an ordered list of argument mappings for each πi ∈ Π.

Each σi ∈ Σ corresponds to a subtask πi ∈ Π of T , and specifies to what value
each parameter of πi will be mapped. For any argument to πi, its corresponding
element of σi dictates if it will map to a term, where a term is a parameter or
function of a parameter of T , or a constant identifying an object in the domain.

4 Problem Definition

In order to teach an agent a new compound task, the user provides an explanation
that describes the steps in completing the task. Table 1 provides three alternative
explanations for a table clearing task T .

For each general explanations, binary relations relate the table to the objects
that should be put away. This allows us to derive argument mappings that maps
from the parameters of the put away subtask to terms of T .

Table 1: Alternate explanations for a table clearing task. Among the objects on
the table O = {o1, ..., on}, two objects E+ = {o1, o2} do not belong on the table.
Note that OG indicates the instruction is over generalised, entirely covering O.

Quality Instruction

General Put away everything on the table that does not belong on the table.
General (OG) Put away everything on the table.
Specific Put away o1 and o2.

For the specific explanation, the set of objects to be put away is provided
explicitly. This has the effect that argument mappings learnt for the put away
subtask will map to constants identifying these objects. Future invocations of T
will result in the agent not clearing T as intended, but rather tracking down and
putting away the objects described in the initial explanation of T .

Given a specific explanation of T , and the put away subtask π0, we therefore
wish to induce a function f , that for a parameter β of T , produces f(β) = Λ,
where Λ is the set of objects provided for π0. That is, we wish to find a functional
argument mapping for the parameter of π0 describing the objects to be put away.

In order to induce the function f , we reformulate our problem as an Induction
Logic Programming (ILP) problem [4], where the set of positive examples E+

describes the set Λ, while the set of negative examples E− is initially empty.

5 Approach

The following section describes our approach to learning functional argument
mappings from situation-specific explanations.

5.1 Background Knowledge

Knowledge is expressed using OWL, the Web Ontology Language, and provides
a complete description of the set of concepts (unary predicates), roles (binary
predicates), and individuals (objects) within the domain. To Reason about this
knowledge, we use Racer Knowledge Representation System and the new Racer
Query Language (nQRL) [1].

5.2 Finding Pre-Existing Roles

We now describe our induction algorithm (See Algorithm 1), that for a given
argument β of the task T , and a set of objects Λ supplied for some parameter
of the subtask πi, will attempt to learn a function f such that f(β) = Λ.

Lines 4 to 11 of Algorithm 1 search the knowledge base for any role P (x, y)
such that ∀λ ∈ Λ, P (β, λ). For each role P (x, y), we take the functional form
f(x) = {y|P (x, y)}. If f(β) = Λ, execution halts and f is returned. Otherwise,
we update the set of negative examples E− = E−∪f(β)\Λ, and move to the next
role. If no function f is found such that f(β) = Λ, we move to rule induction.

Table 2: A description of the set of roles that comprise the domain in which our
agent reasons. For simplicity, we express each role in predicate logic.

Role Inverse Example

is on(x,y) has on(y,x) is on(cup, table)
is in(x,y) has in(y,x) is in(cup, cupboard)
is located(x,y) has located(y,x) is located(table, kitchen)
is owner(x,y) has owner(y,x) is owner(agent, gripper)
belongs(x,y) not used belongs(vase, table)
is colored(x,y) not used is colored(ball, red)

5.3 Rule Induction

Lines 12 to 22 of Algorithm 1 begin by inducing a rule R(x, y) from the set
of positive E+ and negative E− examples. We induce this rule using the DL-
Reasoner [2] ILP system with the standard CELOE algorithm and a closed-world
reasoner. To ensure generalisation of the induced rule, we bias the search such
that predicates used in generating the rule are limited to only the concepts
associated with β, as well as any concepts for the elements in Λ that encode
state (e.g. Dirty). The generated rule R(x, y) with the highest training accuracy,
defined as the proportion of true results (both positive and negative) of the total
number of examples |E+ ∪ E−| is then returned. If two or more rules have an
equally high training accuracy, the shortest rule is returned.

If DL-Learner is unable to find a rule with a training accuracy of 1, or the
generated rule has been induced previously, further iterations will fail to find a
valid result. Execution is therefore halted, and null is returned to indicate failure.

If a rule R(x, y) is generated with a training accuracy of 1, we take the
functional form f(x) = {y|R(x, y)}. We then test if f meets the requirement
f(β) = Λ. If f(β) = Λ, the function f is returned and execution halted. Other-
wise, any new false positives are added to E−, and the process is repeated.

Fig. 2: A partial view of the taxonomy of concepts used during the evaluation
described in Section 6. Nodes containing triangles can be expanded further.

Algorithm 1 Using the knowledge base (KB), learns a function f , that for a
given argument β, will generate the set of individuals Λ

1: function learn function(β,Λ, KB)
2: E+ ← Λ . Positive examples used during induction
3: E− ← ∅ . Initially empty set of negative examples
4: roles ← search(β,Λ, KB) . Search KB for roles between β and Λ
5: for P ∈ roles do
6: f(x)

def
= {y|P (x, y)} . define function for P

7: if f(β) = Λ then
8: return f
9: end if

10: E− ← E− ∪ f(β)\Λ . Append false positives to negative examples
11: end for
12: while true do
13: accuracy, R ← induce(β,E+, E−, KB)
14: if accuracy < 1 or R generated previously then
15: return null . No solution found
16: end if
17: f(x)

def
= {y|R(x, y)} . define function associated with R

18: if f(β) = Λ then
19: return f
20: end if
21: E− ← E− ∪ f(β)\Λ . Append false positives to negative examples
22: end while
23: end function

6 Experiments

The following section details our evaluation using a series of task learning scenar-
ios; and provides a comparison of tasks learnt with and without our approach.

6.1 Scenarios

Each scenarios involves learning a task from a situation specific explanation us-
ing the task learning approach described in [10], extended with Algorithm 1.

Scenario 1 - Putting Away Objects: This scenario involved learning a
put away task T , initiated with the command “put away the knife”. T contained
only a single subtask π0 explained with: “Move the knife to the kitchen drawer.”

As the first argument provided for π0, the knife, matched the argument pro-
vided for T , the associated parameter of π0 was mapped directly to the parameter
of T . However, as the argument provided for the second parameter of π0 did not
match any argument to T , the agent initiated a learning problem to explain this
parameter, in which β = knife and Λ = {kitchen drawer}.

Given β and Λ, the Algorithm 1 learnt the function f(x) = {y|belongs(x, y)}.
We then apply f(knife) which correctly generates {kitchen drawer}.

Table 3: Completion rates and number of primitive tasks for each planning problem.

Put Away Clear 1 Clear 2

Task Type Complete Primitives Complete Primitives Complete Primitives

Generalised Yes 104 Yes 128 Yes 104
Specific (Learning) Yes 104 Yes 128 Yes 104
Specific (No Learn) No 104 No 120 No 80

Scenario 2 - Clearing the Table I: For the second scenario the agent learnt
a clear task T . The explanation provided for T , initiated with the command
“clear the table”, contained only a single subtask π0, explained as follows: “Put
away the red cup, the blue cup and the green cup.”

In the explanation provided, the subtask π0, was provided with a set of cups
O. As O was not provided for T , the agent initiated a learning problem in which
β = table, and Λ = O. For this scenario, O contained all objects on the table.

From these inputs, we learnt the function f(x) = {y|has on(x, y)}. Calling
f(table) then correctly generates the set O. This function will however include
any objects that belong on the table, if present in future.

Scenario 3 - Clearing the Table II: The third scenario involved the agent
learning a clear task from the explanation provided previously in Scenario 2.
However, in this scenario, a vase was added to the table prior to learning. This
vase belongs on the table and should therefore not be moved.

For this scenario, O now contains the set of cups and a vase. Given β =
table and Λ = O\{vase}, the learning algorithm generates the function f(x) =
{y|has on(x, y)∧¬belongs(y, x)}. Calling f(table) correctly generated Λ.

6.2 Quantitative Evaluation

Table 3 compares the problem solving ability of tasks learnt in Section 6.1 (Spe-
cific (Learning)) to those without the ability to learn functional mappings (Spe-
cific (No Learn)); and tasks learnt with generalised explanations (Generalised).

The generalised put away task was explained using the instruction “move the
knife to where it belongs”. The first generalised clear task was explained with:
“put away everything on the table”. The final clear task was explained with:
“put away everything on the table that does not belong on the table”.

Each problem required the agent to affect a number of object. This included
putting away 13 items in the first problem, and clearing 5 tables in the remaining
two. The number of primitive tasks was recorded for each problem.

7 Conclusion

In this paper we have presented for approach for learning functional argument
mappings from situation specific task explanations. We show that an agent was
able to learn generalisable tasks from a situation specific task explanations in

a number of scenarios. We also provide a comparison of these tasks to tasks
learnt from both generalisable explanations, and situation specific explanations
in which the agent was unable to learn functional mappings. We show that
tasks learnt using our approach were capable of equalling the performance of
tasks learnt from generalisable explanations. At present our approach relies on
two assumptions. First, that the agent has complete knowledge of its domain,
and second, that generated functions will generalise in a way that matches the
intention of the user. We plan to address these assumptions in future work.

References

1. Haarslev, V., Möller, R.: Description of the RACER System and its Applications.
In: International Workshop on Description Logics. vol. 1, pp. 132–142 (2001)

2. Lehmann, J.: DL-Learner: Learning Concepts in Description Logics. Journal of
Machine Learning Research 10, 2639–2642 (2009)

3. Meriçli, C., Klee, S., Paparian, J., Veloso, M.: An Interactive Approach for Situated
Task Teaching through Verbal Instructions. AAAI (2013)

4. Muggleton, S.: Inductive Logic Programming. New Generation Computing 8(4),
295–318 (feb 1991)

5. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.:
SHOP2: an HTN planning system. Journal of Artificial Intelligence Research 20(1),
379–404 (dec 2003)

6. Nicolescu, M.N., Mataric, M.J.: Natural Methods for Robot Task Learning: In-
structive Demonstrations, Generalization and Practice. Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent systems
(AAMAS) p. 241 (2003)

7. Rybski, P., Yoon, K., Stolarz, J., Veloso, M.: Interactive Robot Task Training
through Dialog and Demonstration. In: 2nd ACM/IEEE International Conference
on Human-Robot Interaction (HRI). pp. 49–56. IEEE (2007)

8. She, L., Yang, S., Cheng, Y., Jia, Y., Chai, J.Y., Xi, N.: Back to the Blocks World:
Learning New Actions through Situated Human-Robot Dialogue. In: 15th Annual
Meeting of the Special Interest Group on Discourse and Dialogue. vol. 89 (2014)

9. Shiwali, M., Laird, J.: Learning Goal-Oriented Hierarchical Tasks from Situated
Interactive Instruction. In: Proceedings of the Twenty Eighth AAAI Conference
on Artificial Intelligence. Québec (2014)

10. Suddrey, G., Lehnert, C., Eich, M., Maire, F., Roberts, J.: Teaching Robots Gener-
alisable Hierarchical Tasks Through Natural Language Instruction. IEEE Robotics
and Automation Letters pp. 1–1 (2016)

11. Talbot, B., Schulz, R., Upcroft, B., Wyeth, G.: Reasoning about natural language
phrases for semantic goal driven exploration. In: Proceedings of the Australasian
Conference on Robotics and Automation (2015)

12. Tellex, S., Kollar, T., Dickerson, S., Walter, M.R., Banerjee, A.G., Teller, S.J.,
Roy, N.: Understanding Natural Language Commands for Robotic Navigation and
Mobile Manipulation. In: AAAI (ed.) Proceedings of the Twenty-Fifth AAAI Con-
ference on Artificial Intelligence. pp. 1507–1514. San Francisco (2011)

13. Tenorth, M., Nyga, D., Beetz, M.: Understanding and executing instructions for
everyday manipulation tasks from the World Wide Web. In: 2010 IEEE Interna-
tional Conference on Robotics and Automation. pp. 1486–1491. IEEE (may 2010)

