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Genome-wide association study with 1000 genomes
imputation identifies signals for nine sex hormone-
related phenotypes

Katherine S Ruth1, Purdey J Campbell2, Shelby Chew2, Ee Mun Lim2,3, Narelle Hadlow2,3,
Bronwyn GA Stuckey2,4, Suzanne J Brown2, Bjarke Feenstra5, John Joseph3, Gabriela L Surdulescu6,
Hou Feng Zheng7, J Brent Richards6,7,8, Anna Murray1,10, Tim D Spector6,10, Scott G Wilson2,4,6,10

and John RB Perry*,1,6,9,10

Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete.

Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with

several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the

regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study

used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK

study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual

cycle and menopausal status. We tested 7 879 351 autosomal SNPs for association with levels of dehydroepiandrosterone

sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin,

progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide

significance (Po5×10−8), with minor allele frequencies of 1.3–23.9%. Novel signals included variants for progesterone

(P=7.68×10−12), oestradiol (P=1.63×10−8) and FAI (P=1.50×10−8). A genetic variant near the FSHB gene was identified

which influenced both FSH (P=1.74×10−8) and LH (P=3.94×10−9) levels. A separate locus on chromosome 7 was

associated with both DHEAS (P=1.82×10−14) and progesterone (P=6.09×10−14). This study highlights loci that are relevant

to reproductive function and suggests overlap in the genetic basis of hormone regulation.
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INTRODUCTION

Studies have suggested that genetic factors contribute significantly to
population variance in sex hormone levels, however, few associated
genetic variants and genes have been identified to date.1 As well as
playing an important role in reproduction, variations in sex hormone
levels can have wider implications for health and disease. Reproductive
functions include control of the menstrual cycle, spermatogenesis,
steroidogenesis and lactation, and sex hormone levels have been
implicated in breast cancer, cardiovascular disease, osteoporosis, type 2
diabetes and ageing.2–5 Circulating levels of sex hormones are limited
by sex hormone-binding globulin (SHBG), which is a glycoprotein
that binds and transports oestradiol, testosterone and dehydroepian-
drosterone (DHEA) to a lesser extent.6

GWAS have been performed for dehydroepiandrosterone sulphate
(DHEAS), SHBG, follicle-stimulating hormone (FSH), luteinizing hor-
mone (LH), oestradiol and testosterone.2,4,7–10 The largest of these GWAS
was in over 28 000 males and females and identified 12 loci associated
with differences in SHBG levels, including four loci with sex-specific
genetic effects and considerable allelic heterogeneity at the SHBG gene

locus.7 A recent study in 3495 Chinese men has identified a novel locus
associated with oestradiol and FSH levels, and a further novel locus for
oestradiol.10 A GWAS of total testosterone in males identified three loci,
including two in the SHBG gene, that were also associated with SHBG
levels.9 In an analysis of males and females combined, eight loci associated
with DHEAS were identified, of which several were associated with
changes in gene expression levels in pathways linked to ageing.4 GWAS
studies of sex hormone-related phenotypes have explained less than 10%
of variance in oestradiol and SHBG, and less than 5% of variance in
testosterone, DHEAS and FSH.4,7,9,10

In this study, we performed a 1000 Genomes imputed GWAS to
identify novel genetic variants in sex hormone-related phenotypes
where either GWAS has not yet been performed or has not been
performed at 1000-Genomes-density variant coverage.

MATERIALS AND METHODS

Study population
The study included up to 2913 individuals of European ancestry from the
Twins UK study with genotype and phenotype data.11 Twins UK is a supported
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access resource with all data access requests overseen by the Twins UK
Resource Executive Committee. All studies have ethical approval from the
Guy’s and St Thomas’ Ethics Committee (for further information, see
http://www.twinsuk.ac.uk/data-access/). The Twins UK cohort is 51% mono-
zygotic and 49% dizygotic.11 Individuals included in the analysis were mostly
females, however, a small number of males (maximum of 294) were also
included (Supplementary Table 1). Individuals who were pregnant or currently
receiving hormone replacement therapy or oral contraceptive treatments were
excluded from the analysis. Twins UK samples have been included in previous
GWAS of DHEAS and SHBG.4,7

Phenotypes
Plasma levels of DHEAS, FSH, LH, oestradiol, progesterone, prolactin, SHBG
and testosterone were measured by commercial ElectroChemiLuminescent
immunoassays on a Modular Analytics E170 analyser (Roche Diagnostics
GmbH, Mannheim, Germany) using the prescribed assay calibrators and
performed according to the manufacturer’s protocol. The specific assays used
were: DHEA-S (03000087; CalSet 03000095), FSH (11775863; CalSet II
03032680), LH (11732234; CalSet II 03561097), Estradiol II (03000079; CalSet
II 03064921), Progesterone II (12145383; CalSet 12145391), Prolactin II
(03203093; CalSet 03277356), SHBG (03052001: CalSet 03052028) and
Testosterone II (05200067; CalSet II 05202230). Details of the immunoassays
are provided in the Supplementary Information. Free androgen index (FAI) was
calculated as (testosterone/sex hormone-binding globulin) × 100.12 Individual
sex hormone measures were fitted in a regression model against age, sex, BMI,
phase of menstrual cycle (for females, as a categorical variable), menopausal
status, after which the residuals were transformed to approximate a normal
distribution (either through log, square-root or inverse rank normal transfor-
mation) and outliers more than four standard deviations from the mean were
removed. Single nucleotide polymorphism (SNP) beta estimate effect sizes are
quoted as a per-allele standard deviation change in the covariate-adjusted
transformed residuals. The number of individuals included in the analysis of
each hormone was 2899 for DHEAS, 2906 for oestradiol, 2699 for FAI, 2885 for
FSH, 2881 for LH, 2865 for prolactin, 2689 for progesterone, 2913 for SHBG
and 2657 for testosterone (differences in the numbers for FAI and testosterone
are accounted for by removal of outliers prior to inclusion in the GWAS).

Genotypes
Genotyping of the TwinsUK dataset was done with HumanHap300, Human-
Hap610Q, HumanHap1M Duo and HumanHap1.2M Duo 1M arrays. Imputa-
tion was done in two datasets (n= 2040 from the HumanHap300 array;
n= 3614 from the HumanHap610Q, HumanHap1M Duo and 1.2M Duo 1M
arrays) which were then merged with GTOOL. We performed imputation for
Twins UK study subjects based on 1000 Genomes data as described
previously.13 This involved estimating the phase of contiguous variants in the
subjects using the haplotypes calculated from the 1000 Genomes Project
consisting of 1094 individuals and 2188 haplotypes and the program MACH
1.0.16. The variants in the build-37 November 2010 release of 1000 Genomes
(Phase 1-α interim) were imputed into the phased haplotypes using MINI-
MAC. This resulted in 37 426 733 imputed SNPs. We excluded SNPs that were
imputed with an r2impo0.5. This left 10 879 115 SNPs and after filtering for
minor allele frequency (MAF)40.01 the number fell to 7 879 351. We used a
multi-ethnic reference panel that included 381 Europeans (including 98
Tuscans), 181 Americans, 246 Africans and 286 Asians to improve the quality
of imputation, particularly at lower frequency variants.14

Statistical analysis
We performed a linear mixed-model GWAS analysis for each of the hormones
using the program GEMMA,15 which is capable of accounting for relatedness of
the study subjects when applicable, as well as population stratification and
cryptic relatedness. Association statistics using the score test were calculated for
7 879 351 autosomal SNPs passing a MAF filter of 0.01 and an imputation
quality score of 0.5.
The Bonferroni-corrected P-value for the number of SNPs tested across nine

traits was Po7× 10− 10; however, this is likely to be conservative given that
many SNPs are unlikely to be independent and there are Bayesian arguments

for less conservative P-values.13 Hence, we considered independent significant
SNPs to be those with Po5× 10− 8 and more than 1Mb away from another
significant SNP. The UCSC Genome Browser and Locus Zoom were used to
identify genes in the regions where significant SNPs were identified.16,17 SNAP,
HaploReg v2, Locus Zoom and Ensembl Biomart were used to identify
HapMap proxies for the 1000 Genomes signals, with linkage disequilibrium
evaluated in the 1000 Genomes Phase I CEU population.17–20 We analysed
expression quantitative trait loci data to identify associations between SNPs
associated with variation in hormone levels and expression levels of nearby
genes in the Multiple Tissue Human Expression Resource (MuTHER).21

Functional annotation of SNPs in strong linkage disequilibrium with the
significant signals (r240.8) was performed using wANNOVAR, GWAVA and
HaploReg v2.20,22,23

RESULTS

Hormone phenotypes are correlated
There were strong correlations between three groups of phenotypes
included in our study (Table 1): (i) FAI, SHBG and testosterone;
(ii) progesterone, DHEAS and testosterone; and, (iii) FSH and LH.
FAI was positively correlated with testosterone (r= 0.69) and nega-
tively correlated with SHBG (r=− 0.61), as would be expected because
FAI is a calculated index of the amount of androgen not bound by
SHBG. Testosterone and SHBG were not correlated (r= 0.04).
Progesterone was positively correlated with DHEAS (r= 0.60) and,
to a lesser extent, testosterone (r= 0.44). As a result of the correlation
with testosterone, progesterone was also correlated with FAI (r= 0.39).
DHEAS was also positively correlated with testosterone (r= 0.55) and,
as a result, FAI (r= 0.52). There was a strong positive correlation
between FSH and LH (r= 0.63). Though the other correlations were
smaller, oestradiol was positively correlated with testosterone
(r= 0.22) and was negatively correlated with FSH (r=− 0.24).

Three novel association signals
We identified new signals for progesterone, oestradiol and FAI
(Table 2). The signal for progesterone (rs112295236, P= 7.68×10− 12,
MAF= 0.06) was identified in an intergenic region of chromosome
11 (Figure 1). We searched for associations of the progesterone
SNP with other traits that might be influenced by progesterone
levels, but we found no evidence for association with other
phenotypes (P40.05 in published GWAS of age at menopause,
early menopause, age at menarche, BMI, height, type 2 diabetes
and glycaemic traits, endometriosis, and birth weight (maternal
and foetal genotype)) or in a GWAS of pre-term delivery (five
gestational age/pre-term delivery traits for mother’s and child’s
genotype, unpublished data). The signals for FAI and oestradiol
were located at 16q12.2 (rs117145500, near LOC643714, P=1.50×10− 8,
MAF=0.06) and 12p13.31 (rs117585797, in ANO2, P=1.63×10− 8,
MAF= 0.01), respectively, and demonstrated no association with other
tested complex traits.

Five signals in known regions
We identified two signals that replicated previous associations,
and a further three that have been reported previously, but for
other phenotypes (Table 2). The signals for SHBG (rs1641549,
near SHBG gene, P= 1.21 × 10 − 15, MAF= 0.24) and DHEAS
(rs148982377, in ZNF789, P= 1.82 × 10 − 14, MAF= 0.04) have
both been reported previously4,7,9 (Supplementary Table 2). The
significant associations for FSH (rs11031005; P= 1.74 × 10− 8,
MAF= 0.13) and LH (rs11031002; P= 3.94 × 10 − 9, MAF= 0.12)
are highly correlated SNPs (r2= 0.79), residing in an intergenic
region near the FSHB gene, and are in linkage disequilibrium with
a published variant for menopause age (rs12294104) (r2= 0.37 for
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FSH (rs11031005) and r2= 0.45 for LH (rs11031002)).24 The
strongest association for progesterone (rs34670419; P= 6.09× 10− 14,
MAF= 0.04) was located on chromosome 7 in the 3’ untranslated
region of ZKSCAN5 (Table 2; Supplementary Figure 1), a locus
previously reported as associated with DHEAS levels.

Two pairs of phenotypes have common signals
We identified overlaps between signals for FSH/LH and progesterone/
DHEAS (association results for significant signals in all pheno-
types are in Supplementary Table 3). The signals for FSH and LH
were in linkage disequilibrium (r2= 0.79), and the most significant
SNP for FSH also reached genome-wide significance for LH; however,
the direction of effects was the opposite of that expected by the
phenotypic correlation (ie, levels of FSH and LH are positively
correlated, though the minor allele decreased FSH and increased LH
(Supplementary Table 3). The strongest signal for progesterone on
chromosome 7 (rs34670419) was in linkage disequilibrium with the
signal for DHEAS (r2= 1), with allelic effects consistent with the
expected phenotypic correlation (Supplementary Table 3).

Overlap between DHEAS and progesterone variants
To investigate the genetic overlap of DHEAS and progesterone further,
we tested whether five published variants for DHEAS (identified prior
to conditional analysis) were associated with progesterone levels in our
data.4 One of these variants reached genome-wide significance in
our progesterone data (rs11761528, P= 3.34× 10− 8) (Supplementary
Table 4), and was at the same locus as our strongest progesterone
signal (rs34670419, chr7:99130834). The published signal was not the
strongest signal in our analysis though it was 12 kb from and in
moderate linkage disequilibrium with our top chromosome 7 proges-
terone signal (r2= 0.49). However, four of the five published variants
were consistent in direction of effect (P= 0.19) and two were
nominally significant after Bonferroni correction (Supplementary
Table 4). In addition, we investigated whether our two progesterone
signals were significant in other published DHEAS meta-analysis data
by looking up our two progesterone signals in data from Zhai et al.4 A
proxy for our progesterone signal on chromosome 7 (r2= 0.58) was
strongly associated with DHEAS (P= 2.34× 10− 34) and our proges-
terone signal on chromosome 11 showed weak evidence of association
(P= 1.53× 10− 4) (Supplementary Table 5).4

FSH and LH signals overlap with a menopause locus
There was evidence of overlap between the signals for FSH and LH
with a variant for menopause age on chromosome 11 (Supplementary
Tables 6–9). There was moderate linkage disequilibrium between the
signals for FSH and LH and a published variant for menopause age
(rs12294104), with r2= 0.37 for FSH (rs11031005) and r2= 0.45 for
LH (rs11031002), P= 3.02× 10− 7 for FSH and P= 6.25× 10− 7 for
LH.24,25 None of the other published menopause or menarche variants
were associated with FSH or LH at Bonferroni-corrected Po0.05.24,26

Identification of potentially causal candidate genes
The signal for SHBG (rs1641549) was 38 kb from the protein-coding
gene SHBG. Four other signals were in linkage disequilibrium with
known polymorphisms that have functional consequences: The signals
for DHEAS (rs148982377) and progesterone (rs34670419) were in
linkage disequilibrium with three SNPs (rs45446698, rs11568825 and
rs11568826; r240.4 for all) that are part of a polymorphism in
the promoter of CYP3A7, which is known to be associated with
lower DHEAS levels (Figure 2). All three of these SNPs were genome-
wide significant for DHEAS (P= 2.49× 10− 14 for rs45446698;

P= 1.18 × 10 − 9 for rs11568825 and rs11568826) and one
was genome-wide significant for progesterone (rs45446698,
P= 7.7× 10− 11), with the other two almost reaching significance
(Po5× 10− 7). The top signals for LH and FSH were within 38 kb of,
and in moderate linkage disequilibrium with, a known polymorphism
(rs10835638) in the promoter of FSHB (rs11031005, r2= 0.62;

Figure 2 SNPs within 300 kb of the significant signal for DHEAS on
chromosome 7 (rs148982377; chr7.hg19:g.99075038 T4C). SNPs
indicated are the strongest progesterone signal (rs34670419 (chr7.hg19:
g.99130834G4T)) and those in the CYP3A7 promoter polymorphism that
were identified in this analysis (rs45446698 (chr7.hg19:g.99332948 T4G),
rs11568825 (chr7.hg19:g.99332986 A4C) and rs11568826 (chr7.hg19:
g.99332978A4T)). Note: Not all genes are shown. Linkage disequilibrium
is based on 1000 Genomes Nov 2010 EUR.

Figure 1 SNPs within 1Mb of the significant signal for progesterone on
chromosome 11 (rs112295236; chr11.hg19:g.62915346C4G). Note: Not
all genes are shown. Linkage disequilibrium is based on 1000 Genomes Nov
2010 EUR.
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rs11031002, r2=0.74) (Supplementary Figure 2).27 Although the pub-
lished FSHB promoter polymorphism was not the strongest signal in this
region, it was genome-wide significant for association with LH in our
data (P=4.84×10− 9), and nearly significant for FSH (P=2.31×10−7)
(Supplementary Table 11). Other candidate genes were identified by a
search of a 300 kb region around each signal and are listed in
Supplementary Table 10. Functional annotation of the signals with
wANNOVAR did not reveal any additional likely causative variants.

DISCUSSION

In this study of nine sex hormone-related phenotypes, we identified
three new signals and two pairs of phenotypes with
a common signal. Four of the eight significant signals reached a
conservative significance level of Po7× 10− 10, including the new
signal for progesterone. This is the first published GWAS for the
hormones progesterone, prolactin and the hormone measure FAI, and
we identified genetic associations for all except prolactin. As we are not
aware of any other genotyped cohorts with measurements for
progesterone and FAI, we have been unable to replicate these findings.
The hormones DHEAS, FSH, LH, SHBG, testosterone and oestradiol
have been included in previously published GWAS, and we have
compared our results with these existing data.2,4,7–10 This study is, to
our knowledge, one of the first published GWAS of hormones using
1000 Genomes Phase I imputed data. Three of the signals we identified
were low frequency (less than 5%) and had large effect sizes (more
than 50% change relative to standard deviation). In addition to
identifying novel signals, we also observed two previously identified
signals, demonstrating that true signals can be identified for these traits
even in modest sample sizes.
The progesterone signal (rs112295236) that we identified on

chromosome 11 was upstream of SLC22A9, which codes for an
organic anion transporter OAT7 found in the liver. OAT7 is involved
with the transport of DHEAS and oestrone-3-sulphate in exchange for
butyrate, and is thought to be important for the release of oestrogen-3-
sulphate into the blood.28 We did not find evidence to support this
hypothesis in expression data, however, such data are only currently
available for a limited range of tissues (skin, lymphoblastoid cell lines
and adipose), not including ovary, which is the main site of
progesterone synthesis. However, there was evidence of an association
between this progesterone signal and DHEAS levels in data from a
published GWAS, albeit at sub-genome-wide significance levels,4 and
DHEAS and progesterone were both strongly correlated in our study
(r= 0.60). We postulated that the progesterone variant may be
associated with phenotypic outcomes, such as offspring birth weight,
or age at menopause, but we found no associations in data from other
studies. Of course the effect size of our variant was relatively small and
we may be underpowered to detect additional phenotypic associations.
The variant associated with decreased FAI in our analyses

(rs117145500) showed some evidence of association with increased SHBG
and decreased DHEAS, consistent with the role of DHEA in testosterone
synthesis and the effect of SHBG on the amount of free androgens. This
was supported by a negative correlation of FAI with SHBG in our data
(r=−0.61) and positive correlation with DHEAS (r=0.55).
We identified a locus showing borderline significant association

with oestradiol that requires further replication. The genetic variant
associated with oestradiol (rs117585797) is a low frequency variant
(MAF= 0.013) with a large effect size, and is in an intron of the ANO2
gene on chromosome 12. A previous GWAS of oestradiol levels in
postmenopausal women did not identify any genetic variants reaching
genome-wide significance in this region, though this may have been
underpowered to detect this signal.2 Two other genes are present

within the same chromosomal region (vWF and CD9), though there is
not strong evidence to support one as a more likely candidate over the
other. VWF (47 kb away) codes for the von Willebrand factor (vWF)
protein which is involved in haemostasis, aiding platelet adhesion and
preventing factor VIII degradation. Oestradiol has been shown to
increase vWF production by endothelial cells in vitro,29 and in post-
menopausal women, oral oestrogen treatment has been shown to
increase vWF (though transdermal treatment did not show this
effect).30 CD9 (298 kb away) is a widely expressed cell surface
molecule that has been shown to be required for sperm–egg fusion in
mice.31

We provide evidence for overlap in the genetic regulation of two
pairs of hormones whose levels are strongly correlated: FSH and LH
(r= 0.63); and progesterone and DHEAS (r= 0.6). The FSH/LH
variants were in linkage disequilibrium with a functional polymorphism
(-211 G→T) in a progesterone response element of the promoter of
the FSHB gene, which codes for the beta polypeptide of FSH. In
females, FSH receptors are reported in endometrium32 and in
granulosa cells. In granulosa cells, stimulation with FSH augments
the expression of LH receptors.33 In vitro studies have demonstrated
that the allele in linkage disequilibrium with the effect alleles in our
study reduces levels of FSHB expression.34,35 Previous studies provide
conflicting data regarding the direction of effect of this polymorphism
on FSH and LH levels.27,36,37 In our study, despite a positive overall
correlation between FSH and LH levels, the genetic variants were
negatively associated with FSH and positively associated with LH.
Although this appears counter-intuitive, a similar situation is seen for
other traits, for example, genetic variants that increase fasting glucose
are not always risk factors for type 2 diabetes.38 Thus, the relationship
between FSH and LH is complex and will involve additional genetic
and non-genetic factors. A previous GWAS including FSH and LH did
not find this signal, though this study was in Chinese men10 compared
with our study of mainly female Europeans. Our study sheds light on
part of the biological interaction between FSH and LH, but further
variants need to be identified to understand this more fully.
The second pair of hormones with overlap in genetic regulation was

DHEAS and progesterone. We identified a signal for progesterone on
chromosome 7 in linkage disequilibrium with a known signal for
DHEAS, plus evidence for association of progesterone levels with six of
eight known DHEAS SNPs and of DHEAS levels with our newly
identified chromosome 11 progesterone SNP. Both progesterone and
DHEAS are steroid hormones that have a common precursor in their
synthesis pathways (pregnenolone), but neither are directly synthesised
from each other.3 These hormones were positively correlated in our
data (r= 0.60). The top signal for DHEAS in our study was
rs148982377, which tagged a polymorphism in the promoter of
CYP3A7, which was also in linkage disequilibrium with the top
progesterone signal. CYP3A7 has a progesterone response element that
is thought to regulate expression during pregnancy.39–41 In the same
region is the CYP3A4 gene, which codes for a cytochrome P450 enzyme
that metabolises progesterone, DHEAS, oestrone and testosterone.42

The main limitation of our study is the absence of suitable
replication cohorts for the hormone measures progesterone, oestradiol
and FAI. Half of the signals reached a conservative, Bonferonni-
adjusted significance level of Po7×10− 10, giving us confidence in the
findings for progesterone, DHEAS and SHBG. Although the signals for
FAI, FSH, LH and oestradiol reached a less conservative significance
threshold, there are strong arguments for the validity of less stringent
P-values in 1000 Genomes imputed GWAS.13 Further large studies are
required to enable validation of our results. Such studies should also
allow detection of new signals because the power of our study was
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limited by sample size and by the relatedness of the study individuals.
Approximately 10% of our cohort consisted of males, and thus we will
have been more likely to detect genetic effects in females than males,
though our ability to detect genetic variants affecting both sexes should
not have been affected. The cohort used in our study was of European
ancestry and as such our findings will need to be replicated in other
ethnic populations. Further GWAS studies of these hormones may
benefit from an increase in power by implementing newly emerging
multi-variate methods which would take account of correlations
between the hormones.43 Any additional studies should also consider
the need to directly quantify the effect of the variants, as it is difficult
to relate the adjusted and transformed hormone measure that we used
for our analysis to actual physiological changes. Further studies are
required to address these issues.
In this GWAS of nine sex hormone-related phenotypes, we were

able to detect three new signals (oestradiol, FAI and progesterone
traits), two pairs of signals overlapping with other traits (FSH/LH and
progesterone/DHEAS) and two signals seen before (DHEAS and
SHBG traits). We have demonstrated potential overlap in the genetics
of hormone regulation, as might be expected from common pathways
in hormone synthesis. As well as the overlap in the top signals for
DHEAS and progesterone, and FSH and LH, there were other variants
associated with more than one hormone at lower significance levels,
suggesting further commonality in hormone regulation. We identified
novel genetic variants and potential overlap in the genetic basis of
hormone regulation that will inform future studies, not only of
hormones but also of common diseases, ageing and reproductive
lifespan that include sex related hormones on the aetiological pathway.
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37 Grigorova M, Punab M, Ẑilaitienė B et al: Genetically determined dosage of follicle-
stimulating hormone (FSH) affects male reproductive parameters. J Clin Endocrinol
Metab 2011; 96: E1534–E1541.

38 Scott RA, Lagou V, Welch RP et al: Large-scale association analyses identify new loci
influencing glycemic traits and provide insight into the underlying biological pathways.
Nat Genet 2012; 44: 991–1005.

39 Burk O, Tegude H, Koch I et al: Molecular mechanisms of polymorphic
CYP3A7 expression in adult human liver and intestine. J Biol Chem 2002; 277:
24280–24288.

40 Itoh S, Yanagimoto T, Tagawa S et al: Genomic organization of human fetal specific
P-450IIIA7(cytochrome P-450HFLa)-related gene(s) and interaction of transcriptional

GWAS of reproductive hormones
KS Ruth et al

289

European Journal of Human Genetics



regulatory factor with its DNA element in the 5′ flanking region. Biochim Biophys Acta
1992; 1130: 133–138.

41 Smit P, van Schaik RH, van der Werf M et al: A common polymorphism in the CYP3A7
gene is associated with a nearly 50% reduction in serum dehydroepiandrosterone
sulfate levels. J Clin Endocrinol Metab 2005; 90: 5313–5316.

42 Kliewer SA, Lehmann JM, Milburn MV, Willson TM: The PPARs and PXRs: nuclear
xenobiotic receptors that define novel hormone signaling pathways. Recent Prog Horm
Res 1999; 54: 345–367.

43 Galesloot TE, van Steen K, Kiemeney LA, Janss LL, Vermeulen SH: A comparison of
multivariate genome-wide association methods. PLoS One 2014; 9: e95923.

This work is licensed under a Creative Commons
Attribution 4.0 International License. The images or

other third party material in this article are included in the article’s
Creative Commons license, unless indicated otherwise in the credit
line; if the material is not included under the Creative Commons
license, userswill need to obtain permission from the license holder to
reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/

Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)

GWAS of reproductive hormones
KS Ruth et al

290

European Journal of Human Genetics

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes
	Introduction
	Materials and Methods
	Study population
	Phenotypes
	Genotypes
	Statistical analysis

	Results
	Hormone phenotypes are correlated
	Three novel association signals
	Five signals in known regions

	Table 1 Correlation coefficients between the sex hormone-related phenotypes
	Table 2 Variants significantly associated with hormone levels (Plt5�&#x000D7;�10�&#x02212;�8)
	Two pairs of phenotypes have common signals
	Overlap between DHEAS and progesterone variants
	FSH and LH signals overlap with a menopause locus
	Identification of potentially causal candidate genes

	Figure 2 SNPs within 300�&#x02009;�kb of the significant signal for DHEAS on chromosome 7 (rs148982377; chr7.hg19:g.99075038�&#x02009;�TgtC).
	Figure 1 SNPs within 1�&#x02009;�Mb of the significant signal for progesterone on chromosome 11 (rs112295236; chr11.hg19:g.62915346CgtG).
	Discussion
	We thank Roche Diagnostics Australia Pty Limited, Castle Hill, Australia, who provided support for the analysis of the hormones. We thank the volunteer twins for their participation in the study. Twins UK received funding support from NIHR Biomedical Rese
	ACKNOWLEDGEMENTS




