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Abstract  
The koala (Phascolarctos cinereus) is an iconic arboreal marsupial and the only surviving 

member of the Family Phascolarctidae. Chlamydiosis in koalas causes significant morbidity 

and mortality and adds to the detrimental effects of anthropological changes such as 

deforestation, bush fire, motor vehicle trauma and dog attacks. Mathematical modelling 

suggests that by reducing the negative effects of chlamydiosis, koala population in decline 

could well be saved. Chlamydia is an obligate intracellular pathogen of both humans and 

animals and C.pecorum is the most common and serious species affecting koalas. Ocular 

infections in koalas cause kerato-conjunctivitis leading to blindness, whereas uro-genital 

infections cause thickening of the bladder wall, incontinence and fibrosis in the uterine tract. 

While antibiotics are the current leading curative measures, these are ineffective for severe 

chlamydiosis and can also affect the intestinal micro flora and the overall health of the 

animals.  The asymptomatic nature of the chlamydial infection and the variable effects of the 

long term antibiotic treatment heighten the importance of developing a suitable anti-

chlamydial vaccine.  

 

The overall goal of developing an effective koala -Chlamydia vaccine requires a focus on 

exploring suitable vaccine antigens with immune stimulating adjuvants, to produce a long 

lasting cellular and humoral immune response. Our group has been developing a koala-

Chlamydia vaccine over the past 6 years using the recombinant major outer membrane 

protein (MOMP). While the koala-Chlamydia vaccine looks promising, it still needs to 

address some critical aspects. The present study aimed to extend the previous work by (a) 

evaluating a simpler vaccine to administer, preferably single dose vaccination, utilising a 

novel adjuvant formulation, (b) understanding the detailed mechanism that underpin humoral 

immunity in both naturally infected and vaccinated koalas, (c) determining the therapeutic 
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and protective effects of the rMOMP vaccine strategy against the course of the infection in 

free-ranging koalas, and (d) understanding the role of the adjuvant on eliciting cellular and 

humoral responses in wild koalas.  

 

In koala, the current vaccine regime utilized recombinant C. pecorum specific major outer 

membrane protein (MOMP) as the vaccine antigen. This protein represents 60% of the 

chlamydial membrane structure and consists of T and B cell epitopes. While MOMP is the 

subunit component of the chlamydial outer membrane protein, a suitable adjuvant 

formulation could further enhance its immunogenicity. Several immunisation studies have 

used ISC (Immune stimulating complex) adjuvant and this has provided the best immune 

protection to date. One disadvantage of ISC is it requires multiple immunisations to be 

efficient. This requirement for several immunisations is not ideal as it could cause additional 

stress to the koala through repeated capture and handling processes. Therefore, to overcome, 

the limitations of multiple vaccination schedules, we evaluated a combination adjuvant 

containing polyphosphazine based poly I: C and host defense peptides, which has previously 

been shown to be effective in other species after a single dose injection. In this current study, 

we demonstrated that this novel adjuvant elicited systemic and mucosal humoral immune 

responses against MOMP antigen. 

 

Although Th1 immune response is critical in chlamydial infection, the role of antibodies has 

been described in a considerable number of research articles in mouse and guinea pig models, 

which supports the immune-protective role of antibodies. In this thesis, we have characterised 

the role of antibody mediated immune response in koalas with ongoing chlamydial infection 

either with vaccination or without vaccination. Particularly, our study in koalas has shown 

that antibodies induced through vaccination had neutralising ability and have unique epitopes 
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specificity apart from the natural infection. Interestingly, the vaccine induced epitopes are 

located in the conserved domains, suggesting their role in cross recognition against 

diversified MOMP genotypes. In broader perspective, we first examined the effect of 

chlamydial infection load against our prototype vaccine in free ranging koala. It has shown 

that the current vaccine was able to reduce the Chlamydia shedding in infected animals. The 

vaccine induced a significant immune response which might prevent new C. pecorum 

infection. This study strongly suggests the therapeutic effect of this vaccine through distinct 

epitopes specificity. Overall, the vaccine induced immunity prevents infection burden and 

increased the longevity of the animals.  

 

The ideal vaccine against Chlamydia should elicit IFN-γ secreting CD4+ T cells and 

neutralizing antibodies at the infection site. In addition, the Th2 or antibody response 

prevents reinfection and a balance of these two mechanisms coordinates the key immune 

protective role. In the final study, we measured the cytokine gene expression of the PBMCs 

following vaccination with the two different adjuvants each combined with the same rMOMP 

protein antigen.  Overall, both adjuvants produced a strong Chlamydia-specific cellular 

response in circulating PBMCs (peripheral blood mononuclear cells) as well as MOMP and 

functional antibodies. Whilst the immune responses were similar, there were differences 

between the adjuvants, particularly in relation to the specificity of the antibody responses. 

Together, these data suggest that a single dose vaccine (referred as Tri-adjuvant vaccine) 

regime appears as effective in triggering an anti-Chlamydia immune response in koalas.  

 

Key words: 

Chlamydia pecorum; adjuvant: single dose; MOMP; antibody; epitope; therapeutic; vaccine; 

immune response 
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1.1 A description of the scientific problem investigated 

Chlamydial infection is widespread in koalas and causes significant morbidity and mortality 

across the koala population in Australia [1]. Chlamydia infection directly threatens the 

survival of the koala and has been associated with ocular and reproductive illness. This 

infection is transmitted through sexual behaviour as well as vertical transmission from mother 

to joey during pap feeding. This disease can significantly reduce the reproductive health of 

the population and when combined with other anthropological pressures, can result in serious 

decline of the population. This infection is unfortunately the second most common reason for 

the admission of koalas to koala rehabilitation centres after car accidents. Disease modelling 

suggests that checking the chlamydial infection would be a significant management strategy 

that could help reverse the population decline [2]. While there are different grades of 

chlamydial infections, the chronic active chlamydiosis results in the shedding of the highest 

number of infectious particles, posing a serious impact for future transmission. However, the 

asymptomatic nature of the infection makes it difficult to deal with systemic antimicrobials. 

Therefore a vaccine would be an ideal option to control this infection.  

 

The current vaccine utilising the recombinant major outer membrane protein (rMOMP) with 

multiple immunisations, elicited strong cellular and humoral immunity in koalas in several 

vaccine trials [3-6]. This multi-dose vaccine regime is problematic both logistically and 

financially to deploy in the wildlife settings. Therefore, to overcome the limitations of 

multiple vaccination schedules, a single dose vaccine with appropriate adjuvant would be an 

ideal option. Whilst MOMP is an immunogenic antigen accounting for 60% of the membrane 

structure [7] that constitutes B and T cell epitopes [8], it has been reported that there are some 

limitations of using rMOMP protein for vaccine development.  Indeed, MOMP is (a) unable 

to elicit cross-serovar-protection and (b) requires adequate 3-D structure to restore the 



Introduction  Page 3 

required level of immunogenicity [9]. While MOMP is the leading subunit vaccine antigen 

and has shown good promise, the adjuvant component is equally important and further effort 

is still needed. Adjuvants are an important component of vaccine formulations and have 

major functions for enhancement of antigen uptake and presentation to the secondary 

lymphoid tissues. These immunomodulatory substances have multiple activities, including 

antigen delivery, recruitment of the specific immune cells to the site of immunisation and 

maturation of antigen presenting cells [10].  

 

The ideal anti- Chlamydia vaccine should induce Th1 directed immune –protection with IFNγ 

secreting CD4+ T cells and neutralising antibodies at the infection site, given the evidence 

available from animal [11, 12] and human studies [13, 14]. The antibodies neutralise the 

infection at their entry as well as in FcR mediated phagocytosis and complement activation 

linked with T cell response [15-18]. There is still limited data available on antibody mediated 

immune response in koalas following either vaccination or infection. While the lack of a 

koala-Chlamydia infection model, the vaccine response in naturally infected animals could be 

an alternative option. Nevertheless, for the management of the wild animal’s disease, it is 

significantly important to minimise the infection burden at population level and warrant the 

therapeutic and prophylactic vaccine as a practical solution. Animal model against  

chlamydial infection have shown the important role of Th1 directed cytokines, specially IFN-

γ [13]. In the mouse model having strong IgA response without IFN-γ secretions fails to 

mount immune-protection. This pro-inflammatory cytokine inhibits the growth of Chlamydia 

through several ways [19, 20].  

 

Taken together this several aspects of chlamydial immunity and vaccine research in koala, we 

aimed to investigate the following key aspects in this thesis. 
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1.2 The specific aims of the current study 

The overall aim of the study described in this thesis is to contribute to the development of a 

C. pecorum vaccine for koalas. In our research we aimed: 

1. Investigate the immune response of a novel Tri-adjuvant component polyphosphazine 

based poly I: C and host defense peptides combined with rMOMP C. pecorum antigen 

in koalas with single vaccination. 

2. Characterise the antibody mediated immune response in koalas following either 

natural infection or vaccination. 

3. Compare the immune response following MOMP vaccine and adjuvanted with either 

ISC or Tri-adjuvant. 

 

1.3 Progress of research linking the scientific papers 

 

This thesis consists of four papers, which have been published (4) in peer reviewed journals. 

The scientific work presented in these papers directly addresses the specific aims of this 

research project.  

 

The first paper (Chapter 3) entitled “Vaccination of koalas (Phascolarctos cinereus) with a 

recombinant chlamydial major outer membrane protein adjuvanted with Poly I:C, a host 

defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral 

immune responses” has been published in the “Vaccine” journal, Volume 32  on September 

4, 2014. This paper describes that single dose rMOMP vaccine combined with a poly I:C, 

host defense peptide and polyphosphazine adjuvant is able to stimulate both cellular and 

humoral immune response in koalas. This is the first study in koalas that utilised these novel 

adjuvant components. The immune responses that we observed in koalas to rMOMP 
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incorporated with the Tri-adjuvant were similar to the previously described study. Although 

the Th1 immune response is critical in chlamydial infection, the role of antibodies has been 

described in a considerable number of published articles in laboratory animal models, though 

there was no detailed analysis of the humoral immune response to vaccine in koalas. This 

leads us to the next article describing the role of antibody against chlamydial infection and 

vaccination. 

 

The second paper (Chapter 4) entitled “Humoral immune responses in koalas (Phascolarctos 

cinereus) either naturally infected with Chlamydia pecorum or following administration of a 

recombinant chlamydial major outer membrane protein vaccine” has been published in the 

“Vaccine” journal, Volume 34 on December 30, 2015. As part of the thesis work, we utilised 

a wild koala population to study (a) the immune response of naturally infected koala and (b) 

the immune response following vaccination. One of the important findings in this study was 

that a different and unique set of antibodies were induced by vaccination, compared to those 

from natural infections. All these epitopes were in the conserved domain and these would be 

conserved across the multiple ranges of MOMP genotypes. As koala chlamydial infection is 

wide spread and often asymptomatic in free ranging koalas, a therapeutic vaccine is 

significantly important. This leads us to the next paper describing the prophylactic and 

therapeutic effect of chlamydial vaccine.  

The third paper entitled “A prototype recombinant-protein based Chlamydia pecorum vaccine 

results in reduced chlamydial burden and less clinical disease in free-ranging koalas 

(Phascolarctos cinereus)” has been published in the “PLoS One” journal, Volume 11, 

January 12, 2016.  In the broader aspect of the larger koala vaccine project, this study 

confirms the effectiveness and protective immune response of C. pecorum positive koalas 

following vaccination. The vaccine induced very high antibody titers in koalas even for those 
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with current infections. Notably, the percent of neutralisation was significantly higher in the 

vaccinated group, compared to natural infections.  

The final aspect of the thesis was to evaluate the adjuvant effects on the immune response of 

koalas and is depicted in the final article. This paper entitled “Antibody and cytokine 

responses of koalas (Phascolarctos cinereus) vaccinated with recombinant chlamydial major 

outer membrane protein (MOMP) with two different adjuvants” has recently been published 

in the “PLoS One” journal. In this study we first measured the T cell response through IFN-γ 

gene response in koalas. The animals showed comparatively similar immune response 

regardless of the two different adjuvant regimes. Both ISC and single dose Tri-adjuvant 

immunisation resulted in high antibody titers with good in vitro neutralisation levels.  

Taken together, the results presented in chapters 3, 4, 5 and 6 clearly improve our 

understanding of chlamydial immune response in koalas in response to vaccine. These results 

will help us in targeting vaccine antigens along with appropriate adjuvant for future vaccine 

design in koalas against chlamydiosis. 

 

1.4 Thesis outline 

This thesis has been written according to Queensland University of Technology’s (QUT) 

“PhD thesis by publications” guidelines. Chapter 2 describes the literature relevant to the 

field of this particular study. Then Chapter 3, 4, 5 and 6 describe published and submitted 

work in the peer reviewed journals as part of the thesis. Chapter 7 describes the significant 

findings of this research project along with a few outlines for future scientific work. 

 

 

 

 



Introduction  Page 7 

1.5 References 

[1] Polkinghorne A, Hanger J, Timms P. Recent advances in understanding the biology, 
epidemiology and control of chlamydial infections in koalas. Veterinary microbiology. 2013. 
[2] Rhodes JR, Ng CF, de Villiers DL, Preece HJ, McAlpine CA, Possingham HP. Using 
integrated population modelling to quantify the implications of multiple threatening processes 
for a rapidly declining population. Biological conservation. 2011;144:1081-8. 
[3] Kollipara A, George C, Hanger J, Loader J, Polkinghorne A, Beagley K, et al. 
Vaccination of healthy and diseased koalas (Phascolarctos cinereus) with a Chlamydia 
pecorum multi-subunit vaccine: evaluation of immunity and pathology. Vaccine. 
2012;30:1875-85. 
[4] Kollipara A, Wan C, Rawlinson G, Brumm J, Nilsson K, Polkinghorne A, et al. Antigenic 
specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in 
koalas (Phascolarctos cinereus). Vaccine. 2013;31:1217-23. 
[5] Waugh CA, Timms P, Andrew D, Rawlinson G, Brumm J, Nilsson K, et al. Comparison 
of subcutaneous versus intranasal immunization of male koalas (Phascolarctos cinereus) for 
induction of mucosal and systemic immunity against Chlamydia pecorum. Vaccine. 2015. 
[6] Carey AJ, Timms P, Rawlinson G, Brumm J, Nilsson K, Harris JM, et al. A multi-subunit 
chlamydial vaccine induces antibody and cell-mediated immunity in immunized koalas 
(Phascolarctos cinereus): comparison of three different adjuvants. American journal of 
reproductive immunology (New York, NY : 1989). 2010;63:161-72. 
[7] Sun G, Pal S, Sarcon AK, Kim S, Sugawara E, Nikaido H, et al. Structural and functional 
analyses of the major outer membrane protein of Chlamydia trachomatis. Journal of 
bacteriology. 2007;189:6222-35. 
[8] Igietseme JU, Black CM, Caldwell HD. Chlamydia vaccines: strategies and status. 
BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy. 2002;16:19-
35. 
[9] Shaw J, Grund V, Durling L, Crane D, Caldwell HD. Dendritic cells pulsed with a 
recombinant chlamydial major outer membrane protein antigen elicit a CD4(+) type 2 rather 
than type 1 immune response that is not protective. Infection and immunity. 2002;70:1097-
105. 
[10] Stils HF. Adjuvants and antibody production: dispelling the myths associated with 
Freund's complete and other adjuvants. ILAR journal. 2005;46:280-93. 
[11] Morrison RP, Caldwell HD. Immunity to murine chlamydial genital infection. Infection 
and immunity. 2002;70:2741-51. 
[12] Morrison SG, Su H, Caldwell HD, Morrison RP. Immunity to murine Chlamydia 
trachomatis genital tract reinfection involves B cells and CD4(+) T cells but not CD8(+) T 
cells. Infection and immunity. 2000;68:6979-87. 
[13] Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a 
Chlamydia trachomatis vaccine. Nature reviews immunology. 2005;5:149-61. 
[14] Rockey DD, Wang J, Lei L, Zhong G. Chlamydia vaccine candidates and tools for 
chlamydial antigen discovery. Expert review of vaccines. 2009;8:1365-77. 
[15] Joller N, Weber SS, Oxenius A. Antibody-Fc receptor interactions in protection against 
intracellular pathogens. European journal of immunology. 2011;41:889-97. 
[16] Batteiger BE, Xu F, Johnson RE, Rekart ML. Protective immunity to Chlamydia 
trachomatis genital infection: evidence from human studies. The Journal of infectious 
diseases. 2010;201 Suppl 2:S178-89. 
[17] Li LX, McSorley SJ. B cells enhance antigen-specific CD4 T cell priming and prevent 
bacteria dissemination following Chlamydia muridarum genital tract infection. PLoS 
pathogens. 2013;9:e1003707. 



Introduction  Page 8 

[18] Yang X, Brunham RC. Gene knockout B cell-deficient mice demonstrate that B cells 
play an important role in the initiation of T cell responses to Chlamydia trachomatis (mouse 
pneumonitis) lung infection. Journal of immunology. 1998;161:1439-46. 
[19] Beatty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI. Tryptophan depletion as a 
mechanism of gamma interferon-mediated chlamydial persistence. Infection and immunity. 
1994;62:3705-11. 
[20] Ryu S-Y, Jeong K-S, Kang B-N, Park S-J, Yoon W-K, Kim S-H, et al. Modulation of 
transferrin synthesis, transferrin receptor expression, iNOS expression and NO production in 
mouse macrophages by cytokines, either alone or in combination. Anticancer research. 
1999;20:3331-8. 

 

 

 

 

 

 

 

 

 

 



Review of Literature Page 9 

Chapter 2: Review of literature
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Chlamydia is a gram negative, coccoid intracellular bacterium that is pathogenic for humans 

and animals and causes a wide spectrum of diseases in the respiratory and uro-genital tracts 

as well as in the eyes. The Greek word Chlamydia means “cloak” or “a mantle” and describes 

the bacterial inclusions morphology around the host nucleus [1]. 

2.1 Chlamydia 

Chlamydia is an obligate intracellular bacterium with a unique biphasic developmental cycle 

that exists inside a range of eukaryotic host cells [2]. This bacterium infects a wide range of 

animals as well as humans causing a wide spectrum of diseases in the eyes, respiratory and 

urogenital tracts [3, 4]. Currently, the genus Chlamydia has 11 recognised species: C. 

abortus, C. avium, C.caviae, C. felis, C. gallinacea, C. muridarum, C. pecorum, C. psittaci, 

C. suis, C. pneumoniae and C. trachomatis. The host range of these species varies. For 

example,  C. trachomatis infects humans, swine and mice; C. psittaci infects mammals, birds, 

cats and guinea pigs; C. pecorum infects a wide range of animals including mammals (sheep, 

cattle, goats), marsupials (koalas) and swine; C. pneumoniae infects humans and other 

animals [5, 6]. 

 

 

2.2 Developmental cycle 

Chlamydia has two morphologically and physiologically distinct developmental forms; the 

non-dividing, infectious elementary bodies (EB) and replicative, non-infectious reticulate 

bodies (RB) [7]. Another developmental phenotype characterised by an atypical aberrant 

body is associated with persistent infections of this pathogen. The infectious EB is small in 

size compared to RBs with highly condensed chlamydial DNA and histone-like proteins hctA 

and hctB [8]. While EBs are thought to be metabolically inactive, studies have shown that 

EBs exhibit a low-level of metabolic activity by utilising glucose-6 phosphate [9]. 
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Initial attachment of Chlamydia EBs is thought to be a two stage process involving the 

electrostatic interactions of the bacteria with heparin sulphate proteoglycans [10], followed 

by high affinity irreversible binding which is mediated by an, as yet, unidentified secondary 

receptor [11]. However, mannose, mannose 6-phosphate as well as the estrogen receptor have 

all been suggested to play a role in Chlamydia entry in the host cell [12, 13]. Both infectious 

EBs and the host proteins function synergistically to promote the invasion process [14]. EBs 

have a unique cysteine-rich disulphide cross-linked outer membrane surface structure [15], 

which is osmotically stable and resistant to extracellular stresses [16]. 

 

Following entry, the EB is internalised into a membrane bound compartment termed an 

inclusion. The inclusion contains various biosynthetic precursors, amino acids and lipid 

substances from the host cells [17, 18]. The inclusion avoids fusion with lysosomes and 

subsequently moves to the peri-golgi region [19]. Additionally, the inclusion interacts with a 

number of cellular organelles including multivesicular bodies [20], lipid droplets [21], 

mitochondria [22] and lysosomes [23] to acquire the nutrients for replication and as well as 

for membrane stability. Chlamydia differentiates from the EB form into actively replicating 

RBs, predominantly by multiplying through binary fission within the inclusion [24]. 

Persistence can be induced during this stage through nutrient starvation, interferon-gamma 

stimulation, and induction of nitric oxide synthase or antibiotic treatment [25-27]. After 

completing the developmental cycle, RBs transform back to EBs through an asynchronous 

process with repackaging bacterial chromosomes, nutrients and type 3 secretions (T3S) [24, 

28, 29]. Release of EBs  can occur in two ways either via disruption of the host cell 

membrane through the lytic pathway or extrusion of the EBs from the host cell without 

disturbance of the cell membrane [30]. 
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Fig 1.  Diagrammatic presentation of the chlamydial developmental cycle in a typical host 

cell. It depicts the key events that occur inside the host cell as part of their developmental 

cycle. EB: Elementary body; RB: Reticulate body; CPAF: Chlamydial protease like activity 

factor; TARP: Translocated actin recruiting phospho-protein; MEP: Methylerythritol 

phosphate; TTSS: Type three secretion systems (Taken from: AbdelRahman and Belland, 

[31]). 
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2.3 Chlamydia Taxonomy 

The taxonomy of Chlamydia is a debatable issue, which can be divided into two eras. 

According to the pre-1999 era, Chlamydia consisted only in one Family Chlamydiaceae and 

one genus Chlamydia. In this taxonomy, the genus Chlamydia contained four species: 

Chlamydia trachomatis, Chlamydia psittaci, Chlamydia pneumoniae and Chlamydia 

pecorum. Following the publication of Everett et al., in 1999, the genus Chlamydia was split 

into two genera namely Chlamydia and Chlamydophila, consisting of a total of nine species. 

C.pneumoniae, C. psittaci, C. pecorum, C. abortus, C. felis and C. caviae were under 

Chlamydophila and C. trachomatis, C. suis and C. muridarum were within the genus 

Chlamydia. In the twenty-first century, Stephens et al. rearranged and proposed a single 

genus, Chlamydia. In this nomenclature, nine species exist within the genus Chlamydia as 

such C. trachomatis, C.pneumoniae, C. psittaci, C. pecorum, C. abortus, C. suis, C. felis, C. 

caviae and C. muridarum [32].  Two new species have been recently added to the 

Chlamydiaceae – C. avium and C. gallinacea. C. avium has been isolated from a number of 

avian species including pigeons and parrots while C. gallinacea was isolated from chickens 

[33]. 
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Table 1. Taxonomy of chlamydial organisms (Taken from Schautteet and Vanrompay, [34]) 

 
Chlamydial taxonomy before 1999 Chlamydial taxonomy since 1999 (Everett et al., 1999) Chlamydial taxonomy used in the 

twenty-first century (Stephens et al., 
2009) 

Order Chlamydiales Chlamydiales Chlamydiales 
Family Chlamydiaceae Chlamydiaceae, Simkaniaceae, Parachlamydiaceae, 

waddliaceae 
Chlamydiaceae, Simkaniaceae, 
Parachlamydiaceae, waddliaceae 

Genus Chlamydia Chlamydia Chlamydophila Chlamydia 
Species C. 

trachomatis 
Trachoma 
biovar 

C. trachomatis Trachoma 
biovar 

 C. trachomatis Trachoma 
biovar 

LGV biovar LGV 
biovar 

LGV biovar 

Murine biovar C. muridarum  C. muridarum  
Porcine biovar C. suis  C. suis  

C. 
pneumoniae 

Human biovar Cp. 
pneumoniae 

TWAR 
biovar 

C. pneumoniae TWAR 
biovar 

Koala biovar Koala biovar Koala biovar 
Equine biovar Equine 

biovar 
Equine 
biovar 

C. psittaci Avian subtype Cp. psittaci  C. psittaci  
Abortion 
subtype 

Cp. abortus  C. abortus  

Feline subtype Cp. felis  C. felis  
Guinea-pig 
subtype 

Cp. caviae   C. caviae  

C. pecorum  Cp. pecorum  C. pecorum  
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2.4 Diseases caused by Chlamydia 

Chlamydia causes a wide spectrum of diseases in different hosts [4]. Trachoma caused by C. 

trachomatis was one of the earliest ocular disease in both male and females, recorded by 

Hippocrates as far back as 420 B.C. Diseases associated with C. trachomatis can be separated 

by serovars based on the epitope recognition of  the 4 variable regions, the MOMP protein 

and nucleic acid sequence of ompA. The genital serovars (D-K) of C. trachomatis are the 

leading pathogens for the sexually transmitted diseases (STDs) in humans, with over 100 

million cases reported annually worldwide [35]. The ocular strains of the C. trachomatis 

(serovars A-D) are associated with blindness in developing countries [36]. The genital form 

of infection in women, causes cervicitis, urethritis, endometritis, pelvic inflammatory disease 

(PID), infertility with tubal occlusion [37, 38]. In men, it has been associated with urethritis, 

epididymitis and prostatitis [39-41]. Whilst, the majority of the C. trachomatis infections are 

asymptomatic, severe complications resulting from chronic infection have been seen in both 

men and women. The Lymphogranuloma serovars (L1, L2 and 3) are invasive in nature and 

predominantly restricted to the mucosal epithelium  and submucosa of the affected 

individual, thereby causing lymphadenopathies, proctitis and ulcerative lesions in the 

intestinal mucosa [42]. 

 

The mouse species of C. muridarum was initially isolated from the respiratory tracts of mice 

but the pathogen can be transmitted through an oral route. It infects both the respiratory and 

genital tract in mice, similar to C. trachomatis genital infection in humans [43], paving the 

way for utilising the mouse and C. muridarum as laboratory animal infection model for the 

study of human respiratory and sexually transmitted chlamydial infections [44]. 
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C. suis, has only been isolated from pigs, in which it may be endemic. This species of 

Chlamydia is associated with conjunctivitis, pneumonia and enteritis in both farmed and wild 

pig populations [45]. While the zoonotic potential of C. suis has not been exclusively 

examined, there is some indication that this pathogen can cause conjunctivitis in pig abattoir 

employees [46]. 

 

Psittacosis is a systemic infection caused by C.psittaci in domesticated and feral birds 

including chickens, pigeons and turkeys. This pathogen causes systemic infection in birds and 

the symptoms include conjunctivitis, difficulty breathing and watery droppings [47]. All 

avian species are likely to be the natural hosts and the infection is transmissible to humans 

with nonspecific clinical symptoms [48]. The first documented human psittacosis or 

popularly “parrot fever” was described in the early 1900s [49].  

 

C. pneumoniae causes bronchitis and pneumonia in humans [50], but it has also been 

associated with a number of other diseases such as coronary heart diseases [51], Alzheimer’s 

[52], reactive arthritis [53] and asthma [54]. This pathogen also infects a wide range of 

animals including koalas [55], horses, frogs and turtles [56]. Unlike other human species, C. 

pneumoniae exhibits a highly conserved ompA sequence, with little difference between 

human and animals strains [57]. Though animal to human transmission has been suggested on 

at least in two occasions [58], no evidence for human to animal transmission has been 

reported. 

 

C. felis is a natural pathogen of domestic cats and causes hyperaemia of nictitating 

membrane, blepharospasm, ocular discomfort and conjunctivitis [59].  It causes conjunctivitis 

in humans and the prevalence of human infection is 1.7% [60].  
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C. abortus causes abortion and mastitis in cattle and ovine enzootic abortion in lambs [61]. 

The pathogen was first identified in sheep with abortions and thus causes serious economic 

problems worldwide. This pathogen has been documented in other livestock species as well 

as rodents [62].  

 

C. caviae causes infections in its natural host, guinea pigs, and is mainly associated with 

guinea pig inclusion conjunctivitis. This pathogen is highly host-specific and the reproductive 

infection in guinea pig has been used as an experimental animal model to evaluate the 

pathogenesis of C. trachomatis genital infection [63].  

 

C. pecorum was first isolated from a calf with encephalomyelitis [64] and later on has been 

found in a number of livestock and marsupial hosts. This pathogen causes a wide spectrum of 

diseases such as conjunctivitis, pneumonia, poly-arthritis, intestinal infection, 

encephalomyelitis in a broad range of animals including koalas, bandicoots, ruminants, pigs 

and horses [3, 65, 66]. C. pecorum is well studied in koala, where it has showed genetic 

diversity due to cross-species transmission within the wild population [67].  

 

Two new species have been added to the Chlamydiaceae: C. avium and C. gallinacea. These 

two species were isolated from avian species including chickens, pigeons and parrots. These 

pathogens cause respiratory illness, enteritis and hepatic enlargement in their host animals 

[33]. 
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Table 2.  Epidemiology of chlamydiosis at the interface of the human-animal niche (Taken from Rodolakis and Yousef , [68]) 

-b not reported 

  

Chlamydia 
species 

Host Pathology in animals Route for 
human 
transmission 

Pathology in humans 

Principal host Occasional 
host 

Clinical signs Severe 
disease 

Usual disease Severe disease 

C. psitt
aci 

Bird Dog, horse, 
pig 

Hyperthermia, 
anorexia, 
lethargy, 
diarrhoea 

Conjunctiviti
s, pneumonia, 
pericarditis, 
death 

Inhalation Influenza like illness Endocarditis 
Encephalitis, pneumonia, death 

C. abor
tus 

Sheep, goat, 
cattle 

Pig, deer, 
horse 

Abortion, 
stillbirth, 
epididymitis 

Metritis Inhalation Influenza like illness Pneumonia, abortion, renal 
failure, respiratory distress, 
death 

C. felis Cat -b Conjunctivitis Pneumonia, 
chronic 
sulphingitis 

Contact Conjunctivitis Endocarditis, severe liver break 
down 

C. cavi
ae 

Guineapig - Genital tract 
infection 

- Contact Conjunctivitis - 

C. pneu
moni
ae 

Human, koala, 
horse 

Reptiles, 
amphibians 

Respiratory 
disease 

- Inhalation Pneumonia, 
bronchitis, asthma 

Atherosclerosis 

C. peco
rum 

Ruminant, 
swine, koala 

Wild 
animals 

Intestinal 
infection, 
conjunctivitis, 
urinary tract 
infection 

Encephalomy
elitis, 
pneumonia, 
arthritis 

Contact - - 
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2.5 Koala Chlamydia taxonomy 

Initially, chlamydial species in koalas were known as C. psittaci based on cell culture 

observations. Restriction enzyme and gene probe analysis subsequently revealed two distinct 

types of C. psittaci, isolated from the conjunctiva and urogenital tract and rectum in koalas 

[69]. However, based on nucleotide sequencing of the ompA gene, these were further 

reclassified into C. pneumoniae and C. pecorum respectively [70-72]. In 1999, a revised 

taxonomic division temporarily moved these two species, with seven other known species, 

into a new genus Chlamydophila [73]. This amendment was not widely established and 

revisions merged all nine species into a single genus, Chlamydia [32]. The species infecting 

koalas are now referred to as Chlamydia pecorum and Chlamydia pneumoniae. 

 

2.6 Epidemiology of koala Chlamydia 

Chlamydia infection is widespread in wild koalas across their habitat in the northern region of 

Australia, including Queensland and New South Wales [74]. A variety of approaches have 

been used to measure the infections in koalas over the last 20 years. While serological assays 

were used  in the early studies, recently, molecular techniques such as specific PCR methods 

have provided accurate data on the prevalence of chlamydiosis in koalas [75].  White et al. 

[76] conducted a molecular study to understand the epidemiology of chlamydiosis in koalas. 

This study demonstrated a high prevalence of Chlamydia in both male and female koalas at 

both anatomical sites (ocular and urogenital). Later on, Jackson et al. [77] utilised molecular 

methods to identify the epizootiology of the two chlamydial species within two different 

geographic wild populations. This study demonstrated infections caused by the C. 

pneumoniae were usually of lower intensity in comparison with C. pecorum infections. The 

study further revealed the vertical transmission pattern of the chlamydial infections within 

wild koala population. The increasing use of species-specific PCR and sequencing data has 
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revealed certain koala populations in the North-Eastern region of Australia have infection 

levels as high as 72-100% [75]. Chlamydiosis was unfortunately also the second most 

frequent reason for koala admission to a koala hospital or a koala care centre in New South 

Wales over a 30 year period [78].  

 

 

 

Fig 2. The map illustrating the prevalence of Chlamydia pecorum across the eastern half of 

Australia indicating the known geographic range of koala; Grey shading representing the 

koalas distribution (Taken from Polkinghorne et al. [75]). 
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2.7 Types of koala-Chlamydia infection  

Koalas exhibit four types of clinical presentation of disease syndrome associated with 

chlamydial infection. In ocular infections, the inflammation is confined in the mucosal 

epithelium and is characterised by serous ocular discharge, blepharospasm and purulent 

discharge with conjunctivitis, fibrosis and blindness. In severe and chronic cases, corneal 

opacity can occur. Urinary tract infection manifests by brown urinary discharge, involuntary 

urination resulting in wet bottom or dirty tail around the rump region, popularly known as 

wet bottom syndrome [79]. Rhinitis with complex respiratory disorders has been seen in 

respiratory illness. The reproductive symptoms are the significant devastating aspect of this 

disease, affecting both male and female koalas. In male koalas, infections are typically 

associated with conjunctivitis and genital infection can cause orchitis, epididymitis and 

prostatis [80]. Acute reproductive tract disease associated with severe inflammation in the 

mucosal epithelium reversibly (infertility) or irreversibly (sterility), in female koala, results in 

reproductive loss [81]. 

 

 

 

Fig 3. Clinical signs of chlamydiosis in koalas (a) the classical bilateral kerato-conjunctivitis 

and (b) wet bottom or dirty tail (Taken from Polkinghorne et al.[75]) 
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2.8 Pathological lesions 

The majority of the histopathological findings are confined to the lower genital tract of the 

reproductive tract in female genital chlamydiosis. In male koalas, mild inflammation has been 

seen within sertoli cells and interstitial spaces with intact seminiferous and epididymal 

tubules [80]. The gross pathological changes are characterised by marked and irregular 

thickening of the bladder wall; reduced diameter of the lumen has been noted [82]. Chronic 

disease is associated with cystic changes in the oviduct and ovarian bursae and in some cases 

thickening of the uterine wall. Prostatic abscess formation is the prominent pathological 

finding for male koalas [83, 84]. Ocular infections result in inflammation, characterised by 

conjuctival hyperplasia and progressing to fibrosis. In severe cases, corneal opacity develops 

and progresses to the rupture and collapse of the globe [75]. 
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Fig 4. Clinico- pathological manifestation of chlamydial infection at ocular (A-C) and 

urogenital (D-F) sites. A) Acute kerato-conjunctivities with inflamed conjunctiva with 

minimal hyperplasia; B) Chronic-inactive kerato-conjunctivitis with extensive hyperplasia; 

C) Chronic active kerato-conjunctivitis with marked hyperplasia and exudation; D) Chronic , 

inactive urogenital infection with ovarian bursal cysts; E) chronic cystitis and F) severe 

urogenital tract pathology with ruptured uterine abscess ( a. bursal cyst; b. uterine abscess; c. 

caecum; d. suppuratives exudates) [85]. 
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2.9 Immunity against Chlamydia 

The principal requirement for the immunological response of chlamydial pathogenesis is the 

T cell response in host defense against chlamydial infection. CD4+ T cells as well as CD8+ T 

cells are found at the infection site against C. trachomatis infection in human and mouse 

models [86, 87]. Antigen presenting cells (APC) are able to phagocytose chlamydial EBs, 

degrade chlamydial components into peptides and present them in conjunction with MHC 

class II to the CD4+ T cells. These T cell subsets can recognise C. trachomatis antigens, such 

as MOMP, polymorphic outer membrane protein as well as heat shock protein 60 (hsp60) 

[88, 89]. However, natural immunity against C. muridarum genital infection is mediated 

through CD4+ T cells, Th1 cytokines and antibodies. Whilst Th1 mediated response has been 

associated with protection, a Th2 mediated response is linked to immuno-pathology. The Th1 

response is characterised by the production of IL-12 and IFN-γ and Th1- associated 

antibodies like IgG2a and IgG3 in the mouse model [90]. It is also evident that all chlamydial 

infection does not exclusively result in pathological damage and disease sequelae. 

Nonetheless, microbiological as well as host factors play a critical role in chlamydial disease 

pathogenesis. Indeed, the polymorphic characteristics of TNF-α and IL-10 promoter genes 

are able to affect the immune response against C. trachomatis human infection [91, 92]. 

 

2.9.1 Innate immune response 

The first line of defense against chlamydial infection is polymorphonuclear cell activation 

through the Toll like receptor (TLR) pathway. This host innate immune response elicits 

chemokines and cytokine production in animal models within 24 h of infection [93, 94]. This 

early stage of the immune response is critical in controlling the primary infection until the 

initiation of an adaptive response [95]. In addition, natural killer (NK) cells contribute to 

enhance the innate immune response through the production of IFN-γ against C. muridarum 



Review of Literature Page 25 

genital tract infection [96]. Human NK cells are able to lyse the C. trachomatis infected cells 

at the genital mucosa site [97]. Whilst the genital epithelial cells in response to C.trachomatis 

infection produce IL-18, the dendritic cells (DCs) generate IL-12 [98].  Both these cytokines 

are able to induce IFN-γ production from NK cells. The production of IFN-γ further initiates 

the differentiation of Th1 cells as well as increasing the degradation of tryptophan,  in 

combination with TNF-α, IL-1 and lipopolysaccharide (LPS) [99]. 

 

2.9.2 Role of antibody 

Different animal studies have addressed the role antibodies in immune protection [94]. In the 

guinea pig model, a strong antibody response was demonstrated following genital chlamydial 

infection [100]. Furthermore, this study confirmed that the role of antibody is essential for 

both controlling and eliminating the infection. In addition, the guinea pig model revealed that 

the animals are unable to resolve the primary infection, even though cellular immunity is 

activated [94, 101]. In murine models, B cells promote the protective T cell responses in the 

genital mucosa following chlamydial infection [102]. There is reported evidence that the anti-

chlamydial antibodies are able to covert Th1 activation of T cells through FcR mediation 

[103]. Mucosal immunity is very crucial as chlamydial infection localizes in the reproductive 

and conjunctival mucosal layers and its replication, excretion and subsequent dissemination 

of the infection occurs through these natural orifices [104]. IgG is the most powerful 

immunoglobulin subclass that provides antibody mediated immunity at genital mucosa, as 

reported from several animal models [101,104, 105]. 

 

2.9.3 Cellular immunity 

Several animal studies clearly indicate that a cell mediated immune response is required for 

both resolution of infection and immune protection [94,106, 107]. B cell deficient mice were 
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able to display immune protection against reinfection, which indicates the important role of T 

cells in eliciting protective immunity [108]. The Th1 cellular responses, specifically CD4+ T 

cells, are responsible for resolving genital chlamydial infection. The protective immune 

response is mediated through the induction of IFN-γ, either by CD4+ or CD8+ T cells [109, 

110]. DC cells play a central role for T cell priming and subsequent induction of chlamydial 

immunity. This cellular response might be affected by hormonal changes as such oestradiol 

and progesterone, at the time of infection [111]. In addition to IFN-γ, IL-17A has been 

suggested to be a critical cytokine for protection against chlamydial infection, both for 

protection as well as in disease pathology [112, 113]. Nonetheless, an elevated IL-17A has 

been demonstrated against chlamydiosis in the mouse model [114]. 

 

2.10 Vaccine-induced immune response 

Chlamydial vaccine research in animal models indicates the importance of both cellular and 

humoral immune responses for effective vaccine production [104]. As an intracellular 

pathogen, chlamydial infection induces antigen specific cell mediated immune response, 

mediated by T-helper cell types 1 (Th1) [115]. Indeed, the antibody action is significantly 

dependent upon T cell mediated adaptive changes at the infection site. However, Chlamydia 

specific antibodies play a critical role in protective immunity [116, 117] through 

neutralisation [118]. While the surface-acting antigen predominantly neutralizes through 

antigen-specific antibodies [119], a recent study suggests the role of hidden or unexposed 

epitopes in the neutralisation process through FcRn mediation [116, 117]. Similarly, 

antibody-deficient guinea pigs were unable to clear the infection, although the cellular 

immunity was intact [120]. Nevertheless, these animals were even more susceptible to 

reinfection following antibiotic treatment. Nonetheless, a recent study demonstrated that a 

peptide-based vaccine is feasible against chlamydial infection. This study was targeting 
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specific epitope recognition site at the rMOMP to enhance the production of neutralising 

antibodies [121].  

 

2.11 Overview of chlamydial vaccine development 

Current challenges in the vaccine design and development process attributes the selection of 

immune dominant antigen capable to elicit immune-protection [122]. In chlamydial vaccine 

development, a range of antigens has been evaluated in different animal models for their 

ability to induce an immune response.  

 

2.11.1 Whole organism vaccine/1st generation vaccine 

The initial animal and human vaccine studies against chlamydial infection were primarily 

based on either inactivated or live whole organisms [123]. The two animal pathogens C. 

abortus and C. felis have been successfully incorporated as whole organism killed or 

attenuated vaccines previously. These two vaccines are commercially available in the market 

and have been utilised against ovine enzootic abortion (OEA) and feline chlamydiosis [124, 

125]. Unfortunately, similar vaccine approaches have proved unsuccessful against human 

chlamydiosis. In humans, initial partial immunity was developed against conjunctival 

infection but subsequent re-infection exacerbated disease pathology for certain individuals 

and this lead to the termination of this vaccine approach [126]. Recent study showed that 

there was no convincing evidence that vaccination led to more severe disease in humans 

[127]. 

 

2.11.2 Subunit /2nd generation vaccine 

To overcome the adverse effects of the whole organism vaccine formulations, development 

of subunit vaccines has become the dominant strategy, with some good success. This 
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approach to vaccine development has the advantage of being safer and able to screen out the 

undesirable antigenic response related to adverse immune pathology [128]. MOMP is the 

leading subunit vaccine candidate in early vaccine trials and has been significantly used 

throughout the years in various animal models (Table 3 and Table 4)[111]. MOMP was used 

either as extracted outer membrane complex, as purified native or recombinant protein in the 

form of peptide, or as plasmid and as DNA (Table 4). 

 

2.12 The vaccine antigen 

The most promising antigen for developing an efficient chlamydial vaccine is MOMP (major 

outer membrane protein) (nMOMP, rMOMP, peptide or DNA MOMP). MOMP accounts for 

60% of Chlamydia surface proteins and has a molecular mass of ~ 40 kDa [129].  DNA 

sequencing analyses revealed five constant (CD) and four variable (VD) domains across the 

full length of the MOMP protein [130-132]. This variable nature of sequence helps to evade 

the immune system of the host.  Diversified VDs play a  key immunodominant role in all 

chlamydial strains, except C. pneumoniae [133, 134]. Vaccination with recombinant MOMP 

antigens has shown promising results (see summary in table 3). Immunisation of mice and 

monkeys with the native form of MOMP (nMOMP) produced significant levels of immune-

protection against genital and ocular challenge infections [135]. Murine and monkey models 

have shown strong protection against respiratory and intrabursal challenges by utilising the 

native form of MOMP (nMOMP) with oligodeoxynucleotide (ODN) as an adjuvant [136]. 

MOMP based-DNA vaccination had shown protection against an experimental respiratory 

infection in turkeys and budgerigars [137, 138].  
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Table 3. MOMP based vaccines in animal model against chlamydial infection 
Vaccine 
antigen 

Adjuvant/delivery 
system 

Model  Route of 
administ
ration 

Genus No. of 
immunisat
ions 

Immune status/protection Reference 

nMOMP, 
rMOMP 

CpG-Montanide ISA 
720 

Mice I/m and 
s.c 

Chlamydia trachomatis 
mouse pneumonitis 

Two times Increased Chlamydia specific antibodies [139] 

DNA MOMP Cathionic polymers Turkey I/m and 
I/n 

Chlamydia psittaci One time Moderate immunoglobulin’s in plasma [137] 

Plasmid DNA 
MOMP 

GM-CSF, LTA, B 
and CpG 

Pig Intravagi
nal 

Chlamydia trachomatis 
E 

One time Reduced macroscopic pathological lesions 
Reduced vaginal shedding of Chlamydia 

[140] 

Bacteriophage-
MOMP 

Commercial vaccine 
strain 1B (Enzovax) 

Mice I/m Chlamydia abortus Two times Moderate antibody response 
Production of high level of IFN-γ and IL-2 

[141] 

 
Ct-F-MOMP 

CpG-2395 and 
Montanide ISA 720 
VG 

Monkey I/m  and 
s.c 

Chlamydia trachomatis 
F 

Two times High level of Chlamydia specific IgG and IgA in plasma 
and natural secretions 
Detected cell mediated immune response in the peripheral 
blood mononuclear cells 

[142] 

nMOMP CpG-CTB Mice I/m and 
s.c 

Chlamydia trachomatis Two times High level of Chlamydia specific IgG in serum 
Significant T cell mediated Chlamydia specific immune 
responses 

[143] 

MOMP Vibrio cholera ghost 
(rVCG)-CTA2B –
nontoxic derivative of 
cholera toxin 

Mice I/m; I/v 
and 
transcuta
neous 

Chlamydia trachomatis 
D and Chlamydia 
muridarum 

Two times Trends of Th1 biased immune response 
Increased specific mucosal and systemic antibody 
Cross protection against heterologous chlamydial serovars 

[144] 

Multi epitopes  
based peptide 
MOMP 

Human papilloma 
virus like particles 
(VLP) 

Mice I/m Chlamydia trachomatis Four times Th1 biased immune response 
Upregulation of cytotoxic T lymphocyte activity 

[145] 

rMOMP CpG-Montanide Mice Intravagi
nal and 
I/m 

Chlamydia muridarum Three 
times 

Significant protection against live challenges [146] 

rMOMP Cationic liposomes 
(CAF01) 

Mice s.c Chlamydia  muridarum Two times Significant protection against live challenges [147] 

nMOMP 
 

CpG-ODN-2395 and 
Montanide ISA 720 

Monkey I/m and 
s.c 

Chlamydia trachomatis Two times High serum IgA and IgG at mucosal and systemic sites [148] 

nMOMP CpG-1826 and 
Montanide ISA 720 

Mice I/m and 
s.c 

Chlamydia trachomatis 
mouse pneumonitis 

Two times Increased secretion of antibodies in plasma 
Increase lymphopoliferative response of T cells 

[149] 

rMOMP CpG-10109 and 
Cholera toxin 

Guinea 
pig 

Intranasa
l 

Chlamydia trachomatis Three 
times 

MOMP specific IgA and IgG in the vaginal wash [150] 
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Fig 5. C. trachomatis MOMP diagrammatic structure. The residues in the trans-membrane 

strands are boxed with bold border and the side chains facing the lipid bi-layer are shown 

(both NH2 and COOH terminal ends of the protein are internal). External loops (L1-L8) with 

Variable domains 1, 2, 3 and 4 (VS1-4) are labelled with cysteine residues that are shaded. 

(Figure taken from Findlay et al.[151]) 
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While MOMP has received the most attention, the construction of complete genome libraries 

and expression of specific predicted proteins have identified a range of immunogenic proteins 

as vaccine antigens [152, 153]. A few of them are described below. 

 

Sequence analysis has identified 9 and 21 surface exposed polymorphic membrane proteins 

(Pmps) in C. trachomatis [154] and C. pneumoniae [155] respectively. Pmps play  critical 

roles in chlamydial biology and virulence [156, 157], as they represent 13.6% and 17.5% of 

the coding capacity of these two genomes, It is suggested that these diversified proteins play  

vital roles in escaping from host immune surveillance [158, 159]. The pmp genes are 

predicted to encode membrane proteins to be localized in the outer membrane, due to the 

tryptophan residues in the C-terminal half and a C-terminal phenylalanine residue [160-163]. 

Genomics study revealed, the Pmp proteins are unique to the Chlamydiales family, and 

contain multiple GGAI and FXXN repeated motifs, associated with host cells adhesion [154, 

164]. Pmps stimulate CD4+ T cells and pro-inflammatory cytokine production in murine 

chlamydial infection with C. pneumoniae [165-167]. 

 

Moreover, several Pmp proteins, Chlamydial protease like activity factor (CPAF), Plasmid 

encoded Pgp3 protein, Outer membrane complex protein (OmcB), Porin B protein (PorB), 

and Inclusion membrane protein (Incs) have also become leading vaccine candidates for 

Chlamydia. OmcB, rich in cysteine [168-170], is the second most abundant outer membrane 

protein complex, encoded by a bicistronic operon [171, 172] . This protein is highly 

conserved among Chlamydia [169], and has been involved to the conversion process of RBs 

to EBs during chlamydial infection [173], inducing humoral immune response in humans and 

animals [174, 175]. Cationic adjuvant formulation (CAF01) consisting of DDA as a delivery 

vehicle and synthetic mycobacterial cordfactor as immunomodulatory. 
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(Dimethyldioctadecylammonium (DDA) bromide and a, a'-trehalose 6, 6'-dibehenate (TDB), 

facilitates a Th1 biased immune response. Furthermore the adjuvant is stated to triggers both 

arms of the immune system and had shown promising results in experimental malaria, 

tuberculosis and chlamydial  vaccines [176]. 

 

CPAF was the first established virulence factor secreted by Chlamydia in the cytosol [177], 

degrading host transcription factors RXF5 and upstream stimulation factor 1 (USF1), 

suppressing interferon-γ mediated expression of MHC I and II in infected cells, that may aid 

in chlamydial evasion of host immune system [178-180]. In addition, CPAF can cleave the 

cytoskeleton, facilitating expansion and growth of the inclusion [181]. During the 

developmental cycle, all Chlamydia multiply within a host cell derived vacuole termed an 

inclusion, which has insertions of specific bacterial proteins (Inc proteins). The major 

function of the Inc proteins is to interact with host cell components and elicit cell mediated 

immune response following chlamydial infection [182]. 

 

 

 

 

 

 

 

 

 

 

 



Review of Literature Page 33 

Table 4. Summary of Chlamydia vaccine research with major antigen-adjuvant approaches. i.m: intracmuscular; i.n: intranasal; s.c: subcutaneous; i.v: intravenous [181] 

Vaccine Antigen and adjuvant Immunization 
route 

Model/Chlamydia 
infection route 

Immune response Reference
(s) 

Intact 
Chlamydia 

Plasmid-deficient Chlamydia (CM972, CM3.1)  Mouse/i.v Elevated IgG2a (Th1), low levels of IgG1(Th2) 
 

[184] 

Plasmid deficient Chlamydia (L2)  Mouse/i.v Elevated IgG2a, low IgG1, no IgA (mucosal) [185] 
Purified 
subunits 

MOMP plus cholera toxin subunit B conjugated to CpG i.m + s.c Mouse/i.n Elevated IgG2a and IgG3 (Th1), lower IgG1 level, elevated IFNγ (Th1) [143] 
MOMP-ISCOM i.n or i.m Mouse/i.n i.m route induced highest IFNγ and IL4 (Th2) levels [186] 
MOMP plus Freund’s adjuvant i.m + s.c Mouse/i.v Vortexted MOMP elicited higher IgG2a than IgG1 

Sonicated MOMP elicited higher IgG1 than IgG2a 
[187] 

MOMP plus IC31 i.m + s.c Mouse/i.n Higher IgG1 than IgG2a [188] 
MOMP plus CpG/Montanide i.m + s.c Rhesus macaque Elevated IgG, IgA, IFNγ and TNFα [189] 

Recombinants 
protein 

rMOMP plus cholera toxin/CpG or CTA1 s.1 or. T.c or i.n Mouse/i.n Elevated IFNγ and TNFα [190] 
rMOMP plus CpG/Montanide i.m + s.c Mouse/i.n Vaccination protected against fibrotic scarring in lungs [191] 
rCPAF plus Il12 i.n Mouse/i.v Increased IFNγ and minimal IL4 [192] 
rCPAF plus CpG i.n Mouse/i.v Vaccination significantly prevented infertility [193] 
rCTh1 plus CAF01 s.c Mouse/i.v T cell production of TNFα, IFNγ and Il2 [194] 
rGlgP plus CpG i.m Mouse/i.v Th1 dominat T cell response [195] 
rMIP i.m Mouse/i.v Elevated IFNγ and no IL4 [196] 
rCT043 i.m Mouse/i.n Reduces bacterial load [197] 
rCT823 plus ISCOM and CT144 plus ISCOM s.c Mouse/i.v Elevated IFNγ, TNFα and IL2 [198] 
rPmpG plus GNE and SctC plus GNE s.c Pig/i.v PmpG protected better than SctC 

PmpG vaccination did not elicit antibody production 
SctC vaccination elicited  
high antibody titers 

[199] 

DNA vaccine DNA MOMP i.m Mouse/i.v Elevated levels of IgG2a and IgG1 [200] 
Priming with MOMP and secondary boost with DNA 
MOMP-ISCOM 

i.m Mouse/i.n Elevated levels of IgG2a, IgA and IFNγ [201] 

DNA MOMP plus GM-CSF, enterotoxins (E. coli) A and 
B 

i.n + i.v Pig/i.v Vaccination induced significant protection against genital challenge 
Anti MOMP antibodies and low IL4 production 

[202] 

OmpA i.m Pig/i.m  [203] 
Bacterial ghosts MOMP and PorB DNA plasmid i.m Mouse/i.v High levels of IgG2a and IgA [204] 

PmpD and PorB DNA plasmid i.m Mouse/i.v High levels of IgG2a, IgA and IFNγ and low levels of IL5 (Th2) [205] 
Biodegradable 
polymers 

rMOMP encapsulated in PLGA s.c Mouse Elevated CD4+ and CD8+ T cells [206, 207] 
Chitosan containing rMOMP DNA i.m  Elevated IFNγ and IL12 and reduced IL4 and IL10 [208] 

Vaccine from 
transgenic 
plants 

MOMP introduced into A. thaliana and D. carota    [209] 

Gas vesicles Gene fragments coding for MOMP, OmcB and POMP 
loaded into Halobacteria –derived gas vesicles 

  Elicited Th1 cytokines in human foreskin fibroblasts [210] 
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2.13 Adjuvants 

Vaccines based exclusively on MOMP antigen alone, induce weak immune-protection 

against experimental genital chlamydial infection [211]. Therefore, the development of potent 

adjuvants is predicted to be the key to successful chlamydial vaccine development [152]. 

 

Adjuvants are substances combined with antigens to enhance the host immune response 

through the depot effect, antigen presentation or targeting, immune activation or modulation 

and cytotoxic lymphocyte infiltration. The protection may require a neutralising antibody 

response, interferon γ secretion by CD4+ T cells and cytotoxic CD8 lymphocyte response 

[212]. 

 

Toll like receptor agonists (TLR) are a group of immunopotentiators that promote maturation 

of the antigen presenting cells such as DCs (dendritic cells) [213]. TLR activation leads to 

activation and recruitment of the immune cells at the infection site, provision of adequate 

cytokines, chemokines and antimicrobial peptides, resulting in an overall adaptive immune 

response against conserved  pathogen associated molecular patterns (PAMPs ) [214] (Fig. 6). 

 

Saponin-based adjuvants possess immunomodulatory abilities, including induction of 

balanced Th1/Th2 immune response, adequate antibody production [215] and cytotoxic 

CD8+ T lymphocytes [216] at the infection site through TLR-independent and IL-18 

signalling pathways. ISCOMATRIX®
, a saponin-based adjuvant, elicits rapid influx of innate 

cells to the draining lymph node [217]. This process enhances the cross and prolonged 

antigen presentation through antigen presenting cells (APCs) in the lymphatic channels [218] 

(Fig. 6). 
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Cationic adjuvant formulation (CAF01) consisting of DDA as a delivery vehicle and 

synthetic mycobacterial cordfactor as immunomodulatory. (Dimethyldioctadecylammonium 

(DDA) bromide and a, a'-trehalose 6, 6'-dibehenate (TDB), forms CAF01 [176] which has 

strong adjuvant activity through delaying release of antigen [217] with efficient memory T 

cell production [220]. It induces a Th1 biased immune response including Th17 response 

[221]. 

 

Aluminium containing adjuvants, widely used in human vaccines, can stimulate humoral 

immunity with a strong Th2 response [222]. It forms a depot effect at the injection site. The 

formation of particulate facilitated phagocytosis by antigen presenting cells [223]. The 

immunostimulatory property of aluminium salts depends on Nalp3 inflammasome activation 

[224], inducing pro-inflammatory cytokines, CD4+ T cell activation and antibody production 

[218] (Fig. 6). 

 

2.14 Mechanism of action of adjuvant 

2.14.1 TLR ligand agonist adjuvants 

Toll like receptors (TLR) family recognise a wide range of microbial specific signature 

molecules, including nucleic acids, protein and lipid components of microbial membranes. 

Activation of TLRs results in a series of reactions followed by inflammation and innate 

immune response [225, 226]. Indeed, the diversity of the cascade reaction depends on the 

distinct TLR activated (summarised in table 5). This TLRs family are promising vaccine 

adjuvants, as they mainly induce Th1 biased immune response. Unmethylated CpG 

oligodeoxynucleotides (ODNs) is a TLR9 agonist adjuvant currently using in different 

animals models [226]. This adjuvant induces the production of  pro-inflammatory cytokines 



Review of Literature Page 36 

and overall eliciting a Th1-type immune response.TLR7 and TLR8 are single stranded RNA 

analogue, leading to type I IFN production and promoted Th1 response [225]. TLR3 is a 

double stranded RNA agonist as such poly inosinic:polycytidylic acid (poly I:C) that mimics 

viral RNA and exhibit as a potential vaccine adjuvant in different animal models [227-229]. 

In pigs, poly I: C was demonstrated to enhance the cell surface molecules which is thought to 

play the vital role for migrating the mature dendritic cells (DCs) to the lymphoid organs 

[230]. Nonetheless, poly I: C was shown to promote antigen specific CD4+ T cell response 

against malarial circumsporozoite protein [227]. 

 

2.14.2 Polyphosphazene based adjuvant 

Polyphosphazenes (PCEP) are biodegradable polymers with an inorganic backbone 

consisting of alternative nitrogen and phosphorus atoms. Several laboratory animals’ studies 

revealed that PCEP is potent immunological adjuvants that can enhance the quality, 

magnitude and duration of the immune responses against a wide range of vaccine antigens 

[231]. PCEP were shown to induce increased chemokines (CCL2, CXCL-10) and cytokines 

(IFN-γ, IL-4, IL-6, IL-8, IL-12) and antigen specific Ig (IgG1, IgG2) for a variety of bacterial 

and viral antigens [232-234]. Ideally PCEP has form micro-particles with antigen and 

enhance the stability, integrity of the vaccine during its formulation, processing and storage 

process [234]. In addition, this micro-particulate formulation effectively induces the antigen 

specific immune response in both plasma and mucosal compartment [235, 236]. PCEP was 

shown to significantly up-regulate antibody titers of IgG1 and IgG2a and induce a mixed 

Th1/Th2 immune response when co-administered with hepatitis B surface antigen (HBsAg) 

and influenza virus [232, 237]. Indeed, PCEP was shown to reduce the antigen requirement 

by 25-fold without affecting the quality and magnitude of the immune response [232]. 
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2.14.3 Cationic host defense peptides (HDPs) 

Cationic host defense peptides are small peptides that consist of positively charged and 

hydrophobic residues. The HDPs has been studied extensively in mouse models and majority 

of these studies focussed on immuno-modulation [238]. The immuno-modulatory properties 

of HDPs include (i) decrease the pro-inflammatory cytokines production induced against 

microbial signature molecules (ii) modulate the expression of chemokines (iii) induction of 

angiogenesis (iv) polymorphonuclear cells (PBMCs) activation (v) macrophage and 

leukocyte differentiation [239]. Initially the peptides bind either with surface receptors or the 

plasma membrane and then translocated inside the cellular compartment via various 

mechanisms [240]. After translocation, HDPs interact with intracellular receptors to generate 

multiple signal transduction pathways to elicit innate immune response [241]. 

 

2.14.4 Triple adjuvant combination 

Combination adjuvants as dual and triple combinations are currently being tested in different 

animal’s studies. However, the combination adjuvant can form complexes that become highly 

immunogenic and displayed a strong synergistic effect [242]. Novel combination adjuvants 

comprising HDP, PCEP and TLR ligand agonist has been assayed with a variety of vaccine 

antigens for a wide range of species including cattle, sheep, pigs, mice and cotton rats [241-

245]. This vaccine approach shifted immune response to a Th1 type or mixed Th1/Th2 type 

[246]. In mice and pig’s model, the Bordetella pertussis antigens in combination with CpG 

ODN, HDP and polyphosphazene was demonstrated to produce protective immune response. 

The longevity and magnitude of this immune response was effective following a single 

vaccination in the presence of maternal antibodies [247]. Recent vaccine trial utilising the 

chlamydial or influenza virus antigens, promoted strong innate and adaptive immune 

response in vaccinated animals [245, 248]. 
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2.15 Safety of adjuvant 

A wide variety of adjuvant have been utilised in different animals and human chlamydial 

vaccine trials (Table 5). Though a wide range of vaccine adjuvants elicit a strong immune 

response, most of them are too toxic for use in human vaccine formulations. For example, 

complete Freund’s adjuvant (CFA) is a potent inducer of strong cellular immune response in 

mice, but it causes toxic effects in humans [225]. In koalas, TiterMax Gold has toxic side 

effects as it forms abscess at the injection side, though it has immune-modulatory properties 

(Table 6) [249].  

 

2.16 Stability and cost of adjuvants 

In order to produce a large volume of vaccine for a larger group of animals, they must be 

available at low cost. In this regards, the potential vaccine adjuvants should be made with low 

cost production [250]. The ideal vaccine adjuvants can significantly reduce the amount of 

antigen required as well as it has antigen sparing properties. In addition, it is convenient to 

administer vaccine adjuvant that is stable at room temperature. Another important factor as 

simpler administers preferably the Holy Grail being single dose vaccine adjuvant [225]. 
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Table 5. Summary of different adjuvant with their mode of action and specific immune response [251] 

Adjuvant Class Mechanism of action or receptor Type of immune response 
dsRNA analogues (poly I:C) Immunomodulatory molecule TLR3 Antibody, Th1, CD8+ T cells 
Lipid A analogues (MPL, RC529,GLA, 
E6020) 

Immunomodulatory molecule TLR4 Antibody, Th1 

Flagellin Immunomodulatory molecule TLR5 Antibody, Th1, Th2 
Imidazoquinolines (Imiquimod, R848) Immunomodulatory molecule TLR7 and TLR8 Antibody, Th1 
CpG ODN Immunomodulatory molecule TLR9 Antibody, Th1, CD8+ T cells 
Saponins (QS21) Immunomodulatory molecule Unknown Antibody, Th1, Th2, CD8+ T cells 
C-type lectin ligands (TDB) Immunomodulatory molecule Mincle, Nalp3 Antibody, Th1, Th17 
CD1d ligands (α-galactosylceramide) Immunomodulatory molecule CD1d Antibody, Th1, Th2, CD8+ NKT cells 
Aluminium salts Particulate formation Nalp3, immunoreceptor tyrosine-based 

activation motif, antigen delivery 
Antibody, Th2 

Emulsions (MF59, AS03, AF03, SE) Particulate formation Immune cell recruitment, apoptosis-
associated speck-like protein containing 
caspase recruitment domain, antigen uptake 

Antibody, Th1, Th2 

Virosomes Particulate formation Antigen delivery Antibody, Th1, Th2 
AS01 (MPL, QS21, liposomes) Combination of immunomodulatory 

molecule and particulate formation 
TLR4 Antibody, Th1, CD8+ T cells 

AS02 (MPL, QS21, emulsion) Combination of immunomodulatory 
molecule and particulate formation 

TLR4 Antibody, Th1 

AS04 (MPL, aluminium salts) Combination of immunomodulatory 
molecule and particulate formation 

TLR4 Antibody, Th1 

AS15 (MPL, QS21, CpG, liposomes) Combination of immunomodulatory 
molecule and particulate formation 

TLR4 and TLR9 Antibody, Th1, CD8+ T cells 

GLA-SE (GLA, emulsion) Combination of immunomodulatory 
molecule and particulate formation 

TLR4 Antibody, Th1 

IC31 (CpG, cationic peptide) Combination of immunomodulatory 
molecule and particulate formation 

TLR9 Antibody, Th1, Th2, CD8+ T cells 

CAF01 (TDB, cationic liposomes) Combination of immunomodulatory 
molecule and particulate formation 

Mincle, Antigen delivery Antibody, Th1, CD8+ T cells 

ISCOMs (saponin, phospholipids) Combination of immunomodulatory 
molecule and particulate formation 

Unknown Antibody, Th1, Th2, CD8+ T cells 



Review of Literature Page 40 

 

Fig 6. Mechanism of action of different classes of adjuvants. Some adjuvants can act through 

multiple pathways including antigen uptake, PPR signalling, inflammasome activation and 

recruitment of immune cells. (For example: Alum) [251] 
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2.17 Development of vaccine against chlamydiosis in koalas 

Chlamydial MOMP is the best studied immune-protective antigen to date [67, 252]. 

Nevertheless, vaccination with MOMP does have its limitations. The surface exposed 

variable domains of MOMP are genetically diverse. Initially in the process of vaccine design, 

our group utilized MOMP as the vaccine antigen along with NrdB and CT512 with three 

different adjuvants namely Alhydrogel, TiterMax Gold and Immune Stimulating Complex 

(ISC) in koalas [249]. Recombinant NrdB was used to prime CD4+ T cells to produce both 

anti-Chlamydia antibodies and a lymphocyte response.  This antigen has the advantage that it 

is highly conserved across many chlamydial species. CT512 is an immunogenic antigen, 

originally developed from outer membrane protein (omp85) of C. muridarum, and elicits 

partial protection against genital chlamydial infection in mouse model [253]. This 

preliminary study showed that a multi-subunit vaccine is feasible in koalas against 

chlamydial infections. The adjuvant, ISC is composed of purified saponin complex with 

cholesterol and phospho-lipid and has shown cytotoxic T-cell response in different animal 

models [201]. Vaccination of koalas with rMOMP plus ISC adjuvant induced a strong 

cellular and humoral response in several trials [249, 254-256]. These studies showed a multi-

subunit rMOMP based vaccine could provide immune-protection against chlamydial 

infection in koalas. 

 

The major issue of chlamydial infection in humans is the asymptomatic nature of the 

infection. This is also a problem in koalas with molecular studies showing high prevalence 

rates in the absence of disease (reviewed in Polkinghorne et al. [75] ). Interestingly, Wan et 

al. [257] showed that high infection loads can be found in asymptomatic animals [257]. These 

animals might be a source of infection for future transmission of Chlamydia in wild koalas. 
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Therefore, the importance of producing a vaccine that elicits immune response in healthy as 

well as in diseased koalas is significantly important. 

 
 
 
Due to the diversified nature of the MOMP protein [258], it was unexpected to have a similar 

form of immune response in koalas that have either received a single or multiple dose of 

MOMP vaccine. Surprisingly, single MOMP vaccinated koalas were able to recognize the 

homologous as well the heterologous strains of koala C. pecorum [255]. This study is very 

promising as it illustrates the feasibility of developing an effective recombinant MOMP-

based C. pecorum vaccine against a wide range of circulating strains. Nonetheless, a recent 

study utilising the Pepscan method (www.pepscan.com) was able to identify the B cell 

epitopes across the MOMP protein of four C. pecorum strains. This study revealed that 

vaccine induced epitopes were distinct from natural infection [256]. Most of the epitopes 

were in the conserved domain, suggesting the cross reactive nature of the previously 

described immune response with single rMOMP protein [258].   

 

 

 

 

 

 

 

 

 

 

 

http://www.pepscan.com/


Review of literature Page 43 
 

Table 6. The vaccination profile for koala’s (Literature thus far) 
 

Antigen Adjuvant Immune response Reference 
MOMP, NrdB and 
TC0512 

Alhydrogel IgG had significant response 
in genital tract up to 158 
days 

[249]  

Significant Peripheral blood 
mononuclear cell (PBMC) 
proliferation 

MOMP, NrdB and 
TC0512 

Immuno-stimulating complex 
(ISC) 

Sustained plasma IgG up to 
1 year 

 [249] 

MOMP, NrdB and 
TC0512 

TiterMax Gold Abscess in the inoculation 
site 

 [249] 

Minimal IgG response up to 
102 days 

MOMP and NrdB Immuno-stimulating complex 
(ISC) 

Sustained IgG in the plasma 
and eyes secretion up to 140 
days 

[254]  

MOMP monovalent Immuno-stimulating complex 
(ISC) 

Sustained plasma IgG  for 
MOMP A up to 21 wks 

[255] 

Sustained plasma IgG for 
MOMP F up to 21 wks 
Plasma IgG response up to 
10 wks for MOMP G 

MOMP polyvalent Immuno-stimulating complex 
(ISC) 

Significant IgG up to 10 wks 
and moderately up to 21 wks 

[255] 

 
 

While a chlamydial vaccine development in koalas looks promising, we still lack species 

specific immunological reagents due to our lack of understanding of the koala immune 

response against infection or vaccination. Recently Mathew et al. [259] provided some 

knowledge in koala immunology by optimising and developing the koala specific quantitative 

real time PCR assays for measuring the important Th1 cytokine, IFN-γ .In addition, they 

identified IL-17A gene expression in diseased animals as a key immune marker for 

chlamydial disease severity and pathogenesis [260]. Furthermore, they characterised the 

expression of anti-inflammatory (TNF-α and IL-10) cytokine in a cohort of diseased koalas 

[261]. 
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2.18 Concluding remarks 

A Chlamydia vaccine is the most appropriate and realistic approach against the widespread 

infections that continue to be present in koalas. Early human trachoma vaccine trials utilising 

whole inactivated Chlamydia, resulted in adverse disease pathology in recipients [127]. Since 

then, immune-protective subunit antigens have been the focus of anti-chlamydial vaccine 

designs. While MOMP of Chlamydia is the best studied antigen to date, identification of 

novel and immune effective antigens combined with appropriate adjuvants that could replace 

the multi-dose strategy through a simpler single vaccine dose would certainly be beneficial to 

the welfare of koalas. 
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3.2 Abstract 

Chlamydial infections are wide spread in koalas across their range and a solution to this 

debilitating disease has been sought for over a decade. Antibiotics are the currently accepted 

therapeutic measure, but are not an effective treatment due to the asymptomatic nature of 

some infections and a low efficacy rate.  Thus, a vaccine would be an ideal way to address 

this infectious disease threat in the wild. Previous vaccine trials have used a three-dose 

regimen; however this is very difficult to apply in the field as it would require multiple 

capture events, which are stressful and invasive processes for the koala.  In addition, it 

requires skilled koala handlers and a significant monetary investment. To overcome these 

challenges, in this study we utilised a polyphosphazine based poly I: C and a host defense 

peptide adjuvant combined with recombinant chlamydial major outer membrane protein 

(rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female 

koalas with a novel single immunising dose. Immunized koalas produced a strong IgG 

response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. 

pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival 

secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced 

against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month 

period. The results of this study suggest that a single dose rMOMP vaccine incorporating a 

poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of  

the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a 

three-dose vaccine regime. 

 

Key words: Chlamydia, Koala, Single dose, Vaccine, Adjuvant
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3.3 Introduction 

Koala populations along the eastern coast of Australia face localized extinction due to 

anthropogenic pressures such as habitat destruction [1], motor vehicle trauma [2], bush fire, 

dog attacks [3] and disease [4]. Control measures targeting disease may reduce mortalities 

and as such could have the potential to stabilize declining koala populations [5]. Based on 

data collected from wild hospital admissions, Chlamydia is the most common cause of 

disease in koalas [6]. Chlamydia is an intracellular bacterium that causes disease, not only in 

koalas, but also in a wide range of wild and domestic animals and humans [7]. In koalas, 

Chlamydia pecorum is the most pathogenic species and is associated with urogenital and 

ocular infections. Clinical signs include cystitis, sterility, infertility, conjunctivitis, kerato-

conjunctivitis and rhinitis [8]. Antibiotics are the currently accepted therapy, however, they 

can have a deleterious effect on the animal’s gastrointestinal microenvironment [9], as well as 

having quite low efficacy rates for chronic infections [10].  Further, many wild koalas have 

asymptomatic infections [11], challenging efforts to effectively treat and control disease in 

affected populations.  

 

An effective vaccine would be an ideal disease management tool for koalas as in other host 

species infected with this bacterial pathogen. Across the broader chlamydial research field, 

the design of a successful vaccine has proven challenging, however, as researchers have had 

to consider both the selection of a suitable vaccine candidate capable of inducing immune-

protection, and the development of an effective delivery system and adjuvant capable of 

boosting immune responses against the candidate antigens [12]. 
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The most promising candidate for a chlamydial vaccine antigen is the chlamydial major outer 

membrane protein (MOMP), accounting for 60% of the chlamydial outer membrane [13]. A 

koala C. pecorum vaccine has been under development for the past four years using a 

recombinant MOMP (rMOMP)-based antigen [14, 15]. The first koala vaccine trial 

demonstrated the induction of both cellular (>1 year) and humoral immunity (>35 wks) in 

female koalas with a rMOMP-based vaccine combined with three different adjuvants, and 

identified the best adjuvant candidate as immunostimulating complex (ISC) [16]. The second 

trial elucidated the feasibility and safety of a C. pecorum specific rMOMP antigen combined 

with ISC as a vaccine in healthy as well as diseased female koalas [15]. The third trial 

identified the cross reactive nature of the monovalent rMOMP proteins in female koalas, 

which is useful as there are a significant number of genetically distinct C. pecorum strains 

circulating in wild populations [14].  

 

While these results are promising, a limitation of the koala Chlamydia vaccine that is 

presently under development is that the adjuvant currently used requires a three (or two) dose 

regime [14]. This three dose regime would be logistically challenging to deliver to wild 

koalas while also potentially causing unnecessary stress to animals associated with repeated 

capture and handling. A single dose adjuvant that would deliver a similar level of immune 

recognition and response would be advantageous to plans to deploy this vaccine to koala 

populations across Australia.  

 

This current study evaluated a novel one-dose vaccine in koalas. The adjuvant chosen 

consisted of three components, polyinosinic polycytidylic acid (poly I: C), a host defense 

peptide [17] and polyphosphazine (PCEP). Poly I: C is a TLR3 ligand that mimics viral 
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double stranded RNA (dsRNA), the natural ligand of TLR3. From studies in other animals, 

Poly I:C is known to induce a predominantly Th1 immune response [18] due to the strong 

induction of type 1 interferon production and proinflammatory cytokines. Host defense 

peptides (HDP) are cationic peptides that function as antimicrobials, have multiple 

immunostimulatory activities and are highly conserved across plants, insects and mammals 

[19]. Polyphosphazines such as PCEP are synthetic water-soluble and biodegradable 

polymers that have demonstrated strong adjuvant affects. PCEP induces the recruitment of 

myeloid and lymphoid cells to the injection site and draining lymph nodes [20], activates the 

NLRP3 inflammasome resulting in the production of pro-inflammatory cytokines such as IL-

1β and IL-18 [21] and also induces potent mucosal IgA responses when delivered by multiple 

immunization routes [22]. 

 

Because it is widely believed that a protective chlamydial vaccine needs to elicit both a 

strong Th1 immune response at the infection site [18],  as well as the production of 

neutralizing antibodies at the mucosal surfaces of the genital tract and eyes [23], we reasoned 

that this combination adjuvant should elicit such a balanced response. The present study 

therefore evaluated this three-component adjuvant, mixed with C. pecorum rMOMP and 

given as either a single or double dose immunisation for induction of anti-chlamydial 

immunity in the koala.  

 

3.4 Materials and methods 

Production of rMOMP 

Previously, Kollipara et al.[24] developed a typing scheme for C. pecorum strains infecting 

koalas. In our study, we used three koala C. pecorum genotypes (A, F and G) as they 
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represent genotypes that are common in South-East Queensland (SEQ) koala populations. 

The purified C. pecorum MOMPs (A, F and G) were used as antigens in the current vaccine 

trial. Details for preparation of the recombinant MOMPs were as described by Kollipara et al.  

[14] but briefly, Escherichia coli (strains JM109; BL21 (DE3 pLysS) were used for 

molecular cloning, protein expression and purification. The respective expression constructs 

were transformed into the E. coli and grown in Luria-Bertani broth with constant shaking at 

37° C. The cell growth was assessed by measuring OD600. The complete ompA genes for each 

C. pecorum strain were amplified using primers ompAXhol (5′-

AAAAACTCGAGTTGCCTGTAGGGAACCC-3′) and OmpAKpnIn (5′-

AAAAAGGTACCTTAGAATCTGCATTGAGCAG-3′). The PCR product was amplified to 

generate products consisting 5′-Xhol and 3′-Kpnl restrictions and were ligated into a N-

terminal polyhistidine (His) pRSET expression vector. His-tag expression constructs were 

then transformed into BL21 (DE3) pLysS bacterial cells and grown in Luria-Bertani broth 

medium. The cells (expressing rMOMP) were harvested by centrifugation and resuspended in 

lysis buffer I. Lysed cells were incubated with TALON metal affinity resin at 4° C for 1 hr 

with gentle mixing. The resin then washed with buffer I and the protein was eluted. The 

recombinant protein yields were estimated by the bicinchoninic acid method. 

 

Adjuvant 

The combination adjuvant consists of polyposphazine (PCEP), the host defense peptide HH2 

(VQLRIRVAVIRA-NH2) [17] and poly I:C (Vaccine and Infectious Disease Organization, 

Saskatchewan, Canada), which was combined with our rMOMP antigens. Each 500 μl dose 

of the vaccine was prepared using sterile PBS to contain approximately 50 µg of each 

rMOMP (A, F and G), with 250 µg each of PCEP, Poly I:C and 500 µg of HH2.  
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Animals 

Six healthy female koalas, which were seronegative for previous chlamydial infections, and 

aged 1-3 years, were used for this study and were housed at Lone Pine Koala Sanctuary, 

Brisbane, Queensland. There was no history of chlamydiosis in this facility for at least 10 

years.  All work was conducted under permissions from the Queensland University of 

Technology Animal Ethics Committee (permit # 0900000285). 

 

Immunization schedule and sample collection 

Koalas were randomly assigned into two cohorts. One group (n = 3) received a single dose of 

vaccine and the second group (n = 3) received two doses, with a one month interval between 

the doses. All the animals were immunized via the subcutaneous route by a registered 

veterinarian. Samples included 5 mL whole blood collected in EDTA blood collection tubes 

(Interpath Services), stored at 4°C and processed within 24 h. The swabs were collected at the 

urogenital (UGT) and ocular sinuses (Aluminium rayon dry swabs; Copan) and were stored 

at -80°C in 0.5 ml phosphate buffer solution (PBS) containing 1 mM 

phenylmethysulphonylfluride (PMSF). Blood samples were collected at 0 weeks (pre-

immunized), 6, 10, 14, 21, 41 and 54 weeks. UGT and ocular swabs were collected at 0 

weeks (pre-immunized), 6, 10, 21, 41 and 54 weeks time points. 

 

Measurement of anti-MOMP lymphocyte proliferation response 

 

Lymphocyte proliferation responses were assayed as per Carey et al.[16] except that UV-

irradiated C. pecorum G elementary bodies (EBs) were used for in vitro stimulation of 

PBMCs. PBMCs were collected from blood samples at 0 (pre-immunized), 6, 21 and 54 
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weeks after the first immunization. PBMCs were isolated on Ficoll gradients, labelled with 

Carboxyfluorescein succinimidyl ester (CFSE) then stimulated with rMOMP, UV-inactivated 

C. pecorum EBs or Concanavalin A (ConA) as a positive stimulator, and no antigen as a 

negative control.  Proliferation of PBMCs was determined using a Beckman Coulter flow 

cytometer (FC500, Gladesville, NSW, Australia). Proliferation was expressed as the % of 

PBMCs that had undergone > 3 cell divisions. The mean fluorescent intensity of individual 

CFSE peaks, representing cycles of cell division, was analysed using ModFit software as 

described in Lyons and Doherty [25]. 

 

Enzyme linked immunosorbent assay (ELISA) 

 

Enzyme-linked immunosorbent assay (ELISAs) were performed as per Kollipara et al.[15] at 

0 (pre-immunized), 6,10, 14, 21, 41 and 54 weeks for plasma and 0 (pre-immunized), 6, 10, 

21, 41 and 54 weeks for swab samples. To obtain material from the swabs, the swabs were 

were collected into the protease inhibitor, PMSF plus buffer, vortexed vigorously, centrifuged 

and the supernatant analysed for antibodies by ELISA. 

 

In vitro Chlamydia neutralization assay 

 

In vitro neutralisation assays were performed using koala plasma and mucosal secretions 

(UGT and ocular) collected at 0, 6, 10, 21 and 54 weeks post immunization according to 

Kollipara et al. [15]. All samples were diluted 1:10 prior to testing.  For each assay, C. 

pecorum genotype G purified EBs (50,000 IFU) were mixed with the diluted plasma or 

secretions and incubated at 37C for 30 min prior to inoculation onto cell monolayers for 

assay of residual infectivity. Pre-immunisation plasma, ocular and UGT secretions were 
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collected from each individual animal pre-vaccination and were used to establish the 

background levels for each koala.  The individual background level was then subtracted from 

post-vaccination neutralization levels for each individual to get the actual neutralization 

effect.    

 

 

Statistics 

 

All statistical analyses were performed using Graph-Pad Prism version 6 (Graph pad 

Software, LaJolla, CA, USA). Data are presented as mean ± SD from triplicate assays. Data 

between cohorts was analysed using one –way ANOVA Kruskal-Wallis (non-parametric) 

tests. The P value for significance was set at ≤ 0.05. 
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3.5 Results 

Vaccine safety 

There were no adverse effects following administration of the vaccine in any of the six koalas 

(such as swelling or abscess formation around the injection site) immediately after 

immunization, or for the entire study period.  There was no evidence of clinical illness from 

the vaccine for the 54 weeks of the trial (data not shown).   

 

Cellular immunity 

CFSE dye-dilution assays demonstrated significant PBMC proliferation following in vitro 

stimulation with rMOMP (Fig.1) and UV-inactivated EBs (Fig. 2) at the 6, 21 and 54 weeks 

post-immunization time-points, compared to pre-immunization levels. Recombinant MOMP 

induced the highest proliferation rates (20.3% in single dose; 20.8% in double dose) (p value 

0.842)(Fig. 1) compared to UV inactivated EBs (9.5% in single dose; 13.4% in double dose) 

(Fig. 2) at the six week time point. At 21 weeks post-immunization, PBMCs had slightly 

reduced proliferation in both vaccine cohorts compared to the six-week time point for both 

rMOMP (10.4% in single dose; 14.1% in double dose) and EBs (9.3% in single dose; 11.4% 

in double dose). At 54 weeks post immunization, PBMCs were still proliferating in response 

to both rMOMP (9.7% in single dose; 9.8% in double dose) (Fig. 1) and EBs (6.04% in single 

dose; 5.9% in double dose) (Fig. 2). No statistically significant differences were observed in 

PBMC proliferation levels between the single and double vaccine groups at any time point.  
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Humoral immunity at systemic and mucosal sites 

MOMP-specific IgG antibody in plasma (Fig. 3) and mucosal secretions (Fig. 4) were 

determined by ELISA. All pre-immunizations samples were negative for MOMP IgG.  

Plasma IgG levels peaked at 41 weeks for both groups of koalas (EPT: End Point Titer; 2-3 

x106), before beginning to plateau or decrease slightly by week 54.  No significant 

differences in plasma EPT were observed between koalas in the single and double dose 

vaccine groups at the end period (54 weeks). In UGT secretions (Fig. 4 A), the IgG EPT in 

both groups peaked at 10 weeks post-immunization (EPT 1.5-3.2x102). Ocular antibody EPT 

(Fig. 4 B and C) were similar for both eyes and reached a peak by week 21 (EPT 1.0-2.2x102) 

and then declined by week 41. There were no significant differences in IgG levels in UGT 

and ocular secretions between the single and double dose vaccine groups.  

 

Neutralizing antibodies in plasma, vaginal and ocular secretions 

Fig. 5 A, B and C demonstrate the percent neutralization in plasma, UGT and ocular 

secretions compared to pre-immunization samples. All samples were tested at a 1:10 dilution. 

The increase in plasma neutralising antibody (Fig. 5A) peaked at 21 weeks (69% in single 

dose; 70% in double dose) and had declined by week 54 (57% in single dose; 62% in double 

dose). Neutralizing antibodies in the UGT secretions increased (17% in single dose; 25% in 

double dose) (Fig. 5 B) in both groups, peaking at 21 weeks then declining out to 54 weeks. 

Neutralizing antibodies in ocular secretions (Fig. 5C) ranged from 4-25%, peaking at 21 

weeks post immunization in both cohorts.  
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3.6 Discussion 

This study evaluated a novel vaccine consisting of a chlamydial rMOMP combined with a 

poly I:C, polyphosphazine (PCEP) and a synthetic host defense peptide adjuvant, given 

subcutaneously as either a single or double dose, to healthy female koalas. We have recently 

developed a rMOMP-based vaccine that induces strong cell-mediated and humoral immune 

responses following two or three vaccinations. This vaccine was effective in naturally 

infected and diseased koalas, as well as in healthy individuals [15] and elicited cross 

neutralizing antibodies that were able to neutralize multiple MOMP genotypes of C. pecorum 

in vitro [14]. While these results are very promising, the deployment of this vaccine to wild 

koalas in care or in the field will be problematic as the use of injectable vaccines in wild 

koala populations requires capture and restraint of wild animals, or a prolonged stay in a 

koala hospital or wildlife carer facility. Beyond the logistical and economic considerations 

associated with the vaccine delivery schedule, capture of a wild koala is a stressful and 

traumatic process for each animal and hence alternative single dose regimes would be ideally 

suited for vaccination of wild animals. 

 

The adjuvant components used in this single-dose vaccine experiment were chosen based on 

the immunomodulatory effects of each of the individual components, which in combination, 

should induce the type of immune response required to provide protection against Chlamydia, 

namely a strong cell-mediated response as well as a humoral response [26]. Poly I:C is a 

synthetic dsRNA and a TLR3 ligand. TLR3 is found in the endosomal compartment of a wide 

variety of cell types including monocytes, macrophages, Langerhans cells, myeloid dendritic 

cells, as well some fibroblasts and epithelial cells. Binding of poly I:C by TLR3 results in the 

production of type 1 interferons (IFNα and IFNβ) as well as pro-inflammatory cytokines 
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such as IL-12 and IL-6. TLR3 ligation by poly I:C also induces maturation of dendritic cells 

and the transcription of many interferon-regulated genes (IRG).  Poly I:C can also trigger 

innate anti-viral immunity by binding to the retinoic acid inducible gene 1 (RIG-1) receptor, 

which also elicits production of type 1 interferons and pro-inflammatory cytokines. Poly I: C 

has been used as an adjuvant in a wide range of animal species (monkey, mice, pigs) to target 

diseases as such papilloma virus, foot and mouth disease, influenza and tuberculosis [27-29].  

 

Polyphosphazenes are high molecular weight, water soluble polymers consisting of a 

backbone of alternating phosphorous and nitrogen atoms with organic side chains attached to 

each phosphorous that have been shown to possess strong adjuvant activity. The best-studied 

polyphosphazene adjuvant is PCEP.  Following intramuscular injection PCEP induces the 

expression of many innate immune genes (“adjuvant core response genes”)[31] including 

chemokines, inflammatory cytokines, pattern recognition receptors (PRR), interferon-

regulated genes, adhesion molecules and antigen presentation-associated genes. Importantly, 

PCEP activated the NLRP3 inflammasome, resulting in production of caspase-1 dependent 

cytokines IL-1β and IL-18. Thus PCEP creates a strong immune-stimulatory environment at 

the injection site, which likely contributes to its adjuvant activity together with the formation 

of water-soluble protein polymer complexes with antigen, which facilitates antigen 

processing and may provide a depot effect. In mouse studies, PCEP induces recruitment of 

neutrophils, macrophages and dendritic cells to the injection site [20], is a potent inducer of 

mixed Th1/Th2 responses when administered with influenza antigen [30] and elicits a strong 

mucosal IgA response when delivered by nasal, vaginal and pulmonary routes [22]. 
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Cationic host defense peptides (HDP) are small peptides that contain mainly positively 

charged and hydrophobic residues. They are abundant in eukaryotes as well as being found in 

bacteria and appear to be highly conserved across species. They were originally isolated 

because of their antimicrobial activity, having varying direct toxic effects against bacteria, 

viruses, fungi and parasites. With regard to potential adjuvant activity, HDP have multiple 

immunostimulatory properties including leukocyte recruitment and activation, enhanced pro-

inflammatory cytokine production, increased co-stimulatory molecule expression on APCs 

and increased phagocytic activity. When administered together with CpG the HH2 HDP 

elicited strong mixed Th1/Th17 responses that protected against chlamydial infection in a 

mouse model [31].  

 

The combination of poly I:C, PCEP and HDP (HH2) has proven to be an extremely potent 

adjuvant in mouse and porcine infection models, where a single immunization resulted in 

high titers of circulating antibodies (>106) that were extremely long lasting. This combination 

adjuvant was effective even in neonates and was unaffected by circulating maternal antibody.  

 

Using this novel adjuvant mix, the results of the current study suggest that vaccinated koalas 

developed strong lymphoproliferative responses to our vaccine. MOMP-specific PBMC 

proliferation was detectable for over a year in animals immunized with both single and 

double doses of the vaccine. Importantly, vaccinated koalas responded to both the vaccinating 

antigen (rMOMP), as well as the native whole chlamydial EB. A strong Th1 response has 

been shown to be essential for protection against Chlamydia in a murine model [32]. While 

we do not yet have the reagents to identify CD4 cells in the koala, the induction of long-lived 

cell-mediated responses are promising. Furthermore, the ability of this combination adjuvant 
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to induce strong Th1/Th17 responses and mixed Th1/Th2 responses in mice and pigs [30,33] 

makes it highly likely that vaccinated koalas will mount a strong and successful anti-

Chlamydia Th1 response, although this needs to be confirmed. 

 

When comparing the results of this work to our previous multi-dose trials, the present single 

dose combination adjuvant appears to produce similar immune responses to those previously 

described in koalas receiving multiple doses of our rMOMP-based vaccine [14, 15]. The 

adjuvant component, PCEP, may be partially responsible for the antibody in mucosal 

secretions since it has been shown to enhance mucosal antibody (IgA and IgG) responses [34] 

in mouse models. Though we have no koala IgA reagent to measure this antibody at mucosal 

surfaces, currently, the presence of IgG responses in mucosal secretions is a positive sign. 

The degree of neutralization achieved in this study (60-70% for plasma) was similar to that 

obtained in a previous study using rMOMP and ISC adjuvant (50-90%) [15, 16]. 

 

In summary, the current study has shown that the novel single dose vaccine using a poly I:C, 

PCEP, HDP combination adjuvant is capable of inducing significant cellular and humoral 

immune responses in koalas for an extended time period (54 weeks). Although the animal 

numbers were small, the results are promising and suggest that a single shot vaccine may 

represent an effective approach for protecting wild koalas against chlamydial infection while 

minimising potential capture-related stress associated with booster immunizations.  Future 

work will evaluate this single dose antigen: adjuvant vaccine in animals under field 

conditions. 
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Fig. 1. Lymphocyte proliferation assay (LPA):  PBMCs were isolated from koalas at 6, 21 

and 54 weeks post-immunization, labelled with CFSE and stimulated with rMOMP. Results 

are presented as the percentage of cells that have undergone three or more cell divisions and 

are expressed as the mean + SD (n = 3 animals) 
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Fig. 2. Lymphocyte proliferation assay (LPA):  PBMCs were isolated from koalas at 6, 21 

and 54 weeks post-immunization, labelled with CFSE and stimulated with UV-inactivated C. 

pecorum EBs. Results are presented as the percentage of cells that have undergone three or 

more cell divisions and are expressed as the mean + SD (n = 3 animals) 
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Fig. 3. rMOMP-specific IgG in koala plasma: rMOMP-specific IgG in plasma of immunized 

koalas was assayed by ELISA at 0, 6, 10, 14, 21, 41 and 54 weeks post immunization. IgG 

levels are expressed as end-point titers and represent the mean + SD of three animals per 

group. EPT at 54 weeks did not differ significantly between koalas immunized once or twice.  
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Fig. 4. rMOMP-specific IgG in koala mucosal secretions: rMOMP-specific IgG in urogenital 

secretions (A), left eye swabs (B) and right eye swabs (C) of immunized koalas were assayed 

by ELISA at 0, 6, 10, 21, 41 and 54 weeks post immunization. IgG levels are expressed as 

end-point titers and represent the mean + SD of three animals per group. There were no 

statistically significant differences in EPT in samples collected from koalas that had been 

immunized once or twice.  
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Fig. 5. Percentage of vaccine induced C. pecorum neutralizing antibodies in plasma (A), 

UGT secretions (B) and ocular secretions (C). All samples were diluted 1:10 and C. pecorum 

EBs (50,000 IFU) were added to samples and results are expressed as the percentage in 

neutralization of immune samples compared to that of the pre-immune samples. Results are 

expressed as the mean + SD of three animals per group. There were no significant differences 

between samples collected from animals immunized once or twice. 
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Chapter 4: Humoral immune responses in koalas 

(Phascolarctos cinereus) either naturally infected 

with Chlamydia pecorum or following administration 

of a recombinant chlamydial major outer membrane 

protein vaccine 
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4.2 Abstract 

The development of a vaccine is a key strategy to combat the widespread and debilitating 

effects of chlamydial infection in koalas. One such vaccine in development uses recombinant 

chlamydial major outer membrane protein (rMOMP) as an antigen and has shown promising 

results in several koala trials. Previous chlamydial vaccine studies, primarily in the mouse 

model, suggest that both cell mediated and antibody responses will be required for adequate 

protection. Recently, the important protective role of antibodies has been highlighted. In our 

current study, we conducted a detailed analysis of the antibody mediated immune response in 

koalas that are either (a) naturally infected, and/or (b) had received an rMOMP vaccine. 

Firstly, we observed that naturally infected koalas had very low levels of C. pecorum specific 

neutralising antibodies.  A strong correlation between low IgG total titers/neutralising 

antibody levels, and higher C. pecorum infection load was also observed in these naturally 

infected animals. In vaccinated koalas, we showed that the vaccine was able to boost the 

humoral immune response by inducing strong levels of C. pecorum specific neutralising 

antibodies. A detailed characterisation of the MOMP epitope response was also performed in 

naturally infected and vaccinated koalas using a PepScan epitope approach. This analysis 

identified unique sets of MOMP epitope antibodies between naturally infected non-protected 

and diseased koalas, versus vaccinated koalas, with the latter group of animals producing a 

unique set of specific epitope-directed antibodies that we demonstrated were responsible for 

the in vitro neutralisation activity. Together, these results show the importance of antibodies 

in chlamydial infection and immunity following vaccination in the koala. 

Key words: Koala, Chlamydia, Humoral immunity, Vaccine 
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4.3 Introduction 

While the koala is facing a number of threats to its long-term survival (habitat destruction, 

road accidents, dog attacks, bush fire)[1-3], disease caused by the obligate intracellular 

bacterial pathogen, Chlamydia is considered to be one of the more serious issues and one that 

is amenable to intervention [4]. For this reason, the development of a chlamydial vaccine is a 

major priority.  Chlamydial vaccine research in animal models indicates that a combination of 

cell-mediated and antibody responses are required for effective protection [5]. Antibodies, 

particularly against surface antigens, are thought to have a key neutralising role, but they are 

also considered to play a role in inflammatory disease processes [6]. Antigen-antibody 

complexes have a direct effect in the inflammatory pathway and initiate the cellular immune 

response via complement activation and cross-linking of Fc receptors (FcR) to promote 

phagocytosis [7]. The presence of mucosal antibodies has been found to be linked with 

decreased chlamydial shedding in women with genital tract C.trachomatis infections [8]. 

Moreover, B cell-deficient mice were prone to infection with secondary chlamydial 

infections. Interestingly, B cells promote antigen-specific T cell responses and bacterial 

dissemination in genital Chlamydia muridarum infection [9].  In addition, B cells play a key 

role in the initiation of T cell responses for C. trachomatis infections in the murine model 

[10]. 

 

Over the last five years our group has been developing a Chlamydia pecorum vaccine for 

koalas [11-14].  We have mainly focused on the chlamydial major outer membrane protein 

(MOMP) as the target antigen, including three MOMP variants in our most recent trials. 

Immunisation with recombinant MOMP (rMOMP) protein can lead to a strong antibody, as 

well as a specific lymphocyte response, up to at least one year post-vaccination [11-13].  
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While this work has shown encouraging signs in terms of our ability to induce specific and 

functional antibody responses in vaccinated animals, relatively little is still known about the 

role of antibodies in naturally-infected animals. Specifically, it is currently unknown, (a) 

whether naturally-infected koalas produce antibodies of sufficient quantity and specificity to 

control current infections and protect against future infections, and (b) whether vaccination 

can induce antibodies of comparable or higher titers and specificity than a natural infection. 

In the current study, we aimed to address these questions by studying the immune responses 

of a wild population of koalas, including both infected and uninfected individuals. Subgroups 

of either also received the prototype rMOMP vaccine. We characterised (a) total anti-

Chlamydia IgG response against rMOMP protein as well as whole chlamydial elementary 

bodies (EBs), (b) in vitro neutralisation activity, and (c) the epitope specificity of the 

antibody response using a Pepscan approach. 

 

4.4 Materials and Methods 

Animals 

The animals analysed for this study were part of a population of koalas inhabiting the 

Moreton Bay Region (MBR) of South-East Queensland, Australia. A sub-sample of this 

population (n = 30) had also been vaccinated with our rMOMP vaccine (described below) as 

part of a larger ongoing vaccine study.  For the purposes of the current study, a total of 20 

wild koalas were monitored from this MBR population over a 6-month period. The koalas 

were divided into four cohorts (each consisting of five koalas) on the basis of C. pecorum 

infection load by qPCR at the initial stage of enrolment. The groups were, (a) infected with 

Chlamydia/no vaccination (Bubbles, Cougar, Karen, Coco, and Mango), (b) infected with 

Chlamydia/vaccinated (Tash, Bev, Old Bean, Fiona, Poppy), (c) No Chlamydia infection/no 
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vaccination (Kev, Teena, Phill, Red Queen, Gauthier), (d) No Chlamydia 

infection/vaccinated (Robyn, Pepper, Maya, Hunky Harry, Randall). All work was conducted 

under permission from Queensland University of Technology’s Animal Ethics Committee 

(Permit # 1200000122). 

 

Vaccine 

Koalas recruited into the vaccine cohorts received three doses of a vaccine via the 

subcutaneous route [15]. Koala C. pecorum- specific MOMP proteins were expressed and 

purified as per Kollipara et al.[11]. The purified products were used for vaccination and 

ELISA assays. 

 

Sample collection 

The koalas were captured on 0, 2 and 6-month time points for sampling (blood from the 

cephalic vein and ocular and urogenital tract swabs) and a full health assessment. Swab 

samples were also collected from the conjunctival and urogenital (UGT) mucosa [14] and 

stored immediately at -20° C until analysis. 

 

Screening of C. pecorum infections 

Ocular and urogenital tract (UGT) swab samples from all koalas were screened for the 

presence of C. pecorum infection by a species-specific 16S rRNA quantitative PCR (qPCR) 

as per Marsh et al. [16]. 

 

Koala C. pecorum-specific IgG ELISA 
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Enzyme-linked immunosorbent assays were performed using either (a) rMOMP protein or (b) 

UV-inactivated whole EBs as per Kollipara et al. [11] on the plasma samples at the 0, 2 and 

6-month time points. 

 

C. pecorum in vitro neutralisation assay 

In vitro neutralisation assays were performed on all plasma samples as per Kollipara et al. 

[12]. All plasma samples were diluted at 1:10 prior to assay.  The background neutralisation 

was determined by using koala plasma that had no infection. Actual neutralisation was then 

determined by subtracting this background from each individual to determine the final 

neutralisation. The results were expressed as fold-change neutralisation.  

 

MOMP epitope mapping by Pepscan ELISA 

The Biotinylated peptide ELISA was performed using plasma samples as per Kollipara et 

al.[17] to identify the specific MOMP peptide recognised by (a) vaccinated koalas and (b) 

naturally-infected koalas. Briefly, we designed 88, 15-mer peptides (overlapping by 9 amino 

acids) that spanned the full length of koala C. pecorum MOMP. The wells of 96 (previously 

coated with streptavidin) were coated with each individual peptide at a concentration of 

2μg/well in PBST (Phosphate buffer solution-Tween20) and incubated for 2 hrs at room 

temperature. Post incubation, the wells were washed 3x with PBST and coated with 

individual plasma samples at 1:1000 dilution for overnight incubation at 4° C followed by 

4xPBST wash. The plates were then incubated with the secondary and tertiary antibody with 

sheep anti-koala IgG (1:4000 dilution) and HRP-labelled rabbit anti-sheep IgG (1:1000 

dilution) (Southern Biotech/In vitro Technologies, Cleveland, Australia)  respectively. After 

1 hr incubation, the plates were washed with PBS (Phosphate buffer solution) and ABTS [2, 
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2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), Southern Biotech, Alabama, USA] 

solution was added and incubated for 10 mins to observe the greenish color development.  

The optical density was measured at 405nm wavelength (Bio-Rad, North Ryde, Australia).  

In subsequent experiments, we utilised just the positive peptides to coat the streptavidin plate 

at a concentration of 2μg/well and performed the standard ELISA as described.  

 

Characterisation of the specific anti-epitope antibodies responsible for Chlamydia in vitro 

neutralisation 

Once we had identified the epitope specificity of plasma from the post-vaccinated koalas, we 

wanted to determine if the in vitro neutralisation capacity of the plasma was explained by the 

antibodies to these epitopes. We coated the plates just with the specific peptides (4, 28, 41, 

and 42) at a concentration of 2μg/well and incubated at room temperature for 2 hrs. Post-

incubation, the plates were washed with 3x PBST and incubated with the positive plasma 

samples at 4° C overnight. This step resulted in removal of the antibodies to the selected key 

peptides. Post-incubation plasma was collected and used in the biotinylated peptide ELISA as 

described above. We then measured the C. pecorum-specific neutralising antibodies for the 

pre- and post-adsorption plasma, as described above. 

 

Statistics 

Statistical analyses were performed using Graph-Pad Prism version 6 (Graph Pad Software, 

La Jolla, CA, USA) and SPSS.22 version for Mann-Whitney U test. Correlation analysis was 

performed by Spearman’s rank correlation test using Software STATA/IC-11 (StataCorp, 

4905, Lakeway Drive, College station, TX 77845, USA). The P value for significance was set 

at ≤ 0.05. 
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4.5 Results 

Antibody responses in non-vaccinated but naturally-infected koalas, as well as in vaccinated 

koalas  

Wild koalas sampled from the MBR population were divided into C. pecorum PCR-negative 

and PCR-positive sub-groups following screening of conjunctival and urogenital swabs by 

our species-specific qPCR. To quantify the presence of C. pecorum MOMP and C. pecorum 

EB-specific systemic antibody responses, plasma samples from the naturally-infected and/or 

vaccinated koalas screened in this study were subjected to C. pecorum MOMP and C. 

pecorum EB-specific ELISAs. All five C. pecorum PCR-negative animals (not vaccinated) 

did not have any antibodies to either C. pecorum recombinant MOMP protein or to whole 

chlamydial EBs (Fig. 1; A and B respectively). By comparison, all five C. pecorum PCR-

positive unvaccinated animals had antibodies that recognised both recombinant MOMP 

protein (titers ranging from 0.5x106 to 2x106 EPT) as well as whole chlamydial EBs (titers 

ranging from 0.5x103 to 1x103 EPT; Fig. 1 C and D). Given that we did not know when each 

animal was initially infected (potentially months to years previously), not surprisingly, the 

titers remained relatively constant across the 6-month study period. 

 

Following vaccination, all 10 koalas produced antibodies to both rMOMP protein as well as 

whole C. pecorum EBs (Fig. 2. A-D). Interestingly, animals that were PCR-positive at the 

time of vaccination produced stronger antibody responses than those that were PCR-negative 

(although there was animal to animal variation). This was particularly evident with the anti-

MOMP responses, where four out of five PCR positive animals produced titers of around 3-

4x106 (Fig . 2 C), compared to peak titers for the C. pecorum PCR-negative vaccinated 
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animals of around 1x106, with a single animal at 2x106 (Fig. 2 A). These differences were not 

observed for the antibody level measured against whole chlamydial EBs (Fig. 2 B) 

 

In vitro neutralisation levels were boosted significantly following vaccination 

To assess the function of the antibodies induced in response to natural infection and/or 

vaccination, in vitro neutralisation assays were performed on C. pecorum-infected cell culture 

monolayers. Naturally-infected koalas (C. pecorum PCR-positive at time of analysis) were 

found to have relatively low levels of in vitro neutralisation titers ranging from 0.5 to 2.0 fold 

change with a mean of 1.0 fold change (Fig. 3 C; 1.0 fold represents no change compared to 

baseline). When these PCR-positive animals received the vaccine, their in vitro neutralisation 

levels were boosted significantly (Mann-Whitney U test was performed to measure the level 

of significance; though the p value is not statistically significant: p < 0.056), increasing to 

levels of 2.5 to 8.0 fold change, with a mean of 4.8 fold change (Fig. 3 D). In the cohorts that 

were C. pecorum PCR negative and received the vaccine, they also developed in vitro 

neutralising antibodies (1.5 to 3.0 fold change with a mean of 2.7 fold change; Fig. 3 B), 

although their levels were slightly lower than the C. pecorum PCR-positive animals. 

 

Lower plasma antibody titers correlate with higher infectious burden in naturally-infected 

koalas 

In the naturally-infected cohort (which we increased to a total of 14 animals for this aspect), 

we compared the chlamydial infection level of the animal (as measured by qPCR at the UGT 

site) with the plasma antibody titers (measured against rMOMP protein). We found a strong 

and statistically significant correlation (p < 0.01) between higher infection load and lower 

antibody titer (Fig. 4). 
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Naturally-diseased animals, as well as vaccine cohorts, show unique but distinct peptide 

antibody response profiles 

We used Pepscan methodology to examine the epitope specificity of the antibodies produced 

in (a) C. pecorum PCR-positive animals with and without chlamydial disease, and (b) C. 

pecorum PCR-negative/positive animals following vaccination. We found that diseased 

koalas (Cougar, Karen and Mango had developed disease at the 6-month time point) (Fig. 5 

B1) had plasma antibodies that specifically recognised a unique set of MOMP epitopes 5, 33, 

79 and 85.  These epitopes were not recognised by plasma from healthy koalas (Fig. 5 A). By 

comparison, vaccinated koalas produced antibodies that recognised a different unique set of 

epitopes; 4, 28 and 41 (80% to 90% of koalas tested had responses to these epitopes) and to a 

lesser level, epitope 42 (40% to 60% of koalas) (Fig. 5 B2). 

 

In vitro neutralisation of post-vaccination plasma is associated with antibodies against 

specific MOMP epitopes 

We observed that the in vitro neutralisation titers were highest in animals that were 

previously infected and then vaccinated (Fig. 3 D). We therefore wanted to know if it was the 

antibodies to specific epitopes that were responsible for this in vitro neutralisation effect. 

Peptides 4, 28, 41 and 42, shown in the previous experiment to be recognised by vaccinated 

koalas, were used to adsorb plasma from the infected and/or non-infected plus vaccinated 

cohort. We then tested the post-adsorption plasma to confirm that we had indeed removed the 

antibodies specific for these epitopes (Fig. 6 B) and then tested this post-adsorption plasma in 

an in vitro neutralisation assay (Fig. 6 C). The data show that we were successful in removing 

antibodies against epitopes 4, 28, 41 and 42. Compared to the pre-adsorption plasma which 
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had an in vitro neutralisation fold effect of 4.8 times (Fig. 6 C), the post-adsorption plasma 

had virtually no in vitro neutralising ability (fold change of 1.0) (Fig. 6 C) ( p < 0.001). This 

confirms that all, or at least the majority, of the in vitro neutralisation was due to antibodies 

against these specific epitopes.  

 

4.6 Discussion 

While our efforts to develop an effective koala chlamydial vaccine are progressing well [11-

15, 17], we still do not fully understand which aspects of the koala’s immune system are 

required for an optimal vaccine response. In this project, we analysed the role of antibodies in 

naturally-infected koalas, as well as koalas that received our prototype vaccine. Vaccine 

research in the mouse model in particular, has shown that an interferon-gamma T cell 

response is important [5], but also suggests that neutralising antibodies have a role in 

protection [18, 19]. In our current study, this analysis revealed a number of new and 

significant observations that are not only relevant to chlamydial infections in koalas, but also 

show how the “C. pecorum-koala model” might be able to inform human C. trachomatis 

vaccine development. In terms of the latter, a unique aspect of our study was that we 

vaccinated C. pecorum-positive (by PCR) koalas as well as C. pecorum-negative koalas. It is 

not possible to do this in humans, as protocol requires that any Chlamydia-positive 

individuals be immediately treated with antibiotics. Perhaps not surprisingly, in our test 

koalas, we found higher antibody responses in vaccinated koalas which had a current 

chlamydial infection. We also observed a different kinetic response, reminiscent of a 

secondary response, in these animals. While there have been limited studies in human C. 

trachomatis infections, antibodies produced against natural infections generally do not appear 

to be protective for most individuals [18, 20].  
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We then examined the functionality of these antibodies by assaying their ability to neutralise 

C. pecorum infections in an in vitro neutralisation assay. We first examined the in vitro 

neutralisation ability of antibodies from naturally-infected animals and found that they have 

very low, to nil antibodies that are capable of neutralisation. This suggests that the antibody 

response to whole live chlamydiae in a natural infection somehow results in antibodies of 

specificity that do not negate the infection. By comparison, plasma from vaccinated animals 

(both animals with current infection but also Chlamydia-negative animals) did neutralise C. 

pecorum infections in vitro. Somewhat unexpectedly, the plasma from animals which were 

previously naturally infected (and not protected) but then vaccinated, produced a higher in 

vitro neutralisation effect. We observed two types of antibody responses: for some of the 

epitopes against which there was a response following natural infection, we observed a 

boosting of the response to these epitopes following vaccination (eg. epitopes 54 and 87), 

however, the majority of antibodies produced following vaccination were to new epitopes 

(eg. epitopes 4, 28, 41, 42). 

 

The concept of “original antigen sin” suggests that a prior exposure to an antigen leads to a 

sub-optimal second immune response if the strains are too closely related [21]. In the case of 

Chlamydia infections, several previous reports have suggested that original antigen sin may 

occur when closely related C. trachomatis serovars are involved in the priming and challenge 

infections [21, 22].  In our case of C. pecorum infections in koalas, if original antigen sin was 

occurring, we might have expected that in animals previously infected naturally, our vaccine 

response may have been limited to boosting only the previously induced antibody types.  By 

comparison, we found that the vaccine induced a new set of novel epitope antibodies (located 
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elsewhere along the MOMP protein), suggesting that original antigen sin is not of concern in 

this case. This may have been linked to the fact that most of our epitope responses were to 

conserved regions of the MOMP protein, although it has also been reported that the use of an 

adjuvanted vaccine can overcome original antigen sin [23]. Another possible explanation is 

that the adjuvant Iscomatrix® induced epitope spreading as has been demonstrated in 

human’s immunised with influenza VLPs with Iscomatrix® [24]. 

  

Given the promising antibody response that we observed following C. pecorum vaccination 

in our koalas, we wanted to characterize the type of antibodies being produced. We used 

Pepscan methodology and found that there were two unique epitope profiles. One profile was 

found in naturally-infected animals, a proportion of which progressed to disease (ie. they 

were not protected). Recently, we (Waugh et al.-submitted) evaluated the protection provided 

by vaccinating wild koalas against Chlamydia, as measured primarily by the reduction in 

Chlamydia infection load at the ocular and urogenital sites. This study showed that animals 

with high levels of neutralising antibodies were less likely to progress to disease, which 

supports a protective role of antibodies. By comparison, vaccinated koalas produced a 

different, unique profile, against 3-5 key MOMP epitopes. All of these epitopes were in the 

conserved domain, suggesting that the response should have broad neutralizing ability across 

multiple C. pecorum strains. While it has previously been assumed that antibodies must bind 

to externally presented epitopes to enable neutralisation [25], recent reports have shown that 

antibodies, via FcRn mediation, can internalize and neutralise virus [26] and intracellular 

bacteria such as Chlamydia, within the cytoplasm of epithelial cells [27]. Antibodies to 

internal proteins such as NrdB have also been shown previously to facilitate the neutralisation 

process [28]. To confirm the specificity of these epitope responses, we used the individual 
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peptides to adsorb the specific antibodies out of these groups and then re-tested their in vitro 

neutralising ability. This clearly demonstrated that the in vitro neutralisation ability was due 

to the novel peptide responses following vaccination. 

 

While MOMP is known to be highly antigenic, [29] it is also highly variable across koala C. 

pecorum strains [30]. This means that for a vaccine to be broadly protective under field 

conditions, it may need to contain a range of MOMP variants (we used three full length 

MOMP proteins in our vaccine cohort). A defined epitope vaccine would be an ideal 

approach to overcoming this problem and could also avoid any deleterious epitopes. Recent 

studies found that systemic and mucosal immune responses could be generated with the 

induction of a peptide-based vaccine for C. trachomatis infection [31], which highlights the 

promising aspect of these investigations for the koala. In addition to antibodies, a strong and 

specific T cell response is also necessary for an effective vaccine [32].  It will therefore be 

necessary in future to identify the key T cell epitopes in koala C. pecorum MOMP.  

 

Our findings provide novel information in relation to the antibody responses in naturally-

infected koalas as well as koalas following vaccination, which should significantly inform 

future vaccine development. Firstly, even though naturally-infected koalas produce an 

antibody response, it is of relatively low total titer, does not neutralise, and is apparently non-

protective against disease progression. Secondly, the response is to epitopes in the constant 

domains of MOMP, although why the host/parasite has “directed” the response to these 

epitopes (non-protective) is not clear. Finally, additional antibodies to epitopes not present in 

naturally-infected koalas can be induced following vaccination, and these additional epitopes 

are able to neutralise whole EBs in a live assay. 
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Fig. 1. The circulatory antibody titers (IgG) against rMOMP (A and C) and EBs (B and D) in 

Chlamydia-negative (Group A and B) and naturally-infected animals (Group C and D) at the 

initial time point. Five animals were included in each cohort.   
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Fig. 2. Antibody titers (IgG) against rMOMP (A and C) and EBs (B and D) in plasma from 

Chlamydia-negative animals (Groups A and B) or naturally-infected animals (Group C and 

D) at the initial time point. Both groups were vaccinated three times at 1-month intervals. 

Five animals were included in each cohort. Arrows indicate the vaccination time points. 
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Fig. 3. Fold change in neutralising antibodies in different cohorts of koalas. Chlamydia-

negative animals without (3A) or following vaccination (3B) and Chlamydia-infected koalas 

without (3C) and with vaccination (3D) are shown. Arrows indicate the vaccination time 

points. All samples were diluted 1:10 in media and results are expressed as fold change 

neutralisation of immune samples compared to those pre-immune samples. The level of 
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significance was measured as *p - 0.01-0.05, **p - 0.001-0.01, ***p<0.001. Mann-Whitney 

U test was performed to measure the level of significance (p <0.056). 

 
 

 
 
Fig. 4. The correlation of bacterial burden measured by C. pecorum-specific qPCR and 

antibody titers in koalas with current infection (n =14) at the initial enrolment. The infection 

loads were measured at the UGT. The Spearman’s correlation coefficients were performed to 

measure the relationship between IgG and infection load. The level of significance was 

measured as *p - 0.01-0.05, **p - 0.001-0.01, ***p<0.001 
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Fig. 5. Specific epitopes detected in koalas with current C. pecorum infection and/or 

following vaccination. The antibody-specific epitopes detected in infected and non-infected 

animals is shown at 0 months (5A).  At the 6-month time point, antibody-specific epitopes (5 

B) were measured in animals with and without vaccination. (B1= Animals naturally infected: 

Bubbles, Coco and progressing to disease: Cougar, Karen and Mango; B2= naturally infected 

following vaccination for Tash, Bev, Old Bean, Poppy and Fiona and non-infected animals 

following vaccination for Robyn, Pepper, Maya, Hunky Harry and Randall; B3= Chlamydia-

negative animals without vaccination).  
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Fig. 6.  Epitopes detected antibodies and C. pecorum-specific neutralisation in vaccinated 

cohort. The grey boxes indicate the vaccine induced unique epitopes response. The epitope 

response in plasma before (Fig 6 A) and after (Fig 6 B) adsorption out of the positive 
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epitopes (4, 28, 41 and 42) is shown. All samples were diluted 1:10 and results are expressed 

as fold change neutralisation of immune samples compared to those pre-immune samples. 

The fold change neutralisation as pre and post-adsorption (Fig 6 C) cohorts. The level of 

significance was measured as *p - 0.01-0.05, **p - 0.001-0.01, ***p<0.001. Significant 

reduction of neutralising antibodies in post-adsorption plasma (p < 001). Results are 

expressed as the mean ± SD of 10 animals per group. Error bars represent SD.  
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Epitopes mapping for C. pecorum infected koalas following vaccination 
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Epitopes mapping for koalas having no chlamydial infection following vaccination 
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Epitopes mapping in koalas with C. pecorum infection 
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Epitopes mapping in koalas with clinical C. pecorum infection 
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Chapter 5: A prototype recombinant-protein based 

Chlamydia pecorum vaccine results in reduced 

chlamydial burden and less clinical disease in free-

ranging koalas (Phascolarctos cinereus) 
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5.2 Abstract 

Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala 

populations in Australia. While koalas in care can generally be treated, a vaccine is 

considered the only option to effectively reduce the threat of infection and disease at the 

population level.  In the current study, we vaccinated 30 free-ranging koalas with a prototype 

Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with 

an immune stimulating complex. An additional cohort of 30 animals did not receive any 

vaccine and acted as comparison controls. Animals accepted into this study were either 

uninfected (Chlamydia PCR negative) at time of initial vaccination, or infected (C. pecorum 

positive) at either urogenital (UGT) and/or ocular sites (Oc), but with no clinical signs of 

chlamydial disease.  All koalas were vaccinated / sampled and then re-released into their 

natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas 

produced a strong immune response to the vaccine, as indicated by high titres of specific 

plasma antibodies.  The incidence of new infections in vaccinated koalas over the 12-month 

period post-vaccination was slightly less than koalas in the control group, however, this was 

not statistically significant.  Importantly though, the vaccine was able to significantly reduce 

the infectious load in animals that were Chlamydia positive at the time of vaccination. This 

effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 

months post-vaccination. Finally, the vaccine was also able to reduce the number of animals 

that progressed to disease during the 12-month period. While the sample sizes were small 

(statistically speaking), results were nonetheless striking. This study highlights the potential 

for successful development of a Chlamydia vaccine for koalas in a wild setting.  
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5.3 Introduction 

Infections by the intracellular bacterium Chlamydia pecorum contribute to significant 

morbidity and mortality in the koala (Phascolarctos cinereus).  Disease progression can 

include kerato-conjunctivitis, cystitis, reproductive disease/sterility and blindness; the 

progression of which, in severe cases, can cause death.  An antibiotic treatment regime is 

currently recommended for mild infections [1], however for koalas affected by severe 

chlamydial disease, antibiotics alone are not sufficient to cure the clinical signs [1].   

 

In recognition that a reduction in disease may have a positive effect in the conservation of 

koalas [2, 3], our group has been leading the development of a prototype C. pecorum vaccine 

[4-9]. Based on studies which have shown efficacy in animal models (reviewed in Farris and 

Morrison [10]), the primary component of the C. pecorum vaccine has been the recombinant 

proteins derived from the chlamydial Major Outer Membrane Protein (rMOMP).  rMOMP is 

highly immunogenic in humans and animals and has been studied in detail as a vaccine 

candidate. In the initial studies utilizing this vaccine antigen adjuvanted with an immune 

stimulating complex, we have shown that this prototype chlamydial vaccine (i) induces long-

lasting specific humoral and cell-mediated immune responses in vaccinated koalas [9]; (ii) 

induces an immune response that can recognize genetically distinct C. pecorum strains, a 

capability that natural infection does not appear to have [6]; (iii) induces the production of 
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specific antibodies that are effective in neutralizing C. pecorum in vitro [9]; and (iv) does not 

have any apparent deleterious effects on the health of Chlamydia-free koalas or koalas with 

current chlamydial infection and/or disease [8, 11].  

 

In the absence of an established infection challenge model for the koala, further 

understanding of the efficacy of the vaccine for reducing the risk and impact of chlamydial 

infection at both the individual and population level is limited.   In the current study, we 

assessed the health outcomes of a cohort of 60 koalas, including 30 animals vaccinated with 

the prototype Chlamydia vaccine within one free-ranging population in South-East 

Queensland (SEQ), Australia. Vaccinated and control cohorts of animals were then released, 

monitored for a period of 12 months, and recaptured periodically to compare a range of 

health parameters between the two groups.  

 

5.4 Materials and Methods 

Chlamydia pecorum MOMP recombinant preparation 

Purified C. pecorum MOMP from three koala C. pecorum genotypes (A, F and G) were used 

as previously described by Kollipara et al. [7].   

Animals and Immunizations 

Animals included in the study (n = 60) were part of a larger population-wide study by the 

Queensland Government Department of Transport and Main Roads (as part of the Moreton 

Bay Rail Link project), conducted between 2012 and 2015 in the Moreton Bay Region, 
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Queensland, Australia. Criteria for inclusion into the study were animals of breeding age (>1 

year) of either sex, with no clinical signs of chlamydial disease, as assessed during the initial 

capture event by qualified wildlife veterinarians.  Animals were randomly assigned to either 

the vaccinated or control (non-vaccinated) group at initial capture.  The vaccinated group (n = 

30) received a three-dose regime of the vaccine via the sub-cutaneous route, given at one-

month intervals, consisting of the three rMOMP proteins as the antigens (50µg each of 

MOMP-G, MOMP-A, and MOMP-F) and an Immunostimulating complex adjuvant (50µg , 

ISC, Zoetis Australia [4]). Following a detailed veterinary health assessment, animals were 

released with a radio collar or anklet for tracking (Sirtrack). Animals were re-captured at 1 

month, 2 months, 6 months, and 12 months for the purpose of (i) additional vaccinations for 

the vaccine cohort animals only (1 month and 2 months) or (ii) detailed health checks and 

sampling (2, 6 and 12 months). While 30 animals were originally recruited into each group, 

unfortunately, only 23 vaccinated and 27 control koalas could be resampled at the six month 

time point due to animal losses associated with misadventure (e.g. predation, trauma, koala 

movements outside of study area, or disease).  At 12 months, again, further losses had 

occurred and numbers were considerably reduced in each cohort to 15 vaccinated and 14 

control koalas.  

All procedures were approved by the University of the Sunshine Coast (USC) Animal Ethics 

Committee (Animal ethics number AN/A/13/80) and by the Queensland Government 

(Scientific Purposes Permit, WISP11532912).  The trial was performed under the Australian 

Pesticides and Veterinary Medicines Authority Permit PER 7250. 
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Health assessments and sampling 

Veterinary assessments and sampling, while under a short period of anesthesia, were 

conducted on each animal at 0, 2, 6, and 12 month time-points following their initial capture 

and veterinary examination.  Ultrasound examination of the kidneys, ureters, urinary bladder 

and the reproductive tract allowed for identification of urogenital tract diseases including 

cystitis and reproductive-tract cysts in female koalas.  Urinalysis was utilized to detect 

possible kidney or urinary tract disorders, such as cystitis, which is also associated with 

Chlamydia. Chlamydial disease scores were assessed according to the disease scoring criteria 

outlined in detail in Wan et al. [12].   For the purposes of this study, one set of 

conjunctival/ocular (Oc) and urogenital (UGT) swabs were collected for Chlamydia load 

determination and a blood sample of up to 5mL was collected from the cephalic vein. This 

was used for preparation of haematology smears and separation of plasma and serum by 

centrifugation.  

Chlamydia-specific IgG plasma response 

IgG response was analysed via enzyme-linked immunosorbent assays (ELISAs). ELISAs 

were performed on plasma samples at 0 and 6 months as per Khan et al. [5], and served as a 

control to demonstrate that vaccinated koalas produced a specific immune response to the 

vaccine antigens as previously shown [5 

C. pecorum quantification  

Swab samples were stored at -20°C until the DNA was extracted as described by Devereaux 

et al. [13].  The extracted samples were screened for the presence of C. pecorum using a 

diagnostic quantitative real-time PCR (RT-PCR) targeting a 204 bp fragment of the 
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chlamydial 16S rRNA gene.  Assays were as described in Marsh et al. [14] except for the 

PCR mixture containing  1× QuantiTect SYBR Green PCR Master Mix (Qiagen) and 10 μM 

primers [14] made up to a final volume of 15 μl with PCR-grade water, as well as an 

increased initial denaturation to 15 mins at 94°C.  All reactions were carried out on a Rotor-

Gene Q 5-plex HRM platform (Qiagen).   

Statistical analysis 

Significant differences between 0 and 6 month IgG antibody titres were evaluated with a 

Wilcoxon signed-rank test.  To evaluate how C. pecorum infection prevalence and loads 

differed among vaccinated versus control koalas, Chi-square contingency table analyses were 

used to compare the changes in C. pecorum load over time (0 vs. 6 and 0 vs. 12 months), with 

changes categorized into bands as either, decreasing, stable or increasing (ΔqPCR ≤ -100, -99 

– 99, and ≥ 100 copies/µL respectively). These categories were chosen because small 

variations of up to 100 copies/µL in qPCR can occur across assays. We conducted this 

analysis on the raw numbers of koalas within each group (which we considered a 

conservative analysis, given our sample size), and on the percentage of koalas in each group 

(which we considered a more sensitive approach, given our sample size). We chose these 

conservative and sensitive approaches because, though our results are striking, the numerical 

effect of koala mortalities in the field inflated the Type-II statistical error, limiting detection 

of statistical significance based on raw data alone. Where appropriate we used Markov chain 

Monte Carlo simulations to overcome Chi-square statistical issues associated with expected 

values < 5. Analyses were conducted on both Oc and UGT infections (see Results).  All 

analyses were conducted using Rv3.0.2 (www.r-project.org). 

 

http://www.r-project.org/
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5.5 Results 

Vaccine safety data 

All vaccinated animals were monitored for up to 24 hours post-vaccination and given a 

thorough veterinary health check at 2 months and thereafter at their regular 6-monthly 

capture and sampling events. There were no short or longer-term adverse events reported due 

to administration of the vaccine in any of the animals. 

Immune response to vaccination 

We used our Chlamydia ELISA to determine plasma IgG antibody levels both (i) at 0 months 

and (ii) 6 months post vaccination in the vaccine group (n = 23).  We found that the average 

antibody titre at 6 months post-vaccination in PCR negative and PCR positive animals was 

significantly greater than at 0 months (Figure 1; PCR negative p = 0.002; PCR positive p < 

0.001; Supp Info 1) indicating that we had successfully induced a vaccination-specific 

immune response.   

Chlamydia prevalence 

Overall, the 60 animals initially included in our study had a C. pecorum prevalence of 54% at 

time of capture (as defined by C. pecorum species-specific PCR).  After recruitment into the 

trial, the koalas were assigned into groups consisting of: (i) animals with a current infection, 

as defined by being C. pecorum PCR positive, at the Oc site (Vaccinated: n = 10; Control: n 

= 6); (ii) C. pecorum PCR positive animals at the UGT site (Vaccinated: n = 8; Control: n = 

13); and (iii) animals that were C. pecorum PCR negative at either site (Vaccinated: n = 

16; Control n = 21). Some animals (Vaccinated: n = 7; Control n = 6) were necessarily 

included in both groups due to the occurrence of C. pecorum positivity at both sites.  At 12 
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months, the number of animals remaining in each group decreased (mortality among wild 

koalas) to: (i) C. pecorum PCR positive animals at the Oc site (Vaccinated: n = 7; Control: n 

= 4); (ii) C. pecorum PCR positive animals at the UGT site (Vaccinated: n = 5; Control: n = 

6; and (iii) C. pecorum PCR negative animals (Vaccinated: n = 11; Control n = 10).    

 

Rate of new C. pecorum infections in vaccinated koalas compared to unvaccinated controls  

For this analysis we utilized the animals that were C. pecorum negative at 0 months and able 

to be recaptured at 12 months.  In the control group, the 12 month incidence rate at the UGT 

site was 25% (two new infections in the 8 animals in this group), and 20% (2/10) at the Oc 

site.  By comparison, the vaccinated animals had a slightly lower 12 month incidence rate of 

20% (2/10) and 12% (1/8) at the UGT and Oc sites respectively.  While the incidence rate in 

the vaccinated group was lower, the group size was small and hence the difference was not 

statistically significant (raw data X2 = 0.392, p > 0.999; percentage differences X2 = 2.381, p 

= 0.176). 

Changes in Chlamydia load following vaccination 

For animals that were infected (PCR positive) at the time of recruitment, we measured their 

Chlamydia load by quantitative-PCR (qPCR) at 0, 6, and 12 months to evaluate the effect the 

vaccine had on the level of chlamydial shedding (Table 1). For the purposes of analysis, we 

grouped the animals into three categories, based on their PCR load change, whether the load 

decreased, stayed stable, or increased (ΔqPCR ≤ -100, -99 – 99, and ≥ 100 copies/µL 

respectively).  
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At 6 months post-vaccination, animals in the vaccine group were significantly more likely to 

decrease or stabilize their chlamydial load, whereas animals in the control group were 

significantly more likely to increase their load (Table 1).  This effect was observed as a near 

significant trend (p > 0.01) using the conservative (raw) data and a significant effect based on 

the more sensitive (%) data. For example, at the ocular site 90% (9/10) of vaccinated animals 

decreased or stabilized their load, compared to the control group where only 33% (2/6) had 

decreasing or stabilizing loads (Table 1).  Similarly, at the UGT site, 100% (8/8) of animals 

in the vaccinated group had decreasing or stabilizing loads compared to 69% (9/13) in the 

control group (Table 1).   

At 12 months, the positive vaccine effect was maintained at the UGT site with 100% (5/5) of 

vaccinated animals showing a decrease in chlamydial load compared to 83% (5/6) in the 

control group (Table 1). We are cautious about drawing conclusions on the statistical 

significance of this owing to the difference of only a single individual. However importantly, 

throughout the entire study, not one animal in the vaccine group showed an increase at the 

UGT site.  At the Oc site at 12 months, 100% (7/7) of vaccinated animals also decreased or 

stabilized their chlamydial load; although a similar trend (100% [4/4] decrease) was seen in 

the control group (Table 1). Again, we are highly cautious about interpreting the statistical 

significance of this based on the sample size. Overall, smaller sample sizes of koalas, owing 

to field mortalities, cause us to be cautious about statistical interpretation of results at 12 

months.   

Progression to chlamydial disease  

To investigate the impact that vaccination had on the progression of chlamydial disease, we 

compared the presence and absence of disease in vaccinated and control animals.  Over the 
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12 months of the study, only 1 of 23 (4% of koalas) vaccinated animals developed clinical 

signs of chlamydial disease, whereas 4 of 27 (14.8%) control animals developed clinical 

disease over the same time period. Based on percentage differences, the control and 

vaccinated groups were significantly dissimilar (X2 = 7.037, p = 0.013), but the same result 

could not be observed in the raw data (X2 = 1.512, p = 0.363) owing to the sample size.  The 

one vaccinated animal developed mild, sub-acute, chronic cystitis, was treated in care with 

the standard chloramphenicol dosage and released as healthy. Three of the four animals that 

developed disease in the control group developed cystitis and were treated; the final animal 

developed severe and extensive reproductive disease as well as severe chronic cystitis, and 

was euthanized. 

5.6 Discussion 

We have, for the first time, examined the effect of a rMOMP based anti-chlamydial vaccine 

on chlamydial infection risk and outcome in free-ranging koalas.  The vaccine induced a 

significant immune response in wild-caught koalas. The incidence of new C. pecorum 

infections was lower at both anatomical sites in vaccinated animals, despite not being 

statistically significant. Importantly, we also found that vaccinated koalas were more likely to 

have stable or decreasing C. pecorum PCR loads, and were also less likely to increase their 

chlamydial burdens at 6 months post-vaccination at both anatomical sites. At 12 months, this 

positive effect could still be observed in the vaccinated cohort, with no animals increasing 

their chlamydial loads at either anatomical site. However, we caution the low number of 

koalas at this time point made statistical inference unreliable.  Lastly, we showed a positive 

effect for protecting against progression to disease in vaccinated animals.  
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Therapeutic vaccines are a promising new approach to enhance immunogenicity, and reduce 

viral and bacterial load in infected humans and animals [15].  Due to the difficulties 

associated with antibiotic treatment in the koala, a therapeutic vaccine may provide an 

important alternative to reduce infection. While antibiotics are curative in many cases of 

chlamydial disease, the therapeutic course is relatively long and labour intensive, often 

precluding its efficacy for the treatment of koala outside of the clinic. Therefore, a therapeutic 

vaccine provides a more practical solution for disease management at a non-captive 

population level, particularly if a single-dose vaccine were to be developed. In our current 

study, the positive therapeutic effect seen at both anatomical sites in the koala is a promising 

result for the development of a therapeutic chlamydial vaccine for this species. The loss of 

meaningful statistical inference at 12 months due to severe field mortalities is disappointing, 

masking our ability to confidently detect an effect at this time interval.  This effect seems 

largely skewed by the four animals in the control group reducing their chlamydial ocular 

burden.  When followed longitudinally up to two years, two of these four animals developed 

clinical signs of disease, whereas none of the vaccinated animals in that cohort developed any 

clinical signs (unpublished data). 

While we did not observe a significant improvement in the risk of new infections in the 

vaccinated koalas, it was interesting to note nevertheless that asymptomatically infected 

control animals were more likely to advance to disease than asymptomatically infected 

vaccinated animals. Promisingly, over 12 months, only one vaccinated animal developed new 

disease symptoms (cystitis), whereas 4 animals in the non-vaccinated cohort succumbed to 

disease (cystitis n = 3 and reproductive disease n = 1).  While beyond the scope of this 

manuscript, it is also promising to observe that available longitudinal data for the remaining 
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animals at 18-24 months suggests that two (of 7; 28.6%) additional control animals 

contracted cystitis, whereas none of the vaccinated animals has yet succumbed to disease 

(0/6; 0%).   

To conclude, the first field trial to date of this prototype koala chlamydial vaccine suggests 

that vaccinated Chlamydia-infected koalas have an improved infection outcome – an outcome 

that highlights the potential for the development of a therapeutic vaccination schedule for this 

species.  This is especially promising given the small sample sizes, and the natural variability 

of an outbred population.  In the koala, the main goal for population management from an 

ecological standpoint is maintaining health and young animal recruitment.  Therefore, if a 

vaccine is able to lower or prevent increases of infection load, as well as to decrease the 

progression to disease, than this will have positive effects on population health and fecundity 

and may be an important tool in the management and conservation of the koala.   

 

5.7 Acknowledgments 

This work was funded by an Australian Research Council (ARC) Linkage Grant 

(LP1202000051) awarded to PT, AP, and KB.  This project was significantly supported by 

the Queensland Government (Department of Transport and Main Roads) and specifically the 

Moreton Bay Rail Link project team.  We also thank the many groups that have supported the 

overall koala Chlamydia vaccine work, including, Queensland Department of Environment 

and Heritage Protection, Moreton Bay Regional Council, Friends of Koala, Lismore, 

Endeavour Veterinary Ecology, Australia Zoo Wildlife Hospital, Lone Pine Koala Sanctuary, 

VIDO, Canada.  Specifically, here we thank the dedicated staff at Endeavour Veterinary 



 
A prototype recombinant-protein based Chlamydia pecorum vaccine results in reduced chlamydial burden and 
less clinical disease in free-ranging koalas (Phascolarctos cinereus) 
 

Page 131 
 

Ecology for their help in capturing, radio collars and tracking the koalas, and undertaking the 

health assessments and collecting samples.  We thank Zoetis Australia for the donation of the 

immune stimulating complex as adjuvant. 

Conflicts of interest: none. 

5.8 References 

[1] Govendir M, Hanger J, Loader JJ, Kimble B, Griffith JE, Black LA, et al. Plasma 

concentrations of chloramphenicol after subcutaneous administration to koalas 

(Phascolarctos cinereus) with chlamydiosis. J Vet Pharmacol Ther. 2012;35: 147-54. 

[2] Craig AP, Hanger J, Loader J, Ellis WAH, Callaghan J, Dexter C, et al. A 5-year 

Chlamydia vaccination programme could reverse disease-related koala population decline: 

Predictions from a mathematical model using field data. Vaccine. 2014;32: 4163-70. 

[3] Rhodes JR, Ng CF, de Villiers DL, Preece HJ, McAlpine CA, Possingham HP. Using 

integrated population modelling to quantify the implications of multiple threatening processes 

for a rapidly declining population. Biol Cons. 2011;144: 1081-8. 

[4] Carey AJ, Timms P, Rawlinson G, Brumm J, Nilsson K, Harris JM, et al. A multi-subunit 

chlamydial vaccine induces antibody and cell-mediated immunity in immunized koalas 

(Phascolarctos cinereus): Comparison of three different adjuvants. Am J Reprod Immunol. 

2010;63: 161-72. 

[5] Khan SA, Waugh C, Kollipara A, Rawlinson G, Brumm J, Nilsson K, et al. Vaccination 

of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer memebrane 

protein adjuvanted with Poly I:C, a host defense peptide and polyphosphazine, elicits strong 

and long lasting cellular and humoral immune responses. Vaccine. 2014;32: 5781-6. 



 
A prototype recombinant-protein based Chlamydia pecorum vaccine results in reduced chlamydial burden and 
less clinical disease in free-ranging koalas (Phascolarctos cinereus) 
 

Page 132 
 

[6] Kollipara A, Wan C, Rawlinson G, Brumm J, Nilsson K, Polkinghorne A, et al. Antigenic 

specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in 

koalas (Phascolarctos cinereus). Vaccine. 2013;31: 1217-23. 

[7] Kollipara A, Polkinghorne A, Wan C, Kanyoka P, Hanger J, Loader J, et al. Genetic 

diversity of Chlamydia pecorum strains in wild koala locations across Australia and the 

implications for a recombinant C. pecorum major outer membrane protein based vaccine. Vet 

Microbiol. 2013;167: 513-22. 

[8] Kollipara A, George C, Hanger J, Loader J, Polkinghorne A, Beagley K, et al. 

Vaccination of healthy and diseased koalas (Phascolarctos cinereus) with a Chlamydia 

pecorum multi-subunit vaccine: Evaluation of immunity and pathology. Vaccine. 2012;30: 

1875-85. 

[9] Waugh CA, Timms P, Andrew D, Rawlinson G, Brumm J, Nilsson K, et al. Comparison 

of subcutaneous versus intranasal immunization of male koalas (Phascolarctos cinereus) for 

induction of mucosal and systemic immunity against Chlamydia pecorum. Vaccine. 2015;33: 

855-60. 

[10] Farris CM, Morrison RP. Vaccination against Chlamydia genital infection utilizing the 

murine C. muridarum model. Infect Immun. 2011; 79: 986-996. 

[11] Hernandez-Sanchez J, Brumm J, Timms P, Beagley K. Vaccination of koalas with 

prototype chlamydial vaccine is safe, and does not increase the incidence of lymphoma-

related disease and may be associated with increased lifespan in captive koalas. Vaccine. 

2015;33: 4459-4463. 

[12] Wan C, Loader J, Hanger J, Beagley KW, Timms P, Polkinghorne A. Using quantitative 

polymerase chain reaction to correlate Chlamydia pecorum infectious load with ocular, 



 
A prototype recombinant-protein based Chlamydia pecorum vaccine results in reduced chlamydial burden and 
less clinical disease in free-ranging koalas (Phascolarctos cinereus) 
 

Page 133 
 

urinary and reproductive tract disease in the koala (Phascolarctos cinereus). Aust Vet J. 

2011;89: 409-12. 

[13] Devereaux LN, Polkinghorne A, Meijer A, Timms P. Molecular evidence for novel 

chlamydial infections in the koala (Phascolarctos cinereus). Syst Appl Microbiol. 2003;26: 

245-53. 

[14] Marsh J, Kollipara A, Timms P, Polkinghorne A. Novel molecular markers of 

Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus). BMC Microbiol. 

2011;11: 77. 

[15] Puls RL, Emery S. Therapeutic vaccination against HIV: Current progress and future 

possibilities. Clin Sci. 2006;110: 59-71. 

 
Fig. 1. Antibody (IgG) titre response in vaccinated animals at 0 months (pre-vaccination) and 
6 months post-vaccination (n = 23): Mean and standard error of IgG titre levels. P < 0.05 *; P 
< 0.001 **. 
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Table 1. Change in Chlamydia PCR load following vaccination : Percentage (and raw 

number calculations) of koalas that were C. pecorum positive at time point 0 (i.e. at initial 

vaccination time), and then exhibited changes in their C. percorum load between either 0 and 

6 months, or between 0 and 12 months, post vaccination. Statistically significant effects are 

shown in bold. Trending (P < 0.1) results indicated with *.  Grey shading represents groups 

with more than expected (based on Pearson residuals) for significant results. The changes are 

categorized as decreasing, stable or increasing (ΔqPCR ≤ -100, -99 – 99, and ≥ 100 copies/µL 

respectively). 

  Eye (0 vs. 6 months)   Eye (0 vs. 12 months)   UGT (0 vs. 6 months)        

  Decrease Stable Increase   Decrease Stable Increase   Decrease Stable Increase      

Control 33% (2) 0% (0) 67% (4)  100% (4) 0% (0) 0% (0)  69% (9) 0% (0) 31% (4)        

Vaccinated 50% (5) 40% (4) 10% (1)  71% (5) 29% (2) 0% (0)  88% (7) 12% (1) 0% (0)        

X2 85.677   31.619   45.299     

P  < 0.001 (0.052 *)     < 0.001 (0.496)     < 0.001 (0.099*)          

a analysis based on 2 x 2 contingency table Chi-square owing to no individuals with decreasing loads for both 

control and vaccinated koala 
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Chapter 6: Antibody and cytokine responses of 

koalas (Phascolarctos cinereus) vaccinated with 

recombinant chlamydial major outer membrane 

protein (MOMP) with two different adjuvants
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6.2 Abstract 

Developing a vaccine against Chlamydia is key to combating widespread mortalities and 

morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous 

studies, we have shown that two or three doses of a Recombinant Major Outer Membrane 

Protein (rMOMP) antigen-based vaccine, combined with Immune Stimulating Complex 

(ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have 

also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises 

polyphosphazine based poly I: C and host defense peptides, with the same antigen. This 

formulation also produced strong cellular and humoral immune responses in captive koalas. 

In this current study, we directly compared the host immune responses of two sub-groups of 

wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein 

antigen and adjuvanted with either the ISC or tri-adjuvant formula.  Overall, both adjuvants 

produced strong Chlamydia-specific cellular (IFN-γ and IL-17A) responses in circulating 

PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the 

immune responses were similar, there were fine detailed differences between the adjuvants, 

particularly in relation to the specificity of the MOMP epitope antibody responses. 

 

Key words: Chlamydia, Vaccine, rMOMP, Adjuvants, Koala 

 

6.3 Introduction 

Chlamydial infections are responsible for significant mortality and morbidity of mainland 

koalas (Phascolarctos cinereus) and are one major factor threatening the long term future of 

this iconic species [1-4]. The main species of Chlamydia that infects koalas is C. pecorum, 

and virtually all koala populations are infected, with rates ranging from 10% to as high as 
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90% in some regions [1]. Despite the significant advances in chlamydial research, a 

prophylactic vaccine to stabilize the population decline caused by chlamydial infections [5] 

has yet to be fully developed.   

 

Chlamydia is an intracellular bacterium with a unique biphasic developmental cycle, 

consisting of two developmental forms, the non-dividing, but infectious, elementary bodies 

(EBs) and the replicative, but non-infectious reticulate bodies (RBs) [6]. It is usually accepted 

that a host requires the development of a balanced Th1 and Th2 protective immune response 

to adequately control chlamydial infections [7]. Several small animal studies have confirmed 

the protective role of IFN-γ secreting CD4+T cells in chlamydial infection [8]. Recently, 

there is also re-emerging evidence supporting the prominent role of B cells to elicit protective 

anti-Chlamydia antibodies [9]. The primary role of the neutralizing antibodies is to reduce the 

initial infectious burden and further prevent secondary bacterial infections [10]. Once the 

bacterium parasitises the host’s cells, the cell mediated immune response pathway contributes 

significantly to protective immunity through IFN-γ secretion [11]. Whilst IL-17A is a strong 

recruiter of neutrophils which secrete antimicrobial peptides and promote a Th1 immune 

response against intracellular pathogens [12], other animal studies suggest that IL-17 plays a 

role in both immune pathology and  protection [13].  

 

The chlamydial major outer membrane protein (MOMP) is the leading vaccine candidate in 

chlamydial vaccine research, and our group has been developing a prototype vaccine utilizing 

recombinant chlamydial MOMP (rMOMP) as a vaccine antigen for koalas. Although the 

choice of immunogenic antigen is of prime importance, selecting the right adjuvant to 

appropriately trigger the immune response is also essential. In this context, we have used two 
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different adjuvant formulations with differing properties, combined with rMOMP, to 

vaccinate groups of koalas: ISC (Immune stimulating complex) adjuvant [14-17] or Tri-

adjuvant which is a mixture of the three components  (Polyphosphazine based poly I: C and 

host defense peptides)  [18].  

 

In our previous koala vaccine trials, the ISC adjuvant was able to induce strong cellular and 

humoral immune responses [14-17]. However, the ISC adjuvant requires two or three 

injections to promote a significant immune response. This is logistically problematic for wild 

koalas, which would need to be tracked and re-captured, or kept in captivity for extended 

periods of time, increasing the cost of the process as well as the stress experienced by the 

animal itself.  A trivalent adjuvant (Tri-Adj) containing polyphosphazine, poly I: C and host 

defense peptides, has been developed to be effective with just a single dose [18]. In other 

species, this adjuvant promoted a Th1 and Th2 balanced immune responses following a 

single injection [19-23]. In a small preliminary trial in captive koalas (n = 6), we have shown 

that this adjuvant was safe to use and elicited promising immune responses [18]. 

 

In the current study, we evaluated, in detail, both the cellular and humoral immune responses 

of wild koalas vaccinated with rMOMP, combined either with (a) the single-dose Tri-Adj or 

(b) three doses of ISC. Firstly, we evaluated the cellular response for each adjuvant by 

measuring cytokine expression elicited by the peripheral blood mononuclear cells (PBMCs) 

at defined post-vaccination time points. Secondly, we measured the neutralising antibodies 

produced by vaccination and mapped the corresponding MOMP epitopes recognized for both 

cohorts.  
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6.4 Materials and Methods 

Koalas  

The koalas used in our study were sourced from a wild population of around 400 animals 

located in South East Queensland. Prior to vaccination, all animals were examined and those 

animals that (i) had no clinical evidence of chlamydiosis; and (ii) were negative at 

conjunctival and genital sites following Chlamydia pecorum-species-specific qPCR screening  

[24] were selected. Two sub-sets of these animals have been vaccinated with an anti-

C.pecorum vaccine and we analysed a further sub-set of these vaccinated animals in the 

current study. The first group of 10 koalas (Cindy, Greg, Cherry, Maxwell, Kylie, Paige, 

Janke, Squeek, Linky and Kelly) (Group A) were vaccinated with chlamydial rMOMP 

protein (see below for details) mixed with the Tri-Adj. A second group of 5 koalas (Robyn, 

Pepper, Maya, Hunky Harry and Winnic) (Group B) were vaccinated with rMOMP protein 

mixed with ISC [17]. At the end of the trial, all koalas were successfully returned to their 

habitat in accordance with current legislation and the detailed Koala Action Plan for the 

Moreton Bay Rail Link project. All work was conducted under permission from Queensland 

University of Technology’s Animal Ethics Committee (AEC; Permit # 1200000122), the 

University of the Sunshine Coast AEC (ANA1380) and Scientific Purposes Permit 

(WISP11532912). 

 

Vaccines 

Both vaccines consisted of C. pecorum rMOMP combined with either adjuvant (Tri-Adj or 

ISC). We combined three rMOMP proteins (A, F and G types) for the vaccine, as described 

previously [14, 17, 18]. Koala-specific C. pecorum MOMP proteins were expressed and 

purified as per Kollipara et al. [14]. The purified products were used for vaccination and 
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ELISA assays. After vaccination, the animals were released back into the wild and tracked 

with a wildlife telemetry system (K-Tracker, LX Solutions Pty Ltd). The ISC vaccinated 

koalas were re-captured at 1 monthly interval to receive the 2nd and 3rd dose of the vaccine 

and a veterinary health examination. 

 

Samples  

Aluminium shafted cotton-tipped swabs (Copan, Interpath Services, Melbourne) were used to 

collect samples from the conjunctiva of the left and right eye,  as well as the urogenital sinus 

( prostatic urethra in males), as previously described [18]. These swabs were used for 

measuring the C. pecorum infection load using a C. pecorum-species-specific qPCR targeting 

the 16S rRNA gene  [24]. Blood samples were obtained from the cephalic vein into EDTA-

containing tubes and stored at 4° C for processing within 24 h of collection, to obtain 

PBMCs. After centrifugation at 1000 rpm for 5 mins, plasma was separated and used for 

ELISAs and C. pecorum in vitro neutralisation assays. The samples were collected at 0 (pre-

vaccinated), 2 and 6 months post vaccination. 

 

 Cytokine assays 

The blood samples were centrifuged within 4-8 h of collection to separate the plasma. The 

PBMC were isolated by centrifugation on Ficoll-paque gradients (GE Healthcare, Rydalmere, 

Australia) washed and suspended in 1ml RPMI 1640 T cell media supplemented with 5% 

foetal calf serum, antibiotics and β-mercaptoethanol (0.001M) (Sigma) at a concentration of 

2x106 cells/ml. A 500 μl aliquot of cell suspension was used as the pre-stimulation sample. 

The remaining cells were then stimulated with either mitogens (Ionomycin and PMA 

combination)[25] or UV-inactivated C. pecorum EBs. After stimulation and incubation at 37° 



 
Antibody and cytokine responses of koalas (Phascolarctos cinereus) vaccinated with recombinant chlamydial 
major outer membrane protein (MOMP) with two different adjuvants 
 

Page 143 
 

C with 5% CO2, the cells were collected at 12 and 24 h post-stimulation time points. RNA 

extraction and cDNA synthesis were completed for all these pre- and post-stimulation 

samples according to our previously published protocol (21).  The end products were utilized 

in qPCR assays to determine the mRNA expression level as fold change for interferon 

gamma (IFN-γ), interleukin 17A (IL-17A), interleukin 10 (IL-10), tumour necrosis factor 

alpha (TNF-α) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [25-27]. GAPDH 

was used as reference to normalise IFN-γ, IL-17A, IL-10 and TNF-α using the  2-∆∆CT method 

(∆∆CT = (Ct of target gene - Ct of GAPDH) at 12 or 24 h time point – (Ct of target gene – Ct 

of GAPDH) at 0 time point [28]. 

 

C. pecorum specific ELISA 

Enzyme linked immunosorbent assays were performed using purified rMOMP as per 

Kollipara et al. [14] and Khan et al.[18] on the plasma samples collected at 0, 2 and 6 month 

time points post-vaccination. 

 

C. pecorum MOMP peptide ELISA 

We initially screened the plasma to identify the reacting epitopes for individual animals, 

using the methods described previously [9]. Then we measured the individual peptide 

concentrations as determined using our previously described ELISA methods [18]. Instead of 

using the whole rMOMP protein, we used selected peptides for coating the ELISA plates at a 

concentration of 2μg/well in PBST. Post-incubation, the wells were washed 3x with PBST 

and the plasma sample was serially diluted two fold at 1:200 dilution initially, and incubated 

at 4° C overnight. Plates were then washed 3x in PBST and a sheep anti-koala IgG (1:8000 in 

PBST;[16]) was added. At this point, plates were incubated for a further one hour at room 
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temperature. After a further three washes (PBS-T), HRP-conjugated rabbit anti-sheep IgG 

(1:1000, Southern Biotech ⁄ Millipore, North Ryde, Australia) was added to wells and 

incubated at room temperature for 1 hr. Post incubation, plates were washed 4x with PBS and 

50 μl ABTS [2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), Southern Biotech, 

Alabama, USA] solution was added and incubated for 10 mins to observe the greenish color 

development. The reaction was stopped with 1M sulphuric acid following color observation. 

The optical density was measured at 405 nm wavelength and the data was transformed into 

excel sheet for later analysis. 

 

Koala-specific C. pecorum neutralising antibodies 

We conducted in vitro neutralisation assays using the methodology of Kollipara et al. [14] 

either on whole plasma or on plasma collected at 0, 2 and 6 month time points which had 

been pre-adsorbed with one or more individual peptides [14]. All plasma samples were 

diluted at 1:10 prior to assay. The background neutralisation was determined by using koala 

plasma that was Chlamydia negative. Percentage neutralization was then determined by 

subtracting this background from each individual to determine the final neutralisation. The 

results were expressed as fold change neutralisation.  

 

C. pecorum MOMP peptide mapping 

Biotinylated Pepscan ELISA was performed as previously described [9] to identify the 

specific rMOMP epitopes produced by each vaccine in animals receiving either the ISC or 

Tri-Adj adjuvants.  Briefly, we designed 88 peptides with 15-mer peptides that spanned the 

full length of koala C. pecorum MOMP F protein and used these individually in ELISA 

assays (or grouped) as described above. The background for each plasma sample was 
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calculated from the mean plus twice the standard deviation of the negative wells (no plasma 

added). We scored samples with an absorbance value greater than 0.5 as a positive response. 

In subsequent experiments, we utilised only the positive peptides to coat the streptavidin plate 

at a concentration of 2μg/well and performed the standard ELISA as described.  

 

C. pecorum MOMP-peptide specific neutralising antibodies 

We performed three types of neutralising assays by using the (a) whole plasma at 1/10 

dilution for either Tri-Adj or ISC cohort, (b) whole plasma at post-adsorption against either 

peptide 58 and 77 for tri-adjuvant or at post-adsorption against epitope 4 for ISC cohort and 

finally (c) whole plasma at post-adsorption against either epitopes 4, 28, 41, 42, 58, 59 and 77 

for Tri-Adj cohort or 4, 28, 41, 42 for ISC cohort. We utilised the previously described novel 

protocol for peptide adsorption [9].  

 

Statistical analysis 

Statistical analyses were performed using Graph-Pad Prism version 6 (Graph Pad Software, 

La Jolla, CA, USA) and the P value for significance was set at ≤ 0.05. 

 

6.5 Results 

There was a non-significant trend towards stronger IFN-γ and IL-17A responses in animals 

immunised with the Tri-Adj compared to ISC immunised animals  

 

To evaluate differences in the immune response of koalas vaccinated with a C. pecorum 

rMOMP-vaccine adjuvanted with either Tri-Adj or ISC, we vaccinated a cohort of koalas that 

were clinically healthy at the time of vaccination and were Chlamydia PCR negative at both 
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urogenital and ocular sites (data not shown). Immune profiling of these vaccinated animals 

revealed that 60% of the animals in both groups produced IFN-γ at 2 or 6 months post 

vaccination in response to stimulation of PBMCs with UV-inactivated EBs (elementary 

bodies) (6 out of 10 for Tri-Adj and 3 out of 5 for ISC adjuvant).  For those animals who’s 

PBMCS expressed IFN- γ in response to stimulation, the level of IFN-γ expression varied 

from 2.73 to 17.89 for Tri-Adj and from 2.08 to 12.67 for ISC (Fig. 1). We also observed 

differences among the responders between the 2 month and 6 month time points. For the Tri-

Adj responders the highest expression was observed at 2 months, whereas, for ISC 

responders the highest IFN-γ responses were at the 6-month time point.  Overall, the IL-17A 

responses were lower than IFN-γ, and only 40% of animals (4/10 Tri-Adj; 2/5 ISC) produced 

IL-17A responses to stimulation above 1.0 fold. We did not observe any measurable 

expression for the anti-inflammatory cytokine, IL-10 and TNF-α following stimulation of 

collected PBMCS from animals in either cohort (Fig. 2 A-D). 

 

The kinetics of the total antibody (IgG) titres was similar in both cohorts, though there was an 

increased trend towards higher plasma IgG titres in ISC cohorts 

 

Both vaccine formulations elicited strong anti-MOMP antibody levels following vaccination. 

The Tri-Adj cohort produced titres of around 5x105 at 2 months post-vaccination, which 

persisted up to 6 months. The ISC cohort produced a similar average titre at 2 months (7x105) 

which increased  (to 9x105) by the 6 months time point (p value 0.302) (Fig. 3A). We also 

measured the antibody responses to individual peptides (selected ones) by ELISA (Fig 5). 

The titres for the individual epitopes varied from 0.3x103 to 2.8x103 EPT. Interestingly, there 
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was very little difference in titres for the individual epitopes, except for epitope 77 in a single 

koala (Kelly) (Fig. 5). 

 

Similar C. pecorum specific neutralising antibody potential was produced by both adjuvants 

 

To compare the function of antibody responses induced by either vaccine formulation, in 

vitro neutralisation assays were performed with plasma from the Tri-Adj and ISC cohorts at 2 

and 6 months post-vaccination. All samples were diluted 1:10 prior to testing their 

neutralising ability on C. pecorum infected cell culture mono-layers. Both adjuvant cohorts 

produced almost identical in vitro neutralisation levels, with both groups having increased 

neutralisation levels at 6 months compared to 2 months post vaccination (Fig. 3B).  

 

Epitope mapping identified two distinct anti- C. pecorum MOMP peptide antibody profiles 

for the two adjuvant groups. 

 

We used the Pepscan approach [9] to examine the epitope specificity of the plasma antibody 

response to vaccination in our Tri-Adj versus ISC adjuvant groups. In total, four C. pecorum 

MOMP peptides (4, 28, 41, and 42) were recognized in our C. pecorum peptide ELISA from 

animals in each cohort with an additional three peptides recognised by koalas receiving the 

Tri-Adj formulation only (58, 59 and 77). There was variability in the responses to these 

individual peptides with peptide 4 recognised by 80% (4 out of 5) of the ISC cohort but only 

by 10% (1 out of 10) of the tri-adjuvant cohort. For the other epitopes, none were recognised 

by 100% of the animals in any cohort, although the most-broad recognition by the animals 
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was with epitopes 77 (8/10 of tri-adjuvant animals), 58/59 (5/10 tri-adjuvant animals), 41/42 

(5/10 tri-adjuvant cohort) and 28 (4/5 ISC animals) (Fig. 4).  

 

The vaccine induced anti-epitope antibodies had neutralising ability, either individually or in 

synergy with other epitopes 

 

We examined the contribution of antibodies against individual epitopes or groups of epitopes, 

to the observed in vitro neutralisation effect. We compared (a) whole plasma versus (b) 

plasma pre-adsorbed against the most recognized peptides 58, 77 for Tri-Adj, and peptide 4 

for ISC versus (c) plasma pre-absorbed against epitopes 4, 28, 41, 42, 58, 59, 77 for Tri-Adj 

and 4, 28, 41, 42 for ISC. We evaluated the neutralising ability of each of these pre- and post-

absorption samples and compared the relative reduction of neutralisation ability in each case 

(Fig. 6 B, E). We found that most (if not all) of the individual anti-epitope antibodies 

contributed to in vitro neutralisation. In the case of the Tri-Adj vaccinated animals, anti-58 

and anti-77 epitope antibodies made a major contribution to the in vitro neutralisation effect 

(white bars in Fig 6B). The effect of these antibodies was confirmed with animal “Cherry” 

(did not produce any anti-58 antibodies) and animal “Squeek” (did not produce any anti-77 

antibodies) as the in vitro neutralisation level for these animals was not reduced following 

absorption against 58 or 77 peptides. We also observed significant in vitro neutralisation by 

antibodies against peptides 4, 41/42 and 28, with anti-peptide 4 antibodies (especially in the 

ISC cohort), having a major effect (Fig 6E).   
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6.6 Discussion 

Our previous work suggested that the koala’s immune system is able to mount both effective 

cellular and humoral immune responses against a rMOMP vaccine, when administered in 

combination with two different adjuvant systems  [14-18]. While both adjuvant vaccines look 

promising, one requires two or three doses (ISC) while the other is a single administration 

vaccine (Tri-Adj). We therefore decided to directly compare the immune responses of the two 

vaccine formulations using the same rMOMP antigens to vaccinate koalas from the same 

wild population.  

 

Studies with the mouse model of C.muridarum show that an IFN-γ response is required for 

adequate protection against chlamydial infections. While there is no direct evidence yet for 

protection against C. pecorum infections in koalas, vaccine development should aim for a 

strong IFN-γ response. We found that both vaccine formulations induced good IFN-γ 

responses in 60% of animals that lasted for up to 6 months. No significant difference could be 

seen in the specific IFN-γ response induced by the single dose Tri-Adj formulation or the ISC 

formulation. IFN-γ activity is the hallmark of the Th1 immune response against chlamydial 

infection and IFN-γ gene knockout mice are indeed unable to resolve the infection [29]. 

Despite the promising IFN-γ response in some animals (60%), not all koalas produced a 

detectable IFN-γ response. The animals in this trial are outbred animals and this highlights 

key Major Histocompatibility Complex (MHC) considerations for future vaccine 

development. Genetic differentiation and structure analysis has revealed that the koala’s 

MHC-II gene is more diverse in koalas in the northern states of Queensland and New South 

Wales, compared to the southern states of Victoria [30, 31]. The higher MHC-II diversity 

could be the potential cause of the variable immune response within this group of koalas. 
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In addition to IFN-γ, IL-17A has been suggested as an important cytokine for chlamydial 

infection, both for protection, but potentially also in disease pathology [13, 32]. We observed 

Chlamydia-specific IL-17A responses for 40% of koalas with both vaccine formulations. 

Whilst, recent studies in koalas [27] and women [33] reported that strong expression of IL-

17A has been associated with clinical chlamydiosis and chlamydial cervicitis, the IL-17-/- 

mice had shown less pathological lesions compared to BALB/c [13]. Moreover, an elevated 

IL-17A response has been observed in clinical chlamydial infection in mouse model [34]. 

Though the mechanism of IL-17A in pathogenesis is unclear, this study confirms both 

vaccines can induce expression of this cytokine. 

 

While we did not observe any measurable anti-inflammatory cytokines response in either 

group, still their role in chlamydial immunity and pathogenesis is controversial. In general, 

IL-10 suppresses the secretion of various pro-inflammatory cytokines involved in chlamydial 

pathogenesis [35]. Furthermore, in the mouse model, the IL-10 dominated response has been 

attributed with susceptibility to chronic infection [36]. A similar observation has been seen in 

trachoma infected populations [37]. The higher expression of the IL-10 gene promoter has 

been associated with increased chlamydial infection and disease severity [38]. Similarly, a 

higher level of IL-10 has been linked to C. trachomatis infertility [39, 40] and tubal damage 

in women [41]. However, koalas with clinical chlamydiosis, expressed IL-10 in variable 

levels, with some animals showing higher level of expression similar to IFN-γ [25, 27]. In a 

similar fashion, the role played by TNF-α in chlamydial infection has provided disparate 

results. However, TNF-α has been linked to an initial clearance of primary infection but 

challenge infection elicited immune-pathology in the mouse [42] and guinea pig model [43]. 
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In the mouse model studies showed TNF-α produced by CD8+ T cells, promote inflammation 

in the oviduct following C. muridarum infection [44] but CD4+ T cells producing IFN-γ and 

TNFα are generally immune-protective. In contrast, reduced chlamydial shedding following 

challenge infection in vaccinated mice, has been attributed to the co-expression of TNF-α and 

IFN-γ [45].  

 

While cytokines are considered to be the major immune mechanism for protection against 

chlamydial infections, antibodies continue to be considered just as important.  In fact, recent 

data confirmed the protective roles of antibodies in chlamydial infection in koalas and other 

animal studies [46, 47]. If antibodies do play a role in protection, then it will be via their 

neutralisation role. We therefore measured the in vitro neutralisation ability of plasma 

antibodies from animals immunised with the two adjuvants. We evaluated both their total 

neutralisation ability but we also determined which peptides within the MOMP protein the 

antibodies were directed against and which of these were the most important for the 

neutralisation effect.  This produced very interesting and promising results for the 

neutralisation ability of plasma from vaccinated koalas. 

 

Firstly, both adjuvants produced antibodies that were equally neutralising. This confirms that 

MOMP has B cell epitopes that can be neutralising, validating it as a good vaccine target. 

Interestingly, the adjuvants resulted in a different, but overlapping, set of vaccine-induced 

epitopes.  Three peptides were recognised by both adjuvants (4, 28, and 41/42), but two 

additional epitopes (58/59 and 77) were solely recognised by Tri-Adj-immunised animals. 

The adsorption experiments nicely confirmed that several anti-epitope antibodies contributed 

to the in vitro neutralisation effect. Studies in the non-human primate model utilising native 
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MOMP formulations had previously shown serovar- specific immune response either to 

homologous serovars [48] or cross-reacting to the closely related heterologous serovars [49]. 

Interestingly, in this study, the vaccine-induced epitopes recognised are all located in the 

conserved domains suggesting their role in cross-reactive recognition against diversified 

MOMP genotypes. Several vaccine studies have used the native form of MOMP, arguing that 

MOMP in its native should elicit a more robust immune response [48]. However, this study 

suggests that rMOMP is capable of generating neutralising epitopes in koalas. Nonetheless, 

80% of the animals responded to epitope 77 in the variable region, but did not result in extra 

neutralising capacity. 

 

In summary, both the adjuvants induce Th1-biased immune responses with neutralising 

antibodies. It is promising that the single dose Tri-Adj is able to produce a comparable 

immune response to the two or three-shot ISC up to 6 months time point.  Tri-Adj has proven 

to be an effective adjuvant system for koala-Chlamydia vaccine design, and a practicable 

solution to eliminate multiple vaccination events. All of the surviving animals in our original 

study [16] that were immunised with the ISC adjuvant have high plasma antibody levels and 

memory CD4+ T cells 8 years after vaccination, while we don’t yet have similar data for the 

Tri-Adj.  The identification of key epitopes (for the development of neutralising antibodies) 

enables future studies to focus on including these, or to develop specific assays to evaluate 

vaccine effectiveness. 
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Fig. 1 IFN-γ (A, C) and IL17A (B, D) gene expression in koala PBMCs stimulated with UV inactivated C. pecorum at 0, 2 and 6 months post 

vaccination. The Tri-Adj (A, B) and ISC (C, D) cohort’s response are presented together (Fig. 1 A-D). Results are expressed as fold increase 

compared to internal control gene GAPDH
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Fig. 2 IL-10 (A, C) and TNFα (B, D) gene expression in koala PBMCs stimulated with UV inactivated C. pecorum at 0, 2 and 6 months post 

vaccination. The Tri-Adj (A, B) and ISC (C, D) cohorts are presented together (Fig. 2 A-D). Results are expressed as fold increase compared to 

internal control gene GAPDH
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Fig. 3 rMOMP specific IgG in plasma of vaccinated koalas was assayed by ELISA at 0, 2 and 

6 months post vaccination. IgG levels are expressed as end-point titers (EPT) and represent 

the mean ± SD of 10 and 5 koalas in the Tri-Adj and ISC cohort respectively (Fig. 3A). 

Vaccine induced C. pecorum percent neutralisation in plasma is presented (Fig. 3B) 

compared to pre-immunisation samples. All samples were assayed at 1:10 dilution and C. 

pecorum EBs (50,000 IFU) were added to samples. The results are expressed as the 

percentage neutralisation of post-immunized samples compared to that of the pre-immunized 

and non-infected samples. Results are expressed as the mean ± SD of 10 and 5 koalas in the 



 
Antibody and cytokine responses of koalas (Phascolarctos cinereus) vaccinated with recombinant chlamydial 
major outer membrane protein (MOMP) with two different adjuvants 
 

Page 162 
 

tri adjuvant and ISC cohort respectively. There was no significant difference between the two 

cohorts.
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Fig. 4 Epitope mapping of antibodies in plasma samples at 6 months post vaccination as determined by Pepscan assay. CD: MOMP Conserved 

domain; VD F1: Variable domain 1 for MOMP F; VD F2: Variable domain 2 for MOMP F; VD F3: Variable domain 3 for MOMP F; VD F4: 

Variable domain 4 for MOMP F; VD A: Variable domain 1, 2, 3, 4 for MOMP A; VD G: Variable domain 1, 2, 3, 4 for MOMP G; VD H: 

Variable domain 1, 2, 3, 4 for MOMP H. 
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Fig. 5 ELISA titers against individual peptide. Panel A (10 animals) for the tri-adjuvanted 

vaccinated animals and panel B (5 animals) for the ISC cohorts. We did not consider epitope 

86 as this epitope was detected in naturally infected koalas in our previous study.
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Fig. 6 In vitro neutralisation levels of plasma from vaccinated koalas (A) whole plasma at 1/10 dilution for Tri-Adj cohort, (B) whole plasma 

after absorption against peptides 58 and 77, or (C) whole plasma after adsorption against peptides, 4, 28, 41,58, 59, and 77. Separately, the in 

vitro neutralisation of plasma from ISC cohort (D) whole plasma at 1/10 dilution, (E) whole plasma after adsorption against peptide, 4, (F) whole 

plasma after adsorption against peptides, 4, 28, 41 and 42. The neutralising antibodies were presented against individual animals and all samples 

were diluted at 1:10 dilution and C. pecorum EBs (50,000 IFU) were added to samples. The results are expressed as the percentage in 

neutralisation of immune samples compared to that of the pre-immune and non-infected samples. The reductions of neutralising antibodies are 

presented as empty spaces in the bar. 
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General discussion 

The koala (Phascolarctos cinereus) is an iconic Australian tree-dwelling marsupial and the 

only surviving member of the Family Phascolarctidae. This animal has a unique position in 

the rich biodiversity of Australia as well as its valued contribution to the tourism industry. 

However, in the early 1800s, during the European settlement in Australia, its survival was 

threatened by a number anthropogenic risk factors [1]. The Australian Federal Government 

has recently recognised koalas as a threatened species across two-thirds of their range, in 

New South Wales (NSW) and Queensland (QLD) populations which have shown the largest 

decline [2]. A recent study showed that QLD, NSW and the Australian Capital Territory 

(ACT) koala populations have been declining in numbers, with high mortality rates being 

attributed to domestic dog attacks [3], vehicle strikes [4], pronounced urbanisation [2] and 

chlamydial disease [5]. Chlamydia is continuing to drive the overall koala population decline 

through increased mortality and reduced fecundity [2]. Disease modelling suggests that 

halting chlamydial infection would be a significant management strategy that could 

potentially help reverse the population’s declining trends [6]. 

 

Chlamydiosis is unfortunately a very common reason for the admission of wild koalas to 

koala hospitals and koala care centres, being the second most frequent reason for such 

admissions [7]. Koala chlamydial infection is widespread in most wild koala populations, and 

has been associated with ocular and reproductive tract diseases, including kerato-

conjunctivities, rhinitis, inflammation and fibrosis of the urinary bladder and the upper 

genital tract. There are different grades of infection at both anatomical sites [8]. The chronic 

active form of chlamydiosis results in the shedding of the highest number of infectious 

particles, posing serious threat to future transmission [9]. However, the asymptomatic nature 
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of infection, as also seen in humans, makes it difficult to treat with systemic antimicrobial 

drugs [10]. Therefore, a vaccine would be an ideal option to effectively control this infection 

and potentially increase the lifespan of koalas [11]. 

 

In the process of vaccine development, the QUT research group identified several key 

priorities, including; (a) the safety and immunogenicity of rMOMP protein in koala-

Chlamydia vaccine design [12], (b) matching of the natural diversity seen in C. pecorum 

strains among naturally infected koalas, and how this might relate to vaccine development 

[13], (c) the suitability of a recombinant MOMP vaccine for use in healthy as well as in 

naturally infected and diseased koalas [14], (d) the cross-reactive recognition of the single 

MOMP based vaccine against multiple strains of C. pecorum infection [15] and finally, (e) 

MOMP epitope specificity of the antibody response following infection and vaccination [16]. 

While vaccine research in koalas is promising, effort is still needed to address issues such as; 

(a) developing a simpler-to-administer, preferably single dose, vaccination strategy, (b) 

understanding the detailed mechanisms that underpin both humoral (epitopes mapping and 

neutralisation) and cellular immunity (cytokines response specifically IFN-γ) in both 

naturally infected and more importantly, vaccinated koalas, including the role of the adjuvant, 

(c) evaluating the protective effect of a prototype rMOMP vaccine against the course of 

infection in wild koalas. This thesis has addressed all of these key research areas. 

 

Initially, this thesis investigated the feasibility of a single dose tri-adjuvant to elicit strong and 

long lasting cellular and humoral immune responses (Chapter Three). The rMOMP of C. 

pecorum is a promising vaccine candidate that has been evaluated in several koala vaccine 

trials [12, 14-17]. The immunogenic nature of MOMP has been studied in detail as both 
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recombinant and native forms, in different animal and human studies [18-24]. Chlamydial 

MOMP, with it’s highly disulphide cross-linked structure, comprises 60% of the outer 

membrane surface of chlamydial elementary bodies (EBs). However, MOMP has been 

suggested to have multiple key roles in chlamydial infection and transmission through 

protection against the host environment, defense against the host’s immune response and 

attachment to the host’s target cells.  It contains multiple B cell and T cell epitopes, inducing 

both neutralising antibodies as well as a strong T cell response [25, 26]. Even though MOMP 

is an immune-dominant component in vaccine design, it has been reported that native MOMP 

is more suitable for vaccine development [18, 24]. Some of the potential limitations of using 

rMOMP protein for vaccine development, include, (a) inability to elicit cross-serovar 

protection and (b) the requirement of adequate tertiary structure to restore the required level 

of immunogenicity [25].  

 

While MOMP is the leading subunit vaccine antigen and has shown good promise, the 

adjuvant component is equally important and further effort is still needed. Adjuvants are an 

important component of vaccine formulations and have major functions for enhancement of 

antigen uptake and presentation to the secondary lymphoid tissues. These immunomodulatory 

substances have multiple activities, including depot effects, antigen delivery, recruitment of 

the specific immune cells to the site of immunisation and maturation of antigen presenting 

cells [27].To increase the effectiveness of koala chlamydial rMOMP, several adjuvants have 

previously been evaluated, including, Alhydrogel, Titermax Gold, and Immune Stimulating 

Complex (ISC) in the design of a chlamydial vaccine for koalas [12]. Several immunisation 

studies have used ISC adjuvant and these have provided the best immune protection obtained 

to date.  One disadvantage of ISC is that it requires multiple immunisations [14,15, 17]. This 
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requirement can cause unnecessary stress to the koalas through repeated capture and 

handling. The koalas also must be held for a longer period of time in captivity, wildlife 

hospital or wildlife care centre which would be logistically and financially challenging. 

Therefore, to overcome the limitations of multiple vaccination schedules, we evaluated a tri-

component adjuvant containing polyphosphazine, poly I: C and host defence peptide, to 

generate long lasting cellular and humoral immunity in koalas following a single vaccination 

 

This is the first study in koalas that utilised these novel adjuvant components. Therefore, to 

evaluate the safety of this tri-adjuvant vaccine formulation, we monitored the koala’s health 

following the administration of the vaccine and throughout the study period. There was no 

evidence of side effects at the injection site and also no evidence of adverse pathology during 

the 54 weeks trial period. For evaluating the specific chlamydial cellular immune response, 

we measured the proliferative response of the PBMC’s (peripheral blood mononuclear cells) 

stained with CFSE (carboxyfluoresceion succinimidyl ester) expressed as the percentage 

proliferation rate (%). The PBMC’s responses were measured against rMOMP and UV-

inactivated chlamydial C. pecorum EBs. There were no observed differences for proliferation 

percentage between single and double dose vaccine regimes utilising the tri-adjuvant 

combined with rMOMP. We also evaluated the humoral immune responses by measuring the 

IgG antibody titers in plasma and mucosal secretions and again were no significant 

differences for IgG titers EPT value between two cohorts of animals, irrespective of the 

anatomical sites (urogenital and conjunctival secretions) analysed. We also measured the 

C.pecorum EB-specific neutralising antibodies in the systemic circulation, ocular and vaginal 

mucosal secretions. While there were no statistically significant differences between single 

dose and two dose vaccine cohorts, it was interesting and a promising aspect of this particular 
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study, that the tri-adjuvant was able to stimulate the neutralising IgG secretions at both the 

ocular and urogenital tract sites.  

 

The tri-adjuvant that we used in our koala vaccine trial contained 3 immune-stimulating 

components. The adjuvant mix or individual components have previously been evaluated in 

different animal models [28, 29]. Synthetic analogue double stranded RNA components such 

as poly I: C, have been previously tested as an effective immune inducer in several animal 

species [28, 29]. Poly I: C promotes an immune response via two distinct pathways 

involving, TLR3 activation and RIG-I/MDA-5, triggering the production of IL-12, type I 

IFNs production, improved MHC class II and antigen presentation enhancing T and B cell 

immunity [30]. The presence of type I interferons can enhance antibody titers, increase IFN-γ 

secretion levels and elicit the generation of long lived memory immune responses [31]. A 

recent study in humans suggested that IFN-γ can directly induce Th1 cell differentiation, 

which is critically important for developing cellular immunity against intracellular pathogens 

[32]. Indeed, IFN-γ contributes to the induction of cytotoxic T cells, activating the antigen 

presenting cells and thereby promoting the development of Th1 type cellular and humoral 

immune responses [33, 34]. 

 

The tri-adjuvant component PCEP (Polyphosphazine) is a biodegradable polymer and has 

been shown to enhance mucosal antibody responses (IgG and IgA) in mouse models to a 

number vaccines when administered parenterally, including influenza, hepatitis B surface 

antigen, herpes simplex virus type 2 glycoprotein D and cholera toxin [35-37]. PCEP, in 

combination with influenza antigen, elicits a strong mucosal IgA response when 

administrated through either the respiratory, nasal or vaginal routes [38]. In addition, PCEP 
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was shown to induce a mixed Th/Th2 immune response with long lasting and high titers of 

antibodies in a mouse model [39]. Studies in mice showed the role of PCEP to enhance Th1 

type humoral and cellular immune responses for bovine respiratory virus [40]. These mice 

developed mucosal immune responses, as was the evident from increased production of 

vaccine antigen specific IgG and IgA in lung tissue culture. Indeed, the increases in systemic 

and mucosal IgG, and in particular the neutralising IgA, were the most critical aspect of this 

adjuvant effect. The reason behind this immune response is the production of IL-12 and IFN-

γ cytokine responses [41, 42]. Additionally, this Th-1 biased immune response elicited IgG2 

antibodies. In a pig model, this PCEP induced IFN-γ based cellular immunity associated with 

an overall balanced immune response [43]. Similar enhancement of a balanced immune 

response has been reported with co-administration of PCEP and CpG ODN in a bovine 

herpes virus vaccine in ruminants (cattle and sheep) [44]. 

 

The peptide components of this tri-adjuvant are positively charged with hydrophobic residues 

that exhibit immune modulatory properties in different animal studies [27, 45]. The adjuvant 

activities of these HDP (host defense peptides) include PBMC recruitment and activation, 

increased production of pro-inflammatory cytokines and co-stimulatory molecules on antigen 

presenting cells which promote phagocytic activities [46]. Previous studies demonstrated that 

CpG and HDP complexes have potent adjuvant activities in stimulating B cell proliferation 

and antigen specific antibody production [47, 48]. A recombinant chlamydial protease like 

activity factor (CPAF) vaccine formulated with CpG and HDP stimulated strong humoral and 

cellular immune responses with the characteristics of a Th1-biased immune profile [45]. 

Detoxified pertussis toxin (PTd) in combination with HDP-CpG leads to a 100-fold increase 

in total IgG levels. Indeed, PTd co-administered with PCEP, HDP and CpG resulted in 
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increased levels of both IgG2a and IgG1 antibodies in mice and pigs, after just a single dose 

of vaccination [49]. These studies suggest that HDP in combination with PCEP and TLR3 

ligand agonist complex, bridges innate and adaptive immune response to provide a balanced 

Th1 and Th2 response [46]. The immune responses that we observed in koalas to rMOMP 

combined with the tri-adjuvant were similar to the previously described study and look very 

promising. 

 

While a koala-specific IgA reagent to measure this secretory antibody at mucosal surfaces 

was not available for this particular project, the presence of an IgG response in the UGT and 

ocular sites is a promising sign. However, the mucosal priming immune sites are generally 

thought to be mainly located in the Peyer’s patches of the intestinal tract for an ocular 

response, whereas, they are generally thought to be located at distant sites (spleen and iliac 

lymph node) for a genital tract response [50]. The dominant Ig- subclass in the genital tract is 

IgG and it is thought that, at least in volume, IgG predominates over IgA [51].  IgG does 

however play a significant role at genital mucosal surfaces through exudation or translocation 

from plasma and also by being produced in the local B cells [52]. These unique 

characteristics of the immune system within the genital tract, and with Chlamydia itself 

targeting the mucosal epithelium, highlight the importance of producing both systemic and 

mucosal immune responses from the administration of a Chlamydia vaccine. In this current 

study, we demonstrated that the tri-adjuvant elicited systemic and mucosal humoral immune 

responses against C. pecorum MOMP vaccine antigen. The tri-adjuvant components are 

thought to act synergistically through different immune mechanisms [53]. The adjuvant and 

immune stimulating properties of poly I: C, polyphosphazine and HDP have been shown to 

have a synergistic effect in mouse and porcine models [43, 54]. The adjuvant combination of 
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CpG ODN, cationic host defense peptide (HDP) and PCEP resulted in the induction of a 

robust and long-lived immune response. Nonetheless, the combination of different adjuvants 

into a single formulation is an evolving approach to enhance the immunogenicity of the 

antigen, both in human and animal vaccine trials [53]. 

 

The protective immune response against the intracellular bacterium, Chlamydia, requires 

interferon gamma secreting CD4+ T cells [55] and neutralising antibodies in mucosal 

secretions [56]. Although the Th1 immune response is critical in chlamydial infections, the 

role of antibodies has been described in a considerable number of published articles in mouse 

and guinea pig models, and these support the role of antibodies in protective immunity [56-

61]. One suggestion is that antibodies, in conjunction with T cell mediated adaptive changes, 

promotes an anti-chlamydial response through FcR mediated phagocytosis, complement 

activation and neutralisation [62]. Mucosal antibodies have been found to be associated with 

decreased shedding of C. trachomatis infections in women with genital tract diseases, such as 

cervicitis and uterine infections [63]. Mouse infection model studies, using B cell and Fc 

receptor deficient mice, also support the role of B cells in immune-protection [64]. Other 

studies in mice also suggest the immune-protective role of  antibodies against secondary 

chlamydial infections [65]. However, antibody function ultimately depends on the cellular 

responses that regulate the adaptive changes at mucosal surfaces for genital tract [61].  

 

Nonetheless, much of the information that has informed chlamydial vaccine development and 

disease progression is obtained from laboratory animal studies, particularly the mouse model. 

While there are significant differences between mice and koalas, the former is still considered 

to be the best experimental animal to elucidate the complex host-pathogen interactions [66]. 
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Nevertheless, infection is usually self-limiting following a single challenge in mice, whereas 

in other animal models, including humans and koalas,  chronic infections develop following 

undiagnosed and untreated conditions [55]. Moreover, mice are often treated with hormone 

injections (particularly progesterone), to synchronise the reproductive tract physiology and 

thus increase their susceptibility to infection [67]. Therefore, there are clearly significant host 

differences in immune response, including to immunisation, and these differences need to be 

taken in to account for vaccine development [68-70]. Prior to the work in this thesis, there 

was a relatively limited analysis of the humoral immune response to vaccine in koalas, except 

for the reports by Carey et al. [12] and Kollipara et al. [16] . The results presented in this 

thesis with koalas, identified the novel role of B cells specifically to elicit immune response 

through neutralisation, and might potentially contribute to the C. trachomatis human 

chlamydial vaccine design.   

  

The surface exposed protein, MOMP, is a major immunodominant antigen on the surface of 

the chlamydial infectious elementary body. This protein consists of four variable domains 

interspersed with five constant domains. The high rate of substitution at the variable domains 

and the immunological pressure to mutate, promotes host immune evasion. Kollipara et al. 

previously reported that koala C. pecorum genotypes have high levels of diversity [13]. 

Despite the antigenic diversity of MOMP, our rMOMP vaccine was able to induce an antigen 

specific neutralising antibody mediated immune response. In addition, we were able to 

demonstrate specific antibodies titers against not only rMOMP, but also against native whole 

EBs, and this is an important characteristic for an effective vaccine.  
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The major aspect in analysing the protective humoral immune response induced by an 

effective vaccine is to demonstrate the functionality of the antibody response through 

neutralisation. Therefore, we performed a PepScan approach to better understand the epitope 

profile of the two different cohorts of koalas, namely diseased and vaccinated. The 

vaccinated animals showed a unique MOMP epitope profile, with 4 key epitope responses 

associated with neutralising ability against in vitro C. pecorum infection. A C. trachomatis 

vaccine study, which used a primate model, demonstrated that the neutralising antibodies 

produced following vaccination with native MOMP from either ocular or genital serovars, 

were highly serovar specific, even though there was only two amino acid differences between 

homologous and heterologous strains [18, 24]. In the mouse model, C. trachomatis serovar 

L1 vaccination through different routes, and subsequent C. trachomatis serovar F infection 

through the bursal route, induced limited protection  against vaginal shedding, but no 

protection against infertility [71]. Interestingly, in our current study, the vaccine induced 

epitopes are all located in the conserved domains, perhaps explaining their role in cross-

reactive neutralisation against diverse MOMP genotypes. While it has previously been 

assumed that antibodies must bind to externally presented epitopes to enable neutralisation 

[64], recent reports have shown that antibodies, via FcRn mediation, can internalize and 

neutralise virus [72] and intracellular bacteria such as Chlamydia, within the cytoplasm of 

epithelial cells [73]. Antibodies to internal proteins, such as the chlamydial NrdB, have also 

been shown previously to facilitate the neutralisation process [74]. In addition, during the 

infection process, the host immune system might contribute by releasing the previously 

inaccessible or unexposed protein from disintegrated cell walls, and thereby become exposed 

to B cell antigen receptors. Nonetheless, upon unfolding the native MOMP structure through 

limited proteolysis, the unexposed or conserved linear motifs can be exposed to the anti-
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MOMP epitope B cell antibody [75]. The identification of common and hidden epitopes that 

induce cross-serovar protection poses a major challenge in several human pathogens, 

including hepatitis C virus, Neisseria meningitides and influenza virus [76-79]. The findings 

of our current study suggest that conserved and hidden B cell epitopes are poorly exposed to 

the immune systems in natural chlamydial infections, but that the rMOMP vaccine we 

evaluated, which presumably had only linear MOMP, has the ability to stimulate the immune 

system successfully and to elicit cross-reactive antibodies that can neutralise multiple 

serovars of C. pecorum. However, several vaccine studies have used the native form of 

MOMP, arguing that this could ideally represent and restore the EB’s MOMP conformation 

into its original 3-D form, to elicit a more robust immune response [18]. However, this 

current koala vaccine study suggests that immunisation with recombinant linear MOMP is 

able to generate neutralising antibodies against epitopes in the conserved domain and might 

be capable of protecting against a wide range of C. pecorum infections in koalas. The 

previous koala vaccine study  [15] demonstrated the cross-reactive properties of the immune 

plasma in either diseased or healthy animals, following vaccination. For example, koalas with 

C. pecorum strain F infection and subsequently vaccinated with heterologous rMOMP of C. 

pecorum were still able to neutralise C. pecorum infection [15]. The results of our current 

study confirm that  koalas vaccinated with non-conformational rMOMP of C. pecorum, can 

develop an antibody response that can effectively neutralise homologous as well as 

heterologous infection [15]. A recent study in a mouse model of C. trachomatis infection, 

showed that a multivalent peptide vaccine was able to induce neutralising antibodies directed 

to the variable domain of the MOMP protein [57]. Furthermore, their study suggests that a 

small fragment of the MOMP protein was able to induce specific and neutralising C. 

trachomatis-specific antibodies. This study further confirms the immune protective role of 
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antibodies in challenge infection. Nonetheless, vaccine induced antibodies were able to 

reduce the bacterial burden and prevent the upper reproductive tract pathology in subsequent 

challenge infection [57]. Similarly, a recombinant epitope based vaccine strategy has been 

successfully demonstrated by Murtada et al.[80]. They showed that this vaccine can stimulate 

antigen specific systemic and mucosal antibody responses [80]. In a recent mouse study, 

these authors reported that rMOMP adjuvanted with ISC can reduce the infection burden and 

prevent subsequent oviduct pathology [81]. This study indicated that the vaccinated animals 

produced different cytokines and chemokines, specially, IFN-γ, TNF-α, at the genital 

mucosa. There was an increased accumulation of macrophages and neutrophils at this site. 

One of the major findings of this study was that antibodies generated following vaccination 

might contribute towards immune protection through enhancing innate and adaptive 

responses [81]. 

 

In addition to the testing of rMOMP protein vaccine in captive koalas at the Lone Pine Koala 

Sanctuary, this thesis work also examined chlamydial vaccination of wild koalas in a 

population in South East Queensland, termed the MBRL population. This larger population 

contained around 300 koalas and 60 koalas in this population were used for chlamydial 

vaccination studies. Of these 60 koalas, half of the animals were assigned to an unvaccinated 

control group, to evaluate the prophylactic and therapeutic effect of the current version of the 

koala-Chlamydia vaccine. While systemic antimicrobial drugs are used for treating 

chlamydial infections, several studies have shown the ineffectiveness of the current antibiotic 

regimes for controlling severe chlamydiosis in koalas [10, 82]. As koala chlamydial infection 

is widespread and often asymptomatic in free ranging animals, a prophylactic vaccine is of 

paramount importance. Recent studies showed that women with C. trachomatis infection 



 
General discussion 
 

Page 181 
 

without clinical disease, and treated with antibiotic, had a significant level of subsequent re-

infections within a 1 year time period [83]. This clearly suggests that some individuals 

receiving antibiotic treatment did not develop protective immunity [84]. Similarly, molecular 

studies have suggested similar observations with wild koalas without signs of clinical 

chlamydiosis [5]. Therefore, we evaluated the vaccine induced immune response within this 

cohort of naturally infected koalas. Perhaps not surprisingly, we found higher antibody 

responses in vaccinated koalas which had a current chlamydial infection. Notably, the level 

of neutralising antibodies was significantly higher in the vaccinated group compared to 

control koalas. However, we found a strong and statistically significant correlation between 

higher infection load and lower antibody titre. This might be an interesting finding as koalas 

with a high infectious loads at genital and ocular mucosal sites were most likely to have 

infection with clinical chlamydiosis [85].  

 

A part of the thesis work utilised this wild koala population to study, (a) immune response 

(antibodies) to natural infections as well as the (b) immune response following vaccination. 

An important finding in this study was that a different and unique set of antibodies (to 

different epitopes on MOMP) were induced by vaccination, compared to those seen in 

natural, live infections. All vaccinated koalas produced neutralising antibodies to 4 key 

epitopes that were located in the conserved regions of MOMP. This is promising for vaccine 

development because these epitopes would be conserved across the multiple MOMP 

genotypes. Not only were the vaccine induced antibodies unique, but they were neutralising 

in our in vitro assay. By comparison, the antibodies present in sera of naturally infected 

koalas with clinical disease, were found not to have any neutralisation ability. Although it has 

previously been thought that antibodies predominantly bind to the surface exposed epitopes 
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to enable the neutralisation [86], we found that antibodies targeting apparently internal 

epitopes, such as those in the conserved/membrane anchored regions of MOMP, could also 

effectively neutralise infectivity. One possible explanation for this is that, recent studies have 

shown that antibodies can be taken up inside the  epithelial cells through FcRn mediated 

transport and thereby neutralise virus [72] and intracellular bacteria, like Chlamydia  [73].  

 

The final aspect of this thesis work was to compare the responses of two MOMP vaccines, 

containing the same recombinant MOMP proteins, but mixed with two different adjuvants 

(Chapter Six). Overall, both adjuvants induced a strong cell mediated immune response 

through IFN-γ mRNA expression in circulating PBMCs. The animals in both cohorts given 

these two vaccines showed a very specific and distinct neutralising antibody profile, though 

the neutralisation level was generally similar. It is generally thought, IFN-γ secreting CD4+ T 

cells and neutralising antibodies at the infection site provided immune protection against 

chlamydial infection [63].  

 

In several koala Chlamydia vaccine trials, our group measured the proliferative response of 

the PBMCs against rMOMP protein or UV-inactivated EBs of C. pecorum [14, 15, 87]. 

These studies were unable to measure the cytokines profile following vaccination because 

koala specific cytokine assays were not available at the time of these earlier studies. 

Cytokines are the immune system’s molecules that modulate the immune response against 

chlamydial infection or vaccination. In this current study we first measured the koala specific 

mRNA expression of a selected Th1 cytokine, namely IFN-γ, in circulating PBMC following 

vaccination. For an intracellular organism like Chlamydia, the host immune system requires a 

CD4+ T cell response for the production of a protective immune response, as shown in 
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several animal models [88, 89]. CD4+ T cells are classified into two cohorts based on their 

type of cytokine production, T helper 1 (Th1) and T helper 2 (Th2) cells. Th1 cells produce 

IFN-γ and IL-12 cytokines to regulate immunity against intracellular infections, whereas, IL-

4, IL-5 and IL-13 are the dominant cytokines for the mediation of humoral immunity against 

parasite infections [90]. The IFN-γ response has been shown to be critical for protection 

against chlamydial infection in the mouse model [91, 92]. However, our current study only 

involved clinically healthy koalas that presented with no sign of chlamydial infection. While 

we found significant IL-17A gene expression in some koalas from both cohorts, the role of 

IL-17A in protection versus disease is still unclear [93]. It is interesting that both IL-17A and 

IFN-γ have been implicated in pathological damage in the mouse model [94]. Recent studies 

have shown a strong correlation between higher expression of IL-17A with clinical 

chlamydiosis and cervicitis in koalas [93] and women [95]. Even though the role of IL-17A 

in chlamydial pathogenesis has yet to be fully understood, our study demonstrated that 

vaccination induced expression of this cytokine at variable levels in koalas. IL-17A is a 

strong recruiter of neutrophils [96] which secrete anti-microbial peptides namely defensins 

and cathelicidins, at the infective sites [97] and which play a critical role in host defense 

against infection [98]. These neutrophil-derived defensins have significant immuno adjuvant 

properties, promoting an antigen specific Ig response in mouse model. In addition, defensins 

induced an increased production of IFN-γ, a Th1 cytokine [99]. Recent studies identified that 

human defensins as a potent ligand for the chemokine receptor (CCR6), which is present on 

dendritic as well as T cells, thereby, promoting a link between the innate and adaptive 

immune responses [100]. Tuberculosis vaccination in a mouse model elicited IL-17 

producing CD4+ T cells which promoted the production of chemokines that recruit the CD4+ 

T cell producing IFN-γ, eventually limiting the bacterial growth [101]. Moreover, both these 
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cytokines have shown immune protection via the up regulation of the inducible nitric oxide 

synthase (iNOS) and nitric oxide (NO) production against Chlamydia muridarum [102]. We 

did not find any measurable expression for the IL-10 and TNF-α mRNA in our koala vaccine 

study, and their role in chlamydial infection and immunity remains controversial. Generally, 

IL-10 suppresses the secretion of pro-inflammatory cytokines [103] and has been linked to 

chronic infection in the mouse model [104]. Similarly, higher expression of this cytokine has 

been attributed to tubal pathology [105] and infertility [106, 107] in women.  While several 

of the koalas analysed in our study, that had an ongoing chlamydial infection, had variable 

IL-10 and TNF-α expression [93, 108], the latter cytokine has been associated with decreased 

chlamydial shedding with co-expression with IFN-γ in vaccinated mice [109]. In these mouse 

model studies, it was shown that TNF-α produced by CD8+ T cells, could promote 

inflammation in the oviduct following C. muridarum infection [110] but that CD4+ T cells 

producing IFN-γ and TNF-α are generally immune-protective. A recent study by Mathew et 

al. [111] using koalas with natural infection and disease showed significantly higher IFN-γ 

expression compared to clinically healthy individuals [93] and this over amplified cytokine 

level might hinder the role of T cell response in preventing future infections [55] and 

dissemination of the pathogen [68, 112]. Our results therefore are very promising for the 

ability of both vaccines to elicited relevant immune response in koalas against chlamydiosis. 

 

While there were many similarities between the two groups of koalas vaccinated with the 

different adjuvants, there were also some key and very interesting differences. The animals 

showed comparatively similar immune responses regardless of the two different adjuvant 

regimes. The total antibody titers were marginally higher in the ISC animals, but showed no 

difference in terms of neutralisation percentage. Both ISC and single dose tri-adjuvant 
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formulations induced high antibody titers with good in vitro neutralisation levels. This 

strongly suggests the feasibility of the single dose vaccine to elicit functional antibody 

response to neutralise the infectious EBs in free ranging koalas. Furthermore, vaccinated 

koala PBMCs expressed promising levels of IFN-γ and IL-17A in response to stimulation 

with UV-inactivated C. pecorum infection. Vaccine studies in non-human primates for HPV 

and malaria infection have shown that this tri-adjuvant component is able to induce antigen 

specific antibodies and is a potent inducer of IFN-γ from the PBMCs [30, 113]. In addition, 

we are using koalas which are out-bred animals, with diverse MHC-II molecules across their 

range especially in the northern state of Queensland and New South Wales [114, 115]. This 

genetic variation may have an effect on infections and disease severity across the koala’s 

range, but importantly, it could also impact on the vaccine response.  

 

The results of this thesis have demonstrated that a recombinant C.pecorum protein, in 

combination with a novel tri-adjuvant, can produce a strong antibody and CMI response 

following a single immunisation in koalas. The resultant antibody response was not only high 

titer but was also directed against several conserved MOMP epitopes. This characteristic is 

potentially promising for protection against a wide range of koala C. pecorum strains.  A 

vaccine formulated with multiple MOMP types elicited neutralising and antigen specific 

antibody. Perhaps, even more promising was the IFN-γ (C. pecorum specific) response 

induced by vaccination. 

 

The current rMOMP vaccine has shown promising immune response either in combination 

with ISC or Tri-Adj. We did not observe any distinct variation in these two adjuvant regimes, 

apart from epitopes specificity. Considering the multiple doses ISC, Tri-Adj looks very 
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promising. Furthermore, the Tri-Adj induces extra epitope specificity though its neutralising 

ability was not increased. It will be interesting to measure the actual concentration of the 

specific epitopes in the systemic circulation following vaccination or natural infection. 

Nonetheless, we evaluate the Tri-Adj in a koala population that shown the evidence of the 

therapeutic effect and looks quite promising (manuscript in prep). We currently able to 

measure the IgA antibody response in secretions. Therefore this immune markers will 

enhance the detection of specific immune response following vaccination. The most 

important aspect of this vaccine trial was that the rMOMP vaccine was not aggravate any 

pathological response. We evaluate this vaccine in naturally infected koalas as well as the 

non-infected animals. 

 

In summary, our data from this project has demonstrated several key findings including, (a) 

the single dose tri-adjuvant, combined with rec MOMP protein, can elicit a long lasting (54 

weeks) cellular and humoral immune response in koalas, (b) recombinant MOMP based 

vaccines elicit a specific and distinct humoral immune response with neutralising antibodies 

(c) the prototype rMOMP protein vaccine is able to induce a Th1 biased immune response 

and has the potential to be used as therapeutic and prophylactic treatment of wild koalas. 

 

Future directions 

The study provides the first experiment that utilised tri-adjuvant components in koalas and 

we evaluated the rMOMP based protein vaccine in the natural host in its wildlife setting. 

While the progress looks promising, there are still several issues that need to be addressed 

before any koala Chlamydia vaccine can be widely used. 
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The studies presented in this thesis have successfully evaluated a rMOMP based protein 

vaccine in captive koalas as well as in wild koalas. In addition, it would be ideal to test the 

protective efficacy of the vaccine in several wild koala populations. Though, we measured 

the prophylactic effect of the vaccine, the number of organism recovered at fixed time points 

following infection could be used to define the severity of the infection or vaccine response. 

This is significantly important to measure the vaccine efficacy to determine whether a 

vaccine administered can protect against either infection or disease. 

 

The diverse immunological pathways that regulate the development of the immune responses 

are mediated through distinct immuno-regulatory cytokines produced by two types of 

regulatory T cells (CD8+ and CD4+ T cells). In the process of koala Chlamydia vaccine 

development, it is critical to identify the relevant immunological pathways in naturally 

infected animals as well as in vaccinated animals. Recent identification of the CD4+ T cell in 

koala [116] is a promising aspect to measure this T cell subset in immunised animals. In this 

thesis, we looked at the systemic cytokine response patterns of vaccinated animals. However, 

cytokines generally have a localised immune response during an infection or following 

vaccination. Nevertheless, the pathology produced by C.pecorum is also localised mainly in 

the reproductive site. However, looking at the cytokine profile at the urogenital and ocular 

site could provide a more complete picture of the disease pathogenesis and better inform 

vaccine design. The cytokine profiles measured during this thesis measured mRNA 

expressions, not actual protein. However, the majority of the cytokines are regulated through 

post-transcriptional modifications and might not truly reflect the mRNA expression within 

the biologically active protein molecule. This post-transcriptional control mechanism that 

affects the final expression of the protein might be an issue to address in future study. 
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The two immunoglobulin’s subclasses, IgG and IgA, presumably play a critical role in the 

koala immune process. Both these antibodies are transported via FcRn and PlgR receptors 

respectively and the expression of receptors has been shown to vary among different cell 

types and anatomical location in animal and human studies [117, 118]. It has been reported 

that IgA provides protection in the infection site at the very initial stage of the infection 

[119]. While the role of IgA against primary or secondary chlamydial infections appears to be 

negligible [120], the role of this antibody subclass is strongly correlated with a reduction of 

chlamydial burden in the male prostate gland [121].Therefore, it is important to measure this 

immunoglobulin subclass in the mucosal secretions during the infection process or following 

vaccination. More importantly, it will be critical to measure the neutralisation ability of this 

antibody along with IgG. 

 

Investigations in relation to the genetic diversity on the koala’s immune systems are yet to be 

done. Studies have shown that a minimum level of genetic diversity exists among certain 

island koala population (French and Kangaroo populations) [122]. Indeed, these koala 

populations have been reported as Chlamydia free isolated populations, though low genetic 

diversity might suggest a link to enhanced disease susceptibility [123]. However, large scale 

studies utilising the highly variable coding genes such as MHC class II molecules [124] need 

to be done to better understand the contribution of genetic diversity to disease biology. 

Another important confounding factor which might affect the koala’s immune system 

response to chlamydial infection is the presence of KoRV infection [125]. Studies have 

shown a higher prevalence of KoRV infection in the southern koalas. This study however 

failed to establish a link between KoRV RNA expression levels and chlamydiosis [126]. 
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Therefore, this aspect on the immune systems might be an important issue to investigate in 

future studies. 

 

While the vaccine research to date looks promising, a live challenge infection in a Chlamydia 

koala model is essential in the future. However, from the ethical point of view, this seems to 

be a challenge to implement. In addition, determining the age of vaccination would be a 

major issue in koala-Chlamydia vaccine design. We have observed high level of variation for 

animal-to-animal immune responses following vaccination. Future studies should aim to 

minimise these variations, either by the use of age, sex match cohorts or to better understand 

the MHC restriction of the MOMP epitopes. A recent study with mathematical simulation 

suggests that, female koalas at 1-2 years of age would be the preferred target population 

cohort for achieving optimum results following vaccination [127]. This period is very critical 

for the female koalas, as they attained sexual maturity at this stage. The development of 

immunity at this time point would potentially reduce the transmission of chlamydial 

infection. Recent studies in a mouse model suggests the significant role of immunised male 

or female animals in subsequent disease transmission [81]. Additionally, few studies have 

focussed on the significant role of male koalas in disease transmission pose to critically 

address this gender issue in vaccine formulations. 
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