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Abstract

The research in this thesis was motivated by challenges that arose in investigating

optimal designs for additional drillings in the �eld of mining. However, these

challenges can be generalised to any �eld that deals with spatial data.

In mine projects, more knowledge about the ore body, in addition to the knowl-

edge obtained from initial drillings, is required for strategic mine planning. Hence

additional drilling campaigns are carried out and optimal design concepts are ap-

plied in order to balance the bene�t between drilling costs and additional informa-

tion. Optimal design for additional drills for one variable based on conventional

geostatistical models, such as kriged models, is a well understood problem. How-

ever, it has been identi�ed that it is not only the grade but also other variables,

such as concentration of deleterious elements and hardness, that play signi�cant

roles in the evaluation of the cost and revenue of mine projects. Moreover, these

variables are unlikely to be totally independent and the dependence between

these variables can be non-linear. In addition, in reality, the spatial dependence

structure of an individual variable can also be non-linear.

This thesis aims to develop general methodology for the optimal design of ad-

ditional sampling based on a geostatistical model that can preserve both multi-

variate non-linearity and spatial non-linearity present in spatial variables. This

methodology can be applied in mining or any other �eld that deals with spa-

tial data. We focus on copula-based geostatistical models since these models

o�er a solution to modelling non-linear spatial dependence in individual spatial

variables. Speci�cally, the pair-copula model, among other simple copula-based

models, has more �exibility to capture the non-linear dependence structure. The

four contributions of this thesis to research, based on pair-copulas, are as follows.
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Firstly, the existing pair-copula is improved by developing an algorithm to opti-

mally determine the distance classes required in pair-copula modelling. Within

the algorithm, a goodness-of-�t test used to compare two classical copulas is ex-

tended to compare two spatial copulas. The results of two case studies show

an improvement in �t of the pair-copula model based on distance classes using

the proposed algorithm compared to using distance classes of equal width, as

implemented in the literature.

Secondly, new methodology for modelling non-linear multivariate spatial data is

developed based on non-linear principal components analysis (NLPCA) and the

pair-copula model. The results from two case studies illustrate that the proposed

methodology preserves both multivariate non-linearity and spatial non-linearity

present in the spatial variables.

Thirdly, a new sequential adaptive optimal design for univariate spatial data

based on the pair-copula model, in order to reduce the uncertainty in spatial

prediction, is proposed. The sequential design is a simulation-based design. The

performance of the proposed methodology is evaluated by partially redesigning

an existing spatial design. The results demonstrate, in the case study presented,

that the proposed design methodology outperforms a traditional kriging based

design.

Finally, methodology for the optimal design of additional sampling is proposed

based on the non-linear multivariate model in order to simultaneously reduce

the uncertainty of multiple variables in multivariate spatial prediction. Based on

simulation results and results of the case studies using the proposed methodology,

it can be conjectured that selecting optimal locations for new samples based on

the correct model which honour the in-situ dependence of the spatial data will

improve the precision of multivariate prediction in the spatial random �eld.

Ultimately, results from each contribution indicate that the pair-copula model,

its extensions and sampling optimal designs based on these shows promising im-

provement over existing methods.
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Chapter 1

Introduction

1.1 Background and Motivation

This research is mainly motivated by the challenges that arose in investigating

optimal designs for additional drillings in the �eld of mining. However, these

challenges can be generalised to any �eld that deals with spatial data.

In mine projects, more knowledge about the ore body, in addition to the knowl-

edge obtained from initial drillings, is required to make accurate decisions during

strategic and tactical mine planning. Hence, additional drilling campaigns are

carried out and optimal design concepts are applied in order to balance the ben-

e�t between production cost and additional information. Optimal design for

additional drillings based on a geoscienti�c variable, such as metal grade, is a

well understood problem (Walton and Kau�man [1982], Scheck and Chou [1983],

Koppe et al. [2011]). However, it has been identi�ed that it is not only the grade

but also the geometallurgical variables, such as concentration of deleterious ele-

ments and hardness, that play signi�cant roles in the evaluation of the cost and

revenue of mine projects (Dunham and Vann [2007]). Therefore, it is rquired

model the dependency of geometallurgical variables and metal grade simultane-

ously where the variables may be correlated. Moreover, the dependence between

these variables can be non-linear. In addition, the spatial dependence of individ-

ual variables can be non-linear (See the de�nition in Appendix A). Thus, it is

required to develop an optimal design based on a geostatistical model that can
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re�ect the non-linear spatial dependence structure between these variables.

For instance, suppose that the actual relationship between variables is non-linear

and spatial dependence within an individual variable is non-linear. If a geo-

statistician �ts a model that ignores these non-linearities and uses that model to

develop an optimum sampling design for additional drillings, and subsequently

estimates the ore reserve using the additional drilling information, the �nal esti-

mation of the ore reserve will be inaccurate. There is no improvement that can

be gained with an optimum design without a valid model. It should be noted

that the dependency of an optimal design on the assumed model is not unique

to spatial data. These challenges are not speci�c to the �eld of mining and are

general to any �eld that deals with spatial data.

In traditional geostatistics, even though optimal design targeting one variable

is a well understood problem, optimal design for one variable with a non-linear

dependence structure (See the de�nition in Appendix A) is rarely addressed. By

considering non-linearity in the dependence structure, a more complete estimate

of uncertainty in spatial �eld prediction can be gained. Here �complete� uncer-

tainty estimation means a measurement that can capture not only the variation

of the con�guration of the spatial locations but also the variation of the mea-

sured values for those spatial locations. Hence, an optimal design for additional

samples based on a model that can capture the non-linear dependence will result

in more precise estimates. However, most univariate geostatistical models use

the variogram to model spatial dependence (Kazianka and Pilz [2010b]). The

variogram measures the dissimilarity, or increasing variance (decreasing correla-

tion), of the variable of interest at di�erent locations (King [2011]). Hence this

can be considered as a measure of linear dependence over the distribution of the

variable for a given spatial distance. Therefore this tool is inappropriate if non-

linear dependence is present. Moreover, some other limitations of the variogram

have also been discussed in the literature, such as sensitivity to extreme values

and inability to provide more than a single measure of dependence (Li [2010]).

Consequently, any model that employs the variogram in the estimation process
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may not be able to provide accurate estimation for real world phenomena.

Optimal design for additional samples in the multivariate setting is also poorly

addressed in the literature. Even though there are a few multivariate optimal

designs proposed in the literature, most designs use multivariate geostatistical

models that only model linearity between variables and also ignores the non-

linear dependence in the individual variables.

The challenges and problems in the above discussion motivate this research to

contribute new methodologies in both spatial modelling and sampling design.

This research will develop a novel geostatistical multivariate modelling technique

that captures both multivariate non-linearity and spatial non-linearity present

in spatial variables (See the de�nition in Appendix A). We focus on copula-

based geostatistical models since these models o�er a solution to modelling non-

linear spatial dependence in individual spatial variables. Speci�cally, the pair-

copula model, among other simple copula-based models which were introduced by

Bárdossy and Li [2008], has more �exibility to capture the non-linear dependence

structure (Gräler and Pebesma [2011]). Optimal sampling design strategies are

then developed for additional samples based on this modelling approach. The

model, and subsequent optimal sampling design, will enable richer information,

i.e., information over the entire distribution of any variables of interest with

greater precision in estimates, to be obtained from the spatial process. The

richer information from the spatial study will consequently enhance all elements

of the spatial process.

The mining data provided by the funding organisation for this research did not

contain the expected spatial complexities, hence data from environmental applica-

tions, such as soil contaminations and forest inventory attributes are additionally

used, to demonstrate the proposed methods for complex spatial data.
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1.2 Aims and Objectives of the Research

1.2.1 Aim

The ultimate aim of this research is to increase knowledge of the spatial process,

in particular information on spatial characteristics, through enhanced statistical

modelling of the spatial process and through improved collection of additional in-

formation. The novel multivariate geostatistical model will enable more accurate

estimation of characteristics of spatial variables. The sampling design for addi-

tional samples, based on this model, will sample locations of the spatial domain

to provide richer information on the spatial process than would otherwise have

been collected trough sub-optimal sampling or based on an inferior model.

Speci�cally, the main aim is to develop general methodology for the optimal de-

sign of additional sampling based on a geostatistical model that can preserve both

multivariate non-linearity and spatial non-linearity present in spatial variables,

which can be applied in mining or any other �eld that deals with spatial data.

However, the main aim can only be achieved by achieving the speci�c aims which

are related to modelling and design as follows.

1. Aims related to modelling.

(a) Univariate model: Improve the existing copula-based spatial model

proposed by Gräler and Pebesma [2011] to estimate characteristics of

a single spatial variable with non-linear spatial dependence.

(b) Multivariate model: To extend the copula-based spatial model pro-

posed by Gräler and Pebesma [2011] to the multivariate setting to es-

timate characteristics of two or more spatial variables whilst capturing

their non-linear relationship by applying a suitable transformation.

2. Aims related to optimal design.

(a) Univariate design: Develop an optimal sampling design for additional

samples based on the pair-copula model proposed by Gräler and Pebesma
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[2011] with the objective of reduction of prediction uncertainty.

(b) Multivariate design: Develop an optimal sampling design based on the

proposed multivariate model that can capture both multivariate non-

linearity and spatial non-linearity with the objective of reduction of

prediction uncertainty for all the variables simultaneously.

1.2.2 Objectives

The objectives related to each sub-aim are as follows.

1. Objectives related to modelling.

(a) Univariate model: Improve the pair-copula model by introducing a new

algorithm to de�ne lag distances. In order to develop the algorithm,

the test proposed by Rémillard and Scaillet [2009], which is used to

compare non-spatial two copulas, is extended to the spatial framework.

(b) Multivariate model: Extend the pair-copula model introduced by Gräler

and Pebesma [2011] to the non-linear multivariate setting by integrat-

ing non-linear principal components analysis to remove the non-linear

relationship among the variables of interest.

2. Objectives related to optimal design.

(a) Univariate design: Develop an optimal design for additional samples

based on the pair-copula model by modifying the approach proposed

by Li et al. [2011] in order to reduce prediction uncertainty.

(b) Multivariate design: Extend the univariate design approach to the

multivariate setting in order to reduce the prediction uncertainty in

all variables simultaneously based on the model proposed in objec-

tive 1.(b).
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1.3 Research Questions

The following research questions related to spatial modelling and design are ad-

dressed in this research.

1. Modelling: How can a multivariate geostatistical model be developed to

capture both multivariate non-linearity and spatial non-linearity present in

spatial variables based on a pair-copula model?

2. Optimal design: How can an optimum sampling design be developed for

additional samples based on this multivariate geostatistical model that ac-

counts for both multivariate non-linearity and spatial non-linearity present

in spatial variables?

1.3.1 Research sub-questions

The research questions above can be broken up into the following sub-questions.

1. Sub-questions related to modelling.

(a) Univariate model:

i. Will a pair-copula model produce better prediction than a con-

ventional univariate geostatistical model?

ii. How can the pair-copula model be improved to produce more pre-

cise prediction?

iii. How much more accurate is the improved pair-copula model than

the existing pair-copula model?

(b) Multivariate model:

i. How can the univariate pair-copula model be extended to the

multivariate setting to capture non-linearity between spatial vari-

ables?

ii. Will the property of capturing the non-linear dependece in indi-

vidual variables of the pair-copula model be retained when applied

to the multivariate setting?
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iii. Can any improvement in prediction be gained by using non-linear

multivariate modelling based on pair-copulas when compared to

traditional multivariate geostatistical modelling approaches?

2. Sub-questions related to optimal design.

(a) Univariate design:

i. Based on the pair-copula model, what statistical criteria should

be used to develop optimal designs?

ii. What are the resultant designs for the additional samples?

iii. How do the resultant designs based on the pair-copula vary from

designs based on the conventional design approach?

iv. How much more precise are estimates from a design based on

pair-copulas than estimates from a design based on conventional

geostatistical models?

(b) Multivariate design:

i. How can the univariate design in objective 2.(a) be extended to

the multivariate case using the multivariate model from objec-

tive 1.(b)?

ii. What statistical criterion should be used in multivariate design?

iii. Will the resultant multivariate design be optimal for all the vari-

ables of interest?

iv. How does this design vary from the univariate design based on the

pair-copula model?

v. Is there any di�erence between the proposed sampling locations

from the design based on the model that can capture both non-

linearity between variables and within individual variables and the

design based on models that ignore the non-linearity between the

variables and within the variables?

vi. How much more precise is the design based on the model that can

capture non-linearity than the design based on the model that
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ignores non-linearity?

1.4 Signi�cance of the Research

Ultimately, this research presents four main contributions to the �eld of geostatis-

tics.

There is no well-de�ned procedure in the literature to de�ne the distance classes

required in pair-copula modelling. The �rst part of this research develops an

e�cient algorithm to de�ne the distance classes required in the pair-copula model.

When developing this new algorithm, a goodness of �t test that is used to compare

the equality between two non-spatial copulas (Rémillard and Scaillet [2009]) is

extended to the spatial setting. In addition to the algorithm, this extension is

another new contribution to geostatistics. By developing a pair-copula based on

the distance classes de�ned by this algorithm, more precise predictions can be

obtained than the estimates obtain by the existing pair-copula model with equal

width distance classes.

The second contribution of this research is the development of a novel geostatisti-

cal approach to model non-linear multivariate spatial dependence using non-linear

principal components analysis (NLPCA) and pair-copulas. This work extends the

work of Barnett and Deutsch [2012] and Barnett et al. [2014] by considering non-

linear spatial data and, consequently, non-linear multivariate decomposition of

non-linear spatial data that retains non-linearity of the spatial data. This work

also extends the work of Gräler and Pebesma [2011] and Gräler [2014] by intro-

ducing the pair-copula to the multivariate framework. By applying this proposed

geostatistical approach to spatial data, any non-linear dependence between vari-

ables and non-linear spatial dependence structure in individual variables can be

captured. As a result, by employing the proposed modelling approach, simulta-

neous simulation or simultaneous interpolation would be more precise than the

results from the existing approaches.

A new sequential adaptive optimal design for univariate spatial data based on the

pair-copula model in order to reduce the uncertainty in spatial prediction is the
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third contribution. As far as the author is aware spatial optimal design based on

the pair-copula is considered for the �rst time. If the proposed design methodol-

ogy is used, optimal locations for the additional samples can be obtained based on

the spatial con�guration of the observations and their measured values. Finally,

the precision of prediction is increased if information on additional samples that

are obtained based on the proposed methodology is used.

The �nal contribution to research is the development of an optimal spatial mul-

tivariate design for additional samples. The model in the second contribution

is used in order to simultaneously reduce the uncertainty estimation of multiple

variables. By employing this proposed multivariate designs methodology, preci-

sion of the prediction of more than one variable is increased when compared to

traditional design approaches.

1.5 Scope of Organisation of the Thesis

The scope of this thesis is to improve spatial modelling, spatial interpolation and

spatial design using the pair-copula based geostatistical model with the objective

of increasing accuracy in decision making for spatial processes. The remainder of

this thesis is organised is as follows.

A literature review is contained in Chapter 2 where traditional univariate geo-

statistical models and multivariate geostatistical models are brie�y summarised.

The strengths and weakness of these models are reviewed and compared against

copula based models, speci�cally, pair-copula based models. Moreover, the gen-

eral approaches of spatial designs are also summarised in Chapter 2. In addition

to this, each Chapter contains a literature review related to its topic.

A detailed description of the pair-copula based geostatistical model, including its

strengths and weaknesses, is discussed in Chapter 3 and an application of the

pair-copula model to mining data is also presented.

Chapter 4 discusses an improvement of the pair-copula model by introducing

an e�cient algorithm to determine the lag distances of the pair-copula model.

Within this algorithm, the test proposed by Rémillard and Scaillet [2009] is ex-
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tended to the spatial framework. At the end of this chapter, the algorithm is

applied to two case studies.

The extension of the pair-copula model to the multivariate setting using trans-

formation methods is presented in Chapter 5, which includes two case studies.

The following chapters of this thesis are devoted to the development of the

methodology for optimal spatial design for additional samples based on the pair-

copula model and its application.

Chapter 6 deals with univariate optimal design based on the pair-copula model.

In this chapter, methodology is developed to reduce the prediction uncertainty

based on both the con�guration of spatial observations and its values. Application

of this methodology is presented and validity of the methodology is evaluated by

partially redesigning an existing spatial design of a soil based case study.

The extension of this optimal design methodology to the multivariate setting,

with the objective of reduction in prediction uncertainty for all the variables

simultaneously, is provided in Chapter 7. Application of this methodology is

demonstrated for two environmental case studies.

The �rst section of Chapter 8 provides a comparison between univariate modelling

and multivariate modelling. A comparison between univariate designs and the

corresponding multivariate design is discussed in the second section of Chapter 8.

A brief discussion of each contribution is contained in the third section of the

Chapter 8. At the end of this chapter, limitations of the proposed methodologies

and recommendations for future work are discussed.
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Chapter 2

Literature Review

This chapter contains extracts of the following refereed conference paper.

� Musafer, G.N., Thompson, M.H., Kozan, E., andWol�, R.C. (2013). Copula-

based spatial modelling of geometalurgical variables. In Dominy, S., editor,

Proceedings of The Second AUSIMM International Geometallurgy Confer-

ence (Geomet 2013), pp. 239�246. The Australasian Institute of Mining

and Metallurgy(AusIMM), Brisbane, Australia.

The literature review is mainly classi�ed into two sections. The �rst section

concerns existing geostatistical models where areas of improvement are identi�ed

in relation to capturing non-linear dependence between spatial variables and non-

linear spatial dependence within individual spatial variables. The copula based

geostatistical model is also reviewed, including how the copula based model can

address the limitations of traditional geostatistical models. The second section

examines general procedures for optimal spatial designs based on conventional

models.

The de�nitions of terminology used in this chapter can be found in Appendix A.

2.1 Geostatistical Models

Many models used in the spatial framework are based on the concept that the

spatial data are generated by a random �eld. The term ��eld� is used here to
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denote the higher dimension of the parameter space. If the parameter space is one

dimensional, the random �eld is simply a random process or stochastic process

(see Appendix A for technical de�nitions).

The most important aspect when dealing with geological data is spatial depen-

dence. Spatial dependence is �the propensity for nearby locations to in�uence

each other and to possess similar attributes� (Goodchild [1992]). This means

that realisations of a variable of interest at nearby locations are more highly re-

lated than observations that are at far away locations. Hence, classical models

cannot be used in the spatial setting because they assume that realisations of

the same variable of interest are independent. Therefore, models developed for

the spatial setting, called geostatistical models, should be capable of dealing with

this spatial dependence (Noppé [1994]).

The main scienti�c goal of a geostatistical model is estimation of a variable of

interest at unsampled locations whilst modelling spatial variability by using the

limited sample data. In order to obtain this estimation, it is necessary to evalu-

ate the conditional distribution of unsampled location conditioned on the nearby

locations. Since only one observation available at each location, it is infeasi-

ble to assess the distribution function unless stationary is assumed on random

process. In traditional geostatistics, second order stationary ( See the de�nition

in Appendix A) is commonly assumed, by implying that the two-point covari-

ance exists and dependes only the separation vector h of that two points. When

comes to the practical accepts, instead of covariance function, variogram is used

to model the spatial variability in traditional geostatistics.

The value of the theoretical variogram function for lag h can be written as

γ(h) =
1

2
V ar(Z(x)− Z(x+ h)),

where Z(x) is the spatial random variable of interest at location x. However,

if the spatial variable of interest is stationary, the theoretical variogram can be

de�ned as
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γ(h) =
1

2
E(Z(x)− Z(x+ h))2.

This theoretical variogram can be estimated using the empirical variogram. The

value of the empirical variogram at lag h can be calculated as

ˆγ(h) =
1

2N

∑
N

(z(x)− z(x+ h))2,

where z(x) is the observed value of the variable of interest at location x and N

is the number of pairs of sample points separated by the separation distance h.

The variogram measures the dissimilarity, or increasing variance (decreasing cor-

relation), of the variable of interest at di�erent locations (King 2011). Hence,

this measurement can be considered as a measure of linear dependence over the

distribution of the variable for a given spatial distance. However, in reality, in

most cases the spatial dependence structure may vary over the distribution of

the variable of interest (Journel and Alabert 1989). Therefore, this method is

inappropriate if non-linear dependence is present. Other than this main pitfall,

some other limitations have also been discussed in the literature, such as sensi-

tivity to extreme values and inability to provide more than a single measure of

dependence (Li [2010]). Consequently, any model that employs the variogram in

the estimation process may not be able to provide accurate estimation for most

real world phenomena.

The �rst geostatistical model was developed by Matheron over six decades ago

based on the work of mining engineer Danie Krige (Matheron [1963]). The aim

of developing this model, called a kriged model, was to provide the best linear

spatial estimate for unsampled locations based on the sample data by minimising

the prediction variance. Since then, many models have been developed in the

literature. Diggle et al. [1998] introduced a new term �model based geostatistics"

to spatial statistics �eld. In model based geostatistics consists with three main

parts; formulation of a statistical model to data, estimation of parameter of the

model using maximum-likelihood method and prediction of spatial �eld using

�tted model. Under the Gaussian assumption, classical geostatistical approach

13



( kriging) and model-based geostatistical approach produce similar prediction

methodology (Diggle et al. [2003]). However for the non-Gaussian data resultant

prediction methodology more accurate for model based geostatistics approach

than classical geostatistical approach.

These models can basically be divided into two types: linear models and non-

linear models. The most commonly used models are based on Matheron's kriged

model. Linear models, such as ordinary kriging, can be used when spatial de-

pendence of the variable of interest is linear. This means that a linear model is

suitable when the relationships of the observations of nearby locations are only

in�uenced by the con�gurations of the locations. Non-linear models, such as

indicator kriging, can be used if the relationship with observations at nearby lo-

cations is in�uenced by both con�guration of observations and the value of the

observations (non-linear spatial dependence) (Vann and Guibal [2001]). More-

over, non-linear models can be used if the objective is to estimate the distribution

of a random variable at unsampled locations.

2.1.1 Linear geostatistical models

Ordinary kriging

Since the ordinary kriging (OK) model was developed, it has become popular in

di�erent spatial �elds, such as mining and the petroleum industry to hydrology,

meteorology, oceanography, environmental control, landscape ecology and agri-

culture. Simply, the OK estimator of the value of the variable Z(x0) of interest at

unsampled location x0 can be written as a linear combination of nearby samples

as follows

Ẑ(x0) =
n∑

i=1

wiZ(xi).

The weights wi are obtained by minimising the error variance σ2
R under the con-

straint
n∑

i=1

wi = 1 to ensure the unbiased property of the estimator. Moreover, the

weights wi are depended on x0. This means same location will receive di�erent

weight for di�erent estimation location.
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The error variance σ2
R is

σ2
R = V ar[Ẑ(x0)− Z(x0)]

= σ2 +
n∑

i=1

n∑
j=1

wiwjCij − 2
n∑

i=1

wiCi0,

where σ2 = V ar[Z(x)], x is any sampled location, Cij = Cov[Z(xi), Z(xj)] and

Ci0 = Cov[Z(xi), Z(x0)]. Hence wi can be calculated by solving the following

system of equations (Isaaks and Srivastava [1989]):
n∑

j=1

wjCij + µ = Ci0 for all

i = 1, . . . , n and
n∑

i=1

wi = 1, where µ is the Lagrange multiplier. The aim of

the Lagrange parameter is to obtain weights that produce minimum variance.

Moreover, Cov[Z(xi), Z(xj)] and Cov[Z(xi), Z(x0)] are estimated using variogram

modelling. Since the OK method employs the minimum variance concept, Ẑ(x0)

is called the �best linear estimator� of the spatial variable of interest at unsampled

locations x0.

In mining, the estimation of a block is more applicable than point estimation.

Blocks can be estimated using the ordinary kriging system by replacing the right

hand side term Ci0 (covariance between the i-th sample location and the un-

sampled location) by CiA (covariance between the i-th sample location and the

block). CiA is equal to the average covariance between the i-th sample location

and points within the block (Isaaks and Srivastava [1989]).

The most important assumption of ordinary kiriging is that the data generating

process is second order stationary (see Appendix A). Estimation is optimised

when the data generating process is Gaussian. Also, this method assumes that

spatial dependence is linear (Vann and Guibal [2001]) by using the variogram to

model the spatial variability. If an ordinary kriging system is used for a skewed

distribution, then, as with any other linear interpolation system, the ordinary

kriging estimates will be sensitive to extreme values.

Lognormal kriging

If geological variables of interest are positively skewed, in the early stages of the

development of a geostatistical model, a log transformation is applied to the data
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that renders them Gaussian. Then the ordinary kriging method is applied to pro-

duce estimates at the unsampled locations and back-transformation is carried out

to obtain the estimates on the original scale. This method is simply named log-

normal kriging. Roth [1998] discusses the bias of back-transformed estimation. In

more detail, if lognormal kriging overestimates the standard error at unsampled

locations, when it back transforms to the original scale, the standard error be-

comes larger due to exponentiation and �nally leads to a seriously overestimated

prediction (Roth [1998]).

Multigaussian kriging

In multigaussian kriging, the normal score transformation is used to transform the

data to Gaussain (Saito and Goovaerts [2000]) and the OK system is applied to the

transformed data. According to Saito and Goovaerts [2000], if strong stationarity

(see Appendix A) of the random �eld can be guaranteed, this method is able to

provide more accurate estimation than lognormal kriging. However, these two

models assume linearity of the autocorrelation by employing the ordinary kriging

system for the estimation process, and the original autocorrelation structure is

overlooked during the back transformation.

Furthermore, the minimum variance concept of OK introduces conditional bias

to the estimator (Seo [2013]). Due to this conditional bias, the kriging estima-

tor overestimates lower values and underestimates higher values (McLennan and

Deutsch [2004]). Even though some solutions have been suggested to reduce the

conditional bias to some extent, the problem of conditional bias can't be removed

completely from the estimator (McLennan and Deutsch [2004]).

Linear multivariate geostatistical models

When considering linear multivariate geostatistical models, the universal kriging

(UK) model developed by Matheron [1963] can be used if a relationship between

the variable of interest and the spatial coordinates is present (Goovaerts [1997]),

that is, there is a trend in the random �eld. Kriging with external drift (KED) is

very similar to UK, in that it allows use of a secondary variable in the estimation

process, but here the secondary variable is what would be considered a traditional
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variable, not the spatial coordinates. In KED, the secondary variable has to

be available for all the sampled spatial locations and all the unsampled spatial

locations of interest. In contrast, in co-kriging (CK) it is not essential to have all

the information from the secondary variable either at the sampled locations or

unsampled locations (Isaaks and Srivastava [1989]). The advantage of additional

information from a secondary variable is that estimates of the primary variable

will be more accurate and complete than compared to ordinary kriging estimation.

A disadvantage of KED and CK is that they assume the relationship between the

primary and secondary variable is linear. Hence, KED and CK are unable to

capture non-linear dependence among the variables.

Generally, the following limitations are present in linear geostatistical modelling,

as discussed in Vann and Guibal [2001]:

1. this method can only be used to estimate the expected value unless make

an assumtion on distribution;

2. if the variable of interest has a skewed distribution, the estimates produced

from linear methods are not appropriate due to the e�ect of extreme values;

3. the lack of appropriateness for situations in which arithmetic means are not

suitable.

Moreover Vann and Guibal [2001] suggest that non-linear estimation is a suitable

method to overcome the above mentioned limitations.

2.1.2 Non-linear geostatistical models

From a geostatistical point of view, most of the non-linear models are able to

produce the distribution of the variable of interest at unsampled locations con-

ditional on the observations of nearby locations. This can be simply de�ned as

the conditional distribution of the variable of interest at unsampled locations.

Moreover, for non-linear modelling, no assumption on the distribution is needed

to obtain estimates of variable of interest at unsampled location or over the area

of interest.
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Most non-linear models transform the original variable to an indicator variable

based on a cut-o� value before starting the modelling process, as below:

I(x, Zc) =

0; Z(x) ≤ Zc,

1; Z(x) > Zc

where Z(x) denotes the variable of interest at location x and Zc denotes the

chosen universal cut-o�. Hence, the resulting distribution of the indicator variable

is binary. As a result, extreme values cannot in�uence this model. This means

that indicator kriging is useful for dealing with skewed distributions (Trianta�lis

et al. [2004]).Moreover, geostatistical modelling for discrete data such as Poisson

process model can be found in Diggle et al. [1998].

Indicator kriging

Indicator kriging (IK) is simply ordinary kriging for indicator variables. However,

the variogram is constructed using an indicator variable and, so, is called an

indicator variogram. For example, in mining, the variable of interest is usually

grade of a metal and the cut-o� value is the level of metal grade that is used

to determine the economic feasibility of the ore to mine. The resulting estimate

should lie on the interval [0, 1] and can be interpreted as the probability that the

grade is above a speci�ed cut-o� or the proportion of the block above the speci�ed

grade cut-o� (Vann and Guibal [2001], Trianta�lis et al. [2004]). However this

method tends to produce unacceptable estimates, such as probabilities outside

[0, 1].

Multiple indicator kriging

Multiple indicator kriging (MIK) is similar to IK but allows multiple cut-o�

grades and provides the facility to calculate the expected grade. This method is

explained here using an example. For instance, assume that we need to produce

estimates for the recoverable ore reserve of three dimensional (3D) blocks for

three di�erent cut-o� grades Zc,1, Zc,2, Zc,3 where Zc,1 < Zc,2 < Zc,3. Hence, three

indicator variables will be used to perform the MIK:
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I1(x, Zc,1) =

0; Z(x) ≤ Zc,1

1; Z(x) > Zc,1

,

I2(x, Zc,2) =

0; Z(x) ≤ Zc,2

1; Z(x) > Zc,2

,

I3(x, Zc,3) =

0; Z(x) ≤ Zc,3

1; Z(x) > Zc,3

.

Indicator kriging is performed for each indicator variable. This method can be

adopted to �nd the expected grade for the unsampled location by a weighted

average of the empirical means over the intervals bounded by the cut-o� values.

MIK may lead to the estimation of more recoverable metal at higher cut-o�

grade compared to lower cut-o� due to the inconsistency of indicator models

from one cut-o� to another as a result of the indicator variables being treated

separately. This issue is called the order relation problem (Vann and Guibal

[2001]). The other main issue with this method is that it assumes that the shape

of the distribution of grade of 3D blocks to be estimated is identical to that of the

samples. In reality, variation of the grade in a small volume (drill hole) is higher

than that of a larger volume (3D blocks). Consequently, MIK ignores the change

that may occur in the shape of distribution when there is a change in the size of

the volume upon which estimates are calculated. In technical terms this is called

ignoring the change support. Also, MIK is only capable of estimating one variable

of interest. A multiple indicator co-kriging model (disjunctive kriging) can be

used when considering multiple variables and their cross-relationship. However

according to De-Vitry et al. [2007] the multiple indicator co-kriging system is not

widely used in spatial applications such as mining due to the high computational

requirements of modelling the variograms and cross-variograms.

Uniform conditioning

Uniform conditioning (UC) is a non-linear method that is a practical approach

to estimate multiple variables of interest with block support even given that the
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size of the block support is much smaller than the space between two sampled

locations. In this method, the �rst step is to transform the sample data using a

Normal score transformation if the sample data don't follow the Gaussian distri-

bution. Secondly, estimation of the ore reserve of a panel that contains a number

of small blocks is conducted. The estimate of the panel is produced by ordinary

kriging using sampled locations. The ordinary kriging estimates are more reliable

for larger volumes than for smaller volumes. Finally, conditioned on the esti-

mated panel value, the probability that the grade is above a speci�ed cut-o� for

a block within the panel can be estimated as in Wackernagel [2003]. However,

this method also has the order relation issue. But UC is the only method that

considers the change support for multivariate non-linear methods (De-Vitry et al.

[2007]).

Although non-linear models with indicator variables are able to address the is-

sue of estimating the distribution of the variable of interest, they are not able

to quantify the in-situ non-linear dependence between variables and non-linear

spatial dependence within the individual variables due to binary transformation.

First, much more information is lost due to the binary transformation. Hence,

statistical power of identifying the real relationship between the variables is re-

duced (Royston et al. [2006]). Secondly, the binary transformed model is then

only able to determine whether there is relationship or not. Any information

about the strength of the relationship or type of the relationship (linear or non-

linear) cannot be obtained. This means that binary transformation distorts the

relationship between the original variables. As a result, the e�ect of the true re-

lationship between the variables cannot be included in the estimation procedure

based on the non-linear models developed using indicator variables.

2.1.3 Conditional simulation

The goal of the kriged model is to estimate the value of the variable of interest

at unsampled locations. As described earlier, kriged models estimate the un-

sampled locations by minimising the prediction error variance under a constraint
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imposed to secure the unbiased property of the estimator. As a result, the vari-

ance of the kriging estimator V ar(Ẑ(x0)) is always lower than the actual variance

V ar(Z(x0)). Therefore, the actual variability of the estimate cannot be quanti�ed

by using kriged models (Goovaerts [1997]).

Conditional simulation is a tool whose objective is to demonstrate the variabil-

ity and the uncertainty of the estimation by generating several realisations of

estimates based on the the limited observed data (Larocque et al. [2006], Sidler

[2003]). Most commonly, this set of realisations of block estimates is called the

�equally likely� images of 3D blocks. However, this equally likely concept is not

correct if the underlying marginal distribution of the variable of interest is skewed.

In the mining industry, this technique has been used to represent the uncertainty

of an ore body and review the risk involved in various decisions (Khosrowshahi

and Shaw [2001]). However, one realisation from the simulation is not adequate

to use as an estimate of a block in terms of the minimum variance. The average

of all the realisations may tend to provide a good estimator if the number of

simulations is large enough. Since several realisations are obtained for a block,

this can be considered as the distribution of the variable of interest for a block.

However, accuracy of the local distribution is highly dependent on the number

of simulations. Finding the optimal number of simulations is still to be inves-

tigated and further research may be required. Since this conditional simulation

technique is based on conventional geostatistical models such as ordinary kriging

and indicator kriging, all negative aspects related to these models are inherent in

conditional simulation.

2.1.4 Transformation of multiple correlated variables into

uncorrelated variables

As discussed in the subsections above, modelling of multiple variables (multi-

variables) with spatial cross-relationships is complex and time consuming when

compared to single variable modelling. Multi-variables can be transformed to spa-

tially uncorrelated variables (factors) by using a suitable transformation method
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(Rondon [2012]). Hence, univariate geostatistical modelling can be performed

on each factor separately. Minimum/maximum autocorrelation factors transfor-

mation (MAF) (Rondon [2012]) and stepwise conditional transformation (SCT)

(Leuangthong and Deutsch [2003]) are the most commonly used transformation

methods. Recently, Barnett et al. [2014] introduced a new transformation method

called Projection Pursuit Multivariate Transform (PPMT) to the spatial frame-

work to remove the non-linearity between spatial variables.

Bandarian et al. [2010] describe how the minimum/maximum autocorrelations

factor transformation can be used to remove the correlation between the vari-

ables for all lag distances using principal components analysis. Principal compo-

nents analysis can be used to obtain uncorrelated factors from correlated variables

(Wackernagel [2003]). However, Rondon and Tran [2008] proved that MAF can-

not be used to produce uncorrelated factors if variables are non-linearly related.

The SCT and PPMT methods transform the original variables to multivariate

Gaussian variables with no cross-relationship at zero lag distance (Leuangthong

and Deutsch [2003]). Hence cross-correlation of the transformed variables at

lag h > 0 may be present. Therefore, the interpolation or simulation process

should be carried out after verifying that there is the zero correlation between

the variables for any lag distance.

The most important advantage of this methods is the ability to transform the

non-linear multivariate distribution to the multivariate Gaussian distribution

(Leuangthong and Deutsch [2003]). Even though the SCT and PPMT meth-

ods can be used to remove any kind of relationship between the variables at lag

zero, there is no guarantee of removing spatial dependence at lags that are greater

than zero. More details about these transformation methods and their strengths

and weaknesses are reviewed in Chapter 5.

2.1.5 Copula based geostatistical models

Most of the pitfalls in the above mentioned traditional geostatistical models mo-

tivated Bárdossy and Li [2008] to develop a new non-linear geostatistical model
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based on copulae. This section discusses the literature review regarding copula

based models.

The development of the copula based spatial model was motivated by the re-

strictive assumption of linear spatial dependence when using the variogram and

covariance function. Additionally, sensitivity of the variogram and covariance

function to extreme measurements and their inability to change the dependence

structure over the distribution of the variable of interest also in�uenced the de-

velopment of copula based spatial models (Li [2010]).

Although copula based modelling is a new avenue for spatial statistics, it has

been widely used in non-spatial applications in �elds where it is essential to deal

with non-linear dependence, such as in �nance and actuarial sciences (Bárdossy

[2006]). Since this method is comparatively new to geostatistics, relatively few

papers have been published relating to this area.

Sklar (1959) introduced copula theory. A copula describes the dependence struc-

ture between random variables. A copula does not need any information about

the marginal distribution of the random variables to describe the dependence

structure. An introduction to copula theory can be found in Nelsen [2006] and

Trivedi and Zimmer [2007]. An applied review of copulas can be found in Board-

man and Vann [2011].

A copula can be de�ned as a multivariate distribution function of uniformly

distributed random variables on the interval [0, 1]. Therefore it has the same

properties as any distribution function. For multivariate distribution function

C(u1, . . . , un) to be a copula, it must satisfy the following conditions:

1. U1, . . . , Un ∼ Uniform(0, 1) ;

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for every i ≤ n in [0, 1];

3. C(u1, . . . , un) = 0 if ui = 0 for any i ≤ n;

4. C is an n-increasing function.

Sklar's Theorem
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Sklar's theorem describes the relationship between the copula and the joint dis-

tribution function F (z1, . . . , zn) of an n-dimensional vector of random variables

(Z1, . . . , Zn) as follows:

F (z1, . . . , zn) = C(F1(z1), . . . , Fn(zn))

where Fi(zi) represents the i-th one-dimensional marginal distribution function

of zi.

This theorem states that, for a given joint distribution, a copula can be found to

model the multivariate structure of a vector of random variables by using their

marginal distributions. Moreover, the copula will be unique if all the marginal

distributions are continuous.

Based on Sklar's theorem, the joint density function f(z1, . . . , zn) of the ran-

dom variables (Z1, . . . , Zn) can be derived by applying partial derivation to the

joint density function F (z1, . . . , zn). Hence, the joint density function can be

fragmented into its univariate margins and dependence structure as follows:

f(z1, . . . , zn) =
∂F (z1, . . . , zn)

∂z1, . . . , ∂zn

=
∂C(F1(z1), . . . , Fn(zn))

∂z1, . . . , ∂zn

=
∂C(u1, . . . , un)

∂u1, . . . , ∂un
×

n∏
i=1

∂F1(zi)

∂zi

= c(u1, . . . , un)×
n∏

i=1

fi(zi)

where, ui = Fi(zi) for i = 1, . . . , n and c(u1, . . . , un) denotes the density func-

tion of the copula. In other words, the copula density can be expressed as the

dependence structure of the random vector Z1, . . . , Zn.

Bárdossy [2006] used the bivariate copula to describe spatial dependence for wa-

ter analysis systems for given distances. Bárdossy [2006] describes the advantages

of using a copula to quantify the spatial dependence when compared to using the

covariance or variogram. The ability to quantify any kind of dependence is one
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of the major advantages of using copulae. Moreover, monotonic transformation

of the marginal distribution, such as the Box-Cox transformation and Normal

score transformation, cannot in�uence the copula of a multivariate distribution.

This means that the copula is not a�ected by the marginal distribution. This is

the second major advantage when compared to traditional methods like the var-

iogram, because variograms are highly dependent on the marginal distribution.

Furthermore, copulae can be used to describe the dependence structure over any

percentile of the variable of interest for a given spatial distance. Bárdossy and

Li [2008] adopted this model in their estimation process at unsampled locations.

From this point, we only consider copulae to describe the joint multivariate dis-

tribution of the variable of interest between the unsampled location and nearby

spatial locations.

However, as with conventional geostatistics some assumptions are required to

apply the copula based model. As with conventional geostatistics, copula based

modelling assumes that the set of measured values of the variable of interest

are realisations of a random function (Bárdossy and Li [2008]). However, when

applying copula based models, a strong stationary random �eld (see Appendix A)

is assumed over the domain of interest. This assumption is stronger than the

conventional linear geostatistical assumption of a second order stationary random

�eld over the domain of interest because the copula based model requires all the

moments of the data generating process be una�ected by a change of spatial

distance. However, copula based modelling has more advantages when compared

to geostatistical modelling, even though it requires a more limiting assumption,

such as the capability to obtain the full conditional distribution, ability to remove

the in�uences of marginal distributions when modelling the dependence structure

and ability to model the non-linear spatial dependence (Haslauer et al. [2010]).

Based on this strong stationary assumption, the marginal distributions of the vari-

able of interest for each location in the domain are identical, i.e.,Fi(zi) = F (zi).

The empirical bivariate copula can be used to explore the spatial variability. As

with the variogram, it is assumed that the bivariate spatial copula Cs at any two
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locations only depends on the separation vector h (and is independent of the

locations x) (Bárdossy [2006], Bárdossy and Li [2008]), that is

Cs(u, v) = Pr(F (Z(x)) < u, F (Z(x+ h)) < v))

= Ch(F (Z(x)), F (Z(x+ h)))

Moreover, not just any copula model can be used as a spatial copula (Bárdossy

and Li [2008]). There are requirements that should be ful�lled by a copula to be a

spatial copula (Bárdossy and Li [2008], Kazianka and Pilz [2010a]). Generally, as

with conventional geostatistics, it is assumed that the spatial dependence between

location x1 and location x2 is the same as the dependence between location x2

and location x1. Hence, this symmetrical property should be a feature of the

spatial copula. Another requirement is that the dependence structure of the

copula must be able to be parameterised in order to be described as a function

of h. Furthermore, the well-known spatial property of no dependence between

far distant observations and high dependence between near observations can be

represented in copula based models as follows:

1. C(u1, . . . , un) =
∏n

i=1 ui when ‖h‖ → ∞;

2. C(u1, . . . , un) = min(u1, . . . , un) when ‖h‖ → 0.

The most readily available copulae in the literature are unable to be extended

to higher dimensions and some copulas that do have that ability do not provide

good parameterisation for the dependence structure to re�ect the spatial con�gu-

ration of the data points (Bárdossy and Li [2008]). Even though the most popular

copulas, such as Gaussian and Student t copulas ful�l both requirements, these

copulae cannot be used to model asymmetric dependence structure. As a re-

sult, Bárdossy [2006] introduced the non-central chi copula to model asymmetric

dependence structures. However, this model is computationally very expensive

when �tting non-central chi-squared copulas to large scale data sets. For exam-

ple, if n is the number of observations, calculation of 2n terms are needed in the
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process of spatial interpolation to estimate the value of the variable of interest at

an unsampled location.

If the copula employed is Gaussian or Student t then there are no di�culties

in applying the maximum likelihood method directly in estimating the copula

parameters. However, calculation of the copula density for higher dimensions may

be di�cult if the copula is a non-central chi-squared copula. As with the Gaussian

and Student t copulae, the correlation matrix is required in obtaining the copula

parameter estimates for the central chi-squared copula. This correlation matrix

may be di�cult to estimate for higher dimensions. As a solution to this, Kazianka

and Pilz [2010b] propose �nding the correlation matrix for higher dimensional

copulae using the correlations from the bivariate copulae, assuming independence

of di�erent pairs of observations. That is, the entries of the correlation matrix for

the higher dimensional copula are simply given by the correlation between pairs

of observations with the same distance. However these estimated parameters are

not e�cient compared to estimates obtained by applying the maximum likelihood

method directly to the higher dimensional copula.

More generally, for higher dimensional copulae, not necessarily restricted to cen-

tral chi-squared copulae, goodness of �t of the higher dimensional copula to the

data can be measured by comparing the observed data to data simulated from

the �tted multivariate copula, where several simulated data sets are obtained. A

test of the di�erence between the copula observed from the random �eld and that

from simulated random �elds can be carried out using the method proposed by

Malevergne and Sornette [2003], and as demonstrated by Bárdossy and Li [2008].

However, using bivariate copulae to construct the higher dimensional multivari-

ate copula, as described above, may not necessarily give the best �t to the joint

multivariate distribution.

Finally, by �tting the joint multivariate copula to the unsampled location and

the nearby locations, it is possible to derive the copula density of the unsampled

location conditioned on the nearby locations as follows:
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c(u0 | u1, . . . , uk) =
c(u0, u1, . . . , uk)∫ 1

0
c(v, u1, . . . , uk)dv

where ui = F (zi), k is number of nearby locations and u0 denotes the marginal

distribution at the unsampled location.

Consequently, any estimator can be obtained from the estimated conditional den-

sity. As an example, the expected value or the median of the conditional distri-

bution can be obtained using the following equations:

Expected value =
∫ 1

0
F−1(u)c(u|u1, ., un)du,

Median value = F−1(u = C−1n (0.5|u1, ., un)),

where F−1 is the inverse marginal distribution function and C−1 is the inverse

copula.

This copula based model has been used in a few di�erent spatial applications, for

example, to model hydrology properties (Bárdossy and Li [2008]), soil properties

(Marchant et al. [2011]) and air pollutants (Kazianka and Pilz [2010b]). The au-

thors demonstrated that more realistic estimation can be obtained using copula

based geostatistical modelling when compared with ordinary and indicator krig-

ing. Additionally, Kazianka and Pilz [2010a] developed copula based modelling

for random �elds with trend and for random �elds of discrete random variables.

In addition, these two authors attempt to �t the copula based model using a

Bayesian framework as well (Kazianka and Pilz [2011]).

However, only a small number of copula families, such as Gaussian, Student t and

the non-central chi-squared, have been used for modelling. From these families,

only one copula family is used to capture the complex dependence. Moreover,

the same copula family is assumed at each separating vector h and multivariate

dependence, which is required in the interpolation process, is also modelled using

the same family of higher dimensional copula. A new geostatistical model based

on the pair-copula construction was introduced by Gräler and Pebesma [2011]

and this pair-copula construction allows the use of di�erent types of families when

modelling spatial dependency for di�erent separating vectors and for higher order
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dependencies as well. As a result, multivariate dependence can be modelled by

this sophisticated copula model, which has full �exibility to capture the complex

dependence. A detailed explanation of pair-copula based geostatistical model is

given in Chapter 3.

2.2 Optimal Design

2.2.1 Non-spatial optimal design

In classical statistics, the aim of optimum design is to obtain estimates of statisti-

cal model parameters in an unbiased way with minimum variance using a smaller

number of experimental runs than non-optimal design. As a result, experimental

cost can be reduced. Optimal experimental design is model dependent. This

means that the optimum design developed based on one statistical model may

not be optimal for another statistical model. Optimality of experimental design

is usually evaluated based on the Fisher information (inverse of the variance-

covariance matrix of the estimators) (Fedorov and Hackl [2012]).

Muller [2007] discusses the reasons why optimal design based on the classical

framework, even for continuous variables, cannot be adopted by the spatial frame-

work. This is due to the following two reasons:

� classical optimal designs are unable to capture the spatial correlation be-

tween the observations;

� it is di�cult to obtain replications from the spatial experimental setting.

Therefore, the information matrix should be replaced by using di�erent tech-

niques, such as mean prediction error, which should be able to capture the spatial

correlation.

2.2.2 Optimal spatial sampling design

Optimal spatial sampling design can be simply de�ned as optimal allocation of

sampling points to spatial coordinates (Pilz and Spöck [2008]). The optimum
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sampling design will vary according to the scienti�c goal, such as parameter

estimation of the model and predictions using the geostatistical model (Diggle

and Lophaven [2006], Diggle and Ribeiro [2007b]). If prediction of the random

�eld is the aim, then optimality of the sampling design is evaluated based on

the maximum or average mean square prediction error of the predicted locations

(Diggle and Ribeiro [2007b]). Van Groenigen and Stein [1998] used Monte Carlo

methods, such as simulated annealing, to optimise di�erent objective functions,

such as maximising the spatial spread of the sample locations rather than the

existing objective function of minimisation of average prediction error. Most of

the optimal spatial designs in the literature are based on two dimensional (2D)

space.

The main aim of collecting the spatial samples over the study domain in the initial

phase is to obtain good geostatistical coverage and projection of the variable of

interest. Usually, thereafter, a systematic pattern is commonly used to collect

the spatial sample for areas without access problems. However, the decision of

the sampled locations for the next phase can be derived using the statistical

information obtained from the �rst phase (Moon and Whateley [2006]). This

means that information obtained from the initial phase can be used to develop an

appropriate geostatistical model and additional samples can be used to improve

the quality of the predictions, which reduces the uncertainty of prediction. This

improvement is not limited to the prediction process. As an example, in mining

all the process are related to each other. Consequently, reduction of error in the

prediction will bene�t all the interdisciplinary processes formed in mining, such

as mine design, mine scheduling and �nancial evaluation (De Souza et al. [2004],

Soltani and Hezarkhani [2013]). This thesis focuses on optimising designs for

additional samples after the initial phase.

Moreover, generally, the common purpose of taking additional samples is to in-

crease the precision of the random �eld predictions. Since kriged models are the

most commonly used models for prediction in spatial applications, most of the

developed optimal designs consider functions related to kriging variance as a sta-
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tistical criterion for most environmental based applications. In the mining �eld

also, Walton and Kau�man [1982] attempted to develop a design for additional

drilling using the kriged model. The aim of their method was to improve the

accuracy of the estimate of grade and tonnage of the ore reserve. According to

their proposed method, kriging variances of all the blocks are calculated. Then

the block with the highest kriging variance is selected as the next drill location.

This procedure is repeated until acceptable global estimation of the variance is

obtained. Later, Scheck and Chou [1983] introduced an iterative procedure based

on �xed point theory, which is a mathematical optimisation method used to select

the number and the location of drill holes. However, their method, which uses

the maximum kriging variances, is unable to produce the optimum locations for

additional drill holes.

Average kriging variance over interpolated grids is the most commonly used statis-

tical criterion to obtain the optimal design based on the following two assumptions

(Saikia and Sarkar [2006]:

1. the variogram model used to compute the kriging variance is the correct

one;

2. the model of the variogram and estimated population mean of the variables

of interest are not a�ected by the additional samples.

The selection of the model is likely dependent on the experience of the geostatis-

tician. Therefore, the �tted model for the variogram may be inadequate if the

geostatistician is not su�ciently experienced. Hence, reliability of the optimal de-

sign produced from this method is doubtful. On the other hand, criteria related

to kriging variance are popular due to insensitivity to the variability of sam-

pled values under the Gaussian assumption. Kriging variance is only sensitive to

the spatial con�guration and the �tted variogram model and ignores e�ects of

variability of the sample values (Journel and Alabert [1989], Goovaerts [1997]).

Hence, the actual value of additional samples is not required to evaluate their

impact on the estimation process if kriging variance is used as the uncertainty
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measurement (Deutsch [1993]). As long as a linear dependence structure assump-

tion is valid, values of the samples are not required to estimate the uncertainty

in a spatial framework. But, in reality, this assumption is rarely ful�lled. Thus,

it is essential to consider the sample values for estimation of uncertainty when a

complex dependence structure is present.

Moreover, in the literature, many authors discuss the pitfalls of using a kriging

variance as an uncertainty measure. Because kriging variance ignores e�ects of

variability of the values, Pilger et al. [2001] introduced optimal design for addi-

tional samples based on the uncertainty measurement produced from stochasti-

cally conditional simulation in mining. They stated that, through this procedure,

uncertainty of resource estimation can be calculated by considering the con�g-

uration of sample points and their values. By applying stochastic simulation

conditioned on sample data, possible realisations of estimates of the ore reserve

for each grid are able to be obtained. One realisation can be considered as one

possible image of the ore body. Thus, these realisations can be used to de�ne

uncertainty indices of the estimates of each grid, such as conditional variance,

interquartile range (IQR) and coe�cient of variation. Pilger et al. [2001] used

the IQR in their research. The grid point with maximum IQR is selected as the

new sample location. Then, one value of a realisation (randomly selected) of

the particular grid point is assigned to the new sampled location. Then, again,

conditional simulations are carried out using the new sample value. The average

IQR of the nearby grid points to the grid point with the new sample location is

calculated as the local evaluation criteria and that of all the grid points used as

the global criteria. This process is repeated until the global reduction of IQR is

stabilised. The same methodology was adopted by Koppe et al. [2011] to compare

two in�ll spatial patterns. They assumed that the pattern locations for the initial

sampling is regular. In the �rst pattern, additional samples are scattered over

the region of interest, whilst in the second pattern they are located at the grid

points with higher uncertainty related to the variable of interest. However, they

selected the spatial pattern that produced the lowest uncertainty of net present
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value as the best spatial locations for the additional samples. Moreover, they

assumed a constant number of additional samples. This means that they only

considered the optimisation of limited sample patterns. Also, this methodology,

based on conditional simulation, evaluates optimality by using one possible value

for the candidate location. A similar concept of �nding the optimal pattern for

additional locations in a di�erent application, such as soil sampling and plants

sampling, can be found in work presented by Van Groenigen et al. [1999] and

Emery et al. [2008]. However, these papers evaluate the optimality of a spatial

pattern based on a statistical criteria related to kriging variance.

There may be speci�c purposes for di�erent spatial projects, for example, Koppe

et al. [2011] developed an optimal design in the mining �eld to reduce the un-

certainty of net present value for a new mine. Hassanipak and Sharafodin [2004]

introduced another strategy to �nd the optimal design for additional samples

with the aim of improving the reliability of resource classi�cation and improving

the estimates of grade and tonnage of the ore reserve. They introduced a function

called GET as the criteria to select the locations for additional drill holes. GET

is a function of three variables: the average estimation error of block grade (E),

the average estimated block grade (G) and compounded thickness of ore blocks

(the total thickness of the block that has been identi�ed as ore) (T). This method

is the �rst method that considers the 3D extension of the ore body. However, this

method is only able to produce some suggested points for the additional drillings.

These suggested points may not be the optimal design for additional drillings.

2.2.3 Optimal design for copula based geostatistical model

This section reviews the literature on optimal design based on spatial copulae. It

appears that only two papers have been been published up to now covering this

area. Li et al. [2011] were the �rst to develop sampling design based on a cop-

ula based geostatistical model. The aim of their research is to add observation

locations to an existing water observation network. Their methodology allows

one to capture the variability of sample values when making decision regarding
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additional locations (Li [2010]). The locations that give the minimum expected

penalty of making an incorrect decision among the other points are the new loca-

tions for observations. In their research, the penalty for an incorrect decision is

decided by the researcher and the incorrect decisions are: using the water when

water is not clean and not using the water when water is clean. Marchant et al.

[2013] adopted the same procedure to add new locations for a soil based applica-

tion with the objective of minimising the expected loss in misclassifying the soil

contamination status. This method can be adopted to develop a strategy to de-

cide the optimal design for additional samples with the objective of maximising

the expected return based on the given cut-o� value. This thesis aims to de-

velop an optimal design for the additional samples with the objective of reducing

the uncertainty estimation in prediction. This means our statistical criteria to

optimise the additional samples should be related to the precision of prediction.

2.2.4 Limitations of previous work

It has been identi�ed that conventional geostatistical modelling cannot capture

non-linear spatial dependence by employing the variogram, which just produces

two point-statistics. Moreover, the variogram is sensitive to the extreme values.

Furthermore, conventional linear kriging only produces optimal results when the

random �eld is Gaussian, which is not statis�ed in most real world applications.

Hence, conventional linear geostatistical models are unable to produce accurate

prediction (interpolation and simulation) for real world case studies by modelling

the spatial dependence incorrectly with use of the variogram. Even though non-

linear kriged models, such as indicator kriging, are a solution for the non-Gaussian

random �eld, due to the binary transformation, this method has loss in statistical

power to detect the true relationship between the variables.

In conventional geostatistics, the uncertainty estimation used to quantify the

precision of the prediction is kriging variance. As discussed in the literature, this

only depends on the con�guration of observations and the �tted variogram model.

But in reality, the uncertainty estimation used for prediction is expected to behave
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di�erently for the di�erent quantiles observed for the additional samples.

Copula based geostatistical modelling is a good solution to overcome the prob-

lems of conventional kriged models. Copula based models relax the Gaussian

assumption used in conventional geostatistical models and it has the ability to

produce the full conditional distribution at unsampled locations. The most im-

portant feature of the copula based model is the ability to model the non-linear

dependence structures. In other words, copula based models can produce uncer-

tainty estimation for prediction based on both con�guration of the observations

and their measured values. The pair-copula model introduced by Gräler and

Pebesma [2011] is a more �exible model than the simple copula based model.

Since the pair-copula model was only recently introduced to geostatistics, no im-

provements to the model �tting process have been considered to improve the

pair-copula model, such as de�ning an e�cient way to de�ne the distance classes.

Moreover, the pair-copula model has still not been used in multivariate geostatis-

tics. Spatial optimal design approaches based on the pair-copula model have also

not been considered in the litreature. This research intends to �ll these research

gaps.
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Chapter 3

Application of the Pair-copula

Model to Spatial Data

This chapter is based on the paper detailed below, which was presented at the

11th Engineering Mathematics and Applications Conference (2013), Brisbane,

Australia, and is currently under review with the Journal of Applied Statistics.

The core contributions of the paper are: a detailed description of the spatial

pair-copula methodology and its �rst-time application in the mining �eld.

� Musafer, G.N., Thompson, M.H., Wol�, R.C., and Kozan, E. (n.d). Pair-

copula modelling of grade in ore bodies. Journal of Applied Statistics. Un-

der review.

Abstract

Conventional kriged models are the most commonly used for estimating grade, or

other spatial variables. These models use the variogram or covariance function to

model the spatial correlation required in the process of estimation. The variogram

and covariance function produce one single average value to represent the spatial

dependence of grade for a given distance. The underlying assumption behind this

oversimpli�ed measurement of dependence structure is linear spatial correlation

of grade. In reality, the dependence structure of metal grade may be non-linear

and complex. Hence, inaccurate estimation of the ore reserve may result if a
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kriged model is used for estimating grade at unsampled locations when non-linear

spatial correlation is present. Pair-copula based methods may o�er a solution to

modelling non-linear spatial dependence in a more �exible way when compared

with simple copula based models. This solution will additionally bene�t the ore

reserve estimation and simulation processes where non-linear dependence may be

present. In addition, since pair-copula based models are capable of producing the

full distribution of an ore characteristic, such as grade, at unsampled locations,

estimation of uncertainty is possible and this uncertainty estimation will be more

complete than the uncertainty estimation obtained from a kriged model. The

pair-copula model is applied to a real world mining application in this chapter

for the �rst time. The performance of the pair-copula model is compared with a

conventional linear geostatistical model.

3.1 Introduction

This chapter provides practitioners with instructions outlining the steps involved

in �tting a pair-copula model to spatial data. In addition, for the �rst time, a

geostatistical model based on pair-copulas is applied to real world mining data

with the purpose of illustrating the advantages of pair-copula based spatial models

over traditional kriged models in mining.

One of the most important aspects of modelling a geological variable, such as

metal grade, is spatial correlation. Spatial correlation describes the relationship

between realisations of a geological variable sampled at di�erent locations (Getis

[2007]). Any method modelling a geological variable should be capable of ac-

curately estimating the true spatial correlation. The variogram (see de�nition

in Diggle and Ribeiro [2007a]) and covariance function are the most common

methods used to capture the spatial dependence structure of a geological vari-

able (Gräler and Pebesma [2011], Kazianka and Pilz [2010a]). These methods are

only capable of providing one simple average measurement of dependence and

also assume linear dependence over the distribution of the variable of interest.

However, in reality, in most cases the spatial dependence structure may vary over

37



the distribution of the variable of interest (Journel and Alabert [1989]). In other

words, the spatial dependence structure of the variable of interest may be com-

plex. Therefore, conventional geostatistical models, such as kriging, which uses

the variogram to model spatial dependency, are unable to produce accurate esti-

mators of distributional properties of the variable at unsampled locations when

a complex dependence structure is present. Bárdossy and Li [2008] introduced a

new geostatistical model based on copulas that uses bivariate copulas to model

spatial dependence. The development of this copula based spatial model was

motivated by the restrictive assumption of linear spatial dependence when using

the variogram and covariance function. Additionally, sensitivity of the variogram

and covariance function to extreme measurements and their inability to change

the dependence structure over the distribution of the variable of interest also

in�uenced the development of copula based spatial models (Li [2010]).

Moreover, unlike the kriged model, the copula based model has the ability to

estimate the full conditional distribution of the variable of interest at unsampled

locations. This means that it is possible to obtain all the possible realisations of

estimates while preserving the observed data. This is very similar to the process

of conditional simulation (Larocque et al. [2006]). However, the conditional sim-

ulation technique is based on conventional geostatistical models. Consequently,

all negative aspects related to these models are inherent in conditional simula-

tion. Therefore, realisations obtained from copula based models demonstrate the

variability and uncertainty of the estimation more accurately than those from

conditional simulation. Hence, by using copula based models, it is possible to

represent the uncertainty of an ore body more accurately and thus obtain a more

robust measure of the risk involved across the mining process than compared with

conditional simulation.

Gramacy and Lee [2008] introduced treed Gaussian process models to spatial data

framework. These models allow modelling the non-stationary, and heteroscedas-

ticity relationship of dependent variable and independent variables. This is done

by splitting the study domain in to regions in order to �t the Gaussian process
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model to dependent variable and independent variables each split region. In this

kind of modelling approach address the non-linearity between spatial variables.

Hence, it is not appropriate to compare this model with copula based geostatis-

tical model which is address the non-linearity in the spatial dependency.

However, the most readily available copulae in the literature are unable to be ex-

tended to higher dimensions. Additionally, some copulae that do have the ability

to be extended to higher dimensions do not provide good parameterisation for the

dependence structure to appropriately re�ect the spatial con�guration of the data

points (Bárdossy and Li [2008]). Even though the most popular copulae, such as

Gaussian and Student t copulae, ful�l both requirements, these copulae cannot be

used to model asymmetric dependence structures. As a result, Bárdossy [2006] in-

troduced the non-central chi copula to model asymmetric dependence structures.

However, this model is computationally very expensive when �tting non-central

chi-squared copulae to large scale data sets. For example, if n is the number of

observations, 2n calculations are needed in the process of spatial interpolation to

estimate the value of the variable of interest at unsampled locations. Moreover,

the same copula family is assumed for each separation vector h . Also, multivari-

ate dependence, which is required in the interpolation process, is also modelled

using the same family of higher dimensional copula. Therefore, this method lacks

the �exibility to capture more complex spatial dependence structures.

A new geostatistical model based on a pair-copula construction was introduced

by Gräler and Pebesma [2011]. This pair-copula construction allows the use

of di�erent types of copula families when modelling the spatial dependency for

di�erent separating vectors and for higher order dependencies as well. As a result,

multivariate dependence can be modelled more accurately by this sophisticated

copula model, which has full �exibility to capture complex spatial dependence.

Moreover, Gräler [2014] applied a pair-copula model to a skewed spatial random

�eld.

Although copula based modelling is a new avenue for spatial statistics, it has

been widely used in non-spatial applications in �elds where it is essential to deal
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with non-linear dependence, such as in �nance and actuarial sciences (Bárdossy

[2006]). Since this method is comparatively new for geostatistics, relatively few

papers have been published relating to this area (Kazianka and Pilz [2010a]). As

far as the author is aware, in the literature, simple copula models have been used

in only a few spatial applications, for example, to model hydrology properties

(Bárdossy and Li [2008]), soil properties (Marchant et al. [2011]), air pollutants

(Kazianka and Pilz [2011]) and mining (Musafer et al. [2013]) and the pair-copula

model has been used in only a few spatial (Gräler and Pebesma [2011], Gräler

[2014]) and spatial-temporal applications (Erhardt et al. [2015a,b]). However, the

pair-copula model has not yet been used in mining applications.

The main objectives of this chapter is to �t a pair-copula model to estimate

the metal grade of an ore reserve obtained from a real mine site, and to esti-

mate the distribution of metal grade at unsampled locations, conditional on the

local neighbourhood of sampled locations. Moreover, the pair-copula model is

compared with an ordinary kriging model to evaluate the performance of the

pair-copula model.

3.2 Theory

This section contains detailed explanation of the basic classical statistical the-

ories, utilised by Gräler and Pebesma [2011], that underpin the construction of

geostatistical models based on pair-copulas.

3.2.1 Copula

Copula theory, which was introduced by the Sklar (1959), is the base theory for

any copula based spatial modelling. A copula describes the dependence structure

between random variables. A copula does not need any information about the

marginal distribution of the random variables to describe the dependence struc-

ture. A copula can be de�ned as a multivariate distribution function of uniformly

distributed random variables. Conversely, the copula can be constructed using

the multivariate distribution function. An introduction to copula theory can be
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found in Nelsen [2006] and Trivedi and Zimmer [2007]. For an applied review of

copulas, the reader is referred to Boardman and Vann [2011].

3.2.2 Pair-copula

Although the process of modelling bivariate distributions using copulae is straight-

forward, modelling high dimensional distributions using copulae is a complicated

task. Moreover, there are many bivariate copulas in the literature, most of which

lack the �exibility for extension to higher dimensions except for a few well known

copulas such as the Gaussian and Student t copulas.

The pair-copula model can be classi�ed as a hierarchical model building concept.

Aas et al. [2009] initially introduced this method to estimate the joint multivariate

distribution of random variables using a set of bivariate copulas based on the work

of Joe [1996], Bedford and Cooke [2002], and Kurowicka and Cooke [2006]. Aas

et al. [2009] present a worked example for the construction of a multivariate

distribution for four random variables. To provide a simple demonstration of Aas

et al. [2009]'s method, a small example for three variables is given below.

Let the joint density function of X1, X2, X3 be f 123(x1, x2, x3). This can be fac-

torised as

f 123(x1, x2, x3) = f 3(x3)f 2|3(x2|x3)f 1|23(x1|x2, x3). (3.1)

From Sklar's theorem, any multivariate distribution function F with marginals

F1(x1), . . . , Fn(xn) can be written as

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (3.2)

where C is an n dimensional copula. Hence the joint density function can be

written as

f(x1, . . . , xn) = c1,2,...,n(F1(x1), . . . , Fn(xn))× f1(x1)× . . .× fn(xn) (3.3)

where c1,2,...,n is the copula density.
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Using Eq.( 3.3), the second term of Eq.( 3.1) can be written as

f2|3(x2|x3) =
f(x2, x3)

f(x3)

=
c23(F2(x2), F3(x3))× f2(x2)× f3(x3)

f3(x3)

= c23(F2(x2), F3(x3))× f 2(x2).

(3.4)

Again, using Eq.( 3.3), the third term of Eq.( 3.1) can be written as

f 1|23(x1|x2, x3) = c13|2(F1|2(x1|x2), F3|2(x3|x2))× c12(F1(x1), F2(x2))× f1(x1).

(3.5)

Substituting Eqs.( 3.4) and ( 3.5) into Eq.( 3.1) gives

f 123(x1, x2, x3) = f 1(x1)× f 2(x2)× f 3(x3)× c12(F 1(x1), F 2(x2))

× c23(F 2(x2), F 3(x3))× c13|2(F 1|2(x1|x2), F 3|2(x3|x2)).

This equation states that the density of the three dimensional copula can be de-

composed into a set of three bivariate copulas. The copulas c12(F 1(x1), F 2(x2))

and c23(F 2(x2), F 3(x3)) are unconditional bivariate copulas (unconditional pair-

copulas) and c13|2(F 1|2(x1|x2), F 3|2(x3|x2)) is a conditional bivariate copula (con-

ditional pair-copula). Here, three pair-copulas have been used for the decompo-

sition. In general, to decompose an n-dimensional density function, n(n − 1)/2

pair-copulas are required. Marginal conditional distributions are required when

constructing the conditional pair-copula. Joe [1996] showed that

F (x | v) =
∂Cx,vj |v−j

(F (x | v−j), F (vj | v−j))

∂F (vj | v−j)
(3.6)

where v is a d dimensional vector, vj is one arbitrarily selected variable and v−j

denotes the vector v excluding vj. If v is univariate such that v = v, then
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F (x | v) =
∂Cx,v(F (x), F (v))

∂F (v)
.

However, this pair-copula decomposition is not unique, for example, there are

240 di�erent constructions for a �ve dimensional density. Each decomposition

approximates the full copula density di�erently (Aas et al. [2009]). A graphical

model, called a regular vine model, was developed by Kurowicka and Cooke [2006]

to organise the large number of pair-copula constructions. Canonical vines and

D-vines are special cases of regular vines. Canonical vines can be used if one

can identify the key variable that governs the interaction of the data set. If

dependence between variables needs to be treated in a speci�c order, D-vines can

be used.

Figure 3.1: A D-vine (5 variables).

Figures 3.1 and 3.2, which are reproduced from Aas et al. [2009], represent the

graphical model used to illustrate the D-vine and a canonical vine, respectively,

for �ve variables. Each �gure consists of four trees Tj, j = 1, 2, 3, 4. Tree Tj has

6 − j nodes and 5j edges. Each edge represents the corresponding pair-copula

and the label of the edge represents the subscript of the pair copula. Nodes in

the �gure are only used for �nding the label of edges.

By using the decompositions shown in Figure 3.1, the joint density function of

�ve random variables can be approximated as follows using a D-vine (Aas et al.

[2009]):
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Figure 3.2: A canonical vine (5 variables).

f 12345(x1, x2, x3, x4, x5) =

f 1(x1)× f 2(x2)× f 3(x3)× f 4(x3)× f 5(x3)×

c12(F 1(x1), F 2(x2))× c23(F 2(x2), F 3(x3))× c34(F 3(x3), F 4(x4))×

c45(F 4(x4), F 5(x5))× c13|2(F 1|2(x1|x2), F 3|2(x3|x2))×

c24|3(F 2|3(x2|x3), F 4|3(x4|x3))× c35|4(F 3|4(x3|x4), F 5|4(x5|x4))×

c14|23(F 1|23(x1|x2, x3), F 4|23(x4|x2, x3))×

c25|34(F 2|34(x2|x3, x4), F 5|34(x5|x3, x4))×

c15|234(F 1|234(x1|x2, x3, x4), F 5|234(x5|x2, x3, x4)).

According to Figure 3.2, approximation of the joint density function of �ve ran-

dom variables can be written as follows using a canonical vine (Aas et al. [2009]):
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f 12345(x1, x2, x3, x4, x5) =

f 1(x1)× f 2(x2)× f 3(x3)× f 4(x3)× f 5(x3)×

c12(F 1(x1), F 2(x2))× c13(F 1(x1), F 3(x3))× c14(F 1(x1), F 4(x4))×

c15(F 1(x1), F 5(x5))× c23|1(F 2|1(x2|x1), F 3|1(x3|x1))×

c24|1(F 2|1(x2|x1), F 4|1(x4|x1))× c25|1(F 2|1(x2|x1), F 5|1(x5|x1))×

c34|12(F 3|12(x3|x1, x2), F 4|12(x4|x1, x2))×

c35|12(F 3|12(x3|x1, x2), F 5|12(x5|x1, x2))×

c45|123(F 4|123(x4|x1, x2, x3), F 5|123(x5|x1, x2, x3)).

3.3 Pair-copula Construction for Spatial Data

This section provides instruction for the application of pair-copula models to spa-

tial data, as summarised from Gräler and Pebesma [2011] and Gräler [2014].

Gräler and Pebesma [2011] introduced pair-copula construction for spatial frame-

works. This method allows modelling of complex spatial dependency in a fully

�exible way. They used a canonical vine structure to construct a pair-copula for

spatial data because this structure bene�ts spatial interpolation by giving higher

priority to the interaction between the unobserved locations and nearby locations

if unobserved locations are selected as the root element.

3.3.1 Assumptions for the copula based geostatistical model

As with conventional geostatistical models, some assumptions are required to

apply the copula based model. Like conventional geostatistical models, copula

based modelling assumes that the set of measured values of the variable of in-

terest are realisations of a random function (Bárdossy and Li [2008]). However,

when applying copula based models, a stationary random function (see the de�-

nition in Gaetan and Guyon [2010]) is assumed over the domain of interest. This
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assumption is stronger than the conventional linear geostatistical assumption of

a second order stationary random function over the domain of interest because

the copula based model requires all the moments of the data generating process

be una�ected by a change of spatial distance. However, copula based modelling

has more advantages when compared to conventional geostatistical modelling,

even though it requires a more limiting assumption, such as the ability to ob-

tain the full conditional distribution, ability to remove the in�uences of marginal

distributions when modelling the dependence structure and the ability to model

non-linear spatial dependence (Haslauer et al. [2010]). Based on this strong sta-

tionarity assumption, the marginal distributions of the variable of interest for

each location in the domain are identical, that is, Fi(zi) = F (zi). The empirical

bivariate copula can be used to explore the spatial variability. As with the var-

iogram, it is assumed that the bivariate spatial copula Cs at any two locations

only depends on the separation vector h and is independent of the locations x

(Bárdossy and Li [2008], Bárdossy [2006]), that is

Cs(u, v) = Pr(F (Z(x)) ≤ u, F (Z(x+ h)) ≤ v)

= Ch(F (Z(x)), F (Z(x+ h))).

All of the above mentioned assumptions are also applicable to spatial modelling

based on the pair-copula model. To simplify application of the pair-copula model,

spatial dependency is restricted to the isotropic case here. In isotropic situations,

it is assumed that spatial dependence varies only with distance and not with

direction. In this case the vector h becomes distance h.

3.3.2 Procedure for spatial interpolation using the pair-

copula model

The general procedure for applying the pair-copula model for spatial interpo-

lation, based on the details provided in Gräler and Pebesma [2011] and Gräler
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[2014], is described step by step in detail as follows.

STEP 1: Empirical bivariate copula densities construction

As mentioned above, the marginal univariate distributions of the variable of inter-

est for each location are identical (based on the stationarity assumption). There-

fore, the empirical marginal distribution function F (z) can be estimated using

all the observations z(x1), . . . , z(xN) where N is the total number of sample lo-

cations. Then a unit interval transformation is applied to the observations using

the estimated distribution function.

Distances between every pair xi − xj = h; i 6= j,∀i, j = 1, 2, . . . , N are then

calculated and, thereafter, each pair {F (z(xi)), F (z(xj))} is placed into a relevant

distance class from the following classes [0, h1), [h1, h2), . . . , [hl−1, hl), where hl is

the maximum distance at which signi�cant dependence is observed. The mean

distance is considered as the representative value for each class.

The empirical bivariate copula densities can be calculated using a kernel density

smoothing method if the number of pairs per distance class is considerably large

enough, otherwise the empirical bivariate copula can be calculated by de�ning a

regular grid on the unit square and calculating the cumulative frequency of values

for each grid. The next step is to �t the theoretical copula model to the empirical

copula densities. This is similar to �tting a theoretical model to the experimental

variogram.

STEP 2: Theoretical bivariate copula densities and spatial copula construction

Even though it is possible to apply the maximum likelihood method for estima-

tion of bivariate copulae, in the spatial setting, several copula families for each

distance class need to be estimated in order to �t the most suitable spatial copula.

As an example, if there are ten distance classes and nine copula families are to

be compared for each distance class, altogether, ninety bivariate copulas need to

be estimated in the �rst step of pair-copula construction. This may be computa-

tionally demanding and time consuming. In this kind of situation, it is simpler
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and faster to calculate the inverse of Kendall's tau (or Spearman's rho) for each

distance class and convert these values to estimates of the dependence parame-

ter using the functional relationship between Kendall's tau and the dependence

parameter of the copula families (Genest and Rivest [1993]). Following this, the

copula that produces the maximum likelihood, amongst the copulas for a given

distance class, is selected as the spatial copula for the corresponding class.

STEP 3: Pair-copula construction and spatial interpolation

The �nal aim of any spatial analysis method is to estimate the variable of interest

Z(x) at an unsampled location x. Although the kriging estimator is able to

produce the expected value at the unsampled location as the estimator, the copula

based methodology allows one to estimate the full conditional distribution of

Z(x), which is:

F (Z(x) | Z(x1) = z(x1), . . . , Z(xN) = zN) =

Pr(Z(x) < z|Z(x1) = z1, . . . , Z(xN) = zN)

where N is the total number of observations.

The full conditional distribution of the variable of interest at an unsampled loca-

tion can be written using the corresponding conditional copula Cx,N :

F (Z(x) | Z(x1) = z(x1), . . . , Z(xN) = zN) =

Cx,N(F (Z(x))|u1 = F (Z(x1)), . . . , uN = F (Z(xN))).

However, it may be computationally intensive to use all the observations in this

process. Therefore, the conditional distribution is obtained based on the local

nearby points. Bárdossy and Li [2008] explain the method of selecting a su�cient

number of nearby locations. For a few randomly selected locations, the density
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functions are estimated and plotted for di�erent numbers of nearby locations.

The number of nearby locations that produce nearly identical density functions

for almost all considered locations can be selected as the su�cient number.

Let n be the nearby points to the unsampled location x, then

F (Z(x) | Z(x1) = z(x1), . . . , Z(xn) = zn) =

Cx,n(F (Z(x))|u1 = F (Z(x1)), . . . , un = F (Z(xn))).

Therefore, the conditional density function can be derived as

f(z|z1, ., zn) =
∂F (Z(x)|Z(x1) = z1, . . . , Z(xn) = zn)

∂z

=
∂C(u|u1 = F (Z(x1)), . . . , un = F (Z(x1)))

∂z

=
∂C(u|u1 = F (Z(x1)), . . . , un = F (Z(x1)))

∂u
× ∂F (z)

∂z

that is

f(z|z1, . . . , zn) = c(u | u1 = F (Z(x1)), . . . , un = F (Z(x1)))× f(z) (3.7)

where f(z) is the marginal density and F (z) is its distribution function.

It is clear that in order to construct the conditional density function of the variable

of interest at an unsampled location, constructing a conditional copula density

is essential. The procedure for constructing the conditional copula density using

the pair-copula construction is described using an example as follows.

Assume the value of the variable of interest at unobserved spatial locations is

required to be estimated using four nearby locations. Figure 3.3, which is repro-

duced from Gräler and Pebesma [2011] , shows how the pair-copula decomposition

should be carried out based on a canonical vine structure to obtain the full �ve

dimensional pair-copula density. In the �gure, an edge represent a bivariate cop-

ula and the two nodes connected to each edge represent the two arguments of the

corresponding bivariate copula. The unobserved location is x0 and x1, x2, x3 and
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Figure 3.3: Five dimensional spatial vine.

x4 are nearby locations.

The estimation process of the copulas in the �rst tree, T1, has already been

discussed in STEP 2. By using these copulas, Fi|0, i = 1, 2, 3, 4, can be calculated

according to Eq.( 3.6).

Then the conditional pair-copula in the second tree can be estimated. The

same procedure can be repeated to estimate the conditional copulas in other

trees. However, one can see that these conditional copulae may be in�uenced not

only by their conditional distribution function arguments but also by the value

of the conditioning variable. For example, c12|0 is in�uenced by its arguments

(F1|0(z(x1)|z(x0)), F2|0(z(x2)|z(x0))) and the value of Z(x0). But in pair-copula

construction, estimation of a conditional pair-copula is simpli�ed by ignoring the

in�uence from the value of the conditioning variable to keep the construction

process more practicable (Ha� et al. [2010]). Moreover, Ha� et al. [2010] showed

that even though this simpli�ed version has some limitations, it is a good approx-

imation for the actual model.

Finally, according to the decomposition shown in Figure 3.3, the full �ve dimen-

sional copula density can be written as
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c(u0, u1, . . . , u4) =

ch(F (z(x0)), F (z(x1)))× ch(F (z(x0)), F (z(x2)))× ch(F (z(x0)), F (z(x3)))×

ch(F (z(x0)), F (z(x4)))× c12|0(F 1|0(z(x1)|z(x0)), F 2|0(z(x2)|z(x0)))×

c13|0(F 1|0(z(x1)|z(x0)), F 3|0(z(x3)|z(x0)))×

c14|0(F 1|0(z(x1)|z(x0)), F 4|0(z(x4)|z(x0)))×

c23|01(F 2|01(z(x2)|z(x0), z(x1)), F 3|01(z(x3)|z(x0), z(x1)))×

c24|01(F 2|01(z(x2)|z(x0), z(x1)), F 4|01(z(x4)|z(x0), z(x1)))×

c34|012(F 3|012(z(x3)|z(x0), z(x1), z(x2)), F 4|012(z(x4)|z(x0), z(x1), z(x2))).

The conditional copula density of the variable of interest at the unsampled loca-

tion can then be obtained as follows

c(u0 | u1, . . . , u4) =
c(u0, u1, . . . , u4)∫ 1

0
c(v, u1, . . . , u4)dv

.

Finally, point estimates (mean and median) for the variable of interest at unob-

served location x0 can be obtained as follows (Bárdossy and Li [2008])

Ẑmean(x0) =
∫ 1

0
F−1(u)c(u|u1, . . . , un)du,

Ẑmedian(x0) = F−1(u = C−1n (0.5|u1, . . . , un)).

Since this method provides the full conditional distribution at an unsampled lo-

cation, it is easy to obtain a more �complete� estimation of uncertainty, such

as con�dence intervals, when compared to the kriged model. Here �complete�

is used to emphasise that the copula based model is fully capable of producing

uncertainty estimation dependent on both the observations' con�guration and

values. This feature is very important for additional drilling campaigns, where

a reduction of uncertainty is expected based on the in�uence of additional mea-

surements.

3.4 Application

Con�dential data on one particular metal from a real mine site are presented,

in which there are nearly 80, 000 measurements from over 2, 000 drill holes. A
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Figure 3.4: Spatial 3D plot of main metal grade.

small scale example is presented here based on a random subset of the spatial

observations, and spatial analysis performed on this subset for the grade of the

main metal. This subset consists of 2, 086 measurements of grade of the main

metal z(xi) at three dimensional locations xi = (x1i, x2i, x3i), i = 1, . . . , 2086, as

shown in the Figure 3.4. The following spatial statistical analysis was carried out

using R software (R Core Team [2014]) and R-package �spcopula� of Gräler (see

http://r-forge.r-project.org/projects/spcopula/).

Summary statistics of the grade of the main metal can be seen in Table 3.1

whilst a histogram of the main metal grade can be seen in Figure 3.5, from

which positive skewness is clearly demonstrated. The blue, red and green curves

on the histogram demonstrate the �tted gamma, generalised extreme value and

lognormal distributions, respectively.

The �rst step of copula based spatial analysis is estimating the marginal dis-

tribution function of the variable of interest Z(x). Two approaches have been

used in this application for estimating the marginal distribution function. The

�rst one is a purely empirical marginal function and the second is the best �t-

ted parametric marginal function based on the maximum likelihood values. For

the parametric marginal function, the log-likelihood values for the generalised
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Figure 3.5: Histogram of main metal
grade.

Figure 3.6: Kendall tau values against
the mean of the distance classes.

Table 3.1: Summary statistics of the main metal grade.

Statistic Value
n 2086
Mean 1.106
Standard deviation 1.340
Coe�cient of variation 1.265
Min 0.009
First quartile Q1 0.064
Median 0.464
Third quartile Q3 1.728
Max 9.015

extreme value distribution, log-normal distribution and gamma distribution were

−2082.0, −1971.9, and −1964.0, respectively. Therefore, the gamma distribution

was selected as the best �tting distribution amongst the competing distribution

functions. The maximum likelihood estimates are 0.544 and 2.033 for the shape

and scale parameters respectively for the selected parametric distribution. Us-

ing the estimated marginal distribution function, observed measurements were

then transformed to the unit interval in order to construct the empirical copula

densities to explore the spatial dependency structure.

Five metre by �ve metre classes were constructed. Selecting this width for the

classes ensures high �exibility in the pair-copula model. Moreover, this class

width leads to accurate copula estimation since each class contains more than
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100 pairs. Figure 3.6 presents the plot of the calculated Kendall tau (See the

de�nition in Frahm et al. [2003]) values against the mean of the distance classes.

The cubic function is a good �t for the relationship between Kendall tau values

and means of the distance class values. Once the cubic function approaches the

x-axis su�ciently closely, zero is assumed for the Kendall tau estimates. Here it

can be seen that it is reasonable to assume spatial independence for measurement

of the main metal at any two locations which are more than 85 metres apart.

Figure 3.7: Empirical copula density of metal grade for 0-5 m, 20-25 m, 40-45 m,
60-65 m, 80-85 m and 95-100 m distance classes.

Figure 3.7 shows the empirical copula densities obtained for six of the twenty

di�erent distance classes. If the spatial dependency is linear then the empirical

copula density plots should demonstrate a similar structure to that shown in

Figure 3.8. Even though the distance class [0, 5) m demonstrates a linear spatial

structure, the other distance classes have more complex spatial structures than

linearity. The empirical plots in Figure 3.7 con�rm the spatial independency of

any two locations which are more than 85 metres apart. Inversion of Kendall's

tau was used to estimate the dependence parameter of the spatial copula and

the copula with the highest log-likelihood value produced amongst the Gaussian,

Student t, Frank, Clayton, Gumbel, Joe and survival version of the last three
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copulas was �tted to each distance class. Table 3.2 shows the best �tting spatial

copula for each distance class, while the �tted conditional pair-copulas are shown

in Table 3.3.

Table 3.2: Best �t copulas for each distance class.

Class Copula Dependence
Parameter

Degrees of
freedom

0-5 Student t 0.634 4
5-10 Survival Joe 2.210 -
10-15 Survival Gumbel 1.520 -
15-20 Student t 0.453 4
20-25 Student t 0.388 4
25-30 Survival Joe 1.490 -
30-35 Survival Joe 1.400 -
35-40 Survival Joe 1.330 -
40-45 Survival Gumbel 1.150 -
45-50 Student t 0.170 4
50-55 Student t 0.143 4
55-60 Survival Joe 1.140 -
60-65 Student t 0.098 4
65-70 Survival Clayton 0.107 -
70-75 Joe 1.070 -
75-80 Frank 0.276 -
80-85 Survival Joe 1.040 -
85-90 Independent - -

The anisotropy (the directional e�ect on the spatial dependence structure) of

the data set was evaluated mainly in two directions: horizontal and vertical.

The Kendall tau plots show fairly similar dependence structures for these two

directions. Hence, throughout the application, isotropic spatial dependency is

assumed. This pair-copula model was applied to real world mine data and cross-

validation was carried out to compare the performance of the model with ordinary

kriging. Figure 3.9 presents the experimental variogram that was used for ordi-

nary kriging where the exponential model was used to model spatial dependency.

The estimated nugget, sill and the range of the exponential model are 0.898, 2.027

and 15.215 respectively. The same bin size as the pair-copula model was used

when constructing the variogram model. The leave-one-out cross-validation tech-

nique was used, with ten nearby locations in the interpolation process. Unlike

the kriged model, the copula based model has the ability to produce the full con-
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Table 3.3: Fitted conditional bivariate copulas.

Notation Copula Dependence
Parameter

Degrees of
freedom

C1,2|0 Student t 0.359 3.906
C1,3|0 Survival Gumbel 1.210 -
C1,4|0 Survival Gumbel 1.090 -
C1,5|0 Survival Gumbel 1.200 -
C1,6|0 Survival Joe 1.220 -
C1,7|0 Frank 1.010 -
C1,8|0 Student t 0.218 4.978
C1,9|0 Tawn Type 1- Rotated 90 −1.711 0.040
C1,10|0 Frank 0.698 -
C2,3|0,1 Clayton 0.162 -
C2,4|0,1 Student t 0.256 3.569
C2,5|0,1 Survival Joe 1.160 -
C2,6|0,1 Frank 0.535 -
C2,7|0,1 Frank 0.569 -
C2,8|0,1 Joe- Rotated 270 −1.050 -
C2,9|0,1 Survival Joe 1.210 -
C2,10|0,1 Survival Gumbel 1.150 -
C3,4|0,1,2 Frank 0.868 -
C3,5|0,1,2 Survival Clayton 0.046 -
C3,6|0,1,2 Survival Tawn Type 2 1.373, 0.123
C3,7|0,1,2 Survival Tawn Type 1 1.436 0.231
C3,8|0,1,2 Survival Gumbel 1.060 -
C3,9|0,1,2 Student t 0.161, 4.837 -
C3,10|0,1,2 Survival Joe 1.110 -
C4,5|0,1,2,3 Survival Clayton 0.101 -
C4,6|0,1,2,3 Survival Joe 1.09 0 -
C4,7|0,1,2,3 Student t 0.024 3.490
C4,8|0,1,2,3 Joe 1.090 -
C4,9|0,1,2,3 Student t 0.177 5.032
C4,10|0,1,2,3 Survival Joe 1.180 -
C5,6|0,1,2,3,4 Survival Gumbel 1.070 -
C5,7|0,1,2,3,4 Clayton 0.122 -
C5,8|0,1,2,3,4 Frank 0.843 -
C5,9|0,1,2,3,4 Survival Joe 1.060 -
C5,10|0,1,2,3,4 Clayton 0.230 -
C6,7|0,1,2,3,4,5 Survival Gumbel 1.110 -
C6,8|0,1,2,3,4,5 Joe 1.070 -
C6,9|0,1,2,3,4,5 Clayton- Rotated 90 −0.098 -
C6,10|0,1,2,3,4,5 Tawn Type 2- Rotated 90 −1.660 0.032
C7,8|0,1,2,3,4,5,6 Frank 0.310 -
C7,9|0,1,2,3,4,5,6 Survival Joe 1.100 -
C7,10|0,1,2,3,4,5,6 Survival Clayton 0.053 -
C8,9|0,1,2,3,4,5,6,7 Survival Gumbel 1.090 -
C8,10|0,1,2,3,4,5,6,7 Survival Tawn Type 1 1.798 0.172
C9,10|0,1,2,3,4,5,6,7,8 Survival Joe 1.180 -
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ditional distribution of the variable of interest at unsampled locations. Therefore

any estimator can be obtained. Here, two estimators, the mean and median, were

estimated from the copula model.

Figure 3.8: Gaussian copula density.
Figure 3.9: Empirical variogram with �t-
ted theoritical model (Exponential).

The performances of the models were evaluated using di�erent criteria: mean

absolute error (MAE), bias (average di�erence between estimated and true val-

ues) and Pearson correlation coe�cient of true and estimated values. Table 3.4

summarises these statistics. Figure 3.10 shows the bias against the true value.

According to Figure 3.10, existence of conditional bias (lower values are overes-

timated and higher values are underestimated) can clearly be seen in all mod-

els. The main reason for the conditional bias in kriging and indicator kriging is

the smoothing e�ect of the variance of the estimator. Conditional bias arising

from smoothing is well-documented and understood in the literature Seo [2013],

McLennan and Deutsch [2004]. Even though the smoothing e�ect does not di-

rectly apply to the pair-copula model, throughout the estimation process this

model uses several approximations and numerical integrations. It can be conjec-

tured that this might be the reasons for the existence of conditional bias in the

estimators of the pair-copula model.

All the pair-copula approaches produce estimates with smaller MAE compared

to kriging and the median estimator of the pair-copula with empirical margin

57



Table 3.4: Results of cross-validation.

Margin Approach MAE Bias Correlation

Empirical
Pair-copula -Mean 0.455 0.024 0.831

Pair-copula -Median 0.439 −0.048 0.826

Gamma
Pair-copula -Mean 0.466 −0.003 0.820

Pair-copula -Median 0.457 −0.081 0.813

Ordinary Kriging 0.508 −0.006 0.817

model produces the smallest MAE. On the other hand, the median estimator

of the pair-copula empirical margin model has what may be considered, in this

practical mining application, unacceptable large global bias. Hence the median

estimator of the pair-copula model with empirical margin cannot be considered as

the best overall estimator taking into consideration both MAE and bias. However,

the mean estimator of the pair-copula model with gamma margin has the lowest

global bias amongst all models considered and it produces smaller, if not at least

comparable, results compared to the kriged model in terms of MAE. Moreover,

Figure 3.10 indicates that all estimators from the pair-copula models perform

better than the estimator of the kriged model over the right tail of the distribution

of metal grade. Notice that the bias of the individual observations are generally

larger as metal grade increases for the kriged model (Figure 3.10(e)), compared

to the pair-copula models (Figures 3.10(a)-(d)).

3.5 Discussion and Conclusions

It should be noted that, in mining applications, the mean estimator is expected

to perform well because it has the ability to produce unbiased estimates for total

metal content. This requirement is satis�ed by the pair-copula model with gamma

margin for this application. The mean estimator of the pair-copula model with

gamma margin has the ability to produce more accurate and less biased estimation

for total metal grade compared to kriging. Even though this research focuses on

modelling grade, this method can be used to model any geoscienti�c variable.

The pair-copula model has the potential to become a popular geostatistical model
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(a) (b)

(c) (d)

(e)

Figure 3.10: Bias against true metal grade for (a) mean estimate from pair-copula
model with empirical margin, (b) median estimate from pair-copula model with
empirical margin, (c) mean estimate from pair-copula model with gamma margin
(d) median estimate from pair-copula model with gamma margin and (e) kriging.
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because of the capability to �t the full conditional distribution, ability to remove

the in�uences of marginal distributions when modelling the dependence struc-

ture and the ability to model non-linear spatial dependence and tail dependence.

As a result, the copula based model is fully capable of producing uncertainty

estimation dependent on both the observations con�guration and values. Hence

more complete uncertainty estimation can be used to obtain more precise opti-

mal designs than optimal designs obtained using a kriged model for additional

drillings.

However, more asymmetric copula families could be introduced in this model to

capture the in-situ dependency structure. It is not only the correct pair-copula

model but also the chosen marginal distribution that will a�ect the interpolation

process, as can be seen from Table 3.4. This can be con�rmed through the results.

It is also worth mentioning that whilst the use of the empirical marginal distri-

bution limits the range of the possible values for the estimates to be constrained

between the minimum and maximum values of observed values, use of a gamma

marginal allows any possible values for the estimates.

Finally, from these results, it has been demonstrated that, in our application, the

pair-copula model is, overall, better than the kriged model. Moreover, the pair-

copula model has the ability to reproduce the right tail of the skewed distribution

more successfully than kriging.

Further improvements in the pair-copula model are expected to be gained through,

for example, development of an e�cient method for de�ning the lag distance

classes, use of advanced search strategies, e.g., quadrant search, to remove the

obvious cluster e�ects, and use of more families of copulas. These improvements

are the focus of current research.
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Chapter 4

Optimal Distance Classes for

Spatial Pair-copulas

The research in this chapter has been submitted to Journal of Computer & Geo-

sciences as detailed below.

� Musafer, G.N., and Thompson, M.H. (n.d). Determination of optimal lag

distance classes in spatial pair-copula models. Computer & Geosciences .

Submitted.

Abstract

An e�cient algorithm for �nding the optimal distance classes in spatial pair-

copula models is presented based on the development of a new test for equality

between two spatial copulas. The aim of optimal distance class determination is

improvement in �t of the pair-copula model. There is currently no well-de�ned

procedure for determination of distance classes in spatial pair-copula models even

though the pair-copula model is based on distance classes. In determining opti-

mal distance classes, a statistical test that is used to test the equality between

dependence structures of two empirical copulas in the non-spatial framework is

extended to the spatial framework. The test of equality between two spatial cop-

ulas is then used to develop an algorithm to determine optimal distance classes.

The algorithm is applied to two data sets: data obtained from a real mine site

61



and the Meuse river bank data set. The results show an improvement in �t of

the pair-copula model using the proposed algorithm compared to a pair-copula

model with distance classes of equal width.

4.1 Introduction

The purpose of this chapter is the development of methodology for optimal de-

termination of distance classes used in the spatial pair-copula model. The pair-

copula model can be classi�ed as a hierarchical model building concept. Aas

et al. [2009] initially introduced this method to decompose high dimensional cop-

ula random variables using a set of bivariate copulas based on the work of Joe

[1996], Bedford and Cooke [2002], and Kurowicka and Cooke [2006]. Gräler and

Pebesma [2011] adapted this method to the spatial framework. The pair-copula

decomposition of high dimensional spatial copulas allows modelling of complex

spatial dependence in a fully �exible way by �tting, potentially, di�erent cop-

ula families to di�erent lag distance classes. Consequently, di�erent dependence

structures can be �tted to di�erent lag distances. Gräler and Pebesma [2011] used

a canonical vine structure to construct a pair-copula for spatial data because this

structure bene�ts spatial interpolation by giving higher priority to the interaction

between the unobserved locations and nearby locations, if unobserved locations

are selected as the root element.

The �rst step in building a pair-copula model for a spatial framework is con-

struction of the distance classes for a given data set [Gräler and Pebesma, 2011].

The distance between every data pair is calculated and each pair is placed into a

relevant distance class. However, there is currently no well-de�ned procedure for

distance class determination. For instance, two consecutive distance classes may

show similar spatial dependence structures. In this situation, it may be more

computationally e�cient and parsimonious to �t a pair-copula model by combing

the two classes than �tting a pair copula model by considering the classes as

two separate classes. Moreover, it is more e�cient and objective to compare the

dependence structure between two distance classes using a statistical test than
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by comparing empirical bivariate density plots visually. Since the pair-copula �ts

a copula to each class, the equality between two �tted copulas can be tested by

testing the equality between the corresponding two dependence structures.

In the non-spatial setting, testing two copulas or, in other words, testing the

equality between two dependence structures, is very little addressed in the litera-

ture. However, Rémillard and Scaillet [2009] introduced a non-parametric test to

compare the equality between two copulas that measures similarity between the

copulas using a Cramér-von Mises type distance between empirical estimations

of the copulas. This can be used for samples coming from two independent pop-

ulations and also samples coming from two paired populations in a non-spatial

environment.

A full description of distance classes, including how these are used in spatial pair-

copula models, can be found in Musafer et al. [2015]. The algorithm developed

in this chapter is based on an extension of the test of equality between to non-

spatial copulas proposed by Rémillard and Scaillet [2009] using the dependent

wild bootstrap of Shao [2010] to introduce spatial dependence. Application of

the algorithm to two data sets: data obtained from a real mine site and the

Meuse data set, demonstrates an improved �t of the pair-copula model based on

the proposed algorithm when compared to a pair-copula model that uses distance

classes of width.

The following sections describe the test of copula equality for non-spatial data

[Rémillard and Scaillet, 2009] and the dependent wild bootstrap [Shao, 2010].

New methodology for testing copula equality in a spatial framework, and its use

in determining distance classes in the spatial pair-copula model, is subsequently

presented. Finally, results from two applications are discussed, followed by con-

cluding remarks.
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4.1.1 Test of equality between non-spatial copulas

The test of copula equality between two non-spatial copulas, proposed by Rémil-

lard and Scaillet [2009], aims to test the following hypothesis

H0 : C = D vs H1 : C 6= D

where C and D are the copulas associated with �rst sample, X1, . . . , Xn1 , and

second sample, Y1, . . . , Yn2 , respectively. Here Xi and Yi are d dimensional real

valued vectors. In the spatial framework, in Section 4.2, the �rst and second

samples are two distance classes and d = 2.

Rémillard and Scaillet [2009] proposed the following test statistic Sn1,n2 , which is

a function of the di�erence between the empirical copulas Cn1 and Dn2 , to test

the equality between two copulas

Sn1,n2 =

(
1

n1

+
1

n2

)−1 ∫
[0,1]d

(Cn1(u)−Dn2(u))2 du. (4.1)

Rémillard and Scaillet [2009] proved that, under the null hypothesis, the test

statistic can the written as

Sn1,n2 =

∫
[0,1]d

ε(u)2du (4.2)

where

ε(u)2 =
√

(1− λ)C(u)−
√
λD(u)

with λ = n1/(n1 + n2). C(u) and D(u) are centred Gaussian processes that have

the following representation

C(u) = α(u)−
d∑

l=1

βl(ul)∂ul
C(u), (4.3)

D(u) = γ(u)−
d∑

l=1

δl(ul)∂ul
D(u), (4.4)
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where

α(u) =
1
√
n1

n1∑
i=1

{I(Ui ≤ u)− C(u)}, (4.5)

βl(ul) = α(1, . . . , 1, ul, 1, . . . , 1), (4.6)

γ(u) =
1
√
n2

n2∑
i=1

{I(Vi ≤ u)−D(u)}, (4.7)

δl(ul) = γ(1, . . . , 1, ul, 1, . . . , 1). (4.8)

Here, the distribution of the test statistic cannot be obtained directly due to the

unknown C and D. However, Rémillard and Scaillet [2009]) approximated the

random terms α(u) and γ(u) using the multiplier central limit theorem, as given

below. Based on this approximation, a simulation study can be conducted to

obtain the p-value.

α̂(u) =
1
√
n1

n1∑
i=1

ξ
(k)
i {I(Ui ≤ u)− Cn1(u)}, (4.9)

β̂l(ul) = α̂(1, . . . , 1, ul, 1, . . . , 1), (4.10)

γ̂(u) =
1
√
n2

n2∑
i=1

ζ
(k)
i {I(Vi ≤ u)−Dn2(u)}, (4.11)

δ̂l(ul) = γ̂(1, . . . , 1, ul, 1, . . . , 1), (4.12)

where ξ
(k)
i and ζ

(k)
i are independently and identically distributed variables with

mean zero and variance one. Here k denotes the simulation number; k ∈ {1, 2, . . . , N},

whereN is the number of simulations. The approximation of ∂ul
C(u) and ∂ul

D(u)

in Eqs. 4.3 and 4.4 can be found in Rémillard and Scaillet [2009].

Finally, an approximate value Ŝ
(k)
n1,n2 for Sn1,n2 in Eq. 4.2, under the null hy-

pothesis, can obtained by substituting the estimated values in Eqs. 4.9 to 4.12 for

Eqs. 4.5 to 4.8, respectively. By doing this for the N simulations, the distribution

of the test statistic can be obtained under the null hypothesis.

If two samples are independent, realisations ξ
(k)
i and ζ

(k)
i are obtained indepen-

dently of each other from the standard Guassian distribution. If two samples

are paired, ξ
(k)
i are obtained from the standard Guassian distribution and ζ

(k)
i is

equal to ξ
(k)
i .
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4.1.2 Dependent wild bootstrap

Shao [2010] introduced the dependent wild bootstrap (DWB) method to carry out

statistical tests in time series. By using this DWB, a dependence structure can

be injected into a time series to obtain the distribution of the Cramér-von Mises

test statistic under the null hypothesis. Doukhan et al. [2015] discussed three

variants of the DWB used by di�erent authors in the literature. In this chapter,

the second version of the DWB (DWB-2) is adopted due to its suitability and

simplicity in de�ning a dependence structure for spatial data.

In the DWB-2, independent and identical realisations are obtained for each ob-

servation in the time series from the Gaussian distribution with mean zero and

variance 1/l, where l is the number of dependent lags. Then, for each observation,

the following random component is calculated using those realisations

ε∗t,n = ζ∗t + . . .+ ζ∗t−l+1 (4.13)

where ζ∗t ∼ N(0, 1/l) are independently and identically distributed, t is time lag

and n is the number of observations.

Thereafter, the random component in Eq. 4.13 is used to obtain an approximation

of the Cramér-von Mises test statistic Vn = 1
n2

∑n
s,t=1 h(Xs, Xt) as follows

V ∗n =
1

n2

n∑
s,t=1

h(Xs, Xt)(ε
∗
s,n − ε̄∗n)(ε∗t,n − ε̄∗n)

where X = {X1, X2, . . . , Xn} is the time series of interest and ε̄∗n is the average

of the random components ε∗i,n.

4.2 Methodology

Distance classes are the building blocks of the pair-copula model [Musafer et al.,

2015]. However there is no well-de�ned procedure for de�ning the distance classes.

Existing papers that apply the pair-copula model for spatial data use distance

classes of equal width [Gräler and Pebesma, 2011, Gräler, 2014]. As discussed
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previously, there may be situations where two consecutive distance classes have

similar spatial dependence structures. This section describes a novel systematic

algorithm for combining classes with similar dependence structures.

4.2.1 Test of equality between two spatial copulas

From Section 4.1.1, ξ
(k)
i and ζ

(k)
i are the terms in the test statistic for a test

of equality between to copulas that quantify the dependence, or otherwise, of

the data. The test for equality between two non-spatial copulas is extended to

the spatial framework here by replacing ξ
(k)
i and ζ

(k)
i in Eqs. 4.9 and 4.11 with

quantities that capture spatial dependence. A modi�cation of the DWB random

component, given in Eq. 4.13, is proposed to replace ξ
(k)
i and ζ

(k)
i .

Assume that z1, . . . , zn are n spatial observations obtained from the study do-

main and l number of neighbours are used for interpolation. As the �rst step, n

independent realisations are obtained from the Gaussian distribution with mean

zero and variance 1/(l + 1) , i.e., ei ∼ N(0, 1/(l + 1)); i = 1, . . . , n. Thereafter, a

spatially dependent random component wi for each observation can be obtained

as follows

wi = ei +
l∑

t=1

ei,t (4.14)

where the ei,t, t = 1, . . . , l, represent the independent realisations that are ob-

tained for the l locations neighbouring the i-th spatial location and wi follows the

standard Gaussian distribution.

Now, wi can be considered a spatially dependent component similar to ε∗t,n in

Eq. 4.13 for temporal dependence. With the wi, it is possible to generate random

components to replace ξ
(k)
i and ζ

(k)
i in Eqs. 4.9 and 4.11, respectively, for a spatial

framework as described below.

The �rst step in �tting a pair-copula model is the construction of the bivariate

empirical copula for each distance class [Musafer et al., 2015]. Assume that Cn1

and Dn2 are the empirical copulas for the two distance classes of interest. Here n1

and n2 are the number of pairs of observations belonging to each distance class.

67



First, consider the empirical copula Cn1 for the �rst distance class. Any data pair

in an empirical copula Cn1 for a distance class contains the information of the

two spatial observations comprising the pair. For example, the s1-th pair of Cn1

is {F (zi), F (zj)}s1 ; i, j = 1, 2, . . . , n, i 6= j and s1 = 1, . . . , n1. Hence, there are

two random components, wi and wj, associated with each pair.

However, in Eqs. 4.9 and 4.11, only one random component is used for each pair

in the given empirical copula. Hence, the summation of the wi and wj is proposed

as the random component in the spatial setting. However, even though the mean

of the distribution of the summation of wi and wj is zero, the variance will not

be equal to one. Thus, the random component ξ
(k)
s1 for the s1-th pair in Cn1 is

replaced by ξ∗s1
(k), where

ξ∗s1
(k) =

wi + wj

standard erorr(wi + wj)
. (4.15)

The s2-th pair of empirical copulaDn2 for the second distance class consists of two

spatial observations {F (z′i), F (z′j)}s2 ; i′, j′ = 1, 2, . . . , n, i′ 6= j′ and s2 = 1, . . . , n2.

Therefore, w′i and w
′
j are able to be generated similarly to wi and wj. Hence, as

with the �rst distance class, the random component ζ
(k)
i for the s2-th pair in Dn2

can be replaced by ζ∗s2
(k), that is

ζ∗s2
(k) =

w′i + w′j
standard erorr(w′i + w′j)

. (4.16)

The random components de�ned in Eqs. 4.15 and 4.16 can be used in Eqs. 4.9 to

4.12 for the spatial framework as follows

α̂(u) =
1
√
n1

n1∑
si=1

ξ∗s1
(k){I(Ui ≤ u)− Cn1(u)}, (4.17)

β̂l(ul) = α̂(1, . . . , 1, ul, 1, . . . , 1), (4.18)

γ̂(u) =
1
√
n2

n2∑
s2=1

ζ∗s2
(k){I(Vi ≤ u)−Dn2(u)}, (4.19)

δ̂l(ul) = γ̂(1, . . . , 1, ul, 1, . . . , 1). (4.20)

These values can be used to obtain an approximate value Ŝ
(k)
n1,n2 for Sn1,n2 in
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Eq. 4.2, under the null hypothesis. Here k represents the k-th simulation. To

obtain the distribution for Sn1,n2 under the null hypothesis, this whole process is

repeated N times.

After calculating the test statistic Sn1,n2 , as in Eq. 4.1, using the empirical copulas

for the distance classes, the p-value can be calculated as follows

p =

∑N
k=1 I(Ŝ

(k)
n1,n2 > Sn1,n2)

N
. (4.21)

The following steps summarise the proposed test of equality between two spatial

copulas.

1. Draw n independent ei from the Gaussian distribution with mean zero and

variance 1/(l + 1).

2. Calculate n dependent random components wi for the corresponding spatial

observation using Eq. 4.14.

3. Using the wi's obtained in step 2, obtain random components ξ∗s1
(k), using

Eq. 4.15, for each pair in the �rst class.

4. Using the wi's obtained in step 2, obtain random components ζ∗s2
(k), using

Eq. 4.16, for each pair in the second class .

5. Calculate the quantities in Eqs. 4.17 and 4.18 using the values obtained in

step 3 and calculate the quantities in Eqs. 4.19 and 4.20 using the values

obtained in step 4 .

6. Substitute the approximated values obtained in step 5 into the Eq. 4.2 to

obtain an approximate value Ŝ
(k)
n1,n2 for Sn1,n2 under the null hypothesis.

7. Repeat steps 1 to 6, N times to obtain the distribution of the test statistic

in Eq. 4.2 under the null hypothesis.

8. Calculate the test statistic Sn1,n2 using observed values and Eq. 4.2.

9. Calculate the p-value using Eq. 4.21.

10. Reject H0 if p-value < signi�cance level.
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4.2.2 De�ning distance classes

Generally, there may be more than two distance classes when developing a pair-

copula model. Hence, multiple comparisons should be carried out to compare

the dependence structure between pairs of distance classes to de�ne the optimal

classes for a given case study.

Constructing distance classes of equal width is the �rst step in the pair-copula

modelling of Gräler and Pebesma [2011]. It is essential to have at least ten

data pairs in each distance class for maximum likelihood estimation. If this re-

quirement is not satis�ed, the width of the distance classes could be increased.

However, by using too wide a distance class, distance classes with di�erent de-

pendence structures may be combined.

After placing the data pairs in relevant distance classes, a plot of Kendall's tau

against the mean distance of each class can be obtained. From this plot, the

maximum distance (L) of any two locations that have a signi�cant dependence

structure can be determined. Hence, for any two points with distance greater

than L, independence can be assumed. For distance classes with distance less

than L, carry out pair-wise tests on consecutive distance classes using the test

of equality between two spatial copulas described in Section 4.2.1. If the test

produces a non-signi�cant p-value, combine the consecutive distance classes into

a new wider distance class. Then, depending on those results, further combine

distance classes.

Let d = (d1, . . . , dk) denote the initial distance classes and Ci the copula corre-

sponding to distance class i; i = 1, . . . , k. An algorithm for combining classes is

given in Algorithm 1, such that redundant pair-wise tests are not carried out.

For example, if d1 6= d2, that is, distance classes d1 and d2 are not combined,

this implies that d1 6= d3, since it is sensible, in the spatial setting, to combine

only consecutive distance classes. Additionally, in combining multiple distance

classes, all pair-wise comparisons of the distance classes comprising the combined

distance classes must produce a non-signi�cant p-value. For example, if the com-

bined distance class is d1 + d2 + d3, then C1 = C2, C2 = C3 and, importantly,
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C1 = C3. This ensures that the �rst and last classes are actually similar.

Figure 4.1 shows the application of Algorithm 1 for a pair-copula with four equally

spaced initial distance classes, d1, . . . , d4.

Figure 4.1: Application of Algorithm 1 for four distance classes.

4.3 Application

The following analysis was carried out using a computer with an Intel(R) Core(TM)

i5 CPU (2.53GHz) processor and 4 GB memory. R statistical software [R Core

Team, 2014] and its `spcopula' package (see http://r-forge.r-project.org/

projects/spcopula/) were used to carry out the analysis.

4.3.1 Data from a real mine

A small scale example using data from a real mine site is presented here. The data

set consists of 200 spatial observations of the main metal at three dimensional

locations.

As an initial step, the data points should be transformed to the unit interval
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Algorithm 1: Algorithm for combining distance classes.

De�nition:

d = [d1, . . . , dk] # Vector of initial distance classes of equal width

k = length(d) # The number of initial distance classes

newd = NULL # Vector to store the combined distance classes

C = [C1, . . . , Ck] # Vector of bivariate empirical copulas for initial
distance classes

i← 1 , j ← 1, combine← 1

Notation:

twocop(Ci, Cj) # Test of equality between spatial empirical copulas Ci

and Cj using the test in Section 4.2.1. Output of this test is 0 (not equal)
or 1 (equal).

Calculation:

while (k > i− 1)

while (combine > 0)

if (k > i+ j − 1)

l← 1, m← i+ j − l
while (m > i− 1)

if (twocop(Ci+j, Ci+j−l) = 1)

l← l + 1, m← i+ j − l
else m← i− 1

end if

end while

if (l = j + 1)

j ← j + 1

else combine← 0

end if

else combine← 0

end if

end while

add sum(d(i) to d(i+ j − 1)) to newd

i← i+ j, j ← 1, combine← 1

end while
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using a rank transformation or using the estimated marginal distribution of the

data in order to construct the empirical copulas for each distance class.

In this application, the estimated marginal distribution was used in �tting a

pair-copula. Then, 5 metre by 5 metre classes were constructed, which ensured a

minimum of ten data pairs in each distance class. Data points were then assigned

to relevant distance classes. Figure 4.2 is a plot of the calculated Kendall tau

values against the mean of the distance classes. According to Figure 4.2, spatial

independence can be assumed for the measurement of the main metal at any

two locations which have more than a 95 metre separation distance. Hence,

there are 19 distance classes to consider. A cubic relationship is appropriate in

describing the relationship between the Kendall tau values and the distance for

the �rst 19 classes. Thereafter, Algorithm 1 was applied to determine the optimal

distance classes for the pair-copula model. Table 4.1 shows the original class

boundaries, the best �tted theoretical copula with estimated Kendall tau values

for the original class boundaries, the number of data pairs for the corresponding

classes, the class boundaries for the combined classes from Algorithm 1, the best

�tting theoretical copula for the classes after applying Algorithm 1 and their

Kendall tau values.

Figure 4.2: Mine data. Kendall tau values against the mean of the distance
classes.

Finally, a pair-copula model was �tted to the original classes of equal width
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Original distance classes Algorithm 1 distance classes

Boundaries
Best �tted

copula

Kendall's

tau

No.

pairs
Boundaries

Best �tted

copula

Kendall's

tau

0�5 Student t 0.35 12

0�25
Survival

Gumbel
0.38

5�10
Survival

Joe
0.45 21

10�15
Survival

Gumbel
0.29 29

15�20 Student t 0.47 35

20�25 Student t 0.33 40

25�30
Survival

Joe
0.12 52

25�55
Survival

Joe
0.13

30�35
Survival

Joe
0.09 68

35�40
Survival

Joe
0.17 87

40�45
Survival

Gumbel
0.04 100

45�50 Student t 0.20 120

50�55 Student t 0.13 149

55�60
Survival

Joe
0.05 164

55�65
Student

t
0.07

60�65 Student t 0.08 190

65�70
Survival

Clayton
−0.01 219

65�95
Survival

Clayton
0.04

70�75 Joe 0.04 261

75�80 Frank 0.04 263

80�85
Survival

Joe
0.01 281

85�90 Frank 0.08 273

90�95
Survival

Gumbel
0.06 290

Table 4.1: Mine data. Class boundaries using Algorithm 1.

and the combined classes using Algorithm 1. In �tting the pair-copula model,

inversion of Kendall's tau was used to estimate the dependence parameter of

the spatial copula and the copula with the highest log-likelihood value produced

amongst the Gaussian, Student t, Clayton, Gumbel, Joe, Survival Clayton and

Survival Gumbel copulas was �tted to the each distance class, since these cop-

ula families are able to capture di�erent dependence structures, as explained

in Trivedi and Zimmer [2007]. Thereafter, cross-validation was carried out to

compare the performance of the pair-copula model with equal width classes and
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the pair-copula model with combined classes using Algorithm 1. The leave-one-

out cross validation technique was used, with ten nearby locations used for each

location when constructing the conditional copula in the interpolation process.

Gräler and Pebesma [2011] use four nearby locations. Increasing the number of

nearby locations reduces mean absolute error (MAE) but at a cost in increased

computational time. For this example, Figure 4.3 shows the reduction in MAE

for an increasing number of neighbour locations and the corresponding increase

in computational time. For the cross validation of the pair-copula model with

equal width classes, using a sub-sample of the data, computational time increases

sharply for more than 10 neighbour locations, and the reduction in MAE decreases

for more than 10 neighbour locations. Hence, ten nearest neighbours were used

in this example. Unlike conventional linear geostatistical models, the pair-copula

model has the ability to produce the full conditional distribution of unsampled

locations. Therefore, any estimator can be obtained. Here, two estimators, the

mean and median, were estimated.

Figure 4.3: Mine data. MAE and computational time against number of neigh-
bour locations.

The performance of the models was evaluated using di�erent criteria: mean abso-

lute error (MAE) and bias (average di�erence between estimated and true values).

Other than these two criteria, goodness of �t of the �tted copula to each distance

class should be evaluated between the equally spaced distance classes and the
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combined classes from Algorithm 1. To that, the average of the mean square

error of bivariate kernel density estimations (bivariate KDE MSE) over the dis-

tance classes was used. For a given distance class, the bivariate KDE MSE is

calculated as the mean square di�erence of the KDE of the empirical and �tted

theoretical copula.

The mean square error of the bivariate kernel density estimations of the empirical

copula and �tted theoretical copula was calculated for each class (bivariate KDE

MSE). The average value of the bivariate KDEMSE for all the classes was selected

as the �nal value to represent the goodness of �t of the model. A smaller number

for this statistic indicates a better �t. For ease of comparison, the mean bivariate

KDE MSE values are divided by the smaller mean bivariate KDE MSE. As a

result, the value of the statistic for the model that produces the smaller bivariate

KDE MSE is equal to one and the statistic for the alternative model is the KDE

MSE relative to the best model.

Table 4.2 presents a summary of these statistics. The model using Algorithm 1

produces the lowest bivariate KDE MSE and the pair-copula model with equal

width classes has, approximately, a 40% increase in the mean bivariate KDE

MSE compared to the Algorithm 1 model. When comparing pair-copula models,

the estimator of the pair-copula model with combined classes using Algorithm 1

(PCA) produces the lowest MAE regardless of the estimator. However, the bias

of the median estimator for the PCA model is slightly larger than the median

estimator for the pair-copula model with original classes (PCO). However, in

terms of KDE MSE, the PCA model produced a better �t.

Model Boundaries
Relative

KDE MSE

Mean Median

MAE Bias MAE Bias

PCO [0,5,10,....,95] 1.39 0.878 −0.130 0.857 −0.349
PCA1 [0,25,55,65,95] 1.00 0.830 −0.101 0.806 −0.359

Table 4.2: Mine data. Results of cross-validation. PCO = pair-copula model
with original distance classes and PCA = pair-copula model with distance classes
from Algorithm 1.
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4.3.2 Meuse data set

The Meuse river bank data set [Bivand et al., 2013], which is available in the R

package [R Core Team, 2014], was used as a second application. This data set

has spatial observations on four top soil heavy metal concentrations and seven

other secondary variables at 155 di�erent two dimensional locations. The top soil

zinc concentration was selected as the variable of interest for this example.

As discussed in the previous application, it is essential to have at least ten data

pairs in each class to apply Algorithm 1 using maximum likelihood estimation.

The same methodology that was used for the mining data set was applied to the

Meuse data set with 70 by 70 metre classes. A plot of the calculated Kendall

tau values against the mean of the distance classes is displayed in Figure 4.4.

Spatial independence can be assumed after approximately 600 metres. Hence,

there are eight distance classes to consider. Moreover, a linear relationship best

describes the relationship between the Kendall tau values and distance for the �rst

eight distance classes. Table 4.3 presents the boundaries of the original classes of

equal width and the combined classes using Algorithm 1. In addition, the best

�tted copula and the estimated Kendall tau values for each distance class, for

both the original classes and the combined classes using the Algorithm 1, can be

also be found in Table 4.3. Leave-one-out cross validation was used, with eight

nearby locations, to evaluate the performance of Algorithm 1. The choice of eight

nearby locations was chosen in a similar fashion to the mining example and was

chosen based on Figure 4.5. For the same data set, Gräler and Pebesma [2011]

constructed a pair-copula model using four nearby locations. As per Figure 4.5,

it can be seen that the use of eight nearby locations requires only a small increase

in computational time for a marked reduction in MAE. Thebivariate KDE MSE,

MAE and bias for the PCO and PCA models are presented in Table 4.4.

As with the mining application, the PCA model performed better than the PCO

model in terms of bivariate KDE MSE. Whilst the bias of the median estimator

of the PCA model is only slightly smaller than the PCO model, the bias of the

mean estimator of the PCA model is approximately 50% of the bias in the PCO
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Figure 4.4: Meuse data. Kendall tau values against the mean of the distance
classes.

Figure 4.5: Meuse data: MAE and computational time against number of neigh-
bour locations.

model. Moreover, in terms of MAE, the PCA model is better than the PCO

model regardless of the estimator.

4.4 Conclusions

In this chapter, a new algorithm to determine the distance classes for the spatial

pair-copula model is developed. In developing the algorithm, the test proposed
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Original distance classes Algorithm 1 distance classes

Boundaries
Best �tted

copula

Kendall's

tau

No.

pairs
Boundaries

Best �tted

copula

Kendall's

tau

0�70
Survival

Joe
0.60 18

0�140
Survival

t
0.53

70�140 Student t 0.53 112

140�210
Survival

Gumbe
l 0.38 217 140�210

Survival

Gumbel
0.38

210�280
Survival

Joe
0.29 263

210�350
Survival

Joe
0.28

280�350
Survival

Joe
0.27 282

350�420
Survival

Joe
0.12 322

350-560
Survival

Joe

0.11

420�490 Survival Joe 0.14 346

490�560
Survival

Joe
0.10 371

Table 4.3: Meuse data. Class boundaries using Algorithm 1.

Model Boundaries
Relative

KDE MSE

Mean Median

MAE Bias MAE Bias

PCO [0,70,140,..,560] 1.13 153.036 8.814 147.130 −37.217
PCA [0,140,210,350,560] 1.00 149.707 4.546 144.952 −36.854

Table 4.4: Meuse data. Results of cross-validation. PCO = pair-copula model
with original distance classes and PCA = pair-copula model with distance classes
from Algorithm 1 .

by Rémillard and Scaillet [2009] is extended to the spatial framework by using

the dependent wild bootstrap [Shao, 2010].

In this research, improvement in the pair-copula model was expected to be gained

through the development of an e�cient method for de�ning the lag distance

classes. In both applications, pair-copula models with classes constructed using

Algorithm 1 show a signi�cantly better �t to the data than the pair-copula model

with classes constructed using equal widths. The expected improvement was

successfully achieved as seen by the more accurate estimates for the pair-copula

model using distance classes determined by Algorithm 1 than the pair-copula

model with original classes.

From these results, it may be reasonable to assume that more accurate estimates

can be obtained by using the pair-copula model with combined classes instead of

using the pair-copula copula model with equal distance classes.
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The proposed test of equality between spatial copulas should be evaluated based

on a simulation study. However, for spatial data, it is di�cult to simulate the

distance classes with a speci�c dependence parameter using existing simulation

tools. This perspective is the focus of future research.
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Chapter 5

Multivariate Modelling

This chapter is in preparation of journal submission as below and was presented at

the 10th Congress on Geostatistics for Environmental Applications 2014 , Paris,

France.

� Musafer, G.N., Thompson, M.H., Wol�, R.C. and Kozan, E. (n.d). Non-

linear multivariate spatial modelling using NLPCA and pair-copulas. In

preparation .

Abstract

A novel geostatistical modelling approach is developed to model non-linear multi-

variate spatial dependence using non-linear principal components analysis (NLPCA)

and pair-copulas. In spatial studies, multivariate measurements are frequently

collected at each location. The dependence between such measurements can be

complex. In this chapter a multivariate geostatistical model is developed that can

capture both non-linear spatial dependence across locations and non-linear de-

pendence between measurements at a particular location. Non-linear multivariate

dependence between spatial variables is removed using NLPCA. Subsequently,

a pair-copula based model is �tted to each transformed variable to model the

univariate non-linear spatial dependencies. NLPCA and pair-copulas in the pro-

posed model are compared with stepwise conditional transformation (SCT) and

conventional kriging, respectively, using cross-validation. The results show that
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the proposed model that uses NLPCA and pair-copulas reproduces non-linear

multivariate structures and univariate distributions better than existing methods

based on SCT and kriging.

5.1 Introduction

The focus of this chapter is on the modelling of non-linear multivariate spatial

data. More speci�cally, interest is in modelling multiple non-linearly spatial vari-

ables where the relationship between variables is additionally non-linear.

In spatial studies, multivariate measurements are frequently collected at a given

location. For example, environmental monitoring stations yield measurements on

ozone, nitrous oxide, carbon monoxide, and so on. In geometallurgical modelling,

measurements of rock hardness, mineral grade, geochemical attributes, and so

on, are collected. The measurements for the di�erent variables are unlikely to be

spatially independent and dependence between these measurements can be non-

linear. In addition, measurements of a speci�c variable are spatially correlated

across the locations, and this correlation can also be non-linear. Ignorance of these

non-linearities when modelling multivariate spatial data may consequently a�ect

decisions based on the spatial model. For instance, mining projects carry out their

�nancial evaluations based on estimates of potential ore reserves. Inadequate

spatial modelling of an ore reserve can, thus, lead to potential project failure.

Hence, it is essential to account for these non-linearities when performing spatial

modelling.

Existing multivariate models for multiple spatial variables include co-regionalisation

models, such as the co-regionalisation Markov model and the Markov-Bayes

model. Both of these models ignore non-linear dependence between the vari-

ables and, additionally, fail to reproduce the within-variable spatial dependence

successfully across locations (Leuangthong and Deutsch [2003]). Moreover, mod-

elling of multiple spatial variables is complex and time consuming when com-

pared to single variable modelling due to the requirement of the number of cross-

variograms with an increasing number of variables (Bandarian et al. [2008]). As
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a solution to this, multi-variables can be transformed to spatially uncorrelated

variables (factors) by using a suitable transformation method. Univariate geosta-

tistical modelling can then be subsequently performed on each factor separately.

To restore the dependence structure of the original variables, the factors are ap-

popriately back transformed (Rondon [2012]).

Principal components analysis (PCA) is the most popular method to obtain un-

correlated factors from linearly correlated variables (Wackernagel [2003]). Hence,

this method is not an appropriate transformation for practical applications where

non-linear dependence is present. Non-linear principal components analysis (NLPCA)

is an extension to PCA that can be used to identify and remove any kind of non-

linearity between variables (Kramer [1991]). This technique is widely used in

di�erent �elds, such as micro-biology and image processing as an aid for dimen-

sion reduction (feature extraction), visualisation and exploratory data analysis

(Kruger et al. [2008]). In this chapter, NLPCA is proposed for use in a spa-

tial framework to identify and remove non-linear relationships between spatial

variables. Other popular non-linear transformation techniques, such as stepwise

conditional transformation (SCT) and projection pursuit multivariate transfor-

mation (PPMT) are competitive techniques to NLPCA. Whilst SCT accurately

reproduces the distribution of the variable that is transformed �rst, the quality

of the reproduction of distributions for the second, and subsequent, transformed

variables decreases rapidly (Leuangthong [2003]). Thus, SCT is not suitable for

application to higher dimensional data. However, as discussed in Barnett et al.

[2014], PPMT can be successfully applied to higher dimensional data.

The drawback of NLPCA, SCT and PPMT is that these methods only remove

cross-correlation at zero lag distance. If cross-correlation is present at lag dis-

tances greater than zero, additional transformation is required to remove the

cross-correlation. Barnett and Deutsch [2012] carry out a modi�cation of the

minimum/maximum autocorrelation factors (MAF) transformation (Desbarats

and Dimitrakopoulos [2000]) following SCT. Barnett et al. [2014] use the same

modi�ed MAF following PPMT to remove the remaining cross-correlation.
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Once the multivariate spatial variables have been decomposed into uncorrelated

factors at all lag distances, univariate geostatistical interpolation methods can

be carried out on the uncorrelated factors. Most of the literature concerning

non-linear multivariate decomposition techniques, such as those discussed above,

employ traditional geostatistical interpolation methods, such as kriging, to model

transformed independent factors (e.g., Leuangthong [2003], Barnett et al. [2014]).

Since conventional geostatistical models use the covariance function to capture

spatial dependence, they frequently fail to capture non-linear dependence. The

pair-copula model for spatial data has the �exibility to capture more complex spa-

tial dependence structures and will render more accurate results than traditional

interpolation methods (Gräler and Pebesma [2011], Gräler [2014]). Additionally,

unlike traditional geostatistical interpolation methods, the pair-copula does not

require a Gaussian assumption on the marginal distribution. In this chapter,

pair-copula based spatial interpolation is proposed for modelling the uncorre-

lated univariate factors. In doing so, this chapter introduces the pair-copula to

the multivariate setting.

In summary, the non-linear multivariate spatial modelling approach considered

involves transforming the multivariate variables into uncorrelated factors at all

lag distances, �tting univariate geostatistical models to the factors separately, and

back transforming to restore the properties of the observed data. SCT and PPMT

are, currently, applied in practice to transform non-linear multivariate variables

into uncorrelated factors. As a competitive approach, the use of non-linear prin-

cipal components analysis (NLPCA) is proposed. The pair-copula approach is

additionally proposed to model the univariate uncorrelated factors. Without loss

of generality, the implementation of NLPCA and pair-copulas into the non-linear

multivariate spatial modelling approach is illustrated using two two-dimenstional

data sets, one real and the other arti�cial. Extension to higher dimensions merely

requires additional computation. The accuracy and reliability of the proposed

NLPCA and pair-copula implementations are evaluated via cross-validation and

are compared to existing methods. Overall, the results indicate that, in the case
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studies presented, non-linear multivariate spatial modelling based on transforma-

tion of the variables to uncorrelated factors is best implemented using NLPCA

and pair-copulas.

5.2 Methodology

This section outlines the proposed methodology for modelling non-linear multi-

variate spatial data. The general algorithm, which is that used in Barnett and

Deutsch [2012] and Barnett et al. [2014], is described below. A description of

both existing methods used in the algorithm, and methods newly proposed for

use in the algorithm, follows the discussion of the algorithm.

5.2.1 Algorithm

The three main components of the algorithm considered in Barnett and Deutsch

[2012] and Barnett et al. [2014] are: forward transformation to transform non-

linear multivariate spatial variables into uncorrelated univariate spatial factors,

univariate spatial interpolation of the uncorrelated factors, and back transforma-

tion of the interpolated factors to the original variables. It should be noted that

Barnett and Deutsch [2012] and Barnett et al. [2014] only consider data that

are linearly spatial, they do not model non-linear spatial data in their spatial

interpolation. This chapter extends the work of Barnett and Deutsch [2012] and

Barnett et al. [2014] by inclusion of non-linear spatial interpolation in the spatial

interpolation component of the algorithm. Consequently, a non-linear multivari-

ate transformation that preserves the non-linear spatial dependence of the data is

also introduced in the forward and backward transformation components of the

algorithm.

Forward transformation

The �rst step in modelling non-linear multivariate spatial variables, considered

in Barnett and Deutsch [2012] and Barnett et al. [2014], is multivariate decom-

position of the variables into uncorrelated factors at zero lag distance. Barnett
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and Deutsch [2012] and Barnett et al. [2014] propose the use of SCT (Rosenblatt

[1952]) and PPMT (Friedman and Tukey [1974]), respectively, for the multivari-

ate decorrelation. Whilst both methods are capable of decomposing both linear

and non-linear multivariate data into uncorrelated factors, the resulting univari-

ate factors are only linearly spatial. That is, SCT and PPMT do not preserve

any non-linear spatial properties of the data that may be present. Here, the use

of NLPCA (Kramer [1991]) is proposed as a suitable multivariate decorrelation

method for data that are non-linearly spatial.

Application of non-linear transformation methods, such as SCT, PPMT and

NLPCA, remove cross-correlation between spatial variables at zero lag distance.

However, cross-correlation between spatial variables at lag distances greater than

zero may remain. Fitting univariate geostatistical models to transformed uncor-

related factors separately requires that the factors be uncorrelated not only at

zero lag distance but at all lag distances. It is commonly assumed that decorre-

lation of the variables at zero lag distance also decorrelates the variables at all

lag distances (Goovaerts [1993], Leuangthong and Deutsch [2003]). Clearly, if

this premise does not hold true, the subsequent univariate geostatistical models

may not adequately �t the data. A commonly used method that has the abil-

ity to remove spatial cross-correlation between variables at all lag distances is

MAF transformation (Switzer and Green [1984], Desbarats and Dimitrakopoulos

[2000]). MAF, in its full form, is only able to be applied to linear multivariate

data, since the �rst step of MAF transformation involves PCA. However, the

second step of the MAF approach (Rondon [2012]), in which the MAF factors

are derived, is useful for removing cross-correlation at a lag distance greater than

zero. Consequently, the second step of MAF can be applied following non-linear

multivariate decorrelation of the variables at zero lag distance, as demonstrated

in Barnett and Deutsch [2012] and Barnett et al. [2014].

86



Spatial interpolation

After obtaining uncorrelated spatial factors, univariate geostatistical modelling

can be performed on each factor separately and interpolation carried out at un-

sampled locations. One of the most important aspects of modelling spatial vari-

ables is spatial correlation. Spatial correlation describes the relationship between

realisations of a spatial variable sampled at di�erent locations. Any method

used to model a spatial variable should be capable of accurately estimating the

true spatial correlation. The traditional kriging method (Krige [1951]), as im-

plemented by Barnett and Deutsch [2012] and Barnett et al. [2014], is only able

to model data with linear spatial dependence. Therefore, standard kriging mod-

els are unlikely to produce accurate estimators of distributional properties at

unsampled locations when non-linear dependence is present. Here, the use of

the pair-copula model (Gräler and Pebesma [2011]) is proposed for appropriately

modelling data with non-linear spatial dependence. Pair-copula models (Gräler

and Pebesma [2011], Gräler [2014]) have, to date, only been applied in univariate

non-linear spatial settings. This chapter presents the �rst application of pair-

copula models in a multivariate spatial framework.

Back transformation

The �nal step in the algorithm is to back transform the interpolated values to

their original scale, ensuring estimates retain the spatial dependence structure

and non-linear multivariate relationships of the original variables. The back

transformation should be carried out in the reverse order in which the forward

transformation is applied.

5.2.2 Multivariate decorrelation at lag h=0

This section describes methods for non-linear multivariate decorrelation of spatial

variables into uncorrelated spatial factors at zero lag distance, which occurs in

step 1 of Algorithm 2. The corresponding back-transformation, which occurs in

step 5 of Algorithm 2, is also discussed for each method. The methods considered
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are SCT, used in the algorithm by Barnett and Deutsch [2012], PPMT, imple-

mented in Barnett et al.s' (2014) version of the algorithm, and NLPCA, which

is proposed for the new version of the algorithm to facilitate the modelling of

non-linear spatial data.

Algorithm 2: General algorithm for modelling non-linear multivariate spa-

tial data using transformation methods.

Forward Transformation

1. Multivariate decorrelation at lag h = 0: Apply a non-linear transformation

to the multivariate data to produce uncorrelated factors at lag h = 0.

2. Multivariate decorrelation at lag h > 0: If spatial cross-correlation exists

at lag h > 0, derive the MAF factors to produce uncorrelated factors at

lag h > 0.

Spatial Interpolation

3. Fit univariate geostatistical models to each factor separately and

interpolate at unsampled locations.

Back Transformation

4. Multivariate recorrelation at lag h > 0: If MAF factors were derived in

step 2, apply the corresponding MAF back transformation to recorrelate

the original variables for the interpolated data at lag h > 0.

5. Multivariate recorrelation at lag h = 0: Apply the corresponding back

transformation of the non-linear transformation used in step 1 to

recorrelate the original variables for the interpolated data at lag h = 0.

The algorithm described above is summarised in Algorithm 2. More generally,

in what follows, h denotes a separation vector. To simplify application of the

methodology, spatial dependence is restricted to the isotropic case here. In

isotropic situations, it is assumed that spatial dependence varies only with dis-

88



tance and not with direction. In this case the vector h becomes distance h.

SCT

The SCT method transforms multivariate variables to multivariate Gaussian vari-

ables with no cross-relationship at zero lag distance (Leuangthong [2003]). The

stepwise conditional transformation for the m-variate case can be illustrated as

follows.

Let Y1, Y2, . . . , Ym be spatially dependent variables and let

Fi|1,2,...,i−1(yi|y1, y2, . . . , yi−1) be the distribution function of variable Yi con-

ditioned on �rst i − 1 variables. Let g−1 be the inverse standard Gaussian

distribution function. The transformed variables are then given by

T1 =g−1(F1(y1))

T2 =g−1(F2|1(y2 | y1))
...

Tm =g−1(Fn|1,2,...,n−1(yn | y1, y2, . . . , ym−1))

where T1, T2, . . . , Tm are multivariate Gaussian distributed with no cross-

correlation at zero lag distance, i.e., cov(Ti(u), Tj(u)) = 0 where i 6= j and

i, j = 1, 2, . . . ,m. Back transformation to the original scale is carried out by

applying the standard Gaussian distribution function g to T1, T2, . . . , Tm in the

same order as the forward transformation. That is, estimates of T1 are �rst trans-

formed to the original scale, then estimates of T2 are transformed, and so on. This

ensures that the multivariate dependence structure of the original variables is re-

tained by the estimates.

As discussed previously, cross-correlation between the transformed variables at

lag h > 0 may be present. Additionally, the resultant transformed variables will

be linearly spatial due to the Gaussian transformation applied to the data, which

may be problematic if the original data is non-linearly spatial.
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PPMT

Barnett et al. [2014] proposed PPMT as a non-parametric method for trans-

forming complex and high dimensional geologic data to an uncorrelated multi-

Gaussian distribution. PPMT is based on, and very closely resembles, the pro-

jection pursuit density estimation (PPDE) algorithm of Friedman and Tukey

(Friedman and Tukey [1974]) and Friedman (Friedman [1987]).

Before applying the projection pursuit transformation, a Normal score transfor-

mation is applied to each variable. Data sphering is then carried out to obtain

centred variables with unit variance and orthogonal covariance matrix. Finally

the projection pursuit transformation is applied to obtain uncorrelated multi-

variate Gaussian data (Barnett et al. [2014]). A conceptual description of the

projection pursuit transformation is given below.

Consider m-dimensional unit vector α and the projection of the data upon it,

p = αTX, where X is the matrix of sphered variables. Any α should yield a p

that is univariate Gaussian ifX is multi-Gaussian. The projection pursuit process

conducts an optimised search to �nd the α that produces the most non-Gaussian

projection of the multivariate data. The multivariate data is then Gaussianised to

remove this structure. By iterating this procedure, the data gradually transforms

to multi-Gaussian data. Details of the optimised search method and Gaussian-

isation can be found in Hwang et al. [1994]. After completing the interpolation

procedure, based on the transformed multi-Gaussian data, the interpolated val-

ues are back transformed to the original scale based on the distance between the

interpolated value and its nearest neighbours in transformed space (Barnett et al.

[2014]). Because PPMT, as with SCT, is based around Gaussianisation of the

data, PPMT faces the same issues as SCT as a result of the Gaussianisation.

However, in contrast to SCT, PPMT may be applied to any arbitrary number

of variables due to its non-parametric nature. PPMT was applied to the data

sets considered in this chapter. However, the resulting transformed variables did

not retain any spatial properties of the original data, thus an application of the

PPMT approach is not presented in this chapter.
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NLPCA

NLPCA is a non-linear generalisation of standard (linear) PCA that reduces

observed, possibly non-linearly correlated, variables to a number of uncorrelated

factors (Kruger et al. [2008], Linting et al. [2007]).

In NLPCA, an arbitrary non-linear mapping function is used to obtain uncor-

related factors from observed variables through the following transformation

ti = g(yi), where yi is the i-th row of n×m data matrix Y with n observations

on m variables, g is a non-linear vector-valued function composed of f individual

non-linear functions g = (g1, g2 . . . , gf ), and ti is the corresponding row of the

n× f matrix T containing the f ≤ m uncorrelated factors. The (i, j)-th element

of T is given by tij = gj(yi).

The non-linear functions g1, g2, . . . , gf are analogous to the columns of the load-

ings matrix in (linear) PCA; g1 is referred to as the primary non-linear factor, and

gj is the j-th non-linear factor of Y . The inverse transformation, which restores

the original dimensionality of the data, is obtained through a second non-linear

vector-valued function h = (h1, h2, . . . , hm): y′ij = hj(ti), where yij is the (i, j)-th

element of the reconstructed data matrix Y ′. The functions g and h are chosen

to minimise ||E||, the Euclidean norm of the residual matrix E = Y − Y ′:

‖E‖ =

√√√√ n∑
i=1

m∑
j=1

(yij − y′ij)
2. (5.1)

AANN implementation of NLPCA

There are several methods that can be used to implement NLPCA, such as

principal curve techniques (Hastie and Stuetzle [1989]), kernel PCA (Schölkopf

et al. [1998]) and auto-associative neural networks (AANN) (Scholz et al. [2008],

Kramer [1991]). Principal curve techniques demand computational power to ex-

tract the non-linear factors. Consequently, the number of extracted factors is

typically limited to two (Scholz et al. [2008]). Kernel PCA is better used as

a visualisation tool or noise reduction method, rather than as a technique for

extracting the non-linear factors (Scholz et al. [2008]). The most common imple-
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mentation of NLPCA is via AANNs. Hence, this chapter focusses on the AANN

approach (Bishop [1995]) to extract non-linear factors from non-linear multivari-

ate spatial data.

Figure 5.1: A standard AANN used to obtain a single non-linear factor.

The AANN used to implement NLPCA has �ve layers, as depicted in Figure 5.1.

The layers include an input layer, three hidden layers (mapping layer, component

layer and inverse mapping layer), and an output layer. The input and output lay-

ers represent Y and Y ′ respectively. The modelling of g and h is carried out in the

mapping layer and the inverse mapping layer, respectively. The component layer,

which is often refereed to as the bottleneck layer, represents T . The importance

of the three hidden layers is discussed in Kramer [1991]. When the mapping and

inverse mapping layers are absent, the AANN is equivalent to PCA.

As indicated in Figure 5.1, the AANN contains weights, w1, . . . , w4, which are the

parameters of the network. Training of the neural network is important in iden-

tifying suitable weights for the network. There are three di�erent ways to train

a neural network: supervised training, unsupervised training and reinforcement

training. For NLPCA, the target of the network is to reproduce Y . In other words,

the network needs to be trained as an identity mapping, Y → Y . Since the de-

sired output is well known, the network can be trained using supervised training.
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Through supervised training, the weights of the network can be tweaked contin-

uously until the desired outputs are achieved. This kind of network is known as

�auto-associative� or �self-supervised back-propagation� (Kramer [1991]). Scholz

et al. [2008] recommend the addition of a weight decay term to Equation 5.1 to

penalise large network weights:

‖E‖total = ‖E‖+ ϑ
4∑

i=1

wi
2. (5.2)

For a wide range of cases, ‖E‖total is minimised at around ϑ = 0.01.

Figure 5.1 shows the structure of a standard AANN used to obtain a single non-

linear component from two variables. This network is generically denoted as

a 2 − k − 1 − k − 2 network architecture, corresponding to the two observed

variables in the input layer, k nodes in the mapping layer (k = 4 in Figure 5.1),

one component in the bottleneck layer, k nodes in the inverse mapping layer,

and two reconstructed variables in the output layer. The number of nodes in

the mapping and inverse mapping layers depend on the complexity of the non-

linearity of the data. A reasonable approach to decide the number of nodes in

these layers is discussed in Kramer [1991].

This standard AANN can be modi�ed to carry out NLPCA under alternative

network architectures. Di�erent data structures can also be be handled through

modi�cations to this AANN. For example, h-NLPCA and circular NLPCA can

be implemented for hierarchical and circular data, respectively. The h-NLPCA

AANN can be constructed by using a constraint on the variance of the components

or using a constraint on the reconstruction error given in Equation 5.2 (Scholz

et al. [2008]). Circular NLPCA can be constructed using two components in

the component layer of the standard AANN, whose outputs are constrained to

project onto a circle (Kirby and Miranda [1996]). More details on these extended

AANNs can be found in various articles (Scholz and Vigário [2002], Scholz [2007],

Scholz et al. [2008]).

After development of the NLPCA, by training the AANN to perform an identity

mapping on the data, the weights of the network can be estimated by minimising
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the error function given in Equation 5.2. The weights and uncorrelated factors

(components) are implicitly stored in the AANN. The factors stored in the net-

work are the forward transformed variables in step 1 of Algorithm 2. Following

spatial interpolation, using univariate geostatistical models based on the uncorre-

lated factors, the interpolated values can be back transformed through the same

AANN used for the forward transformation. The dimensionality of the original

data and non-linear correlation between the original variables is restored through

this back-transformation.

The advantages of NLPCA for decomposing non-linear multivariate spatial data

into uncorrelated factors are that it preserves both multivariate non-linearity

and spatial non-linearity present in the observed data. Multivariate non-linear

dependence can be destroyed or distorted when a Normal score transformation

is applied to the data, such as in SCT and PPMT (Bandarian et al. [2008]).

Additionally, Gaussinisation of multivariate data into multi-Gaussian space, as

takes place in SCT and PPMT, can destroy or distort non-linear spatial depen-

dence (Leuangthong and Deutsch [2003], Barnett et al. [2014]). The drawback of

NLPCA implemented using an AANN is, however, the computational burden in

decomposing higher dimensional data (> 10 dimensions). Also, as with SCT and

PPMT, whilst transformed spatial variables are uncorrelated at zero lag distance,

cross-correlation may remain at lag h > 0.

It should be noted that, if data are not available for all variables at all sam-

pled locations, imputation of missing data is required to allow decomposition of

the data into uncorrelated factors (Barnett et al. [2014]). The inverse network

model for NLPCA can be used to deal with missing data for data with non-linear

structures, as discussed in Scholz et al. [2005].

5.2.3 Multivariate decorrelation at lag h > 0

In this section, decorrelation of multivariate data at lag h > 0, which is step 2 of

Algorithm 2, is discussed. The corresponding back transformation to recorrelate

the data, which occurs in step 4 of Algorithm 2, is also described. The method
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under consideration is the MAF transformation used by Barnett and Deutsch

[2012] and Barnett et al. [2014] in their versions of Algorithm 2.

Initial decomposition of non-linear multivariate spatial data into uncorrelated fac-

tors using non-linear transformation methods, such as SCT, PPMT and NLPCA,

generally decorrelates the factors at zero lag distance only. To �t univariate geo-

statistical models to the factors separately, the factors must be uncorrelated at all

lag distances. Therefore, the correlation between the factors should be checked

using, for example, a cross-semivariogram or cross-correlogram, to verify whether

any correlation is present at lag distances greater than zero. In most situations,

removal of correlation at lag h = 0 indirectly removes correlation at far away lag

distances. However, correlation at shorter lag distances may be present. Such

correlation should not be ignored, as subsequent interpolated or simulated data

based on the non-linearly transformed variables may not successfully reproduce

the dependence structure of the original variables (Barnett et al. [2014]). Thus,

it is necessary to remove this remaining correlation if possible. The second step

of the MAF approach can be applied to remove cross-correlation at lag distances

greater than zero (Rondon and Tran [2008]).

MAF can be categorised into two techniques: model based and data driven. In

the model based technique, direct and spatial cross-correlation is modelled using a

speci�c linear model of co-regionalisation (LMC) (Desbarats and Dimitrakopoulos

[2000]). These models are used to obtain factors that are independent at all lag

distances. However, �tting a LMC to model the spatial cross-correlation is a

di�cult and time consuming task. Conversely, the data driven technique does

not require any prior model to carry out the transformation (Switzer and Green

[1984]). However, it is only capable of removing spatial cross-correlation at shorter

lag distances. The data driven MAF approach is adopted in this chapter since,

in most situations, spatial cross-correlation is likely only to remain at shorter lag

distances after initial decomposition of the data into uncorrelated factors at zero

lag distance.

After obtaining uncorrelated factors at lag distance h = 0, the second step of
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data driven MAF can be applied to produce MAF factors that are uncorrelated

at a short lag distance h > 0 using the following steps.

1. Select a suitable lag distance, h = hmax (hmax > 0), at which cross-

correlation is to be removed, where hmax is the distance at which non-

negligible maximum cross-correlation exists.

2. Let the factors that are uncorrelated at h = 0 be denoted by T =

(T1, T2, . . . , Tm). Obtain the variance-covariance matrix at lag distance

h = hmax, Γ(hmax), for T1, T2, . . . , Tm.

3. Obtain the spectral decomposition of Γ(hmax). Let Q be the matrix of

eigenvectors.

4. Transform T = (T1, T2, . . . , Tm) to spatially independent factors M =

(M1,M2, . . . ,Mm) at lag h = hmax, where M = QT .

The back transformation to restore the correlation of the factors T1, T2, . . . , Tm

into the data at lag distance h > 0 is the inverse transformation: T = Q−1M ,

which uses the same matrix Q as the forward transformation.

Note that, whilst cross-correlation is removed at lag distance h = hmax, cross-

correlation is often indirectly removed at all lag distances 0 < h < hmax.

5.2.4 Spatial interpolation

This section describes the geostatistical models used to carry out spatial interpo-

lation in step 3 of Algorithm 2. The methods considered are ordinary kriging,

which is implemented by Barnett and Deutsch [2012] and Barnett et al. [2014] in

their versions of the algorithm, and the pair-copula model, which is proposed for

the new version of the algorithm to enable modelling of non-linear spatial data.

Ordinary Kriging (OK)

Since the ordinary kriging (OK) model was developed (Matheron [1970]), it has

become popular in di�erent spatial �elds, such as mining, petroleum, hydrology,

96



meteorology, oceanography, environmental control, landscape ecology and agri-

culture (e.g., Cressie [1990], Venäläinen and Heikinheimo [2002], Mishra et al.

[2009], Thomson and Emery [2014]). Simply, the OK estimator for the variable

Z(x0) at unsampled location x0 can be written as a linear combination of nearby

samples:

Ẑ(x0) =
n∑

i=1

wiZ(xi).

The weights wi are obtained by minimising the error variance σ2
R under the con-

straint
n∑

i=1

wi = 1 to ensure the unbiased property of the estimator. The error

variance σ2
R is

σ2
R = V ar[Ẑ(x0)− Z(x0)]

= σ2 +
n∑

i=1

n∑
j=1

wiwjCij − 2
n∑

i=1

wiCi0,

where σ2 = V ar[Z(x)], x is any sampled location, Cij = Cov[Z(xi), Z(xj)] and

Ci0 = Cov[Z(xi), Z(x0)]. Hence wi can be calculated by solving the following

system of equations (Isaaks and Srivastava [1989]):
n∑

j=1

wjCij + µ = Ci0 for all

i = 1, . . . , n and
n∑

i=1

wi = 1, where µ is the Lagrange multiplier. The aim of

the Lagrange parameter is to obtain weights that produce minimum variance.

Moreover, Cov[Z(xi), Z(xj)] and Cov[Z(xi), Z(x0)] are estimated using variogram

modelling. Since the OK method employs the minimum variance concept, Ẑ(x0)

is called the �best linear estimator� of the spatial variable of interest at unsampled

locations x0.

Pair-copula based geostatistical interpolation

The variogram and covariance function are the most common methods used to

capture the spatial dependence structure of a spatial variable (Kazianka and Pilz

[2010a], Gräler and Pebesma [2011]). These methods are only capable of pro-

viding one simple average measurement of dependence and also assume linear

dependence over the distribution of the variable of interest. However, in reality,

the spatial dependence structure may vary over the distribution of the variable
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of interest (Journel and Alabert [1989]). Therefore, conventional geostatistical

models, such as kriging, which uses the variogram to model spatial dependence,

are unable to produce accurate estimators of distributional properties of the vari-

able at unsampled locations when a complex dependence structure is present.

Moreover, conventional linear kriging only produces optimal results when the

random �eld is Gaussian. Even though non-linear kriged models, such as indica-

tor kriging, are a solution for non-Gaussian random �elds, indicator kriging has

a loss in statistical power to detect the true relationship between the variables

due to binary transformation of the data. Pair copula-based spatial models over-

come these problems of conventional kriged models as they can deal with both

non-Gaussian random �elds and non-linear dependence structures.

A copula is a function that joins or �couples� a multivariate distribution function

to its one-dimensional marginal distribution functions. The term �copula� was

�rst introduced in a mathematical or statistical sense by Sklar [1959]. Following

Sklar's theorem, any n-variate distribution function H(x1, x2, . . . , xn) = P (X1 ≤

x1, X2 ≤ x2, . . . , Xn ≤ xn) of the vector of random variables (X1, X2, . . . , Xn)

with marginal distribution functions Fi(xi) = P (Xi ≤ xi) can be written as

H(x1, x2, . . . , xn) = Cn(F1(x1), F2(x2), . . . , Fn(xn)),

where Cn is an n-dimensional copula. If the marginals Fi(xi) are continuous, then

the copula is unique. Thus, a copula fully describes the dependence structure

between random variables.

The main advantage of using a copula-based model for spatial data is that it

has the ability to produce the full distribution of the variable of interest at un-

sampled locations which depend on both con�guration of observations and their

values (Bárdossy and Li [2008]).Consequently, estimators other than the mean

are able to be estimated. However, modelling an n-variate distribution of the

unsampled locations and their neighbouring locations requires an n-dimensional

spatial copula, and the most readily available copulae in the literature are unable

to be extended to higher dimensions. Additionally, some copulae that do have the
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ability to be extended to higher dimensions do not provide good parameterisation

for the dependence structure to appropriately re�ect the spatial con�guration of

the data points (Bárdossy and Li [2008]). Even though the most popular copulae,

such as Gaussian and Student t copulae, ful�l both requirements, these copulae

cannot be used to model asymmetric dependence structures.

Unlike high dimensional copulae, bivariate copulae are well understood and read-

ily estimated using maximum likelihood or moment based estimators. Fortu-

nately, an n−dimensional copula can be decomposed into a set of n(n− 1)/2 bi-

variate copulae using the pair-copula construction described by Aas et al. [2009].

Gräler and Pebesma [2011] adapted the pair-copula model to a spatial frame-

work. The bivariate decomposition of a high-dimensional spatial copula provides

a �exible way of using di�erent types of copula families when modelling spatial

dependence for di�erent lag distances, and for higher order dependencies as well.

However, the pair-copula decomposition is not unique. Each decomposition ap-

proximates the full copula density di�erently. Gräler and Pebesma [2011] used a

canonical vine structure (Aas et al. [2009]) to construct a pair-copula for spatial

data because this structure bene�ts spatial interpolation by giving higher priority

to the interaction between the unobserved locations and nearby locations.

Interpolation of the spatial data is based on the conditional density of the pair-

copula:

cn+1(u0 | u1, . . . , un) =
cn+1(u0, u1, . . . , un)∫ 1

0
cn+1(v, u1, . . . , un)dv

,

where n is the number of nearby locations, ui = F (Z(xi)) for 1 ≤ i ≤

n, u0 denotes the marginal distribution at the unsampled location x0, and

cn+1(u0, u1, . . . , un) is the joint multivariate copula of the unsampled location

and the nearby locations. The point estimates (mean and median) for the vari-

able of interest at unobserved location x0 based on n nearby locations can be

obtained by calculating

Ẑmean(x0) =

∫ 1

0

F−1(u) · cn+1(u | u1, . . . , un)du,

Ẑmedian(x0) = F−1(u = C−1n+1(0.5 | u1, . . . , un)),
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where Cn+1 is the conditional copula distribution function and F is the estimated

distribution function from the observed spatial data. A detailed description of

the pair-copula construction of conditional copula densities in a spatial context

can be found in Gräler and Pebesma [2011] and Gräler [2014] .

5.3 Data

Algorithm 2 was applied to two data sets: real data from the Bartlett Exper-

imental Forrest (Finley et al. [2007]) and simulated arti�cial data. Whilst the

forest data exhibit multivariate non-linearity, the arti�cial data were simulated

to possess extreme multivariate non-linearity.

5.3.1 Bartlett Experimental Forest data

The real data set used in the application of Algorithm 2 is taken from georef-

erenced forest inventory plots on the United States Department of Agriculture

Forest Service Bartlett Experimental Forest (BEF) in Bartlett, new Hampshire

(Finley et al. [2007]). The BEF covers an area of 1,053 hectares. The data set

consists of 437 measurements for more than 50 attributes at two dimensional

locations xi = (x1i, x2i), i = 1, . . . , 437. Two attributes, generically labelled Z1

and Z2, have been selected to demonstrate the application of Algorithm 2. The

extension to higher dimensions is trivial and merely requires additional compu-

tation.

Figures 5.2(a) and 5.2(b) show the spatial distribution of Z1 and Z2, respectively.

It can be seen that Z1 has a larger variation in attribute values in comparison to

Z2, and low attribute values tend to occur in similar locations for the two vari-

ables. The marginal distributions and joint distribution are illustrated in Figures

5.2(c) - 5.2(e), respectively. Strong skewness can be clearly seen in Figures 5.2(c)

and 5.2(d), whilst the non-linear structure of the bivariate data can be clearly

seen in Figure 5.2(e). Figure 5.3 indicates that there is univariate spatial depen-

dence in Z1 and Z2, as well as multivariate spatial dependence between Z1 and

Z2.

100



5.3.2 Arti�cial data

To investigate how well NLPCA can deal with di�erent non-linear structures,

arti�cial two dimensional spatial data were simulated with an extremely non-

linear structure. These data comprise 2,304 simulated values.

Figures 5.4(a) and 5.4(b) show the spatial distribution of variables Z1 and Z2,

respectively. Variable Z1 has a larger variation in attribute values in compari-

son to Z2, and Z2 generally takes higher attribute values. From Figure 5.4(c),

the marginal distribution of Z1 appears to be approximately uniform, whilst Fig-

ure 5.4(d) indicates strong skewness in Z2. Figure 5.4(e) clearly shows the circu-

lar relationship between the two variables. Figure 5.5 indicates some univariate

spatial dependence in Z1 and Z2, as well as clear multivariate spatial dependence

between Z1 and Z2.

5.4 Application

Seven versions of Algorithm 2 were implemented. NLPCA or SCT was selected for

step 1 (and, consequently, step 5) of Algorithm 2, in which correlation between the

bivariate variables is removed at lag distance h = 0. PPMT was not implemented

in step 1, since, for the data sets considered in this chapter, PPMT removed all

spatial properties of the original data. The second step of MAF was implemented

in step 2 of Algorithm 2 (and, consequently, step 4) if spatial cross-correlation

persisted at lag distance h > 0. The estimates from spatial interpolation, in

step 3 of Algorithm 2, were obtained from kriging, the mean estimate from the

pair-copula, or the median estimate from the pair-copula. Various combinations

of these methods within Algorithm 2 resulted in seven competing models, which

are summarised in Table 5.1.

Model 5 is comparable to the implementation of Algorithm 2 proposed by Barnett

and Deutsch [2012]. The remaining models are newly proposed models. Models

3 and 4 are proposed as the models of preference for modelling non-linear mul-

tivariate spatial data, since pair-copulas are able to model spatial non-linearity
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Table 5.1: Competing models for modelling non-linear multivariate spatial data.

Model Transformation Spatial

Interpolation

1 NLPCA Kriging

2 NLPCA+MAF Kriging

3 NLPCA+MAF Pair-copula
mean

4 NLPCA+MAF Pair-copula me-
dian

5 SCT Kriging

6 SCT Pair-copula
mean

7 SCT Pair-copula me-
dian

and NLPCA is able to model multivariate non-linearity whilst retaining spatial

non-linearity in the transformed factors.

Leave-one-out cross-validation was used, with ten nearby locations in the inter-

polation process, to facilitate comparison of the models. The performance of

the models was assessed based on reproduction of univariate and bivariate dis-

tributions. Reproduction of the univariate distributions was evaluated using the

mean absolute error between estimated and original values (MAE), bias (average

di�erence between estimated and original variables) and Pearson correlation co-

e�cient of the original and estimated values. The absolute correlation error was

used to evaluate the reproduction of bivariate relationships for the BEF data.

This statistic is calculated by taking the absolute di�erence between the Spear-

mann correlation of the original data and associated estimates. Since the arti�cial

data were simulated to have a circular structure, the circular correlation coe�-

cient (Jammalamadaka and Sengupta [2001]) was used to assess the reproduction

of the bivariate distribution. Similar to the Pearson correlation coe�cient, the

circular correlation coe�cient takes values between −1 and 1, where higher values

for this statistic represent better reproduction of the bivariate distribution.

102



5.4.1 Bartlett Experimental Forest data

For NLPCA, the AANN mapping is based on a 2−6−2−6−2 network (two input

and output variables, two components, and six non-linear nodes in each mapping

and inverse mapping layer). The two components extracted by the network for

the BEF data are shown in Figure 5.6. Component A captures the non-linear

structure of the data whilst component B captures the random variation of the

data.

Figure 5.7(a) shows the scatterplot of the two extracted components using

NLPCA. It is clear that the non-linear structure of the data was successfully

removed by NLPCA in comparison to Figure 5.2(e). Whilst the cross-correlation

between variables was removed at zero lag distance, and indirectly at large lag

distances, a small negative cross-correlation remained at lag distances up to 400

km. The second step of the MAF transformation was subsequently carried out

to remove spatial cross-correlation at lag h = 400 km, and indirectly at all lags

up to 400 km. Figure 5.7(b) indicates that cross-correlation was removed at all

lag distances after transformation with NLPCA followed by the second step of

MAF.

In Figure 5.7(c), the scatterplot of the transformed variables using SCT indicates

no correlation at lag h = 0. The somewhat structured pattern that appears

in Figure 5.7(c) is typical of the SCT method. Figure 5.7(d) indicates indirect

removal of almost all spatial cross-correlation at all lag distances after applying

SCT. Thus, there was no need to perform the second step of MAF following SCT.

Univariate and bivariate statistics for models 2-7 �tted to the BEF data are

presented in Table 5.2. Figure 5.8 displays the scatterplots of the estimated Z1

values against the estimated Z2 values for models 2-7.
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(a) (b)

(c) (d)

(e)

Figure 5.2: Data from Bartlett Experimental Forest � spatial distributions for
(a) Z1 and (b) Z2, histograms for (c) Z1 and (d) Z2, and (e) scatterplot between
Z1 and Z2.
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Figure 5.3: Semi-variograms and cross-variogram for variables Z1 and Z2 from
the Bartlett Experimental Forest data.
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(a) (b)

(c) (d)

(e)

Figure 5.4: Arti�cial data � spatial distributions for (a) Z1 and (b) Z2, histograms
for (c) Z1 and (d) Z2, and (e) scatterplot between Z1 and Z2.
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Figure 5.5: Semi-variograms and cross-variogram for variables Z1 and Z2 from
the simulated arti�cial data set.

Figure 5.6: The two structures identi�ed by the AANN for the BEF data. Solid
dots represent the observed data and the curved line represents the non-linear
structure present in the data.
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(a) (b)

(c) (d)

Figure 5.7: Bartlett Experimental Forest data � (a) scatterplot of extracted
components from NLPCA, (b) correlogram of transformed variables from
NLPCA+MAF, (c) scatterplot of transformed variables from SCT and (d) cor-
relogram of transformed variables from SCT.
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Reproduction of non-linear multivariate structure for Bartlett Experimental Forest data. Figures (a)-(f) are the estimated values
for Z1 versus estimated values for Z2 for models 2-7, respectively.
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The primary focus in this chapter is modelling multivariate non-linearity in spatial

data. Figure 5.8 clearly demonstrates that models using NLPCA (Figures 5.8(a) -

5.8(c)) reproduce the non-linear bivariate structure of the original variables more

successfully than models that use SCT (Figures 5.8(d) - 5.8(f)), irrespective of

the interpolation method. Quantitatively, this can be con�rmed by the absolute

correlation error in Table 5.2, all of which are smaller for NLPCA compared to

SCT.

Table 5.2 also indicates that the correlation between the original and estimated

values was higher for NLPCA based models than SCT based models for variable

Z2, and perhaps slightly higher for NLPCA than SCT for Z1. Whilst the multi-

variate modelling approaches do not focus on bias or MAE, the lowest bias, for

both Z1 and Z2, was from NLPCA based models compared to SCT. MAE was

similar between NLPCA and SCT for Z2, and slightly worse for NLPCA for Z1.

Note that, whilst the correlation for Z2 was worse than Z1 for both NLPCA and

SCT, the di�erence is exaggerated for SCT. In comparing interpolation methods,

within the NLPCA based models, the pair-copula median (PC-Median) produced

the best univariate results, compared with kriging, for all statistics except bias

for Z2. For SCT based models, the pair-copula mean (PC-Mean) produced the

best results for all univariate statistics for both Z1 and Z2.

Table 5.2: Goodness of �t statistics for the BEF data, measuring the accuracy in
reproduction of univariate and bivariate distributions.

Model Transform Interpolation
Z1 Z2 Abs. Corr. Error

MAE Bias Corr. MAE Bias Corr.

2

NPLCA

Kriging 0.158 0.025 0.573 0.068 −0.006 0.519 0.006

3 PC-Mean 0.160 0.029 0.600 0.068 −0.009 0.550 0.013

4 + MAF PC-Median 0.152 −0.019 0.600 0.066 −0.024 0.553 0.012

5

SCT

Kriging 0.147 −0.025 0.583 0.070 −0.016 0.466 0.068

6 PC-Mean 0.145 −0.024 0.593 0.067 −0.015 0.494 0.063

7 PC-Median 0.145 −0.026 0.592 0.067 −0.016 0.488 0.069

5.4.2 Arti�cial data

For the arti�cial data, since the data have a circular structure, a circular AAAN

architecture was used in the NLPCA. The two solid lines in Figure 5.9 show the
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two components obtained from the NLPCA. Component A captures the circular

structure while component B represents random variation in the data.

Figure 5.9: The two structures identi�ed by the AANN for the arti�cial data.
Solid dots represent the observed data and the circular line represents the circular
structure present in the data.

Figures 5.10(a) and 5.10(c) are scatterplots of the two extracted components using

NLPCA and SCT, respectively. The zero correlation structure between NLPCA

transformed variables (extracted components) and SCT transformed variables is

evident. The correlograms in Figure 5.10(b) and 5.10(d) indicate the removal of

almost all cross-correlation at all lag distances for both NLPCA and SCT. Hence,

the second step of MAF was not required following NLPCA or SCT.

Since the arti�cial data set was generated via a Gaussian random �eld, krig-

ing interpolation will, generally, outperform interpolation based on pair-copulas.

Consequently, only kriging was considered for spatial interpolation of the arti-

�cial data. Univariate and bivariate statistics for models 1 and 5 �tted to the

arti�cial data are presented in Table 5.3. Figure 5.11 displays the scatterplots of

the estimated Z1 values against the estimated Z2 values for models 1 and 5.

With regards to bivariate goodness of �t, Figure 5.11 clearly demonstrates that

the NLPCA based model (Figure 5.11(a)) reproduced the bivariate structure of
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(a) (b)

(c) (d)

Figure 5.10: Arti�cial data � (a) scatterplot of extracted components from
NLPCA, (b) correlogram of transformed variables from NLPCA, (c) scatterplot
of transformed variables from SCT and (d) correlogram of transformed variables
from SCT.

the original variables more successfully than the SCT based model ( 5.11(b)). This

is con�rmed by the larger estimate of circular correlation for NLPCA compared

to SCT in Table 5.3.

In terms of univariate goodness of �t, NLPCA produced better univariate statis-

tics (lower MAE and bias, and higher correlation) for Z2. For Z1, NLPC per-

formed on par with SCT in all measures, except for bias, which was better for

SCT. As with the BEF data, the correlation for Z2 was worse than Z1 for both

NLPCA and SCT, but more so for SCT.
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Table 5.3: Goodness of �t statistics for the arti�cial data, measuring the accuracy
in reproduction of univariate and bivariate distributions

Model Transform Interpolation
Z1 Z2 Circ. Corr.

MAE Bias Corr. MAE Bias Corr.

1 NLPCA Kriging 0.134 0.021 0.832 0.142 0.032 0.569 0.853

5 SCT Kriging 0.133 −0.004 0.835 0.157 0.100 0.368 0.677

(a) (b)

Figure 5.11: Reproduction of non-linear multivariate structure for arti�cial data.
Figures (a) and (b) are the estimated values for Z1 versus estimated values for
Z2 for models 1 and 5, respectively.

5.5 Discussion

Based on the two case studies, NLPCA transformation reproduced the non-linear

bivariate structure of the data more successfully than the SCT transformation.

For the univariate goodness of �t statistics, NLPCA performed on par with STC,

if not better than STC, in the majority of models, in terms of the correlation be-

tween the original and estimated values. The lowest bias occurred in all NLPCA-

based models compared to STC based models for both variables, except for Z1

in the arti�cial data, where the lowest bias was for the SCT-based model. MAE

was similar, or smaller, for variable Z2 in the NLPCA-based models compared

to STC. For Z1, NLPCA and STC produced similar MAEs in the arti�cial data,

but a slightly worse MAE in the BEF data.

In both case studies the correlation for Z2 was worse than Z1 for both NLPCA

and SCT, with the di�erence being larger for SCT. This re�ects the poor re-
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production of the variable transformed second using SCT. In both case studies,

variable Z1was transformed �rst, then variable Z2. In general, for SCT, the qual-

ity of the reproduction of univariate distributions declines for variables as their

position in the order of transformation numerically increases. This is known as

the �e�ect of ordering� in the literature (Leuangthong [2003]). That is, the vari-

able transformed second will be worse than the variable transformed �rst, the

variable transformed third will be worse than the variable transformed second,

and so on. This ordering e�ect can be seen in Figures 5.8(d) - 5.8(f) for the BEF

data and Figure 5.11(b) for the arti�cial data.

The interpolation methods cannot be compared between the case studies, since

the arti�cial data was interpolated using kriging only. However, for the BEF data,

the pair-copula model produced the best univariate results within the NLPCA

based models and also within the SCT based models, compared to kriging, with

the exception of the bias for Z2 in the NLPCA based model.

5.6 Conclusions

Based on the results of the two case studies, NLPCA, followed by the second step

of MAF, if required, and pair-copula based spatial interpolation is the recom-

mended implementation of Algorithm 2 for modelling data that are both mul-

tivariately non-linear and spatially non-linear. The results demonstrate that

NLPCA, in combination with MAF, when required, is e�ective in facilitating the

modelling of non-linear multivariate spatial data, even in the presence of extreme

multivariate non-linearity. In the case studies, NLPCA reproduced the bivariate

distributions of the original data better than SCT, for all models considered.

The extent to which NLPCA can handle heteroscedasticity in non-linear data

was not investigated, and this remains an open problem. We conjecture that

NLPCA is not only able to capture non-linear structures among continuous spatial

variables, but also among spatial variables with mixed types, such nominal and

rank data. Extension of NLPCA to these types of variables will be considered in

future research.
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The results also indicate that, for the BEF data, the pair-copula model, generally,

outperforms conventional kriging in terms of univariate goodness of �t statistics,

regardless of the transformation method. This is most likely due to the ability of

the pair-copula to more accurately reproduce tails of skewed distributions com-

pared to kriging, which, being Gaussian-based, fails to capture asymmetric or

heavy tails.

Further improvements to the pair-copula model are expected to be gained

through, for example, development of an e�cient method for de�ning lag dis-

tance classes, use of advanced search strategies (e.g., quadrant search to remove

obvious cluster e�ects), and applications of wider classes of copulas. These de-

velopments can be incorporated , where pair-copulas are used in the non-linear

multivariate modelling approach considered in this chapter.
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Chapter 6

Univariate Optimal Spatial Design

The research in this chapter has been submitted to Geoderma for journal sub-

mission as detailed below.

� Musafer, G.N. and Thompson, M.H. (n.d). Pair-copula based optimal spa-

tial design for additional samples. Geoderma. Submitted.

Abstract

A spatial sampling design that uses pair-copulas is presented that aims to reduce

prediction uncertainly by selecting additional sampling locations based on both

the spatial con�guration of existing locations and the values of the observations

at those locations. The novelty of the approach arises in the use of pair-copulas

to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to

more accurately capture spatial dependence compared to other types of spatial

copula models. Additionally, unlike traditional kriging variance, uncertainty es-

timates from the pair-copula account for in�uence from measurement values and

not just the con�guration of observations. This feature is bene�cial, for example,

for more accurate identi�cation of soil contamination zones where high contam-

ination measurements are located near measurements of varying contamination.

The proposed design methodology is applied to a soil contamination example from

the Swiss Jura region. A partial redesign of the original sampling con�guration

demonstrates the potential of the proposed methodology.
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6.1 Introduction

The focus of this chapter is the development of a new optimal spatial design for ad-

ditional sample locations using spatial pair-copulas in order to reduce uncertainty

in spatial prediction that takes into account the con�guration of observations and

their measured values. The spatial variable is considered as a random �eld and

the spatial dependence may be non-linear and non-Gaussian. Optimal design

concepts are applied to determine the collection of additional samples in order to

balance the bene�t between additional information and reduction in prediction

uncertainty. The optimal design will vary according to the scienti�c goal, such as

parameter estimation of the model (Webster and Oliver, 1992, Lark, 2002, Zim-

merman, 2006) and prediction using the geostatistical model (Zimmerman, 2006,

Zhu and Stein, 2006, Diggle and Lophaven, 2006, Diggle and Ribeiro, 2007b). If

prediction of the random �eld is the aim, then optimality of the sampling design

is evaluated based on the maximum or average estimation of uncertainty of the

predicted locations (Diggle and Ribeiro, 2007b).

The estimation of prediction uncertainty should be able to capture all types

of variability present in the spatial random �eld. Variability occurs from the

con�guration of the data and variability in the measured values. In the litera-

ture, the majority of optimal spatial designs (e.g., Cressie, 1993, Journel, 1994,

Van Groenigen et al., 1999, Zimmerman, 2006, Emery et al., 2008) aim to min-

imise the kriging variance. However, kriging variance is only dependent on the

spatial con�guration of observation locations and does not depend on the values

of the observations under Gaussian assumption. The consequences of developing

an optimal design that ignores the variability in measured values in an extreme

spatial scenario is discussed in Chang et al. [2007]. Some spatial designs have

attempted to capture the variability of sampled values in the uncertainty mea-

surement by using conditional simulation (Pilger et al., 2001, Koppe et al., 2011).

However, conditional simulation only uses one possible value for the additional

samples from an in�nite number of outcomes and so is unable to produce full
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uncertainty estimation.

The need to incorporate the variability in measurement values into an optimal

spatial sampling design motivates the use of copula based geostatistical models.

Spatial copula models are capable of producing uncertainty estimation that is

dependent on both the observations' con�guration and values (e.g., Bárdossy,

2006, Bárdossy and Li, 2008, Haslauer et al., 2010, Gräler and Pebesma, 2011,

Gräler, 2014). Moreover, spatial pair-copula models (Gräler and Pebesma, 2011,

Gräler, 2014) are more able to accurately capture non-linear spatial dependence

compared to less �exible copula based models (e.g, Bárdossy, 2006). This is be-

cause pair-copula models allow the use of di�erent copula families when modelling

spatial dependence for di�erent separating vectors and for higher order depen-

dencies whilst less �exible copula based models assume the same copula family

for all separating vectors and for higher order dependencies.

Li et al. [2011] developed an observation network design based on a spatial copula

model with the objective of maximising the expected gain de�ned by a utility

function. The utility function constrains selection of the additional locations by

taking into account estimation uncertainty, a critical threshold value that de�nes

water quality and the gain-loss in the decision to sample or not. The research

developed in this chapter builds on Li et al. [2011] through use of pair-copulas,

rather than less �exible copula models, and considers unconstrained sampling

design for the additional locations. Additional sampling locations are selected

from those locations that produce the highest estimate of prediction uncertainty

over the sampling region.

The proposed methodology is presented in Section 6.2. Section 6.3 provides a

description of the two-dimensional Swiss Jura data set (Goovaerts, 1997). In

Section 6.4, the proposed design methodology is applied to the Swiss Jura data

set where the potential of the proposed method is demonstrated through a partial

redesign of the existing sampling design for the Swiss Jura data. In addition, a

design based on kriged model under Gaussian assumption and the design obtained

from the proposed methodology are compared. Concluding remarks and future
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research are discussed in Section 6.5.

6.2 Methodology

Let Z(x) denote a univariate spatial random �eld where x is a two dimensional

location belonging to the study domain X . The set of existing sampled locations

is denoted by X = (x1, . . . ,xn). The objective of optimal spatial sampling here

is to select additional measurement locations that reduce uncertainty over the

random �eld. One such example arises in additional drill core sampling in which

additional measurements are desired to reduce the uncertainty in the spatial dis-

tribution of an ore reserve. Of particular focus in this chapter is the reduction

in the predictive quantile interval (PQI), that is, the di�erence between predic-

tive quantiles of Z(x). Let X ′ = (x′1, . . . ,x
′
m) be a set of candidate locations

from which the additional new locations are chosen and X ′ ⊆ X . The PQI at

unsampled locations X∗ = (x∗1, . . . ,x
∗
N), can be estimated from the sampled ob-

servations by interpolation of the random �eld Z(x). Note that, in practice, the

study domain X is discretised into an interpolation grid so that the set of un-

sampled locations X∗ are the nodes of the interpolation grid. The interpolation

method of Gräler and Pebesma [2011], which uses spatial pair-copulas, is applied

here. The PQI corresponding to the di�erence between the 95-th and 5-th pre-

dictive quantiles of Z(x) at unsampled location x∗j , given the existing sampled

observations, is

PQI(u∗j |u1, . . . , un) = F−1Z

(
C−1x∗j ,n

(0.95|u1, . . . , un)
)

−F−1Z

(
C−1x∗j ,n

(0.05|u1, . . . , un)
)

where Cx∗j ,n
(u∗j |u1, . . . , un) is the conditional copula at unsampled location x∗j ,

conditioned on the n existing sampled observations. Note that u∗j denotes the

value of the Uniform random variable U∗ (on [0, 1]) at the unsampled location

x∗j , while ui = FZ(z(xi)) with FZ denoting the estimated marginal cumulative
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distribution function of the data.

The candidate location x′i, i = 1, . . . ,m, from the set X ′, selected as the new

additional measurement location, is that which corresponds to the smallest total

expected PQI summed over the study domain after it has been added to the exist-

ing sampled observations. Since pair-copulas are used in the spatial interpolation

process, selection of an additional measurement location depends not only on the

spatial location of the existing sampled observations and the spatial location of

the new candidate but also on the values of the spatial variable at these locations.

A pair-copula model that appropriately describes the spatial dependence has to

be selected. In doing so, the values of the spatial variable Z(x) have to be trans-

formed to the probability space [0, 1] using the estimated distribution function

FZ .

The conditional copula at the candidate location x′i, conditioned on the existing

sampled observations, is

Cx′i,n
= Cx′i,n

(u′i|u1, . . . , un) (6.1)

where u′i denotes the value of the Uniform random variable U ′ (on [0, 1]) at the

candidate location x′i.

After adding a candidate to the set of existing observations, the values on the

interpolation grid can be re-estimated. For any possible value u′i of U
′ at the

candidate location x′i, the conditional copula at unsampled interpolation loca-

tion x∗j , conditioned on the existing sampled observations and the newly added

candidate x′i, is

Cx∗j ,n+1 = Cx∗j ,n+1(u
∗
j |u′i, u1, . . . , un) (6.2)

where u∗j is any possible value of Uniform random variable U∗ at x∗j .

Using Eq. (6.2), any uncertainty measure, such as variance, coe�cient of varia-

tion, interquartile range and PQI, can be estimated at all points on the interpola-

tion grid after adding the candidate x′i. The PQI corresponding to the di�erence

120



between the 95-th and 5-th predictive quantiles at unsampled interpolation loca-

tion x∗j after adding the candidate x′i with a proposed value u′i as the assumed

observed value is

PQI(u∗j |u′i, u1, . . . , un) = F−1Z

(
C−1x∗j ,n+1(0.95|u′i, u1, . . . , un)

)
−F−1Z

(
C−1x∗j ,n+1(0.05|u′i, u1, . . . , un)

)
.

(6.3)

This is the PQI at x∗j for one possible value of u′i. The expected PQI at x∗j is

calculated as the integral of the PQI in Eq. (6.3) over the entire range of possible

values of u′i corresponding to candidate location x′i:

E
[
PQI(u∗j |u′i, u1, . . . , un)

]
=

∫ 1

0

PQI(u∗j |u′i, u1, . . . , un)dCx′i,n
(6.4)

where Cx′i,n
is the conditional copula given in Eq. (6.1).

The total expected PQI of the entire interpolation grid after adding the candidate

x′i as a new observation is then the sum of the expected PQI at all interpolation

points:

ET (x′i) =
N∑
j=1

(∫ 1

0

PQI(u∗j |u′i, u1, . . . , un)dCx′i,n

)
. (6.5)

Computational e�ciency can be gained by interchanging the summation and

integration in Eq. (6.5):

ET (x′i) =

∫ 1

0

(
N∑
j=1

PQI(u∗j |u′i, u1, . . . , un)

)
dCx′i,n

.

The candidate x′i that produces the smallest total expected PQI is selected as the

new sample location. Alternatively, minmax approach can be used here instead

of averaging PQI over the study domain. A summary of the procedure is outlined

in the following steps.

1. Transform the observations z(x1), . . . , z(xn) to the unit interval [0, 1] us-
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ing the estimated distribution function FZ : u1 = F (Z(x1)), . . . , un =

F (Z(xn)).

2. Use the transformed observations u1, . . . , un to �t a spatial pair-copula

Cx,n(u|u1, . . . , un) using the method of Gräler and Pebesma [2011].

3. For each candidate location x′i, for all values of u
′
i, calculate the conditional

copula density cx′i,n = cx′i,n(u′i|u1, . . . , un) (Gräler and Pebesma, 2011). In

practice, it is not possible to obtain the conditional copula density for all

possible values of u′i, hence the range of values of U
′, i.e., [0, 1], is discretised

and the conditional copula density is calculated for the midpoint of each

interval.

4. For each interpolation grid point x∗j , calculate the conditional copula

Cx∗j ,n+1 = Cx∗j ,n+1(u
∗
j |u′i, u1, . . . , un), conditioned on the existing observa-

tions u1, . . . , un and the proposed value u′i at the candidate location x′i.

Use this conditional copula to calculate the predictive quantile interval

PQI(u∗j |u′i, u1, . . . , un) given in Eq. (6.3). Calculation of the conditional

copula and, consequently, the predictive quantile interval is repeated for all

discretised values of U ′ at the candidate location x′i.

5. For each interpolation grid point x∗j , calculate the expected PQI using

Eq. (6.4). The integral in Eq. (6.4) can be approximated by

∫ 1

0

PQI(u∗j |u′i, u1, . . . , un)dCx′i,n
=

M∑
l=1

PQI(u∗j |u′i = u′i,l, u1, . . . , un)cx′i,n(u′i = u′i,l|u1, . . . , un)∆u′i,l

where u′i,l is the midpoint of the l-th discretised interval of U ′, cx′i,n(u′i =

u′i,l|u1, . . . , un) is the conditional copula density calculated in step 3 at u′i =

u′i,l and ∆u′i,l is the width of the l-th discretised interval.

6. For the candidate location x′i, calculate the total expected PQI of the en-

tire interpolation grid using Eq. (6.5) by summing up the expected PQI

calculated for all the interpolation grid points.
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7. Repeat steps 2 to 6 for the remaining candidate points and select the can-

didate point that produces the smallest total expected PQI, ET (x′i), as the

new sample location.

Note that, in step 2, whilst the spatial pair-copula of Gräler and Pebesma [2011]

is used, alternative spatial copulas could be substituted into the procedure, such

as the spatial copula of Bárdossy and Li [2008]. Moreover, minimisation of the

maximum PQI over the study domain can be used as an alternative for using

average over the study domain.

Additionally, there are some practical issues that require consideration in imple-

menting the proposed design methodology. Firstly, the transformation applied

in step 1 and the spatial copula �tted in step 2 are important, since it is as-

sumed that the dependence of the random variable Z follows the selected copula

model. For further details on interpolation using spatial pair-copulas, see Gräler

and Pebesma [2011] and Gräler [2014]. For a more practical perspective, Musafer

et al. [2015] provide detailed instructions on the steps involved in �tting, and

interpolating from, a spatial pair-copula.

Secondly, the range of values of U ′ should be appropriately discretised in step 3

to provide a reasonable numerical approximation of the expected PQI calculated

in step 5. Li et al. [2011] suggest a simple approximation of the expected PQI

using a division of the [0, 1] interval into hundreds of equally spaced intervals.

For equally spaced intervals, if the width of the intervals is not su�ciently small,

approximation of the expected PQI may be poor, consequently resulting in sub-

optimal selection of additional sampling locations. Narrower intervals will result

in more accurate approximation of the expected PQI, but at an increased cost

in computational time. Even though more sophisticated deterministic quadratic

scheme can be used for the integration, numerical approximation of the expected

PQI, Monte Carlo integration (Shapiro, 2003) is used in step 5 for more compu-

tationally e�cient .Consequently, the intervals of the discretised range of U ′ in

step 3 are determined by Monte Carlo sampling and are not necessarily equally

spaced. Thus, the expected PQI using Eq. (6.4) can be approximated using Monte
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Carlo intergration as follows. For M Monte Carlo samples of U ′ intergration

∫ 1

0

PQI(u∗j |u′i, u1, . . . , un)dCx′i,n
=

1

M

M∑
l=1

PQI(u∗j |u′i = u′i,l, u1, . . . , un).

Algorithm 3 describes the Monte Carlo sampling of U ′ using the conditional

copula density cx′i,n = cx′i,n(u′i|u1, . . . , un) at the i-th candidate location. Here,

the uniform distribution is used as the envelope distribution.

Algorithm 3: Algorithm for Monte Carlo sampling of U ′, i.e., [0, 1].

De�nition:

# Let M be the number of Monte Carlo samples

sample← NULL # Vector of Monte Carlo sampling values

Calculation:

1. Calculate the conditional copula density cx′i,n(u′i|u1, . . . , un) at the i-th
candidate location x′i.

2. Obtain the modal value u′modal of cx′i,n(u′i|u1, . . . , un) and the
corresponding density value cx′in(u′i = u′modal|u1, . . . , un).

3. Obtain the Monte Carlo sampling values:
while (length(sample) < M)

x← random value ∼ Uniform(0, 1)

y ← random value ∼ Uniform(0, cx′in(u′i = u′modal|u1, . . . , un))

if (y ≤ cx′in(u′i = x|u1, . . . , un))

add x value to sample

end if

end while

Finally, it may be computationally expensive to use all of the observations

u1, . . . , un in obtaining the conditional copula distributions Cx′i,n
, at the candi-

date location x′i, and Cx∗j ,n+1, at the interpolation grid point x∗j . The conditional

copula distribution based on nearby locations is a good approximation for the

conditional copula distribution based on all of the observations if a su�cient
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number of nearby locations is used (Bárdossy and Li, 2008).

The expected prediction uncertainty is sensitive to the number of nearby locations

that use in prediction process. However, no signi�cant di�erence can be observed

if su�cient number of nearby locations was used. Number of nearby location was

selected calculating expected prediction uncertainty for several randomly selected

locations with di�erent number of nearby locations. From that experiment, it

was clear that after nine nearby locations no signi�cant reduction can be seen in

expected prediction uncertainty. However, computation time rapidly increased

when number of nearby location increased. Hence nine nearby locations are used

in this application.

6.3 Data

The Swiss Jura data set (Goovaerts, 1997) was used in the application of the

proposed sampling methodology. The data set contains 259 samples that were

taken from the top soil of the region near La Chaux-de-Fonds in the Swiss Jura,

which covers an area of 14.5 km2. From these 259 top soil samples, seven toxic

metals, namely, cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel

(Ni), lead (Pb), and zinc (Zn), were measured. The main intention of this survey

was to identify contamination zones to restrict the use of those lands or apply

remedies. In order to do this, prediction of the concentration of the metals must

be carried out over the study domain and regions with high metal concentra-

tion identi�ed. Hence, the reduction in prediction uncertainty, particularly in

areas neighbouring high metal concentrations, is bene�cial in the identi�cation

of contamination zones.

In this chapter, only two toxic metals, cobalt and nickel, were selected for appli-

cation of the proposed methodology. Figures 6.1(a) and 6.1(b) are spatial plots

of the concentrations of Co and Ni, respectively. For both metals, the more

densely sampled areas tend to correspond to lower concentration values and the

more sparsely sampled areas correspond to a mixture of moderate to high metal

concentrations.
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(a)

(b)

Figure 6.1: Spatial plots for (a) Co and (b) Ni.

6.4 Application

In this section, the proposed methodology is applied to Co and Ni separately. A

250m by 250m interpolation grid was de�ned over the study domain, as shown
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in Figure 6.2. There are 196 grid points. The interpolation grid points are also

considered as the potential candidates for the new samples. Performance of the

design methodology is assessed through a partial redesign of the initial sampling.

Twenty observations were removed randomly from an existing spatial design with

259 observations, based on the design in Atteia et al. [1994]. Subsequently, 20

design points were added back into the reduced data set from potential candi-

dates using the proposed optimal design. The red squares in Figures 6.1 and 6.2

denote the 20 observations that were removed from the original 259 observations.

Uncertainty measures of prediction over the interpolation grid are compared for

the existing spatial design and the redesigned spatial design using the proposed

methodology. In addition, a design based on kriged model under Gaussian as-

sumption is compared with the redesigned spatial design under the proposed

methodology.

Figure 6.2: Study domain with retained old locations (blue dots) and removed
locations (red squares) for both Co and Ni. Interpolation locations are denoted
by black crosses.
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6.4.1 Comparison of pair-copula and kriged models

Figures 6.3(a) and 6.3(b) give maps of the kriging variance under Gaussian as-

sumptions for Co and Ni, respectively, while Figures 6.3(c) and 6.3(d) show the

maps of the widths of the 90% prediction intervals from the pair-copula models

for Co and Ni, respectively, for the reduced data set with 239 observations. The

90% prediction interval is calculated as the di�erence between the 95-th and 5-th

predictive quantiles. These maps are overlaid with the retained old observations

and the removed observations.

Figures 6.3(c) and 6.3(d) indicate that wider 90% prediction intervals under the

pair-copula models correspond both to areas that are more sparsely sampled as

well as areas with high variability in metal concentrations. Hence, the prediction

intervals from the pair-copula models not only capture the spatial con�guration

of the data but also the variability in data values. The areas corresponding

to wide prediction intervals di�er between Co and Ni, due to the di�ering metal

concentrations of Co and Ni at the observed locations. Hence, when the proposed

design methodology is implemented, the locations for new observations will di�er

for Co and Ni, with the new locations occurring in areas with wide prediction

intervals.

From Figures 6.3(a) and 6.3(b), it can be seen that the more sparsely sampled

areas correspond to higher kriging variance and that the regions showing higher

kriging variance are similar for both Co and Ni. However, unlike the pair-copula

prediction intervals, the kriging variance doesn't capture the variability in metal

concentrations. As a result, when a kriging based design is implemented, both

Co and Ni will have very similar locations for new observations located in areas

with high kriging variance.

6.4.2 Simulation study for non-sequential spatial redesign

Twenty new locations, out of the 196 potential candidate locations, were selected

to replace the 20 removed locations. The performance of the proposed methodolgy

is assessed by comparing the redesigned spatial design to the existing spatial

128



(a) (b)

(c) (d)

Figure 6.3: Maps for the (a) kriging variance of Co, (b) kriging variance of Ni,
(c) 90% prediction interval widths based on the pair-copula for Co and (d) 90%
prediction interval widths based on the pair-copula for Ni, overlaid with the
retained old observations (dots) and removed observations (hollow red squares)

design through a simulation study similar to Li et al. [2011]. The procedure for

the simulation study is outlined in the following steps.

1. Randomly remove 20 observed locations from the original observation set

X0, of 259 observations, to produce a reduced data set X, of 239 observa-

tions.

2. For each candidate point, calculate the total expected PQI over the inter-
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polation grid after adding the candidate location as a possible new location

to the reduced data set X. There will be 196 total expected PQIs obtained

for the 196 candidate locations.

3. Select the 20 locations that produce the lowest total expected PQIs as the

new sampling locations.

4. Randomly order the 20 new sampling locations and let this set of sampling

locations be denoted by S = (s1, . . . , s20). Sequentially simulate realisations

for the locations. That is, simulate a value for s1, then s2, then s3 and so on,

up to s20, as follows. For s1, �t a conditional copula at s1, conditioned on

the reduced data set X. Obtain a random value from the conditional copula

using Monte Carlo simulation and assign this value to the location s1. Add

s1 to the reduced data set X. For si, i = 2, . . . , 20, obtain a random value

from the conditional copula at si, conditioned on the reduced data set and

locations s1, . . . , si−1, using Monte Carlo simulation and assign this value

to the location si. Add si to the data set containing X and the locations

s1, . . . , si−1.

5. Repeat step 4, 100 times to obtain 100 sequential simulations. This results

in 100 data sets, with each data set containing 259 observations.

6. For each simulated data set, calculate the total PQI over the interpolation

grid. Sort the total PQIs in increasing order to form the set PQIT =

(PQI1, . . . , PQI100), where PQIj < PQIj+1 for j = 1, . . . , 99.

7. Calculate the total PQI for the original set of observations X0 over the

interpolation grid and let this be denoted by PQI0.

8. Compare the total PQI from the original observations PQI0 with the total

PQIs from the simulated data sets PQI1, . . . , PQI100 and observe the num-

ber of total PQIs from the simulated data sets that are less than the total

PQI from the original observations. If PQIj < PQI0 < PQIj+1, then the

proportion of sequential simulations that have a lower total PQI than the
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the total PQI of the original observations X0 is j/100.

Figures 6.4(a) and 6.4(b) show the maps of the 196 total expected PQIs that are

obtained for the 196 candidate locations, as detailed in step 2 above, for Co and

Ni, respectively. As determined by the simulation procedure above, the new sam-

pling locations (solid red squares) are located in regions corresponding to lower

values of total expected PQI. Figures 6.4(c) and 6.4(d) are the maps of the 90%

prediction interval widths from the pair-copula models for Co and Ni, respec-

tively, for the reduced data set with 239 observations. As expected, comparing

Figure 6.4(a) with Figure 6.4(c) for Co, and Figure 6.4(b) with Figure 6.4(d) for

Ni, the areas with wide prediction intervals correspond to areas with low total

expected PQI. It was commented previously that these are areas that are more

sparsely sampled and with high variability in metal concentrations.

Figures 6.5(a) and 6.5(b) show the distributions of the total PQIs for the 100

di�erent realisations of the redesigned spatial design for Co and Ni, respectively.

The total PQI of the original 259 observations is represented by the value in bold

on the x-axis. For Co, the redesigned spatial design outperforms the original

spatial design, that is, the simulated total PQIs are less than the PQI of the

original observations, in 98% of the simulations. For Ni, the redesigned spatial

design outperforms the original design in 99% of the simulations.

6.4.3 Sequential spatial redesign

In the procedure for the simulation study, described above, the selection of the

20 new locations is not sequential. However, the proposed methodology speci�es

sequential addition of new locations, which means that the second optimal can-

didate location can only be determined after measurement at the �rst selected

location. If measurement at the �rst additional location cannot be taken, the con-

ditional copula density in step 3 of the proposed methodology can be obtained,

not only for all possible values of u′i but, for all possible values of the �rst addi-

tional location. Consequently, the integral in step 5 becomes a double integral.

For the selection of the third optimal location, the integral becomes a triple inte-
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(a) (b)

(c) (d)

Figure 6.4: Maps of the total expected PQI for (a) Co and (b) Ni, and the
90% prediction interval widths based on the pair-copula for (c) Co and (d) Ni,
overlaid with the retained old observations (dots), removed observations (hollow
red squares) and new non-sequentially added observations (solid red squares).

gral. For selection of the n-th optimal location, an n-dimensional integral must

be calculated. This approach is clearly computationally intensive.

To demonstrate the sequential design methodology, rather than considering all

possible values of a newly selected location, the modal value from the condi-

tional copula density, conditioned on the existing sampled observations and the

previously added additional locations, is assigned as the observed value for the
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(a)

(b)

Figure 6.5: Distribution of total PQI for (a) Co and (b) Ni from 100 simulated
data sets.

location. Moreover, as observed, in this application, the conditional distribution

at given location is typically unimodal and very peaked. Therefore, modal value

typically has a high probability of occurrence. Hence, it is reasonable to use
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modal value when compared to computational intense that need to handle by

using all the possible values.

Figures 6.6(a) and 6.6(b) show the maps of the 90% prediction interval widths

from the pair-copula models for Co and Ni, respectively, for the reduced data

set with 239 observations. The 20 new observations, obtained sequentially and

assigned modal values, appear as solid red squares. Comparing Figure 6.4(c)

with Figure 6.6(a), and Figure 6.4(d) with Figure 6.6(b), indicates that the areas

where the 20 new observations are located are similar for the non-sequential and

sequential designs, for both Co and Ni. The new locations for the sequential

designs are still located in areas where the 90% predication intervals are wide.

However, the selected locations are more scattered in the sequential design than

the non-sequential design, due to updating of the total expected PQI after ad-

dition of each new location and the modal values assigned to the new locations

in the sequential design. Since sequential design is only one possible realisation

from an in�nite number of designs, it is not possible to compare the sequential

design and non-sequential design quantitatively. However, the similarity of the

non-sequential and sequential designs suggests that the redesigned sequential de-

signs are also likely to outperform the original designs in a large percentage of

cases.

The green line in Figure 6.7 shows the total PQI after adding each selected

location with the modal value assigned as the observation value for the location.

For Co (Figure 6.7(a)) and Ni (Figure 6.7(b)), the total PQI decreased to less

than the total PQI of the original 259 observations after adding just two new

observations for Co and one observation for Ni. Hence, for this example, 18-19

less observations are required in the optimal redesign to achieve the total PQI,

or less, of the original design. Note that the total PQI does not always decrease

after adding a new observations due to the dependence of the total PQI on the

values assigned to the new locations. However, any increase due to adding a new

observation does not exceed the total PQI of the original observations.
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(a) (b)

Figure 6.6: Maps of the 90% prediction interval widths based on the pair-copula
for (a) Co and (b) Ni, overlaid with the retained old observations (dots), removed
observations (hollow red squares) and new sequentially added observations (solid
red squares).

6.4.4 Kriging based design

Here, the performance of the proposed optimal design is evaluated against an

optimal design based on kriged model under Gaussian assumption. Total kriging

variance over the interpolation grid is used as the optimisation criterion for the

kriged based design. A candidate location that produces the lowest total kriging

variance is selected as the new observation. The variogram models that are

discussed in Bandarian et al. [2008] were used to model the spatial dependency

for Co and Ni.

From Figure 6.8, the new locations from the kriged based designs are located in

areas with a lower density of observed points, as would be expected, since areas

with less observations correspond to higher kriging variances. Unlike the designs

based on the proposed methodology, which use pair-copulas, the new sampling

locations for Co and Ni for the kriged based designs are identical for the non-

sequential design and nearly identical for the sequential design. This is because

designs based on kriged model under Gaussian assumption are dependent only

on the spatial location of the observations, which are the same for Co and Ni,
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(a)

(b)

Figure 6.7: Total PQI for sequentially selected candidate points for (a) Co and
(b) Ni.

and not on the values of the observations. It is also worth noting that, as with

the pair-copula based designs found using the proposed methodology, there is no

notable di�erence between the sequential and non-sequential kriged based design

136



for both Co and Ni.

(a) (b)

(c) (d)

Figure 6.8: Kriging based non-sequential optimal design for (a) Co and (b) Ni,
and sequential optimal design for (c) Co and (d) Ni.

As seen in Figure 6.9, the kriging variance for both variables decreases mono-

tonically after adding a new observation. Moreover, to achieve the total kriging

variance of the original 259 observations, 5-6 new observations are need, compared

to only 1-2 for the pair-copula based designs.
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(a)

(b)

Figure 6.9: Total kriging variance for sequentially selected candidate points for
(a) Co and (b) Ni.

6.5 Conclusions

In this chapter, a new optimal design methodology based on the spatial pair-

copula model is proposed. The optimal design methodology sequentially adds
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new observations to an existing spatial design. The design is adaptive in that

selection of a new location depends on the values observed for previously added

locations.

Use of a copula-based spatial model in the proposed design methodology was

motivated by the advantages of spatial copula models over other types of spatial

models. Spatial copula-based models are capable of capturing both linear and

non-linear spatial dependence and can additionally be used to study non-Gaussian

processes. Speci�cally, the spatial pair-copula model more capably captures spa-

tial dependence over other types of spatial copula models because it permits

a di�erent copula family, hence, di�erent dependence structure, to be �tted to

observations of di�ering distances.

In the application of the proposed methodology, the ability of the predictive quan-

tile interval from the spatial pair-copula model to capture both the con�guration

and the variability of measured values, and the inability of the Gaussain based

kriging variance to capture the variability of measured values, was demonstrated.

Consequently, optimal designs based on spatial pair-copulas are likely to di�er

from optimal designs based on kriged model under Gaussian assumption. Pair-

copula based spatial designs not only locate new measurements in areas that are

more sparsely sampled, as do kriged based designs, but also add new measure-

ments to areas where the measurement values vary. This feature is bene�cial in

the Swiss Jura application where identi�cation of zones with high metal concen-

tration is desired and where areas with varying levels of metal concentration are

present. Moreover, it should be noted that the selected design is sensitive to the

interpolation grid used on study domain as similar to prediction-based kriging

designs.

In the simulation study, redesign of the spatial design using the proposed method-

ology outperformed the original design in more than 95% of simulations, even

though the new sampling locations were not selected sequentially, and, hence, po-

tentially selected sub-optimally. Whilst the sequential optimal design presented

in the application is just one realisation of in�nitely many possibly designs, it
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is worth noting that the total predictive quantile interval for the sequential de-

sign is lower than all 100 simulated total predictive quantile intervals for the

non-sequential design.

Determination of additional sampling locations in the sequential design, subse-

quent to the �rst additional location, ideally, requires measurement at previously

added locations. If measurement is not possible, prior to determining the next

sampling location, computation of a sequential optimal design increases to the

n-th power for n additional locations. To overcome this computational challenge,

an approach for selecting blocks should be developed, as discussed in Li et al.

[2011].

In proposed design, cost contain didn't included. However cost constrains would

be incorporated with proposed design methodology in future research.

Li et al. [2011] developed a sampling design based on a more simple copula based

geostatistical model. The aim of their research was to add observation locations

to an existing water observation network. A decision theoretic framework was

used to constrain additional locations such that locations that were expected to

fall below pollution thresholds for drinking water were more likely to be selected.

As an extension to the methodology presented in this chapter, the method of Li

et al. [2011] can be adapted to develop a decision theoretic design for additional

samples based on the pair-copula mode based on a utility function. However, this

is a topic of future research.
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Chapter 7

Multivariate Optimal Spatial

Design

The research in this chapter is in preparation for journal submission as detailed

below.

� Musafer, G.N and Thompson, M.H. (n.d). Non-linear mutivariate optimal

spatial design. In preparation.

Abstract

In this chapter, a new non-linear multivariate optimal spatial design methodol-

ogy is proposed to simultaneously reduce the prediction uncertainty of multiple

variables by selecting additional sampling locations based on the existing loca-

tions' con�guration and their values. Novel aspects of the design methodology

include the use of spatial pair-copulas to estimate the prediction uncertainty and

the use of transformation methods for dimension reduction to model multivariate

spatial dependence. Spatial pair-copulas are able to capture non-linear spatial

dependence within variables better than other types of spatial copula models

whilst a chained transformation that uses non-linear principal components cap-

tures the non-linear multivariate dependence between variables. The proposed

design methodology is applied to two environmental case studies. Performance of

the proposed methodology is evaluated through partial redesigns of the original

141



spatial designs. The �rst case study demonstrates the ability of the proposed

design methodology to honour spatial non-linearity in the data. The second case

study highlights the strength of the proposed design methodology in incorporat-

ing non-linear multivariate dependence into the design.

7.1 Introduction

Optimal spatial sampling design can be simply de�ned as optimal allocation of

sampling points to spatial coordinates [Pilz and Spöck, 2008]. In most spatial

processes, the �rst sampling campaign is conducted to obtain good geostatistical

coverage and projection of the distribution of the variables of interest. However

the decision of the sampling pattern for the next phase can be derived using the

statistical information obtained from the �rst phase [Moon and Whateley, 2006].

This means that the information obtained from the �rst campaign can be used to

develop an appropriate geostatistical model for prediction and additional samples

can be used to improve precision of the prediction [Hassanipak and Sharafodin,

2004], which reduces the uncertainty of the prediction.

Some researchers are interested in objectives other than reducing the uncertainty

of prediction. For example, Van Groenigen and Stein [1998] used a Monte Carlo

method, such as simulated annealing, to maximise the spatial spread of the sample

locations. This procedure is called a space-�lling design [Royle and Nychka, 1998].

Others [Webster and Oliver, 1992, Zimmerman, 2006, Lark, 2002] are interested

in improving the precision of the parameters of variograms. Also of interest is

minimising both uncertainty of the prediction and minimising the uncertainty of

parameter estimation of the variogram [Zimmerman, 2006, Diggle and Lophaven,

2006, Zhu and Stein, 2006]. In the mining �eld, Hassanipak and Sharafodin [2004]

introduced another strategy to �nd the optimal design for additional samples with

the aim of improving the reliability of resource classi�cation and improving the

estimates of grade and tonnage of the ore reserve. Li et al. [2011] maximised the

expected gain de�ned by a utility function based on a simple spatial copula model

in order to add observation locations to an existing water observation network.
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Regardless of the objective, the target of these sampling design methodologies

was one spatial variable. But in reality, measurements for multiple variables are

frequently collected at a given location in spatial process and more than one

variable may be of interest. If multiple variables are of interest, spatial design

for additional samples should be optimal for all variables of interest under any

objective. However, these variables are unlikely to be totally independent and

dependence between these variables can be non-linear. In addition to this, in

reality, the spatial dependence of individual variables is unlikely to be linear.

Since optimal design is model dependent, an optimal design based on a spatial

model that can capture the non-linear dependence structure between the spatial

variables and non-linear dependence structure of individual variables is required.

For instance, suppose that the actual relationships between spatial variables are

non-linear, but one �ts a model assuming a linear relationship between variables,

and uses that model to develop an optimal sampling design for additional samples

with the objective of reducing of prediction uncertainty and subsequently perform

the prediction of variables of interest after adding new sample information. Under

this scenario the �nal prediction will be inaccurate. There is no improvement that

can be gained with an optimal deign without a valid model.

As far as the author is aware, very little work exists for spatial designs for mul-

tivariate settings [Va²át et al., 2010, Brown et al., 1994, Bueso et al., 1999, Li

and Zimmerman, 2015]. Most of the existing multivariate spatial designs in the

literature were developed based on co-kriging with the objective of reducing the

uncertainty of simultaneous prediction where co-kriging is only capable of ac-

counting for the linear relationship between the spatial variables. Moreover, co-

kriging assumes a linear spatial dependence structure (spatial autocorrelation)

of individual variables by employing variogram in modelling the spatial depen-

dence. Hence, improvements cannot be expected in spatial prediction by adding

new samples based on designs that are obtained through co-kriging if any de-

pendence structure (between variables or within variables) is non-linear. In this

research a new methodology for optimal spatial design for more than one variable
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with the objective of reducing the uncertainty of the prediction of all variables

simultaneously based on the spatial modelling approach is developed that can

capture any non-linearity between variables and within variables.

Modelling of multiple spatial variables jointly is time consuming and complex as

the number of variables increases. Hence, most researchers use di�erent modelling

approaches for prediction and simulation by transforming spatial variables into

spatially uncorrelated variables (factors) using a suitable transformation method

or combination of transformation methods [Leuangthong and Deutsch, 2003, Bar-

nett et al., 2014, Barnett and Deutsch, 2012]. In this chapter, the multivariate

modelling approach developed in Chapter 5 is used. In the multivariate mod-

elling, spatial pair-copulas are used for the spatial interpolation. The pair-copula

model, which was introduced by Gräler and Pebesma [2011], among other copula-

based models, has more �exibility to capture the non-linear dependence structure

of individual variables. This means that the uncertainty estimation for prediction

produced by a pair-copula model has the capability to capture the variability of

both the observations' con�guration and its measured values [Bárdossy and Li,

2008, Haslauer et al., 2010]. Moreover, the pair-copula model can produce the

conditional distribution of the variable of interest at unsampled locations.

The theory behind the proposed design methodology is discussed in detail in

the next section. The implementation of the proposed design methodology is

illustrated using the two case studies. The �rst case study has linear related

variables whilst the variables of the second case study show non-linearity. The

validity of the proposed methodology is evaluated by redesigning the existing

design of two case studies. In addition to the implementation of the proposed

methodology, these case studies are used to compare the di�erent optimal design

methodologies with the objective of reducing uncertainty. The �rst case study is

used to investigate the di�erence between designs based on a model that can cater

for only linear dependence of individual variables and designs based on a model

that can cater for non-linear dependence of individual variables. Investigation of

the di�erence between designs based on a model that captures the non-linearity
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between variables and a design based on a model that ignores the non-linearity

between variables is carried out in the second case study. Overall, the results

demonstrate, in the case studies presented, the potentialities of the methodology.

Li et al. [2011] proposed a sampling design based on a spatial copula. The aim of

their research was to add observation locations to an existing water observation

network with the aim of maximising the expected gain de�ned through a utility

function. In Chapter 6, the methodology of Li et al. [2011] was extended by de�n-

ing a statistical criterion in order to tally with the aim of reduction of uncertainty

in univariate predictions and used a more �exible pair-copula model. In this re-

search, the univariate optimal design of Chapter 6 is extended to multivariate

optimal spatial design. This methodology enables optimal sampling design for

more than one variable by reducing the uncertainty of prediction of all variables

simultaneously.

Without loss of generality, the proposed multivariate methodology is described

using a bivariate spatial design.

7.2 Methodology

Let Z(x) = [Z1(x), Z2(x)] denote a bivariate spatial random �eld. Here x is a

two dimensional location belonging to the study domain X . The set of existing

sampled locations is denoted by X = (x1, . . . ,xn). The objective of optimal

spatial sampling here is to select additional measurement locations that reduce

the combined uncertainty of two spatial random variables over the random �eld.

One such example arises in additional sampling to monitor soil quality, where

additional measurements are desired to reduce the combined uncertainty of toxic

metal concentrations for the purpose of determining contamination zones. Of

particular focus in this chapter is the reduction in the weighted average of the

predictive quantile intervals (PQI) for the two variables, where the PQI is the

di�erence between predictive quantiles of Zk(x), k = 1, 2. Let X ′ = (x′1, . . . ,x
′
m)

be a set of candidate locations from which the additional new locations are chosen

and X ′ ⊆ X . The PQI at unsampled locations X∗ = (x∗1, . . . ,x
∗
N) can be esti-
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mated from the sampled observations by interpolation of the random �eld Zk(x).

Note that, in practice, the study domain X is discretised into an interpolation

grid so that the set of unsampled locations X∗ are the nodes of the interpolation

grid. The interpolation method of Gräler and Pebesma [2011], which uses spatial

pair-copulas, is applied here.

Throughout, superscript Z is used to denote quantities associated with Z(x).

The predictive quantile of Zk(x) at unsampled location x∗j , given the existing

sampled observations is,

PQZ
k,x∗j ,n;q

= F−1Zk

(
CZ

k,x∗j ,n
−1

(q|uZ
k )
)

where CZ
k,x∗j ,n

(u∗Zkj |uZ
k ) is the conditional copula for variable Zk(x) at unsampled

location x∗j , conditioned on the n existing sampled observations. Note that u∗Zkj

denotes the value of the k-th Uniform random variable U∗Zk (on [0, 1]) at the

unsampled location x∗j , and uZ
k = (uZk1, . . . , u

Z
kn) where uZki = FZk

(zk(xi)) with

FZk
denoting the estimated marginal cumulative distribution function of the data

for variable Zk.

The PQI corresponding to the di�erence between the 95-th and 5-th predictive

quantiles of Zk(x) at unsampled location x∗j , given the existing sampled observa-

tions, is

PQIZk (u∗Zkj |uZ
k ) = PQZ

k,x∗j ,n;0.95
− PQZ

k,x∗j ,n;0.05
.

The objective of the optimal design is to reduce the combined PQI for Z1(x) and

Z2(x). Following Va²át et al. [2010], the combined PQI is taken as the weighted

average of the PQIs for the two variables:

PQIZ(u∗Z1j , u
∗Z
2j |uZ

1 ,u
Z
2 ) =

2∑
k=1

wk

σk
PQIZk (u∗Zkj |uZ

k )

where wk are weights that are assigned depending on the relative importance of

each variable with
∑2

i=k wk = 1. For spatial variables that have di�erent mea-

surement units, the PQIs can be standardised by division with the corresponding

146



standard deviation σk of the data. The candidate location x′i, i = 1, . . . ,m, from

the set X ′, selected as the new location for measurement, is that which corre-

sponds to the smallest total expected weighted PQI over the study domain after

it has been added to the existing observations. In this chapter weighted PQI is

used as statically criterion for as the PQI is used as a measure of predictive un-

certainty in most of the spatial applications and less computationally expensive.

However any arbitrary measure of predictive uncertainty such as spatial variance

can be used in this proposed design methodology.

To obtain the weighted PQI for Z(x) = [Z1(x), Z2(x)] that takes account of the

bivariate dependence between the variables, the variables are �rst transformed

into uncorrelated factorsM(x) = [M1(x),M2(x)]. The transformation method of

Chapter 4 is applied here with principal components analysis (PCA) used in the

transformation for linear bivariate relationships and non-linear PCA (NLPCA)

used for non-linear relationships.

The transformation of variables Z(x) = [Z1(x), Z2(x)] into uncorrelated factors

M(x) = [M1(x),M2(x)] is given by

M(x) = G[T (Z(x))] (7.1)

where T is the transformation used to remove cross-correlation at zero lag dis-

tance and G is the transformation used to decorrelate the variables at distances

greater than lag zero. Note that, for higher dimensions, transformation of

Z(x) = [Z1(x), . . . , ZK(x)], K > 2, results in decomposition of the variables

into L ≤ K uncorrelated factors M(x) = [M1(x), . . . ,ML(x)]. Henceforth, su-

perscript M is used to denote quantities associated M(x).

Predictive quantiles can be calculated for each factor after �tting independent

pair-copula models to each factor. The conditional copula for Ml(x), l = 1, 2, at

the candidate location x′i, conditioned on the existing observations, is

CM
l,x′i,n

= CM
l,x′i,n

(u′Mli |uM
l ) (7.2)
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where u′Mli denotes the value of the l-th Uniform random variable U ′Ml at the

candidate location x′i, and uM
l = (uMl1 , . . . , u

M
ln ) where uMli = FMl

(ml(xi)) with

FMl
denoting the estimated marginal distribution function of the transformed

data corresponding to factor Ml.

After addition of a candidate to the set of existing observations, the conditional

copula for each factor can be re-estimated at the interpolation grid points. For

any possible value u′Mli of U ′Ml at the candidate location x′i, the conditional copula

for Ml(x) at interpolation location x∗j , conditioned on the existing observations

and the newly added candidate x′i, is

CM
l,x∗j ,n+1 = CM

l,x∗j ,n+1(u
∗M
lj |u′Mli ,uM

l ) (7.3)

where u∗Mlj is any possible value of Uniform random variable U∗Ml at x∗j .

Using Eq. (7.3), any predictive quantile of Ml(x) can be estimated at all points

on the interpolation grid after adding the candidate x′i. The qM -th predictive

quantile, 0 < qM < 1, at interpolation location x∗j after adding the candidate x′i

with a proposed value u′Mli as the assumed observed value is

PQM
l,x∗j ,n+1;qM = F−1Ml

(
CM

l,x∗j ,n+1

−1
(qM |u′Mli ,uM

l )
)
. (7.4)

In total, predictive quantiles are calculated for Nq values of q
M .

The predictive quantiles for variables Zk(x), which incorporate the bivariate de-

pendence, are then obtained by applying the corresponding back transformation

of Eq. (7.1) to the predictive quantiles for factors Ml(x):

[
PQZ

1,x∗j ,n+1;qZ , PQ
Z
2,x∗j ,n+1;qZ

]
= T−1

[
G−1

(
PQM

1,x∗j ,n+1;qM , PQ
M
2,x∗j ,n+1;qM

)]
(7.5)

where PQZ
k,x∗j ,n+1;qZ is the qZ-th predictive quantile of Zk(x) at x∗j after adding

x′i to the set of observations with a proposed value u′Zki . Note that q
Z , 0 < qZ < 1,

does not necessarily equally qM and is unknown.
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To estimate the qZ-th predictive quantile of Zk(x), the Nq predictive quantiles

PQZ
k,x∗j ,n+1;qZ are sorted in ascending order and the average of the bqZNq + 1/2c

and dqZNq+1/2e values in the ordered set is taken as the qZ-th predictive quantile.

For example, for Nq = 100 quantiles, the qZ = 0.05 quantile is the average of the

5-th and 6-th values in the ordered set. The number of quantiles Nq should be

su�ciently large for accurate estimation of the qZ-th predictive quantile of Zk(x).

From Eq. (7.5), the PQI corresponding to the di�erence between the 0.95 and

0.05 predictive quantiles of Zk(x) at unsampled interpolation location x∗j after

adding the candidate x′i is

PQIZk (u∗M1j , u
∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 ) = PQZ

k,x∗j ,n+1;0.95 − PQZ
k,x∗j ,n+1;0.05.

(7.6)

Hence, using Eq. (7.6), the weighted average of the PQIs for Z1(x) and Z2(x) is

PQIZ(u∗M1j , u
∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 ) =

2∑
k=1

wk

bk
PQIZk (u∗M1j , u

∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 ).

(7.7)

This is the weighted PQI at x∗j for one possible combination of values for u′M1i

and u′M2i .

The expected weighted PQI at x∗j is calculated as the integral of the weighted PQI

in Eq. (7.7) over the entire range of possible values of u′M1i and u′M2i corresponding

to candidate location x′i:

E
[
PQIZ(u∗M1j , u

∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 )
]

=∫ 1

0

∫ 1

0

PQIZ(u∗M1j , u
∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 )dCM

1,x′i,n
dCM

2,x′i,n

(7.8)

where CM
l,x′i,n

is the conditional copula given in Eq. (7.2).

The total expected weighted PQI of the entire interpolation grid after adding the

candidate x′i as a new observation is then the sum of the expected weighted PQI
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at all interpolation points:

ET (x′i) =
N∑
j=1

(∫ 1

0

∫ 1

0

PQIZ(u∗M1j , u
∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 )dCM

1x′i,n
dCM

2x′i,n

)
.

(7.9)

Computational e�ciency can be gained by interchanging the summation and

integration in Eq. (7.9):

ET (x′i) =

∫ 1

0

∫ 1

0

(
N∑
j=1

PQIZ(u∗M1j , u
∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 )

)
dCM

1,x′i,n
dCM

2,x′i,n
.

The candidate x′i that produces the smallest total expected weighted PQI is

selected as the new sample location. A summary of the procedure is outlined in

the following steps.

1. Use the transformation method in Chapter 4 to transform Z(x) =

[Z1(x), Z2(x)] into uncorrelated factors M(x) = [M1(x),M2(x)] using

M(x) = G[T (Z(x))], where transformation T decorrelates the variables

at zero lag distance and transformation G decorrelates the variables at lag

distances greater than zero.

2. For each factor Ml(x), l = 1, 2:

(a) Transform values ml(x1), . . . ,ml(xn) to the unit interval [0, 1] using

the estimated distribution function FMl
: uMl1 = FMl

(ml(x1)), . . . , u
M
ln =

FMl
(ml(xn)).

(b) Use the transformed values uMl1 , . . . , u
M
ln to �t a spatial pair-copula

CM
l,x,n(uMl |uMl1 , . . . , uMln ) using the method of Gräler and Pebesma [2011].

(c) For each candidate location x′i, for all values of u
′M
li , calculate the con-

ditional copula density cMl,x′i,n
= cMl,x′i,n

(u′Mli |uMl1 , . . . , uMln ) (Gräler and

Pebesma [2011]). In practice, it is not possible to obtain the condi-

tional copula density for all possible values of u′Mli , hence the range

of values of U ′Ml , i.e., [0, 1], is discretised and the conditional copula

density is calculated for the midpoint of each interval.
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3. For each interpolation grid point x∗j :

(a) For each factor Ml(x), calculate the conditional copula CM
l,x∗j ,n+1 =

CM
l,x∗j ,n+1(u

∗M
lj |u′Mli , uMl1 , . . . , uMln ), conditioned on the existing values

uMl1 , . . . , u
M
ln and the proposed value u′Mli at the candidate location

x′i. Use this conditional copula to calculate predictive quantiles

PQM
l,x∗j ,n+1;qM , given in Eq. (7.4). Calculate predictive quantiles for

Nq values of q
M , 0 < qM < 1.

(b) For each of the Nq values of qM , obtain predictive quantiles

PQZ
1,x∗j ,n+1;qZ and PQZ

2,x∗j ,n+1;qZ for Z1(x) and Z2(x), respectively, by

applying the corresponding back transformation of step 1 to the pre-

dictive quantiles PQM
1,x∗j ,n+1;qM and PQM

2,x∗j ,n+1;qM .

(c) For each variable Zk(x), sort the Nq predictive quantiles PQ
Z
k,x∗j ,n+1;qZ

in ascending order. Estimate the predictive quantile PQZ
k,x∗j ,n+1;0.95

using the average of the b0.95Nq + 1/2c and d0.95Nq + 1/2e val-

ues from the ordered set. Similarly, estimate PQZ
k,x∗j ,n+1;0.05 us-

ing the average of the b0.05Nq + 1/2c and d0.05Nq + 1/2e val-

ues from the ordered set. Subtract the 0.05 quantile from

the 0.95 quantile to obtain the predictive quantile interval

PQIZk (u∗M1j , u
∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 ), given in Eq. (7.6). Use these pre-

dictive quantile intervals to calculate the weighted predictive quantile

interval PQIZ(u∗M1j , u
∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 ), given in Eq. (7.7).

(d) Calculation of the conditional copulas and, consequently, the weighted

predictive quantile interval is repeated for all discretised values of U ′M1

and U ′M2 at the candidate location x′i.

4. For each interpolation grid point x∗j , calculate the expected weighted PQI
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using Eq. (7.8). The double integral in Eq. (7.8) can be approximated by

∫ 1

0

∫ 1

0

PQIZ(u∗M1j , u
∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 )dCM

1,x′i,n
dCM

2,x′i,n
=

D1∑
d1=1

D2∑
d2=1

[
PQIZ(u∗M1j , u

∗M
2j |u′M1i = u′M1i,d1 , u

′M
2i = u′M2i,d2 ,u

M
1 ,u

M
2 )

×cM1,x′i,n(u′M1i = u′M1i,d1|u
M
1 )∆u′M1i,d1 × c

M
2,x′i,n

(u′M2i = u′M2i,d2|u
M
2 )∆u′M2i,d2

]
where u′Mli,dl is the midpoint of the dl-th discretised interval of U ′Ml ,

cMl,x′i,n
(u′Mli = u′li,dl |u

M
l ) is the conditional copula density forMl(x) calculated

in step 2(c) at u′Mli = u′Mli,dl and ∆u′Mli,dl is the width of the dl-th discretised

interval.

5. For the candidate location x′i, calculate the total expected weighted PQI of

the entire interpolation grid using Eq. (7.9) by summing up the expected

weighted PQI calculated for all the interpolation grid points.

6. Repeat steps 2(b) to 5 for the remaining candidate points and select the

candidate point that produces the smallest total expected weighted PQI,

ET (x′i), as the new sample location.

As with the univariate design methodology in Chapter 6, whilst the spatial pair-

copula of Gräler and Pebesma [2011] is used in step 2(b), alternative spatial

copulas could be substituted into the procedure, such as the spatial copula of

Bárdossy and Li [2008].

Additionally, some practical issues that require consideration in implementing

the proposed design methodology follow. Firstly, as with the univariate design

methodology, the transformation applied in step 4 and the spatial copula �tted in

step 2(b) are important, since it is assumed that the dependence of the random

variable Ml follows the selected copula model.

Secondly, the range of values of U ′Ml should be discretised in step 2(c) to provide a

good numerical approximation of the expected weighted PQI calculated in step 4.

Monte Carlo integration (Shapiro, 2003) is used in the numerical approximation

of the expected weighted PQI. Hence, the intervals are determined by Monte
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Carlo sampling. Therefore, the expected weighted PQI using Eq. (7.8) can be

approximated by using Monte Carlo intergration as follows. For D1 Monte Carlo

samples of U ′M1 and D2 Monte Carlo samples of U ′M2

∫ 1

0

∫ 1

0

PQIZ(u∗M1j , u
∗M
2j |u′M1i , u′M2i ,uM

1 ,u
M
2 )dCM

1,x′i,n
dCM

2,x′i,n
=

1

D1 ×D2

D1∑
d1=1

D2∑
d2=1

[
PQIZ(u∗M1j , u

∗M
2j |u′M1i = u′M1i,d1 , u

′M
2i = u′M2i,d2 ,u

M
1 ,u

M
2 )
]
.

Algorithm 3 in Chapter 5 can be used to carry out the Monte Carlo sampling of

U ′Ml .

Thirdly, the predictive quantiles for Ml in step 3(a) are calculated for Nq values

of qM . Discretisation of the range of qM , 0 < qM < 1, into Nq equally spaced

points, such that Nq is su�ciently large to produce accurate estimation of the 0.95

and 0.05 predictive quantiles of Zk, may be computationally intensive. Instead,

Monte Carlo sampling is used to determine Nq values of the predictive quantiles

for Ml by sampling values of CM
l,x∗j ,n+1. Algorithm 4 describes the estimation of

the 0.95 and 0.05 predictive quantiles of Zk using Monte Carlo sampling.

Finally, as discussed in Chapter 5, it may be computationally expensive to use all

of the observations uMl1 , . . . , u
M
ln in obtaining the conditional copula distributions

CM
l,x′i,n

, at the candidate location x′i, and C
M
l,x∗j ,n+1, at the interpolation grid point

x∗j . Therefore, the conditional copula distribution is calculated based on nearby

locations. Ten nearby locations are used in the application. By using only the

nearby neighbours, the the value of the conditional copula, used in calculation

of the predictive quantile interval, at an interpolation grid point changes only

if the newly added candidate location is a neighbour of the grid point. Hence,

computation can be signi�cantly reduced by use of an algorithm to �nd the grid

points that are a�ected by newly added locations.

153



Algorithm 4: Algorithm for estimation of the 0.95 and 0.05 predictive quantiles for

Z1 and Z2 using Monte Carlo sampling.

De�nition:

# Let Nq be the number of Monte Carlo samples

sample1 ← matrix(NA,Nq, 1) # Vector of Monte Carlo sampling values for M1

sample2 ← matrix(NA,Nq, 1) # Vector of Monte Carlo sampling values for M2

Z1 ← matrix(NA,Nq, 1) # Vector of back transformed Z1 values

Z2 ← matrix(NA,Nq, 1) # Vector of back transformed Z2 values

PQ0.95Z1
← NULL # 0.95 predictive quantile for Z1

PQ0.05Z1
← NULL # 0.05 predictive quantile for Z1

PQ0.95Z2
← NULL # 0.95 predictive quantile for Z2

PQ0.05Z2 ← NULL # 0.05 predictive quantile for Z2

Calculation:

for l in 1 to 2

(a) Calculate the conditional copula density cMl,x∗
j ,n+1(u

∗M
lj |u′Mli ,uM

l ) of Ml at

interpolation location x∗j for an assigned value of u′Mli at candidate location x′i.

(b) Obtain the modal value u∗Ml,modal of c
M
l,x∗

j ,n+1(u
∗M
lj |u′Mli ,uM

l ) and the corresponding

density value cMl,x∗
j ,n+1(u

∗M
lj = u∗Ml,modal|u′Mli ,uM

l ).

(c) Obtain the Monte Carlo sampling values for Ml:
while (length(samplel) < Nq)

x← random value ∼ Uniform(0, 1)

y ← random value ∼ Uniform(0, cMl,x∗
j ,n+1(u

∗M
lj = u∗Ml,modal|u′Mli ,uM

l )

if (y ≤ cMl,x∗
j ,n+1(u

∗M
lj = x|u′Mli ,uM

l )

add x value to sample

end if

end while

samplel ← F−1Ml
(samplel)

samplel ← sort(samplel) # Sort vector in ascending order

end for

1. Back transform the Monte Carlo sampling values for M1 and M2:
[Z1, Z2]← T−1(G−1[sample1, sample2])

2. Calculate the 0.95 and 0.05 predictive quantiles for Zk:
for k in 1 to 2

Zk ← sort(Zk) # Sort vector in ascending order

PQ0.95Zk
← (Zk[b0.95Nq + 1/2c] + Zk[d0.95Nq + 1/2e])/2

PQ0.05Zk
← (Zk[b0.05Nq + 1/2c] + Zk[d0.05Nq + 1/2e])/2

end for
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7.3 Data

The proposed optimal design methodology was applied to two data sets. The

�rst application uses the Swiss Jura data set [Goovaerts, 1997]. In the Swiss Jura

application, the bivariate relationship between the two variables investigated is

linear. Data from the Bartlett Experimental Forrest (BEF) [Finley et al., 2007]

was used in the second application, where the two variables investigated have

a non-linear bivariate relationship. The variables from both data sets possess

non-Gaussian and non-linear spatial dependence.

The purpose of the Swiss Jura application is to elucidate the features and ad-

vantages of multivariate pair-copula based sampling designs for data that are

non-linearly spatial. The BEF application additionally demonstrates how a non-

linear bivariate relationship impacts the sampling design.

7.3.1 Swiss Jura

A description of the Swiss Jura data set can be found in Chapter 6. The data

set contains measurements of metal concentrations for seven toxic metals. In

identifying contamination zones, that is, areas with high metal concentrations,

simultaneous prediction of the metal concentrations should be carried out over the

study domain. Prediction based on just one metal, as was done in Chapter 6, can

be used to de�ne regions that are contaminated with that particular metal, but

may exclude areas with high concentrations of other metals. Hence, the simulta-

neous reduction in prediction uncertainty of all metals of concern, particularly in

areas near high metal concentrations, is bene�cial in the identi�cation of regions

with high metal concentrations of one or more metals.

For the purposes of illustrating the proposed design methodology, only two toxic

metals, cobalt (Co) and nickel (Ni), were considered. Spatial plots of the con-

centrations of Co and Ni were given in Figures 6.1(a) and 6.1(b) of Chapter 6

and are repeated here in Figures 7.1(a) and 7.1(b) for ease of reference. It was

noted in Chapter 6 that, for both metals, the more densely sampled areas tend
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to correspond to lower concentration values and the more sparsely sampled areas

correspond to metal concentrations with moderate to high values.

The scatter plot of the Co and Ni measurements in Figure 7.1(c) exhibits a strong

linear relationship between Co and Ni at zero lag distance.

(a) (b)

(c)

Figure 7.1: Swiss Jura data. Spatial plots for (a) Co and (b) Ni, and (c) scatter
plot between Co and Ni.
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7.3.2 Bartlett Experimental Forest

The BEF data set consists of 437 measurements at two dimensional locations for

more than 50 attributes from georeferenced forest inventory plots on the United

States Department of Agriculture Forest Service Bartlett Experimental Forest in

Bartlett, new Hampshire [Finley et al., 2007]. The BEF covers an area of 1,053

hectares. Here, we are interested in two attributes that are non-linearly related.

These attributes are generically labelled Z1 and Z2.

Figures 7.2(a) and 7.2(b) show the spatial distribution of Z1 and Z2, respectively.

It can be seen that Z1 has a larger variation in attribute values in comparison to

Z2, and low attribute values occur in similar locations for the two variables.

The non-linear structure of the bivariate data at zero lag distance can be clearly

seen in the scatter plot of Figure 7.2(c).

7.4 Application

In this section, the proposed methodology is applied to the Swiss Jura and BEF

data. Grids are de�ned over each study domain for interpolation. The interpola-

tion grid points are also considered as potential candidates for the new samples.

As with Chapter 6, performance of the design methodology is assessed through

a partial redesign of the initial sampling for each data set. For the purposes of

demonstrating the methodology, a random subset of points was removed from

the existing spatial design. Subsequently, the same number of points were added

back into the reduced data set from potential candidates using the proposed opti-

mal design. Expected prediction quantile intervals over the interpolation grid are

compared for the existing spatial design and the redesigned spatial design using

the proposed methodology.

7.4.1 Simulation study for spatial redesign

The performance of the proposed methodology is assessed by comparing the re-

designed spatial design to the existing spatial design through a simulation study
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(a) (b)

(c)

Figure 7.2: BEF data. Spatial plots for (a) Z1 and (b) Z2, and (c) scatter plot
between Z1 and Z2.

similar to Chapter 6, which is based on the approach of Li et al. [2011]. The

procedure for the simulation study for the bivariate context is outlined in the

following steps.

1. Randomly remove p observed locations from the original observation set X0

to produce a reduced data set X.

2. For each of the m candidate points, calculate the total expected weighted

PQI over the interpolation grid after adding the candidate location as a
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possible new location to the reduced data set X.

3. Select the p locations that produce the lowest total expected weighted PQIs

as the new sampling locations. Let the p new sampling locations be denoted

by S = (s1, . . . , sp).

4. For the reduced data setX, transform Z = [Z1, Z2] into uncorrelated factors

M = [M1,M2] using the transformation described in Eq. (7.1).

5. From the p new sampling locations, randomly select one location si with-

out replacement. For each factor M1 and M2, separately, �t a conditional

copula at si, conditioned on the reduced data set X. From each conditional

copula forM1 andM2, obtain a random value using Monte Carlo simulation

and assign this value to the location si. Apply the back transformation of

the transformation used in step 4 to obtain the corresponding Z1 and Z2

values. Add location si, with assigned values for M1 and M2, and their

corresponding Z1 and Z2 values, to the reduced data set X.

6. Repeat steps 4 to 5 a further p − 1 times to obtain p simulated values for

each new sampling location.

7. Repeat steps 4 to 6, 100 times to obtain 100 sequential simulations. This

results in 100 data sets for M1 and M2.

8. For each simulated data set, sum the weighted PQI for Z1 and Z2, given

in Eq. (7.7), over the interpolation grid to give the total weighted PQI.

Sort the total weighted PQIs in increasing order to form the set PQIT =

(PQI1, . . . , PQI100), where PQIj < PQIj+1 for j = 1, . . . , 99.

9. Calculate the total weighted PQI for Z1 and Z2 over the interpolation grid

using the original set of observations X0 and let this be denoted by PQI0.

In order to account for the bivariate relationship between Z1 and Z2, the

total weighted PQI for the original set of observations should be calculated

by �rst transforming Z = [Z1, Z2] to M = [M1,M2] using the same trans-

formation method as in step 4. Thereafter, the predictive quantiles for Z1
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and Z2 can be obtained using the back transformation of the predictive

quantiles for M1 and M2.

10. Compare the total weighted PQI from the original observations PQI0 with

the total PQIs from the simulated data sets PQI1, . . . , PQI100 and observe

the number of total PQIs from the simulated data sets that are less than the

total PQI from the original observations. If PQIj < PQI0 < PQIj+1, then

the proportion of sequential simulations that have a lower total weighted

PQI than the total PQI of the original observations X0 is j/100.

As in the simulation study in Chapter 6, the selection of p new locations in not

sequential. However, the proposed methodology speci�es sequential addition of

new locations. The approach for sequential addition of new locations in a sim-

ulation study discussed in Chapter 6 is computationally intensive for univariate

designs. This is more so the case for multivariate designs. However, Chapter 6

also demonstrated that, in the univariate setting, the sequential design is sim-

ilar to the non-sequential design. Hence assessment of the multivariate design

methodology is conducted using the non-sequential design approach in this chap-

ter.

7.4.2 Swiss Jura data

Figure 7.3 shows the 250m by 250m interpolation grid that was de�ned over

the study domain. This is a replication of Figure 6.2 from Chapter 6, which

appears here for ease of reference. There are 196 grid points. The interpolation

grid points are also considered as the potential candidates for the new samples.

Twenty observations were removed randomly from an existing spatial design with

259 observations, based on the design in Atteia et al. [1994]. Subsequently, 20

design points were added back into the reduced data set from potential candidates

using the proposed optimal design. The hollow red squares in Figure 7.3 denote

the 20 observations that were removed from the original 259 observations.

As seen in Figure 7.1(c), Co and Ni have a strong linear relationship. Hence, PCA

was applied to remove the correlation between the variables at zero lag distance.
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Figure 7.3: Swiss Jura data. Study domain with retained old locations (blue dots)
and removed locations (hollow red squares) for both Co and Ni. Interpolation
locations are denoted by black crosses.

Thereafter, the second rotation of MAF was used to remove cross-correlation

between variables at lag distances greater than zero. Here, model based MAF

was used. To perform model based MAF, the variogram and co-variogram should

be modelled by the two structure linear model of coregionalisation (LMC). Thus,

the LMC used by Bandarian et al. [2008] was used to model the dependence of

Co and Ni here.

Since the concentration of Co and Ni are measured using the same units and

both variables are equally important in the study, the standard deviation σk is

not used in Eq. (7.7) and Co and Ni are assigned equal weights wk.

Comparison of linear multivariate co-kriged and pair-copula models

The weighted co-kriging variance maps of Co and Ni concentrations at each inter-

polation grid point, for the reduced data set with 239 observations, are presented

in Figures 7.4(a) and Figures 7.4(b). The weighted co-kriging variance is the

weighted average of the co-kriging variance for Co and Ni. Figure 7.4(a) is over-

laid with the spatial distribution of Co while Figure 7.4(b) is overlaid with the
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spatial distribution of Ni.

Figures 7.4(c) and 7.4(d) show the maps for the widths of the weighted 90%

prediction interval for Co and Ni. The weighted 90% prediction interval is the

weighted average of the 90% PQIs for Co and Ni, for the reduced data set with

239 observations. A 90% PQI corresponds to the di�erence between the 95-th and

5-th predictive quantiles. Figure 7.4(c) is overlaid with the spatial distribution

of Co while Figure 7.4(d) is overlaid with the spatial distribution of Ni.

Similar to the univariate case in Chapter 6, Figures 7.4(c) and 7.4(d) indicate that

wider weighted 90% prediction intervals from the pair-copula models under the

multivariate framework correspond both to areas that are more sparsely sampled

as well as areas with high variability in metal concentrations for both variables.

Note that the areas of high variability in metal concentrations are similar for Co

and Ni. This is because low values of Co and Ni occur together and high values

occur together. This is also apparent from Figure 7.1(c), which additionally

indicates a linear relationship between Co and Ni concentrations. Hence, when the

proposed design methodology is implemented, the locations for new observations

will occur in areas that are sparsely sampled and areas with with high variability

in both metal concentrations. This tallies with the aim of reducing the variability

of both variables simultaneously.

From Figures 7.4(a) and 7.4(b), weighted co-kriging variances are higher in more

sparsely sampled areas. However, unlike the weighted prediction intervals from

the pair-copula model, the weighted co-kriging variance doesn't capture the vari-

ability in metal concentrations. As a result, when a multivariate co-kriging based

design is implemented, new observations will be located in areas that are sparsely

sampled, regardless of the metal concentration values.

Simulation study for linear Swiss Jura data

Figures 7.5(a) and 7.5(b) show the map of the 196 total expected weighted PQIs

for Co and Ni that are obtained for the 196 candidate locations, as detailed in

step 2 of the simulation study procedure. Figure 7.5(a) is overlaid with the spatial
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(a) (b)

(c) (d)

Figure 7.4: Maps for the (a) weighted co-kriging variance of Co and Ni overlaid
with the spatial distribution of Co, (b) weighted co-kriging variance of Co and
Ni overlaid with the spatial distribution of Ni, (c) widths of the weighted 90%
prediction intervals for Co and Ni overlaid with the spatial distribution of Co and
(d) widths of the weighted 90% prediction intervals for Co and Ni overlaid with
the spatial distribution of Ni. Retained observations are displayed as dots and
removed observations are hollow red squares.

distribution of Co while Figure 7.5(b) is overlaid with the spatial distribution of

Ni. As determined by the simulation procedure above, the new sampling locations

(solid red squares) are located in regions corresponding to lower values of total

expected weighted PQI.
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Figures 7.5(c) and 7.5(d) are the maps for the widths of the weighted 90% pre-

diction intervals for Co and Ni, for the reduced data set with 239 observations.

Figure 7.5(c) is overlaid with the spatial distribution of Co while Figure 7.5(d) is

overlaid with the spatial distribution of Ni.

As expected, comparing Figures 7.5(a) and 7.5(b) with Figures 7.5(c) and 7.5(d),

the areas with low total expected weighted PQI correspond to areas with wide

weighted prediction intervals. It was commented previously that these are areas

that are more sparsely sampled and with high variability in both metal concen-

trations.

Figure 7.6(a) shows the distribution of the total weighted PQIs for Co and Ni,

which were obtained by applying steps 4 to 8 of the simulation study procedure,

for the 100 di�erent realisations of the redesigned spatial design.

The total weighted PQI of the original 259 observations is represented by the

value in bold on the x-axis. The redesigned spatial design outperforms the original

spatial design, that is, the simulated total weighted PQIs are less than the PQI

of the original observations, in 99% of the simulations.

The proposed multivariate optimal design methodology reduces prediction un-

certainty simultaneously for all variables by minimising the weighted average of

the PQIs. However, the resultant design may be sub-optimal for an individual

variable, where interest is in minimising the PQI just for that variable.

To assess whether the design points from the multivariate design are optimal

for reduction in prediction uncertainty of Co alone, the total PQI for Co was

obtained using steps 4 to 8 of the simulation study procedure, for the 100 di�erent

realisations of the redesigned spatial design. The total PQI for Co is simply the

PQI for Co summed over the interpolation grid, that is, it is the total weighted

PQI with weight wk = 0 for Ni. The total PQI for Co for the original 259

observations was also obtained by setting wk = 0 for Ni. Figure 7.6(b) shows

the distribution of the total PQIs for Co for the 100 di�erent realisations of the

redesigned multivariate spatial design, with the total PQI for Co of the original

259 observations represented on the x-axis in bold. The simulated total PQIs
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(a) (b)

(c) (d)

Figure 7.5: Maps for the (a) total expected weighted PQI for Co and Ni overlaid
with the spatial distribution of Co, (b) total expected weighted PQI for Co and
Ni overlaid with the spatial distribution of Ni, (c) widths of the weighted 90%
prediction intervals for Co and Ni overlaid with the spatial distribution of Co
and (d) widths of the weighted 90% prediction intervals for Co and Ni overlaid
with the spatial distribution of Ni. Retained observations are displayed as dots,
removed observations are hollow red squares and newly added locations are solid
red squares.

for Co are less than the PQI for Co of the original observations in 99% of the

simulations.

The total PQIs for Ni for the 100 di�erent realisations of the redsigned multi-

variate spatial design and the PQI for Ni of the original 259 observations can be
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found in a similar way to Co, by setting wk = 0 for Co. Figure 7.6(c) indicates

that the simulated total PQIs for Ni are less than the PQI for Ni of the original

observations in 98% of the simulations.

Hence, for this application, the optimal design points obtained in order reduce the

prediction uncertainty simultaneously for Co and Ni are also optimal for Co and

Ni separately. This is because the areas of high variability in metal concentrations

are similar for Co and Ni, that is, because the Co and Ni concentrations have a

positive linear relationship.

(a)

(b) (c)

Figure 7.6: Distribution of (a) total weighted PQI for Co and Ni, (b) total PQI
for Co and (c) total PQI for Ni, from 100 simulated data sets.
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Co-kriging based multivariate design

Here, optimal bivariate designs, for variables that are bivariately linear, are com-

pared for the design based on pair-copula models and the design based on co-

kriging models. The purpose of such a comparison is to investigate how the

optimal bivariate designs vary depending on the ability, or lack thereof, of the

modelling approach to capture spatial non-linearity within individual variables.

Total weighted co-kriging variance over the interpolation grid is used as the op-

timisation criterion for the co-kriged based design such that a candidate location

that produces the smallest total weighted co-kriging variance is selected as the

new sampling location. The LMC used by Bandarian et al. [2008] was used to

model the spatial dependence of Co and Ni.

Figure 7.7(a) and 7.7(b) show the 196 weighted co-kriging variances obtained for

the 196 candidate locations. Figure 7.7(a) is overlaid with the spatial distribu-

tion of Co while Figure 7.7(b) is overlaid with the spatial distribution of Ni. The

solid red squares are the 20 new locations from the co-kriged based design. From

Figures 7.7(a) and 7.7(b), the new locations are located in areas with a lower den-

sity of observed points, as would be expected, since areas with less observations

correspond to larger weighted co-kriging variances. Unlike the design based on

the proposed methodology, which uses pair copulas, the new sampling locations

for Co and Ni for the co-kriged based design do not depend on the values of the

observations for Co and Ni.

7.4.3 Bartlett Experimental Forest data

Figure 7.8 shows the 125km by 125km interpolation grid that was de�ned over

the study domain. There are 492 grid points that are also considered as the

potential candidates for the new sampling locations. Forty-eight observations

were removed randomly from the existing spatial design with 437 observations.

Subsequently, 48 design points were added back into the reduced data set from

potential candidates using the proposed optimal multivariate design. The hollow

red squares denote the 48 observations that were removed from the original 437
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(a) (b)

Figure 7.7: Co-kriging based optimal bivariate design for Co and Ni overlaid with
the spatial distribution of (a) Co and (b) Ni. Retained observations are displayed
as dots, removed observations are hollow red squares and newly added locations
are solid red squares.

observations.

Figure 7.8: Bartlett Experimental Forest data. Study domain with retained old
locations (blue dots) and removed locations (hollow red squares) for both Z1 and
Z2. Interpolation locations are denoted by black crosses.

As seen in Figure 7.2(c), Z1 and Z2 are non-linearly related. To obtain uncorre-

lated factors at all lag distances, NLPCA and partial MAF (the second rotation

of MAF) transformations were applied to the data for Z1 and Z2. NLPCA,
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which was developed using an arti�cial neural network, was applied to remove

the correlation between the variables at zero lag distance. Cross-correlation for

lag distances greater than 150km were also removed indirectly. Thereafter, the

second rotation of data driven MAF was used to remove cross-correlation between

variables at a lag distance of 150km, which indirectly removed all remaining cross-

correlation below this lag distance. Details on these transformation methods can

be found in Chapter 4.

Since the values of Z1 and Z2 are measured using the same units and both vari-

ables are equally important in the study, the standard deviation σk is not used

in Eq. (7.7) and Z1 and Z2 are assigned equal weights wk.

Comparison of linear and non-linear multivariate pair-copula models

To �t a linear multivariate pair-copula model to Z1 and Z2, which ignores the fact

that the relationship between Z1 and Z2 is actually non-linear, PCA and partial

MAF (the second rotation of MAF) transformations were applied to the data for

Z1 and Z2.

The maps for the widths of the weighted 90% prediction intervals for Z1 and Z2,

based on the linear multivariate pair copula model, at each interpolation grid

point are presented in Figures 7.9(a) and 7.9(b). The weighted 90% prediction

interval is the weighted average of the 90% PQIs for Z1 and Z2, for the reduced

data set with 389 observations. A 90% PQI corresponds to the di�erence between

the 95-th and 5-th predictive quantiles. Figure 7.9(a) is overlaid with the spatial

distribution of Z1 while Figure 7.9(b) is overlaid with the spatial distribution of

Z2.

Figures 7.9(c) and 7.9(d) show the maps for the widths of the weighted 90%

prediction intervals for Z1 and Z2 based on the non-linear multivariate pair-copula

model, which uses NLPCA and partial MAF transformations.

The di�erence between the weighted 90% prediction interval map in Figures 7.9(a)

and 7.9(b) and the weighted 90% prediction interval map in Figures 7.9(c)

and 7.9(d) arises from the assumed linear, or non-linear, relationship between
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Z1 and Z2.

Figure 7.2(c) shows the actual non-linear relationship between Z1 and Z2. Whilst

low values of Z1 and Z2 occur together, and high values of Z1 and Z2 occur

together, the non-linear relationship indicates that moderate values of Z1 occur

with moderately low values of Z2. This can be seen in comparing Figures 7.9(c)

and 7.9(d).

However, in Figures 7.9(a) and 7.9(b), moderate values of Z1 occur with moderate

values of Z2 because of the assumed linear relationship between Z1 and Z2.

Since the weighted prediction intervals from pair-copula models depend on the

values of Z1 and Z2, it is expected that weighted prediction interval maps will

di�er for di�erent assumed bivariate relationships.

Hence, when the proposed design methodology is implemented, the locations for

the new observations will occur in areas that are sparsely sampled and where the

Z1 and Z2 values correspond to wide weighted prediction intervals. The Z1 and

Z2 values in these areas depend on the relationship between Z1 and Z2.

Simulation study for BEF data under a non-linear bivariate model

Figures 7.10(a) and 7.10(b) show the map of the 492 total expected weighted

PQIs for Z1 and Z2 that are obtained for the 492 candidate locations, as detailed

in step 2 of the simulation study procedure. The total expected weighted PQIs

are based on the non-linear multivariate pair-copula model. Figure 7.10(a) is

overlaid with the spatial distribution of Z1 while Figure 7.10(b) is overlaid with

the spatial distribution of Z2. As determined by the simulation procedure, the

new sampling locations (sold red squares) are located in regions corresponding to

lower values of total expected weighted PQI.

Figures 7.10(c) and 7.10(d) show the maps for the widths of the weighted 90%

prediction intervals for Z1 and Z2, for the reduced data set with 389 observations.

The weighted 90% prediction intervals are also based on the non-linear multivari-

ate pair-copula model. Figure 7.10(c) is overlaid with the spatial distribution of

Z1 while Figure 7.10(d) is overlaid with the spatial distribution of Z2.
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(a) (b)

(c) (d)

Figure 7.9: Maps for the widths of the weighted 90% prediction intervals for Z1

and Z2 based on the linear multivariate pair copula model overlaid with the spatial
distribution of (a) Z1 and (b) Z2, and the widths of the weighted 90% prediction
intervals for Z1 and Z2 based on the non-linear multivariate pair-copula model
overlaid with the spatial distribution of (a) Z1 and (b) Z2. Retained observations
are displayed as dots and removed observations are hollow red squares.

As expected, comparing Figures 7.10(a) and 7.10(b) with Figures 7.10(c)

and 7.10(d), the areas with low total expected weighted PQI correspond to areas

with wide weighted prediction intervals. It was commented previously that these

are areas that are more sparsely sampled and with Z1 and Z2 values that depend

on the relationship between Z1 and Z2.
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(a) (b)

(c) (d)

Figure 7.10: Maps for the total expected weighted PQI for Z1 and Z2 based on the
non-linear multivariate pair copula model overlaid with the spatial distribution
of (a) Z1 and (b) Z2, and the widths of the weighted 90% prediction intervals for
Z1 and Z2 based on the non-linear multivariate pair copula model overlaid with
the spatial distribution of (c) Z1 and (d) Z2. Retained observations are displayed
as dots, removed observations are hollow red squares and newly added locations
are solid red squares.

Figure 7.11(a) shows the distribution of the total weighted PQIs for Z1 and Z2,

which were obtained by applying steps 4 to 8 of the simulation study procedure,

for the 100 di�erent realisations of the redesigned spatial design.

The total weighted PQI of the original 389 observations is represented by the
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value in bold on the x-axis. The redesigned spatial design outperforms the original

spatial design, that is, the simulated total weighted PQIs are less than the PQI

of the original observations, in 92% of the simulations.

Additionally, the multivariate design for simultaneous reduction in prediction

uncertainty of Z1 and Z2 was assessed to see if it was also optimal for Z1 alone

and Z2 alone using a similar approach to that of the Swiss Jura application.

Figures 7.11(b) and 7.11(c) indicate that the redesigned spatial design outper-

forms the original spatial design in 93% of simulations for Z1 and 90% of sim-

ulations for Z2. Hence, for this application, the optimal design points obtained

in order reduce the prediction uncertainty simultaneously for Z1 and Z2 are, in

most simulations, optimal for Z1 and Z2 separately.

Simulation study for BEF data under a linear bivariate model

Here, optimal bivariate designs, for variables that are bivariately non-linear, are

compared for the design based on the non-linear bivariate copula model and

the design based on the linear bivariate copula model. The purpose of such a

comparison is to investigate how the optimal bivariate designs vary depending on

the ability, or lack thereof, of the modelling approach to capture the non-linear

bivariate relationship between the variables.

Figures 7.12(a) and 7.12(b) show the map of the total expected weighted PQIs

for Z1 and Z2 based on the linear multivariate pair-copula model. Figures 7.12(c)

and 7.12(d) show the map for the widths of the weighted 90% prediction intervals

for Z1 and Z2 based on the linear multivariate pair-copula model. Figures 7.12(a)

and 7.12(c) are overlaid with the spatial distribution of Z1 while Figures 7.12(b)

and 7.12(d) is overlaid with the spatial distribution of Z2. As with the design

based on the non-linear multivariate pair-copula model, the new sampling lo-

cations (solid red squares) are located in regions corresponding to lower values

of total expected weighted PQI. These regions correspond to areas with wide

prediction intervals.

However, the design based on the non-linear multivariate copula model (Fig-
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(a)

(b) (c)

Figure 7.11: Distribution of (a) total weighted PQI for Z1 and Z2, (b) total PQI
for Z1 and (c) total PQI for Z2, from 100 simulated data sets.

ure 7.10) di�ers to the design based on the linear multivariate copula model

(Figure 7.12). This is because the new sampling locations for designs based on

multivariate copula models depend on the observed values of Z1 and Z2 and hence

di�ers if the relationship between Z1 and Z2 di�ers. That is, the design is model

dependent and is optimal for the model used.
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(a) (b)

(c) (d)

Figure 7.12: Maps for the total expected weighted PQI for Z1 and Z2 based on
the linear multivariate pair copula model overlaid with the spatial distribution of
(a) Z1 and (b) Z2, and the widths of the weighted 90% prediction intervals for
Z1 and Z2 based on the linear multivariate pair copula model overlaid with the
spatial distribution of (c) Z1 and (d) Z2. Retained observations are displayed as
dots, removed observations are hollow red squares and newly added locations are
solid red squares

Comparison of linear and non-linear multivariate designs

Figure 7.13(a) displays the scatter plot of Z1 against Z2 for the 100 simulated

data sets obtained from the design based on a linear multivariate pair-copula

model (red circles) overlaid with the original data (blue dots). It is clear that the
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linear multivariate pair-copula model ignores the non-linearity present between

the variables. Figure 7.13(b) shows the scatter plot for the 100 simulated data sets

obtained from the design based on a non-linear multivariate pair-copula model

(red circles) overlaid with the original data (blue dots). The non-linearity is

captured reasonably well by the non-linear multivariate pair-copula model.

(a) (b)

Figure 7.13: Scatter plot of Z1 against Z2 for the 100 simulated data sets obtained
from the (a) linear multivariate design and (b) non-linear multivariate design.
Red circles denote simulated data and blue dots are the original data.

From the simulation studies, the average simulated observed value, over the 100

simulations, for each of the 48 newly added points was calculated. Figures 7.14(a)

and 7.14(b) show the scatter plots of Z1 against Z2 for the retained observations

(blue dots), removed observations (red dots) and the average values of the newly

added locations, for the designs based on the linear and non-linear multivariate

pair-copula models respectively.

From Figure 7.14(b), the newly added locations tend to take Z1 and Z2 values

that correspond to the non-linear relationship of the observed data. Additionally,

the number of newly added locations is greater where the relationship between

Z1 and Z2 changes the most. Hence the locations of the new design points based

on the non-linear multivariate pair-copula model appear to correspond to values

of Z1 and Z2 that contribute to more accurate estimation of the true non-linear

relationship between Z1 and Z2.

176



(a) (b)

Figure 7.14: Scatter plot of Z1 against Z2 obtained from the (a) linear multivari-
ate design and (be) non-linear multivariate design. Blue dots are the retained
observations, red dots are the removed observations and green dots are the sim-
ulated values of the newly added locations averaged over the 100 simulated data
sets.

In Figure 7.14(a), the newly added locations tend to take Z1 and Z2 values that

correspond to a linear relationship of the observed data, and the number of new

locations is evenly spread across this linear relationship. Hence the locations of

the new design points based on the linear multivariate pair-copula model appear

to correspond to values of Z1 and Z2 that contribute to more accurate estimation

of a linear relationship between Z1 and Z2, even though the observed relationship

is clearly non-linear.

Using a design based on a non-linear multivariate pair-copula model when the

multivariate relationship is non-linear has the advantage of being able capture the

non-linear relationship and select new locations that contribute to more accurate

estimation of the non-linear relationship. If the non-linear relationship is ignored

in determining new sampling locations, the simultaneous reduction in the predic-

tion uncertainty of the variables may be largely una�ected but the uncertainty

of the multivariate relationship may possibly increase.
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7.5 Discussion

In chapter 6, the ability of the univariate pair-copula model in capturing the vari-

ability of measured values of individual variables was demonstrated. This feature

is also apparent in the multivariate modelling approach due to the use of spatial

pair-copulas, as can be seen in the 90% predictive interval maps. These same

maps also show a decrease in prediction uncertainty of individual variables when

jointly predicting all variables independently. That is, use of a multivariate model

allows more information to be utilised, thus reducing prediction uncertainty.

The simulation studies show that the proposed optimal design outperforms the

original design in more than 90% of simulations. Additionally, whilst the objective

of the proposed design is to reduce prediction uncertainty for both variables at

the same time in both case studies, the proposed design points are also good

design points for reduction of prediction uncertainty of the individual variables

separately.

Furthermore, through this analysis, sensitivity of the proposed design to the non-

linearity between variables and within variables was also demonstrated. The

�rst case study shows the di�erence between design points obtained based on

a model which ignores the non-linearity in individual variables (co-kriging) and

design points obtained based on the model that can capture the non-linearity in

individual variables ( pair-copula model with MAF transformation). The second

case study shows the di�erence between the design based on a model that can

capture the non-linearity between variables compared to the design based on a

model that cannot capture the non-linearity between variables.

In both case studies, it can be seen that most of the newly suggested sampling

points are clustered together. One may think, by using this kind of design, in-

formation may be redundant. It should be noted that, in both case studies, the

optimal sampling points were selected within one optimisation run. In other

words, a non-sequential design approach was used to obtain the new sampling

points. The non-sequential designs presented are purely to demonstrate the ap-
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plication of the methodology and to show the potential of the methodology even

when a non-sequential design is used. Practically, to obtain the optimal design,

the proposed methodology should be applied in a sequential manner. Sequential

addition of new observations is likely to produce designs with less clustered con-

�gurations. The sequential design is not applied here, because of the inability to

obtain measurements for new sampling points.

7.6 Conclusions

In this chapter a new non-linear multivariate optimal spatial design methodol-

ogy was proposed to reduce the prediction uncertainty of more one than vari-

able simultaneously based on a pair-copula model and use of dimension reducing

transformations. Even though bivariate case studies are used here for demonstra-

tion purposes, this methodology can be applied to ten dimensions. However this

methodology would not be feasible to apply for more than ten dimensions due to

increase of computational rapidly.

From the results, it can be concluded that, more precise predictions for variables

under study can be obtained by adding additional samples that are determined

by an optimal design based on a modelling approach that can honour the depen-

dencies in the data. Furthermore, in this research a �nite number of candidate

locations was used to obtain the optimal design points. By using an optimisation

technique, such as spatial simulated annealing, in the proposed methodology, any

point in the study domain can be treated as a potential candidate point.

The proposed design approach cannot be directly applied when direct measure-

ments are unable to be obtained after adding a new sample point. Even though

a simulation-based sequential stochastic procedure can be applied in these kinds

of situations, it would be very computationally expensive. However, as discussed

in Li et al. [2011], an approach for selecting spatial blocks should be developed to

overcome this problem. Moreover, here the optimal design was obtained by as-

suming the collocation of measurements, that is, measurements for all variables of

the interests are obtained at each sampling point. There may be some situations
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where collecting these kind of measurements is not feasible. For simulation-based

design, this poses a problem that is to be addressed in future research. Moreover,

in proposed design, cost contain didn't included. However cost constrains would

be incorporated with proposed design methodology in future research as well.
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Chapter 8

Discussion

8.1 Comparison of Univariate and Multivariate

Pair-copula Modelling

Figures 8.1(a) and 8.1(c) show the maps for the widths of the 90% prediction

intervals for Co and Ni respectively using the Swiss Jura data, discussed in Chap-

ter 6, by applying the pair-copula model separately to Co and Ni, while Figures

8.1(b) and 8.1(d) represents the corresponding maps obtained by applying the

pair-copula model in the multivariate setting with MAF used in the decorrela-

tion transformation.

Figures 8.1(a) and 8.1(c) also appear in Chapter 6 but are repeated here for

ease of reference. According to these two �gures, areas with high variability in

measured values and areas that are sparsely sampled have higher estimates of

uncertainty from the pair-copula model. Hence, these �gures demostrate that

the uncertainty estimation produced by the pair-copula depends on both the

observations' con�guration and their values. That is, the pair-copula model has

the ability to capture non-linear spatial dependence. A multivariate pair-copula

model should also be able to capture non-linear dependence of spatial variables.

The maps for the widths of the 90% prediction intervals for Co based on the

univariate (Figure 8.1(a)) and multivariate (Figure 8.1(b)) pair-copula models

are very similar. However, from Figures 8.1(c) and 8.1(d), it can be clearly
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(a) (b)

(c) (d)

Figure 8.1: Maps for the widths of the 90% prediction intervasl for (a) Co based
on the univariate pair-copula, (b) Co based on the multivariate pair-copula (c) Ni
based on the univariate pair-copula and (d) Ni based on multivariate pair-copula.

seen that the range of the uncertainty estimation of the prediction for Ni is

signi�cantly reduced when the multivariate modelling approached is used. Also,

uncertainty estimation of Ni based on the multivariate model also captures the

non-linear dependence by producing higher uncertinity estimation for areas with

high variability in measured values.

Figures 8.2(a) and 8.2(c) show the maps for the widths of the 90% prediction in-

tervals for Z1 and Z2 respectively using the BEF data discussed in Chapter 5 by
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applying pair-copula models separately for Z1 and Z2, while Figures 8.2(b) and

8.2(d) represent the corresponding maps obtained by applying the pair-copula

model in the multivariate setting with NLPCA used in the decorrelation trans-

formation.

According to Figures 8.2(a) and 8.2(b), the distribution of the 90% prediction

interval widths for the univariate and multivarite pair-copula models are similar.

However the range of the 90% predicton interval widths is less for the multivariate

pair-copula when compared to the univariate pair-copula model. According to

Figures 8.2(c) and 8.2(d) these features can also be observed for variable Z2.

The maps also demonstrate the decrease in prediction uncertainty of the indi-

vidual variables when jointly predicting all the variables using a multivariate

modelling approach compared to univariate modelling.

Moreover, the multivariate maps in Figures 8.1 and 8.2 con�rm the ability of

the multivariate pair-copula model to capture non-linear dependence of spatial

variables.

8.2 Comparison of Univariate and Multivariate

Design

The univariate optimal design, with the objective of reduction of prediction un-

certainty of individual variables based on the univariate pair-copula model, was

presented in Chapter 6. The multivariate optimal design, with the objective of

reduction of prediction uncertainty for more than two variables simultaneously

based on the multivariate pair-copula model was presented in Chapter 7. In this

section, the di�erence between the univariate and multivariate optimal designs is

analysed.

Figures 8.3(a), 8.3(c) and 8.3(e) are non-sequential optimal designs based on the

univariate pair-copula model, while non-sequential optimal designs based on the

pair-copula model in the multivariate setting are demonstrated in Figures 8.3(b),

8.3(d) and 8.3(f). The optimal additional locations, indicated by red squares
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(a) (b)

(c) (d)

Figure 8.2: Maps for the widths of the 90% prediction intervals for (a) Z1 based
on the univariate pair-copula, (b) Z1 based on the multivariate pair-copula (c) Z2

based on the univariate pair-copula and (d) Z2 based on multivariate pair-copula.

in Figures 8.3(a) and 8.3(b) are obtained by reducing the individual prediction

uncertainty over the interpolation grid for Co. The additional locations in Figures

8.3(c) and 8.3(d) are obtained by reducing the prediction uncertainty of Ni only.

The resultant optimal locations found by reducing the prediction uncertainty of

both variables simultaneously are presented in Figures 8.3(e) and 8.3(f) for the

univariate and multivariate pair copula models respectively.

When comparing Figures 8.3(a) and 8.3(b), it can be clearly seen that the non-
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sequential univarite optimal design for Co based on the univariate and multi-

variate pair-copula models are similar. However, the non-sequential univariate

optimal design for Ni based on the univariate and multivariate pair-copula mod-

els di�er signi�cantly. This is because of the reduction in prediction uncertainty

of Ni in the multivariate pair-copula model (Figure 8.1(d)) compared to the uni-

variate model (Figure 8.1(c)).

The multivariate optimal design for Co and Ni based on the univariate pair-

copula model (Figure 8.3(e)), is most similar to the univariate design for Ni

(Figure 8.3(c)). This is due to the high variability present in Ni (see Figure

8.3(c)) based on the univariate model. However, in the multivariate model, the

variability of Ni is signi�cantly decreased. Hence, the multivariate optimal design

for Co and Ni based on the multivariate model (Figure 8.3(f)) can be considered

a mixture of the univariate designs for Co (Figure 8.3(b)) and Ni (Figure 8.3(d)).

Based on these results, it can be concluded that, a multivariate design based on

univariate pair-copula models tends to be dominated by the points that reduce

prediction uncertainty for the variable with highest variability. However, a multi-

variate design based on a multivariate pair-copula model produces design points

that reduce prediction uncertainty in both variables. If one needs to obtain an

optimal design in order to reduce the prediction uncertainty for all variables of

interest simultaneously, the design approach based on the multivariate model is

preferred.

8.3 Summary of the Contributions

In this thesis, the main aim was to develop general methodology for the optimal

design of additional sampling based on a geostatistical model that can preserve

both multivariate non-linearity and spatial non-linearity present in spatial vari-

ables. It has been indenti�ed through analysing the literature that, without a

valid model, no improvement can be gained with an optimal design. Hence,

novel multivariate geostatistical modelling that can capture both multivariate

non-linearity and spatial non-linearity was developed �rst, before developing the
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methodology for optimal design. In this thesis, focus was mainly on copula based

geostatistical models since they o�er a solution to modelling the non-linear de-

pendence structure in individual variables. In other words, the uncertainty es-

timation for predictions produced by copula based models capture not only the

variation of the spatial con�guration but also the variation in measured data val-

ues. Speci�cally, interest was in the pair-copula based geostatistical model (Gräler

and Pebesma [2011]), since it has more �exibility to capture non-linear spatial

dependence structures over a simple copula based model (Bárdossy [2006]).

Since this pair-copula based approach is relatively new to geostatistics, it has

been used in few spatial �elds and hasn't been used in the �eld of mining. The

pair-copula based geostatistical model was introduced to the mining �eld for the

�rst time in Chapter 3. That chapter also gave a step by step guideline for the use

of pair-copula models in any practical application. Analysis of empirical copula

density plots for the di�erent distance classes revealed the non-linear dependence

structure present in mining data. This result emphasised how the use of pair-

copulas is able to capture realistic dependence structures compared to the use of

the variogram, which ignores non-linearity. For the mining application used in the

Chapter 3, better cross validation results were obtained by the pair-copula model

compared to ordinary kriging, which is commonly used in the �eld of mining.

Improvement in the pair-copula model was gained by developing an algorithm

to determine the distance classes of the pair-copula model in Chapter 4. In the

literature, there is no well de�ned procedure for distance class determination of

the pair-copula model even though the pair-copula model is based on distance

classes. As the �rst part of the algorithm, a test used in the non-spatial setting

to compare the equality between two copulas (Rémillard and Scaillet [2009]) was

extended to the spatial setting by use of the dependent wild bootstrap. Based on

the new test, Algorithm 1 was developed to de�ne the distance classes for a pair-

copula model. The application of the algorithm to the two dimensional Meuse

data set and the three dimensional mining data set demonstrated a signi�cant

improvement in pair-copula �t when compared to the �t of a pair-copula with
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equal distance classes.

In Chapter 5, a novel geostatistical multivariate modelling approach was devel-

oped to model the non-linear dependence between variables and the non-linear

spatial dependence structure of the individual variables using NLPCA and pair-

copulas. In addition, the pair-copula model was also introduced to the multivari-

ate spatial setting for the �rst time. NLPCA was implemented to remove non-

linear dependence between spatial variables at lag distance zero and if dependence

between variables exist for lag distances larger than zero, then the second step of

MAF was used to remove that dependence. Subsequently, the pair-copula model

was used to individually model the uncorrelated transformed variables to capture

the non-linear spatial dependence. The use of NLPCA was evaluated against the

common non-linear transformation method SCT using two case studies. In both

case studies, NLPCA reproduced the non-linear relationship between variables

better than the SCT transformation. Moreover, the modelling approach with

the pair-copula outperformed the modelling approach with conventional kriged

model, regardless of the transformation method, in terms of reproduction of uni-

variate statistics. In summary, based on the results obtained for the case studies,

it can be concluded that use of NLPCA and pair-copulas has potential to im-

prove modelling of non-linear multivariate data compared to existing non-linear

modelling approaches.

A novel adaptive spatial design for additional samples based on the pair-copula

model in order to reduce prediction uncertainty was proposed in Chapter 6. In-

troduction of the pair-copula model to spatial design is the main novelty of the

proposed design approach. The uncertainty estimates from the pair-copula can

capture not only the variation that comes from the spatial con�guration of obser-

vations but also the variation that comes from the measured values from spatial

observations. Hence, unlike traditional design approaches, pair-copulas are able

to select optimal locations for additional samples based on both spatial con�gu-

ration and values of the observations. Expected prediction uncertainty was used

as the statistical criterion for selecting optimal locations, since the statistical
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criterion should represent the e�ects of di�erent values of a potential candidate

location. This proposed design approach was applied to a two dimensional soil

based application and the performance of the proposed approach was evaluated

by partially redesigning the existing spatial design. The resulting redesign outper-

formed the existing spatial design. In addition, the e�ciency of proposed design

was compared with a conventional design approach based on a kriged model.

Overall, the results demonstrate the potential of the proposed design.

In Chapter 7, a novel adaptive multivariate spatial design was proposed based

on the model developed in the Chapter 5. The main objective of the proposed

design is to reduce the uncertainty of the prediction of multiple spatial variables

simultaneously. The novelty of this proposed design approach is the use of the

model developed in Chapter 5. The uncertainty estimation from the model in

Chapter 5 is able to capture both spatial and non-spatial non-linearity. Hence,

the new sampling locations obtained through the proposed methodology were

selected based on the relationship between variables, the spatial con�guration of

the observations and the measured values of the observations. Moreover, by using

a case study with linear multivariate spatial variables, the di�erence between the

spatial design based on the model that honours the non-linear spatial dependence

of individual variables and the spatial design based on the model that doesn't was

investigated. Based on this investigation, it can be conjectured that selecting

optimal locations for new samples based on the correct model that honours the

in-situ dependence of the spatial data will improve the precision of multivariate

prediction in the spatial random �eld.

8.4 Limitations and Future Work

For simplicity, an isotropic dependence structure was assumed for all applications

used in this thesis. However, anisotropy should be evaluated for di�erent direc-

tions. Evaluation of the Kendall tau plots for di�erent directions would not be

su�cient to evaluate the anisotropy when �tting the spatial pair-copula model.

The empirical copula density of each distance class for di�erent directions should
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be compared. This will be addressed in future research.

In Chapter 4, the test introduced by Rémillard and Scaillet [2009] to test the

equality between two copulas is extended to the spatial framework. This test

should at least be assessed by using random �eld simulation with known strength

of dependence for each lag distance class. However, this kind of random simula-

tion is not possible with existing spatial simulation tools. Hence, future research

should focus on this perspective.

The proposed modelling approach based on NLPCA only investigated the non-

linearity present in multivariate spatial data. However, both non-linearity and

heteroscedasticity may be present in multivariate spatial data. Thus, the pro-

posed methodology should be extended to deal with heteroscedasticity in future

research. Moreover, we conjecture that NLPCA is not only able to capture non-

linear structures among continuous spatial variables, but also among spatial vari-

ables with mixed types, such as nominal and rank data. Extension of NLPCA

to these types of variables will also be considered in future research. Moreover,

in Chapter 5, we only considered the non-linearity between variables at zero lag

distance and linearity was assumed between variables at other lag distances when

using the second step of MAF to remove cross-correlations. Hence, this issue

should be investigated and solved in future research.

The objective of the proposed design is to reduce prediction uncertainty only.

However, in practical applications, a campaign for additional samples should

be carried out under a given budget. Thus, the process of �nding the optimal

number of additional samples should be included in the design methodology.

Therefore, the proposed design methodology needs to be extended to �nd an

optimum number of samples and their optimum locations in order to obtain

the maximal knowledge about the spatial process under budget constraints in

future research. In addition to that, the di�erent location may have di�erent cost

associated to them. This constrain should be also included in the future research

when considering the budget constrain.

Moreover, the limited number of potential candidates was pre-de�ned in the ap-

189



plications, which were used to demonstrate the proposed design methodology.

However, there are an enormous number of candidate locations over the study

domain. It would be computationally expensive to use exhaustive search over the

study domain to �nd optimal locations. An e�cient search algorithm, such as

direct search simulated annealing can be integrated with the proposed algorithm

to do this within a reasonable amount of computational time.

Even though the proposed design methodology can be applied to any two dimen-

sional spatial application, it cannot be directly applied to three dimensional spa-

tial applications. For instance, �nding an optimal design for additional drillings

in mining cannot be done directly based on the proposed design methodology.

For each selected location, the optimal direction of drilling and optimum dip

should be de�ned. Soltani and Hezarkhani (2011) proposed that the optimality

of directional drilling should be evaluated by minimising the length of drill holes

that lie on the outside of the ore body and maximising the length of drill holes

that lie inside the ore body. However, the algorithm proposed by Soltani and

Hezarkhani (2011) is only capable of optimising the dip angle. This algorithm

should be extended to �nd the optimum azimuth of drilling and optimum dip for

a given drilling location. The proposed methodology should be integrated with

this algorithm for application in mining applications.

Li et al. [2011] developed an optimal sampling design methodology for an envi-

ronmental observation network in order to increase expected gain de�ned by a

utility function based on a more simple copula based geostatistical model. This

method can be adopted and extended using pair-copula models. Since the pair-

copula has more �exibility to capture the non-linear dependence structure, it can

be conjectured that the design produced by pair-copulas would produce more pre-

cise estimates than the design proposed by the simple pair-copula model. More-

over, by applying this method to spatial applications, it would not only reduce

the prediction uncertainty, but also signi�cantly reduce the losses of making in-

correct decisions and increase the gain of making correct decision. For example,

in mining, this methodology can be applied to obtain optimal designs for addi-
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tional drillings in order to maximise the expected return based on cut-o� grade by

minimising the loss of wrong decisions (deciding not to mine blocks with higher

grade and deciding to mine blocks with lower grade) and by maximising the gain

of correct decisions (deciding to mine blocks with higher grade and deciding to

not mine blocks with lower grade). Here, it can be introduced an utility function

based on decision theory to give positive value for making correct decision and

negative value for making wrong decision. For each candidate location, it can

be calculated expected utility over the study domain. The location which pro-

duce the maximum expected utility can be selected as the optimal point among

the candidate location. Finally, implementing this optimal design for additional

drilling would increase the precision of ore reserve estimation and also reduced

expenses in making wrong decisions in the mining planning stage.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.3: Non-sequential optimal design for (a) Co based on the univariate pair-
copula (b) Co based on the multivariate pair-copula (c) Ni based on the univariate
pair-copula (d) Ni based on the multivariate pair-copula model (e) Co+Ni based
on the univariate pair-copula and (f) Co+ Ni based on the multivariate pair-
copulal. Red squares represent the propsed optimal locations from each design
approach.
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Appendix A

Random �eld

A random �eld (or stochastic �eld), X(s, ω), s ∈ D,ω ∈ Ω , is a random function

speci�ed by its �nite-dimensional joint distribution.

F (y1, . . . . , yn; s1, . . . , sn) = P (X(s1) ≤ y1, . . . , X(sn) ≤ yn)

for every �nite n and every collection s1, ..., sn of locations in D. The set D is

usually a subset of Rd, d ∈ N and for the special case d = 1, X(s, ω) is called

a random process (or stochastic process). At every location s ∈ D,X(s, ω) is a

random variable where the event ω lies in some abstract sample space Ω.

Strong stationary random �eld

Let Z(x) be a random �eld and P (Z(x1) ≤ z1, . . . , Z(xn) ≤ zn) be the cumulative

distribution function of the joint distribution of Z(x) at the locations x1, . . . , xn ∈

D. Z(x) is said to be a strong stationary random �eld if, for all n and all vectors

h that satisfy x1 + h, . . . , xn + h ∈ D,

P (Z(x1) ≤ z1, . . . , Z(xn) ≤ zn) = P (Z(x1 + h)z1, . . . , Z(xn + h) ≤ zn).

This implies that the cumulative distribution function is not a function of h.

Second order stationary random �eld

Let Z(x) be a random �eld. Z(x) is said to be a second order stationary random

�eld if:

1. it has a constant mean over all spatial locations i.e., E[Z(x)] = µ;
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2. the auto-covariance of the data generating process depends only on distance

h, i.e., Cov(Z(x + h), Z(x)) = γ(h), where γ is the covariance function of

Z(x).

Spatial dependence

The relationship between realisations of a spatial variable sampled at di�erent

locations is described by the spatial dependence. High spatial dependence can be

observed between samples that are close to the each other in space.

Linear spatial dependence

If spatial dependence of spatial data can be described by linear relationship, then

spatial variable has linear spatial dependence. For an instance, Figure A.1 shows

the kernel density plot of the unit transformation values of all the data pairs which

are �ve meters apart in a spatial study. It can be clearly seen that regardless of

the value of the data points, strength of the relationship between data pairs are

constant. Hence, for this particular example, it can be mentioned that spatial

dependence at lag �ve meters is linear.

Figure A.1: Linear spatial dependence

Non-linear spatial dependence

If spatial dependence of spatial data cannot be described by a linear relationship,
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then spatial variable has non- linear spatial dependence. Figure A.2 demonstrates

the non-linear spatial dependence at lag ten meters. It can be seen strength of

the relationship vary over the distribution values.

Figure A.2: Non-linear spatial dependence

Univariate spatial study

In univariate spatial study, only one spatial variable is considered from data

collection to spatial analysis.

Multivariate spatial study

In multivariate spatial study, more than one spatial variable variable is considered

from data collection to spatial analysis.

Multivariate dependence

The dependency between spatial variables at lag distance zero (h = 0) is de�ned as

multivariate dependence. In other words, dependence of the measurements of the

di�erent variables at a particular location is de�ned as multivariate dependence.

Multivariate spatial dependence

The dependency between spatial variable at lag dstance greater than zero (h > 0)

is de�ned as multivariate spatial dependence. In other words, dependence of

the measurements of the di�erent variables cross di�erent locations de�ned as

multivariate spatial dependence.
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Cross variogram

The variogram discussed in the section above is only capable of dealing with

the spatial dependency structure of a single variable (e.g., comparing percentage

concentration of copper to other nearby percentage of copper concentration). To

quantify the spatial relationship between two or more variables, a tool called the

cross-variogram is used. The theoretical cross-variogram function can be de�ned

as

γ∗jk(h) =
1

2
Cov[{Zj(x)− Zj(x+ h)}{Zk(x)− Zk(x+ h)}].

where Zi(x) is ith spatial variable at location x.

This can be estimated using the empirical cross variogram

γ̂∗jk(h) =
1

2N

∑
N

{zj(x)− zj(x+ h)}{zk(x)− zk(x+ h)}].

This tool is only able of capturing the linear cross-relationship between the vari-

ables.
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