
QoS-guaranteed Resource Provisioning for
Cloud-based MapReduce

A THESIS SUBMITTED TO

THE SCIENCE AND ENGINEERING FACULTY

OF QUEENSLAND UNIVERSITY OF TECHNOLOGY

IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Xiaoyong Xu

Science and Engineering Faculty

Queensland University of Technology

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/78102092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

QUT Verified Signature

ii

Abstract

MapReduce, a popular programming model for big data processing, has been successfully

implemented on various computing platforms such as cluster computing and grid computing.

The recent advent of cloud computing provides a new platform for MapReduce computations.

In cloud computing, MapReduce has been implemented as a service that can be delivered

to users over the Internet. By making use of the unlimited elastic cloud resources (virtual

machines, or VMs) and the pay-as-you-go business model, cloud-based MapReduce is more

powerful and scalable than MapReduce implementations on other platforms. Cloud-based

MapReduce faces a new issue, QoS-guaranteed resource provisioning, which aims to guarantee

the Quality-of-Service (QoS) of MapReduce computations while minimizing their operational

cost. This issue is very challenging in dynamic environments because a fixed resource allocation

may become under-provisioning, leading to QoS violation, or over-provisioning, leading to

unnecessary increases in operational costs.

This thesis makes four contributions through solving the QoS-guaranteed resource problem

of cloud-based MapReduce. Firstly, this thesis derives a series of theoretical results summarized

in theorems and corollaries. The theoretical results define the conditions for the amount and

time for resource scaling-up to guarantee QoS, and also define the condition on the amount

for resource scaling-down to guarantee QoS. The theoretical results, applied in the resource

provisioning framework, help the framework decide when and how much resource needs to be

provisioned. These theoretical results are demonstrated through case studies.

Secondly, the thesis derives a new MapReduce placement algorithm to solve the MRP

problem. The new algorithm helps the resource provisioning framework decide how to place

new MapReduce computations on VMs with minimum costs. It utilizes heterogeneous VMs

to meet the resource requirements of cloud-based MapReduce computations, and effectively

saves more cost than the traditional placement algorithms. As demonstrated in the experimental

iii

results, the new algorithm saves more cost than current placement algorithms.

Thirdly, the thesis derives a new MapReduce consolidation algorithm to solve the MRC

problem. The new algorithm helps the resource provisioning framework decide how to consol-

idate the remaining MapReduce computations with minimum costs. Experimental results show

that the operational cost of cloud-based MapReduce is greatly reduced through using this new

algorithm.

Finally, the thesis derives a novel resource provisioning framework for cloud-based MapRe-

duce. Incorporating the outcomes from the first three perspectives, the framework identifies the

changes in the computation environment that lead to QoS violation or resource waste, and han-

dles the events by applying practical resource provisioning algorithms to adjust resource provi-

sioning. Using that mechanism, the framework guarantees its QoS of cloud-based MapReduce

while reducing the operational cost of cloud-based MapReduce as much as possible when the

computation environment dynamically changes. Experiments demonstrate that the framework

can support a QoS guarantee and that it has a better performance on saving operational costs

than current popular resource provisioning frameworks.

iv

Keywords

MapReduce, cloud computing, quality of service, resource provisioning

v

vi

Acknowledgments

I would like to express my deep gratitude to my principal supervisor, Dr. Maolin Tang for his

constant encouragement and guidance. He has walked me through all the stages of my Ph.D

research. Without his patient instruction and insightful criticism, the completion of my Ph.D

research would not have been possible.

I would also like to own my appreciation to my associate supervisor, Prof. Yu-chu Tian. He

gives me valuable suggestions and numerous supports throughout the course of my Ph.D work.

Special thanks to Queensland University of Technology and China Scholarship Council

(CSC) for their support in the form of a CSC Top-Up scholarship and a CSC Scholarship,

respectively.

Finally, I would like to thank my family and friends for their concerns. They give me great

encouragement when I experience difficulties during my Ph.D research.

vii

viii

Table of Contents

Abstract iii

Keywords v

Acknowledgments vii

Nomenclature xv

List of Figures xxiii

List of Tables xxiii

1 Introduction 1

1.1 Research Background . 1

1.2 Research Motivation . 3

1.3 Research Questions . 5

1.4 Research Problems . 7

1.4.1 Problem 1: Theoretical Study of QoS-guaranteed Resource Provisioning 8

1.4.2 Problem 2: Cloud-based MapReduce Placement 9

1.4.3 Problem 3: Cloud-based MapReduce Consolidation 9

1.4.4 Problem 4: Development of the QoS-guaranteed Resource Provisioning

Framework . 10

1.5 Research Assumptions and Scope . 10

1.6 Major Contributions . 11

ix

1.7 Thesis Outline . 12

1.8 List of Publications . 13

2 Literature Review 15

2.1 State of the Art of QoS-guaranteed Resource Provisioning for Cloud-based

MapReduce . 15

2.1.1 QoS-guaranteed Resource Provisioning for Non-MapReduce Compu-

tations in Cloud Computing . 16

2.1.2 QoS-guaranteed Resource Provisioning for Non-cloud-based MapReduce 18

2.1.3 QoS-guaranteed Resource Provisioning for Cloud-based MapReduce . 21

2.2 Theoretical Study of QoS-guaranteed Resource Provisioning 25

2.2.1 Theoretical Study for Non-cloud-based MapReduce 26

2.2.2 Theoretical Study for Cloud-based MapReduce 26

2.3 MapReduce Placement . 28

2.3.1 Non-cloud-based MapReduce Placement 28

2.3.2 Cloud-based MapReduce Placement 29

2.4 MapReduce Consolidation . 32

2.4.1 VM Consolidation . 32

2.4.2 MapReduce Consolidation . 33

2.5 Resource Provisioning Frameworks for Cloud-based MapReduce 35

2.5.1 Static/Conservative Resource Provisioning Frameworks 35

2.5.2 Static/Accurate Resource Provisioning Frameworks 36

2.5.3 Dynamical Resource Provisioning Frameworks 37

2.6 Summary of Chapter . 38

3 Theoretical Results of QoS-guaranteed Resource Provisioning 41

3.1 Introduction . 41

3.2 Impact of Resource Scaling on MapReduce Computation Time 42

x

3.2.1 Resource Scaling-up . 43

3.2.2 Resource Scaling-down . 45

3.3 Problem Description . 45

3.3.1 Reverse Resource Space . 46

3.4 Theoretical Analysis of QoS-guaranteed Resource Scaling 48

3.4.1 Theoretical Analysis of the Scale-up Issue 48

3.4.2 Theoretical Analysis of the Latest Intervention Time Issue 51

3.4.3 Theoretical Analysis of the Scale-down Issue 53

3.5 Applications of the Theoretical Results . 58

3.5.1 Applications of the Theorems for Resource Scaling-up 58

3.5.2 Applications of the Theorem for Resource Scaling-down 61

3.6 Summary of Chapter . 63

4 Cloud-based MapReduce Placement 65

4.1 Introduction . 65

4.2 Problem Formulation . 67

4.3 Algorithm for the MRP Problem . 70

4.3.1 Placement Pattern Generation Procedure 71

4.3.2 MRP Problem Solution Building Procedure 73

4.4 Evaluation . 74

4.4.1 Construction of Test Instances . 75

4.4.2 Experiments and Results . 76

4.4.3 Discussion . 81

4.5 Summary of Chapter . 81

5 Cloud-based MapReduce Consolidation 83

5.1 Introduction . 83

5.2 Problem Formulation . 84

xi

5.3 Algorithm for the MRC Problem . 87

5.3.1 VM Selection Procedure . 88

5.3.2 Placement Pattern Generation Procedure 89

5.3.3 MRC problem Solution Building Procedure 90

5.4 Evaluation . 93

5.4.1 Construction of Test Instances . 94

5.4.2 Effectiveness Evaluation of MapReduce Consolidation 95

5.4.3 Efficiency Evaluation of Algorithms 96

5.4.4 Discussion . 100

5.5 Summary of Chapter . 100

6 Development of QoS-guaranteed Resource Provisioning Framework 101

6.1 Introduction . 101

6.2 Problem Characterization . 102

6.3 Problem Formulation . 104

6.4 Event-driven Resource Provisioning Framework 105

6.4.1 Framework Architecture . 105

6.4.2 Event-driven Mechanism . 107

6.4.3 Event Handling . 111

6.4.4 Advantages of Our Framework . 111

6.5 Algorithms . 111

6.5.1 Scaling Up Algorithm . 112

6.5.2 Scaling Down Algorithm . 114

6.5.3 Initial Provisioning Algorithm . 116

6.6 Validation and Evaluation . 117

6.6.1 Simulation Setup . 117

6.6.2 Experimental Results . 120

6.7 Summary of Chapter . 126

xii

7 Conclusion and Future Work 129

7.1 Summary of Research . 129

7.2 Major Contributions . 131

7.2.1 New Theoretical Results of QoS-guaranteed Resource Provisioning for

Cloud-based MapReduce . 131

7.2.2 New MapReduce Placement Algorithm for Cloud-based MapReduce . 132

7.2.3 New MapReduce Consolidation Algorithm for Cloud-based MapReduce 132

7.2.4 Novel Resource Provisioning Framework for Cloud-based MapReduce 133

7.3 Future Work . 134

References 147

xiii

xiv

Nomenclature

Abbreviations

IaaS Infrastructure as a Service

IFFD Iterative First Fit Decreasing

MRP MapReduce Placement

MRC MapReduce Consolidation

QoS Quality of Service

VM Virtual Machines

Symbols Chapter

cM Number of existing map workers Ch5

Number of map workers before consolidation Ch6

cR Number of existing reduce workers Ch5

Number of reduce workers before consolidation Ch6

Cm Migration cost Ch6

Cv Cost of using VMs Ch6

D Hard deadline of a MapReduce computation Ch4

J a MapReduce computation Ch7

m Number of map tasks, number of VM types Ch4,5

mo Number of the map tasks completed during the period To Ch4

mt Number of the remaining map tasks at the time t Ch4

m′ Number of types of existing VMs Ch5

xv

M0 Number of pre-provisioned map workers Ch4

M+ Number of the map workers to be scaled up Ch4

M− Number of the map workers to be scaled down Ch4

MCPU CPU requirement of a map worker Ch5,6

MMem Memory requirement of a map worker Ch5,6

M ′CPU CPU requirement of an existing map worker Ch5

M ′Mem Memory requirement of an existing map worker Ch5

M+ Variable to which R+ is mapped

in the reverse resource space Ch4

n Number of new MapReduce computations Ch5

Number of remaining MapReduce computations Ch6

n′ Number of existing MapReduce computations Ch5

p Price of a VM Ch5,6

r Number of reduce tasks Ch4

ro Number of the reduce tasks completed during the period To Ch4

rt Number of the remaining reduce tasks at the time t Ch4

R0 Number of pre-provisioned reduce workers Ch4

R+ Number of the reduce workers to be scaled up Ch4

R− Number of the reduce workers to be scaled down Ch4

RCPU CPU requirement of a reduce worker Ch5,6

RMem Memory requirement of reduce worker Ch5,6

R′CPU CPU requirement of an existing reduce worker Ch5

R′Mem Memory requirement of an existing reduce worker Ch5

R+ Variable to which R+ is mapped

in the reverse resource space Ch4

t Time of resource scaling Ch4

tA Arrival time of a MapReduce computation Ch7

xvi

tM Number of map workers needed to guarantee QoS Ch5

tR Number of reduce workers needed to guarantee QoS Ch5

TE End time of the whole system Ch7

T avg
m Average duration of map tasks Ch4

Tmax
m Maximum duration of map tasks Ch4

Tm+(M+) Duration of map phase after resource scaling up Ch4

T ∗m+(M+) Function to which Tm+(M+) is mapped

in the reverse resource space Ch4

Tm−(M−) Duration of map phase after resource scaling down Ch4

T ∗m−(M−) Function to which Tm−(M−) is mapped

in the reverse resource space Ch4

To Time delay of resource scaling-up Ch4

Basic charge time unit of a VM Ch7

T avg
r Average duration of reduce tasks Ch4

Tmax
r Maximum duration of reduce tasks Ch4

Tr+(R+) Duration of reduce phase after resource scaling up Ch4

T ∗r+(R+) Function to which Tr+(R+) is mapped

in the reverse resource space Ch4

Tr−(R−) Duration of reduce phase after resource scaling down Ch4

T ∗r−(R−) Function to which Tr−(R−) is mapped

in the reverse resource space Ch4

T+(M+, R+) Total MapReduce duration after resource scaling up Ch4

T ∗+(M+,R+) Function to which T+(M+, R+) is mapped

in the reverse resource space Ch4

T−(M−, R−) Total MapReduce duration after resource scaling down Ch4

T ∗−(M−,R−) Function to which T−(M+, R−) is mapped

in the reverse resource space Ch4

xvii

TE End time of a worker Ch7

T S Start time of a worker Ch7

Tk(W) Function calculating the duration

of a MapReduce computation Ch7

Tj(W) Function calculating the duration of a VM Ch7

V A new VM instance Ch5,6,7

V CPU CPU capacity of a VM Ch5,6,7

V Mem Memory capacity of a VM Ch5,6,7

V s Worker placement of a new VM Ch5

Worker placement of a VM before consolidation Ch6

V Multiset of new VMs Ch5

Multiset of existing VMs Ch6

V ′ An existing VM instance Ch5

V ′s Worker placement of an existing VM Ch5

Worker placement of a VM after consolidation Ch6

V′ Multiset of existing VMs Ch5

W a worker Ch7

WCPU CPU requirement of a worker Ch7

WMem Memory capacity of a worker Ch7

W Multiset of workers Ch5,6,7

xM Number of new map workers Ch5

Number of map workers after consolidation Ch6

xR Number of new reduce workers Ch5

Number of reduce workers after consolidation Ch6

Greek Letters

α Binary number Ch4

β Binary number Ch4

xviii

γ Binary number Ch4

Superscripts

max Maximum value Ch4

min Minimum value Ch4

up Upper bound Ch4

low Lower bound Ch4

Subscripts

i Integer representing the ith MapReduce computations Ch5,6

Integer representing the ith worker Ch7

j Integer representing the jth type of VMs Ch5,6

Integer representing the jth VM Ch7

k Integer representing the kth VM Ch5,6

Integer representing the kth MapReduce computation Ch7

xix

xx

List of Figures

1.1 Relationship of the four research problems . 7

3.1 Process of a typical MapReduce computation 43

3.2 QoS-guaranteed scaling-up areas . 51

3.3 QoS-guaranteed scaling-down areas . 55

3.4 Distribution of the scaling-down solutions when mt > 0 57

3.5 Distributions of the computation times of the WordCount computations after

resource scaling-up . 60

3.6 Distributions of the computation times of the TeraSort computations after re-

source scaling-up . 60

3.7 Distributions of the computation times of the WordCount computations after

resource scaling-down . 62

3.8 Distributions of the computation times of the TeraSort computations after re-

source scaling-down . 62

4.1 Comparison of the four algorithms on the cost of using VMs when the number

of existing VMs varied . 77

4.2 Comparison of the four algorithms on the cost of using VMs when the number

of MapReduce computations varied . 78

4.3 Comparison of the four algorithms on the cost of using VMs when the number

of workers in each of the MapReduce computations varied 79

4.4 Scalability of NCA . 80

xxi

5.1 Comparison of the cost of using VMs with MapReduce consolidation with that

without MapReduce consolidation . 96

5.2 Comparison of NCA and the FFD-based algorithm for the TeraSort computations 97

5.3 Comparison of NCA and the FFD-based algorithm for the WordCount compu-

tations . 98

5.4 Computation times of NCA when the number of VMs to be consolidated changed 99

6.1 The architecture of event-driven resource provisioning framework 106

6.2 Events and actions . 107

6.3 Distributions of the computation times of small, medium and large computa-

tions when deadline tightness is 1.0 . 120

6.4 Distributions of the computation times of small, medium and large computa-

tions when deadline tightness is 1.2 . 120

6.5 Distributions of the computation times of small, medium and large computa-

tions when deadline tightness is 1.4 . 121

6.6 Distributions of the computation times of small, medium and large computa-

tions under different deadline tightness when deadline tightness is 1.6 121

6.7 Distributions of the computation times of small, medium and large computa-

tions under different deadline tightness when deadline tightness is 1.8 121

6.8 Performance of the static and event-driven resource provisioning frameworks

on deadline-meeting percentages . 122

6.9 Performance of the static and event-driven resource provisioning frameworks

on cost of using VMs . 123

6.10 Performance of the static and event-driven resource provisioning frameworks

on deadline-meeting percentages . 123

6.11 Performance of the static and event-driven resource provisioning frameworks

on cost of using VMs . 123

6.12 The number of using VMs when the number of running MapReduce computa-

tions changes over time . 125

6.13 The number of using VMs when the environment performance changes over time127

xxii

List of Tables

4.1 VM types . 75

4.2 Resource requirements of the workers with different input sizes 76

5.1 VM types . 94

6.1 Configurations of MapReduce computations 118

6.2 The VM types in Amazon EC2 . 118

xxiii

xxiv

Chapter 1

Introduction

This chapter gives a brief background and outlines the motivation of this research. It then

presents the research questions and the research problems. It concludes with the contributions

of this research and a brief thesis outline.

1.1 Research Background

Big data analytics has recently become a major concern for modern enterprises. A large number

of data sets are generated every day: for example, from Internet, public media and the daily

activities of enterprises. These large data sets hide massive values, helping enterprises improve

their productivity and competitiveness. A new challenge that is how to use big data to create

values efficiently and effectively. To face that challenge, many major enterprises have started

their big data analytics projects. For example, Microsoft has released the Analytic Platform

System, which maintains and analyses big data sets, and has also provided the Azure Intelligent

Systems Service, which is used to collect and manage the big data from Internet of Things

[Numoto, 2015]. IBM has invested over 24 billions of dollars to build a Big Data and Analytics

powerhouse during the last few years [Versace, 2014].

The enormous demands for big data analytics have boosted the development of parallel

programming models. The most popular parallel programming model is MapReduce, which

was first proposed by Google [Dean and Ghemawat, 2008]. When handling big data sets,

MapReduce first breaks a large computation into a number of sub-tasks called map tasks, and

processes these map tasks on a cluster of machines to generate a set of intermediate data in

1

2 CHAPTER 1. INTRODUCTION

parallel. It then assigns a number of sub-tasks called reduce tasks to the machines to process the

intermediate data in parallel. Finally, it returns the required results. Many huge computations

are able to be completed in very short durations using MapReduce. Due to its capability of large-

scale data processing, MapReduce has been widely applied in many commercial and scientific

applications, such as data mining [White et al., 2010, Wu et al., 2014], bioinformatics [Meng

et al., 2011, Taylor, 2010] and machine learning [Chu et al., 2007, He et al., 2013].

An example of a MapReduce application for processing big files, called WordCount, is used

to count the frequency of the 26 letters in the alphabet in a big file. The file is first partitioned

into a number of file splits with the same size, and each split is an input of a map task. The map

tasks are assigned to a cluster of machines. A map function is used to iterate each line of the

file split, and counts the number of the letters in the line. After counting all letters in the file

split, a list of key-value pairs, List < letter, countNum >, is generated, where countNum

is the count number of a letter. This list is then partitioned into several parts, according to

the number of reduce tasks by a hash function hash(Hashcode(letter)ModuloReduceID,

and each part of the list is an input of a reduce task. All the reduce tasks are transferred to

the cluster of machines where all the key-value pairs are merged, sorted, and the list List <

letter, List < countNum >> are generated. For each reduce task, a reduce function is used

to calculate the total number of List < countNum > of each letter, and finally the list List <

letter, totalCountNum > is produced, where totalCountNum is the total number of each of

the letters counted in the big file.

The map and reduce tasks of a MapReduce computation are executed by two kinds of

basic computing units, map workers and reduce workers, respectively. Map/reduce workers are

placed on a cluster of machines so that they can acquire resources such as CPUs and memories

from the machines to execute map/reduce tasks. The placement of map/reduce workers on

machines identifies which machine executes the map/reduce tasks. A map/reduce worker for a

MapReduce computation can be taken as a basic resource unit for that MapReduce computation,

which abstracts the resource (i.e. CPU, memory) requirements of the map/reduce tasks of

that MapReduce computation. The resource requirements of the MapReduce computation are

indicated by the number of workers, rather than by the quantities of these CPUs or memories.

A map/reduce worker also identifies the position where the map/reduce tasks are processed.

MapReduce is originally designed for cluster environments. In this sort of environment, end

1.2. RESEARCH MOTIVATION 3

users have to physically set up and maintain a cluster of machines for MapReduce computations.

The cluster size can be very huge. In 2014, Yahoo! maintained a very large MapReduce

cluster consisting of more than 100,000 CPUs in over 40,000 servers [Tavangar, 2014]. A

very large monetary investment and a very big professional technical team are required to

build and maintain such a big MapReduce cluster, which most enterprises can not afford. The

cluster size is usually fixed and cannot be adjusted as the MapReduce workloads change. In

particular, when the MapReduce workloads increase dramatically, the cluster hardly meets the

performance requirements of the MapReduce computations. In contrast, when the MapReduce

workloads decrease, a number of machines are idle, leading to resource waste. Thus, the cluster-

based MapReduce is not cost-efficient, limiting its usage by small enterprises.

The emergence of cloud computing provides a new computation platform for MapReduce.

Cloud computing provides the reliable and elastic cloud resource (Virtual Machines, or VMs)

[Buyya et al., 2009] to MapReduce computations in a pay-as-you-go manner [Zhou and He,

2014]. VMs for the MapReduce computations are available at any time and are charged by

usage durations. The number of VMs for MapReduce computations can be adjusted on demand.

Multiple types of VMs can be used by MapReduce computations. Different types of VMs have

different resource (i.e. CPUs, memories) capacities and prices. The VMs with larger resource

capacity usually have the higher prices.

Compared with cluster-based MapReduce, cloud-based MapReduce is more powerful, scal-

able and cost-effective. As the MapReduce workloads increase, cloud-based MapReduce rents

more VMs from clouds, or rents more powerful VMs to improve its computation capacity, so as

to meet the performance requirements of its workloads. As the MapReduce workloads decrease,

cloud-based MapReduce reduces the number of VMs or uses cheaper VMs to save the opera-

tional costs of cloud-based MapReduce. Thus, more MapReduce platforms are being moved

from clusters to clouds. Amazon Elastic MapReduce [Amazon, 2015] and Azure MapReduce

[Gunarathne et al., 2010] are two typical examples of cloud-based MapReduce.

1.2 Research Motivation

The emergence of cloud-based MapReduce raises two important issues. One issue is how

to guarantee the Quality of Service (QoS) of cloud-based MapReduce. In cloud computing,

4 CHAPTER 1. INTRODUCTION

MapReduce can be delivered to end users as a service via Internet. The quality of the service,

or QoS, should be guaranteed; this is negotiated by the MapReduce service provider and the end

users. An essential QoS metric is a hard deadline, especially for the hard real-time systems in

clouds, in which a deadline miss may result in a system failure or even a disaster [Garcı́a-Valls

et al., 2014]. The QoS metric particularly in this study is hard deadline. The other important

issue is how to minimize the operational cost of the cloud-based MapReduce. To complete the

MapReduce computations, the cloud-based MapReduce needs to rent the VMs from clouds and

to pay for the usage of the VMs. Thus, the cost of using VMs constitutes the operational cost

of the cloud-based MapReduce.

Then the new problem, QoS-guaranteed resource provisioning, emerges in cloud-based

MapReduce. This new problem is how to guarantee the QoS (i.e. hard deadline) of the

cloud-based MapReduce while minimizing its operational cost. There are two challenges for

solving that problem. One challenge is to determine the amount of VM provisioning needed

for the cloud-based MapReduce computations. As cloud computing is a dynamic environment,

the VMs or network for cloud-based MapReduce computations may experience performance

variability from time to time due to the shared underlying infrastructures [Schad et al., 2010].

The execution time of the same MapReduce computation could be different at different times.

Also, the workloads in cloud computing usually vary over time, and the arrival times of new

MapReduce computations are not known in advance [Ganapathi et al., 2010]. Therefore, the

number of pre-provisioned VMs cannot be accurately estimated. Consequently, either the QoS

will not be met if there are not enough pre-provisioned VMs, or unnecessary costs will be

incurred if pre-provisioned VMs are over supplied.

Another challenge is selecting the right type and number of VMs for a MapReduce compu-

tation and the placement of the MapReduce computation on the selected VMs. The resource

requirements of MapReduce computations are varied, and different types of MapReduce com-

putation may consume different numbers and types of VMs. Also, different placements for

the same MapReduce computation consume different types and numbers of VMs, incurring

different running costs.

Currently, there has been some success in the investigation of the resource provisioning

for MapReduce. Some have investigated how to guarantee the QoS of MapReduce under

cluster environments [Hwang and Kim, 2012, Kc and Anyanwu, 2010, Polo et al., 2010, Shi

1.3. RESEARCH QUESTIONS 5

and Hong, 2013, Verma et al., 2011b, Zhang et al., 2014b]. Others have studied the resource

provisioning for MapReduce in a cloud environment [AbdelBaky et al., 2012, Cardosa et al.,

2011, Chen et al., 2014b, Herodotou et al., 2011, Lama and Zhou, 2012, Malekimajd et al., 2014,

Mattess et al., 2013, Palanisamy et al., 2014, Rao and Reddy, 2012]; but their approaches do not

always guarantee the QoS of MapReduce. Therefore, the QoS-guaranteed resource provisioning

problem is still an open question in cloud-based MapReduce.

This research aims to solve the QoS-guaranteed resource provisioning problem in cloud-

based MapReduces. Through this research presented by this thesis, the QoS of cloud-based

MapReduce will be guaranteed and the operational cost of cloud-based MapReduce should be

reduced as much as possible.

1.3 Research Questions

This research investigates the QoS-guaranteed resource provisioning for cloud-based MapRe-

duce: this provisioning aims at guaranteeing the QoS (i.e. hard deadline) of cloud-based

MapReduce while minimizing its operational cost. Cloud-based MapReduce is a computation

platform in cloud computing environments. In cloud-based MapReduce, MapReduce com-

putations continuously arrive, but the arrival times are not known in advance. Cloud-based

MapReduce rents VMs from a public cloud to execute the MapReduce computations. When

the computation environment changes, the resource provisioning for MapReduce computations

might be insufficient, which leads to QoS violation, or could be more than sufficient, which

incurs unnecessary operational costs. Cloud-based MapReduce supports the dynamical adjust-

ment of resource provisioning as the computation environments vary. When the initial resource

provisioning is insufficient, cloud-based MapReduce can scale up resource provisioning to

speed up computation to meet the QoS. When the initial resource provisioning is more than

sufficient, it can scale down resource provisioning to save operational costs. This explains the

QoS-guaranteed resource provisioning for cloud-based MapReduce.

The QoS-guaranteed resource provisioning for cloud-based MapReduce involves several

research questions. Firstly, cloud-based MapReduce needs to know when to implement the

resource provision. When the new MapReduce computations continuously arrive, cloud-based

MapReduce should decide the right timing of the initial resource provisioning for those new

6 CHAPTER 1. INTRODUCTION

MapReduce computations, such that the QoS cannot be violated because of intervening too

late. Also, it should know when to scale up resource provisioning to avoid the QoS violation

caused by insufficient resource provisioning, and when to scale down resource provisioning to

avoid the cost increase incurred by resource over-provisioning. That raises the first research

question:

Question 1: how can the timing of the resource provisioning for MapReduce computations

be determined?

Having decided the timing of the resource provisioning, cloud-based MapReduce should

calculate how much resource is required for the MapReduce computations. For new MapRe-

duce computations, it has to determine the amount of the initial resource provisioning such that

the QoS can be met while the operational cost is minimized. For MapReduce computations

requiring resource scaling-up, it should decide the amount of resource to be added, such that

the QoS is guaranteed while the operational cost is minimum. Meanwhile, for MapReduce

computations requiring resource scaling-down, cloud-based MapReduce needs to know how

much resource can be reduced at most, such that the operational cost is minimized while the

QoS is still guaranteed. That raises the second research question:

Question 2: how can the amount of the resource provisioning for MapReduce computations

be determined?

Once the amount of the resource provisioning is determined, cloud-based MapReduce needs

to organize the right type and number of VMs to meet the resource requirement, and also needs

to assign the MapReduce computations to the VMs. That process will be discussed in two

situations. The first situation is when new MapReduce computations arrive or resource scaling-

up needs to be done. In this situation, cloud-based MapReduce has to determine the size and

type of new VMs and the placement of the MapReduce computations on the VMs, such that

the cost of using VMs is minimized while the resource requirement is met. That raises the third

research question:

Question 3: how can the number and types of VMs, and the placement of MapReduce

computations on VMs be selected?

The second situation is when some MapReduce computations are completed. In this sit-

uation, some VMs could release redundant resources, so the placement of the MapReduce

1.4. RESEARCH PROBLEMS 7

computations needs to be re-organized to allow the idle VMs to be shut down to save operational

cost. That raises the fourth research question:

Question 4: how can MapReduce computations be consolidated on VMs?

Answering all these research questions will solve the QoS-guaranteed resource provisioning

problem in cloud-based MapReduce.

1.4 Research Problems

determines
 timing

applied by

input progress
information

New
MapReduce

computatons

New Theoretical
Results

New MapReduce
Placement
Algorithm

(answers Q3)

Problem 1: Theoretical
study of QoS-

guaranteed Resource
Provisioning

Problem 4: Framework Development

Problem 2: Cloud-based
MapReduce Placement

New MapReduce
Consolidation

Algorithm
(answers Q4)

Problem 3: Cloud-based
MapReduce

Consolidation

Trigger
mechaism

(answers Q1)

Novel Resource Provisioning Framework

Resource Provisioning
Algorithms
(answer Q2)

Resource
Allocator

(answers Q3&4)

arrive

Cloud

deployed on

Map
Worker

Reduce
Worker

Map
Worker

Reduce
Worker

MapReduce Computational Environment

map tasks

reduce tasks

VM VM VM…

Map
Worker

Reduce
Worker

Map
Worker

Reduce
Worker

reduce tasks

map tasks

...arrive

places/consolidates
workers on VMs

determines
amount

guide

Figure 1.1: Relationship of the four research problems

This thesis answers these four research questions by proposing a new resource provisioning

framework for cloud-based MapReduce. As shown in Figure 1.1, the framework consists of

three parts, the trigger mechanism, the resource provisioning algorithms and the resource allo-

cator. The trigger mechanism determines the timing of resource provisioning, which answers

Question 1. The resource provisioning algorithms decide the amount of resource provisioning,

8 CHAPTER 1. INTRODUCTION

which answers Question 2. The resource allocator determines the VM provisioning and the

placement of MapReduce computations on VMs, which answers Question 3. The resource

allocator also conducts the consolidation of MapReduce computations on VMs, which answers

Question 4.

To develop such a framework, four research problems need to be solved in advance. The

first is the theoretical study of QoS-guaranteed resource provisioning, which lays the theo-

retical foundation for the development of the framework. The second and third problems

are the cloud-based MapReduce placement and the cloud-based MapReduce consolidation,

respectively. Study of these two problems helps the resource allocator of the framework guide

determine the VM provisioning, the MapReduce placement and the MapReduce consolidation.

The fourth one is the QoS-guaranteed resource provisioning. Based on the outcomes of the

first three research problems, the study of the fourth research problem derives the complete re-

source provisioning framework, which finally solves the QoS-guaranteed resource provisioning

problem in cloud-based MapReduce.

A more detailed description of these four research problems is given as follows.

1.4.1 Problem 1: Theoretical Study of QoS-guaranteed Resource Provisioning

The theoretical study of QoS-guaranteed resource provisioning seeks to find how to quantify the

conditions for QoS-guaranteed resource provisioning on amount and timing. These theoretical

results are used to guide the trigger mechanism of the framework to determine the timing of the

resource provisioning. They are also used to help the resource provisioning algorithms of the

framework to decide the amount of the resource provisioning.

The study of Problem 1 is broken into the studies of the three issues: the scaling-up issue,

the scaling-down issue, and the latest intervention time issue.

The scaling-up issue is raised when new MapReduce computations arrive or when the

initial resource provisioning is insufficient to meet the deadlines of the running MapReduce

computations. For the new MapReduce computations, there is no resource pre-provisioned and

it is necessary to scale up resources to start the execution of the new MapReduce computations.

For the running MapReduce computations, if there is a performance degradation on the VMs or

network, the computation progress will fall behind schedule. Without resource scaling-up, the

1.4. RESEARCH PROBLEMS 9

deadlines will be missed, leading to QoS violation. To avoid deadline misses, it is necessary to

scale up resource to accelerate the computation progress. Then the scaling-up issue is raised:

how to find the condition for resource scaling-up on an additional amount to guarantee QoS.

The latest intervention time issue characterizes the situation in which the resource scaling-

up is activated too late to meet the deadlines. In this case, no pending tasks are left and

consequently any additional resources do not help speed up the computation. To avoid this

situation, the latest intervention time issue needs to be addressed. This issue is how to find the

condition for resource scaling-up on intervention time to guarantee QoS.

The scaling-down issue describes the scenario when the pre-provisioned resource is over-

provisioned for guaranteeing MapReduce deadlines. If there is a performance promotion on

the VMs or network, the computation progresses ahead of the schedule. To minimize resource

consumption, the resource provisioning needs to be scaled down. The scaling-down issue is then

raised: how to find the condition for resource scaling-down on removal amount to guarantee

QoS.

1.4.2 Problem 2: Cloud-based MapReduce Placement

The Cloud-based MapReduce placement problem is how to choose the types of VMs and the

number of VMs of each type and then how to place the MapReduce computations on VMs. The

problem aims at minimizing the cost of using VMs while meeting the resource requirement.

Through the study of this problem, a cloud-based MapReduce placement algorithm is derived

and applied by the resource allocator to answer Question 3. The algorithm helps the resource

allocator of the framework to decide the VM provisioning and the placement of MapReduce

computations on VMs.

1.4.3 Problem 3: Cloud-based MapReduce Consolidation

The Cloud-based MapReduce consolidation problem is how to re-assign the placement of the

MapReduce computations on the VMs. The problem focuses on minimizing the operational

cost while meeting the resource requirement. Through the study of this problem, a cloud-based

MapReduce consolidation algorithm is derived and used by the resource allocator to answer

Question 4. The algorithm guides the resource allocator of the framework to consolidate the

10 CHAPTER 1. INTRODUCTION

MapReduce computations on VMs.

1.4.4 Problem 4: Development of the QoS-guaranteed Resource Provisioning Frame-

work

This problem is how to develop a new resource provisioning framework for cloud-based MapRe-

duce. Through the study of this problem, a resource provisioning framework for cloud-based

MapReduce that guarantees the QoS of cloud-based MapReduce while minimizing the op-

erational cost in dynamical computational environments is derived. The framework answers

Question 1 through introducing a trigger mechanism. This trigger mechanism is based on the

theoretical results of the QoS-guaranteed resource provisioning timing conditions. It determines

the timing of the initial resource provisioning for new MapReduce computations, and also the

timing of the resource scaling-up/down for the MapReduce computations at runtime.

By introducing several resource provisioning algorithms, the framework answers Question

2. The resource provisioning algorithms apply the theoretical results of the QoS-guaranteed

resource provisioning the amount conditions, and calculate the minimum required amount of

the resource provisioning for the MapReduce computations to meet QoS.

Using a resource allocator the framework also answers Questions 3 and 4. The resource

allocator applies the cloud-based MapReduce placement algorithm from the study of Problem

2 to conduct the VM provisioning and the MapReduce placement. That application answers

Question 3. Meanwhile, the resource allocator adopts the cloud-based MapReduce consoli-

dation algorithm from the study of Problem 3 to implement MapReduce consolidation. That

application answers Question 4.

1.5 Research Assumptions and Scope

This section introduces several important assumptions on cloud-based MapReduce, that will

be used in studying the four research problems. The research scope is identified in these

assumptions.

The first assumption is that the cloud-based MapReduce studied in this research is a user of

Infrastructure as a service (IaaS) provided by cloud computing. The cloud-based MapReduce

1.6. MAJOR CONTRIBUTIONS 11

uses the VMs rented from IaaS to execute MapReduce computations, and the only operational

cost of cloud-based MapReduce is the cost of using VMs. The details about the physical

machines and networks in cloud data centres are transparent to the cloud-based MapReduce. It

has no information about how the VMs are placed on physical machines, how they are migrated

between physical machines, and how the data are transferred and stored in cloud data centres.

Therefore, the cloud-based MapReduce in this study does not consider the costs incurred in the

cloud data centres like the energy consumption and the migration cost of VMs.

The second assumption is that the cloud-based MapReduce studied in this research does not

handle the configuration and the scheduling of the map/reduce tasks of a MapReduce computa-

tion. The cloud-based MapReduce tackles only the amount and timing of resource provisioning

for MapReduce computations. The configuration and the scheduling of the map/reduce tasks of

a MapReduce computation are out of the scope of this research, and are customized by the end

users of the cloud-based MapReduce. Before submitting a MapReduce computation, the end

users need to configure the number of the map/reduce tasks, the split size of every map/reduce

input, the data placement and the deadline of the MapReduce computation. The end users

also need to configure the scheduling policy of the map/reduce tasks, which determines the

execution sequence of the map/reduce tasks. When the MapReduce computation is submitted,

the cloud-based MapReduce executes it using the end users’ the configuration and scheduling

policy.

The third assumption is that the cloud-based MapReduce studied in this research considers

two basic types of resources for MapReduce computations: i,e. CPUs and memories. Other

resources such as I/O and disk spaces are not considered. The cloud-based MapReduce is an

end user of IaaS, but current IaaS does not provide the information about network I/O rates and

disk I/O rates, so this information is not considered by the cloud-based MapReduce studied in

this research. As MapReduce computations are usually not disk-bound, so the disk spaces are

also not considered by the cloud-based MapReduce.

1.6 Major Contributions

Addressing the four research problems provides the four contributions outlined in this section:

12 CHAPTER 1. INTRODUCTION

• New theoretical results of QoS-guaranteed resource provisioning for cloud-based MapRe-

duce. This research proposes a series of theoretical results for QoS-guaranteed resource

provisioning in cloud-based MapReduce. These theoretical results characterize the re-

quired conditions of the amount and time of resource scaling for guaranteeing the QoS of

cloud-based MapReduce.

• A new MapReduce placement algorithm for cloud-based MapReduce. The new place-

ment algorithm helps the framework place new MapReduce computations on VMs with

minimum operational costs.

• A new MapReduce consolidation algorithm for cloud-based MapReduce. The new con-

solidation algorithm helps the framework consolidate MapReduce computations on VMs

with minimum operational costs when some MapReduce computations are completed.

• A novel QoS-guaranteed resource provisioning framework for cloud-based MapReduce.

This framework guarantees the QoS of cloud-based MapReduce with minimum opera-

tional costs by dynamically adjusting the resource provisioning when the environment

changes.

1.7 Thesis Outline

This thesis is organised in seven chapters:

• Chapter 2 reviews the literature related to this research topic. This chapter also identifies

the uniqueness of this research and the research gaps that exist in the current literature.

• Chapter 3 presents the theoretical analysis of QoS-guaranteed resource provisioning. The

theoretical results derived from this chapter are used in the design of the new resource pro-

visioning framework in Chapter 6, and lay the theoretical foundation for QoS-guaranteed

resource provisioning.

• Chapter 4 proposes a new MapReduce placement algorithm that solves the cloud-based

MapReduce consolidation problem.

• Chapter 5 proposes a new MapReduce consolidation algorithm that solves the cloud-

based MapReduce consolidation problem.

1.8. LIST OF PUBLICATIONS 13

• Chapter 6 develops a novel event-driven resource provisioning framework for cloud-based

MapReduce. The framework adopts the results from Chapters 3, 4 and 5, and successfully

solves the QoS-guaranteed resource provisioning problem.

• Chapter 7 summarizes the research presented in this thesis. Meanwhile, some future

directions are given in the chapter.

1.8 List of Publications

From the research of this PhD project, seven papers have been published in or submitted to

journals and conferences. The main results of Chapter 3 have been discussed in the following

paper published in an IEEE transactions journal:

• Xu, X, Tang, M and Tian, Y.C. (2016). Theoretical results of QoS-guaranteed resource

scaling for cloud-based MapReduce. IEEE Transactions on Cloud Computing, accepted

on 8th, February, 2016, in press.

The main outcomes of Chapter 4 have been published in the following three papers:

• Xu, X and Tang, M (2015). A new approach to the cloud-based heterogeneous MapRe-

duce placement problem. IEEE Transactions on Services Computing, accepted on 15th,

May, 2015, in press.

• Xu, X and Tang, M (2014). A new grouping genetic algorithm for the MapReduce

placement problem in cloud computing. In Proceedings of 2014 IEEE Congress on

Evolutionary Computation, pages 1601-1608. (Tier ’A’)

• Xu, X and Tang, M (2014). A more efficient and effective heuristic algorithm for the

MapReduce placement problem in cloud computing. In Proceedings of 2014 IEEE In-

ternational Conference on Cloud Computing, pages 264-271. (Tier ’B’, acceptance rate:

18%)

Besides these, a paper which discusses the operation model of MapReduce has been published:

• Xu, X and Tang, M (2013). A comparative study of the semi-elastic and fully-elastic

MapReduce models. In Proceedings of the 2013 IEEE International Conference on

14 CHAPTER 1. INTRODUCTION

Granular Computing (GrC), IEEE, Beijing Institute of Technology, Beijing, China, pages

380-385.

Chapter 2

Literature Review

This chapter reviews the published literature related to the research issue being investigated in

this study. Section 2.1 reviews the literature regarding the state of the art of QoS-guaranteed

resource provisioning for cloud-based MapReduce. Sections 2.2 to 2.5 review the publications

related to the study’s four research problems: the theoretical study of QoS-guaranteed resource

provisioning, the cloud-based MapReduce placement, the cloud-based MapReduce consoli-

dation and the resource provisioning frameworks for cloud-based MapReduce, respectively.

Section 2.6 gives the chapter summary.

2.1 State of the Art of QoS-guaranteed Resource Provisioning for Cloud-

based MapReduce

Guaranteeing the cloud-based MapReduce service quality, known as QoS-guaranteed resource

provisioning, is an important issue. This issue also exists for non-MapReduce computations in

cloud computing and for non-cloud-based MapReduce computations.

This section reviews the studies of QoS-guaranteed resource provisioning for both non-

MapReduce computations in cloud computing (Section 2.1.1) and non-cloud-based MapReduce

computations (Section 2.1.2), before reviewing the studies for cloud-based MapReduce com-

putations (Section 2.1.3). In this section, those studies are each compared with our study to

identify the differences between them and ours.

15

16 CHAPTER 2. LITERATURE REVIEW

2.1.1 QoS-guaranteed Resource Provisioning for Non-MapReduce Computations in Cloud

Computing

The review considers the research projects that focused on aspects of QoS-guaranteed resource

provisioning for non-MapReduce computations in cloud computing, before noting their rele-

vance for our study. Garg et al. [2011] studied the resource provisioning problem for different

types of application workloads in cloud computing. They proposed a resource provisioning

mechanism based on admission control, which would meet the QoS (i.e. deadline) requirements

of those application workloads in cloud computing while maximizing the profit of the cloud

service provider. However, as the workflows of their application workloads are different from

that of the cloud-based MapReduce computations in this study, their technology cannot be

applied in the QoS-guaranteed resource provisioning issue in this study.

Ai et al. [2011] studied the resource allocation and scheduling problems of multiple com-

posite web services in cloud computing. They tried to minimize the running costs of multiple

composite web services while meeting the quality of the services (i.e. deadlines). They solved

the problems by using a Cooperative Coevolutionary Genetic Algorithm (CCGA). However,

the structure and process of the multiple composite web services are totally different from

those of MapReduce computations in this study, so their algorithm cannot be used for the QoS-

guaranteed resource provisioning issue in this study.

Singh and Chana [2015] considered how to meet the required QoS level of cloud-based

workloads while minimizing the usage cost of cloud resource. They identified multiple QoS

metrics, such as execution time, resource utilization, and availability, for different types of

cloud-based workloads. The QoS-based resource provisioning approach they proposed for their

problem was efficient in reducing the usage cost of cloud resource while meeting multiple QoS

metrics. However, the structure and process of the workloads in their research are different from

those of the cloud-based MapReduce computations in this study. Their resource provisioning

approach is used specifically for their workloads, rather than for cloud-based MapReduce com-

putations.

Unlike those research examples, the research of Beloglazov et al. [2012] investigated how

to meet the QoS (i.e. deadline) requirements of cloud-based applications such as workloads

while minimizing the energy consumption of cloud data centers. They considered the variations

in workloads, and proposed energy-aware resource allocation heuristics to solve that problem.

2.1. STATE OF THE ART OF QOS-GUARANTEED RESOURCE PROVISIONING FOR
CLOUD-BASED MAPREDUCE 17

However, experimental results showed that the deadlines of the cloud-based workloads were not

always met. In addition, the structure and process of the cloud-based workloads are different

from those of cloud-based MapReduce computations. Thus, their heuristics cannot be applied

to address the QoS-guaranteed resource provisioning issue in our research.

Xiao et al. [2013] explored how to satisfy the QoS (i.e. deadline) requirements of cloud-

based applications with the minimum energy consumption of cloud data centers via dynamic

resource allocation. They developed a set of heuristics which combined different types of

cloud-based applications on VMs, so as to reduce the number of VMs used. However, our

QoS-guaranteed resource provisioning issue considers the cost of using VMs, not the energy

consumption. As the cloud-based applications studied in their work are very general, their

resource provisioning approach is not specially designed for our cloud-based MapReduce com-

putations. Thus, their approach cannot be used for the QoS-guaranteed resource provisioning

issue in our research.

Zhang et al. [2014a] presented a heterogeneity-aware dynamic capacity provisioning ap-

proach for cloud data centers that aimed at meeting the QoS (i.e. deadline) requirements

of cloud workloads while minimizing the energy consumption of cloud data centers. This

approach dynamically adjusted the number of VMs to minimize the energy consumption and

the scheduling delay. However, their approach cannot be used for our QoS-guaranteed resource

provisioning issue since our issue is how to minimize the cost of using VMs rather than about

energy consumption.

Daryani and Thakare [2015] proposed a scheduling algorithm for the cloud resource provi-

sioning of cloud service providers. That algorithm aimed at adopting dynamic pricing strategies

to maximize the revenues of cloud service providers while meeting the deadlines of cloud-based

jobs. However, the cloud-based jobs studied in their work are very general. This scheduling

algorithm is not designed specially for MapReduce computations, so cannot be directly used

for MapReduce computations.

In researching the application of energy-efficient and QoS management in cloud computing,

Sampaio and Barbosa [2016] analyzed the performance of three scheduling algorithms on

energy efficiency. However, these scheduling algorithms are specially designed for minimizing

energy consumption, rather than for the QoS-guaranteed resource provisioning for cloud-based

MapReduce computations, which aims to minimize the cost of using VMs.

18 CHAPTER 2. LITERATURE REVIEW

Several researchers adopted evolutionary approaches to address the deadline-constrained

resource scheduling problems in cloud computing. Chen et al. [2015] proposed a genetic

algorithm to solve a cost-minimization and deadline-constrained workflow scheduling mode

in cloud computing. Their proposed algorithm focused on how to minimize the execution

cost while meeting deadline constraints. Similarly, Li et al. [2015] studied the cloud resource

scheduling problem which was how to minimize the overall workflow execution cost while

satisfying deadline constraints. They designed a coevolutionary multiswarm particle swarm

optimization (CMPSO) algorithm to solve that problem. Furthermore, Zhan et al. [2015]

presented a comprehensive survey of evolutionary approaches for cloud resource scheduling

problems. But all these evolutionary approaches are not specially designed for the scheduling

problems of cloud-based MapReduce computations, and cannot be directly adopted to solve the

QoS-guaranteed resource provisioning problem for cloud-based MapReduce computations.

In summary, there has been a variety of research on the QoS-guaranteed resource provision-

ing for non-MapReduce computations in cloud computing. However, as the resource provision-

ing approaches reviewed are not specially designed for cloud-based MapReduce computations,

they cannot be directly used to address the QoS-based resource provisioning issue for the cloud-

based MapReduce computations that is central to our study.

2.1.2 QoS-guaranteed Resource Provisioning for Non-cloud-based MapReduce

When considering QoS-guaranteed (i.e. deadline-guaranteed) resource provisioning for non-

cloud-based MapReduce, the review focused first on five related research projects. Verma et al.

[2008] proposed a resource provisioning mechanism to meet the deadlines of cluster-based

MapReduce computations. Kc and Anyanwu [2010] proposed a realtime cluster scheduling

approach to meet the user specified deadline constraints for MapReduce computations.

Polo et al. [2010] proposed a deadline-aware task scheduler for cluster-based MapReduce

computations. This scheduler dynamically predicted the performance of the running cluster-

based MapReduce computations and the scaled up/down resource provisioning for the cluster-

based MapReduce computations. It could reduce the energy consumption of the cluster while

meeting the deadline constraints of the cluster-based MapReduce computations.

Dong et al. [2011] developed a two-level MapReduce scheduler to address the deadline-

guarantee issue for mixed realtime and non-realtime MapReduce computations in clusters. The

2.1. STATE OF THE ART OF QOS-GUARANTEED RESOURCE PROVISIONING FOR
CLOUD-BASED MAPREDUCE 19

scheduler used a sampling-based approach to estimate the completion times of map/reduce

tasks and then used an allocation model to dynamically adjust the resource provisioning for

map/reduce task execution to maximize the cluster utilization while meeting the deadlines of

the realtime and non-realtime MapReduce computation.

Liu et al. [2012] formulated the deadline-guaranteed resource provisioning problem in cluster-

based MapReduce computations as a preemptive scheduling problem and developed a preemp-

tive scheduling approach to address that scheduling problem.

All these research examples assume that the total number of machines for MapReduce

computations is fixed. When the resource requirements of the workloads exceed the computing

capacity of the cluster for the MapReduce computations, the deadlines of the MapReduce

computations will be violated. Our study differs, in that it assumes that the machines for

MapReduce computations can be added/removed on demand, so we are unable to use their

mechanism in our research.

Four research projects were reviewed in the second group. Polo et al. [2013] studied the

problem of meeting the deadline constraints of cluster-based MapReduce computations using

a heterogeneous cluster environment. They proposed a scheduler to manage the MapReduce

workloads to meet the high level of the deadline constraints. Wang et al. [2014] proposed a

sequence-based scheduler to address the deadline-guarantee issue in cluster-based MapReduce

computations. This scheduler optimized the sequence of the cluster-based MapReduce compu-

tations to reduce the deadline violation rate. Teng et al. [2015] proposed a maximum urgency

scheduler for Hadoop MapReduce. This scheduler was applied in heterogeneous MapReduce

environments with a low computation complexity and maximized the number of the MapRe-

duce computations meeting their deadlines. All four schedulers presented by these different

researchers cannot ensure that every MapReduce computation meets its deadline. As our study

is how to meet the deadline of every MapReduce computation these schedulers cannot be used

for this study.

The review then grouped three studies. Zhang et al. [2012] considered how to meet the dead-

line constraints of cluster-based MapReduce computations through optimizing data placement.

They formulated the data placement optimization problem as an integer bi-level programming

20 CHAPTER 2. LITERATURE REVIEW

problem and proposed a bi-level genetic algorithm to solve that programming problem. Simi-

larly, Tang et al. [2012] proposed a task scheduler for meeting the deadline constraints of cluster-

based MapReduce computations. This scheduler distributed data in terms of the capacity level

of machines in a cluster, which improved data locality. Also, this scheduler estimated the task

completion time according to the capacity level of machines in the cluster and then decided

the resource provisioning for map/reduce task execution. Wang and Li [2015] studied the

task scheduler for MapReduce computations in geo-distributed data centers on heterogeneous

networks. Their work considered data locality and data transfer when designing the scheduler.

However, the cloud-based MapReduce in our study is a computation platform deployed on top

of cloud computing and cannot manage the data placement as the storage layer is transparent to

it. Thus, these approaches cannot be used to address the QoS-guaranteed resource provisioning

for cloud-based MapReduceconsidered in our study.

Further on schedulers, Li et al. [2014a] developed a deadline-enabled delay scheduler to

address the deadline-guarantee issue in cluster-based MapReduce computations. This scheduler

considered the issue of resource availability and optimized the delay decisions of resource pro-

visioning for cluster-based MapReduce according to realtime resource availability and resource

competition. But the resource provisioned to cloud-based MapReduce computations is ensured

by Infrastructure as a Service (IaaS) with high-level availability, and the issue of resource

availability does not exist in the cloud-based MapReduce of our study.

All the research projects (in Section 2.1.2) have considered the QoS-guarantee resource

provisioning issue for cluster-based MapReduce computations. Other research has studied

the resource provisioning for MapReduce computations in grid computing. Tang et al. [2010]

presented a MapReduce framework, deployed on Desktop Grid, that had an ability of massive

fault tolerance and high availability. This MapReduce framework also achieved linear speed-up

on the classical MapReduce computations through a scalability test. He et al. [2012] developed a

Hadoop MapReduce framework (HOG) executed on grid computing. Differing from the cluster-

based MapReduce which utilized dedicated resources, HOG utilized free and opportunistic

resources of the grid to execute MapReduce computations. This research project focused on

improving the fault tolerance of HOG on three levels the node level, the rack level and the site

level via managing resource provisioning.

Unlike other computing environments such as cluster computing and cloud computing,

2.1. STATE OF THE ART OF QOS-GUARANTEED RESOURCE PROVISIONING FOR
CLOUD-BASED MAPREDUCE 21

the machines in opportunistic or volunteer environments are volatile and can be shut down

at any time. Thus, enhancing availability is an important issue for MapReduce computations

in these particular environments. Lin et al. [2010a] developed a MapReduce implementation,

namely MOON, in opportunistic environments. MOON, extended from Hadoop MapReduce,

utilized adaptive task- and data-scheduling algorithms to improve its availability. Lee and

Figueiredo [2012], who studied how to provide MapReduce services with high availability

in volunteer environments, adopted an uptime-based resource availability prediction method

to improve the availability of the MapReduce computations using the volatile resources in

volunteer environments. Kijsipongse and U-ruekolan [2014] deployed Hadoop MapReduce in

a virtual volunteer computing environment. In that environment, the machines for MapReduce

computations comprised a fixed number of dedicated computers with high availability and a

variable number of volunteer computers with low availability. The MapReduce computations

under that framework performed better on execution time, compared with the MapReduce

computations using the dedicated computers.

However, the computational environment for the cloud-based MapReduce in this study

is quite different from these three types of computing environments (i.e. grid computing,

opportunistic computing and volunteer computing). The computing resource (i.e. VMs) are

dedicated for the cloud-based MapReduce computations and the qualities of computing resource

(i.e. availability and reliability) are ensured by cloud computing. Thus, the issues of availability

and fault tolerance in these three types of computing environments do not exist in the cloud-

based MapReduce.

In summary, the computational environments for non-cloud-based MapReduce computa-

tions are different from those for cloud-based MapReduce computations. The resource pro-

visioning approaches used for non-cloud-based MapReduce computations are not suitable for

addressing QoS-guaranteed resource provisioning for cloud-based MapReduce computations.

2.1.3 QoS-guaranteed Resource Provisioning for Cloud-based MapReduce

The QoS-guaranteed resource provisioning problems in cloud-based MapReduce are catego-

rized into two types: static resource provisioning problems and dynamic resource provisioning

problems.

22 CHAPTER 2. LITERATURE REVIEW

Static Resource Provisioning Problems

The static resource provisioning problems relate to determining the amount of resource provi-

sioning at a time point in order to guarantee the QoS (i.e. deadline) of cloud-based MapReduce

with minimum operational cost. These problems usually assume that the computational envi-

ronment for cloud-based MapReduce computations is stable, and that resource scaling is not

required at runtime.

Several researchers have studied the static resource provisioning problems in cloud-based

MapReduce. Herodotou and Babu [2011] investigated how to optimize the cluster size for

MapReduce computations with deadline constraints. They modeled the impact of various

MapReduce parameters, such as input size, number of map/reduce tasks and number of map/reduce

workers, on the MapReduce computation time. They then adopted the model to determine

the optimum cluster size for meeting the deadlines of cloud-based MapReduce computations.

But they did not study how to optimize the cluster size for a running cloud-based MapReduce

computation.

Similarly, Hwang and Kim [2012] aimed to deal with the resource provisioning problem for

MapReduce in the cloud by minimizing the monetary cost of VMs while meeting the deadline

constraints. In their interpretation of the problem, the computational environment was assumed

to be stable, and the resource provisioning could not be changed once it was determined.

Lama and Zhou [2012] investigated the allocation of heterogeneous resources to cloud-

based MapReduce computations for guaranteeing the deadlines with minimum operational

costs. Their resource allocation problem did not consider how to change resource allocation

when the cloud-based MapReduce computations were running.

Cardosa et al. [2012] studied how to determine the minimum number of VMs for cloud-

based MapReduce computations while meeting the deadlines. Once the minimum number was

determined, however, it could not be changed according to MapReduce computation progress.

Hwang and Kim [2012] investigated how to determine the number of VMs that cloud-based

MapReduce computations needed for meeting the deadlines with the minimum of VM cost.

The number of VMs was determined before the cloud-based MapReduce computations started

running, and could not be changed at runtime.

Palanisamy et al. [2014] studied the resource provisioning problem that aimed at meeting the

2.1. STATE OF THE ART OF QOS-GUARANTEED RESOURCE PROVISIONING FOR
CLOUD-BASED MAPREDUCE 23

deadlines of cloud-based MapReduce while minimizing the cost of using VMs. Their problem

assumed that the computational environment did not change.

Chen et al. [2014b] sought to optimize the resource provision for cloud-based MapReduce

computations to minimize the cost of using VMs while meeting the deadlines. Through solving

this problem, they determined the amount of resource provisioning required before cloud-based

MapReduce computations started running. But they did study how to change the amount of

resource provisioning at runtime when the computational environment varied.

Malekimajd et al. [2014] worked on how to find the optimum cloud capacity to minimize the

resource cost and job rejection penalties while meeting the dealings of cloud-based MapReduce

computations. They formulated the problem into a linear programming problem and then

proposed an algorithm to solve this problem. Once the optimum cloud capacity was derived,

however, that capacity could not be changed at runtime.

Zhang et al. [2015] focused on the decision problem about how to determine the number

and types of VMs for the cloud-based MapReduce computations with the deadline constraints.

To solve that problem, they conducted a fast simulation-based framework for determining the

right size and type of VMs to meet deadlines before the cloud-based MapReduce computations

started running. However, they did not study how to add/remove VMs at runtime.

Thus, none of these static resource provisioning problems considered the changes in compu-

tational environments. None of them studied how to determine the amount of resource scaling

at runtime. The QoS-guaranteed resource provisioning problem in this study differs from those

problems in that it takes the changes in computational environments into account, and also

investigates the determination of the amount of adding/removing resource at runtime.

Dynamic Resource Provisioning Problems

The dynamic resource provisioning problems refer to determining the amount of resource pro-

visioning at runtime for guaranteeing the QoS (i.e. deadline) of cloud-based MapReduce with

minimum operational cost. These problems usually assume that the computational environment

for cloud-based MapReduce computations changes dynamically, and that resource scaling is

required at runtime.

The following research has considered these dynamic resource provisioning problems in

24 CHAPTER 2. LITERATURE REVIEW

cloud-based MapReduce. Byun et al. [2011] sought to determine the right amount of cloud

resource for cloud-based MapReduce computations in order to minimize the usage cost of cloud

resource while meeting the deadline requirements. They considered the dynamic changes in the

computational environment, and proposed a heuristic to dynamically provision cloud resource

to cloud-based MapReduce computations. However, their experimental results showed that

their heuristic could not meet the deadline of every cloud-based MapReduce computation.

Wang et al. [2013] worked with the problem of how to schedule maps and/or reduce tasks to

guarantee the deadlines of cloud-based MapReduce computations. In their problem, they stud-

ied how to adjust resource allocation at runtime, but the deadline constraints in their problem

were soft ones.

Xiang et al. [2013] tried to solve the resource allocation problem for cloud-based MapRe-

duce computations, which meant optimizing the Nash Bargaining Solutions with respect to

deadlines and computation priorities. In their research problem, deadlines were optimization

objectives, rather than constraints, which meant that deadline violation was possible.

Chen et al. [2014a] investigated how to manage the resource provisioning for cloud-based

MapReduce computations when the computational environment changed. These researchers

used Bipartite Graph modeling to develop a new MapReduce scheduler. This new scheduler

could adjust resource provisioning when the computational environment changed and could

improve data locality to reduce the deadline violation rate. But this scheduler could not ensure

that the deadline of every cloud-based MapReduce computation was met.

Teng et al. [2014] considered the real-time scheduling problem for the cloud-based MapRe-

duce computations. The objective of the problem was to improve the probability of meeting

deadlines via dynamic resource provisioning, rather than by meeting hard deadlines.

Therefore, none of these dynamic resource provisioning problems studied how to meet the

hard deadlines of cloud-based MapReduce computations. Deadline violation was allowed in

their problems. On the contrary, the QoS-guaranteed resource provisioning problem in this

study aimed at meeting hard deadlines: that is, meeting deadlines with 100 percent.

Alrokayan et al. [2014] found out how to dynamically provision resource to the cloud-based

MapReduce computations under deadline constraints. They proposed a deadline-aware resource

provisioning approach which could adjust resource provisioning using the information of data

2.2. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE PROVISIONING 25

sources and network throughput. However, because that information is unknown in the QoS-

guaranteed resource provisioning problem central to our study, we cannot adopt their approach

solve our problem.

Gandhi et al. [2015] focused on the resource auto-scaling problem for the MapReduce

computations in clouds. They established a performance model for the relationship between

MapReduce computation time and the system parameters such as input size and resource allo-

cation, and then optimized the configurations of the system parameters to minimize the resource

cost while meeting the deadlines. However, system parameters such as input size are not

considered in our QoS-guaranteed resource provisioning problem, since they are configured

by the MapReduce users.

Cheng et al. [2015] studied the deadline-aware scheduling problem for cloud-based MapRe-

duce computations that would reduce deadline misses. This scheduling problem considered

resource availability. A prediction model was used to estimate future resource availability to

enable accurate estimation of MapReduce completion time. However, resource availability is

not an issue in the QoS-guaranteed resource provisioning problem of this current research, since

these issues can be addressed by scaling up cloud resource provisioning.

In summary, the QoS-guaranteed resource provisioning problems found in the current lit-

erature are different from the problem faced in this research. Those other research problems

do not consider the changes in computational environments, are not aimed at meeting hard

deadlines or are studied under different MapReduce environments. But the problem in this

research considers the changes in cloud environments and its objective is to meet hard deadlines.

2.2 Theoretical Study of QoS-guaranteed Resource Provisioning

The literature on the first research problem, the theoretical study of the QoS-guaranteed resource

provisioning, is reviewed in the first section (2.2.1). This theoretical study considers how to

quantify the amount and timing of resource provisioning. The studies are categorized into two

main groups in terms of their resource provisioning mechanism and their computing environ-

ments: the theoretical studies for non-cloud-based MapReduce and the theoretical studies for

cloud-based MapReduce.

26 CHAPTER 2. LITERATURE REVIEW

2.2.1 Theoretical Study for Non-cloud-based MapReduce

Research on resource provisioning for MapReduce in non-cloud computing is well represented.

Hwang and Kim [2012], Verma et al. [2011b] considered how to determine the minimal amount

of resource to meet the deadlines of cluster-based MapReduce computations before these com-

putations start running. However, no research was found on how to quantify the amount of

resource provisioning at the runtime of the MapReduce computations.

In comparison, other authors considered workload variations, applying various resource

scaling techniques to meet the deadlines of MapReduce computations: for example, Kc and

Anyanwu [2010], Li et al. [2014a,b], Polo et al. [2011], Shi and Hong [2013], Zhang et al.

[2014b]. When the workloads increase, the resource is usually scaled down for those computa-

tions with low priority, and scaled up for the computations with high priority. When doing so,

the total resource capacity of the cluster remains unchanged.

All that research investigated the resource provisioning for MapReduce computations in

non-cloud environments. As our study investigates the resource provisioning for MapReduce

computations in cloud environments, our research differs from the topics presented in the work

of those researchers.

2.2.2 Theoretical Study for Cloud-based MapReduce

In cloud computing, there is some research on the amount of initial resource provisioning

needed to meet the QoS of MapReduce computations. Researchers have derived the theoretical

results by solving an Integer Linear Programming problem. To study the amount of resource

provisioning for ad-hoc MapReduce computations in clouds, Lama and Zhou [2012] introduced

a two-phase machine learning and optimization framework to optimize the operational cost

while achieving the QoS goals. Chen et al. [2014b] searched for the optimal amount of map

and reduce slots to execute the cloud-based MapReduce computations with minimum costs.

Palanisamy et al. [2014] proposed a resource provisioning framework for cloud-based MapRe-

ducethat would minimize the monetary cost of using cloud resources while meeting the dead-

lines of MapReduec computations. Herodotou et al. [2011] developed a system named Elasti-

sizer to answer the cluster sizing problems for the cloud-based MapReduce computations.

However, all these theoretical results are used to determine the amount of the initial resource

2.2. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE PROVISIONING 27

provisioning for new MapReduce computations, rather than the amount of resource scaling at

runtime. In our research, not only the amount of initial resource provisioning, but also the

amount of resource scaling at runtime, is required to be determined; thus their theoretical results

cannot be applied in our research.

Unlike the research just described, other research has investigated the amount of runtime

resource provisioning needed for cloud-based MapReduce. AbdelBaky et al. [2012] gave a

rough estimation for the number of VMs required to meet the deadlines of the MapReduce

computations in CometCloud. Mattess et al. [2013] studied dynamic resource provisioning

to guarantee soft deadlines for cloud-based MapReduce. Malekimajd et al. [2015] explored the

upper/lower bounds for MapReduce computation time in cloud systems, and then calculated the

minimum amount of resource for MapReduce computations to meet their soft deadlines. Ruiz-

Alvarez et al. [2015] calculated the optimum amount of resource allocation for the cloud-based

MapReduce computations with deadline constraints.

The theoretical results from these four research projects were used for computations with

soft deadlines, not with hard deadlines. Unlike that research focus on soft deadlines, our study

presents a theory about how to guarantee the hard deadlines of MapReduce computations.

Although Cardosa et al. [2011] studied the amount of resource provisioning needed for

the map phases of MapReduce computations, their theoretical results did not really guarantee

QoS of MapReduce computations, especially when there was a performance degradation in the

reduce phases of the MapReduce computations.

In addition, almost all the current research is about how to determine the amount of resource

provisioning, but it ignores how to determine the timing of resource provisioning. The timing

issue is essential to QoS-guaranteed resource provisioning, since resource provisioning that is

too late could lead to missed deadlines. Therefore, our study considers the timing of resource

provisioning for cloud-based MapReduce computations.

In summary, the theoretical results of amount and timing of resource provisioning found in

current literature do not always guarantee the QoS of cloud-based MapReduce. There is not yet

a detailed theoretical analysis of the QoS-guaranteed resource provisioning. Our study estab-

lishes theoretically the resource amount for QoS-guaranteed resource provisioning, and derived

mathematically the latest intervention time for avoiding QoS violation. These theoretical results

can be used to guide the QoS-guaranteed resource provisioning for cloud-based MapReduce.

28 CHAPTER 2. LITERATURE REVIEW

2.3 MapReduce Placement

The research on the second research problem, the MapReduce placement (MRP) problem, is

reviewed in this section. The studies are categorized into two groups in terms of computing

environments: non-cloud-based MapReduce consolidation and cloud-based MapReduce con-

solidation. The review identifies the gaps in these two groups of studies and illustrates the

innovation of our study.

2.3.1 Non-cloud-based MapReduce Placement

This review considers the research projects related to the MapReduce placement problem in

non-cloud-based MapReduce computations. Zaharia et al. [2008] followed the default Hadoop

configuration for the worker placement on computing nodes [White, 2009], developing a sched-

uler called LATE for Hadoop MapReduce, deployed on heterogeneous environments to reduce

job execution time. Lin et al. [2010b] studied the adaptive task- and data-scheduling algorithms

in MOON, a MapReduce implementation under the volunteer computing environment, and

improved the MapReduce performance on execution time under that environment with the

volatility of resources and a high rate of node unavailability. They also did not consider

how to assign slots to slave nodes; they just implemented the default Hadoop settings. Wolf

et al. [2010] proposed a slot-allocation scheduling optimizer to provide a minimum number

of slots to MapReduce workloads. This optimizer aimed at optimizing some metrics, such as

execution time, while ensuring the same minimum and maximum slot guarantees as in HFS.

In their work, the slot assignment on computing nodes followed a default configuration. Kc

and Anyanwu [2010] developed a constraint-based Hadoop scheduler, based on a job execution

cost model, to meet the deadline constraints specified by users. They also used the default

Hadoop configuration, placing two map/reduce workers on every node. Verma et al. [2011b]

developed an automatic resource inference and allocation framework for MapReduce to meet

job deadlines. For the MapReduce placement, they adopted a simple way to assign a fixed

number of workers to each node.

Polo et al. [2011] presented a resource-aware scheduler for MapReduce multi-job workloads

in which the slot on each node could be dynamically adjusted by leveraging the resource

consumptions of different jobs to maximize the resource utilization of the cluster. Later, Polo

2.3. MAPREDUCE PLACEMENT 29

et al. [2013] studied deadline-based management for MapReduce workloads based on the same

assignment technology of task slots, but here the aim was to ensure the deadline meeting of

jobs. Wang et al. [2011] proposed an automatic control mechanism for the dynamic assignment

of task slots on each computing node. Using their mechanism, cluster-wide resource utilization

was improved.

All this research addresses the MRP problems in non-cloud environments. The objective of

these problems is usually to improve the cluster utilization, to reduce the execution time, or to

meet the deadline. In addition, in these problems, the total number of machines and the types

of machines that can be used for MapReduce computations are given beforehand.

The MRP problem in our study is totally different from those problems in the non-cloud

environments, as. the objective of our MRP problem is to minimize the monetary cost of using

VMs. Unlike those problems in non-cloud environments, in the MRP problem, the total number

and types of the VMsto be used for MapReduce computations are unknown in advance. Instead,

we need to select the VM types and the number of the VMs of each selected type, and to

determine the placement of workers on the selected VMs. Therefore, the MapReduce placement

approaches reviewed for non-cloud-based MapReduce computations cannot be used to address

the problem in our study.

2.3.2 Cloud-based MapReduce Placement

Research approaches for the MRP problems in the cloud computing environment that were

considered in this review seemed to fall into two main focus areas: direct MRP problems and

other placement problems similar to the MRP problem.

In the first grouping, Tian and Chen [2011] worked on minimizing the financial charge

for a single MapReduce job while meeting a time deadline, by placing the same number of

workers on the same type of slave nodes. AbdelBaky et al. [2012] proposed an objective-driven

scheduler which minimized the required number of VMs to meet the deadline constraint for

MapReduce-CometCloud. In their scheduler, each VM could load only one mapper or reducer,

although the VMs were heterogeneous.

Hwang and Kim [2012] studied a resource provisioning problem for MapReduce in the

30 CHAPTER 2. LITERATURE REVIEW

cloud that aimed at minimizing the monetary cost of VMs while meeting the deadline con-

straints. They paid more attention to the placement of the VMs on physical machines; for the

problem of map/reduce worker placement on VMs, they adopted a simple way in which a fixed

number of map/reduce workers were assigned to each VM.

Lama and Zhou [2012] proposed an automated job provisioning system for Hadoop MapRe-

duce that could automatically configure the number of VMs to achieve the QoS goals while

minimizing the incurred cost. But they did not study how to optimize the map/reduce workers

on the VMs: they assigned map/reduce workers to the VMs following a basic rule such as having

one mapper and one reducer to a small VM and two map workers and two reduce workers to a

medium VM.

Chen et al. [2014b] built up a cost function modeling the relationship among execution

time, input size, and available cloud resource, and solved a problem aiming at meet deadline

requirements with minimum monetary cost. Just like previous research efforts, they studied

the optimum number of VMs rather than the placement optimization of map/reduce workers on

VMs. With regard to the placement, they placed the same number of map/reduce workers on

only one type of VMs.

Unlike the work using the simple rules of assigning workers to VMs, Herodotou et al.

[2011] used a more exact method to address the MapReduce placement issue. They developed

a system named Elastisizer, included in Starfish, to answer the cluster sizing problems for the

MapReduce operated on cloud platforms. This system could tell MapReduce users the best VM

type from multiple types provided by public clouds as well as the optimum number of the VMs

of that VM type. However, these cluster sizing problems were different from the MRP problem,

since the constraints of the cluster sizing problems were to meet the desired requirements on

execution time or cost, whereas the constraint of the MRP problem was satisfying the resource

requirements of all the workers to be placed. Thus, their approach could not be used to address

the MRP problem.

Cardosa et al. [2012] studied how to place the VMs for MapReduce computations on physi-

cal machines with minimum energy costs. Their problem was similar to the MRP problem, but

the MRP problem was more complicated. For their research, the physical machines or bins were

identical, whereas multiple types of VMs or bins were considered in the MRP problem. Also,

the number of the bins in their problem was definite, while that number in the MRP problem

2.3. MAPREDUCE PLACEMENT 31

was infinite. Thus, their algorithm could not immediately be used to address the MRP problem.

The MapReduce placement approaches involved in the research reviewed can almost be cat-

egorized into homogeneous MapReduce placement optimization, as those researchers usually

assigned workers on homogeneous VMs or followed homogeneous configurations of worker

numbers on each VM. These approaches are totally different from the heterogeneous MapRe-

duce placement optimization approach proposed in our study, which allows using heterogeneous

VMs and having heterogeneous placement on each VM used.

In our preliminary work [Xu and Tang, 2014a,b] on the MRP problem, the existing resources

(VMs) were not considered, and the algorithm could not make good use of the existing resources

to further reduce the cost of cloud-based MapReduce computations. Our current study addresses

the issue about how to utilize the existing resources.

In the research reviewed on other placement problems similar to the MRP problem in cloud

computing, such as the VM placement problems, these problems are seen as Bin Packing Prob-

lems (BPPs), and are solved by modified bin-packing algorithms, such as first-fit-decreasing

([Lee et al., 2011, Verma et al., 2008]), best-fit-decreasing ([Beloglazov and Buyya, 2012]

), set covering ([Haouari and Serairi, 2009, Monaci and Toth, 2006]), or other algorithms

([Palanisamy et al., 2011, Srikantaiah et al., 2008]). However, the MRP problem is more

complicated than their problems, as it considers both the multiple types of bins (VMs) and the

multiple resource constraints, whereas their problems just considered either. Their algorithms

therefore cannot be used immediately for the MRP problem.

A number of heuristics have been proposed to solve the BPP and its variants. For instance,

several variants of the first-fit-decreasing (FFD) algorithm were proposed to address multi-

constraint BBP [Caprara and Toth, 2001, Panigrahy et al., 2011]. In these works, several ways to

calculate the surrogate weights were investigated. Kang and Park [2003] presented an iterative

FFD (IFFD) especially for the variable sized BPP. In addition, Haouari and Serairi [2009],

Monaci and Toth [2006] adopted SCH to solve the multi-constraint and variable sized BPP by

transforming the BPP to a set-covering problem. In order to solve the BPP with the variable

cost and size, Crainic et al. [2011] proposed an adapted best-fit-decreasing (A-BDF) algorithm

which integrated the information of the lower bound computations. Bang-Jensen and Larsen

[2012] presented a local search heuristic for the variable sized BPP with a variable bin size

in real life, and an important characteristic of this heuristic was it could find solutions within

32 CHAPTER 2. LITERATURE REVIEW

(milli) seconds. A heuristic inspired from both Minimal Bin Slack and IFFD were proposed to

solve the offline variable sized BPP [Maiza et al., 2013].

Besides the heuristic algorithms, meta-heuristic algorithms are also adopted to solve the

BPP and its variants. A typical example is the ordering genetic algorithm (OGA) developed by

Haouari and Serairi [2009], which was used to address the variable sized BPP. Unlike Haouari’s

work, Falkenauer [1996] first proposed a grouping genetic algorithm (GGA) to solve the BPP.

Iima and Yakawa [2003], Wilcox et al. [2011] respectively modified the original GGA and

adopted it to solve the BPP with the same bin size. Brugger et al. [2004] proposed Ant Packing,

an ant colony optimization approach, to solve the classical one-dimensional BPP. Liu et al.

[2008] designed an evolutionary particle swarm optimization algorithm was adopted to solve

the multi-objective BPP. Segura et al. [2011] developed a parallel island-based multi-objective

memetic algorithm to address the two-dimensional BBP. Although a number of heuristic and

meta-heuristic algorithms have been proposed to solve the BPP and its variants, none of these

algorithms is designed for the MRP problem.

2.4 MapReduce Consolidation

The research related to the third problem, the MapReduce consolidation (MRC) problem, is

reviewed and compared with our research. Gaps noted in the current literature point to the

innovations of our study.

The abundance of research on the consolidation problems in clouds can be categorized

into two groups. One has investigated the VM consolidation problems: the consolidation of

VMs (equivalent to the workers in the MRC problem) on physical machines (equivalent to the

VMs in the MRC problem); the other has studied the MapReduce consolidation problems: the

consolidation of MapReduce computations on VMs or physical machines. These two groups of

research are each now reviewed and compared with our research.

2.4.1 VM Consolidation

Seven current research projects on VM consolidation problems are reviewed first. Bobroff

et al. [2007] investigated the dynamic consolidation of VMs on physical machines to maximize

the resource utilization while achieving a certain level of performance. Ferreto et al. [2011]

2.4. MAPREDUCE CONSOLIDATION 33

used several heuristics to solve the server consolidation problem of minimizing the number of

physical machines.Lin et al. [2011] investigated the VM consolidation on physical machines to

minimize the number of physical machines used while meeting the resource requirements of

VMs. Wu et al. [2012] developed a genetic algorithm to consolidate VMs on physical machines

with the minimum of the physical machines. Beloglazov and Buyya [2013] also investigated

how to manage overloaded machines for dynamic VM consolidation under QoS constraints.

Although all of these VM consolidation problems were solved by various methods, they can be

categorized into the same group.

With the research into these problems, the physical machines were assumed to be identical

while the VMs could be various and had no certain types. The MRC problem is different from

these VM consolidation problems, as it assumes multiple types of workers and multiple VMs.

It is much more complicated than these VM consolidation problems, so none of their various

methods can be used for the MRC problem.

A more complicated VM consolidation problem investigated by Li et al. [2013] was working

on how to consolidate heterogeneous workloads on heterogeneous physical machines. They

proposed two consolidation algorithms to execute all required VMs with the minimum number

of physical machines. Their objective was to minimize the energy consumption. However, their

algorithms cannot be used for the MRC problem, with its goal of minimizing both the cost of

using VMs and the migration cost.

2.4.2 MapReduce Consolidation

The literature review covering the consolidation problems related to MapReduce computa-

tions focuses on three main research studies, and gives summary notes regarding several other

projects.

Huang et al. [2012] studied the consolidation of the VMs for MapReduce computations and

the VMs for non-MapReduce computations on physical machines, and proposed a heuristic to

minimize the usage of physical machines while meeting the resource requirements of MapRe-

duce computations. The problem for these researchers was that the resource capacities of the

physical machines (equivalent to the VMs in the MRC problem) were heterogeneous, since the

physical machines also provided resources for those non-MapReduce computations. They also

assumed that the VMs (equivalent to the workers in the MRC problem) to be consolidated were

34 CHAPTER 2. LITERATURE REVIEW

identical. The complexity of our MRC problem, with its multiple types of VMs and workers,

and its varied numbers of each type of worker, means that it cannot be solved by their method.

Cardosa et al. [2012] studied how to consolidate the VMs for MapReduce computations

on physical machines with minimum energy costs, and proposed several placement algorithms

to solve their problem. They also assumed that the physical machines (equivalent to the VMs

in the MRC problem) were identical, which simplified their research problem. As our MRC

problem tackles heterogeneous VMs, it unable to use their proposed algorithms.

Palanisamy et al. [2014], who investigated how to consolidate MapReduce computations on

VMs with the minimum cost of using VMs, developed an online scheduling algorithm to solve

that problem. Unlike the other research discussed here, their problem allowed heterogeneous

VMs. But they made assumptions, when simplifying their problem, that each MapReduce

computation was processed by a dedicated cluster of VMs of the same type and that one VM

could not process multiple MapReduce computations at the same time. In the MRC problem,

multiple MapReduce computations can share one VM and one MapReduce computation can

be processed by multiple types of VMs at the same time. Hence, the MRC problem is totally

different from theirs, so their algorithm cannot be used to solve it.

Other research studied several problems related to MapReduce consolidation in non-cloud

environments. The objectives of these various problems included maximizing cluster utilization

[Polo et al., 2011, Wang et al., 2011], minimizing execution time [Herodotou and Babu, 2011,

Lin et al., 2010b, Wolf et al., 2010, Xie et al., 2010, Zaharia et al., 2008], and minimizing energy

consumption [Lang and Patel, 2010, Maheshwari et al., 2012]. Unlike those problems, the

objective of the MRC problem is to minimize the operational cost of cloud-based MapReduce.

Thus, their approaches also cannot be used directly for our MRC problem.

To the best of our knowledge, our research is the first attempt to solve our MRC problem.

This problem, which is different from or even more complicated than the consolidation prob-

lems studied in other current research, seems not to be able to be solved by the current methods

outlined from the review. Therefore, our research will propose a new consolidation algorithm

to solve the MRC problem.

2.5. RESOURCE PROVISIONING FRAMEWORKS FOR CLOUD-BASED MAPREDUCE 35

2.5 Resource Provisioning Frameworks for Cloud-based MapReduce

In general, the resource provisioning frameworks for cloud-based MapReduce can be divided

into three types: static/conservative resource provisioning frameworks, static/accurate resource

provisioning frameworks and dynamic resource provisioning frameworks. This section reviews

how these three frameworks have been developed and adopted in the current research, affecting

the resource provisioning problems for cloud-based MapReduce and motivating the research

direction of our study towards a new type of framework.

2.5.1 Static/Conservative Resource Provisioning Frameworks

Some current research has adopted static/conservative resource provisioning frameworks for

the resource provisioning problems in cloud-based MapReduce. Two research examples are

reviewed to show how these frameworks have been adopted.

Verma et al. [2011b] proposed a resource provisioning framework for MapReduce com-

putations with performance goals. In this framework, the upper bound of the MapReduce

completion time was estimated and the minimum resource amount to meet performance goals

was deducted. The resource was also pre-determined and could not be adjusted at runtime.

Palanisamy et al. [2014] proposed a resource provisioning framework, called Cura, that

aimed to minimize the resource usage costs of cloud-based MapReduce computations while

meeting deadlines. Their resource allocation for a MapReduce computation was pre-determined

and could not be changed at runtime. The allocation amount was based on the worst estimation

for the MapReduce performance so as to meet deadlines.

With this sort of framework, the resource provisioning is pre-determined and cannot be

changed at runtime. To guarantee the QoS of MapReduce, the performance of MapReduce

computations is estimated under a worst-case scenario, and extra resources are provisioned in

case of unexpected performance degradation. This type of framework is easy to implement

and has the ability of QoS-guarantee even under a dynamical environment, but it sacrifices the

operational cost of MapReduce computations for the QoS-guarantee. When variation range in

the dynamical environment is larger, the cost of QoS-guarantee is even higher. Thus, this sort

of frameworks can hardly achieve the objective of cost minimization of the QoS-guaranteed

resource provisioning problem motivating this study, and so cannot address this problem well.

36 CHAPTER 2. LITERATURE REVIEW

Our framework is different from the static/conservative resource provisioning frameworks.

It supports resource scaling-down at runtime. Once it finds the computation running ahead

of the schedule due to the environment changes, extra resources can be removed such that

the cost of extra resources can be saved. Therefore, compared with the static/conservative

frameworks, our framework is more cost-effective, and more suitable for the QoS-guaranteed

resource provisioning problem.

2.5.2 Static/Accurate Resource Provisioning Frameworks

Other researchers have developed static/accurate resource provisioning frameworks to use for

the resource provisioning problems in cloud-based MapReduce.

Tian and Chen [2011] and Chen et al. [2014b] proposed resource provisioning frameworks

for guaranteeing the deadlines of cloud-based MapReduce computations. Their frameworks

were designed based on the exact cost function models which quantified the relationship among

execution time, input size and available cloud resource, and could accurately estimate the

required amount of resource provisioning for meeting deadlines. Their frameworks are effec-

tive on meeting deadlines in stable computational environments. However, when unexpected

performance degradation happens on VMs or network, their frameworks cannot add resource

provisioning in time, leading to deadline misses.

Using machine learning technologies, Herodotou et al. [2011] developed a resource pro-

visioning framework named Elastisizer. This framework determined the exact cluster size for

cloud-based MapReduce computations to meet a certain level of performance requirements such

as execution time. Similarly, through machine learning performance modeling, Lama and Zhou

[2012] proposed an automated resource provisioning framework for cloud-based MapReduce

computations to meet deadlines with minimum resource costs. However, both these frameworks

do not support resource scaling and cannot scale up resource provisioning when current resource

provisioning is insufficient to meet deadlines.

Like the static/conservative ones, this type of framework also pre-determines the resource

provisioning and cannot change the resource provisioning at runtime, but tries to estimate

exactly the amount of the resource required to guarantee the QoS such it can save more compu-

tation cost. Compared with the static/conservative frameworks, this sort of framework reduces

2.5. RESOURCE PROVISIONING FRAMEWORKS FOR CLOUD-BASED MAPREDUCE 37

more cost of MapReduce computations, but probably violates the QoS constraint in the QoS-

guaranteed resource provisioning problem when the performance degradation occurs. Thus,

this type of framework cannot effectively address our study’s problem.

Unlike these static/accurate resource provisioning frameworks, our framework supports

resource scaling-up during runtime. Once the computation running behind the schedule is

detected, the framework scales up resources to speed up the computation, to guarantee the QoS.

Therefore, compared with the static/accurate resource provisioning frameworks, our framework

has the capacity of QoS-guarantee, and is more suitable for our research problem.

2.5.3 Dynamical Resource Provisioning Frameworks

The drawbacks of these static resource provisioning frameworks have led to the proposal of

dynamic resource provisioning frameworks that allow the adjustment of resource provisioning

at runtime. To minimize cost while meeting application deadlines in cloud workflows, Mao

and Humphrey [2011] proposed a resource scaling mechanism that is implemented repeatedly

using a monitor control loop. In each loop, scheduling/scaling decisions were made according

to updated progress information. Similarly, Petrucci et al. [2011] adopted an optimization

control loop of a certain time to minimize the power consumption, while meeting performance

requirements of heterogeneous and changing workloads in a virtualized data center. But both

of these two frameworks were not designed specially for MapReduce computations, so their

frameworks could not immediately solve our study problem.

The following research projects developed the dynamical resource provisioning frameworks

specially for MapReduce. Mattess et al. [2013] designed a resource scaling framework to

periodically adjust the resource size. However, their framework met only the soft deadlines of

MapReduce computations. AbdelBaky et al. [2012] searched for the required number of VMs

to meet the deadline of MapReduce-CometCloud, and adopted a periodic scheduling framework

to estimate that required number. But their framework was designed for meeting soft deadlines,

not for meeting hard deadlines.

Cardosa et al. [2011] designed a resource provisioning framework supporting the addition

of VMs during the map phases of MapReduce computations to meet the deadlines. But their

framework could hardly guarantee the hard deadlines of MapReduce computations, especially

when performance degradation occurred in the reduce phases.

38 CHAPTER 2. LITERATURE REVIEW

Rao and Reddy [2012] proposed a framework which determined the required number of

Map/Reduce slots for every computation to meet the deadline while maximizing the data lo-

cality and resource utilization. However, their experimental results showed that a MapReduce

computation named Permutation Generator actually missed the deadline using their framework.

Thus, their framework did not always meet the deadline constraints of MapReduce computa-

tions. In comparison, the theoretical results presented in this study prevent deadline misses in

theory, as will be demonstrated in later experiments.

These resource provisioning frameworks are all periodic ones which periodically scale

up/down resource provisioning. However, the determination of an optimum period is very

difficult. Different periods incur different costs of using VMs and have different performances

on QoS-guarantee. In addition, the periodic frameworks in the current literature cannot always

meet QoS, the hard deadline of cloud-based MapReduce. Therefore, this sort of frameworks is

ineffective for the QoS-guaranteed resource provisioning problem.

To solve this problem, our research develops a new type of dynamic resource provisioning

frameworks: event-driven resource provisioning. It also supports resource scaling at runtime

to guarantee QoS while minimizing costs. But, unlike the periodic frameworks periodically

activating resource provisioning, the new framework uses an event-driven mechanism, making

the amount and timing of resource provisioning more accurate. Moreover, the event-driven

resource provisioning in the new framework is based on the solid theoretical analysis of QoS-

guarantee of cloud-based MapReduce. So it is more effective than the periodic frameworks for

the QoS-guaranteed resource provisioning problem.

2.6 Summary of Chapter

This chapter has reviewed the literature related to the QoS-guaranteed resource provisioning of

cloud-based MapReduce, and then has identified the gaps in current literatures and finally has

presented the motivation and uniqueness of the research in this project.

First of all, the review of the state of the art of the QoS-guaranteed resource provisioning

for cloud-based MapReduce showed that the QoS-guaranteed resource provisioning problems

addressed by other research are different from the problem presented in this study. Our QoS-

guaranteed resource provisioning for cloud-based MapReduce is a totally new issue and needs

2.6. SUMMARY OF CHAPTER 39

to be solved. After that, our four research problems have been reviewed separately. The research

work on our four research problems is different from that presented by other work. Thus, this

research gives the details on the four research problems and finally solves the QoS-guaranteed

resource provisioning problem for cloud-based MapReduce.

40 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Theoretical Results of QoS-guaranteed Resource

Provisioning

To solve the QoS-guaranteed resource provisioning for cloud-based MapReduce, a theoretical

study needs to be conducted. The results from the theoretical study will be applied in the

development of the new QoS-guaranteed resource provisioning framework. The theoretical

study is presented in the following sections. Section 3.1 gives the introduction of theoretical

study. Section 3.2 models the impact of resource scaling on MapReduce computation time.

Section 3.3 presents the problem description. Section 3.4 deducts the theoretical results for

QoS-guaranteed resource provisioning for cloud-based MapReduce. Section 3.5 demonstrates

the theoretical results by case studies. Finally, Section 3.6 presents the summary of this chapter.

3.1 Introduction

This chapter presents a detailed theoretical study of the QoS-guaranteed resource provisioning

for cloud-based MapReduce. The theoretical results, summarized in two corollaries and three

theorems, answer the research questions directly or partially. The two corollaries are used to

judge if current resource provisioning is sufficient to meet the deadlines of cloud-based MapRe-

duce computations or not, which answers the research question regarding how to determine the

timing of resource provisioning for cloud-based MapReduce computations. The three theorems

quantify the sufficient conditions on the amount and timing of resource provisioning for meeting

the deadlines of cloud-based MapReduce computations, which answer the research questions of

how to determine the amount and timing of resource provisioning for cloud-based MapReduce

41

42
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

computations.

The main contributions of this chapter are summarized as follows in answering these re-

search questions:

1. A nonlinear transformation is employed to define the problem in a reverse resource space,

simplifying theoretical analysis significantly;

2. Sufficient conditions for QoS-guaranteed scaling-up/down for MapReduce computation

are established; and

3. The latest intervention time after which QoS cannot be guaranteed by resource scaling-up

is derived.

3.2 Impact of Resource Scaling on MapReduce Computation Time

As shown in Figure 3.1, the MapReduce computation time consists of two parts, the compu-

tation time of map phase and the computation time of reduce phase. During the map/reduce

phase, the map/reduce tasks are executed in parallel. When map/reduce tasks are more than

map/reduce workers, the map/reduce tasks are completed in several waves. When the number

of map/reduce tasks are equal to the number of map/reduce workers, and the map/reduce tasks

are completed in one wave. In addition, there is an overlap between the map and reduce

computations because the first wave of reduce tasks is usually executed in parallel with the

map phase. Thus, the computation time of the overlapping parts of the reduce tasks should

be excluded from the total MapReduce computation time. For simplicity, the non-overlapping

part of a reduce task in the first wave is taken as a complete reduce task. In other words, the

computation time of a reduce task in the first wave amounts to the computation time of the

non-overlapping part of that reduce task.

Next, the impact of resource scaling on MapReduce computation time will be quantified.

Let us start with the following lemma, which is the Makespan theorem [Verma et al., 2011a] for

estimating the upper bound of the completion time of n tasks (n ≥ 1) executed onN computing

nodes in parallel.

Lemma 1 The completion time of all the n tasks running in parallel achieves maximal when

the first n − 1 tasks are completed at the same time and the execution time of the last task

3.2. IMPACT OF RESOURCE SCALING ON MAPREDUCE COMPUTATION TIME 43

1St wave

1St wave 2nd wave 3rd wave 4th wave

2nd wave 3rd wave

Map Phase

Reduce Phase

Overlapping parts of the
1st wave of reduce tasks

Figure 3.1: Process of a typical MapReduce computation

achieves maximal. Let Tmax denote the maximal execution time of the tasks. Then the upper

bound of the completion time of all the n tasks is expressed as (n− 1)T avg/N + Tmax.

3.2.1 Resource Scaling-up

How to calculate the upper bound of the computation time of a MapReduce computation after

resource scaling-up is investigated here. Let us say a MapReduce computation consists of m

map tasks and r reduce tasks. The computation is pre-provisioned with M0 map workers and

R0 reduce workers. At time t ≥ 0, M+ map workers and R+ reduce workers are added to

execute the remaining tasks of the MapReduce computation. At this moment, the numbers

of the remaining map and reduce tasks are denoted as mt and rt, respectively, which can be

calculated as follows:

mt =
m∑
i=1

pmit (3.1)

rt =

r, mt > 0∑r
j=1 p

r
jt, mt = 0

(3.2)

where pmit (prjt) denotes the ratio of the size of the map (reduce) input without being processed

to the total input size for the ith map task (the jth reduce task).

A simple example is given to show how to use Equations (3.1) and (3.2) to calculate mt and

rt. Consider three map tasks: a completed one (pm1t = 1), a running one which has processed

its half input (pm2t = 0.5), and a pending one (pm3t = 0). According to Equation (3.1), mt =

(1 − 1) + (1 − 0.5) + (1 − 0) = 1.5. rt is calculated in the same way; but when mt > 0, the

map phase is not completed and no reduce tasks start running, suggesting rt = r.

Let To be the time delay for launching the new map/reduce workers. During the time period,

44
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

To, mo map tasks and ro reduce tasks are completed. The lower bounds of mo and ro, mmin
o and

rmin
o , are calculated as follows:

mmin
o =

To
Tmax
m

M0 (3.3)

rmin
o =

0, mt > 0

To

Tmax
r

R0, mt = 0

(3.4)

In Equation (3.3), To/Tmax
m calculates the minimum number of the map tasks completed by

one mapper during the time period To. As there are M0 map workers to execute the tasks

simultaneously, the lower bound of mo, mmin
o , is equal to Mo ·To/Tmax

m . The lower bound of ro,

rmin
o , is calculated in a similar way. When mt > 0, as no reduce tasks start running, rmin

o = 0.

Consequently, the upper bound of the computation time of completing the remaining map

tasks, T up
m+(M+), is derived from Lemma 1, which is expressed by

T up
m+(M+) =

(mt−mmin

o −1)Tavg
m

M0+M+
+ Tmax

m , mt ≥ mmin
o + 1

αTmax
m , mt < mmin

o + 1

(3.5)

where α is a binary number, and α = 0 if mt ≤ mo, T avg
m and Tmax

m represent the average and

maximum computation times of a map task, respectively. When mt < mmin
o + 1, fewer than

one map task are left, so T up
m+(M+) = Tmax

m . When mt ≤ mmin
o , no map tasks are left, so

T up
m+(M+) = 0.

Similarly, the upper bound of the computation time of completing the remaining rt − ro

reduce tasks, T up
r+(R+), is derived from Lemma 1, which is given by

T up
r+(R+) =

(rt−rmin

o −1)Tavg
r

R0+R+
+ Tmax

r , rt ≥ rmin
o + 1

βTmax
r , rt < rmin

o + 1

(3.6)

where β is a binary number, and β = 0 if rt ≤ rmin
o , T avg

r and Tmax
r respectively represent the

average and maximum computation times of a reduce task.

With Equation (3.6), the upper bound of the MapReduce computation time after M+ map

workers and R+ reduce workers are added at the time t is given by

T up
+ (M+, R+) = t+ To + T up

m+(M+) + T up
r+(R+) (3.7)

3.3. PROBLEM DESCRIPTION 45

3.2.2 Resource Scaling-down

The upper bound of the MapReduce computation time after resource scaling-down is calcu-

lated as follows. The MapReduce computation with m map tasks and r reduce tasks is pre-

provisioned with M0 map workers and R0 reduce workers. At the time t ≥ 0, M− map workers

and R− reduce workers are removed from the computation. Meanwhile, there are mt and rt

reduce tasks left, which are calculated from Equation (3.1).

The upper bound of the computation time of the remaining mt map tasks, T up
m−(M−), is

derived from Lemma 1. It is expressed as

T up
m−(M−) =

(mt−1)Tavg

m

M0−M− + Tmax
m − T avg

m , mt > 0

0, mt = 0

(3.8)

When mt = 0, T up
m−(M−) = 0 as no map tasks are left.

Similarly, the upper bound of the computation time of the remaining rt reduce tasks, T up
r−(R−)

is derived from Lemma 1. It is given by

T up
r−(R−) =

(rt−1)Tavg

r

R0−R− + Tmax
r − γT avg

r , rt > 0

0, rt = 0

(3.9)

where γ is a binary number, and γ = 0 if mt > 0. When rt = 0, no reduce tasks are left and

thus T up
r−(R−) = 0.

With the results in Equation (3.9), the upper bound of the MapReduce computation time

after M− map workers and R− reduce workers are removed at the time t is given by

T up
− (M−, R−) = t+ T up

m−(M−) + T up
r−(R−) (3.10)

3.3 Problem Description

The theoretical study of QoS-guaranteed resource provisioning for cloud-based MapReduce

consists of three issues: the scaling up issue, the latest intervention time issue and the scaling

down issue. An example of hard real-time applications in cloud-based MapReduce is used to

46
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

illustrate the existence of these three issues.

The scaling-up issue is raised when the pre-provisioned resource is insufficient to meet the

deadlines of hard real-time applications. If there is a performance degradation on the VMs or

network, the computation progress of the applications will fall behind the schedule. Without

resource scaling-up, the deadlines will be missed, leading to a system failure or even a disaster.

To avoid deadline misses, it is necessary to derive a scaling-up solution (M+, R+) at time

t ≥ 0 so that the total computation time T+(M+, R+) ≤ D, where D is the deadline of the

MapReduce computation.

The latest intervention time issue characterizes the situation in which the resource scaling-

up is activated too late to meet the MapReduce deadlines. In this case, no pending tasks are left

and consequently any additional map/reduce workers do not help speed up the computation.

To avoid this situation, the latest intervention time needs to be determined in advance, giving

the time before which there exists at least one scaling-up solution (M+, R+) to ensure the total

computation time T+(M+, R+) ≤ D.

The scaling-down issue describes the scenario when the pre-provisioned resource is over-

provisioned for guaranteeing MapReduce deadlines. If there is a performance promotion on

the VMs or network, the computation progresses ahead of the schedule. To minimize resource

consumption, the resource provisioning needs to be scaled down. This requires determining

a scaling-down solution (M−, R−) at the runtime t ≥ 0 so that the total computation time

T−(M−, R−) ≤ D.

3.3.1 Reverse Resource Space

To simplify the mathematical operations in our theoretical analysis, the QoS-guaranteed re-

source scaling problem is re-defined in a new space, the Reverse Resource Space, through the

following nonlinear maps:

F+ : M+ →
1

M0 +M+

, R+ →
1

R0 +R+

(3.11)

F− : M− →
1

M0 −M−
, R− →

1

R0 −R−
(3.12)

Definition 1 (Reverse Resource Space) The reverse resource space is a Euclidean plane trans-

formed from the two-dimensional Euclidean Resource Space using F+ and F−.

3.3. PROBLEM DESCRIPTION 47

Through the nonlinear map F+, the scaling-up solution (M+, R+) in the original resource

space is mapped to the scaling-up solution (M+,R+) in the reverse resource space, as shown in

Figure 3.2. The notation M+ is the reciprocal of the amount of the mapper provisioning after

resource scaling-up, 1/(M0+M+), while the notation R+ is the reciprocal of the amount of the

reduce worker provisioning after resource scaling-up, 1/(R0 +R+).

Meanwhile, through the nonlinear map F−, the scaling-down solution (M−, R−) in the

original resource space is mapped to the scaling-down solution (M−,R−) in the reverse resource

space, as shown in Figure 3.3. The notation M− is the reciprocal of the amount of the mapper

provisioning after resource scaling-down, 1/(M0−M−), while the notation R− is the reciprocal

of the amount of the reduce worker provisioning after resource scaling-down, 1/(R0 −R−).

The QoS-guaranteed resource scaling problem is re-defined in the reverse resource space as

follows. Let T ∗+(M+,R+) and T ∗−(M−,R−) respectively denote the expressions of T+(M+, R+)

and T−(M−, R−) in the reverse resource space. Then the scaling-up issue is to determine

a scaling-up solution (M+,R+) such that T ∗+(M+,R+) ≤ D holds. The latest intervention

time issue is to determine the time before which there exists one scaling-up solution (M+,R+)

to ensure T ∗+(M+,R+) ≤ D. The scaling-down issue is to derive a scaling-down solution

(M−,R−) to guarantee T ∗−(M−,R−) ≤ D.

In the original resource space, the upper bound of the MapReduce computation time after

adding M+ map workers and R+ reduce workers, T up
+ (M+, R+), is presented in Equation (3.7);

in the reverse resource space, T up
+ (M+, R+) is indicated by T up∗

+ (M+,R+), which is presented

in Equation (3.13).

T up∗
+ (M+,R+) = t+ To + T up∗

m+ (M+) + T up∗
r+ (R+) (3.13)

In Equation (3.13), T up∗
m+ (M+) and T up∗

r+ (R+) are respectively expressed by

T up∗
m+ (M+) =

(mt −mmin
o − 1)T avg

m M+ + Tmax
m , mt ≥ mmin

o + 1

αTmax
m , mt < mmin

o + 1

(3.14)

T up∗
r+ (R+) =

(rt − rmin
o − 1)T avg

r R+ + Tmax
r , rt ≥ rmin

o + 1

βTmax
r , rt < rmin

o + 1

(3.15)

48
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

Similarly, in the original resource space, the upper bound of the MapReduce computation

time after removing M− map workers and R− reduce workers, T up
− (M−, R−), is presented

in Equation (3.7); in the reverse resource space, it is indicated by T up∗
− (M−,R−), which is

presented in Equation (3.16).

T up∗
− (M−,R−) = t+ T up∗

m− (M−) + T up∗
r− (R−) (3.16)

In Equation (3.16), T up∗
m− (M−) and T up∗

r− (R−) are respectively expressed by

T up∗
m− (M−) =

(mt +M0 − 1)T avg
m M− + Tmax

m − T avg
m , mt > 0

0, mt = 0

(3.17)

T up∗
r− (R−) =

(rt + γR0 − 1)T avg
r R− + Tmax

r − γT avg
r , rt > 0

0, rt = 0

(3.18)

Remark 1 T up∗
+ (M+,R+) and T up∗

− (M−,R−) are two linear functions.

Through this nonlinear transformation, many nonlinear relationships in the original problem are

reduced to linear relationships, which greatly simplifies our theoretical analysis. In the rest of

this chapter, all discussions about the resource scaling problem are in the reverse resource space

unless otherwise specified explicitly.

3.4 Theoretical Analysis of QoS-guaranteed Resource Scaling

The theoretical results of QoS-guaranteed resource scaling are summarized in three theorems

and two corollaries. They are presented below in detail.

3.4.1 Theoretical Analysis of the Scale-up Issue

The QoS-guaranteed Scaling-up theorem is derived to characterize the conditions for resource

scaling-up. It is used to help the resource provisioning framework to determine how much

resource needs to be scaled up. It is formally given as follows.

3.4. THEORETICAL ANALYSIS OF QOS-GUARANTEED RESOURCE SCALING 49

Theorem 1 (QoS-guaranteed Scaling-up) The scaling-up solution (M+,R+) is a QoS-guaranteed

scaling-up solution if the condition (3.19) is satisfied when mt ≥ mmin
o + 1 or the condi-

tion (3.25) is satisfied when mt ≤ mmin
o + 1 and rt ≥ rmin

o + 1.

aM+ + bR+ ≤ c, 0 <M+ ≤
1

M0

, 0 < R+ ≤
1

R0

, (3.19)

0 <M+ ≤
1

M0

, 0 < R+ ≤ min

{
d

b
,
1

R0

}
, (3.20)

where a, b, c, and d are respectively expressed by the following equations:

a = (mt −mmin
o − 1)T avg

m , (3.21)

b = (rt − rmin
o − 1)T avg

r , (3.22)

c = D − t− To − Tmax
m − Tmax

r , (3.23)

d = D − t− To − αTmax
m − Tmax

r , (3.24)

where α is a binary number, and α = 0 if mt ≤ mmin
o .

Proof When T up∗
+ (M+,R+) ≤ D holds, the inequality T+(M+,R+) ≤ D is true, suggesting

that QoS is guaranteed. Then ifmt ≥ mmin
o +1 and rt ≥ rmin

o +1, according to Equations (3.13),

(3.14) and (3.15),

T up∗
+ (M+,R+) ≤ D

⇔ t+ To + aM+ + Tmax
m + bR+ + Tmax

r ≤ D

⇔ aM+ + bR+ ≤ c.

In this case, rt = r and rmin
o = 0, and consequently rt = r < 1. Also, as no reduce task starts

when mt > 0, we have rt = r ≥ 1. Therefore, the situation when mt ≥ mmin
o + 1 > 0 and

rt < rmin
o + 1 does not exist.

If mt < mmin
o + 1 and rt ≥ rmin

o + 1, we have

T up∗
+ (M+,R+) ≤ D

⇔ t+ To + αTmax
m + bR+ + Tmax

r ≤ D

⇔ R+ ≤
d

b
.

50
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

Ifmt < mmin
o +1 and rt < rmin

o +1, the computation finishes when new map/reduce workers

start to work. As we consider only the resource scaling for a running MapReduce computation,

the situation when mt < mmin
o + 1 and rt < rmin

o + 1 is not considered.

Furthermore, we have M+, R+ ≥ 0, 0 <M+ ≤ 1/M0, 0 < R+ ≤ 1/R0. Consequently, the

QoS-guaranteed scaling-up conditions (3.19) and (3.25) are derived.

Remark 2 The QoS-guaranteed scaling-up condition (3.19) is a sufficient condition, not a

necessary one.

The above remark indicates that when the condition is met, the QoS is guaranteed. However,

there might be some occasions when the condition is not met but the QoS may still be met.

Remark 3 Both cases of the QoS-guaranteed scaling-up condition (3.19) are expressed in

linear inequalities in the reverse resource space. This significantly simplifies our mathematical

operations in theoretical analysis.

The following remark explains the area in Figure 3.2.

Remark 4 Each of the two cases of the QoS-guaranteed scaling-up condition (3.19) indicates

an area that is referred to as the QoS-guaranteed Scaling-up Area.

The following remark describes how a point in the reverse resource space is re-mapped to a

solution in the original resource space, as shown in Figure 3.2.

Remark 5 Any point (M+,R+) in the QoS-guaranteed scaling-up area is re-mapped to a QoS-

guaranteed solution (dM+e, dR+e) in the original resource space by the non-linear maps F+,

where M+ = 1/M+ −M0 and R+ = 1/R+ −R0.

The Resource Scaling-up Condition corollary is derived from the above theorem. The

following corollary is used to help the resource provisioning framework judge whether the

resource scaling-up needs to be done.

Corollary 1 (Resource Scaling-up Condition) If the scaling-up solution (1/M+, 1/1/R+) is

not in the QoS-guaranteed scaling-up area, resource scaling-up is required.

3.4. THEORETICAL ANALYSIS OF QOS-GUARANTEED RESOURCE SCALING 51

M
0

Original Resource Space

Non-linear map

(,)M R

(,)M R

R

F

0

1

M

0

1

R

0

Reverse Resource Space

(,)

QoS-guaranteed

Scaling-up Area

QoS-guaranteed

Scaling-up Area

(a) mt ≥ mmin
o + 1

M
0

Original Resource Space

Non-linear map

(,)M R

(,)M R

R

F

0

1

M

0

1

R

QoS-guaranteed

Scaling-up Area

0

Reverse Resource Space

(,)

0

d
R

b

d

b

QoS-guaranteed

Scaling-up Area

(b) mt ≤ mmin
o + 1 and rt ≥ rmin

o + 1

Figure 3.2: QoS-guaranteed scaling-up areas

Proof The scaling-up solution (1/M+, 1/1/R+) is equivalent to the solution (0, 0) in the

original resource space, implying that no map/reduce worker is scaled up. If (1/M+, 1/1/R+)

is not in the QoS-guaranteed scaling-up area, the condition (3.19) or (3.25) will not be satisfied

and the total MapReduce computation time may exceed the deadline. In this case, resource

needs to be scaled up to guarantee the QoS deadline.

3.4.2 Theoretical Analysis of the Latest Intervention Time Issue

The Latest Intervention Time theorem is derived to characterize the condition on the time point

of resource scaling-up for guaranteeing QoS. It addresses how to determine the time of resource

scaling-up when current resource provisioning is insufficient to guarantee QoS. It is formally

given as follows.

52
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

Theorem 2 (Latest Intervention Time) At least one QoS-guaranteed scaling-up solution ex-

ists if the time point of resource scaling-up satisfies the following condition (3.25).

t < D − To − Tmax
m − Tmax

r (3.25)

where t is the time point of resource scaling-up, D is the deadline, To is the time delay of

resource scaling-up, Tmax
m and Tmax

r respectively denote the maximum computation times of

map and reduce tasks.

Proof When mt ≥ mmin
o + 1,

T up∗
+ (M+,R+) = t+ To + aM+ + Tmax

m + bR+ + Tmax
r .

Moreover,

0 <M+ ≤
1

M0

, 0 < R+ ≤
1

R0

⇒ T up∗
+ (M+,R+) > t+ To + Tmax

m + Tmax
r .

Then if t+ To + Tmax
m + Tmax

r < D, there exists at least one scaling-up solution to ensure that

the inequality T up∗
+ (M+,R+) < D holds. In addition,

t < D − To − Tmax
m − Tmax

r

⇔ t+ To + Tmax
m + Tmax

r < D.

When mt < mmin
o + 1 and rt ≥ rmin

o + 1,

T up∗
+ (M+,R+) = t+ To + αTmax

m + bR+ + Tmax
r .

Also,

0 <M+ ≤
1

M0

, 0 < R+ ≤
1

R0

⇒ T up∗
+ (M+,R+) > t+ To + αTmax

m + Tmax
r .

Then if t+ To + αTmax
m + Tmax

r < D, there exists at least one scaling-up solution such that the

3.4. THEORETICAL ANALYSIS OF QOS-GUARANTEED RESOURCE SCALING 53

inequality T up∗
+ (M+,R+) < D holds. Furthermore,

t < D − To − Tmax
m − Tmax

r

⇒ t < D − To − αTmax
m − Tmax

r

⇔ t+ To + αTmax
m + Tmax

r < D

Consequently, if the scaling is done before the time t = D−To−Tmax
m −Tmax

r , there exists

at least one scaling-up solution to guarantee the QoS, i.e., T up∗
+ (M+,R+) < D.

Remark 6 The condition (3.25) is a sufficient condition for QoS guarantee, not a necessary

one.

The above remark indicates that even if the condition is not met, the QoS may still be met. But

if the condition is met, the QoS is certainly guaranteed.

3.4.3 Theoretical Analysis of the Scale-down Issue

The QoS-guaranteed Scaling-down theorem gives sufficient conditions for resource scaling-

down for the QoS guarantee. It is used to help the resource provisioning framework determine

how much resource needs to be scaled down. The theorem is formally presented below.

Theorem 3 (QoS-guaranteed Scaling-down) The scaling-down solution (M−,R−) is a QoS-

guaranteed scaling-down solution if the condition (3.26) is satisfied when mt > 0 or the

condition (3.27) is satisfied when mt = 0 and rt > 0.

a
′M− + b

′R− ≤ c
′
,

1

M0

≤M− ≤ 1,

1

R0

≤ R− ≤ 1 (3.26)

M− ≥
1

M0

,
1

R0

≤ R− ≤ min

{
d
′

b′
, 1

}
, (3.27)

54
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

where a
′
, b
′
, c
′
, and d

′
are respectively expressed by the following equations:

a
′

= (mt − 1)T avg
m , (3.28)

b
′

= (rt − 1)T avg
r , (3.29)

c
′

= D − t− Tmax
m + T avg

m − Tmax
r + γT avg

r , (3.30)

d
′

= D − t− Tmax
r + γT avg

r , (3.31)

where γ is a binary number, and γ = 0 if mt > 0.

Proof When T up∗
− (M−,R−) ≤ D holds, the inequality T−(M−,R−) ≤ D becomes true,

implying that the QoS is guaranteed. If mt > 0, no reduce task starts, thus rt > 0. Then it

follows from Equations (3.16), (3.17) and (3.18).

T up∗
− (M−,R−) ≤ D

⇔ t+ a
′M− + Tmax

m − T avg
m + b

′R− + Tmax
r − γT avg

r ≤ D

⇔ a
′M− + b

′R− ≤ c
′
.

Furthermore, we cannot remove all map workers/workers when the map/reduce phase is not

over, so

0 ≤M− ≤M0 − 1, 0 ≤ R+ ≤ R0 − 1

⇔ 1

M0

≤M− ≤ 1,
1

R0

≤ R− ≤ 1.

If mt = 0 and rt > 0, we have

T up∗
− (M−,R−) ≤ D

⇔ t+ b
′R− + Tmax

r − γT avg
r ≤ D

⇔ R− ≤
d
′

b′
.

In addition, it is allowed to remove all map workers but at most R0 − 1 reduce workers when

the map phase is over while the reduce phase is still under way. Therefore,

0 ≤M− ≤M0, 0 ≤ R− ≤ R0 − 1 ⇔ M− ≥
1

M0

,
1

R0

≤ R− ≤ 1.

3.4. THEORETICAL ANALYSIS OF QOS-GUARANTEED RESOURCE SCALING 55

If mt = 0 and rt = 0, the computation finishes. As we investigate only the resource scaling

for a running MapReduce computation, this situation is not considered. Consequently, the QoS-

guaranteed scaling-down conditions (3.26) and (3.27) are derived.

Non-linear map F

0

1

M

0

1

R

0M 0 1M 0

R

Reverse Resource SpaceOriginal Resource Space

0 1R

(,)M R (,)

(,)M R

1

1

QoS-guaranteed

Scaling-down Area

QoS-guaranteed

Scaling-down Area

(a) mt > 0

Non-linear map
F

0

1

M

0

1

R

0M 0M0

R

Reverse Resource SpaceOriginal Resource Space

0 1R

(,)M R (,)

(,)M R

'

'

d

b

1

0

'

'

b
R

d

QoS-guaranteed

Scaling-down Area

QoS-guaranteed

Scaling-down Area

(b) mt = 0 and rt > 0

Figure 3.3: QoS-guaranteed scaling-down areas

Remark 7 The QoS-guaranteed scaling-down condition (3.26) is a sufficient condition, not a

necessary one.

The above remark indicates that when the condition is met, the QoS is guaranteed. However,

there might be some occasions when the condition is not met but the QoS can still be met.

Remark 8 Both cases of the QoS-guaranteed scaling-down condition (3.26) are expressed in

linear inequalities. This significantly simplifies our mathematical operations in theoretical

analysis.

56
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

The following remark explains the area in Figure 3.3.

Remark 9 Each of the two cases of the QoS-guaranteed scaling-down condition (3.26) indi-

cates an area that is referred to as the QoS-guaranteed Scaling-down Area.

The following remark describes how a point in the reverse resource space is re-mapped to a

solution in the original resource space, as shown in Figure 3.3.

Remark 10 Any point (M−,R−) in the QoS-guaranteed scaling-down area is re-mapped to

a QoS-guaranteed scaling-down solution (bM−c, bR−c) in the original resource space by the

non-linear map, F−, where M− =M0 − 1/M− and R− = R0 − 1/R−.

The Resource Scaling-down Condition corollary is derived from the above theorem. It can

be used to help the resource provisioning framework judge whether the resource is allowed to

be scaled down.

Corollary 2 (Resource Scaling-down Condition) Resource scaling-down is allowed if the con-

dition (3.32) or (3.33) is satisfied whenmt > 0, or the condition (3.34) is satisfied whenmt = 0

and rt > 0.
a
′

M0

+
b
′

R0 − 1
≤ c,

a
′

b′
≥ M0(M0 − 1)

R0(R0 − 1)
. (3.32)

a
′

M0 − 1
+

b
′

R0

≤ c,
a
′

b′
<
M0(M0 − 1)

R0(R0 − 1)
. (3.33)

d
′

b′
≥ 1

R0

. (3.34)

Proof When mt > 0, as shown in Figure 3.4, the QoS-guaranteed scaling-down area is

surrounded by the lines M+ = 1/M0, R+ = 1/R0, and l1 (or l2, l3). The lines l1, l2, and

l3 are expressed by

l1 : a
′M+ + b

′R+ = c
′
, where

a
′

b′
>
M0(M0 − 1)

R0(R0 − 1)
;

l2 : a
′M+ + b

′R+ = c
′
, where

a
′

b′
=
M0(M0 − 1)

R0(R0 − 1)
;

l3 : a
′M+ + b

′R+ = c
′
, where

a
′

b′
<
M0(M0 − 1)

R0(R0 − 1)
.

3.4. THEORETICAL ANALYSIS OF QOS-GUARANTEED RESOURCE SCALING 57

0

1

M

0

1

R

0

Reverse Resource Space

2l

1

1

0 0

1 1
,

1M R

0 0

1 1
,

1M R

1l

3l

Figure 3.4: Distribution of the scaling-down solutions when mt > 0

Moreover, the points in the figure represent the scaling-down solutions. Notice that the solution

(1/M0, 1/R0), which is equivalent to (0, 0) in the original resource space, is not a scaling-down

solution.

If a′/b′ ≥M0(M0 − 1)/[R0(R0 − 1)], we have

a
′

M0

+
b
′

R0 − 1
≤ c

⇔
(

1

M0

,
1

R0 − 1

)
locates in the QoS-guaranteed scaling-down area

⇒ at least one QoS-guaranteed scaling-down solution exists.

If a′/b′ < M0(M0 − 1)/[R0(R0 − 1)], we obtain

a
′

M0 − 1
+

b
′

R0

≤ c

⇔
(

1

M0 − 1
,
1

R0

)
locates in the QoS-guaranteed scaling-down area

⇒ at least one QoS-guaranteed scaling-down solution exists.

In addition, as seen from Figure 3.3(b), when mt = 0 and rt > 0, we can derive that

d
′

b′
≥ 1

R0

⇒ at least one QoS-guaranteed scaling-down solution exists.

58
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

Consequently, resource scaling-down is allowed when at least one QoS-guaranteed scaling-

down solution exists.

3.5 Applications of the Theoretical Results

This section discusses how theoretical results derived in Section 5 can be applied to the resource

scaling of cloud-based MapReduce computations to meet their deadlines; and it validates the-

oretical results by experiments. For this purpose, an experimental environment was created

to emulate Infrastructure as a Service (IaaS); cloud-based MapReduce computations use the

resources (VMs) from the emulated IaaS to execute their computation tasks.

Two typical cloud-based MapReduce computations were selected from a popular MapRe-

duce benchmark suite HiBench [Huang et al., 2010] in our experiments. One was TeraSort,

a standard MapReduce sort benchmark; another was WordCount, an application counting the

number of occurrences of each word in a text file. For both the MapReduce computations, the

input sizes were 2 GB; the numbers of map and reduce tasks were 32 and 15, respectively.

3.5.1 Applications of the Theorems for Resource Scaling-up

The theorems for resource scaling-up include the QoS-guaranteed Scaling-up theorem and the

Latest Intervention Time theorem. They are applied in cloud-based MapReduce computa-

tions as follows. Cloud-based MapReduce continuously monitors the resource provisioning for

cloud-based MapReduce computations at runtime. When it finds that the amount of the resource

provisioning for a cloud-based MapReduce computation meets the condition (3.19) presented

in the QoS-guaranteed Scaling-up theorem, cloud-based MapReduce determines a time point of

resource scaling-up, which satisfies the condition (3.25) given by the Latest Intervention Time

theorem. Meanwhile, cloud-based MapReduce determines how many map workers and reduce

workers need to be added to that cloud-based MapReduce computation in the following way.

Firstly, cloud-based MapReduce chooses a point in the reverse resource space from the QoS-

guaranteed scaling-up area given by the QoS-guaranteed Scaling-up theorem. Then cloud-based

MapReduce re-maps the point in the reverse resource space to a point in the original resource

space through the re-mapping method presented in Remark 5. The coordinates of the point in

the original resource space give the number of map workers and the number of reduce workers

3.5. APPLICATIONS OF THE THEORETICAL RESULTS 59

that need to be added to that cloud-based MapReduce computation. Finally, the map and reduce

workers are added to that cloud-based MapReduce computation at that time point.

The following experiment was conducted to verify the QoS-guaranteed Scaling-up theorem

and the Latest Intervention Time theorem. Firstly, both the TeraSort and WordCount computa-

tions were given with the same deadlines of 240 seconds, and were initially provisioned with

three map workers and three reduce workers. Without resource scaling-up, the TeraSort and

WordCount computation times were 300 seconds and 292 seconds, respectively, and therefore

both required resource scaling-up.

During the runtime of the TeraSort/WordCount computation, a time point satisfying the

condition (3.25) given by the Latest Intervention Time theorem was chosen for resource scaling-

up. For the TeraSort computation, the time point of resource scaling-up was chosen from 40,

80, 120, 160, and 192 seconds, while for the WordCount computation, it was chosen from 40,

80, 120, 160, and 203 seconds. The time points 192 and 203 seconds were the theoretical latest

intervention times for the TeraSort and WordCount computations, respectively.

At the time point of resource scaling-up, a point in the reverse resource space was randomly

chosen from the QoS-guaranteed scaling-up area presented in the QoS-guaranteed Scaling-up

theorem, and then the respective numbers of map workers and reduce workers to be added

to the TeraSort/WordCount computation were derived from that point in the reverse resource

space in the same way as explained above. The map and reduce workers were added to the

TeraSort/WordCount computation at that time point, and the actual computation time of the

TeraSort/WordCount computation was recorded when it finished. The above experiment was

repeated 10 times at each of the time points of resource scaling-up; consequently, there were 50

results of the TeraSort/WordCount computation times in total.

Figure 3.5 and Figure 3.6 show the 50 results of the TeraSort/WordCount computation

times after resource scaling-up. In this figure, the X-axis indicates the time points of resource

scaling-up, while the Y-axis indicates the TeraSort/WordCount computation times after scaling

up different amounts of resource. The boxes in the figures indicate the ranges of the variations

in the computation times after scaling up different amounts of resource. The line under the box

indicates the shortest computation time after resource scaling-up while the line or cross above

the box indicates the longest computation time after resource scaling-up. As seen from the

figure, at each of the time points of resource scaling-up, none of the WordCount and TeraSort

60
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

computations missed their deadlines, which verified the condition (3.19) presented in the QoS-

guaranteed Scaling-up theorem to be sufficient. Also, when the resource scaling-up is done

before/at the latest intervention time, both the WordCount and TeraSort computations met the

deadline, which verified the condition (3.25) given by the Latest Intervention Time theorem to

be sufficient.

40 80 120 160 192
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

Time of Resource Scaling−up (sec)

C
om

pu
ta

tio
n

D
ur

at
io

n
(s

ec
)

Deadline

Figure 3.5: Distributions of the computation times of the WordCount computations after
resource scaling-up

40 80 120 160 203
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

Time of Resource Scaling−up (sec)

C
om

pu
ta

tio
n

D
ur

at
io

n
(s

ec
)

Deadline

Figure 3.6: Distributions of the computation times of the TeraSort computations after resource
scaling-up

3.5. APPLICATIONS OF THE THEORETICAL RESULTS 61

3.5.2 Applications of the Theorem for Resource Scaling-down

The theorem for resource scaling-down is the QoS-guaranteed Scaling-down theorem. It is

applied in cloud-based MapReduce computations as follows. Cloud-based MapReduce continu-

ously monitors the resource provisioning for cloud-based MapReduce computations at runtime.

When it finds that the amount of the resource provisioning for a cloud-based MapReduce

computation meets the condition (3.32) presented in the Resource Scaling-down corollary,

cloud-based MapReduce determines a time point of resource scaling-down. Meanwhile, cloud-

based MapReduce determines how many map workers and reduce workers need to be removed

from that cloud-based MapReduce computation in the following way. Firstly, cloud-based

MapReduce chooses a point in the reverse resource space from the QoS-guaranteed scaling-

down area given by the QoS-guaranteed Scaling-down theorem. Then cloud-based MapReduce

re-maps the point in the reverse resource space to a point in the original resource space through

the re-mapping method presented in Remark 10. The coordinates of the point in the original

resource space give the number of map workers and the number of reduce workers that need

to be removed from that cloud-based MapReduce computation. Finally, the map and reduce

workers are removed from that cloud-based MapReduce computation at that time point.

The following experiment was conducted to verify the QoS-guaranteed Scaling-down the-

orem. Firstly, both the TeraSort and WordCount computations were given with the same

deadlines of 300 seconds, and were initially provisioned with eight map workers and eight

reduce workers. Without resource scaling-down, the TeraSort and WordCount computation

times were 115 seconds and 109 seconds, respectively, and therefore both required resource

scaling-down.

Resource scaling-down was done at one of the time points, 15, 30, 45, 60 and 75 seconds.

At the time point of resource scaling-down, a point in the reverse resource space was randomly

chosen from the QoS-guaranteed scaling-down area presented in the QoS-guaranteed Scaling-

down theorem, and then the respective numbers of map workers and reduce workers to be

removed were derived from that point in the reverse resource space in the same way as explained

above. The map and reduce workers were removed from the TeraSort/WordCount computation

at that time point, and the actual computation time of the TeraSort/WordCount computation

was recorded when it finished. The above experiment was repeated 10 times at each of the time

points of resource scaling-down; consequently, there were 50 results of the TeraSort/WordCount

62
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

computation times in total.

15 30 45 60 75
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360

Time of Resource Scaling−down (sec)

C
om

pu
ta

tio
n

D
ur

at
io

n
(s

ec
)

Deadline

Figure 3.7: Distributions of the computation times of the WordCount computations after
resource scaling-down

15 30 45 60 75
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360

Time of Resource Scaling−down (sec)

C
om

pu
ta

tio
n

D
ur

at
io

n
(s

ec
)

Deadline

Figure 3.8: Distributions of the computation times of the TeraSort computations after resource
scaling-down

Figure 3.7 and Figure 3.8 illustrate the 50 results of the TeraSort/WordCount computation

times after resource scaling-down. In this figure, the X-axis indicates the time points of resource

scaling-down, while the Y-axis indicates the TeraSort/WordCount computation times after scal-

ing down different amounts of resource. The boxes in the figure indicate the ranges of the

variations in the computation times after scaling down different amounts of resource. The line

3.6. SUMMARY OF CHAPTER 63

under the box indicates the shortest computation time after resource scaling-down while the line

or cross above the box indicates the longest computation time after resource scaling-down. As

shown in the figure, at each of the time points of resource scaling-down, both the WordCount

and TeraSort computations met their deadline, verifying the condition (3.26) presented in the

QoS-guaranteed Scaling-down theorem to be sufficient.

3.6 Summary of Chapter

The theoretical study of QoS-guaranteed resource provisioning for cloud-based MapReduce

has been investigated in this chapter for cloud-based MapReduce computation. The problem

has been re-defined in the reverse resource space, which is a Euclidean Plane transformed from

the original Euclidean Plane through a non-linear transformation. In the reverse space, the

problem has been significantly simplified. Sufficient resource scaling conditions and the latest

intervention time have been established for QoS-guaranteed scaling-up/down. These theoretical

results provide a theoretical foundation for guaranteeing the QoS of cloud-based MapReduce

with minimum operational costs. The research outcome of this chapter has been published in

the paper of Xu et al. [2016].

64
CHAPTER 3. THEORETICAL STUDY OF QOS-GUARANTEED RESOURCE

PROVISIONING

Chapter 4

Cloud-based MapReduce Placement

The study of the Cloud-based MapReduce placement (MRP) problem is to answer an important

research question about how to place the MapReduce computations on VMs with minimum

operational costs. The results from the study of the MRP problem will be used to guide the

resource provisioning framework to conduct resource allocation.

The chapter is organized as follows. Section 4.1 gives the introduction of the study of the

MRP problem. Section 4.2 formulates the MRP problem as a constrained combinatorial opti-

mization problem. Section 4.3 designs the new MapReduce placement algorithm. Section 4.4

evaluates the effectiveness and efficiency of the algorithm by comparing it with several baseline

algorithms. Section 4.5 summarizes this chapter.

4.1 Introduction

MapReduce is originally proposed for parallel computation in a cluster which consists of a set

of connected computers. The objectives of the cluster-based MapReduce computations usually

focus on minimizing execution time [Herodotou and Babu, 2011, Lin et al., 2010b, Wolf et al.,

2010, Zaharia et al., 2008] or maximizing cluster utilization [Polo et al., 2011, Wang et al.,

2011]. However, in cloud-based MapReduce, the most important objective is to guarantee the

Quality of Service (QoS) of cloud-based MapReduce computations with the minimum cost of

using virtual machines (VMs). To guarantee the QoS, the required number of workers must be

placed on a selected set of VMs such that the resource requirements of each worker must be met

and the total cost of using the VMs is minimum. This is the so-called MapReduce Placement

65

66 CHAPTER 4. CLOUD-BASED MAPREDUCE PLACEMENT

(MRP) problem in cloud-based MapReduce.

The approaches to the MRP problem can be classified into two categories: homogeneous

MapReduce placement optimization and heterogeneous MapReduce placement optimization.

The homogeneous MapReduce placement optimization approaches usually place the workers

on a set of homogeneous VMs and place the same number of workers on each of the VMs.

Since this category of approaches is easy to implement, most of the existing approaches to the

MRP problem belong to this category [AbdelBaky et al., 2012, Cardosa et al., 2012, Chen et al.,

2014b, Herodotou et al., 2011, Hwang and Kim, 2012, Lama and Zhou, 2012, Palanisamy

et al., 2014, Tian and Chen, 2011]. Very recently, a heterogeneous MapReduce placement

optimization approach was proposed [Xu and Tang, 2014a]. That can utilize heterogeneous

VMs and place different numbers of workers on different VMs. It showed that the proposed

heterogeneous MapReduce placement optimization approach is more cost-effective than those

homogeneous MapReduce placement optimization approaches. However, the proposed ap-

proach did not reuse the VMs used by old MapReduce computations. This thesis presents a

new heterogeneous MapReduce placement optimization approach that considers not only new

VMs of various types, but also the spare CPU and memory capacities of existing VMs.

Here is a simple example to illustrate how heterogeneous MapReduce placement opti-

mization potentially outperforms homogeneous MapReduce placement optimization. In this

example, it is assumed that there are only two types of VMs, small VMs and large VMs,

and that the capacity of a VM is measured by the number of CPUs (or cores). Each of the

small VM contains three CPUs and its price is $4/hour; each of the large VMs contains six

CPUs and its price is $6/hour. Let us say there is one new MapReduce computation which

requires four identical workers, each of which needs two CPUs. If we adopt homogeneous

MapReduce placement, we would have to use either four small VMs or two large VMs. The

total costs of using the VMS would be $16/hour and $12/hour, respectively. However, if we

adopt heterogeneous MapReduce placement, we would need only one small VMs and one large

VMs, and the total cost of using the VMs is only $10/hour. It can be seen from this simple

example that heterogeneous MapReduce placement has the potential to cut the total cost of

cloud-based MapReduce computations. In this example, we did not reuse the VMS used by

existing MapReduce computations. If there is an existing MapReduce computation when a new

MapReduce computation comes, and the existing MapReduce computation is using a VM which

has two spare CPUs, then we use only one new large VM to accommodate the new MapReduce

4.2. PROBLEM FORMULATION 67

computation, and the total extra cost would be only $6/hour.

In this chapter, a new heterogeneous approach to the MRP problem in cloud-based MapRe-

duce computations will be proposed. It has more potential to reuse VMs than existing het-

erogeneous approaches, and therefore can further reduce the total operational cost of cloud-

based MapReduce computations. The MRP problem will be formulated into a constrained

combinatorial optimization problem and will also be proven as an NP-complete problem. A new

constructive algorithm for the constrained combinatorial optimization problem will be designed

and will also be evaluated by experiments.

4.2 Problem Formulation

The cloud-based MapReduce, built on top of a set of VMs of various types rented from a

public cloud, can perform multiple MapReduce computations concurrently. New MapReduce

computations may arrive and existing MapReduce computations may finish and go at any

time. In order to minimize the ongoing operational cost of cloud-based MapReduce, we should

minimize the operational cost of cloud-based MapReduce at any time.

In order to minimize its operational cost, cloud-based MapReduce may use a number of

different types of VMs which have different capacities and prices. Thus, a fundamental problem

is to find which types of VMs should be rented, the numbers of instances of each selected VM

type and the placement of the map and reduce workers (workers) on those rented VMs, such

that the total cost of renting the VMs is minimum while guaranteeing the QoS of cloud-based

MapReduce computation platform at any time.

It is assumed that there are n new MapReduce computations arriving and n′ existing MapRe-

duce computations when the MapReduce placement is carried out. In order to guarantee the

QoS of the ith new MapReduce computation (1 ≤ i ≤ n), at least tMi map workers and tRi reduce

workers need to be provided for the map/reduce tasks of the new MapReduce computation, and

need to be placed on VMs where their resource requirements are met. The map and reduce

workers provided for the new MapReduce computations are respectively expressed by two

tuples, < MCPU
i ,MMem

i > and < RCPU
i , RMem

i >, where MCPU
i and MMem

i are the CPU and

memory requirements of the map tasks of the ith new MapReduce computation (1 ≤ i ≤ n),

and RCPU
i and RMem

i are the CPU and memory requirements of the reduce tasks of the ith new

68 CHAPTER 4. CLOUD-BASED MAPREDUCE PLACEMENT

MapReduce computation.

The map and reduce workers provided for the existing MapReduce computations are re-

spectively expressed by two tuples, < M ′CPU
i ,M ′Mem

i > and < R′CPU
i , R′Mem

i >, where

M ′CPU
i and M ′Mem

i are the CPU and memory requirements of the map tasks of the ith existing

MapReduce computation (1 ≤ i ≤ n′), and R′CPU
i and R′Mem

i are the CPU and memory

requirements of the reduce tasks of the ith existing MapReduce computation.

All the map/reduce workers of the MapReduce computations are required to be placed on

VMs. The VMs include a set of new VMs, denoted by V, rented from the public cloud, and a

set of existing VMs, denoted by V′, which are being used by existing MapReduce computations

and which have some spare resources. The new VMs can be classified into m types in terms of

their resource capacities and prices and the existing VMs can be classified intom′ types in terms

of their spare resource capacities; and V =
⋃m

j=1Vj , V′ =
⋃m′

j=1V′j , where Vj is a multiset of

new VMs of type j and V′j is a multiset of existing VMs of type j.

In addition, let Vk be an instance of the VMs to be used in the MapReduce placement, where

Vk ∈ V ∪ V′, 1 ≤ k ≤ |V| + |V′|, and Vk has a CPU capacity, vCPU
k and a memory capacity

vMem
k . Let

V s
k =< xMk1, x

M
k2, · · · , xMkn, xRk1, xRk2, · · · , xRkn >

be the assignment of the map and reduce workers of the new MapReduce computations to

Vk ∈ V ∪ V′, where xMki and xRki are the numbers of the map and reduce workers of the ith new

MapReduce computation assigned to Vk and 1 ≤ i ≤ n; and let

V s′

k =< cMk1, c
M
k2, · · · , cMkn′ , cRk1, cRk2, · · · , cRkn′ >

be the assignment of the map and reduce workers of the existing MapReduce computations to

Vk ∈ V′, where cMki and cRki are the numbers of the map and reduce workers of the ith existing

MapReduce computation assigned to Vk.

Given the entire set of existing VMs that have spare resources, V′, and the placement of

the map and reduce workers of the n′ existing MapReduce computations on the VMs in V′, the

MRP problem is to find a set of new VMs, V, and placements of the map and reduce workers of

the n new MapReduce computations on all the new and existing VMs, such that the total cost

4.2. PROBLEM FORMULATION 69

of those new VMs is minimal, that is,

min
m∑
j=1

pj · |Vj| (4.1)

subject to

|V|+|V′|∑
k=1

xMki = tMi , 1 ≤ i ≤ n (4.2)

|V|+|V′|∑
k=1

xRki = tRi , 1 ≤ i ≤ n (4.3)

n∑
i=1

(xMki ·MCPU
i + xRki ·RCPU

i) ≤ V CPU
k ,∀Vk ∈ Vj (4.4)

n∑
i=1

(xMki ·MMem
i + xRki ·RMem

i) ≤ V Mem
k ,∀Vk ∈ Vj (4.5)

n∑
i=1

(xMki ·MCPU
i + xRki ·RCPU

i) +
n′∑
i=1

(cMki ·M ′CPU
i + cRki ·R′

CPU
i) ≤ V CPU

k ,∀Vk ∈ V′j (4.6)

n∑
i=1

(xMki ·MMem
i + xRki ·RMem

i) +
n′∑
i=1

(cMkiM
′Mem
i + cRkiR

′Mem
i) ≤ V Mem

k ,∀Vk ∈ V′j (4.7)

In this problem formulation, pj is the price of the jth type of VM. The constraints (4.2)

and (4.3) ensure the required numbers of map and reduce workers of all the new MapReduce

computations are placed on the VMs; the constraints (4.4) and (4.5) make sure the total CPU

and memory requirements of the map/reduce workers on a new VM do not exceed its CPU

and memory capacities; the constraints (4.6) and (4.7) guarantee the total CPU and memory

70 CHAPTER 4. CLOUD-BASED MAPREDUCE PLACEMENT

requirements of the map/reduce workers of the new MapReduce computations and the existing

MapReduce computations on an existing VM do not exceed its CPU and memory capacities.

The MRP problem is NP-complete, and the proof is presented by the following theorem.

Theorem 4 The MRP problem is NP-complete.

Proof The MRP problem is a special case of the classical bin packing problem [Dyckhoff,

1990], where the workers are objects and the VMs are containers and where the volume of

an object (worker) is its CPU requirement and the volume of a container (VM) is the VM’s

CPU capacity. Let the memory requirement of all the objects be rM , which is a constant, and

the memory capacity of a container (VM) be N ∗ rM , where N is the total number of objects

(workers). Then the packing is constrained only by the VM’s CPU capacity, and not the VM’s

memory capacity. In addition, let the cost of each VM be the same, amounting to one dollar.

Thus, in this special case, the MRP problem can be transformed into the classical bin packing

problem: given a set of objects (workers), how to pack these objects into the minimum number

of containers (VMs). Since the classical bin packing problem is NP-complete [Dyckhoff, 1990],

the MRP problem is also NP-complete.

4.3 Algorithm for the MRP Problem

This section describes the algorithm for the MRP problem when new MapReduce computations

arrive and when completed MapReduce computations leave, respectively. The algorithm is an

approximation algorithm. The MRP problem is NP-complete and its size is usually large; hence

it is not feasible to adopt an optimum algorithm to solve the problem as that would lead to an

explosion in its search space. However, the approximation algorithm searches only the space

where the optimum solutions possibly allocate, so it can solve the problems of large sizes, but

without scarifying too much performance on solution quality.

The approximation algorithm is a basically constructive algorithm, which is broken down

into two consecutive procedures: placement pattern generation and MRP problem solution

building. The first procedure is used to generates a small set of placement patterns; the second

procedure is used to find a combination of the placement patterns that form a solution to the

MRP problem with a minimum total cost for using VMs.

4.3. ALGORITHM FOR THE MRP PROBLEM 71

A placement pattern for a VM of one type is a combination of workers of various types that

can be placed on the VM of that type, satisfying the capacity constraints of the VM of that type.

A placement pattern is taken as feasible if the total CPU and memory requirements of those

workers placed on that type of VM do not exceed the CPU and memory requirements of the

VM of that type, respectively. The details about the placement patterns generation procedure

and the MRP problem solution building procedure are discussed in the following subsections.

4.3.1 Placement Pattern Generation Procedure

The basic idea behind the placement pattern generation procedure is to use an FFD-based

algorithm to generate a set of placement patterns for each type of VM, where the VM is a

container and there are many instances of the container, and the workers are objects that need

to be put into the multiple containers. Algorithm 1 describes a procedure that generates a set of

placement patterns for a particular type of VM.

Algorithm 1 Generating a set of placement patterns for jth type of VM
1: Wj = ∅, Sj = ∅;
2: for i = 1 to |W| do
3: if the CPU/memory requirement of the workerwi ∈W does not exceed the CPU/memory

capacity of a VM of the jth type then
4: Wj = Wj ∪ {wi};
5: end if
6: end for
7: for k = 1 to q do
8: for i = 1 to |Wj| do
9: Si = ∅;

10: end for
11: randomly generate a sequence of the workers in Wj , L;
12: while L 6= ∅ do
13: get the first worker w from L;
14: put w into the first VM container that can accommodate it;
15: remove w from L;
16: end while
17: for i = 1 to |Wj| do
18: if Si 6= ∅; then
19: Sj = Sj ∪ Si

20: end if
21: end for
22: end for
23: output Sj;

The input of Algorithm 1 is the entire multiset of workers, W, which are needed to be placed

72 CHAPTER 4. CLOUD-BASED MAPREDUCE PLACEMENT

on multiple instances of the jth type of VM. The output of the algorithm is a set of placement

patterns for the jth type of VM, Sj .

In order to make the algorithm more efficient, it first of all sorts out those workers which

cannot be put into any of the containers because their ‘size’ is bigger than that of any container,

which is done by checking if their resource requirements exceed the capacity of the container

in steps 2-6 of the algorithm. Then the algorithm iterates q times (steps 7-22) of a variant of the

FFD algorithm, namely random FFD algorithm (steps 8-16) in which the order of the objects

(workers) is randomly generated, rather than in descending order by their ‘size’. The reason

behind that is that we wanted the procedure to generate different placement patterns in each

of the iterations. The total number of containers used in the random FFD algorithm is |Wj|,

which is enough to accommodate all the objects (workers). Thus, after the packing process of

the random FFD algorithm, there could be some containers which are empty. Thus, we need

to get rid of those empty containers (steps 17-21). Each of the non-empty containers, Si, gives

a placement pattern for the jth type of VM, and all the placement patterns generated in the q

iterations are stored in Sj .

The placement pattern generation procedure is described in Algorithm 2. The input is the

entire multiset of the workers needed to be placed, W, and the output is a set of placement

patterns for all m types of VMs, S.

Algorithm 2 iterates m+m′ times (steps 2-5), where m is the total number of types of VMs

and m′ is the total number of types of existing VMs. It should be noted that we categorize the

existing VMs with the same spare CPU and memory capacities into the same type. In each

iteration, Algorithm 2 invokes Algorithm 1 to generate a set of placement patterns for one type

of VM, Sj (step 3), and then merges those placement patterns stored in Sj into S (step 4).

Finally, it outputs S.

Algorithm 2 Placement pattern generation
1: S = ∅;
2: for j = 1 to m+m′ do
3: use Algorithm 1 to generate a set of placement patterns for the jth type of VM, Sj;
4: S = S ∪ Sj;
5: end for
6: output S;

4.3. ALGORITHM FOR THE MRP PROBLEM 73

4.3.2 MRP Problem Solution Building Procedure

After using the above placement pattern generation procedure to find a set of feasible placement

patterns for all types of VMs, the MRP problem solution building procedure is used to find the

best combination of the placement patterns in S to form a solution to the MRP problem.

From the computational point of view, the MRP problem solution building problem is a

constrained combinatorial optimization problem. Considering that the total number of feasible

placement patterns is not huge, however, we transform the MRP problem solution building

problem into a Mixed Integer Programming (MIP) [Wolsey, 2008] problem as follows:

A placement pattern can be expressed by an N -tuple skj =< x1jk, x
2
jk, · · · , xijk, · · · , xNjk >,

where skj is the kth placement pattern of the jth type of VM, xijk is the number of workers of the

ith type used in the placement pattern, andN is the total number of different types of workers. It

should be noted that the workers with the same CPU and memory requirements are categorized

into the same type. The objective of the MIP problem is

minZ =
m∑
j=1

|Sj |∑
k=1

pj · ykj (4.8)

subject to

m+m′∑
j=1

|Sj |∑
k=1

xijk · ykj ≥ |Wi|, 1 ≤ i ≤ N (4.9)

|Sj |∑
k=1

ykj ≤ Nj,m < j ≤ m+m′ (4.10)

ykj ≥ 0, 1 ≤ k ≤ |Sj|, 1 ≤ j ≤ m+m′ (4.11)

In Equation (4.8), Z is the total cost of all the VMs needed in the MapReduce placement,

ykj is the decision variable representing the number of the placement pattern, skj , used in the

MapReduce placement, pj is the price of the VM of the jth type, |Sj|, denotes the total number

of the placement patterns for the jth VM type, which is generated in the placement pattern

generation procedure. The constraint (4.9) ensures the required number of the workers of

every type involved in the MapReduce computations are assigned to one of the VMs. The

74 CHAPTER 4. CLOUD-BASED MAPREDUCE PLACEMENT

constraint (4.10) makes sure the number of each type of existing VMs used in the solution does

not exceed its available number, where Nj is the maximum available number of one type of

existing VMs. The constraint (4.11) ensures all variables must be non-negative integers.

It should be noted that the total number of workers in the MIP solution could be more than

the total number of workers required to be placed in the MRP problem because of the relaxed

constraint (4.9). Therefore, we need to remove those redundant workers from the MIP solution

before the MIP solution can be used for the MRP problem.

4.4 Evaluation

The evaluation of our new algorithm is done through two experiments. The first experiment

is to test the performance of our new constructive algorithm (NCA). In the experiment, we

compare NCA with three baseline algorithms in terms of the cost of the MapReduce placements

generated by the algorithms for a set of test instances of various characteristics.

One of the baseline algorithms is the most popular algorithm for HOMOgeneous MapRe-

duce placement (HOMO) [Palanisamy et al., 2014]. HOMO selects a suitable type of VM

among multiple types of VM and then assigns the same number of workers to multiple instances

of the selected type of VM. A second baseline algorithm is an FFD-based MapReduce place-

ment algorithm (FFD-based). The FFD-based algorithm picks workers in a decreasing order by

their resource requirements and places them in a first-fit fashion. Details about this algorithm

can be found in the work of Kang and Park [2003]. A third baseline algorithm is the original

constructive algorithm (OCA) presented in the work of Xu and Tang [2014a]. Both the FFD-

based algorithm and NCA reuse those spare resources on existing VMs whereas HOMO and

OCA do not. All the algorithms except for HOMO are designed for heterogeneous MapReduce

placement.

The second experiment is to test the scalability of NCA, which is done by observing how

the computation time of NCA increases when the size of the test problems increases.

Both of the experiments were conducted on a laptop with an Intel Core i7-3520M CPU (2.90

GHz) and 8 GBs of RAM. All the VMs used in the experiments were generated by VMware

Workstation 10.0.0 [VMware, 2015], and were deployed on 12 HP workstations (32 Intel Xeon

2.40 GHz CPUs and 320 GB memory) interconnected via a Gigabit Ethernet network. Hadoop

4.4. EVALUATION 75

0.20.2 [Hadoop, 2015] was used to run the MapReduce benchmarks and Ganglia [Ganglia,

2015] was used to monitor the resource consumption during runtime. All of the algorithms

used in the experiments were implemented in C#. The solver for the MIP in the MRP problem

solution building procedure is CPLEX (12.5.1.0) [CPLEX, 2015].

4.4.1 Construction of Test Instances

In the evaluation, two benchmarks for MapReduce computations were selected from a popular

MapReduce benchmark suite, namely HiBench [Huang et al., 2010], and were used to construct

a number of test instances of different sizes, each of which was used as a test problem in the

experiments. One benchmark was TeraSort, a standard MapReduce sort benchmark; another

was WordCount, an application that counts the number of occurrences of each word in a text

file.

Each test instance had three inputs: the number of MapReduce computations, the number

of workers in each of the MapReduce computations, and the information about existing VMs.

The types of VMS used in the experiments are shown in Table 4.1.

Table 4.1: VM types

VM Type CPUs (#Cores) Mem (GB) Cost ($)

m1 small 1 1.7 0.06
m1 medium 2 3.75 0.12

m1 large 4 7.5 0.24
m1 xlarge 8 14.7 0.48
m2 xlarge 6.5 17.1 0.41

m2 2xlarge 13 34.2 0.82
c1 medium 5 1.7 0.145
c1 xlarge 20 7 0.58

When constructing test instances, the resource requirements of map/reduce workers were

compacted by experiments. Table 4.2 shows the resource requirements of the map/reduce

workers for these two benchmarks with different input sizes. The resource requirements shown

in the table are the average results of 10 runs.

Using the information shown in Table 4.2, the following methods were used to construct

more and large-size test instances. It was assumed that the CPU and memory requirements

of map workers were uniformly distributed in the interval [a, b], where a was the observed

minimum amount of resource requirement and bwas the observed maximum amount of resource

76 CHAPTER 4. CLOUD-BASED MAPREDUCE PLACEMENT

Table 4.2: Resource requirements of the workers with different input sizes

Input Mapper Reducer
Size (GB) CPUs (#Cores) Mem (GB) CPUs (#Cores) Mem (GB)

TeraSort 2 [1.5,1.8] [0.1,0.2] 1.12 0.9
4 [1.5,1.8] [0.1,0.2] 1.32 1.3
6 [1.5,1.8] [0.1,0.2] 1.4 1.65
8 [1.5,1.8] [0.1,0.2] 1.52 1.8

10 [1.5,1.8] [0.1,0.2] 1.68 2
WordCount 4 [1.7,1.9] [0.3,0.4] 0.68 0.15

8 [1.7,1.9] [0.3,0.4] 0.85 0.4
12 [1.7,1.9] [0.3,0.4] 1.08 0.59
16 [1.7,1.9] [0.3,0.4] 1.2 0.7
20 [1.7,1.9] [0.3,0.4] 1.29 0.85

requirement. Thus, the CPU requirement for a test instance with a fixed input size was randomly

picked up between a and b.

The CPU and memory requirements of reduce workers were generated in different way. It

was observed that the requirements for CPU and memory were in proportion to the input size of

the MapReduce computation. Thus, to generate the CPU and memory requirements for reduce

workers, the following four linear regressions was applied to find the relationship between the

CPU/memory requirement and the MapReduce computation input size:

ytsc = 0.066x+ 1.012 (4.12)

ytsm = 0.135x+ 0.72 (4.13)

ywc
c = 0.0393x+ 0.549 (4.14)

ywc
m = 0.0425x+ 0.028 (4.15)

where x is the input size, ytsc (ytsm) indicates the requirement for CPU (memory) of the reduce

workers for TeraSort, ywc
c (ywc

m) denotes the requirement for CPU (memory) of the reduce

workers for WordCount. Given any input size, x, uniformly distributed in the interval [10−120],

we calculated the resource requirements for reduce workers using these four equations.

4.4.2 Experiments and Results

In the experiments, we used HOMO, the FFD-based algorithm, OCA and NCA to solve each of

the test instances. Because of the stochastic nature of OCA and NCA, we used them 20 times to

4.4. EVALUATION 77

solve each of the test instances and used the averages of the 20 runs to compare with the other

two algorithms. The maximum time for solving the MIP problem in the MRP problem solution

building phase of OCA and NCA was set to 30 seconds, following the suggestion in the work

of Haouari and Serairi [2009]. The parameter q used in Algorithm 2 was fixed to 10 after a

number of trials.

0 2 4 6 8 10 12 14 16

Number of Existing VMs

40

60

80

100

120

140

160

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD-based
OCA
NCA

(a) TeraSort

0 2 4 6 8 10 12 14 16

Number of Existing VMs

40

60

80

100

120

140

160

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD-based
OCA
NCA

(b) WordCount

Figure 4.1: Comparison of the four algorithms on the cost of using VMs when the number of
existing VMs varied

Figure 4.1 shows how the costs of using VMs vary when the four algorithms are used

to solve the test instances of TeraSort and WordCount, respectively. In the experiments, the

number of existing VMs varied from 0 to 18, the number of worker types was fixed at 24, and

the number of workers of each type was fixed at 20. It was assumed in the experiments that the

remaining resource on each existing VM was 50 percent of the total resource.

As seen from the figure, when the number of existing VMs was zero, or there was no existing

78 CHAPTER 4. CLOUD-BASED MAPREDUCE PLACEMENT

VMs, the cost of the MapReduce placement generated by NCA was 35.1 percent less than that of

HOMO, 25.8 percent less than that of the FFD-based algorithm and 2.0 percent less than that of

OCA for those test instances of TeraSort, and 33.7 percent less than that of HOMO, 25.6 percent

less than that of the FFD-based algorithm and 7.1 percent less than that of OCA for those test

instances of WordCount. It can be also seen from Figure 1 that when there were existing VMs,

the cost of the MapReduce placement generated by NCA was 35.5− 35.7 percent less than that

of HOMO, 12.9−23.6 percent less than that of the FFD-based algorithm and 4.7−17.0 percent

less than that of OCA for those test instances of TeraSort, and 34.0 − 35.1 percent less than

that of HOMO, 15.1− 24.2 percent less than that of the FFD-based algorithm and 17.1− 24.6

percent less than that of OCA for those test instances of WordCount.

9 10 11 12 13 14 15 16

Number of MapReduce Computations

40

60

80

100

120

140

160

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD-based
OCA
NCA

(a) TeraSort

9 10 11 12 13 14 15 16

Number of MapReduce Computations

40

60

80

100

120

140

160

180

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD-based
OCA
NCA

(b) WordCount

Figure 4.2: Comparison of the four algorithms on the cost of using VMs when the number of
MapReduce computations varied

Figure 4.2 compares the costs of the MapReduce placement solutions generated by the

4.4. EVALUATION 79

four algorithms for TeraSort and WordCount, respectively, when the number of MapReduce

computations varies from 9 to 16. In the experiments, the number of workers in each of the

MapReduce computations was fixed at 40, the number of the existing VMs of each type was

fixed at 10, and the remaining resource on each existing VM was 50 percent of the total resource.

For the test instances of TeraSort, the cost of the MapReduce placement generated by NCA was

32.8 − 39.1 percent less than that of HOMO, 17.5 − 27.0 percent less than that FFD-based

algorithm, and 13.2− 21.4 percent less than that of OCA. For the test instances of WordCount,

the cost of the MapReduce placement generated by NCA was 24.3− 44.0 percent less than that

of HOMO, 12.8−31.9 percent less than that of the FFD-based algorithm, and 6.2−36.2 percent

less than that of OCA.

28 32 36 40 44 48 52 56

Number of Workers in Each of MapReduce Computations

40

60

80

100

120

140

160

180

200

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD-based
OCA
NCA

(a) TeraSort

28 32 36 40 44 48 52 56

Number of Workers in Each of MapReduce Computations

40

60

80

100

120

140

160

180

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD-based
OCA
NCA

(b) WordCount

Figure 4.3: Comparison of the four algorithms on the cost of using VMs when the number of
workers in each of the MapReduce computations varied

Figure 4.3 presents the comparison of the cost of the MapReduce placement solutions

80 CHAPTER 4. CLOUD-BASED MAPREDUCE PLACEMENT

generated by the four algorithms for TeraSort and WordCount, when the number of workers

in each of the MapReduce computations varies from 28 to 56. In the experiments, the number

of MapReduce computations was fixed at 12, the number of the existing VMs of each type

was fixed at 10, and the remaining resource on each existing VM was 50 percent of the total

resource. For the test instances of TeraSort, the cost of the MapReduce placement generated by

NCA was 37.6− 43.1 percent less than that of HOMO, 12.7− 18.4 percent less than that of the

FFD-based algorithm, and 10.8 − 28.9 percent less than that of OCA. For the test instances of

WordCount, the cost of the MapReduce placement generated by NCA was 30.8− 36.8 percent

less than that of HOMO, 17.7 − 21.2 percent less than that of the FFD-based algorithm, and

12.6− 16.8 percent less than that of OCA.

9 10 11 12 13 14 15 16

Number of MapReduce Computations

0

10

20

30

40

50

60

70

80

90

100

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

TeraSort
WordCount

(a)

28 32 36 40 44 48 52 56

Number of Workers in Each of MapReduce Computations

0

10

20

30

40

50

60

70

80

90

100

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

TeraSort
WordCount

(b)

Figure 4.4: Scalability of NCA

Figure 4.4 displays the experiments on the scalability of NCA. In the experiments, the

number of the existing VMs of each type was fixed at 10 and the remaining resource on each

4.5. SUMMARY OF CHAPTER 81

existing VM was 50 percent of the total resource. As seen from the figure, the computation time

of NCA increased linearly when the number of MapReduce computations increased, and that

the computation time of NCA did not change significantly when the number of workers in each

of the MapReduce computations varied.

In summary, NCA always had better performance than all the three baseline algorithms for

all the tested problems. In addition, the good scalability of NCA was demonstrated.

4.4.3 Discussion

As illustrated by the experimental results, our new algorithm outperformed other three baseline

algorithms, including HOMO, the FFD-based algorithm and OCA, on saving the cost of using

VMs. Particularly, our new algorithm was better than HOMO and the FFD-based algorithm

since it found better combinations of the worker placements that form a solution to the MRP

problem. A better combination of worker placements means less cost of using VMs. Thus,

the MRP solution found by our new algorithm consumed less cost of using VMs than those by

HOMO and the FFD-based algorithm.

Our new algorithm also performed better OCA, as it could reuse the spare resource of

existing VMs. That greatly helped our new algorithm used less new VMs than OCA. Thus,

using our new algorithm the cost of using VMs was less than that using OCA.

4.5 Summary of Chapter

This chapter has proposed a new algorithm for the cloud-based MapReduce placement (MRP)

problem and has evaluated the new algorithm by experiments. The experimental results have

demonstrated the effectiveness of the new algorithm as a heterogeneous placement algorithm.

The operational cost of cloud-based MapReduce computation platform using the new algorithm

was 24.3 − 44.0 percent lower than that using the most popular homogeneous MapReduce

placement algorithm. The experimental results have also shown that the new algorithm is more

efficient than another two heterogeneous MapReduce placement algorithms. The operational

cost of cloud-based MapReduce computation platform using the new algorithm was 12.7 −

31.9 percent lower than that using the FFD-based algorithm, and 2.0 − 36.2 percent lower

than that using the heterogeneous MapReduce placement algorithm not considering the spare

82 CHAPTER 4. CLOUD-BASED MAPREDUCE PLACEMENT

resources from the existing MapReduce computations. Finally, the experimental results have

demonstrated the good scalability of the new algorithm. The research outcome of this chapter

has been published in the paper of Xu et al. [2015].

Chapter 5

Cloud-based MapReduce Consolidation

The study of the Cloud-based MapReduce consolidation (MRC) problem is to answer the

research question regarding how to consolidate the remaining MapReduce computations on

VMs with minimum operational costs when some MapReduce computations are competing.

The results from the study of the MRC problem will be used to guide the resource provisioning

framework to conduct MapReduce consolidation.

The chapter is organized as follows. Section 5.1 gives the introduction to the study of

the MRC problem. Section 5.2 formulates the MRC problem as a bio-objective optimization

problem. Section 5.3 designs the new MapReduce consolidation algorithm. Section 5.4 demon-

strates the effectiveness by case studies, and also evaluates the efficiency of the algorithm by

comparing it with a baseline algorithm. Section 5.5 summarizes this chapter.

5.1 Introduction

The MRC problem is raised when some MapReduce computations complete and leave, or

resource provisioning for some MapReduce computations is scaled down during the runtime

of cloud-based MapReduce. At that time, the workers for those MapReduce computations

are removed and the resources occupied by the workers are released. The MRC problem is

then to consolidate the remaining workers on existing VMs to minimize the cost of using

VMs. Meanwhile, the MRC problem considers the migration cost during the MapReduce

consolidation. To reduce the system operation, the MRC problem also tries to minimize the

migration cost.

83

84 CHAPTER 5. CLOUD-BASED MAPREDUCE CONSOLIDATION

The cost of using VMs and the migration cost for cloud-based MapReduce are potentially

reduced. Here is a simple example to illustrate how both the cost of using VMs and the

migration cost are reduced through addressing the MRC problem. It is assumed there are two

VMs, VM A and VM B, both of which have three CPUs (or cores) and 300 MBs and are charged

by $1/hour. Each of the VMs has one large worker requiring two CPUs and 200 MBs and one

small worker requiring one CPU and 100 MBs. At a time point, a small worker on VM A

and a large worker on VM B complete their respective MapReduce computations and are then

removed. Without MapReduce consolidation, cloud-based MapReduce could still use two VMs

and have to pay for two dollars. However, with MapReduce consolidation, the small and large

workers are consolidated on one VM, and cloud-based MapReduce shut down the idle VM and

needs to pay for only one dollar so that the cost of using VMs is saved. Meanwhile, there are

two consolidation solutions. The first is to move the large worker on VM A to VM B, which

has to migrate 200 MBs of data. The second is to move the small worker on VM B to VM A,

which migrates only 100 MBs of data. The second solution incurs less migration cost than the

first one. Thus, addressing the MRC problem, the cost of using VMs and the migration cost for

cloud-based MapReduce are potentially reduced.

In this chapter, the MRC will be formulated into a bio-objective optimization problem and

will also be proven as an NP-complete problem. A new constructive algorithm will be designed

for the MRC problem, and the new constructive algorithm will be evaluated by experiments.

The algorithm firstly narrows the VMs to be consolidated, then finds the promising assignment

patterns of MapReduce computations on each type of the VMs to be consolidated, and finally

finds an optimum solution through optimizing the combination of those promising assignment

patterns. Using these three steps, the algorithm reduces the search scope without sacrificing the

possibility of locating optimum solutions.

5.2 Problem Formulation

When the MapReduce computations are completed and leave, the spare resources occupied

by those completed MapReduce computations are available. To further save the operational

cost of cloud-based MapReduce, the remaining MapReduce computations are re-assigned to

existing VMs. After the reassignment, the idle VMs will be shut down to save their operational

cost. The migration cost involved in the re-assignment needs to be considered by cloud-based

5.2. PROBLEM FORMULATION 85

MapReduce. During the migration from the original placement to the new placement, the

procedures and data for a worker, which are stored in the memory of the VM loading that

worker, are migrated to the new VM. The cost of transferring those procedures and data is

defined as the migration cost.

It is assumed that there are n remaining MapReduce computations when some MapReduce

computations are completed. The map and reduce workers of the ith remaining MapReduce

computation are respectively expressed by two tuples,< MCPU
i ,MMem

i > and< RCPU
i , RMem

i >,

where MCPU
i and MMem

i are the CPU and memory requirements of the map tasks of the ith

remaining MapReduce computation (1 ≤ i ≤ n), and RCPU
i and RMem

i are the CPU and

memory requirements of the reduce tasks of the ith remaining MapReduce computation.

At the same time, there is a multiset of existing VMs, V. Existing VMs are categorized into

m types in terms of assignments and prices. In other words, two VMs are of the same type

when they have the same assignments and prices. Let Vj be a multiset of existing VMs of type

j, and
⋃m

j=1 Vj = V. After the re-assignment, some VMs may have no map workers or reduce

workers on them, and they will be shut down to save cost. Let V′ be the multiset of existing

VMs after the re-assignment and mathcalV ′ ⊆ V′. Let |V′j| be the multiset of existing VMs of

type j after the re-assignment and mathcalV ′j ⊆ V′j .

Let Vk ∈ V be the kth VM in the set of existing VMs is V, and 1 ≤ k ≤ |V|. The CPU

capacity of the VM Vk is denoted by vCPU
k while the memory capacity of the VM Vk is indicated

by vMem
k . Before the re-assignment, the assignment of the map and reduce workers on the VM

Vk is denoted by

V s
k =< cMk1, c

M
k2, · · · , cMkn, cRk1, cRk2, · · · , cRkn >

where cMki and cRki are the numbers of the map and reduce workers of the ith remaining MapRe-

duce computation assigned to Vk and 1 ≤ i ≤ n. After the re-assignment, the assignment of the

map and reduce workers on the VM Vk is changed to

V s′

k =< xMk1, x
M
k2, · · · , xMkn, xRk1, xRk2, · · · , xRkn >

where xMki and xRki are the numbers of the map and reduce workers of the ith remaining compu-

tation assigned to Vk and 1 ≤ i ≤ n;

86 CHAPTER 5. CLOUD-BASED MAPREDUCE CONSOLIDATION

Cloud-based MapReduce tries to minimize the cost of the VMs for the remaining MapRe-

duce computations,

Cv =
m∑
j=1

|V′j| · pj (5.1)

where pj is the price of the jth type of VMs. Meanwhile, cloud-based MapReduce needs to

minimize the migration cost during the re-assignment,

Cm =

|V|∑
k=1

n∑
i=1

|cMki − xMki | ·MMem
i + |cRki − xRki| ·RMem

i

2
(5.2)

The migration cost, Cm, amounts to the total amount of the memories of the workers required

to be migrated.

Next, the MRC problem is formulated as follows. Given the entire set of existing VMs, V,

and the original placements of the n remaining MapReduce computations on the VMs in V, that

is {V s
k |1 ≤ k ≤ |V|}, the MRC problem is to find a set of new placements of the n remaining

MapReduce computations on the VMs in V′, that is {V s′

k |1 ≤ k ≤ |V′|}, such that both the cost

of using VMs, Cv, and the migration cost, Cm, are minimum, that is,

minCv (5.3)

and

minCm (5.4)

subject to

|V′|∑
k=1

xMki =

|V|∑
k=1

cMki , 1 ≤ i ≤ n (5.5)

|V′|∑
k=1

xRki =

|V|∑
k=1

cRki, 1 ≤ i ≤ n (5.6)

5.3. ALGORITHM FOR THE MRC PROBLEM 87

n∑
i=1

(xMki ·MCPU
i + xRki ·RCPU

i) ≤ V CPU
k ,∀Vk ∈ V′j (5.7)

n∑
i=1

(xMki ·MMem
i + xRki ·RMem

i) ≤ V Mem
k ,∀Vk ∈ V′j (5.8)

In this problem formulation, the bi-objective optimization problem is formulated as a sin-

gle objective optimization problem through introducing two weights, Wv and Wm, which re-

spectively represent the weights of the cost of using VMs and the migration cost. The con-

straints (5.5) and (5.6) ensure the numbers of existing map and reduce workers are not changed

after the reassignment; the constraints (5.7) and(5.8) make sure the total CPU and memory re-

quirements of the map/reduce workers on a VM do not exceed its CPU and memory capacities.

The MRC problem is NP-complete, and the proof is presented by the following theorem.

Theorem 5 The MRC problem is NP-complete.

Proof The MRC problem is a special case of the classical bin packing problem [Dyckhoff,

1990], where the workers are objects and the VMs are containers and where the volume of

an object (worker) is its CPU requirement and the volume of a container (VM) is the VM’s

CPU capacity. Let the memory requirement of all the objects be rM , which is a constant, and

the memory capacity of a container (VM) be N ∗ rM , where N is the total number of objects

(workers). Then the packing is constrained only by the VM’s CPU capacity, and not the VM’s

memory capacity. In addition, let the cost of each VM be the same, amounting to one dollar.

Thus, in this special case, the MRC problem can be transformed into the classical bin packing

problem: given a set of objects (workers), how to pack these objects into the minimum number

of containers (VMs). Since the classical bin packing problem is NP-complete [Dyckhoff, 1990],

the MRC problem is also NP-complete.

5.3 Algorithm for the MRC Problem

This section describes the algorithm for the MRC problem when completed MapReduce compu-

tations leave. The algorithm is an approximation algorithm. The MRC problem is NP-complete

and its size is is usually huge, it is impossible to adopt an optimum algorithm to solve the

88 CHAPTER 5. CLOUD-BASED MAPREDUCE CONSOLIDATION

problem considering that would lead to an explosion in its search space. But the approximation

algorithm can solve the problems of large sizes without scarifying too much performance on

solution quality, as it searches only the space where the optimum solutions possibly allocate.

The approximation algorithm, a basically constructive algorithm, is broken down into three

consecutive procedures: VM selection procedure, placement pattern generation and MRC solu-

tion building. The first procedure is used to select the VMs where the MapReduce computation

consolidation will be conducted. The second procedure is used to generates a small set of

placement patterns. The third procedure is used to find a combination of the placement patterns

that form an optimum solution to the MRC problem. In particular, the third procedure trans-

forms the bio-objective optimization into the single objective optimization by normalization and

introducing weights.

A placement pattern for a VM of one type is a combination of workers of various types that

can be placed on the VM of that type, satisfying the capacity constraints of the VM of that type.

A placement pattern is said to be feasible if the total CPU and memory requirements of those

workers that are placed on the VM of that type do not exceed the CPU and memory requirements

of the VM of that type, respectively. The details of the placement pattern generation procedure

and the MRC problem solution building procedure are discussed in the following subsections.

5.3.1 VM Selection Procedure

The basic idea behind the VM selection procedure is to select a subset of existing VMs to

conduct the MapReduce consolidation, such that the migration cost is potentially reduced. In

addition, the VM selection procedure prefers to choose those VMs with low resource utilization,

potentially reducing the cost of using VMs. The details about the procedure are given in

Algorithm 3.

Algorithm 3 VM selection
1: V∗ = ∅;
2: for k = 1 to |V| do
3: if the VM Vk just completed a MapReduce computation then
4: V∗ = V∗ ∪ Vk;
5: end if
6: end for
7: output V∗;

5.3. ALGORITHM FOR THE MRC PROBLEM 89

The input of Algorithm 3 is the entire set of existing VMs, V. The output of Algorithm 5.3.1

is a subset of V, V∗, which is the set of VMs. This algorithm iterates all the VMs in V and

selects those VMs which just finished MapReduce computations to conduct the MapReduce

consolidation. The basic idea behind the selection is those VMs which just finished MapReduce

computations have plenty of spare resources and their resource utilization is low, while the other

VMs have few spare resources and high resource utilization, as the MapReduce placement

algorithm has well utilized those resources on those VMs.

5.3.2 Placement Pattern Generation Procedure

Having known the VMs where the consolidation needs to be done, V∗, the placement pattern

generation procedure is to use an FFD-based algorithm to generate a set of placement patterns

for existing VMs, and to put the workers on the VMs, V∗, into existing VMs.

Algorithm 4 Generating a set of placement patterns for jth type of VM
1: W∗j = ∅, Sj = ∅;
2: for i = 1 to |W| do
3: if the CPU/memory requirement of the workerwi ∈W does not exceed the CPU/memory

capacity of a VM of the jth type then
4: Wj = Wj ∪ {wi};
5: end if
6: end for
7: for k = 1 to q do
8: for i = 1 to |Wj| do
9: Si = ∅;

10: end for
11: randomly generate a sequence of the workers in Wj , L;
12: while L 6= ∅ do
13: get the first worker w from L;
14: put w into the first VM container that can accommodate it;
15: remove w from L;
16: end while
17: for i = 1 to |Wj| do
18: if Si 6= ∅; then
19: Sj = Sj ∪ Si

20: end if
21: end for
22: end for
23: output Sj;

In particular, this algorithm re-assigns only a subset of workers of remaining MapReduce

computations, denoted by W′ ⊂ W, to existing VMs, rather than re-assigning the whole set

90 CHAPTER 5. CLOUD-BASED MAPREDUCE CONSOLIDATION

of the workers of remaining MapReduce computations, W. And existing VMs do not contain

those workers in W∗ before the re-assignment. The subset, W∗, includes only the workers of the

MapReduce computations which share the VMs with the completed MapReduce computations.

Such a step greatly reduces the complexity of the system operations and lowers the risk of

system instability. It also reduces the search space, speeding up finding the solution.

Algorithm 4 describes a procedure that generates a set of placement patterns for a particular

type of VM. The input of Algorithm 4 is the set of the workers on the VMs of the jth type,

W∗j . The output of Algorithm 4 is a set of placement patterns for the jth (1 ≤ j ≤ m) type

of existing VMs, Sj . It should be noted that existing VMs with the same placement patterns

and prices are of the same type. The Remaining steps of the Algorithm 4 is almost the same as

Algorithm 1, so will not be explained again here.

The placement pattern generation procedure is described in Algorithm 5. The input is the

entire multiset of the workers needed to be placed, W∗, and the output is a set of placement

patterns for all the m types of VMs, S. This procedure is almost the same as that for the MRP

problem, so it will not be explained again here.

Algorithm 5 Placement pattern generation
1: S = ∅;
2: for j = 1 to m do
3: useAlgorithm 4 to generate a set of placement patterns for the jth type of existing VMs,

Sj;
4: S = S ∪ Sj;
5: end for
6: output S;

5.3.3 MRC problem Solution Building Procedure

After using the placement pattern generation procedure to find a set of feasible placement

patterns for all types of VMs, the MRC problem solution building procedure is used to find

the best combination of the placement patterns in S to form a solution to the MRC problem.

The MRC problem solution building problem is a constrained combinatorial optimization

problem, which can be transformed into a Mixed Integer Programming (MIP) [Wolsey, 2008]

problem as follows:

5.3. ALGORITHM FOR THE MRC PROBLEM 91

An original placement pattern can be expressed by an N -tuple:

s′j =< c1j , c
2
j , · · · , cij, · · · , cNj >

where s′j is the kth original placement pattern of the jth type of VM, cij is the number of workers

of the ith type used in the original placement pattern, andN is the total number of different types

of workers. It should be noted that the same type of VMs has the same placement pattern, and

the workers with the same CPU and memory requirements are categorized into the same type.

A new placement pattern can be expressed by an N -tuple:

skj =< x1jk, x
2
jk, · · · , xijk, · · · , xNjk >

where skj is the kth placement pattern of the jth type of VM, xijk is the number of workers of the

ith type used in the placement pattern, and N is the total number of different types of workers.

The MIP transforms these two objectives of the MRC problem into one objective by nor-

malization and introducing weights. The objective function of the MIP problem is given by

Z =

(
wv ·

Cv − C low
v

Cup
v − C low

v

+ wm ·
Cm − C low

m

Cup
m − C low

m

)
(5.9)

In the objective function, wv and wm are the weights of the cost of using VMs and the

migration cost, respectively. The notation Cv calculates the cost of using VMs for a solution to

the MIP problem, which is expressed by

Cv =
m∑
j=1

|Sj |∑
k=1

pj · ykj (5.10)

where ykj is the decision variable representing the number of the placement pattern, skj , used

in the MapReduce placement, pj is the price of the VM of the jth type, |Sj| denotes the total

number of the placement patterns for the jth VM type, which is generated in the placement

pattern generation procedure. C low
v and Cup

v are the lower and upper bounds of Cv. Obviously,

C low
v = 0 (5.11)

which means Cv achieves its lower bound when all the VMs are free and can be shut down.

92 CHAPTER 5. CLOUD-BASED MAPREDUCE CONSOLIDATION

Meanwhile,

Cup
v =

m∑
j=1

|Vj| · pj (5.12)

which means Cv achieves its upper bound when no VMs are shut down and the cost of the VMs

for the remaining MapReduce computations is the same as that before the re-assignment.

Also, in the objective function, the notation Cm calculates the migration cost for a solution

to the MIP problem, which is expressed by

Cm =
m∑
j=1

|Sj |∑
k=1

(n∑
i=1

|xijk − cij| · ri
2

· ykj
)

(5.13)

The right part of this equation amounts to the total amount of the memories to be migrated.

C low
m and Cup

m denote the lower and upper bounds of Cm, respectively. Obviously,

C low
m = 0 (5.14)

which means Cm achieves its lower bound when no workers are migrated. Meanwhile,

Cup
m =

|V|∑
k=1

n∑
i=1

(
cMki ·MMem

i + cRki ·RMem
i

)
(5.15)

which means Cm achieves its upper bound when all the workers are migrated.

Then the MIP is formulated as follows:

minZ (5.16)

subject to

m∑
j=1

|Sj |∑
k=1

xijk · ykj ≥ |Wi|, 1 ≤ i ≤ N (5.17)

|Sj |∑
k=1

ykj ≤ Nj, 1 < j ≤ m (5.18)

ykj ≥ 0, 1 ≤ k ≤ |Sj|, 1 ≤ j ≤ m (5.19)

5.4. EVALUATION 93

In this formulation, the constraint (5.17) ensures the required number of workers of every type

involved in the MapReduce computations are assigned to one of the VMs; the constraint (5.18)

makes sure the number of each type of existing VMs used in the solution does not exceed its

available number, where Nj is the maximum available number of one type of existing VMs; the

constraint (5.19) ensures all variables must be non-negative integers.

It should be noted that the total number of workers in the MIP solution could be more than

the total number of workers required to be placed in the MRC problem because of the relaxed

constraint (5.17). Therefore, we need to remove those redundant workers from the MIP solution

before the MIP solution can be used for the MPC problem.

5.4 Evaluation

The evaluation of the new constructive algorithm (NCA) is conducted through two set of exper-

iments. The first is to evaluate the effectiveness of the MapReduce consolidation using NCA.

The second is to evaluate the performance of the new algorithm on the cost of using VMs and

migration cost, and also to evaluate the performance of NCA on scalability.

In these experiments, two benchmarks for MapReduce computations were selected from a

popular MapReduce benchmark suite, namely HiBench [Huang et al., 2010], and were used to

construct a number of test instances of different sizes, each of which was used as a test problem

in the experiments. One benchmark was TeraSort, a standard MapReduce sort benchmark; the

other was WordCount, an application that counts the number of occurrences of each word in a

text file.

The experiments were conducted on a laptop with an Intel Core i7-3520M CPU (2.90

GHz) and 8 GBs of RAM. All the VMs used in the experiments were generated by VMware

Workstation 10.0.0 [VMware, 2015], and were deployed on 12 HP workstations (32 Intel Xeon

2.40 GHz CPUs and 320 GB memory) interconnected via a Gigabit Ethernet network. Hadoop

0.20.2 [Hadoop, 2015] was used to run the MapReduce benchmarks and Ganglia [Ganglia,

2015] was used to monitor the resource consumption during runtime. All of the algorithms

used in the experiments were implemented in C#. The solver for the MIP in the MRC problem

solution building procedure is CPLEX (12.5.1.0) [CPLEX, 2015].

94 CHAPTER 5. CLOUD-BASED MAPREDUCE CONSOLIDATION

A set of test instances of various characteristics were applied in these two sets of exper-

iments. Addressing each of the test instances, the effectiveness and efficiency of NCA were

evaluated. The construction process of the test instances is given in the following subsection.

5.4.1 Construction of Test Instances

Each of the generated test instances contained a set of VMs to be consolidated and a place-

ment for each of the VMs. The VMs to be consolidated were those loading the MapReduce

computation which was just completed and left; thus they had the spare resources for the

remaining MapReduce computations to conduct the consolidation. The number of the VMs

to be consolidated was configured in [20, 40, 60, 80, 100]. These VMs were randomly chosen

from the ones shown in Table 5.1.

Table 5.1: VM types

VM Type CPUs (#Cores) Mem (GB) Cost ($)

m1 small 1 1.7 0.06
m1 medium 2 3.75 0.12

m1 large 4 7.5 0.24
m1 xlarge 8 14.7 0.48
m2 xlarge 6.5 17.1 0.41

m2 2xlarge 13 34.2 0.82
c1 medium 5 1.7 0.145
c1 xlarge 20 7 0.58

There was one placement for each of the VMs to be consolidated, which indicated the

assignment of the workers for the remaining MapReduce computations. The workers in the

placements were randomly generated from five MapReduce (WordCount or TeraSort) compu-

tations. The generated method of the workers was described in Section 4.5.1 of Chapter 4 in

detail. The placements were divided into two groups. One group was the empty placements. In

these placements, all the workers were for the completed MapReduce computations and were

all removed. The percentage of the empty placements was configured to 30 percent based on

the observation of the historic runs. Another group was the placements with an amount of spare

resources. In these placements, only some workers were removed, and the percentage of the

amount of spare resources to the resource capacity was a random figure in 20− 99 percent.

For each of the test instances, the consolidation algorithms were used to re-assign the

workers involved in the placements to the VMs to be consolidated. The algorithms returned

5.4. EVALUATION 95

the re-assignment for the same test instance, which was the solution to that test instance.

5.4.2 Effectiveness Evaluation of MapReduce Consolidation

This set of experiments evaluated how much cost was saved by the MapReduce consolidation

using NCA. In the experiments, for each of the generated test instances, the cost of using VMs

with the MapReduce consolidation was compared with that without the MapReduce consolida-

tion.

Because of the stochastic nature of NCA, we used them 20 times to solve each of the test

instances, then used the averages of the 20 runs to compare with the other two algorithms. The

maximum time for solving the MIP problem in the MRC problem solution building phase of

OCA and NCA was set to 30 seconds, following the suggestion in the work of Haouari and

Serairi [2009]. The parameter q used in Algorithm 5 was fixed to 10 after a number of trials.

Figure 5.1 compares the cost of using VMs with the MapReduce consolidation by NCA

with that without MapReduce consolidation. In the figure, the notation NCA: Wv = 0 denoted

the weight of the cost of using VMs in NCA was set to 0, which meant the cost of using VMs

by using NCA achieved its lower bound; the notation NCA: Wv = 1 indicated the weight of

the cost of using VMs in NCA was configured as 1, which meant the cost of using VMs by

using NCA achieved its upper bound. As seen from the figures, the cost of using VMs with

MapReduce consolidation was always lower than that without MapReduce consolidation. The

lower bounds of the costs of using VMs with MapReduce consolidation were 60.0−68.3 percent

and 64.2− 70.4 percent less than the cost of using VMs without MapReduce consolidation for

both the TeraSort computations and WordCount computations, respectively, when the number

of VMs to be consolidated was increased from 10 to 100. Meanwhile, the upper bounds of

the costs of using VMs with MapReduce consolidation were 66.3 − 75.4 percent and 68.6 −

79.2 percent less than the cost of using VMs without MapReduce consolidation for both the

TeraSort computations and WordCount computations, respectively, when the number of VMs

to be consolidated was increased from 10 to 100. In addition, both of the figures showed that

the cost of using VMs with MapReduce consolidation was reduced as the number of the VMs

increased. Thus, using MapReduce consolidation, the cost of using VMs was saved further, and

the savings increased even more when the number of VMs to be consolidated increased.

96 CHAPTER 5. CLOUD-BASED MAPREDUCE CONSOLIDATION

10 20 30 40 50 60 70 80 90 100

Number of VMs to be Consolidated

0

5

10

15

20

25

30

35

40

45

50

55

60

A
ve

ra
ge

 C
os

t o
f U

si
ng

 V
M

s
($

)

Without Consolidation
NGA: Wv=0
NGA: Wv=1

(a) TeraSort

10 20 30 40 50 60 70 80 90 100

Number of VMs to be Consolidated

0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 C
os

t o
f U

si
ng

 V
M

s
($

)

Without Consolidation
NGA: Wv=0
NGA: Wv=1

(b) WordCount

Figure 5.1: Comparison of the cost of using VMs with MapReduce consolidation with that
without MapReduce consolidation

5.4.3 Efficiency Evaluation of Algorithms

This set of experiments evaluated the performance of NCA on the cost of using VMs, the

migration cost and the weighted cost which was the value of the objective function 5.9 by

comparing it with a baseline algorithm, an FFD-based MapReduce consolidation algorithm

(FFD-based). The FFD-based algorithm picked workers in a decreasing order by their resource

requirements and placed them in a first-fit fashion. Before solving the test instances, the

FFD-based algorithm transformed the bio-objective optimization into the same single objective

optimization as that tackled by NCA. Details about this algorithm can be found in the paper

[Kang and Park, 2003]. Both of these algorithms set the weight of the cost of using VMs as 0.5.

Figure 5.2 shows the results when both of these two algorithms were used to address the

5.4. EVALUATION 97

10 20 30 40 50 60 70 80 90 100

Number of VMs to be Consolidated

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 C
os

t o
f U

si
ng

 V
M

s
($

)

FFD-based
NCA

(a) The cost of using VMs

10 20 30 40 50 60 70 80 90 100

Number of VMs to be Consolidated

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

A
ve

ra
ge

 M
ig

ra
tio

n
C

os
t (

M
B

)

FFD-based
NCA

(b) The migration cost

10 20 30 40 50 60 70 80 90 100

Number of VMs to be Consolidated

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 W
ei

gh
te

d
C

os
t

FFD-based
NCA

(c) The weighted cost

Figure 5.2: Comparison of NCA and the FFD-based algorithm for the TeraSort computations

same consolidation problem for the TeraSort computations. As shown in the figures, when the

number of VMs to be consolidated increased from 10 to 100, NCA always performed better than

the FFD-algorithm. As the number of VMs to be consolidated increased from 10 to 100, the cost

98 CHAPTER 5. CLOUD-BASED MAPREDUCE CONSOLIDATION

10 20 30 40 50 60 70 80 90 100

Number of VMs to be Consolidated

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 C
os

t o
f U

si
ng

 V
M

s
($

)

FFD-based
NCA

(a) The cost of using VMs

10 20 30 40 50 60 70 80 90 100

Number of VMs to be Consolidated

0

10

20

30

40

50

60

70

80

90

100

110

120

A
ve

ra
ge

 M
ig

ra
tio

n
C

os
t (

M
B

)

FFD-based
NCA

(b) The migration cost

10 20 30 40 50 60 70 80 90 100

Number of VMs to be Consolidated

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 W
ei

gh
te

d
C

os
t

FFD-based
NCA

(c) The weighted cost

Figure 5.3: Comparison of NCA and the FFD-based algorithm for the WordCount
computations

5.4. EVALUATION 99

of using VMs by NCA was 9.0 − 18.1 percent less than that by the IFFD-based algorithm, the

migration cost by NCA was 27.1−45.5 percent less than that by the IFFD-based algorithm, and

the weighted cost by NCA was 17.1− 35.5 percent less than that by the IFFD-based algorithm.

Figure 5.3 gives the results when both of these two algorithms were used to address the

same consolidation problem for the WordCount computations. As shown in the figures, when

the number of VMs to be consolidated increased from 10 to 100, NCA always had a better

performance than the FFD-algorithm for the WordCount computations. As the number of VMs

to be consolidated increased from 10 to 100, the cost of using VMs by NCA was and 6.1− 16.0

percent less than that by the IFFD-based algorithm, the migration cost by NCA was 14.3−49.7

percent less than that by the IFFD-based algorithm, and the weighted cost by NCA was 12.3−

38.3 percent less than that by the IFFD-based algorithm. In addition, as the number of VMs

to be consolidated increased, the weighted cost by NCA gradually decreased, but that by the

IFFD-based algorithm increased.

10 20 30 40 50 60 70 80 90 100

Number of VMs to be Consolidated

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

TeraSort
WordCount

Figure 5.4: Computation times of NCA when the number of VMs to be consolidated changed

This set of experiments also evaluated the scalability of NCA. Figure 5.4 illustrates how

the computation times of NCA changed when the number of VMs to be consolidated increased

from 10 to 100. As shown in the figure, the computation times of NCA for both the TeraSort

computations and WordCount computations increased slowly as the number of VMs to be

consolidated increased. Thus, the experimental results showed the scalability of NCA was

good.

In summary, NCA always had better performance than the baseline algorithm for all the

tested instances on the costing using VMs and the migration cost. In addition, the good scala-

bility of NCA was demonstrated .

100 CHAPTER 5. CLOUD-BASED MAPREDUCE CONSOLIDATION

5.4.4 Discussion

As illustrated by the experimental results, our new algorithm outperformed the baseline algo-

rithm, the FFD-based algorithm. Compared with the FFD-based algorithm, our new algorithm

found more promising combinations of the worker placements by consecutively conducting VM

selection, placement pattern generation and solution building. A more promising combination

of worker placement means less cost of using VMs. Thus, our new algorithm saved more cost

of using VMs than the FFD-based algorithm when conducting MapReduce consolidation.

5.5 Summary of Chapter

This chapter has proposed a new algorithm for the cloud-based MapReduce consolidation

(MRC) problem and has evaluated the new algorithm by experiments. The experimental results

have demonstrated the effectiveness of the new algorithm. The cost of using VMs with MapRe-

duce consolidation was 60.0 − 79.2 percent less than that without MapReduce consolidation.

The experimental results have also demonstrated the efficiency of the new algorithm. By using

the new algorithm, the cost of using VMs was 6.1− 18.1 percent less than that using the IFFD-

based algorithm, and the migration cost was 14.3− 49.7 percent less than that using the IFFD-

based algorithm. Finally, the experimental results have demonstrated the good scalability of the

new algorithm.

Chapter 6

Development of QoS-guaranteed Resource

Provisioning Framework

This chapter will present the new resource provisioning framework for cloud-based MapRe-

duce. Section 6.1 presents the introduction. Sections 6.2 and 6.3 characterize and formulate

the QoS-guaranteed resource provisioning problem for cloud-based MapReduce. Section 6.4

presents the overall structure of the framework and the trigger mechanism. Section 6.5 in-

troduces the resource provisioning algorithms of the framework. Section 6.6 validates the

effectiveness of the framework on guaranteeing the QoS of cloud-based MapReduce by case

studies, and also compares the framework with other two popular frameworks on QoS-guarantee

and operational cost saving. Section 6.7 gives the summary of the research of this chapter.

6.1 Introduction

The evolution of cluster-based MapReduce to cloud-based MapReduce leads to a new problem

namely QoS-guaranteed resource provisioning problem. This problem is how to guarantee the

QoS (i.e. hard deadline), while minimizing the cost of renting the VMs to run the MapReduce

computations. However, it is a particularly challenging problem in the cloud, a dynamically

changing environment. The VMs and network for cloud-based MapReduce computations usu-

ally experience performance variability because of the shared underlying infrastructures [Farley

et al., 2012]. This performance variability will delay the progress of MapReduce computations

and cause QoS violation if the initial resource is under-provisioned, or will result in resource

waste if the initial resource is over-provisioned.

101

102 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

To develop a resource provisioning framework for the QoS-guaranteed resource provision-

ing problem, three perspectives need to be considered. The first is to formally describe the

resource provisioning for cloud-based MapReduce in dynamic environments through a problem

abstraction. The second is to design how to trigger different types of resource provisioning

strategies derived from the problem abstraction. The third is to design algorithms to decide how

much and how the resource is provisioned to cloud-based MapReduce computations.

Through addressing these three perspectives, this research differs from the existing efforts

as it presents a novel event-driven framework for QoS-guaranteed resource provisioning. This

major contribution of the development of the framework is incorporated with two other contri-

butions: a new problem abstraction and three practical algorithms.

1. Novel event-driven framework: an event-driven triggering mechanism is developed for

the resource provisioning framework. It detects the changes in the environment in the

form of events. Through handling the events, the framework avoids the QoS violation

due to resource under-provisioning caused by performance degradation in environments,

and also potentially reduces the cost of using VMs due to resource over-provisioning

caused by performance promotion in environments.

2. New problem abstraction: a dynamic optimization problem is abstracted from the QoS-

guaranteed resource provisioning for cloud-based MapReduce in dynamic environments.

The changes in environments have been considered in the dynamic optimization problem,

so as to avoid QoS violation or resource waste caused by the changes.

3. Practical algorithms: resource provisioning algorithms are based on a solid theoretical

analysis. They are designed to handle these events, which guarantees the QoS of cloud-

based MapReduce while reducing the cost of using VMs.

6.2 Problem Characterization

Cloud-based MapReduce, a computation platform in cloud computing environments, utilizes

various types of VMs from cloud computing to execute MapReduce computations. The MapRe-

duce computations arrive on the platform at any time during the whole life of the platform, and

their arrival times are not known in advance. To guarantee the QoS, cloud-based MapReduce

6.2. PROBLEM CHARACTERIZATION 103

needs to meet the deadline of every arriving MapReduce computation. It also needs to minimize

the total cost of using VMs, so as to minimize the operational cost of the platform.

Let J be the entire set of MapReduce computations arriving at cloud-based MapReduce. Let

Jk ∈ J be a MapReduce computation, which is characterized as a tuple

< tAk , Dk,M
CPU
k ,MMem

k , RCPU
k , RMem

k > (6.1)

In the tuple, tAk is the arrival time of Jk, and 0 ≤ tAk ≤ TE , where TE is the end time of the

platform; Dk is the deadline of Jk; MCPU
k and MMem

k (RCPU
k and RMem

k) respectively denote

the CPU and memory requirements of the map (reduce) tasks of Jk.

Various types of VMs are used to execute the entire set of MapReduce computations, J.

Different types of VMs have different CPU capacities, memory capacities and prices. Let V be

the entire set of the used VMs. Let Vj ∈ V be a used VM, which is characterized as a tuple

< V CPU
j , V Mem

j , pj > (6.2)

where V CPU
j and V Mem

j respectively represent the CPU and memory capacities of Vj , and pj is

the price (dollars per time unit) of Vj . Vj is charged by every time unit To, any partial utilization

of Vj is charged as if the full time unit To was consumed. For example, if To is 3600 seconds,

the cost of using Vj for 3601 seconds is equal to that for 7200 seconds.

To ensure every MapReduce computation in J is completed before its deadline, a set of

workers are required to be provisioned to each MapReduce computation in J. These Workers are

categorized into two types: the map workers which execute map tasks, and the reduce workers

which execute reduce tasks. Let W be the entire set of workers provisioned to the entire set

of MapReduce computations J. All the workers in W are assigned to the VMs in V, and the

VMs allocate CPU and memory resources to the workers. In addition, the allocated amount of

the CPU and memory resources of a VM cannot exceed its CPU and memory capacity. Also,

the CPU and memory resources allocated to a worker cannot be less than the CPU and memory

requirements of the map/reduce tasks which the worker executes.

A worker Wi ∈W is characterized as a tuple

< WCPU
i ,WMem

i , T S
i , T

E
i , JWi

, αi, VWi
> (6.3)

104 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

In this tuple, WCPU
i and WMem

i respectively denote the amount of CPU and memory resources

allocated to Wi. T S
i is the time when Wi starts processing tasks. JWi

denotes the index of the

MapReduce computation to which Wi is provisioned, and JWi
= k means Wi is provisioned to

execute Jk. αi is a binary value indicating if Wi is a map worker or reduce worker, if αi = 1,

Wi is a map worker. VWi
indicates the index of the VM to which Wi is assigned, and VWi

= j

means W is assigned to Vj .

Two functions are respectively introduced to quantify how worker provisioning affects the

duration of a MapReduce computation and the usage time of a VM. One is Tk(W), which

calculates the duration of Jk when W is given. Another is Tj(W), which quantifies the usage

time of Vj when W is given. The values of these two functions change when the MapReduce

computation environment changes.

6.3 Problem Formulation

The QoS-guaranteed resource provisioning problem is formulated as follows. Given a set of

MapReduce computations, J, the objective of the problem is to determine a set of workers, W,

and a set of VMs, V, to minimize the total cost of using V, that is

C =

|V|∑
j=1

pj ·
⌈
Tj(W)

To

⌉
(6.4)

subject to

tAk + Tk(W) ≤ Dk (6.5)
n∑

i=1

(WCPU
i · βj

i (t)) ≤ V CPU
j (6.6)

n∑
i=1

(WMem
i · βj

i (t)) ≤ V Mem
j (6.7)

if JWi
= k and αi = 1, which means Wi is a map worker executing the map tasks of Jk,

WCPU
i ≥MCPU

k (6.8)

WMem
i ≥MMem

k (6.9)

6.4. EVENT-DRIVEN RESOURCE PROVISIONING FRAMEWORK 105

if JWi
= k and αi = 0, which means Wi is a reduce worker executing the reduce tasks of Jk,

WCPU
i ≥ RCPU

k (6.10)

WMem
i ≥ RMem

k (6.11)

Detailed explanations about these constraints are given as follows. The constraint (6.5)

ensures any MapReduce computation Jk ∈ J meet its deadlineDk, where tAk +Tk(W) indicates

the completion time of Jk, and 1 ≤ k ≤ |J|; the constraints (6.6) and (6.7) make sure the

allocated amount of CPU and memory resources of a VM do not exceed the CPU and memory

capacities of that VM, respectively, where βj
i (t) indicates if Wi is located at Vj at the time t

(0 ≤ t ≤ TE); the constraints (6.8), (6.9) (or (6.10), (6.11)) guarantee every worker used to

execute the map (or reduce) tasks of Jk has enough CPU and memory resources to execute

those map (or reduce) tasks, where 1 ≤ i ≤ |W|.

From the computational point of view, the problem is a dynamic optimization one, as the

objective function (6.4) and the deadline constraint (6.5) vary when the environment changes.

When the environment experiences performance degradation, the values of the function Tk(W)

in Equation (6.4) and the function Tj(W) in the constraint (6.5) increase; when the environment

experiences performance promotion, the values of these two functions decrease.

6.4 Event-driven Resource Provisioning Framework

To solve the QoS-guaranteed resource provisioning problem for cloud-based MapReduce, we

propose an event-driven resource provisioning framework in this section. Our framework de-

tects all events that potentially cause any MapReduce computation hard deadline missing and

unnecessary resource (VM) waste, and promptly handles those events. In this way, our frame-

work can guarantee that the deadlines of those MapReduce computations running in our frame-

work are met while minimizing the running cost of our framework.

6.4.1 Framework Architecture

As shown in Figure 6.1, the architecture of the event-driven resource provisioning framework

has the following components:

106 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

Computation
Repository

Global Event
Detector

Events Actions

Provisioning
Solutions

Task Scheduler

Scheduling
Plan

VMVM

Worker

Local Event
Detector

Events

triggers

...

input

output

Resource Provisioning Controller

calltriggers

 MapReduce
computations

arrive

call

input

adds/removes
VMs,

assigns new
workers
to VMs

and removes
workers

from VMsassigns

VMVM

Worker

Local Event
Detector

Events

triggers

Worker

outputs

Resource
Allocator

VMVM

Worker

Local Event
Detector

Events

triggers

Worker

Figure 6.1: The architecture of event-driven resource provisioning framework

• Resource Provisioning Controller (RPC): determines how many and when workers and

VMs need to be added to, or remove from, each of the admitted MapReduce computa-

tions.

• Computation Repository (CR): receives new MapReduce computations, and maintains

the profiles and the computation progress of the admitted MapReduce computations.

• Local Event Detector (LED): detects events occurring on a VM. It knows the completion

times of the map/reduce tasks executed on a VM.

• Global Event Detector (GED): detects events about admitted MapReduce computations.

It has the global information about each of the admitted MapReduce computation, includ-

ing the numbers of map and reduce tasks, computation progress, average task durations,

maximal task durations, arrival time and deadline.

• Task Scheduler (TS): generates a scheduling plan, which specifies the assignment of the

map/reduce tasks of a MapReduce computation to workers and the latest completion time

of the map/reduce tasks before the MapReduce computation starts. This scheduling plan

is assigned to each VM used by our framework before the MapReduce computation starts,

and is updated when resource scaling actions are taken.

• Resource Allocator (RA): requests new VMs and assigns new workers to existing and

new VMs, removes over-provisioned workers from VMs, and returns VMs in which no

worker is assigned.

6.4. EVENT-DRIVEN RESOURCE PROVISIONING FRAMEWORK 107

6.4.2 Event-driven Mechanism

The core of our framework is an event-driven mechanism. The actions of resource provisioning

are driven by events. In our framework, there are eight different events and three resource

provisioning actions as shown in Figure 6.2. This section explains what the eight events are

how each of the events is generated and handled in our framework.

Events Actions

Computation
Ahead

Computation
Arrival Event

Computation
Completion Event

Task Falling
Behind Event

Task Running
Ahead Event

Scheduling
Plan

@task level

Initial Resource
Provisioning

Scaling Down
Resource

Provisioning

Scaling Up
Resource

Provisioning

Computation
Falling Behind

Event

Computation
Running Ahead

Event

Task Completion
Event

Task Ahead
or Task Behind

Latest Intervention
Event

For each of tasks

Computation
Behind

Figure 6.2: Events and actions

Events

This subsection formulates conditions for the generation of each of the events. The notations

used in the event generation are listed as follows:

• Jk: an admitted MapReduce computation;

• t: the time of checking the trigger condition of an event;

• D: the deadline of a MapReduce computation;

• Wk, W+
k , W−k : the sets of pre-provisioned, new, and removed workers for Jk, respec-

tively;

• M0, R0: the numbers of map and reduce workers in Wk, respectively, M0 +R0 = |Wk|;

• M+,R+: the numbers of map and reduce workers in W+
k , respectively,M++R+ = |W+

k |;

108 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

• M−,R−: the numbers of map and reduce workers in W+
k , respectively,M−+R− = |W−k |;

• V, V+, V−: the sets of existing, new, and removed VMs, respectively;

• m, r: the numbers of the map and reduce tasks of Jk, respectively;

• mt, rt: the uncompleted numbers of the map and reduce tasks of Jk at t, respectively;

• T avg
m , Tmax

m , T avg
r , Tmax

r :the average and maximal durations (measured in seconds) of

the map and reduce tasks of Jk, respectively, and they are computed from past run or

estimated by a profiling technology Verma et al. [2011a] in terms of task input sizes.

• To: the time delay caused by handling events;

• mmin
o , rmin

o : the lower bounds of the numbers of the map and reduce tasks completed

within To, respectively;

Task Completion: A task completion event is generated by a LED of our framework whenever

a map/reduce task finishes.

Task Falling Behind and Task Running Ahead: Whenever a task completion event occurs,

the LED of our framework compares its actual completion time with its latest completion time

which is decided by the scheduling plan. If its actual completion time is earlier than its planned

latest completion time, then a task running ahead event is generated; if its actual completion

time is later than its planned latest completion time, then a task falling behind event is generated.

Computation Arrival: A computation arrival event is generated once a MapReduce computa-

tion is received by the CR of our framework.

Computation Falling Behind: The generation condition of the computation falling behind

event is checked by the GED of our framework once a task falling behind event is generated.

The generation condition of a computation falling behind event is formulated in (6.12) if the

MapReduce computation, Jk, is under the map phase, or in (6.13) if Jk completes its map

phase.

6.4. EVENT-DRIVEN RESOURCE PROVISIONING FRAMEWORK 109

a/M0 + b/R0 > c (6.12)

1/R0 > d/b (6.13)

In the above two conditions, a, b, d and, d are respectively expressed by

a = (mt −mmin
o − 1)T avg

m (6.14)

b = (rt − rmin
o − 1)T avg

r (6.15)

c = D − t− To − Tmax
m − Tmax

r (6.16)

d = D − t− To − αTmax
m − Tmax

r (6.17)

where α is a binary number, and α = 0 if mt ≤ mmin
o .

The condition (6.12) or (6.13) indicates that the upper bound of the completion time of the

MapReduce computation, Jk, is later than its deadline under the current resource provisioning.

Satisfying either of the two conditions means Jk is falling behind and cannot complete before

the deadline under the current resource provisioning. More details and explanations about these

conditions are seen in Resource Scaling-Up Condition Corollary presented by Xu et al. [2016].

Computation Running Ahead: The generation condition of a computation running ahead

event is checked by the GED of our framework once a task running ahead event is generated.

The generation condition of a computation running ahead event is formulated in (6.18) and

(6.19) if the MapReduce computation, Jk, is under the map phase, or in (6.20) Jk completes its

map phase.

a
′

M0

+
b
′

R0 − 1
≤ c,

a
′

b′
≥ M0(M0 − 1)

R0(R0 − 1)
(6.18)

a
′

M0 − 1
+

b
′

R0

≤ c,
a
′

b′
<
M0(M0 − 1)

R0(R0 − 1)
(6.19)

d
′

b′
≥ 1

R0

(6.20)

110 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

where a′ , b′ , c′ and d′ are respectively expressed by the following equations:

a
′

= (mt − 1)T avg
m (6.21)

b
′

= (rt − 1)T avg
r (6.22)

c
′

= D − t− Tmax
m + T avg

m − Tmax
r + γT avg

r (6.23)

d
′

= D − t− Tmax
r + γT avg

r (6.24)

where γ is a binary number, and γ = 0 if mt > 0.

The condition formulated in (6.18) and (6.19) or the condition formulated in (6.13) indicates

that the upper bound of the completion time of the MapReduce computation, Jk, is earlier than

its deadline under the current resource provisioning. Satisfying either of the two conditions

means Jk is running ahead and one more workers are allowed to be removed. More details and

explanations about these conditions are seen in Resource Scaling-Down Condition Corollary

presented by Xu et al. [2016].

Latest Intervention: The GED of our framework utilizes a system timer to check if the

latest intervention time formulated in Equation (6.25) comes. Once the latest intervention time

achieves, the GED checks the generation condition of the latest intervention event, which is

formulated in (6.26) where mt−mmin
o and rt− rmin

o respectively denote the maximal numbers

of the remaining map and reduce tasks at the time t+ To.

t = D − To − Tmax
m − Tmax

r (6.25)

mt −mmin
o > M0 or rt − rmin

o > R0 (6.26)

The condition (6.26) indicates that the remaining map/reduce tasks at the latest intervention

time are more than the map/reduce workers. That means the remaining map/reduce tasks cannot

be completed in one wave. If the computation environment experiences the worst performance

after the latest intervention time, the MapReduce computation, Jk, will fall behind schedule, and

the upper bound of the completion time of Jk will be later than its deadline. According to the

Latest Intervention Time Theorem Xu et al. [2016], when Jk falls behind schedule, the deadline

could be missed no matter how many workers are, unless enough workers are provisioned before

6.5. ALGORITHMS 111

the latest intervention time. To avoid missing the deadline due to intervening too late, enough

resource should be provisioned when the condition (6.26) is satisfied.

Computation Completion: A computation completion event is generated when both the num-

ber of Map tasks, mt, and the number of Reduce tasks, rt become a zero.

6.4.3 Event Handling

An action must be immediately taken when each of the following events occurs as illustrated in

Figure 6.2. When a Computation Arrival event occurs, the Initial Resource Provisioning action

is taken; when a Computation Falling Behind event or a Latest Intervention event occurs, the

Scaling Up Resource Provisioning action is taken; and when a Computation Running Ahead

event or a Computation Completion event occurs, the Scaling Down Resource Provisioning

action is taken. When any of the above-mentioned action is taken, a new scheduling plan for

each of the involved MapReduce computations is generated by the TS of our framework, and

is then assigned to each of the VMs for the MapReduce computations. The algorithms for the

three resource provisioning actions will be discussed in detail in Section 6.5.

6.4.4 Advantages of Our Framework

Our event-driven framework guarantees the deadline of all admitted MapReduce computations

while minimizing its running cost in a dynamical computation environment by promptly detect-

ing and handling all the events that potentially lead to the violation of the deadlines of those

MapReduce computations and the waste of resources (VMs). In addition, our event-driven

framework does not suffer from the overheads incurred by the periodical checking of the status

of each of the admitted MapReduce computations.

6.5 Algorithms

Three algorithms have been developed to handle the computation arrival event, computation

falling behind event, computation running ahead event, latest intervention event and computa-

tion completion event.

112 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

6.5.1 Scaling Up Algorithm

Scaling Up Algorithm (SUA) is applied to handle the computation falling behind and latest

intervention events. SUA determines the minimum number of workers that needs to add to the

MapReduce computation in order to catch its deadline. If the spare capacities of existing VMs

are not sufficient to host the new workers, then new VMs are used. If this is the case, the cost

of hiring new VMs is minimized. Algorithm 6 is the description of SUA.

The inputs of SUA are the set of the pre-provisioned workers for the MapReduce computa-

tion Jk that needs to scale up its resources, Wk, and the set of existing VMs, V. The output is a

set of new workers provisioned to Jk, W+
k .

Algorithm 6 SUA
1: determine the numbers of new map and reduce workers, M+ and R+, respectively;
2: add M+ map workers and R+ reduce workers to W+

k ;
3: output W+

k .

Firstly, SUA determines the minimal number of new map workers and the minimal number

of new reduce workers to be added into W+
k , M+ and R+, which minimizes the resource

consumption while guaranteeing the deadline of Jk. The determination of M+ and R+ depends

on the type of the triggered event. It the event is a computation falling behind event, M+ and

R+ are obtained by addressing a constrained optimization problem. In particular, if Jk is under

map phase, the problem is formulated as a Non-Linear Integer Programming (NLIP):

minZ =M+ · (aCPU ·MCPU
k + aMem ·Rmem

k)

+R+ · (aCPU ·MCPU
k + aMem ·Rmem

k) (6.27)

subject to

a

M0 +M+

+
b

R0 +R+

≤ c (6.28)

M+ ≥ 0, R+ ≥ 0 (6.29)

M+, R+ ∈ Z (6.30)

6.5. ALGORITHMS 113

where aCPU and aMem respectively represent the surrogate weights for CPU and memory

resources, and aCPU + aMem = 1; a, b, and c are respectively expressed by Equations (6.14),

(6.15) and (6.16).

In this formulation, the objective function (6.27) calculates the minimum amount of resource

consumption by the workers to be added. The constraint (6.28) ensures Jk is completed before

the deadline, which is derived by the QoS-guaranteed Scaling-up theorem, presented in the

paper of Xu et al. [2016]; the constraints (6.29) and (6.30) make sure M+ and R+ are non-

negative integers. This problem can be easily solved by many mathematical tools; one example

is Lingo [2015]. The detailed procedure for the NLIP problem is presented in the paper of

Garfinkel and Nemhauser [1972].

If Jk completes the map phase, M+ and R+ are also derived by addressing the constrained

optimization problem. However, the constraint (6.28) of the problem is replaced by (6.31),

which is derived by the QoS-guaranteed Scaling-up theorem, presented in the paper of Xu et al.

[2016].

1

R0 +R+

≤ d

b
(6.31)

Then the solution to the problem can be immediately derived, that is M+ = 0 and R+ =

db/d−R0e, where b and d are expressed by Equations (6.15) and (6.17), respectively.

In addition, if the event is a latest intervention event, M+ and R+ are derived by addressing

the constrained optimization problem. But the constraint (6.28) of the problem is replaced by

(6.32).

M0 +M+ ≥ mt −mmin
o , R0 +R+ ≥ rt − rmin

o (6.32)

The constraint (6.32) is derived from the analysis of the generation conditions (6.25) and

(6.26) of the Latest Intervention event, and this constraint ensures the deadline of Jk is guar-

anteed even when the environment experiences the worst performance. Then the solution

to the problem can be immediately derived, that is M+ = dmt − mmin
o − M0e and R+ =

drt − rmin
o −R0e.

114 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

Secondly, SUA adds the M+ map workers and R+ reduce workers to W+
k . Finally, SUAout-

puts W+
k .

6.5.2 Scaling Down Algorithm

Scaling Down Algorithm (SDA) is applied to handle the computation running ahead and com-

putation completion events. SDA removes a set of workers from a MapReduce computation Jk

which is running ahead or has completed, and therefore reduces the number of VMs to minimize

the cost of hiring VMs while still meeting the deadline of Jk. Algorithm 7 is the descriptions of

SDA.

The inputs of SDA are the set of pre-provisioned workers for Jk, Wk, and the set of existing

VMs, V. The outputs are a set of workers to be removed, W−k , and a set of VMs to be removed,

V−.

Algorithm 7 SDA
1: determine the maximal number of map workers, M−, and the maximal number of reduce

workers, R−, which can be removed without affecting the deadline of the MapReduce
computation;

2: sort those VMs on which the workers of the MapReduce computation are placed
by the descending order of the ratio of the resources occupied by the workers of
the MapReduce computation and the resources occupied by the workers of the other
MapReduce computations;

3: from the first VM to the last VM, remove M− map workers from those VMs and put them
into W−k ;

4: from the first VM to the last VM, removeR− reduce workers from those VMs and put them
into W−k ;

5: from the first VM to the last VM, put all the VMs that do not have any workers into V−;
6: output W−k and V−;

Step 1 of SDA is to determine the maximal numbers of map and reduce workers to be

removed, M− and R−, respectively, while guaranteeing the deadline of Jk. M− and R− are

derived by addressing a constrained optimization problem, which is formulated as a Non-Linear

Integer Programming (NLIP) problem as follows:

maxZ =M− · (aCPU ·MCPU
k + aMem ·Rmem

k)

+R− · (aCPU ·MCPU
k + aMem ·Rmem

k) (6.33)

6.5. ALGORITHMS 115

subject to

a
′

M0 −M−
+

b
′

R0 −R−
≤ c

′
(6.34)

0 ≤M− < M0, 0 ≤ R− < R0 (6.35)

M−, R− ∈ Z (6.36)

d where aCPU and aMem respectively represent the surrogate weights for CPU and memory

resources, and aCPU + aMem = 1; a′ , b′ , and c′ are respectively expressed by Equations (6.21),

(6.22) and (6.23).

In this formulation, the objective function (6.33) calculates the maximal number of VMs

to be removed. The constraint (6.34) ensures Jk is completed before its deadline, which is

determined by the QoS-guaranteed Scaling-down theorem presented in Xu et al. [2016]; the

constraints (6.35) and (6.36) make sure M− and R− are non-negative integers, and at least one

map worker and one reduce worker are left. The detailed procedure for the NLIP problem is

presented in Garfinkel and Nemhauser [1972].

If Jk completes the map phase, constraints (6.34) and (6.35) are replaced by (6.37) and

(6.38), which are derived from the QoS-guaranteed Scaling-down theorem presented in Xu

et al. [2016].

1

R0 −R−
≤ d

′

b′
(6.37)

0 ≤M− ≤M0, 0 ≤ R− < R0 (6.38)

Then the solution to the problem can be immediately derived, that is M− = M0 and R− =

bR0 − b
′
/d
′c, where b and d are expressed by Equations (6.15) and (6.17), respectively.

If the event is a computation completion event, just let M− = M0 and R− = R0, which

means that all the map and reduce workers for Jk are moved, such that the number of VMs used

by the remaining workers is minimized.

Step 2 is to sort those VMs on which the workers of the MapReduce computation are placed

by the descending order of the ratio of the resources occupied by the workers of the MapReduce

computation and the resources occupied by the workers of the other MapReduce computations.

116 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

Steps 3 and 4 remove the M− map workers and R− reduce workers the from those VMs, and

put them into W−k . Step 5 puts all the VMs that do not have any workers into V−. Finally,

Step 6 outputs the set of workers to be removed, W−k , and the set of VMs to be removed, V−.

6.5.3 Initial Provisioning Algorithm

Initial Provisioning Algorithm (IPA) is applied to handle the new computation arrival event.

When a new MapReduce computation arrives, IPA generates a set of workers for the new

MapReduce computation such that the MapReduce computation can meet its deadline while

consuming minimum resource based on the current performance of our framework, and then

uses a MapReduce placement algorithm to find a set of new VMs of various types and assign

the new workers to the new and existing VMs while minimizing the cost of hiring the VMs.

The details of SUA are described in Algorithm 8.

The input of IPA is a set of the existing VMs, V. The outputs are the sets of new workers

initially provisioned to any MapReduce computation Jk ∈ Jnew, W+
1 ,W+

2 , · · · ,W+
|Jnew|, and a

set of new VMs used to load the new workers, V+.

IPA iterates |Jnew| times (Steps 1-5) to generates a set of workers, W+, initially provisioned

to every MapReduce computation in Jnew. In the kth iteration (1 ≤ k ≤ |Jnew|), IPA implements

a similar procedure as Steps 1 and 2 of SUA to generate a set of workers initially provisioned

to the MapReduce computation Jk ∈ Jnew and then adds them into W+.

Finally, Step 6 of IPA outputs the sets of new workers initially provisioned to any MapRe-

duce computation Jk ∈ Jnew, W+
1 ,W+

2 , · · · ,W+
|Jnew|, and the set of new VMs used to load the

new workers, V+.

Algorithm 8 IPA
1: for k = 1 to |Jnew| do
2: determine the CPU and memory requirements of the new map workers and new reduce

workers to be provisioned to new MapReduce computation Jk ∈ Jnew;
3: determine the minimal number of map workers and the minimal number of reduce

workers, Mk
+ and Rk

+, respectively such that Jk can finish its computation before its
deadline;

4: add Mk
+ map workers and Rk

+ reduce workers to W+;
5: end for
6: output W+

1 ,W+
2 , · · · ,W+

|Jnew|, and V+.

6.6. VALIDATION AND EVALUATION 117

6.6 Validation and Evaluation

The QoS-guarantee of our event-driven resource provisioning framework was validated and the

performance of our event-driven resource provisioning framework was evaluated by simulation.

The simulation setup is explained in detail first before the simulation results are shown and

discussed in this section.

6.6.1 Simulation Setup

The validation and evaluation were conducted by simulation. The simulation mimicked the

execution of a MapReduce computation in a cloud environment where the computation perfor-

mance varied over time. The details about the simulation are as follows.

Simulation Inputs

The inputs of the simulation included the information about MapReduce computations, VMs,

and environment variations. However, our framework did not use any information about envi-

ronment variations in the simulation.

The MapReduce computations were used in the simulation included WordCount, Sort, NutchIn-

dexing and K-means, which were selected from a popular MapReduce benchmark suit namely

HiBench Huang et al. [2010]. During the simulation period, there were 315 instances of the

four MapReduce computations submitted to our framework in the first 3600 seconds. The

315 instances of the MapReduce computation instances were randomly generated and their

submission times followed a Poisson distribution with the mean of 0.0628 in the light of the

research results presented in Zaharia et al. [2009]. In the simulation, our framework did not

know the number of instances of MapReduce computation that would be submitted or their

submission times in advance.

There were three different configurations for each instance of the four types of MapReduce

computations: small, medium, and large. Details about each of the three configurations are

shown in Table 6.1. The information was based an observation of Facebook over a week in

October 2009 Zaharia et al. [2009]. The deadlines for the small, medium, and large MapReduce

computations were set to 400 seconds, 600 seconds, and 800 seconds, respectively, in the

118 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

Table 6.1: Configurations of MapReduce computations

Type # of Map Tasks # of Reduce Tasks Proportion
Small 15 4 68 %

Medium 105 40 21 %
Large 405 100 11 %

Table 6.2: The VM types from Amazon EC2

VM Type CPUs (#) Memory (GB) Price ($/hour)
m3.medium 1 3.15 0.098

m3.large 2 6.9 0.196
m3.xlarge 4 14.4 0.392

m3.2xlarge 8 29.4 0.784

simulation.

The resource requirements and execution times of map/reduce tasks were obtained as fol-

lows. Each instance of the four types of MapReduce computations ran on a local cluster

of VMs (six 2.40GHz cores and 8 GB Memory) with different configurations presented by

Table 6.2, respectively. The resource requirements of the map/reduce tasks for each MapReduce

computation instance were then obtained through profiling. Meanwhile, the execution times of

the map/reduce tasks of each instance were also observed, which were assumed to be unknown

by our framework in advance.

Next, the information about VMs was presented in Table 6.2, which were based on Amazon

EC2 offerings. In addition, the boost time of each VM was configured as 97 seconds Mao and

Humphrey [2011], according to Mao and Humphrey’s observation from Amazon EC2 Cloud

Amazon [2015],

Finally, the information about environment variation was described as follows. The envi-

ronment variations were defined in the form of a sequence of [time, variation ratio] pairs. The

variation ratio was defined as the ratio of the longest execution time of a map/reduce task and

the initially observed execution time of that map/reduce task. Using this variation sequence,

the same task could have different execution time at different time points, which mocked the

influence of environment variations on MapReduce computations. For example, if the initially

observed execution time of a task was 100 seconds and a pair was < 300, 1.2 >, the execution

time of that task was 100 seconds before the time point of 300 seconds, but it was 120 seconds

after the time point of 300 seconds. In this simulation, the number of variations (or the length

of the sequence) was uniformly distributed between 50 and 100, the time point of variation

6.6. VALIDATION AND EVALUATION 119

was uniformly distributed between 0 and 18000 seconds, and the variation ratio was uniformly

distributed between 1 to 1.3 according to the observation from Amazon EC2 Farley et al. [2012].

Simulation Process

Given the simulation inputs, the simulation procedure commenced. Once a MapReduce compu-

tation arrived, the resource provisioning framework determined the required numbers and types

of new VMs. The simulation mocked that the request of new VMs consumed 97 seconds. The

framework then determined the number of workers and the placement of the workers on VMs.

After that, the framework assigned the map/reduce tasks of the MapReduce computation to the

workers. Once a worker finished a task, the framework assigned the next one to that worker until

all the tasks completed. The execution time of each map/reduce task was initially the observed

execution time, but it varied based on the environment variation information. When all of the

map/reduce tasks of the MapReduce computation completed, the workers for this MapReduce

computation were removed and then the idle VMs were also removed.

Specially, if the framework was a dynamical one, the simulation mocked how to scaling

up/down resource at runtime. If resource scaling up was required, the framework firstly deter-

mined the required numbers and types of new VMs, and decided the numbers of new workers

and their placement on VMs. After that, the framework assigned the remaining map/reduce

tasks to the new workers. But, the workers on the new VMs did not start running tasks

until 97 seconds passed. If resource scaling down was required, the framework removed the

redundant workers, the running tasks on these workers were back in complete and waited for

re-assignment.

Simulation Output

When the simulation finished, it displayed the actual execution time of every MapReduce

computation instance and the deadline for each of the MapReduce computation instance. From

this set of output, we know if there was an instance of MapReduce computation did not finish

before its deadline. In addition, it also showed the usages for each type of the VMs and the total

cost for hiring the VMs.

120 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

6.6.2 Experimental Results

The results of the validation and evaluation for the event-driven resource provisioning frame-

work are presented in the following.

Validation of QoS-guarantee

The QoS-guarantee of the framework was validated by simulating the execution of a large

number of MapReduce computations in our framework under various circumstances. If all the

MapReduce computations met their deadline, then we claim the framework is QoS-guaranteed;

otherwise, the framework was not QoS-guaranteed.

0.8 0.9 1 1.1 1.2 1.3

Initial Provisioning Factor

200

400

600

800

1000

1200

C
om

pu
ta

tio
n

D
ur

at
io

n
(s

ec
) Large

Medium
Small

Figure 6.3: Distributions of the computation times of small, medium and large computations
when deadline tightness is 1.0

0.8 0.9 1 1.1 1.2 1.3

Initial Provisioning Factor

200

400

600

800

1000

1200

1400

C
om

pu
ta

tio
n

D
ur

at
io

n
(s

ec
) Large

Medium
Small

Figure 6.4: Distributions of the computation times of small, medium and large computations
when deadline tightness is 1.2

6.6. VALIDATION AND EVALUATION 121

0.8 0.9 1 1.1 1.2 1.3

Initial Provisioning Factor

200

400

600

800

1000

1200

1400

1600

C
om

pu
ta

tio
n

D
ur

at
io

n
(s

ec
) Large

Medium
Small

Figure 6.5: Distributions of the computation times of small, medium and large computations
when deadline tightness is 1.4

0.8 0.9 1 1.1 1.2 1.3

Initial Provisioning Factor

200

400

600

800

1000

1200

1400

1600

1800

C
om

pu
ta

tio
n

D
ur

at
io

n
(s

ec
) Large

Medium
Small

Figure 6.6: Distributions of the computation times of small, medium and large computations
under different deadline tightness when deadline tightness is 1.6

0.8 0.9 1 1.1 1.2 1.3

Initial Provisioning Factor

200

400

600

800

1000

1200

1400

1600

1800

2000

C
om

pu
ta

tio
n

D
ur

at
io

n
(s

ec
) Large

Medium
Small

Figure 6.7: Distributions of the computation times of small, medium and large computations
under different deadline tightness when deadline tightness is 1.8

122 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

Figure 6.3−Figure 6.7 describe the duration distributions of the small, medium, large MapRe-

duce computations. In the figures, the box represents the ranges of the variations of the MapRe-

duce durations, the line under the box is the shortest MapReduce duration, and the line or

cross above the box is the longest MapReduce duration. The deadline tightness is the ratio of

a deadline to its baseline. For example, for a small computation whose deadline baseline is

400 seconds, its deadline is 480 seconds if the tightness is 1.2. The initial provisioning factor

indicates the ratio resource amount initially provisioned to its minimum amount to meet the

deadline. For example, for a MapReduce computation initially requiring 10 workers to meet its

deadline, it will be provisioned to eight workers if the initial provisioning factor is 0.8. Thus,

the initial resource amount is under-provisioned if the factor is smaller than 1, while the initial

resource amount is over-provisioned if the factor is larger than 1.

As shown in Figure 6.3−Figure 6.7, all three categories of computations always met their

respective deadlines no matter how much the initial resource amount was provisioned or how

tight the deadlines were. Therefore, the QoS-guarantee of the event-driven resource provision-

ing framework was validated.

Evaluation of Performance

The second experiment was to evaluate the performance of the event-driven resource provision-

ing framework on the cost of using VMs. The evaluation was conducted through comparing

the event-driven resource provisioning framework with the static and periodic ones in five cases

with different deadline tightness.

1 1.2 1.4 1.6 1.8

Deadline Tightness

60

70

80

90

100

D
ea

dl
in

e-
m

ee
tin

g
P

er
ce

nt
ag

e
(%

)

Event-driven
Static 1.3
Static 1.2
Static 1.1
Static 1
Static 0.9
Static 0.8

Figure 6.8: Performance of the static and event-driven resource provisioning frameworks on
deadline-meeting percentages

6.6. VALIDATION AND EVALUATION 123

1 1.2 1.4 1.6 1.8

Deadline Tightness

150

200

250

300

350

400

C
os

t (
$)

Event-driven
Static 1.3
Static 1.2
Static 1.1
Static 1
Static 0.9
Static 0.8

Figure 6.9: Performance of the static and event-driven resource provisioning frameworks on
cost of using VMs

1 1.2 1.4 1.6 1.8

Deadline Tightness

90

92

94

96

98

100

D
ea

dl
in

e-
m

ee
tin

g
P

er
ce

nt
ag

e
(%

)

Event-driven
Periodic 10
Periodic 20
Periodic 30
Periodic 60
Periodic 120
Periodic 180

Figure 6.10: Performance of the static and event-driven resource provisioning frameworks on
deadline-meeting percentages

1 1.2 1.4 1.6 1.8

Deadline Tightness

150

200

250

300

350

400

C
os

t (
$)

Event-driven
Periodic 10
Periodic 20
Periodic 30
Periodic 60
Periodic 120
Periodic 180

Figure 6.11: Performance of the static and event-driven resource provisioning frameworks on
cost of using VMs

124 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

Figure 6.8−Figure 6.11 illustrate the comparison results of the performance of the event-

driven and static resource provisioning frameworks, and the comparison results of the perfor-

mance of the event-driven and periodic resource provisioning frameworks, respectively. In

the figures, Event-driven indicates the event-driven resource provisioning framework. Static x

denotes the static resource provisioning framework, and x is the initial provisioning factor.

Periodic x denotes the periodic resource provisioning framework configuring the period as

x. The periodic resource provisioning frameworks respectively apply IPA, SUA, and SDA to

initialize, scale up, and scale down the resource provisioning for the MapReduce computations

within each period. deadline-meeting percentage represents the percentage of the MapReduce

computations meeting its deadlines in the workload. If a framework cannot ensure the deadline-

meeting percentage is 100 percent, it means the framework cannot ensure every MapReduce

computation meet its deadline and the cost of using VMs under that framework will not be

presented in the figures.

As shown in Figure 6.8, using the static resource provisioning framework, the deadline-

meeting percentage always was lowered as the initial resource amount decreased, no matter

how the deadline tightness changed. On the contrary, using the event-driven framework, the

deadline-meeting percentage always was 100 percent when the deadline tightness changed.

Meanwhile, as shown in Figure 6.9 as the deadline tightness varied, the cost of using VMs

under the event-driven resource provisioning framework was 15.3− 27.1 percent less than that

under the static framework.

As shown in Figure 6.10, if the period of the periodic resource provisioning framework was

too long, the deadlines of some MapReduce computations were missed as the intervention was

too late. When the deadline tightness varied, the optimum period of the periodic framework also

changed. The shorter period did not mean less cost of using VMs. As shown in Figure 6.11, as

the deadline tightness varied, the cost of using VMs under the event-driven resource provision-

ing framework was 2.5− 15.8 percent less than that under the periodic framework.

The third experiment was to evaluate how the number of VMs used by the event-driven

framework would change when the number of running MapReduce computations varied over

time. In this experiment, we set the values in the variation sequence to be one, eliminating

the influence of environment performance fluctuation on the number of VMs used by our

framework. We used only one type of VMs in Table 6.2, xlarge, in this experiment.

6.6. VALIDATION AND EVALUATION 125

0 600 1200 1800 2400 3000 3600 4200 4800
0

50

100

150

200

250

300

350

400

450

500

V
M

 N
um

be
r

Time (sec)

0 600 1200 1800 2400 3000 3600 4200 4800
0

15

30

45

60

75

90

105

120

135

150

C
om

pu
ta

tio
n

N
um

be
r

VM Number

Computation Number

Figure 6.12: The number of using VMs when the number of running MapReduce computations
changes over time

Figure 6.12 shows the experimental results. In this figure, the X-axis indicates the runtime

of our framework; the left Y-axis indicates the number of VMs used at a time point and the right

Y-axis indicates the number of running MapReduce computations at that time. As shown in

the figure, sometimes the number of VMs used by our framework increased when the number

of running MapReduce computations increased. But, sometimes the number of VMs used

by our framework did not increase when the number of running MapReduce computations

increased. For example, from 1800 seconds to 2400 seconds, the number of running MapReduce

computations changed slightly but the number of VMs increased dramatically. The reason for

this was the new MapReduce computations were larger and therefore required more resources

than those just completed MapReduce computations during the period. Therefore, the number

of VMs used by our framework is not proportional to the number of running MapReduce

computations. The number of VMs used by our framework depends on the number of running

MapReduce computations and the requirements of the running MapReduce computations. A

smaller number of large MapReduce computations may use more VMs than a large number of

small MapReduce computations. In addition, the number of VMs used by our framework also

depends on the capacities of the VMs. For the same MapReduce computations, if more powerful

VMs are used, then the total number of VMs used by our framework would be smaller. If less

powerful VMs used by our framework, then the total number of VMs used by our framework

would be larger.

126 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

The fourth experiment was to evaluate how the number of VMs used by our framework

would change when the environment performance varied over time. In this experiment, we

randomly generated 10 different types of medium MapReduce computations with the same

deadlines of 1800 seconds. They were submitted to our framework at the same time and no

other MapReduce computations were submitted to our framework, to avoid the influence of

MapReduce computation submissions on the number of VMs used by our framework. We used

only one type of VMs in Table 6.2, that is xlarge.

Figure 6.13 shows the experimental results. In this figure, the X-axis indicates the runtime

of the 10 MapReduce computations; the left Y-axis indicates the number of VMs used by

our framework at a time point and the right Y-axis indicates the variation ratio defined in the

variation sequence; the increase/decrease in the variation ratio means there was a performance

degradation/promotion in the environment. The 10 MapReduce computations commenced at

the time point of 0 seconds. The MapReduce computations experienced two environment per-

formance degradations, one at the time points of 60 seconds and another at 640 seconds, and our

framework added three and five VMs, respectively, to response the computation environment’s

degradation. By contrast, they experienced environment performance promotion at the time

points of 460 seconds and 960 seconds, but our framework did not shut down VMs, since the

VMs might store the intermediate data for the MapReduce computations and could not be shut

down until the MapReduce computations completed. In fact, our framework removed some

workers and reserved resource space for resource scaling-up in future, which was illustrated by

the third environment performance degradation occurring at the time point of 1150 seconds. The

framework did not add VMs when this performance degradation occurred, as enough resource

space was released from the previous resource scaling down and could be used for the newly

added workers.

6.7 Summary of Chapter

This chapter has developed an event-driven resource provisioning framework for cloud-based

MapReduce, and has validated the QoS-guarantee of the event-driven resource provisioning

framework by experiments. The experimental results have shown that the event-driven frame-

work always ensured every MapReduce computation met its deadline as the deadline tightness

6.7. SUMMARY OF CHAPTER 127

0 160 320 480 640 800 960 1120 1280 1440 1600
0

4

8

12

16

20

24

28

32

36

40

V
M

 N
um

be
r

Time (sec)

0 160 320 480 640 800 960 1120 1280 1440 1600
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

V
ar

iti
on

 R
at

io

VM Number

Environment Performance Fluctuation

Figure 6.13: The number of using VMs when the environment performance changes over time

changed. This chapter has also used experiments to evaluate the performance of the event-

driven frameworks on saving the cost of using VMs. The experimental results have shown that

the event-driven resource provisioning framework saved 15.3− 27.1 percent more cost than the

static resource provisioning frameworks, and 2.5 − 15.8 percent more cost than the periodic

resource provisioning frameworks.

128 CHAPTER 6. QOS-GUARANTEED RESOURCE PROVISIONING FRAMEWORK

Chapter 7

Conclusion and Future Work

This chapter summarizes the work of this thesis, then recaps the major contributions of this

work, and finally discusses our future work.

7.1 Summary of Research

This thesis has studied the QoS-guaranteed resource provisioning problem in cloud-based MapRe-

duce. Four research problems involved in the research include the theoretical study of QoS-

guaranteed resource provisioning for cloud-based MapReduce, the cloud-based MapReduce

placement (MRP) problem, cloud-based MapReduce consolidation (MRC) problem and the

development of the QoS-guaranteed resource provisioning framework. The studies of the first

three research problems lay the foundation for the study of the fourth research problem. Based

on the outcomes from the first three research problems, the study of the fourth research problem

finally solves the QoS-guaranteed resource provisioning problem in cloud-based MapReduce.

The investigations of the four research problems and how they have answered the research

questions have respectively been presented in four chapters as follows.

Chapter 3 has presented the theoretical study of QoS-guaranteed resource provisioning for

cloud-based MapReduce. In that chapter, the impact of resource scaling on MapReduce compu-

tation time has first been quantified. Then the QoS-guaranteed resource provisioning problem

has been characterized through a non-linear transformation. By that non-linear transformation,

the theoretical study has been greatly simplified. After that, sufficient conditions on timing and

amount of resource scaling-up/down to guarantee QoS, summarized as three theorems and two

129

130 CHAPTER 7. CONCLUSIONS

corollaries, have been derived and also have been proven by strict mathematical deductions.

Finally, case studies have been conducted to demonstrate the theoretical results.

Chapter 4 has investigated the MRP problem, and has proposed a new MapReduce place-

ment algorithm to solve the MRP problem successfully. In that chapter, the MRP problem has

been formulated as a constrained optimization problem. Then the new MapReduce placement

algorithm has been designed in two phases. The first phase is to generate a set of promising

placement patterns; the second phase is to find a combination of the generated placement pat-

terns to build a solution to the MRP problem. The new algorithm answers the research question

about how to determine the right size and type of VMs and the placement of MapReduce

computations on VMs. After that, the performance of the new algorithm on the operational cost

of cloud-based MapReduce has been evaluated by comparing it with a popular homogeneous

placement algorithm and three heterogeneous placement algorithms. Meanwhile, the scalability

of the new algorithm has been demonstrated by case studies.

Chapter 5 has studied the MRC problem and has designed a new MapReduce consolidation

algorithm to solve the MRC problem successfully. In that chapter, the MRC problem has been

formulated as a bio-objective optimization problem. Then the new MapReduce consolidation

algorithm has been designed, which consists of three phases. The first phase of the algorithm

is to find a subset of VMs required to be consolidated, the second phase is to generate a set of

promising placement patterns, and the third phase of the algorithm is to find a combination of the

generated placement patterns to build a solution to the MRC problem. The new algorithm an-

swers the research question about how to consolidate MapReduce computations on VMs. Then

the effectiveness of the new algorithm has been demonstrated by comparing the operational

cost of cloud-based MapReduce using that algorithm and not using that algorithm. Also, the

performance of the new algorithm on saving the operational cost of cloud-based MapReduce

has been evaluated by comparing it with a baseline consolidation algorithm. In addition, the

scalability of the new algorithm has been evaluated by experiments.

Chapter 6 has developed the QoS-guaranteed resource provisioning framework. The QoS-

guaranteed resource provisioning problem has been formulated as a dynamic optimization prob-

lem and has been solved by a novel resource provisioning framework. In the framework, the

trigger mechanism has identified seven events and their trigger conditions based on the theoreti-

cal timing conditions of QoS-guaranteed resource provisioning. That has answered the research

7.2. MAJOR CONTRIBUTIONS 131

question about how to determine the timing of resource provisioning. Each of the events

activates a type of resource provisioning algorithm. Based on the theoretical amount conditions

of QoS-guaranteed resource provisioning, the resource provisioning algorithms have calculated

the amount of QoS-guaranteed resource provisioning. That has answered the research question

about how to determine the amount of resource provisioning. The framework has adopted a

resource allocator. The resource allocator has applied the new MapReduce placement algorithm

to answer the research question: how to choose the number and type of VMs and the placement

of MapReduce computations on VMs? It has also adopted the new MapReduce consolidation

algorithm to answer the research question: how to consolidate MapReduce computations on

VMs?

Having solved the four research problems, all research questions have been answered. Con-

sequently, the issue about QoS-guaranteed resource provisioning for cloud-based MapReduce

has been addressed successfully.

7.2 Major Contributions

Having addressed the four research problems, this thesis makes the following four contributions.

7.2.1 New Theoretical Results of QoS-guaranteed Resource Provisioning for Cloud-based

MapReduce

Through the theoretical analysis of QoS-guaranteed resource provisioning for cloud-based MapRe-

duce, new theoretical results have been derived. This work is the first attempt to the theoretical

study of QoS-guaranteed resource provisioning for cloud-based MapReduce and current re-

search has rarely given such a detailed theoretical study.

These theoretical results, laying the theoretical foundation for QoS-guaranteed resource

provisioning for cloud-based MapReduce, are used for designing the new QoS-guaranteed

resource provisioning framework. The theoretical results guide the framework to determine

the amount and timing of QoS-guaranteed resource provisioning. Only when the amount or

timing of resource provisioning satisfies the sufficient conditions presented by the theoretical

results can the QoS of cloud-based MapReduce be guaranteed.

132 CHAPTER 7. CONCLUSIONS

7.2.2 New MapReduce Placement Algorithm for Cloud-based MapReduce

A new MapReduce placement algorithm has been designed, successfully solving the MRP

problem. This new placement algorithm is totally different from these current algorithms for the

cloud-based MapReduce consolidation problem, and has a better performance than the current

algorithms on saving the operational cost of cloud-based MapReduce.

The new placement algorithm saves more operational cost of cloud-based MapReduce than

most current algorithms. Most of the current algorithms are categorized as homogeneous ones

which assign MapReduce computations on homogeneous VMs or assign the same number of

map/reduce workers on each VM. However, the new placement algorithm is a heterogeneous

one, which allows using heterogeneous VMs and heterogeneous placement on each VM used.

The new algorithm can find better combinations of map/reduce workers on multiple types of

VMs than those homogeneous placement algorithms, thus saving more cost of using VMs than

the homogeneous placement algorithms. Experimental results have shown that the operational

cost of cloud-based MapReduce using the new placement algorithm was 24.3 − 44.0 percent

lower than that using the most popular homogeneous MapReduce placement algorithm.

The new placement algorithm also outperforms current heterogeneous placement algorithms.

Unlike current heterogeneous placement algorithms, the new placement algorithm can make

good use of the existing resources to further reduce the operational cost of cloud-based MapRe-

duce. Experiments have been conducted to compare these two kinds of algorithms on saving

the operational cost of cloud-based MapReduce. The experimental results have shown that

the operational cost using the new algorithm was 2.0 − 36.2 percent lower than that using the

algorithm, without utilizing the spare resources.

In addition, the good scalability of the new placement algorithm has been demonstrated by

case studies. The experimental results have shown that the computation times of the algorithm

increased slowly when the problem size increased.

7.2.3 New MapReduce Consolidation Algorithm for Cloud-based MapReduce

A new MapReduce consolidation algorithm has been obtained, successfully solving the MRC

problem. The MRC problem is a new type of consolidation problem, which has rarely been

studied by current work. The MRC problem is much more complicated than most of the

7.2. MAJOR CONTRIBUTIONS 133

consolidation problems studied in the current literature. Their consolidation problems only

tackle homogeneous VMs or homogeneous MapReduce computations, whereas the MRC prob-

lem considers heterogeneous VMs and heterogeneous MapReduce computations. Few current

consolidation algorithms can solve the MRC problem effectively.

Using the new MapReduce consolidation algorithm, the operational cost of cloud-based

MapReduce has been greatly reduced. The experimental results have shown that using the

new algorithm the cost of using VMs is 60.0− 79.2 percent less than that without MapReduce

consolidation. Meanwhile, the solution found by the new algorithm shows good performance.

Compared with an IFFD-based consolidation algorithm, the new algorithm saves 6.1 − 18.1

percent more cost of using VMs and 14.3 − 49.7 percent more migration cost. In addition, the

experimental results have shown the good scalability of the new algorithm.

7.2.4 Novel Resource Provisioning Framework for Cloud-based MapReduce

A novel resource provisioning framework for cloud-based MapReduce has been developed, suc-

cessfully solving the QoS-guaranteed resource provisioning problem for cloud-based MapRe-

duce in dynamic environments. This resource provisioning framework is an event-driven one,

totally different from current popular frameworks including the static provisioning frameworks

and the periodical resource provisioning frameworks.

Unlike the static provisioning frameworks which provide fixed amount of resources, the new

framework can scale up or scale down resource provisioning at runtime when initial resource

provisioning is insufficient or over sufficient. Such a mechanism of the new framework greatly

enhances the ability of QoS-guarantee while potentially reducing the operational cost of cloud-

based MapReduce. The experimental results have shown that, using the static frameworks

cannot guarantee QoS all the time whereas the new framework always guarantees QoS no matter

how the environment changes. Also, the experimental results have shown that, using the new

framework, the operational cost of cloud-based MapReduce is 15.3−27.1 percent less than that

using the static frameworks.

Also, unlike the periodical provisioning frameworks which provide the resource period-

ically, the new framework triggers resource provisioning only when it detects an event. Such

event-driven mechanism of the new framework improves the accuracy of the amount and timing

of resource provisioning, and also avoids the difficult issue of determining periods, as existed in

134 CHAPTER 7. CONCLUSIONS

the periodical provisioning frameworks. Applying the event-driven mechanism, the new frame-

work outperforms the periodical resource provisioning frameworks in the QoS guarantee and in

the operational cost saving of cloud-based MapReduce. The experimental results have shown

that the periodical resource provisioning frameworks cannot guarantee QoS when the period is

long, whereas the new framework always guarantees QoS. Meanwhile, the experimental results

have shown that using the new framework, the operational cost of cloud-based MapReduce is

2.5− 15.8 percent less than that using the periodical ones.

7.3 Future Work

This thesis has motivated some future work. One work is how to quantify the sufficient and

necessary conditions for QoS-guaranteed resource provisioning on amount and timing. Current

work has considered only the sufficient conditions, such that our work reserves only those

conservative solutions for guaranteeing the QoS of cloud-based MapReduce, which potentially

increases the operational cost of cloud-based MapReduce. Through characterizing the sufficient

and necessary conditions, a more accurate resource provisioning solution could be obtained, and

the operational cost of cloud-based MapReduce could be further reduced.

Another work is how to deploy the new resource provisioning framework on real cloud

systems. Current work has evaluated the performance of the new framework by simulation. To

widen the application scope of the new framework, a real QoS-guaranteed resource provisioning

system based on our new framework will be developed in a real cloud environment.

References

AbdelBaky, M., Kim, H., Rodero, I., and Parashar, M. (2012). Accelerating MapReduce

analytics using CometCloud. In Proceedings of IEEE 5th International Conference on Cloud

Computing (CLOUD), pages 447–454.

Ai, L., Tang, M., and Fidge, C. J. (2011). Resource allocation and scheduling of multiple

composite web services in cloud computing using cooperative coevolution genetic algorithm.

In Proceedings of 18th International Conference on Neural Information Processing, pages

258–267.

Alrokayan, M., Vahid Dastjerdi, A., and Buyya, R. (2014). Sla-aware provisioning and

scheduling of cloud resources for big data analytics. In Proceedings of 2014 IEEE

International Conference on Cloud Computing in Emerging Markets (CCEM), pages 1–8.

Amazon (2015). Amazon EC2 instances page. [Online]. Available: http://aws.amazon.com/

ec2/instance-types/.

Bang-Jensen, J. and Larsen, R. (2012). Efficient algorithms for real-life instances of the variable

size bin packing problem. Computers and Operations Research, 39(11):2848 – 2857.

Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-aware resource allocation heuristics

for efficient management of data centers for cloud computing. Future Generation Computer

Systems, 28(5):755 – 768. Special Section: Energy efficiency in large-scale distributed

systems.

Beloglazov, A. and Buyya, R. (2012). Optimal online deterministic algorithms and adaptive

heuristics for energy and performance efficient dynamic consolidation of virtual machines in

cloud data centers. Concurrency and Computation: Practice and Experience, 24(13):1397–

1420.

135

136 REFERENCES

Beloglazov, A. and Buyya, R. (2013). Managing overloaded hosts for dynamic consolidation of

virtual machines in cloud data centers under quality of service constraints. IEEE Transactions

on Parallel and Distributed Systems, 24(7):1366–1379.

Bobroff, N., Kochut, A., and Beaty, K. (2007). Dynamic placement of virtual machines for

managing sla violations. In Proceedings of 10th IFIP/IEEE International Symposium on

Integrated Network Management, pages 119–128.

Brugger, B., Doerner, K., Hartl, R., and Reimann, M. (2004). Antpacking - an ant colony

optimization approach for the one-dimensional bin packing problem. In Evolutionary

Computation in Combinatorial Optimization, volume 3004 of Lecture Notes in Computer

Science, pages 41–50. Springer Berlin Heidelberg.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.

Future Generation Computer Systems, 25(6):599 – 616.

Byun, E.-K., Kee, Y.-S., Kim, J.-S., and Maeng, S. (2011). Cost optimized provisioning

of elastic resources for application workflows. Future Generation Computer Systems,

27(8):1011 – 1026.

Caprara, A. and Toth, P. (2001). Lower bounds and algorithms for the 2-dimensional vector

packing problem. Discrete Applied Mathematics, 111(3):231–262.

Cardosa, M., Narang, P., Chandra, A., Pucha, H., and Singh, A. (2011). Steamengine: Driving

MapReduce provisioning in the cloud. In Proceedings of 18th International Conference on

High Performance Computing (HiPC), pages 1–10.

Cardosa, M., Singh, A., Pucha, H., and Chandra, A. (2012). Exploiting spatio-temporal

tradeoffs for energy-aware MapReduce in the cloud. IEEE Transactions on Computers,

61(12):1737–1751.

Chen, C. H., Lin, J. W., and Kuo, S. Y. (2014a). Deadline-constrained MapReduce scheduling

based on graph modelling. In Proceedings of 2014 IEEE 7th International Conference on

Cloud Computing (CLOUD), pages 416–423.

REFERENCES 137

Chen, K., Powers, J., Guo, S., and Tian, F. (2014b). Cresp: Towards optimal resource

provisioning for MapReduce computing in public clouds. IEEE Transactions on Parallel

and Distributed Systems, 25(6):1403–1412.

Chen, Z. G., Du, K. J., Zhan, Z. H., and Zhang, J. (2015). Deadline constrained cloud computing

resources scheduling for cost optimization based on dynamic objective genetic algorithm. In

Proceedings of 2015 IEEE Congress on Evolutionary Computation (CEC), pages 708–714.

Cheng, D., Rao, J., Jiang, C., and Zhou, X. (2015). Resource and deadline-aware job scheduling

in dynamic hadoop clusters. In Parallel and Distributed Processing Symposium (IPDPS),

2015 IEEE International, pages 956–965.

Chu, C., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A. Y., and Olukotun, K. (2007).

Map-Reduce for machine learning on multicore. Advances in Neural Information Processing

Systems, 19:281–288.

CPLEX (2015). IBM CPLEX Optimizer. [Online]. Available: http://ibm.com/software/

commerce/optimization/cplex-optimizer/.

Crainic, T. G., Perboli, G., Rei, W., and Tadei, R. (2011). Efficient lower bounds and heuristics

for the variable cost and size bin packing problem. Computers and Operations Research,

38(11):1474 – 1482.

Daryani, M. H. and Thakare, M. S. B. (2015). Deadline and cost based MapReduce job

scheduling in heterogeneous cloud using dynamic pricing. International Journal, 3(9):56–64.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113.

Dong, X., Wang, Y., and Liao, H. (2011). Scheduling mixed real-time and non-real-time

applications in MapReduce environment. In Proceedings of 2011 IEEE 17th International

Conference on Parallel and Distributed Systems (ICPADS), pages 9–16.

Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of

Operational Research, 44(2):145 – 159. Cutting and Packing.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of

Heuristics, 2(1):5–30.

138 REFERENCES

Farley, B., Juels, A., Varadarajan, V., Ristenpart, T., Bowers, K. D., and Swift, M. M. (2012).

More for your money: exploiting performance heterogeneity in public clouds. In Proceedings

of the 3rd ACM Symposium on Cloud Computing, page 20. ACM.

Ferreto, T. C., Netto, M. A., Calheiros, R. N., and Rose, C. A. D. (2011). Server consolidation

with migration control for virtualized data centers. Future Generation Computer Systems,

27(8):1027 – 1034.

Ganapathi, A., Chen, Y., Fox, A., Katz, R., and Patterson, D. (2010). Statistics-driven workload

modeling for the cloud. In Proceedings of 2010 IEEE 26th International Conference on Data

Engineering Workshops (ICDEW), pages 87–92.

Gandhi, A., Dube, P., Kochut, A., and Zhang, L. (2015). Model-driven autoscaling for hadoop

clusters. In Proceedings of 2015 IEEE International Conference on Autonomic Computing

(ICAC), pages 155–156.

Ganglia (2015). Ganglia monitoring system. [Online]. Available: http://ganglia.sourceforge

.net/.

Garcı́a-Valls, M., Cucinotta, T., and Lu, C. (2014). Challenges in real-time virtualization and

predictable cloud computing. Journal of Systems Architecture, 60(9):726–740.

Garfinkel, R. S. and Nemhauser, G. L. (1972). Integer programming, volume 4. Wiley New

York.

Garg, S. K., Gopalaiyengar, S. K., and Buyya, R. (2011). Algorithms and Architectures

for Parallel Processing: 11th International Conference, ICA3PP, Melbourne, Australia,

October 24-26, 2011, Proceedings, Part I, chapter SLA-Based Resource Provisioning for

Heterogeneous Workloads in a Virtualized Cloud Datacenter, pages 371–384. Springer Berlin

Heidelberg, Berlin, Heidelberg.

Gunarathne, T., Wu, T.-L., Qiu, J., and Fox, G. (2010). MapReduce in the clouds for science.

In Proceedings of IEEE 2nd International Conference on Cloud Computing Technology and

Science (CloudCom), pages 565–572.

Hadoop (2015). Hadoop releases. [Online]. Available: http://hadoop.apache.org/releases.html.

REFERENCES 139

Haouari, M. and Serairi, M. (2009). Heuristics for the variable sized bin-packing problem.

Computers and Operations Research, 36(10):2877–2884.

He, C., Weitzel, D., Swanson, D., and Lu, Y. (2012). Hog: Distributed hadoop MapReduce on

the grid. In Proceedings of 2012 SC Companion: High Performance Computing, Networking,

Storage and Analysis (SCC),, pages 1276–1283.

He, Q., Shang, T., Zhuang, F., and Shi, Z. (2013). Parallel extreme learning machine for

regression based on MapReduce. Neurocomputing, 102(0):52 – 58.

Herodotou, H. and Babu, S. (2011). Profiling, what-if analysis, and cost-based optimization

of MapReduce programs. Proceedings of International Conference on VLDB Endowment,

4(11):1111–1122.

Herodotou, H., Dong, F., and Babu, S. (2011). No one (cluster) size fits all: automatic

cluster sizing for data-intensive analytics. In Proceedings of ACM 2nd Symposium on Cloud

Computing, page 18.

Huang, S., Huang, J., Dai, J., Xie, T., and Huang, B. (2010). The hibench benchmark

suite: Characterization of the MapReduce-based data analysis. In Proceedings of IEEE 26th

International Conference on on Data Engineering Workshops (ICDEW), pages 41–51.

Huang, Z., Tsang, D. H. K., and She, J. (2012). A virtual machine consolidation framework

for MapReduce enabled computing clouds. In Proceedings of 24th International Teletraffic

Congress, ITC ’12, pages 26:1–26:8. International Teletraffic Congress.

Hwang, E. and Kim, K. H. (2012). Minimizing cost of virtual machines for deadline-constrained

MapReduce applications in the cloud. In Proceedings of ACM/IEEE 13th International

Conference on Grid Computing (GRID), pages 130–138.

Iima, H. and Yakawa, T. (2003). A new design of genetic algorithm for bin packing. In

Proceedings of IEEE 2003 Congress on Evolutionary Computation, pages 1044–1049.

Kang, J. and Park, S. (2003). Algorithms for the variable sized bin packing problem. European

Journal of Operational Research, 147(2):365–372.

Kc, K. and Anyanwu, K. (2010). Scheduling hadoop jobs to meet deadlines. In Proceedings

of IEEE 2nd International Conference on Cloud Computing Technology and Science

(CloudCom), pages 388–392.

140 REFERENCES

Kijsipongse, E. and U-ruekolan, S. (2014). Scaling hadoop clusters with virtualized volunteer

computing environment. In Proceedings of 2014 11th International Joint Conference

onComputer Science and Software Engineering (JCSSE), pages 146–151.

Lama, P. and Zhou, X. (2012). AROMA: Automated resource allocation and configuration of

MapReduce environment in the cloud. In Proceedings of 9th International Conference on

Autonomic Computing, pages 63–72.

Lang, W. and Patel, J. M. (2010). Energy management for MapReduce clusters. Proceedings

of VLDB Endow., 3(1-2):129–139.

Lee, K. and Figueiredo, R. (2012). MapReduce on opportunistic resources leveraging resource

availability. In Proceedings of 2012 IEEE 4th International Conference on Cloud Computing

Technology and Science (CloudCom), pages 435–442.

Lee, S., Panigrahy, R., Prabhakaran, V., Ramasubramanian, V., Talwar, K., Uyeda, L., and

Wieder, U. (2011). Validating heuristics for virtual machines consolidation. Microsoft

Research, MSR-TR-2011-9.

Li, H., Wang, J., Peng, J., Wang, J., and Liu, T. (2013). Energy-aware scheduling scheme using

workload-aware consolidation technique in cloud data centres. Communications, China,

10(12):114–124.

Li, H., Wei, X., Fu, Q., and Luo, Y. (2014a). MapReduce delay scheduling with deadline

constraint. Concurrency and Computation: Practice and Experience, 26(3):766–778.

Li, H.-H., Chen, Z.-G., Zhan, Z.-H., Du, K.-J., and Zhang, J. (2015). Renumber coevolutionary

multiswarm particle swarm optimization for multi-objective workflow scheduling on cloud

computing environment. In Proceedings of the Companion Publication of the 2015 Annual

Conference on Genetic and Evolutionary Computation, GECCO Companion ’15, pages

1419–1420. ACM.

Li, S., Hu, S., Wang, S., Su, L., Abdelzaher, T., Gupta, I., and Pace, R. (2014b). Woha:

Deadline-aware map-reduce workflow scheduling framework over hadoop clusters. In

Proceedings of 2014 IEEE 34th International Conference on on Distributed Computing

Systems (ICDCS), pages 93–103.

REFERENCES 141

Lin, C.-C., Liu, P., and Wu, J.-J. (2011). Energy-aware virtual machine dynamic provision and

scheduling for cloud computing. In Proceedings of 2011 IEEE International Conference on

Cloud Computing (CLOUD), pages 736–737.

Lin, H., Ma, X., Archuleta, J., Feng, W.-c., Gardner, M., and Zhang, Z. (2010a). Moon:

MapReduce on opportunistic environments. In Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing, HPDC ’10, pages 95–106. ACM.

Lin, H., Ma, X., Archuleta, J., Feng, W.-c., Gardner, M., and Zhang, Z. (2010b). Moon:

MapReduce on opportunistic environments. In Proceedings of ACM 19th International

Symposium on High Performance Distributed Computing, pages 95–106.

Lingo (2015). Lindo system inc. . [Online]. Available: http://www.lindo.com/.

Liu, D., Tan, K., Huang, S., Goh, C., and Ho, W. (2008). On solving multiobjective bin packing

problems using evolutionary particle swarm optimization. European Journal of Operational

Research, 190(2):357 – 382.

Liu, L., Zhou, Y., Liu, M., Xu, G., Chen, X., Fan, D., and Wang, Q. (2012). Preemptive hadoop

jobs scheduling under a deadline. In Proceedings of 2012 Eighth International Conference

on Semantics, Knowledge and Grids (SKG), pages 72–79.

Maheshwari, N., Nanduri, R., and Varma, V. (2012). Dynamic energy efficient data placement

and cluster reconfiguration algorithm for MapReduce framework. Future Generation

Computer Systems, 28(1):119 – 127.

Maiza, M., Labed, A., and Radjef, M. (2013). Efficient algorithms for the offline variable sized

bin-packing problem. Journal of Global Optimization, 57(3):1025–1038.

Malekimajd, M., Ardagna, D., Ciavotta, M., Rizzi, A. M., and Passacantando, M. (2015).

Optimal map reduce job capacity allocation in cloud systems. SIGMETRICS Perform. Eval.

Rev., 42(4):51–61.

Malekimajd, M., Rizzi, A., Ardagna, D., Ciavotta, M., Passacantando, M., and Movaghar, A.

(2014). Optimal capacity allocation for executing MapReduce jobs in cloud systems. In

Proceedings of 2014 16th International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing (SYNASC), pages 385–392.

142 REFERENCES

Mao, M. and Humphrey, M. (2011). Auto-scaling to minimize cost and meet application

deadlines in cloud workflows. In Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’11, pages 49:1–49:12.

ACM.

Mattess, M., Calheiros, R., and Buyya, R. (2013). Scaling MapReduce applications across

hybrid clouds to meet soft deadlines. In Proceedings of IEEE 27th International Conference

on Advanced Information Networking and Applications (AINA), pages 629–636.

Meng, Z., Li, J., Zhou, Y., Liu, Q., Liu, Y., and Cao, W. (2011). bCloudBLAST: An

efficient MapReduce program for bioinformatics applications. In Proceedings of IEEE 4th

International Conference on Biomedical Engineering and Informatics (BMEI), volume 4,

pages 2072–2076. IEEE.

Monaci, M. and Toth, P. (2006). A set-covering-based heuristic approach for bin-packing

problems. INFORMS Journal on Computing, 18(1):71–85.

Numoto, T. (2015). Microsoft announces Azure IoT suite. [Online]. Available: https:

//blogs.microsoft.com/iot/2015/03/16/microsoft-announces-azure-iot-suite/.

Palanisamy, B., Singh, A., and Liu, L. (2014). Cost-effective resource provisioning for

MapReduce in a cloud. IEEE Transactions on Parallel and Distributed Systems, PP(99):1–1.

Palanisamy, B., Singh, A., Liu, L., and Jain, B. (2011). Purlieus: locality-aware resource

allocation for MapReduce in a cloud. In Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, number 58, pages 1–11.

Panigrahy, R., Talwar, K., Uyeda, L., and Wieder, U. (2011). Heuristics for vector bin packing.

http://research. microsoft. com.

Petrucci, V., Carrera, E. V., Loques, O., Leite, J. C., and Mosse, D. (2011). Optimized

management of power and performance for virtualized heterogeneous server clusters. In

Proceedings of 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), pages 23–32.

Polo, J., Becerra, Y., Carrera, D., Steinder, M., Whalley, I., Torres, J., and Ayguade, E. (2013).

Deadline-based MapReduce workload management. IEEE Transactions on Network and

Service Management, 10(2):231–244.

REFERENCES 143

Polo, J., Carrera, D., Becerra, Y., and Steinder, M. (2010). Performance-driven task co-

scheduling for MapReduce environments. In Proceedings of 2010 IEEE Symposium on

Network Operations and Management Symposium (NOMS), pages 373–380.

Polo, J., Castillo, C., Carrera, D., Becerra, Y., Whalley, I., Steinder, M., Torres, J., and Ayguad,

E. (2011). Resource-aware adaptive scheduling for MapReduce clusters. In Middleware

2011, volume 7049 of Lecture Notes in Computer Science, pages 187–207. Springer Berlin

Heidelberg.

Rao, B. T. and Reddy, L. S. S. (2012). Scheduling data intensive workloads through

virtualization on MapReduce based clouds. International Journal of Distributed and Parallel

Systems, 3(4):99–110.

Ruiz-Alvarez, A., Kim, I. K., and Humphrey, M. (2015). Toward optimal resource provisioning

for cloud MapReduce and hybrid cloud applications. In Proceedings of 2015 IEEE 8th

International Conference on Cloud Computing (CLOUD), pages 669–677.

Sampaio, A. M. and Barbosa, J. G. (2016). Chapter three - energy-efficient and sla-based

resource management in cloud data centers. In Hurson, A. R. and Sarbazi-Azad, H., editors,

Energy Efficiency in Data Centers and Clouds, volume 100 of Advances in Computers, pages

103 – 159. Elsevier.

Schad, J., Dittrich, J., and Quiané-Ruiz, J.-A. (2010). Runtime measurements in the cloud:

observing, analyzing, and reducing variance. Proceedings of VLDB Endowment, 3(1-2):460–

471.

Segura, C., Segredo, E., and León, C. (2011). Parallel island-based multiobjectivised memetic

algorithms for a 2d packing problem. In Proceedings of ACM 13th Annual Conference on

Genetic and Evolutionary Computation, GECCO ’11, pages 1611–1618.

Shi, W. and Hong, B. (2013). Clotho: An elastic MapReduce workload/runtime co-design. In

Proceedings of 12th International Workshop Adaptive and Reflective Middleware, pages 1–6.

Singh, S. and Chana, I. (2015). Q-aware: Quality of service based cloud resource provisioning.

Computers & Electrical Engineering, 47:138 – 160.

144 REFERENCES

Srikantaiah, S., Kansal, A., and Zhao, F. (2008). Energy aware consolidation for cloud

computing. In Proceedings of 2008 Conference on Power Aware Computing and Systems,

volume 10.

Tang, B., Moca, M., Chevalier, S., He, H., and Fedak, G. (2010). Towards MapReduce for

desktop grid computing. In Proceedings of 2010 International Conference on P2P, Parallel,

Grid, Cloud and Internet Computing (3PGCIC), pages 193–200.

Tang, Z., Zhou, J., Li, K., and Li, R. (2012). A MapReduce task scheduling algorithm for

deadline constraints. Cluster Computing, 16(4):651–662.

Tavangar, J. (2014). Large-scale hadoop installations are the new norm. [Online]. Avail-

able: http://www.thearmadagroup.com/it-infrastructure/large-scale-hadoop-installations-are-

the-new-norm.

Taylor, R. C. (2010). An overview of the Hadoop/MapReduce/HBase framework and its current

applications in bioinformatics. BMC bioinformatics, 11(Suppl 12):S1.

Teng, F., Magoulès, F., Yu, L., and Li, T. (2014). A novel real-time scheduling algorithm

and performance analysis of a MapReduce-based cloud. The Journal of Supercomputing,

69(2):739–765.

Teng, F., Yang, H., Li, T., Magoulès, F., and Fan, X. (2015). Mus: a novel deadline-constrained

scheduling algorithm for hadoop. International Journal of Computational Science and

Engineering, 11(4):360–367.

Tian, F. and Chen, K. (2011). Towards optimal resource provisioning for running MapReduce

programs in public clouds. In Proceedings of IEEE International Conference on Cloud

Computing (CLOUD), pages 155–162.

Verma, A., Ahuja, P., and Neogi, A. (2008). pmapper: power and migration cost aware

application placement in virtualized systems. In Middleware 2008, pages 243–264. Springer.

Verma, A., Cherkasova, L., and Campbell, R. (2011a). Resource provisioning framework for

MapReduce jobs with performance goals. In Middleware 2011, volume 7049 of Lecture

Notes in Computer Science, pages 165–186. Springer Berlin Heidelberg.

REFERENCES 145

Verma, A., Cherkasova, L., and Campbell, R. H. (2011b). ARIA: Automatic resource inference

and allocation for MapReduce environments. In Proceedings of ACM 8th International

Conference on Autonomic Computing, pages 235–244.

Versace, C. (2014). Talking big data and analytics with IBM. [Online]. Avail-

able: http://www.forbes.com/sites/chrisversace/2014/04/01/talking-big-data-and-analytics-

with-ibm/.

VMware (2015). VMware homepage. [Online]. Available: http://www.vmware.com.

Wang, J., Li, Q., and Shi, Y. (2013). SLO-driven task scheduling in MapReduce environments.

In Proceedings of 10th Conference on Web Information System and Application (WISA),

pages 308–313.

Wang, J. and Li, X. (2015). Task scheduling for MapReduce in heterogeneous networks. Cluster

Computing, pages 1–14.

Wang, K., Tan, B., Shi, J., and Yang, B. (2011). Automatic task slots assignment in hadoop

MapReduce. In Proceedings of 1st Workshop Architectures and Systems for Big Data, ASBD

’11, pages 24–29.

Wang, X., Shen, D., Bai, M., Nie, T., Kou, Y., and Yu, G. (2014). Sames: deadline-constraint

scheduling in MapReduce. Frontiers of Computer Science, 9(1):128–141.

White, B., Yeh, T., Lin, J., and Davis, L. (2010). Web-scale computer vision using MapReduce

for multimedia data mining. In Proceedings of 10th International Workshop on Multimedia

Data Mining, MDMKDD ’10, pages 9:1–9:10.

White, T. (2009). Hadoop: The Definitive Guide. O’Reilly Media.

Wilcox, D., McNabb, A., and Seppi, K. (2011). Solving virtual machine packing with

a reordering grouping genetic algorithm. In Proceedings of IEEE 2011 Congress on

Evolutionary Computation, pages 362–369.

Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S., Wu, K.-L., and Balmin,

A. (2010). Flex: A slot allocation scheduling optimizer for MapReduce workloads. In Gupta,

I. and Mascolo, C., editors, Middleware 2010, volume 6452 of Lecture Notes in Computer

Science, pages 1–20. Springer Berlin Heidelberg.

146 REFERENCES

Wolsey, L. A. (2008). Mixed Integer Programming. Wiley Encyclopedia of Computer Science

and Engineering.

Wu, G., Tang, M., Tian, Y., and Li, W. (2012). Energy-efficient virtual machine placement

in data centers by genetic algorithm. In Proceedings of 19th International Conference on

Neural Information Processing, pages 315–323.

Wu, X., Zhu, X., Wu, G.-Q., and Ding, W. (2014). Data mining with big data. IEEE

Transactions on Knowledge and Data Engineering, 26(1):97–107.

Xiang, Y., Balasubramanian, B., Wang, M., Lan, T., Sen, S., and Chiang, M. (2013). Self-

adaptive, deadline-aware resource control in cloud computing. In Proceedings of 2013 IEEE

7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops

(SASOW), pages 41–46.

Xiao, Z., Song, W., and Chen, Q. (2013). Dynamic resource allocation using virtual machines

for cloud computing environment. IEEE Transactions on Parallel and Distributed Systems,

24(6):1107–1117.

Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A., and Qin, X.

(2010). Improving MapReduce performance through data placement in heterogeneous

hadoop clusters. In Proceedings of 2010 IEEE International Symposium on Parallel and

Distributed Processing, Workshops and Phd Forum (IPDPSW), pages 1–9.

Xu, X. and Tang, M. (2014a). A more efficient and effective heuristic algorithm for

the MapReduce placement problem in cloud computing. In Proceedings of IEEE 7th

International Conference on Cloud Computing (CLOUD), pages 264–271.

Xu, X. and Tang, M. (2014b). A new grouping genetic algorithm for the MapReduce placement

problem in cloud computing. In Proceedings of 2014 IEEE Congress on Evolutionary

Computation (CEC), pages 1601–1608.

Xu, X., Tang, M., and Tian, Y. (2015). A new approach to the cloud-based heterogeneous

MapReduce placement problem. IEEE Transactions on Services Computing, accepted on

15th, May, 2015, in press.

REFERENCES 147

Xu, X., Tang, M., and Tian, Y. (2016). Theoretical results of QoS-guaranteed resource scaling

for cloud-based MapReduce. IEEE Transactions on Cloud Computing, accepted on 18th,

February, 2016, in press.

Zaharia, M., Borthakur, D., Sarma, J. S., Elmeleegy, K., Shenker, S., and Stoica, I. (2009). Job

scheduling for multi-user MapReduce clusters. EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2009-55.

Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., and Stoica, I. (2008). Improving

MapReduce performance in heterogeneous environments. In OSDI, volume 8, page 7.

Zhan, Z.-H., Liu, X.-F., Gong, Y.-J., Zhang, J., Chung, H. S.-H., and Li, Y. (2015). Cloud

computing resource scheduling and a survey of its evolutionary approaches. ACM Comput.

Surv., 47(4):63:1–63:33.

Zhang, Q., Zhani, M., Boutaba, R., and Hellerstein, J. (2014a). Dynamic heterogeneity-aware

resource provisioning in the cloud. IEEE Transactions on Cloud Computing, 2(1):14–28.

Zhang, W., Rajasekaran, S., Wood, T., and Zhu, M. (2014b). Mimp: Deadline and interference

aware scheduling of hadoop virtual machines. In Proceedings of 2014 14th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 394–403.

Zhang, X., Ju, S., and Jiao, Z. (2012). A scheduling method based on deadlines in MapReduce.

In Electrical, Information Engineering and Mechatronics 2011, pages 1585–1592. Springer.

Zhang, Z., Cherkasova, L., and Loo, B. T. (2015). Exploiting cloud heterogeneity to

optimize performance and cost of MapReduce processing. SIGMETRICS Perform. Eval.

Rev., 42(4):38–50.

Zhou, A. C. and He, B. (2014). Transformation-based monetary cost optimizations for

workflows in the cloud. IEEE Transactions on Cloud Computing, 2(1):85–98.

	Abstract
	Keywords
	Acknowledgments
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Research Background
	Research Motivation
	Research Questions
	Research Problems
	Problem 1: Theoretical Study of QoS-guaranteed Resource Provisioning
	Problem 2: Cloud-based MapReduce Placement
	Problem 3: Cloud-based MapReduce Consolidation
	Problem 4: Development of the QoS-guaranteed Resource Provisioning Framework

	Research Assumptions and Scope
	Major Contributions
	Thesis Outline
	List of Publications

	Literature Review
	State of the Art of QoS-guaranteed Resource Provisioning for Cloud-based MapReduce
	QoS-guaranteed Resource Provisioning for Non-MapReduce Computations in Cloud Computing
	QoS-guaranteed Resource Provisioning for Non-cloud-based MapReduce
	QoS-guaranteed Resource Provisioning for Cloud-based MapReduce

	Theoretical Study of QoS-guaranteed Resource Provisioning
	Theoretical Study for Non-cloud-based MapReduce
	Theoretical Study for Cloud-based MapReduce

	MapReduce Placement
	Non-cloud-based MapReduce Placement
	Cloud-based MapReduce Placement

	MapReduce Consolidation
	VM Consolidation
	MapReduce Consolidation

	Resource Provisioning Frameworks for Cloud-based MapReduce
	Static/Conservative Resource Provisioning Frameworks
	Static/Accurate Resource Provisioning Frameworks
	Dynamical Resource Provisioning Frameworks

	Summary of Chapter

	Theoretical Results of QoS-guaranteed Resource Provisioning
	Introduction
	Impact of Resource Scaling on MapReduce Computation Time
	Resource Scaling-up
	Resource Scaling-down

	Problem Description
	Reverse Resource Space

	Theoretical Analysis of QoS-guaranteed Resource Scaling
	Theoretical Analysis of the Scale-up Issue
	Theoretical Analysis of the Latest Intervention Time Issue
	Theoretical Analysis of the Scale-down Issue

	Applications of the Theoretical Results
	Applications of the Theorems for Resource Scaling-up
	Applications of the Theorem for Resource Scaling-down

	Summary of Chapter

	Cloud-based MapReduce Placement
	Introduction
	Problem Formulation
	Algorithm for the MRP Problem
	Placement Pattern Generation Procedure
	MRP Problem Solution Building Procedure

	Evaluation
	Construction of Test Instances
	Experiments and Results
	Discussion

	Summary of Chapter

	Cloud-based MapReduce Consolidation
	Introduction
	Problem Formulation
	Algorithm for the MRC Problem
	VM Selection Procedure
	Placement Pattern Generation Procedure
	MRC problem Solution Building Procedure

	Evaluation
	Construction of Test Instances
	Effectiveness Evaluation of MapReduce Consolidation
	Efficiency Evaluation of Algorithms
	Discussion

	Summary of Chapter

	Development of QoS-guaranteed Resource Provisioning Framework
	Introduction
	Problem Characterization
	Problem Formulation
	Event-driven Resource Provisioning Framework
	Framework Architecture
	Event-driven Mechanism
	Event Handling
	Advantages of Our Framework

	Algorithms
	Scaling Up Algorithm
	Scaling Down Algorithm
	Initial Provisioning Algorithm

	Validation and Evaluation
	Simulation Setup
	Experimental Results

	Summary of Chapter

	Conclusion and Future Work
	Summary of Research
	Major Contributions
	New Theoretical Results of QoS-guaranteed Resource Provisioning for Cloud-based MapReduce
	New MapReduce Placement Algorithm for Cloud-based MapReduce
	New MapReduce Consolidation Algorithm for Cloud-based MapReduce
	Novel Resource Provisioning Framework for Cloud-based MapReduce

	Future Work

	References

