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Abstract 

 

Down syndrome (DS) is a common, complex disorder caused by having an extra copy 

of human chromosome 21 (trisomy 21). While clinical presentation varies extensively, 

Alzheimer disease (AD) pathology is found in brains of virtually all people with DS by 

40 years. This increases their dementia risk such that one third of the DS population 

develops AD by 60 years. Therefore DS allows the investigation of pathogenetic 

mechanisms underlying its clear genetic form of early-onset AD. 

 

To model DS in mice, a ‘transchromosomic’ model, Tc1, was generated carrying a 

freely segregating copy of human chromosome 21 (Hsa21), which is trisomic for ~75% 

of Hsa21 genes. However, Tc1 is not functionally trisomic for APP. By crossing Tc1 

with the J20 model, a transgenic mouse overexpressing mutant human APP that 

models amyloid deposition, it is possible to compare contributions of trisomy 21 and 

APP/Aβ overexpression to phenotypes in the genotypically different offspring. The work 

presented in this thesis therefore characterises AD-related phenotypes in progeny of 

the Tc1xJ20 cross. 

 

I first established a primary cortical culture model from early postnatal Tc1xJ20 pups, 

which would allow the in vitro observation and manipulation of cortical neurons in a 

more accessible system compared to in vivo study. To assess the validity and utility of 

these cultures, they were characterized for APP expression, A production, proportion 

of neuronal cells in culture and levels of mosaicism for the Hsa21 chromosome. These 

in vitro phenotypes obtained were compared with relevant in vivo observations in 

Tc1xJ20 mice. Secondly, to study neuroinflammation and glial reactivity, I developed a 

digital analysis protocol to systematically quantify morphological characteristics of 

microglia and astrocytes visualized by immunohistochemistry in Tc1xJ20 brain 

sections. To further identify AD-related phenotypes that may be differentially influenced 

by genotype, I annotated data obtained from a pilot RNA sequencing study of Tc1xJ20 

hippocampal tissues, identified gene candidates of interest, and explored functions that 

may be altered by genotype by clustering differentially expressed genes by associated 

functions.  

 

These results therefore allow for discussion and evaluation of the novel Tc1xJ20 model 

for identifying novel genetic contributions of trisomy 21 on AD phenotypes, apart from 

APP.  
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NFκB  Nuclear factor kappa-light-chain-enhancer of activated B cells 

NG2  Neural/glial antigen 2 

NMDA N-Methyl-D-aspartic acid 

NP-40 Tergitol-type NP-40 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDGF-β Platelet-derived growth factor beta 

PDL Poly-D-lysine 

PEN2 Presenilin enhancer  

PER1 Period1  

PFA Paraformaldehyde  

PI Protease inhibitor 

PRMT2 Protein arginine methyltransferase 2 

PSEN Presenilin 

PVDF  Polyvinylidene fluoride  

qPCR Quantitative polymerase chain reaction 

qRT-PCR Reverse transcription quantitative polymerase chain reaction 

Rab5 Ras-related protein 5 

RCAN1 Regulator of calcineurin 1 
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RIPA  Radioimmunoprecipitation assay buffer 

RIPK4  Receptor-interacting serine-threonine kinase 4 

RNA Ribonucleic acid 

RNAi RNA interference 

RNA-seq RNA sequencing 

RT Room temperature 

S100B S100 calcium-binding protein B 

SAD Sporadic Alzheimer disease 

sAPP Soluble APP fragment 

SDS-PAGE Sodium dodecyl sulphate-polyacrylamide gel electrophoresis  

SEM Standard error of the mean 

shRNA Short hairpin RNA 

SLC17A8 Solute carrier family 17 (vesicular glutamate transporter), member 8 

SNX27 Sorting nexin 27 

SOD1 Superoxide dismutase 1 

SSC Saline-sodium citrate buffer  

SYNJ1 Synaptojanin 1 

TBE Tris/Borate/EDTA buffer 

TGF-β Transforming growth factor β  

TIAM T-cell lymphoma invasion and metastasis 

TNFR  Tumor necrosis factor receptor  

TREM2 Triggering receptor expressed on myeloid cells 2 
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Chapter 1. Introduction 

 

1.1. Down syndrome 

 

Down syndrome (DS) is a complex, heterogeneous disorder caused by the total or 

partial trisomy of human chromosome 21 (Hsa21) (Lejeune et al. 1959). 95% of trisomy 

21 is caused by the improper segregation of Hsa21 due to non-disjunction at meiosis I, 

with errors occurring primarily during maternal meiosis (S. L. Sherman et al. 2007; 

Antonarakis 1991). In addition, about 4% of cases are each due to Robertsonian 

translocations of Hsa21, or somatic mosaicism (Flores-Ramírez et al. 2015; Petersen 

and Mikkelsen 2000). DS is a common condition, with an incidence of 1 in 800 live 

births (de Graaf et al. 2015). Despite the increased availability of prenatal diagnosis 

and options for termination, DS prevalence is growing due to increasing maternal age, 

the greatest risk factor for DS (Loane et al. 2013), together with rises in DS life 

expectancy (Bittles and Glasson 2004; Yang et al. 2002). In Northern Europe, for 

example, numbers of people with DS over 40 years old have doubled since 1990, and 

in the UK this age group accounts for a third of the estimated 40,000 people with DS 

(Wu and Morris 2013). 

 

Clinical presentation of DS is complex, with a wide range of phenotypic variability 

between individuals (Jensen and Bulova 2014; Zigman 2013). A few features occur 

ubiquitously, including intellectual disability, muscle hypotonia and characteristic facial 

dysmorphology. Significantly for this project, Alzheimer disease (AD) neuropathology is 

also pervasive in individuals with DS after 35 years of age, who are also at an 

increased risk for dementia (McCarron et al. 2014). Other DS-associated phenotypes 

manifest with varying levels of penetrance and severity, such as congenital heart 

malformations in 40% of individuals, and increased risks for different forms of 

leukaemia (Freeman et al. 2008).  

 

The dosage imbalance of Hsa21, which carries 233 coding genes, 299 long non-coding 

genes (Ensembl release 78) and 29 microRNAs (miRBase release 21) (Griffiths-Jones 

2004), is likely to underlie phenotypes relating to DS (Lyle et al. 2009; Korenberg et al. 

1994). However, triplication of these genes does not inevitably lead to the expected 

1.5-fold levels of overexpression compared to euploid individuals, due to mechanisms 

of gene regulation and homeostasis, which often depend on environmental context. An 

illustration of this is shown in studies of DS fetal cortical tissue, which revealed that 

multiple Hsa21 proteins are expressed at lower or similar levels to disomic controls 
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(Cheon, Kim, Yaspo, et al. 2003; Cheon, Bajo, et al. 2003; Cheon, Kim, Ovod, et al. 

2003; Cheon, Shim, et al. 2003). Furthermore, trisomy 21 is associated with 

widespread transcriptional dysregulation, such as through epigenetic modifications of 

chromosomal domains, which may be the direct result of aneuploidy rather than 

triplication of a specific gene (Letourneau et al. 2014). Finally, DS brain gene 

expression is also characterized by accelerated epigenetic changes associated with 

aging which may exert effects on gene regulation (Horvath et al. 2015). Therefore, it is 

necessary to verify the effect of trisomy on candidate gene expression, in relevant 

tissues and contexts, before inferences can be made on whether overexpression of 

candidate Hsa21 genes in trisomy may be responsible for phenotypes associated with 

DS. This will be facilitated by characterization studies at transcriptomic and proteomic 

levels, together with meta-analyses, which provide powerful tools for understanding 

global patterns of alterations in gene expression (for example, Vilardell et al. 2011). 

 

As further elaborated below, the DS population has the most common genetic form of 

early-onset AD, caused by trisomy 21. This project therefore focuses on understanding 

how trisomy 21 may influence AD phenotypes in DS (AD-DS), allowing investigation of 

initial pathogenic events leading to AD and dementia, which will be relevant both to 

people with DS and the general population.  

 

1.2.  Alzheimer disease 

 

AD is a neurodegenerative disorder characterized by the chronic progression of 

cognitive dysfunction from memory loss to dementia, non-cognitive psychiatric 

symptoms and behavioural disturbances, together with difficulties in performing basic 

activities of daily living (Ballard et al. 2011; Burns and Iliffe 2009). AD accounts for 50-

60% of all cases of dementia (Blennow et al. 2006), which together with a globally 

aging population poses a pressing public health problem. In 2013, the worldwide 

prevalence of AD was recorded at 5 million people over the age of 65, which is 

projected to increase to 13.8 million in 2050 (Hebert et al. 2013; Thies and Bleiler 

2013). In the UK, this manifests as a prevalence of 7.1% in people over 65 years of 

age, or about 80,000 people, which is forecast to increase to over 1 million by 2025 

(Prince et al. 2014).  

 

Currently, post-mortem histological examination remains the definitive method of 

diagnosing AD, which exhibits classical pathological hallmarks such as amyloid 

pathology, including amyloid plaque deposition and cerebral amyloid angiopathy, and 
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neurofibrillary tangles (NFTs); these features are associated with glial responses, 

neuronal and synaptic loss (Serrano-Pozo et al. 2011). Amyloid plaques are formed as 

a result of the extracellular accumulation primarily of -amyloid (A) peptides with 40 

(A40) or 42 (A42) residues, which are products formed during the metabolism of 

amyloid precursor protein (APP). NFTs are comprised of paired helical filaments and 

other assembled forms of the protein tau, a microtubule-associated protein that 

becomes aberrantly folded and hyperphosphorylated in AD (Iqbal et al. 2005). 

However, the relationship between the histopathological features of AD and dementia 

is not yet clear (Castellani and Perry 2014).   

1.2.1. Proteolytic processing of amyloid precursor protein (APP) 

 

 

Figure 1.1 APP processing and cleavage products 

The amyloidogenic processing pathway is illustrated on the left, while the non-amyloidogenic 

processing pathway is depicted on the right. APP amino acid sequences for 3 domains are 

detailed in the yellow, green and purple boxes with numbering based on the APP695 isoform. 

The Aβ42 domain is detailed in the yellow box, and begins from D
1
  to A

42
. Adapted from Nhan 

et al. 2014. 
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APP, encoded by the APP gene located on Hsa21, is a type I integral membrane 

protein with its amino terminus in extracellular space and its carboxyl terminus within 

the cytosol (Dyrks et al. 1988; Kang et al. 1987). Different APP isoforms are generated 

through alternative splicing. The APP695 isoform is the most abundant isoform in the 

brain and primarily expressed in neurons, while two longer APP751 and APP770 

isoforms are expressed in other cell types. Additional isoforms, have also been 

identified although their physiological roles remain unclear (van der Kant and Goldstein 

2015).  

 

Aβ peptides found deposited in amyloid plaques are products formed during the 

proteolytic processing of APP as summarized in Figure 1.1 (Nhan et al. 2014). APP is 

processed down two principal pathways, the amyloidogenic (which generates Aβ) and 

non-amyloidogenic pathways. The non-amyloidogenic pathway commences with 

cleavage by α-secretase, comprising members of the ADAM (a disintegrin and 

metalloprotein) family, releasing sAPPα, a soluble ectodomain of APP, and a 

membrane-tethered intracellular C-terminal fragment, called α-CTF or C83. In the 

amyloidogenic pathway, cleavage by β-secretase (BACE1) yields a shorter soluble 

APPβ fragment (sAPPβ) and a longer CTFβ or C99. Following cleavage by α-

secretase or β-secretase, γ-secretase cleaves CTFs within the transmembrane 

domain. In the amyloidogenic pathway, cleavage of β-CTF yields Aβ and an APP 

intracellular domain (AICD) fragment; in the non-amyloidogenic pathway, cleavage of 

α-CTF releases a 3-kDa peptide named p3, and an identical AICD fragment. γ-

secretase is a complex consisting of presenilin (PSEN), nicastrin, anterior pharynx 

defective (APH1) and presenilin enhancer (PEN2). Unusually, -secretase is capable of 

step-wise cleavage at multiple sites within the CTF, and in A production this results in 

the generation of A peptides from 39-43 amino acids in length (Morishima-Kawashima 

2014). Besides cleavage by α-, β-, and γ-secretases, other N-terminal fragments 

(NTFs) of APP have been found in human and rodent tissues that are produced by 

unknown proteases (Vella and Cappai 2012; Portelius et al. 2010; De Chiara et al. 

2010). 
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1.2.2. Genetics of AD 

 

1.2.2.1. Familial AD (FAD) 

 

FAD can be caused by the autosomal dominant inheritance of genetic mutations, which 

collectively account for only 0.5% of all AD cases (Ryan and Rossor 2010). These 

mutations are found in three genes – APP, Presenilin-1 (PSEN1) and PSEN2 – which 

result in early-onset AD compared to sporadic AD (SAD), with an age of onset of 35-55 

years for individuals with PSEN1 mutations, and 40-70 years for APP and PSEN2-

affected individuals. Mutations relating to FAD largely increase the production of A, 

and/or alter the ratio of A42/A40 towards A42, perceived to be the more neurotoxic 

species due to its increased propensity to aggregate (Mucke and Selkoe 2012). The 

clustering of FAD mutations in the presenilin genes, as well as regions of APP close to 

secretase cleavage sites, has therefore pointed towards the importance of Aβ in AD 

pathogenesis.  

 

In addition to the point mutations described above, duplication of the wildtype APP 

locus alone (‘Dup-APP’) is also sufficient to cause a highly penetrant form of early-

onset AD (Swaminathan, Huentelman, et al. 2012; Hooli et al. 2012; McNaughton et al. 

2012; Thonberg et al. 2011; Kasuga et al. 2009; Rovelet-Lecrux et al. 2007; Rovelet-

Lecrux et al. 2006; Sleegers et al. 2006). As discussed below in Section 1.3, this is 

especially important for understanding links between AD and DS, as three copies of 

APP are also present in DS.  

 

1.2.2.2. Sporadic AD (SAD) 

 

The vast majority of AD cases are idiopathic, with SAD accounting for more than 99% 

of affected individuals. Though twin studies have shown that SAD exhibits strong 

heritability (Gatz et al. 2006), this genetic component is complex and heterogeneous. 

The strongest genetic risk factor for SAD is APOE (Saunders et al. 1993; Corder et al. 

1993), which accounts for 27.3% of the 80% estimated disease heritability (Lambert et 

al. 2013), and is determined by the presence of three major allelic variants (2, 3 and 

4). The continued search for other risk loci explaining the remaining genetic heritability 

has been driven by large collaborative genome-wide association studies, which have 

identified more than 20 different risk loci to date (Van Cauwenberghe et al. 2015). 

None of these, however, exert an effect on AD risk close in magnitude to APOE 4, but 

have pointed towards three functional clusters that may highlight mechanisms 
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underlying AD pathophysiology – cholesterol and lipid metabolism, immune system 

and inflammatory response, and endosomal vesicle cycling (Van Cauwenberghe et al. 

2015). Further efforts are currently underway to identify more rare variants, employing 

advances in massive parallel sequencing technologies (Del-Aguila et al. 2015).   

1.2.3. The amyloid cascade hypothesis  

 

Mutations leading to alterations in Aβ production are causative of FAD, lending support 

to the idea that amyloid may be pathogenic for AD. This forms the basis for the amyloid 

cascade hypothesis, which posits that A is the causative agent in AD, triggering a 

series of events leading to other pathological features downstream, including the 

formation of NFTs, cell loss and eventually dementia (Hardy and Selkoe 2002; Hardy 

and Higgins 1992). However, while FAD mutations bring forward the age of onset of 

AD, they do not appear to accelerate disease progression (Ryman et al. 2014), 

suggesting that A may be a trigger for AD pathogenesis but is not a mediator of 

downstream mechanisms underlying neurodegeneration. This is also supported by the 

poor correlation between amyloid pathology with neuronal loss and clinical symptoms 

in SAD; tau pathology is the closest neuropathological correlate with these features of 

neurodegeneration (Serrano-Pozo et al. 2011). Though the amyloid cascade 

hypothesis is currently the most widely accepted paradigm guiding investigations of AD 

pathogenesis, it has become clear that A does not cause AD via a simple linear 

toxicity pathway, but involves a complex network of pathological developments. These 

potentially include features such as neuroinflammation and oxidative stress relevant to 

aging, which remains the greatest risk factor for AD and numerous other 

neurodegenerative diseases (Abner et al. 2015). The main dispute between 

proponents of and detractors from the amyloid cascade hypothesis therefore centres 

on the necessity of A toxicity as an initial pathogenic event, amid difficulties hitherto in 

identifying A forms, models, mechanisms, and relevant time points to address this 

question (Musiek and Holtzman 2015; Herrup 2015). Nonetheless, A plaque 

pathology is indicative of the AD clinical syndrome, and the ability to study its effects 

and interactions with other pathological features will aid our understanding of their 

relative contributions to neurodegeneration, and identify areas for therapeutic targeting.  
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1.3. Alzheimer disease in Down syndrome 

 

 

Figure 1.2 Amyloid plaques and neurofibrillary tangles in the brain of a 65-year old DS 

individual 

Figure A shows plaques and NFTs in the corticomedial nucleus of the amygdala (x300). Figure 

B shows NFTs in nerve cells of the locus coeruleus. Figure C displays NFTs in a nerve cell of 

the olfactory tract. Figure D shows a plaque in the olfactory tract (Figures B to D are at x510).  

Adapted from Mann 1988a. 

 

As depicted above in, AD pathology is found in brains of virtually all individuals with DS 

by 40 years of age (Mann and Esiri 1989; Wisniewski et al. 1985). This corresponds 

with an increased risk of dementia, with dementia rates approximately doubling every 5 

years from <5% under the age of 40, to 68-80% of DS individuals over 65 years of age 

(McCarron et al. 2014; Margallo-Lana et al. 2007; Coppus et al. 2006; Tyrrell et al. 
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2001; Holland et al. 1998; Prasher and Krishnan 1993). Aging, as in SAD, therefore 

remains one of the most important risk factors for AD-DS, though variable patterns of 

onset have been observed, partially influenced by variations in survey methodology 

and diagnostic variability due to premorbid deficits (McCarron et al. 2014; Strydom et 

al. 2010). However, not all individuals convert to dementia, even by 70 years of age 

(Ghezzo et al. 2014; Krinsky-McHale et al. 2008). Sex does not influence the incidence 

of AD-DS (Coppus et al. 2006; Tyrrell et al. 2001), possibly due to changes in 

hormonal or cardiovascular biology that alter AD risk in DS, although further study is 

required to understand this (Wiseman et al. 2015). Overall, the DS population exhibits 

the most common genetic form of early-onset AD, caused by trisomy 21. Studying AD-

DS therefore allows investigations into the initial pathogenic events leading to AD and 

dementia, relevant to both people with DS and to the general population.  

 

One of the first relationships between DS and AD was established in 1984 when 

amyloid deposits isolated from DS and AD brains were shown to be homologous in 

protein sequence (Glenner and Wong 1984a), even before a missense mutation in 

APP was identified in two families with early-onset AD (Goate et al. 1991). As 

illustrated above, APP duplications are sufficient to cause early-onset FAD 

(Swaminathan, Huentelman, et al. 2012; Hooli et al. 2012; McNaughton et al. 2012; 

Thonberg et al. 2011; Kasuga et al. 2009; Rovelet-Lecrux et al. 2007; Rovelet-Lecrux 

et al. 2006; Sleegers et al. 2006). Furthermore, in a rare case of partial Hsa21 trisomy 

without the duplication of APP, no evidence of AD presentation was found in multiple 

assessments (Korbel et al. 2009). Therefore it is unsurprising that individuals with DS 

face a significantly increased risk of AD, since three copies of APP are expressed. 

However, the variable penetrance of dementia suggests that other genetic factors on 

Hsa21, and elsewhere in the genome, modulate the risk of developing AD. 

1.3.1. APP and Aβ phenotypes in DS and AD-DS 

  

In adults with DS, APP protein (Cheon et al. 2008; Rumble et al. 1989) and mRNA 

levels (Oyama et al. 1994) have been shown to be increased compared to controls in 

the cortex, generally close to the 1.5-fold levels expected with its trisomic gene dosage. 

Although not all studies have agreed on the presence of APP overexpression in DS 

(Argellati et al. 2006; Lockstone et al. 2007), a large meta-analysis of heterogeneous 

DS data sets has concluded that APP does display a gene dosage increase (Vilardell 

et al. 2011). However, in studies performed on fetal DS brains, investigations into APP 

mRNA (Argellati et al. 2006; Mao et al. 2005) and protein (Cheon et al. 2008) levels 

have suggested that there is no significant increase in expression levels at 18-19 
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weeks. This suggests a possible age-dependent increase in APP expression in DS 

individuals throughout life.  

 

Studies of DS A levels in brain and plasma have reported increases in both A40 and 

A42 in DS compared to controls (Head et al. 2011; Conti et al. 2010; Schupf et al. 

2001; Mehta et al. 1998; Tokuda et al. 1997; Teller et al. 1996), of which high A42 

levels are associated with increased AD risk (Coppus et al. 2012; Head et al. 2011; 

Jones et al. 2009; Matsuoka et al.; Schupf et al. 2007). Consistent with this, increased 

A production has been reported in DS induced pluripotent stem cell (iPSC) models 

(Murray et al. 2015; Shi et al. 2012). However, like the variable age of onset of AD-DS, 

there is wide variation in A peptide levels in DS, which together with the possible age-

dependent increase in APP expression suggests a complex underlying regulatory 

mechanism for A-mediated pathology. 

1.3.2. Features distinguishing AD-DS from other forms of AD 

 

The highly variable age of onset of dementia in AD-DS supports the notion that trisomy 

21 modulates dementia risk, as dementia in Dup-APP demonstrates complete 

penetrance by the age of 65 (Wiseman et al. 2015). People with AD-DS also present 

behavioural and psychological symptoms (BPSDs) prominently in early stages of 

disease, such as apathy, stubbornness or increased behavioural excesses, associated 

with impaired executive functioning and frontal lobe dysfunction (Oliver et al. 2011; 

Adams and Oliver 2010; Ball et al. 2008; Ball et al. 2006; Holland et al. 2000). These 

BPSDs present at higher rates than in early stages of FAD and SAD (Masters et al. 

2015; Wallon et al. 2012).  

 

While the overall distribution and composition of A plaques and NFTs in DS, FAD and 

SAD are largely similar (Goedert et al. 1992; Mann 1988a; Wisniewski and Rabe 1986; 

Glenner and Wong 1984b), subtle differences may occur in the spatio-temporal 

development of A deposition. Histological studies suggest that A deposition is 

observed earliest in the hippocampus in AD-DS (Leverenz and Raskind 1998), while in 

SAD this occurs in the basal cortex (Braak and Braak 1991); at later stages, it further 

appears that AD-DS, compared to SAD, exhibits greater plaque deposition in the 

hippocampus (Mann 1988b), and less deposition in the cortex (Egensperger et al. 

1999; Mann 1988b; Mann et al. 1987). This may be partially accounted for by the larger 

average plaque size in AD-DS compared to SAD, although it is unclear why this is the 

case – possible reasons include altered A aggregation kinetics due to overproduction 
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in APP trisomy, and altered neurodevelopment in DS resulting in changes to synaptic 

activity influencing A production (Wiseman et al. 2015). On the other hand, NFT 

development in AD-DS mirrors observations in SAD, where increases in NFT density 

correlate well with cognitive decline (Margallo-Lana et al. 2007; Wisniewski et al. 

1985). However, it has been suggested that the cortex and locus coeruleus in AD-DS 

may be less susceptible to NFT-associated pathology, including reduced cell loss and 

smaller decreases in nucleolar volume. Together, these histopathological differences 

suggest that regions of the trisomic brain may be differentially responsive to similar 

pathological hallmarks observed in AD.  

 

Vascular dementia and cerebral infarcts appear to be rare in AD-DS, compared to SAD 

(Evenhuis 1990; Mann 1988b), though cerebral haemorrhage cases relating to cerebral 

amyloid angiopathy (CAA) have been described in AD-DS (Mendel et al. 2010; Naito et 

al. 2008; Donahue et al. 1998; McCarron et al. 1998). This is particularly interesting 

considering that 20-50% of Dup-APP patients exhibit intracerebral haemorrhages 

(Lladó et al. 2014; Wallon et al. 2012; Swaminathan, Huentelman, et al. 2012; 

McNaughton et al. 2012; Kasuga et al. 2009; Rovelet-Lecrux et al. 2007; Sleegers et 

al. 2006; Rovelet-Lecrux et al. 2006), suggesting that trisomy of other regions on 

Hsa21 in DS may serve to protect against this form of pathology.  

Seizure susceptibility in adulthood appears heightened by APP duplication, as both 

AD-DS (84%) and Dup-APP (57%) exhibit significantly higher rates of seizures than 

SAD (<5-20%) (De Simone et al. 2010; Rovelet-Lecrux et al. 2006; Mendez and Lim 

2003). This suggests that duplication of APP (and of genes in adjacent loci) may be 

epileptogenic, contributing to the complex relationship between A neurotoxicity and 

hyperexcitability, which remains a poorly understood subject (Noebels 2011).  

 

Given the universal triplication of APP in trisomy 21, and AD neuropathology from 40 

years of age, the DS population presents the largest genetic population for studying 

AD, particularly through the lens of the amyloid cascade hypothesis. Understanding the 

factors underlying why not every DS individual with early extensive amyloid deposition 

converts to dementia is a key research challenge, which will provide mechanistic 

insights to inform our understanding across all genetic forms of AD.   

 

 



30 

 

1.4.  Mouse models of Down syndrome and Alzheimer disease  

 

1.4.1. Mouse models of DS 

 

Hsa21 has synteny with the mouse genome, such that its orthologous genes are 

distributed in three segments, with conserved order and gene orientation, on mouse 

chromosomes 10 (Mmu10), Mmu16 and Mmu17 (Dierssen et al. 2009; Hattori et al. 

2000); the mouse App gene lies on Mmu16. To mimic the effects of trisomy 21, several 

mouse models with precisely defined trisomies, now usually targeted by chromosome 

engineering (Tybulewicz and Fisher 2006; Brault et al. 2006), have been generated to 

provide a set of models segmentally trisomic for regions orthologous to Hsa21 

(Davisson et al. 1993; Sago et al. 1998; Olson et al. 2004; Li et al. 2007; Pereira et al. 

2009; Herault et al. 2009; Yu, Li, et al. 2010; Liu et al. 2011; Liu et al. 2014; Brault et al. 

2015).  

 

Generating a series of models with different partial trisomies creates a mapping panel 

in which individual phenotypes may be assessed in several strains, and so assigned to 

specific trisomic chromosomal region(s). As DS phenotypes likely arise from abnormal 

gene dosage, candidate genes can be chosen from the trisomic critical region, that 

when present in three copies give rise to phenotypes of interest. Individual candidate 

genes can then be studied, for example, in overexpression or knockout models, to 

assess the effects of different copy numbers of the gene 

 

Figure 1.3 provides an overview of DS mouse models and the chromosomal segments 

for which they are trisomic. Table 1.1 details the gene content for each DS mouse 

model shown, including protein-coding and non-coding genes relevant to human 

trisomy 21.  

 

 

 

 

 

 

 

 

 

 



31 

 

While numerous DS mouse models have been published, there is no single complete 

model, and the usefulness of multiple strains lies in their comparative and 

complementary use in studying genotype-phenotype relationships. DS models are also 

more advantageous than the use of transgenic mice due to the likely expression of 

trisomic genes at endogenous levels, mimicking human DS transcription. We can also 

study the interactions of Hsa21 dosage-sensitive genes with the rest of the genome 

(Hsa21 and non-Hsa21), as well as effects exerted by the presence of aneuploidy.  
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Figure 1.3 Human chromosome 21 (Hsa21), orthologous mouse chromosomes (Mmu) and key 

mouse models of Down syndrome. 

Figure from Choong et al. 2015. Diagram representing Hsa21 and its alignment with syntenic regions 

on Mmus 16, 17 and 10. The orange circle represents the human centromere and mouse models are 

colour-coded and aligned according to the chromosomal segment for which they are trisomic. 

Numbers in brackets represent the number of protein-coding Hsa21 orthologous genes within each 

region or mouse model, according to Ensembl release 79 and the breakpoints published in papers 

referenced here.  The Tc1 mouse is the only model which carries Hsa21, though genomic 

rearrangements and deletions (indicated by breaks in the chromosome) mean the mouse is 

functionally trisomic for only ~75% of Hsa21 genes (Gribble et al. 2013). All other mouse models 

carry duplications of mouse orthologues. The Dp1(16)Yey; Dp1(17)Yey;Dp1(10)Yey (or 

Ts1Yey;Ts3Yey;Ts2Yey) mouse was generated by crossing together 3 partial trisomy models (Yu, 

Li, et al. 2010) and spans the entirety of the Hsa21-syntenic regions. The Ts65Dn mouse (Davisson 

et al. 1993) contains a freely segregating segment of Mmu16, however it is also trisomic for 43 extra 

protein-coding genes on the centromeric section of Mmu17 that are not relevant to DS (indicated in 

the by an asterisk (*) and accompanying text box; Duchon et al. 2011; Reinholdt et al. 2011). The 

Ts1Cje mouse (Sago et al. 1998) also contains a monosomy of 8 protein-coding genes on Mmu12, 

irrelevant to the DS phenotype (indicated by “#” and accompanying text box. Gene numbers are 

based on Ensembl release 79, compared to the original 7 monosomic genes detailed in Duchon et 

al. 2011). Other mice are Ts1Rhr or Dp1(16)Rhr mice (Olson et al. 2004); Ts1Yah mice (Pereira et 

al. 2009); Ts3Yah (previously published as Ts2Yah) (Brault et al. 2015) and Ts4Yah mice (previously 

published as Ts3Yah mice) (Herault et al. 2009). Other useful examples of mouse models include 

the Ts43H model (not shown) which is partially trisomic for Mmu17 including some genes with 

orthologues on Hsa21 (Vacík et al. 2005). The scale is in megabase pairs (Mb). 
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Table 1.1 Trisomic regions and triplicated gene content in Down syndrome mouse models 

Models are shown in Figure 1 and compared to Hsa21 (Ensembl release 79). Table compiled by Laura Pulford (Choong et al. 2015). 

  
Protein-coding genes Non-protein-coding genes Total genes 

% Protein-

coding genes 

from Hsa21 

Hsa21 232 648 880 

DS mouse model Official MGI name* Mouse genes Hsa21 genes Mouse genes Hsa21 genes 
Mouse 

genes 
Hsa21 genes 

Tc1 B6;129S-Tc(Hsa21)1TybEmcf/J - 175 - Undetermined - N/A 75 

Dp(16)1Yey B6.129S7-Dp(16Lipi-Zbtb21)1Yey/J 149 112 112 6 261 118 48 

Dp(17)1Yey B6;129S7-Dp(17Abcg1-Rrp1b)3Yey/J 19 18 6 0 25 18 8 

Dp(10)1Yey B6;129S7-Dp(10Prmt2-Pdxk)2Yey/J 55 39 20 1 75 40 17 

Ts65Dn** B6EiC3Sn a/A-Ts(1716)65Dn 133 98 71 3 204 101 42 

Ts1Cje*** B6.Cg-T(12;16)1Cje/CjeDnJ 76 70 51 1 127 71 30 

Ts1Rhr B6.129S6-Dp(16Cbr1-Fam3b)1Rhr/J 32 30 20 0 52 30 13 

Dp(16)2Yey 129-Dp(16Tiam1-Kcnj6)6Yey/J 53 50 37 1 90 51 22 

Dp(16)3Yey 129-Dp(16Tiam1-Il10rb)8Yey/J 18 16 12 0 30 16 7 

Dp(16)4Yey 129-Dp(16Ifnar1-Kcnj6)10Yey/J 35 34 24 1 59 35 15 

Ts1Yah B6;129P2-Dp(17Abcg1-Cbs)1Yah/Orl 15 14 4 0 19 14 6 

Ts3Yah (previously 

Ts2Yah) 

B6;129P2-Dp(16Hspa13-

App)2Yah/Orl 
19 15 45 5 64 20 6 

Ts4Yah (previously 

Ts3Yah) 
B6.Cg-Dp(10Prmt2-Cstb)3Yah/Orl 54 38 20 1 74 39 16 

Trisomic/monosomic regions and gene content irrelevant to Hsa21 and its syntenic regions in mice  

Ts65Dn** B6EiC3Sn a/A-Ts(1716)65Dn 43 - 36 - 79 - 
 

Ts1Cje*** B6.Cg-T(12;16)1Cje/CjeDnJ 8 - 4 - 12 - 
 

 

*Mouse genome informatics site that includes the official mouse strain names www.informatics.jax.org; the shaded line shows number of Hsa21 genes. 

**indicates gene content of Ts65Dn and ***indicates gene content of Ts1Cje mice.
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The most complete mouse model to date, Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+, 

is trisomic for all Hsa21 syntenic regions and was generated by crossing three DS 

models segmentally trisomic for the respective Hsa21 orthologous regions on Mmu10, 

Mmu16 and Mmu17 (Yu, Li, et al. 2010; Yu, Liu, et al. 2010; Li et al. 2007). However, 

the vast majority of studies relating to AD-DS have been performed on the Ts65Dn 

mouse, which has been a ‘standard model’ of DS for many years, prior to the 

development of newer strains by chromosome engineering (Davisson et al. 1993; 

Reeves et al. 1995). Ts65Dn carries a reciprocal translocation between Mmu16 and 

Mmu17, resulting in trisomy of ~42% of the protein-coding genes orthologous to 

Hsa21. As this product contains a fusion of the distal end of Mmu16 with a small 

centromeric section of Mmu17, it also contains 79 additional genes (including long non-

coding sequences) from Mmu17 outside the Hsa21 region of synteny, which need to 

be taken into account when analysing phenotypes (Duchon et al. 2011; Reinholdt et al. 

2011). The extra triplicated genes irrelevant to DS include non-Hsa21 genes, such as 

SYNJ2 and TIAM2 that have Hsa21/Mmu16 paralogues (SYNJ1, TIAM1), which may 

complicate phenotype-genotype correlations (Duchon et al. 2011). Other triplicated 

genes in Ts65Dn irrelevant to DS include several genes encoding dynein light chains 

that may influence endosomal trafficking, and so potentially affect neuronal phenotypes 

(Hartley et al. 2015). 

1.4.2. The transchromosomic Tc1 mouse 

 

In 2005, the Tc1 mouse was generated, which carries a freely segregating, almost 

complete copy of Hsa21 (O’Doherty et al. 2005). This was possible through irradiation 

microcell-mediated chromosome transfer, a process that involves gamma irradiation to 

transfer Hsa21 into mouse embryonic stem cells. However, the irradiation also resulted 

in the generation of 41 rearrangement breakpoints, as revealed by massively parallel 

sequencing (Gribble et al. 2013). As illustrated in Table 1.4, the Hsa21 chromosome in 

Tc1 is rearranged, including a change in the position of the centromere such that the 

chromosome becomes metacentric. This also exerts effects on the expression of 

Hsa21 genes, as summarized in Table 1.2. Tc1 mice are functionally trisomic for ~75% 

of Hsa21 genes, with 9 duplicated and 50 disrupted or deleted genes (Gribble et al. 

2013). Crucially for this project, Tc1 is not functionally trisomic for APP, due to a 

rearrangement that affected the genomic position of its final coding exon on the Hsa21 

chromosome (Gribble et al. 2013; Sheppard et al. 2012). Furthermore, the Hsa21 

chromosome is lost stochastically at different rates in different mouse tissues – thus, 

Tc1 mice are mosaic for the human chromosome.  
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Figure 1.4 Proposed structure of Hsa21 in Tc1 

Regions 1-41 were determined based on FISH mapping data, and are depicted in the original Hsa21 sequence in the top row (“Reference”). In the Tc1 Hsa21 

chromosome, these regions have been rearranged as indicated.  A solid red line indicates strong certainty of the rearrangement, while the dotted red line represents 

a suggested rearrangement. Red arrows indicate inverted chromosome regions. Region 12 is triplicated but the position of the other two copies is unknown. Position 

of region 27 is unknown. The positions of acrocentric regions 1, 2, 3, 7 and 8 are unknown and are placed arbitrarily. Regions 26, 30 and 41 are duplications and 

their positions are suggested by FISH within the resolution of the technique. Regions 14, 16, 34 and 39 are deleted. Figure from Gribble et al. 2013. 
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Table 1.2 RefSeq Hsa21 genes not functionally trisomic in Tc1 

Adapted from Supplementary Table 4 from Gribble et al. 2013. 

Deleted  

 

 

  

BTG3, ATP5O, C21orf119, C21orf45, C21orf49, C21orf54, C21orf59, C21orf62, C21orf63, C21orf82, C21orf91, 

CHODL, CLIC6, CRYZL1, DNAJC28, DONSON, FAM165B, GART, GCFC1, IFNAR1, IFNAR2, IFNGR2, IL10RB, 

ITSN1, KCNE1, KCNE2, MRAP, MRPS6, NCRNA00157, NCRNA00160, OLIG1, OLIG2, RCAN1, SLC19A1, SLC5A3, 

SNORA80, SON, SYNJ1, TCP10L, TMEM50B, URB1 

Partially deleted and rearranged  COL18A1, PCBP3, RUNX1, TMPRSS15,  

Duplicated  ABCC13, C21orf131, HSPA13, NRIP1, PRMT2, RBM11, S100B, SAMSN1, USP25, 

Duplicated and rearranged BAGE, BAGE2, BAGE3, BAGE4, BAGE5 

Partially duplicated  LIPI 

Partially duplicated and rearranged C21orf34, DIP2A, NCAM2 

Rearranged APP, NDUFV3, TRPM2 
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Despite these caveats, Tc1 mice recapitulate a wide range of phenotypes relevant to 

DS, as summarised in Table 1.3. Of particular relevance to AD pathology, age-

dependent increases in phosphorylated tau and altered regulation of tau 

phosphorylation have been observed in Tc1 mice (Sheppard et al. 2012). 

 

Table 1.3 Neurological and non-neurological deficits characterized in Tc1 mice 

Neurological phenotypes  

Phenotype Deficits observed References 

Behavioural 

deficits 

Deficits in short term memory but preserved long term 

memory in novel objection recognition task  

Morice et al. 

2008; 

O’Doherty et al. 

2005 

Impaired spatial working memory but spared long-term 

spatial reference memory in Morris water maze  

Morice et al. 

2008 

Hyperactivity, abnormal exploratory behaviour and 

impaired habituation to environment open field test  

Galante et al. 

2009; 

O’Doherty et al. 

2005 

Severe deficits in motor skills and learning on static 

road and rotarod tests  

Galante et al. 

2009 

Synaptic 

plasticity 

Reduced hippocampal early long-term potentiation (1 h) 

but normal late LTP (24 h and 48 h)  

Morice et al. 

2008; 

O’Doherty et al. 

2005 

Normal basal synaptic transmission and inhibitory tone  
O’Doherty et al. 

2005 

Impaired short-term plasticity at dentate gyrus-CA3 

excitatory synapses  

Witton et al. 

2015 

No reduction in cerebellar long-term depression at 

parallel fibre-Purkinje cell synapse   

Galante et al. 

2009 

Synaptic 

architecture  

Reduced hippocampal surface membrane expression of 

the AMPAR subunit GluR1 

Morice et al. 

2008 

Loss of postsynaptic thorny excrescences from 

hippocampal CA3 dendrites 

Witton et al. 

2015 

Reduced dentate gyrus middle molecular layer (MML) 

synaptic density 

In MML, no alterations in synapse morphology 

classifications (thin, stubby, mushroom and axo-

dendritic) 

In cortical projection neurons, fewer mushroom spines 

(associated with established synaptic inputs) and 

increased stubby spines  

Haas et al. 

2013 

Cerebellar 

phenotypes  
Decreased density of cerebellar granule neurons  

O’Doherty et al. 

2005 

 

 

 

 

 

 

 

 

Table continued 

on the next 

page 
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Altered 

regulation of tau 

phosphorylation 

Tau aberrantly phosphorylated at threonine 212 in 

hippocampus and cortex of aged (20 months) but not 

young (2 months) Tc1 mice  

Sheppard et al. 

2012 

Increased protein expression of DYRK1A, a kinase that 

phosphorylates tau at threonine 212, in both young and 

old Tc1 mice. DYRK1A is trisomic in Tc1 

Aberrant phosphorylation of kinases GSK-3β and AKT 

in old but not young Tc1 mice. GSK-3β is capable of 

phosphorylating tau while AKT regulates GSK-3β 

activity 

No change in protein expression of CDK5 and its 

regulators p35/p25 in hippocampus and cortex of both 

old and young Tc1 mice 

Sleep   

Fragmented patterns of sleep-like behaviour in light 

phase of a 12:12-h light/dark cycle, and continuous 

wakefulness at beginning of dark phase  
Heise et al. 

2015 
Poorer induction of sleep-like behaviour by acute light 

pulse at night  

Non-neurological phenotypes 

Phenotype Deficits observed References 

Cardiac 

malformations 
Atrioventricular septal defects observed  

Dunlevy et al. 

2010; 

O’Doherty et al. 

2005 

Craniofacial 

morphology 

No obvious differences in overall facial bone 

morphology and skull dimensions measured by CT 

scans, with a decrease observed in one measurement 

of mandible size  

O’Doherty et al. 

2005 

Immune 

response 

Reduced T lymphocyte activation measured by CD25 

and CD69 upregulation in the spleen and lymph nodes, 

following stimulation of T cell receptors or costimulatory 

receptor CD28 

O’Doherty et al. 

2005 

Cancer 

Macrocytic anaemia and increased extramedullary 

haematopoiesis observed 

Alford et al. 

2010 

Reduced growth of transplanted lung carcinoma cells 

and repressed tumour angiogenesis  

Reynolds et al. 

2010 

Sterility Male Tc1 mice are usually sterile  Reeves 2006 

Hearing Normal hearing sensitivity and gross ear anatomy  
Kuhn et al. 

2012 

 

1.4.3. Considerations when studying AD phenotypes in DS mouse models 

 

In studying mouse phenotypes to understand AD-DS, two key issues are presented.  

Firstly, there is a need to longitudinally test DS models to identify changes in older 

mice that are not apparent at younger ages, which may indicate aging or 

neurodegenerative processes rather than neurodevelopmental deficits. Secondly, 

normal aging processes in DS need to be separated from those connected specifically 

to AD-DS. A study that has addressed both (1) neurodegenerative versus 
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neurodevelopmental and (2) normal aging versus AD phenotypes has been performed 

in the Ts65Dn mouse. This study concerned the loss of basal forebrain cholinergic 

neurons (BFCNs), and was carried out through an experimental design involving 

optimal crossing of different mouse models and assessment of the genetically distinct 

progeny (Salehi et al. 2006). Firstly, Salehi and colleagues quantified the known loss of 

BFCNs in Ts65Dn mice, and showed this loss to be age-dependent. The authors then 

compared BFCN loss between Ts65Dn and Ts1Cje mice: Ts65Dn mice lost BFCNs but 

Ts1Cje mice turned out to have no loss compared to wildtype mice. Therefore this 

mapped a dosage-sensitive critical region that had to contain a candidate gene 

relevant to phenotype. A key candidate in this region was App. By crossing Ts65Dn 

mice to heterozygous App knockout mice, the authors generated progeny that carried 

the trisomic region with either two or three copies of wildtype App.  BFCN loss was 

subsequently shown to arise mainly from having three copies of App and, further 

associated with impairments in retrograde transport of nerve growth factor, linked to 

enlarged early endosomes (Salehi et al. 2006). These have also been observed in 

individuals with DS and early AD (Cataldo et al. 2000). 

 

1.5.  Mouse models of AD 

 

1.5.1. Transgenic models of AD  

 

As the etiology of SAD is unknown, mouse models have primarily employed genetic 

mutations associated with FAD to model the disease, with the assumption that 

downstream events in familial and sporadic AD are sufficiently similar for comparison 

(LaFerla and Green 2012). AD models are primarily transgenic lines that overexpress 

one or more of the human mutant genes that cause FAD (Webster et al. 2014; Braidy 

et al. 2012). These transgenes usually insert in the genome at random sites and may 

be driven by artificial promoters, which vary in terms of their spatial and temporal 

expression patterns, usually resulting in expression at 5-10 fold levels compared to 

endogenous mouse orthologues (Hall and Roberson 2012; Balducci and Forloni 2011). 

Overexpressing wildtype human APP or mouse App does not result in amyloid 

deposition (Elder et al. 2010), hence known FAD-causing mutations in human APP 

need to be employed. However, the expression of wildtype mouse APP, or wildtype or 

mutant human APP protein can influence amyloid pathology (Kokjohn and Roher 

2009). For example, mouse APP may be processed with little BACE1 cleavage due to 

amino acid differences between the two APP species, which may consequently yield 

three times less Aβ than wildtype human APP (De Strooper et al. 1995). In addition, 
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the genetic background of AD mouse strains affects a range of APP/A phenotypes, 

including plaque deposition, APP metabolism, survival and seizure rates (Jackson et 

al. 2015; Rustay et al. 2010; Lassalle et al. 2008; Krezowski et al. 2004; Lehman et al. 

2003; Carlson et al. 1997).  

 

In general, while mutant APP transgenic mice develop robust amyloid deposition, 

synaptotoxic features and memory impairments, none of them reproduces tau-

containing neurofibrillary tangles, the hallmark pathology of AD which most closely 

correlates with dementia (Hall and Roberson 2012). The combined overexpression of 

mutant APP and mutant human tau is required to reproduce both amyloid and tau 

pathology, although tau mutations in humans do not alone cause AD, but 

frontotemporal dementia. Therefore mutant APP and presenilin transgenics may be 

best considered models of APP/Aβ overexpression than full AD. 

1.5.2. The J20 mouse model of APP/A overexpression 

 

In this project, the B6.Cg-Tg(PDGFB-APPSwInd)20Lms/2Mmjax (J20) model is used 

(Mucke et al. 2000). J20 mice express a mutant human APP transgene (Figure 1.5) 

which includes introns 6-8 allowing for the expression of all three major APP isoforms: 

APP695, APP751 and APP770 (Games et al. 1995; Rockenstein et al. 1995). 

Expression is directed by the PDGF-β promoter (Sasahara et al. 1991), which is 

neuron-specific (Figure 1.6) and expressed in the isocortex, olfactory areas, 

hippocampal formation, cortical subplate, medulla and cerebellum (Figure 1.7). The 

APP gene bears two sets of mutations, the Swedish (K670N/M671L) and Indiana 

mutations (V717F), which were previously discovered in separate families with FAD 

(Mullan et al. 1992; Murrell et al. 1991). The Swedish mutation increases A production 

by -secretase cleavage (Haass et al. 1995; Johnston et al. 1994; Cai et al. 1993; 

Citron et al. 1992), while the Indiana mutation promotes the production of A42 over 

A40 (Suzuki et al. 1994; Tamaoka et al. 1994). Incorporating both mutations therefore 

allows studying the effects of APP/A overexpression with a greater A42/A40 ratio.  
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Figure 1.5 Specificity of PDGF- immunostaining in hippocampus of nonhuman primates 

Figures A and B demonstrate strong PDGF- immunoreactivity in neurons of (A) the 

hippocampal formation and (B) CA2 region, with arrows in Figure B indicating a lack of 

immunoreactivity in glial cells (Games et al. 1995).   

 

 

Figure 1.6 Pdgfb expression in mouse brain structures as illustrated by the Allen Mouse 

Brain Atlas 

The histogram represents expression energy in each brain region, which reflects the intensity of 

expressing pixels normalized to the sum of all pixels. Pdgfb expression in a sagittal section of 

C57BL/6J mouse brain is detected in the isocortex, olfactory areas, hippocampal formation, 

cortical subplate, medulla and cerebellum. Expression is not detected in striatum, pallidum, 

thalamus, hypothalamus, midbrain and pons. 

 

 

 

Figure 1.7 Map of the APP construct used to generate J20 mice 

Adapted from Games et al. 1995. The original construct contains a PDGF-β promoter, full-

length human APP cDNA encoding the Indiana mutation (V717F), and includes genomic 

sequences for for APP introns 6-8. The Swedish mutation (K670N/M671L) was introduced into 

the transgene by PCR primer modification (Hsia et al. 1999). 
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A list of phenotypes observed in J20 mice is presented in Table 1.4 (adapted from 

Alzforum.org). Diffuse plaque deposition is observed from 5-7 months, which becomes 

widespread by 8-10 months (Mucke et al. 2000); at the latter age, synaptic loss is 

observed as detected by synaptophysin staining, although this does not correlate with 

plaque load (Wright et al. 2013). Neuronal loss in the hippocampal CA1 region is 

observed beginning from 12 weeks (Wright et al. 2013), together with impairments in 

basal synaptic transmission, long-term potentiation at the Schaffer collateral to CA1 

synapse (Saganich et al. 2006) and spatial memory deficits (Wright et al. 2013). 

Alterations in glial volume and density are observed from 3 months at pre-plaque 

stages in J20 hippocampal regions (Pomilio et al. 2015; Beauquis et al. 2014), with 

significant increases in reactive glial numbers from 6 months (Wright et al. 2013). 

These phenotypes allow the J20 mouse to be used for the study of pathogenic APP/A 

overexpression and its consequences, including effects on neural network excitability 

(Bomben et al. 2014; Rubio et al. 2012; Cissé, Sanchez, et al. 2011) and the toxicity of 

A oligomers (Mably et al. 2015). However, as seen in all APP single transgenic 

models, no NFTs are observed. J20 mice are therefore primarily models of amyloidosis 

rather than complete models of AD pathology.  
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Table 1.4 Phenotype timeline and summary of J20 phenotypes 

Adapted from Alzforum.org (http://www.alzforum.org/research-models/j20-pdgf-appswind). The 

figure below illustrates the onset of phenotypes colour-coded accordingly in the table below. 

 

 

Phenotype Details  

Plaques 

5-7 months: diffuse amyloid-β plaques deposit in the dentate gyrus 

and neocortex 

8-10 months: widespread amyloid deposition observed by this age 

NFTs Absent 

Neuronal loss 

Neuronal loss varies by brain region. 

In the hippocampal CA3 region, no neuronal loss observed up to 36 

weeks 

In the hippocampal CA1 region,  neuronal loss is observed at 12, 

24, and 36 weeks, but none at 6 weeks (Wright et al. 2013) 

Gliosis 

2-3 months: significant increase in the number of reactive GFAP+ 

astrocytes and CD68+ microglia in hippocampus 

No significant difference observed at 6 and 12 weeks (Wright et al. 

2013) 

Synaptic loss 

8-10 months: age-dependent loss of synaptophysin 

immunoreactivity in presynaptic terminals observed but does not 

correlate with plaque load (Mucke et al. 2000) 

Changes in LTP/LTD 

3-6 months: significant deficits in LTP at the Schaffer collateral–

CA1 synapse compared with control mice at 3-6 months (Saganich 

et al. 2006) 

Cognitive impairment  

Deficits in spatial memory and learning appear as the mice age. 

16 weeks: spatial reference memory deficits measured by the radial 

arm maze (Wright et al. 2013) 

6-7 months: spatial memory retention and acquisition deficits in the 

Morris water maze (Palop et al. 2003) 

 

 

 

http://www.alzforum.org/research-models/j20-pdgf-appswind
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1.6.  The Tc1xJ20 model of trisomy 21 and APP/Aβ overexpression 

 

Table 1.5 Possible genotypes in Tc1xJ20 progeny 

As Tc1 mice are not functionally trisomic for APP, crossing Tc1 with the J20 model of APP/Aβ 

overexpression allows the study of how trisomy 21 may influence AD-related phenotypes in 

Tc1;J20 compared to J20, due to genetic factors other than APP trisomy. 

 

Female 

 

Male 

 

Wt 

 

 

Tc1 

 

 

Wt 

 

Wt 

(Wildtype) 

Tc1 

(Trisomy 21) 

 

J20 
J20 

(APP/Aβ overexpression) 

Tc1;J20 

(Trisomy 21 and  

APP/Aβ overexpression) 

 

The Tc1 mouse model is trisomic for ~75% of genes on Hsa21, but is not functionally 

trisomic for APP (Gribble et al. 2013; Sheppard et al. 2012). Therefore, by crossing the 

Tc1 model of trisomy 21 to the J20 model of APP/Aβ overexpression, we can 

investigate if trisomy 21 influences amyloidosis-related phenotypes observed in J20 

mice, due to genetic factors other than APP trisomy. This is possible by characterizing 

and comparing phenotypes between the progeny produced by Tc1xJ20 mice (Table 

1.5). The colour codes in Table 1.5 will be used to represent mice of each respective 

genotype in the rest of this thesis.  
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Studies undertaken by Dr. Frances Wiseman below have demonstrated pathological 

phenotypes observed in J20 mice that are exacerbated by trisomy 21 in Tc1;J20 mice.  

 

1.6.1. Trisomy 21 exacerbates mortality associated with APP/Aβ 

overexpression 

 

 

Figure 1.8 Trisomy 21 exacerbates mortality associated with APP/Aβ overexpression 

Survival is significantly decreased between Tc1;J20 and J20 up to 15 months of age (X2 
= 3.88 

p = 0.048). 

 

As shown in Figure 1.8 Trisomy 21 exacerbates mortality associated with APP/Aβ 

overexpression, the increased mortality associated with APP/Aβ overexpression in J20 

mice is worsened by the presence of trisomy 21 in Tc1;J20 mice, though trisomy 21 

alone does not increase mortality in Wt mice. This suggests that trisomy 21 specifically 

exacerbates pathological effects of APP/Aβ overexpression, which appears to take 

effect throughout the lifespan.  

1.6.2. Trisomy 21 exacerbates behavioural deficits associated with APP/Aβ 

overexpression 

 

Trisomy 21 impairs both spatial and non-spatial short term memory deficits in Tc1;J20 

compared to J20 mice, as measured respectively by novelty preference in the 

Sanderson Y-maze (Sanderson et al. 2009) and spontaneous alternation in a T-maze 

(Deacon and Rawlins 2006). In the spatial novelty preference task, the novelty 
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preference ratio was calculated based on time spent in a novel arm compared to a 

control arm to which the mouse was previously exposed to, with 1 min inter-trial 

intervals. Tc1;J20 mice displayed deficits in short-term spatial memory as indicated by 

reduced novelty preference ratios (Figure 1.9).  

 

 

Figure 1.9 Trisomy 21 exacerbates spatial short-term memory deficits. 

In a spatial novelty preference task using the Sanderson Y-maze at 1 min inter-trial intervals, 

the novelty preference ratio (ratio of time spent in the novel arm / control arm) was specifically 

reduced in Tc1;J20 mice (2-way ANOVA trisomy 21*APP overexpression F(1,89) = 5.736 p = 

0.019). 

 

 

 

 

Figure 1.10 Trisomy 21 exacerbates non-spatial short-term memory deficits 

In a longitudinal spontaneous alternation task, trisomy 21 significantly worsened performance in 

Tc1;J20 mice (2-way ANOVA trisomy 21*APP overexpression F(1,67) = 4.706 p =0.034). 



47 

 

On the other hand, spontaneous alternation in a T-maze measures non-spatial short 

term memory using exploratory behaviour in mice, based on the willingness to explore 

new environments. With repeated trials, mice should demonstrate a reduced tendency 

to visit a previously visited arm. In Tc1;J20 mice, deficits in short term memory were 

demonstrated by reduced frequencies of visiting the less familiar arm (Figure 1.10).  

 

Trisomy 21 also aggravated hyperactive behaviour and failure to habituate to a new 

environment associated with APP/A overexpression, as indicated by an open field test 

(Wright et al. 2013). Failure to habituate was demonstrated by measurement of total 

distance travelled in a novel open field, which mice were exposed to for 10 min on 3 

consecutive days. As shown in Figure 1.11, distance travelled by Tc1;J20 mice did not 

decline with exposure and remained active throughout the 3 days of testing. The open 

field total distance travelled was significantly increased by APP/Aβ overexpression 

(F(1,78) = 26.250 p<0.001), trisomy 21 (F(1,78) = 9.246 p=0.003), and with a 

significant interaction between trisomy 21*APP/Aβ overexpression(F(1,78) = 7.818 

p=0.007), indicating that the hyperactivity caused by either trisomy 21 and APP/Aβ 

overexpression is further worsened in the presence of both conditions.  

 

 

Figure 1.11 Trisomy 21 exacerbates hyperactivity and failure to habituate to a novel 

environment. 

Total distance moved declined with exposure (exposure time in min (F(9,702) = 20.742 

p<0.001), but Tc1;J20 did not show this effect with time and remained active throughout the 

task (2-way ANOVA time*APP/Aβ overexpression*trisomy 21 F(9,702) = 3.436 p < 0.001). 
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1.6.3. Trisomy 21 accelerates Aβ accumulation  

 

Trisomy 21 strikingly accelerates A deposition, as illustrated by an increase in A 

plaque deposition in the hippocampus and cortex, in 6- and 16-month old Tc1;J20 mice 

compared to J20 mice. This is demonstrated by an increase in plaque number (Figure 

1.12-Figure 1.13) and plaque area (data not shown), following immunohistochemistry 

using Aβ antibody 6F/3D. 

 

 

 

 

Figure 1.12 Trisomy 21 significantly increases Aβ plaque deposition in the hippocampus 

of mice 

Trisomy 21 increases total plaque number at both 6 and 16 months (2-way ANOVA trisomy 21* 

APP/Aβ overexpression F(1,77) = 6.744 p = 0.011). 

 

  



49 

 

 

 

Figure 1.13 Hippocampal sections demonstrating increased Aβ plaque deposition by 

trisomy 21. 

Only mice expressing the APP transgene develop plaques, therefore no Aβ deposition was 

observed in Wt and Tc1 mice. The number of plaques was increased in Tc1;J20 compared to 

J20 mice at both 6 and 16 months of age. 
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1.6.4. Which genes on Hsa21, other than APP, exacerbate APP/Aβ-related 

phenotypes? 

 

As illustrated above, trisomy 21 is capable of exacerbating mortality, behavioural 

deficits and plaque deposition caused by APP/Aβ overexpression. Much attention in 

the group therefore has been focused on investigating the mechanisms that may 

underlie this exacerbation of Aβ accumulation, by characterizing features of Aβ 

production, clearance and aggregation, which are all factors that potentially influence 

the degree of plaque deposition. 

 

Apart from this mechanism-driven approach, the use of DS mouse models offers the 

option of mapping phenotypes to dosage-sensitive regions on Hsa21. As introduced in 

Section 1.4.3, this has been performed by reducing the expression of trisomic 

candidate genes in DS models to disomic levels by crossing DS models with mice 

heterozygous for the candidate gene. However, this approach is unfeasible for the 

high-throughput screening of candidate genes, given its demands on funding, time and 

animal use. Chapter 3 therefore describes the development of an in vitro primary 

cortical culture model for the quicker study of AD phenotypes in vitro and potential use 

in modulating candidate gene expression for mapping purposes.  

1.6.5. What phenotypes may be studied to investigate the effects of trisomy 21 

on age-dependent AD pathology?  

 

Age remains the greatest risk factor for AD and dementia, while DS has been 

characterized as a syndrome of accelerated aging in both epigenetic and clinical terms 

(Horvath et al. 2015; Zigman 2013). As Tc1xJ20 mice age, the difference in mortality 

rates between J20 and Tc1;J20 mice shows a trend of increasing from 12 months 

(Figure 1.8), although it has been difficult to demonstrate further deficits in behaviour at 

older ages due to a high floor effect in the tests performed (data not shown). While 

amyloid deposition is increased with age, amyloid burden in both patients with AD and 

AD mouse models has shown poor correlation with cognitive impairment and clinical 

progression; NFTs are the closest pathological correlate with disease. However, single 

APP transgenic models including J20 mice do not develop NFT pathology. Chapter 4 

introduces a way to systematically examine glial morphological phenotypes in Tc1xJ20 

mice with age, to contribute to future assessments of whether neuroinflammation may 

differ and interact in trisomy 21 and APP/Aβ overexpression.  
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1.6.6. How does trisomy 21 alter gene expression and what clues may this 

yield to pathophysiology? 

 

Trisomy 21 does not only alter the expression of genes on Hsa21, but influences gene 

regulation on a genome-wide scale (Letourneau et al. 2014). Following RNA 

sequencing of 3-month old Tc1xJ20 hippocampal tissue, Chapter 5 explores how 

genes are differentially expressed by trisomy 21 and/or APP/Aβ overexpression, which 

functional changes these may be associated with and the generalizability of these 

results to cortical tissues affected by similar pathology.  

 

1.7. Thesis aims  

 

This project therefore explores complementary methods to our group’s in vivo and ex 

vivo dissection of mechanisms underlying the exacerbation of amyloidosis by trisomy 

21, with the following aims:  

 

1. Develop an in vitro primary cortical cell model of AD-DS and evaluate its utility and 

limitations  

2. Systematically quantify glial morphological phenotypes across age and genotype  

3. Examine hippocampal RNA sequencing data to identify differentially expressed 

genes and associated functional clusters, and assess their relevance to cortical 

gene expression  
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Chapter 2. Materials and methods 

 

Unless otherwise stated, all reagents were obtained from Thermo Fisher Scientific 

(including Life Technologies Corporation). Double-distilled water (ddH2O) was obtained 

from a Barnstead™ Nanopure™ water purification system. 

 

2.1. Mice  

 

Maintenance of animals and all procedures performed were in accordance with the 

Animals (Scientific Procedures) Act 1986 and Home Office Project Licence number 

30/2758. 

 

2.2. Housing and husbandry of mice  

 

Mice were housed in individually ventilated cages (Techniplast) with grade 5 dust-free 

autoclaved wood bedding, paper bedding and a translucent red “mouse house”. Free 

access to food and water was provided. The animal facility was maintained at a 

constant temperature of 19-23°C with 55 ± 10% humidity in a 12 h light/dark cycle. 

After pups were weaned at 21 days, they were moved to standardized group housing 

of 5 mice per cage.  For breeding, mating cages set up contained two female Tc1 mice 

and one male J20 mouse.  

 

2.3. Culling of mice  

 

Pups aged 0-1 days (P0-1) used for primary cortical culture were culled via neonatal 

decapitation with a sharp pair of dissecting scissors. Adult mice were culled via rising 

levels of carbon dioxide followed by confirmation of death by cervical dislocation.  
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2.4. Genotyping 

 

2.4.1. DNA isolation 

 

Table 2.1 Reagents for DNA isolation 

NaOH extraction solution Tris neutralization buffer 

Stock  Vol. added Final conc. Stock Vol. added Final conc. 

2M NaOH 187.5 µl 25 mM 
1M Tris-HCl 

pH 5.5 
600 µl 40 mM 

0.5M EDTA 

pH 8.0 
6 µl 0.2mM ddH2O 14.4 ml  

ddH2O 14.8 ml     

 

 

The protocol for DNA isolation was adapted from The Jackson Laboratory 

(http://jaxmice.jax.org/support/genotyping/dna-isolation-protocols.html) and Truett et al. 

2000. ~1 mm of tissue from tail biopsies was incubated in 75 l NaOH extraction 

solution (Table 2.1) for 1 h at 98C on a hot block. Following brief centrifugation in a 

microcentrifuge to collect condensation, 75 µl Tris Neutralization Buffer (Table 2.1) was 

added, and mixed by brief vortex. Samples were centrifuged at 21130 x g for 10 min at 

room temperature (RT) to pellet tissue debris. Supernatant, containing soluble DNA, 

was removed for use in subsequent genotyping steps, while the pellet was discarded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://jaxmice.jax.org/support/genotyping/dna-isolation-protocols.html
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2.4.2. Polymerase chain reaction (PCR) for Tc1xJ20 genotyping  

 

Table 2.2 Genotyping primer sequences and volumes used in stock primer mixes 

Tc1 primer mix 

Primer name Sequence (5’  3’) 
Vol 5µM 

stock  
Vol ddH2O  

D21S55F GGTTTGAGGGAACACAAAGCTTAACTCCCA   20 µl  

140 µl 
D21S55R CAGAGCTACAGCCTCTGACACTATGAACT 20 µl 

MyoF TTACGTCCATCGTGGACAGCAT 10 µl 

MyoB TGGGCTGGGTGTTAGTCTTAT 10 µl 

    

J20 primer mix 

Primer name Sequence (5’  3’) 
Vol 5µM 

stock  
Vol ddH2O  

IMR2044 GGTGAGTTTGTAAGTGATGCC 10 µl 

140 µl  
IMR2045 TCTTCTTCTTCCACCTCAGC 10 µl 

IMR0015 CAAATGTTGCTTGTCTGGTG 20 µl  

IMR0016 GTCAGTCGAGTGCACAGTTT 20 µl 

 

All genotyping primers were purchased from Eurofins as desalted lyophilised pellets. 

These were reconstituted in ddH2O to 100 μM and stored at -20°C. Working dilutions 

were made to 5 μM with ddH2O and stored at -20°C.  

Genotyping for Tc1 and J20 genotypes was performed in separate parallel assays. 

Together with samples to be genotyped, a positive control (Tc1 or J20 DNA), negative 

control (Wt DNA) and no-amplification control (ddH2O instead of DNA) were included in 

each assay. Supernatant obtained from the DNA isolation step (Section 2.4.1) was 

diluted 1:5 in ddH2O. A PCR master mix was prepared on ice: for each sample, 8 μl 

Megamix-Blue (Microzone) was mixed with 1 μl Tc1 or J20 primer mix (Table 2.2). 9 μl 

PCR master mix and 1 μl diluted DNA were loaded into PCR tubes (Starlab), and 

placed in a thermal cycler with conditions defined in Table 2.3. Samples were 

subsequently used for agarose gel electrophoresis (Section 2.5).  
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Table 2.3 Thermal cycling programme for Tc1 and J20 genotyping 

Tc1 programme 

Step Temperature Duration (min:s) Cycles 

Initial denaturation 95ºC 3:00 - 

Denaturation 95ºC 0:30 

35  Annealing  62ºC 1:00  

Extension 72ºC 0:45 

Reaction stop 72ºC 10:00 - 

 

J20 programme 

Step Temperature Duration (min:s) Cycles 

Initial denaturation 95ºC 3:00 - 

Denaturation 94ºC 0:30 

30  Annealing  65ºC 1:00  

Extension 72ºC 0:45 

Reaction stop 72ºC 10:00 - 

 

2.5.  Agarose gel electrophoresis 

2% agarose gels were prepared by heating 2 g UltraPure™ agarose in 100 ml 1x TBE 

buffer in a microwave oven until the agarose was fully dissolved. Once cooled enough 

to handle, 5 µl 500 μg/ml ethidium bromide (Sigma-Aldrich) was added and gently 

swirled to mix. The mixture was poured into a gel casting tray and allowed to set, 

before being submerged in 1x TBE buffer in a Horizon 11·14 Gel Casting System 

(Thistle Scientific). 3 µl HyperLadder IV DNA ladder (Bioline) was loaded into the first 

well followed by each sample. DNA fragments were electrophoresed at 130 V for 70 

min, and digitally photographed under ultraviolet light using the Bio-Rad Gel Doc XR 

system with Quantity One software (version 4.5.1, Bio-Rad).  

In Tc1 genotyping, observation of a 208 bp PCR product (D21S55F/R) together with a 

245 bp product (MyoF/R) indicated a Tc1-positive genotype; the presence of the 245 

bp product alone indicated a Tc1-negative genotype. For J20 genotyping, observation 

of a 360 bp PCR product (IMR2044/5) together with a 200 bp product (IMR0015/6) 

indicated a J20-positive genotype; the presence of the 200 bp product alone indicated 

a Tc1-negative genotype. 
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2.6. Quantitative PCR (qPCR) for J20 APP transgene copy number  

 

Table 2.4 Primers and probes for J20 APP transgene copy number qPCR 

Primer/Probe Detects 
5’ probe 

label 
Sequence (5’  3’) 

3’ probe 

label 

oIMR1544 
APP 

transgene 

 CACGTCGGCTCCAGCATT  

oIMR1545  TCACCAGTCATTTCTGCCTTTG  

TmoIMR0076 6-FAM TGGGTTCAAACAAAGGTGCAA TAMRA 

oIMR5260 
Endogenous 

Apob 

 GATGAAGATCACTGTCGCTATGAC  

oIMR5261  CATTGGACTCATGGTGGGCGGTG  

TmoIMR0107 VIC CCAATGGTCGGGCACTGCTCAA TAMRA 

 

Table 2.5 Master mix (per well) for J20 APP transgene copy number qPCR 

Component Volume (µl) per well Working conc. (µM) 

oIMR1544 0.25 0.40 

oIMR1545 0.25 0.40 

TmoIMR0076 0.75 0.15 

oIMR5260 0.25 0.40 

oIMR5261 0.25 0.40 

TmoIMR0107 0.75 0.15 

ddH2O 2.5 - 

TaqMan Universal PCR Master Mix 10 1x 

Total volume 15 - 

 

This protocol was adapted from that published by Jackson Laboratory 

(http://jaxmice.jax.org/protocolsdb/f?p=116:2:0::NO:2:P2_MASTER_PROTOCOL_ID,P

2_JRS_CODE:16584,006293), and relies on the relative quantification of the APP 

transgene to internal endogenous control, Apob, in multiplex reactions.  

 

DNA isolated from tail biopsies (Section 2.4.1) was diluted 1:20 in ddH2O prior to use. 

As a positive control, J20 DNA with known copy number levels was obtained from 

Jackson Laboratory. A blank control was also included, where DNA was replaced with 

ddH2O. A master mix was made up comprising TaqMan Universal PCR Master Mix, 

primers and probes for Apob and the J20 APP transgene as detailed in Table 2.5. 5 µl 

of each diluted DNA sample was run in triplicate in a 96-well plate for qPCR (Starlab). 

7500 Software v2.0.1 was used to set up a standard (2 h) run, using default baseline 

and threshold settings and the following cycling conditions (Table 2.6). 

 

 

 

 

 

http://jaxmice.jax.org/protocolsdb/f?p=116:2:0::NO:2:P2_MASTER_PROTOCOL_ID,P2_JRS_CODE:16584,006293
http://jaxmice.jax.org/protocolsdb/f?p=116:2:0::NO:2:P2_MASTER_PROTOCOL_ID,P2_JRS_CODE:16584,006293
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Table 2.6 Thermal cycling programme for J20 APP transgene copy number qPCR 

Step Temperature Duration (min:s) Cycles 

1 50ºC 2:00 - 

2 95ºC 10:00 -  

3 95ºC 00:15  
40 

4 60ºC 1:00 

 

 

To determine APP transgene copy number levels relative to Apob, average CT values 

for Apob were subtracted from those of the APP transgene. This was expressed as a 

percentage of the normalised APP CT observed in the positive control DNA. Tail 

biopsies expressing average APP CT levels lower than 80% of positive control were re-

tested, and the mouse was excluded from further experiments if APP transgene 

expression was shown repeatedly to be lower than 80% of positive control.  

 

2.7. Primary cortical culture  

 

2.7.1. Preparation of 13-mm coverslips and 12-well plates  

 

12-well plates (SLS) and autoclaved 13-mm glass coverslips (VWR International), 

individually contained in 24-well plates (Appleton Woods), were coated with 30 g/ml 

poly-D-lysine (PDL) in sterile distilled water for 2 h in a 37C, 5% CO2 incubator. These 

were washed three times with sterile distilled water and air-dried in a sterile cell culture 

laminar flow hood before use.  

2.7.2. Isolation and culture of primary cells 

 

Table 2.7 Primary cortical culture media 

Dissection Medium Plating Medium Maintenance Medium 

500 ml HBSS 

5 ml HEPES 

5 ml GlutaMAX™ 

5 ml Sodium pyruvate 

5 ml Penicillin-Streptomycin 

500 ml DMEM 

50 ml FBS 

5 ml GlutaMAX™ 

5 ml Sodium pyruvate 

1 ml Penicillin-Streptomycin 

500 ml Neurobasal®-A 

10 ml B-27® 

5 ml GlutaMAX™ 

1 ml Penicillin-Streptomycin 

 

Primary cortical cultures were prepared from pups culled by decapitation at post-natal 

day 0-1 (P0-1, within 48 h of birth). Heads were briefly rinsed in 70% ethanol/ddH2O 

before being transferred to Dissection Medium, which was kept cold on ice prior to 

dissection. Tail biopsies were obtained for genotyping. As litters from the Tc1xJ20 

colony result in offspring with four potential genotypes, each mouse brain was 

processed independently during primary culture, before their genotypes were identified. 
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A maximum of eight pups was used per culture to minimise cell stress due to long 

processing times.  

 

Under a stereoscopic microscope, mouse brains were removed from skulls and 

transferred to new 6-cm petri dishes (Scientific Laboratory Supplies Ltd) with ice-cold 

Dissection Medium (Table 2.7). Using #5 and #5/45 forceps (Fine Science Tools), 

brains were divided into sagittal halves before overlying meninges were carefully 

removed as completely as possible. The hippocampus was dissected out, followed by 

cortical tissue. Cortical tissue was then cut into segments of ~1 mm in length. After 

three washes in 1 ml ice-cold Dissection Medium, cortical segments were incubated in 

0.25% trypsin and 0.02% DNAse I in 1 ml Dissection Medium for 10-15 min in a 37ºC 

water bath. Each tube was inverted at 5-7 min of incubation to ensure mixing. Digested 

tissue was then washed three times in 1 ml Plating Medium (Table 2.7) pre-warmed to 

37C.  

 

Tissues were subsequently dissociated by gentle trituration through autoclaved fire-

polished glass pipettes (Sigma-Aldrich), with 8-10 passages up and down each pipette. 

Care was taken not to produce air bubbles. Samples in queue were stored in an 

incubator at 37C, 5% CO2. The crude suspension was left standing until visible tissue 

debris had settled.  

 

To quantify the number of viable cells in the suspension, 10 µl 0.4% Trypan Blue 

(Sigma-Aldrich) was added to an equivalent volume of cell suspension, gently mixed by 

pipetting and loaded onto a c-chip haemocytometer (INCYTO). Under 10x 

magnification on a bright field microscope, the total number of white, intact cells in the 

4 corner grids of 16 squares was counted. As each corner grid is equivalent to the 

number of cells x 10,000/ml, the total number of viable cells per ml of suspension was 

calculated by averaging the 4 corner grids and multiplying by 2 to account for the 1:2 

dilution factor. 

 

The cell suspension was seeded at the following concentrations, to ensure similar 

plating densities across both PDL-coated 12-well plates and 13-mm coverslips. In 12-

well plates, 60,000 cells were seeded per well in 1 ml of Plating Medium. For 13-mm 

coverslips placed in a 24-well plate, a stock solution was first made at a density of 

25,000 cells/100 l Plating Medium per coverslip. 100 l of this stock was then seeded 

per coverslip as a bubble. Cultures were incubated at 37ºC, 5% CO2 for 2 h to ensure 

cell adherence. In 12-well plates, the Plating Medium was replaced with 2 ml 
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Maintenance Medium (Table 2.7) pre-warmed to 37C. In the 24-well plate containing 

coverslips, 1 ml of Maintenance Medium was direct supplemented into each well. 

Cultures were maintained at 37ºC, 5% CO2 and used for experiments from 14 days in 

vitro (DIV). At 7 DIV, 50% of the initial volume of Maintenance Medium used was 

supplemented to each well.  

2.7.3. Collection of media and cell lysates 

 

At 14 DIV, media was collected in 1 ml aliquots from 24-well plates containing seeded 

coverslips, and kept on ice. Tubes were centrifuged at 5525 x g at 4C for 5 min to 

pellet cell debris. Supernatant was transferred into fresh tubes and flash frozen in dry 

ice, before storage at -70 C.  

 

Cells were lysed and harvested for DNA or protein analysis from 12-well plates. 

Following the removal of cell media, each well was rinsed once with sterile PBS. To 

harvest cells for protein analysis, cells with ice-cold RIPA buffer (150 mM sodium 

chloride, 50 mM Tris, 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl 

sulphate) supplemented with Protease Inhibitor Cocktail Set I (PI, Merck Millipore) and 

removed using a cell scraper. To concentrate cell lysates obtained, 80 µl RIPA+PI 

buffer was shared between three wells in 12-well plates; RIPA+PI buffer used in the 

first well was scraped, pipetted into a second well, scraped and transferred for a third 

well, before being pooled together in an Eppendorf tube on ice. To reduce viscosity, 

lysates were treated with 1 µl Benzonase® (Novagen) for 15 min on ice, with inversion 

at 7-8 min. Lysates were centrifuged at 21130 x g for 15 min at 4C to pellet cell debris. 

The supernatant was transferred to a new tube, flash-frozen in dry ice and stored at -

70C.  

 

To harvest cells for DNA analysis, 75 µl of NaOH extraction buffer (Table 2.1) was 

used in place of RIPA buffer to lyse and scrape cells for collection. DNA extraction was 

subsequently performed as described in Section 2.4.1. 

 

2.8.  qPCR for Tc1 mosaicism  

 

qPCR was used to compare relative expression of Hsa21- and mouse-specific genes 

in Tc1-positive cells, which are mosaic for the human chromosome. The genomic 

expression of human CLDN8, an Hsa21-encoded gene, was quantified by standard 

curve and expressed as a proportion of a mouse gene, Apob. Primer and probe 
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sequences were designed using Primer Express 3.0.1 software across exon-intron 

boundaries, against a series of Hsa21 genes intact in the Tc1 chromosome (Gribble et 

al. 2013). The specificity of these sequences for human and not mouse DNA was 

tested in silico using Electronic PCR (NCBI). CLDN8 was subsequently selected for 

this assay due to its specificity for human DNA and acceptable primer and probe 

properties for qPCR (Table 2.8). Primers for CLDN8 were obtained from Eurofins, while 

the probe was obtained from Life Technologies. 

 

Table 2.8 CLDN8 primers and probe 

Primer 

/Probe 
Sequence 

TM 

(ºC) 
%GC Length 

Forward 

primer 
GCTTCCCAGGTAAAAGCAATCTT 58.8 43 23 

Reverse 

primer 
TGGGACCAAGGGATAAAATAAATTAT 58.2 31 26 

Probe  AATCCCCTACTCTCGTTTCACTTTGGCATTTC 69.4 44 32 

 

To confirm the specificities of the primer and probe sequences for CLDN8 and Apob to 

human and mouse DNA respectively, human genomic DNA (kindly provided by Gary 

Adamson) and DNA from wildtype mouse tail biopsies were used across 

concentrations ranging from 1.56-100 ηg/µl in multiplex qPCR. A confirmed human-

specific qPCR primer and probe mix for Rnase P was used as a positive control for 

human DNA. qPCR cycle conditions used were identical to those described in Table 

2.6. 

 

To quantify mosaicism in DNA obtained from primary cortical cells, an eight-point 

standard curve was created for each assay plate using a mixture of human DNA and 

mouse DNA. The standard curve for human DNA included concentrations at 10, 7.5, 5, 

2.5, 1.25, 0.625, 0.313 and 0.156 g/l, while those for mouse DNA were 60, 40, 20, 

10, 5, 2.5, 1.25 and 0.625 g/l. Each standard and cell DNA sample was performed in 

triplicate. A master mix was made comprising TaqMan Universal PCR Master Mix, 

primers and probes for CLDN8, and Apob or RNASEP (Table 2.9). qPCR cycle 

conditions used were identical to those described in Table 2.6. 
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Table 2.9 Master mix (per well) for mosaicism qPCR 

Component Volume (µl) per well Dye and Quencher 

CLDN8 forward primer 0.1875  

CLDN8 reverse primer 0.1875  

CLDN8 probe 0.5625 FAM and TAMRA 

Apob forward primer 0.1875  

Apob reverse primer 0.1875  

Apob probe 0.5625 VIC and TAMRA 

ddH2O 4.625  

TaqMan Universal PCR Master Mix 7.5  

Total volume 14  

 

Standard curves for both human and mouse genomic expression were presented as 

semi-log regression line plots of CT values against log concentration of standards. The 

accuracy of standard curves was only acceptable if the correlation coefficient (R2) of 

regression lines was >0.99. CT values were first checked to ensure they fell within the 

range of the standard curve. The concentrations of CLDN8 and Apob gene content 

were then calculated from the equation of the regression line plot.  

 

2.9.  RNA extraction from adult mouse cortical tissue  

 

RNA extraction was performed on cortical tissue in a fume hood decontaminated with 

RNaseZap® to remove RNases. Frozen cortical tissue (not allowed to thaw) from one 

hemisphere per mouse was homogenised using a TissueRuptor homogenizer 

(QIAGEN) in 700 µl QIAzol Lysis Reagent (QIAGEN), in 15 ml Falcon tubes. 

Homogenised tissue was allowed to stand at RT for 5 min to promote the dissociation 

of nucleoprotein complexes, before removing 300 µl to be flash-frozen and kept as 

stock at -70ºC. 80 l chloroform was added to the remaining 400 µl homogenate, 

vigorously shaken by hand for 15 s, and left to stand for 3 min at RT. To separate the 

mixture into phases, homogenates were centrifuged at 6000 x g for 45 min at 4C. The 

uppermost layer containing a colourless aqueous phase was transferred to a new 

collection tube, avoiding contamination by the lower phases. 1.5 volumes of 100% 

ethanol was added to each tube, and mixed by pipetting. This mixture was used for 

total RNA purification in subsequent steps. 

 

Total RNA purification was performed with the miRNeasy Mini Kit (QIAGEN), which 

allowed the purification of total RNA of ~18 nucleotides and above. Centrifugation 

steps were modified from the manufacturer’s protocol. Samples obtained from RNA 

extraction were loaded onto spin columns provided in the kit and centrifuged at 5600 x 

g for 2 min at RT. 700 µl RWT Buffer was loaded into the spin columns and centrifuged 
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at 10,000 x g for 15 s at RT. This was repeated with 500 µl RPE Buffer. A second wash 

with 500 µl RPE Buffer was performed with centrifugation at 10,000 x g for 2 min at RT. 

Spin columns were transferred to a new collection tube. RNA was eluted by the 

addition of 50 µl RNase-free water and centrifugation at 10000 x g for 1 min at RT. 

Freshly-eluted RNA was kept on ice for further use, or flash-frozen in dry ice for 

storage at -70 C.  

 

2.10. Determining concentration and purity of nucleic acids 

 

Nucleic acid concentration was determined by measuring absorbance at 260 nm (A260) 

using a NanoDrop™ ND-1000 spectrophotometer (NanoDrop Technologies). The ratio 

of absorbance at 260 nm and 280 nm was used to assess the purity of DNA and RNA. 

For pure DNA and RNA, the A260/A280 ratio was expected to be ~1.8 and ~2.0 

respectively.  

 

2.11. Reverse transcription with elimination of genomic DNA 

 

Reverse transcription of RNA was performed with the QuantiTect® Reverse 

Transcription Kit (QIAGEN), on bench space decontaminated with RNaseZap® to 

remove RNases. To control for potential genomic DNA contamination, “no amplification 

controls” were carried out in parallel with all reverse transcription RNA samples; these 

controls replaced reverse transcriptase with RNase-free water in assays.  

 

All steps were performed according to the manufacturer’s protocol. RNA samples were 

thawed on ice and aliquots were diluted with RNase-free water to make 2 µg in 24 µl. 

To eliminate genomic DNA, 4 µl gDNA Wipeout Buffer was added to each aliquot of 

diluted RNA, incubated for 2 min at 42C, before being held on ice. Two sets of master 

mixes were made for reverse transcription and for “no amplification controls”, 

comprising Quantiscript reverse Transcription buffer, reverse transcription primer mix, 

and either Quantiscript reverse transcriptase or RNase-free water respectively (Table 

2.10). 14 µl RNA samples were incubated with 6 µl of their respective master mixes for 

15 min at 42C for reverse transcription, followed by 3 min at 95C to inactivate reverse 

transcriptase. cDNA obtained was used directly for qPCR or stored at -20C. 
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Table 2.10 Master mixes for reverse transcription and “no amplification controls” 

Component 

Reverse transcription 

master mix  

/ sample (µl) 

“No amplification 

control” master mix / 

sample (µl) 

Quantiscript reverse transcriptase  1 0 

RNase-free water 0 1 

5x Quantiscript reverse 

transcription buffer  
4 4 

Reverse transcription primer mix 1 1 

Total volume  6 6 

 

2.12. Reverse transcription qPCR (qRT-PCR)  

 

Cortical and hippocampal cDNA obtained following reverse transcription (Section 2.11) 

was used to quantify candidate gene RNA expression. cDNA was diluted 1:10 in 

ddH2O for initial experiments, though the assays for Arc required the use of more 

concentrated cDNA. An eight-point standard was created for each assay plate using 

wildtype cortical or hippocampal cDNA accordingly, starting from 50 ηg/µl to 0.39 ηg/µl 

in 1:2 serial dilutions in ddH2O. All cDNA samples were run with no amplification 

controls, with all samples, controls and standards in triplicate.  

 

All mouse primer/probe sets for genes of interest, apart from App, were obtained from 

Life Technologies. Mouse Gapdh and Actb were used as endogenous reference 

genes. Details for primers and probes used are listed in Table 2.11. Master mixes for 

qPCR reactions are listed in Table 2.12. qPCR cycle conditions used were identical to 

those described in Table 2.6. 
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Table 2.11 Primers and probes for qRT-PCR 

Primer/Probe 
5’ probe 

label 
Sequence (5’  3’) 

3’ probe 

label 

App forward primer - CTCCAGCCGTGGCACC - 

App reverse primer - AGTCCTCGGTCAGCAGCG - 

App probe  FAM ACTCTGTGCCAGCCAATACCGAAAATGA TAMRA 

    

Gene 
5’ probe 

label 
Product number (Life Technologies) 

3’ probe 

label 

Actb VIC 4352341E MGB 

Arc FAM Mm01204954_g1 MGB 

Chrm4 FAM Mm00432514_s1 MGB 

Dusp1 FAM Mm00457274_g1 MGB 

Egr1 FAM Mm00656724_m1 MGB 

Fos FAM Mm00487425_m1 MGB 

Gapdh VIC 4352339E MGB 

Per1 FAM Mm00501813_m1 MGB 

Snx27 FAM Mm01261511_mH MGB 

 

Table 2.12 Master mix (per well) for qRT-PCR 

Component Volume (µl) per well Final conc. 

TaqMan Universal PCR Master Mix 7.5 1x 

Gapdh/Actb assay (20x) 0.3 0.4 M 

Candidate gene assay (20x) 0.3 0.4 M 

ddH2O 0.4 - 

Total volume 14 - 

 

 

2.13. Protein extraction from adult mouse hippocampal and 

cortical tissue  

 

Frozen cortical and hippocampal tissue were thawed on ice. Tissues were 

homogenised using a TissueRuptor homogenizer (QIAGEN) in RIPA buffer with 

protease inhibitor cocktail I (Section 2.13). Hippocampal tissue was lysed in 100 µl 

RIPA+PI buffer, while cortical tissue was lysed in 500 µl. Homogenates were aliquoted 

and kept on ice for subsequent use, or flash-frozen in dry ice for storage at -70 C. 
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2.14. Quantifying protein concentration in brain homogenates and 

cell lysates 

 

To determine total protein concentration in brain homogenate, Bio-Rad protein assay 

dye reagent concentrate was used (Bio-Rad). For cell lysates, the more sensitive 

QuantiProTM BCA Assay Kit (Sigma-Aldrich) was used. Both methods were compatible 

with RIPA as the lysis buffer.   

 

The Bio-Rad microassay procedure was used according to manufacturer’s protocol. 

BSA standards in PBS were made up at 1000, 500, 400, 300, 200, 100, 50, 25 and 0 

mg/ml. Brain homogenates in RIPA buffer were completely thawed on ice, and 

thoroughly mixed by vortex. The Bio-Rad reagent was diluted 1:5 in ddH2O, while 

homogenate samples were diluted 1:5 in RIPA. 5 µl of diluted samples or standards 

were mixed with 200 µl of diluted reagent per well in a clear 96-well plate (Greiner Bio-

one), with each sample or standard in triplicate. The plate was incubated for 10-15 min 

at RT, with gentle agitation on a platform shaker. Absorbance at 595 nm was 

measured in a TECAN plate reader (Sunrise).  

 

To determine cell lysate protein concentration, the QuantiProTM BCA Assay Kit was 

used as it was a more sensitive assay allowing the dilution of cell lysates at 1:200. Cell 

lysates were diluted 1:200 in ddH2O prior to use (2.5 µl sample, 497.5 µl ddH2O), and 

the assay was performed according to the manufacturer’s protocol. Standards were 

made using the protein standard provided (Sigma-Aldrich P0914, 1.0 mg/ml BSA in 

0.15 M sodium chloride, 0.05% sodium azide) at concentrations of 300, 200, 100, 50, 5 

and 0 µg/ml. 150 µl of diluted sample or standard and 150 µl Working Reagent were 

mixed per well in a clear 96-well plate, in triplicate. Plates were sealed and placed on a 

hot block at 60C for 1 h. After cooling to room temperature, plates were briefly 

centrifuged to collect condensation, and absorbance at 562 nm was measured in a 

TECAN plate reader (Sunrise).  

 

In both protein quantification assays, protein concentration was calculated from the 

regression line plot obtained by plotting standards against absorbance signal. 

Standards were only deemed accurate enough if correlation coefficients (R2) exceeded 

0.99. 
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2.15. Western blots 

 

2.15.1. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) 

 

Samples for protein analysis were prepared by the addition of LDS Sample Buffer (final 

dilution 1:4) and -mercaptoethanol (final dilution 1:10) to working concentrations, 

generally 2 µg/µl. Prior to SDS-PAGE, samples were boiled for 10 min at 100C on a 

hot block. Following brief centrifugation to collect condensation, samples were loaded 

onto pre-cast NuPAGE Novex 4-12% Bis-Tris 1.0 mm protein gels, in an XCell 

Surelock™ Mini-Cell Electrophoresis System, containing 1x MES SDS running buffer. 

SeeBlue® Plus2 pre-stained protein standard was used as a molecular weight marker. 

Gels were electrophoresed at 130 V for 90 min.  

 

2.15.2. Transfer of proteins to membranes by electroblotting 

 

Following SDS-PAGE, proteins separated down the gel were electroblotted onto PVDF 

or nitrocellulose (Pall) membranes. PVDF membranes were pretreated by soaking in 

100% methanol for 30 s, ddH2O for 5 min and left to equilibrate in Tris-Glycine Transfer 

Buffer (100 µl 10x Tris-Glycine Transfer Buffer (Geneflow), 200 µl methanol, 700 µl 

ddH2O) for 5 min. No pretreatment was necessary for nitrocellulose membranes. Six 

sponge pads and four pieces of filter paper (Sigma-Aldrich) in matching sizes were 

also soaked in Transfer Buffer prior to use. The gels, sponges and filter paper were 

assembled in the electrophoresis system with care to remove air bubbles that would 

interfere with electroblotting. The system was rinsed with ddH2O to remove excess 

MES buffer prior to inserting the blot module. Transfer Buffer was poured into the blot 

module, checked for leakage, before the rest of the tank surrounding the module was 

filled with ddH2O. Electrophoresis was performed at 35 V for 2 h at RT.  

 

2.15.3. Immunodetection  

 

Membranes were removed from the electrophoresis system and placed into separate 

square petri dishes. To reduce non-specific antibody binding, membranes were 

blocked with 5% skim milk powder or 5% BSA, both diluted in PBS-T (100 ml 10x PBS, 

900 ml ddH2O, 500 µl Tween® 20 (Acros Organics)), for 1 h at RT with gentle agitation 

on a platform shaker. Membranes were rinsed in PBS-T before being divided into strips 
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across appropriate molecular weight markers. Incubation was performed with primary 

antibodies (Table 2.13) diluted in 1% BSA/PBS-T overnight at 4°C, with gentle 

agitation. At RT, membranes were then washed three times in PBS-T over 45 min, 

before incubation with secondary antibodies (Table 2.13) in 1% BSA/PBS-T for 1 h at 

RT. Infrared dye-conjugated secondary antibodies (LI-COR) were protected from light 

during incubation by wrapping dishes with aluminium foil. This was followed by a 

further three washes in PBS-T over 45 min, and one wash with ddH2O. 

 

Table 2.13 Primary and secondary antibodies used for western blots 

Primary antibodies 

Antibody/Antigen Host Dilution Supplier Product no. Remarks 

APP (C-terminal) Rabbit 1:5000 (cells)  
Sigma-

Aldrich 
A8717 Polyclonal 

BACE1 Rabbit 1:5000 (cells) Abcam Ab108394 Polyclonal 

3-tubulin Mouse 
1:5000 (cells, 

homogenate) 
DSHB E7-c Monoclonal 

-Actin Mouse 

1:80000 

(cells, 

homogenate) 

Sigma-

Aldrich 
A5441 Monoclonal 

-Amyloid 1-16 

(6E10) 
Mouse 1:1000 (cells) Covance SIG-39320 

Monoclonal, 

detects 

human APP 

GAPDH Rabbit 

1:50000 

(cells, 

homogenate) 

Abcam Ab9485 Polyclonal  

GFAP Rabbit 
1:5000 (cells, 

homogenate) 
Dako Z0334 Polyclonal 

S100 Rabbit 
1:5000 

(homogenate) 
Abcam Ab52642 Monoclonal 

      

Secondary antibodies 

Antibody/antigen Conjugate Dilution Supplier Product no. Remarks 

Anti-mouse HRP 1:10000 Dako P0260  

Anti-rabbit HRP 1:10000 Dako P0448  

Anti-mouse 
IRDye 

800CW 
1:10000 LI-COR 926-32210  

Anti-mouse 
IRDye 

680LT 
1:10000 LI-COR 926-68020  

Anti-rabbit 
IRDye 

800CW 
1:10000 LI-COR 926-32211  

Anti-rabbit 
IRDye 

680RD 
1:10000 LI-COR 926-68071  
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2.15.4. Visualisation and quantification of protein bands  

 

Proteins incubated with secondary antibodies conjugated to infrared dyes (IRDye, LI-

COR) were visualized using the Odyssey Infrared Imaging System (LI-COR), at 

medium scanning quality. Intensity settings for the 700 nm and 800 nm channels were 

adjusted accordingly for optimal signal. Images were directly acquired and saved using 

the Odyssey software. Densitometric analysis of protein bands of interest was 

performed by encompassing bands of interest and background signal in selection 

rectangles of the same size. Background signal was then subtracted from signal 

obtained from each protein band.   

 

Proteins incubated with secondary antibodies conjugated to horseradish peroxidase 

(HRP) were visualised using SuperSignal™ West Pico Chemiluminescent Substrate to 

produce a chemiluminescent signal, exposed to X-ray film (General Electric), and 

developed and fixed with an Xograph Imaging Machine (Xograph Imaging Systems). 

Developed blots were scanned for digital analysis using an HP Scanjet N6350 scanner. 

After importing into ImageJ software (National Institutes of Health, USA) and 

converting into 8-bit images, densitometric analysis was performed using the same 

principles as those described in Odyssey.  

2.15.5. Loading controls 

 

In all western blots, variations in amount of protein loaded were controlled for by 

normalising signals obtained from protein bands of interest to endogenous 

housekeeping proteins, -Actin or GAPDH.  

 

2.16. Quantification of A peptides 

 

To quantify A38, A40 and A42 peptide levels, the V-PLEX Aβ Peptide Panel 1 

(6E10) Kit (Meso Scale Diagnostics) was used according to the manufacturer’s 

protocol. Conditioned media collected from primary cortical cultures was thawed 

completely in ice and mixed by vortex. 1000 ml wash buffer (PBS-T) was made 

comprising 1x PBS and 0.05% Tween-20, and dispensed into a squeeze bottle. 8-point 

calibrator standards for each of the three peptides were made up as 1:2 serial dilutions 

in Diluent 35. Conditioned media samples were also diluted 1:2 in Diluent 35, making 

up 200 µl per sample. Detection antibody solution and read buffer were also diluted 

according to manufacturer’s protocol.  
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150 µl Diluent 35 was added per well for blocking, and incubated for 1 h at RT with 

agitation on a platform shaker.  Wells were subsequently washed three times in wash 

buffer. 25 µl detection antibody solution was added to each well, followed by standards 

or samples, in triplicate. This was left to incubate for 2 h at RT on a shaker. During this 

time, concentration values for each A standard, as well as the layout of samples, were 

programmed into the MSD Discovery Workbench® analysis software (Meso Scale 

Discovery). After incubation, wells were washed three times in wash buffer. 150 µl 2x 

Read Buffer T was added quickly but carefully to avoid air bubbles, and the plate was 

immediately read by the MSD imager.  

 

2.17. Immunostaining of cultured cells  

 

2.17.1. Fixing of cells  

 

Primary cortical cultures were grown on PDL-coated 13 mm coverslips, each contained 

in a well of 24-well plates, as described in Section 2.7. To fix cells, culture media was 

removed and wells were washed once with sterile PBS (Sigma-Aldrich). Coverslips 

were then fixed in 4% paraformaldehyde (6 ml 10% PFA, 1.5 ml 10x PBS, 7.5 ml 

ddH2O) for 10 min at RT. Cells were washed three times in PBS to remove excess 

fixative solution, before immediate subsequent use for immunofluorescent staining, or 

storage at 4C.  

2.17.2. Immunofluorescent staining 

 

To permeabilise cells, coverslips were incubated with 0.1% Triton X-100/PBS for 5 min 

at RT, followed by one wash with PBS. Cells were then blocked with 5% BSA/PBS for 

30 min at RT. This was followed by incubation with primary antibodies (Table 2.14) 

diluted in PBS, for 1 h at RT. Coverslips were washed three times with PBS, before 

incubation with Alexa® fluorescent dye-conjugated secondary antibodies (Table 2.14) 

diluted in PBS, for 1 h at RT, protected from light. Coverslips were washed three times 

in PBS, before being mounted on SuperFrost® microscope slides in ProLong® Gold 

Antifade Mountant. This mountant contains DAPI as a nuclear stain. 

Immunofluorescent staining was visualised by an Axioplan Imagine 2 upright 

microscope (Zeiss) within 48 h. Prior to visualization, slides were stored in 4C 

protected from light.  
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To control for possible non-specific background from secondary antibodies, one 

coverslip per genotype per culture was treated as above but without incubation with 

NeuN primary antibody. At the same time, to control for background from non-specific 

immunoglobulin binding, a negative isotype control was also included where the NeuN 

primary antibody was replaced with a rabbit IgG antibody (Vector) at the same 

concentration (Table 2.14).  

 

 

Table 2.14 Primary and secondary antibodies used for immunofluorescent staining 

Primary antibodies 

Antibody/Antigen Host Dilution Supplier Product no. Remarks 

NeuN Rabbit 1:500 Abcam ABN78  

Rabbit IgG Rabbit 1:500 Millipore X0720  

Secondary antibodies 

Antibody/antigen Conjugate Dilution Supplier Product no. Remarks 

Anti-rabbit Alexa Fluor® 488 1:1000 Abcam Ab150077  

 

2.17.3. Visualisation and quantification 

 

NeuN- and DAPI-stained cells were visualised using an Axioplan 2 Imaging upright 

microscope (Zeiss). Image acquisition was performed with AxioVision SE64 software 

(release 4.9.1, Zeiss). As NeuN-positive neurons tended to cluster toward the centre of 

the coverslip, becoming radially more infrequent, five fields of view were acquired to 

include as many NeuN-positive cells as possible on the coverslip for analysis. These 

included the field of view at the centre of the cluster, as well as the fields of view 

immediately adjacent to the left, right, top and bottom of the centre field.  

 

To quantify the number of NeuN- and DAPI-positive cells, the Image-based Tool for 

Counting Nuclei (ITCN) plugin (UC Santa Barbara) was used in ImageJ. Parameters 

used for successfully separating and identifying NeuN and DAPI-positive cells are 

listed in Table 2.15.  

 

Table 2.15 Parameters to count objects using ITCN in ImageJ 

 DAPI NeuN 

Width 12 pixels 12 pixels 

Minimum distance 6 pixels  6 pixels 

Threshold  0.3 0.5 
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2.18. Histology  

 

Brains were processed and labelled by Dr. Frances Wiseman and the MRC Prion Unit 

Histology department. Half brains were fixed by immersion in 10% buffered formal 

saline. Fixed brains were processed with increasing concentrations of industrial 

methylated spirits (1 x 70% and 5 x 100%, 1 h each), cleared with xylene (3 x 1 h) to 

complete dehydration and immersed through three wax changes. Molten paraffin wax 

was prepared and used to embed brains in sagittal orientation. Sections were cut using 

a Leica RM2135 microtome (Milton Keynes, UK) to a thickness of 5-10 µm. Serial 

sections were mounted on Superfrost™ microscope slides and air-dried for 2 h at 

37ºC, and for 16 h at 60ºC.  

 

Tissues were incubated in primary antibodies using the automated Ventana Discovery 

immunohistochemical staining machine (Ventana Medical Systems) and proprietary 

reagents (Roche). Tissues were placed in the Ventana machine and dewaxed 

automatically. For antigen retrieval Iba1 slides received standard cell conditioning heat 

treatment, and GFAP slides were incubated with proprietary Protease 1 for 4 min. 

Non-specific binding was inhibited by incubating sections with Superblock for 8 min. 

Sections were incubated with anti-Iba1 for 4 h (DAKO 019-19741, 1:250), and in 

parallel sections incubated with anti-GFAP for 32 min (DAKO clone Z0334, 1:1000). 

Sections were washed in Reaction Buffer to remove excess primary antibody. This was 

followed with incubation in swine anti-rabbit secondary antibody for 32 min (DAKO 

E0353, 1:200). To visualise antibody labels, sections were incubated with the DABMap 

kit and counterstained using haematoxylin and Bluing Reagent. Slides were then 

washed in hot soapy water to remove proprietary reagents and manually rehydrated 

through a series of alcohols and xylene, before mounting with coverslips using an 

automated system (Diapath automated coverslipper, Martinengo, Italy). 
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2.19. Image acquisition and processing 

 

To systematically quantify the area of staining and morphological properties of 

astrocytes (labelled with GFAP) and microglia (labelled with Iba1), a digital analysis 

protocol was developed with Dr. Matthew Ellis, with assistance from Matthew Rickman 

in segmenting cortical and hippocampal regions of interest (Department of 

Neurodegenerative Disease, UCL Institute of Neurology). Histology slides were digitally 

acquired using a Leica SCN400F Slide Scanner (Leica Microsystems) at 40x 

magnification and 65% image compression during export. Images of slides were stored 

on Leica Slidepath (Leica Microsystems). Digital image analysis and protocol 

development was performed using Definiens Developer 2.3 (Definiens). The methods 

below describe the general processes and parameters used to achieve each objective 

during the development of the protocol; the full source code for the protocol can be 

found on the Definiens directory > Ruleset > Choong.X. The protocol for Iba1 is named 

“Iba1.v1.5.5-final.dcp”, while the one for GFAP is “GFAP.v1.5.5-final.dcp”. All imaging 

and quantification experiments were performed blinded to genotype to eliminate 

experimenter bias.  

 

The protocol was initially developed using a GFAP image from a 16-month old mouse 

from Tc1xJ20, which featured the most extensive astrogliosis, including broad regions 

where astrocytic processes overlapped. As one of our objectives was to systematically 

identify individual astrocytes within clusters of cells, we used this image to ensure our 

selection parameters were sufficiently stringent to be applied uniformly to all samples.  

  

Table 2.16 below summarises the flow of the processes in the digital protocol, together 

with the objectives and general parameters used for each step.  
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Table 2.16 Processes used to quantify GFAP (astrocytes) and Iba1 (microglia) area of staining and individual cell morphology in hippocampal sections 

Process Objective Parameters 

Identify cortical and hippocampal tissues  

Segment cortical and hippocampal tissues Outlines were traced by Matthew Rickman 

Exclude artefacts due to damage during 

histology processing 

Outlines of damaged regions were traced by Matthew Rickman and excluded 

from analysis  

Distinguish “true” brown staining from 

background  

Identify dark brown stain 
5

th
 centile of brown staining intensity was calculated to identify top 5% of stained 

tissue + 0.5 of remaining brown staining used as threshold following sampling 

Identify medium and light brown staining 
By dividing the image into 5-pixel “chess board” pieces, within each piece top 

80% x 2 = medium brown; top 80% = light brown  

Exclude background signal 

The mean brightness of the homogenous white region and the periphery of the 

slide was used to exclude background  

Remove brown stains that have more dark blue than brown 

Identify individual cell bodies, separate 

overlapping processes, remove 

inseparable clusters 

Separate cells with overlapping processes 

Shrink dark brown staining by 1 pixel, to identify break points for individual cells, 

and then grow back into area shrunk, extending into medium and light brown 

area. Further steps taken to grow dark brown areas into larger dark brown areas 

with even brown staining.  

Identify cell bodies  Identified using a “rolling ball” of different diameters to “roll” within cell bodies  

Exclude capillaries and other  artefacts Exclude brown objects > 200 µm
2
, or >100 µm

2 
and length/width > 2.5,  

Identify inseparable clusters Brown areas >2000 µm
2
 continuous area, or >1000 µm

2
 AND > 3 cell bodies  

For microglia: remove false positive cell 

bodies 
Cell bodies <40 µm

2
, or with elliptic fit <0.65 

Output phenotypes  

Area of staining Values of brown for cell bodies, processes and inseparable clusters summed up  

Number of astrocytes Number of cell bodies was counted 

Length of midline Distance was measured between the two longest processes 

Number of branches per astrocyte 
Number of branches per astrocyte was calculated from the midline, not the cell 

body, due to technical limitations 

Length and width of astrocytes 
These were calculated from the shape that was used to ‘box in’ the edges of an 

astrocyte 

Size of cell bodies Area of cell bodies 

Staining intensity of cell bodies 
Staining intensity of cell bodies was normalized to background by subtracting the 

mean signal for the unstained region  
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2.20. Two-dimensional fluorescence in situ hybridisation (2D-FISH) 

 

The 2D-FISH protocol below was performed by Dr. Frances Wiseman.  

 

Paraffin-embedded tissue sections were heated for 20 min at 60C to dewax, and 

placed into xylene for 4 x 10 min. Sections were rehydrated through a series of alcohol 

dilutions, from 100% ethanol for 4 x 10 min, 95% ethanol for 2 x 5 min, 70% ethanol for 

2 x 5 min, before being placed into water. Sections were transferred to 0.1 M citrate 

buffer (pH 6) and heated in a microwave oven for 20 min, allowed to cool for 20 min in 

citrate buffer, washed and stored in ddH2O. 

 

To prepare probe and hybridisation mix for later use, 100 ηg of probe for genomic DNA 

was dispensed per slide, together with 5 µg sonicated salmon sperm and CotI DNA per 

slide. 2 volumes of 100% ethanol were added followed by centrifugation in a centrifugal 

evaporator to pellet and dry the probe. Hybridization mix was prepared as follows for 

every 100 µl hybridization mix: 50 µl deionized formamide, 20 µl 50% dextran sulphate, 

10 µl 20x saline-sodium citrate buffer (SSC), 1µl Tween-20 and 19 µl ddH2O. 10 µl of 

hybridization mix was added to probe per slide. This was mixed well and briefly 

centrifuged. Probes were left to dissolve in hybridisation mix for 1 h.  

 

To prepare for FISH, sections were aged for at least 2 days, before incubation in 2x 

SSC and 100 µl/ml RNase for 1 h at 37C. This was followed by a quick wash in 2x 

SSC. Sections were dehydrated through 70%, 90% and 100% ethanol for 2 min each, 

before being air dried. An oven was warmed up to 70C in the meantime, and sections 

were placed at 70C for 5 min. Sections were then denatured in 70% formamide/2x 

SSC (pH 7.5) for 90 s at 75C, before being placed in ice-cold 70% ethanol for 2 min. 

These were dehydrated through 90% and 100% ethanol for 2 min each, before being 

air dried.  

 

As sections were drying, probe and competitor DNA in hybridisation mix was denatured 

at 70 ºC for 5 min. This was transferred to a 37C water bath to preanneal for 15 min. 

Sections were also moved to warm on a 37C hot block. 10 µl of preannealed probe 

and hybridisation mix were loaded onto a coverslip and placed over the section, with 

care taken to avoid formation of air bubbles. Coverslips were sealed rubber cement 

and incubated in a covered tray overnight at 37C in a water bath. 

 



75 

 

Blocking buffer was made containing 5% skim milk powder in 4x SSC, warmed up to 

37C in a water bath to dissolve milk powder before storage on ice. This blocking buffer 

was used to dilute primary antibodies (FITC anti-digoxigenin at 1:30, FITC anti-sheep 

at 1:100). Antibody mixtures were centrifuged for 15 min at 4C to precipitate clumps 

and kept on ice.  

 

Following overnight incubation, rubber sealant was peeled off the slides, which were 

washed 4 times in 2x SSC at 45C for 3 min each. This was followed by 4 washes in 

0.1x SSC at 60C for 3 min each, before being transferred to 4x SSC with 0.1% 

Tween-20. Each section was incubated with 40 l blocking buffer under a coverslip, for 

5 min at RT. The coverslip was removed, and primary antibody solutions were added to 

each slide, before incubation in a moistened chamber for 30-60 min at 37C. Excess 

fluid was drained, sections were mounted in 25 l Vectashield mountant containing 

DAPI, and sealed with rubber cement.  

 

2.21. RNA sequencing 

 

Extraction and purification of RNA was performed by Dr. Frances Wiseman as 

described in Section 2.9 before being transferred to UCL Genomics for further 

processing. RNA samples were checked for quality using a Bioanalyzer (Agilent). RNA 

was prepared for sequencing from 500 ηg of total RNA, following the Illumina TruSeq 

RNA v2 LS protocol (Illumina). Sequencing was performed on an Illumina Nextseq 500 

sequencer at a read depth of approximately 30 million reads. Analysis of sequencing 

reads was subsequently performed by Dr. Manuela Zanda and Dr. Vincent Plagnol of 

the UCL Genetics Institute. Sequencing reads were aligned to a custom Tc1 mouse 

reference genome, which combined the full mouse genome and human chromosome 

21 (both from NCBI build 37.2), using tophat v2.0.13. GTF files describing genes 

features were obtained from Ensembl (http://www.ensembl.org/info/data/ftp/index.html), 

while read count normalisation and differential expression analysis were performed by 

python scripts as part of the DEseq package. The set of scripts used are freely 

available from the Plagnol group at https://github.com/plagnollab/RNASeq_pipeline. 

 

 

 

 

 

 

http://www.ensembl.org/info/data/ftp/index.html
https://github.com/plagnollab/RNASeq_pipeline
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2.22. Functional clustering of differential gene expression 

 

Differentially expressed genes with FDR-adjusted p-values < 0.05 were classified into 

functional clusters using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) v6.7 (National Institute of Allergy and Infectious Diseases (NIAID), 

National Institutes of Health, USA) (Huang et al. 2009). Gene lists were entered using 

official gene symbols as the identifier, with annotations limited to Mus musculus, and at 

lowest classification stringency. 

  

2.23. Statistical analysis  

 

Statistical analysis was performed using SPSS Statistics version 22 (IBM).  
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Chapter 3. Development of an in vitro model for AD-DS  

 

3.1. Introduction 

 

3.1.1. The utility of an in vitro assay for AD-DS 

  

As described in Chapter 1, one of the greatest strengths in DS mouse models lies in 

their complementary use in mapping phenotypes to specific genes or chromosome 

regions on Hsa21. This has been successfully performed, for example, in 

demonstrating the necessity of App triplication to basal forebrain cholinergic neuron 

(BFCN) loss in Ts65Dn mice (Salehi et al. 2006). App was first identified as a 

candidate gene following the comparison of BFCN phenotypes between Ts65Dn with 

Ts1Cje mice, which did not demonstrate BFCN loss; this indicated the presence of a 

dosage-sensitive region triplicated in Ts65Dn, but not in Ts1Cje, that was causative for 

this phenotype. To investigate if App trisomy was responsible for BFCN loss, App 

expression was reduced to disomic levels by crossing Ts65Dn mice with heterozygous 

App knockout mice. This successfully demonstrated that disomic App expression was 

sufficient to prevent BFCN loss in Ts65Dn.  

 

While this was an elegantly performed study, the in vivo and ex vivo examination of 

neuronal phenotypes is heavily taxing on resources and time, and may not offer a 

pragmatic system for the assessment of numerous candidate genes. The use of 

primary cell culture therefore offers a number of advantages as a routine and relatively 

high-throughput system: 1) it enables access to living neurons in a far less complex 

environment than neural tissue; 2) it is more amenable to genetic manipulation 

including the reduction of trisomic gene expression levels; 3) it allows the 

characterization of key neuronal phenotypes that are not recapitulated in other 

neuronal cell lines. These features include the ability to develop axons, dendrites and 

synapses, allowing for their functional study (Kaech and Banker 2006).  

 

This approach has been successfully used to demonstrate the significance of 

candidate genes to AD phenotypes. For instance, lentiviral shRNA-mediated 

knockdown of Ephb2 expression was performed in primary cortical and hippocampal 

neurons, to investigate the potential effects of Ephb2 depletion by A42. This was 

shown to impair NMDA-receptor-dependent gene expression in vitro, paving the way 

for further experiments into effects on long-term potentiation, synaptic plasticity and 

cognitive deficits (Cissé, Halabisky, et al. 2011). In another study, the knockdown of 
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Cdk5 expression in primary hippocampal neurons resulted in a reduction in 

phosphorylated tau, priming further in vivo work in an AD mouse model illustrating the 

potential of targeting Cdk5 to ameliorate tau pathology (Piedrahita et al. 2010). While 

the knockdown of candidate gene expression has not yet been published in DS 

neuronal cultures, this approach has been performed in other DS cell types, such as 

primary fibroblasts. For instance, reducing the expression of the Hsa21-encoded 

phosphatase SYNJ1 partially rescued endosomal abnormalities, including endosomal 

enlargement, in fibroblasts from humans with DS or AD (Cossec et al. 2012). 

 

We therefore sought to design a protocol that allowed the potential use of RNA 

interference (RNAi) techniques (Seyhan 2011) to stably reduce the expression of 

Hsa21 candidate genes from trisomic to disomic levels, to identify genes influencing 

AD-related phenotypes in trisomic cells. The following section details parameters 

considered while developing the protocol.  

 

3.2. Considerations in protocol design for Tc1xJ20 primary 

neuronal cultures 

 

3.2.1. Use of early postnatal mice for culture 

 

Primary cultures could be obtained either from embryonic mice or postnatal pups. 

While embryonic neurons are less susceptible to damage during culture preparation 

due to their simpler neuronal processes (Banker and Cowan 1979; Banker and Cowan 

1977), and yield a greater proportion of neuronal cell types, using postnatal pups 

allows the continuous use of the same female mice for breeding, as the mothers need 

not be culled to obtain pups (Beaudoin et al. 2012). We therefore decided on using 

postnatal pups (within 48 h of birth) to minimise animal use and reduce variation 

introduced due to the use of different mothers. The use of pups is also suitable for 

studying APP expression from the J20 transgene, as its PDGF-β promoter has been 

shown to be expressed in cortical tissue from embryonic day 15 in mice (Sasahara et 

al. 1991) and J20 forebrain primary neurons have been shown to produce human A 

(Vingtdeux et al. 2010). 

3.2.2. Standardising plating density  

 

Neuronal density has been systematically demonstrated to influence electrical activity 

during the maturation of primary neuronal cultures (Biffi et al. 2013). For instance, 
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sparse cultures (600 cells/mm2) required a longer development time to achieve half the 

peak firing rate and network bursts compared to denser cultures (1600 cells/mm2) (Biffi 

et al. 2013; Wagenaar et al. 2006). In addition, neuronal density influences other 

functional properties, including synaptic density (Cullen et al. 2010), dendrite 

morphology (Previtera et al. 2010; Ivenshitz and Segal 2010) and patterns of 

spontaneous network activity (Ivenshitz and Segal 2010; Cohen et al. 2008). The 

density of plated glial cells also influences their rate of proliferation and consequently 

the size of any effects contributed by glial function (Hartikka and Hefti 1988). There 

was a need therefore to select and standardize an appropriate plating density across 

wells and coverslips of different diameters. 

 

The aim of developing the primary neuronal culture system was to reduce Hsa21 

candidate gene expression, via lentiviral shRNA-mediated techniques. We therefore 

decided that a minimum of 8 wells was needed per culture, to allow for aspects of 

future work such as the titration of lentiviral concentrations needed in optimizing levels 

of knockdown.  

3.2.3. Mosaicism  

 

The freely-segregating Hsa21 chromosome in Tc1 mice is stochastically lost at 

different rates in different tissues, and will be a source of variability between each 

culture. Significantly for cell culture, aneuploidy (regardless of the chromosome 

involved) impairs proliferation and slows growth, as demonstrated in mouse embryonic 

fibroblasts trisomic for four different chromosomes (Williams et al. 2008), and in yeast 

(Pavelka et al. 2010; Torres et al. 2007; Niwa et al. 2006). In addition, aneuploid cells 

exhibit a range of phenotypes constituting an “aneuploidy stress response”, including 

altered metabolism, proteotoxic stress and increased genomic instability (reviewed in 

Siegel and Amon 2012). It is therefore important to understand the degree to which 

euploid cells may be outgrowing their less fit trisomic counterparts in a mosaic cortical 

culture.  

  

3.3.  APP and A phenotypes in primary neurons 

 

As introduced in Chapter 1, trisomy 21 was sufficient to exacerbate A accumulation in 

Tc1;J20 mice, as demonstrated by increased plaque deposition in the Tc1;J20 cortex 

and hippocampus at 6 and 16 months. To assess the validity of using primary cortical 

neurons to model amyloid-related phenotypes in Tc1xJ20, it is necessary to 
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characterize baseline APP expression and metabolism in vitro before corroboration 

with ex vivo data. We chose to compare results from primary cortical culture with 

cortical tissue obtained from 3-month old Tc1xJ20 mice, to compare if in vitro APP/A 

phenotypes may be used to model phenotypes present in young mice prior to 

observable plaque deposition.   

 

This corroboration was necessary because variations in amyloid phenotypes could be 

introduced by the in vitro system. One source of variation arises from the increased 

proliferation of glial cells in culture, potentially altering the overall profile of APP 

metabolism in vitro compared to ex vivo (Annaert and De Strooper 2000). For instance, 

neurons are more likely than non-neuronal cells to process APP down the β-secretase 

pathway (Simons et al. 1996; Hung et al. 1992), while glial cells tend to drive APP 

processing down the α-secretase pathway (Wertkin et al. 1993; Haass et al. 1991). To 

investigate this, one could investigate levels of β-CTF and α-CTF in culture, which are 

products from β-secretase and α-secretase cleavage respectively.  

 

The use of cortical cells at developmental stages may also further augment any effects 

relating to the proportions of neuronal and non-neuronal cells in culture. DS 

demonstrates a developmental shift towards increased gliogenesis and reduced 

neuronogenesis, as observed in morphological and histopathological studies of DS 

brains from fetal to adult ages (Guidi et al. 2011; Guidi et al. 2008; Griffin et al. 1998; 

Mito and Becker 1993). The overexpression of S100B and APP in DS has been shown 

to promote gliocentric differentiation in DS neural progenitors (Lu et al., 2011), while 

triplicated App impairs neuronal precursor differentiation and neurite development in 

Ts65Dn mice (Trazzi et al., 2013). Finally, neural progenitors derived from a 

monozygotic twin with Hsa21 trisomy displayed reduced neurogenesis and neurite 

branching, together with an increased tendency to differentiate into astroglial and 

oligodendroglial cells, compared to the twin without trisomy (Hibaoui et al., 2014).  

 

Finally, any effect of trisomy on APP or Aβ phenotypes will also be influenced by 

variations in levels of Hsa21 mosaicism.   

 

With these considerations in mind, we aimed to develop a primary cortical culture using 

early postnatal Tc1xJ20 mice, before validating APP/Aβ phenotypes in vitro with ex 

vivo results from 3-month old mice. 
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3.4. Aims 

 

1. Measure APP/A expression in vitro and compare with data from cortical 

homogenates  

2. Determine proportion of neuronal cells present in primary cortical culture 

3. Investigate the variability in levels of mosaicism in primary culture  

 

3.5. Results 

 

Primary cortical cultures were prepared from postnatal pups aged less than 48 h 

(postnatal day 0-1), seeded at 150 cells/mm2 and allowed to differentiate for 14 days in 

vitro prior to use in experiments. For western blots and qPCR analysis, cortical cells 

were plated on PDL-coated 12-well plates, while cells to be used for 

immunofluorescent staining were plated on PDL-coated 13-mm coverslips.  

 

For the study of protein expression, primary cortical cells were lysed in RIPA buffer with 

protease inhibitors, and cell lysate concentration was determined using a highly-

sensitive protein quantitation assay, to facilitate accurate and consistent protein loading 

in western blots.  

3.5.1. Full-length human APP (hAPP) expression  

 

Full-length hAPP was detected using the 6E10 antibody (Covance), which is reactive to 

N-terminal amino acid residues 1-16 of A, and hence specific to human Aβ. The 

epitope lies within amino acids 3-8 of A (EFRHDS) which differs from the 

corresponding mouse sequence (EFGHDS). Western blotting was performed on 

primary cortical lysates and cortical homogenate from 3-month old Tc1xJ20 mice. Tc1 

and Wt samples were run as negative controls. As the protein yield from primary cells 

was low compared to homogenate, cell samples were loaded in randomized order to 

minimize variation caused by lane effects; we noticed that samples running in the first 

and last lanes tended to separate more erratically. 
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hAPP 

β-Actin 

Tc1   Tc1;    Tc1;    J20    Tc1    J20    Tc1;   Wt 

         J20     J20                                   J20 

Figure 3.1 Human APP (hAPP) protein expression in primary cortical culture. 

APP overexpression significantly increased hAPP levels, but there was no significant effect of 

trisomy 21 on hAPP expression. Graph shows mean values while error bars indicate SEM. 

Samples were loaded in randomized order to minimize variation caused by lane effects. 



83 

 

In primary cortical cells, APP overexpression significantly increased the expression of 

hAPP (2-way ANOVA F(1,33) = 9.611, p = 0.004). However there was no significant 

effect of trisomy 21 on hAPP expression (F(1,33) = 2.802, p = 0.104) and no interaction 

between trisomy 21*APP overexpression (F(1,33) = 1.547, p = 0.222). In comparing 

means only between J20 and Tc1;J20, there was a non-significant trend towards 

increased hAPP in Tc1;J20 compared to J20 (independent samples t-test F(1,20) = -

1.781, p = 0.090). 

 

 

 

Figure 3.2 hAPP protein expression in 3-month old Tc1xJ20 cortical homogenate. 

There was no significant difference in hAPP expression between J20 and Tc1;J20. Graph 

shows mean values (labelled) while error bars indicate SEM. Experiments performed by 

Frances Wiseman. 

 

In cortical homogenate from 3-month old Tc1xJ20 mice, there was no significant 

difference in hAPP expression between J20 and Tc1;J20 (independent samples t-test 

F(1,9) = -1.666, p = 0.130). 
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3.5.2. Total full-length APP expression 

 

Total full-length APP was detected by the Sigma-Aldrich A8717 antibody (Sigma-

Aldrich), reactive to both mouse and human APP. A8717 therefore is suitable for 

detecting APP expressed both from the J20 transgene and endogenous App, as well 

as -CTFs and -CTFs produced from cleavage of APP by - and -secretase 

respectively. 

 

In primary cortical cells, there was no significant effect of trisomy 21 or APP 

overexpression on APP expression (2-way ANOVA Tc1 status (F(1,29) = 0.949, p = 

0.338); J20 status (F(1,29) = 1.680, p = 0.205); Tc1*J20 interaction (F(1,29) = 0.633, p 

= 0.433)). 

 
 

APP 

β-Actin 

β-CTF 

α-CTF 

    Wt    Tc1     J20    Tc1;     Wt    Tc1    J20     Tc1; 

                                 J20                                    J20 

98- 

49- 

33- 

14- 

Figure 3.3 Human and mouse total APP protein expression in primary cortical culture. 

There was no significant effect of trisomy 21 or APP overexpression on total full-length APP 

expression. Graph shows mean values while error bars indicate SEM. 
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In cortical homogenate from 3-month old Tc1xJ20 mice, trisomy 21 and APP/Aβ 

overexpression both significantly increased APP expression, with a trend to 

significance in the interaction between both genotypes (2-way ANOVA Tc1 status 

(F(1,52) = 4.158, p = 0.047); J20 status (F(1,52) = 89.924, p <0.0001); Tc1*J20 

interaction (F(1,52) = 3.178, p = 0.080)) 

 

 

 

 

 

APP expression in 3-month old cortical 

homogenate (A8717 antibody) 

Figure 3.4 Human and mouse total APP protein expression in 3-month Tc1xJ20 cortical 

homogenate. 

Trisomy 21 and APP overexpression both significantly increased total APP expression. There 

was a trend towards a significant effect between trisomy 21 and APP overexpression (p=0.08). 

Graph shows mean values while error bars indicate SEM. Experiments performed by Laura 

Pulford. 
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3.5.3. APP C-terminal Fragment (CTF) expression 

 

As described in Section 3.5.2, the same A8717 polyclonal antibody was used to detect 

CTFs produced by the first cleavage step of APP; -secretase generates -CTFs (C99) 

in the amyloidogenic pathway, while -secretase generates -CTFs (C83) in the non-

amyloidogenic pathway. Only J20 and Tc1;J20 results were used for analysis as CTF 

bands in Wt and Tc1 samples were very faint and infrequently observed.   

 

 

 

Figure 3.5 α- and β-CTF expression in primary cortical culture. 

There was no significant effect of trisomy 21 or APP overexpression on β-CTF or α-CTF 

expression. Graph shows mean values while error bars indicate SEM. 

 

 

In primary cortical cells, no significant difference was observed in both α-CTF and β-

CTF production, between J20 and Tc1;J20 mice (-CTF independent samples t-test 

(t(9) = -0.202, p = 0.844; -CTF independent samples t-test t(9) = 0.269, p = 0.794).  
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Figure 3.6 α- and β-CTF expression in 3-month old Tc1xJ20 cortical homogenate. 

Trisomy 21 significantly increases both α-CTF and β-CTF expression in Tc1;J20 compared to 

J20. Graph shows mean values while error bars indicate SEM. Experiments performed by Laura 

Pulford. 

 

In 3-month old cortical homogenate, trisomy 21 in Tc1;J20 significant increased 

expression of both -CTF and -CTF compared to J20 (-CTF independent samples t-

test (F(9) = -0.202, p = 0.844); -CTF t(9) = 0.269, p = 0.794). 

3.5.4. Human soluble A38, A40 and A42 production 

 

To quantify levels of secreted A38, A40 and A42 from primary cortical neurons, a 

sandwich immunoassay was used which detects all three A species from samples in 

the same well using peptide-specific capture antibodies. As these A antibodies were 

developed using 6E10, only human A peptides were detected in this assay; Tc1 and 

Wt hence served as negative controls. Following the binding of A from samples to the 

capture antibodies immobilized in the well, a buffer is added containing detection 

antibodies which emit light following the application of voltage through the plate 

electrodes. The intensity of emitted light was used to quantify A.  
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Figure 3.7 Human Aβ production in primary cortical culture. 

There was no significant effect of trisomy 21 or APP overexpression on Aβ38, Aβ40 or Aβ42 

levels in conditioned media. Graph shows mean values (labelled) while error bars indicate SEM. 

 

In primary cortical cells, conditioned medium was collected from cultures after 14 DIV. 

There was no significant difference in any of the secreted human A38, A40 and 

A42 levels between J20 and Tc1;J20 cultures (independent samples t-test A38 t(26) 

= -0.129, p = 0.899; A40 t(26) = -0.210, p = 0.836; A42 t(26) = -0.184, p = 0.856. 
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Figure 3.8 Human Aβ in Tris-soluble fraction of 3-month old hippocampal tissue. 

Trisomy 21 decreased the abundance of Tris-soluble Aβ38 and Aβ40, without a significant 

difference in levels of Aβ42. Graph shows mean values while error bars indicate SEM. 

Experiments were performed by Frances Wiseman. 

 

Following homogenization in Tris buffer and preparation as according to Holtta et al. 

2013, the Tris-soluble fraction of 3-month old hippocampal homogenate was used to 

study small soluble forms of Aβ. Trisomy 21 decreased the abundance of Tris-soluble 

human Aβ38 (F(1,7) = 15.126 p = 0.006), Aβ40 (F(1,11) = 6.359 p = 0.028), but no 

change in levels of Aβ42 (F(1,11) = 0.663 p = 0.433). This resulted in an alteration of 

the Aβ38/42 Tris-soluble ratio (F(1,5) = 6.667 p = 0.049) between J20 and Tc1;J20. 
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3.5.5. BACE1 expression 

 

To investigate if the difference in CTF profiles in primary cortical culture and cortical 

homogenate was due to differences in secretase expression, western blots for BACE1 

(-secretase) were performed. β-secretase cleaves APP in the first step of the 

amyloidogenic APP processing pathway to generate sAPPβ and β-CTF (Figure 1.1). 

 

 

 

 

 

In primary cortical cells, there was no significant effect of trisomy 21 or APP 

overexpression on BACE1 expression (ANOVA Tc1 status (F(1,37) = 1.960, p = 

0.170); J20 status (F(1,37) = 3.340, p = 0.076); Tc1*J20 interaction (F(1,37) = 1.669, p 

= 0.204). 

 

 

Figure 3.9 BACE1 protein expression in primary cortical culture. 

There was no significant effect of trisomy 21 or APP overexpression on BACE1 expression. 

Graph shows mean values (labelled) while error bars indicate SEM. 
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Figure 3.10 BACE1 protein expression in 3-month old Tc1xJ20 cortical homogenate. 

There was no significant effect of trisomy 21 or APP overexpression on BACE1 expression. 

Graph shows mean values while error bars indicate SEM. Experiments performed by Dr. Karen 

Cleverley. 

 

Similarly in 3-month old Tc1xJ20 cortical homogenate, there was no significant effect of 

trisomy 21 or APP overexpression on BACE1 expression (ANOVA Tc1 status (F(1,24) 

= 0.002, p = 0.963); J20 status (F(1,24) = 2.573, p = 0.122); Tc1*J20 interaction 

(F(1,24) = 0.071, p = 0.792). 

 

3.5.6. Proportion of neuronal cells in vitro 

 

To quantify the proportion of neuronal cells in each culture, cortical cells were seeded 

on 13-mm coverslips and stained for NeuN and DAPI. NeuN is a neuron-specific 

nuclear protein expressed at the start of neuronal terminal differentiation (Mullen et al. 

1992), while DAPI binds double-stranded DNA and is hence employed as a general 

nuclear stain (Kapuscinski 1995). Neuronal cells are hence double-stained with DAPI 

and NeuN, while non-neuronal cells are stained only with DAPI. As described in 

62- 

49- 

38- 

BACE1 

β-Actin 

Wt      Tc1   J20     Tc1; 

                              J20 
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Section 2.17.2, NeuN-positive neurons tended to cluster toward the centre of the 

coverslip, becoming more infrequent with increasing radial distance. Five fields of view 

at 10x magnification were acquired to maximize the number of NeuN-positive cells 

present on the coverslip for analysis. These included the field of view at the centre of 

the cluster, together with fields of view immediately adjacent to the left, right, top and 

bottom of the centre field. The proportion of neuronal cells in culture was then 

calculated by obtaining of NeuN / DAPI nuclei counted.  

 

    

Figure 3.11 Influence of genotype on the proportion of neurons in culture. 

Cell nuclei were labelled with NeuN, a neuron-specific marker, and DAPI, a nuclear marker for 

all cells. Five fields of view per coverslip were obtained for counting nuclei. No significant effect 

was observed of trisomy 21 or APP overexpression on the numbers of neurons (NeuN+), 

numbers of total cells (DAPI+), and the proportion of neuronal cells in culture (NeuN/DAPI ratio). 

Graph shows mean values (labelled) while error bars indicate SEM. Images are at 10x 

magnification. 

NeuN DAPI 
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There was no significant effect of trisomy 21 or APP overexpression on the average 

number of NeuN-positive cells per culture ((2-way ANOVA Tc1 status (F(1,37) = 0.002, 

p = 0.963); J20 status (F(1,37) = 0.871, p = 0.357); Tc1*J20 interaction (F(1,37) = 

0.145, p = 0.706), or the proportion of neuronal cells in culture (NeuN/DAPI) (F(1,37) = 

0.001, p = 0.971); J20 status (F(1,37) = 0.440, p = 0.511); Tc1*J20 interaction (F(1,37) 

= 0.096, p = 0.758). There was also no difference in the average number of DAPI-

positive cells counted per field of view per pup ((ANOVA Tc1 status (F(1,37) = 0.012, p 

= 0.914); J20 status (F(1,37) = 2.207, p = 0.146); Tc1*J20 interaction (F(1,37) = 0.051, 

p = 0.823). 

3.5.7. Hsa21 mosaicism in primary culture 

To estimate the proportion of cells in culture that retained the Hsa21 chromosome, the 

genomic content of human CLDN8 and mouse Apob in cell culture was quantified by 

qPCR relative to standard curve. CLDN8 is encoded on Hsa21 and is trisomic in Tc1, 

while Apob is a mouse gene that is disomic in Tc1. Primers and probes to both genes 

were designed to be species-specific and hence would only detect human CLDN8  and 

mouse Apob copy numbers. The proportion of trisomic cells was calculated based on 

the percentage of CLDN8 to Apob expression – if all cells retained Hsa21, CLDN8 

present in one copy would be 50% of Apob levels present in two copies.  
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Mosaicism in primary cortical culture 

Figure 3.12 Proportion of primary cortical cells retaining the Hsa21 chromosome. 

This was determined by the relative genomic content of human CLDN8 and mouse Apob 

present in the cell culture. There was no significant difference in mosaicism between Tc1 and 

Tc1;J20 cultures. Graph shows mean values while error bars indicate SEM. 
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As shown in Figure 3.12, on average Tc1 cultures had 16.7% trisomic cells with an 

SEM of 1.91%, while Tc1;J20 cultures had 13.7% trisomic cells on average, with an 

SEM of 2.81%. There was no significant effect of APP overexpression on mosaicism 

levels (independent samples t-test t(11) = 0.875, p = 0.400).  

 

 

 

 

Sample Genotype 
Hippocampus; Dentate gyrus Hippocampus; CA1 

Hsa21 + Hsa21 - % Hsa21+ Hsa21 + Hsa21 - % Hsa21+ 

QN0021-09 

Tc1 

75 52 59 82 50 61 

QN0017-09 38 31 55 50 57 47 

QN0026-09 42 27 61 50 59 46 

QN0018-09 69 30 69 56 53 51 

   Mean 61  Mean 51.25 

QN0020-09 
Wt 

0 133 0 0 85 0 

QN0019-09 0 144 0 N/D N/D  

 

Figure 3.13 Proportion of cells retaining the Hsa21 chromosome in adult Tc1 

hippocampus. 

Cells containing Hsa21 were identified by fluorescent in situ hybridization (FISH) in the dentate 

gyrus and CA1 regions of the hippocampus. Experiments were performed by Frances Wiseman. 

 

Fluorescence in situ hybridization (FISH) was performed to detect Hsa21 in the 

hippocampal dentate gyrus and CA1 regions from four Tc1 and two Wt mice. The 

mean proportion of cells trisomic for Hsa21 was 61% (SEM 2.94%) in the dentate 

gyrus, and 51.25% (SEM 3.42%) in the CA1 region.   

Hsa21 + Hsa21 - 
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3.6. Discussion 

 

3.6.1. Validity of primary cortical culture model in studying APP/Aβ phenotypes  

 

Generating consistent, reproducible biochemical data from primary cortical cells was by 

far the greatest challenge in using the cell model above, due to wide variability in the 

APP/Aβ readouts obtained. This was firstly due to limited starting material because of 

the need to culture mice individually, and spread across a minimum of eight wells. 

Culture-to-culture variation in results therefore exerted strong effects, despite efforts to 

streamline the protocol and reduce the time taken per pup, and to select only cultures 

that appeared healthy at 14 DIV. It was necessary to adapt protocols routinely used for 

cortical homogenate to the limited amount of cellular material, such as by using a more 

sensitive protein quantification assay for primary cells to allow consistent protein 

loading in western blots.  

 

Nonetheless, wide variation in results persisted, particularly in the measurement of Aβ 

production (Figure 3.7), in which three cultures did not produce any detectable human 

Aβ levels in any J20-positive wells; these entire cultures were excluded from analysis. 

However, hAPP was detectable by western blotting from these cells, and it remains 

unclear why no Aβ was secreted despite expression of the APP transgene in this 

minority of cases. Based on the remaining examined cultures, trisomy 21 does not alter 

the amount of human Aβ38, Aβ40 and Aβ42 secreted from neurons in vitro, and 

accumulated in media for 14 DIV (Figure 3.7). In comparison, ex vivo data from Tris-

soluble fractions of 3-month old hippocampal tissues suggest that the expression of 

Aβ38 and Aβ40, but not Aβ42, is decreased by trisomy 21 (Figure 3.8). Tris-soluble 

fractions contain soluble forms of Aβ which have been used for the further study of Aβ 

oligomers (Holtta et al. 2013) and are distinct from Aβ found in plaque deposition 

(Shankar et al. 2009). Aβ production from primary cortical cells therefore does not 

reflect this population of Aβ species. As these results have been compared between 

cortical cells and hippocampal tissue, differences in result could also be attributed to 

tissue-based variation. The high variability from the cortical culture however suggests 

that any potential differences may have been lost in this variation.  

 

The signal for human APP protein expression in cell lysates (Figure 3.1), as detected 

by antibody 6E10, was noticeably weaker than that obtained from cortical 

homogenates. This was indicated by relatively higher levels of background signal 

observed in Wt and Tc1 samples in the cell lysates. However, it was unexpected to 
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observe no difference in total APP expression (detected by antibody A8717) between 

all four genotypes in primary cells (Figure 3.3), compared to the 3-4 fold increase 

observed in cortical homogenates due to APP overexpression (Figure 3.4). Although 

there was insufficient material available for DNA extraction to verify transgene copy 

number levels in the cells, it is unlikely that transgene expression had decreased to 

such a negligible level. The detection of human A indicates that the APP transgene is 

being expressed. Perhaps levels of APP were similar due to a relative increase in 

mouse APP expression from the high number of glial cells in culture, which do not 

express human APP as it transgene expression is driven by a neuron-specific promoter 

(Sasahara et al. 1991).  

 

Using the same polyclonal A8717 antibody in APP to detect CTFs, the expression of 

CTFs similarly did not recapitulate ex vivo phenotypes in cell culture. While α-CTF and 

β-CTF levels were significantly increased by trisomy 21 in cortical homogenates 

(Figure 3.6), no difference was detected in the corresponding cortical lysates (Figure 

3.5), which again displayed a wide variability in results. However, while there was no 

significant difference in APP levels between all four genotypes, CTFs were primarily 

detectable only in the APP overexpressing lysates. The increased CTF production ex 

vivo was not explained by changes in cortical BACE1 levels, which remained 

unaffected by trisomy (Figure 3.10). In primary cortical cells, BACE1 expression also 

remained at similar levels between the four genotypes (Figure 3.9), recapitulating these 

ex vivo observations. It remains unclear why there was a discrepancy between APP 

and CTF results produced using the same A8717 antibody. As a first step in unravelling 

this, and also to account for the high variability in Aβ and CTF results, we subsequently 

invested potential sources of variation discussed below 

3.6.2. Investigating cell culture variability by assessing proportions of neuronal 

cells and levels of mosaicism 

 

To account for the variability in APP/Aβ phenotypes and potentially provide 

normalization controls, the proportion of neuronal cells in culture and levels of Hsa21 

mosaicism were investigated in cortical cultures. However, both neuron proportions 

and levels of mosaicism remained relatively consistent between the four genotypes, 

and hence were likely not accountable for the high variability in Aβ and CTF 

phenotypes. As anticipated, neurons accounted for a minority of the cells in culture, 

ranging from 13.4 – 15.8%. These values are also likely to be overestimates, as non-

neuronal cells on the periphery of coverslips outside the five acquired fields of view 

were not included, while neurons were absent from these peripheral areas. While the 
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use of cytosine arabinofuranoside (AraC), an inhibitor of DNA synthesis, was 

considered to limit glial proliferation, we decided against its use due to its tendency to 

induce neuronal apoptosis (Ahlemeyer and Baumgart-Vogt 2005; Geller et al. 2001), 

with possibly an aggravated effect on metabolically stressed trisomic cells (Siegel and 

Amon 2012). 

 

Retention of Hsa21 ranged from 6.67 – 23.95% as quantified by genomic levels of 

human CLDN8 and mouse Apob measured by qPCR relative to a standard curve 

(Figure 3.12) While FISH offers a more sensitive and precise measure of mosaicism  

(Figure 3.13), its demand on time and labour made routine use for primary culture 

unpragmatic. However, based on combined data from our FISH results and qPCR data 

from O’Doherty et al. (2005) the mean percentage retention of Hsa21 in brain tissue 

was 58.63% (SEM 4%, n = 20). This was significantly higher than retention levels in 

primary culture (independent samples t-test t(31) = 8.338, p < 0.0001). Although 

quantification of mosaicism by qPCR does not reveal information about cell types, 

perhaps the consistently lower levels of mosaicism in culture may be due to slower 

proliferation rates of trisomic non-neuronal cells (Williams et al. 2008). This could be 

verified by FISH in primary cortical cultures. 

3.6.3. Recommendations for future primary neuronal culture 

 

The primary uncertainty engendered by the use of Tc1 cells lies in not knowing which 

cells are trisomic for Hsa21, precluding the possibility of performing single cell studies, 

such as in the characterization of neuronal trafficking or intracellular phenotypes. While 

efforts have been undertaken to develop markers for transchromosomic cells, these 

have proved difficult – for instance, the systematic design and generation of antibodies 

that preferentially bind human-specific isoforms of Hsa21 proteins failed to specifically 

label trisomic cells in histology (Wiseman et al. 2010). Other means of separating or 

distinguishing between trisomic and disomic cells during culture preparation remain to 

be explored, such as by using flow cytometry or possibly an exploitation of the 

neomycin resistance gene inserted into the Hsa21 chromosome. However, the 

potential biological effects of this antibiotic use on trisomic cells remains unknown.  

We have also experienced that biochemical characterization of these cultures at 

population level also results in an unfeasibly high level of variation for studying APP/Aβ 

phenotypes, not explained by fluctuations in neuronal proportion or levels of 

mosaicism. However, in future work with non-mosaic DS models (Figure 1.3), steps 

can be taken to reduce the effect of glial proliferation which are not possible here. This 

could be in the form of neuronal cultures involving astroglial feeder layers (Kaech and 
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Banker 2006) – this involves preparing and expanding primary astroglial cultures of 

each genotype in advance, to be used to provide glial support to primary cortical 

neurons treated with AraC. For Tc1xJ20 cultures, mosaicism again hinders the ability 

to expand a stock supply of trisomic astrocytes. It will also be possible to study 

phenotypes on a single-cell level in these non-mosaic models. 

 

Finally, there is a need to more thoroughly profile how APP/Aβ expression and 

processing may alter in the developmental course of primary neuronal cultures. For 

instance, a recent ontogenic characterization of synaptogenesis in primary cortical and 

hippocampal cultures revealed functional similarities and differences between the two 

culture types, including differences in the ratio of excitatory to inhibitory synapses 

(Harrill et al. 2015). The close but complex association of Aβ with synaptic activity, 

plasticity and loss (Spires-Jones and Hyman 2014; X. Cheng et al. 2014; Parihar and 

Brewer 2010; Schroeder and Koo 2005) suggests that a more comprehensive 

understanding of the development of this in vitro system will allow more precise use of 

this in vitro neuronal system. 
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Chapter 4. Investigating gliosis in trisomy 21 and APP/Aβ 

overexpression  

 

4.1. Introduction 

 

Neuroinflammation encompasses the reactive state of glial cells such as astrocytes 

and microglia, which mediate the innate immune response in the brain (Ben Haim et al. 

2015; O’Callaghan et al. 2008). While the brain had once been perceived as an 

immunoprivileged organ protected by the blood-brain barrier, this perspective has 

fundamentally been altered by revelations that peripheral immune cells are capable of 

crossing the blood-brain barrier, that neurons and glial cells regulate immune 

responses, and even the recent discovery of lymphatic draining systems from the brain 

(Louveau et al. 2015; Carson et al. 2006). Indeed, neuroinflammation and innate 

immune activation have now been demonstrated as contributors to the pathogenesis of 

an array of neurodegenerative diseases (Ben Haim et al. 2015; Heneka et al. 2014). In 

parallel, DS has been characterised as a syndrome of chronic neuroinflammation 

(Wilcock and Griffin 2013) and oxidative stress (Butterfield et al. 2014), which triggers 

and interacts with pathways in neuroinflammation. Given the utility of the Tc1xJ20 

model in dissecting differential effects of trisomy 21 and/or APP/A overexpression, it 

will be of interest in understanding how features of neuroinflammation may differ 

between these two factors, and use this model to study how they may interact to 

modify features of AD-DS. 

 

Microglia constitute about 10% of cells in the central nervous system (CNS), and are 

parenchymal tissue macrophages with ramified (‘tree-like’) branching processes. This 

characterises the morphology of their “resting” state, in which these highly motile 

processes constantly sample the surrounding microenvironment, allowing rapid 

responses to injury or disease by cell body migration, or by directing processes 

towards stimuli (Wake et al. 2009; Nimmerjahn et al. 2005). Indeed, two-photon 

microscopy has demonstrated that microglia are constantly on the move (Davalos et al. 

2005; Nimmerjahn et al. 2005). Unlike other CNS macrophages found in the meninges, 

choroid plexus and perivascular space, microglia derive from a separate 

haematopoietic pool, the yolk sac (Alliot et al. 1999), before migrating to and 

developing in the neural tube (Ginhoux et al. 2010). In the CNS innate immune 

response they are therefore likely to play specialized roles different from bone marrow-
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derived macrophages, possibly sustained by a local microglial progenitor pool (Ajami et 

al. 2007; Hickey et al. 1992). 

 

Astrocytes are the most abundant non-neuronal cell type in the CNS, constituting up to 

50% of all cells in the brain (Azevedo et al. 2009). They are also arguably the most 

diverse, able to perform a range of homeostatic tasks in the CNS (Parpura et al. 2012). 

Astrocytes occupy non-overlapping domains in the grey matter, partitioning neural 

tissue into astroglial-vascular units, thereby covering the majority of neurons and 

synaptic contacts, and connecting them to CNS vasculature (Nedergaard et al. 2003). 

This allows them to perform a variety of tasks, such as the clearance of metabolites 

from CNS parenchyma (Iliff and Nedergaard 2013), interstitial fluid homeostasis 

(Verkhratsky and Nedergaard 2014), modulation of synaptic transmission via 

neurotransmitters and trophic factors (Parpura et al. 2011; Malarkey and Parpura 2008) 

among other functions. In response to injury or disease, reactive astrogliosis occurs 

characterized by an upregulation of astrocytic structural proteins, including glial fibrillary 

acid protein (GFAP) and vimentin. This is accompanied by morphological changes 

such as hypertrophy of the cell soma and processes, and in tissue injury the formation 

of an astrocytic scar around lesions (Sofroniew 2009). 

4.1.1. Neuroinflammation in AD  

 

Multiple lines of evidence have implicated chronic, low levels of neuroinflammation as a 

risk factor for AD. Aging is the greatest risk factor for AD and is itself characterized by 

enhanced chronic inflammation with increasing age (Blasko et al. 2004). Lifestyle 

factors and health conditions predisposing to inflammation, such as a history of sepsis 

(Iwashyna et al. 2010; Holmes et al. 2009), reduced physical exercise (Scarmeas et al. 

2009; Larson et al. 2006) and obesity (Misiak et al. 2012; Lee 2011) have been 

associated with increased AD risk, while non-steroidal anti-inflammatory drugs 

(NSAIDs) may contribute towards protection (Sastre and Gentleman 2010; Vlad et al. 

2008; in t’ Veld et al. 2001; Weggen et al. 2001). Correspondingly, elevated levels of 

pro-inflammatory mediators have been detected in the brain and CSF of patients with 

AD and are currently being assessed as biomarkers for disease progression (Kester et 

al. 2015; Brosseron et al. 2014; Yasuno et al. 2012).  

 

Significantly in recent years, genome-wide association studies have identified AD risk 

loci which cluster in pathways including immune system inflammatory responses (Van 

Cauwenberghe et al. 2015). These include, for instance, the HLA-DRB4-DRB1 region 

encoding major histocompatibility complex class II proteins (Lambert et al. 2013), and 
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CLU and CR1, which encode proteins interacting with the complement system 

(Lambert et al. 2009). Most prominently, risk variants associated with microglia have 

been identified in TREM2 and CD33 (Guerreiro et al. 2013; Jonsson et al. 2013; 

Hollingworth et al. 2011; Naj et al. 2011). TREM2 was particularly exciting following 

subsequent network-based analysis of genotyping data and gene expression profiles 

from postmortem SAD brain tissue, specifying a node identifying innate immunity and 

microglia as the molecular system most strongly associated with SAD pathophysiology 

(Zhang et al. 2013). CD33 is also a risk variant with a role in the immune response that 

is capable of modifying microglial function (Griciuc et al. 2013; Crocker et al. 2012). 

Further, it has been recently shown that CD33 modulates TREM2 expression (Chan et 

al. 2015). These genetic associations directly implicate the brain innate immune 

response as a mechanism underlying AD pathogenesis. 

 

In parallel, the immunohistochemical analysis of microglia and astrocytes has also 

yielded clues into the behaviour of glial cells in response to AD pathology. Both 

astrocytes and microglia have been described clustering around amyloid plaques, 

accompanied by the elevated production of cytokines (Sastre et al. 2006; Ambrosini 

and Aloisi 2004), suggesting that A presents an endogenous stimulus triggering these 

glial responses. Much debate however revolves around what the functional 

consequences of these glial responses are, and which of these represent the key 

neurotoxic events leading to neuronal loss and pathology in AD.  

 

Microglia have been shown to associate closely with mature, dense-core plaques in 

AD, but not with the diffuse plaques of the non-demented aging brain (Heurtaux et al. 

2010; Hashioka et al. 2008; von Bernhardi 2007; Itagaki et al. 1989). While it remains 

unclear what triggers this microglial activation in AD, A application in vivo and in vitro 

have demonstrated the capability of A in stimulating microglial responses (Njie et al. 

2012; Reed-Geaghan et al. 2009; Alarcón et al. 2005). The ability of microglia to bind 

A has also been established by the expression of numerous A-binding receptors, 

together with the ability to uptake A peptides by phagocytosis and other mechanisms 

(Solito and Sastre 2012). Microglial phagocytosis has been shown to reduce with aging 

(Zhao et al. 1996; Floden and Combs 2011; Hickman et al. 2008), accompanied by 

reductions in other functional properties in response to injury, including migration 

capacity and extension of ramified processes (Damani et al. 2011; Sheng et al. 1998). 

These observations suggest an increasingly dysfunctional microglial response with age 

leading to a proposed “glia dysregulation hypothesis” in AD (von Bernhardi et al. 2015). 

This is in line with the amyloid cascade hypothesis (Hardy and Selkoe 2002; Hardy and 
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Higgins 1992), where A causes the abnormal activation of microglia, resulting in a 

cytotoxic immune response (Saud et al. 2005; Nguyen et al. 2002; Wyss-Coray and 

Mucke 2002). This response may be self-propagating given the possibility of 

neuroinflammation promoting further A production and aggregation (Mosher and 

Wyss-Coray 2014). 

 

However, this framework has been disputed. Although microglia are able to engulf A, 

it has been argued that there is insufficient evidence demonstrating their ability to 

actually degrade the protein (Prokop et al. 2013). The ablation of microglia in APP 

transgenic mouse models did not alter plaque deposition and neuritic dystrophy 

(Grathwohl et al. 2009), suggesting microglial functions alone are insufficient to prevent 

A pathology in mice. The use of in vitro models and acute stimulation of inflammation 

in vivo to extrapolate the deleterious effects of neuroinflammatory products has also 

been criticized for being unrepresentative of the low-level, chronic levels of 

neuroinflammation found in AD (Streit 2010). However, an alternative proposed 

hypothesis to microglial dysfunction in AD stems from an extension of morphological 

observations of microglial cells around A plaques. In humans with SAD, microglia 

appear ramified around early diffuse plaques, but were described as dystrophic around 

late dense-core plaques, demonstrating signs of cytorrhexis (cytoplasmic 

fragmentation) (Streit et al. 2009; Sheng et al. 1997). Oxidised A, found in 98% of 

dense-core plaques, was also found in dystrophic microglia (Head et al. 2001). 

Ultrastructural inspection of these microglia revealed lipofuscin deposits, cytoplasmic 

vacuolization and swollen endoplasmic reticula, consistent with features of cell 

senescence (Graeber and Streit 2010; Perlmutter et al. 1990; Itagaki et al. 1989). It has 

therefore been proposed based on these observations that A microglial toxicity is 

mediated by ‘frustrated phagocytosis’, or an inability of microglial cells to clear A, 

possibly leading to degeneration and loss of the neuronal support functions provided by 

microglia (Streit et al. 2014).  

 

Therefore, while it remains a challenge to assign functional details to morphological 

plasticity, the close study of microglial morphology in the context of their 

microenvironment (for instance, their distances from plaques) could yield ideas about 

the health and functionality of these cells. Some important differences exist in this 

respect between humans and mouse models. In mice, microglial phenotypes have 

been classed based on morphological (Karperien et al. 2013; Jonas et al. 2012; Stence 

et al. 2001) and molecular (Selenica et al. 2013; Glanzer et al. 2007; Rock et al. 2005) 

criteria, as ramified, primed, reactive or amoeboid types of microglia. These 
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morphology types have also been described in humans (Torres-Platas et al. 2014; 

Sheng et al. 1997). However, dystrophic microglia found in humans are largely absent 

in mouse models, which may instead manifest in more subtle alterations such as 

reduced branching and finer processes (Baron et al. 2014). Such morphological 

differences may reflect intrinsic differences in microglia consequent of immunological 

evolutionary divergence (Seok et al. 2013; Mestas and Hughes 2004), or reduced 

degeneration in laboratory mice due to their sterile environment and shorter lifespan 

(Streit et al. 2014). Therefore, characterizing microglial pathological changes in mice 

requires the ability to identify more subtle alterations in morphology. 

 

In astrocytes, many parallels can be drawn between neuroinflammation observed in 

these cells to those described above for microglia. Astrocyte reactivity and atrophy 

have been characterized in AD, often prior to the development of AD pathology. This 

has been repeatedly demonstrated in AD transgenic mouse models (Olabarria et al. 

2010; Yeh et al. 2011; Verkhratsky et al. 2010), including in J20 mice (Beauquis et al. 

2014; Beauquis et al. 2013). In post-mortem brain tissue from patients with AD, 

astroglial reactivity reflected by increased GFAP and S100 expression has also been 

described (Meda 2001; Griffin et al. 1998; Beach and McGeer 1988). No correlation 

has been observed between increased GFAP expression and A load or dementia 

(Wharton et al. 2009). However, it has been established that astrocytes are capable of 

clearing A through the expression of A proteases (Pihlaja et al. 2011; Dorfman et al. 

2010; Yin et al. 2006; Koistinaho et al. 2004), resulting in reduced amyloid load in AD 

transgenic models (Leissring et al. 2003; Marr et al. 2003). Astrocytes are furthermore 

the largest source of ApoE in the brain (Bu 2009) which remains the largest factor 

influencing SAD risk (Bertram and Tanzi 2008). 

 

Morphologically, astrocyte reactivity is demonstrated by enlarged cell bodies, altered 

arborisation (Wilhelmsson et al. 2006), and polarization towards the site of injury, 

including towards A plaques (Bardehle et al. 2013). This remains a mild form of 

“isomorphic” astrogliosis in AD, where astrocytes keep their territorial domains without 

formation of an astrocytic scar (Sofroniew 2009; Wilhelmsson et al. 2006). Unlike 

microglia, reactive astrocytes have also been found in plaque-free areas of the 

parenchyma, in addition to those surrounding A plaques (Simpson et al. 2010). In 

addition, atrophic astrocytes have also been reported, similar to the age-dependent 

senescence proposed above in microglia (Streit et al. 2014). In the longitudinal 

characterization of the triple-transgenic AD mouse, atrophic astrocytes could be 

observed from a distance of 50 m from plaques, in old mice at 18 months of age  
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(Olabarria et al. 2010). While the number of detectable GFAP-positive cells increases 

with age and AD, this is primarily due to upregulation of GFAP expression rather than 

proliferation, as astrocytes only account for less than 10% of proliferating cells both in 

AD patients and mouse models (Serrano-Pozo et al. 2013; Sirko et al. 2013; Kamphuis 

et al. 2012; Lepore et al. 2008). Unlike microglia, which remain relatively similar in size 

and morphology between humans and mice, human astrocytes are 2.6-fold larger, 

extend 10-fold more branches and are capable of propagating calcium waves 4-fold 

quicker than rodent astrocytes (Oberheim et al. 2009). Together with greater 

diversification in astrocyte subpopulation (Oberheim et al. 2006), human astrocytes 

exhibit an increased complexity that may allow greater functional competence in the 

human brain. 

4.1.2. Neuroinflammation in DS 

 

Alterations in neuroinflammation have been described in people with DS commencing 

from fetal stages, and lasting throughout life (Wilcock and Griffin 2013). Given the 

increased risk of AD following chronic low levels of neuroinflammation as described 

above, increasing attention is now being directed towards understanding whether 

neuroinflammatory responses in DS may become potential accelerators of AD 

neuropathogenesis. Several genes trisomic in DS have been linked to 

neuroinflammatory functions, of which most attention has been focused on APP and 

S100B (Griffin et al. 1989). S100B is an astrocyte-derived neurite extension factor 

(Kligman and Marshak 1985) which in healthy conditions contributes to the growth and 

maintenance of neurons (Barger et al. 1995). When highly expressed, as has been 

demonstrated both in DS and AD, S100B is associated with abnormal growth of 

dystrophic neuronal processes (Reeves et al. 1994; Marshak 1990), particularly in 

proximity to Aβ plaques (Mrak and Griffin 2001; Royston et al. 1999; Marshak et al. 

1992). Products of both APP and S100β are capable of inducing the expression of 

cytokine IL-1 (Barger and Harmon 1997; Griffin et al. 1989), which has been associated 

with a series of pathological features relating to AD, including  astrocytic and microglial 

activation (Li et al. 1998), tau hyperphosphorylation (Sheng et al. 2001; Sheng et al. 

2000), increased acetylcholinesterase activity (Li et al. 2000) and decreased 

synaptosphysin expression (Li et al. 2003). In addition, IL-1 is able to induce the 

synthesis of both APP and S100β (Sheng et al. 1996), while S100β is itself also able to 

promote APP expression (Li et al. 1998). These events therefore potentially contribute 

to a self-propagating chronic neuroinflammatory state (Griffin and Mrak 2002). 
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Other gene candidates on Hsa21 have also been implicated in potential 

neuroinflammatory functions, albeit less strongly. Briefly, neural effects of CXADR 

could be explored, to determine if it displays a similar pro-inflammatory role as it does 

in the heart (Ito et al. 2000). The overexpression of both TIAM1 (Cheon, Kim, Ovod, et 

al. 2003) and SOD1 (Cenini et al. 2012) have been associated with increased oxidative 

stress via different mechanisms, triggering neuroinflammatory responses. Signalling 

pathways regulating cytokine production may also be altered following trisomy of 

components in these pathways, resulting in more proinflammatory signaling; these 

components include the IFN receptors IFNAR1, IFNAR2 and IFNGR2 (Kim et al. 1997), 

the serine-threonine kinase RIPK4 which influences both TNFR1 and NFκB signaling 

(Dalal et al. 2012; Rountree et al. 2010; Meylan et al. 2002) and PRMT2, encoding an 

arginine methyltransferase that promotes neuroinflammation via JAK-STAT signalling 

pathways (Mowen et al. 2001).  

 

In addition, DS is characterized by complex neurodevelopmental alterations in 

gliogenesis that likely contribute to the intellectual disability ubiquitous in DS. An 

evaluation of non-neuronal cell markers from 14 weeks of gestation to birth in DS 

individuals demonstrated region-specific alterations in the expression of different glial 

cell types, including defects in astrocyte production (Kanaumi et al. 2013). Interestingly, 

trisomy of APP in Ts65Dn mice was found to be responsible for increased 

astrogliogenesis and reduced neurogenesis, with effects exerted by two separate APP 

cleavage products (Trazzi et al. 2013). These lifelong alterations in glial development 

potentially culminate in a different neuroinflammatory milieu in DS, which could 

potentially influence AD pathogenesis. This was illuminated recently by a study of 

immunophenotypes in young and old patients with AD, together with young (without AD 

pathology) and old patients with DS (and AD pathology). Each of these groups was 

distinguishable by different immunophenotype patterns. Notably, old DS patients 

demonstrated an M2b phenotype which was never observed in patients with SAD 

(Wilcock et al. 2015). M2b is associated with the presence of immune complexes 

(Mosser and Edwards 2008; Edwards et al. 2006) and has been associated with 

increased clearance of amyloid deposits (Sudduth et al. 2013). This suggests that DS 

exhibits an altered neuroinflammatory profile from AD, both before and after the onset 

of AD pathology.  

 

While few histopathological study of glial cells in DS have been performed, the 

investigators who identified and proposed the notion of senescent microglia have 

identified a mixture of healthy and dystrophic, cytorrhexic microglia in DS individuals in 
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their 40s, coincident with the appearance of tau pathology (Xue and Streit 2011). This 

was accompanied by a decrease in microglial numbers, albeit with wide variability 

between DS individuals. In a previous study (Streit et al. 2009), all microglia were 

senescent in two DS individuals over 50 years old with advanced AD pathology, 

suggesting that accelerated amyloidogenesis in DS may speed up microglial 

senescence as well. On the other hand, no morphological study of astrocytes or 

microglia has been performed in DS mouse models. Only one study has investigated 

numbers of microglia in Ts65Dn mice, demonstrating increased numbers of activated 

microglia in the hippocampus and basal forebrain at 18 months of age (Hunter et al. 

2004).  

 

This chapter therefore describes the development of a digital analysis protocol, using 

Definiens Developer, to systematically quantify morphological characteristics of 

microglia and astrocytes in Tc1xJ20 mice. We proceed to investigate how these 

parameters may be altered with age, trisomy 21 or APP/Aβ overexpression, and 

evaluate the validity of these results.   

 

4.1.3.  Aims  

 

1. Quantify area and number of microglia and astrocytes present in hippocampal 

sections of 6 and 16-17 month old Tc1xJ20 mice 

2. Measure the size of glial cell bodies, and the length and complexity of cellular 

processes in the same sections  

3. Examine neuronal and astrocytic protein expression in cortical and 

hippocampal homogenate of 3-month old Tc1xJ20 mice 

 

4.2.  Results 

 

In order to understand how glial phenotypes may be influenced by age, trisomy 21 and 

APP/A overexpression, a digital protocol was developed to systematically identify 

discrete microglia and astrocytes, before quantifying the dimensions of cell bodies and 

cellular processes. As glial morphology is influenced by plaque deposition, we 

optimized the protocol using sections from 16-17 month old Tc1xJ20 mice, in which 

APP/Aβ overexpressing mice exhibit the heaviest Aβ plaque loads (Figure 1.13). These 

results were compared to 6-month old Tc1xJ20 mice, which exhibit early stages of 

plaque deposition (Mucke et al. 2000 and Figure 1.13). Table 4.1 below details the 
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sections that were used for analysis, including information about genotype, age and 

sex.  

 

Table 4.1 Samples used for digital immunohistochemical analysis of microglia and 

astrocytes 

Iba1 

Age Genotype No. of mice Male Female 

6 months 

Wt 5 0 5 

Tc1 4 0 4 

J20 3 0 3 

Tc1;J20 5 0 5 

16-17 months 

Wt 6 3 3 

Tc1 5 2 3 

J20 7 4 3 

Tc1;J20 7 4 3 

GFAP 

Age Genotype No. of mice Male Female 

6 months 

Wt 8 3 5 

Tc1 6 1 5 

J20 8 5 3 

Tc1;J20 10 5 5 

16-17 months 

Wt 6 3 3 

Tc1 3 2 1 

J20 4 2 2 

Tc1;J20 5 4 1 

 

 

4.2.1. Identification and characterization of microglia 

 

As illustrated in Figures 4.1 and 4.6, the primary challenge in analyzing sections from 

16-17-month old mice lay in separating individual glial cells with interwoven processes, 

and deciding which processes emerged from which respective cell bodies. This was 

performed using the observation that primary processes emanating from cell bodies 

were more darkly stained, before fading in staining intensity towards secondary 

branches and the terminal ends of each glial process. Therefore, our protocol identified 

primary processes using darker threshold levels of brown staining, before identifying 

potential ends of glial processes using lighter brown staining levels. It subsequently 

digitally “shrank” these light brown processes, to generate break points, before 

“growing” the process back to its original form for analysis. These break points were 

therefore used to determine which glial processes belonged to which cell bodies, hence 

offering a protocol that was more consistent and efficient than manual segmentation.  
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Regions were present where the dense mesh of glial cell bodies and processes was 

impossible to separate, and these were classified as ‘inseparable clusters’ of staining. 

These clusters were included in calculations for the overall area of immunostaining, but 

were excluded from our phenotyping of individual glial cells, since discrete cell bodies 

could not be identified within these clusters.  

 

Figure 4.2 displays hippocampal sections from Wt, Tc1, J20 and Tc1;J20 mice, at 6 

months and 16-17 months, to illustrate the morphological changes observed with 

genotype as elaborated in the results below. The top panel from each page of Figure 

4.2 depicts Iba1 staining, and the bottom panel is colour coded for cell bodies (blue), 

processes (yellow) and inseparable clusters (black).  
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Figure 4.1 Identification and characterisation of microglial cells. 

Images in each row are of the same field of view, with the left column displaying Iba1 staining 

and the right column colour coded for the analysis of the following features: blue areas indicate 

microglial cell bodies, yellow areas indicate microglial processes, and black areas represent 

‘inseparable clusters’ where individual glial cells could not be distinguished. Figures A1 and A2 

illustrate the specificity of detecting microglial cell bodies, even in regions of closely associated 

cells. Figures B1 and B2 illustrate ‘inseparable clusters’ resembling amyloid plaque deposition. 

Figures C1 and C2 illustrate examples of clustered microglia with touching cell bodies, which 

were unable to be segmented as individual cells, resulting in a proportion of false negatives 

classified as ‘inseparable clusters’, indicated by the colour black. Scale bars: A1-B2: 50 M; C1-

C2: 100 M. 
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Figure 4.2. Increased microglial numbers and size with APP/A overexpression in 

hippocampal sections from Tc1xJ20 mice 

Figures 4.2A-D depict microglial cells identified in 6-month old Wt (4.2A), Tc1 (4.2B), J20 (4.2C) and 

Tc1;J20 (4.2D) sections, while Figures 4.2E-H show the respective genotypes at 16-17 months. The 

top panels illustrate Iba1 staining while the bottom panel is colour coded as follows: blue areas 

indicate microglial cell bodies, yellow areas indicate microglial processes, and black areas represent 

‘inseparable clusters’ where individual glial cells could not be distinguished. Scale bars represent 100 

M.   
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Figure 4.3 Total hippocampal surface area covered by microglia significantly increases 

with APP/A overexpression. 

Total area of Iba1 staining was calculated by summing the areas of cell bodies, cell processes 

and inseparable clusters. Total Iba1 area was expressed as a proportion of the total surface 

area of the hippocampus. APP/A overexpression significantly increased total microglia area, 

but there was no significant influence of age or trisomy 21 on total microglia area. Graph shows 

mean values while error bars indicate SEM. 

 

The area of Iba1 staining was quantified to determine if the surface area covered by 

microglia in the hippocampus was changed by age, trisomy 21 or APP/A 

overexpression (Figure 4.3). Area of microglia surface area covered was normalized to 

the total area of the hippocampus, which had been manually identified and outlined 

prior to analysis. Areas included for analysis included all objects identified as cell 

bodies, cell processes, and the ‘inseparable clusters’ where discrete cell bodies could 

not be identified. Area of microglial staining was significantly increased with APP/A 

overexpression (two-way ANOVA F(1,34) = 8.955, p = 0.005). There was no significant 

effect of trisomy 21 or age on microglial area.  
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Figure 4.4 Hippocampal microglial density significantly increases with age and APP 

overexpression. 

Density was calculated as the total number of cell bodies identified, expressed as a ratio to total 

hippocampal area. Both age and APP/A overexpression increased microglia density but there 

was no significant effect of trisomy 21. Graph shows mean values while error bars indicate 

SEM. 

 

To compare changes in the number of microglial cells in the hippocampus, the 

microglial density was calculated by dividing the total number of cell bodies by the total 

area of the hippocampus. Microglial density was significantly increased with APP/A 

overexpression (two-way ANOVA F(1,40) = 8.98, p = 0.005). There was a significant 

interaction between age and APP overexpression suggesting that old age further 

increased the effect of APP/A overexpression on microglial density (two-way ANOVA 

F(1,40) = 3.245, p = 0.049).  
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Figure 4.5 Area of microglial ‘inseparable clusters’ significantly increases with APP/A 

overexpression. 

The area of inseparable clusters, which were regions where discrete cell bodies could not be 

distinguished, was quantified. APP/A overexpression significantly increased the area of 

inseparable clusters, while there was a trend towards increased area with age. There was no 

significant influence of trisomy 21 on inseparable clusters when studied across the four 

genotypes. Graph shows mean values while error bars indicate SEM. 

 

‘Inseparable clusters’ were regions where our protocol could not distinguish discrete 

cell bodies, and were hence excluded from the characterization of individual cell 

phenotypes (Figure 4.1). The area of ‘inseparable clusters’ was significantly increased 

with APP/A overexpression (two-way ANOVA F(1,34) = 10.266, p = 0.003). There 

was also a trend towards increased ‘inseparable clusters’ with age (F(1,34) = 2.872, p 

= 0.099), but there was no significant effect of trisomy 21 when studied across the four 

genotypes. When comparing the effect of trisomy 21 only on mice overexpressing 

APP/A, there was a trend to increased area of inseparable clusters due to trisomy 21 

(independent samples t-test t(26) = -1.830, p = 0.079) (Figure 4.5). 
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Figure 4.6 Average total area, and area of processes, per microglial cell increases with 

APP/A overexpression. 

The area per microglial cell was calculated by adding the area of cell body and area of cell 

processes in each microglial cell. APP/A overexpression significantly increased the average 

area per microglial cell, as well as the average area of cell processes per microglial cell. There 

was no significant effect of trisomy 21 or age. Graph shows mean values while error bars 

indicate SEM. 

 

The average total area of each microglial cell, which includes area for cell body and 

processes, was significantly increased with APP/A overexpression (two-way ANOVA 

F(1,34) = 5.796, p = 0.022), with no significant effect of trisomy 21 or age. This pattern 

was closely reflected by the increase in the average area of processes per cell with 

APP/A overexpression (two-way ANOVA F(1,34) = 6.948, p = 0.013), but with no 

significant influence of trisomy 21 or age (Figure 4.6). 
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Figure 4.7 No significant differences in average number of branches, length of main line 

and area of cell body in microglial cells. 

The main line measures the distance between the ends of the two longest processes per cell, 

while the number of branches per cell is determined from the main line. There was no significant 

effect of trisomy 21, APP/A overexpression or age on the number of branches, length of main 

line and size of cell bodies per microglial cell. Graph shows mean values while error bars 

indicate SEM. 

 

Although the average area of processes per microglial cell was significantly increased 

with APP/A overexpression (Figure 4.6), this was not due to an increased number of 

branches, or of the general elongation of cells as measured by the main line, both of 

which were not influenced by age, trisomy 21 or APP/Aβ overexpression (Figure 4.7). 

The main line is the distance between the ends of the two longest processes. The 

increase in area per microglial cell was also not associated with an increase in average 

cell body size with age, trisomy 21 or APP/Aβ overexpression (Figure 4.7), therefore 

increased cell area with APP/Aβ overexpression (Figure 4.6) was accounted for 

primarily by an increase in the area of cell processes.  
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4.2.2. Identification and characterization of astrocytes 

 

 

 

Figure 4.8 Identification and characterization of astrocytes (GFAP+). 

The top picture displays astrocyte (GFAP) staining and the bottom picture is colour-coded for 

the analysis of the following features: blue areas indicate astrocytic cell bodies, yellow areas 

indicate astrocytic processes, and black areas represent ‘inseparable clusters’ where individual 

glial cells could not be distinguished. An example of an identified astrocyte is outlined in red. 

Scale bars represent 50 M. 
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Figure 4.8 illustrates the identification of astrocytes in hippocampal sections stained 

with GFAP, and similarly colour coded to indicate cell bodies (blue), cell processes 

(yellow) and inseparable clusters (black). Figure 4.9 displays hippocampal sections 

from Wt, Tc1, J20 and Tc1;J20 mice at both 6 months (Figures 4.9A-D), and 16-17 

months (Figures 4.9E-H) to illustrate the morphological changes observed primarily 

with age as elaborated in the results below.  
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Figure 4.9 Area covered by astrocytes increases with age, but density of astrocytes 

reduces with age. 

Figures 4.9A-D depict astrocytes identified in 6-month old Wt (A), Tc1 (B), J20 (C) and Tc1;J20 (D) 

sections, while Figures 4.9E-H show the respective genotypes at 16-17 months. The top panels 

illustrate GFAP staining while the bottom panel is colour coded as follows: blue areas indicate 

astrocyte cell bodies, yellow areas indicate processes, and black areas represent inseparable 

clusters. Regions of dark brown non-specific GFAP staining observable in the top panel appear to 

result in extensive regions of inseparable clusters (coloured black) shown in the bottom panels. 

These regions of inseparable clusters were particularly pronounced along the dentate gyrus. Scale 

bars represent 100 M. 
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Figure 4.10 Total hippocampal surface area covered by astrocytes significantly increases 

with age. 

Total area of astrocyte GFAP staining was calculated by summing the areas of cell bodies, cell 

processes and inseparable clusters. Total GFAP area was expressed as a proportion of the 

total surface area of the hippocampus. Age significantly increased total astrocyte area, but there 

was no significant influence of trisomy 21 or APP/A overexpression on total astrocyte area. 

Graph shows mean values while error bars indicate SEM. 

 

 

Similar to microglial area analysis, total astrocyte surface area was normalized to the 

area of the hippocampus, which had been manually identified and outlined prior to 

analysis. Areas included for analysis included all objects identified as cell bodies, cell 

processes, and inseparable clusters. Age significantly increased hippocampal surface 

area covered by astrocytes (2-way ANOVA F(1, 42) = 6.711 p = 0.013) but there was 

no significant effect of trisomy 21 or APP/Aβ overexpression (Figure 4.10).  
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Figure 4.11 Astrocyte density in hippocampal sections significantly decreases with age 

and APP/A overexpression. 

Astrocyte density was calculated as the total number of cell bodies identified, expressed as a 

ratio to total hippocampal area. Both age and APP/A overexpression significantly decreased 

astrocyte density but there was no significant effect of trisomy 21. Graph shows mean values 

while error bars indicate SEM.µ 

 

To compare changes in the number of astrocytes in the hippocampus, astrocyte 

density was calculated by dividing the total number of cell bodies by the area of the 

hippocampus (Figure 4.11). Astrocyte density was significantly decreased with age 

(two-way ANOVA F(1,42) = 40.172, p < 0.001) and APP/A overexpression (F(1,42) = 

5.414, p = 0.025). There was no significant influence of trisomy 21. 
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Figure 4.12 Area of astrocytic ‘inseparable clusters’ significantly increases with age. 

The area of inseparable clusters, which were regions where discrete cell bodies could not be 

distinguished, was quantified. Age significantly increased the area of inseparable clusters but 

there was no significant influence of trisomy 21 or APP/A overexpression on inseparable 

clusters. Graph shows mean values while error bars indicate SEM. 

 

The area of inseparable clusters was significantly increased with age (two-way ANOVA 

F(1,42) = 9.666, p = 0.003). These clusters include the regions coloured black in Figure 

4.9, which appear to correspond with dark brown non-specific GFAP staining. There 

was no significant influence of trisomy 21 or APP/Aβ overexpression. 
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Figure 4.13 Average area per astrocyte increases with age. 

The area per astrocyte was calculated by adding the area of cell body and area of cell 

processes in each cell. Age significantly increased the total area per astrocyte, but there was no 

significant effect of trisomy 21 or APP/Aβ overexpression. Graph shows mean values while 

error bars indicate SEM. 

 

 

 

Figure 4.14 Average astrocyte cell body area is not altered by age, trisomy 21 or APP/A 

overexpression.  

Graph shows mean values while error bars indicate SEM. 
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Figure 4.15 Average area of astrocyte processes increases with age, together with 

increased length of the main line and number of branches per astrocyte. 

The main line measures the distance between the ends of the two longest processes per cell, 

while the number of branches per cell is determined from the main line. Age significantly 

increased the average area of processes per cell. This was contributed to by increased length 

of the main line and increased branching from the main line. There was no effect of trisomy 21 

or APP/A overexpression on the above measurements. Graph shows mean values while error 

bars indicate SEM. 

 

The average total area per astrocyte was significantly increased with age (two-way 

ANOVA F(1,42) = 13.357, p = 0.001), but not significantly changed by trisomy 21 or 

APP/Aβ overexpression (Figure 4.15). This was not due to alterations in cell body size, 

which was not altered by age, trisomy 21 or APP/A overexpression (Figure 4.14). 

However, the average area of processes per astrocyte was increased with age (F(1,42) 

= 16.746, p < 0.001), both due to elongation of the main line with age (F(1,42) = 

13.937, p = 0.001) and an increased number of branches (F(1,42) = 14.957, p < 0.001) 

(Figure 4.15). Trisomy 21 and APP/Aβ overexpression both did not influence any of 

these parameters. 
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Figure 4.16  β3T and GFAP protein expression in hippocampal homogenate from 3-month 

old mice 

β3T (55 kDa) and GFAP (50 kDa) are of similar molecular weights and resolve at overlapping 

positions following gel electrophoresis. Simultaneous detection was performed using secondary 

antibodies conjugated with infrared dyes emitting different wavelengths, generating the red β3T 

band and green GFAP band as illustrated. APP/Aβ overexpression significantly decreased β3T 

protein expression levels. Graph shows mean values while error bars indicate SEM. 

 

 

To investigate effects of trisomy 21 and APP/Aβ overexpression on astrocyte and 

neuron levels in 3-month old mice prior to plaque deposition, protein expression of 

GFAP and β3-tubulin (β3T) respectively were quantified by western blots. β3T is the 

major constituent of neuronal microtubules (Tischfield et al. 2010). In 3-month old 

hippocampal homogenate, APP/Aβ overexpression significantly reduced β3T 

expression (2-way ANOVA F(1,28) = 2.995 p = 0.046), with no significant difference in 

trisomy 21. GFAP protein expression remained unchanged by trisomy 21 and APP/Aβ 

overexpression (Figure 4.16).  
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Figure 4.17 β3T and GFAP protein expression in hippocampal homogenate from 3-month 

old mice 

β3T (55 kDa) and GFAP (50 kDa) are of similar molecular weights and resolve at overlapping 

positions following gel electrophoresis. Simultaneous detection was performed using secondary 

antibodies conjugated with infrared dyes emitting different wavelengths, generating the red β3T 

band and green GFAP band as illustrated. There was no significant effect of trisomy 21 or 

APP/Aβ overexpression on levels of both β3T and GFAP. Graph shows mean values while error 

bars indicate SEM. 

 

 

In 3-month old cortical homogenate, there was no significant effect of trisomy 21 or 

APP/Aβ overexpression on β3T or GFAP protein expression, when analysed by 2-way 

ANOVA (Figure 4.17). 
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Figure 4.18 Trisomy 21 increases hippocampal S100β protein expression in 3-month old 

mice 

S100B is duplicated and hence is expressed in four copies in Tc1 and Tc1;J20 mice. Trisomy 

21 significantly increases S100 protein expression but there was no effect of APP/A 

overexpression on S100 expression. Graph shows mean values while error bars indicate SEM. 

 

S100β is an alternative astrocytic marker to GFAP and is encoded on Hsa21. In Tc1 

mice, S100B is duplicated and hence expressed in four copies (Gribble et al. 2013). In 

hippocampal homogenate from 3-month old Tc1xJ20 mice, trisomy 21 significantly 

increased S100β protein expression (2-way ANOVA (F(1,23) = 10.126, p = 0.004). 

There was no significant effect of APP/Aβ overexpression on S100 protein expression 

(Figure 4.18).  
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Figure 4.19 Trisomy 21 increases cortical S100β protein expression in 3-month old mice, 

which is further increased with APP/Aβ overexpression 

S100B is duplicated and hence is expressed in four copies in Tc1 and Tc1;J20 mice. There was 

no significant difference in S100 expression between Wt and Tc1. However, trisomy 21 

interacted with APP/A overexpression to increase S100 expression levels in Tc1;J20 mice. 

Graph shows mean values while error bars indicate SEM. 

 

In cortical homogenate from 3-month old Tc1xJ20 mice, trisomy 21 increased S100β 

protein expression when studied across all four Tc1xJ20 genotypes (2-way ANOVA 

F(1,26) = 7.023, p = 0.014). APP/Aβ overexpression interacted with trisomy 21 to 

further increase S100β in Tc1;J20 mice (trisomy 21*APP/Aβ overexpression interaction 

F(1,26) = 6.477, p = 0.017)). However, there was no significant difference in S100 

expression when compared between Wt and Tc1 (independent samples t-test t(9) = -

1.302, p = 0.225) (Figure 4.19). 
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4.3. Discussion 

 

A digital protocol was developed using Definiens Developer to identify glial cells in 

immunohistochemical sections, before quantifying measurements of their cell body size 

and area of cellular processes. While this has been successfully performed for 

microglia identified by Iba1, studying GFAP-positive astrocytes has proved more 

problematic due to variations in background staining intensity.  

4.3.1. Successful identification of discrete microglial cells  

As microglial cells proliferate in response to inflammatory stimuli (Moraga et al. 2015; 

Mosher and Wyss-Coray 2014), and much attention has focused on the morphology of 

individual cells as an indicator of reactivity, it was important to ensure that the protocol 

identified cell bodies with few false positives to ensure morphological features of 

individual cells were accurately represented. As illustrated in Figure 4.1A, this was 

successfully performed even in regions of higher densities of microglial cells. However, 

false negatives have been observed where microglial cells have been excluded for 

being too closely associated (Figure 4.1C); where present, these cells accounted for 

less than 2% of the total cell count automatically identified. Although we have not 

performed the congophilic or Aβ-directed immunohistochemistry required to illustrated 

plaque deposition, clusters were found in microglial groups surrounding spherical gaps 

resembling amyloid plaques (Figure 4.1B). This was supported by the observation that 

the increase in area of microglial inseparable clusters approximately doubled in 

Tc1;J20 compared to J20 mice, at 16-17 months, resembling the increase in area of 

plaque deposition observed at this age. Therefore, since regions of clustered microglia 

tend to be excluded from analysis, our protocol appears best suited to characterizing 

morphological phenotypes of cells located away from Aβ plaques involving microglial 

clusters. As elaborated below, this is likely to exclude microglia with an amoeboid 

morphology. 

4.3.2. Increased microglial reactivity in APP/A overexpression 

 

APP/A overexpression was the primary influence on microglial phenotypes across the 

hippocampus, manifesting in an increase in both the number (Figure 4.4) and size of 

microglial cells (Figure 4.5). The increase in size was due to an increase in the area of 

processes (Figure 4.5), without no difference in the degree of branching and length of 

main line (Figure 4.6). This suggests that in general the increased area could be due to 

an increased number and/or thickness of microglial processes with APP 
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overexpression, rather than further arborisation and extension of processes. Further 

work therefore needs to verify whether the diameter and number of processes has 

indeed increased. However, as the cell body and cell processes have been defined as 

separate objects in our analysis, we have been unable to quantify the number of 

processes emerging directly from cell bodies due to an inability to encode this in 

Definiens Developer. We will therefore need to troubleshoot this with technical advisors 

from Definiens. 

 

As our protocol has been successful in quantifying the dimensions of cell bodies and 

processes in discrete microglial cells, the next step would to attribute these features to 

the different morphological classes representing microglial activation states. For 

instance, in a study on J20 mice at 3, 9, and 15 months of age, an increase in 

“microglial activation score” was observed to be influenced by APP/A overexpression 

and age in hippocampal subregions (Pomilio et al. 2015), as also observed in this 

study. This score was based on the nominal scoring of morphology from ramified to 

amoeboid phenotypes (Figure 4.20, Pomilio et al. 2015). Amoeboid microglia have 

been shown to be the morphological subtype most closely associated with A plaques 

(Baron et al. 2014). As it is likely that amoeboid cells would be excluded together with 

‘inseparable clusters’ in our analysis, the increase in the number and/or thickness of 

processes in our results may point towards a general shift in microglial morphology to 

the “reactive” form as shown in Figure 4.20.  

 

In collaboration with a neuropathologist, parameters could be created which in 

combination could be used to distinguish between morphological classes, particularly 

those with intermediate levels of branching. In microglia, these parameters could 

include a combination of the width and length of the main line to represent the 

thickness of ramifications, the “shape index” to represent the tortuosity of branches, 

and other parameters to refine the allocation of morphological classes. To include 

amoeboid reactive microglial cells currently excluded from analysis, a more stringent 

cell body selection could be applied around a fixed radius from areas identified as 

putative plaques. For instance, one could use a 25 M radius from a plaque, within 

which microglia numbers have been shown to decrease with age, linked to an increase 

in plaque-associated dystrophic neurites due to reduced microglial protection from 

A42 toxicity (Condello et al. 2015).  
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Figure 4.20. Increased microglial activation with APP/A overexpression and age, based 

on the nominal scoring of morphology class. 

Figure adapted from Fig. 3 from Pomilio et al., 2015. “Tg” indicates J20 mice while “NTg” 

indicates Wt mice. (A) illustrates examples of each morphological class together with a nominal 

score. (B) plots activation scores calculated by the proportion of each morphological class 

multipled by its nominal score. 

 

Improving this protocol as above would therefore potentially allow the consistent 

analysis of more subtle changes in microglial morphology, removing potential bias in 

sampling and individual variations in judgment with manual classification. This could 

also be applied for more refined segmentation of regions of interest, such as by 

subdividing analysis in different hippocampal subregions, or analyzing morphologies 

based on distances from amyloid plaques. This will potentially allow such an automatic 

analysis protocol to tease out smaller changes in morphology that are difficult to be 

judged by eye, such as the thinning of microglial processes associated with 

senescence. 

4.3.3. Artefacts in astrocyte characterization due to variations in background 

staining intensity 

 

While we were capable of identifying discrete astrocytes (Figure 4.8), characterization 

of astrogliosis was more challenging due to uneven GFAP brown staining across the 

hippocampus. This resulted either in patches of false negatives, where darker regions 
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were included as “inseparable clusters” of cells, or false positives, where lighter brown 

staining adjacent to darker brown inseparable clusters was classified as processes 

(Figure 4.9). These regions featured primarily in the dentate gyrus, which was generally 

stained a darker brown than the rest of the hippocampus (Figure 4.9). Interestingly, this 

pattern of darker staining around the dentate gyrus appears to extend to Aβ plaque 

immunohistochemistry, as demonstrated by Figure 5D of a study by Mucke and 

colleagues (Figure 4.21), and our own J20-positive sections stained for amyloid 

plaques. Although it remains unclear why there would be increased A plaque 

deposition around these areas, the artefacts in astrocyte staining created by darker 

brown regions cannot only be related to A plaque deposition, as these artefacts were 

also observed in WT and Tc1 mice, which do not develop plaques. Therefore, the 

darker brown staining is likely to be non-specific, and learning how to more specifically 

identify astrocytes in these regions may be relevant to identifying individual plaques in 

A immunohistochemistry.  

 

 

Figure 4.21 A plaque deposition in 10-month old J20 hippocampal section, showing 

intense staining around the dentate gyrus. 

Adapted from Mucke et al. 2000. 

 

 

Consequently, while we demonstrated an age-dependent increase in hippocampal 

astrocyte coverage with age, due to an increase in the area of processes (Figure 4.15), 

two results suggest a problem with our analysis. Firstly, there was a general increase 

with age but no effect of APP/A overexpression on the area of ‘inseparable clusters’ 

(Figure 4.12). As discussed above, Wt and Tc1 mice do not exhibit plaque deposition, 

hence these clusters do not reflect astrogliosis in response to Aβ accumulation. 

Furthermore, astrocytes do not form astrocytic scars in AD or with aging (Sofroniew 

2009). Therefore, these clusters are likely to be an artefact due to the regions of darker 

brown background staining (Figure 4.9). Secondly, astrocytic density decreased 
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significantly with age and APP/A overexpression, which goes against observations 

that astrocyte numbers remain unchanged in both AD patients and mouse models with 

age and A accumulation (Serrano-Pozo et al. 2013; Kamphuis et al. 2012). The 

decrease in astrocyte density with age could therefore be due to the increase in 

inseparable clusters with age, which would have resulted in an increased number of 

astrocytes excluded from analysis, due to the inability to separate them. Future work 

therefore needs to address how to identify astrocytes amidst varying levels of 

background intensity. One potential approach could be to segment the dentate gyrus 

as a separate region for analysis, and apply a higher threshold for background staining 

in this region.  

 

While the digital immunohistochemical analysis of astrocyte phenotypes remains 

unresolved, study of astrocytic and neuronal protein expression has yielded some 

insight. As sections from 3-month old Tc1xJ20 brains were not prepared for digital 

analysis, GFAP and S100 protein expression were examined in hippocampal and 

cortical homogenates as a measure for levels of astrogliosis (Figures 4.16-19). At 3 

months, no amyloid plaques are yet observed in APP/A-overexpressing mice (Wright 

et al. 2013), hence phenotypes presented at this age may reflect early stages of 

pathogenesis prior to A deposition. No significant difference in GFAP expression was 

observed across all genotypes in both hippocampal and cortical tissue (Figures 4.16-

4.17). However, this stands in contrast to the increase in GFAP-positive astrocytes 

counted in the hippocampal CA1 and CA3 regions of 12-week old J20 mice (Wright et 

al. 2013), possibly reflecting a lack of sensitivity in western blots and semi-quantitative 

densitometric analysis (Taylor et al. 2013). 

 

S100 protein expression was also quantified as a second astrocytic marker (Gerlach 

et al. 2006). Unlike GFAP, S100B is encoded on Hsa21 and has been previously 

shown to increase S100 protein expression in both hippocampus and cortex of Tc1 

mice (Ahmed et al. 2013), which express four copies of this gene due to a duplication 

in the Hsa21 chromosome (Gribble et al. 2013). While we demonstrated an increase in 

S100 in the hippocampus in both Tc1 and Tc1;J20 (Figure 4.19), S100 was not 

significantly increased in Tc1 cortex compared to Wt (Figure 4.18). This resulted in a 2-

fold increase in Tc1;J20 cortical S100 levels compared to Tc1 (Figure 4.18). Further 

work needs to be done to confirm levels of S100 expression in Tc1 cortical tissue, 

before exploring the idea that APP/A overexpression may exacerbate astrogliosis 

indicated by S100 in the cortex.  
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S100 labels a subtype of mature astrocytes that associate with blood vessels, and 

express NG2 (Wang and Bordey 2008). S100 proteins have been shown to be 

differentially expressed in the development of human hippocampus and temporal 

cortex (Chan et al. 2003), and S100 expression in the cortex alters temporally from 

fetal development to old age (Tiu et al. 2000). In rodent cortex, about 40% of astrocytes 

stained positively for S100 were negative for GFAP, while 80% were positive for both 

GFAP and S100 in the hippocampus (Bushong et al. 2002; Ogata and Kosaka 2002). 

Therefore, it is possible that differences in the proportion of astrocytic cell types 

expressing S100 in cortical and hippocampal tissues may result in a differential 

response to APP/A overexpression, should there indeed be an interaction effect 

between trisomy 21 and APP/A overexpression in cortical but not hippocampal tissue 

(Figures 4.18-19). This however remains speculative and will require an 

immunohistochemical study of S100/GFAP double-stained glial cells in cortical tissues 

to confirm, and the digital protocol we developed above could potentially be applied to 

such a study.  

 

The upregulation of S100 in trisomy 21 is relevant to the study of synergistic effects of 

inflammation between S100B and APP, particularly in association with IL-1 (Barger and 

Harmon 1997; Griffin et al. 1989). It will therefore be interesting to investigate if the 

increased S100 expression in Tc1;J20 may manifest itself in astrocytic morphological 

changes reflected by S100, and cytokine profiles associated with inflammation, in 

cortical tissue. While we did segment cortical tissue as a region of interest, this was 

eventually not included in the final analysis as Iba1-positive and GFAP-positive cells 

were both relatively sparsely distributed in the cortex, compared to hippocampal tissue 

which was fully covered by both types of cells. Therefore only hippocampal analysis 

was performed due to a greater confidence in capturing a more generalizable glial 

phenotype, which we could use for assessing the validity of our results. 

 

To gain insight into whether the expression of neuronal markers was altered at 3 

months, we quantified the expression of 3-tubulin (3T), the major constituent of 

neuronal microtubules (Tischfield et al. 2010). This revealed a subtle, but significant, 

reduction in 3T expression in mice with APP/A overexpression, which was 

unexpected given the lack of neuronal loss observed at this age in all hippocampal 

regions studied (Wright et al. 2013). Immunoblotting could be repeated with a different 

marker of neuronal microtubules to verify this result, such as using MAP2, a neuronal 

dendritic marker (Soltani et al. 2005). 
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4.3.4. Trisomy 21 does not significantly alter any glial phenotype when studied 

across the hippocampus 

 

None of the morphological measurements in microglia and astrocytes were significantly 

altered by trisomy 21. While this suggests that trisomy 21 has no effect on glial 

reactivity, this may also be because morphological alterations in trisomy 21 are too 

subtle to be revealed by the broad analysis of phenotypes across the hippocampus. In 

humans, immunophenotype classes have been recently shown to distinguish between 

old and young individuals with DS, AD or both (AD-DS) (Wilcock et al. 2015). As 

immunophenotypes have been associated with changes in morphology (Jensen et al. 

1997) there is value in further developing this protocol for a more targeted, sensitive 

approach at phenotyping microglial morphology. Despite the lifelong chronic conditions 

of oxidative stress and neuroinflammation in DS (Perluigi and Butterfield 2012), the 

lack of an observable effect of trisomy 21 may suggest that these effects manifest more 

subtly compared to the transgenic overexpression of APP which aggressively promotes 

amyloidosis. 

4.3.5. Conclusion 

 

In summary, we have developed a digital protocol capable of systematically separating 

cells with closely-associated processes, identifying individual cell bodies and hence 

describing single cells in immunohistochemical analysis. This has been particularly 

successful for microglial cells, where quantification of the area, length and branching of 

processes has suggested a general shift to a reactive morphology with APP/A 

overexpression in the hippocampus; future work needs to confirm this with a blinded 

manual classification of morphology in these sections. On the other hand, 

improvements need to be made to account for variability in brown staining for GFAP, 

before greater confidence can be placed in the characterization of morphological traits 

in single astrocytes. Once this is optimized there is potential in using this protocol for 

the systematic, finer dissection of glial phenotypes in smaller subregions, or with 

reference to other objects such as distances from plaques. This may potentially bring 

out subtler phenotypes influenced by trisomy 21, which may currently be obscured by 

broad hippocampal-wide characterization. 
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Chapter 5. Investigating effects of trisomy 21 and APP/A 

overexpression on mRNA expression profiles 

 

5.1. Introduction 

 

The Tc1xJ20 cross allows us the unique opportunity to investigate how the presence of 

Trisomy 21 modifies pathological features relating to APP/A overexpression observed 

in the J20 mouse, such as the exacerbation of amyloidosis, reduced survival rates and 

deficits in learning and memory. In Chapters 3 and 4, we had examined this using 

hypothesis-driven approaches: in Chapter 3, developing an in vitro model was 

undertaken with the wider aim of evaluating the importance of candidate genes on 

Hsa21, which when trisomic may influence APP/A phenotypes relating to cell biology; 

in Chapter 4, we investigated if changes in glial morphology and protein expression 

were concomitant pathological features modified by the presence of Tc1 and/or J20 

genotypes. In contrast, this chapter describes a transcriptomic approach which does 

not assume a priori hypotheses, but instead seeks to generate new avenues for 

research by comparing the mRNA transcription levels between each Tc1xJ20 

genotype, to observe how the presence of Trisomy 21 or mutant APP overexpression 

may influence gene expression patterns, and hence identify new areas to be explored.  

 

In the transcriptomic characterisation of AD and DS so far, the bulk of studies have 

employed hybridization-based approaches, involving the targeted binding of probes to 

fluorescently labeled cDNA, on commercial or custom-made microarrays. These results 

have, however been largely discordant, potentially reflecting limitations such as high 

background signal due to cross-hybridisation artefacts (Okoniewski and Miller 2006), a 

limited dynamic range of detection, and the ambiguous mapping of short reads 

(Sutherland et al. 2011). In addition, microarrays rely on existing knowledge of the 

genome, and offer limited or no information on splice isoforms and non-coding RNA 

sequences (Wang et al. 2009). These are significant limitations, as altered gene 

expression and alternative splicing have been observed both as part of normal aging 

and in the development of AD (Stilling et al. 2014; Twine et al. 2011). However, their 

requirement for relatively small quantities of RNA starting material has facilitated 

studies of more specific brain regions and cell types, for instance through the use of 

laser capture microdissection (Kim et al. 2015). 
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We have, however, employed RNA-seq to study the transcriptome of the Tc1xJ20 

cross, in collaboration with Dr. Manuela Zanda and Dr. Vincent Plagnol of the UCL 

Genetics Institute. RNA-seq employs next-generation sequencing technologies to allow 

a more cost-effective, higher-resolution sequencing method than traditional Sanger 

sequencing. In addition, it produces a measurement of transcript levels that can be 

more precise and detailed than other methods such as microarrays, including 

information on transcriptional structure, splicing patterns and post-transcriptional 

modifications (Wang et al. 2009). In brief, RNA-seq involves the reverse transcription of 

a population of total RNA to form a cDNA library with adapters to one or both ends of 

each fragment. This cDNA, with or without amplification, is sequenced to obtain reads 

(short DNA fragments) that are either aligned to reference transcripts, or assembled de 

novo. This library of reads can subsequently be annotated, quantified to determine 

transcription levels or further analyzed to provide information on splicing isoforms or 

transcriptional structures.  

 

In this study, RNA-seq was performed on total hippocampal RNA obtained from 3-

month old Tc1xJ20 cross progeny, using 3 mice per genotype. At 3 months of age, no 

plaque deposition is yet observable in J20 and Tc1;J20 mice (Mucke et al. 2000, and 

Chapter 1), hence any transcriptional differences reflect early changes in gene 

expression patterns prior to amyloid deposition. The RNA-seq data obtained was 

subsequently compared between three pairs of genotypes to identify genes that are 

differentially expressed: 1) to investigate the effect of trisomy 21 alone on mRNA 

expression, Tc1 data was compared with Wt (“Tc1/Wt”); 2) to discern the effects of 

APP transgene expression on mRNA expression, J20 was compared to Wt (“J20/Wt”); 

3) to study how trisomy 21 modifies gene expression in the context of APP 

overexpression, Tc1;J20 data was compared to J20 (“Tc1;J20/J20”). We are currently 

unable to determine any interaction effects between trisomy 21 and mutant APP 

overexpression, as analysis across all four genotypes has yet to be performed to study 

effects of Tc1 genotype status and J20 genotype status across Tc1xJ20. However, 

insights into how transcription regulation can be affected by genotype based on pair-

wise comparison can offer clues into how each genotype may result in phenotypic 

differences.  

 

After identifying a list of genes that is significantly differentially expressed between 

these genotype pairs, one would like to understand how these may exert potential 

effects on biological function. To this end, we used the internet browser-based 

Database for Annotation, Visualisation, and Integrated Discovery (DAVID v6.7, 
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National Institute of Allergy and Infectious Diseases/National Institutes of Health, USA) 

to describe how differentially expressed genes (DEGs) could be classified into 

functionally-enriched clusters (Huang et al. 2009). We performed functional annotation 

clustering on genes that were significantly differentially expressed between each of the 

genotype pairs – Tc1/Wt, J20/Wt and Tc1;J20/J20 – to discover functions associated 

with groups of DEGs.   

 

Finally, we were interested in determining whether the differences in candidate gene 

expression between genotypes observed in hippocampal RNA-seq was also 

generalizable to cortical gene expression, since both tissues have been studied in 

tandem for APP/Aβ-related pathology (see Chapters 1 and 3). To this end, we 

identified candidate genes from hippocampal RNA-seq data based on their potential 

relevance to AD pathogenesis, as elaborated for each gene in the Results section, 

together with confirmation of their expression in mouse cortex and hippocampus using 

the Allen Mouse Brain Atlas (Lein et al. 2007). Expression levels for candidate genes 

were quantified in 3-month old Tc1xJ20 cortical tissue using reverse transcription 

qPCR (qRT-PCR). These results were subsequently compared to hippocampal gene 

expression results obtained from RNA-seq. qRT-PCRs have been routinely used to 

verify RNA-seq results for single genes as the two platforms have been shown to 

demonstrate a strong level of concordance (C. Wang et al. 2014; Su et al. 2014). While 

it would have been ideal, in addition, to validate the RNA-seq gene expression data 

using Tc1xJ20 hippocampal tissue for qRT-PCR, this tissue was unavailable due to 

high demand for its use in other studies by the group into disease mechanisms. 

Therefore the value in this study will be in evaluating the concordance of candidate 

gene RNA expression patterns across hippocampal and cortical tissues.  

 

5.1.1. Aims 

 

1. Identify genes differentially expressed between Tc1 and Wt and compare to 

gene expression between Tc1;J20 and J20  

2. Group differentially expressed genes between Tc1/Wt, Tc1;J20/J20 and 

J20/Wt into functional clusters using DAVID 

3. Compare hippocampal gene expression from RNA-seq with cortical gene 

expression by qRT-PCR  
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5.2.  Results 

 

5.2.1. Differentially expressed genes identified between Tc1/Wt, Tc1;J20/J20 

and J20/Wt  

 

Supplementary Tables 1 to 3 detail genes that were significantly downregulated or 

upregulated in Tc1 compared to Wt (Tc1/Wt), J20/Wt and Tc1;J20/J20. Following 

sequencing, for each gene a mean read count was obtained; these were used to 

calculate the ratio of expression levels between the pairs of genotypes under 

comparison. An adjusted p-value was calculated to take into account multiple testing by 

applying a false discovery rate (FDR) correction; genes listed in Supplementary Tables 

1-3 are significant following FDR correction and hence have an adjusted p-value < 

0.05. These genes were subsequently used for functional annotation clustering in 

DAVID (Section 5.3.2) to identify functions associated with these DEGs. 

 

Table 5.1 below lists DEGs that were significantly different between Tc1/Wt, and 

compares these results with the corresponding values from the comparison between 

Tc1;J20/J20. This therefore identifies gene transcription that is significantly changed by 

trisomy 21, and further illustrates whether this change in gene transcription is similarly 

influenced by trisomy 21 in APP/A overexpression. Out of the 65 genes compared 

between Tc1/Wt that were significantly different, 5 genes remained significantly altered 

by trisomy 21 in Tc1;J20/J20.  
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Table 5.1 Effect of trisomy 21 on differential gene expression in Tc1/Wt and Tc1;J20/J20. 

Genes listed here are differentially expressed significantly in Tc1 compared to Wt (Tc1/Wt), 

apart form Arc which is differentially expressed significantly in Tc1;J20/J20 but not Tc1/Wt. 

Genes are listed in order of increasing relative expression between Tc1/Wt. In the 

corresponding results for Tc1;J20/J20, most genes were no longer significantly differentially 

expressed; genes that remained significantly different, with adjusted p-values of <0.05 in 

Tc1;J20/J20, are indicated by a green adjusted p-value.   

Ensembl ID 
(Release 81, July 2015) 

Gene 
Adj. p-
value 

Wt / Tc1 

Mean 
read 

count 
Wt 

Mean 
read 

count 
Tc1 

Adj. p-
value 
J20 / 

Tc1;J20 

Mean 
read 

count 
J20 

Mean 
read 

count 
Tc1;J20 

Relative 
Express
ion Tc1 / 

Wt 

Relative 
Expressio
n Tc1;J20 

/ J20 

Chromosome 
(Mmu) 

ENSMUSG00000021250 Fos 0.00001 520 119 0.002 531 119 0.23 0.22 12 

ENSMUSG00000000303 Cdh1 0.004 61 15 0.9998 70 52 0.24 0.74 8 

ENSMUSG00000004885 Crabp2 0.01 90 29 0.9998 101 79 0.32 0.78 3 

ENSMUSG00000069372 Ctxn3 0.03 76 24 0.9998 82 70 0.32 0.86 18 

ENSMUSG00000024650 Slc22a6 0 282 91 0.9998 386 303 0.32 0.78 19 

ENSMUSG00000040310 Alx4 0.04 66 22 0.9998 93 86 0.33 0.93 2 

ENSMUSG00000037868 Egr2 0.04 74 26 0.8992 79 21 0.35 0.26 10 

ENSMUSG00000024190 Dusp1 0.0001 644 276 0.0004 793 400 0.43 0.50 17 

ENSMUSG00000005087 Cd44 0.01 176 82 0.9998 277 271 0.46 0.98 2 

ENSMUSG00000020423 Btg2 0.00000
01 

646 316 0.01 699 357 0.49 0.51 1 

ENSMUSG00000028364 Tnc 0.02 383 192 0.9998 513 459 0.5 0.89 4 

ENSMUSG00000038418 Egr1 0.02 2828 1523 0.9796 2940 1695 0.54 0.58 18 

ENSMUSG00000053279 Aldh1a1 0.01 1830 998 0.00000
004 

1975 1081 0.55 0.55 19 

ENSMUSG00000020241 Col6a2 0.01 947 521 0.9998 1352 1431 0.55 1.06 10 

ENSMUSG00000030270 Cpne9 0 744 417 0.9998 1154 985 0.56 0.85 6 

ENSMUSG00000092035 Peg10 0 529 294 0.9998 964 750 0.56 0.78 6 

ENSMUSG00000022602 Arc 0.35 2923 1683 0.008 3543 1406 0.58 0.40 15 

ENSMUSG00000040701 Ap1g2 0.02 566 341 0.9998 559 529 0.6 0.95 14 

ENSMUSG00000052837 Junb 0.07 1148 685 0.0127 1318 816 0.6 0.62 8 

ENSMUSG00000040495 Chrm4 0.01 536 328 0.2967 674 521 0.61 0.77 2 

ENSMUSG00000021453 Gadd45
g 

0.04 555 345 0.9998 666 600 0.62 0.90 13 

ENSMUSG00000000142 Axin2 0.01 977 620 0.9752 1101 946 0.63 0.86 11 

ENSMUSG00000000184 Ccnd2 0.01 2479 1562 0.5118 2679 2189 0.63 0.82 6 

ENSMUSG00000005774 Rfx5 0.01 849 536 0.2207 947 776 0.63 0.82 3 

ENSMUSG00000044037 Als2cl 0.01 702 452 0.9998 846 736 0.64 0.87 9 

ENSMUSG00000071341 Egr4 0.03 547 352 0.9998 514 328 0.64 0.64 6 

ENSMUSG00000074575 Kcng1 0.03 709 464 0.9998 928 859 0.65 0.93 2 

ENSMUSG00000018476 Kdm6b 0 1963 1272 0.9998 2370 2306 0.65 0.97 11 

ENSMUSG00000018537 Pcgf2 0 1299 850 0.9998 1529 1524 0.65 1.00 11 

ENSMUSG00000034771 Tle2 0 1762 1170 0.9998 1851 1791 0.66 0.97 10 

ENSMUSG00000035835 BC0057
64 

0.002 1585 1068 0.9998 2019 1708 0.67 0.85 10 

ENSMUSG00000020893 Per1 0.003 3568 2537 0.9998 4194 3560 0.71 0.85 11 

ENSMUSG00000002871 Tpra1 0.02 1295 914 0.9998 1389 1474 0.71 1.06 6 

ENSMUSG00000047945 Marcksl1 0.03 1929 1384 0.9998 1927 1631 0.72 0.85 4 

ENSMUSG00000025145 Lrrc45 0.02 3114 2296 0.9998 3668 3485 0.74 0.95 11 

ENSMUSG00000028137 Celf3 0.01 7911 5939 0.9998 9542 8632 0.75 0.90 3 

ENSMUSG00000028249 Sdcbp 0.02 7756 8406 0.9998 9594 11117 1.08 1.16 4 

ENSMUSG00000049313 Sorl1 0.03 12721 13747 0.9998 16304 18964 1.08 1.16 9 

ENSMUSG00000029657 Hsph1 0.01 10168 11095 0.9998 14692 15256 1.09 1.04 5 

ENSMUSG00000031618 Nr3c2 0.02 3843 4179 0.9998 4818 5934 1.09 1.23 8 

ENSMUSG00000023913 Pla2g7 0.01 5826 6375 0.9998 7582 7194 1.09 0.95 17 

ENSMUSG00000045733 Sprn 0.03 4712 5142 No result No result No result 1.09 No result 7 

ENSMUSG00000024873 Cnih2 0.03 10206 11268 0.9998 12629 13622 1.1 1.08 19 

ENSMUSG00000022761 Lztr1 0.02 7928 8685 0.9998 10807 11881 1.1 1.10 16 

ENSMUSG00000030729 Pgm2l1 0.01 10617 11708 0.9998 16381 16058 1.1 0.98 7 

ENSMUSG00000037111 Setd7 0.02 5429 5989 0.9998 7147 7917 1.1 1.11 3 

ENSMUSG00000035547 Capn5 0.03 2430 2698 0.9998 2955 3416 1.11 1.16 7 

ENSMUSG00000026787 Gad2 0.01 4936 5468 0.9998 7772 9582 1.11 1.23 2 

ENSMUSG00000052087 Rgs14 0.01 4518 5041 0.9998 6524 7739 1.12 1.19 13 

ENSMUSG00000050711 Scg2 0.01 3623 4057 0.9998 5260 5547 1.12 1.05 1 

ENSMUSG00000058897 Col25a1 0.02 2964 3352 0.9998 3550 4303 1.13 1.21 3 

ENSMUSG00000050321 Neto1 0 3754 4242 0.9998 5259 5588 1.13 1.06 18 

ENSMUSG00000030209 Grin2b 0 3449 3941 0.9998 5044 4812 1.14 0.95 6 

ENSMUSG00000005360 Slc1a3 0 15408 17632 0.9998 17942 19061 1.14 1.06 15 

ENSMUSG00000018322 Tomm34 0 3015 3439 0.9998 3756 4263 1.14 1.14 2 

ENSMUSG00000030226 Lmo3 0 2306 2678 0.9998 2917 3010 1.16 1.03 6 

ENSMUSG00000028648 Ndufs5 0.01 1505 1746 0.9998 2078 2486 1.16 1.20 4 

ENSMUSG00000063297 Luzp2 0 4318 5060 0.9998 5296 5642 1.17 1.07 7 

ENSMUSG00000039470 Zdhhc2 0.04 1567 1853 0.9998 905 943 1.18 1.04 8 

ENSMUSG00000021613 Hapln1 0.02 755 905 0.9998 1123 1408 1.2 1.25 13 



154 

 

ENSMUSG00000030772 Dkk3 0 9916 11978 0.9998 13110 14018 1.21 1.07 7 

ENSMUSG00000055540 Epha6 0.02 2687 3325 0.9998 4265 4222 1.24 0.99 16 

ENSMUSG00000059325 Hopx 0 1500 1864 0.9312 1982 2403 1.24 1.21 5 

ENSMUSG00000059991 Nptx2 0.02 594 738 0.9998 1201 1055 1.24 0.88 5 

ENSMUSG00000020635 Fkbp1b 0.01 803 1008 0.9998 1258 1354 1.25 1.08 12 

ENSMUSG00000048070 Pirt 0.01 36 85 0.9998 61 84 2.37 1.37 11 

 

5.2.2. Identifying functional clusters from differentially expressed genes  

 

Having generated lists of DEGs in comparing transcriptional profiles between Tc1/Wt, 

J20/Wt and Tc1;J20/J20 (Supplementary Tables 1-3), I sought to understand if there 

were any functional relationships between these genes, by performing functional 

annotation clustering using DAVID. This tool grouped DEGs (Supplementary Tables 1-

3) that featured associated functions in common, as annotated in the DAVID 

Knowledgebase which integrates more than 40 publicly-available functional annotation 

sources (B. T. Sherman et al. 2007). Clustering was performed at the lowest stringency 

classification to identify as many potential functions as possible, given the stringent 

selection of DEGs based on FDR-adjusted p-values. Table 5.2 summarizes the 

functional clusters associated with differential expression between Tc1;J20/J20, Tc1/Wt 

and J20/Wt. The enrichment scores (in brackets) reflect the geometric mean of all 

enrichment p-values for each annotation term, per gene member, in the group – these 

indicate the relative importance of gene groups, and are not absolute p-values. To 

emphasise this relative nature, a minus log transformation was applied on the p-values, 

therefore an enrichment score greater than 1.3 reflects significant p-values less than 

0.05 (Huang et al. 2009; Hosack et al. 2003). Table 5.2 was interpreted from the full 

DAVID output in Supplementary Tables 4-6, which expands on every annotation term 

and its associated DEGs, used to calculate the enrichment score for the overall cluster.  
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Table 5.2 Functional clusters associated with the differentially expressed genes 

identified between each pair of genotypes. 

The enrichment score (in brackets) reflects the geometric mean of all enrichment p-values for 

annotation terms within the cluster, and offers a relative significance value for the cluster. 

Enrichment scores >1.3 correspond to significant p-values <0.05, and are indicated by an 

asterisk. 

Annotation 

Cluster 

Tc1;J20 vs J20 

(14 out of 28 genes clustered) 

Tc1 vs Wt 

(19 out of 64 genes clustered) 

J20 vs Wt 

(14 out of 24 genes clustered) 

1 
Cytoplasmic vesicles and 

plasma membrane (1.52*) 
Extracellular regions (1.89*) Signalling peptides (3.30*) 

2 Embryonic development (0.94) Transcription regulation (1.44*) 
Glycosylation and 

transmembrane proteins (2.95*) 

3 
Cytoplasmic vesicles and ion 

binding (0.82) 
Cytoplasmic vesicles (1.33*) 

Cellular homeostasis, 

neurotransmission, gliogenesis 

(2.63*) 

4 
Ion transport, glycosylation 

and membrane (0.65) 
Carbohydrate binding (1.19) 

Extracellular matrix and cell 

adhesion (2.01*) 

5 Signalling peptides (0.46) 
Regulation of synaptic 

transmission, cognition (1.18) 
Ion transport (1.20) 

6 Organelle lumen (0.39) Embryonic development (1.18) Cell membrane (0.91) 

7 Transcription regulation (0.15) 
Cellular ion/chemical 

homeostasis (1.10) 

Cell/membrane/insoluble 

fraction (0.80) 

8  

Gland development, 

extracellular matrix, cell 

adhesion (1.04) 

Transmembrane region (0.67) 

9  Fibronectin proteins (0.94) Ion binding (0.44) 

10  Protein glycosylation (0.90) Nucleotide binding (0.13) 

11  Transcription regulation (0.88)  

12  Immune cell activation (0.83)  

13  Plasma membrane (0.76)  

14  Wnt signalling (0.77)  

15  
Inflammatory/wound/defence 

response (0.74) 
 

16  Epithelial development (0.71)  

17  Cell junction, synapse (0.66)  

18  Zinc-finger DNA binding (0.51)  

19  
Nucleoplasm and organelle 

lumen (0.45) 
 

20  Ion transport (0.38)  

     

Transcriptional differences relating to cytoplasmic vesicles is the only significantly-

associated annotation cluster in Tc1;J20/J20, and is also significant in Tc1/Wt; this 

indicates that the presence of trisomy 21 is sufficient to alter the gene expression 

associated with cytoplasmic vesicles even in the context of APP/A overexpression. 

However, altered gene expression relating to transcriptional regulation and extracellular 

regions is only significant in Tc1/Wt and lost in the presence of APP/A 

overexpression. The annotation clusters associated with J20/Wt strongly influence 

gene expression relating to cell signaling and membrane-related functions, such as cell 

adhesion and transmembrane protein modifications.   
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5.2.3. Investigating the concordance of candidate gene expression between 

hippocampal and cortical samples 

 

Finally, we were interested in determining whether the differences in candidate gene 

expression levels between genotypes observed using hippocampal RNA-seq was also 

generalizable to cortical gene expression, since both tissues have been studied in 

parallel for APP/Aβ-related pathology (see Chapters 1 and 4). To this end, we identified 

candidate genes from hippocampal RNA-seq data based on their potential relevance to 

AD pathogenesis, as elaborated for each gene below, as well as confirmation of their 

expression in mouse cortex and hippocampus using the Allen Mouse Brain Atlas (Lein 

et al. 2007). Expression levels for candidate genes were quantified in 3-month old 

Tc1xJ20 cortical tissue using reverse transcription qPCR (qRT-PCR). 

 

5.2.3.3. App 

 

App was the only gene validated by qRT-PCR in both hippocampal and cortical tissues, 

to complement the group’s studies on APP/A performed in both tissues so far. 

 

Hippocampal RNA expression that was analyzed by RNA-seq demonstrated no 

significant difference in App mean read counts, in Tc1 compared to wildtype (adjusted 

p = 0.9784) and in Tc1;J20 compared to J20 (adjusted p = 0.9998). In hippocampal 

RNA quantified by qRT-PCR, there was no significant effect of Tc1 or J20 status, or the 

interaction between Tc1 and J20 status, on App expression (2-way ANOVA Tc1 status 

F(1, 28) = 0.065, p = 0.800; J20 status F(1, 28) = 1.464, p = 0.236; Tc1*J20 interaction 

F(1, 28) = 0.000, p = 1.000). In cortical RNA, there was also no significant effect of Tc1 

or J20 status, or the interaction between Tc1 and J20 status, on App expression (Tc1 

status F(1,40) = 0.055, p = 0.815; J20 status F(1, 40) = 0.177, p = 0.676; Tc1*J20 

interaction F(1, 40) = 1.031, p = 0.316). While App expression was shown to be not 

significantly different across genotypes in both tissue types, the directions of change in 

hippocampal qRT-PCR analysis more closely resembled hippocampal RNA-seq 

results, in a non-significant ~1.3-fold increase in App expression in J20-positive mice 

compared to J20-negative mice. This was compared to the wider variability observed in 

cortical tissue resulting in no clear trend.  
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Figure 5.1 Comparison of App hippocampal RNA-seq results with hippocampal and 

cortical App RNA expression quantified by qRT-PCR. 

Hippocampal RNA-seq data shows no significant difference in App reads in trisomic compared 

to non-trisomic mice. This was validated in both hippocampal and cortical RNA quantified by 

qRT-PCR. Graph shows mean values (labelled) while error bars indicate SEM. 

 

 

Apart from App, All other RNA expression levels quantified by qRT-PCR were only 

performed on cortical tissue from 3-month old Tc1xJ20 mice. These candidate genes 

were selected based on their potential relevance to AD pathogenesis, which will be 

briefly introduced for each gene prior to the results comparing hippocampal RNA-seq 

with cortical qRT-PCR expression results.   

 

5.2.3.4. Immediate-Early Genes (IEGs): Arc, Dusp1, Egr1, Fos 

 

Immediate-Early Genes (IEGs) comprise of a group of rapid response genes that do 

not require protein synthesis for their expression (Saha and Dudek 2013). Many IEGs 

encode transcription factors that activate a downstream activity-dependent 

transcriptional programme, in response to a wide variety of cell stimuli (Leslie and 

Nedivi 2011). In neurons, IEGs were of particular interest because of the proposed 

importance of immediate gene induction as an integral step in the consolidation of long-
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term potentiation, to explain how synaptic changes may exert long-term effects on 

memory (Cortés-Mendoza et al. 2013; Dragunow 1996). Many neuronal IEG transcripts 

such as Arc can be detected within 2 min of a stimulus (Guzowski et al. 1999), and this 

reliable temporal expression is now commonly used to track neuronal activity in 

response to specific stimuli (Cruz et al. 2013). 

 

In AD, synaptic activity is one of the most important factors regulating A levels, for 

instance by influencing APP internalisation and cleavage (X. Cheng et al. 2014). Arc, in 

particular, has been closely associated with APP/A levels through a variety of synaptic 

receptors. Under basal conditions, Arc is transcribed at low levels (Rao et al. 2006). It 

is, however, tightly regulated by neuronal activity (Korb and Finkbeiner 2011), as 

observed by its dramatic upregulation through receptor activity including BDNF tyrosine 

kinase receptors (Ying et al. 2002), metabotropic glutamate receptors (Waung et al. 

2008), muscarinic acetylcholine receptors (Teber et al. 2004) and NMDA receptors 

(Steward and Worley 2001). Increased A levels in mouse and cell models have been 

shown to impair Arc expression (Wang et al. 2006; Palop et al. 2005), while conversely 

Arc is required for activity-dependent increases in APP trafficking and A production 

(Wu et al. 2011). The downregulation of IEGs by APP also extends to genes including 

Egr1 and Fos (Hendrickx et al. 2014), while Egr1 and Fos downregulation have also 

been observed in AD mouse models (Hendrickx et al. 2014; Christensen et al. 2013; 

Dickey et al. 2004; Dickey et al. 2003) and in patients at Braak stages of AD with 

cognitive impairment (Bossers et al. 2010). While Arc, Egr1 and Fos are “promiscuous” 

and induced by a wide range of stimuli, Dusp1 has been identified as an IEG induced 

by depolarisation, but not growth factors or neurotrophins, possibly playing a more 

restricted role in regulating specific downstream functional responses in neurons 

following depolarisation (Machado et al. 2008). 
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Figure 5.2 Comparison of Arc hippocampal RNA-seq results with cortical Arc RNA 

expression by qRT-PCR 

Hippocampal RNA-seq data suggests that trisomy 21 reduces the expression of Arc reads 

compared to non-trisomic mice. In cortical RNA, however, there was no significant effect of 

trisomy 21 on Arc expression. Instead, Arc expression is significantly downregulated by APP/A 

overexpression. Graph shows mean values while error bars indicate SEM. 

 

 

Hippocampal RNA expression that was analyzed by RNA-seq demonstrated a non-

significant decrease in Arc mean read count in Tc1 compared to Wt (adjusted p = 

0.353), but a significant decrease in Tc1;J20 compared to J20 (adjusted p = 0.008). In 

cortical RNA, there was a significant effect of APP/A overexpression on Arc 

expression (2-way ANOVA APP/A overexpression F(1,41) = 11.543, p = 0.002). 

However, there was no significant effect of trisomy 21, or the interaction between 

trisomy 21 and APP/A overexpression, on Arc expression (2-way ANOVA trisomy 21 

F(1,41) = 1.917, p = 0.174; interaction F(1,41) = 2.361, p = 0.132). 

 

Hippocampal RNA expression that was analyzed by RNA-seq demonstrated a 

significant decrease in Dusp1 mean read count in Tc1 compared to wildtype (adjusted 

p < 0.001), but a non-significant decrease in Tc1;J20 compared to J20 (adjusted p = 

0.9998). In cortical RNA, there was no significant effect of trisomy 21 or APP/A 

overexpression on Dusp1 expression, and no significant interaction effect (2-way 

ANOVA trisomy 21 F(1,39) = 0.413, p = 0.524; APP/A overexpression F(1,39) = 

0.881, p = 0.354; interaction F(1,39) = 0.478, p = 0.494). Therefore hippocampal RNA-

seq data suggests an effect of trisomy 21 in reduced Dusp1 expression compared to 

non-trisomic mice. However, there was no clear effect of genotype on Dusp1 

expression in cortical qRT-PCR as Dusp1 expression levels remained similar across all 

four genotypes.  
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Figure 5.3 Comparison of Dusp1 hippocampal RNA-seq results with cortical Dusp1 RNA 

expression by qRT-PCR. 

Hippocampal RNA-seq data suggests that trisomy 21 reduces the expression of Dusp1 reads 

compared to non-trisomic mice. In cortical RNA, however, there is no significant effect of 

trisomy 21 or APP/A overexpression on Dusp1 expression, with similar Dusp1 expression 

levels across all four genotypes. Graph shows mean values while error bars indicate SEM. 

 

 

 

 

 

Figure 5.4 Comparison of Egr1 hippocampal RNA-seq results with cortical Egr1 RNA 

expression by qRT-PCR. 

Hippocampal RNA-seq data suggests that trisomy 21 reduces the expression of Egr1 reads 

compared to non-trisomic mice. In cortical RNA, however, there was a non-significant trend for 

decreased Egr1 expression in APP/A overexpression, and no significant effect of trisomy 21 

on Egr1 expression. Graph shows mean values while error bars indicate SEM. 
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Hippocampal RNA expression that was analyzed by RNA-seq demonstrated a 

significant decrease in Egr1 mean read count in Tc1 compared to wildtype (adjusted p 

= 0.023), but a non-significant decrease in Tc1;J20 compared to J20 (adjusted p = 

0.9796). In cortical RNA, there was a non-significant trend towards decreased Egr1 

expression in APP/A overexpression (2-way ANOVA F(1,39) = 2.994, p = 0.091), 

while there was no significant effect of trisomy 21, or interaction between trisomy 21 

and APP/A overexpression on Egr1 expression (trisomy 21 F(1,41) = 0.112, p = 

0.740; interaction F(1,39) = 0.160, p = 0.692). Therefore Egr1 expression appears to 

be downregulated by trisomy 21 in the hippocampus, but is downregulated by presence 

APP/A overexpression in the cortex.  

 

 

Figure 5.5 Comparison of Fos hippocampal RNA-seq results with cortical Fos RNA 

expression by qRT-PCR. 

Hippocampal RNA-seq data suggests that trisomy 21 reduces Fos expression compared to 

non-trisomic mice. In cortical RNA, however, there was no significant effect of trisomy 21 or 

APP/A overexpression on Fos expression, with no clear trend, and wide variability of 

expression levels. Graph shows mean values while error bars indicate SEM. 

 

 

Hippocampal RNA expression that was analyzed by RNA-seq demonstrated a 

significant decrease in Fos mean read count in Tc1 compared to wildtype (adjusted p < 

0.001), but a non-significant decrease in Tc1;J20 compared to J20 (adjusted p = 

0.9998). In cortical RNA, there was no significant effect of trisomy 21 or APP/A 

overexpression on Fos expression, and no significant interaction between (2-way 

ANOVA trisomy 21 F(1,39) = 0.040, p = 0.843; APP/A overexpression F(1,39) = 

0.059, p = 0.810; interaction F(1,39) = 1.151, p = 0.290). Therefore hippocampal RNA-

seq data suggests an effect of trisomy 21 in reduced Fos expression compared to non-

trisomic mice. However, there was no clear effect of genotype on Fos expression in 

cortical qRT-PCR, with wide variability of expression levels measured. 
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5.2.3.5. Per1 

 

Period1 (Per1) is a clock gene encoding a transcriptional repressor that contributes to 

the regulation of circadian rhythm. In both DS and sporadic AD, sleep disturbances 

have been observed. In DS, sleep fragmentation is a consistent feature (Fernandez 

and Edgin 2013; Churchill et al. 2012; Diomedi et al. 1999; Levanon et al. 1999), while 

memory decline in AD could result from an impairment of sleep-dependent memory 

consolidation, due to disturbances in circadian rhythm (Weldemichael and Grossberg 

2010; Rauchs et al. 2008). In patients with preclinical and clinical AD, the rhythmic 

expression of PER1 is lost in the suprachiasmatic nucleus, the ‘master clock’ of the 

brain (Wu et al. 2006). In addition, PER1 expression in AD also displays altered 

synchronization with other circadian oscillators in the cingulate cortex and the bed 

nucleus of the stria terminalis, regions involved in decision making and motivation 

(Cermakian et al. 2011). This may be partly due to inhibition by the overexpression of 

the TGF- cytokine in neurons in AD (Gast et al. 2012).  

 

 

Figure 5.6 Comparison of Per1 hippocampal RNA-seq results with cortical Per1 RNA 

expression by qRT-PCR. 

Hippocampal RNA-seq data suggests that trisomy 21 reduces the expression of Per1 expresion 

compared to non-trisomic mice. However in cortical qRT-PCR there was no significant effect of 

trisomy 21 or APP/A overexpression on Per1 expression in cortical RNA. Graph shows mean 

values while error bars indicate SEM. 

 

Hippocampal RNA expression that was analyzed by RNA-seq demonstrated a 

significant decrease in Per1 mean read count in Tc1 compared to wildtype (adjusted p 

= 0.003), but a non-significant decrease in Tc1;J20 compared to J20 (adjusted p = 

0.9998). In cortical RNA, there was no significant effect of trisomy 21 or APP/A 

overexpression on Per1 expression, and no significant interaction (2-way ANOVA 

trisomy 21 F(1,39) = 1.337, p = 0.255; APP/A overexpression F(1,39) = 1.558, p = 
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0.219; interaction F(1,39) = 0.072, p = 0.790). An additional analysis of the effects of 

sex was performed in the cortical qRT-PCR results. There was no significant effect of 

sex on Per1 expression (ANOVA Sex F(1,41) = 0.141, p = 0.710). In summary 

hippocampal RNA-seq data suggests an effect of trisomy 21 in reduced Per1 

expression compared to non-trisomic mice. However, there was no clear effect of 

genotype on Egr1 expression in cortical qRT-PCR as expression levels remained 

similar across all four genotypes. 

 

5.2.3.6. Chrm4 

 

Chrm4 is a muscarinic cholinergic receptor (type M4) which has largely been studied in 

the context of schizophrenia (Seo et al. 2014; Scarr et al. 2013; Rietschel et al. 2012). 

In AD, it has been suggested that the M4 receptor type may be selectively 

compromised in the dentate gyrus and CA4 hippocampal regions (Mulugeta et al. 

2003).  

 

 
Figure 5.7 Comparison of Chrm4 hippocampal RNA-seq results with cortical Chrm4 RNA 

expression by qRT-PCR. 

RNA-seq data suggests that trisomy 21 reduces the expression of Chrm4 reads compared to 

non-trisomic mice. However, there was no significant effect of trisomy 21 or APP/A 

overexpression on Chrm4 expression in cortical RNA, with no clear trend observable across the 

genotypes. Graph shows mean values while error bars indicate SEM. 

 

Hippocampal RNA expression that was analyzed by RNA-seq demonstrated a 

significant decrease in Chrm4 mean read count in Tc1 compared to wildtype (adjusted 

p = 0.009), but a non-significant decrease in Tc1;J20 compared to J20 (adjusted p = 

0.297). In cortical RNA, there was no significant effect of trisomy 21 or APP/A 

overexpression on Chrm4 expression, though there was significant interaction between 
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trisomy 21 and APP/A overexpression (2-way ANOVA trisomy 21 F(1,40) = 0.452, p = 

0.505; APP/A overexpression F(1,40) = 2.284, p = 0.139; interaction F(1,40) = 6.687, 

p = 0.013). Therefore, hippocampal RNA-seq suggests a downregulation of Chrm4 due 

to the presence of trisomy 21. On the contrary, there was no clear effect of genotype 

on Chrm4 expression in cortical qRT-PCR.   

 

5.2.3.7. Snx27 

 

Sorting nexins (SNX) belong to a large family of proteins containing a conserved PX 

domain, many of which have been shown to regulate protein sorting in the endosomal 

network (Cullen and Korswagen 2011). The PX (phagocytic oxidase homologous 

region) domain of SNX27 colocalises with EEA1 in early endosomes and transferrin 

receptors in recycling endosomes (Cai 2011), but also contains an additional PDZ 

domain (Dlg homologous region) not found in other PX domain proteins (Rincón et al. 

2007). In DS, SNX27 deficiency was first shown to contribute to synaptic and cognitive 

deficits, linked to the dysregulation of glutamate receptor trafficking (Loo et al. 2014; 

Wang et al. 2013). This was due to downregulated transcription of SNX27 by its 

transcription factor, C/EBP, which is in turn regulated by Hsa21-encoded miRNA, 

miR-155 (Wang et al. 2013). More recently, SNX27 deficiency was shown to increase 

A production, by modulating -secretase activity via its PDZ domain (X. Wang et al. 

2014).  

 

 

Figure 5.8 Comparison of Snx27 hippocampal RNA-seq results with cortical Snx27 RNA 

expression by qRT-PCR. 

RNA-seq data suggested a non-significant increase in Snx27 reads in APP/A overexpression. 

However in cortical qRT-PCR, there was no significant effect of trisomy 21 or APP/A 

overexpression on Snx27 expression. Graph shows mean values while error bars indicate SEM. 
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Hippocampal RNA expression that was analyzed by RNA-seq demonstrated a non-

significant increase in Snx27 average read count in J20-positive genotypes compared 

to J20-negative genotypes (Tc1;J20*J20 adjusted p = 0.9998, Tc1*Wt adjusted p = 

0.8705). This was not replicated in cortical RNA quantified by qRT-PCR. In cortical 

RNA, there was no significant effect of trisomy 21 or APP/A overexpression on Snx27 

expression, though there was significant interaction between trisomy 21 and APP/A 

overexpression (2-way ANOVA trisomy 21 F(1,41) = 0.928, p = 0.341; APP/A 

overexpression F(1,41) = 0.043, p = 0.468; interaction F(1,41) = 4.919, p = 0.032). 

Therefore, hippocampal RNA-seq suggests a subtle upregulation of Snx27 in APP/A 

overexpression, though this was non-significant. On the contrary, there was no clear 

effect of genotype on Snx27 expression in cortical qRT-PCR.   

 

5.3. Discussion 

 

5.3.1. Functional clustering identifies effect of trisomy on hippocampal 

transcription relating to cytoplasmic vesicles  

 

Functional clustering analysis was performed using DAVID (Huang et al. 2009) to 

identify potential functional differences that may arise from differential gene expression. 

This identified clustering associated with cytoplasmic vesicles as the most significant 

feature in comparisons between both pairs of trisomic and euploid genotypes 

(Tc1;J20/J20 and Tc1/Wt), suggesting that trisomy 21 significantly alters vesicular 

transcriptional regulation. This is particularly exciting in light of previous work by the 

group showing that the increased amyloid deposition observed in Tc1;J20 compared to 

J20 is potentially mediated by altered APP trafficking, which occurs through a network 

including endocytic and recycling vesicles (Haass et al. 2012, and Chapter 1). DEGs 

implicated in cytoplasmic vesicular function between Tc1;J20/J20 include ARC, 

CAPN11, DSP, KCNC4, SCGN, SLC17A8, TRF; those implicated in Tc1/Wt include 

ALS2CL, AP1G2, GAD2, GRIN2B, and SDCBP. These illustrate a few potential 

functional alterations that may be further investigated and verified. For instance, 

potential glutamatergic and GABAergic signalling alterations are reflected by 

differences in expression in SLC17A8, a vesicular glutamate transporter, the NMDA 

glutamate receptor GRIN2B, and GAD2 which is involved in GABA synthesis. ALS2CL 

serves as a guanine nucleotide exchange factor for an early endosome-associated 

GTPase, Rab5, while AP1G2 may be relevant to clathrin coat formation in late 

endosomes or multivesicular bodies.  
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Cytoplasmic vesicle abnormalities have been frequently associated with AD. 

Significantly, multiple steps of the APP processing, secretion and recycling pathway 

through the endosomal system have been suggested to be dysfunctional in AD. For 

instance, dysfunctional retromer function has been suggested to impair BACE1 and 

APP recycling, leading to prolonged APP exposure to BACE1 and hence increased 

downstream A production (Trousdale and Kim 2015; Das et al. 2013). Exosomes 

have also been suggested to modulate A aggregation, given that they contain 

components for A synthesis and degradation, possibly by influencing the equilibrium 

between soluble and insoluble A species (Toro et al. 2015; Joshi et al. 2015; Simons 

and Raposo 2009). Numerous lysosomal pathological changes and upregulated 

autophagy have also been observed in AD neurons (Orr and Oddo 2013). The further 

dysregulation of transcription relating to cytoplasmic vesicles by trisomy 21 may 

therefore potentially interact with these phenotypes in AD-DS and compound 

dysfunction. Trisomy of Hsa21 genes has previously been linked with potential roles in 

vesicular disorders, which may be connected with the transcriptional differences 

identified above. Trisomy of App (Salehi et al. 2006) and Synj1 (Cossec et al. 2012) 

have been linked to the enlargement of early endosomes, while the concomitant 

upregulation of all three fly homologues for Itsn1, Rcan1/Dscr1 and Synj1 was required 

for impaired vesicle recycling (Chang and Min 2009). Duplications of DOPEY2 

(Barbosa et al. 2010), which encodes a protein involved in endosome-Golgi trafficking, 

have been associated with SAD (Swaminathan, Huentelman, et al. 2012; 

Swaminathan, Shen, et al. 2012), though this association remains to be replicated 

(Chapman et al. 2013). The genetic deletion of CSTB, which expresses a lysosomal 

cathepsin inhibitor, decreases A deposition and cognitive deficits (Yang et al. 2011). 

However, four of the above genes (APP, SYNJ1, RCAN1, ITSN1) are not functionally 

trisomic in the Tc1 model (Gribble et al. 2013), hence trisomy of these genes does not 

account for the differential transcription associated with cytoplasmic vesicles, in 

Trisomy 21.  

 

It will therefore be of great interest to discover if there are any differentiating vesicular 

phenotypes between the genotypes in Tc1xJ20. However, further work needs to be 

undertaken to verify that the above transcriptional changes also manifest at a functional 

level, as RNA expression only partially predicts protein expression. In eukaryotes, 

generally ~40% of variation in protein concentration can be explained by mRNA levels; 

the remaining 60% would likely be due to a combination of post-transcriptional 
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regulation and unexplained variation (Payne 2015; de Sousa Abreu et al. 2009; Maier 

et al. 2009). In addition, mRNAs are produced at a much slower rate than proteins in 

mammalian cells, but are much more unstable, with an average half life of hours rather 

than days (Schwanhäusser et al. 2011; Sharova et al. 2009). However, these average 

half-life values are highly variable between proteins, depending on their structure and 

hence likely function – for instance, mammalian metabolic proteins tend to be very 

stable while proteins involved in transcription regulation tend to be quickly degrade 

(Schwanhäusser et al. 2011). However, aside from translation and protein degradation 

rates, it appears that the strongest remaining influence on protein levels is mRNA 

abundance, and not biological or experimental noise (Vogel and Marcotte 2012). 

Therefore, transcriptomics and proteomics need to be studied together to understand 

the complex regulation processes underlying how differential gene expression may 

influence functional effects of different genotypes.  

5.3.2. Effects of genotype on gene expression differ in cortical and 

hippocampal tissue  

 

5.3.2.1. App 

 

While App expression was shown to be not significantly changed by trisomy 21 or 

APP/A overexpression in both hippocampal and cortical tissue, the directions of 

change in hippocampal qRT-PCR analysis more closely resembled hippocampal RNA-

seq results, compared to the wider variability observed in cortical tissue resulting in no 

clear trend. This suggests subtle tissue-specific differences between hippocampal and 

cortical App expression. However, the lack of a significant effect of the J20 transgene 

on App expression indicates that APP overexpression does not significantly modify 

endogenous App expression, avoiding this confounding effect on mRNA expression. 

On the other hand, the lack of a significant effect of trisomy at 3 months is in line with 

studies undertaken in Ts65Dn mice, which are functionally trisomic for App, where App 

expression levels in hemibrain samples remained similar to disomic mice at 5 months 

(Choi et al. 2009). However, Ts65Dn App expression increased to trisomic levels at 12 

months, suggesting an age-dependent dysregulation of App expression (Choi et al. 

2009), in line with age-dependent increases in APP protein (Choi et al. 2009; 

Contestabile et al. 2006; Seo and Isacson 2005) and the enlarged early endosome 

phenotype shown to require App trisomy (Salehi et al. 2006).  
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While Tc1 mice are not functionally trisomic for App, it may still be of interest to 

examine App expression at older ages, as an age-dependent upregulation of App 

expression is also observed in a mouse model of accelerated senescence (Cho et al. 

1995), while people with DS exhibit signs of premature aging (Horvath et al. 2015; 

Zigman 2013). This may be especially interesting should any alterations in cytoplasmic 

vesicular or endosomal phenotypes be found. 

 

5.3.2.2. Immediate-Early Genes 

 

A striking feature of the hippocampal RNA-seq results indicating that at least eight 

DEGs were highly-expressed IEGs (Arc, Btg2, Dusp1, Egr1, Egr2, Egr4, Fos, Junb), 

which were downregulated in both trisomic genotypes compared to their respective 

disomic controls (Table 5.1). In contrast, this was not replicated in cortical qRT-PCR 

analysis, which demonstrated either no effect of genotype on IEG expression (Dusp1 

and Fos), or decreased expression due to presence of the J20 transgene rather than 

Trisomy 21 (Arc and Egr1). Another feature of cortical IEG expression was a wide 

variability of results obtained, particularly for Arc. These stark differences may be due 

to differences in IEG patterns of expression between these tissues. Hippocampal and 

cortical networks have been proposed to be organised as complementary systems in 

processes underlying memory formation (McClelland and Goddard 1996), which exerts 

effects on patterns of IEG activation in each tissue. This has been demonstrated in 

differential IEG expression in response to different forms of stimuli, including sleep and 

various forms of learning (Xie et al. 2014; Hartzell et al. 2013; Ribeiro et al. 2007). In 

addition, complex cell-type- and stimulus-specific IEG expression patterns may 

contribute to the variability of IEG expression, as exemplified by Arc, which was 

expressed only in certain non-GABAergic rat neurons following exploration of a novel 

environment, but expressed in GABAergic neurons following an electroconvulsive 

seizure (Vazdarjanova et al. 2006). As we will discuss below, considerable differences 

between cortical and hippocampal tissue exist which need to be taken into account 

while considering differential gene expression. It will therefore be useful to re-validate 

RNA-seq data with qRT-PCR of Tc1xJ20 hippocampal RNA to confirm the patterns of 

differential expression. Further work also needs to be undertaken in quantifying IEG 

protein and RNA expression using the same biological samples to determine with more 

certainty the effect of trisomy on IEG expression.  
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While IEGs have not been directly studied in people with Down syndrome, increased 

protein levels of Arc, cFos and phospho-cFos have been detected in Tc1 hippocampal 

tissues in a proteomic study, but no increases in Egr1 were detected (Ahmed et al. 

2013). Interestingly, in the same proteomics study (Ahmed et al. 2013), no differences 

in IEG protein expression were observed in Ts65Dn mice compared to wildtype. On the 

other hand, reduced IEG baseline RNA expression, or activation following memory 

stimulation, have been reported in Ts65Dn, supporting an effect of trisomy in altering 

IEG expression patterns (Braudeau et al. 2011). These results therefore highlight the 

value of quantifying protein and RNA expression levels using the same samples, from 

the same brain tissue type, to mitigate the high variability in IEG expression and better 

understand how trisomy 21 or APP overexpression influences IEG-related phenotypes.  

 

5.3.2.3. Per1 

 

Our RNA-seq data suggests that trisomy significantly downregulates Per1 expression 

in the hippocampus, which was not replicated in qRT-PCR analysis of cortical RNA. 

Circadian Per1 expression has been demonstrated in both tissues in the mouse (Rath 

et al. 2013; Jilg et al. 2010). However, rhythmic gene expression can vary between 

subregions in each of these tissues (Harbour et al. 2013; Feillet et al. 2008), and may 

be further influenced by sex differences. For instance, females demonstrated rhythmic 

clock gene expression in hippocampal CA1 and CA3 regions, which was not 

significantly observed in male CA1 and CA3 (Chun et al. 2015). In our cortical qRT-

PCR data, however, there was no significant effect of sex on Per1 expression. Tc1 

mice exhibit fragmented sleep patterns comparable to people with DS (Heise et al. 

2015), although PER1 has not been studied in people with DS. Further work could 

therefore focus on Per1 expression in Tc1xJ20 hippocampus relating to circadian 

rhythm to describe if this downregulation also manifests in temporal alterations.  

 

5.3.2.4. Chrm4 

 

Similar to other significantly altered genes in the hippocampal RNA-seq data, Chrm4 

appears to be significantly downregulated by trisomy 21. However, unlike Per1 and the 

IEGs, which fluctuate relatively quickly in response to stimuli or time of day, Chrm4 

expression appears relatively stable and invariant cross a wide range of tissues, 

including cortex and hippocampus, according to an aggregated gene annotation 

resource, BioGPS (Wu et al. 2013; Lattin et al. 2008). Nonetheless, cortical qRT-PCR 

demonstrated no significant difference in Chrm4 expression across the genotypes. 
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5.3.2.5. Snx27 

 

Snx27 expression was investigated in light of its localization to endosomes and 

influence on A production, which is relevant to the exacerbation of amyloidosis by 

trisomy 21 in Tc1;J20 mice. In both hippocampal RNA-seq and cortical qRT-PCR there 

was no significant influence of trisomy 21 or APP/A overexpression on Snx27 

expression, suggesting that altered transcriptional regulation of Snx27 is not a factor 

contributing to the exacerbation of amyloidosis. To confirm this, future work needs to 

be carried out investigating changes in Snx27 protein expression levels. 

5.3.3. Discordance between hippocampal and cortical RNA expression 

 

None of the significant results obtained from hippocampal RNA-seq, indicating a 

downregulation of candidate genes in trisomy, was successfully replicated in cortical 

qRT-PCR, including Chrm4 which is expressed at similar levels across both tissue 

types. While cross-platform differences could be a source of variability, qRT-PCRs 

have been routinely used to verify RNA-seq results for single genes and have 

demonstrated a strong concordance with RNA-seq and microarray data (C. Wang et al. 

2014; Su et al. 2014). Care was also taken to ensure that qPCR probe designed 

included all transcript variants produced which would be captured in the RNA-seq 

results. All Taqman expression assays purchased for qRT-PCR were verified to cover 

all transcript variants as described in RefSeq (Pruitt et al. 2014). All genes verified by 

qRT-PCR also demonstrated strong expression levels in RNA-seq, with a minimum 

average read count of 118.67 (observed in Fos expression in Tc1). Discordance in 

results between qRT-PCR and RNA-seq would therefore unlikely be due to probe bias 

or issues of low sensitivity. The use of housekeeping genes Actb and Gapdh was also 

suitable due to their highly non-significant fold changes in expression between the 

genotypes, further normalized to their geometric mean for increased reliability 

(Vandesompele et al. 2002).  

 

Aside from these technical differences, the discordance between hippocampal and 

cortical results could be due to complex differences between cortical and hippocampal 

gene regulation and function, which is also beginning to be comprehensively illustrated 

using RNA-seq techniques. A recent study performed large-scale single-cell RNA-seq 

on mouse somatosensory cortex (S1) and hippocampal CA1 regions, both of which are 

included in our dissections for cortical and hippocampal tissue (Zeisel et al. 2015). 

Although both S1 and CA1 contained interneurons of almost every subclass, showing a 
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close transcriptional relationship in terms of interneurons, pyramidal neurons from the 

S1 and CA1 region were molecularly distinct subclasses. In addition, the S1 reflected a 

general increase in gene expression across non-neuronal molecular subtypes 

compared to the CA1. Perhaps this results in a transcriptional landscape in S1 that is 

more heterogeneous than that for CA1, which may by extension possibly dilute effects 

of Tc1xJ20 genotype on gene expression. Thus this may partially account for the high 

variability in cortical qRT-PCR, which is further increased by any potential differences 

in proportions of mosaic cells.  

 

The closer study of brain region-specific transcriptomes in SAD has also demonstrated 

how gene regulation may vary between tissue types, and yield insights into 

pathogenesis. RNA-seq using human temporal pole tissue has been successfully 

performed to identify not only gene expression, but splicing and methylation 

differences, in sequences surrounding loci associated with late-onset AD (Humphries 

et al. 2015). In a separate study on frontal and temporal lobes, aberrant splicing and 

differential promoter use was discovered in tissue from AD patients compared to 

control, altering the expression of genes including APOE, the most established risk 

factor for late-onset AD (Twine et al. 2011). These studies also highlight the added 

value of RNA-seq in identifying differences in epigenetic regulation as potential 

mechanisms underlying AD pathogenesis. In addition, an RNA-seq study of parietal 

cortex in AD has pointed out lipid metabolism as a functional difference in this region, 

with a transcriptome profile distinct from other regions such as the frontal and temporal 

lobes (Mills et al. 2013). In DS, however, RNA-seq has only been published in a study 

using human trisomic endothelial progenitor cells (Costa et al. 2011), and none in brain 

tissue. Our results above have suggested that strong effects of trisomy 21 in the 

downregulation of hippocampal genes may be a phenotype specific to this region, 

hence further validation with hippocampal qRT-PCR, as well as cortical RNA-seq, 

could be considered to illustrate how trisomy 21 and APP/A overexpression may 

differentially influence hippocampal and cortical gene expression.  

5.3.4. Future work 

 

This RNA-seq project has yielded a library illustrating a snapshot of all RNA transcripts 

expressed in the hippocampus of 3-month old Tc1xJ20 mice. As mentioned in the 

introduction to this chapter, further statistical analysis needs to be undertaken to 

examine any interaction effects between trisomy 21 and APP/A overexpression on 
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gene expression levels, to understand how trisomy 21 may augment or buffer against 

effects exerted by APP/A overexpression.  

 

Analysis of changes in splicing patterns and proportions of gene isoforms expressed in 

this dataset will also be intriguing, as presence of the extra Hsa21 chromosome has 

been shown to alter gene regulation in multiple ways. Hsa21 encodes microRNAs 

(Gribble et al. 2013) and genes involved in post-translational histone modification 

(Dekker et al. 2014), which regulate gene expression via different mechanisms. 

Histone methylation correlates strongly with genome-wide domains of dysregulated 

gene expression in DS, which are conserved between humans and the orthologous 

regions in Ts65Dn (Letourneau et al. 2014); in Tc1, the rearrangement of the 

chromosome may hence exert an effect on this form of epigenetic regulation. Studying 

Tc1xJ20 mice would allow comparisons of how splice patterns altered by APP 

overexpression are modified by trisomy 21, further offering avenues for further 

investigation into functional effects. It may also be useful to check if trisomy 21 

influences the splicing of the APP transgene itself, since the J20 transgene was 

designed to express all three APP splice isoforms (Mucke et al. 2000). 

 

Finally, the above analyses performed using RNA-seq could be replicated for Tc1xJ20 

mice at older time points, to trace changes in the transcriptome prior to plaque 

deposition (3 months), at the start of plaque deposition (6 months for instance), and at 

late stages of disease (12-16 months). This will contribute to identifying age-dependent 

transcriptional changes which may be more relevant to AD, since age remains its 

highest risk factor (Bush and Beail 2004). It may also identify transcriptional markers of 

accelerated aging in DS, which has been characterized as a syndrome of accelerated 

aging both in clinical (Zigman 2013; Lott 2012) and epigenetic terms (Horvath et al. 

2015).  
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Chapter 6. Discussion 

 

The work in this thesis has explored using different approaches – in vitro, ex vivo and 

in silico – to study how trisomy 21 and APP/A overexpression may interact to 

influence AD phenotypes, using a novel mouse model of AD-DS. Previous work by the 

group had shown that trisomy 21 from Tc1 mice was sufficient to exacerbate mortality, 

cognitive deficits and Aβ deposition, associated with APP/Aβ overexpression in J20 

mice. As the Tc1 mouse is not functionally trisomic for APP, this demonstrated that 

trisomy of Hsa21 genes, apart from APP, modulates Aβ accumulation and its 

associated deficits. As attention in the group focused on characterising mechanisms 

underlying the exacerbation of Aβ accumulation by trisomy 21, this project sought to 

complement their efforts by 1) developing methods to characterise phenotypes in vitro 

from candidate genes on Hsa21, and 2) exploring other functional consequences 

relating to exacerbated Aβ accumulation by trisomy 21, specifically changes in glial 

morphology and hippocampal RNA expression. 

 

6.1.  In vitro modelling of APP/Aβ phenotypes influenced by trisomy 21  

  

Chapter 3 described the development of a primary cortical cell model, with the aim of 

evaluating the role of candidate genes on Hsa21 that may influence Aβ accumulation. 

As we were interested in how trisomy 21 may modulate amyloidosis at early stages of 

pathogenesis, we compared APP and Aβ phenotypes in this cell model to results 

obtained from 3-month old progeny of Tc1xJ20 crosses, where J20 and Tc1;J20 mice 

demonstrate cognitive deficits (Figure 1.9Figure 1.10) but not plaque deposition (Wright 

et al. 2013). Unfortunately, primary cortical cells did not replicate the effects of trisomy 

21 in increasing total APP and CTF production, or reducing soluble Aβ38 and Aβ40, 

which were observed using cortical and hippocampal tissue from 3-month old mice. 

This was due in part to wide variability in the APP/Aβ results obtained from primary 

cells.  

 

As mosaicism precluded the ability to characterise single cell phenotypes in our model, 

due to uncertainty over whether specific cells in a Tc1-positive culture had retained the 

Hsa21 chromosome, APP/A phenotypes in Tc1xJ20 primary culture could only be 

studied across all cells in an entire culture population. This posed a significant limitation 

to the characterization of neuronal mechanisms that could be altered by trisomy 21. 

Furthermore, neurons accounted for less than 20% of cells in each culture, further 

complicating the interpretation of phenotypes relating to APP/Aβ overexpression by a 
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transgene driven by a neuron-specific promoter. Therefore, the techniques learned 

during the development of this primary culture protocol should be taken forward for use 

in non-mosaic DS mouse models, which would allow the characterization of single 

neurons in culture. Using these models would also allow the exploration of culture 

methods that would reduce glial proliferation, such as by co-culturing neurons with 

astrocyte feeder layers previously prepared. 

 

To overcome the problems mosaicism causes, cancer biology is a field of study that 

could be followed for developments in investigating and managing this phenotype. 

Neoplasia is associated with genetic instability and the presence of somatic mosaicism 

in tumours, which most commonly manifests as aneuploidy (Davidsson 2014). In trying 

to understand whether aneuploidy is a driver or a result of uncontrolled cancer growth, 

studies are underway investigating the epigenetic effects of aneuploidy in cancer, and 

methods to distinguish and characterise the heterogenous mixture of cell genomes 

present in tumours (Baslan et al. 2015; Davidsson 2014). While it currently is not 

possible to sort live mosaic cells viably for separate study, these developments may in 

future enhance the use of Tc1 mice by studying differential effects on the presence and 

absence of trisomy 21 on cells in the same animal. Managing issues of mosaicism will 

also be a challenge in the use of the emerging genome editing tool CRISPR/Cas9, 

which often results in mosaicism following microinjection of Cas9 into zygotes during a 

period of active replication (Ablain et al. 2015; Singh et al. 2014). The benefits of 

separating trisomic and non-trisomic cells from within the same organism was 

demonstrated in the generation of isogenic induced pluripotent stem cell lines from 

fibroblasts of an adult with mosaic DS (Murray et al. 2015). Therefore, while the 

characterization of neuronal phenotypes in primary cultures should now be taken 

forward to non-mosaic models, the in vitro study of how trisomy 21 in Tc1 influences 

neuronal phenotypes can be revisited following developments in sorting mosaic cells.  

 

6.2. Investigate cytoplasmic vesicular phenotypes 

 

Our RNA-seq data comparing differentially expressed genes between Tc1xJ20 

progeny genotype pairs has suggested that trisomy 21 alters the transcriptional 

regulation of genes associated with cytoplasmic vesicles in the hippocampus of 3-

month old Tc1 compared to Wt, and Tc1;J20 compared to J20. This is in line with 

emerging immunohistochemical evidence from the group suggesting that altered APP 

processing observed in progeny of Tc1xJ20 may be an outcome of altered APP 

trafficking through the endo-lysosomal system while it is proteolytically cleaved.  
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As discussed in Chapter 5, Tc1 mice are not functionally trisomic for Hsa21 genes, 

such as APP, SYNJ1, RCAN1 and ITSN1, which have been previously implicated in 

endosomal alterations when overexpressed(Gribble et al. 2013; Cossec et al. 2012; 

Chang and Min 2009; Salehi et al. 2006). Therefore, any endosomal alteration in 

Tc1;J20 compared to J20, and Tc1 compared to Wt, may be due to previously 

unassessed candidate genes. To functionally characterize vesicular trafficking, 

methods for the live cell imaging of APP transport in primary neurons have been well-

established (Buggia-Prévot et al. 2014; Steuble et al. 2012; Bhalla et al. 2012; 

Tampellini and Gouras 2011). However, this involves the characterisation of individual 

neurons, which renders the use of Tc1 cultures problematic due to mosaicism. 

Therefore, to assess the influence of potential candidate genes in phenotypes of 

individual neurons using the Tc1xJ20 cross, we may need to overexpress candidate 

Hsa21 genes in Wt and J20 neurons, with the caveat that overexpression levels may 

not reflect expression levels in trisomy 21.  

  

6.3.  Emerging focus on neuroinflammation in trisomy 21 in AD-DS 

 

In Chapter 4, we began development of a digital protocol to analyse 

immunohistochemical sections, identify glial cell bodies and processes, and quantify 

morphological dimensions that may yield insight into how glial reactivity alters with 

genotype and age. This was sensitive in identifying microglial cells, but required further 

improvements for astrocytes, to correct false results generated by variable background 

staining. While broad analysis of glial morphological measurements across the 

hippocampus suggested that APP/Aβ overexpression and age are stronger factors in 

influencing phenotypic changes than any potential effects of trisomy 21, this is in line 

with the observation that DS presents with chronic, low-level neuroinflammation and 

oxidative stress throughout life (Wilcock and Griffin 2013; Perluigi and Butterfield 

2012), which may accelerate AD pathogenesis but not manifest as striking phenotypes. 

For instance, while this result is preliminary, the increase in S100β protein expression 

by APP/Aβ overexpression in hippocampal homogenate at 3 months suggested an 

interaction effect between astrogliosis and APP/Aβ production. Our analysis protocol 

could therefore be adapted for astrocytes identified with S100β to understand how the 

upregulation of S100β expression manifests morphologically. To contribute to teasing 

out functional differences based on morphology, future work could focus on assigning 

combinations of morphological parameters to classify glial cells into morphological 

subtypes currently used to ascribe glial reactive states.   
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There is also much further scope for functionally characterizing glial cells in DS mouse 

models – only three studies have investigated functional characteristics of primary 

astrocytes in Ts65Dn (Ballestín et al. 2014; Sahir et al. 2006; Bambrick et al. 2003), 

while no studies of primary microglia have been undertaken. Indeed, work using human 

astrocytes has offered interesting insights. For example, primary astrocytes from DS 

fetal cortical tissue displayed morphologically fragmented mitochondria, and 

functionally appeared to be dampened as a protective response against damage 

caused by the excessive generation of reactive oxygen species (Helguera et al. 2013). 

However, DS fetal cortical astrocytes also appeared to be more protective than euploid 

astrocytes against hydrogen peroxide-induced oxidative damage, indicating a greater 

antioxidant capacity (Sebastià et al. 2004). These studies could be taken further using 

primary astrocyte cultures from DS mouse models trisomic for different Hsa21 

orthologous regions, to allow us to understand which genes may influence whether 

chronic neuroinflammation in DS results in protective or damaging responses.  

 

6.4. Discordant phenotypes between cortex and hippocampus 

 

Despite the high levels of PDGF-β-driven expression of APP from the J20 transgene 

array in cortical and hippocampal neurons, and correspondingly exacerbated plaque 

deposition in both tissues, our RNA-seq and glial immunohistochemistry results have 

demonstrated that results in one tissue cannot simply be generalized to the other. This 

is reflected in the poor recapitulation of hippocampal RNA-seq differential gene 

expression in cortical tissue, as well as differences in the observable density of 

astrocytes and microglia stained with GFAP and Iba1. This may reflect a much greater 

heterogeneity in cortical compared to hippocampal composition (Zeisel et al. 2015). By 

extension, the use of cortical tissue for primary neuronal culture may therefore have 

contributed to the variability in results, and future studies should employ hippocampal 

tissues instead.  

 

6.5. The value of DS mouse models in future AD-DS research   

 

Individuals with DS develop the most common genetic form of AD, largely due to the 

expression of three APP copies (Ness et al. 2012), but the variation in presentation of 

AD-DS, despite universal early AD neuropathology, indicates that other genetic and 

environmental factors modulate AD-DS pathogenesis. This has spurred rapidly 

increasing momentum in the AD-DS field, including multicentre longitudinal studies 

across a battery of AD-DS biomarkers in people with DS (Rafii et al. 2015; Dekker et al. 
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2015; Schupf et al. 2015), and the development of induced pluripotent stem cells for 

DS (Chang et al. 2015; Murray et al. 2015; Shi et al. 2012), which provide for the first 

time a trisomic in vitro model that recapitulates AD pathology.  

 

However, the greatest strength of DS mouse models remains the ability to generate 

hypotheses by mapping phenotypes to critical genomic regions. This includes 

potentially dosage-sensitive non-coding regions, such as the 29 microRNAs encoded 

on Hsa21 (MirBase release 21, Griffiths-Jones 2004), which are increasingly studied in 

AD pathogenesis due to their regulation of molecular pathways associated with AD 

(Veerappan et al. 2013). Despite its drawbacks relating to mosaicism and 

chromosomal structural rearrangements (Gribble et al. 2013), the Tc1 mouse remains 

the only DS mouse model carrying a human chromosome, which may model uniquely 

human aspects of gene expression, including the diversity of RNA expression (Lin et al. 

2014) and regulatory behaviour in transcription factor binding (Y. Cheng et al. 2014). 

The Tc1xJ20 cross has also been the first model to demonstrate that trisomy 21 apart 

from APP exacerbates AD pathology, and future work could employ the series of 

segmentally trisomic DS mouse models to narrow down regions on Hsa21 that similarly 

exacerbate, or protect against, this effect. Much of this project has focused on 

developing methods to complement the in vivo characterization of neuronal APP/Aβ 

phenotypes in Tc1xJ20, and it is hoped that they can be built on and applied to future 

work employing crosses between DS and AD mouse models. 

 

Ultimately, this research must relate back from mouse to human tissues and integrate 

with the study of human induced pluripotent stem cells and histopathological and other 

samples. However, the mouse gives us a uniquely tractable system for finding 

phenotypes and dissecting the underlying molecular pathways.  This study is one of the 

first to work with mice to model AD-DS and has been informative for future routes to 

analysing this disorder – which has relevance for both the Down syndrome population 

and the euploid population at risk for Alzheimer’s disease. 
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Supplementary Tables 

 
Supplementary Table 1 Differential gene expression identified between 3-month Tc1;J20 

and J20 mice following RNA-seq of hippocampal tissue 

Genes downregulated in Tc1;J20 compared to J20 

Ensembl ID 
Gene 

name 

Adjusted 

p-value 

J20 avg 

read 

counts 

Tc1;J20 

avg read 

counts 

Ratio 

Tc1;J20 / 

J20 

Chromosome 

(Mmu) 

ENSMUSG00000021250 Fos 0.002 531.33 118.67 0.22 12 

ENSMUSG00000022602 Arc 0.008 3542.67 1405.67 0.40 15 

ENSMUSG00000024190 Dusp1 0.000 792.67 399.67 0.50 17 

ENSMUSG00000020423 Btg2 0.010 699.33 357.33 0.51 1 

ENSMUSG00000063953 Amd2 0.030 162.33 88.00 0.54 10 

ENSMUSG00000053279 Aldh1a1 0.000 1975.00 1080.67 0.55 19 

ENSMUSG00000028195 Cyr61 0.020 212.33 117.00 0.55 3 

ENSMUSG00000052837 Junb 0.013 1318.33 816.00 0.62 8 

ENSMUSG00000035355 Kcnh4 0.041 289.67 191.33 0.66 11 

ENSMUSG00000046962 Zfp295 0.023 795.67 594.67 0.75 16 

ENSMUSG00000074923 Pak6 0.000 3215.00 2458.67 0.76 2 

ENSMUSG00000042104 Uggt2 0.001 3824.33 2948.67 0.77 14 

ENSMUSG00000027895 Kcnc4 0.015 2641.33 2040.00 0.77 3 

ENSMUSG00000064125 BC068157 0.017 1717.00 1350.00 0.79 8 

ENSMUSG00000028698 Pik3r3 0.020 2104.67 1677.00 0.80 4 

ENSMUSG00000037362 Nov 0.004 7640.67 6130.67 0.80 15 

ENSMUSG00000032503 Arpp21 0.048 10678.33 8723.33 0.82 9 

Genes upregulated in Tc1;J20 compared to J20 

Ensembl ID 
Gene 

name 

Adjusted 

p-value 

J20 avg 

read 

counts 

Tc1;J20 

avg read 

counts 

Ratio 

Tc1;J20 / 

J20 

Chromosome 

(Mmu) 

ENSMUSG00000029772 Ahcyl2 0.017 10660.67 13593.67 1.28 6 

ENSMUSG00000034674 Tdg 0.031 1185.33 1589.33 1.34 10 

ENSMUSG00000032554 Trf 0.000 9384.33 12909.67 1.38 9 

ENSMUSG00000019935 Slc17a8 0.003 318.67 506.67 1.59 10 

ENSMUSG00000018339 Gpx3 0.007 226.67 379.00 1.67 11 

ENSMUSG00000054889 Dsp 0.014 1027.00 1753.67 1.71 13 

ENSMUSG00000072774 Zfp951 0.001 45.33 118.67 2.62 5 

ENSMUSG00000050063 Klk6 0.000 43.00 124.33 2.89 7 

ENSMUSG00000021337 Scgn 0.004 28.00 86.67 3.10 13 

ENSMUSG00000058626 Capn11 0.019 11.33 53.00 4.68 17 

ENSMUSG00000056436 Cyct 0.020 0.00 10.67 NA 2 
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Supplementary Table 2 Differential gene expression identified between 3-month Tc1 and 

Wt mice following RNA-seq of hippocampal tissue 

Genes downregulated in Tc1 compared to Wt 

Ensembl ID 
Gene 

name 

Adjusted 

p-value 

Wt avg read 

counts 

Tc1 avg read 

counts 

Ratio 

Tc1 / Wt 

Chromosome 

(Mmu) 

ENSMUSG00000021250 Fos 0.00001 520.00 119.33 0.23 12 

ENSMUSG00000000303 Cdh1 0.004 61.33 14.67 0.24 8 

ENSMUSG00000069372 Ctxn3 0.03 76.00 24.33 0.32 18 

ENSMUSG00000004885 Crabp2 0.01 90.33 29.00 0.32 3 

ENSMUSG00000024650 Slc22a6 0.00 282.33 91.00 0.32 19 

ENSMUSG00000040310 Alx4 0.04 66.33 22.00 0.33 2 

ENSMUSG00000037868 Egr2 0.04 74.00 26.00 0.35 10 

ENSMUSG00000024190 Dusp1 0.00 643.67 276.33 0.43 17 

ENSMUSG00000005087 Cd44 0.01 175.67 81.67 0.46 2 

ENSMUSG00000020423 Btg2 0.00 645.67 315.67 0.49 1 

ENSMUSG00000028364 Tnc 0.02 383.00 192.33 0.50 4 

ENSMUSG00000038418 Egr1 0.02 2827.67 1523.33 0.54 18 

ENSMUSG00000053279 Aldh1a1 0.01 1830.33 997.67 0.55 19 

ENSMUSG00000020241 Col6a2 0.01 946.67 521.00 0.55 10 

ENSMUSG00000092035 Peg10 0.00 529.00 294.33 0.56 6 

ENSMUSG00000030270 Cpne9 0.00 744.33 417.33 0.56 6 

ENSMUSG00000040701 Ap1g2 0.02 565.67 340.67 0.60 14 

ENSMUSG00000040495 Chrm4 0.01 536.00 327.67 0.61 2 

ENSMUSG00000021453 Gadd45g 0.04 555.00 344.67 0.62 13 

ENSMUSG00000000184 Ccnd2 0.01 2479.00 1561.67 0.63 6 

ENSMUSG00000005774 Rfx5 0.01 848.67 536.00 0.63 3 

ENSMUSG00000000142 Axin2 0.01 976.67 619.67 0.63 11 

ENSMUSG00000071341 Egr4 0.03 547.33 351.67 0.64 6 

ENSMUSG00000044037 Als2cl 0.01 701.67 452.33 0.64 9 

ENSMUSG00000018476 Kdm6b 0.00 1962.67 1271.67 0.65 11 

ENSMUSG00000074575 Kcng1 0.03 709.33 464.00 0.65 2 

ENSMUSG00000018537 Pcgf2 0.00 1299.00 850.33 0.65 11 

ENSMUSG00000034771 Tle2 0.00 1762.00 1169.67 0.66 10 

ENSMUSG00000035835 BC005764 0.00 1584.67 1068.33 0.67 10 

ENSMUSG00000002871 Tpra1 0.02 1295.33 913.67 0.71 6 

ENSMUSG00000020893 Per1 0.00 3568.00 2537.33 0.71 11 

ENSMUSG00000047945 Marcksl1 0.03 1928.67 1384.00 0.72 4 

ENSMUSG00000025145 Lrrc45 0.02 3114.00 2295.67 0.74 11 

ENSMUSG00000028137 Celf3 0.01 7910.67 5938.67 0.75 3 

Genes upregulated in Tc1 compared to Wt 

Ensembl ID 
Gene 

name 

Adjusted 

p-value 

Wt avg read 

counts 

Tc1 avg read 

counts 

Ratio 

Tc1 / Wt 

Chromosome 

(Mmu) 

ENSMUSG00000049313 Sorl1 0.03 12720.67 13747.33 1.08 9 

ENSMUSG00000028249 Sdcbp 0.02 7756.00 8406.00 1.08 4 

ENSMUSG00000031618 Nr3c2 0.02 3842.67 4179.33 1.09 8 
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ENSMUSG00000029657 Hsph1 0.01 10168.33 11094.67 1.09 5 

ENSMUSG00000045733 Sprn 0.03 4712.33 5141.67 1.09 7 

ENSMUSG00000023913 Pla2g7 0.01 5825.67 6375.00 1.09 17 

ENSMUSG00000022761 Lztr1 0.02 7928.33 8684.67 1.10 16 

ENSMUSG00000030729 Pgm2l1 0.01 10616.67 11708.33 1.10 7 

ENSMUSG00000037111 Setd7 0.02 5428.67 5989.00 1.10 3 

ENSMUSG00000024873 Cnih2 0.03 10206.33 11268.33 1.10 19 

ENSMUSG00000026787 Gad2 0.01 4936.33 5467.67 1.11 2 

ENSMUSG00000035547 Capn5 0.03 2430.00 2698.00 1.11 7 

ENSMUSG00000052087 Rgs14 0.01 4518.33 5041.33 1.12 13 

ENSMUSG00000050711 Scg2 0.01 3622.67 4056.67 1.12 1 

ENSMUSG00000050321 Neto1 0.00 3754.00 4242.33 1.13 18 

ENSMUSG00000058897 Col25a1 0.02 2964.33 3352.33 1.13 3 

ENSMUSG00000018322 Tomm34 0.00 3015.33 3438.67 1.14 2 

ENSMUSG00000030209 Grin2b 0.00 3448.67 3940.67 1.14 6 

ENSMUSG00000005360 Slc1a3 0.00 15408.33 17631.67 1.14 15 

ENSMUSG00000028648 Ndufs5 0.01 1504.67 1746.00 1.16 4 

ENSMUSG00000030226 Lmo3 0.00 2306.00 2677.67 1.16 6 

ENSMUSG00000063297 Luzp2 0.00 4317.67 5060.00 1.17 7 

ENSMUSG00000039470 Zdhhc2 0.04 1567.00 1852.67 1.18 8 

ENSMUSG00000021613 Hapln1 0.02 755.33 904.67 1.20 13 

ENSMUSG00000030772 Dkk3 0.00 9916.33 11977.67 1.21 7 

ENSMUSG00000055540 Epha6 0.02 2687.00 3325.33 1.24 16 

ENSMUSG00000059991 Nptx2 0.02 594.33 738.00 1.24 5 

ENSMUSG00000059325 Hopx 0.00 1499.67 1864.33 1.24 5 

ENSMUSG00000020635 Fkbp1b 0.01 803.33 1007.67 1.25 12 

ENSMUSG00000048070 Pirt 0.01 36.00 85.33 2.37 11 

 

Supplementary Table 3 Differential gene expression identified between 3-month J20 and 

Wt mice following RNA-seq of hippocampal tissue 

Genes downregulated in J20 compared to Wt 

Ensembl ID 
Gene 

name 

Adjusted 

p-value 

Wt avg 

read 

counts 

J20 avg 

read 

counts 

Ratio J20 / 

Wt 

Chromosome 

(Mmu) 

ENSMUSG00000028971 Cort 0.0002 142.67 66.33 0.46495327 4 

ENSMUSG00000028011 Tdo2 0.01 294.00 139.67 0.47505669 3 

ENSMUSG00000054889 Dsp 0.0002 1963.33 1027.00 0.52308998 13 

ENSMUSG00000036915 Kirrel2 0.01 340.00 232.33 0.68333333 7 

ENSMUSG00000041828 Abca8a 0.002 935.00 697.33 0.74581105 11 

ENSMUSG00000049892 Rasd1 0.00002 692.67 524.00 0.75649663 11 

ENSMUSG00000030592 Ryr1 0.001 2674.67 2333.67 0.87250748 7 

ENSMUSG00000033327 Tnxb 0.002 1297.00 1159.00 0.89360062 17 

ENSMUSG00000013523 Bcas1 0.00002 4017.33 3593.00 0.89437438 2 

ENSMUSG00000040998 Npnt 0.01 920.00 829.33 0.90144928 3 
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ENSMUSG00000035456 Prdm8 0.01 1893.00 1730.00 0.91389329 5 

ENSMUSG00000025348 Itga7 0.01 1478.33 1394.33 0.94317926 10 

ENSMUSG00000032554 Trf 0.01 9554.00 9384.33 0.9822413 9 

Genes upregulated in J20 compared to Wt 

Ensembl ID 
Gene 

name 

Adjusted 

p-value 

Wt avg 

read 

counts 

J20 avg 

read 

counts 

Ratio J20 / 

Wt 

Chromosome 

(Mmu) 

ENSMUSG00000040136 Abcc8 0.03 2406.67 2433.00 1.01094183 7 

ENSMUSG00000049281 Scn3b 0.04 7120.67 7422.00 1.04231814 9 

ENSMUSG00000037362 Nov 0.0005 4369.67 7640.67 1.74856968 15 

ENSMUSG00000035431 Sstr1 0.01 671.33 1239.67 1.84657398 12 

ENSMUSG00000019929 Dcn 0.000001 2918.67 5509.00 1.88750571 10 

ENSMUSG00000025572 Tmc6 0.0003 375.33 956.33 2.54795737 11 

ENSMUSG00000021478 Drd1a 0.03 139.67 388.00 2.77804296 13 

ENSMUSG00000001119 Col6a1 0.04 3512.67 9934.33 2.82814576 10 
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Supplementary Table 4 Functional Annotation Clustering by DAVID for significantly differentially expressed genes between Tc1;J20 and J20 (14 out of 28 

genes not included in clustering) 

Annotation 
Cluster 1 

Enrichment Score: 1.5205695350095656            

Category Term Cou
nt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_CC_
FAT 

GO:0031410~cytoplasmic vesicle 5 18.
52 

0.00 SLC17A8, SCGN, ARC, CAPN11, TRF 16 508 12504 7.69 0.19 0.19 2.70 

GOTERM_CC_
FAT 

GO:0031982~vesicle 5 18.
52 

0.00 SLC17A8, SCGN, ARC, CAPN11, TRF 16 519 12504 7.53 0.20 0.11 2.91 

SP_PIR_KEY
WORDS 

cytoplasmic vesicle 4 14.
81 

0.00 SLC17A8, SCGN, ARC, CAPN11 24 232 17854 12.83 0.28 0.28 3.47 

GOTERM_CC_
FAT 

GO:0016023~cytoplasmic membrane-bounded 
vesicle 

4 14.
81 

0.01 SLC17A8, ARC, CAPN11, TRF 16 414 12504 7.55 0.63 0.28 12.2
2 

GOTERM_CC_
FAT 

GO:0031988~membrane-bounded vesicle 4 14.
81 

0.01 SLC17A8, ARC, CAPN11, TRF 16 420 12504 7.44 0.64 0.23 12.6
8 

GOTERM_CC_
FAT 

GO:0030054~cell junction 3 11.
11 

0.11 SLC17A8, ARC, DSP 16 470 12504 4.99 1.00 0.78 70.0
7 

GOTERM_CC_
FAT 

GO:0044459~plasma membrane part 5 18.
52 

0.12 SLC17A8, SCGN, ARC, KCNC4, DSP 16 1633 12504 2.39 1.00 0.77 74.8
7 

GOTERM_CC_
FAT 

GO:0005886~plasma membrane 5 18.
52 

0.47 SLC17A8, SCGN, ARC, KCNC4, DSP 16 2906 12504 1.34 1.00 0.99 99.8
9 

SP_PIR_KEY
WORDS 

membrane 5 18.
52 

0.95 SLC17A8, SCGN, ARC, KCNC4, 
KCNH4 

24 5507 17854 0.68 1.00 1.00 100.
00 

             Annotation 
Cluster 2 

Enrichment Score: 0.9395554594932174            

Category Term Cou
nt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0001701~in utero embryonic development 3 11.
11 

0.07 JUNB, CYR61, AMD2 23 267 13588 6.64 1.00 0.95 60.4
1 

GOTERM_BP_
FAT 

GO:0043009~chordate embryonic development 3 11.
11 

0.15 JUNB, CYR61, AMD2 23 421 13588 4.21 1.00 0.99 87.5
0 

GOTERM_BP_
FAT 

GO:0009792~embryonic development ending in 
birth or egg hatching 

3 11.
11 

0.15 JUNB, CYR61, AMD2 23 425 13588 4.17 1.00 0.98 87.9
2 

             Annotation 
Cluster 3 

Enrichment Score: 0.823826763165674            

Category Term Cou
nt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_CC_
FAT 

GO:0031410~cytoplasmic vesicle 5 18.
52 

0.00 SLC17A8, SCGN, ARC, CAPN11, TRF 16 508 12504 7.69 0.19 0.19 2.70 

GOTERM_CC_ GO:0031982~vesicle 5 18. 0.00 SLC17A8, SCGN, ARC, CAPN11, TRF 16 519 12504 7.53 0.20 0.11 2.91 
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FAT 52 

GOTERM_MF_
FAT 

GO:0046872~metal ion binding 7 25.
93 

0.65 SLC17A8, SCGN, KCNC4, CAPN11, 
CYCT, ZFP295, TRF 

23 3850 13288 1.05 1.00 1.00 100.
00 

GOTERM_MF_
FAT 

GO:0043169~cation binding 7 25.
93 

0.66 SLC17A8, SCGN, KCNC4, CAPN11, 
CYCT, ZFP295, TRF 

23 3885 13288 1.04 1.00 1.00 100.
00 

GOTERM_MF_
FAT 

GO:0043167~ion binding 7 25.
93 

0.67 SLC17A8, SCGN, KCNC4, CAPN11, 
CYCT, ZFP295, TRF 

23 3934 13288 1.03 1.00 1.00 100.
00 

SP_PIR_KEY
WORDS 

metal-binding 3 11.
11 

0.88 CYCT, ZFP295, TRF 24 2682 17854 0.83 1.00 1.00 100.
00 

GOTERM_MF_
FAT 

GO:0046914~transition metal ion binding 3 11.
11 

0.95 CYCT, ZFP295, TRF 23 2608 13288 0.66 1.00 1.00 100.
00 

             Annotation 
Cluster 4 

Enrichment Score: 0.6491479259755761            

Category Term Cou
nt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

SP_PIR_KEY
WORDS 

ion transport 4 14.
81 

0.03 SLC17A8, KCNC4, KCNH4, TRF 24 543 17854 5.48 0.96 0.80 30.0
2 

GOTERM_BP_
FAT 

GO:0030001~metal ion transport 4 14.
81 

0.03 SLC17A8, KCNC4, KCNH4, TRF 23 442 13588 5.35 1.00 0.99 35.6
4 

GOTERM_BP_
FAT 

GO:0006812~cation transport 4 14.
81 

0.05 SLC17A8, KCNC4, KCNH4, TRF 23 515 13588 4.59 1.00 0.96 47.9
0 

GOTERM_MF_
FAT 

GO:0046873~metal ion transmembrane 
transporter activity 

3 11.
11 

0.08 KCNC4, KCNH4, TRF 23 290 13288 5.98 1.00 1.00 62.1
4 

GOTERM_BP_
FAT 

GO:0015672~monovalent inorganic cation 
transport 

3 11.
11 

0.09 SLC17A8, KCNC4, KCNH4 23 303 13588 5.85 1.00 0.96 68.7
6 

GOTERM_BP_
FAT 

GO:0006811~ion transport 4 14.
81 

0.11 SLC17A8, KCNC4, KCNH4, TRF 23 712 13588 3.32 1.00 0.97 76.5
5 

SP_PIR_KEY
WORDS 

transport 5 18.
52 

0.14 SLC17A8, KCNC4, CYCT, KCNH4, TRF 24 1571 17854 2.37 1.00 0.95 81.0
1 

UP_SEQ_FEA
TURE 

glycosylation site:N-linked (GlcNAc...) 4 14.
81 

0.84 NOV, SLC17A8, KCNC4, TRF 21 3444 16021 0.89 1.00 1.00 100.
00 

SP_PIR_KEY
WORDS 

glycoprotein 4 14.
81 

0.87 NOV, SLC17A8, KCNC4, TRF 24 3600 17854 0.83 1.00 1.00 100.
00 

SP_PIR_KEY
WORDS 

membrane 5 18.
52 

0.95 SLC17A8, SCGN, ARC, KCNC4, 
KCNH4 

24 5507 17854 0.68 1.00 1.00 100.
00 

SP_PIR_KEY
WORDS 

transmembrane 3 11.
11 

1.00 SLC17A8, KCNC4, KCNH4 24 5237 17854 0.43 1.00 1.00 100.
00 

GOTERM_CC_
FAT 

GO:0016021~integral to membrane 3 11.
11 

1.00 SLC17A8, KCNC4, KCNH4 16 5709 12504 0.41 1.00 1.00 100.
00 

GOTERM_CC_
FAT 

GO:0031224~intrinsic to membrane 3 11.
11 

1.00 SLC17A8, KCNC4, KCNH4 16 5914 12504 0.40 1.00 1.00 100.
00 

             Annotation Enrichment Score: 0.46193983998995747            
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Cluster 5 

Category Term Cou
nt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_CC_
FAT 

GO:0005576~extracellular region 6 22.
22 

0.04 NOV, KLK6, SCGN, GPX3, TRF, CYR61 16 1680 12504 2.79 0.96 0.49 35.8
4 

SP_PIR_KEY
WORDS 

Secreted 5 18.
52 

0.11 NOV, SCGN, GPX3, TRF, CYR61 24 1420 17854 2.62 1.00 0.98 71.0
0 

UP_SEQ_FEA
TURE 

signal peptide 4 14.
81 

0.74 NOV, GPX3, TRF, CYR61 21 2963 16021 1.03 1.00 1.00 100.
00 

SP_PIR_KEY
WORDS 

signal 4 14.
81 

0.76 NOV, GPX3, TRF, CYR61 24 2970 17854 1.00 1.00 1.00 100.
00 

UP_SEQ_FEA
TURE 

disulfide bond 3 11.
11 

0.82 NOV, TRF, CYR61 21 2379 16021 0.96 1.00 1.00 100.
00 

SP_PIR_KEY
WORDS 

disulfide bond 3 11.
11 

0.85 NOV, TRF, CYR61 24 2469 17854 0.90 1.00 1.00 100.
00 

             Annotation 
Cluster 6 

Enrichment Score: 0.39114241255156623            

Category Term Cou
nt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_CC_
FAT 

GO:0070013~intracellular organelle lumen 3 11.
11 

0.40 FOS, CYCT, TDG 16 1133 12504 2.07 1.00 0.99 99.5
6 

GOTERM_CC_
FAT 

GO:0043233~organelle lumen 3 11.
11 

0.40 FOS, CYCT, TDG 16 1136 12504 2.06 1.00 0.99 99.5
7 

GOTERM_CC_
FAT 

GO:0031974~membrane-enclosed lumen 3 11.
11 

0.42 FOS, CYCT, TDG 16 1174 12504 2.00 1.00 0.99 99.6
8 

             Annotation 
Cluster 7 

Enrichment Score: 0.147153733319145            

Category Term Cou
nt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0006355~regulation of transcription, DNA-
dependent 

3 11.
11 

0.70 FOS, JUNB, KCNH4 23 1465 13588 1.21 1.00 1.00 100.
00 

GOTERM_BP_
FAT 

GO:0051252~regulation of RNA metabolic 
process 

3 11.
11 

0.71 FOS, JUNB, KCNH4 23 1488 13588 1.19 1.00 1.00 100.
00 

GOTERM_BP_
FAT 

GO:0045449~regulation of transcription 4 14.
81 

0.72 FOS, BTG2, JUNB, KCNH4 23 2227 13588 1.06 1.00 1.00 100.
00 
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Supplementary Table 5 Functional Annotation Clustering by DAVID for differentially expressed genes between Tc1 and Wt (45 out of 64 genes not 

included in analysis) 

Annotation 
Cluster 1 

Enrichment Score: 1.8905528090556378            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_CC_
FAT 

GO:0044421~extracellular region part 9 14.
29 

0.00 HAPLN1, DKK3, SLC1A3, TNC, 
SORL1, COL6A2, PLA2G7, 
COL25A1, SCG2 

38 774 12504 3.83 0.18 0.18 1.85 

GOTERM_CC_
FAT 

GO:0005576~extracellular region 11 17.
46 

0.02 HAPLN1, DKK3, SLC1A3, NPTX2, 
TNC, SORL1, COL6A2, PLA2G7, 
COL25A1, LUZP2, SCG2 

38 1680 12504 2.15 0.93 0.49 21.7
8 

GOTERM_CC_
FAT 

GO:0005615~extracellular space 5 7.9
4 

0.06 DKK3, SORL1, PLA2G7, COL25A1, 
SCG2 

38 511 12504 3.22 1.00 0.52 52.8
3 

             Annotation 
Cluster 2 

Enrichment Score: 1.4350518575032696            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0000122~negative regulation of 
transcription from RNA polymerase II 
promoter 

6 9.5
2 

0.00 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 231 13588 6.92 0.63 0.63 2.28 

GOTERM_BP_
FAT 

GO:0006357~regulation of transcription from 
RNA polymerase II promoter 

9 14.
29 

0.00 EGR1, FOS, PCGF2, EGR2, RFX5, 
HOPX, PER1, ALX4, KDM6B 

51 616 13588 3.89 0.67 0.42 2.50 

GOTERM_BP_
FAT 

GO:0045892~negative regulation of 
transcription, DNA-dependent 

6 9.5
2 

0.01 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 308 13588 5.19 0.97 0.69 7.67 

GOTERM_BP_
FAT 

GO:0051253~negative regulation of RNA 
metabolic process 

6 9.5
2 

0.01 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 310 13588 5.16 0.97 0.59 7.87 

GOTERM_BP_
FAT 

GO:0016481~negative regulation of 
transcription 

6 9.5
2 

0.01 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 372 13588 4.30 1.00 0.61 15.9
3 

SP_PIR_KEY
WORDS 

DNA binding 5 7.9
4 

0.01 EGR1, FOS, PCGF2, EGR2, ALX4 62 258 17854 5.58 0.85 0.85 13.2
1 

SP_PIR_KEY
WORDS 

transcription regulation 12 19.
05 

0.01 EGR1, PCGF2, EGR2, BTG2, LMO3, 
EGR4, NR3C2, HOPX, PER1, SETD7, 
TLE2, ALX4 

62 1546 17854 2.24 0.90 0.69 16.3
3 

GOTERM_BP_
FAT 

GO:0045934~negative regulation of 
nucleobase, nucleoside, nucleotide and 
nucleic acid metabolic process 

6 9.5
2 

0.01 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 397 13588 4.03 1.00 0.66 20.1
6 

GOTERM_BP_
FAT 

GO:0051172~negative regulation of nitrogen 
compound metabolic process 

6 9.5
2 

0.02 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 401 13588 3.99 1.00 0.64 20.8
9 

GOTERM_BP_
FAT 

GO:0010629~negative regulation of gene 
expression 

6 9.5
2 

0.02 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 410 13588 3.90 1.00 0.64 22.5
7 
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GOTERM_BP_
FAT 

GO:0010558~negative regulation of 
macromolecule biosynthetic process 

6 9.5
2 

0.02 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 418 13588 3.82 1.00 0.63 24.1
1 

GOTERM_BP_
FAT 

GO:0031327~negative regulation of cellular 
biosynthetic process 

6 9.5
2 

0.02 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 430 13588 3.72 1.00 0.55 26.5
2 

GOTERM_BP_
FAT 

GO:0009890~negative regulation of 
biosynthetic process 

6 9.5
2 

0.02 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 434 13588 3.68 1.00 0.54 27.3
5 

GOTERM_BP_
FAT 

GO:0045449~regulation of transcription 15 23.
81 

0.03 EGR1, EGR2, LMO3, EGR4, RFX5, 
NR3C2, TLE2, FOS, PCGF2, BTG2, 
HOPX, SETD7, PER1, ALX4, KDM6B 

51 2227 13588 1.79 1.00 0.60 33.2
8 

SP_PIR_KEY
WORDS 

Transcription 12 19.
05 

0.04 EGR1, PCGF2, EGR2, BTG2, LMO3, 
EGR4, NR3C2, HOPX, PER1, SETD7, 
TLE2, ALX4 

62 1769 17854 1.95 1.00 0.69 35.5
0 

GOTERM_BP_
FAT 

GO:0010605~negative regulation of 
macromolecule metabolic process 

6 9.5
2 

0.04 EGR1, PCGF2, RFX5, HOPX, PER1, 
KDM6B 

51 506 13588 3.16 1.00 0.71 43.5
8 

GOTERM_BP_
FAT 

GO:0006355~regulation of transcription, 
DNA-dependent 

11 17.
46 

0.04 EGR1, FOS, PCGF2, EGR2, RFX5, 
NR3C2, HOPX, PER1, SETD7, ALX4, 
KDM6B 

51 1465 13588 2.00 1.00 0.68 44.2
3 

GOTERM_BP_
FAT 

GO:0051252~regulation of RNA metabolic 
process 

11 17.
46 

0.04 EGR1, FOS, PCGF2, EGR2, RFX5, 
NR3C2, HOPX, PER1, SETD7, ALX4, 
KDM6B 

51 1488 13588 1.97 1.00 0.69 47.3
3 

GOTERM_BP_
FAT 

GO:0016570~histone modification 3 4.7
6 

0.05 PCGF2, HOPX, KDM6B 51 92 13588 8.69 1.00 0.68 49.7
3 

GOTERM_BP_
FAT 

GO:0016569~covalent chromatin 
modification 

3 4.7
6 

0.05 PCGF2, HOPX, KDM6B 51 96 13588 8.33 1.00 0.70 52.4
7 

GOTERM_BP_
FAT 

GO:0006350~transcription 12 19.
05 

0.05 EGR1, PCGF2, EGR2, BTG2, LMO3, 
EGR4, NR3C2, HOPX, PER1, SETD7, 
TLE2, ALX4 

51 1772 13588 1.80 1.00 0.68 56.4
6 

GOTERM_MF_
FAT 

GO:0003677~DNA binding 11 17.
46 

0.05 EGR1, FOS, PCGF2, PEG10, EGR2, 
RFX5, EGR4, NR3C2, HOPX, ALX4, 
KDM6B 

44 1781 13288 1.87 1.00 0.99 49.5
8 

GOTERM_BP_
FAT 

GO:0016568~chromatin modification 4 6.3
5 

0.06 PCGF2, HOPX, SETD7, KDM6B 51 236 13588 4.52 1.00 0.67 57.5
9 

GOTERM_MF_
FAT 

GO:0003700~transcription factor activity 6 9.5
2 

0.10 EGR1, FOS, EGR2, NR3C2, HOPX, 
ALX4 

44 776 13288 2.34 1.00 0.98 73.9
0 

GOTERM_MF_
FAT 

GO:0043565~sequence-specific DNA binding 5 7.9
4 

0.10 FOS, NR3C2, HOPX, ALX4, KDM6B 44 556 13288 2.72 1.00 0.96 73.9
7 

GOTERM_BP_
FAT 

GO:0006325~chromatin organization 4 6.3
5 

0.11 PCGF2, HOPX, SETD7, KDM6B 51 315 13588 3.38 1.00 0.80 82.2
4 

GOTERM_BP_
FAT 

GO:0051276~chromosome organization 4 6.3
5 

0.19 PCGF2, HOPX, SETD7, KDM6B 51 404 13588 2.64 1.00 0.90 95.3
3 

SP_PIR_KEY
WORDS 

dna-binding 8 12.
70 

0.20 EGR1, FOS, PCGF2, PEG10, EGR2, 
EGR4, NR3C2, ALX4 

62 1404 17854 1.64 1.00 0.95 93.3
6 

SP_PIR_KEY nucleus 16 25. 0.31 EGR1, EGR2, EGR4, CRABP2, 62 3808 17854 1.21 1.00 0.96 98.9
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WORDS 40 NR3C2, TLE2, FOS, HSPH1, PCGF2, 
PEG10, HOPX, CELF3, SETD7, 
PER1, ALX4, KDM6B 

1 

GOTERM_MF_
FAT 

GO:0030528~transcription regulator activity 6 9.5
2 

0.35 EGR1, FOS, EGR2, NR3C2, HOPX, 
ALX4 

44 1206 13288 1.50 1.00 1.00 99.5
0 

SP_PIR_KEY
WORDS 

zinc 8 12.
70 

0.47 EGR1, ZDHHC2, PCGF2, PEG10, 
EGR2, LMO3, EGR4, NR3C2 

62 1886 17854 1.22 1.00 0.98 99.9
5 

GOTERM_MF_
FAT 

GO:0008270~zinc ion binding 8 12.
70 

0.53 EGR1, ZDHHC2, PCGF2, PEG10, 
EGR2, LMO3, EGR4, NR3C2 

44 2105 13288 1.15 1.00 1.00 99.9
9 

             Annotation 
Cluster 3 

Enrichment Score: 1.332915614511585            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_CC_
FAT 

GO:0016023~cytoplasmic membrane-
bounded vesicle 

5 7.9
4 

0.03 GAD2, AP1G2, GRIN2B, SDCBP, 
ALS2CL 

38 414 12504 3.97 0.99 0.50 32.2
2 

GOTERM_CC_
FAT 

GO:0031988~membrane-bounded vesicle 5 7.9
4 

0.03 GAD2, AP1G2, GRIN2B, SDCBP, 
ALS2CL 

38 420 12504 3.92 0.99 0.47 33.4
5 

GOTERM_CC_
FAT 

GO:0031410~cytoplasmic vesicle 5 7.9
4 

0.06 GAD2, AP1G2, GRIN2B, SDCBP, 
ALS2CL 

38 508 12504 3.24 1.00 0.59 52.2
0 

GOTERM_CC_
FAT 

GO:0031982~vesicle 5 7.9
4 

0.07 GAD2, AP1G2, GRIN2B, SDCBP, 
ALS2CL 

38 519 12504 3.17 1.00 0.51 54.5
2 

             Annotation 
Cluster 4 

Enrichment Score: 1.1865626775990343            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_MF_
FAT 

GO:0005539~glycosaminoglycan binding 3 4.7
6 

0.05 HAPLN1, CD44, COL25A1 44 114 13288 7.95 1.00 1.00 48.3
1 

GOTERM_MF_
FAT 

GO:0001871~pattern binding 3 4.7
6 

0.06 HAPLN1, CD44, COL25A1 44 128 13288 7.08 1.00 0.98 55.7
2 

GOTERM_MF_
FAT 

GO:0030247~polysaccharide binding 3 4.7
6 

0.06 HAPLN1, CD44, COL25A1 44 128 13288 7.08 1.00 0.98 55.7
2 

GOTERM_MF_
FAT 

GO:0030246~carbohydrate binding 4 6.3
5 

0.08 HAPLN1, CD44, NPTX2, COL25A1 44 317 13288 3.81 1.00 0.98 65.2
0 

             Annotation 
Cluster 5 

Enrichment Score: 1.181688072473878            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0044057~regulation of system process 5 7.9
4 

0.01 EGR2, SLC1A3, GRIN2B, HOPX, 
FKBP1B 

51 201 13588 6.63 0.98 0.56 8.99 

GOTERM_BP_
FAT 

GO:0010033~response to organic substance 7 11.
11 

0.01 EGR1, FOS, EGR2, SLC1A3, 
GRIN2B, SLC22A6, FKBP1B 

51 505 13588 3.69 1.00 0.61 14.1
5 

GOTERM_BP_ GO:0007611~learning or memory 3 4.7 0.04 EGR1, EGR2, GRIN2B 51 89 13588 8.98 1.00 0.68 47.6
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FAT 6 4 

GOTERM_BP_
FAT 

GO:0050804~regulation of synaptic 
transmission 

3 4.7
6 

0.05 EGR2, SLC1A3, GRIN2B 51 100 13588 7.99 1.00 0.69 55.1
4 

GOTERM_BP_
FAT 

GO:0051969~regulation of transmission of 
nerve impulse 

3 4.7
6 

0.06 EGR2, SLC1A3, GRIN2B 51 107 13588 7.47 1.00 0.68 59.6
2 

GOTERM_BP_
FAT 

GO:0007610~behavior 5 7.9
4 

0.06 EGR1, EGR2, SLC1A3, GRIN2B, 
SCG2 

51 405 13588 3.29 1.00 0.68 61.0
6 

GOTERM_BP_
FAT 

GO:0031644~regulation of neurological 
system process 

3 4.7
6 

0.06 EGR2, SLC1A3, GRIN2B 51 113 13588 7.07 1.00 0.69 63.2
5 

GOTERM_BP_
FAT 

GO:0050877~neurological system process 6 9.5
2 

0.76 EGR1, GAD2, EGR2, SLC1A3, 
GRIN2B, FKBP1B 

51 1681 13588 0.95 1.00 1.00 100.
00 

GOTERM_BP_
FAT 

GO:0050890~cognition 4 6.3
5 

0.92 EGR1, EGR2, SLC1A3, GRIN2B 51 1480 13588 0.72 1.00 1.00 100.
00 

             Annotation 
Cluster 6 

Enrichment Score: 1.1759506676333606            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0003002~regionalization 5 7.9
4 

0.01 PCGF2, EGR2, BTG2, ALX4, AXIN2 51 214 13588 6.23 0.99 0.57 11.0
6 

GOTERM_BP_
FAT 

GO:0009952~anterior/posterior pattern 
formation 

4 6.3
5 

0.02 PCGF2, BTG2, ALX4, AXIN2 51 153 13588 6.97 1.00 0.61 24.5
0 

GOTERM_BP_
FAT 

GO:0043009~chordate embryonic 
development 

6 9.5
2 

0.02 PCGF2, GRIN2B, HOPX, CDH1, 
ALX4, AXIN2 

51 421 13588 3.80 1.00 0.59 24.7
1 

GOTERM_BP_
FAT 

GO:0009792~embryonic development ending 
in birth or egg hatching 

6 9.5
2 

0.02 PCGF2, GRIN2B, HOPX, CDH1, 
ALX4, AXIN2 

51 425 13588 3.76 1.00 0.57 25.5
1 

GOTERM_BP_
FAT 

GO:0007389~pattern specification process 5 7.9
4 

0.02 PCGF2, EGR2, BTG2, ALX4, AXIN2 51 284 13588 4.69 1.00 0.56 26.3
4 

GOTERM_BP_
FAT 

GO:0042981~regulation of apoptosis 6 9.5
2 

0.05 ALDH1A1, PCGF2, BTG2, CDH1, 
ALX4, SCG2 

51 553 13588 2.89 1.00 0.70 54.7
3 

GOTERM_BP_
FAT 

GO:0043067~regulation of programmed cell 
death 

6 9.5
2 

0.05 ALDH1A1, PCGF2, BTG2, CDH1, 
ALX4, SCG2 

51 560 13588 2.85 1.00 0.69 56.3
7 

GOTERM_BP_
FAT 

GO:0010941~regulation of cell death 6 9.5
2 

0.06 ALDH1A1, PCGF2, BTG2, CDH1, 
ALX4, SCG2 

51 563 13588 2.84 1.00 0.67 57.0
6 

GOTERM_BP_
FAT 

GO:0001701~in utero embryonic 
development 

4 6.3
5 

0.07 PCGF2, GRIN2B, HOPX, CDH1 51 267 13588 3.99 1.00 0.72 68.7
3 

GOTERM_BP_
FAT 

GO:0048562~embryonic organ 
morphogenesis 

3 4.7
6 

0.12 ALDH1A1, PCGF2, ALX4 51 161 13588 4.96 1.00 0.82 84.7
5 

GOTERM_BP_
FAT 

GO:0048598~embryonic morphogenesis 4 6.3
5 

0.15 ALDH1A1, PCGF2, CRABP2, ALX4 51 359 13588 2.97 1.00 0.86 90.4
0 

GOTERM_BP_
FAT 

GO:0043066~negative regulation of 
apoptosis 

3 4.7
6 

0.22 PCGF2, BTG2, SCG2 51 239 13588 3.34 1.00 0.92 97.5
3 

GOTERM_BP_
FAT 

GO:0048568~embryonic organ development 3 4.7
6 

0.22 ALDH1A1, PCGF2, ALX4 51 241 13588 3.32 1.00 0.92 97.6
5 
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GOTERM_BP_
FAT 

GO:0043069~negative regulation of 
programmed cell death 

3 4.7
6 

0.23 PCGF2, BTG2, SCG2 51 244 13588 3.28 1.00 0.92 97.8
3 

GOTERM_BP_
FAT 

GO:0060548~negative regulation of cell 
death 

3 4.7
6 

0.23 PCGF2, BTG2, SCG2 51 245 13588 3.26 1.00 0.92 97.8
9 

GOTERM_BP_
FAT 

GO:0001501~skeletal system development 3 4.7
6 

0.28 PCGF2, ALX4, AXIN2 51 285 13588 2.80 1.00 0.94 99.2
9 

             Annotation 
Cluster 7 

Enrichment Score: 1.0998921485509967            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0044057~regulation of system process 5 7.9
4 

0.01 EGR2, SLC1A3, GRIN2B, HOPX, 
FKBP1B 

51 201 13588 6.63 0.98 0.56 8.99 

GOTERM_BP_
FAT 

GO:0010033~response to organic substance 7 11.
11 

0.01 EGR1, FOS, EGR2, SLC1A3, 
GRIN2B, SLC22A6, FKBP1B 

51 505 13588 3.69 1.00 0.61 14.1
5 

GOTERM_BP_
FAT 

GO:0019226~transmission of nerve impulse 4 6.3
5 

0.05 GAD2, EGR2, GRIN2B, FKBP1B 51 226 13588 4.72 1.00 0.70 53.7
0 

GOTERM_BP_
FAT 

GO:0006873~cellular ion homeostasis 4 6.3
5 

0.07 EGR2, GRIN2B, NR3C2, FKBP1B 51 261 13588 4.08 1.00 0.71 66.7
1 

GOTERM_BP_
FAT 

GO:0055082~cellular chemical homeostasis 4 6.3
5 

0.08 EGR2, GRIN2B, NR3C2, FKBP1B 51 268 13588 3.98 1.00 0.71 69.0
6 

GOTERM_BP_
FAT 

GO:0007267~cell-cell signaling 4 6.3
5 

0.09 GAD2, GRIN2B, TNC, FKBP1B 51 290 13588 3.67 1.00 0.75 75.8
2 

GOTERM_BP_
FAT 

GO:0050801~ion homeostasis 4 6.3
5 

0.09 EGR2, GRIN2B, NR3C2, FKBP1B 51 293 13588 3.64 1.00 0.75 76.6
6 

GOTERM_BP_
FAT 

GO:0019725~cellular homeostasis 4 6.3
5 

0.13 EGR2, GRIN2B, NR3C2, FKBP1B 51 343 13588 3.11 1.00 0.85 87.8
7 

GOTERM_BP_
FAT 

GO:0048878~chemical homeostasis 4 6.3
5 

0.15 EGR2, GRIN2B, NR3C2, FKBP1B 51 365 13588 2.92 1.00 0.86 91.2
4 

GOTERM_BP_
FAT 

GO:0042592~homeostatic process 4 6.3
5 

0.36 EGR2, GRIN2B, NR3C2, FKBP1B 51 584 13588 1.82 1.00 0.97 99.8
8 

GOTERM_BP_
FAT 

GO:0050877~neurological system process 6 9.5
2 

0.76 EGR1, GAD2, EGR2, SLC1A3, 
GRIN2B, FKBP1B 

51 1681 13588 0.95 1.00 1.00 100.
00 

             Annotation 
Cluster 8 

Enrichment Score: 1.0368572127696145            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0022612~gland morphogenesis 3 4.7
6 

0.04 CD44, TNC, CDH1 51 84 13588 9.52 1.00 0.70 44.0
9 

KEGG_PATH
WAY 

mmu04512:ECM-receptor interaction 3 4.7
6 

0.04 CD44, TNC, COL6A2 23 83 5738 9.02 0.84 0.84 31.6
2 

GOTERM_CC_
FAT 

GO:0005578~proteinaceous extracellular 
matrix 

4 6.3
5 

0.06 HAPLN1, SLC1A3, TNC, COL6A2 38 297 12504 4.43 1.00 0.60 49.2
5 
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GOTERM_CC_
FAT 

GO:0031012~extracellular matrix 4 6.3
5 

0.06 HAPLN1, SLC1A3, TNC, COL6A2 38 309 12504 4.26 1.00 0.55 52.6
9 

SP_PIR_KEY
WORDS 

cell adhesion 4 6.3
5 

0.14 CD44, TNC, COL6A2, CDH1 62 380 17854 3.03 1.00 0.95 83.8
9 

GOTERM_BP_
FAT 

GO:0007155~cell adhesion 5 7.9
4 

0.15 HAPLN1, CD44, TNC, COL6A2, 
CDH1 

51 561 13588 2.37 1.00 0.86 91.2
5 

GOTERM_BP_
FAT 

GO:0022610~biological adhesion 5 7.9
4 

0.15 HAPLN1, CD44, TNC, COL6A2, 
CDH1 

51 562 13588 2.37 1.00 0.86 91.3
6 

GOTERM_BP_
FAT 

GO:0048732~gland development 3 4.7
6 

0.16 CD44, TNC, CDH1 51 197 13588 4.06 1.00 0.87 93.0
5 

SP_PIR_KEY
WORDS 

extracellular matrix 3 4.7
6 

0.16 HAPLN1, TNC, COL6A2 62 213 17854 4.06 1.00 0.94 88.6
0 

             Annotation 
Cluster 9 

Enrichment Score: 0.94433856637788            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

UP_SEQ_FEA
TURE 

domain:Fibronectin type-III 2 3 4.7
6 

0.08 EPHA6, TNC, SORL1 62 120 16021 6.46 1.00 1.00 65.5
3 

UP_SEQ_FEA
TURE 

domain:Fibronectin type-III 1 3 4.7
6 

0.08 EPHA6, TNC, SORL1 62 121 16021 6.41 1.00 1.00 66.0
7 

INTERPRO IPR008957:Fibronectin, type III-like fold 3 4.7
6 

0.13 EPHA6, TNC, SORL1 60 187 17763 4.75 1.00 1.00 81.1
0 

INTERPRO IPR003961:Fibronectin, type III 3 4.7
6 

0.13 EPHA6, TNC, SORL1 60 191 17763 4.65 1.00 1.00 82.2
4 

SMART SM00060:FN3 3 4.7
6 

0.19 EPHA6, TNC, SORL1 39 191 9131 3.68 1.00 1.00 86.3
6 

             Annotation 
Cluster 10 

Enrichment Score: 0.9047956237291621            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_CC_
FAT 

GO:0005576~extracellular region 11 17.
46 

0.02 HAPLN1, DKK3, SLC1A3, NPTX2, 
TNC, SORL1, COL6A2, PLA2G7, 
COL25A1, LUZP2, SCG2 

38 1680 12504 2.15 0.93 0.49 21.7
8 

SP_PIR_KEY
WORDS 

glycoprotein 20 31.
75 

0.03 HAPLN1, SPRN, TPRA1, TNC, 
SORL1, COL25A1, CDH1, LUZP2, 
NETO1, DKK3, EPHA6, CHRM4, 
SLC1A3, GRIN2B, CD44, BC005764, 
NPTX2, COL6A2, PLA2G7, SLC22A6 

62 3600 17854 1.60 0.99 0.68 29.0
9 

UP_SEQ_FEA
TURE 

glycosylation site:N-linked (GlcNAc...) 19 30.
16 

0.09 HAPLN1, SPRN, TPRA1, TNC, 
SORL1, CDH1, LUZP2, NETO1, 
DKK3, EPHA6, CHRM4, SLC1A3, 
GRIN2B, CD44, BC005764, NPTX2, 
COL6A2, PLA2G7, SLC22A6 

62 3444 16021 1.43 1.00 1.00 71.1
0 
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SP_PIR_KEY
WORDS 

signal 14 22.
22 

0.20 SPRN, TNC, SORL1, CDH1, LUZP2, 
NETO1, DKK3, EPHA6, GRIN2B, 
CD44, NPTX2, COL6A2, PLA2G7, 
SCG2 

62 2970 17854 1.36 1.00 0.94 93.7
1 

SP_PIR_KEY
WORDS 

Secreted 8 12.
70 

0.21 HAPLN1, DKK3, NPTX2, TNC, 
COL6A2, PLA2G7, LUZP2, SCG2 

62 1420 17854 1.62 1.00 0.93 94.1
0 

UP_SEQ_FEA
TURE 

signal peptide 14 22.
22 

0.33 SPRN, TNC, SORL1, CDH1, LUZP2, 
NETO1, DKK3, EPHA6, GRIN2B, 
CD44, NPTX2, COL6A2, PLA2G7, 
SCG2 

62 2963 16021 1.22 1.00 1.00 99.5
6 

SP_PIR_KEY
WORDS 

disulfide bond 9 14.
29 

0.62 HAPLN1, DKK3, CHRM4, CD44, TNC, 
SORL1, COL6A2, CDH1, NETO1 

62 2469 17854 1.05 1.00 1.00 100.
00 

             Annotation 
Cluster 11 

Enrichment Score: 0.8768030592615519            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0006357~regulation of transcription from 
RNA polymerase II promoter 

9 14.
29 

0.00 EGR1, FOS, PCGF2, EGR2, RFX5, 
HOPX, PER1, ALX4, KDM6B 

51 616 13588 3.89 0.67 0.42 2.50 

GOTERM_BP_
FAT 

GO:0010033~response to organic substance 7 11.
11 

0.01 EGR1, FOS, EGR2, SLC1A3, 
GRIN2B, SLC22A6, FKBP1B 

51 505 13588 3.69 1.00 0.61 14.1
5 

SP_PIR_KEY
WORDS 

DNA binding 5 7.9
4 

0.01 EGR1, FOS, PCGF2, EGR2, ALX4 62 258 17854 5.58 0.85 0.85 13.2
1 

GOTERM_MF_
FAT 

GO:0003700~transcription factor activity 6 9.5
2 

0.10 EGR1, FOS, EGR2, NR3C2, HOPX, 
ALX4 

44 776 13288 2.34 1.00 0.98 73.9
0 

GOTERM_BP_
FAT 

GO:0045944~positive regulation of 
transcription from RNA polymerase II 
promoter 

4 6.3
5 

0.14 EGR1, FOS, EGR2, ALX4 51 358 13588 2.98 1.00 0.86 90.2
6 

GOTERM_BP_
FAT 

GO:0045893~positive regulation of 
transcription, DNA-dependent 

4 6.3
5 

0.20 EGR1, FOS, EGR2, ALX4 51 416 13588 2.56 1.00 0.91 96.2
0 

GOTERM_BP_
FAT 

GO:0051254~positive regulation of RNA 
metabolic process 

4 6.3
5 

0.20 EGR1, FOS, EGR2, ALX4 51 419 13588 2.54 1.00 0.91 96.4
0 

SP_PIR_KEY
WORDS 

dna-binding 8 12.
70 

0.20 EGR1, FOS, PCGF2, PEG10, EGR2, 
EGR4, NR3C2, ALX4 

62 1404 17854 1.64 1.00 0.95 93.3
6 

SP_PIR_KEY
WORDS 

activator 4 6.3
5 

0.23 EGR1, EGR2, SETD7, ALX4 62 484 17854 2.38 1.00 0.92 95.6
7 

GOTERM_BP_
FAT 

GO:0045941~positive regulation of 
transcription 

4 6.3
5 

0.25 EGR1, FOS, EGR2, ALX4 51 475 13588 2.24 1.00 0.93 98.7
4 

GOTERM_BP_
FAT 

GO:0010628~positive regulation of gene 
expression 

4 6.3
5 

0.27 EGR1, FOS, EGR2, ALX4 51 488 13588 2.18 1.00 0.93 99.0
3 

GOTERM_BP_
FAT 

GO:0045935~positive regulation of 
nucleobase, nucleoside, nucleotide and 
nucleic acid metabolic process 

4 6.3
5 

0.29 EGR1, FOS, EGR2, ALX4 51 510 13588 2.09 1.00 0.94 99.3
9 

GOTERM_BP_ GO:0051173~positive regulation of nitrogen 4 6.3 0.31 EGR1, FOS, EGR2, ALX4 51 526 13588 2.03 1.00 0.95 99.5
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FAT compound metabolic process 5 7 

GOTERM_BP_
FAT 

GO:0010557~positive regulation of 
macromolecule biosynthetic process 

4 6.3
5 

0.31 EGR1, FOS, EGR2, ALX4 51 530 13588 2.01 1.00 0.95 99.6
0 

GOTERM_BP_
FAT 

GO:0031328~positive regulation of cellular 
biosynthetic process 

4 6.3
5 

0.33 EGR1, FOS, EGR2, ALX4 51 552 13588 1.93 1.00 0.96 99.7
6 

GOTERM_BP_
FAT 

GO:0009891~positive regulation of 
biosynthetic process 

4 6.3
5 

0.34 EGR1, FOS, EGR2, ALX4 51 557 13588 1.91 1.00 0.96 99.7
8 

GOTERM_MF_
FAT 

GO:0030528~transcription regulator activity 6 9.5
2 

0.35 EGR1, FOS, EGR2, NR3C2, HOPX, 
ALX4 

44 1206 13288 1.50 1.00 1.00 99.5
0 

GOTERM_BP_
FAT 

GO:0010604~positive regulation of 
macromolecule metabolic process 

4 6.3
5 

0.41 EGR1, FOS, EGR2, ALX4 51 633 13588 1.68 1.00 0.98 99.9
7 

             Annotation 
Cluster 12 

Enrichment Score: 0.8327248658019032            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0042110~T cell activation 3 4.7
6 

0.07 EGR1, GADD45G, FKBP1B 51 116 13588 6.89 1.00 0.70 65.0
0 

GOTERM_BP_
FAT 

GO:0046649~lymphocyte activation 3 4.7
6 

0.16 EGR1, GADD45G, FKBP1B 51 191 13588 4.18 1.00 0.86 92.0
3 

GOTERM_BP_
FAT 

GO:0045321~leukocyte activation 3 4.7
6 

0.19 EGR1, GADD45G, FKBP1B 51 219 13588 3.65 1.00 0.90 95.9
0 

GOTERM_BP_
FAT 

GO:0001775~cell activation 3 4.7
6 

0.23 EGR1, GADD45G, FKBP1B 51 246 13588 3.25 1.00 0.91 97.9
4 

             Annotation 
Cluster 13 

Enrichment Score: 0.7857744371440335            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_CC_
FAT 

GO:0044459~plasma membrane part 11 17.
46 

0.02 GAD2, EPHA6, CHRM4, GRIN2B, 
CD44, SDCBP, CDH1, COL25A1, 
SLC22A6, KCNG1, TOMM34 

38 1633 12504 2.22 0.89 0.67 18.4
5 

GOTERM_CC_
FAT 

GO:0005887~integral to plasma membrane 6 9.5
2 

0.02 EPHA6, GRIN2B, SDCBP, COL25A1, 
SLC22A6, KCNG1 

38 531 12504 3.72 0.91 0.55 20.1
1 

GOTERM_CC_
FAT 

GO:0031226~intrinsic to plasma membrane 6 9.5
2 

0.02 EPHA6, GRIN2B, SDCBP, COL25A1, 
SLC22A6, KCNG1 

38 552 12504 3.58 0.94 0.43 22.9
9 

SP_PIR_KEY
WORDS 

glycoprotein 20 31.
75 

0.03 HAPLN1, SPRN, TPRA1, TNC, 
SORL1, COL25A1, CDH1, LUZP2, 
NETO1, DKK3, EPHA6, CHRM4, 
SLC1A3, GRIN2B, CD44, BC005764, 
NPTX2, COL6A2, PLA2G7, SLC22A6 

62 3600 17854 1.60 0.99 0.68 29.0
9 

GOTERM_CC_
FAT 

GO:0005886~plasma membrane 14 22.
22 

0.07 SPRN, COL25A1, CDH1, GAD2, 
EPHA6, CHRM4, SLC1A3, GRIN2B, 
CD44, COL6A2, SDCBP, SLC22A6, 
KCNG1, TOMM34 

38 2906 12504 1.59 1.00 0.50 56.0
6 
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SP_PIR_KEY
WORDS 

membrane 25 39.
68 

0.10 AP1G2, TPRA1, SORL1, NR3C2, 
CTXN3, CDH1, NETO1, GAD2, 
NDUFS5, SLC1A3, CD44, GRIN2B, 
BC005764, COL6A2, SLC22A6, 
KCNG1, TOMM34, ZDHHC2, SPRN, 
COL25A1, RGS14, CHRM4, EPHA6, 
CNIH2, SDCBP 

62 5507 17854 1.31 1.00 0.90 71.3
1 

UP_SEQ_FEA
TURE 

topological domain:Extracellular 10 15.
87 

0.45 EPHA6, CHRM4, SLC1A3, GRIN2B, 
CD44, SORL1, CDH1, COL25A1, 
SLC22A6, NETO1 

62 2174 16021 1.19 1.00 1.00 99.9
7 

GOTERM_CC_
FAT 

GO:0031224~intrinsic to membrane 19 30.
16 

0.50 ZDHHC2, SPRN, TPRA1, SORL1, 
CTXN3, COL25A1, CDH1, NETO1, 
GAD2, EPHA6, CHRM4, SLC1A3, 
GRIN2B, CNIH2, CD44, BC005764, 
SDCBP, SLC22A6, KCNG1 

38 5914 12504 1.06 1.00 0.99 99.9
7 

UP_SEQ_FEA
TURE 

transmembrane region 16 25.
40 

0.63 ZDHHC2, TPRA1, SORL1, CTXN3, 
COL25A1, CDH1, NETO1, EPHA6, 
CHRM4, SLC1A3, GRIN2B, CNIH2, 
CD44, BC005764, SLC22A6, KCNG1 

62 4113 16021 1.01 1.00 1.00 100.
00 

UP_SEQ_FEA
TURE 

topological domain:Cytoplasmic 11 17.
46 

0.63 EPHA6, CHRM4, SLC1A3, GRIN2B, 
CD44, SORL1, CDH1, COL25A1, 
SLC22A6, KCNG1, NETO1 

62 2780 16021 1.02 1.00 1.00 100.
00 

GOTERM_CC_
FAT 

GO:0016021~integral to membrane 17 26.
98 

0.68 ZDHHC2, TPRA1, SORL1, CTXN3, 
COL25A1, CDH1, NETO1, EPHA6, 
CHRM4, SLC1A3, GRIN2B, CNIH2, 
CD44, BC005764, SDCBP, SLC22A6, 
KCNG1 

38 5709 12504 0.98 1.00 1.00 100.
00 

SP_PIR_KEY
WORDS 

transmembrane 16 25.
40 

0.83 ZDHHC2, TPRA1, SORL1, CTXN3, 
COL25A1, CDH1, NETO1, EPHA6, 
CHRM4, SLC1A3, GRIN2B, CNIH2, 
CD44, BC005764, SLC22A6, KCNG1 

62 5237 17854 0.88 1.00 1.00 100.
00 

SP_PIR_KEY
WORDS 

receptor 7 11.
11 

0.86 EPHA6, CHRM4, GRIN2B, CD44, 
SORL1, NR3C2, NETO1 

62 2465 17854 0.82 1.00 1.00 100.
00 

             Annotation 
Cluster 14 

Enrichment Score: 0.7694797971693238            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

SP_PIR_KEY
WORDS 

wnt signaling pathway 3 4.7
6 

0.06 DKK3, TLE2, AXIN2 62 118 17854 7.32 1.00 0.81 53.5
5 

GOTERM_BP_
FAT 

GO:0016055~Wnt receptor signaling 
pathway 

3 4.7
6 

0.08 DKK3, TLE2, AXIN2 51 130 13588 6.15 1.00 0.73 72.4
2 

GOTERM_BP_
FAT 

GO:0007166~cell surface receptor linked 
signal transduction 

6 9.5
2 

0.97 DKK3, EPHA6, CHRM4, TLE2, 
AXIN2, RGS14 

51 2495 13588 0.64 1.00 1.00 100.
00 
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Annotation 
Cluster 15 

Enrichment Score: 0.7366499193910733            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0009611~response to wounding 4 6.3
5 

0.14 SLC1A3, CD44, PLA2G7, KDM6B 51 347 13588 3.07 1.00 0.85 88.5
5 

GOTERM_BP_
FAT 

GO:0006954~inflammatory response 3 4.7
6 

0.20 CD44, PLA2G7, KDM6B 51 225 13588 3.55 1.00 0.90 96.4
7 

GOTERM_BP_
FAT 

GO:0006952~defense response 4 6.3
5 

0.23 GRIN2B, CD44, PLA2G7, KDM6B 51 448 13588 2.38 1.00 0.92 97.8
8 

             Annotation 
Cluster 16 

Enrichment Score: 0.7056449766195889            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0002009~morphogenesis of an 
epithelium 

3 4.7
6 

0.13 ALDH1A1, CD44, TNC 51 173 13588 4.62 1.00 0.85 88.1
3 

GOTERM_BP_
FAT 

GO:0048729~tissue morphogenesis 3 4.7
6 

0.22 ALDH1A1, CD44, TNC 51 238 13588 3.36 1.00 0.92 97.4
6 

GOTERM_BP_
FAT 

GO:0060429~epithelium development 3 4.7
6 

0.26 ALDH1A1, CD44, TNC 51 271 13588 2.95 1.00 0.93 98.9
5 

             Annotation 
Cluster 17 

Enrichment Score: 0.6750834475977373            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_CC_
FAT 

GO:0044456~synapse part 3 4.7
6 

0.13 GAD2, CHRM4, GRIN2B 38 212 12504 4.66 1.00 0.71 79.9
4 

SP_PIR_KEY
WORDS 

cell junction 4 6.3
5 

0.15 GAD2, CHRM4, GRIN2B, CDH1 62 392 17854 2.94 1.00 0.94 85.9
2 

GOTERM_CC_
FAT 

GO:0030054~cell junction 4 6.3
5 

0.16 GAD2, CHRM4, GRIN2B, CDH1 38 470 12504 2.80 1.00 0.77 86.9
0 

SP_PIR_KEY
WORDS 

synapse 3 4.7
6 

0.16 GAD2, CHRM4, GRIN2B 62 213 17854 4.06 1.00 0.94 88.6
0 

GOTERM_CC_
FAT 

GO:0045202~synapse 3 4.7
6 

0.24 GAD2, CHRM4, GRIN2B 38 319 12504 3.09 1.00 0.87 96.0
2 

SP_PIR_KEY
WORDS 

cell membrane 6 9.5
2 

0.71 SPRN, GAD2, CHRM4, GRIN2B, 
CDH1, SLC22A6 

62 1713 17854 1.01 1.00 1.00 100.
00 

             Annotation 
Cluster 18 

Enrichment Score: 0.5080706079496419            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

SP_PIR_KEY
WORDS 

zinc finger 3 4.7
6 

0.02 EGR1, PCGF2, EGR2 62 66 17854 13.09 0.97 0.68 22.9
8 
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GOTERM_MF_
FAT 

GO:0003677~DNA binding 11 17.
46 

0.05 EGR1, FOS, PCGF2, PEG10, EGR2, 
RFX5, EGR4, NR3C2, HOPX, ALX4, 
KDM6B 

44 1781 13288 1.87 1.00 0.99 49.5
8 

SP_PIR_KEY
WORDS 

dna-binding 8 12.
70 

0.20 EGR1, FOS, PCGF2, PEG10, EGR2, 
EGR4, NR3C2, ALX4 

62 1404 17854 1.64 1.00 0.95 93.3
6 

SP_PIR_KEY
WORDS 

zinc-finger 7 11.
11 

0.23 EGR1, ZDHHC2, PCGF2, PEG10, 
EGR2, EGR4, NR3C2 

62 1204 17854 1.67 1.00 0.94 95.5
5 

UP_SEQ_FEA
TURE 

zinc finger region:C2H2-type 3 3 4.7
6 

0.25 EGR1, EGR2, EGR4 62 252 16021 3.08 1.00 1.00 97.8
4 

UP_SEQ_FEA
TURE 

zinc finger region:C2H2-type 1 3 4.7
6 

0.25 EGR1, EGR2, EGR4 62 254 16021 3.05 1.00 1.00 97.9
4 

UP_SEQ_FEA
TURE 

zinc finger region:C2H2-type 2 3 4.7
6 

0.26 EGR1, EGR2, EGR4 62 259 16021 2.99 1.00 1.00 98.1
9 

GOTERM_MF_
FAT 

GO:0046872~metal ion binding 15 23.
81 

0.36 ZDHHC2, EGR1, EGR2, LMO3, 
EGR4, NR3C2, CDH1, PGM2L1, 
PEG10, PCGF2, GRIN2B, NPTX2, 
KDM6B, KCNG1, SCG2 

44 3850 13288 1.18 1.00 1.00 99.5
4 

GOTERM_MF_
FAT 

GO:0043169~cation binding 15 23.
81 

0.37 ZDHHC2, EGR1, EGR2, LMO3, 
EGR4, NR3C2, CDH1, PGM2L1, 
PEG10, PCGF2, GRIN2B, NPTX2, 
KDM6B, KCNG1, SCG2 

44 3885 13288 1.17 1.00 1.00 99.6
5 

GOTERM_MF_
FAT 

GO:0043167~ion binding 15 23.
81 

0.39 ZDHHC2, EGR1, EGR2, LMO3, 
EGR4, NR3C2, CDH1, PGM2L1, 
PEG10, PCGF2, GRIN2B, NPTX2, 
KDM6B, KCNG1, SCG2 

44 3934 13288 1.15 1.00 1.00 99.7
7 

SP_PIR_KEY
WORDS 

zinc 8 12.
70 

0.47 EGR1, ZDHHC2, PCGF2, PEG10, 
EGR2, LMO3, EGR4, NR3C2 

62 1886 17854 1.22 1.00 0.98 99.9
5 

INTERPRO IPR013087:Zinc finger, C2H2-type/integrase, 
DNA-binding 

3 4.7
6 

0.51 EGR1, EGR2, EGR4 60 514 17763 1.73 1.00 1.00 99.9
8 

GOTERM_MF_
FAT 

GO:0008270~zinc ion binding 8 12.
70 

0.53 EGR1, ZDHHC2, PCGF2, PEG10, 
EGR2, LMO3, EGR4, NR3C2 

44 2105 13288 1.15 1.00 1.00 99.9
9 

SP_PIR_KEY
WORDS 

metal-binding 10 15.
87 

0.58 EGR1, ZDHHC2, PCGF2, PEG10, 
EGR2, LMO3, EGR4, NPTX2, NR3C2, 
KDM6B 

62 2682 17854 1.07 1.00 0.99 100.
00 

GOTERM_MF_
FAT 

GO:0046914~transition metal ion binding 9 14.
29 

0.63 EGR1, ZDHHC2, PCGF2, PEG10, 
EGR2, LMO3, EGR4, NR3C2, KDM6B 

44 2608 13288 1.04 1.00 1.00 100.
00 

INTERPRO IPR015880:Zinc finger, C2H2-like 3 4.7
6 

0.66 EGR1, EGR2, EGR4 60 676 17763 1.31 1.00 1.00 100.
00 

INTERPRO IPR007087:Zinc finger, C2H2-type 3 4.7
6 

0.67 EGR1, EGR2, EGR4 60 681 17763 1.30 1.00 1.00 100.
00 

SMART SM00355:ZnF_C2H2 3 4.7
6 

0.78 EGR1, EGR2, EGR4 39 676 9131 1.04 1.00 1.00 100.
00 

             Annotation Enrichment Score: 0.4449828443325495            
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Cluster 19 

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

SP_PIR_KEY
WORDS 

DNA binding 5 7.9
4 

0.01 EGR1, FOS, PCGF2, EGR2, ALX4 62 258 17854 5.58 0.85 0.85 13.2
1 

SP_PIR_KEY
WORDS 

dna-binding 8 12.
70 

0.20 EGR1, FOS, PCGF2, PEG10, EGR2, 
EGR4, NR3C2, ALX4 

62 1404 17854 1.64 1.00 0.95 93.3
6 

GOTERM_CC_
FAT 

GO:0044451~nucleoplasm part 3 4.7
6 

0.45 FOS, PCGF2, ALX4 38 513 12504 1.92 1.00 0.98 99.9
0 

GOTERM_CC_
FAT 

GO:0005654~nucleoplasm 3 4.7
6 

0.53 FOS, PCGF2, ALX4 38 599 12504 1.65 1.00 0.99 99.9
9 

GOTERM_CC_
FAT 

GO:0031981~nuclear lumen 3 4.7
6 

0.75 FOS, PCGF2, ALX4 38 883 12504 1.12 1.00 1.00 100.
00 

GOTERM_CC_
FAT 

GO:0070013~intracellular organelle lumen 3 4.7
6 

0.86 FOS, PCGF2, ALX4 38 1133 12504 0.87 1.00 1.00 100.
00 

GOTERM_CC_
FAT 

GO:0043233~organelle lumen 3 4.7
6 

0.86 FOS, PCGF2, ALX4 38 1136 12504 0.87 1.00 1.00 100.
00 

GOTERM_CC_
FAT 

GO:0031974~membrane-enclosed lumen 3 4.7
6 

0.87 FOS, PCGF2, ALX4 38 1174 12504 0.84 1.00 1.00 100.
00 

             Annotation 
Cluster 20 

Enrichment Score: 0.3771934009216371            

Category Term Count % PValue Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichment 

Bonfer
roni 

Benja
mini 

FDR 

GOTERM_BP_
FAT 

GO:0006811~ion transport 5 7.9
4 

0.27 SLC1A3, GRIN2B, SLC22A6, 
FKBP1B, KCNG1 

51 712 13588 1.87 1.00 0.93 99.0
1 

GOTERM_BP_
FAT 

GO:0030001~metal ion transport 3 4.7
6 

0.49 GRIN2B, FKBP1B, KCNG1 51 442 13588 1.81 1.00 0.99 100.
00 

GOTERM_BP_
FAT 

GO:0006812~cation transport 3 4.7
6 

0.57 GRIN2B, FKBP1B, KCNG1 51 515 13588 1.55 1.00 1.00 100.
00 
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Supplementary Table 6 Functional Annotation Clustering by DAVID for differentially expressed genes between J20 and Wt (10 out of 24 genes not 

included in analysis) 

Enrichment Score: 3.297362616814331            
 

Term Co
unt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt 

Bonfer
roni 

Benja
mini 

FD
R 

 

disulfide bond 12 50.
00 

0.00
003 

NOV, NTF3, SSTR1, SCN3B, NPNT, ITGA7, UNC5D, DCN, 
CORT, KIRREL2, DRD1A, TRF 

21 2379 1602
1 

3.85 0.00 0.00 0.04 
 

disulfide bond 12 50.
00 

0.00
01 

NOV, NTF3, SSTR1, SCN3B, NPNT, ITGA7, UNC5D, DCN, 
CORT, KIRREL2, DRD1A, TRF 

23 2469 1785
4 

3.77 0.00 0.00 0.06 
 

signal peptide 12 50.
00 

0.00
03 

NOV, TNXB, NTF3, SCN3B, NPNT, ITGA7, COL6A1, UNC5D, 
DCN, CORT, KIRREL2, TRF 

21 2963 1602
1 

3.09 0.03 0.01 0.31 
 

signal 12 50.
00 

0.00
03 

NOV, TNXB, NTF3, SCN3B, NPNT, ITGA7, COL6A1, UNC5D, 
DCN, CORT, KIRREL2, TRF 

23 2970 1785
4 

3.14 0.02 0.01 0.32 
 

Secreted 7 29.
17 

0.01 NOV, NTF3, NPNT, COL6A1, DCN, CORT, TRF 23 1420 1785
4 

3.83 0.36 0.09 6.22 
 

GO:0005576~extracellular region 8 33.
33 

0.02 NOV, TNXB, NTF3, NPNT, COL6A1, DCN, CORT, TRF 22 1680 1250
4 

2.71 0.60 0.17 15.0
0  

             Enrichment Score: 2.9474436079315622            
 

Term Co
unt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt 

Bonfer
roni 

Benja
mini 

FD
R 

 

disulfide bond 12 50.
00 

0.00 NOV, NTF3, SSTR1, SCN3B, NPNT, ITGA7, UNC5D, DCN, 
CORT, KIRREL2, DRD1A, TRF 

21 2379 1602
1 

3.85 0.00 0.00 0.04 
 

disulfide bond 12 50.
00 

0.00 NOV, NTF3, SSTR1, SCN3B, NPNT, ITGA7, UNC5D, DCN, 
CORT, KIRREL2, DRD1A, TRF 

23 2469 1785
4 

3.77 0.00 0.00 0.06 
 

glycosylation site:N-linked (GlcNAc...) 13 54.
17 

0.00 NOV, TMC6, NTF3, SSTR1, SCN3B, ABCA8A, ITGA7, COL6A1, 
UNC5D, DCN, KIRREL2, DRD1A, TRF 

21 3444 1602
1 

2.88 0.02 0.01 0.24 
 

glycoprotein 13 54.
17 

0.00 NOV, TMC6, NTF3, SSTR1, SCN3B, ABCA8A, ITGA7, COL6A1, 
UNC5D, DCN, KIRREL2, DRD1A, TRF 

23 3600 1785
4 

2.80 0.03 0.01 0.39 
 

transmembrane region 9 37.
50 

0.12 TMC6, GM98, SSTR1, SCN3B, ABCA8A, ITGA7, UNC5D, 
KIRREL2, DRD1A 

21 4113 1602
1 

1.67 1.00 0.97 75.3
9  

topological domain:Cytoplasmic 7 29.
17 

0.12 TMC6, SSTR1, SCN3B, ITGA7, UNC5D, KIRREL2, DRD1A 21 2780 1602
1 

1.92 1.00 0.95 76.3
6  

             Enrichment Score: 2.6262605397920833            
 

Term Co
unt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt 

Bonfer
roni 

Benja
mini 

FD
R 

 

GO:0044057~regulation of system process 5 20.
83 

0.00 GM98, NTF3, RYR1, DRD1A, TRF 18 201 1358
8 

18.78 0.04 0.04 0.13 
 

GO:0006873~cellular ion homeostasis 5 20. 0.00 GM98, NTF3, RYR1, DRD1A, TRF 18 261 1358 14.46 0.10 0.05 0.36 
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83 8 

GO:0055082~cellular chemical 
homeostasis 

5 20.
83 

0.00 GM98, NTF3, RYR1, DRD1A, TRF 18 268 1358
8 

14.08 0.11 0.04 0.40 
 

GO:0051969~regulation of transmission of 
nerve impulse 

4 16.
67 

0.00 GM98, NTF3, DRD1A, TRF 18 107 1358
8 

28.22 0.11 0.03 0.41 
 

GO:0031644~regulation of neurological 
system process 

4 16.
67 

0.00 GM98, NTF3, DRD1A, TRF 18 113 1358
8 

26.72 0.13 0.03 0.49 
 

GO:0031646~positive regulation of 
neurological system process 

3 12.
50 

0.00 GM98, DRD1A, TRF 18 24 1358
8 

94.36 0.15 0.03 0.56 
 

GO:0050801~ion homeostasis 5 20.
83 

0.00 GM98, NTF3, RYR1, DRD1A, TRF 18 293 1358
8 

12.88 0.15 0.02 0.56 
 

GO:0019725~cellular homeostasis 5 20.
83 

0.00 GM98, NTF3, RYR1, DRD1A, TRF 18 343 1358
8 

11.00 0.25 0.04 1.01 
 

GO:0048878~chemical homeostasis 5 20.
83 

0.00 GM98, NTF3, RYR1, DRD1A, TRF 18 365 1358
8 

10.34 0.31 0.04 1.28 
 

GO:0019228~regulation of action potential 
in neuron 

3 12.
50 

0.00 GM98, NTF3, DRD1A 18 45 1358
8 

50.33 0.43 0.05 1.95 
 

GO:0010001~glial cell differentiation 3 12.
50 

0.00 GM98, NTF3, DRD1A 18 48 1358
8 

47.18 0.47 0.06 2.21 
 

GO:0042063~gliogenesis 3 12.
50 

0.00 GM98, NTF3, DRD1A 18 52 1358
8 

43.55 0.53 0.06 2.59 
 

GO:0001508~regulation of action potential 3 12.
50 

0.00 GM98, NTF3, DRD1A 18 54 1358
8 

41.94 0.55 0.06 2.79 
 

GO:0032844~regulation of homeostatic 
process 

3 12.
50 

0.00 GM98, RYR1, TRF 18 60 1358
8 

37.74 0.63 0.07 3.42 
 

GO:0042592~homeostatic process 5 20.
83 

0.01 GM98, NTF3, RYR1, DRD1A, TRF 18 584 1358
8 

6.46 0.87 0.13 6.92 
 

GO:0042391~regulation of membrane 
potential 

3 12.
50 

0.01 GM98, NTF3, DRD1A 18 119 1358
8 

19.03 0.98 0.21 12.4
3  

GO:0051960~regulation of nervous system 
development 

3 12.
50 

0.01 GM98, NTF3, TRF 18 148 1358
8 

15.30 1.00 0.29 18.2
8  

GO:0051240~positive regulation of 
multicellular organismal process 

3 12.
50 

0.02 GM98, DRD1A, TRF 18 163 1358
8 

13.89 1.00 0.30 21.5
5  

GO:0019226~transmission of nerve 
impulse 

3 12.
50 

0.03 GM98, NTF3, DRD1A 18 226 1358
8 

10.02 1.00 0.43 36.2
2  

GO:0005783~endoplasmic reticulum 4 16.
67 

0.16 TMC6, NTF3, RYR1, DRD1A 22 838 1250
4 

2.71 1.00 0.71 82.7
3  

GO:0050877~neurological system process 3 12.
50 

0.64 GM98, NTF3, DRD1A 18 1681 1358
8 

1.35 1.00 1.00 100.
00  

             Enrichment Score: 2.011038625171804            
 

Term Co
unt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt 

Bonfer
roni 

Benja
mini 

FD
R 
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mmu04512:ECM-receptor interaction 4 16.
67 

0.00 TNXB, NPNT, ITGA7, COL6A1 14 83 5738 19.75 0.01 0.01 0.54 
 

GO:0005578~proteinaceous extracellular 
matrix 

5 20.
83 

0.00 TNXB, NPNT, COL6A1, DCN, TRF 22 297 1250
4 

9.57 0.07 0.07 1.33 
 

GO:0031012~extracellular matrix 5 20.
83 

0.00 TNXB, NPNT, COL6A1, DCN, TRF 22 309 1250
4 

9.20 0.08 0.04 1.54 
 

extracellular matrix 4 16.
67 

0.00 TNXB, NPNT, COL6A1, DCN 23 213 1785
4 

14.58 0.15 0.04 2.25 
 

Secreted 7 29.
17 

0.01 NOV, NTF3, NPNT, COL6A1, DCN, CORT, TRF 23 1420 1785
4 

3.83 0.36 0.09 6.22 
 

GO:0044420~extracellular matrix part 3 12.
50 

0.01 TNXB, NPNT, TRF 22 92 1250
4 

18.53 0.44 0.18 9.69 
 

GO:0005576~extracellular region 8 33.
33 

0.02 NOV, TNXB, NTF3, NPNT, COL6A1, DCN, CORT, TRF 22 1680 1250
4 

2.71 0.60 0.17 15.0
0  

GO:0007155~cell adhesion 4 16.
67 

0.03 TNXB, NPNT, ITGA7, COL6A1 18 561 1358
8 

5.38 1.00 0.45 35.4
1  

GO:0022610~biological adhesion 4 16.
67 

0.03 TNXB, NPNT, ITGA7, COL6A1 18 562 1358
8 

5.37 1.00 0.43 35.5
4  

GO:0044421~extracellular region part 5 20.
83 

0.04 TNXB, NPNT, COL6A1, DCN, TRF 22 774 1250
4 

3.67 0.88 0.30 31.4
6  

mmu04510:Focal adhesion 3 12.
50 

0.07 TNXB, ITGA7, COL6A1 14 198 5738 6.21 0.72 0.47 41.7
8  

cell adhesion 3 12.
50 

0.08 NPNT, ITGA7, COL6A1 23 380 1785
4 

6.13 1.00 0.57 57.5
0  

             Enrichment Score: 1.1988372775752527            
 

Term Co
unt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt 

Bonfer
roni 

Benja
mini 

FD
R 

 

GO:0030001~metal ion transport 4 16.
67 

0.02 SCN3B, RYR1, ABCC8, TRF 18 442 1358
8 

6.83 1.00 0.31 20.7
4  

GO:0006812~cation transport 4 16.
67 

0.02 SCN3B, RYR1, ABCC8, TRF 18 515 1358
8 

5.86 1.00 0.39 29.4
7  

GO:0006811~ion transport 4 16.
67 

0.06 SCN3B, RYR1, ABCC8, TRF 18 712 1358
8 

4.24 1.00 0.61 55.3
6  

GO:0046873~metal ion transmembrane 
transporter activity 

3 12.
50 

0.06 SCN3B, RYR1, TRF 20 290 1328
8 

6.87 1.00 0.96 51.5
1  

ion transport 3 12.
50 

0.14 SCN3B, RYR1, TRF 23 543 1785
4 

4.29 1.00 0.71 80.0
0  

transport 4 16.
67 

0.30 SCN3B, ABCA8A, RYR1, TRF 23 1571 1785
4 

1.98 1.00 0.83 97.7
3  

             Enrichment Score: 0.9065794834487225            
 

Term Co % PVal Genes List Pop Pop Fold Bonfer Benja FD
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unt ue Total Hits Total Enrichme
nt 

roni mini R 

GO:0000267~cell fraction 4 16.
67 

0.08 SSTR1, RYR1, RASD1, DRD1A 22 596 1250
4 

3.81 0.99 0.47 54.0
5  

cell membrane 5 20.
83 

0.15 SSTR1, ABCA8A, KIRREL2, RASD1, DRD1A 23 1713 1785
4 

2.27 1.00 0.70 82.5
4  

lipoprotein 3 12.
50 

0.16 SSTR1, RASD1, DRD1A 23 589 1785
4 

3.95 1.00 0.69 84.3
2  

             Enrichment Score: 0.8003627619833209            
 

Term Co
unt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt 

Bonfer
roni 

Benja
mini 

FD
R 

 

GO:0000267~cell fraction 4 16.
67 

0.08 SSTR1, RYR1, RASD1, DRD1A 22 596 1250
4 

3.81 0.99 0.47 54.0
5  

receptor 6 25.
00 

0.18 SSTR1, ITGA7, RYR1, UNC5D, DRD1A, ABCC8 23 2465 1785
4 

1.89 1.00 0.66 87.0
0  

GO:0005624~membrane fraction 3 12.
50 

0.21 SSTR1, RYR1, DRD1A 22 510 1250
4 

3.34 1.00 0.77 90.3
0  

GO:0005626~insoluble fraction 3 12.
50 

0.22 SSTR1, RYR1, DRD1A 22 528 1250
4 

3.23 1.00 0.75 91.5
8  

             Enrichment Score: 0.6711992262673527            
 

Term Co
unt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt 

Bonfer
roni 

Benja
mini 

FD
R 

 

Immunoglobulin domain 3 12.
50 

0.10 SCN3B, UNC5D, KIRREL2 23 443 1785
4 

5.26 1.00 0.62 67.5
5  

transmembrane region 9 37.
50 

0.12 TMC6, GM98, SSTR1, SCN3B, ABCA8A, ITGA7, UNC5D, 
KIRREL2, DRD1A 

21 4113 1602
1 

1.67 1.00 0.97 75.3
9  

topological domain:Cytoplasmic 7 29.
17 

0.12 TMC6, SSTR1, SCN3B, ITGA7, UNC5D, KIRREL2, DRD1A 21 2780 1602
1 

1.92 1.00 0.95 76.3
6  

topological domain:Extracellular 6 25.
00 

0.12 SSTR1, SCN3B, ITGA7, UNC5D, KIRREL2, DRD1A 21 2174 1602
1 

2.11 1.00 0.93 78.1
2  

transmembrane 10 41.
67 

0.17 TMC6, GM98, SSTR1, SCN3B, ABCA8A, ITGA7, RYR1, UNC5D, 
KIRREL2, DRD1A 

23 5237 1785
4 

1.48 1.00 0.67 85.2
3  

IPR007110:Immunoglobulin-like 3 12.
50 

0.17 SCN3B, UNC5D, KIRREL2 23 604 1776
3 

3.84 1.00 1.00 87.0
6  

receptor 6 25.
00 

0.18 SSTR1, ITGA7, RYR1, UNC5D, DRD1A, ABCC8 23 2465 1785
4 

1.89 1.00 0.66 87.0
0  

IPR013783:Immunoglobulin-like fold 3 12.
50 

0.19 SCN3B, UNC5D, KIRREL2 23 644 1776
3 

3.60 1.00 1.00 89.8
0  

membrane 10 41.
67 

0.21 TMC6, GM98, SSTR1, SCN3B, ABCA8A, ITGA7, UNC5D, 
KIRREL2, RASD1, DRD1A 

23 5507 1785
4 

1.41 1.00 0.70 91.5
3  
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GO:0016021~integral to membrane 11 45.
83 

0.51 TMC6, GM98, SSTR1, SCN3B, ABCA8A, ITGA7, RYR1, UNC5D, 
KIRREL2, DRD1A, ABCC8 

22 5709 1250
4 

1.10 1.00 0.97 99.9
2  

GO:0031224~intrinsic to membrane 11 45.
83 

0.57 TMC6, GM98, SSTR1, SCN3B, ABCA8A, ITGA7, RYR1, UNC5D, 
KIRREL2, DRD1A, ABCC8 

22 5914 1250
4 

1.06 1.00 0.97 99.9
8  

GO:0007166~cell surface receptor linked 
signal transduction 

3 12.
50 

0.85 SSTR1, ITGA7, DRD1A 18 2495 1358
8 

0.91 1.00 1.00 100.
00  

             Enrichment Score: 0.44011598056537116            
 

Term Co
unt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt 

Bonfer
roni 

Benja
mini 

FD
R 

 

GO:0046873~metal ion transmembrane 
transporter activity 

3 12.
50 

0.06 SCN3B, RYR1, TRF 20 290 1328
8 

6.87 1.00 0.96 51.5
1  

ion transport 3 12.
50 

0.14 SCN3B, RYR1, TRF 23 543 1785
4 

4.29 1.00 0.71 80.0
0  

GO:0005509~calcium ion binding 3 12.
50 

0.34 NPNT, ITGA7, RYR1 20 840 1328
8 

2.37 1.00 1.00 98.9
7  

GO:0046872~metal ion binding 7 29.
17 

0.49 PRDM8, TDO2, SCN3B, NPNT, ITGA7, RYR1, TRF 20 3850 1328
8 

1.21 1.00 1.00 99.9
4  

GO:0043169~cation binding 7 29.
17 

0.50 PRDM8, TDO2, SCN3B, NPNT, ITGA7, RYR1, TRF 20 3885 1328
8 

1.20 1.00 1.00 99.9
5  

GO:0043167~ion binding 7 29.
17 

0.51 PRDM8, TDO2, SCN3B, NPNT, ITGA7, RYR1, TRF 20 3934 1328
8 

1.18 1.00 1.00 99.9
6  

metal-binding 3 12.
50 

0.86 PRDM8, TDO2, TRF 23 2682 1785
4 

0.87 1.00 1.00 100.
00  

GO:0046914~transition metal ion binding 3 12.
50 

0.91 PRDM8, TDO2, TRF 20 2608 1328
8 

0.76 1.00 1.00 100.
00  

             Enrichment Score: 0.13068431417330523            
 

Term Co
unt 

% PVal
ue 

Genes List 
Total 

Pop 
Hits 

Pop 
Total 

Fold 
Enrichme
nt 

Bonfer
roni 

Benja
mini 

FD
R 

 

nucleotide-binding 3 12.
50 

0.61 ABCA8A, RASD1, ABCC8 23 1631 1785
4 

1.43 1.00 0.99 99.9
9  

GO:0032553~ribonucleotide binding 3 12.
50 

0.75 ABCA8A, RASD1, ABCC8 20 1796 1328
8 

1.11 1.00 1.00 100.
00  

GO:0032555~purine ribonucleotide binding 3 12.
50 

0.75 ABCA8A, RASD1, ABCC8 20 1796 1328
8 

1.11 1.00 1.00 100.
00  

GO:0017076~purine nucleotide binding 3 12.
50 

0.77 ABCA8A, RASD1, ABCC8 20 1871 1328
8 

1.07 1.00 1.00 100.
00  

GO:0000166~nucleotide binding 3 12.
50 

0.84 ABCA8A, RASD1, ABCC8 20 2183 1328
8 

0.91 1.00 1.00 100.
00  
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Down syndrome (DS) is a common genetic condition caused by the presence of three
copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer
disease (AD), but although virtually all people with DS have AD neuropathology by 40
years of age, not all develop dementia. To dissect the genetic contribution of trisomy
21 to DS phenotypes including those relevant to AD, a range of DS mouse models
has been generated which are trisomic for chromosome segments syntenic to human
chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and
our current state of knowledge on related phenotypes in AD and DS mouse models. We
go on to review important features needed in future models of AD-DS, to understand this
type of dementia and so highlight pathogenic mechanisms relevant to all populations at
risk of AD.

Keywords: Alzheimer disease, APP, Down syndrome, mouse models, trisomy 21

Introduction: AD-DS, the Most Common Genetic Form of AD

Down syndrome (DS) is a complex, heterogeneous disorder caused by the presence of an extra copy
of human chromosome 21. Trisomy 21 is a common condition, with an incidence of 1 in 750 live
births (Parker et al., 2010). Prevalence in many countries is growing due to increasing maternal age,
the greatest risk factor for DS (Loane et al., 2013), together with rises in DS life expectancy (Yang
et al., 2002; Bittles and Glasson, 2004). In Northern Europe, for example, the number of people aged
over 40 years with DS is approximately double what it was in 1990, and in the UK this age group
accounts for a third of the estimated 40,000 people with DS (Wu and Morris, 2013).

The clinical presentation of DS varies extensively and includes features present in all individuals,
such as cognitive deficits, and those seen in only some people, such as heart defects (Zigman, 2013;
Jensen and Bulova, 2014). Alzheimer disease (AD) pathology is found in the brains of virtually all
people with DS by 40 years of age (Wisniewski et al., 1985; Mann and Esiri, 1989), and trisomy 21
causes an increased risk of dementia such that approximately one third of the DS population has
AD (“AD-DS”) by the age of 60, with an estimated lifetime prevalence of 90% for all people with DS
(Prasher and Krishnan, 1993; Holland et al., 1998; Coppus et al., 2006; Margallo-Lana et al., 2007;
McCarron et al., 2014). However, while AD-DS is one of the largest contributors to morbidity and
mortality in DS (Coppus et al., 2008), not all individuals develop dementia, even by 70 years of age
(Krinsky-McHale et al., 2008; Ghezzo et al., 2014). Thus, the DS population has the most common
genetic form of early-onset AD, caused by trisomy 21. Studying AD-DS allows investigation of the
initial pathogenic events leading to AD and the development of dementia, relevant to both people
with DS and to the general population.

One approach to dissecting human disease is through studying mouse models, and a
large number of transgenic strains have been generated to understand specific aspects of AD
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pathology, most of which have human gene mutations that give
rise to rare early-onset familial Alzheimer disease (FAD; Braidy
et al., 2012;Webster et al., 2014). In the last decade, chromosome
engineering techniques have enabled the generation of an array
of DS mouse models that will allow us to dissect the genetic
contribution of chromosome 21 (Hsa21), or regions of the
mouse genome syntenic to Hsa21, to DS phenotypes. These
models recapitulate a wide range of DS features, including
neurobiological, behavioral and aging-related aspects (Zhang
et al., 2012b; Ruparelia et al., 2013). Thus, in the study of AD-DS,
mouse models of DS offer an increasingly important approach
to understanding pathogenic mechanisms, so informing us about
pathways and networks relevant to all populations at risk of
dementia.

Here, we present an overview of clinical features of AD-DS,
compared to other genetic forms of AD, to highlight human
phenotypes that may be assessed in mechanistic studies of mouse
models. We then give examples of data from DS mouse models
compared to transgenic mice modeling aspects of AD pathology,
to illustrate informative findings from both types of model. We
also offer examples of potentially helpful data for investigating
AD-DS from the outcomes of overexpressing single genes from
Hsa21. Finally, we consider the important features for mouse
models to enhance our understanding of AD-DS, and therefore
the pathogenetic mechanisms relevant to all AD. For brevity,
citations may not necessarily be the original papers, but useful
reviews or later references.

Genetic Forms of AD, Including AD-DS

The APP gene lies on Hsa21 and encodes the amyloid precursor
protein that is at the heart of the amyloid cascade hypothesis of
Alzheimer disease (Glenner andWong, 1984; Hardy andHiggins,
1992; Hardy and Selkoe, 2002). This hypothesis was generated
partly from the observation that extracellular plaques in brains of
people with AD are composed of Aβ peptides that are products
of APP metabolism. The hypothesis suggests that abnormal APP
metabolism initiates AD pathogenesis by triggering a set of events
that result in Aβ aggregation, particularly of the Aβ42 peptide,
in these extracellular plaques. This leads to the formation of
intracellular neurofibrillary tangles, primarily composed of the
protein tau, and eventually loss of synapses and neurons. The
relationship between the histopathological features of AD and
dementia is not yet clear (Castellani and Perry, 2014).

The amyloid cascade hypothesis is currently the most widely-
accepted paradigm guiding investigations of AD pathogenesis,
and is supported at least in part by the rare cases of FAD caused
by different mutations in APP, and in the presenilin genes PSEN1
and PSEN2 that affect APP processing. APP mutations may, for
example, result in an increase in total Aβ production, or a relative
increase in Aβ species associated with pathogenicity (Ryan and
Rossor, 2010).

Importantly for understanding AD-DS, the link between APP
and AD also extends to gene dose: in rare forms of FAD,
duplication of the wildtype APP locus alone (“Dup-APP”) is
sufficient to cause highly penetrant early-onset AD (Rovelet-
Lecrux et al., 2006; Sleegers et al., 2006). Dup-APP cases

demonstrate that the three doses of APP arising from trisomy 21
are likely to be causative for AD-DS. Conversely, although very
rare, partial trisomy 21 excluding APP (i.e., with two “doses” of
APP) does not appear to lead to AD (Prasher et al., 1998; Korbel
et al., 2009).

While people with DS and Dup-APP are at high risk of
dementia, presumably in both cases because of APP triplication,
there are some intriguing differences in their AD-related clinical
features (Wiseman et al., 2015). Examining the effects of
different APP genotypes may therefore provide insights into the
modulation of APP pathogenesis. Table 1 shows key examples of
phenotypes in AD-DS and how these compare with Dup-APP,
FAD due to other APP mutations (primarily point mutations)
and late-onset sporadic AD (SAD). Mutations in PSEN1 and
PSEN2, which do not map to Hsa21, are not included.

However, a difficulty in analysing phenotypes is the
considerable heterogeneity in clinical presentation within
each APP genotype, even within families with the same
mutation. For example, there is a wide variety of non-cognitive
symptoms and behavioral changes across all four AD genotypes,
including personality changes (Nelson et al., 2001; Ball et al.,
2008), hallucinations (Sleegers et al., 2006; Basun et al., 2008;
Guyant-Marechal et al., 2008), paranoia (Sleegers et al., 2006;
Pilotto et al., 2013), and delusions (Burns et al., 1990), some
of which are associated with cognitive decline (Adams and
Oliver, 2010). Another important issue in diagnosing AD
in AD-DS is that dementia is an additional cognitive deficit
acquired on top of the baseline cognitive impairment found
in people with DS: distinguishing between cognitive deficits
due to intellectual disability, and decline at early stages of
AD, is therefore an important challenge. However, diagnosis
of dementia by experienced clinicians has been shown to be
accurate in DS, and even more reliable than recent operational
dementia criteria (Sheehan et al., 2015). Further, a few clinical
features stand out in AD-DS—a striking example, albeit one
of unknown relevance to AD, is seizure susceptibility in
adulthood, which appears heightened by APP duplication, as
both AD-DS (84%) and Dup-APP (57%) have significantly
higher rates of seizures than SAD (10–20%). This may indicate
specific pathways that are progressively disrupted by APP
duplication, resulting in damaging electrical activity in the
brain.

Dup-APP and FAD caused by APP mutations are relatively
rare, and much information about these conditions remains to
be gathered, for example, on synaptic dysfunction, oxidative
stress and neuroinflammation. In contrast, AD-DS arises in
a population with a well-defined genetic basis and a sizeable
prevalence, which means it is of great value for investigating AD
pathogenesis for everyone at risk of dementia.

Modeling DS, Including AD-DS, in Mice

Human chromosome 21 has synteny with the mouse genome,
such that its ortholog genes are found in three blocks with
conserved order and gene orientation on mouse chromosomes
10 (Mmu10), Mmu16, and Mmu17 (Hattori et al., 2000; Dierssen
et al., 2009); the mouse App gene lies on Mmu16 (Figure 1).
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Mice with precisely-defined trisomies (or monosomies) have
been generated, now usually by chromosome engineering (Brault
et al., 2006; Tybulewicz and Fisher, 2006), to provide a set of
models that are segmentally trisomic for regions orthologous to
Hsa21 (Davisson et al., 1993; Sago et al., 1998; Olson et al., 2004;
Li et al., 2007; Herault et al., 2009; Pereira et al., 2009; Yu et al.,
2010a; Liu et al., 2011, 2014; Brault et al., 2015).

Generating many models with different partial trisomies
creates a mapping panel in which individual phenotypes may be
assessed in several strains, and so assigned to specific trisomic
chromosomal region(s). As all DS phenotypes presumably arise
from abnormal gene dosage, candidate genes that when present
in three copies give rise to all or part of the phenotype, can be
chosen from the trisomic critical region. Individual candidate
genes can then be studied, for example, in overexpression or
knockout models, to assess the effects of different copy numbers
of the gene. Figure 1 is an overview of DS mouse models and
the chromosomal segments for which they are trisomic. Table 2
details the gene content for each DS mouse model shown,
including protein-coding and non-protein-coding genes relevant
to human trisomy 21.

The most complete mouse model to date,
Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+, is trisomic for
all Hsa21 syntenic regions and was generated by crossing three
DS mouse models, each carrying duplications of the respective
Hsa21 orthologous regions on Mmu10, Mmu16 and Mmu17
(Li et al., 2007; Yu et al., 2010a,b; Figure 1). However, the vast
majority of studies relating to AD-DS have been performed on
the Ts65Dn mouse, as this has been an extremely important
“standard model” of DS for many years, prior to the development
of newer strains by chromosome engineering (Davisson et al.,
1993; Reeves et al., 1995; Table 2). The Ts65Dn mouse carries
a Robertsonian translocation resulting in trisomy of ∼42% of
the protein-coding genes orthologous to Hsa21, but it also has
79 additional genes (including long non-coding sequences)
from Mmu17 that are outside the Hsa21 region of synteny, and
these need to be taken into account when analysing phenotypes
(Duchon et al., 2011; Reinholdt et al., 2011). These extra
triplicated genes that do not relate to DS happen to include non-
Hsa21 genes, such as SYNJ2 and TIAM2 that have Hsa21/Mmu16
paralogues (SYNJ1, TIAM1), which may complicate phenotype-
genotype correlations (Duchon et al., 2011). Other triplicated
genes in Ts65Dn irrelevant to DS include several genes encoding
dynein light chains that may influence endosomal trafficking,
and so potentially affect neuronal phenotypes (Hartley et al.,
2015).

A different type of mouse model of DS is the “humanized”
transchromosomic “Tc1” mouse that carries a freely-segregating
Hsa21 (O’Doherty et al., 2005), which is functionally trisomic
for ∼75% of Hsa21 protein-coding genes (Gribble et al.,
2013). However, this extra chromosome is rearranged, and lost
stochastically at different rates in different mouse tissues—thus,
Tc1 mice are mosaic for the human chromosome. With respect
to AD research, the APP gene is not functionally trisomic in Tc1
mice because of a rearrangement that has occurred by chance, so
this animal expresses just the two endogenous copies of mouse
App (Sheppard et al., 2012).
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FIGURE 1 | Human chromosome 21 (Hsa21), orthologous mouse chromosomes (Mmu), and key mouse models of Down syndrome. Diagram
representing Hsa21 and its alignment with syntenic regions on Mmus 16, 17, and 10. The orange circle represents the human centromere and mouse models are
color-coded and aligned according to the chromosomal segment for which they are trisomic. Numbers in brackets represent the number of protein-coding Hsa21
orthologous genes within each region or mouse model, according to Ensembl release 79 and the breakpoints published in papers referenced here. The Tc1 mouse is
the only model which carries Hsa21, though genomic rearrangements and deletions (indicated by breaks in the chromosome) mean the mouse is functionally trisomic
for only ∼75% of Hsa21 genes (Gribble et al., 2013). All other mouse models carry duplications of mouse orthologues. The Dp1(16)Yey;Dp1(17)Yey;Dp1(10)Yey (or
Ts1Yey;Ts3Yey;Ts2Yey) mouse was generated by crossing together three partial trisomy models (Yu et al., 2010a) and spans the entirety of the Hsa21-syntenic
regions. The Ts65Dn mouse (Davisson et al., 1993) contains a freely segregating segment of Mmu16, however it is also trisomic for 43 extra protein-coding genes on
the centromeric section of Mmu17 that are not relevant to DS (indicated by an asterisk (*) and accompanying text box; Duchon et al., 2011; Reinholdt et al., 2011).
The Ts1Cje mouse (Sago et al., 1998) also contains a monosomy of eight protein-coding genes on Mmu12, irrelevant to the DS phenotype (indicated by “#” and
accompanying text box. Gene numbers are based on Ensembl release 79, compared to the original seven monosomic genes detailed in Duchon et al., 2011). Other
mice are Ts1Rhr or Dp1(16)Rhr mice (Olson et al., 2004); Ts1Yah mice (Pereira et al., 2009); Ts3Yah (previously published as Ts2Yah; Brault et al., 2015); and Ts4Yah
mice (previously published as Ts3Yah mice; Herault et al., 2009). Other useful examples of mouse models include the Ts43H model (not shown) which is partially
trisomic for Mmu17 including some genes with ortholog on Hsa21 (Vacík et al., 2005). The scale is in megabase pairs (Mb).

While many DS mouse models have been published,
there is no single complete model, and the usefulness of
these strains lies in their comparative and complementary
use in studying genotype-phenotype relationships, including
AD-related phenotypes (Table 3). These studies enable us
to map critical dosage-sensitive genes because each locus
is likely expressed at trisomic levels, mimicking human DS
transcription. We can also study the interactions of Hsa21
dosage-sensitive genes with the rest of the genome (Hsa21
and non-Hsa21), as well as effects exerted by aneuploidy
per se.

Modeling Amyloid Deposition in Mice

In contrast to the segmental duplication of tens of endogenous
wildtype genes in DS mouse strains, AD models are primarily

transgenic lines that overexpress one or more of the human
mutant genes that cause FAD. These transgenes usually
insert at random sites in the genome and may be driven
by artificial promoters (see examples in Table 4), which
vary in terms of their spatial and temporal expression
patterns, and result in expression at often 5–10 fold
compared to endogenous mouse orthologue (Balducci and
Forloni, 2011; Hall and Roberson, 2012). Overexpressing
wildtype human APP or mouse App does not result in
amyloid deposition (Elder et al., 2010); hence the need to
use known AD-causative mutant sequences in transgenic
mice.

In general, while mutant APP transgenic mice develop robust
amyloid deposition, synaptotoxic features and memory
impairments, none of them reproduces tau-containing
neurofibrillary tangles, the hallmark pathology of ADwhichmost
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TABLE 4 | Human APP overexpressing transgenic mice referred to in this review (information obtained from Alzforum.org).

Mouse Mutation Promoter Genetic Background References

APP22 APP751 KM670/671NL (Swedish),
V717I (London)

Human THY1 C57BL/6 Sturchler-Pierrat et al., 1997

APP23 APP751 KM670/671NL (Swedish) Mouse Thy1 C57BL/6 Sturchler-Pierrat et al., 1997

APP(V717I) APP695V717I (London) Mouse Thy1 Originally generated on FVB/N background;
available at reMYND as C57BL/6xFVB/N

Moechars et al., 1999

Tg2576 APP695 KM670/671NL (Swedish) Hamster prion protein C57BL/6;SJL mixed background Hsiao et al., 1996

TgCRND8 APP KM670/671NL (Swedish),
V717F (Indiana)

Hamster prion protein C3H/He-C57BL/6 mixed background Chishti et al., 2001

PDAPP APP V717F (Indiana) Human PDGF C57BL/6 x DBA2 Games et al., 1995

closely correlates with dementia (Hall and Roberson, 2012). The
combined overexpression of mutant APP and mutant human
tau is required to reproduce both amyloid and tau pathology,
although these tau mutations in humans do not alone cause
AD but another form of neurodegeneration, frontotemporal
dementia. Mutant APP transgenics may be best considered
models of APP/Aβ pathology (amyloid deposition) rather than
full AD.

Studying AD-DS Phenotypes in Mice

In Table 3, we summarize examples of findings that may be
informative for AD-DS from different DS (mainly Ts65Dn) mice
and examples of AD models (Table 4). With respect to AD, a
wide range of mutant APP transgenic strains are available in
the literature, so we have chosen a few well-known examples
[APP22, APP23, APP (V717I), PDAPP, Tg2576, TgCRND8] to
illustrate some potential phenotypes of interest. We note that
the expression of wildtype mouse APP, and wildtype or mutant
human APP protein in these different models can influence
amyloid pathology (Kokjohn and Roher, 2009). For example,
because of amino acid differences between the two species, mouse
APP may be processed with little BACE1 cleavage and so may
yield three times less Aβ than wildtype human APP (De Strooper
et al., 1995). In addition, the genetic background of AD mouse
strains affects a range of APP/Aβ phenotypes, including plaque
deposition, APP metabolism, survival, and seizure rates (Carlson
et al., 1997; Lehman et al., 2003; Krezowski et al., 2004; Lassalle
et al., 2008; Rustay et al., 2010; Jackson et al., 2015). Similarly,
phenotypes observed in DS mice may be influenced by genetic
background (O’Doherty et al., 2005; Galante et al., 2009; Costa
et al., 2010; Deitz and Roper, 2011; Haydar and Reeves, 2012).
We consider only APP transgenic models of AD, as the other
genes used in such models (PSEN1, PSEN2, and MAPT) are not
encoded on Hsa21, and therefore are not directly relevant to
AD-DS.

In studying mouse phenotypes to understand AD-DS, we
are presented with two key issues. Firstly, we need to test
longitudinally DS models to look for changes in older mice
that are not apparent early on, and so may indicate aging or
neurodegenerative processes rather than neurodevelopmental

deficits. Secondly, we need to separate normal aging processes in
DS from those connected specifically to AD-DS. The thoughtful
use of the increasing range of different mouse models is enabling
us to dissect these issues to further our understanding of AD-
DS.

A study that has addressed both (1) neurodegenerative vs.
neurodevelopmental and (2) normal aging vs. AD phenotypes
has been performed in the Ts65Dn mouse. This study concerned
the neurodegenerative phenotype loss of basal forebrain
cholinergic neurons (BFCNs), and was carried out through
an experimental design involving optimal crossing of different
mouse models and assessment of the genetically-distinct progeny
(Salehi et al., 2006). Firstly, Salehi and colleagues quantified the
known loss of BFCNs in Ts65Dn mice, and showed this loss to
be progressive, thus an aging or an AD-related phenotype in
this DS mouse model. The authors then compared BFCN loss
in Ts65Dn and Ts1Cje DS mouse models (Figure 1), and were
able to map a dosage-sensitive critical region that had to contain
a candidate gene for this phenotype: Ts65Dn mice lose BFCNs
but Ts1Cje mice turned out to have no loss compared to wildtype
mice. Therefore, the dosage-sensitive gene(s), that when present
in three copies is responsible for BFCN loss, must map within
the region of trisomy present in Ts65Dn but not in Ts1Cje. A key
candidate in this region was the App gene. By crossing Ts65Dn
mice to heterozygous App knockout mice, the authors generated
cohorts of progeny that carried the trisomic region with either
two or three copies of wildtype App. Assessing BFCN loss in
these cohorts led to the conclusion that the phenotype arises
mainly from having three copies of App and, further, that it is
associated with impairments in nerve growth factor retrograde
transport, linked to early endosomes, which are enlarged (Salehi
et al., 2006).

Given the role of APP triplication in this phenotype, there
is likely a strong link to AD and AD-DS. In people with early
AD pathology or mild cognitive impairment, neurofibrillary
pathology has been detected in BFCNs (Mesulam et al., 2004;
Grudzien et al., 2007), while their loss has been observed
in patients with SAD (and other neurodegenerative disorders;
Zarow et al., 2003). Interestingly, enlarged early endosomes
have been detected in cortical tissues from cognitively intact
individuals with mild AD pathology, and in young individuals
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with DS (under 12 years old), suggesting that endosome
enlargement is an early feature in ADpathogenesis (Cataldo et al.,
2000).

DS Models in the Study of Candidate
Genes Influencing AD

As illustrated in Table 1, while people with DS have three
copies of APP and develop early AD neuropathology, their
clinical presentation is variable, suggesting that other genetic
and environmental factors influence pathogenesis. In addition to
APP, many genes on Hsa21 have been studied in the context of
neurodegeneration and/or AD, and it is conceivable that a three-
copy dose of any of these genes could contribute to disease and
dysfunction.

Single gene overexpressing transgenics do not model DS, or
AD-DS, but may provide some insights if carefully considered.
For example, seizures and neuronal network abnormalities
remain challenging areas to investigate but important phenotypes
to be explored in DS, AD-DS, and APP overexpression models
of AD (i.e., which are single gene transgenic models). In SAD,
seizures have been associated with early cognitive decline (Vossel
et al., 2013), while the incidence of seizures in AD-DS is
high and is associated with increased risk of dementia (for
example, McCarron et al., 2014). To date, seizure phenotypes and
epileptiform activity have been characterized across numerous
APP transgenic mice (Born, 2015), but it is unclear whether these
phenotypes are primarily driven by amyloid overproduction
(Mucke and Selkoe, 2012) or are an effect of unphysiological
APP overexpression during development (Born et al., 2014).
Antiepileptic drugs, such as levetiracetam, which improve
seizures in DS (Sangani et al., 2010) and in AD (Cumbo and
Ligori, 2010), also ameliorate synaptic and memory dysfunctions
in APP transgenic mice by suppressing neuronal network
dysfunction (Sanchez et al., 2012; Devi and Ohno, 2013).

So, while single gene transgenic models do not model human
trisomy 21 or AD because they usually express the gene by
many-fold, from ectopic promoters, they offer insights into
some of the functional consequences of overexpression, albeit
at non-trisomic levels. Table 5 presents a list of Hsa21 gene
candidates, in chromosomal order, that have been investigated
for overexpression-related phenotypes linked with AD across
different mouse, fruitfly, and cellular models. We also compare,
where data are available, how related changes in these genes have
been explored in humans with AD and/or DS. Making optimal
use of mouse genetics, some of the single-gene-overexpressing
mouse transgenics have been crossed with AD models, to
look for changes in phenotypes that may be informative. For
example, crossing an S100β overexpression model with the
Tg2576 APP transgenic mouse generates double mutant progeny
with exacerbated cerebral amyloidosis and reactive gliosis. This
suggests that increased expression of S100β could contribute
to AD pathogenesis possibly by promoting amyloidogenic APP
processing (Mori et al., 2010).

Other key Hsa21 gene candidates DYRK1A and RCAN1
have been linked to AD pathogenesis through their effects on

tau. The toxic neurofibrillary tangles (NFTs) that accumulate
in AD are formed of hyperphosphorylated tau protein.
Overexpression of DYRK1A in transgenic mice resulted in tau
hyperphosphorylation (Ryoo et al., 2007, 2008), and DYRK1A
has been shown to co-localize with NFTs more frequently in
AD-DS brain compared to SAD (Wegiel et al., 2008). Similarly,
overexpression of RCAN1 in amousemodel resulted in abnormal
tau hyperphosphorylation (Wegiel et al., 2011). This suggests
that the increased expression of DYRK1A and RCAN1 in DS
could promote the formation of NFTs, a hallmark feature of AD
pathology.

Triplication of Hsa21 genes in DS does not necessarily lead
to a 1.5-fold increase (compared to euploid individuals) in their
RNA or protein expression. For example, a study in DS fetal
cortical tissue revealed multiple Hsa21 proteins in fact expressed
at similar or lower levels than in disomic controls (Cheon
et al., 2003a,b,c,d). Assessments at transcriptomic and proteomic
levels, together with meta-analysis across these studies, provide
useful resources for understanding patterns of alteration in gene
expression (for example, see Vilardell et al., 2011). As a few of the
studies in Table 5 have demonstrated, it is important to verify the
effect of trisomy on candidate gene expression, in relevant tissues
and contexts, before further characterization of any potential
downstream effects of trisomy.

Prospects for Research

Individuals with DS manifest the most common genetic form
of AD, and this undoubtedly largely arises from expressing
three copies of APP (Ness et al., 2012; Hartley et al., 2015).
Therefore, studying and modeling this population will assist in
understanding the contribution of APP to AD pathogenesis,
and evaluating the amyloid cascade hypothesis. However, the
variation in clinical presentation of AD-DS shows that many
other genetic and environmental factors contribute, almost
certainly including protective factors. The thoughtful use of
models will thus provide insight into these factors.

To study mouse models of AD-DS, it is critical to dissect
neurodevelopmental from neurodegenerative effects (Bothwell
and Giniger, 2000; Contestabile et al., 2010). To be of interest
for AD-DS, such phenotypes should differ from normal aging
in the mouse strain of interest, although this can be difficult
to determine, particularly as DS has been characterized as a
syndrome of accelerated aging in both clinical (Lott, 2012;
Zigman, 2013) and epigenetic terms (Horvath et al., 2015),
and because aging remains the clearest non-genetic risk factor
for all forms of AD (Fratiglioni, 1996; Bush and Beail, 2004).
The longitudinal study of cognitive decline in DS mice poses
similar challenges to those in people with DS, and tests
need to distinguish between dysfunction due to dementia, as
opposed to aging or baseline learning deficits. For example,
variations of a learning procedure involving incremental
repeated acquisition tasks suggest that declining performances
by Ts65Dn mice with age may be due to motor impairments
and/or decreased motivation, rather than neurodegenerative-
related effects (Sanders et al., 2009). To improve behavioral
testing in mouse models of AD-DS, a potential avenue to explore
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TABLE 5 | Single gene overexpression models from Hsa21, with relevance to AD phenotypes. Genes are listed in order from centromere to Hsa21q
telomere.

Hsa21 gene Phenotypes studied in models Phenotypes studied in humans

APP Please refer to Table 3. Please refer to Table 1

SOD1 SOD1 overexpression protects against APP-induced lethality in transgenic
mice (Carlson et al., 1997)

SOD1 activity positively correlates with levels of memory functioning in DS
adults (Zis et al., 2012)

ITSN1 Overexpression of ITSN1 homolog nla in combination with SYNJ1 and
RCAN1 homologs causes impaired vesicle recycling in Drosophila (Chang
and Min, 2009)

ITSN1 protein (Hunter et al., 2011) and mRNA (Pucharcos et al., 1999)
elevated in DS
ITSN1 highly expressed in AD brain (Blalock et al., 2004; Wilmot et al., 2008)

SYNJ1 Mice overexpressing SYNJ1 have deficits in synaptic transmission (Voronov
et al., 2008)

SYNJ1 levels higher in DS brain tissue compared to controls, and elevated
in AD-DS cases (Martin et al., 2014)

SYNJ1 transgenic mice display enlarged endosomes (Cossec et al., 2012)

OLIG2 Neural progenitors from Olig2-overexpressing mice exhibit impairments in
neural progenitor proliferation (Lu et al., 2012)

SNPs in OLIG2 associated with psychotic symptoms in AD (Sims et al.,
2009)

RCAN1 RCAN1 overexpression in a mouse model causes abnormal tau
phosphorylation (Wegiel et al., 2011)

RCAN1 chronically elevated in AD and DS (Ermak et al., 2001)

In cell models, RCAN1 overexpression leads to deficits in synaptic
transmission (Martin et al., 2012) and promotes neuronal apoptosis (Sun
et al., 2011, 2014)

DYRK1A DYRK1A overexpression linked to tau hyperphosphorylation and increased
Aβ production in transgenic mice (Ryoo et al., 2007, 2008) and cellular
models (Park et al., 2007; Coutadeur et al., 2015)
Dyrk1a overexpression causes phosphorylation of PS1, increasing
γ-secretase activity in cells and stabilizing γ-secretase complex in mice (Ryu
et al., 2010)
Mouse Dyrk1a overexpression in TgDyrk1A mice results in a significant
reduction of Rest mRNA (Canzonetta et al., 2008)

DYRK1A increased in the brains of patients with AD (Kimura et al., 2007)
and DS (Ryoo et al., 2008)
DYRK1A expression in DS brain correlates with 3-repeat tau levels (Shi
et al., 2008; Wegiel et al., 2011)
Plasma DYRK1A positively correlates with cerebrospinal fluid tau and
phospho-tau in AD patients (Janel et al., 2014)
Co-localization of DYRK1A with NFTs greater in AD-DS than SAD (Wegiel
et al., 2008)
REST levels correlate with cognitive preservation and longevity in aging and
are downregulated in AD (Lu et al., 2014)

DSCAM Trisomy of Dscam in Drosophila results in synaptic targeting errors
(Cvetkovska et al., 2013)

DSCAM overexpressed in a DS patient, and DSCAM immunoreactivity
associated with Aβ plaques in demented DS patients (Saito et al., 2000)

ETS2 Ets2 transgenic mice and fibroblasts overexpressing ETS2 have elevated
APP, presenilin1 protein and increased Aβ production (Wolvetang et al.,
2003b)

ETS2 immunoreactivity associated with intracellular Aβ and
hyperphosphorylated tau in both AD-DS and sporadic AD brain tissue
(Helguera et al., 2005)

Ets2 overexpression causes apoptosis via caspase 3 activation in primary
neuronal cultures (Wolvetang et al., 2003a) and in DS cortical neurons
(Helguera et al., 2005)

BACE2 BACE2 overexpression in vitro reduces Aβ levels (Sun et al., 2006)
In a mouse model, overexpression of BACE2 has no effect on Aβ

production (Azkona et al., 2010a,b)

BACE2 polymorphisms may predict age of onset of dementia in DS
(Myllykangas et al., 2005; Mok et al., 2014)

ABCG1 ABCG1 overexpression stimulates cholesterol efflux in vitro (Kim et al.,
2007; Tansley et al., 2007) and either reduces (Kim et al., 2007) or increases
Aβ production (Tansley et al., 2007), the latter through an increase in APP
processing

ABCG1 gene upregulated in patients with DS (Tansley et al., 2007; Kong
et al., 2015)
ABCG1 gene expression unaltered in AD (Tansley et al., 2007)

ABCG1 overexpression in a mouse model has no effect on reference or
working memory or synaptic plasticity (Parkinson et al., 2009), nor alters Aβ,
APOE nor cholesterol efflux in vivo (Burgess et al., 2008)

CSTB Cstb overexpression in a mouse model does not induce epileptic activity or
a myoclonic seizure phenotype (Brault et al., 2011)

CSTB protein unaltered in DS fetal cerebral cortex (Cheon et al., 2003b).

(Continued)
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TABLE 5 | Continued

Hsa21 gene Phenotypes studied in models Phenotypes studied in humans

SUMO3 SUMO3 overexpression in cell culture systems shown to both increase
(Dorval et al., 2007) and reduce (Zhang and Sarge, 2008) Aβ levels

High molecular weight SUMO3 conjugates decreased in AD brain tissue
(Lee et al., 2014)

SUMO3 overexpression modulates APP processing, increasing the
CTF/APP ratio in vitro (Dorval et al., 2007)

S100β S100β application results in tau hyperphosphorylation in cultured neural
stem cells (Esposito et al., 2008)
S100β overexpression increases neuronal death and reduces neuronal
production in DS stem cells (Lu et al., 2011)
S100β overexpression in Tg2576 AD mice increases Aβ deposition and
BACE1 activity (Mori et al., 2010)
Mice overexpressing S100β show accelerated signs of aging (Shapiro and
Whitaker-Azmitia, 2004) neuropathology (Shapiro et al., 2004) and
behavioral deficits (Borella et al., 2003)

S100β upregulated in DS and AD (Griffin et al., 1989; Sheng et al., 1994)
S100β overexpression positively correlates with age in DS patients (Royston
et al., 1999)

SOD1, superoxide dismutase1; ITSN1, intersectin 1; SYNJ1, synaptojanin 1; OLIG2, oligodendrocyte transcription factor 2; RCAN1, regulator of calcineurin 1; DYRK1A, Dual specificity
tyrosine-phosphorylation-regulated kinase 1A; DSCAM, Down syndrome cell adhesion molecule; ETS2, V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 2; BACE2, beta-site
APP cleaving enzyme 2; ABCG1, ATP-binding cassette sub-family G member 1; CSTB, cystatin B; SUMO3, small ubiquitin-like modifier 3; S100β, S100 calcium binding protein β;
REST, repressor element-1 silencing transcription factor.

capitalizes on the association of dementia with deficits in episodic
memory. The development of tests based on, for example, visuo-
spatial data, should therefore highlight age-dependent, dementia-
related deficits in mouse models, because they rely on the
encoding and binding of information spontaneously, and do not
challenge other cognitive domains (Iordanova et al., 2009).

As well as the hypothesis-driven study of AD-DS phenotypes,
one of the greatest strengths of working withmousemodels is our
ability to undertake unbiased hypothesis-generating research,
by mapping phenotypes to genomic critical regions using the
range of strains now available. These include chromosome-
engineered panels of partially trisomic mice (Figure 1) as
well as single gene knockout animals, such as the App+/−
heterozygous mice, which may be crossed to partially trisomic
strains, to generate progeny with altered single gene copy
numbers on different trisomic region backgrounds. The cohorts
of progeny from these crosses provide ideal groups for
testing the contributions of single Hsa21 genes to AD-
DS.

Mouse genome engineering continues to offer new models
and approaches for teasing apart AD-DS relevant phenotypes,
and new strains are being published regularly to help refine
experimental strategies. For example, the recent genomically
humanized NLF mouse (Saito et al., 2014), which has human
amino acid residues at key sites within APP that affect its
processing, may yield new insights into the biology of both
AD and AD-DS, partly through expressing mutant APP at
physiological levels. The strategic breeding of new APP models
with DS segmental trisomies will contribute to determining
which phenotypes are downstream of an amyloid cascade.
Furthermore, independent study of partial trisomies without
three copies of App may help tease out effects of other factors,
for example oxidative stress, cholesterol metabolism or immune
system dysfunction, in the development of dementia (Wiseman
et al., 2015).

DS mouse models also give us the flexibility to investigate
the effects of potentially dosage-sensitive non-coding regions.
For example, microRNAs (miRs)—short (20–23 nucleotide)
RNAs that downregulate the transcription of target genes—have
increasingly been investigated in AD pathogenesis due to their
differential regulation in molecular pathways associated with AD
(Veerappan et al., 2013). Hsa21 encodes 29miRs (MirBase release
21, Griffiths-Jones, 2004), and their potential overexpression in
trisomy may contribute to genetic dysregulation relevant to AD-
DS. Overexpression of the Hsa21-encoded miR-155 in DS has
been reported to increase Aβ production via the downregulation
of sorting nexin 27, a membrane-trafficking component found in
early endosomes, that modulates γ-secretase activity (Wang et al.,
2013, 2014).

Hsa21 also encodes genes involved in post-translational
histone modification, including DYRK1A, ETS2, HMGN1,
BRWD1, and RUNX1 (Dekker et al., 2014), which may be
investigated for their potential roles leading to the aberrant
histone modifications observed in AD (Zhang et al., 2012a;
Narayan et al., 2015). Histone methylation (specifically
H3K4me3) has been shown to correlate highly with genome-wide
domains of dysregulated gene expression in DS, which are highly
conserved between humans and Ts65Dn mice (Letourneau et al.,
2014). DSmouse models therefore model epigenetic structures in
humans and may be used to study the effects of its dysregulation
in AD-DS.

Finally, mouse model research must be undertaken in parallel
with other rapid advances in the AD-DS field. The advent
of human induced pluripotent stem (iPS) cells (Hunsberger
et al., 2015) for DS provides for the first time a trisomic
human in vitro model that recapitulates hallmarks of some AD
pathology (Shi et al., 2012; Chang et al., 2015; Moore et al.,
2015; Murray et al., 2015). The further development of this
technology (Hunsberger et al., 2015) will prove valuable to
phenotyping and drug target discovery, alongside in vivo research
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and in vitro primary cultures from DS mice. An increasing call
is being made for partnerships to build up large cohorts of, and
biobanks from, people with DS for the systematic longitudinal
study of AD-DS progression (Hartley et al., 2015). In-depth
phenotypic studies across development with infants and adults
with DS are already underway (Wiseman et al., 2015). These will
allow greater power to identify biomarkers for the prediction
of AD in this large, genetically well-defined population, for
example, through plasma (Dekker et al., 2015; Schupf et al., 2015),
cerebrospinal fluid (Portelius et al., 2014a,b), and neuroimaging
studies (Beacher et al., 2009; Landt et al., 2011; Powell et al.,
2014; Sabbagh et al., 2015). Biomarker studies are also being
performed in AD models, including at very early phases of
Aβ deposition (Maia et al., 2015). Extending these studies to
mouse models of DS and AD-DS will contribute to elucidating

the genotype-phenotype relationships that ultimately lead to
dementia.
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