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Abstract— This paper addresses the challenges of flood 
mapping using multispectral images. Quantitative flood 
mapping is critical for flood damage assessment and 
management. Remote sensing images obtained from various 
satellite or airborne sensors provide valuable data for this 
application, from which the information on the extent of flood 
can be extracted. However the great challenge involved in the 
data interpretation is to achieve more reliable flood extent 
mapping including both the fully inundated areas and the ‘wet’ 
areas where trees and houses are partly covered by water. This 
is a typical combined pure pixel and mixed pixel problem.    

In this paper, an extended Support Vector Machines method 
for spectral unmixing developed recently has been applied to 
generate an integrated map showing both pure pixels (fully 
inundated areas) and mixed pixels (trees and houses partly 
covered by water). The outputs were compared with the 
conventional mean based linear spectral mixture model, and 
better performance was demonstrated with a subset of Landsat 
ETM+ data recorded at the Daly River Basin, NT, Australia, 
on 3rd March, 2008, after a flood event.  

Keywords- Extended Support Vector Machine, Flood 
Mapping, Remote Sensing  

I.  INTRODUCTION  

Australia, due to its climate, physiography, vegetation 
type and patterns of human settlement along rivers, coasts 
and across marginal agricultural land, is prone to a vast range 
of natural hazards and disasters [1]. Floods have been 
estimated to contribute 29% of the average annual natural 
damage in Australia. They cost around $314 million each 
year and are the most expensive natural disaster in Australia 
[2]. 

In recent years, remote sensing technology has opened an 
opportunity to cover every aspect of flood disaster 
management such as preparedness, prevention and relief. 
Generally a time instantaneous portrait of a flood stage over 
a wide area can be expected to be generated from remote 
sensing data. Active research has been conducted in recent 
years to map the extent of a flood by using optical or radar 
data due to their effectiveness and availability, as well as low 
cost [3]. Satellites like IRS 1C/1D with three sensors: PAN, 
LISS-3 and WiFS; NOAA (AVHRR) and Landsat -7 ETM+ 
provide data for various flood characteristics. Optical images 
are relatively easy to interpret, although it is challenging to 
delineate the land-water interface, overcome cloud cover and 

map flood boundary [4]. A number of automatic information 
extraction algorithms have been developed over the years 
including the use of water indices such as Normalized 
Difference Water index (NDWI) [5], the difference between 
Land Surface Water Index and Enhanced Vegetation Index 
(EVI) [6], PCA transformation [7], and supervised 
Maximum Likelihood classifiers [8,9].  The most 
complicated part in optical data interpretation is to separate 
the fully inundated from the ‘wet’ areas where trees and 
houses are partly covered by water. This is a typical 
combined pure and mixed pixel problem.  

Generally it is assumed that every spot on the ground can 
be labeled as belonging to one and only one category. A 
classification algorithm produces a “likelihood” function and 
based on it to assign a class label to each pixel. This type of 
classification method is called hard classification. Level 
Slicing and Maximum Likelihood classifiers are examples of 
hard classification techniques [9, 10]. While such discrete 
categorization is convenient and simple to deal with, it is not 
a particularly accurate portrayal of real landscapes.   

Since each pixel’s spectrum is the result of the spatial 
average over the ground-projected spread function, it is 
inevitable that multiple spectral categories will be included 
in most of them, since there is often more than one ground 
cover type within a pixel (the size of spatial resolution). 
Spectral unmixing has been investigated for a long time 
which analyzes the proportions of primitive classes 
(endmembers) contained in each mixed pixel. This is called 
soft classification. The conventional spectral unmixing 
algorithms assume that the measured radiance is a linear 
combination of the mean radiance of the “pure” constituents 
in each of the imaging wavebands used [11]. Their weakness 
is that they don’t model the spectral variations within a 
primitive class. This paper adopts a better technique called 
extended support vector machine (u_ESVM) [12] developed 
recently in order to obtain more reliable fractions of flood 
inundated areas. The outputs were compared with the 
conventional mean based linear spectral mixed model, and 
better performance was demonstrated with a subset of 
Landsat ETM+ data recorded at the Daly River Basin, NT, 
Australia, on 3rd March, 2008, after a flood event. 

II. METHODOLOGY 

Conventional spectral unmixing is a procedure by which 
the measured spectrum of a mixed pixel is decomposed into 
a collection of constituent spectra, or endmembers and a set 



of corresponding fraction or abundances are resolved to 
indicate the proportion of each endmember present in the 
pixel. An analytical model like Linear Mixing Model has 
often been applied for spectral unmixing. In this model a 
mixed pixel’s reflectance at band n, Sn, is assumed as a 
weighted sum of all the endmembers [11].  

  
sn  f m am,n  en

m1

M
 ,      n  1, 2,  ...  N   (1) 

Where am, n is the reflectance of endmember m at band n, fm 
is the fraction of the endmember, M is the number of 
endmembers, and en is the residual error. However, in fact, 
the in-class spectral variation is often large and the fractions 
obtained from (1) can be negative or not sum to unity. To 
make the output meaningful, the fractions of the 
endmembers are constrained by [13]: 
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While it is a practical solution to impose the two 
constraints, the real problem of spectral variation within 
a class is not addressed. It is inappropriate to expect the 
pixels belonging to the same class to have the same 
spectrum.  

Recently, the potential of support vector machine 
(SVM) in providing new understanding of mixed 
spectral data was investigated. The key essence of the 
SVM based approach to classification is that it seeks to 
fit an optimal hyperplane between classes and may 
require only a small training sample [14]. An extended 
version of SVM has been developed for spectral 
unmixing (u_ESVM) [12]. In this method, the complete 
set of training samples is used to model the pure pixels 
of the defined class. Fig. 1 illustrates this method with a 
simple case of 100% separability between classes of A 
and B in a two dimensional case. The support vectors 
now become the pixel vectors which are on the boundary 
between pure and mixed regions and are then named as 
‘just pure’ pixels. The two regions above or below the 
lines formed by the ‘just pure’ pixels are pure pixels. 
The region between the lines is associated with the 
mixed pixels. If spectral mixture is assumed linear, the 
SVM decision boundary (in the middle of this region) 
becomes a 50% mixing line. 
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Figure 1.  Spectral Unmixing with Extended SVM. 

To perform spectral unmixing, the lines H1 and H2 as 
shown in Fig. 1 are determined first, and then the distances 
to the two lines are evaluated. The results represent the 
fractions of the two classes contained.  For more than two 
class cases, the one-against-all approach can be adopted. 
The u_ESVM is conducted for each class against the rest of 
the classes separately to find out a pixel’s relative mixture 

proportion, x
r ( i ) . An extra step for this case is to 

normalize the mixture fraction by 
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So that, x ( i )  1
i1

I
 , where I is the total number of 

classes [12]. 
Since all the training data are used to form the 

boundary for pure and mixture regions, this model 
accommodates the spectral variation better, and is 
suitable for flood data interpretation, where most pixels 
from a given class do not have exactly the same 
spectrum. That is the reason that experiments were 
conducted by employing this technique. 

III. EXPERIMENTS AND RESULTS  

The study area is located at the Daly River Basin, NT, 
Australia. Remotely sensed data used in this study was 
recorded by the Landsat-7 ETM+ on 3rd March, 2008, after 
a flood event. The spatial resolution is 30m x 30m. With this 
pixel size, a large portion of mixed pixels will exist as 
illustrated in Fig. 2 In this study all the bands of Landsat 
images were used.  

 
Figure 2.  An Example of Mixed Areas of Water and Vegetation. 

 
Three basic classes were taken into consideration. 

Considering the flood situation, two classes have been 
defined for water bodies; those are Pure Flood Water and 
Turbid Flood Water. The third class consists of Non-water or 
Land. Three training sets were selected to train the 
supervised unmixing algorithm, u_ESVM. Three testing sets 
were selected to test if the unmixing model is reliable for the 
data other than training data (Fig. 3).Table. 1 gives the  



details of classes defined and the numbers of training and 
testing samples. 

 

 
 

Figure 3. Training and Testing Sets 

TABLE I. CLASSES DEFINED AND NUMBER OF TRAINING AND TESTING 
SAMPLES SELECTED 

 Class 
No. of 

Samples 

Training Data 

Pure Flood water 106 
Turbid Flood water 106 
Land 106 

Testing Data 
Pure Flood Water 106 
Turbid Flood Water 106 
Land 106 

 
Figure 4. Subset Image 

 
Since there is no ground truth information available for the 
mixed pixels, the performance is assessed using the pure 
pixels instead. We expect a binary unmixing result of 1 for 
the class the pixel belongs to, and 0 for other classes. 
Therefore for each class, the average unmixing accuracy for 
class   is obtained as 

                  acc(i )(%) 
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Where Ni is the number of (pure) ground truth samples for 
class ωi. 
After running the u_ESVM on a small subset of image as 
shown in Fig. 4 using multiclass u_ESVM, each pixel is 
obtained 3 fractional values for 3 classes and the sum of 
those three fractions are equal to 1 for every pixel. Fig. 5 
shows the unmixing results.  

Unmixing using the mean based linear spectral mixture 
model given in (1) was performed as well for comparison 
using the popular remote sensing software ENVI, where the 
constraint of sum to unity was applied. This method is 
termed as u_CLSM. The unmixing results are given in Fig. 
6. We can see the good feature of the resulting images 
obtained from u_ESVM is an integrated hard and soft 
classification where there is not only a large portion of 
mixed pixel but a reasonable amount of pure pixels. This is 
more realistic, comparing with other soft classification 
method where almost every pixel is recognized as mixed 
pixel.  

Table 2 shows the unmixing accuracy on the training 
and testing data obtained from two methods. We can see 
that u_ESVM performs better in most of cases. 

TABLE II. UNMIXING ACCURACY FOR THE TRAINING AND TESTING DATA 

 
Data 

 
Class 

Accuracy (%) 
u_CLSM u_ESVM 

Training 
Data 

Pure  
Flood water 

95.91 98.39 

Turbid  
Flood water 

96.10 98.39 

Land 95.38 97.97 
Testing 
Data 

Pure  
Flood water 

87.15 91.36 

Turbid  
Flood water 

98.48 94.96 

Land 88.00 96.34 
Overall 
Accuracy 

Training  
Data 

95.80 98.25 

Testing  
Data 

91.21 94.22 

IV. CONCLUSION 

With the help of extended support vector machine a more 
realistic mixed pixel analysis is presented in this study. Both 
pure pixels and the mixed pixels are recognized and 
quantified.  
Spectral unmixing provides more detailed information 
within a pixel. This can be further used for sub-pixel 
mapping, which will be the subject of further work. 

ACKNOWLEDGMENT 

The authors wish to thank Dr. Adam Lewis and Dr. Leo 
Lymburner of Geosciences of Australia for providing the 
image data and their discussions on this project. 

REFERENCES 
[1]  Middelmann, M. H., Natural Hazards in Australia Identifying Risk 

Analysis Requirements, Geoscience Australia, 2007. 

[2]  Economic Costs of Natural Disasters in Australia, Bureau of 
Transport Economics, 2001. 

[3]  Y. Wang, “Mapping the Extent of a Flood: what we have learned and 
how we could do better”, Natural Hazards Review, 2002, vol.3, 
pp.68-73. 

[4]  Lillesand, T. M. and R. W. Kiefer, Remote Sensing and Image 
Interpretation, John Wiley and Sons, Inc, 2004. 



 
 (a) 

 

 
(b) 

 

 
(c) 

 
Figure 5. The Fraction Images obtained from Spectral Unmixing Analysis 

using Extended SVM (u_ESVM). (a) Fractions of Pure Water, (b) 
Fractions of Turbid Water and (c) Fractions of Land. 
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Figure 6. The Fraction Images obtained from Spectral Unmixing Analysis 

using Constrained Linear Spectral Mixture Model (u_CLSM). (a) Fractions 
of Pure Water, (b) Fractions of Turbid Water and (c) Fractions of Land.
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