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Abstract 
 

Flood extent mapping is a basic tool for flood 

damage assessment, which can be done by digital 

classification techniques using satellite imageries, 

including the data recorded by radar and optical 

sensors. However, converting the data into the 

information we need is not a straightforward task. One 

of the great challenges involved in the data 

interpretation is to separate the permanent water 

bodies and flooding regions, including both the fully 

inundated areas and the wet areas where trees and 

houses are partly covered with water. This paper 

adopts the decision fusion technique to combine the 

mapping results from radar data and the NDVI data 

derived from optical data. An improved capacity in 

terms of identifying the permanent or semi-permanent 

water bodies from flood inundated areas has been 

achieved. Computer software tools Multispec and 

Matlab were used. 

 

Key Words: remote sensing, classification, decision 

fusion, flood extent mapping. 

 

1. Introduction 
 

Since time immemorial, rivers have provided great 

attraction to scholars as well as providing the precious 

resource of all living beings, water. But this shows 

only one side of the coin. A river can be furious at 

times; it can also create floods, a devastating 

phenomenon of the earth. To understand floods well, 

first the hazards need to be highlighted. Flooding is the 

most common and frequent of all natural hazards in 

Australia [1]. It can be regarded as the most deadly and 

disastrous in terms of human and economic losses.  

It is critical to be able to capture the maximum 

flood extent during and after any flood event via flood 

extent mapping. The quantitative mapping results are 

valuable for flood damage assessment, flood model 

development and risk analysis. 

In recent years, remote sensing technology has 

made substantial contribution in every aspect of flood 

disaster management, such as preparedness, prevention 

and relief. Satellites like IRS-1C/1D with three sensors 

PAN, LISS-3, and WiFS; NOAA (AVHRR) and 

Landsat ETM+ provide data for various flood 

characteristics. Generally speaking, Synthetic Aperture 

Radar (SAR) images (an active microwave sensor) 

allow day and night data collection and are 

independent of weather conditions and illumination. 

However, they can be difficult to use for 

differentiating land and water bodies due to the effect 

of variables on backscattering characteristics. Optical 

images are relatively easy to interpret. The main 

concern is that they are often covered by clouds. Other 

types of spatial data have been adopted for flood 

inundation mapping as well. As for example, DEM 

data (digital representations of ground surface 

topography in a raster form) and river gauge data were 

used in order to map the 1999 flood extent in the 

Greenville area [2].  

There are a number of automatic information 

extraction algorithms that have been developed over 

the years in order to extract the hidden information 

from imagery [3]. Some are pixel based multispectral 

classification algorithms. Among them Maximum 

Likelihood classifier, characterized as a parametric 

classifier, is widely used. For flood extents mapping 

several other techniques have been applied to SAR 

images. For example, level slicing is a traditional 

method of delineating flooding in non-forested areas. 

Active contour models or snakes have recently gained 

popularity as a means of turning incomplete and noisy 

edge maps into smooth continuous vector segment 

boundaries [4] .This technique was applied to delineate 



the flood boundary from SAR imagery of the two 

reaches of the river Thames [5].  

One of the great challenges involved in the data 

interpretation is to separate the permanent water bodies 

and flooding regions, including both the fully 

inundated areas and the ‘wet areas’ where trees and 

houses are partly covered with water. This paper 

adopts the decision fusion technique to combine the 

mapping results from radar data and optical data. 

Theory of Evidence [6] is applied in the decision 

fusion where the uncertainties of the two data sources 

are taken into account. An improved capacity in terms 

of identifying the permanent or semi-permanent water 

bodies from flood inundated areas has been achieved.  

 

2. Methodology 
 

Figure 1 shows the flow chart of the data 

processing.  Both radar data and optical data are 

analyzed separately and then the individual decisions 

made are fused to form a final flood mapping. 

Supervised classification techniques such as 

Maximum likelihood classification, can be applied to 

the radar data. The maximum likelihood technique 

assumes each class data follows a normal distribution 

and works reliably, as long as there are enough 

training samples [6]. Considering a large flooding 

extent, the training fields can often be easily obtained 

and the assumption of normal distribution is generally 

acceptable.  

As illustrated below, it is difficult to separate 

flooded areas from the permanent water body using 

radar data alone. Optical data should be used as well, 

from which NDVI (Normalized Difference Vegetation 

Index) can be derived using the measurements at the 

near infrared band (NIR) and the red band (RED). The 

formula for generating NDVI is as follows. 

 

NDVI = (NIR-RED) / (NIR+RED)                      (1) 

 

Non-vegetated areas like water bodies have low 

NDVI values and consequently can be identified 

effectively in this way.  

Several conventional classification techniques have 

been tested on radar images for the extraction of the 

extent of flooding. Level Slicing technique has been 

applied on optical Landsat images to extract the 

permanent water body from the study area in order to 

use this ancillary result on flood images for the 

accurate mapping of the flooding.  

Using Multispec software tools, both supervised 

and unsupervised classification were attempted to 

classify the image into flooded and non-flooded 

regions.  

 

 
 

Figure 1. Methodology – radar and optical data 
processing followed by decision fusion 

 

3. Study area and data 
 

The study area covers the Kendrapara district and 

extends towards the south, in Orissa state, India. It lies 

in the river delta formed by the Brahmani and 

Baitarani rivers. The location of the study area is 

approximately from 20018’ N to 20028’30’’ N and 

8602’ E to 86037’ E respectively. 

Remotely sensed data used in this study are Landsat 

ETM (30 metres) of 23rd October, 2000 and Radarsat 

(50 metres) of 4th September, 2003. Although Landsat 

ETM images have 8 bands, for the purpose of 

extracting the permanent water body only the near 

infrared, red and green bands were used. This image is 

the pre-flood image whereas the Radarsat image was 

taken during the flood. 

During the fieldwork, ground truths and evidences 

regarding the actual flooded area and other natural 

depressions were collected. One interesting 

characteristics of the study area was observed in that 

there are several water bodies that are covered with 

aquatic plantation and dense canopy (Figure 2). It was 

also observed that open areas (roads) are un-metalled 

except for some major highways beyond the study 

area.  

 



 
 

Figure 2. The canopy covered water body 
 

4. Data analysis 
 

4.1. Supervised classification 
 

Initially the Maximum likelihood classification was 

run on the radar image to map Flooded (including 

permanent water bodies) and Non-flooded regions. 

Eight training fields were chosen (four for each class) 

and their accuracies were assessed to test the class 

model. The testing fields were also selected and 

classified to test if the class models are good for data 

other than training data. The accuracy obtained will 

allow a degree of confidence to be attached to the 

results and will serve to indicate whether the analysis 

objectives have been achieved. Accuracy is determined 

empirically, by selecting a sample of pixels from the 

thematic map and checking their labels against classes 

determined from reference data (from field 

observation). From these checks the percentage of 

pixels from each class in the image labeled correctly 

by the classifier can be estimated along with the 

proportions of pixels from each class erroneously 

labeled into every other class. These results are 

represented in a tabular form, often referred to as 

Confusion or Error matrix [6].  The accuracy for the 

training data and testing data are given in Table 1 and 

Table 2, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Classification performance on 
training data (re-substitution method) 

 

 
 

Table 2. Class performance on testing data 
 

 
 

As observed, the accuracy of the training data was 

99.3% and the kappa Statistic of 98.2%. For the testing 

data, both accuracy level and the Kappa Statistic are 

100%.  

The histogram of the training data also shows two 

distinctive classes of flooded and non-flooded areas 

(Figure 3). After testing, the whole image was 

classified using the estimated parameters. Figure 4 

shows the classification map obtained.  

 

 



 
 

Figure 3. The histogram showing the class 
distinctiveness 
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Figure 4. The classification into flooded and 
non-flooded areas 

 

A second experiment has been conducted which 

classifies the image into 3 classes of Flooded, Non-

flooded and Permanent water body. Through this 

classification an attempt has made to extract the 

permanent water bodies from the flooded portions. The 

Error Matrix of the training classes falls down to 

88.7% with Kappa Statistic of only 77.8% (Table 3). 

The Error Matrix for the test classes shows that 

although the overall accuracy is about 94.2%, it is only 

for the accurate classification of the Non-flooded area 

and flooded area. The extraction of permanent water 

body is not satisfactory. The Kappa Statistic is 84.3% 

(Table 4). 

 

 
 
 
 
 
 
 
 
 
 
 

Table 3. Training class performance (re-
substitution method) 

 

 
 

Table 4. Test classification performance 
 

 
 

 
 

Figure 5. Histogram showing the overlapping 
in the class values 



In Figure 5, the histogram also clearly shows the 

overlapping in the data values of the permanent water 

body and flooded areas.  

After a comparison of the final classified image 

with the original image it can be seen that some river 

portion is classified as a flooded area and some 

flooded portions are also misclassified as river or 

permanent water bodies (Figure 6).  
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Figure 6. The classification of the image to 
extract the permanent water body from 

flooding 
 

4.2. Unsupervised classification 
 

Another attempt has been made to classify the radar 

image using clustering function. This classification 

process was run several times with changes in 

clustering parameters. Changing the number of 

clusters, the minimum cluster size and convergence 

(%) is helpful to distinguish the Permanent water body 

and Flooded area but to only a little extent. As in some 

classified images the flooded area is observed to be 

sub classed into several clusters and the same 

conditions occurred in case of river courses. In the 

case of non-flooded regions, several overlapped 

clusters were also observed. This might be due to the 

variation of moisture content in the soil, as mentioned 

before, since the whole study area is characterized by 

unpaved roads (Figure 9). Some of the results of the 

trial classifications are shown in Figure 7 and Figure 8, 

with the details of clustering parameters for all the 

attempts in Table 5. 

 

 

 

 

 

 
 

 
 
 

Table 5. The listing of all the parameters used 
in the trial classification 

 

 

Test 

Parameters 

Threshold Convergence Minimum 

Cluster Size 

1 15 95 5 

2 20 90 10 

3 40 90 10 

 

 
 

Figure 7. Test 1 using clustering function 

 

 
 

Figure 8. Test 2 using clustering function 
 

 
 

Figure 9.  Test 3 using clustering function 

 

4.3. Decision fusion with NDVI image 
 

As discussed, while using conventional 

classification techniques it is easy to distinguish 

between the flooded and non-flooded portions; due to 

the similar reflectance it is difficult to extract the 

permanent water bodies from flooding. Even some 

water bodies were wrongly classified as non-flooded 

or land areas. These are mainly vegetation-covered 

small ponds (based on field observation) and thus 

giving brighter reflections like land areas. 

 

To avoid this difficulty, a pre flood optical Landsat 

ETM image of the study area was used to extract the 

permanent water body. This attempt was taken with the 

aim of using the resultant image along with the 



classified image of flooded and non-flooded areas to 

improve the accuracy of the flooding extent.  

Bands 4, 3 and 2 of the ETM image were used. 

They firstly were co-registered with the Radar image 

using an affine function. Then using the NDVI 

algorithm, the NDVI image was extracted (Figure 10). 

 
 

Figure 10. Normalized Difference Vegetation 
Index (NDVI) results 

 

Pixel values were examined from this image and it 

was found that the value of NDVI ranges between -1 

and +1. The vegetated area in this image appeared 

brighter as vegetation reflects near infrared and water 

in this image appeared darker toned. The value also 

varies within these two classes. The value for water 

with no vegetation was low and negative and non-

water vegetated areas were highest. A threshold was 

chosen at -0.2 through studying the scatter plot of NIR 

and RED bands. Generally the non-water vegetation 

value should be positive in an NDVI image. Due to 

moisture content in the land the value dropped to 

below -0.2, but was still greater than the value of river. 

In the resultant image (Figure 11) only permanent 

water bodies were extracted.  

 

 
 

Figure 11. The Thresholded NDVI image 
 

Finally the result from the optical image was fused 

with the classified image, derived from the radar data.  

The concept of Theory of Evidence was applied in 

the decision fusion procedure. The essence of the 

technique involves the assignment of belief, 

represented as a mass of evidence, to various labeling 

propositions for a pixel. The total mass of evidence 

available for allocation over the candidate labels for 

the pixel is unity. If the quality of data or labeling 

process is slightly uncertain, the uncertainty about the 

labeling process can also be considered in this function 

[6].In this study the uncertainties are considered in 

extreme cases.  

Since the optical data was acquired before the flood 

event, the labeling results have 0% uncertainty for 

permanent water and 100% for flooded or non flooded 

classes. For the radar data, it is reasonable to believe 

that the classified image has 100% uncertainty for the 

permanent water body extraction and flooded areas, 

but 0% uncertainty for the non flooded areas. As 

results, if the label given by the thresholded NDVI 

result is Permanent Water, the fusion result will be 

Permanent water. If the label given by the radar result 

is Non- flooded, the fusion result will be Non-flooded. 

If a pixel is not labeled as either, it will be classified as 

Flooded. The final mapping result is as shown Figure 

12. 

In Figure 12, it can be observed that flooding 

mainly occurred along the river banks and in the 

eastern portion of the river course which matches the 

ground truth information better than the individual 

classification on the optical and radar images. The 

accuracy of the final output image was tested against 

the accuracy of the classified Radar image. In both the 

cases of training data and testing data, this resultant 

fused image was proved to be able to improve the 

accuracy level. The training accuracy was increased 

from 88.7% to 91.14% and the testing accuracy was 

increased from 94.2% to 95.89%. Though several 

descriptive measures can be obtained from the Error 

Matrix, one of the most reliable measures for accuracy 

check is the Kappa Coefficient. Kappa (



ˆ k ) statistic is 

actually a measure of agreement or accuracy. This 

measure of agreement is based on the difference 

between the actual agreement in the error matrix (i.e. 

the agreement between the remotely sensed 

classification and the reference data as indicated by the 

major diagonal) and the chance agreement which is 

indicated by the row and column totals [7]. The 

KAPPA statistic goes up from 77.8 % to 82.73% and 

84.3% to 89.01% for training and testing data 

respectively. The increased accuracy of permanent 

water body class caused the increase in KHAT value 

for the final fused image.  
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Figure 12. The final fused image 
 

5. Conclusion 
 

In this work, it was found to be difficult to 

differentiate the existing water body from the flooded 

areas. However, using the NDVI index, it was possible 

to extract most of the river body. The land area is 

muddy and always holds moisture to some extent 

because the study area falls under the monsoon regions 

of India. Occurrences of rainfall are thus very common 

phenomena, which cause complex reflectance of the 

land areas and lead to misclassification. When we tried 

to classify first the Radar image into water and non-

water level, classification did not provide satisfactory 

results while trying to find the existing water masses. 

The problem is addressed by using the optical pre-

flood image. The decision fusion results reduced the 

errors. Accuracy can be further increased by using the 

immediate pre-flood radar or multi-spectral imagery 

with good resolution. 
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