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ABSTRACT 

The use of fiber-reinforced polymer composite materials (FRP) in various 

applications such as aerospace, automotive, sports equipment, and oil and gas 

industries has been growing in recent years. Nonetheless, the potential use of FRP 

pipes in harsh environmental conditions of oil and gas industry-related applications 

could become significantly greater if there was minimal degradation to the 

mechanical and physical properties of the materials used to form the pipes. The 

feasibility study of this potential, however, requires several systematic investigations 

for assessing the long-term durability of glass fiber-reinforced polymer composite 

pipes. 

This paper presents results from our preliminary investigation on the response of E-

glass/Vinyl ester composite pipes aged in water and seawater at various temperatures. 

Scanning electron microscopy is used to assess the material’s response, and 

ABAQUS simulations are used to assess the capacity of the modeling software to 

predict the moisture absorption process in E-glass/Vinyl ester composites using a 

diffusion module. As the results obtained in the experiments and ABAQUS 

simulations have good agreement, ABAQUS can be used to simulate the long-term 

durability of E-glass/Vinyl ester composite pipes exposed to humid environments. 
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INTRODUCTION 

Due to their desirable properties and performance, polymer matrix composites 

(PMCs) have been used as construction materials for corrosive and submarine 

environments over the past few decades. Likewise, glass fiber-reinforced polymer 

composites (GFRPs) have been widely used in the oil and gas industry due to their 

superior corrosion-resistant characteristics. In comparison with other conventional 

materials, GFRPs offer better mechanical properties, including high strength and 

stiffness-to-weight ratio [1, 2]. To better understand the effects of environmental 

conditions such as moisture and temperature on the properties of GFRPs as well as 

their long-term life, the response of these composites should be assessed in their 

actual applications.  

The moisture absorption behavior of GFRPs has been extensively studied due to its 

considerable influence on the weakening of the fiber-matrix interface strength and 

consequent mechanical degradation of the composites [3, 4]. The properties of a 

composite are defined by the strength of the fiber-matrix interfacial bond [5-7]. 

Moisture diffusion has several effects on the matrix element of a composite such as 

plasticization and softening, which can lead to the deterioration of its mechanical 

properties [8-11]. It is reported that there are major differences between the 

mechanical properties of initial specimens and others that were exposed to similar 

environmental conditions [12].  Several investigations have proved that water uptake 

in glass fiber-reinforced polymer composites consists of three stages: penetration of 

the water molecules into the resin and fibers; diffusion of the water molecules along 

the fiber-resin interface; and the movement of water through voids (and other 

damage). 

It has been documented that the mass absorption rate of GFRP plates aged in distilled 

water is higher than that in salt water. Consequently, the weight gain percentage of 

specimens exposed to distilled water is greater than that in specimens immersed in 

seawater. These findings were attributed to the existence of ions and their atomic 

weight in salt water [13]. 

Vinyl Ester resin is highly suited to marine-environment construction owing to its 

superior properties such as chemical stability and corrosion resistance. Thus, we 

chose it as a matrix material for our tubular composite specimens. 

The main objective of this investigation is to examine the influence of aqueous 

environments on the properties of Vinyl Ester-GFRP pipes. In order to conduct the 

experimental study, glass fiber-reinforced Vinyl Ester composite tubes were placed 

in three different aqueous conditions. Subsequently, scanning electron microscopy 

(SEM) was used to compare the physical changes that occur among fibers, matrices, 

and fiber-matrix interfaces.  

In this research, the moisture diffusion into glass fiber-reinforced vinyl ester 

composite pipe is simulated and comparisons of the experimental data and ABAQUS 

results are reported. Our study assessed whether or not FEA software could 

accurately predict the saturation times of specimens immersed in aqueous conditions. 

 



 
 

THEORETICAL BACKGROUND 

Fick’s equation can be used to compute the moisture absorption characterization of 

fiber-reinforced polymers (FRPs). The following equation develops Fick’s law to 

determine the mass of absorbed moisture in substances [14, 15]: 
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The following relation demonstrates the simple form of the previous solution: 
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where M% and M∞ are the moisture weight gain at the aging time t and saturated 

condition, respectively, h and D are the thickness of the specimen and diffusion 

coefficient, respectively. 

The absorbed moisture percentage versus the square root of time curve can be used 

to measure the diffusion coefficient of the diffusion phase. The following equation 

calculates the amount of D [1]: 
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where t1 and t2 are the times that could be selected from every point of the first linear 

part of the curve, M1 and M2 are the mass of the moisture uptake, corresponding to t1 

and t2, respectively. 

TEST PROCEDURE 

In this study, three groups of glass fiber-reinforced vinyl ester composite tubular 

specimens were immersed in a humid environment. Each group included nine 

specimens with a height, radius and thickness of 10 cm, 5 cm and 1.5 mm, 

respectively. Three different environmental conditions were used for the immersion, 

including water at room temperature, water at 2°C, and seawater at room temperature. 

ASTM D5229 standard [16] was employed to calculate the percentage of mass 

absorption during the aging time in order to examine moisture uptake behavior. 

In addition, SEM pictures were captured from saturated and unsaturated specimens 

to assess the physical changes that occurred during the aging of the fracture surfaces. 

 

 

 

 



 
 

EXPERIMENTAL RESULTS AND DISCUSSION  

Absorption Behavior 

The following equation can be used to measure the mass of absorbed moisture of 

specimens exposed to humidity: 
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Where Mt is the moisture uptake percentage at time t, m0 is the mass of the initial dry 

specimen, and m is the mass of the aged specimen at time t. 

Table 1 indicates the saturation time for each environment, showing that decreases in 

aging temperature lead to increases in saturation time.  Furthermore, comparisons 

between water and seawater environment data reveal that the saturation times of the 

composite tubes in seawater are shorter than those in a water environment. 

Table 1: The experimental results 

Environment 

Aging 

Temperature 

(°C) 

Number of 

Specimens 

Saturation 

Time 

(Days) 

  

Water 25°C 9 212   

Sea Water 25°C 9 185   

Water 2°C 9 285   

 

Microscopic Analysis 

Scanning electron microscopy was used to compare the microstructural changes of 

the unsaturated and saturated specimens. Figure 1 illustrates the fracture surfaces of 

a glass fiber-reinforced vinyl ester composite at two typical stages before and after 

saturation: the initial dry condition (Figure 1(a)), and the specimen that was subjected 

to seawater at its saturation level as an example of the saturated condition (Figure 

1(b)). 

The adequate cohesion between fibers and matrices of the virgin specimen is shown 

in Figure 1(a). It should be noted that when the specimen was exposed to a humid 

environment, the fiber-resin interface weakened. This phenomenon worsened when 

the specimen reached its saturation level, considerably degrading the interfacial bond 

(Figure 1(b)). 



 
 

         

(a)                                                                           (b) 

Figure 1: Comparison between fracture surfaces of an (a) initial dry specimen and (b) a saturated 

specimen in seawater 

SIMULATION OF MASS DIFFUSION PROCESS BY FINITE ELEMENT 

METHOD 

The moisture absorption of a glass fiber/vinyl ester composite pipe was modeled 

through finite element analysis using ABAQUS version 6.12. A mass diffusion 

analysis was used in order to simulate the process. ABAQUS applied an extension of 

Fick’s law for the governing equation of the mass diffusion step. 

Fick’s equation often defines the mass diffusion process as follows [17]: 
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ABAQUS uses Fick’s law as a particular case of the general chemical potential 

solution. The following formula demonstrates the connection between Fick’s law and 

the general chemical potential [17]: 
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In most real cases where s=s (Ө), the above equation could be written as [17]: 
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Normalized concentration and temperature-driven diffusion are defined by two terms 

of the above relation, respectively. 

 

 

 

 



 
 

 

Figure 2: A quarter of the modeled specimen used in mass diffusion analysis 

A quarter of the modeled specimen was used in the moisture diffusion simulation due 

to the symmetry of the model (Figure 2). Variations in the variables could be 

observed through the thickness of the specimen. In order to use mass diffusion 

analysis, diffusivity and solubility must first be defined. Diffusivity describes the 

motion of a substance through another material; in mass diffusion analysis, the 

normalized concentration of the diffusing material is determined by its solubility 

[17]. Solubility is calculated in terms of the maximum content of solute dissolved in 

a solvent at equilibrium, which is called the saturated condition. 

In order to specify the concentration value of the regions surrounding the modeled 

specimen, the mass concentration boundary condition should be defined. Thus, the 

magnitude of one was applied to the modeled specimen wall, according to [18]. 

In this FEM simulation, a mesh of the model included 38,400 elements. Moreover, 

the linear heat transfer/mass diffusion element was selected from an element type 

family. 

Figure 3 indicates the predictions of the FE analysis around the time that the 

composite specimens become saturated in various circumstances. These are in 

comparison with the saturation times of the specimens obtained through experimental 

research. It can be seen that the saturation times of the model can be computed by 

ABAQUS through the mass diffusion analysis, with a good approximation. 

 



 
 

 

Figure 3: Comparison of saturation time results obtained from experiments and ABAQUS 

simulations 

Mass concentration (CONC), mass flow rate (MFL) and amount of solute at an 

integration point (ISOL) are important outputs of the mass diffusion analysis. Figure 

4 demonstrates the distribution of absorbed moisture after various aging times, in the 

specimen subjected to seawater at room temperature. It can be seen that the absorbed 

water at the surface layers is at its highest levels, whereas while it passes through the 

thickness, it decreases and then reaches its lowest at the core. The values of the mas 

flow rate as a function of the distance along thickness for the saturated specimen aged 

in seawater at room temperature are indicated in Figure 5, which shows that the mass 

flow rate decreases as water diffuses deeper though the thickness. The amount of 

solute at an integration point (ISOL) for the specimen immersed in seawater at its 

saturated condition is illustrated in Figure 6. 

 

 



 
 

 

(a) Initial dry specimen 

 

(b) Aged specimen after 10 days 

 

       (c) Aged specimen after 90 days 

Figure 4: Distribution of absorbed moisture after various aging times in the specimen subjected to 

seawater at room temperature 



 
 

 

 

Figure 5: Mass flow rate as a function of the distance along thickness for the saturated specimen 

aged in seawater at room temperature 

 

 

Figure 6: The amount of solute at an integration point (ISOL) for the specimen immersed in 

seawater at its saturated condition 
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CONCLUSION 

The reliability of Glass fiber-reinforced Vinyl Ester composite pipes in harsh 

environments was examined in this investigation. Tubular specimens were placed in 

various humid conditions and their moisture uptake behavior was assessed. 

Subsequently, SEM images were used to compare the fracture surfaces of the virgin 

specimen and aged specimen at saturation. Additionally, the moisture diffusion 

process through E-glass/vinyl ester composite tube was simulated by a finite element 

method. 

The investigations demonstrated that lower temperatures necessitated a longer 

saturation time than higher temperatures, and that normal water took longer than sea 

water to achieve saturation. 

Furthermore, a comparison between the SEM pictures illustrated that there were 

essential differences between the strength of the fiber-resin interfacial bonding at the 

initial dry state compared to the saturated condition. 

In conclusion, the results of the saturation times obtained from ABAQUS were shown 

to be in good agreement with the experimental results. Hence, it has been proved that 

the FE method could be used to calculate the time that specimens require to reach the 

saturation point. 
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