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Abstract. Graphene’s unique photoresponse has been largely used in a multitude

of optoelectronics applications ranging from broadband photodetectors to wave-guide

modulators. In this work we extend the range of applications to position-sensitive

photodetectors (PSDs) using FeCl3-intercalated hexagonal domains of graphene grown

by atmospheric pressure chemical vapour deposition (APCVD). The FeCl3-based

chemical functionalisation of APCVD graphene crystals is affected by the presence

of wrinkles and results in a non-uniform doping of the graphene layers. This doping

profile creates multiple p-p+ photoactive junctions which show a linear and bipolar

photoresponse with respect to the position of a focussed light spot, which is ideal

for the realization of a PSD. Our study paves the way towards the fabrication of

flexible and transparent PSDs that could be embedded in smart textile and wearable

electronics.
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1. Introduction

The isolation of a single layer of graphene [1] has triggered an immense response in

the scientific community in the past decade [2, 3]. Both the exceptional electrical and

optical properties of this material have been studied in detail and exploited in many

areas of pure and applied research. In particular, its broadband absorption and field

effect tunability make graphene an excellent platform for optoelectronic devices[4]. The

breadth of such devices includes high-responsivity [5] and high-speed [6] broadband

photodetectors (PDs), wave-guide coupling [7] and transparent and flexible electrodes

[8]. The photoresponse of graphene PDs has been investigated with many techniques,

though so far no reports have been made of its application in position sensitive detectors

(PSDs). Such devices traditionally consist of a semiconductor (Si or Ge) junction

with four contacts, which exploits the lateral photoeffect [9], that is the photovoltage

generated at the junction plane in the presence of localized illumination, in addition

to the conventional photovoltage effect that is formed across the junction. This effect

has been extensively studied in the past [10, 11] and it is at the base of PSDs used

currently in many applications, such as: laser alignment, motion control, automation

and scanning probe microscopy. The detection of focussed X-rays via field-effect in a

graphene transistor has been shown [12] though no other uses of graphene for PSDs in

the UV-visible-NIR spectral range have been reported.

In this work we present the first chemical functionalisation of multilayer hexagonal

domains of graphene grown by atmospheric pressure chemical vapour deposition

(APCVD) [13] and demonstrate its use as an all-graphene PSD. Pristine graphene

presents fundamental limitations in optoelectronic applications, such as an low intrinsic

conductivity and the lack of bandgap. Chemical functionalisation [14] has been

employed in the past years to overcome such limitations providing researchers with

a stable and robust platform, thanks to the opening of an energy bandgap [15]

or an increase in the conductivity of graphene. Amongst the different forms of

functionalisation, intercalation with FeCl3 [16], is used to induce strong p-type doping

in the graphene layers, making it particularly suitable for use as transparent electrodes

[17, 18]. It has been recently reported that can FeCl3-intercalated graphene, employed

in a light emitting device, gives an enhanced light emission of 60% compared to standard

graphene electrodes and up to 40% enhancement compared to commercial conductive

polymers [8] while having an unprecedented stability in ambient conditions [19]. Here

we intercalate multilayer (2-3 layers) hexagonal crystals of graphene with FeCl3 and

characterize them using Raman spectroscopy and AFM microscopy. After intercalation,

we fabricate a multi-terminal device and characterize it using scanning photocurrent

mapping microscopy (SPCM) [20]. The formation of wrinkles in the as-grown graphene

is associated with the observed photoresponse of the device, in agreement with the charge

density distribution measured across the device, using Raman spectroscopy mapping.

Several junctions between regions of high (p+) and low (p) doping are observed and

the position of such p-p+ junctions correlates well with the observed photocurrent.
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Furthermore, the photoresponse scales linearly with the position of the excitation source

and changes sign at the centre of the p-p+ junctions. The observed linearity and

bipolarity make our device suitable for position-sensitive detection of focused light.

Our findings, combined with the high stability of FeCl3-intercalated graphene [19] and

the ability to grow millimetre-sized single crystals [13], fill a technological gap in the

inventory of all-graphene devices and open a route towards the fabrication of flexible

PSDs for a multitude of novel applications.

2. Experimental methods

2.1. Graphene growth and intercalation

Multilayer hexagonal domains of graphene were grown on copper by APCVD [21] using

a melting/re-solidification pre-treatment step to reduce nucleation density and increase

domain size. Growth was carried out at ∼ 1075◦C using diluted CH4 (1000 ppm) as the

carbon precursor and a high H2/CH4 (50/25 sccm) to aid multilayer formation. The

crystals where then transferred to highly doped Si substrate capped with 285 nm thermal

SiO2 using PMMA-supported electrochemical delamination [22, 23]. The delamination

step was performed using a 0.5 M NaCl solution and glassy carbon anode at 0.5 A,

followed by rinsing in de-ionised water.

The intercalation with FeCl3 was performed using a previously reported vapour

phase method in vacuum [16]. More specifically, graphene on SiO2/Si and anhydrous

FeCl3 (Sigma-Aldrich, powder, ≥ 99.99% trace metals basis) are placed in a glass tube

of a multi-zone resistive heated furnace. The glass tube is sealed after evacuating it to a

pressure < 10−5. Hence the sample is heated at a temperature of 360 ◦C and the FeCl3
at the sublimation temperature of 315 ◦C for 12 hours. The furnace is then left to cool

and the sample removed.

After the intercalation, samples were washed in Acetone and Isopropyl alcohol (IPA)

in order to remove FeCl3 residues from the substrate. The quality of the growth, the

transfer and the degree of intercalation with FeCl3 was assessed via optical inspection,

atomic force microscopy (AFM) and micro-Raman spectroscopy. All measurements were

performed in atmosphere and at room temperature. Raman spectra were acquired using

a Renishaw spectrometer, with 532 nm excitation laser with incident power density of

0.3 − 1 MW/cm2 through a ×50 objective lens. The scattered light was dispersed by

a 2400 g/mm grating and recorded by a CCD with 5 seconds integration time. Raman

maps were acquired with the same setup performing a raster scan of the area in 0.5µm

steps. AFM topography and phase image were acquired with a Bruker Innova AFM

system, operating in the “tapping” mode using a sharp (radius of curvature < 10 nm)

highly doped silicon tip from “Nanosensors” with a nominal resonance frequency of 330

kHz.



Functionalised hexagonal-domain graphene PSDs 4

2.2. Devices fabrication and characterization

Multi-terminal photodetectors were fabricated on the same substrates. Metal contacts

were defined via electron-beam lithography using 300 nm thick PMMA as resist, followed

by electron-beam evaporation of Ti/Au (5/50 nm) and lift-off in acetone. The sample

was then contacted to the chip carrier by mean of wedge bonding using 20µm thick gold

wire. Scanning photocurrent microscopy (SPCM) was performed using a custom-built

setup [20]: a laser beam (λin = 375 nm) was focussed on the sample by a ×50 objective

lens to a ∼ 260 nm spot diameter. The sample was mounted on a motorized microscope

stage and raster-scanned under the laser beam. The photoresponse of the device was

measured in short-circuit configuration for each point, producing a two-dimensional map

of the photogenerated current (see also figure 3a). The light of the laser was modulated

at a frequency of 33.25 Hz and the current measured via an Ametek 7270 DSP Lock-in

amplifier locked at the same frequency.

3. Results and discussion

3.1. Functionalization of graphene single crystals

Figure 1a shows the optical micrographs and Raman spectra of a pristine, as-transferred,

multi-layer hexagonal domain of graphene grown by APCVD. Each layer grows in a

stacked sequence, where the multi-layers appear at the centre of the first single-layer

indicating that they share the same nucleation site [24]. The Raman spectrum of the

first layer (1) shows the two main features of graphene: the G peak at ∼ 1585 cm−1,

originating from the resonant E2g mode and the 2D peak at ∼ 2700 cm−1, originating

from the double-resonant A1g mode [25]. The shape of the 2D band, a single Lorentzian

peak, and intensity ratio I2D/IG ∼ 1.9 confirm the single-layer nature of the graphene.

The spectrum of the second layer (2) shows the same features but with a ratio

I2D/IG ∼ 3.36, which deviates from the expected ratio for two AB-stacked graphene

layers [26]. This is due to the rotation of the crystallographic axes with respect to the

underlying layer, producing an effective decoupling of the two stacked layers [27, 21].

The third layer (3) is slightly twisted with respect to the second, as shown by optical

inspection, and the spectrum shows a 2D band that can be fitted with the convolution

of 4 Lorentzian peaks, which is characteristic of twisted bilayer graphene with a twist

angle < 3◦ [21, 28]. These observations are common to all the crystals we examined.

Functionalization with FeCl3 strongly affects the electronic characteristics of

graphene [14, 17]. FeCl3 intercalates between the layers of graphene forming a stacked

sequence of graphene/intercalant/graphene [29]. Charge transfer to the FeCl3 layer

causes p-doping of the graphene [16], which results in the non-adiabatic removal of

the Kohn anomaly at the Γ point and the consequent stiffening of the E2g mode of

graphene [30]. This stiffening is observed in the upshift of the G peak [31, 32, 33] in

the Raman spectrum of graphene. Figure 1b presents the optical micrograph and the

Raman spectra of the intercalated flake. Optically we can see each hexagonal crystal,
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with a change in contrast due to the presence of FeCl3. The Raman spectra are acquired

in the same locations as in figure 1a. The first layer (1) shows an upshift of the

position of the G peak to 1600 cm−1 and an increase in the height (I2D/IG ∼ 0.92),

both indicating small doping of the graphene [33]. The second (2) and third (3) layers

show the same characteristic spectra. We observe a split of the G band into three peaks,

each corresponding to different doping levels: the G0-peak is the signature of pristine

graphene; the G1-peak is given by a graphene layer in contact with one FeCl3 layer

(stage-2) and the G2-peak is given by one layer of graphene sandwiched between two

FeCl3 layers (stage-1). The 2D-band is also indicative of the effective decoupling of the

graphene layers by the intercalant, as can be seen in the third spectrum, the multi-peak

structure is reduced to a single Lorentzian peak, signature of the loss of stacking order

within the graphene layers. The peaks related to the FeCl3 molecules lie at significant

lower energies (100− 400 cm−1) [34], therefore they do not interfere with the modes of

graphene. These results confirm the successful intercalation of single crystal APCVD

graphene with FeCl3.

To evaluate the quality of our intercalated APCVD graphene we used AFM.

Figure 2a-b show the topography image of a pristine single crystal, with a second layer

grown at the centre, as seen optically (inset). Here we observe a series of parallel wrinkles

(green arrows), which match the topography of the re-solidified copper used as metal

catalyst during the growth. More interestingly, we observe larger wrinkles running in

the perpendicular direction with respect to the first ones, originating from the centre of

the crystal (blue arrows) and ending close to the middle of the hexagon’s side. Wrinkles

in APCVD graphene have been previously reported [23, 35] to form during the cooling

stage due to the different thermal expansion coefficients of graphene and copper. In

the same images, residues of PMMA from the transfer process appear as white dots, as

previously reported [36].

Intercalation with FeCl3 changes the topography of the single crystals. Figure 2c-

d show the AFM topography and phase images of an intercalated single crystal. In

this case the image was acquired after fabrication of metal contacts. Focusing on

the topographic features we immediately notice the absence of the substrate-related

wrinkles, while a number of bubble-like structures are still present and the cross-

directional wrinkles can still be seen (blue arrows). The disappearance of small wrinkles

is attributed to the intercalation process: by separating the graphene layers, the

intercalant allows them to relax. The AFM phase image can readily distinguish between

different materials, as it represents the phase lag between the tip excitation signal and

its motion that is due to the (viscoelastic) damping properties of the sample [37]. In

figure 2d it can be seen that the bubble-like structures observed in topography show a

clear phase contrast. Since no annealing was performed after the transfer of graphene

form the copper substrate, the PMMA residues observed before intercalation are still

present during the process. The distribution and density is, indeed, comparable with

what is observed in the pristine crystal, suggesting that those structures are caused by

the contamination of graphene, arising from the transfer process. Clustering of FeCl3
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around these areas can contribute to the observed contrast. The presence of wrinkles,

in particular along the crossed lines which extends from the centre of the crystal to the

sides of the hexagon, is still clearly visible.

3.2. APCVD graphene photodetectors

Having successfully intercalated single crystal multi-layer graphene, we proceed to

study its optoelectronic properties. Figure 3a shows a schematic representation of

a multi-terminal device. Here the contacts have been positioned in parallel to the

sides of the top-layer hexagon, as shown in the optical micrograph (figure 3b). The

resistance across two opposing pair of contacts, namely 1-4 and 3-6 in figure 3a-b, was

R1−4 = 660±2Ω and R3−6 = 670±2Ω, in agreement with previous measurements [16].

The photoresponse of the device was characterized using SPCM, employing different

pairs of contacts. Figure 3c-d show the SPCM maps acquired with two different pairs

of contacts (1-4 and 3-6, respectively). Both SPCM maps show photocurrent Iph being

generated across the whole device, with a net change in sign appearing at the centre of

it, in the direction orthogonal to the contacts. The dashed black lines in panels c and

d mark the position of the maxima of the photocurrent. Measuring across both pair of

contacts and summing the two signals we obtain a SPCM map which displays a clear

four-fold symmetry of the photocurrent (PC), as shown in figure 3e where the black

dashed lines are the same as in panels c and d. Superimposing these lines, extrapolated

from the SPCM map, onto the AFM maps of the same device, shown in figure 2c-d, we

see that they match with the observed crossed wrinkles in the graphene crystal.

The role of grain boundaries and wrinkles in graphene-based photodetectors

has been studied via near-field photocurrent nanoscopy, where the presence of grain

boundaries was associated with a reversal in the sign of the photocurrent while enhanced

PC was observed in the presence of wrinkles [38]. The growth of hexagonal domains by

APCVD is known to give high-quality, defect-free, graphene. Therefore, we do not

expect any grain boundaries to be present across the device. All our observations

point towards the fact that the observed PC is related to the intercalation spatial

inhomogeneity, and thus to the doping inhomogeneity, of the graphene crystals. The

presence of wrinkles is likely to create clusters of FeCl3, increasing the level of doping in

those regions, while sign reversal is related to a sharp change in doping, forming a p-p+

junction in the highly doped graphene. These junctions can therefore act as photoactive

centres giving the observed photoresponse for the overall device.

To confirm these hypotheses we acquired a Raman map of the device (see methods).

In figure 4a-d we report the fit of Lorentzian peaks to the G-band region, as previously

discussed (see figure 1b). Figure 4a-b show the height and position of the G0 peak,

respectively, while the G1 band is shown in figure 4c-d. The presence of a blueshifted

G0 peak which agrees very well the boundaries of the crystal and indicates areas with

partial intercalation of FeCl3 within the graphene layers. We observe that the G1 peak

height decreases significantly across a sign reversal in photocurrent (the cross-shaped
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structure). This decrease in height is also accompanied by a redshift of the G1 peak,

from ∼ 1612 cm−1 to ∼ 1605 cm−1, in the same region, as shown in figure 4d. Using

the model developed by Lazzeri et al. [30] to extrapolate the total density of holes in

doped graphene from the position of the G-band peaks. It has been shown that this

model gives an estimation of the charge density within 10% of the values extrapolated

with transport techniques [17]. The results are shown in figure 4e: here we see that a

gradient of charge density is present along the two lines determined by the photocurrent

maps, confirming our hypotheses.

The PMMA residues observed in figure 2a-d, do not contribute to the observed

doping, and therefore to the photoresponse, since the charge transfer due to residual

PMMA (∼ 1011 cm−2, see [36]) is negligible compared to the high level of doping induced

by the intercalation with FeCl3 (> 4 · 1013 cm−2).

3.3. Towards graphene-based position-sensitive photodetectors

The unique photocurrent distribution, with a four-fold symmetry, observed in our

device (figure 3e), can be used for position-sensitive applications. Commercial position-

sensitive photodetectors (PSDs) exploit the photovoltage generated parallel to a

semiconductor junction in the presence of local illumination [9]. This effect has

been extensively studied in the past [10, 11] and is characterized by a bipolar linear

photoresponse as function of illumination position. Figures 5a-c show the line profiles

extrapolated from the SPCM maps in figure 3c-d, while figures 5b-d show the same line

profiles acquired on the charge density nh maps in figure 4e. The mean value of the

log-normal distribution of nh (nh = (4.27± 0.02) · 1013 cm−2) separates values nh < nh

(low doping, p regions) and nh > nh (high doping, p+ regions). We can clearly see

that the extremes of Iph are located where nh crosses nh, i.e. in the presence of a p-p+

junction. At the same time, bipolar linear regions are present (green lines), where the

photocurrent changes sign at the centre of the photoactive junction. This behaviour

is very similar to what is observed in a lateral photoactive junction [9]. In this case

the junction is formed between areas of different doping in the functionalised graphene,

induced by the inhomogeneity of the FeCl3 intercalation driven by the wrinkles in the

pristine APCVD single crystals. Therefore, exploiting a multi-terminal geometry as the

one adopted here, it is possible to use these linear regions to determine the position of

a focussed light spot on the device.

4. Conclusion

In conclusion, we have shown that multilayer APCVD-grown hexagonal crystals of

graphene can be intercalated with FeCl3 and used as position-sensitive photodetectors.

We characterized the degree of intercalation and the resulting doping of graphene,

showing the formation of multiple p-p+ junctions associated with the presence of

wrinkles in the pristine APCVD crystals. We then characterized the photoresponse
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of a multi-terminal device showing a strong spatial correlation between the observed

photocurrent and the p-p+ junctions. The photoresponse is found to be a linear function

of the laser spot position and changes sign at the centre of each junction. This behaviour,

combined with a four-fold pattern in the spatially resolved photocurrent, make these

devices ideal candidates for position sensitive detection of focussed light. Furthermore,

all measurements have been repeated after ∼ 11 months exposure of the device to

environmental conditions, showing no change in the photoresponse, in agreement with

the previously reported stability of this material [19]. These findings pave the way

to additional functionality in graphene-based optoelectronic devices and open a new

route towards flexible, lightweight, transparent and highly stable PSDs, with possible

employment in smart textile and wearable electronics [39].
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Figure 1. (a) Optical micrograph (left) and Raman spectra (right) of pristine APCVD

graphene hexagonal crystals on three different locations: (1) First crystal on substrate,

(2) Second layer grown on the first, (3) third layer. Dashed lines indicate the twisting

of the hexagonal crystals. (b) Optical micrograph and Raman spectra of the same

crystals after intercalation with FeCl3. Raman spectra are normalized to the height of

the 1-TO mode of Si at 520 cm−1.
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Figure 2. (a) AFM topography of a pristine APCVD graphene hexagonal crystal

after transferring onto Si/SiO2 substrate. Inset: optical micrograph of the same

crystal. (b) High resolution AFM topography of the central area. Blue and green

arrows indicate wrinkles. Inset: profile of a wrinkle, height 2.7 nm and width 115 nm.

(c) AFM topography of a graphene hexagonal crystal after intercalation with FeCl3
and fabrication of a multi-terminal photodetector device (see main text). (d) Tapping

phase image of the same device. Dashed lines as in figure 3, blue arrows indicate the

residual wrinkles. White dots are PMMA residues from the transfer process (see main

text).
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Figure 3. (a) Schematic of the multi-terminal device and measuring geometry. A laser

of incident wavelength λin is scanned across the surface and the electrical response

is measured in short-circuit configuration, producing a 2D map of the generated

photocurrent. Inset: layer structure of FeCl3-intercalated graphene. (b) Optical

micrograph of the device. (c) SPCM map with contacts 3 and 6 connected. (d) SPCM

map with terminals 1 and 4. (e) Sum of the SPCM maps shown in panels (c) and (d).

Dashed green lines mark the first graphene layer while dashed hexagons (white and

orange) mark the second. Dashed black lines indicate the regions in the flake where

Iph reverses sign.
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Figure 4. Raman maps of the the multi-terminal device. (a) G0 peak height. (b)

G0 peak position. (c) G1 peak height. (d) G1 peak position. (e) Total intercalation-

induced hole concentration in the crystal. Solid and dashed lines as in figure 3.
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Figure 5. (a) Line profiles of photocurrent Iph (top) and total hole density nh

(bottom) taken along the dashed lines shown in the right panels, with contacts 3

and 6 connected. (b) Same line profiles as in (a) with contacts 1 and 4. Green solid

lines mark the linear regions, green-shaded areas mark the maxima and minima of

the PC and the corresponding hole density. nh is the log-normal mean value of the

reported data.
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