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EXECUTIVE SUMMARY 

Driver sleepiness contributes substantially to road death and trauma. Effective 

countermeasures to reduce driver sleepiness are critical to reducing the incidence of driver 

sleepiness. Study one determined the effectiveness of a nap break and an active rest break. It 

was found that a nap break provided objective benefit for reducing driver sleepiness. Study 

two examined drivers‘ ability to recognise increasing sleepiness, and to self-regulate their 

behaviour by taking a break. The results suggest that drivers were able to identify increasing 

sleepiness during the test period, and could make the decision to cease driving. However, the 

ability among participants to identify their increasing sleepiness varied.  Strategies to 

improve perception, detection and mitigation of sleepiness while driving should be pursued. 

 

 

 

  



Driver Sleepiness   6 

 

LIST OF TABLES 

Table 1. Examples of the hazards that were included in the video sequence ................ 8 

Table 2. Mean Amount of Hours of Sleep before the Two Testing Sessions for the Sleep 

Diary and Actigraphic Data ......................................................................................... 11 

Table 3. Nap Break Sleep Staging Data ....................................................................... 12 

Table 4. Sleep Staging Data for the Thirty Minute Nap Break. .................................. 19 

 

 

  



Driver Sleepiness   7 

 

LIST OF FIGURES 

Figure 1. Diagram of the EEG electrode sites utilised in the current study ................... 6 

Figure 2. Images of a traffic hazard used in the present study ...................................... 7 

Figure 3. Timeline of the study protocol. .................................................................... 10 

 

 

 

 

 

  



Driver Sleepiness   8 

 

ABBREVIATIONS AND TERMS 

  

ECG – Electrocardiography 

EEG – Electroencephalography  

EMG – Electromyography 

EOG – Electrooculography  

Epoch – A quantified amount of time. Typically, 30 second epochs are utilised in sleep 

studies. 

ESS – Epworth Sleepiness Scale 

HPT – Hazard Perception Test 

KSS – Karolinska Sleepiness Scale 

Polysomnography (PSG) – a multi-measure test used in the study of sleep and as a diagnostic 

tool in sleep medicine, otherwise known as a sleep test 

Power band – A grouping or range of frequencies; for example the EEG alpha power band (8-

13 Hz) which is indicative of drowsiness 

PSQI – Pittsburgh Sleep Quality Index 

PVT – Psychomotor Vigilance Test 

REM – Rapid eye movement 

Sleep architecture/staging – Represents the structure of sleep as defined by specific 

electrophysical indicators from EEG, EOG, and EMG recordings 

Sleep debt – Experiencing sleep deprivation results in the accumulation of a sleep debt; 

which is the under accumulation of enough sleep to ensure homeostasis/optimal 

daytime functioning 

WAVT – Wilkinson Auditory Vigilance Test 
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1) Smith, S., & Watling, C. N. (2010). Asleep at the wheel: A simulated task to assess 

sleepiness while driving. Paper presented at the Australasian Sleep Association 

Conference, 21st – 23rd October, Christchurch, New Zealand. 

 

2) Master of Applied Science (research) thesis of Christopher N. Watling (2012) with 

the Queensland University of Technology. 
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INTRODUCTION 

The role of sleepiness as a major contributor to vehicle crashes is widely recognised, both 

within Australia (ATSB, 2006; Dobbie, 2002) and internationally (Åkerstedt, 2000; Connor 

et al., 2002; Dinges, 1995; Horne & Reyner, 1995). The population attributable risk for fatal 

and severe crash associated with sleepy driving is 19% (Connor et al., 2002), of a similar 

magnitude to the contribution made by drink driving (Australian Transport Council, 2011). 

The extent of the involvement of sleepiness in less severe crashes may be as great or greater. 

The factors causing crashes are often multifactorial and sleepiness may be involved in a 

proportion of crashes that are primarily attributed to other factors.  

Driving is a complex task that requires the successful completion of a number of 

psychological processes to ensure the safety of the driver and other road users. These 

psychological processes comprise: learning, memory, perception, motor control, attention, 

decision making, and executive functioning (Groeger, 2002; Horswill & McKenna, 2004; 

Spiers & Maguire, 2007; Uchiyama, Ebe, Kozato, Okada, & Sadato, 2003). Drivers are at an 

increased risk of having a crash when sleepiness impacts upon these processes (Åkerstedt, 

Connor, Gray, & Kecklund, 2008; Stutts, Wilkins, Scott Osberg, & Vaughn, 2003). A 

number of simulator studies (Campagne, Pebayle, & Muzet, 2004; Horne & Reyner, 1996; 

Lowden, Anund, Kecklund, Peters, & Åkerstedt, 2009) and on-road studies (Kecklund & 

Åkerstedt, 1993; Schmidt et al., 2009; Simon et al., 2011) have shown that sleepiness has a 

detrimental effect on the safe operation of a vehicle.    

Younger drivers appear to be at increased risk for sleepiness-related crashes. One component 

of this risk is their sensitivity to sleep deprivation. Younger people can be more impaired than 

older people on specific vigilance tests after sleep deprivation (Philip et al., 2004). This is 

consistent with data demonstrating that younger drivers make more steering errors than older 

drivers during night-time driving (Campagne et al., 2004). Lowden et al. (2009) has shown 

that younger drivers, when compared to middle aged adults, exhibit higher levels of 

physiological sleepiness during early morning and night-time driving. The physiological and 

behavioural impairment that younger drivers experience with increases in sleepiness is 

consistent with their increased crash risk (Åkerstedt & Kecklund, 2001; Smith, Armstrong, 

Steinhardt, & Haworth, 2008).  

An assessment of sleepiness levels when driving can be obtained via three general methods: 

(1) physiological measures (e.g. EEG), (2) subjective measures, and (3) behavioural 

measures. A number of studies have found electroencephalography (EEG) recordings to 

detect increases in sleepiness during simulated driving studies (e.g., Horne & Reyner, 1996; 

Lowden et al., 2009) and on-road situations (Kecklund & Åkerstedt, 1993; Schmidt et al., 

2009). Increased power in the EEG theta and alpha bands has been found to reflect increases 

in sleepiness (e.g., Kecklund & Åkerstedt, 1993; Reyner & Horne, 1998a). Subjective ratings 

of an individual‘s sleepiness levels can be elicited by verbal ratings or rating scales. 

Subjective ratings of sleepiness generally have a significant and positive relationship with 

independent physiological measures (e.g., Dorrian, Lamond, & Dawson, 2000; Kaida et al., 

2006). Behavioural measures such as maintaining vehicle control have been found to be 

affected by increases in sleepiness levels (e.g., Åkerstedt, Peters, Anund, & Kecklund, 2005; 

Campagne et al., 2004). While measures of vehicle control provide some evidence for the 

decrement associated with sleepiness, these represent only one element of the driving task 

that may be impacted. Other safety-critical elements include higher-order cognitive functions 

such as hazard perception.   
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Hazard perception has been described as the skill required to notice or to predict that a 

specific traffic circumstance may result in a dangerous situation, requiring a reaction from the 

driver to avoid an incident (Horswill & McKenna, 2004; McKenna & Crick, 1991). Of all the 

driving-specific skills commonly assessed in simulator studies (e.g., vehicle control, skid 

control, etc), only hazard perception identification has been found to be reliably associated 

with crash involvement  (Drummond, 2000; Hull & Christie, 1992; McKenna & Horswill, 

1999; Pelz & Krupat, 1974; Quimby, Maycock, Carter, Dixon, & Wall, 1986).  

Hazard perception performance is likely to be impaired by sleepiness. Smith, Horswill, 

Chambers, and Wetton (2009a) investigated the effects of extended wakefulness on hazard 

perception performance with novice drivers (< three years driving experience) and 

experienced drivers (> 10 years driving experience). Consistent with other work, the hazard 

perception performance of the novice drivers was found to be worse than that of the 

experienced drivers during the daytime. When the two driving samples were tested at 03:00, 

both groups showed worse hazard perception performance compared with their daytime 

performance. However, the novice drivers displayed a more pronounced reduction in hazard 

perception performance than did the experienced drivers. The results of this study indicated 

that younger drivers‘ hazard perception performance is more critically affected by increasing 

sleepiness levels.  

 

STUDY ONE: THE EFFECTIVENESS OF NAP AND ACTIVE REST BREAKS 

Three broad strategies have been proposed to reduce sleepiness-related crashes: prevention, 

avoidance and intervention. For instance, prevention could involve ensuring that drivers 

receive sufficient night-time sleep to allow optimal daytime functioning. Avoidance involves 

drivers discontinuing or not driving at all when sleepy, although this may be difficult to 

implement in some circumstances due to external pressures (i.e., professional drivers). 

Intervention involves employing strategies or countermeasures designed to reduce sleepiness. 

 Taking a brief nap or stopping for a rest break are two highly publicised countermeasures for 

driver sleepiness. Drivers tend to rate both of these strategies as effective in reducing 

sleepiness (Armstrong, Obst, Banks, & Smith, 2010; Nordbakke & Sagberg, 2007; Pennay, 

2008; Vanlaar, Simpson, Mayhew, & Robertson, 2008). Despite this belief, there is scarce 

evidence to support the utility of these countermeasures for reducing driver sleepiness levels, 

and their impact on hazard perception performance is unknown. Most importantly, the 

relative benefits of a nap break and an active rest break have never been directly evaluated.  

A number of non-driving studies have found that brief naps can reduce EEG-defined 

sleepiness signs (i.e., EEG theta and alpha power levels) and improve cognitive functioning 

(Gillberg, Kecklund, Axelsson, & Åkerstedt, 1996; Hayashi, Ito, & Hori, 1999). Moreover, 

these effects can endure for several hours. Nap breaks also have a beneficial effect on 

subjective sleepiness (Smith, Kilby, Jorgensen, & Douglas, 2007; Tietzel & Lack, 2002); 

with reduced subjective sleepiness levels for up to one and a half hours after the nap. Naps 

can facilitate quicker reaction times on a number of tasks (e.g., Psychomotor Vigilance Task, 

Mackworth Clock vigilance task, two-choice visual reaction time test) (Purnell, Feyer, & 

Herbison, 2002; Sallinen, Härmä, Åkerstedt, Rosa, & Lillqvist, 1998; Smith-Coggins et al., 

2006) in sleepy individuals. 

A number of non-driving studies also suggest that rest breaks (without a nap) have an alerting 

effect. Physiological indices of sleepiness reveal that rest breaks decrease sleepiness levels 
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after sleep deprivation (e.g., LeDuc, Caldwell, & Ruyak, 2000; Sallinen et al., 2008). Rest 

breaks have consistently been found to immediately reduce subjective sleepiness levels (e.g., 

Gillberg, Kecklund, Göransson, & Åkerstedt, 2003; Horne & Foster, 1996; Sallinen et al., 

2008). Rest breaks also facilitate quicker reaction time on vigilance tasks (Caldwell, 

Prazinko, & Caldwell, 2003; Horne & Foster, 1996). In contrast, the effects of rest breaks on 

cognitive measures are equivocal. That is, studies have shown rest breaks facilitate better 

cognitive functions or have no effect at all (LeDuc et al., 2000; Sallinen et al., 2008). 

However, an active rest breaks that involve physical activity such as cycling or paced 

walking appear to have greater effect in reducing sleepiness than do less active or inactive 

rest (e.g, passive sitting) breaks (Bonnet & Arand, 2005; Horne & Foster, 1996; Sallinen et 

al., 2008). 

Within the driving literature, some studies have found that nap breaks reduce EEG sleepiness, 

subjective sleepiness, and driver performance levels (i.e., driving incidents; Horne & Reyner, 

1996; Leger, Philip, Jarriault, Metlaine, & Choudat, 2009). However, other studies have 

found that a nap break has no effect on EEG sleepiness signs or vehicle performance 

measures (Rogé, Otmani, Bonnefond, Pébayle, & Muzet, 2009). There is some evidence that 

rest breaks have little effect on EEG sleepiness signs while driving, but can result in an 

improvement in vehicle control measures (Gillberg, Kecklund, & Åkerstedt, 1996; Phipps-

Nelson, Redman, & Rajaratnam, 2009). These rest break studies were carried out during 

night-time hours and the effects of rest break during daytime hours are not known.  

 The type of countermeasure used by drivers is a critical concern for road safety. The use of 

countermeasures that are less effective for reducing sleepiness may provide drivers with a 

sense of ‗false security‘ about their sleepiness level. The ―Stop, Revive, and Survive‖ 

campaign recommends that drivers take regular breaks of at least 15 minutes for every two 

hours of driving (Department of Transport and Main Roads, 2008). These recommendations 

give no guidance as to which countermeasure is the most effective for reducing sleepiness.   

The aim of the current study was to determine the relative magnitude of improvement of the 

two break types. For the purpose of the current study signs of sleepiness were defined by 

spectral power in the EEG theta and alpha bands, HPT reaction time latencies, and subjective 

sleepiness levels. It was hypothesised that the nap break would reduce signs of sleepiness to a 

greater extent than would the active rest break. 

 

METHOD 

DESIGN 

The current study utilised a repeated-measures design, with the break type (nap or active rest) 

as the independent variable. The effect of the independent variable was assessed by three 

outcome variables: EEG theta and alpha power, reaction time latency from the Hazard 

Perception test, and subjective sleepiness levels. Assignment of participants to their initial 

experimental condition (i.e., nap or rest break), the undertaking of the HPT test version (i.e., 

test one or two), and the time of day of undertaking the testing sessions (i.e., morning or 

afternoon) were all counterbalanced.  

PARTICIPANTS 

Younger drivers aged 25 years or less are over-represented in sleep-related crashes (Connor 

et al., 2001; Horne & Reyner, 1995; Pack et al., 1995) and are more critically affected by 
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sleepiness (Campagne et al., 2004; Lowden et al., 2009; Smith et al., 2009a). For the present 

study, we recruited participants between 20-25 years of age, with at least two years driving 

experience.  

The six exclusion criteria were as follows: 

1) Being a shift worker or having travelled overseas in the past month  

2) Having a habitual bedtime that is later than 12 midnight  

3) Having significant health problems  

4) Taking prescription or illicit drugs or medications and  

5) Drinking more than three cups of coffee per day and/or more than two standard drinks of 

alcohol per day 

6) Significant sleep problems not reported (i.e., a Epworth Sleepiness Scale (ESS; Johns, 

1991) score <10, Pittsburgh Sleep Quality Index (PSQI; Buysse, Reynolds, Monk, 

Berman, & Kupfer, 1989) Score <5) 

 

The purpose of the exclusion criteria was to exclude excessively sleepy individuals. In order 

to ensure the results were due to the experimental conditions and the results were not 

influenced from circadian disruptions (i.e., shift worker or trans-meridian travel), illicit drugs, 

medications, excessive coffee, or alcohol consumption.  

In total, 20 participants (12 females and 8 males) completed the study. The participants had a 

mean age of 22 years (SD = 2; range = 20-25). Participants reported an average vehicle 

licensure of five years (SD = 1.7; range = 2-9) and reported having driven an average of 

12,986 kilometres per year over the last three years (SD = 8,767.57; range = 1,500-35,000). 

Seven participants reported having a crash (i.e., where they were the driver and there was 

damage to property or persons) in the last three years. All participants were paid $100 AUD 

for participating in the study. 

MATERIALS 

Participants completed a questionnaire booklet that included a number of measures including 

demographic information, assessment of quality of sleep, and daytime sleepiness. 

Pittsburgh sleep quality index. The Pittsburgh Sleep Quality Index (PSQI; Buysse et 

al., 1989) is a self-report questionnaire that assesses subjective sleep quality and sleep 

disturbances during the preceding month. The items of the PSQI represent standard themes 

that sleep clinicians routinely assess (Buysse et al., 1989). The questionnaire utilises 19-items 

to generate seven component scores ranging from 0-3. The seven components are: subjective 

sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use 

of sleeping medication, and daytime dysfunction. The seven component scores are summated 

to produce a global PSQI score that has a range of 0-21, with higher scores indicative of 

poorer sleep quality. In accordance with Buysse et al. (1989) a score of five or less was 

utilised as a cut-off point between ‗good‘ and ‗bad‘ sleepers. 

Epworth sleepiness scale. The Epworth Sleepiness Scale (ESS; Johns, 1991) is a 

measure of general level of excessive daytime sleepiness in adults. The ESS was constructed 

based on observations of the occurrence and nature of daytime sleepiness (Johns, 1991). 

Participants respond to eight items of how likely they are to doze off or fall asleep in various 

situations (e.g., ―sitting and reading‖, ―sitting and talking to someone‖, and ―in a car, while 

stopped for a few minutes in the traffic‖). Potential responses range from 0-would never 

doze, 1-slight chance of dozing, 2-moderate chance of dozing, and 3-high chance of dozing. 
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The range of possible composite scores is 0-24, with increasing scores being indicative of 

greater daytime sleepiness. A score below of 10 or less is considered to be within the normal 

range (i.e., no potential sleep disorder) (Johns, 1993, 2000; Johns & Hocking, 1997). 

Actigraphy. Actigraphy is a non-invasive method of inferring the wake/sleep cycles 

of an individual. Often worn on the wrist, the sensor measures the relative movement of the 

individual (with piezo-electric accelerometers). Rest/activity periods are calculated using 

custom computer software and sleep/wake periods are subsequently inferred based on these 

calculations. Increased movement is regarded as an indicator of wake periods and reduced 

movements is thought to signify sleep.  

Karolinska sleepiness scale. The Karolinska Sleepiness Scale (KSS; Åkerstedt & 

Gillberg, 1990) is a self-report measure of the level of subjective sleepiness an individual is 

experiencing. Individuals are required to indicate on a nine point Likert scale how sleepy they 

are currently feeling. The question posed to the participants is ―Right now how sleepy are you 

feeling?‖ 

Polysomnography. Polysomnography (PSG) is the term that refers to the battery of 

physiologic measures utilised in sleep medicine. The PSG montage that was utilised for the 

current study includes electroencephalography (EEG), electrooculography (EOG), and 

electrocardiography (ECG), which are standard with PSG. 

The software that was utilised to record the physiological data was the Profusion PSG 2 v2.1 

(Build 138) software (Compumedics, Melbourne, Victoria, Australia). The EEG, EOG, ECG 

recordings were sampled at 256 Hz (i.e., 512 samples per second) with 0.3 Hz high pass filter 

and a 30 Hz low pass filter. Recording epochs of 30 seconds were utilised in accordance with 

standard PSG recordings and sleep medicine practices (Rechtschaffen & Kales, 1968). 

The utilised EEG recording sites were: C3, C4, O1, O2, A1, and A2; electrode placement 

utilised the 10-20 system derivations from Jasper (1958). As shown in Figure 1 (over page), 

the central (i.e., C3 and C4) and occipital (i.e., O1 and O2) electrodes were referenced the 

contralateral electrode site of A1 or A2. These six electrodes sites utilised Ag-Al electrodes. 

The EOG recording sites used were the standard sleep study placement for EOG electrodes. 

That is, the right eye electrode was placed approximately one cm lateral and one cm dorsal to 

the outer corner of the eye (outer canthus), with the left eye electrode placed one cm lateral 

and one cm ventral the outer canthus. The ECG measurements utilised the modified two-lead 

recording setup. One electrode is placed approximately three to five cm below the right 

clavicle (collarbone) with the second electrode placed on the left lower ribcage (i.e., V6 

location) that is direct under the midpoint of the armpit. Self adhesive electrodes were used 

for the EOG, ECG, reference, and ground recording sites.  
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Figure 1. Diagram of the EEG electrode sites utilised in the current study. O electrodes used 

for spectral analysis, C electrodes used for sleep staging.  

 

Hazard perception test. Hazard perception has been described as the skill to 

anticipate traffic situations that may result in a crash or near miss (Horswill & McKenna, 

2004; McKenna & Crick, 1991). The Hazard Perception Test (HPT) is a video-based reaction 

time latency measure designed to measure this ability that has been developed in previous 

work (Horswill et al., 2008; Smith et al., 2009a; Wetton et al., 2010).  

The HPT is completed by watching video footage of genuine on-road traffic situations. The 

footage was recorded from the driver‘s perspective (during daylight hours) from both the 

ACT and QLD road networks. Each video segment requires the individual to determine if a 

potentially hazardous situation could eventually lead to a traffic conflict if no defensive 

action was initiated by the driver of the car with the camera. If a potentially hazardous 

situation is identified by the participant then they are required to click on the relevant location 

with a mouse pointer. The reaction time latency is determined from when the potential hazard 

first appears in the video to when it is identified using the computer mouse.  

The format of HPT used in the present study was based on a previously developed and 

validated methodology developed by McGowan and Banbury (2004), which requires 

participants to click on the identified hazard with a mouse pointer. This scoring method 

minimizes ambiguous responses as participants have to identify the location, as well as the 

timing of each identified hazard (other tests often involve timing-only responses).  

Two three-hour versions of the test (Test 1 and Test 2) were developed for the current study, 

which contained video footage of measured hazards used in previous work (Horswill et al., 

2008; Smith et al., 2009a; Wetton et al., 2010), interleaved with new traffic footage (without 

measured hazards). The new footage was inserted to simulate the experience of an extended 

drive. The two alternative versions of the HPT were created to facilitate the repeated measure 

design methodology; such that participants did not view the same footage twice over the two 

testing sessions (they viewed Test 1 in one session under one experimental condition and Test 

2 in the other session under the other experimental condition, where these variables were all 

counterbalanced). The two alternative versions of the test were designed to be as equivalent 

as possible, containing approximately the same number of measured hazards (54 and 55), 

with the distribution of hazardous footage to non-hazardous footage being approximately the 

same across the duration of the tests.  
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Figure 2 shows an example of a potential hazard sequence that was utilised by the current 

study. The HPT was run on a laptop with the video footage displayed to participants on a 

separate 4:3 aspect, 17 inch monitor, situated directly in front of them. Audio was muted for 

all video segments. 

 

Figure 2. Images of a traffic hazard used in the present study. The blue car brakes, which 

means that the car containing the camera (effectively the participant‘s vehicle) would have to 

slow in order to avoid a collision. Importantly, it is possible for those participants with good 

hazard perception ability to anticipate this traffic conflict long before the blue car actually 

slows, as long as they are actively scanning the road beyond the blue car (where it is possible 

to see a taxi manoeuvring across the road ahead).  
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Table 1. Examples of the hazards that were included in the video sequence  

i.  A car doing a U-turn in the distance, 

ii. An oncoming car crossing a centre line to pass a bicyclist 

iii.  A cherry picker on right causing an approaching car to cross a centre line 

iv. A car in left lane merging to the front to avoid a parked car in lane ahead 
Note – video footage and hazards contained scenes from both the ACT and QLD road networks 

EXPERIMENTAL INTERVENTIONS 

Incorporated into the study methodology were two types of breaks: a nap and an active rest 

break.  

The nap break condition. In this condition, participants were provided with a 15 

minute opportunity to sleep. The nap break was regarded as an intent-to-treat intervention as 

a number of studies have shown that some participants are not able to fall asleep during a nap 

break (e.g., Horne & Reyner, 1996; Leger et al., 2009; Purnell et al., 2002). During the nap 

break, the participant remained in the padded high-back chair. The angle between the back of 

the chair and its base was adjusted to be 105
o
. During the nap break, the room light remained 

on and the participant‘s electrophysical signals were continually recorded. 

The active rest break condition. It has been shown that active rest breaks have a 

longer effect for reducing signs of sleepiness than inactive rest breaks (Bonnet & Arand, 

2005; Henning, Jacques, Kissel, Sullivan, & Alteras-Webb, 1997; Horne & Foster, 1996; 

Sallinen et al., 2008). Additionally, several studies have found that drivers report using active 

rest breaks such as getting out of their car and walking around (Anund, Kecklund, Peters, & 

Åkerstedt, 2008; Pennay, 2008). In the present study, participants in the active rest break 

condition completed 10 minutes of brisk walking along an indoor corridor (similar to 

standard physiotherapy 6-minute walk test). The total time of the active rest break was 15 

minutes (including travel time to the corridor for the 10 minutes of brisk walking). The 

distance that the participants walked was recorded by the experimenter.  

DATA ACQUISITION 

Physiological recordings. The EEG data was subjected to a Fourier Fast 

Transformation (FFT) utilising a Hanning window prior to spectral analysis. The power (μV) 

was determined for each 30 second epoch for the frequencies of delta (0.5-4 Hz), alpha (4-8 

Hz), theta (8-13 Hz), and beta (13-30 Hz) utilising Rechtschaffen and Kales (1968) criteria. 

This spectral analysis was performed on the O1-A2 derivations for all but two participants 

due to excessive artefact on their O1-A2 recordings. For these two participants the O2-A1 

derivations were used in the spectral analysis. This was deemed acceptable as Gasser, Bächer 

et al. (1985) found similar correlations between the O1 and O2 electrode sites when 

examining the test-retest reliability of EEG recordings. 

The power for each 30 second epoch was then averaged across relevant time bins. In total, 

348 epochs (174 min) were utilised for the EEG recordings. This was broken down into 236 

epochs (118 min) for the first two hours of the test (prior to the break) and 112 epochs (56 

min) for the last hour of testing (post break). These hourly time bins were then further broken 

down into half hourly time bins. This included half hour before the break (60 epochs; 30 min) 

and two half hours after the break (56 epochs; 28 min). 

HPT recordings. The HPT was scored by measuring the response latency between 

the time when each of the measures hazards first appeared in the video footage to the first 
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time that the participant clicked on that hazard with the mouse pointer. Faster response times 

are indicative of better hazard perception performance. Custom written software, developed 

for previous studies (e.g., Horswill et al., 2008; Smith et al., 2009a; Wetton et al., 2010) was 

used to determine whether participants were clicking on the measured hazards event and to 

extract the relevant response times.  

Overall response times were calculated for each pre-intervention 2 hour test and the post-

intervention 1 hour test separately by taking the means of responses to individual measured 

hazards in the respective test segments. If a participant did not respond to a hazard, a mean 

response time for that scene from the other participants was inserted. Note that, in this 

context, this is a conservative strategy of dealing with misses that has been used in previous 

work (Smith, Horswill, Chambers, & Wetton, 2009b; Wetton et al., 2010). We also 

calculated the proportion of hazards responded to at all as a secondary outcome measure 

(hazard hit rate), though it should be noted that the test was not designed for this purpose 

(hazards were selected to favour response time measurement, in that most participants would 

be likely to respond to them eventually, hence leading to a near-ceiling effect for hit rate). 

PROCEDURE 

A recruitment email was sent via the QUT intranet and was posted on various QUT online 

notice boards inviting participants to take part in the current study. The recruitment email 

explained the inclusion and exclusion criteria and gave a concise description of the 

experimental procedure. The experimenter met with all potential participants in person. 

During this meeting participants were given an information sheet explaining the purpose of 

the research, and the experimenter described in greater detail the experimental procedure. 

Those participants that wished to take part in the study were asked to sign a written consent 

form, and were given an Actigraph to wear that monitored their rest/activity patterns. The 

Actigraphs recorded the participants‘ activity for seven days before the first and the second 

testing sessions and as such were worn for a total of two weeks. Additionally, participants 

completed a sleep/wake diary in the event of the Actigraph malfunctioning. The participants 

were also instructed to maintain their normal routines prior to and between testing sessions. 

Participants were instructed to wake up at 5am on testing days, and they were also instructed 

not to ingest any form of caffeine or alcohol until after the testing session had been 

completed.  

On the first day of testing, the participant was met by the experimenter at the Prince Charles 

Hospital research site and was escorted to the testing room located in the Sleep Disorders 

Centre. The participant was then wired-up with the EEG, EOG, ECG electrodes. The skin 

beneath the electrode sites was abraded until an impedance of five kilo Ω was achieved; this 

is consistent with guidelines for PSG recordings (Leary, 2007). In addition, the signal quality 

was visually confirmed in the recording room before commencement of the study. Prior to 

beginning the HPT, the participant‘s subjective sleepiness was assessed before the 

experimenter left the room. The participants completed all of the HPT session alone in a 

noise proofed and temperature-controlled (23
o
C) environment. All participants received 

standardised instructions (see Appendix A).  

In order to ensure that all participants were familiar with how to complete the HPT, a five 

minute instructional video with two examples of ‗typical‘ hazards was shown to all 

participants. Following the instructional video a two hour session of the HPT was completed. 

When this two hour pre break session was completed the experimenter re-entered the testing 

room, readministered the KSS, and informed the participant of whether they were to 

undertake a nap or an active rest break. At the conclusion of either break, the KSS was 



Driver Sleepiness   10 

 

readministered and the PSG signal quality was re-assessed and corrected if necessary. 

Following this, the participants then completed the final one-hour session of the HPT. Upon 

completion of the final third hour of the HPT, the experimenter re-entered the testing room 

and administered the KSS for the last time, then the PSG electrodes were removed.  

During the testing sessions, the participants were not aware of the duration of the pre and post 

break sessions. In addition, participants were not informed of which experimental condition 

they were partaking in prior to their first testing session. After completing the first testing 

session the participant completed the remaining experimental condition a minimum of a week 

later. Figure 3 shows the testing session timeline.   

 

Figure 3. Timeline of the study protocol.  
 

  

KSS KSS KSS KSS 

Nap or Rest break 

2 hours HPT 1 hour HPT 15 min 

9am or 1pm start 
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RESULTS 

MANIPULATION CHECK  

Sleep prior to testing. The amount of sleep achieved before the testing sessions was 

assessed. Table 2 shows the participants‘ mean sleep duration as assessed by the sleep diaries 

and the Actigraphs. It was found that the duration of sleep reported in the sleep diaries did not 

significantly differ between the two testing sessions, t(19) = 1.37, p = .186. This result was 

confirmed by the Actigraphic data, t(17) = -1.41, p = .176
1
. Therefore, the participants‘ 

estimated need for sleep was considered to be equivalent across testing sessions. 

Subjective sleepiness. To assess whether the 05:00 wake-up on the testing days 

induced any subjective daytime sleepiness in the participants, the means of the KSS prior to 

testing were inspected. Mean KSS before the nap testing sessions (M = 5.45, SE = .34) did 

not differ significantly from the active rest testing sessions (M = 4.75, SE = .40), t(19) = 1.41, 

p = .176.  

Hazard perception reliability. The internal consistency of the two versions of the 

Hazard Perception test was evaluated with the Cronbach‘s alpha statistic. It was found that 

the reliability was adequate for both Test 1 and Test 2 (.78 and .83 respectively). 

Table 2. Mean Amount of Hours of Sleep before the Two Testing Sessions for the Sleep 

Diary and Actigraphic Data  

 Sleep diary data  Actigraph data 

Testing session n M SE  n M SE 

Hours of sleep before 1
st
  session  20 6.35 0.159  20 6.15 0.151 

Hours of sleep before 2
nd

 session  20 6.075 0.192  18
a
 6.403 0.181 

 

 a
 Two participants‘ Actigraphs failed to record their rest/activity patterns for the second week of testing. 

TESTS OF HYPOTHESES 

To examine the relative benefit of each nap type for reducing EEG signs of sleepiness in the 

hour post-break, a pair of paired samples t-tests were performed for the theta and alpha power 

levels. The paired samples t-test performed on the EEG theta power levels revealed that the 

post-nap break (M = 12.159, SE = .418) EEG theta power levels were significantly lower than 

the post-active rest break levels (M = 13.057, SE = .573), t(19) = -2.416, p = .026. Similarly, 

the EEG alpha power levels were significantly lower for the nap break (M = 11.223, SE = 

.73) than the active rest break levels (M = 12.426, SE = 1.11), t(19) = -2.251, p = .036. 

To determine which break was more beneficial for maintaining hazard perception 

performance, a paired t-test was carried out on the change in hazard perception response 

latency between pre- and post-intervention. There was no significant effect of type of break 

on hazard perception response time, Mnap = -.770 s (i.e., participants‘ mean response time to 

hazards was .8 seconds slower following the intervention), SEnap = .174 s, Mrest = -.775 s, 

SErest = .121 s, t(1,19) = .02, p = .985. Note that the same outcome was obtained when the 

data were analysed as a between-subjects design for each session separately, with post-

intervention scores as the dependent variable and pre-intervention scores as a covariate, 

F(1,17) = .41, p = .529 (Session 1); F(1,17) = .35, p = .563 (Session 2). Note that the same 

analyses were carried out using hazard perception hit rates (the proportion of hazards 

                                                 
1
 Two participants‘ Actigraphs failed to record their rest/activity patterns for the second week of testing, hence 

the lowered degrees of freedom. 
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responded to in each test) as the dependent variables instead of response times and the same 

pattern of results was observed. That is, there was no significant effect of type of break on 

hazard perception hit rate, Mnap = 9.60% (i.e. participants‘ responded to 10% fewer of the 

hazards following the intervention), SEnap = 2.77%, Mrest = 8.85%, SErest = 3.05%,  t(1,19) = 

.19, p = .849 (repeated measures analysis), F(1,17) = .80, p = .382 (Session 1 between-

subjects analysis), F(1,17) = 1.36, p = .260 (Session 2 between-subjects analysis). 

The subjective sleepiness data revealed no significant difference between nap break (M = 4.6, 

SE = .343.) and the active rest break (M = 5.0, SE = .465), t(19) = -0.914, p = .372. 

NAP AND REST BREAK DATA 

Nap break polysomnography data. Complete EEG data was obtained for all 

participants during the nap break. This data was scored for sleep onset latency, duration, and 

sleep stages according to Rechtschaffen & Kales (1968) rules for sleep staging and can be 

found in Table 3. It should be noted that only 12 participants were determined to have fallen 

asleep during the nap opportunity, therefore only their data is reported in the table.  

Table 3. Nap Break Sleep Staging Data  

  Sleep time (% of total) 

SOL (SD) Duration (SD) Stage 1 Stage 2 Stage 3 Stage 4 REM 

10.042 (3.026) 4.958 (3.026) 90.168 8.516 0 0 1.316 
 

Note. Table only includes 12 participants data as scored by Rechtschaffen & Kales (1968) rules for sleep 

staging. SOL = Sleep onset latency (min); REM = Rapid Eye Movement. 

Active rest break data. The mean distance in metres the participants walked during 

the active rest break was 831.55 metres (SD = 99.14; range = 669-1065). Participants‘ mean 

heart rate after the rest break (M = 75.6, SE = 2.74) was significantly higher than the mean 

heart rate prior to the rest break (M = 66, SE = 2.036), t(19) = -6.05, p < .001. The duration of 

the rest break lasted for approximately 16 minutes (M = 960.3 sec, SD = 74.1 sec; range = 

887-1223 sec). 

  



Driver Sleepiness   13 

 

DISCUSSION 

The aim of the study was to compare the effectiveness of nap and active rest breaks with 

partially sleep deprived young adults. The study utilised several convergent measures 

previously found to be sensitive to changes in sleepiness levels. All three measures showed 

an increase in sleepiness levels across the first two hours of simulated driving.  

PHYSIOLOGICAL EFFECTS  

The physiological data indicated that the power in EEG theta and alpha bands was lower for 

the nap condition than for the active rest break condition during the last 30 minutes of testing. 

This finding is consistent with the stated hypothesis. The time asleep during the nap differed 

considerably between the participants; with some participants asleep for a relatively short 

amount of time when compared to other participants (and some not achieving sleep at all). A 

dose-response relationship with the duration of napping and the potential alerting effects from 

a nap has been reported in previous work (Brooks & Lack, 2006). It is possible that the 

magnitude of improvement in alertness could have been greater if all participants received the 

same ‗nap-dose‘. The issue of ‗nap-ability‘ is addressed below. 

SUBJECTIVE EFFECTS  

There was no difference in subjective sleepiness between the nap condition and the active rest 

condition by the end of the test session. This was contrary to the expectation that the nap 

break would result in less sleepiness. Improvement in subjective sleepiness after the active 

break was not congruent with physiological data, which revealed no benefit from the active 

rest break. While the active rest break may have had a genuine effect for reducing subjective 

sleepiness, there are other potential explanations for this finding.  The current study 

procedures required the experimenter to enter the room to obtain a subjective sleepiness 

rating at the very end of the testing session, a point at which the participants were aware that 

the test had finished. Situations involving social interaction can lead to lower subjective 

sleepiness when compared to quiet relaxed situations or to a dull reaction time test 

(Åkerstedt, Kecklund, & Axelsson, 2008). Moreover, simply asking for a verbal rating of 

sleepiness has a modest effect on reducing sleepiness levels (Kaida, Åkerstedt, Kecklund, 

Nilsson, & Axelsson, 2007). In addition, the participants may have been relieved at the notion 

of having completed an arduous testing session (i.e., 3 hours and 15 minutes of testing). This 

relief is analogous to mental stimulation, which has been noted by Johns (1993; 1998) as a 

mechanism that can reduce sleepiness. These social factors may be reflected in the reduced 

subjective sleepiness ratings.  

HAZARD PERCEPTION EFFECTS 

A novel feature of this study was the use of the hazard perception test as the simulated 

driving paradigm. While the hazard perception test has been previously found to be sensitive 

to sleepiness levels (e.g., Smith et al., 2009a), the task has never been used to assess the 

effectiveness of sleepiness countermeasures.  

It was found that there was no difference in hazard perception performance between the nap 

break and the active rest break across the hour after the break. This suggests that lower order 

differences found between the two conditions did not appear to manifest in hazard perception 

performance, which is considered a high-order cognitive task (Horswill & McKenna, 2004). 

Previous studies have shown an improvement after a rest break for low-order cognitive tasks 

(e.g., PVT; Caldwell et al., 2003; WAVT; Horne & Foster, 1996) in contrast to high-order 

cognitive tasks which have not resulted in any improvement (e.g., LeDuc et al., 2000) or a 
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transient improvement (15 minutes) in performance (e.g., Sallinen et al., 2008). It should be 

noted however that it is still possible that short term effects on hazard perception might be 

present but could not be detected in the present study (the post-intervention test was an hour 

long and performance measures were averaged over this hour, which may mean shorter term 

effects might be concealed). Conversely, it has also been proposed that the recuperative 

benefits of a nap emerge slowly upon awakening (Carskadon & Dement, 1982; Lumley, 

Roehrs, Zorick, Lamphere, & Roth, 1986). For example, Brooks and Lack (2006) found 

improvement in cognitive performance  after sleep deprivation emerged some 35 to 95 

minutes after a nap. The issue of time-course of benefit, and differential impact on higher and 

lower-order cognitive skills requires further investigation. Future work could involve using 

shorter duration tests (e.g. presenting all measured hazards within a shorter space of time 

after the intervention rather than spreading them out over an hour), or could involve careful 

evaluation of variation in performance over time. 

NAP AND ACTIVE REST BREAKS AND ROAD SAFETY 

The nap break was the only countermeasure to provide a meaningful reduction in both 

physiological sleepiness and subjective sleepiness. In contrast, the active rest break had no 

effect for reducing physiological sleepiness but paradoxically reduced subjective sleepiness. 

When considering all the trends from the three measures (i.e., EEG, HPT, subjective 

sleepiness) sources together, the effects from a nap break appears to have benefit over an 

active rest break.  

 The apparent discrepancy between the active rest break physiological and subjective 

indicators of sleepiness may be important for safety. A decrease in subjective sleepiness 

immediately after the active rest break may leave drivers with an erroneous perception of 

their actual sleepiness level and their capacity to drive safely. This overconfidence could be 

augmented by poor awareness of the physical signs of sleepiness (e.g., Kaplan, Itoi, & 

Dement, 2007).   

It must be noted that the modality of the type of rest breaks may have a benefit for drivers. In 

this study an active rest break was examined. Other factors such as the consumption of 

energy drinks (Reyner & Horne, 2002), caffeine (Horne & Reyner, 1996), and food (Lisper & 

Eriksson, 1980; Reyner, Wells, Mortlock, & Horne, 2012) could affect the effectiveness of a 

rest break. Our data support a benefit for a nap break over an active rest break; however, the 

magnitude of benefit of either break type over no break at all remains to be determined.  

ON-ROAD IMPLEMENTATION ISSUES 

In the current sample it was discovered that only a proportion (60%) of the sample was able 

to fall asleep during the nap break opportunity. This result is consistent with previous studies 

(e.g., Horne & Reyner, 1996; Leger et al., 2009; Purnell et al., 2002). However, this finding 

raises concerns about the use of a nap break as a driver sleepiness countermeasure; as drivers 

who do not fall asleep cannot receive benefits from the nap.  

The current study allowed 15 minutes for the nap break. This may not be enough time for 

some individuals to fall asleep, even when sleepy, given that the process of sleep onset 

proceeds at different rates for each individual (Åkerstedt & Gillberg, 1990). Another limiting 

factor for falling asleep could have been the seated position in which participants were asked 

to take the nap opportunity. Sleep onset latency has been found to be shorter for positions that 

are closer to supine than sitting upright (Hayashi & Abe, 2008; Nicholson & Stone, 1987).  
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Increased sleep inertia associated with increased nap duration is a potential danger. If an 

individual allows an extra 10 to 15 minutes to fall asleep, but falls asleep much more quickly 

(e.g., 5 minutes) the longer time spent asleep increases the likelihood of sleep inertia 

appearing upon awakening. While the effects of sleep inertia are transient, cognitive 

performance impairments from sleep inertia can be as great as the impairments seen after a 

night of complete sleep deprivation (Wertz, Ronda, Czeisler, & Wright, 2006). The level of 

impairment after complete sleep deprivation (i.e., > 24 hours) have been equated to blood 

alcohol intoxication levels of 0.1% (Williamson & Feyer, 2000). Consequently, education 

campaigns that recommend the use of nap break, should advise drivers about possible sleep 

inertia effects.  

LIMITATIONS 

The methodology of the current study did not include a treatment-as-usual condition (i.e., 

continue driving with no break). Such a condition could have provided evidence for 

magnitude of effectiveness of both break types relative to no break. The best ‗dose‘ of a 

break, its timing and duration could not be determined in a single study. 

 

In summary, this study examined whether a nap or an active rest break was more beneficial 

for reducing sleepiness. The nap break was more effective for reducing physiological 

sleepiness. However, there was no subjective difference between the two break types and no 

difference in hazard perception performance. The disparity between physiological and 

subjective measures for the active rest may leave drivers with an erroneous belief about their 

sleepiness levels.   
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STUDY TWO: SELF-REGULATION OF THE NEED FOR A BREAK 

The ability, or inability, of a driver to detect increasing sleepiness is a factor in sleep-related 

crashes. A number of technological solutions designed to detect sleepiness have been 

developed, but self-awareness of increasing sleepiness remains a critical component in on-

road strategies for mitigating this risk. In order to take appropriate action when sleepy, 

drivers‘ perceptions of their level of sleepiness must be accurate. As such, it is important to 

understand driver‘s awareness of increasing levels of sleepiness – their ability to self-

regulate. 

The ‗Stop, Revive, Survive‘ campaign recommends that drivers take a 15 minute break for 

every two hours of driving or when they feel they need to take a break (Department of 

Transport and Main Roads, 2008). However, several studies have shown that drivers may not 

be able to make accurate decisions regarding their level of sleepiness (Reyner & Horne, 

1998b). For example, although drivers report being able to drive for up to 5.4 hours before 

reporting subjective sleepiness  (McCartt, Ribner, Pack, & Hammer, 1996), up to one third of 

drivers have fallen asleep at the wheel during trip durations of less than one hour (Pennay, 

2008). Additionally, approximately 60% of drivers continue to drive even when they are 

feeling sleepy or fatigued (Vanlaar et al., 2008). These reports may suggest a significant gap 

between perception of sleepiness, driving behaviours, and the requirements for safe driving.  

The perceptions of actual sleepiness levels of younger drivers may be erroneous. Younger 

drivers will drive significantly longer distances than older drivers before stopping for a break 

(Philip, Taillard, Quera-Salva, Bioulac, & Åkerstedt, 1999). In addition, younger drivers will 

frequently drive during times of high levels of sleepiness (Smith, Carrington, & Trinder, 

2005). Such behaviours could be expected from an under-recognition of sleepiness signs 

(e.g., Kaplan et al., 2007) and/or an under-appreciation of the dangers of a sleep-related crash 

(e.g., Reyner & Horne, 1998b).  

A number of studies have found that perceptions of sleepiness (i.e., subjective sleepiness) 

have significant and positive relationships with physiological measures (e.g., Dorrian et al., 

2000; Kaida et al., 2006). Additionally, subjective ratings of sleepiness have been found to 

have a positive relationship with simulated driving incidents (Reyner & Horne, 1998b) as 

well as predicted sleepiness levels and on-road sleep-related crashes (Åkerstedt, Connor et 

al., 2008). However, other studies have found inconsistent relationship between subjective 

ratings and physiological measures (e.g., Biggs et al., 2007; Hoch et al., 1992; Tremaine et 

al., 2010). These inconsistencies between the two measures are possibly due to individuals 

having a limited awareness of the physical sleepiness signs such as droopy eyelids, increased 

blinking, wandering thoughts, increased body posture movements (e.g., Kaplan et al., 2007). 

Sleepiness also impairs cognitive functioning and it is possible that this too can affect self-

awareness of sleepiness levels.  

Another factor that could influence the likelihood of perceiving sleepiness is the intrinsic 

circadian rhythm of an individual. The circadian rhythm of an individual has a sinusoid 

function during a 24 hour period, which results in low sleep propensity during the day (i.e., 

ascending phase) and the highest sleep propensity typically during night-time hours (i.e., 

descending phase) (Richardson, Carskadon, Orav, & Dement, 1982). The descending phase 

of the circadian rhythm typically begins in the afternoon and is characterised as the post-

lunch dip in circadian function (Carskadon & Dement, 1992). As such, the descending 

circadian phase could lead to higher sleepiness levels in the afternoon.  
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Determining capacity to accurately identify sleepiness and then to self-regulate driving 

cessation is necessary for reducing sleep-related crashes. This study aimed to assess capacity 

to accurately identify sleepiness and self-regulate driving cessation during a validated driving 

simulator task. 

 

METHOD 

DESIGN 

An experimental design was utilised for the current study. Participants were randomly 

assigned to complete the testing during a morning session (i.e., 09:00 start) or an afternoon 

session (i.e., 14:00 start).  

PARTICIPANTS 

The same inclusion criteria, exclusion criteria and screening procedure as utilised in study 

one was also used for the current study (see Study one Method section).  

In total, 26 participants (19 females and 7 males) completed the study. The participants had a 

mean age of 24 years (SD = 2; range = 20-28). Participants reported an average vehicle 

licensure of six years (SD = 2.46; range = 2-10). Additionally, the sample reported having 

driven an average of 14,028.01 kilometres per year over the last three years (SD = 14,028.01; 

range = 1,040-70,000). Altogether, six participants reported having a crash (i.e., where they 

were the driver and there was damage to property or persons) in the last three years. All 

participants were paid $100 AUD for partaking in the study. 

MATERIALS 

The measures utilised for the current study were similar to the measures used for study one. 

Specifically, the Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989) and the Epworth 

Sleepiness Scale (ESS; Johns, 1991) were used as screening measures. Physiological and 

subjective sleepiness levels were measured via polysomnography and the Karolinska 

Sleepiness Scale (KSS; Åkerstedt & Gillberg, 1990) respectively. The driving stimuli for this 

study were the hazard perception tests. Due to the varying durations of the driving task the 

hazard perception data were not treated as dependent variables in this study. See Study one 

materials section for the descriptions of the measures.   

PROCEDURE 

A recruitment email was sent via the QUT intranet and was posted on various QUT online 

notice boards inviting participants to take part in the current study. The recruitment email 

explained the inclusion and exclusion criteria and gave a concise description of the 

experimental procedure. Those participants that wished to take part in the study were asked to 

sign a written consent form. Participants were instructed to wake up at 5am on the day of 

testing and they were also instructed not to ingest any form of caffeine or alcohol until after 

the testing session had been completed.  

On the day of testing, the participant was met by the experimenter at the QUT‘s Kelvin 

Grove campus. EEG, EOG, and ECG electrodes were then attached to the participant as per 

the protocol outlined in Study 1. Prior to beginning the HPT, the participant‘s subjective 

sleepiness was assessed with the KSS. All participants were verbally instructed to, ―Stop 
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when you think you would be too sleepy to drive safely on the road‖. After receiving this 

instruction the participants began the HPT.  

When the participants chose to end the HPT session, they spoke into a microphone to let the 

experimenter know they wished to take a break. The duration of time that had elapsed for the 

HPT was noted by the experimenter. The experimenter then entered the testing room 

administered the KSS and instructed the participants that they now had an opportunity to nap. 

During this nap opportunity the participants were asked to remain in their chair with their 

eyes closed. After thirty minutes the experimenter re-entered the testing room, re-

administered the KKS for the last time and removed the electrodes. The participants 

completed the hazard perception testing session and the nap opportunity alone in the noise- 

and temperature-controlled environment. All time cues were removed from the testing room.  

DATA ACQUISITION 

Physiological recordings. The EEG recordings during the HPT were visually 

inspected for signs of sleep and micro sleeps by an experienced polysomnographer. In 

addition, the EEG nap data was scored for its sleep stages according to the Rechtschaffen and 

Kales (1968) criteria. The C3-A2 paring of electrodes was utilised for the scoring of sleep 

stages. 
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RESULTS 

MANIPULATION CHECK  

Subjective sleepiness. To assess whether the 05:00 wake-up on the testing day 

induced any subjective daytime sleepiness in the participants, the means of the KSS prior to 

testing were inspected. The mean KSS at the beginning of testing was 6.65 (SE = .135), 

where the relevant points on the KSS scale were labelled as ―some signs of sleepiness‖ (= 6) 

and ―sleepy, no effort to stay awake‖ (=7). This level of KSS suggests that the sample was 

experiencing a degree of sleepiness prior to beginning the simulated drive.   

Increasing levels of sleepiness. A paired samples t-test was performed to determine 

if the subjective sleepiness levels increased from the beginning of testing to the time 

immediately prior to the break. The paired samples t-test revealed that subjective sleepiness 

levels increased from the beginning of testing (M = 6.65, SE = .135) to prior to the break (M 

= 8.15, SE = .464), t(25) = -11.802, p < .001. 

SELF-REGULATION OF SLEEPINESS LEVELS 

It was found that on average participants stopped the task after approximately 40 minutes (M 

= 38.346, SD = 18.385, range = 15-76). To determine if the duration was mediated by any 

circadian effects an independent samples t-test was performed. It was found that equal 

variances could not be assumed across the groups, F(1, 24) = 4.289, p = .049. With unequal 

variances accounted for, it was found that there was no significant difference between the 

morning duration (M = 36.462, SE = 4.049) and afternoon duration (M = 40.231, SE = 6.098), 

t(20.859) = -0.515, p = .612. 

Inspection of the EEG data revealed that no participant could be judged to have fallen asleep 

by standard criteria (i.e. more than 30 seconds of continuous Stage 1 sleep) before stopping 

for a break. However, three of the 26 participants did display high levels of sleepiness (e.g., 

head nodding, micro sleeps of greater than 3 seconds of EEG Theta activity). These three 

participants requested their breaks on average 12.333 minutes (SD = 2.517, range = 10-15) 

following these microsleep events. At the end of testing two of the three participants reported 

that they believed they had fallen asleep during the task, with the other participant being 

unsure if they had fallen asleep.  

THIRTY MINUTE NAP BREAK DATA 

Nap break polysomnography data. Complete EEG data was obtained for all 

participants during the nap break. This data was scored for sleep onset latency, duration, and 

sleep stages according to Rechtschaffen & Kales (1968) rules for sleep staging and can be 

found in Table 4. Data for the 23 of 26 participants who were determined to have fallen 

asleep during the nap opportunity is reported in the table.  

Table 4. Sleep Staging Data for the Thirty Minute Nap Break. 

  Sleep time (% of total) 

SOL (SD) Duration (SD) Stage 1 Stage 2 Stage 3 Stage 4  REM 

9.90 (7.531) 15.09 (8.11) 24.33 67.39 6.80 1.48 0 
 

Note. Table only includes 23 participants data as scored by Rechtschaffen & Kales (1968) rules for sleep 

staging. SOL = Sleep onset latency (min); REM = Rapid Eye Movement. 
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DISCUSSION 

The aim of the current study was to determine how effectively drivers could identify their 

sleepiness levels and self-regulate their need to stop for a break. The results suggested that 

the sample subjectively experienced high levels of sleepiness during the testing sessions, and 

all requested a break within 76 minutes of driving. The majority of participants were then 

able to fall asleep during the nap break.  

EFFECTS OF AWARENESS LEVELS OF SLEEPINESS 

The key finding from this study is that all of the participants decided to cease driving and 

take a break from the driving task. A number of studies describe that drivers have a 

reasonable ability to judge their sleepiness levels (e.g., Kaplan et al., 2007; Reyner & Horne, 

1998b); yet, it is also noted in the literature that there are individual differences regarding the 

accuracy of determining sleepiness level. In addition, the transition from low levels of 

sleepiness to high levels of sleepiness and finally into sleep is a subtle progression, and the 

awareness of these varying levels is also likely to vary between individuals (Bonnet & 

Moore, 1982). Consistent with this we found that some participant‘s EEG data suggested 

brief sleep episodes (i.e., microsleeps) prior to driving cessation. These behaviours could 

possibly be attributed to under-recognition of sleepiness signs and/or an under-appreciation 

of the progression of high sleepiness to falling asleep.  

All participants ceased driving before two hours had elapsed, with the longest duration being 

76 minutes. The duration of driving that the ‗Stop, Revive, Survive‘ campaign recommends 

drivers attempt before taking a break is two hours of driving or when they feel they need to 

take a break (Department of Transport and Main Roads, 2008). The recommendation for the 

maximum duration of continuous driving for professional drivers is greater than that for non-

professional drivers. Our data suggests that drivers can experience very significant levels of 

sleepiness well within this time-based recommendation. Participants reported a high level of 

subjective sleepiness after a relatively moderate level of sleep restriction provided by early 

wake time that morning. Similar levels of sleep restriction are commonplace for many people 

in modern society (National Sleep Foundation, 2008). It has also been reported the younger 

divers obtain fewer hours of sleep (i.e., obtain a sleep debt) the night before a long drive 

(Philip et al., 1996). It is possible that the simulated environment per se could have 

contributed to the relatively short duration of completion of the task in the current study. 

Laboratory conditions have been noted to invoke lower arousal levels than those experienced 

during on-road conditions (Philip et al., 2005). Future studies incorporating on-road driving 

paradigms are required to examine this issue.  
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REPORT CONCLUSION 

Driver sleepiness contributes substantially to road death and trauma. The proportion of fatal 

and severe crashes attributed to driver sleepiness is estimated to be approximately 20% 

(Connor et al., 2002). Effective countermeasures to reduce driver sleepiness are critical to 

reducing this risk factor.  

The current studies have several theoretical and practical implications. The first key finding 

was that a nap break provided meaningful benefit for reducing driver sleepiness compared 

with an active rest break (although hazard perception performance changes were similar for 

both interventions). The second key finding was that drivers displayed a capacity to perceive 

increasing sleepiness and self-regulate their behaviour to take a break. 

We propose a number of potential future directions for research in this area:  

1. The modality of interventions (including use of caffeine and other alerting 

interventions) should be directly compared for efficacy. 

2. The relative efficacy of different timing and doses of interventions should be 

investigated. 

3. Intervention effectiveness should be investigated in the context of driving demands, 

prior sleep schedules, driver experience and other individual factors. 

4. The effects of context and message content of road safety recommendations and 

media campaigns on self-regulation should be considered. 
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APPENDIX A 

Script for the Nap Break Condition 

Instructions before Test (after PSG hook-up) 

―An instructional video will play before the HP Task. When it is finished the HP task will begin when 

you click ok. Please don‘t touch the keyboard while the test is running as you only need to use the 

mouse. Please try to keep your hand on the mouse at all times. I would ask you not to eat during the 

task. When it is time I will let you take a break from the task. Do you have any further questions?‖ 

―Right now how sleepy are you feeling?‖ (KSS) 

 

 

HPT: BLOCK 1 (2 hours) 

 

 

 

NAP BREAK OPPORTUNITY 

 

Knock on the door, walk into the room 

―Right now how sleepy are you feeling?‖ (KSS) 

―Now I am going to ask you to remain in the chair as you now have an opportunity to nap. The nap 

opportunity will last for a short amount of time. During this nap opportunity please remain in the chair 

with your eyes closed the whole time. I will come back when it is time to restart the task‖ 

Walk out of the room and come back in 15 minutes 

―Right now how sleepy are you feeling?‖ (KSS) 

―Okay it is now time to re-start the task‖ 

 

HPT: BLOCK 2 (1 hours) 

 

―Right now how sleepy are you feeling?‖ (KSS) 

Give the Nap break version of the post experiment questionnaire 
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Script for the Rest Break Condition 

Instructions before Test (after PSG hook-up) 

―An instructional video will play before the HP Task. When it is finished the HP task will begin when 

you click ok. Please don‘t touch the keyboard while the test is running as you only need to use the 

mouse. Please try to keep your hand on the mouse at all times. I would ask you not to eat during the 

task. When it is time I will let you take a break from the task. Do you have any further questions?‖ 

―Right now how sleepy are you feeling?‖ (KSS) 

 

 

HPT: BLOCK 1 (2 hours) 

 

 

 

REST BREAK OPPORTUNITY 

 

Knock on the door, walk into the room 

―Right now how sleepy are you feeling?‖ (KSS) 

―Now I am going to let you take a rest break. The rest break will last for a short amount of 

time. During this rest break you will be asked to complete the ten minute walk test, which 

involves walking a 20 metre track for ten minutes.‖ 

Walk with individual to the walk track. 

―Shall we head back to the testing room?‖ 

―Right now how sleepy are you feeling?‖ (KSS) 

―Okay it is now time to re-start the task‖ 

 

HPT: BLOCK 2 (1 hours) 

 

―Right now how sleepy are you feeling?‖ (KSS) 

Give the Rest break version of the post experiment questionnaire 


