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                Chapter 1: Introduction 

1.1. Background and literature review 

1.1.1. Introductory statement 

This thesis investigates the interaction between the entomopathogenic fungi 

Metarhizium anisopliae (Metchnikoff) and Beauveria bassiana (Bals) (Hypocreales: 

Clavicipitaceae) and of the cuticle of two grain beetles, Tribolium castaneum 

(Herbst) (Tenebrionidae: Coleoptera) and Rhyzopertha dominica (Fabricius) 

(Bostrichidae: Coleoptera).  

 Tribolium castaneum and Rhyzopertha dominica are the most problematic 

beetle pest for stored grain and grain products in Australia (Collins et al., 1993; 

Campbell & Runnion, 2003). They feed on grain products, causing qualitative as 

well as quantitative damage (Padin et al., 2002). These species have been found in 

association with a wide range of stored products, including grain, flour, peas, beans, 

cacao, nuts, and dried fruits (Collins et al., 1993; Campbell & Runnion, 2003). 

 The use of insecticides is one method of preventing some losses during 

storage. However, T. castaneum and R. dominica have developed resistance to most 

widely used insecticides, including phosphine and methyl bromide, which are used as 

quarantine and pre-shipment treatments for Australian grain exports, and this poses a 

significant threat to market access for Australian grain exports (Zettler & Cuperus, 

1990; Collins et al., 1993; Runnion, 2003). It is important to develop alternative 

control methods, such as the use of biopesticides control against stored insect pests.   
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1.2 Biopesticides to control insect pests  

 Entomopathogenic fungi have been evaluated as biopesticides to control 

insecticide resistant pests (Copping & Menn, 2000; Butt & Beckett, 1995). The 

effectiveness of entomopathogenic fungi such as M. anisopliae and B. bassiana have 

been reported in several studies for controlling the stored product pests such as T. 

castaneum and R. dominica (Moino Jr et al., 2002; Throne & Lord, 2004; Lord, 

2007; Gołębiowski et al., 2008; Abdel-Raheem et al., 2015). These fungi have been 

shown to be safe and useful biological agents in controlling insect pests, and both 

species are registered as insecticides (Sun et al., 2012; Wilson et al., 2011; Copping 

and Menn, 2000, Butt & Beckett, 1995; Gołębiowski et al., 2008; Abdel-Raheem et 

al., 2015). 

1.3 Fungal infection process  

 Entomopathogenic fungi infect through the cuticle (Fang & St Leger, 2012). 

They infect the insect via conidiospores that adhere to the cuticle, germinate and 

penetrate the cuticle. The fungal conidia attach to the cuticle and germinate to form a 

germ tube. In this process, the fungus may metabolise components of the insect 

cuticle to support germination and growth ( St Leger et al.,1987, 1992; Crespo & 

Juárez, 2000). The fungi then develop appressoria at the hyphal tips of the hyphae, 

by which the fungus penetrates through the insect cuticle and then into the 

hemolymph. B. bassiana and M. anisopliae produce hydrolytic enzymes, including 

chitinases, protease, lipases/ esterases, catalases, and cytochrome P450 that assist the 

fungus to penetrate the insect cuticle. These enzymes digest the major constituents of 

the insect cuticle and are considered essential to the infection process (St Leger et al., 

1986; Ortiz-Urquiza & Keyhani, 2013; Van Beilen et al., 2003; Rojo, 2010; Pedrini 
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et al., 2013). 

 The fungus then grows as blastospores or vegetative hyphae within the body 

of the host insect (Hajek & Stleger, 1994). After insect death and under the right 

environmental conditions, vegetative hyphae emerge from the cadaver and conidia 

may be produced on the outside of the insect's body. 

1.4. The insect cuticle composition 

 The insect cuticle consists of several layers, the epicuticle, the procuticle and 

the epidermis, and each has a different chemical composition (Pedrini et al., 2013). 

The epicuticle layer is the first barrier between the pathogen and the host, (Hadley et 

al., 1981; Pedrini et al., 2013) and is between 1-3mm in thickness (Figure 1). It 

consists of a cement layer and a thin wax layer (Hadley et al., 1981). 

 The main constituents of the cement layer are hydrocarbons, protein and 

lipids (Neville et al., 1976). Immediately below the cement is a wax layer (Hadley et 

al., 1981) with the important function of limiting water loss and preventing 

desiccation in insects (Baker et al., 1960; Cherry, 1969). Cuticular waxes of insects 

play a major role in protecting them from environmental damages (Blomquist & 

Jackson, 1979; Crespo & Juárez, 2000; Dorset & Ghiradella, 1983; Wertz, 1996).  

 In most insects, the wax layer that is under the cement layer contains 80% 

hydrocarbons, a small amount of esters, free primary alcohols, free fatty acids, 

alcohols, and possibly some triacylglycerols (Jarrold et al., 2007; Lockey & Oraha, 

1990) that form a layer approximately 0.25 mm thick (Sun et al., 2012). In some 

insects, such as cattle ticks, Boopilus microphilus, the wax layer is approximately 

10% of the epicuticle, with a depth of up to 0.1mm of the 1mm-thick epicuticle 

(Jarrold et al., 2007).  
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 Studies on insect cuticles have shown that hydrocarbons in the epicuticle are 

common in all insects (Baker et al., 1978; Blomquist et al., 1980; Blomquist & 

Jackson, 1979; Brophy et al., 1983; Lockey, 1976; Lockey & Oraha, 1990; Smith & 

Grula, 1982). Insect cuticular hydrocarbons include a mix of components such as 

alkanes, n-alkenes and methyl branched chains (Nicolás Pedrini et al., 2007; Saito & 

Aoki, 1983; Smith & Grula, 1982).  

 The wax layer may be a barrier to the penetration of microorganisms 

(Blomquist & Jackson, 1979; Pedrini et al., 2013); it can help inhibit the passage of 

cuticle degrading fungal enzymes (Alexander & Briscoe, 1944). However, some 

components, including long chain alkanes, may also be utilised by microorganism 

such as entomopathogenic fungi (Crespo & Juárez, 2000; Jarrold et al., 2007).,  

1.5 The interaction between host cuticle and fungal pathogenesis 

 Infection by fungal conidia occurs in three consecutive stages: firstly, 

adsorption of the fungi propagules to the cuticular surface, secondly adhesion of the 

border between the epicuticle and pregerminant propagules, and thirdly growth on 

the host cuticle, until the appressoria are developed at the start of the penetration 

stage (Pedrini, et al., 2007; Gołębiowski et al., 2012).  

 The cuticle appears to influence all stages of the infection process, including 

temporal differences in adhesion and germination that are important to pathogenicity 

(Arruda et al., 2005). The biochemistry of cuticular degradation by 

entomopathogenic fungi has been reviewed by St Leger et al., (1986) and Pedrini et 

al. (2007, 2010). In one study, cuticular crude polar extracts from locust wings 

containing fatty acids, fatty acid esters, glucose, amino acids and peptides were 

shown to be strong promoters of germination in M. anisopliae (Jarrold et al., 2007). 
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Furthermore, fungus used long-chain alkanes and other waxes, for hyphal growth and 

during the subsequent infection (Jarrold et al., 2007). 

   Leemon & Jonsson (2012) reported that M. anisopliae primarily 

infects the surface of the insect cuticle in ticks. In the case where fungi grow across 

the cuticle, they may be utilising the waxes in the cuticle as a source of nutrients and 

the target insect subsequently dies from dehydration.  

    

 

 

 

 

 

 

Figure 1: The insect cuticle and its hydrocarbon contents. Image taken from (Pedrini 

et al., 2013). The inner layer, outer layer, wax layer, cement layer, and bloom layers 

are often considered for insect cuticles. 

 Epicuticular components play a relevant role in preventing infection as well 

as affecting insecticide and chemical penetration. Long chain hydrocarbons, fatty 

alcohols and free fatty acids, some of which can be waxy, are the most abundant 

components in the epicuticle. (Saito & Aoki, 1983; St. Leger et al., 1987; Nicolás 

Pedrini et al., 2007).  
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 Multiple studies have shown that the epicuticular lipids in the outer layer may 

promote or inhibit fungal germination and growth into the insect epicuticle (Lord and 

Howard, 2004; Jarrold et al., 2007; Pedrini et al., 2007; Pedrini et al., 2013); they 

have also reported that the barrier properties of the insect cuticle might be essential 

to enhance the hydrocarbon degradation ability of the insect cuticle. Jarrold et al., 

(2007) reported that the infection process of fungal degradation may be limited to the 

cement and wax layers of the insect epicuticle.  

 It has been reported that entomopathogenic fungi may digest and utilise the 

outer layer and chemicals in the target insect cuticle to enhance the infection process 

(Boucias et al., 1988; Leemon & Jonsson, 2012). Several studies have reported that 

the pathogenic fungi use lipid degrading enzymes, which participate in degrading 

specific epicuticular lipid components to degrade the barrier of insect waxy layer 

(Van Beilen et al., 2003; Rojo, 2010; Pedrini et al., 2013). Pedrini et al., (2013) 

reported that “Alkanes and fatty acids are substrates for a specific subset of fungal 

cytochrome P450 monooxygenases involved in insect hydrocarbon degradation”. 

Alkanes were found to be highly reduced molecules with a high energy and carbon 

content, and therefore they can be good carbon and energy sources for 

microorganisms that are able to metabolise them (Van Beilen et al., 2003; Rojo, 

2010; Pedrini et al., 2013). B. bassiana contains a range 83 genes coding for 

Cytochrome P450 enzyme, which has the ability to assimilate n-alkanes and fatty 

acids in the epicuticular insect as a carbon and energy source for fungal infection 

(Pedrini et al., 2013).  

 The chemical composition of the wax layer is complex, but, hydrocarbons are 

the most common component in this layer (Lecuona et al., 1991). Several studies 

have reported that the hydrocarbon change during the fungal infection process 
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(Lecuona et al., 1991; Jarrold et al., 2007), and the differences in the hydrocarbon 

content of the waxy layer can affect fungal pathogenesis (Pedrini et al., 2013; Van 

Beilen et al., 2003; Rojo, 2010).  

 Some hydrocarbons stimulate fungal germination and growth in B. bassiana 

(Lecuona et al., 1991) and in M. anisopliae and B. bassiana (Boucias et al., 1988), 

whereas other hydrocarbons including free fatty acids and some carbons inhibit 

fungal spore germination (Smith and Grula, 1982). Cuticular hydrocarbons, such as 

fatty acids with ten or fewer carbons, can inhibit fungal spore germination in both M. 

anisopliae and B. bassiana conidia adhesion (Saito and Aoki 1983; Lord and 

Howard, 2004), or enhance the fungal germination process or act as chemical 

promoters for the production of penetrate germ tubes on insect cuticles (Latge et al., 

1987; Pedrini et al., 2013). 

 Two processes must occur before the fungus reaches and degrades the chitin 

and proteinaceous components of the insect cuticle. The first process is the adhesion 

and the interaction between the fungus and the epicuticular layer. The adhesion 

occurs via two steps, a nonspecific passive adsorption of fungal cells on the surface 

and then adhesion. Both M. anisopliae and B. bassiana produce hydrophobic conidia 

that possess a surface rodlet layer contained of proteins termed hydrophobins. M. 

anisopliae has two genes involved in adhesion (Mad1 and Mad2). These proteins 

contain single peptide, threonine-proline rich regions, involved in mediating 

adhesion, and assumed glycosylphosphatidylinositol anchor sites, which would 

localise the proteins to the plasma membrane. However, the loss of protein Mad1 

may decrease the fungal adhesion and germination process, whereas Mad2 did not 

have any effect on adhesion to insect cuticles. In B. Bassiana, two hydrocarbons, 

Hyd1 and Hyd2, are responsible for rodlet layer association, contributing to the 
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hydrophobic nature of cell surfaces, the adhesion to cell surfaces and virulence 

(Ortiz-Urquiza & Keyhani, 2013). 

 It has been reported that the T. castaneum has lower susceptibility to B. 

bassiana (Akbar et al., 2004; Lord, 2005) compared to other beetles, including 

Acanthoscelides obtectus, and Sitophilus oryzae (Padin et al., 2002). Similar results 

from the invertebrate microbiology group at QUT have shown that adults of T. 

castaneum are less susceptible to infection by B. bassiana and M. anisopliae than are 

adults of R. dominica when the fungal conidia are applied directly to the insects’ 

cuticle. If these pathogens are to be used as effective biocontrol, it is important to 

understand the differences in infection and factors that may cause it. The objectives 

in this thesis are to examine in detail the initial stages of germination and growth of 

B. bassiana and M. anisopliae on the cuticle of T. castaneum and R. dominica, and to 

analyse the cuticular lipids that might affect these processes from the wings and 

elytra of T. castaneum and R dominica using GCMS. Results from this study offer 

the first report on the chemical composition of wing and elytra from T. castaneum 

and R dominica. The knowledge gained may aid in understanding the role of 

cuticular lipids in resistance to infection in some species, and be an initial step 

towards the improving the control of T. castaneum and R. dominica with 

entomopathogenic fungi. 
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Chapter 2: The interaction between the cuticle 
of Tribolium castaneum and Rhyzopertha 
dominica and the germination of 
entomopathogenic fungi 

2.1. Abstract. Two isolates of the entomopathogenic fungi Metarhizium anisopliae 

(Metchnikoff) and Beauveria bassiana (Bals) were cultured on cuticles (wings and 

elytra) of the pest beetles Tribolium castaneum (Herbst) and Rhyzopertha dominica 

(Fabricius).  

The germination of the isolates and hyphal growth were observed using scanning 

electron microscopy. At 14 hours there was a significant and consistent reduction in 

both germination and length of hyphal growth in both species of fungi on elytra of T. 

castaneum compared to elytra of R. dominica.  

An examination of the number of hyphal tips per conidium and number of appresoria 

showed few significant differences or consistent patterns between or within species 

with either fungi. However, there was a significantly higher mean number of 

appressoria per conidium on elytra of R. dominica than on elytra of T. castaneum. 

The results support a hypothesis that reduced germination, growth of hyphae and 

formation of appressoria on the elytra of T. castaneum indicate a reduced 

susceptibility to infection by entomopathogenic fungi. 
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2.2. INTRODUCTION 

Tribolium castaneum (Herbst) (Tenebrionidae, Coleoptera) and Rhyzopertha 

dominica (Fabricius) (Bostrichidae, Coleoptera) are common pests of grains and 

grain products that cause significant damage to the grain industry. Strains of T. 

castaneum and R. dominica are resistant to phosphine and methyl bromide, which are 

used as quarantine and pre-shipment for Australian grain exports, and this poses a 

significant threat to market access for wheat exports (Zettler & Cuperus, 1990; 

Collins et al., 1993; Jagadeesan et al., 2015; Jagadeesan, Nayak, et al., 2015). 

Alternative controls and options for use in resistance management strategies are 

urgently needed.  

The entomopathogenic Hyphomycetes Metarhizium anisopliae (Metchnikoff) 

and Beauveria bassiana (Bals) (Hypocreales: Clavicipitaceae) are natural pathogens 

of insect species, and have been developed as biopesticides against a range of pests 

(Copping and Menn, 2000; Sun et al., 2012; Wilson et al., 2011). Isolates of B. 

bassiana have been found to be highly effective against several species of stored 

grain beetles (Lord, 2001; Padin et al., 2002; Throne & Lord, 2004) and have been 

successfully used to control T. castaneum and R. dominica in multiple tests (Lord, 

2005; Lord, 2007; Moino Jr et al., 2002; Pedrini et al., 2010), either when applied 

directly to the insects or when mixed with food (Akbar et al., 2004; Padin et al. 

2002). However, it was recently shown in this laboratory (Hauxwell, unpublished) 

that R. dominica is more susceptible to infection than T. castaneum by both M. 
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anisopliae and B. bassiana, but that the percentage of mortality following direct 

application of spores to the insect was low in both species of insect and with both 

species of fungi. 

M. anisopliae and B. bassiana infect the insect by adhering to and penetrating 

the host insect’s cuticle (Crespo & Juárez, 2000; St. Leger et al.,1987, 1992). The 

fungal spore attaches to the cuticle and germinates to form a germ tube and then an 

appressorium, by which the fungus penetrates through the insect cuticle using a 

combination of mechanical pressure and cuticle-degrading enzymes (Arruda et al., 

2005, St. Leger et al., 1992). The fungus then grows as blastopores or vegetative 

hyphae within the insect (Hajek & St. Leger, 1994). After death of the host insect, 

and under the suitable conditions of humidity and temperature, vegetative hyphae 

emerge from the cadaver and conidiospores produced on the outside of the insect's 

body and are released to infect a new host (Hajek & St. Leger, 1994).  

The insect cuticle presents a barrier at all stages of initial infection: adhesion, 

germination, growth and penetration (Pedrini et al., 2013). However, components of 

the cuticle, in particular, long chain alkanes, can promote infection as the fungus 

utilises them during germination and growth (Smith and Grula, 1981; Jarrold et al., 

2007).  

 In beetles, wings are covered by the elytra, the structure of which is thicker 

and more typical of the cuticle on other body parts. In this study, the germination of 

conidiospores of the entomopathogenic M. anisopliae and B. bassiana on the wings 

and elytra of the two beetle species was observed using scanning electron 

microscopy. The research objective was to establish whether the fungal activities of 

M. anisopliae and B. bassiana conidia on cuticles of different body parts with 

different structure (wings and elytra) of both insect species could explain the 
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different susceptibilities of these insects; this was done by identifying differences in 

germination, germ tube growth (total hyphal length, and hyphal growth units) and 

appressoria formation. 

 

 

 

 

2.3. MATERIALS AND METHODS 

2.3.1. Insect culture  

Adults of two species of grain beetles (T. castaneum and R. dominica) were 

obtained from the Department of Agriculture and Fisheries, Queensland. The insects 

were then reared at the Queensland University of Technology. Adult beetles were 

reared in jars, on organic flour (T. castaneum) and wheat grain (R. dominica) 

maintained at 26°C under a light/dark cycle of 12h (Konopova & Jindra, 2007). 

 

2.3.2. Fungal isolates and culture 

 M. anisopliae isolate M251-P was obtained from the Queensland Department 

of Agriculture and Forestry. B. bassiana isolate Bb.spw was obtained from the QUT 

collection as single spore clones of an isolate from a sweet potato weevil. Both 

fungal isolates were used for germination and growth assays. 

Fungal cultures for germination assays were grown on Saborauds Dextrose Ager 

with yeast extract (SDAY) incubated at 26°C under light for 14 days, and spores 

were collected by tapping them over a clean plastic funnel into 30ml sterilised plastic 

capped vials. The spores were then air-dried for 12h overnight in a safety cabinet 

with a sterilised air flow. 

https://www.daf.qld.gov.au/


 21 

The suspension of Bb.spw was prepared by adding 2mg of fresh dry spores to 

2ml of 0.05% Tween 80 to final concentrations of 2.1 x 104 ml (germination assay) 

and 2.3 x 104 ml (growth assay). M. anisopliae was prepared by adding 16.6 mg of 

dry spores to 16.6 mL of Tween 80. Suspensions were diluted in Tween 80 to final 

concentrations of 1.875x 106 conidia ml (germination assay) and 1x 106 conidia ml 

(growth assay). Final conidia concentration was determined by direct count using a 

haemocytometer. 

2.3.3. Germination assays  

Adult beetles of both species were removed from the rearing jars, placed in 30ml 

glass vials, and killed by freezing at -20°C for 12h. Wings and elytra were dissected 

under light microscopy. The wings and elytra were washed separately three times 

with sterilised water and sonicated for approximately 30 seconds to remove flour and 

other contaminants. The water was removed from the samples by pipette, and 

samples were then dried in a freeze drier (Alpha 1- 4 LD Plus) under vacuum at 0.05 

mbar, with the condenser set at -55°C. After drying, the samples were weighed.  

The fungal treatments of M. anisopliae and B. bassiana were used in 

germination assays. For each fungus, 10 replicates of wings and 10 replicates of 

elytra were used to assess the germination of fungal spores (5 replicates of wings and 

5 replicates of elytra of each insect species). Germination data was collected after 

time 1 (14h post inoculation) and after time 2 (24 hours post inoculation) with fungi. 

In Treatment 1 (M. anisopliae), at time zero, 10 replicates of wings and 10 

replicates of elytra were placed on water agar plates. The replicates were then 

inoculated with 10µl of 1.9 x 106 suspensions of M. anisopliae spores. 
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In Treatment 1 (B. bassiana), at time zero, 10 replicates of wings and 10 

replicates of elytra were inoculated with 2.1 x 104 conidia/ml spore suspension of B. 

bassiana.  

Sterile distilled water was applied to five wings and elytra as a control. The 

treated wings and elytra were maintained at 100% humidity in sealed plastic 

containers lined with wet paper towels and incubated at 27°C under light for 14 and 

24h.  

2.3.4. Growth by entomopathogenic fungi assays 

Ten replicates each of 5 wings and 5 elytra from each beetle species were 

inoculated as above with 10µl of 1x 106 suspensions of M. anisopliae spores and 2.3 

x 104 conidia/ml spore suspension of B. bassiana, then maintained in a humidity 

chamber and incubated as above for 14 or 24 hours (25 wings and elytra of each 

beetle specie per fungal treatment per time point).  

 

2.4. Scanning electronic microscopy (SEM)  

Wings and elytra were removed at 14 and 24 h post inoculation. Each sample 

was sputter coated using a Leica Gold Coater and photographed under Zeiss Sigma 

Scanning electronic microscope under vacuum at 10–15 kv at the Central Analytical 

Electron Microscopy Facility at Queensland University of Technology.   

Germinated and ungerminated spores, appressoria and total hyphal tips were 

counted either manually or by image processing and analysis software in Java format 

(Image J, Version 1.49), and hyphal length and branching were measured using 

image J software. 
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The total number of spores on each wing and elytron were calculated, 

followed by counting the germinated spores, and germination was recorded when a 

germ tube was observed. Germination at each time post inoculation was expressed as 

a percentage spore germination of total number of spores.  

The total length of hyphal from each spore was measured as the sum of the 

length of the main hypha plus the length of the branches (Reichl et al., 1990).  

 

 

 

2.5. Statistical analysis  

 Data were analysed using SPSS Statistics Version 22.  

Total percentage germination on each insect body part at each time post inoculation 

for each fungus was calculated from the total number of germinated spores divided 

by the total number of spores (including the not-germinated spores). Germination 

data at 14 hours were first subjected to Arcsin transformed before analysis to check 

for normality. The data was tested for normality and the assumption of homogeneity 

of variance on the data of both fungi was tested using Shapiro-Wilk. The test 

indicated that the data was normally distributed. 

Analysis of variance (one-way ANOV) was used to compare the means of total 

percentage germination for each insect body part. A two-way ANOVA was 

performed to investigate the combined effects of the two factors, ‘insect species’ and 

‘body part’, on the percentage germination. The assumption of homogeneity of 

variances was tested based on Levene's F test. Then, two-way ANOVA was 

performed to investigate the combined effects of insect species and body part on the 

percentage of germination in each fungus at 14 post inoculation. 
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 An independent two-sample t-test was performed to compare the mean total 

hyphal length, and the percentage of hyphal tips that formed appressoria. A Chi-

Square Test was performed to investigate the correlation between two categorical 

variables for the numbers of appressoria and hyphal tips.     

2.6. RESULTS 

2.6.1. Percentage germination 

 Both fungi had 100% germination on both insect body parts at 24 hours. 

Conidial germination was therefore compared at 14h after inoculation of both 

fungal isolates. A Levene's test was used to test the homogeneity of variances, and 

the result showed that the data rejected the null; the assumption of homogeneity of 

variances was not satisfied based on Levene's F test, F (3, 295) = 21.863, (p < 

0.001). Therefore, Further analysis was applied by transforming the data using 

ARSIN test, and then the transformed data was tested for homogeneity of variance 

using a Levene’s test. The result indicated that the data was homogeneous F (7, 28) 

=0.815, (p = 0.583). 

The mean percentage germination of M. anisopliae on the wings of T. 

castaneum was 98% (standard deviation SD = 0.0893), which was significantly 

higher (p = 0.001) than on the elytra (94%, Standard deviation = 0.1734) (Table 

2.1).  In contrast, the mean percentage germination of M. anisopliae conidia on the 

wings of R. dominica was 92% (SD = 0.1960), which was significantly lower (p = 

0.008) than on the elytra (100% at 14 hours, SD = 0.0168).  

When comparing germination on wings and elytra in the two beetle species, 

the germination of M. anisopliae conidia on the wings of T. castaneum was 

significantly higher (98% +- 0.09%) than on the wings of R. dominica (92% =/- 

0.2%, p = 0.001). However, mean percentage germination of M. anisopliae conidia 
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on the elytra of T. castaneum was significantly lower (94% +/- 0.17%) than on the 

elytra of R. dominica (100% +/- 0.02%, p = 0.026). 

Table 2.1. Mean and standard deviation of percentage germination of M. anisopliae conidia 

on wings and elytra of T. castaneum and R. dominica at 14h post inoculation. 

Insect  Body part 
Mean percentage germination 

(and standard deviation) 

T. castaneum wing 98 (±0.09) a 

elytra 94 (±0.17) b 

R. dominica wing 92 (±0.20) c 

elytra 100 (±0.02) d 

 

 

The mean percentage germination of conidia of B. bassiana on the wings of 

T. castaneum was 64% (SD=0.17), which was significantly greater (p < 0.001) than 

on the elytra (46%, SD=0.19) (Table 2.3). In contrast, the mean percentage 

germination of B. bassiana on the wings of R. dominica (68%, SD=0.22) was not 

significantly different to that on the elytra (75%, SD=0.10).  

 There was no significant difference between the mean percentage of spore 

germination on the wings of T. castaneum and R. dominica. In contrast, the 

germination of B. bassiana spores on the elytra of T. castaneum was significantly 

lower (46%, SD=0.19) than on the elytra of R. dominica (75%, SD=0.1, p < 0.001).  

 Overall, the germination of B. bassiana spores on the elytra of T. castaneum 

was significantly lower than on the wings and elytra of R. dominica and on the 

wings of T. castaneum. 
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Table 2.3 Mean percentage of germination and standard deviation of B. bassiana conidia 

on wings and elytra of T. castaneum and R. dominica at 14h post inoculation.  

Insect  Body part 
Mean percentage germination 

(and standard deviation) 

T. castaneum wing 64 (±0.17) ac 

elytra 46 (±0.19) b 

R. dominica wing 68 (±0.22) ac 

elytra 75 (±0.10) c 
 

2.6.2. Growth of fungal hyphae 

2.6.2.1. Total hyphal length. After germination, both fungi produced a single, short 

germ tube at 14h post inoculation. By 24h post inoculation, both fungi colonised the 

cuticles with extensive mycelial growth.  

 

 

Total hyphal length of M. anisopliae at 14h on both insect body parts.  

The mean total hyphal length per conidium is given in Table 2.5.   

 

Table 2.5. The mean total hyphal length and standard deviation of M. anisopliae wings and 

elytra of T. castaneum and R. dominica at 14h post inoculation.  

 
Total hyphal length in µm (and standard 

deviation in µm) 

 Body parts Tribolium castaneum Rhyzopertha dominica 

Wings 1460 (±1802) 

 

983 (±1029) 

 

Elytra 199 (±98) 

 

792 (±658) 
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The mean total hyphal length on the wings of T. castaneum were significantly 

greater than on the elytra by 1261µm (95% CI: 859 – 1664 µm, two- sample t-test, (p 

< 0.001)). In contrast, although the mean length of hyphae on the elytra of R. 

dominica was also less than on the elytra, the difference was not significant (p > 

0.05) at 14h post inoculation.  

A third independent t-test showed that the mean total hyphal length of M. 

anisopliae spores on T. castaneum wings at 14 hours was significantly larger than on 

the wings of R. dominica by 477 µm (95% CI: 18 – 936 µm, two- sample t-test, (p < 

0.05). 

Finally, a fourth independent t-test showed that the mean total hyphal length 

of M. anisopliae on the elytra of R. dominica was longer than the mean total length 

on the elytra of T. castaneum by 594 µm (95% CI: 444 - 743µm, two- sample t-test, 

p < 0.001). 

Overall, the growth of M. anisopliae on the elytra of T. castaneum was the 

shortest for the samples treated, and growth on wings of both species was greater 

than on elytra. 

 

Total hyphal length of B. bassiana at 14h on both insect body parts.  

The mean total hyphal length is given in Table 2.7.   

Table 2.7.  The mean total hyphal length and standard deviation of B. bassiana on wings and 

elytra of T. castaneum and R. dominica at 14h post inoculation.  

 
Total hyphal length (and standard deviation) 

in µm 

Body parts T. castaneum R. dominica 

Wings 12 (±15)  47 (±48) 

Elytra 38 (±35) 109 (±81) 
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The mean total hyphal lengths of B. bassiana on the elytra of T. castaneum 

were significantly longer than on the wings, by 26µm (95% CI: 17 - 35µm), two- 

sample t-test, (p < 0.001). A second independent sample t-test showed that the mean 

total hyphal length of B. bassiana on R. dominica elytra was significantly larger than 

on the wings, by 62µm (95% CI: 45 - 79µm), two-sample t-test, p < 0.001).  

The mean total hyphal length of B. bassiana spores on R. dominica wings at 

14 hours was significantly longer than on the wings of T. castaneum by 34.75µm 

(95% CI: 27.19 - 42.31µm, two-sample t-test, (p < 0.001). 

A fourth independent t-test showed that the mean total hyphal length of B. 

bassiana on the elytra of R. dominica was longer than the mean total length on the 

elytra of T. castaneum by 70 µm (95% CI: 53 - 89µm, two-sample t-test, p < 0.001).  

 

 

Total hyphal length of B. bassiana at 24h on both insect body parts. 

 The mean total hyphal length in each insect, is given in Table 2.8.   

Table 2.8. The mean total hyphal length of B. bassiana and standard deviation on wings and 

elytra of T. castaneum and R. dominica at 24h post inoculation.  

 
Total hyphal length in µm 

Body parts T. castaneum R. dominica 

Wings 102 (±103) 80 (±47) 

Elytra 212 (±262) 164 (±186) 

 

At 24 hours post inoculation, the mean total hyphal length per spore of B. 

bassiana on the elytra of T. castaneum were significantly longer than on the wings, 

by 110µm (95% CI: 55- 166µm, two-sample t-test, (p < 0.001). A second 

independent t-test also showed that the total hyphal length of R. dominica elytra is 
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significantly longer than the wings by 84µm (95% CI: 45 - 122µm), two- sample t-

test, (p < 0.001).  

In contrast, the mean length of hyphal growth of B. bassiana on the elytra of T. 

castaneum was highly variable and was not statistically significant from that on R. 

dominica (p = 0.060). 

 

Number of tips 

The number of tips formed from each spore is an indication of the pattern of 

branching in the hyphae.  

Pearson Chi-Square test performed on the number of hyphal tips of mycelium per 

spore of M. anisopliae showed that the number of tips formed on the wings is 

significantly higher than the elytra of T. castaneum (p = 0.002) In contrast, the 

number of hyphal tips of M. anisopliae was found to be statistically higher on the 

elytra of R. dominica (p < 0.001) than the wings.  

A Pearson Chi-Square test was performed on the number of hyphal tips of M. 

anisopliae at 14h p.i on the elytra of both insect species. On the elytra of T. 

castaneum, 75.7% of conidia were observed to have one hyphal tip, 24.3% of 

conidia had two hyphal tips, whereas on the elytra of R. dominica, 67.5% of conidia 

had two hyphal tips, followed by 30% with one hyphal tip and 2.5% of conidia had 

three hyphal tips. The difference in mean hyphal tip counts for the elytra of the two 

insects was statistically significant (p < 0.001), with greater number of tips per 

conidium on R. dominica that on T. castaneum. 

The number of hyphal tips per conidium of B. bassiana on the wings of T. castaneum 

was significantly greater than on the elytra (Pearson Chi-Square test, p < 0.001). The 

difference between the number of hyphal tips of B. bassiana at 14h p.i on wings and 
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elytra of R. dominica was not statistically significant. A total of 90.1% of conidia had 

one hyphal tip on R. dominica wings, and 9.9% had from two to five hyphal tips. 

Whereas, on the elytra of R. dominica, 82.7% of conidia had one hyphal tip, and 

17.3% had from two to eight hyphal tips.  

Comparing the number of hyphal tips of B. bassiana at 14h p.i. on the wings of both 

insects 99.4% of conidia had one hyphal tip on the wing of T. castaneum and none 

had more than one, whereas on the wing of R. dominica, the number of conidia that 

had one hyphal tip was 90.1%, but 9.9%, of conidia had from two to five hyphal tips. 

The mean number of hyphal tips per conidium of B. bassiana on the wings of R. 

dominica 14h p.i. was significantly higher than on T. castaneum (p < 0.001).  

Comparison of the number of tips per conidium on elytra of both species showed no 

significant difference between insect species at either 14 hours or 24 hours post 

inoculation, and indeed at 24 hours there was no significant difference in the mean 

number of tips per conidium of B. bassiana in either of the insect species or body 

parts. 

 

The formation of fungal appressoria  

Appressorium formation in M. anisopliae conidia was seen at 14h post inoculation 

on both wings and elytra (Figures 2.1a, 2.2c), whereas few were seen in B. bassiana 

conidia until 24h (Figure 2.1b).  

At 14h post inoculation, each conidium of B. bassiana produced only one germ tube 

(Figure 2.1a), whereas some conidia of M. anisopliae produced long germ tubes with 

variation in their length prior to appressoria formation (Figure 2.2c, f). The number 

of fungal appressoria differed for the two isolates on both insect species and their 

body parts. 
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 One or two appressoria per conidium of B. bassiana were produced at 24h at 

the end of long germ tubes on wings and elytra of both insect species (Figure 2.1). 

Very few conidia (a total of 3 across all replicates) of M. anisopliae were observed 

on elytra at 24 hours, but those that were seen produced two or more appressoria at 

the end of each long germ tube on the wings and the elytra of T. castaneum (Figure 

2.2f and Figure 2.3d).  

At 24h pi, B. bassiana produced one or two appressoria per spore at the end 

of germ tubes on the wings and elytra of T. castaneum and R. dominica, whereas M. 

anisopliae formed two or more appressoria per spore at 24h p.i. 

 The mean number of appressoria per spore of M. anisopliae on T. castaneum 

body parts, on R. dominica body parts, and on the elytra of both insect species, was 

not statistically significant at 14 hrs post inoculation.  

The number of appressoria per conidium of B. bassiana on T. castaneum at 

14h was significantly higher on the elytra of T. castaneum than on the wings, 

(Pearson Chi-Square test, p < 0.001). The number of appressoria was significantly 

higher (77.9%) on the wings of R. dominica than on the elytra (61.5%) (Pearson Chi-

Square test, p < 0.025).  

On the wings of T. castaneum, the majority of the B. bassiana conidia at 14h 

(97.4%) had no appressoria although a small percentage of conidia had one, two, or 

six appressoria (1.9%, 0.6%, and 0, 6% respectively). In contrast, a significantly 

greater mean number of appressoria per conidium were observed on the wings of R. 

dominica: 70.3% of conidia had one appressorium, but 1.7% had three appressoria (p 

< 0.001). 

 Comparing the appressoria of B. bassiana on the elytra of both insect species 

at 14h, 79.1% of conidia has no appressoria on the elytra of T. castaneum, 16.4% had 
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one appressoria per conidium and only 3% of conidia had two appressoria, whereas 

on the elytra of R. dominica, half of the samples had one appressoria (55.8%), but 

4.18% had from two to five appressoria. The differences in number of appressoria 

between the elytra of T. castaneum and R. dominica was significantly higher on the 

elytra of R. dominica than the elytra of T. castaneum (p < 0.001).  

 

Enzyme degradation was apparent around both conidia and germ tubes of B. 

bassiana (Figure 2.1d), and M. anisopliae (Figure 2.2d). At 24h, both fungi produced 

evidence of cuticular degradation during the hyphal elongation process on the insect 

cuticle (Figure 2.2e).  
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Figure.2.1. (a, b) Conidia of B. bassiana on the wing of R. dominica 14 and 24h post inoculation 

respectively. (c) B. bassiana 24h on the wing of R. dominica. (d) B. bassiana on the elytra of R. 

dominica 24h p.i. (e) B. bassiana 24h on the elytra of T. castaneum. (f) B. bassiana and appressorium 

penetration and enzyme degradation on the wing of T. castaneum 24h p.i.  

 

 

b 

c d 

e f 

a 
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Figure.2.2. (a) Conidia of M. anisopliae germinated on R. dominica wings 14h post inoculation. (b) 

Conidia on R. dominica elytra 14h post inoculation with M. anisopliae. (c) Conidia spore on T. 

castaneum wing 14h post inoculation with of M. anisopliae. (d) Conidia spore on T. castaneum elytra 

14h post inoculation with of M. anisopliae. (e) M. anisopliae enzyme degradation on the wing of T. 

castaneum. (f) M. anisopliae produced two or more appressoria at the end of each long germ tube on 

the wing of T. castaneum. 

a b 

c d 

e f 
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Figure.2.3. Conidia of M. anisopliae development on the elytra of T. castaneum, 24h post inoculation. 

(a) M. anisopliae elongation and hyphal growth on the surface. (b) Appressorium formed out of signal 

germ tube. (c) Appressoria penetrated the cuticle via enzyme degradation. (d) Appressorium degrades 

the cuticle through enzyme degradation, mechanical pressure.  

 

 

 

DISCUSSION 

a b 

c d 

e 
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 This study found that the cuticles of both insects have an effect on fungal 

germination, hyphal growth, and on the formation of appressoria.  

 The germination of conidia of both fingal species was significantly less on 

elytra of T. castaneum than on the elytra of R. dominica at 14hrs post inoculation, 

although germination was 100% in both species of fungi and on all body parts at 

24hours. At 14 hours post inoculation there was a significant reduction in hyphal 

length in both species of fungi on elytra of T. castaneum than on elytra of R. 

dominica. There were significantly fewer appressoria per conidium observed in B. 

bassiana on the elytra of T. castaneum than on elytra of R. dominica 

A comparison of patterns of germination, growth and formation of appressoria on 

wings both within and between species was less consistent and frequently not 

significantly different.  However, percentage germination of both fungal species at 

14 hours post inoculation was significantly higher on wings in T. castaneum than on 

elytra, and significant higher on elytra than on wings in R. dominica. There were 

differences in hyphal growth between the two species, with longer growth of B. 

bassiana on elytra than on wings of both insect species, but, in contrast, hyphal 

growth of M. anisopliae was longer on wings than on elytra in both insect species at 

14 hours post inoculation.  

Reduced rate of germination, hyphal growth and formation of appressoria may be an 

indicator of reduced susceptibility to infection. Reduced germination and 

appressorium production by conidia of M. anisopliae were observed on the cuticle of 

Calliphora vomitoria than on the more susceptible host insects (Manduca sexta) (St 

Leger et al 1987). Similarly, it has been sugested that the formation of appressoria by 

M. anisopliae is the main factor in the virulence of this fungus (Neves and Alves, 

2004).   
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Overall, the results in this chapter support a hypothesis that reduced germination, 

growth of hyphae and formation of appressoria on the elytra of T. castaneum underly 

a reduced susceptibility to infection by entomopathogenic fungi.  

In this study, the conidia of both fungal isolates penetrated the cuticles at 24h post 

inoculation and M. anisopliae induced enzymatic degradation. Fungal production of 

degradative enzymes such as chitinases, proteases, and lipases, are important to the 

invasion process on the insect cuticle during the infection stages (Arruda et al., 2005; 

Da Silva et al., 2010; Leemon & Jonsson, 2012; St. Leger et al. 1987). These 

enzymes digest the major component of the host insect cuticle during the infection 

process (St. Leger et al., 1987), and the proteases digest the protein in the insect host 

cuticle to facilitate passage through the insect cuticle (Leemon & Jonsson, 2012). In 

particular, it has been suggested that hydrocarbons in the insect cuticle may influence 

germination and infection (Jarrold et al 2007, St Leger et al 1988) and the 

differences in the composition of the cuticle in T. castaneum and R. dominica were 

therefor analysed in the next chapter. 
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Chapter 3: Comparative chemical analysis 
of wings and elytra in Tribolium castaneum 
and Rhyzopertha dominica 

3.1 Abstract- Grain beetles are distributed worldwide and include the economically 

important species Tribolium castaneum (Herbst) (Tenebrionidae, Coleoptera) and 

Rhyzopertha dominica (Fabricius) (Bostrichidae, Coleoptera). Both species are 

resistant to chemical insecticides and, in particular, to phosphine and methyl 

bromide, which are used as quarantine and pre-shipment treatments for Australian 

grain exports. Alternative controls and options for resistance management are 

urgently needed.  

Entomopathogenic fungi have potential as biopesticides against these pests, but 

establishment of infection may be inhibited (or stimulated) by the composition of the 

cuticle, and in particular by the lipid compositions. Crude extracts of lipids from two 

different body parts (wings and elytra) of adult T. castaneum and R. dominica were 

made using non polar (hexane) and polar (chloroform) solvents and analysed using 

gas chromatography mass spectrometry. Differences were observed between species 

and between wings and elytra. Significantly, T. castaneum elytra were found to 

contain fewer long chain alkanes, which are reported to support spore germination 

and early infection, and to contain alcohols and one free fatty acid (C18), which are 

reported to inhibit fungal growth, than the elytra of R. dominica These differences in 

composition appear to be correlated with differences in germination and growth, as 

reported in Chapter 2. 
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3.2 INTRODUCTION 

Tribolium castaneum (Herbst) (Tenebrionidae, Coleoptera) and Rhyzopertha 

dominica (Fabricius) (Bostrichidae, Coleoptera) are common pests of grains and 

grain products that cause significant damage to the grain industry (Padin et al., 2002; 

Campbell & Runnion, 2003). They are resistant to chemical insecticides including 

malathion, dichlorovs, and to chlorpyrifos-methyl (Zettler & Cuperus, 1990). In 

Australia, strains of both species are resistant to phosphine and methyl bromide, 

which are used as quarantine and pre-shipment treatments for Australian grain 

exports, and thus pose a significant threat to market access for grain exports (Zettler 

& Cuperus, 1990; Collins et al., 1993). Alternative controls and options for use in 

resistance management strategies are urgently needed.  

 The entomopathogenic fungi M. anisopliae (Metchnikoff) and B. bassiana 

bassiana (Bals) (Hypocreales: Clavicipitaceae) have been developed as 

biopesticides against a range of pests. (Butt & Beckett, 1995; Copping & Menn, 

2000; Moino Jr et al., 2002). These pathogens infect the host following adhesion of 

conidiospores to the cuticle and subsequent germination and penetration of the host 

cuticle (St. Leger et al., 1987, 1992; Crespo & Juárez, 2000).  

The insect cuticle is covered by a thin layer of lipids consisting of a variety of 

compounds such as hydrocarbons (Baker et al., 1978; Cvačka et al., 2006), wax 

esters (Nelson et al., 2000), fatty alcohols and free fatty acids (Gołębiowski et al., 

2008; Gołębiowski et al., 2012). Long chain alkanes, have been shown to promote 

germination and infection (St. Leger et al., 1988). Crude polar extracts from locust 

wings containing fatty acids, fatty acid esters, glucose, amino acids and peptides 

were shown to be strong promoters of spore germination in M. anisopliae, while non-
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polar extracts, including long-chain alkanes and other waxes, promoted hyphal 

growth and subsequent infection (Jarrold et al., 2007). Some compounds, such as 

proteases, quinones, and longer chain hydrocarbons may reduce infection by 

microorganisms through inhibition of cuticle degradation by fungal enzymes (St. 

Leger et al.,1987, 1992; Crespo & Juárez, 2000; Pedrini et al., 2013).  

 The cuticular lipids of insects can vary depending on species, age, sex, and 

developmental stage (Cerkowniak et al., 2013) and can also be affected by 

environmental conditions such as temperature, humidity and the availability of food 

(Szafranek et al., 2012; Cerkowniak et al., 2013). There are, in addition, significant 

differences in composition between structures such as wings and elytra, but the 

majority of studies have focused on analysis of wings, as these are easily isolated 

from the insect and have a large cuticle area to mass ratio (St. Leger et al., 1987; 

Jarrold et al., 2007). Infection by fungi in beetles is more likely to occur on the head, 

thorax or abdomen, but the cuticle of these is more difficult to isolate from internal 

tissues. In beetles, the wing is covered by the elytra, the structure of which is thicker 

and more typical of the cuticle on other body parts and may thus be used as a 

representative of these structures.  

 There have been few studies on the composition of the hydrocarbons in T. 

castaneum and R. dominica. Baker et al., (1978) studied the cuticular hydrocarbons 

of T. castaneum adults, and Howard & Liang, (1993) analysed larvae of R. dominica, 

using GCMS. In this study, the hydrocarbons extracted from wing and elytra in both 

T. castaneum and R. dominica were compared as part of a larger study on the 

comparative pathology of entomopathogenic fungi in the two species. 
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3.3. METHODS AND MATERIALS 

3.3.1. Insect cultures.  

 T. castaneum and R dominica were obtained from The Department of 

Agriculture and Fisheries, Queensland and subsequently reared in glass jars on either 

organic flour (T. castaneum ) or wheat (R dominica) at 30°C under a light/dark cycle 

of 12h. Adult beetles were harvested by sieving and placed in 30ml glass vials, and 

killed by freezing at -20°C for 12h. Wings and elytra of adult beetles were dissected 

under a light microscope and stored at -20°C. The wings and elytra were cleaned by 

washing three times with sterilised water and sonication for approximately 30 

seconds. The water was then removed by pipetting and the insect material freeze-

dried overnight and weighed.  

3.3.2. Chemical materials. 

 Selection of solvents: The wax stearyl stearate was used as a standard and 

solubility tested in methanol (99.8%), pentane (89.9%), n- Hexane (98.8%), and 

chloroform (99.8%) (Sigma Aldrich). Two solvents, n- Hexane (98.8%) and 

chloroform (99.8%), were selected.  

Wings and Elytra Extraction. Crude preparations were extracted from 1mg of each 

dried wing or elytrum sample using n-hexane or chloroform. Samples were refluxed 

with 1.5 ml of hexane or chloroform for 1h at 80°C, over a water bath. Extracts were 

then cooled to room temp, filtered through a syringe filter (Micro Analytix Pty Ltd- 

Hydrophilic PTFE, NEW Australia), weighed, and the refluxed samples were then 

washed with a further 1 ml of solvent. The resulting extract was dried under a stream 

of nitrogen, reweighed and stored at -80°C until analysis. 
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3.3.3. Derivatisation.  

 The crude chloroform extracts were subjected to derivatisation by 

saponification with 1ml of KOH in methanol and heating at 70°C on a dry heating 

block for 30min, then cooling to room temperature. The fatty acids formed were 

methylated by adding 2ml of BF3 (boron trifluoride) in methanol and heated for 1h 

at 70°C. One ml of water and 1ml of chloroform were added. The chloroform layer 

was removed by pipetting with a glass pipette.  

A standard of n-alkanes (C10 – C40; Restek), and FAME mix (F.A.M.E. Mix, C8-

C24; Sigma-Aldrich, Australia), was used to calculate the retention index values. The 

negative control procedure was used to identify the contaminating compounds when 

identified by Gas Chromotography – Mass Spectrometry (GCMS). 

 

3.3.4. Gas Chromatography – Mass Spectrometry (GCMS).  

 Samples were run on a Shimadzu GCMS QP2010-Ultra, fitted with an Rxi-

5MS column (length: 30m, internal diameter: 0.25mm, film thickness 25µm), carrier 

gas of helium.  One microliter of sample was injected into the injector in splitless 

mode, with a pressure of 81 kPa, and a column flow of 1.4ml/min. The injector 

temperature was at 280 °C, and the column temperature varied from 50 to 345 °C, 

increasing at a rate of 10 °C / min.  Mass spectra were collected from 4 minutes to 

the end of the run in scan mode between 35 and 600 m/z, collecting 10 spectra / 

second.  Compounds were identified by comparison of the spectra to the NIST 

library v11, and by comparison to literature relative retention indexes and a standard 

of n-alkanes (C10 -40; Restek) 
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3.3.5. Compound identifications and Retention Time Index calculation.  

 The most common approach to identifying the chemical compound on GCMS 

is comparison of the recorded mass spectra with standard mass spectral libraries. 

However, to aid identification, the retention index was calculated.  

A standard of n-alkanes was used to identify compounds and the retention indices 

were calculated using the following equation: 

 

 Where I = the adjusted Kovats retention index, n = the number of carbon 

atoms in the smaller n-alkane, N = the number of carbon atoms in the larger n-alkane, 

tr = the retention time. The compounds were identified by calculation of retention 

index and also subsequent verification of the values by comparison with previous 

literature RI values. This allows the retention index information to be complimented 

by the GC-MS library search and provide a high level of confidence. Small peaks 

were not identified due to the small amount of biological materials and resulting low 

quantity on the GCMS.  

3.4. RESULTS  

 The wax standard, stearyl stearate, was found to dissolve in hexane, 

chloroform and pentane, but not in methanol. Chloroform and hexane were selected 

as solvents. The compounds identified in the n-hexane extraction varied between 

species and body parts. The most abundant compounds were n-alkanes, esters, and 

methyl alkanes.  

 A total of 9 n-alkanes were identified in the n-hexane extracts, of which 8 

were present in extracts from wings and 5 in extracts from elytra. Two alkanes, C20 

http://en.wikipedia.org/wiki/Alkane
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n-eicosane and C22 n-docosane, were found only on T. castaneum wings. The two 

longest chain n-alkanes, C40 n-Tetracontane and C44 n-Tetratetracontane, were 

extracted from the wings of both species.  

The elytra of R. dominica contained 5 n-alkanes, of which one, C26 n-hexacosane, 

was unique to extracts of elytra from R. dominica, while 4 were found in T. 

castaneum, but only in extracts from wings. In contrast, only two n-alkanes, C30 n-

Triacontane and C36 n-Hexatriacontane, were found in the extracts of elytra from T. 

castaneum. 

 Esters were found in both species. Two methyl esters, C17 Hexadecanoic 

acid, methyl ester and C19 oleic acid, methyl ester were found in extracts from both 

species and in both wings and elytra. Hexadecanoic acid was found in both wings 

and elytra of both species, and oleic acid in all samples except wings of T. 

castaneum.  

 In contrast, two ethyl esters were only found in wings, not in elytra. C20 ethyl 

9-octadecenoate /elaidic acid, ethyl ester was detected only in wings of R. dominica 

and C24 docosanoic acid, ethyl ester only in wings of T. castaneum. 

A small number of methyl alkanes were observed, with differences in presence 

between species: 2-methylhexacosane was found in both wings and elytra of R. 

dominica but only in the wings of T. castaneum; 2-methyl-4-tetradecene was found 

in both wings and elytra of R. dominica but not in T. castaneum; 3-

methylheneicosane was found only in T. castaneum elytra and was the only methyl 

alkane found in T. castaneum elytra. 

 Unsaturated ketone and amides, fatty acids, esters, and alcohols were 

identified for the first time in T. castaneum and R. dominica. Alcohols were detected 

only in T. castaneum: C16 Z,Z-8,10-Hexadecadien-1-ol in wing and C32 1-
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octacosanol in elytra. The unsaturated ketone undec-2-en-8-one and the amides 9-

octadecenamide and (Z)-13-docosenamide were found only in R. dominica and only 

in wings. 

 
3.4. TABLE1. COMPOUND CLASSES WITH CARBON NUMBERS OF WINGS 
AND ELYTRA OF Tribolium castaneum AND Rhyzopertha dominica EXTRACTED 
FROM THE REFLUXED HEXANE PROCEDURE  

 
 
 
 

Chemical class 

Compound name Carbone 
number 

Tribolium 
castaneum 

Rhyzopertha 
dominica 

        wing elytra      wing elytra 
Alcohols 1-Octacosanol C32H66O     

 Z,Z-8,10-Hexadecadien-1-ol C16H30O     

Esters Hexadecanoic acid, methyl ester C17H34O2     

 Oleic acid, methyl ester C19H36O2     

 Ethyl 9-octadecenoate /Elaidic acid, ethyl ester C20H38O2     

 Docosanoic acid ethyl ester C24H48O2     

Fatty acids 6-Octadecenoic acid C18H34O2     

n-alkane  n-Eicosane C20H42        

 Docosane C22H46        

 Tetracosane C24H50       

 n-Hexacosane C26H54        

 n-Octacosane C28H58      

 n-Triacontane C30H62       

 n-Hexatriacontane C36H74      

 n-Tetracontane C40H82       

 n-Tetratetracontane C44H90       

Methyl alkane 2-Methyl-4-tetradecene C15H30       

  3-Methylheneicosane C22H46       

 2-methylhexacosane C27H56      

unsaturated ketone undec-2-en-8-one  C11H20O        

unsaturated amides 9-Octadecenamide C18H35NO        

 (Z)-13-Docosenamide C22H43NO        
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 The results from the chloroform derivatisation procedure indicated some 

similarity and differences between the two body parts of both insect species (Table 

2). Two additional n-alkanes were found in extracts from R. dominica, C32 n-

dotriacontanein wing and elytra and C34 n-tetratriacontane only in extracts from 

wings, but neither were found in T. castaneum. Hexatriacontane was not found in 

any samples from T. castaneum, though it was present in both wing and elytra in the 

hexane extracts. N-triacontane was the only n-alkane identified in derived samples 

from T. castaneum, and, as in the hexane extracts, was detected in both wings and 

elytra of T. castaneum and elytra of R. dominica. 

 Four alcohols (C11, C12, C15, and C19) not found in the hexane extracts 

were only identified in derived samples, and only in T. castaneum extracts table 2. 

C11 10,11-Epoxy-n-undecan-1-ol, C15 11-dodecen-1-ol, 2,4,6-trimethyl-, C19 10-

nonadecanol were found in extracts from elytra, and C12 only in extracts from 

wings.  

 Surprisingly, only three esters were detected in derived samples, although 

methyl esters would be the expected product of derivatisation; C16 

derivative hexadecanoic acid, methyl ester and C18 derivative methyl stearate were 

found in extracts from both species and in both wings and elytra. However, C18 

derivative 9,12-octadecadienoic acid (Z,Z)-, methyl ester was present only in the 

elytra of T. castaneum. 
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3.4. TABLE2. COMPOUND CLASSES WITH CARBON NUMBERS FROM THE 
CHLOROFORM EXTRACT AFTER DERIVATISATION FROM WINGS AND 
ELYTRA OF Tribolium castaneum AND Rhyzopertha dominica  
Chemical class Compound name Carbone 

number 
Tribolium 
castaneum 

Rhyzopertha 
dominica 

        wing elytra      wing elytra 
Alcohols 10,11-Epoxy-n-undecan-1-ol C11H22O2        

 1-Dodecanol  C12H26O        

 11-Dodecen-1-ol, 2,4,6-trimethyl- C15H30O        

 10-Nonadecanol C19H40O        

Esters Hexadecanoic acid, methyl ester  C17H34O2     

 9,12-Octadecadienoic acid (Z,Z)-, methyl ester C19H34O2        

 Methyl stearate  C19H38O2        

n-alkane  Tetracosane  C24H50       

 n-Hexacosane C26H54        

 n-Octacosane C28H58      

 n-Triacontane C30H62       

 n-Dotriacontane C32H66       

 n-Tetratriacontane C34H70        

 n-Hexatriacontane C36H74      

Methyl alkane 2-methylhexacosane C27H56      

 
 

Contaminating compounds. 

  One common contaminant was detected; 1,3-benzenedicarboxylic acid, 

dimethyl ester was present in T. castaneum from the derivatisation process. This 

compound is likely be present from the solvents due to plasticised of the solvent 

bottle.  

 It has been suggested by Stein, (1999) that the number of the matching 

factors that identified above 80 percent matches is reliable, 70 – 79 is often correct, 
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and 60–69 is very inexact. However, this useful guide depends very much on the 

particular software algorithm used by the manufacturer. Therefore, the numbers for 

compounds that drop from the 70s to 60s are usually considered as false positive 

identifications at the lower match factors (Stein, 1999). The negative control 

procedure was useful for contaminating compound identifications. 

3.5. DISCUSSION 

 Hexane and chloroform are commonly used in studies of composition of 

insect cuticle (Buckner et al., 2009; Cerkowniak et al., 2013; Lockey, 1976; Lockey 

and Oraha, 1990). Methanol was also used in a study on composition of locust wings 

(Jarrold et al., 2007). The observation that the standard, steryl sterate, did not 

dissolve in methanol, suggests that methanol should be used with caution in future 

studies.  

 The cuticular lipids identified fell into seven classes: alcohols, esters, fatty 

acids, n-alkanes, and methyl alkanes, unsaturated ketone, and unsaturated amides. 

This compares with other studies in which long chain hydrocarbon, wax esters, fatty 

alcohols and free or esterified fatty acids are the most common components extracted 

from insect cuticles (Pedrini et al., 2007; Saito & Aoki, 1983; St Leger, Cooper, & 

Charnley, 1986). The chemical composition of the wax layer is complex, but 

hydrocarbons are the most abundant component in this layer (Lecuona et al., 1991).  

 Akbar et al., (2004) reported that the hydrocarbons represent approximately 

40% of cuticular lipids in adult T. castaneum, and that components of branched chain 

hydrocarbons (C27–C29) represent only 30% of the hydrocarbons, whereas short 

chain account for the remaining 70%.  

N-alkanes represent more than 90% of cuticular hydrocarbons in some beetles (Baker 

et al., 1979). In the present study, both n-alkanes and methyl-branched  alkanes 
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were found in R. dominica. N-alkanes have been found more frequently in R. 

dominica and have only been infrequently reported in T. castaneum. N-alkanes, 

alkadienes and alkenes have been found in the adults of T. castaneum (Baker et al., 

1978). In contrast, (Howard & Liang, 1993) found that no alkanes were present in the 

larvae of R. dominica, but methyl branched alkanes and dimethyl alkanes were 

present. However, these studies were on whole insect and would include components 

from fat body and tissues, not from the cuticle alone.  

 A number of studies have shown that the epicuticular hydrocarbons in the 

insect cuticle may promote or inhibit fungal attachment, germination, growth, and 

penetration (Lord and Howard, 2004; Jarrold et al., 2007; Pedrini et al., 2007; Pedrini 

et al., 2013). Polar compounds such as (fatty acids, fatty acid esters, glucose, amino 

acids and peptides) are reported to stimulate and promote fungal germination and 

growth in M. anisopliae (Jarrold et al., 2007). It has been suggested that both n-

alkanes and longer methyl-branched alkanes are the sole carbon source for fungal 

germination in the insect cuticle (Crespo & Juárez, 2000; Jarrold et al., 2007; Lockey 

& Oraha 1990). Jarrold et al., (2007) reported that fatty acids and fatty acid esters 

(along with glucose and amino acids) promote fungal germination of M. anisopliae. 

Jarrold et al. (2007) also reported that there was a large decrease or disappearance of 

a wide range of long-chain fatty acid and ethyl methyl derivatives on locust wings 

during pre-penetration fungal growth, suggesting that the fungus uses aromatic 

organic compounds as nutrients during growth stages.  

 Similarly, M. anisopliae successfully germinated and developed appressoria 

on a medium containing n-alkanes (C>8) as the sole carbon source (St. Leger et al., 

1988)., however, the growth of the fungus on solid, long chain alkanes (C > 22) was 

largely limited to hyphal growth over the wax crystal surface.  
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 Crespo (2000) reported that B. bassiana and M. anisopliae cultured on a 

glucose agar containing n-octacosane after 48h, were able to degrade n-octacosane 

mainly into free fatty acids, acylglycerides, and phospholipids; and that the free fatty 

acids were the main degradation products from n-octacosane for B. bassiana strains. 

B. bassiana also grew on n-tetracosane media. Some hydrocarbons of cuticular 

components may act as chemical catalysts for the production of penetrating germ 

tubes on insect cuticles (Latge et al., 1987; Pedrini et al., 2013). 

 In this study, the diversity of alkanes in T. castaneum elytra was very low 

compared to that of R. dominica, and to wings of both species. Both n-octacosane 

and n-tetracosane were found in R. dominica but were absent in T. castaneum. These 

differences may be responsible for differences in the for the differences in growth 

and germination observed in Chapter 2. 

 The longer-chain (over 80 carbons) hydrocarbons in the waxy layer can affect 

fungal pathogenesis by degrading specific components pheromones (Pedrini et al 

2007, 2013). Similarly, St Leger et al (1988) showed that media containing nonane 

C91 inhibited growth of M. anisopliae. Pedrini et al., (2007) reported that “little if 

any biochemical evidence was available on the ability of microorganisms to utilize 

very long chain alkanes such as those usually present in the insect epicuticle”. 

However, Smith and Grula, (1981) found that some longer chain fatty acids were 

utilised in fungal infection of B. bassiana.  

 It has been reported that some alcohols as free alcohols originally extracted 

from insect lipids, such as blue fly Lucilia sericata (Calliphoridae, Diptera), act as 

inhibitory components for fungal attack (Smith and Grula, 1981; Gołębiowski et al., 

2012).  Gołębiowski et al., (2012) reported that the amount of alcohols in the 

cuticular lipids of an insect may vary significantly between various species.  
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 Some unsaturated short-chain fatty acids possess strong inhibitory properties 

in insect epicuticles (Barnes & Moore, 1997; Mieczysława et al., 2010; Cerkowniak 

et al., 2013; Gutierrez et al., 2015). Saito and Aoki (1983) similarly reported that 

some hydrocarbons of short- chain fatty acid caprylic acid inhibit both fungal 

germination and growth of B. bassiana. In this study, only one fatty acid (C18) was 

present in the elytra of T. castaneum. Free fatty acids such as pentanoic and hexanoic 

acids inhibit fungal spore germination of B. bassiana (Smith and Grula, 1982). 

Similarly, Szafranek et al., (2001) reported that sorbic acid as a free acid and 

pentanoic fatty acids caused complete inhibition of mycelial growth of B. bassiana 

and Paecilomyces fumosoroseus on aphids. Pedrini et al., (2007) reported that sorbic 

acid inhibits fungus from germinating and penetrating into the host insect cuticle. In 

addition, cuticular hydrocarbons such as fatty acid and ten or fewer carbons can 

inhibit fungal spore germination in both M. anisopliae and B. bassiana conidia 

adhesion (Lord and Howard, 2004). It is possible to suggest that the fatty acid (C18) 

that was found in the elytra of T. castaneum has acted as an inhibitor for M. 

anisopliae and B. bassiana, which decreases the number of spore germination on the 

cuticle (as illustrated in Chapter 2).  

 (Howard & Liang, 1993) reported that neither aggressive defensive secretions 

nor very long hydrocarbon chains are detectable in the larvae of R. dominica. Low 

susceptibility to fungal infection was reported to be associated with the short chain 

fatty acids such as hexanoic and sorbic and pentanoic acids (Pedrini et al., 2007; 

Szafranek et al., 2001). Szafranek et al., (2001) reported that free fatty acids such as 

dodecanoic and eicosanoic acids inhibit the mycelial growth and sporulation of B. 

bassiana and Paecilomyces fumosoroseus.  Sun & Liu, (2006) reported that neither 

linoleic acid nor sorbic acid could be utilised as a single carbon source for 
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entomopathogenic fungi including B bassiana and M. anisopliae. Both hydrocarbons 

act as active compounds inhibiting fungal germination of Isaria fumoroseus 

(synPaecilomyces fumoso-roseus) and had no significant effect on conidia 

germination of B. bassiana. According to  Smith and Grula, (1982), the lowest 

sporulation of Paecilomyces fumosoroseus was observed in a medium with hexanoic, 

heptadecanoic, dodecanoic and linoleic acids.  

 Some free fatty acids were found to be inhibitors for fungal growth. 

Gołębiowski et al., (2008) reported that some components of fatty acids on 

Conidiobolus coronatus showed that the presence of C16:0 and C18:1, C18:2 or 

C18:3 in culture media inhibit fungal growth and reduce conidia production. Similar 

observation in this study found that the C16:0 was present in the elytra of the 

resistant species of T. castaneum. As with the results from Chapter 2, the growth of 

M. anisopliae, and B. bassiana was significantly reduced on the elytra of T. 

castaneum when compared to the wings and elytra of R. castaneum, but grew well on 

the wings of T. castaneum.  

 

3.6. CONCLUSION  

 Unsaturated ketone and amides, fatty acids, esters, and alcohols were isolated 

for the first time from both body parts of wings and elytra of T. castaneum and R. 

dominica. This study is therefore the first report on the chemical composition from 

cuticular lipids of these two species. 

 In this study, both n-octacosane and n-tetracosane were found in R. dominica 

but absent in T. castaneum. Both n-tetracosane and n-octacosane were found to be 

the good carbons for the growth of B. bassiana (Crespo 2000), suggesting that these 

file:///C:\Users\Administrator\AppData\Local\Chemistry%20chapter\Smith%20HYPERLINK%20%22file:\studenthome.qut.edu.au\group47$\n8635447\Desktop\Lab%20work%20pictures\conference\Wax%20esters%20and%20hydrocarbons%20in%20the%20cuticular%20surface%20lipids%20of%20grain%20beetles%20(Tribolium%20castaneum%20and%20Rhyzopertha%20dominica)..docx%22&HYPERLINK%20%22file:\studenthome.qut.edu.au\group47$\n8635447\Desktop\Lab%20work%20pictures\conference\Wax%20esters%20and%20hydrocarbons%20in%20the%20cuticular%20surface%20lipids%20of%20grain%20beetles%20(Tribolium%20castaneum%20and%20Rhyzopertha%20dominica)..docx%22%20Grula,%20(1982
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compounds may be responsible for the greater germination and hyphal growth 

observed on elytra of R. dominica in chapter 2.  

 A number of potentially inhibitory compounds of alcohol (C16) and a fatty 

acid (C18) were found in the elytra of T. castaneum than in wings, or than wings and 

elytra of R. dominica, which again supports the observed reduction in germination 

and hyphal growth on elytra of T. castaneum compared to elytra of R. dominica in 

chapter 2. The potentially inhibitory alcohols C16 and fatty acids C18 that are found 

in the elytra of T. castaneum might indicate also reduce fungal infection and lead to 

reduced susceptibility to fungal infection in T. castaneum.  
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Chapter 4: Conclusions  

The insect cuticle is the first barrier against fungal infection, and mediates the initial 

interaction between entomopathogenic fungi and the host insect. The interaction of 

fungi with the insect cuticular lipids is poorly understood. This research has 

examined the biochemistry of hydrocarbon of two economically important grain 

pests, T. castaneum and R. dominica, and the interaction between entomopathogenic 

fungi and their insect cuticular lipids 

 Two isolates of the entomopathogen M. anisopliae and B. bassiana were 

cultured on cuticles (wings and elytra) of T. castaneum and R. dominica and analysed 

using electronic microscopy SEM. At 14 hours there was a significant and consistent 

reduction in both germination and length of hyphal growth in both species of fungi 

on elytra of T. castaneum compared to elytra of R. dominica.  

An examination of the number of hyphal tips per conidium and number of appresoria 

showed few significant differences or consistent patterns between or within species 

with either fungi. However, there was a significantly higher mean number of 

appressoria per conidium on elytra of R. dominica than on elytra of T. castaneum. 

The results support a hypothesis that reduced germination, growth of hyphae and 

formation of appressoria on the elytra of T. castaneum indicate a reduced 

susceptibility to infection by entomopathogenic fungi 

 This study is the first report on the comparative chemical composition of 

wings and elytra of T. castaneum and R. dominica. Surface components of T. 
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castaneum and R. dominica cuticle were analysed using GCMS in order to 

understand the relationship between insect cuticular components and the 

entomopathogens. GCMS identified seven chemical classes: alcohols, esters, fatty 

acids, n-alkanes, methyl alkanes, unsaturated ketones, and unsaturated amides.  

 Many studies have suggested that a main factor in the interaction between 

pathogens and host occurs on the cuticular surface. This study suggests that the 

composition of the insect cuticle plays an important role in the interaction between T. 

castaneum and R. dominica and entomopathogenic fungi. The reduced germination 

and growth of the fungi on elytra of T. castaneum correlates with the observed 

chemical composition: a cuticle rich in alkanes increases fungal developments in R. 

dominica, whereas a lack of such components plus some inhibitors occurring in the 

elytra of the T. castaneum species suppressing germination and growth, and may also 

underly the reduced formation of appressoria by B. bassiana.   

 The overall results predict that R. dominica would be more susceptible to 

infection by both entomopathogenic fungi than T. castaneum. This difference has 

been confirmed by other researchers at QUT (Hauxwell, unpublished).   

   There is a need for further research to examine specific cuticular components 

that promote and/or inhibit entomopathogenic fungi, in order to understand the 

relationship between the fungi and those carbons that are located in the insect’s 

cuticule and particularly the components that support formation of appressoria. This 

can contribute to our knowledge of specific carbon sources for entomopathogenic 

control of some grain beetles that are resistant to fungal infection.  

The results obtained in this study contribute to the body of knowledge about the 

chemical composition and infection of T. castaneum and R. dominica.  
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