The Business Case for Gender and Culture Diversity on Corporate Boards Shireenjit K Johl (Deakin) University & Larelle (Ellie) Chapple (QUT)

Research Objective

- Examine the impact of culture / ethnic and gender diversity on a specific firm outcome, namely financial reporting (absolute abnormal accruals).
- Examine whether Board Independence, an important corporate governance 2. element, moderates the association between culture diversity (and gender diversity) with financial reporting quality.

Model Specification

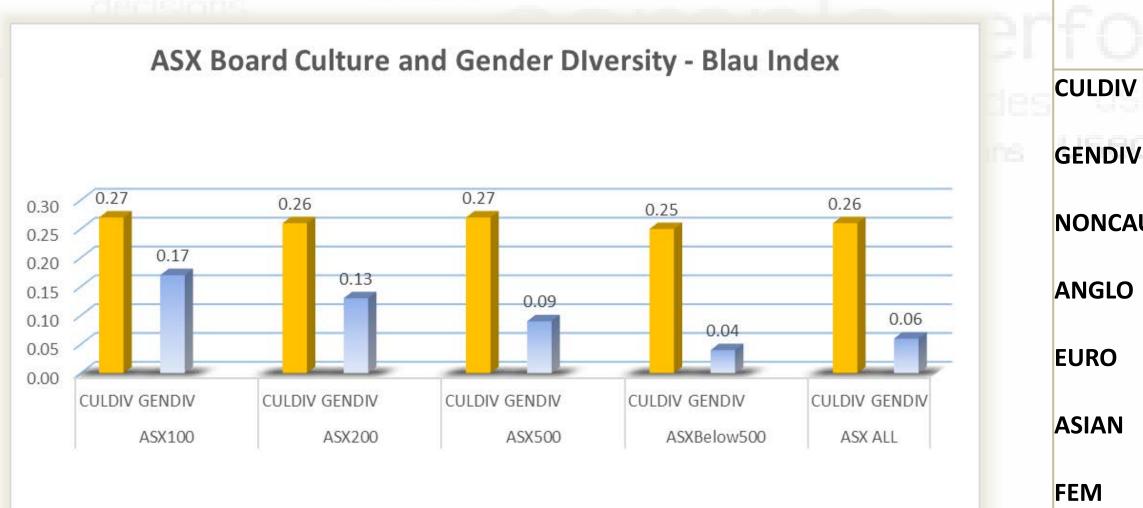
FRQ = α + CULDIV + GENDIV + BODIND (CULDIV*BODIND + GENDIV*BODIND) + LTA + DEBT + CURRENT + LTACC + BIG4 + AGE + MB + Industry and Year Dummies + ε

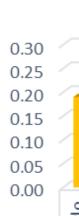
FRQ – Financial Reporting Quality - Absolute Abnormal Accruals – derived using the Kothari modified Jones (1991) model

CULDIV - Culture Diversity – derived using Blau index methodology

GENDIV – Gender Diversity – derived using Blau index methodology

BODIND - Board Independence – the percentage of independent directors over the total number of directors

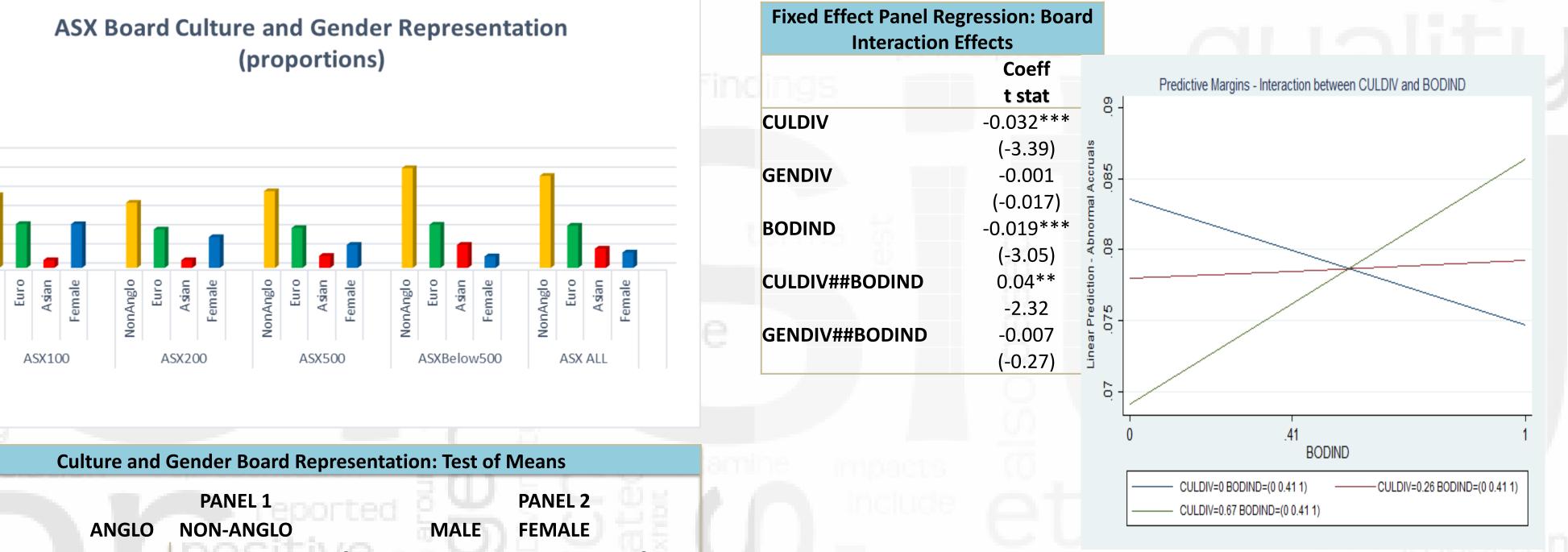

(note: additional analyses – CULDIV is replaced with proportion of non-Anglo (NONANGLO), Europeans (EURO), Asians (ASIAN) and Others (OTH); GENDIV is replaced with proportion of Females (FEM))


Sample Description

Initial sample: 75,208 director firm year observations (equivalent 10,580 firm year observations).

Database: Connect 4 Boardroom (contains list of all Australian listed firms' directors by given, middle, family names and gender from years 2004 to 2013). Origins software - classify each firm's directors to its' most likely culture (ethnic) background based on their family, middle and given name.

Final sample = 8,736 firm year observations (excludes finance firms).



FRQ BODIND LTA DEBT CURREN LAGE LOSS BIG4

Fixed

Sample Description

Multivariate Analyses Findings

Culture and Gender Board Representation: Test of Means								
	ANGLO	PANEL 1 NON-ANGLO		MALE	PANEL 2 FEMALE	ate .		
	mean	mean	t-Stat	mean	mean	t-Stat		
	0.08	0.08	2.12**	0.08	0.06	9.07***		
D	0.41	0.41	-0.56	0.39	0.51	-15.35***		
	10.58	10.97	-8.42***	10.50	12.20	-31.82***		
	0.11	0.12	-3.56***	0.10	0.16	-13.44***		
NT	7.52	6.05	5.68***	7.16	4.23	9.45***		
	2.25	2.32	-3.63***	2.25	2.47	-9.67***		
	0.61	0.56	4.48***	0.62	0.40	17.27***		
	0.48	0.51	-2.30**	0.45	0.69	-17.65***		

Multivariate Analyses Findings

	e model 🦰 🖓	2	3	
	Coeff	Coeff	Coeff	
	t stat	t stat	t stat	
	-0.016**			
	(-2.312)			
	-0.006			
	(-0.468)			
CASIAN		0.017*		
		(-1.875)		
			-0.020*	
			(-1.720)	
			-0.035**	
			(-2.498)	
			-0.013	
			(-0.812)	
		0.001	0.003	
		-0.074	-0.179	

Robustness Tests

- undertake.
- results persist.

Conclusion

- reporting quality.

Contact Details: **Associate Professor Shireenjit Johl** shireenjit.johl@deakin.edu.au 03-925 17360

• Propensity score matching – results are consistent but more refinement to

• Used different abnormal accruals estimations- results are broadly similar • Tested by income-increasing and income-decreasing abnormal accruals and

• Replaced culture and gender proportions variables with dummy variables (of at least one board member) and results are consistent.

• Our findings show that Culture (rather than Gender) Diversity matters and in particular it lowers abnormal accruals indicating enhanced financial

• The results can be interpreted that culturally diverse boards improves decision making and monitoring. One potential reason for this result is that these boards are more creative and have a broader range of inputs from different perspectives. Minorities on these boards are also concern over their reputation and thus takes on their role seriously.

