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ABSTRACT 
Nicotinic acetylcholine receptors (nAChRs) are the targets for the endogenous 

neurotransmitter acetylcholine and represent a diverse family of ligand-gated ion 

channels. They are expressed in the neuromuscular junction, the peripheral nervous 

system and the central nervous system. In the brain, the most prevalent subtypes are the 

heteromeric α4β2 and homomeric α7 nAChRs. Neuronal nAChRs are implicated in 

numerous physiological and pathophysiological functions and are therefore important 

targets for therapeutic drug discovery for conditions such as Alzheimer’s disease, 

schizophrenia and tobacco addiction. This thesis aims to further our understanding of 

the pharmacological and molecular characteristics of neuronal nAChRs. 

Acetylcholine activates nAChRs by binding at an extracellular orthosteric site. Previous 

studies have described several ligands that potentiate agonist-evoked responses by 

binding to an allosteric site of the α7 nAChRs that is distinct from the acetylcholine 

binding site. These ligands, termed positive allosteric modulators (PAMs) can be 

described as type I, when they have little or no effect on desensitisation, or type II, 

when they dramatically slow down the fast desensitisation kinetics of the α7 nAChR 

subtype. Here, a novel series of α7-selective PAMs with a range of effects on receptor 

desensitisation is described, using recombinant human receptors. This series consists of 

PAMs with type I and type II profiles, in addition to PAMs with intermediate properties 

on desensitisation, therefore increasing the nAChR pharmacological toolbox. 

Furthermore, the effect of a number of mutations on the pharmacological properties of 

the receptor is investigated. Three point mutations, two in the transmembrane domain 

(L247T and M260L) and one in the N-terminal domain (W54A), are shown to have the 

ability to convert PAMs into agonists. Moreover, the M260L mutation displays this 

property only with PAMs that have a significant effect on receptor desensitisation. 

These observations can provide insights into the role of these residues on receptor 

gating and desensitisation. 

In addition to the studies on recombinant receptors, the expression and functional 

properties of nAChRs in neurons derived from human induced pluripotent stem cells 

(iPSC) is examined. The iPSC-derived neurons represent a potentially valuable tool for 

the characterisation of neuronal receptors and ion channels in a native environment. 
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1.1 THE NICOTINIC ACETYLCHOLINE RECEPTOR: A BRIEF 

HISTORY  

1.1.1 Acetylcholine and chemical neurotransmission 

The nicotinic acetylcholine receptor (nAChR) has been at the centre of receptor 

pharmacology research for almost a century. It was the first membrane receptor that was 

characterised and its biochemical isolation in 1970 constitutes a landmark in the history 

of pharmacology. The concept of a pharmacological receptor dates back to the mid 19th 

century, when Claude Bernard attempted to localise the site of action of the poison 

‘curare’, which causes rapid muscle paralysis and death from asphyxiation. South 

American tribes were using preparations containing curare, isolated from plants such as 

Strychnos toxifera, Chondrodendron tomentosum and other related species, as poison 

for hunting arrows. Bernard studied curare samples and was able to demonstrate that the 

poison blocked the communication between a nerve and the striated muscle it 

innervated, while it did not affect smooth and cardiac muscles. He found that while he 

could not induce contraction of the paralysed frog muscle through stimulation of the 

associated nerve, the muscle would contract after direct electrical stimulation (Bernard, 

1850). Although Bernard thought that the nerve was paralysed by curare, Arthur 

Vulpian later determined that curare acted on an ‘intermediate zone’ between the nerve 

terminal and the muscle, the motor endplate region (Vulprian, 1866). John Newport 

Langley first proposed the idea of the existence of a ‘receptive substance’ on the surface 

of skeletal muscle, in order to explain his observation that nicotine induced muscular 

contraction on chicken muscle, despite the absence of innervation. He also 

demonstrated that curare blocked the ability of nicotine to induce muscle contraction 

(Langley, 1907). Langley’s studies, taken together with the theory of chemical 

transmission proposed by Du Bois-Reymond (Du Bois-Reymond, 1877), gave rise to 

the concept of receptor-mediated transmission in the nervous system. 

Acetylcholine was first identified in 1914 as a potential chemical neurotransmitter by 

Henry Dale, a student of Langley. Dale described how different esters and ethers of 

choline, such as acetylcholine mimicked the effects of muscarine and nicotine on 

smooth and striated muscles, respectively (Dale, 1914). However, at that time it was 
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unclear whether signalling in the nervous system was electrical or chemical in nature. It 

was not until Otto Loewi’s famous experiment in 1921 that the theory of chemical 

transmission was demonstrated. For his experiment, Loewi used isolated frog hearts. 

Frog hearts were perfused via a cannula with Ringer’s solution and the left vagus nerve 

was preserved. The vagus nerve of one heart was then electrically stimulated. This 

action had a well-known negative inotropic and chronotropic effect. Some of the 

solution that was bathing the first heart, which had been stimulated, was then transferred 

to the second heart and the same effect was observed, as if the vagus nerve of the 

second heart had also been stimulated. This effect could be blocked with atropine. 

Loewi’s interpretation was that a heart-inhibiting substance, which he called 

‘Vagusstoff’, must have been released in the solution during vagus stimulation. He 

excluded potassium as a candidate substance, because the effects of potassium are not 

antagonised by atropine (Loewi, 1921). Vagusstoff was later identified as acetylcholine 

(Dale & Feldberg, 1934) and was also identified as an endogenous transmitter released 

by neurons innervating striated muscles (Dale et al., 1936). 

Following the work by Loewi and Dale, the location of Langley’s receptive substance 

was determined by del Castillo and Katz. Using electrophysiological techniques and 

intracellular microinjection of acetylcholine, they found that at the neuromuscular 

junction, acetylcholine was acting on muscle cells rather than neurons. In addition, it 

was demonstrated that the acetylcholine receptors were located on the outer surface of 

the muscle cells, because acetylcholine did not induce muscle contraction when injected 

intracellularly (Del Castillo & Katz, 1955).  

1.1.2 Purification of the nicotinic acetylcholine receptor 

Two important steps that contributed to the purification of the nAChR were the 

discovery of a high affinity snake toxin (Lee et al., 1967) and the use of a rich source of 

nAChRs from the electric fish. Soon after the identification of acetylcholine as the 

endogenous transmitter in the neuromuscular junction, the cholinergic nature of 

transmission in the electric ray, Torpedo marmorata, was established (Feldberg & 

Fessard, 1942). The electric organ (electroplaque tissue), which is common to all 

electric fish, such as Torpedo marmorata, Torpedo californica and Electrophorus 
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electricus, produces an electrical discharge to stun prey and deter predators. The 

electroplaques are embryonically derived from myoblasts and form a collection of 

modified motor endplates. The cholinergic nature of the electric organ was determined 

when it was shown that the electrical discharge could be blocked with curare (Dale et 

al., 1936) and that acetylcholine could induce an electrical discharge (Feldberg & 

Fessard, 1942). The rich cholinergic innervation of postsynaptic membranes found in 

these electric organs made them an ideal source from which to isolate and purify the 

acetylcholine receptor.  

The isolation of the acetylcholine receptor was greatly facilitated by the discovery of α-

bungarotoxin, a snake toxin from Bungarus multicinctus, which binds to the receptor 

with high affinity. The toxin was first isolated from snake venom in 1963 and was 

shown to induce muscle paralysis, by binding irreversibly to muscle tissue (Chang & 

Lee, 1963). This effect could be antagonized by (+)-tubocurarine (the active ingredient 

of curare) and it was proposed consequently that the toxin was acting on the nAChR 

(Lee & Chang, 1966). 

The nAChR was first biochemically purified in 1970 by Changeux, Kasai and Lee, 

using the potent and highly selective α-bungarotoxin and the electric organ of the 

electric fish, Electrophorus electricus (Changeux et al., 1970). This was followed by the 

purification of the nAChR from Torpedo marmorata (Miledi et al., 1971). The purified 

receptors were later shown to be pentameric, with five homologous subunits arranged 

around a centrally located transmembrane pore (Brisson & Unwin, 1985). There were 

four different subunits identified, named α, β, γ and δ, in order of their increasing 

molecular mass (Hucho et al., 1976) and they were shown to adopt the stoichiometry 

(α)2βγδ to form the pentameric nAChR (Unwin, 1993).  

1.1.3 Cloning of the nicotinic acetylcholine receptor 

The purification of the nAChR from Electrophorus electricus and Torpedo marmorata 

made the cloning of the receptor possible. In 1983, the nAChR was the first ligand-

gated ion channel (LGIC) for which the DNA and protein were defined using molecular 

genetics. Genes encoding α, β, γ and δ nAChR subunits were identified and cloned from 

Torpedo californica (Noda et al., 1982; Noda et al., 1983a; Noda et al., 1983b). 
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Subsequently, many other nicotinic subunits have been identified. 17 nAChR subunits 

have been cloned in vertebrate species (Millar & Gotti, 2009) and many have been 

identified in invertebrates (Millar & Denholm, 2007; Millar & Lansdell, 2010).  
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1.2 ACETYLCHOLINE AND ITS RECEPTORS 

1.2.1 Acetylcholine and cholinergic transmission 

Acetylcholine (ACh) was the first neurotransmitter to be identified (Dale, 1914) and is 

one of the best characterised neurotransmitters. Acetylcholine is a low molecular weight 

transmitter (146.2 g/mol) and is an ester of acetic acid and choline. It is synthesised in 

neurons containing the enzyme choline acetyltransferase (ChAT) from the precursors 

choline and acetyl-CoA. These cholinergic neurons regulate neural transmission 

through the release of acetylcholine in the central and peripheral nervous system. Once 

released, acetylcholine is rapidly broken down into acetic acid and choline by the 

enzyme acetylcholinesterase (AChE) in the synaptic cleft of cholinergic synapses, thus 

limiting the duration of acetylcholine activity. Choline is then taken up in the 

presynaptic terminal by a choline carrier, where it is used in the acetylcholine synthesis 

again (Figure 1.1). 

Acetylcholine is a major excitatory neurotransmitter in the peripheral nervous system 

(PNS) of numerous organisms, including humans, while its role in the central nervous 

system (CNS) is less well defined. In the somatic branch of the PNS, acetylcholine is 

the major neurotransmitter and it is released by motor neurons in the neuromuscular 

junction (NMJ), where it acts on the nAChRs located on the muscle cells and induces 

muscle contraction. Acetylcholine also plays a major role in the autonomic nervous 

system (ANS), with pre-ganglionic neurons being cholinergic in the sympathetic system 

and both pre- and post-ganglionic neurons being cholinergic in the parasympathetic 

system. Neuronal acetylcholine receptors are expressed widely in the CNS, although 

they are often pre-synaptic, suggesting that they play a largely modulatory role by 

regulating the release of a number of neurotransmitters, including dopamine, 

acetylcholine, 5-hydroxytryptamine (5-HT), glutamate, noradrenaline and γ-

aminobutyric acid (GABA). 
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Figure 1.1: Acetylcholine synthesis and degradation. 

Schematic of events at a cholinergic synapse. Acetylcholine (ACh) is made from acetyl-CoA 
and choline. In the synaptic cleft acetylcholine is broken down by the enzyme 
acetylcholinesterase (AChE) to choline and acetate. Choline is transported back to the axon 
terminal and is used to make more acetylcholine. 
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1.2.2 Acetylcholine receptors 

Acetylcholine acts on two classes of receptors, termed nicotinic and muscarinic 

receptors, with this nomenclature being a consequence of their sensitivity to the 

alkaloids nicotine (isolated from the Solanaceae plant family) and muscarine (from 

Amanita muscaria), respectively. Both types of receptors are membrane proteins, but 

are structurally dissimilar, despite being the target for the same ligand. Nicotinic 

receptors are members of the ‘ionotropic’ family of receptors, or ligand-gated ion 

channels, which act via an intrinsic cation-permeable ion channel (Sine & Engel, 2006). 

Muscarinic acetylcholine receptors (mAChRs) are classified as ‘metabotropic’, or G 

protein-coupled receptors (GPCRs), which mediate their effects via heterotrimeric G 

proteins (Ishii & Kurachi, 2006). 
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1.3 NICOTINIC ACETYLCHOLINE RECEPTORS 

1.3.1 The Cys-loop receptor superfamily 

The nAChRs belong to a superfamily of structurally related LGICs, often referred to as 

‘Cys-loop’ receptors. Cys-loop receptors contain a characteristic 13-residue motif 

flanked by cysteines forming a disulfide bridge. All members of the Cys-loop family of 

receptors are assembled from five homologous polypeptide subunits arranged around a 

centrally located pore, which forms the ion channel. Receptor subunits that belong to 

this family are typically 300 to 600 amino acids long. They contain a signal peptide, a 

large extracellular hydrophilic amino-terminal (N-terminal) domain, 4 membrane 

spanning α-helical domains and a short extracellular carboxyl-terminal (C-terminal) 

domain (Figure 1.2). 

In vertebrates, more than 40 Cys-loop receptor subunits have been identified and are 

further classified into distinct families, named according to neurotransmitter 

pharmacology: nAChRs and 5-HT type 3 receptors (5-HT3Rs) are receptors forming a 

cation channel, while GABA type A (GABAA) receptors, GABA type C (GABAC) 

receptors and glycine receptors form an anion-permeable channel (Ortells & Lunt, 

1995; Sine & Engel, 2006). In invertebrates, GABA, 5-HT, glutamate, histidine and 

proton-gated receptors have also been identified, as well as nAChRs with anion 

conductance (Millar, 2003; van Nierop et al., 2005). 

Eukaryotic Cys-loop receptors are found on the extracellular membranes of numerous 

cell types, including muscle, epithelial and immune cells, but are expressed 

predominantly in the CNS and PNS, where they mediate and modulate synaptic 

transmission, neurotransmitter release and cell excitability. In prokaryotic organisms, 

these receptors are possibly involved in chemotaxis and cell adaptation towards the 

extracellular environment. 

Extensive study of the genomes of different organisms have revealed the existence of 

prokaryotic homologues of Cys-loop receptors, including one of the cyanobacterium 

Gloeobacter violaceus, which functions as a proton-gated channel, but lacks the two 

characteristic cysteines (Bocquet et al., 2007). Comparative genetic studies within the 
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superfamily suggest that the members originate from a common ancestral gene, with a 

high degree of mobility and losses throughout evolution (Ortells & Lunt, 1995). 

1.3.2 Nicotinic acetylcholine receptors from the fish electric organ 

As discussed in section 1.1.2, the nAChR was originally purified from the electric 

organs of the electric eel, Electrophorus electricus (Changeux et al., 1970), and the 

electric ray, Torpedo marmorata (Miledi et al., 1971) with the use of α-bungarotoxin, a 

snake toxin with high affinity for the nAChR (Lee & Chang, 1966). Electroplaques 

from electric organs are highly innervated with cholinergic projections and densely 

packed with nAChRs, therefore providing an abundant source of receptors ideal for 

purification. Purification of the nAChRs was carried out initially from Electrophorus 

electricus, but the Torpedo rays contain a greater concentration of receptors and have 

been studied more extensively.  

The nAChR purified from the fish electric organ was initially thought to contain four 

subunits (Miledi et al., 1971), but was subsequently shown to contain five subunits 

arranged around a centrally located ion channel (Brisson & Unwin, 1985). Torpedo 

nAChRs can exist as pentameric monomers of ~250 kDa, or as disulfide-linked dimers 

of ~500 kDa, which migrate on a sucrose gradient with sedimentation coefficients of 9 

S and 13 S, respectively (Gibson et al., 1976; Reynolds & Karlin, 1978). Four different 

subunits were identified, named α, β, γ and δ (now more commonly referred to as α1, 

β1, γ and δ), in order of their increasing molecular mass of approximately 40 kDa, 48 

kDa, 62 kDa and 66 kDa, respectively (Hucho et al., 1976), which adopt the 

stoichiometry (α)2βγδ to form the pentameric nAChR (Unwin, 1993). The structural 

information obtained from studies on Torpedo nAChRs has been proved very important 

for our understanding of the Cys-loop receptor structure and will be discussed in more 

detail in section 1.4.5.  
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Figure 1.2: Cys-loop receptor architecture and membrane topology. 

A) Side view of a Cys-loop receptor with two of the five subunits being shown embedded in the 
lipid bilayer. The arrows represent ion flow through the channel pore. Ion selectivity depends on 
the receptor family. 

B) Schematic of the transmembrane topology of a single Cys-loop receptor subunit. 

C) Five identical or homologous subunits co-assemble around a transmembrane pore, 
surrounded by a total of 20 transmembrane α-helical domains. The second transmembrane 
domain of each subunit lines the pore.  
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1.3.3 Muscle nicotinic acetylcholine receptors 

The nAChR of the vertebrate neuromuscular junction (NMJ) is one of the best-

characterised LGICs, in large part due to the ease of access of this tissue, which allowed 

early physiologists to study it extensively. Muscle nAChR structure and function, as 

well as electrophysiological properties such as channel gating, conductance and 

desensitisation are well established (Peper et al., 1982; Sakmann & Neher, 1984; 

Colquhoun & Ogden, 1988). These receptors are responsible for converting signals of 

the somatic PNS into skeletal muscle contractions. Most of the acetylcholine 

synthesised in the presynaptic nerve terminal is packed into synaptic vesicles at a high 

concentration (100 mM). Action potentials reaching the motor nerve endings trigger 

calcium entry, which stimulates acetylcholine release via exocytosis. At the NMJ, a 

single nerve impulse releases about 300 vesicles (about three million acetylcholine 

molecules). Acetylcholine then diffuses about 50 nm across the synaptic cleft to the 

post-synaptic membrane, rapidly reaching concentrations of 0.1-1.0 mM, and binds to 

the nAChRs (Katz & Miledi, 1972). Two molecules of acetylcholine bind to the 

receptors, stabilising the open conformational state, which allows primarily sodium, but 

also potassium and calcium, to flow through the ion channel resulting in depolarisation 

of the muscle cell. This depolarisation induces release of calcium from the sarcoplasmic 

reticulum, which results in muscle contraction via the sliding filament mechanism 

(Huxley, 2008). The acetylcholine molecules remain bound to the receptor for 

approximately 2 ms and are quickly hydrolysed by AChE after dissociation, making the 

entire process very rapid and brief (Katz & Miledi, 1972), which is very important for a 

synapse that has to initiate fast, fine-tuned muscular responses at high frequency. 

The nAChR found at the vertebrate NMJ is very similar to the nAChR from the 

Torpedo electric organ. In both systems, α-bungarotoxin and (+)-tubocurarine block 

nerve transmission. Both receptors are pentameric and the five subunits of the 

denervated rat muscle nAChR have apparent molecular weights similar to those of the 

Torpedo (Froehner et al., 1977). The sequence of the mammalian foetal muscle nAChR 

subunits is similar to the ones from Torpedo, however an additional γ-like subunit, 

named ε, has been identified in adult vertebrate muscle and is not present in the 

Torpedo (Takai et al., 1985). 
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Mammalian muscle nAChRs exist as one of two types, with each type expressed 

according to the developmental stage of the animal. Foetal muscle nAChRs have the 

stoichiometry (α1)2β1γδ. However, in a developmental switch, the γ subunit is replaced 

by the ε subunit found in adult muscle. This exchange is essential for the maturation of 

the NMJ and coincides with important developmental transitions (Missias et al., 1996; 

Missias et al., 1997). Recombinant nAChRs containing the α1, β1, γ and δ subunits 

expressed in Xenopus laevis oocytes had single-channel conductance of 39 pS, 

resembling those typical of foetal bovine muscle, while recombinant α1, β1, γ and ε 

subunits formed receptors with larger conductance of 59 pS and shorter open times, 

which resemble the channels found in the adult muscle (Mishina et al., 1986). Muscle 

nAChRs are comparable to those of Torpedo and are collectively referred to as ‘muscle-

type’ nAChRs. 

1.3.4 Neuronal nicotinic acetylcholine receptors 

Neuronal nAChRs are expressed throughout the vertebrate central and peripheral 

nervous system. Although acetylcholine is an excitatory neurotransmitter, glutamate is 

the major excitatory neurotransmitter within the mammalian brain. However, nAChRs 

are found in many parts of the brain, suggesting that they have a modulatory role. In the 

PNS, nAChRs are expressed in both sympathetic and parasympathetic ganglia and 

control fast synaptic transmission. 

In vertebrates, twelve neuronal nAChR subunits have been identified (Millar & Gotti, 

2009) and they consist of nine α-type subunits (α2-α10) and three β-type subunits (β2-

β4). Subunits that have a pair of two conserved adjacent cysteines at positions that 

correspond to 192 and 193 at the Torpedo α1 subunit are classified as α subunits, while 

subunits lacking the conserved cysteines are classified as β subunits. The α8 subunit has 

only been identified in avian species and appears to have no mammalian counterpart 

(Schoepfer et al., 1990). 

Neuronal nAChRs can exist as heteromeric complexes, consisting of two or more 

different subunits, with at least two α- and two β-type subunits, or as homomeric 

complexes, containing only one type of subunit (α7-α9). However there is evidence that 

subunits α7-α9 do not exclusively form homomeric receptors and have been identified 
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in some heteromeric complexes, such as α7β2 (Khiroug et al., 2002; Liu et al., 2009) 

and α9α10 (Sgard et al., 2002). Homomeric nAChRs are blocked by α-bungarotoxin, 

similar to the muscle nAChRs, and exhibit generally lower affinity for acetylcholine. 

Homomeric α7 nAChRs account for the majority of α-bungarotoxin binding sites in the 

brain, with the distribution of the α7 gene transcript in rodent brain overlapping with α-

bungarotoxin binding sites (Séguéla et al., 1993). There is considerable subtype 

diversity amongst neuronal nAChRs, but not all subunits can co-assemble to form 

functional receptors (Millar & Gotti, 2009). Subunit composition is important in 

determining receptor function and it will be discussed in more detail later. 
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1.4 STRUCTURE OF NICOTINIC ACETYLCHOLINE RECEPTORS 

1.4.1 Subunit structure 

The subunits within the nAChR superfamily have 40-50% amino acid sequence identity 

and they share the same membrane topology with other members of the Cys-loop 

receptor superfamily (Lester et al., 2004). Each subunit is a polypeptide consisting of 

450-700 amino acids, which assembles with other subunits to form the pentameric, 

membrane-spanning receptor, with a central, transmembrane ion pore (Figure 1.2). 

Each nAChR contains a signal peptide of about 20 amino acids at its N-terminus, which 

is cleaved to form the mature protein. The N-terminal domain of the subunit is a large 

hydrophilic extracellular section of approximately 200 amino acids. It consists mainly 

of β-sheets that are separated by loop motifs, which form the main components of the 

agonist binding site (loops A-F) (Unwin, 2005). As mentioned previously, the 

characteristic ‘Cys-loop’, formed by the disulfide bridge of the cysteine residues that 

align to 128 and 142 of the Torpedo α1 subunit, is also located at the N-terminus. This 

is followed by four hydrophobic transmembrane domains (TM1, TM2, TM3 and TM4), 

which adopt α-helical structure (Unwin, 2005). The ion channel is lined primarily by 

residues of the TM2 domain, as demonstrated by photolabelling experiments with 

channel blockers such as chlorpromazine (Heidmann & Changeux, 1984; Giraudat et 

al., 1989; Revah et al., 1990) and substituted cysteine accessibility mutagenesis studies 

(Akabas et al., 1994). The four transmembrane helices are separated by loops, of which 

the loop between TM3 and TM4 is much larger than the rest. This loop varies greatly 

between subunits and is thought to be involved in subunit trafficking to various cellular 

locations (Williams et al., 1998; Xu et al., 2006), as well as containing several potential 

sites for phosphorylation (Huganir & Greengard, 1990; Millar, 2002). Subunit 

sequences terminate with a short extracellular C-terminal domain, which has been 

implicated in oestradiol binding (Curtis et al., 2002). 
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1.4.2 Stoichiometry 

The nAChRs from both the Torpedo electric organ and the mammalian muscle are 

arranged as pentamers with the same stoichiometry (α1)2β1γδ, except that the γ subunit 

is replaced by the ε subunit in adult muscle nAChRs (Sealock, 1982; Unwin, 1993). 

Studies on the Torpedo nAChR reveal that the subunits are arranged around the central 

channel pore in the anticlockwise order α-δ-β-α-γ, as viewed from the extracellular side 

of the membrane (Unwin, 2005). 

A classification system for the nAChR subunits has been proposed on the basis of 

amino acid sequence and gene structure (Corringer et al., 2000). According to this 

system there are four subfamilies: subfamily I consists of subunits α9 and α10; 

subfamily II consists of subunits α7 and α8; subfamily III consist of subunits α2-α6 and 

β2-β4; subfamily IV consists of the muscle subunits α1, β1, γ, δ and ε. Subfamilies III 

and IV can be further divided into ‘tribes’ 1-3, depending on the role that each subunit 

plays in the receptor complex (Le Novère et al., 2002). Subunits forming the α and non- 

α components of the binding site belong to tribes 1 and 2, respectively. Subunits that do 

not participate in the formation of the agonist binding site belong to tribe 3. The 

subunits from subfamily III and IV are, therefore, further classified into tribe III-1: α2, 

α3, α4 and α6; tribe III-2: β2 and β4; tribe III-3: α5 and β3; tribe IV-1: α1; tribe IV-2: γ, 

δ and ε; tribe IV-3: β1. 

Subunit stoichiometry is significantly more diverse in neuronal nAChRs and, in some 

cases, the exact composition of endogenous receptors is not clear. However, a general 

rule of assembly from heterologous expression experiments in Xenopus laevis oocytes 

and mammalian cells is that heteromeric receptors consist of at least two subunits from 

tribe 1 and 2 and may contain one subunit from tribe 3 (Ramirez-Latorre et al., 1996; 

Groot-Kormelink et al., 1998). Subunits from subfamily I and II usually form 

homomeric receptors, although heteromeric receptors have been reported (Corringer et 

al., 2000). The most common nAChR subtypes in the brain are the homomeric α7 

nAChRs and the heteromeric α4β2* nAChRs, while the α3β4* nAChR subtype is 

abundant in the PNS. The asterisks used in receptor nomenclature indicate the potential 

presence of additional nAChR subunits in the receptor complex. Even though α4β2 and 

α3β4 heteromeric receptors are thought to consist of two α and three β subunits, 
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evidence exists for alternative stoichiometries with three α and two β subunits, which 

confer different pharmacological properties to the receptor (Zwart & Vijverberg, 1998; 

Nelson et al., 2003).  

1.4.3 Extracellular agonist binding domain 

The nAChR binding site for traditional agonists and competitive antagonists, also 

termed orthosteric binding site, is located at the extracellular N-terminal domain. The β-

sheet-rich N-terminal domains of each subunit fold into a β-barrel structure with an 

inner and outer sheet (Unwin, 2005). The β-strands are connected with short hairpin 

loops, which are essential for ligand binding (Corringer et al., 2000).  

The agonist-binding site is located at the interface between subunits (α1/γ and α1/δ in 

muscle-type nAChRs) and this has been determined by several approaches. Torpedo α 

subunits co-expressed with either γ or δ subunits form functional binding sites (Blount 

& Merlie, 1989). Affinity labelling experiments using competitive antagonists were 

found to label the α subunits primarily and the γ and δ subunits to a lesser extent 

(Pedersen & Cohen, 1990; Corringer et al., 2000). These unequal levels of labelling 

suggested an asymmetric binding site, with the principal binding component found at 

the α subunit and the complementary component found at the γ/ε and δ subunits in the 

case of muscle-type nAChRs, or β subunits in the case of heteromeric neuronal 

nAChRs. α subunits carry both the principal and complementary binding components in 

the case of homomeric receptors. 

Individual residues important for agonist binding have been identified mostly in the 

loops connecting the β-sheets. These loops, defined as binding components A-F, exist in 

the principal subunit (A-C) and the complementary (D-F). However some residues that 

contribute to the binding site are not located on these loops (Lester et al., 2004). 

Residues that were labelled by photoaffinity ligands in the principal component of the α 

subunit in the Torpedo include Trp 86 and Tyr 93 in loop A, Trp 149 and Tyr 151 in 

loop B and Tyr 190, Cys 192, Cys 193 and Tyr 198 in loop C. The γ and δ subunits 

were labelled in homologous positions γTrp 55 and δTrp 57 in loop D and γTyr 111 and 

δArg 113 in loop E (Corringer et al., 2000). These residues have been shown by 

homology modelling to form an electron-rich ‘aromatic box’. Sequence comparisons 
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also reveal that these residues are highly conserved in the α2-α4 and α6-α8 subunits 

(loop A-C) in the β2, β4, α7 and α8 subunits (loop D) (Corringer et al., 2000). 

1.4.4 Ion channel 

The ion channel pore is located within the 20 α-helices bundle (four from each subunit) 

of the nAChR transmembrane domain. Early affinity labelling experiments with channel 

blockers, such as chlorpromazine, identified key residues contributing to the ion 

channel. Those residues are located at positions 2', 6', 9', 13' and 20' of the TM2 

domains of the five subunits (Heidmann & Changeux, 1984; Giraudat et al., 1989; 

Corringer et al., 2000), using the terminology of Christopher Miller (Miller, 1989), 

which assigns position 1' to the first amino acid (towards the N-terminus) of the TM2 

domain. The labelling of all five subunits is consistent with the TM2 domains of each 

subunit contributing equally to form the ion channel, with the same side of each TM2 

domain facing the pore and pentameric rings of homologous amino acids forming the 

channel. The pattern of labelling is also consistent with the predicted α-helical structure 

of the TM2 domain (Corringer et al., 2000). Later studies, using the substituted cysteine 

accessibility method (SCAM) confirmed the importance of the TM2 domain in lining 

the channel (Akabas et al., 1992) and located the site in the pore where water could not 

permeate when the channel is closed closer to the cytoplasmic side of the lumen rather 

than midway along the TM2 domain (Wilson & Karlin, 1998). The secondary structure 

of this part of the subunit appears to deviate from the α-helical structure, which is 

adopted by the rest of the TM2, to a looser loop structure, with adjacent residues being 

labelled (Wilson & Karlin, 1998). 

As well as allowing the flux of ions, the ion channel pore also contains the ion 

selectivity filter. The whole channel is thought to act as a cation-selective filter, with 

side chains located throughout the channel lumen contributing to an overall negative 

charge (Unwin, 2005). Conserved rings of hydrophilic residues also exist at the 

cytoplasmic border (Corringer et al., 2000). Mutation of a number of residues in these 

ring domains results in altered cation selectivity (Cohen et al., 1992), conversion of 

cationic to anionic selectivity (Galzi et al., 1992) and disruption of calcium permeability 

(Bertrand et al., 1993). This region containing the conserved rings constitutes the most 
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restricted part of the channel in its open conformation and is involved in monovalent ion 

selection, possibly through a specific dehydration mechanism (Wang et al., 2008). 

The narrowest region of the pore is located at the intracellular end of TM2, near αT244 

(Torpedo numbering), and is proposed to act as the gate of the channel, by determining 

ion flow (Villarroel et al., 1991). A highly conserved leucine is found in the middle of 

the TM2 in almost all subunits of the Cys-loop receptor superfamily. This leucine is 

found at the 9' position (L9') and has a profound effect in channel gating. A number of 

roles have been proposed for this residue. Initially, a model was proposed where this 

residue moves into the lumen of the channel during desensitisation to form a non-

conducting state (Revah et al., 1991; Bertrand et al., 1992). This conclusion was largely 

supported by studies on nAChRs with mutations on the 9' position, which dramatically 

reduce the desensitisation of the macroscopic current and convert antagonists into 

agonists. A different model was proposed by Nigel Unwin from examination of the 

early Torpedo nAChR structure in both the closed and open channel conformation 

(Unwin, 1993, 1995). According to this model, the leucine residues from the five 

subunits serve as the gate of the pore, through leucine-leucine interactions that form a 

constricted ring in the closed conformation of the channel. Further studies on the muscle 

receptor, showing that mutating individual L9' residues in a receptor have an additive 

and independent effect, rendered the desensitisation theory unlikely (Filatov & White, 

1995). However, it was suggested that L9' mutations stabilised the open state rather than 

disrupting the closed state of the receptor, because the main effect that could be 

observed was prolonged open-times, without an increase in the opening rate (Filatov & 

White, 1995). In contrast, a different study on the muscle nAChRs demonstrates that 

mutating the L9' residue appears to increase the opening rate and contribute to an 

increased presence of monoliganded and unliganded open channels, supporting the 

notion that L9' mutations could exert their effects by disrupting the closed gate (Labarca 

et al., 1995). 

1.4.5 Three-dimensional structure 

Structure-function studies of the Cys-loop receptor superfamily have been initially 

guided by electron microscopy images of the Torpedo nAChR (Unwin, 2005) and by 
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crystal structures of a family of soluble proteins, the acetylcholine-binding proteins 

(AChBP), which display high sequence homology with the extracellular domain of the 

nAChRs (Brejc et al., 2001). This was followed by studies that initially obtained high-

resolution X-ray crystals of bacterial homologues of the Cys-loop receptors (Hilf & 

Dutzler, 2008; Bocquet et al., 2009; Hilf & Dutzler, 2009), followed by crystal 

structures of eukaryotic Cys-loop receptors (Hibbs & Gouaux, 2011; Hassaine et al., 

2014; Miller & Aricescu, 2014). These studies, which revealed the three-dimensional 

structure of the receptors in different conformational states, have provided insight into 

the mechanism of channel opening and closing, as well as the changes that occur after 

agonist binding. 

1.4.5.1 Electron microscopy of Torpedo nAChRs 

Cryo-electron microscopy studies of the Torpedo nAChR provided three-dimensional 

structure of the closed receptor at a resolution of 17 Å (Toyoshima & Unwin, 1990), 9 

Å (Unwin, 1993) and finally 4 Å (Unwin, 2005). Traditional X-ray crystallography has 

been proved difficult for intact nAChRs, since they contain hydrophobic transmembrane 

regions that prevent the generation of a three-dimensional crystal. Therefore, these 

studies were performed on purified post-synaptic membranes from the Torpedo electric 

organ, which contain helically ordered nAChRs. Numerous two-dimensional images 

were obtained from the crystals and were subsequently averaged to provide the 

structural model of the receptor (Figure 1.3). 
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Figure 1.3: High-resolution structure of the Torpedo nAChR at 4 Å (figure from (Unwin, 
2005)). 

Ribbon diagrams of the T. marmorata nAChR as viewed (A) from the synaptic cleft and (B) 
parallel with the membrane plane. For clarity, only the ligand-binding domain is highlighted in 
(A) and only the front two subunits are highlighted in (B). The receptor subunits are highlighted 
in red (α), green (β), blue (γ) and light blue (δ). Also shown are locations of the αTrp149 residue 
(gold), the main immunogenic regions (MIR) and the lipid bilayer (horizontal bars; E: 
extracellular; I: intracellular). The dotted lines on the right denote the three main zones of 
subunit–subunit contacts. The apex of the C-loop of αδ (broken trace in (A)) was not visible in 
the densities. 
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A vast amount of structural information about the extracellular agonist binding domain 

and the pore of the channel has been obtained from structural studies (sections 1.4.3 and 

1.4.4). The length of the receptor was calculated to be approximately 160 Å, with the N-

terminal domain protruding out of the membrane by ~80 Å and the dimensions of each 

subunit being approximately 30 Å × 40 Å × 160 Å (Unwin, 2005). The intracellular part 

of the receptor remains largely unresolved, possibly because of its increased flexibility, 

resulting in a not well-defined diffraction pattern. However, a part of the intracellular 

TM3-TM4 loop that adopts a more rigid structure compared to the rest of the loop (the 

membrane associated (MA)-helix) has been resolved in the refined 4 Å structure 

(Unwin, 2005). Low-resolution images of the Torpedo nAChR have also been obtained 

at the open state (Unwin, 1995). This was achieved by spraying acetylcholine on the 

tube preparation, followed by rapid freezing, in order to preserve the conformational 

state. Comparison of these receptors in the closed and open states can provide some 

insight into the conformational changes taking place after agonist binding (Unwin, 

1995). 

1.4.5.2 Snail acetylcholine binding protein 

The high-resolution crystal structure of the molluscan acetylcholine-binding protein 

(AChBP) has greatly contributed to our knowledge of the nAChR extracellular ligand 

binding domain structure. The AChBP is a water-soluble protein that was first identified 

in the mollusc Lymnea stagnalis. It is present in cholinergic synapses and it is believed 

to regulate synaptic transmission, by binding acetylcholine and limiting its action in the 

synapse (Smit et al., 2001). It forms a homopentameric structure and has been identified 

as a homologous protein to the N-terminus of the nAChR, with 20-24% amino acid 

identity, but lacking the transmembrane and intracellular domains present in the 

superfamily (Smit et al., 2001). In addition to acetylcholine, the AChBP has also been 

shown to bind other known nicotinic agonists and competitive antagonists, such as 

nicotine, tubocurarine, and α-bungarotoxin (Smit et al., 2001). Because this protein is 

water-soluble, it is easier to crystallise and, therefore, its structure has been obtained at 

high resolution using X-ray crystallography. Its structure has been resolved at 2.7 Å 

(Brejc et al., 2001), 2.2 Å (Ulens et al., 2006) and 1.74 Å (Hansen & Taylor, 2007) 

(Figure 1.4).  
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The three-dimensional structure of AChBP is remarkably similar to the N-terminus of 

the Torpedo nAChR. Several crystal structures and the co-crystallisation of the protein 

with various ligands have assisted in the study and interpretation of nAChR ligand 

binding and have identified different movements associated with agonist and antagonist 

binding. The AChBP has been crystallised in the presence of nicotine and carbachol 

(Celie et al., 2004) and the antagonists α-conotoxin (Celie et al., 2005) and α-cobratoxin 

(Bourne et al., 2005).  

1.4.5.3 Mouse α1 subunit bound to α-bungarotoxin 

An additional interesting structure is the 1.94 Å high-resolution crystal structure of the 

extracellular domain of the mouse α1 nAChR subunit bound to α-bungarotoxin 

(Dellisanti et al., 2007). This structure was shown to be similar to the Torpedo nAChR 

and the AChBP, with some exceptions. Firstly, hydrophilic residues form a water-filled 

pocket deep in the core of the α1 subunit, which is absent in the AChBP and not 

detectable in the Torpedo structure. Secondly, the structure contained an N-linked 

glycosylation site at residue Asn 151, which appears to be important in receptor 

maturation (Dellisanti et al., 2007). 
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Figure 1.4: High-resolution structure of the Lymnaea ACh-binding protein (figure from 
(Brejc et al., 2001)). 

A) Ribbon diagram of the pentameric structure of AChBP, with different colours representing 
each protomer. Subunits are labelled anti-clockwise, with A−B, B−C, C−D, D−E and E−A 
forming the plus and minus interface side, with the principal and complementary ligand-binding 
sites, respectively (ball-and-stick representation). 

B) View of the AChBP pentamer perpendicular to the five-fold axis. The equatorially located 
ligand-binding site (ball-and-stick representation) is highlighted only in the A (yellow) − B 
(blue) interface. 
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1.4.5.4 Crystal structures of bacterial homologues 

High-resolution crystal structures of two bacterial receptors that are homologous to the 

Cys-loop receptors have been obtained recently (Figure 1.5). The crystal structure of the 

Erwinia chrysanthemi ligand-gated ion channel (ELIC) was obtained at a resolution of 

3.3 Å (Hilf & Dutzler, 2008) and the crystal structure of the Gloeobacter violaceus 

ligand-gated ion channel (GLIC) was obtained at 3.1 Å and 2.9 Å (Bocquet et al., 2009; 

Hilf & Dutzler, 2009).  

There is evidence for the Cys-loop superfamily having a prokaryotic origin, with more 

than 20 homologues having been discovered in bacteria (Tasneem et al., 2005). The 

crystal structures of ELIC and GLIC revealed that, even though these receptors have 

only 16-20% sequence identity with the nAChRs and are not gated by acetylcholine, 

they still adopt a highly similar general architecture to that of the Torpedo nAChR and 

the AChBP (Hilf & Dutzler, 2008; Bocquet et al., 2009; Hilf & Dutzler, 2009). This 

includes extracellular structures, such as the β-sheets and the connecting loops with 

semi-conserved ‘Cys-loops’ that lack the flanking cysteines, as well as the 

transmembrane domains, which include the α-helices. Most importantly, the crystal 

structure of ELIC is thought to represent a receptor in the closed conformation, while 

GLIC a receptor in the open conformation and, therefore, these structures provide 

valuable information about the changes that occur after agonist binding. A mechanism 

of channel opening has been suggested from the study of these structures, which 

consists of both a quaternary twist and a tertiary deformation (Bocquet et al., 2009; Hilf 

& Dutzler, 2009), which will be discussed in more detail later. More recently, the 

structure of GLIC has been established in a locally closed conformation (Prevost et al., 

2012) and in a closed conformation at neutral pH (Sauguet et al., 2014). 
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Figure 1.5: High-resolution structure of the nAChR homologues ELIC and GLIC (figure 
from (Hilf & Dutzler, 2008, 2009)). 

ELIC structure in an apparently closed conformation at 3.3 Å resolution. A) Ribbon 
representation of ELIC viewed parallel with the membrane plane, with the extracellular site on 
top. The approximate membrane boundaries are indicated by the horizontal bars. B) Structure of 
the pentameric channel as viewed from the extracellular site (Hilf & Dutzler, 2008). 

GLIC structure in an apparently open conformation at 3.1 Å resolution. C) Ribbon 
representation of GLIC viewed parallel with the membrane plane, with the extracellular site on 
top. The approximate membrane boundaries are indicated by the horizontal bars. D) Structure of 
the pentameric channel as viewed from the extracellular site (Hilf & Dutzler, 2009). 
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1.4.5.5 Crystal structures of eukaryotic Cys-loop receptors 

Recently, high-resolution crystal structures of three members of the Cys-loop receptor 

superfamily bound to a number of ligands have been obtained. The X-ray structure of 

the glutamate-gated chloride channel (GluCl) from Caenorhabditis elegans (C. elegans) 

was obtained at 3.3 Å resolution, initially bound to the allosteric agonist ivermectin. 

Crystal structures of the GluCl-ivermectin complex were also obtained in the presence 

of the endogenous neurotransmitter glutamate, as well as in the presence of the open 

channel blocker picrotoxin (Hibbs & Gouaux, 2011). These structures provided some 

insight into the structure of an open state of a eukaryotic Cys-loop receptor, the basis of 

ion selectivity and channel block, as well as the mechanism of action of ivermectin. The 

same group subsequently published crystal structures of the C. elegans GluCl without 

ivermectin, in the ‘apo’ (or unbound and presumably closed) state, which provided 

some information about the shut gate of the channel and the mechanism of receptor 

opening and closing (Althoff et al., 2014). In addition, the crystal structure of the 

human GABAA receptor (β3 homopentamer) has been resolved at 3 Å (Miller & 

Aricescu, 2014). The receptor was crystallised in the presence of an agonist, 

benzamidine, and analysis of the structure suggests that the receptor has been captured 

in the closed, desensitised state. The study provides insight in the mechanism of 

numerous human disease mutations on the GABAA receptor and also suggests that an 

N-linked glycan in a conserved site in the extracellular domain may facilitate signal 

transduction between the extracellular agonist-binding domain and the transmembrane 

domain. Furthermore, the crystal structure of the mouse 5-HT3AR was obtained at 3.5 Å 

resolution, in complex with an antibody termed VHH15, which helped yield crystals 

with higher resolution and was also a potent inhibitor of the 5-HT3A receptor (Hassaine 

et al., 2014). All of the structures above were obtained after cleaving the entire or part 

of the intracellular TM3-TM4 loop, in order to obtain the high-resolution crystals.  
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1.5 FUNCTION OF NICOTINIC ACETYLCHOLINE RECEPTORS 

1.5.1 Agonist binding 

The conserved aromatic residues present in the extracellular binding site of the nAChR 

and the bridged cysteine residues in loop C form an electron dense structure at the 

subunit interface, termed the ‘aromatic box’ (Unwin, 2005) (as discussed in section 

1.4.3). The binding of acetylcholine involves a cation-π interaction, a non-covalent 

interaction between a cation and the electron-rich π system, with the conserved 

tryptophan residue of loop B, making the quaternary ammonium group of the agonist a 

key pharmacophore. The importance of the aromatic box and, particularly, Trp 149 in 

stabilising agonist interactions was initially demonstrated by studies substituting this 

residue with unnatural tryptophan derivatives (Zhong et al., 1998). Furthermore, 

introduction of tethered quaternary ammonium groups on Trp 149 renders the receptor 

constitutively active. A number of additional conserved aromatic residues on the 

principal component and charged residues on the complementary component have been 

shown to stabilise acetylcholine binding (Sine et al., 1994; Nowak et al., 1995; 

Corringer et al., 2000). Cation-π interactions of ligands with the aromatic box appear to 

be important for agonist binding in a number of Cys-loop receptors, including the 5-HT3 

receptor (Beene et al., 2002), the invertebrate 5-HT-gated chloride channel (MOD-1) 

(Mu et al., 2003) and GABA receptors (Padgett et al., 2007). The study on the MOD-1 

receptor revealed that the ammonium moiety of 5-HT establishes a cation-π interaction 

with a non-homologous Trp residue to that of the vertebrate 5-HT3 receptor, suggesting 

that agonist binding resembles a ‘wedge’ mechanism, rather than a specific ‘lock and 

key’ (Mu et al., 2003). In further support of this theory, the receptor becomes 

constitutively active if appropriate groups are tethered at any of several positions in the 

box (Li et al., 2001).  

X-ray structures demonstrating the cation-π interactions have been reported for AChBP 

(Brejc et al., 2001), GLIC (Bocquet et al., 2009; Hilf & Dutzler, 2009), ELIC (Hilf & 

Dutzler, 2008), GluCl (Hibbs & Gouaux, 2011) and GABAA receptors (Miller & 

Aricescu, 2014). The conformation of loop C is postulated to reflect the functional state 

of the receptor, contracted in agonist-bound structures and open in antagonist-bound 
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structures (Bourne et al., 2005; Hansen et al., 2005; Unwin, 2005; Huang et al., 2013). 

Overall, the mechanism of agonist binding in pentameric LGICs appears to be 

remarkably conserved, from bacteria to humans. 

1.5.2 Gating 

The conformational changes that take place in the receptor after agonist binding to 

produce an ion-conducting receptor are commonly referred to as the gating 

isomerisation. High-resolution structures, which provide a snapshot of the receptor in 

different conformational states, in combination with complementary and time-resolved 

analyses, such as rate-equilibrium free energy relationships (Auerbach, 2007; Lee et al., 

2008) and molecular dynamics stimulation (Taly et al., 2005; Nury et al., 2010; Calimet 

et al., 2013) have provided information on the sequence of structural events that 

translate agonist binding into channel opening 60 Å away. Gating appears to be a 

progressive stepwise isomerisation, also referred to as a conformational wave, that starts 

from loops A, B and C of the orthosteric binding site, propagates to the interface of the 

extracellular domain and transmembrane domain via a rearrangement of the 

extracellular β-sandwich and ends at the transmembrane helices to ultimately open the 

gate (Grosman et al., 2000; Purohit et al., 2007; Calimet et al., 2013; Sauguet et al., 

2014). 

The quaternary twist model, first identified by normal mode analysis of a homology 

model of the α7 nAChR (Taly et al., 2005), was initially suggested to be directly 

involved in receptor gate opening, as it involves a global reorganisation with significant 

reshaping of subunit interfaces. This structural rearrangement is described as an 

opposite rotation of the extracellular domain relative to the transmembrane domain, in 

anticlockwise manner as viewed from the extracellular site. Indeed, comparison of the 

crystal structures of the prokaryotic homologues GLIC at pH 4 (open channel) and 

GLIC at pH 7 and ELIC (closed channels) showed a global quaternary twist occurring 

upon receptor activation, but also highlighted the important tertiary changes that take 

place; in particular a significant tilting of the TM2 helices (Hilf & Dutzler, 2008) 

(Bocquet et al., 2009; Sauguet et al., 2014). Furthermore, the structure of the locally 

closed conformation of GLIC, which involves a closed ion pore in a receptor containing 
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most of the open-channel features, indicates that the quaternary twist alone is not a 

sufficient mechanism to explain channel opening. 

Computational analyses, based on molecular dynamics, provide evidence for an indirect 

coupling mechanism by monitoring the spontaneous relaxation of the open-channel 

structure upon agonist unbinding. The simulation of the open GLIC channel transferred 

to neutral pH (proton agonists removed) (Nury et al., 2010) and that of GluCl with 

ivermectin removed (Calimet et al., 2013) showed that global twisting initiates channel 

closing by facilitating the untilting of the TM2 helices. Furthermore, the simulation of 

GluCl when ivermectin was removed predicted a large outward expansion of the β-

sandwich on the extracellular domain would be essential for communication between 

the agonist binding domain and the ion pore (Calimet et al., 2013). Such a radial 

expansion or ‘blooming’ of the extracellular domain has been reported in the crystal 

structures of GLIC at neutral pH (Sauguet et al., 2014) and for GluCl in the absence of 

ivermectin (Althoff et al., 2014). Importantly, the reported unbound structure of GluCl 

appears to be 10° more twisted than the active state (Calimet et al., 2013), confirming 

the occurrence of both twisting and blooming during structural transitions to the resting 

state. 

Single-channel electrophysiological data show that agonist binding at the extracellular 

binding site modulates the opening rate of the receptor with little or no effect on closing 

(Jadey et al., 2011), while computer simulations of the active state of GluCl showed 

that ivermectin binding at the transmembrane domain controls ion channel closing 

(Calimet et al., 2013). These findings suggest that the rate determining step on gating 

would be mediated by different events in the forward (activation) and backward 

(deactivation) direction, possibly with un-blooming being the rate determining step on 

activation and twisting on deactivation. 

In order to describe the mechanism of receptor gating, the extended del Castillo and 

Katz mechanism can be used. Even though the gating isomerisation consists of a wave 

of conformational changes, some distinct end states can be assigned, with the arrows 

between them describing the separating energy barrier, which equals the sum of the 

energy barriers for all unassigned conformational states in between. 
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In the scheme above, R represents the closed receptor, A the agonist molecule and R* 

the receptor in the open state. An important observation is that nAChRs in the absence 

of an agonist can isomerise between R and R* (Jackson, 1984, 1986) by approximately 

the same mechanism as with an agonist (Purohit & Auerbach, 2009). At synapses, 

nAChRs have a very low probability of adopting an open channel conformation in the 

absence of an agonist, because the equilibrium constant for unliganded, or spontaneous, 

gating is small. The nAChRs have at least two agonist binding sites and the equilibrium 

constant for gating increases as the number of bound agonist molecules increase.  

Recent studies on the glycine receptor and muscle nAChR have identified a 

conformational state before the channel opens that could potentially explain some of the 

differences between full and less efficacious (partial) agonists. These studies propose 

that an intermediate ‘primed’ or ‘flipped’ conformation exists, where the receptor has an 

increased affinity for the agonist, but is still shut (Burzomato et al., 2004). 

Electrophysiological data suggest that the shut-open isomerisation is similar for both 

full and partial agonists. The distinction between full and partial agonists is not due to 

partial agonists being inefficient at eliciting the change between shut and open states, 

but between shut and ‘flipped’ states (Lape et al., 2008). Further studies on mutated 

muscle nAChRs have proposed the existence of two primed conformational states, 

which elicit receptor openings with different durations, depending on whether one or 

two agonist molecules are bound on the receptor (Mukhtasimova et al., 2009). 

1.5.3 Desensitisation 

The continuous exposure of nAChRs to a high concentration of agonist elicits a 

decrease of ion conductance following activation, a process called desensitisation (Katz 

& Thesleff, 1957). Desensitisation, which is a feature of most LGICs, modulates the 

frequency of the conducting states of the receptor and it is thought to play an important 

role in shaping neuronal networks that are associated with memory and learning, 

R   ⟷ AR   ⟷ A2R 

 ↕          ↕             ↕ 

R* ⟷ AR* ⟷ A2R* 
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whereas altered desensitisation mechanisms are implicated in a number of 

pathophysiological conditions (Ochoa et al., 1989; Dehaene & Changeux, 1991). 

At the molecular level, the current declines because the receptor adopts stable 

desensitised conformations that have high affinity for the agonist, but little or no 

conductance. Details of the desensitisation process remain largely unknown, although 

single-channel electrophysiological data have helped establish some facts. These 

include that agonist molecules at the binding sites are not necessary for nAChRs to 

enter and recover from desensitisation (Purohit & Auerbach, 2009) and that, upon 

removal of the agonist, the desensitised receptor can return to the resting closed state 

without channel opening (Katz & Thesleff, 1957). However, in diliganded nAChRs, 

entry into the desensitised state usually occurs from the active state (Auerbach & Akk, 

1998). In addition, at least four different desensitised states can be seen in the single-

channel record, but it is not clear how they are interconnected (Elenes & Auerbach, 

2002).  

Electron microscopy and X-ray crystallography studies have largely failed to capture a 

receptor in a desensitised state, even though the time required for crystallisation when 

an agonist is present would be more likely to capture such a state. In contrast, the crystal 

structure of a number of prokaryotic (Bocquet et al., 2009; Hilf & Dutzler, 2009) and 

eukaryotic receptors (Hibbs & Gouaux, 2011) has been resolved in a presumed active 

state, while only one structure has so far been resolved in a desensitised state (Miller & 

Aricescu, 2014). This latter structure captures the human homopentameric β3 GABAA 

receptor with the channel forming a closed gate at the base of the pore. This crystal 

structure was obtained in the presence of the agonist benzadamide and therefore it is 

assumed to represent a desensitised state. In addition the geometry of the pore was 

shown to differ from the ELIC and Torpedo closed conformations and resembling more 

the open conformations of GLIC and GluCl (Miller & Aricescu, 2014). 
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1.6 LIGANDS OF NICOTINIC ACETYLCHOLINE RECEPTORS 

1.6.1 Orthosteric agonists 

Compounds that bind at the receptor and promote ion channel opening are described as 

agonists. Agonists that bind at the same or overlapping site as the endogenous 

neurotransmitter acetylcholine are termed orthosteric agonists. The agonist binds 

according to its affinity for the receptor site, determined by the equilibrium association 

constant. Once bound, they shift the isomerisation equilibrium towards the active state, 

a property measured by their efficacy. The potency of an agonist, which is usually 

denoted by the effective concentration (EC), is a function of both affinity and efficacy 

(Colquhoun & Patrick, 1997). Agonists of nAChRs can exhibit different 

pharmacological properties, including various degrees of efficacy, leading to full (same 

efficacy as acetylcholine), partial (lower efficacy than acetylcholine) and super (higher 

efficacy than acetylcholine) agonists, as well as nicotinic subtype selectivity. 

Acetylcholine is the endogenous agonist of both muscle and neuronal nAChRs. 

Choline, the precursor of acetylcholine, is also an endogenous agonist on the 

homomeric α7 nAChR (Papke et al., 1996). However, many other natural and synthetic 

agonists have been identified over the years, which have been used as medicines, as 

well as poisons and pesticides. Even though orthosteric agonists usually display limited 

subtype-selectivity, marked differences are often present in the rank order of potency 

for different nicotinic subtypes. Several nicotinic agonists have been isolated from 

natural sources, notably nicotine, cytisine and epibatidine, providing lead structures for 

the design of numerous synthetic agents.  

Nicotine is the active compound of tobacco, which is responsible for the addictive and 

cognitive effects of smoking. It is an alkaloid isolated from the Solanaceae family of 

plants, with the species Nicotiana tabacum being cultivated globally for tobacco 

production. Neuronal heteromeric receptors, especially α4β2, show the highest 

sensitivity for nicotine, while muscle and homomeric α7 nAChRs are less sensitive 

(Flores et al., 1992). 
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Cytisine is another example of a naturally occurring nAChR agonist, isolated from 

plants of the Fabaceae family. It has strong binding affinity for neuronal β2- and β4-

containing nAChRs, with much lower affinity for neuronal homomeric and muscle 

nAChRs (Luetje & Patrick, 1991; Chavez-Noriega et al., 1997). Cytisine has been used 

for the treatment of tobacco addiction and it exerts its effects as a partial nAChR 

agonist, rather than an antagonist (West et al., 2011). Similarly, varenicline, a synthetic 

drug with structural similarities to cytisine, is also approved as a smoking cessation aid. 

As a partial agonist, it reduces cravings and decreases the pleasurable effects of 

smoking (Jorenby et al., 2006). 

Epibatidine is an alkaloid isolated from the poisonous dart frog Epipedobates anthonyi. 

It is an agonist on all nAChRs, but shows higher potency for the α4β2 subtype. 

Epibatidine was found to be a potent analgesic, however its therapeutic index is very 

narrow (Spande et al., 1992; Badio & Daly, 1994). 

1.6.2 Competitive antagonists 

Competitive antagonists are compounds that bind at the orthosteric binding site of the 

receptor, but do not promote channel opening. They are termed ‘competitive’ because 

they compete with agonists for the same binding site. Traditionally, true competitive 

antagonists are ligands that bind to the receptor and have no efficacy, meaning they do 

not affect the gating isomerisation kinetics. Antagonists that shift the gating equilibrium 

towards the inactive state are called inverse agonists (negative efficacy). Depending on 

the binding affinity of the competitive antagonist for the nAChR, the compounds bind 

in a reversible, or irreversible manner. The block by reversible competitive antagonists 

is surmountable by increasing concentrations of the agonist. As with nAChR agonists, 

numerous competitive antagonists have been isolated from natural sources, such as d-

tubocurarine, α-bungarotoxin and methyllycaconitine (MLA) (Daly, 2005). 

Tubocurarine is the active ingredient of curare, which was used as a paralysing poison 

on tips of hunting darts by South American indigenous tribes. Tubocurarine is an 

alkaloid purified from the tree bark of Chondodendron tomemtosum and it is a potent 

antagonist on all nAChRs (King, 1946). Muscle-type nAChRs appear to have two 
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binding sites with different affinities for tubocurarine (Blount & Merlie, 1989; Pedersen 

& Papineni, 1995). 

As discussed earlier, the snake toxin α-bungarotoxin, isolated from the venom of 

Bungarus multicinctus, has been useful for the purification of the Torpedo nAChR 

(Chang & Lee, 1963; Changeux et al., 1970). This toxin is a very high affinity 

competitive antagonist on the Torpedo and muscle nAChR and, therefore, the block it 

produces is practically irreversible. α-bungarotoxin is also an antagonist on the neuronal 

α7 homomeric receptors (Séguéla et al., 1993; Gopalakrishnan et al., 1995). Snake 

neurotoxins can be radio-iodinated (Eldefrawi & Fertuck, 1974) or tritiated (Jones & 

Thompson, 1980) without loss of their pharmacological properties. These radioligands 

have played an important role in localisation and characterisation of nAChRs. 

The marine snails of the genus Conus contain in their venom multiple classes of peptide 

neurotoxins, called conotoxins, targeting LGICs. The largest group of characterised 

conotoxins is the class of α-conotoxins, which are selective competitive antagonists of 

the muscle and neuronal nAChRs (McIntosh et al., 1999). Conotoxins display great 

molecular diversity and members of the family of α-conotoxins have evolved to 

selectively target different nAChR subtypes, including α7, α3β2, α3β4, α4β2, α9α10 

and α6-containing nAChRs (Lebbe et al., 2014). This selectivity has significantly 

contributed to nAChR in vivo and in vitro characterisation, as well as the dissection of 

the functional role of specific receptor subtypes (Terlau & Olivera, 2004; Livett et al., 

2006). 

MLA, an alkaloid isolated from Delphinium species (Aiyar et al., 1979), is a potent and 

highly selective competitive antagonist of α7 nAChRs (Macallan et al., 1988; Ward et 

al., 1990; Alkondon et al., 1992). However, MLA also blocks heteromeric nAChRs at 

higher concentrations (Alkondon et al., 1992; Drasdo et al., 1992). Dihydro-β-

erythroidine (DhβE) and other alkaloids isolated from the coral tree and other members 

of the genus are examples of very potent, α4β2-selective competitive antagonists 

(Lukas, 1989; Decker et al., 1995) 
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1.6.3 Channel blockers 

Channel blockers are an important category of ligands that have therapeutic value, such 

as local anaesthesia. They exert their effects in a manner distinct from competitive 

antagonists, by binding at the channel lumen and preventing the flow of ions. Channel 

blockers of nAChRs include chlorpromazine (CPZ), phencyclidine (PCP) and 

triphenylmethylphosphonium (TPMP+) (Arias, 1998). Early studies with channel 

blockers contributed significantly towards the characterisation of the nAChR ion pore 

(Heidmann & Changeux, 1984; Giraudat et al., 1989). However, many molecules block 

the channel pore of the nAChR at high concentrations, including the orthosteric agonists 

acetylcholine and nicotine.  

1.6.4 Allosteric modulators 

In addition to agonists and competitive antagonists, other ligands modulate the gating 

process, by binding at a region distinct to the orthosteric site or the channel lumen. 

These compounds are termed allosteric modulators and can either potentiate the effects 

of an agonist on channel activation (called positive allosteric modulators or PAMs), or 

inhibit the agonist effects (negative allosteric modulators, or NAMs). Allosteric 

modulators often have no intrinsic activity and only modulate the effects of an agonist; 

however allosteric ligands that can induce receptor activation in the absence of an 

orthosteric agonist, termed allosteric agonists, have been identified recently. 

1.6.4.1 Positive allosteric modulators and allosteric agonists 

Much of the recent work concerning nAChR PAMs has focussed on the homomeric α7 

receptor, one of the main nAChR subtypes expressed in the mammalian brain. It is 

somewhat atypical in the sense that it displays a relatively low sensitivity to 

acetylcholine and unusually fast desensitisation, in addition to high calcium 

permeability (Couturier et al., 1990). In addition to potentiating agonist peak responses, 

some PAMs acting on α7 nAChRs have been reported to cause a slowing of receptor 

desensitisation, whereas other PAMs have little or no effect on the rate of receptor 

desensitisation. As a consequence of this differing effect on desensitisation, α7-selective 

PAMs have been classified into two categories: type I and type II (Bertrand & 

Gopalakrishnan, 2007; Grønlien et al., 2007). Type I PAMs increase peak current in the 
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presence of an orthosteric agonist, without having an effect on receptor desensitisation. 

Type II PAMs, on the other hand, significantly reduce the fast desensitisation of α7 

receptors. A further difference between α7-selective type I and type II PAMs is the 

ability of type II PAMs to allow receptor reactivation from the desensitised state (Hurst 

et al., 2005; Grønlien et al., 2007). However, this distinction between type I and type II 

PAMs is a classification that is based on observed properties, rather than a defined 

mechanism of action or from information about the binding site. Although classifying 

PAMs acting on α7 nAChRs as either type I or type II can be useful in some 

circumstances, it is clear that this is an over-simplification and that PAMs with 

intermediate properties have been identified. 

An early demonstration of allosteric modulation of nAChRs came from the observation 

that the divalent cation calcium potentiated α7 nAChR currents in a voltage-

independent manner (Mulle et al., 1992; Vernino et al., 1992). Early studies with α7 

nAChRs also demonstrated the ability of ivermectin, a large macrocyclic lactone, to 

potentiate agonist-evoked responses (Krause et al., 1998). Ivermectin was found to 

increase acetylcholine-evoked current on α7 nAChRs, reduce the half maximal effective 

concentration (EC50) of acetylcholine, convert the partial agonist 

dimethylphenylpiperazinium (DMPP) into a full agonist and modestly reduce 

desensitisation. In addition, the AChE inhibitor galanthamine has been reported to act as 

a relatively weak and non-selective PAM of α7 nAChRs (Lopes et al., 2007). Similarly, 

genistein, a tyrosine kinase inhibitor, and 5-hydroxyindole (5-HI) are also weak and 

relatively non-selective PAMs on α7 receptors (Zwart et al., 2002; Grønlien et al., 

2007). A number of proteins have also been reported to enhance agonist responses on 

the α7 receptors, including a secreted mammalian Ly-6/uPAR-related protein (SLURP-

1) and bovine serum albumin (BSA) (Chimienti et al., 2003; Conroy et al., 2003). All of 

these compounds have only minimal effects on the rapid desensitisation of α7 nAChRs 

and, in most cases, do not display high selectivity for this receptor subtype. 

Over the past decade there has been considerable interest from pharmaceutical 

companies and academic research groups in developing PAMs of α7 nAChRs that 

display higher potency and greater subtype selectivity. PNU-120596 was the first α7-

selective PAM identified that had a dramatic effect on receptor desensitisation and is 

classified as a type II PAM (Hurst et al., 2005). PNU-120596 is one of the best-studied 
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PAMs in pre-clinical models of pain, ischaemia, schizophrenia and cognitive deficits 

(Hurst et al., 2005; Thomsen et al., 2011; McLean et al., 2012; Callahan et al., 2013; 

Freitas et al., 2013; Kalappa et al., 2013; Sun et al., 2013). Other α7-selective PAMs 

that cause a dramatic reduction in receptor desensitisation and, consequently, have been 

described as type II PAMs include TQS (Grønlien et al., 2007) and A-867744 (Faghih 

et al., 2009; Malysz et al., 2009).  

A feature of compounds such as PNU-120596, TQS and A-867744 is that they cause 

little or no receptor activation in the absence of an orthosteric agonist. However, a 

derivative of TQS, 4BP-TQS, has been shown to activate the receptor in the absence of 

an orthosteric agonist (Gill et al., 2011). In contrast to the activation of α7 nAChRs by 

acetylcholine, activation by 4BP-TQS occurs with minimal desensitisation (Gill et al., 

2011). In addition, the agonist dose-response curve with 4BP-TQS is steeper and 

maximal responses are substantially larger than observed with orthosteric agonists, all 

of which argues that activation by 4BP-TQS occurs by a different mechanism of action 

(Gill et al., 2011). As will be discussed in section 1.6.4.3, there is evidence that 4BP-

TQS causes receptor activation via a distinct allosteric site and, as a consequence, it has 

been described as an allosteric agonist (Gill et al., 2011). Subsequently, a number of 

TQS derivatives that have agonist and PAM effects have been developed and 

characterised (Gill et al., 2012; Ondrejcak et al., 2012). Interestingly, very minor 

changes to ligand structure, such as altering the size of a single halogen atom or the 

pattern of methyl substitution of an aromatic ring, can convert type II PAMs into potent 

allosteric agonists (Gill et al., 2012; Gill-Thind et al., 2015).  

In addition to allosteric modulators that reduce levels of agonist-induced desensitisation, 

a number of α7-selective type I PAMs have been described in recent years as a 

consequence of high-throughput compound screening. Amongst the first to be examined 

in detail were the urea derivative NS-1738 (Timmermann et al., 2007) and CCMI (also 

described as ‘Compound 6’) (Ng et al., 2007). Other compounds acting as type I PAMs 

of α7, but displaying less subtype selectivity, are LY-2087101, LY-2087133 and LY-

1078733 (Broad et al., 2006). In addition to potentiating α7 nAChRs, these compounds 

also potentiate α2β4, α4β2 and α4β4 subtypes (Broad et al., 2006). 
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Whilst the distinction between type I and type II PAMs can be useful, there is 

increasing evidence that it is an over-simplification. A number of studies have reported 

α7-selective PAMs with effects on desensitisation that are intermediate between 

classical type I and type II PAMs (Dunlop et al., 2009; Dinklo et al., 2011). Another 

α7-selective PAM, RO5126946, has effects on desensitisation that are typical of a type 

II PAM (Sahdeo et al., 2014). However, it lacks the ability to facilitate reactivation of 

desensitised α7 nAChRs, a feature that is normally considered to be characteristic of 

type II PAMs (Sahdeo et al., 2014).  

Heteromeric α4β2-containing nAChRs are an abundant receptor subtype expressed in 

the human brain and have been a target for the development of orthosteric ligands, 

including the partial agonists varenicline and cytisine, which have been approved as 

aids for smoking cessation (Rollema et al., 2007). There has also been considerable 

interest in the development of PAMs that target α4β2-containing receptors. 

Steroids are among compounds that act as endogenous PAMs of nAChRs. 17β-

oestradiol increases acetylcholine-evoked currents in the human α4β2 receptor and, 

more modestly, in the α4β4 receptor (Curtis et al., 2002). Galanthamine also potentiates 

α4β2 nAChRs, in addition to a number of other nAChR subtypes including α6β4 and 

α3β4 nAChRs (Samochocki et al., 2003). Both oestradiol and galanthamine increase the 

potency of the orthosteric agonist, without having a significant effect on the size of the 

maximum response. In contrast, desformylflustrabromine (dFBr) and some of its 

derivatives are α4β2 selective PAMs that increase the size of the maximum response 

and have very modest effect on the potency of the agonist (Sala et al., 2005; Kim et al., 

2007). LY-2087101 is another relatively non-selective nAChR PAM that increases 

maximum response size as well as potency of acetylcholine on α4β2 nAChRs (Broad et 

al., 2006). Other compounds that have been reported to potentiate α4β2 and α4β4 

nAChRs include the muscarinic antagonists atropine and scopolamine (Zwart & 

Vijverberg, 1997; Smulders et al., 2005). 

Receptors containing α4 and β2 subunits can exist in two different stoichiometries with 

distinct functional properties. The (α4)3(β2)2 subtype has a lower sensitivity to 

acetylcholine and it displays higher permeability to calcium and faster desensitisation 

kinetics in comparison to the (α4)2(β2)3 subtype (Zwart & Vijverberg, 1998; Buisson & 
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Bertrand, 2001; Nelson et al., 2003; Moroni et al., 2006). In addition, the two subtypes 

display some ligand selectivity. NS9283 (alternatively A-969933) is an α4β2-selective 

PAM with in vivo efficacy in models of pain (Lee et al., 2011; Zhu et al., 2011). 

NS9283 is selective for the (α4)3(β2)2 subtype and only shifts the agonist concentration 

response curve to the left without an effect on maximum response (Timmermann et al., 

2012; Grupe et al., 2013; Olsen et al., 2013). NS206, a PAM thought to act through a 

distinct binding site, can activate both stoichiometries and increases maximum efficacy 

(Olsen et al., 2013).  In contrast, HEPES is a selective PAM for the (α4)2(β2)3 subtype 

(Weltzin et al., 2014). 

In recent years, PAMs of α3-containing nAChRs have also been reported (Levandoski 

et al., 2003; Wu et al., 2008; Bürgi et al., 2014). For example, the anthelmintic 

compounds levamisole and morantel potentiate acetylcholine response on α3β2 and 

α3β4. Zinc potentiates a number of nAChR subtypes, including both α3- and α4-

containing subtypes (Hsiao et al., 2001; Vázquez-Gómez & García-Colunga, 2009) but, 

interestingly, shows selectivity for α4β2 nAChRs with the (α4)3(β2)2 stoichiometry 

(Hsiao et al., 2006; Moroni et al., 2008). Recent studies aimed at identifying binding 

sites for modulators such as zinc and morantel are discussed in section 1.6.4.3. 

1.6.4.2 Negative allosteric modulators 

In addition to PAMs, several endogenous and synthetic nAChR NAMs have been 

identified. NAMs are non-competitive antagonists that bind at an allosteric site and shift 

the equilibrium towards a non-conducting state. Open-channel blockers, which bind at 

the lumen of the open channel and sterically occlude the flow of ions, are not usually 

considered as NAMs, because they do not affect the gating or desensitisation 

equilibrium. However, it can be difficult to differentiate between open-channel block 

and increase in desensitisation (Gumilar et al., 2003). The tricyclic antidepressants 

imipramine, amitriptyline and doxepin have been shown to function as NAMs on 

nAChRs by mainly increasing the desensitisation rate of the receptor (Gumilar et al., 

2003). In addition, mecamylamine is a well-characterised non-selective nAChR NAM 

(Varanda et al., 1985; Banerjee et al., 1990; Martin et al., 1990; Papke et al., 2001). 

Endogenous NAMs include progesterone and neurosteroids (Arias, 1998; Pereira et al., 

2002) and Lynx-1 and 2 on α7 and α4β2 receptors (Ibañez-Tallon et al., 2002; Tekinay 

et al., 2009). Zinc inhibits responses on (α4)2(β2)3 and α3β2 in a voltage-dependent 
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manner, while it inhibits (α4)3(β2)2 subtypes at high concentrations in a voltage-

independent manner (Moroni et al., 2008). The endocannabinoid anandamide is also a 

NAM of nAChRs and other types of ligand- and voltage-gated ion channels (Oz, 2006). 

1.6.4.3 Allosteric binding sites 

Several experimental techniques have been employed with the aim of identifying the 

binding sites of allosteric modulators on nAChRs. The availability of a readily purified 

preparation of nAChR, for example from the electric organ of the marine ray Torpedo, 

has facilitated affinity labelling experiments that have provided direct evidence for the 

binding of ligands to sites other than the orthosteric site. This approach has identified 

sites for a variety of non-competitive antagonists interacting with the transmembrane 

domain (Pedersen et al., 1992; Middleton et al., 1999; Chiara et al., 2003; Ziebell et al., 

2004; Nirthanan et al., 2008; Hamouda et al., 2014). Affinity labelling studies have also 

identified binding sites for cholesterol within the nAChR transmembrane domain 

(Hamouda et al., 2006). In addition, more indirect approaches, such as computer-

docking studies, have been used. For example, docking studies with cholesterol have 

predicted binding sites in cavities within the transmembrane region (Brannigan et al., 

2008). Other experimental techniques aimed at identifying binding sites have included 

the construction of recombinant subunit chimeras, site-directed mutagenesis and 

SCAM. However, it is important to use a degree of caution when interpreting such 

studies. For example, if the mutation of an amino acid results in a change in the 

pharmacological properties of a ligand, it is not necessarily appropriate to conclude that 

this is a consequence of a change to the binding site (Colquhoun, 1998). Nevertheless, 

the combined use of a variety of approaches, including electrophysiological, 

pharmacological, biochemical and computational techniques can provide strong 

evidence for the location of ligand binding sites (Millar, 2009).  

Various sites and amino acids have been shown to be important for allosteric 

modulation. Studies using α7/5-HT3 subunit chimaeras, site-directed mutagenesis and 

docking simulations, have led to the proposal that α7-selective allosteric modulators 

such as LY-2087101, NS-1738 (type I PAMs) and PNU-120596 (a type II PAM) act via 

a binding site within an intra-subunit cavity that is located between the four 

transmembrane helices of a single subunit (Young et al., 2008; Collins et al., 2011). 

More recent studies have examined a series of nineteen α7-selective allosteric 
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modulators that differ only in methyl substitution of a single aromatic ring (Gill-Thind 

et al., 2015). Despite relatively small changes in chemical structure, the compounds 

examined displayed five distinct pharmacological effects on α7 nAChRs. These 

included effects typical of type I PAMs, type II PAMs, NAMs, silent allosteric 

modulators (SAMs) and allosteric agonists (Gill-Thind et al., 2015) and it has been 

proposed that all of these pharmacological effects can arise from ligands binding to a 

broadly similar or overlapping site located within the previously identified intrasubunit 

transmembrane cavity (Gill-Thind et al., 2015). Other studies are consistent with α7-

selective allosteric modulators such as NS-1738, PNU-120596 and A-867744 

interacting with a transmembrane site (Bertrand et al., 2008; Malysz et al., 2009; 

Sattelle et al., 2009). As would be expected, allosteric modulators that have been 

proposed to bind in a transmembrane location do not displace the binding of orthosteric 

radioligands such as [3H]-MLA or [3H]-α-bungarotoxin (Timmermann et al., 2007; 

Malysz et al., 2009; Gill-Thind et al., 2015). However, some unexpected results have 

been reported for the α7-selective PAM A-867744. Although A-867744 does not 

displace binding of [3H]-MLA from α7 nAChRs, in contrast to other PAMs, it has been 

reported to displace the binding of another agonist ([3H]-A-585539) that is thought to 

interact with the orthosteric site (Malysz et al., 2009). 

A transmembrane binding site in nAChRs has also been proposed for monoterpine 

compounds such as menthol and propofol (Ashoor et al., 2013a; Jayakar et al., 2013) 

and is consistent with evidence supporting a transmembrane binding site for 

monoterpines on other pentameric LGICs (Nury et al., 2011; Ashoor et al., 2013b; Yip 

et al., 2013; Lynagh & Laube, 2014; Lansdell et al., 2015). Affinity labelling studies 

with a photoreactive analogue of propofol identified three sites at which it bound within 

the transmembrane domain of muscle-type nAChRs, but concluded that the functionally 

relevant site for the inhibitory action of propofol was an intrasubunit site (Jayakar et al., 

2013), similar to that described earlier for α7-selective allosteric modulators such as 

NS-1738, PNU-120596 and 4BP-TQS (Young et al., 2008; Gill et al., 2011). Similarly, 

there is evidence for a transmembrane binding site for nAChR NAMs such as the 

endogenous cannabinoid anandamide (Oz et al., 2004; Oz et al., 2005; Jackson et al., 

2008) and also antihistamine compounds (Sadek et al., 2015). 
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As discussed earlier, the α7 subunit forms a homomeric nAChR. However, in addition, 

it can co-assemble with the β2 subunit to form a heteromeric α7β2 complex (Khiroug et 

al., 2002). One difference that has been reported in the allosteric modulation of these 

two nAChR subtypes is that α7β2 receptors, but not α7 receptors, are inhibited by the 

volatile anaesthetic isoflurane (Mowrey et al., 2013). On the basis of mutagenesis and 

computer docking studies, it has been proposed that isoflurane binds to the β2 

transmembrane domain (Mowrey et al., 2013). This is consistent with evidence for a 

transmembrane binding site for anaesthetics on other LGICs (Olsen et al., 2014b). 

There is also evidence that the macrocyclic lactone ivermectin acts as a nAChR PAM 

by interacting with a transmembrane site (Collins & Millar, 2010). Recently, a high-

resolution X-ray structure was obtained of ivermectin bound to a prokaryotic glutamate-

gated chloride channel (GluCl) with close structural similarity to nAChRs (Hibbs & 

Gouaux, 2011). These findings are consistent with ivermectin binding to an intersubunit 

transmembrane site, rather than the intrasubunit transmembrane site that has been 

proposed for smaller allosteric modulators (Young et al., 2008; Gill et al., 2011; 

Jayakar et al., 2013). Spinosad, like ivermectin, is a macrocyclic lactone pesticide that 

acts as an allosteric modulator of nAChRs (Kirst, 2010). Recent studies of spinosad-

resistant insects has identified a resistance-associated point mutation in the nAChR 

transmembrane domain that is consistent with spinosad binding to nAChRs in a similar 

intersubunit transmembrane site to the known binding site of ivermectin in GluCl 

(Puinean et al., 2013). 

It addition to the transmembrane domain, there are many other potential sites at which 

allosteric modulators might potentially interact with nAChRs, as is the case with other 

LGICs (Hogg et al., 2005; Forman & Miller, 2011). Whereas there are five potential 

agonist binding sites in a homomeric nAChR, there are expected to be just two or three 

functioning orthosteric agonist sites in heteromeric nAChRs. For example, the 

acetylcholine binding site in neuronal heteromeric nAChRs is at the interface between 

an α and β subunit, in which the α-type subunit forms the principal face and the β-type 

subunit the complementary face (designated α(+)/β(-)). However, it is possible that 

compounds can bind at equivalent positions at other subunit interfaces, for example at a 

β(+)/α(-) interface. Indeed, this has been proposed as a mechanism by which 

compounds such as morantel and dFBr can potentiate agonist-evoked responses (Wu et 
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al., 2008; Seo et al., 2009; Cesa et al., 2012; Short et al., 2015; Weltzin & Schulte, 

2015). Similarly, compounds interacting with the extracellular α4/α4 interface of 

(α4)3(β2)2 nAChR can act as PAMs (Olsen et al., 2013; Olsen et al., 2014a), just as the 

agonist interaction with this site may explain partial agonist activity (Mazzaferro et al., 

2011; Mazzaferro et al., 2014). In contrast, it has been proposed that HEPES acts as a 

potentiator of α4β2 nAChRs by interacting with the β(+)/β(-) interface and, as a 

consequence, is selective for receptors with the (α4)2(β2)3 stoichiometry (Weltzin et al., 

2014). Additionally, a binding site for NAMs at the α(+)/β(-) interface of α3β4 and 

α4β2 nAChRs has been predicted on the basis of computer docking studies and 

molecular dynamic simulations (González-Cestari et al., 2009; Henderson et al., 2010; 

Pavlovicz et al., 2011).  

As described earlier, the AChE inhibitor galanthamine is a relatively weak PAM of α7 

nAChRs (Maelicke & Albuquerque, 2000) and has been proposed to bind at the 

extracellular domain at a site that is distinct from the acetylcholine binding site 

(Luttmann et al., 2009; Ludwig et al., 2010). Galanthamine also potentiates α4β2 

nAChRs and a number of other nAChR subtypes including α6β4 and α3β4 nAChRs 

(Samochocki et al., 2003), by binding at a non-α subunit interface (Hansen & Taylor, 

2007). In addition, there is evidence that the binding site mediating the potentiating 

effects of calcium is located on the extracellular site of the α7 nAChR (Galzi et al., 

1996; Pereira et al., 2002). Another divalent cation, zinc, acts as a PAM of α4β2 

nAChRs but does so selectively on receptors with the stoichiometry (α4)3(β2)2 (Moroni 

et al., 2008). This has been explained by evidence that it interacts selectively with the 

α4(+)/α4(-) subunit interface, whilst inhibitory effects on (α4)2(β2)3 nAChRs are 

thought to be mediated by zinc binding to the α4(-)/β2(+) subunit interface (Moroni et 

al., 2008).  

1.6.4.4 Therapeutic uses 

There is considerable interest in modulating nAChRs in order to treat a number of 

nervous system disorders, such as Alzheimer’s disease, Parkinson’s disease, 

schizophrenia, depression and anxiety, tobacco addiction and myasthenia gravis. A 

number of orthosteric agonists, partial agonists and antagonists have been developed, 

but allosteric ligands that modulate nAChRs potentially have significant advantages. 

The nAChRs are a very diverse group of receptors, distributed throughout the nervous 
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system and involved in a great number of physiological processes. Therefore, subunit 

selectivity of ligands is a vital characteristic and it is likely to be more difficult to 

achieve with an orthosteric ligand, because the acetylcholine binding site is very similar 

between receptor subtypes. In addition, spatial and temporal specificity can be achieved 

with allosteric modulators, as they generally have low intrinsic activity, but only 

potentiate acetylcholine-evoked responses and could therefore have reduced toxicity 

and off-target effects. Numerous disorders provide targets for nAChR drug 

development with some examples described in section 1.8. 
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1.7 PHYSIOLOGICAL ROLE AND DISTRIBUTION 

Neuronal nAChRs are widely distributed throughout the CNS and PNS, with distinctly 

localised expression patterns in a region- and cell-specific manner. In the brain, the 

predominant subunits expressed are the α4, α7 and β2, while in the periphery the α3 and 

β4 are the most prevalent subunits (Paterson & Nordberg, 2000). The nAChRs are 

involved in numerous physiological and pathophysiological processes. In addition, the 

heterogeneity of the native receptors, mainly in the CNS, provides opportunities for the 

development of therapeutic agents that target certain populations of receptors and the 

functions they modulate, without affecting other aspects of cholinergic transmission. 

However, the identification of the exact subunit composition of native nAChR subtypes 

and their roles in cholinergic transmission has been complicated by the large number of 

neuronal nAChR subunit combinations that can form functional receptors. 

1.7.1 Central nervous system 

The predominant nAChR subunits expressed in CNS are α4, β2 and α7. It is generally 

accepted that these subunit form the two major nAChR subtypes in the CNS, with 

α4β2* receptors forming most of the high affinity receptors and the α7* receptors 

forming the low affinity nAChRs. Initially, the two major receptor subtypes were 

distinguished by using radiolabelled nicotine, cytisine or epibatidine to label α4β2* 

nAChRs and radiolabelled bungarotoxin to label α7* nAChRs (Clarke et al., 1985). 

Studies have also demonstrated that α4 or β2 knockout mice lose most of the high 

affinity [3H]-nicotine binding sites (Picciotto et al., 1995; Marubio et al., 1999) and α7 

knockout mice lack α-bungarotoxin binding (Orr-Urtreger et al., 1997). 

The α4 and β2 messenger ribonucleic acid (mRNA) and protein expression patterns 

strongly overlap in areas such as the cortex, hippocampus and thalamic regions (Wada 

et al., 1989). The α7 subunit is also widely distributed in the brain, with the highest 

expression also in the cortex and hippocampus, while it is absent or expressed in low 

levels in thalamic regions and basal ganglia (Picciotto et al., 2001). The distribution of 

other nAChR subunits is more limited in the brain. α3 and β4 subunits are found in 

lower levels and are localised in regions such as the medial and dorsal habenula, the 
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interpeduncular nucleus and the locus coeruleus (Zoli et al., 1998). The expression of 

the α2 nAChR has not been studied in great detail, but this subunit appears to be 

expressed in very few brain regions with the highest expression in the interpeduncular 

nucleus, where it is believed to form α2β4* receptors (Wada et al., 1989). The 

distribution of subunits α6 and β3 in the CNS is also very limited, with the two subunits 

highly co-localised and found at high levels in the substantia nigra, ventral tegmental 

area, locus coeruleus, interpeduncular nucleus and medial habenula (Kuryatov et al., 

2000; Cui et al., 2003). The α5 subunit is also found in relatively few CNS regions, 

displaying the highest expression levels in the substantia nigra, the ventral tegmental 

area, the medial habenula and certain cortical regions (Picciotto et al., 2001). A 

summary of the information collected on nAChR subtype distribution in the rodent 

brain is shown in Figure 1.6. 

The numerous subtypes of neuronal nAChRs are located in pre- and postsynaptic 

regions in cholinergic neurons throughout the CNS, where they are involved in various 

processes connected to cognitive function, arousal, reward, learning and memory. 

Furthermore, presynaptic nAChRs have an essential role in modulating the release of 

acetylcholine and other neurotransmitters, such as noradrenaline (Clarke & Reuben, 

1996), dopamine (Giorguieff et al., 1977; Wonnacott et al., 1989; Rapier et al., 1990; 

Grady et al., 1992), GABA (Yang et al., 1996) and glutamate (Kaiser & Wonnacott, 

2000). Activation of presynaptic nAChRs leads to an increase in intracellular calcium 

concentration, via voltage-dependent calcium channels or direct calcium influx through 

the nAChR channel, which leads to neurotransmitter exocytosis. The release of a 

particular neurotransmitter can be regulated by different nAChR subtypes in different 

regions of the brain. Frequently, nAChRs mediate the release of a neurotransmitter 

indirectly and are not actually located on the same neuron. Subtypes of nAChRs, such 

as α4β2*, α7* and α3β4* have also been found postsynaptically (Sher et al., 2004). The 

role at postsynaptic nAChRs is not as clear as presynaptically, but their activation is 

thought to have a long-term effect on metabolic pathways and gene expression, through 

calcium influx, which activates calcium-dependent kinases, such as protein kinase C 

(Picciotto et al., 2001).  
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Figure 1.6: Distribution of nAChR subtypes in the rodent brain (figure adapted from 
(Millar & Gotti, 2009)). 

Sagittal brain section showing nAChR subtypes expressed in different areas of the rodent CNS. 
The nAChR subtypes shown in the cortex, cerebellum, hippocampus, interpeduncular nucleus, 
medial habenula and pineal gland have been deducted from binding, immunoprecipitation 
and/or immunopurification assays in tissues from rat and/or from wild-type/knock-out mice. 
The nAChR subtypes shown in the amygdala, hypothalamus, locus coeruleus, olfactory bulb, 
raphe nuclei, spinal cord, thalamus and substantia nigra-ventral tegmental area have been 
deduced on the basis of the results of in situ hybridisation, single cell PCR, binding studies or 
functional assay of tissues obtained from rat and/or wild-type/knock-out mice (as reviewed in 
(Picciotto et al., 2001; Drago et al., 2003; Gotti & Clementi, 2004; Jensen et al., 2005)). 
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α4α5β2 

Hypothalamus 
α4β2, α7 

Substantia nigra 
Ventral tegmental area 
α3β4*, α4β2, α4α5β2,  
α6β2β3*, α7 

Amygdala 
α4β2, α7 

Striatum 
α4β2, α4α5β2,  
α6β2β3, α6α4β2β3 
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The α4β2* nAChR subtype is expressed throughout the CNS and, like most other 

subtypes, is primarily located presynaptically (Wonnacott, 1997). It exhibits high 

affinity for nicotine, however the exact composition in the brain is not clear. Functional 

receptors with different α:β subunit ratios can be formed, while other subunits, such as 

the α5 have been shown to participate in the formation of the receptor. α4β2 nAChR 

sensitivity for agonists depends on the stoichiometry, with (α4)2(β2)3 receptors being 

approximately 100 times more sensitive than (α4)3(β2)2 receptors (Moroni et al., 2006). 

The α4β2 receptor plays an important role in nociception, learning and memory and it 

directly mediates the cognitive and addictive effects of nicotine (Picciotto et al., 1998). 

Studies with nAChR knockouts and null mutants have been very useful in determining 

the physiological roles of different receptor subtypes. β2-/- knockout mice exhibit 

reduced levels of nicotine self-administration and reduced nicotine-induced memory 

enhancement (Picciotto et al., 1998; Pocivavsek et al., 2006). In addition, α4β2 

nAChRs are amongst the most susceptible receptors for nicotine-induced up-regulation 

(Govind et al., 2009). 

The other major nAChR subtype in the brain, the α7* receptor, is characterised by low 

agonist sensitivity, high affinity for α-bungarotoxin and fast desensitisation. It also has 

high calcium permeability, with pCa2+/pNa+ ratio of ≥10:1 (Bertrand et al., 1993). This 

high calcium permeability is important for the α7 nAChR role in modulating gene 

expression and metabolic processes, while the rapid desensitisation kinetics limit 

calcium influx to non-toxic levels. In general, β2-containing nAChRs have been found 

to be involved in more neurobehavioural functions than α7 nAChRs. A study using α7-/- 

knockout mice demonstrated that the mice exhibited an overall healthy phenotype with 

no gross abnormalities in brain development (Orr-Urtreger et al., 1997). However, more 

recent mouse knockout studies indicate cognitive deficits and effects in chronic nicotine 

self-administration due to lack of α7 nAChRs (Levin et al., 2009). The α7 nAChR is the 

only subunit known to form functional homomeric receptors in the mammalian brain 

and is thought to exist predominantly in the homomeric form. Recently, however, α7 

subunits were shown to co-assemble with β2 subunits to form functional heteromeric 

α7β2 nAChRs with different pharmacology than the homomeric receptors in vitro 

(Khiroug et al., 2002; Zwart et al., 2014). There is increasing evidence that α7β2 

nAChRs exist natively in the hippocampus and basal forebrain and they exhibit 

increased sensitivity to modulation by amyloid peptides, an observation which could 
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give insight into the involvement of nAChRs in the pathophysiology of Alzheimer’s 

disease (Liu et al., 2009; Liu et al., 2012; Mowrey et al., 2013; Moretti et al., 2014). In 

addition to the gene encoding the nAChR α7 subunit (CHRNA7), a partially duplicated 

variant (CHRFAM7A) has been identified in the human genome (Gault et al., 1998; 

Riley et al., 2002) and mutations on both of these genes (CHRNA7 and CHRFAM7A) 

have been linked to a number of pathological conditions, such as schizophrenia 

(Freedman et al., 1997; Leonard et al., 2002; Flomen et al., 2006; Sinkus et al., 2009). 

CHRFAM7A encodes a fusion protein (dupα7), corresponding to the ion channel 

domain of α7 fused to an unrelated gene at its N-terminus. There is evidence, admittedly 

only in recombinant systems, that dupα7 can co-assemble with the α7 subunit and exert 

a dominant-negative effect, resulting in reduced functional expression of α7 nAChRs 

(Araud et al., 2011; Wang et al., 2014). 

1.7.2 Peripheral nervous system 

In contrast to the CNS, nAChRs in the PNS are located mainly postsynaptically and 

mediate fast synaptic transmission. As discussed in section 1.3.3, muscle nAChRs with 

the stoichiometry (α1)2β1εδ (or (α1)2β1γδ in the foetal form) are located mainly at the 

postsynaptic density of the NMJ. Muscle nAChRs convert signals of the somatic PNS 

into skeletal muscle contractions. Activation of nAChRs by the release of acetylcholine 

in the synapse leads to depolarisation of the muscle cell. This depolarisation induces 

calcium release from the sarcoplasmic reticulum, which in turn leads to muscle 

contraction via the sliding filaments mechanism (Huxley, 2008). 

α3 and β4 are the main nAChR neuronal subunits expressed in the PNS and the α3β4* 

nAChRs are thought to be the principal nAChR expressed in the periphery (Corriveau 

& Berg, 1993; Mandelzys et al., 1994), while there is very little or no expression of the 

α4 subunit (Rust et al., 1994). The α3 and β4 subunit co-immunoprecipitate in rat 

trigeminal ganglia, while other subunits such as α5 and β2 are thought to co-assemble 

with the α3 and β4 subunits to form ganglionic receptors (Vernallis et al., 1993; Conroy 

& Berg, 1995). α3β4* nAChRs are mostly found on postsynaptic membranes of 

ganglionic neurons and mediate fast excitatory transmission, with the importance of 

these receptors demonstrated with knockout studies. α3 knockout mice exhibit a severe 
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phenotype with high mortality rate in the first week (Xu et al., 1999a). The β4 knockout 

mouse does not exhibit a dramatic phenotype, however, the double β2 and β4 knockout 

gives rise to a lethal phenotype and, therefore, it is thought that the β2 subunit 

participates in a compensatory mechanism in the case of β4 knockout (Xu et al., 

1999b). In addition, recent studies have demonstrated that nAChRs expressed in dorsal 

root ganglion neurons include α3β4, α6β4 and α7 nAChR subtypes (Smith et al., 2013). 

1.7.3 Non-neuronal tissues 

Numerous nAChR subunits are expressed outside the CNS and PNS and are thought to 

be involved in various important cell functions. There is evidence that nAChRs have an 

important role in inflammation, as α7 and α4β2 nAChR subtypes are expressed in 

macrophages and their activation leads to reduction in secretion of pro-inflammatory 

agents (Borovikova et al., 2000; Matsunaga et al., 2001; Wang et al., 2003). 

Furthermore, nAChRs are thought to be involved in angiogenesis, with a number of 

nAChR subtypes expressed on endothelial cells, which are necessary for the process of 

angiogenesis (Heeschen et al., 2001). The most important subtypes are believed to be 

the homomeric α7 and heteromeric receptors containing a combination of α3, α5, β2 

and β4 subunits (Heeschen et al., 2002; West et al., 2003). Other non-neuronal tissues 

that express nAChRs to regulate various cellular functions include muscle, vascular 

tissue, lung cells, skin and lymphoid tissue (Gotti & Clementi, 2004). 
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1.8 ROLE IN DISEASE 

Nicotinic receptors play an essential physiological role and both muscle and neuronal 

nAChRs have been implicated in numerous pathophysiological conditions. Muscle 

nAChRs are directly involved in neuromuscular diseases such as myasthenia gravis and 

congenital myasthenic syndrome, while neuronal nAChRs are implicated in 

neurodegenerative and neurodevelopmental disorders, including Alzheimer’s disease, 

Parkinson’s disease, schizophrenia, autism, Tourette’s syndrome, anxiety, depression 

and epilepsy. The involvement of nAChRs in some of these disorders is summarised 

below. 

1.8.1 Myasthenia gravis and congenital myasthenic syndrome 

Myasthenia gravis is a debilitating autoimmune muscle weakness disease, characterised 

by antibodies that target the NMJ. The most common form of myasthenia gravis 

involves antibodies that target the postsynaptic muscle nAChRs, while some less 

common forms are due to antibodies against muscle specific tyrosine kinases, which are 

thought to be involved in the clustering of nAChRs in the postsynaptic membrane 

(Conti-Fine et al., 2006). The trigger that initiates antibody production against nAChRs 

in myasthenia gravis is not clearly understood. These antibodies are thought to target a 

region of the extracellular N-terminus of the receptor subunits (Dellisanti et al., 2007) 

and promote the internalisation and degradation of the receptors. 

In addition to acquired myasthenia gravis, congenital myasthenic syndromes exist that 

exhibit similar pathophysiological profiles. These syndromes are the result of gene 

mutations, rather than autoimmune reaction. The mutated genes usually code for 

nAChR subunits, as well as proteins that regulate nAChR post-translational 

modification, receptor clustering and NMJ maintenance (Cruz et al., 2014). 

1.8.2 Alzheimer’s disease 

Alzheimer’s disease (AD) is a neurodegenerative disorder characterised by progressive 

cognitive decline and a loss of neurons and represents the major cause of dementia for 
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people aged over 60. Some inherited forms of AD have provided insight into the 

mechanism of the disease, namely that accumulation of misfolded amyloid β (Aβ) 

peptides is the trigger for synaptic and neural network dysfunction (Wang et al., 2000; 

Dougherty et al., 2003). AD is characterised by loss of cholinergic synapses mainly in 

the cerebral cortex, basal forebrain and hippocampus (Kása et al., 1997) and by a 

reduction in muscarinic and nicotinic AChR expression (Court et al., 2001). α7* and 

α4β2* nAChR subtypes are particularly sensitive to Aβ peptides and the observation 

that Aβ preferentially accumulates in brain areas that are enriched in α7* and α4β2* 

nAChRs may provide some insight into the susceptibility of the neocortex and 

hippocampus to Aβ toxicity (Dineley, 2007; Parri et al., 2011). 

The cholinergic deficit in AD has led to the use of AChE inhibitors for the symptomatic 

treatment of the disease. AChE inhibitors, such as galanthamine, improve memory and 

other cognitive functions and there is evidence that their effects are not only mediated 

due to an increase in acetylcholine in the synapse; for example, galanthamine has PAM 

effects on α7 and α4β2 nAChRs (Maelicke et al., 2001; Samochocki et al., 2003). 

Furthermore, ligands that selectively enhance α4β2 and α7, such as PAMs, have been 

shown to improve cognitive deficits associated with Alzheimer’s disease (Hurst et al., 

2005; Thomsen et al., 2011; McLean et al., 2012; Callahan et al., 2013). 

1.8.3 Parkinson’s disease 

Parkinson’s disease is the second most common neurodegenerative disorder after AD 

(Mayeux, 2003). It is a movement disorder characterised by postural instability, 

bradykinesia, tremor and rigidity (Poewe, 2009; Schapira et al., 2009). These motor 

symptoms are caused by degeneration of the nigrostriatal dopaminergic pathway, which 

is the most severely affected neurotransmitter pathway in Parkinson’s disease. Other 

CNS systems are affected to a lesser extent, including the adrenergic, cholinergic, 

glutamatergic and GABAergic systems, which may underline the non-motor symptoms 

of Parkinson’s disease, such as cognition deficits and sleep dysfunction (Poewe, 2009). 

A complex mixture of genetic and environmental factors is believed to be responsible 

for the development of Parkinson’s disease, with a small minority of familial cases 

linked to mutations in a number of genes. Environmental factors have also been linked 



 73 

to Parkinson’s disease; the greatest risk factor is exposure to pesticides, while tobacco 

use is believed to provide some protection against Parkinson’s (Quik et al., 2009). 

There is strong evidence for a link between nAChRs and Parkinson’s disease. There is 

extensive anatomical and functional overlap between the nicotinic cholinergic and 

dopaminergic systems in the nigrostriatal pathway (Bolam et al., 2000; Smith & Kieval, 

2000; Misgeld, 2004; Maskos, 2008, 2010) and studies suggest that ligands modulating 

nAChRs, specifically α4β2* and α6β2* subtypes, such as nicotine, may protect against 

nigrostriatal damage, as well as alleviate motor side effects associated with dopamine 

replacement therapy (Quik & Wonnacott, 2011). 

1.8.4 Schizophrenia 

Schizophrenia is a neurodevelopmental disorder characterised by symptoms of 

hallucinations and delusions, but also by cognitive symptoms caused by deficits in 

sensory gating (Sharma & Antonova, 2003). Smoking prevalence is much higher among 

patients with schizophrenia and may be a form of self-medication, as it may normalise 

some of the sensory deficits associated with the disease (Leonard et al., 2007). A 

reported feature of schizophrenia is a decrease in the number of α7* nAChRs in the 

hippocampus of patients and nicotine administration improves sensory gating, 

presumably through α7 activation (Freedman et al., 1995; Stevens & Wear, 1997; 

Schaaf, 2014). In addition, a direct genetic link between schizophrenia and the genes 

encoding the α7 nAChR subunit (CHRNA7), as well as the truncated version of α7 

(CHRFAM7A), has been established (Freedman et al., 1997; Leonard et al., 2002). It 

has been reported that a number of type-I and type-II PAMs that target α7 nAChRs, 

such as NS-1738 (Timmermann et al., 2007), PNU-120596 (Hurst et al., 2005) and A-

867744 (Faghih et al., 2009), can partially restore auditory gating deficits in mutant 

mice. Therefore, drugs that selectively enhance α7 nAChRs could potentially be used as 

therapeutic agents in the treatment of schizophrenia.  
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1.9 THESIS AIMS 

The main aim of this thesis is to increase our understanding of neuronal nAChR 

function and their modulation by allosteric ligands. A series of novel PAMs have been 

synthesised at UCL with the aim of characterising their selectivity and pharmacological 

effects on α7 nAChRs. These novel PAMs, in addition to classical PAMs, will be used 

as a tool to explore the molecular mechanisms of recombinant human α7 nAChRs. 

More specifically, the action of PAMs will be examined on α7 nAChRs with single-

point mutations on residues that are potentially implicated in receptor gating and/or 

desensitisation (W54A, L247T and M260L). In addition, the pharmacological properties 

of nAChRs expressed in human neurons derived from induced pluripotent stem cells 

will be examined. 
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1 MOLECULAR BIOLOGY TECHNIQUES 

2.1.1 Plasmids 

Several plasmid constructs used in this thesis have been described previously. These 

include plasmids containing α7 cDNA in pSP64GL (Broadbent et al., 2006), mouse 5-

HT3A in pRK5 (Harkness & Millar, 2001) and a rat α7/mouse 5-HT3A chimaera 

(α74TM-5-HT3A) in pcDNA3.1 (Gee et al., 2007). Human α3, human α4, human β2 and 

human β4 nAChR subunit cDNAs in the plasmid pSP64GL were provided by Professor 

Lucia Sivilotti. 

2.1.2 Restriction digestion of DNA 

Restriction digestion of DNA was usually performed under standard conditions. 

Enzymes were purchased from Roche or New England Biolabs. Approximately 1 μg of 

plasmid DNA was incubated along with ~5 U of restriction enzyme and 2 μl of the 

appropriate 10x reaction buffer in a final volume of 20 μl (if a larger quantity of DNA 

was required the above volumes were extrapolated to a final volume of 50 μl). The 

digests were mixed by gentle pipetting and incubated for 1 hour at the appropriate 

temperature for the restriction enzyme as recommended by the supplier (usually 37°C). 

Digested DNA was examined by gel electrophoresis alongside non-digested DNA to 

ensure the enzyme digested the DNA as expected. 

2.1.3 DNA ligation 

Ligations were performed in a final volume of 20 μl containing ~1 U of T4 DNA ligase 

(Roche) 10x T4 DNA ligase buffer and DNA (various concentrations were used when 

optimising ligations, with molar ratios varying from 1:2 to 1:10 vector: insert). Ligation 

reactions were incubated at 14°C overnight and were used directly for transformation of 

bacterial cells. 
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2.1.4 Site-directed mutagenesis 

Site-directed mutagenesis (SDM) was performed on human α7 nAChR subunit cDNA 

in plasmid pSP64GL using the QuikChange mutagenesis kit (Stratagene) according to 

manufacturer’s guidelines. Two complementary synthetic mutagenic oligonucleotide 

primers were synthesised (Sigma-Aldrich). The primers were designed using the 

following criteria: 

• Typically 25 bases in length with the mutation in the middle of the primer (~10 

bases of correct sequence on both sides of the mutation) 

• Melting temperature greater than or equal to 78°C 

• GC base content of at least 40% 

• Should terminate in one or more C or G bases 

All primers were purified by polyacrylamide gel electrophoresis (PAGE) to improve 

mutation efficiency (as recommended by the manufacturer). 

The SDM reactions were performed in a final volume of 50 μl containing 50 ng of 

plasmid DNA template, 125 ng of each complementary oligonucleotide primer, 1 μl of 

deoxyribonucleotide triphosphate (dNTP) mix (concentration not disclosed by 

manufacturer), 5 μl 10x reaction buffer and 1 μl of PfuTurbo DNA polymerase (2.5 

U/μl). 

The PCR reaction was performed as follows: 

• 95°C for 30 seconds (to denature the double-stranded plasmid DNA) 

• 55°C for 1 minute (to anneal the oligonucleotide primers containing the 

mutation) 

• 68°C for 1 minute per kilobase of plasmid length (to extend and incorporate the 

mutagenic primers) 

• 12-18 PCR cycles (typically 16) were performed, depending on the number of 

mutated residues 

The non-mutated parental DNA template was digested with DpnI restriction enzyme (10 

U/μl), added directly to the amplification reaction and incubated at 37°C for 1 hour. 
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XL1-Blue supercompetent Escherichia coli (E. coli) cells (Stratagene) were then 

transformed with the remaining DpnI-treated DNA (section 2.1.5). 

2.1.5 XL1-Blue supercompetent cell transformation  

The XL1-Blue supercompetent E. coli cells were stored at −80°C and were gently 

thawed on ice before use. 50 μl of these cells were added to a pre-chilled polypropylene 

tube (Falcon 2059, Becton Dickinson) where 1 μl (~1 ng) of DpnI-treated DNA was 

added then swirled gently to mix. This was incubated on ice for 30 minutes. The 

mixture was then heat shocked at 42°C for 45 s and then placed on ice for 2 minutes. 

The mixture was then incubated in 500 μl of pre-warmed SOC (prepared according to 

manufacturer’s guidelines, containing (g/l): 20 tryptone; 5 yeast extract; 0.5 NaCl; 3.6 

glucose) at 37°C for 1 hour, while shaking at 225 rpm. Next, 50-100 μl of the 

transformation mix was plated out into LB-ampicillin (50 μg/ml) agar plates and 

incubated at 37°C for ~16 hours. 

Bacterial colonies were used to prepare plasmid DNA (section 2.1.6 and 2.1.7) and were 

subsequently verified by nucleotide sequencing (section 2.1.9). 

2.1.6 Small-scale plasmid DNA preparation 

A small-scale preparation of plasmid DNA was often produced from recombinant E. 

coli cultures for sequencing the DNA using the GeneJET Plasmid Miniprep Kit 

(Thermo Fisher Scientific) according to the manufacturer’s guidelines. 

A single E. coli colony was transferred using a pipette tip to 3.5 ml of LB medium 

supplemented with ampicillin (50 μg/ml). The culture was then incubated for 12-16 

hours at 37°C, while shaking at 225 rpm. The bacterial culture was harvested by 

centrifugation at 6800 g for 15 minutes at 4°C. The supernatant was then aspirated and 

the pelleted cells were resuspended in 250 µl of the GeneJET Resuspension Solution!
(Tris-HCl, pH 8) and pipetted up and down, until no clumps remained. The cell 

suspension was then transferred to an Eppendorf tube, where 250 µl of the GeneJET 

Lysis solution were added and mixed thoroughly by inverting the tube 6 times. 350 µl 
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of the GeneJET Neutralisation Solution were then added and mixed immediately by 

inverting the tube 6 times. The mixture was then centrifuged at 13000 g for 5 minutes at 

room temperature to pellet the cell debris and chromosomal DNA. The supernatant was 

then transferred to a GeneJET spin column by pipetting while trying to avoid disturbing 

the precipitate and then centrifuged for 1 minute. The flow-through was discarded and 

the column was placed back in the same collection tube. 500 µl of the GeneJET Wash 

Solution were then added to the spin column and then centrifuged for 1 minute and the 

flow-through was discarded and the column was placed back in the same collection 

tube. The procedure was repeated again using 500 µl of the Wash Solution. This was 

then centrifuged for an additional minute to avoid residual ethanol in the plasmid 

preparation. The GeneJET spin column was then transferred into a fresh Eppendorf tube 

and 50 µl of the GeneJET Elution Buffer (10 mM Tris-HCl, pH 8.5) were added to the 

centre of the spin column membrane to elute the plasmid DNA. This was incubated for 

2 minutes at room temperature and then centrifuged for 2 minutes. The column was then 

discarded and the purified plasmid DNA was analysed by agarose gel electrophoresis 

(section 2.1.8) and then stored at −20°C. 

2.1.7 Large-scale plasmid DNA preparation 

Large-scale preparation of plasmid DNA was performed using the GenElute HP 

Maxiprep Kit (Sigma-Aldrich) according to manufacturer’s guidelines, which is a 

modified alkaline lysis procedure. 

A single E. coli colony was transferred using a pipette tip to 250 ml of LB medium 

supplemented with ampicillin (50 µg/ml). The culture was then incubated for 12-16 

hours at 37°C, while shaking at 225 rpm. The bacterial culture was then harvested by 

centrifugation at 6000 g for 15 minutes at 4°C. The supernatant was then aspirated and 

the pelleted cells were resuspended in 12 ml of chilled Resuspension buffer (50 mM 

Tris-HCl, pH 8; 10 mM EDTA; 100 µg/ml RNase A) and pipetted up and down until no 

clumps remained. 12 ml of Lysis buffer (200 mM NaOH, 1% SDS) were then added to 

the cell suspension and mixed by inverting the tube 6-8 times. This was then incubated 

at room temperature for 5 minutes. 12 ml of chilled Neutralisation buffer (3 M 

potassium acetate, pH 5.5) were then added and mixed by inverting the tube 4-6 times. 
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9 ml of Binding solution were added and mixed by inverting 1-2 times. The bacterial 

lysate was poured into a filter syringe and incubated at room temperature for 10 

minutes. A GenElute HP Maxiprep binding column was then equilibrated by applying 

12 ml Column Preparation solution (750 mM NaCl; 50 mM MOPS, pH 7; 15% 

isopropanol; 0.15% Triton X-100) and spinning in a swinging bucket rotor at 3000 g for 

2 minutes. The plunger was inserted into the filter syringe and the lysate was filtered 

into the previously equilibrated binding column. The lysate was then allowed to enter 

the resin by spinning at 3000 g for 2 minutes. The binding column was washed with 12 

ml Wash solution (1 M NaCl; 50 mM MOPS, pH 7; 15% isopropanol). After spinning 

at 3000 g for 2 minutes the eluate was discarded. The plasmid DNA was then eluted by 

adding 3 ml Elution buffer (10 mM Tris-HCl, pH 8.5) to the binding column and 

spinning at 1000 g for 5 minutes. 

The purified plasmid DNA was analysed by agarose gel electrophoresis (section 2.1.8), 

quantified using a spectrophotometer (section 2.1.9) and then stored at −20°C. 

2.1.8 Agarose gel electrophoresis 

Circular plasmid DNA, restriction fragments and SDM products were separated on an 

ethidium bromide-containing 1% agarose gel. The gel was prepared with 1 g 

electrophoresis grade agarose (Invitrogen) in 100 ml of TAE buffer solution containing 

(mM): 40 Tris-acetate and 0.1 ethylenediaminetetraacetic acid (EDTA) and heated until 

molten. The molten solution was cooled to ~50°C and 5 µl of 10 mg/ml ethidium 

bromide was added and swirled to mix. This mixture was then poured into a gel 

electrophoresis casting set and a comb was inserted to create the DNA wells. This was 

left to set at room temperature for ~1 hour. 

A DNA ‘ladder’ (1 µg HindIII digested Phage λ DNA (Invitrogen)) was separated in 

parallel with the DNA samples to enable the size of the linear DNA fragments to be 

determined. The DNA samples were mixed with 2 µl blue loading dye, 1x (Promega) in 

a final volume of 20-100 µl and were then loaded onto the gel. Electrophoresis was 

performed in an electrophoresis tank filled with 1x TAE buffer under a constant voltage 

of 150 mV for 40 minutes. The DNA was then visualised and an image was captured 
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using a camera and ultraviolet (UV) transilluminator (UVP BioDock-It System) and 

printed with a Sony UP-895MD printer. 

When purified DNA was needed from the gel for subsequent sub-cloning, a low-melt 

gel was made using low-melt electrophoresis grade agarose (Invitrogen). DNA was 

excised from gels using a flatbed UV screen to visualise the bands and a sterile scalpel. 

The excised bands were placed into a sterile Eppendorf tube immediately. DNA was 

purified from the gel using the Wizard clean up purification system (Promega), 

according to manufacturer’s guidelines. Briefly, the agarose/DNA complex was melted 

and mixed with a solution of DNA-binding resin at 70°C on a hot block. The mix is 

then isolated on a mini-column containing DNA affinity beads, washed with ethanol 

and eluted from the column using 50 µl sterile water and centrifugation. A small amount 

(2 µl) of the purified DNA was examined by gel electrophoresis to access its purity. 

2.1.9 Determination of DNA yield 

The concentration of DNA plasmid stocks was determined by using a Nanodrop 

spectrophotometer (Thermo Scientific) at a wavelength of 260 nm. The sample purity 

was determined by the ratio of the absorbance at 260:280 nm, with a ratio of ~1.8 

indicating a preparation free from contamination. If the ratio is appreciably lower, it 

may indicate the presence of protein or other contaminants that absorb strongly at 280 

nm. 

2.1.10 DNA nucleotide sequencing 

DNA nucleotide sequencing was performed using fluorescence-based capillary 

sequencing with the ABI Prism BigDye Terminator Sequencing Ready Reaction Kit 

version 1.1 (Applied Biosystems) and ABI Prism 3100-Avant Genetic Analyser 

(Applied Biosystems) according to the manufacturer’s guidelines. The reaction was 

carried out in a total volume of 20 μl containing 150-300 ng of DNA template, 3.2 pmol 

of the sequencing primer (typically 18-22 bases in length), 4 μl of 2.5x Ready Reaction 

Premix (dye-labelled dNTP terminators, unlabelled dNTPs, AmpiTaq DNA polymerase 
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and MgCl2), 2 μl BigDye Sequencing Buffer 5x and nuclease-free water to 20 μl.!The!
thermocycling!reaction!was!performed!as!follows:!

• 96°C for 30 s (to denature the double-stranded plasmid DNA) 

• 50°C for 15 s (to anneal the oligonucleotide primer) 

• 60°C for 4 minutes per kilobase of plasmid length (to extend and incorporate the 

primer) 

• Typically 25 cycles were performed 

Following this reaction, DNA was precipitated by the addition of 2 µl sodium acetate (3 

M) and 50 µl 100% ethanol. This was incubated on ice for 15 minutes, then transferred 

to an Eppendorf and centrifuged at 13,000 g for 15 minutes at 4°C. The supernatant was 

aspirated and the pellet washed in 500 µl of 70% ethanol. Residual ethanol was 

removed by evaporation. 

Just prior to sequencing, the DNA pellet was resuspended in 10 µl of formamide and 

loaded into the ABI Prism 3100-Avant Genetic Analyser. Fluorescent DNA fragments 

were run on a 50 cm capillary using a POP-6 polymer (Applied Biosystems) and the 

sequences were digitalised using ABI Prism 3100-Avant Data collection version 1.0 

software (Applied Biosystems). Sequence analysis was performed on MacVector 12.5.1 

software. 

2.1.11 Linearisation of DNA 

Prior to in vitro synthesis of cRNA, plasmid DNA needed to be linearised in order to 

prevent long, heterogeneous RNA transcripts. Plasmid DNA was linearised with a 

restriction enzyme downstream of the insert. Plasmid pSP64GL containing wild type or 

mutated nAChR subunit cDNA was linearised with BamHI (Roche) according to 

manufacturer’s protocol. Approximately 1 μg of plasmid was linearised with 1 U of the 

restriction enzyme, 2.5 μl of 10x Buffer B (100 mM Tris-HCl; 1 M NaCl; 50 mM 

MgCl2; 20 mM 2-mercaptoethanol, pH 8) (Roche) and an appropriate volume of 

distilled water was added to make the reaction volume to 25 μl. The reaction was gently 

mixed by pipetting and then incubated at 37°C for 1 hour. 
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The linearised DNA was examined using agarose gel electrophoresis to confirm that 

cleavage is complete and then was purified (section 2.1.12). 

2.1.12 Purification of DNA 

Following restriction, DNA was purified with the QIAquick PCR purification kit 

(Qiagen) according to the manufacturer’s guidelines. 

Buffer PB (5 volumes) was added to 1 volume of the DNA and mixed. A QIAquick 

column was placed in the 2 ml collection tube provided. To bind the DNA, the sample 

was added to the QIAquick column and centrifuged at 13000 rpm for 1 minute at room 

temperature. The flow-through was discarded and the QIAquick column was placed 

back in the same tube. To wash the DNA, 750 μl Buffer PE were added to the QIAquick 

column and centrifuged at 13000 rpm for 1 minute at room temperature. The flow-

through was discarded and the QIAquick column was placed back in the same tube. The 

column was centrifuged for an additional minute at 13000 rpm. To elute the DNA, the 

QIAquick column was transferred to a clean Eppendorf tube and 30 μl of nuclease-free 

water were added to the centre of the QIAquick membrane. The column was left to 

stand for 1 minute and then was centrifuged at 13000 rpm for 1 minute. The DNA was 

examined using agarose gel electrophoresis and then stored at −20°C. 

2.1.13 In vitro RNA synthesis 

In vitro synthesis of cRNA was performed using mMessage mMachine SP6 

transcription kit (Ambion) according to the manufacturer’s instructions. Linear plasmid 

DNA (4 μl of 250 ng/μl) containing the SP6 RNA polymerase promoter was added to 

10 μl of 2x NTP/CAP (a neutralised buffer solution containing (mM): 10 ATP, 10 CTP, 

10 UTP, 2 GTP, 8 cap analogue), 2 μl 10x Reaction Buffer (containing salts, buffer, 

dithiothreitol), 2 μl of Enzyme Mix (buffered 50% glycerol containing RNA 

polymerase, SUPERase!In and other ingredients) and 2 μl nuclease-free water. The 

reaction was mixed gently and incubated at 37°C for 2 hours. Following this reaction, 1 

μl TURBO DNase (2 U/μl) was added and incubated at 37°C for 15 minutes to remove 

the template DNA. The reaction was stopped with 15 μl ammonium acetate ‘Stop 
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Solution’ (containing: 5 M ammonium acetate and 100 mM EDTA) and 115 μl 

nuclease-free water and then mixed thoroughly. 

The RNA was recovered using a phenol/chloroform extraction and isopropanol 

precipitation. The RNA was extracted with 150 μl phenol/chloroform. The aqueous 

phase was removed and transferred into a new tube. The RNA was precipitated with 

150 μl isopropanol, chilled at −20°C for 30 minutes and then centrifuged at 13000 rpm 

for 15 minutes at 4°C. The supernatant was aspirated and the pellet was resuspended in 

25 μl nuclease-free water and then stored at −80°C. 

2.1.14 Determination of RNA yield 

The concentration of the RNA in the samples from the in vitro RNA synthesis (section 

2.1.13) was determined by using a Nanodrop spectrophotometer (Thermo Scientific) at 

a wavelength of 260 nm. The sample purity was determined by the ratio of the 

absorbance at 260:280 nm, with a ratio of ~2 indicating a preparation free from protein 

contamination. 
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2.2 CELL CULTURE 

2.2.1 Mammalian cell culture and transfection 

The tsA201 cell line (a HEK-derived cell line) was obtained from Dr William Green, 

University of Chicago. The tsA201 cell line is a transformed human embryonic 

HEK293 cell line that stably expresses an SV40 temperature-sensitive T-antigen. 

Cell lines were removed from long-term liquid nitrogen storage and the cryotube was 

immediately placed at 37°C to thaw. Cells were transferred to 15 ml polypropylene 

tubes (Falcon, Becton Dickinson) containing room temperature cell culture medium 

(Dulbecco’s modified Eagle’s medium (DMEM) containing 2 mM L-Glutamax (Gibco-

Invitrogen), supplemented with 10% heat inactivated foetal calf serum (FCS) and 100 

U/ml penicillin/100 µg/ml streptomycin (Gibco-Invitrogen)), mixed gently by pipetting 

and centrifuged at 900 rpm for 3 minutes. The medium was carefully removed by 

aspiration and the cell pellet carefully resuspended in a further 10 ml cell culture 

medium and centrifuged as above. The cell pellet was then resuspended in an 

appropriate volume of 37°C cell culture medium, transferred to 10 cm cell culture 

dishes (Corning) and maintained at 37°C in a humidified incubator containing 5% CO2. 

Cells were passaged by aspiration of conditioned cell culture medium, washed once 

with 10 ml phosphate-buffered saline (PBS) and trypsinased with 500 μl trypsin:PBS 

(1:3) solution for 30 s at 37°C.  The dishes were then tapped vigorously to dislodge the 

cells and 3-5 ml of 37°C cell culture medium was added to deactivate the trypsin. The 

cells were then passed through the constricted tip of a 1 ml pipette several times to 

separate cell aggregates into a homogeneous mixture of dissociated single cells. The 

cells were then re-seeded into fresh culture dishes at various dilutions, depending on 

subsequent use, and topped up with culture medium and maintained as above. Cells 

were discarded after 25-30 passages. 

Cells were transfected using the Effectene Transfection Kit (Qiagen) using a modified 

manufacturer’s protocol. Cells were trypsinised and re-seeded in 5 ml of medium (10 
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cm culture dish) 4-6 hours prior to transfection, in order to achieve ~30% confluency at 

the time of transfection. 

Cell transfection took place in a 10 cm dish. 0.6 μg of plasmid DNA was added to 120 

μl of Buffer EC and 4.8 μl of Enhancer (DNA condensing enhancer solution) in a sterile 

Eppendorf tube and incubated for 5 minutes. 13 μl of Effectene (non-liposomal lipid 

formulation that coats condensed DNA with cationic lipids) was added, mixed by 

pipetting and incubated for a further 10 minutes. 600 μl of 37°C conditioned cell culture 

medium was added and mixed by pipetting. The mixture was then added drop-wise onto 

the cells. After 16 hours, 5 ml of 37°C medium was added.   

2.2.2 Human neuronal cells, derived from induced pluripotent stem cells 

Human iCell neurons, which are neuronal cells, derived from induced pluripotent stem 

cells (iPSC), were obtained from Cellular dynamics international (CDI). The cells were 

removed from long-term liquid nitrogen storage and the cryotube, containing the cells in 

1 ml dimethyl sulfoxide (DMSO), was immediately placed at 37°C to thaw. Cells were 

transferred to 15 ml polypropylene tube (Falcon, Becton Dickinson). 1 ml Neurobasal 

medium (without glutamine, glutamate and aspartate; Invitrogen) supplemented with B-

27 supplement (5000x; Invitrogen) and L-glutamine 200 mM (2000x; PAA 

Laboratories), pre-warmed to 37°C, was added in the empty cryotube and then 

transferred drop-wise to the cells, in order to minimise osmotic shock. A further 8 ml of 

medium was added slowly, mixed gently and centrifuged at 900 rpm for 5 minutes. The 

medium was carefully removed by aspiration and the cell pellet was resuspended in 2 

ml of fresh medium. The cells were counted using a haemocytometer and then 

resuspended to the appropriate volume for plating. 

For calcium imaging experiments, cells were plated at a density of approximately 2.5 x 

105 cells/ml into Biocoat poly-D-lysine (PDL)/laminin-coated 96-well, clear bottom, 

black-walled plates (for single-cell calcium imaging; 100 μl/well), or into Biocoat 

PDL/laminin-coated half-area, 96-well, clear bottom, black-walled plates (for 

fluorometric imaging plate reader (FLIPR) assays; 50 μl/well). 
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For patch-clamp experiments, cells were plated at a density of approximately 5 x 104 

cells/ml (100 μl/coverslip) on Biocoat PDL/laminin-coated 12 mm glass coverslips 

(Becton Dickinson) and placed in Biocoat 24-well clear plates. 
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2.3 XENOPUS LAEVIS OOCYTE PREPARATION 

Adult female Xenopus laevis (X. laevis) frogs were purchased from the European 

Xenopus Resource Centre (University of Portsmouth). The care and use of X. laevis 

frogs were approved by the UCL Animal Research Committee and followed the 

guidelines of the Animal Scientific Procedures Act, 1986 (UK). 

Stage V and VI X. laevis oocytes were removed from schedule 1 sacrificed frogs, 

following procedures that have been approved by both UCL’s Biological Services 

Management Group and the UK Home Office. The ovarian lobes were washed in filter-

sterilised calcium-free Barth’s solution (in mM: NaCl 88; KCl 1; NaHCO3 2.4; 

MgCl2.6H2O 82; Tris 1.5; pH 7.5). Fine tipped tweezers were used to tear the ovarian 

lobe into smaller clumps containing ~50 oocytes. Oocytes were defolliculated 

enzymatically with collagenase type I (2 mg/ml; 250 U/mg; Worthington) in calcium-

free Barth’s solution in sterile 35 mm x 10 mm cell culture dishes (Nunc) by constant 

shaking on an orbital shaker (~100 rpm) for 2-3 hours at room temperature. After 2 

hours the oocytes were subjected to mild pipetting with a Pasteur pipette to encourage 

separation of the oocytes and then were monitored over the next hour. When it appeared 

that the follicle cell layer had been removed from a sufficient number of oocytes (~30 

minutes after separation) they were transferred to calcium-free Barth’s solution in 90 

mm x 15 mm Petri dishes (Sterlin) and washed by constant shaking for 10 minutes. The 

oocytes were transferred to new petri dishes with fresh calcium-free Barth’s solution 

and washed for 10-minute cycles, until the solution was clear (~3 washes). The oocytes 

were then selected using binocular microscope according to health and size. 

Heterologous expression of recombinant receptors was achieved by injection of either 

cRNA (6-12 ng) into the oocyte cytoplasm in the case of wild type and mutated 

nAChRs, or plasmid cDNA constructs (5-10 ng) into the oocyte nucleus in the case of 

chimaeras and 5-HT3ARs. Oocytes were injected with a volume of 27-32 nl using a 

Nanoject Injector (Drummond Broomall). After injection, oocytes were incubated at 

18°C in 48 well multidishes (Nunc) for 2-7 days in a filter-sterilised modified calcium-

containing Barth’s solution supplemented with antibiotics (in mM: NaCl 88; KCl 1; 

NaHCO3 2.4; MgCl2.6H2O 82; Tris 1.5; CaCl2.2H2O 0.77; penicillin 100 

U/ml/streptomycin 100 μg/ml; tetracyclin 50 μg/ml; kanamycin 4 μg/ml; pH 7.5).  
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2.4 ELECTROPHYSIOLOGICAL TECHNIQUES 

2.4.1 Two-electrode voltage-clamp recording 

Recordings were performed 2-7 days after injection. Oocytes were placed in a recording 

chamber and impaled with two microelectrodes filled with 3 M KCl (0.5-2.0 MΩ) and 

voltage-clamped at −60 mV using an OC-725 Amplifier (Warner Instruments) 

PowerLab 8SP and Chart 5 software (AD Instruments). The external solution was 

clamped at ground potential by means of a virtual ground circuit using Ag/AgCl 

reference electrode and a Pt/Ir current passing electrode. The recording chamber was 

continuously perfused with modified Ringer solution (in mM: NaCl 115; KCl 2.4; 

HEPES 5; BaCl2 1.8) at a rate of  ~15 ml/min. A calcium-free solution was used in 

order to minimise the contribution of calcium-gated chloride channels, which are 

endogenous to X. laevis oocytes and may be activated by calcium entry through the 

neuronal nAChR channels (Sands et al., 1993). Dilutions of drugs were prepared from 

frozen stocks in external Ringer solution on the day of the experiment. A rapid solution 

exchange was achieved using a computer-controlled eight-way solenoid valve perfusion 

system (BPS-8; ALA Scientific Instruments), which is controlled by pinch valves. All 

experiments were carried out at room temperature. Membrane currents were passed 

through a digital filter (low-pass) and stored for analysis. 

2.4.2 Patch-clamp recording  

Whole-cell voltage-clamp recordings were carried out 5-8 days after plating. During 

recordings, cells were continuously perfused with modified HBTS (Invitrogen) 

containing (mM): 135 NaCl, 5 KCl, 1.2 MgCl2, 2.5 CaCl2, 10 HEPES, 11 glucose, pH 

7.2 at room temperature. Cells were voltage-clamped in the whole-cell configuration 

(−60 mV holding potential) with an AxoPatch 200A patch clamp amplifier (Molecular 

Devices). Pipettes were pulled from borosilicate glass (Type GC150F-10, Harvard 

Apparatus) using a commercial puller (Model p-87, Sutter Instruments) and had 

resistances of 2-6 MΩ when filled with pipette solution containing (mM): 1 MgCl2, 4 

MgATP, 0.5 EGTA, 10 HEPES, 140 potassium gluconate (pH adjusted to 7.3 with 

KOH). Current data were recorded at 10 kHz using a DA/AD interface (Digidata 
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1322A, Molecular Devices). Drugs were applied using a multichannel perfusion system 

(Model BPS-8, Scientifica) positioned 150 μM away from the recorded cell and 

controlled by Clampex 9 software (Molecular Devices). 

2.4.3 Drug application 

Stock solutions of 1 M acetylcholine chloride (Sigma-Aldrich) and 10 mM MLA 

(Sigma-Aldrich) were prepared in sterile distilled water, while all PAMs were dissolved 

in DMSO (100 mM stocks for the TBS and TQS compounds, 10 mM stocks for PNU-

120596 (Tocris Bioscience), NS-1738 (Tocris Bioscience) and A-867744 (Abbott)).  

Orthosteric agonists were typically applied for less than 5 s before switching back to 

Ringer or HBTS, as during this time the receptor has already switched to its 

desensitised state. 

For studies with allosteric agonists, the drug was usually applied until the response 

reached a plateau, before switching back to Ringer/HBTS. 

For most of the studies on the effects of positive allosteric modulators or antagonists, a 

pre-application with the modulator was required in order to ensure that the drug had 

adequately equilibrated with the receptors, before co-application with the agonist. 

In X. laevis oocytes and iPSC neurons, following an application of the orthosteric 

agonists, the receptors were allowed to recover for 2 minutes. Following exposure to 

allosteric compounds, the receptors were allowed to recover for 3 minutes after the 

response had returned to the baseline (for some compounds this was longer than 10 

minutes in total). 

All agonist concentration-response curve data were normalised to responses induced by 

a maximum effective concentration. Most potentiated and inhibited responses were 

normalised to a control acetylcholine response (typically an EC50 concentration), unless 

stated otherwise. 
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2.4.4 Data analysis 

Concentration-response curves for wild type or mutated receptors were obtained by 

normalising the current responses to the responses elicited by a maximum or sub-

maximum agonist concentration. Fits to full concentration-response curves for 

individual oocytes were made independently using Prism 5 (GraphPad Software) and 

then averaged in order to compare significant differences between groups. Data are 

expressed as mean ± standard error of the mean (SEM) for n oocytes. In all cases, data 

were best fitted with a single-site model. Data were pooled for at least 3 separate 

experiments (conducted on separate oocytes). 

Concentration-response curves were fitted using the following equation: 

I/Imax = 1/[1+(EC50/[agonist])^nH)] 

where I is the current and Imax the maximum current. The EC50 is the concentration of 

the agonist that elicits 50% of the maximum response and nH is the Hill coefficient. 

Inhibition curves were fitted using the following equation: 

I/Imax = 1/[1+([antagonist]/IC50)^nH)] 

where IC50 is the concentration of the antagonist that is required to inhibit the maximum 

response by 50%. 
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2.5 DISPLACEMENT RADIOLIGAND BINDING ASSAY 

[3H]-α-bungarotoxin (56 Ci/mmol; Tocris Bioscience) was a gift from Syngenta 

(Bracknell, UK). Radioligand binding to transiently transfected tsA201 cells was 

performed essentially as described previously (Lansdell & Millar, 2000). Transfected 

cells were re-suspended in Hank’s buffered saline solution (Gibco) containing 1% 

bovine serum albumin and incubated with [3H]-α-bungarotoxin for 2 hours at 22°C in a 

total volume of 150 µl. Non-specific binding was determined in the presence of nicotine 

(1 mM) and carbamylcholine (1 mM). Competition binding experiments were 

performed by incubating triplicate samples of transfected cells with a fixed 

concentration of [3H]-α-bungarotoxin (typically 1 nM), together with a range of 

concentrations of the competing ligand. Radioligand binding was assayed by filtration 

onto Whatman GF/A filters (pre-soaked in 0.5% polyethylenimine), followed by rapid 

washing with phosphate-buffered saline (Oxoid) using a Brandel cell harvester. Bound 

radioligand was quantified by scintillation counting. IC50 values were converted to Ki 

values using the equation Ki = IC50/[1 + ([L]/Kd)], where [L] is the free concentration of 

[3H]-α-bungarotoxin used in the assay and Kd is the dissociation constant of [3H]-α-

bungarotoxin binding on the receptor. Curves for equilibrium binding were fitted using 

GraphPad Prism (GraphPad Software). 
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2.6 INTRACELLULAR CALCIUM ASSAYS 

2.6.1 Fluorometric imaging plate reader assays 

For the fluorometric imaging plate reader (FLIPR; Molecular Devices) assays, iCell 

neurons were plated as described above (section 2.2.2) into Biocoat PDL/laminin-

coated, black-walled, clear bottom, half area 96-well plates at a density of 2.5 x 105 

cells/ml. FLIPR experiments took place 4-8 days after plating. A modified HBTS 

(Invitrogen) was used throughout the experiments, containing (mM): 135 NaCl, 5 KCl, 

1.2 MgCl2, 2.5 CaCl2, 10 HEPES, 10 glucose, pH 7.2. Cell medium was removed and 

the cells were incubated in 50 µl of 1 µM Fluo-4 acetoxymethyl ester (Invitrogen) in 

HBTS with 0.05% Pluronic F-127 (Invitrogen) for 60 min at room temperature, 

protected from light. The Fluo-4 was then removed and 50 µl HBTS were added in each 

well. The cells were then assayed using a FLIPR (Molecular Devices). Cells were 

excited by light at 488 nm from a 4 W Argon-ion laser and the emitted fluorescence 

passed through a 510-570 nm band-pass interference filter before detection with a 

cooled charge-coupled device (CCD) camera (Princeton Instruments). Drug dilutions in 

assay buffer were prepared in a separate 96-well, flat-bottom plate. Parameters for drug 

addition to the cell plate were pre-programmed and delivery was automated through a 

96-well head pipettor. Drugs were added in 25 µl volumes by automated pipetting. 

Intracellular calcium levels were monitored before and after the addition of the 

compounds. Fluorescence data were exported and analysed in Microsoft Excel and 

GraphPad Prism. Data were presented as normalised values, where the baseline 

fluorescence is subtracted from the peak fluorescence, in order to normalise for initial 

levels of fluorescence, and then expressed as a percentage of the response obtained by 

depolarising the cells with 30 mM KCl. 

2.6.2 Single cell intracellular calcium imaging  

Fluorescence-based calcium imaging experiments were carried out 6-10 days after 

plating of cells. A modified HBTS (Invitrogen) was used throughout the experiments, 

containing (mM): 135 NaCl, 5 KCl, 1.2 MgCl2, 2.5 CaCl2, 10 HEPES, 10 glucose, pH 

7.2. Cells were loaded in the dark for 60 minutes at room temperature (22°C), in HBTS 
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containing 4 µM of calcium-sensitive dye Fluo-4 AM (Invitrogen) in the presence of 

0.05% Pluronic F-127 (Invitrogen). Cells were washed with HBTS and continuously 

perfused during the experiment. The perfusion flow rate was 3 ml/min, which results in 

complete replacement of the 100 µl volume in each well every 2 seconds. Dye-loaded 

cells were viewed using an inverted epifluorescence microscope (Axiovert, 135TV, 

Zeiss). Fluo-4 fluorescence was excited by a 480 ± 10 nm light source (Polychrome II, 

TILL-Photonics) and emission was captured by an iXon 897 EMCCD camera (Andor 

Technologies) after passage through a dichroic mirror (505LP nm) and a high pass 

barrier filter (515LP nm). Digitised images were stored and processed by using Imaging 

Workbench 5.0 software (INDEC Biosystems). Data were analysed by averaging 

individual traces collected from a large number of cells in multiple wells of the 96-well 

plate. ΔF/F0 values were measured by quantifying the ratio between the change in 

fluorescence signal intensity (ΔF) and baseline fluorescence (F0). 
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2.7 STATISTICAL ANALYSIS 

All statistical analysis was performed in Microsoft Excel and GraphPad Prism software. 

p values < 0.05 were considered to be significant. Student’s paired or unpaired t-tests 

were used for comparisons of two groups. For multiple comparisons, ANOVA (analysis 

of variance) was used and significances calculated using the Tukey-Kramer post hoc 

allowing for unequal sample sizes.  
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2.8 CHEMICAL SYNTHESIS 

TBS compounds were synthesised by scientists at UCL in the Department of Chemistry 

(Jarryl D’Oyley and Dr Tom Sheppard). The following compounds were prepared by a 

modification of a literature procedure for triazole synthesis (El Kaim et al., 2010): 4-(3-

(4-bromophenyl)-5-phenyl-1H-1,2,4-triazol-1-yl)benzenesulfonamide (TBS-345), 4-(3-

(4-bromophenyl)-5-(4-methoxyphenyl)-1H-1,2,4-triazol-1-yl) benzenesulfonamide 

(TBS-346), 4-(5-benzyl-3-(4-bromophenyl)-1H-1,2,4-triazol-1-yl)benzenesulfonamide 

(TBS-516), 4-(3-(4-bromophenyl)-5-propyl-1H-1,2,4-triazol-1-yl)benzenesulfonamide 

(TBS-546) and 4-(3-(4-bromophenyl)-5-phenethyl-1H-1,2,4-triazol-1-yl)benzene-

sulfonamide (TBS-556). Synthesis of cis-cis-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-

3H-cyclopenta[c]quinoline-8-sulfonamide (4BP-TQS) and cis-cis-4-(napthalen-1-yl)-

3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (TQS) has been 

described previously (Gill et al., 2011). 

The biarylcarboxamide compound (R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-

pyridyl)thiophene-2-carboxamide (compound B) was synthesised by scientists at Lilly 

Research Laboratories according to methods described previously (Phillips & 

Schmiesing, 2001). 
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CHAPTER 3 

A NOVEL SERIES OF POSITIVE 

ALLOSTERIC MODULATORS 

WITH DIVERSE 

PHARMACOLOGICAL 

PROPERTIES 



 98 

3.1 INTRODUCTION 

Neuronal nAChRs have been implicated in a variety of cognitive and neurological 

disorders, including Alzheimer’s disease, Parkinson’s disease, epilepsy and 

schizophrenia (Changeux & Taly, 2008) and, as a consequence, are targets for 

therapeutic drug development. A number of subtype-selective orthosteric agonists, 

partial agonists and antagonists have been developed (Gündisch & Eibl, 2011), but it 

has been argued that compounds binding to allosteric sites may provide an opportunity 

for greater receptor subtype selectivity (Williams et al., 2011b). Promising results have 

been obtained with nAChR allosteric modulators in pre-clinical studies examining 

effects on cognitive deficits (Hurst et al., 2005; Ng et al., 2007), nociception 

(Timmermann et al., 2007; Zhu et al., 2011; Munro et al., 2012) cerebral ischemia 

(Kalappa et al., 2013) and depression (Targowska-Duda et al., 2014). 

As discussed in sections 1.4.2 and 1.7, whereas most nAChRs are heteromeric 

combinations of more than one type of subunit (Millar & Gotti, 2009), some nAChRs, 

such as α7, are able to form functional homomeric nAChRs (Couturier et al., 1990). 

Homomeric α7 nAChRs undergo very rapid desensitisation in response to agonist 

activation. Indeed, with high concentrations of acetylcholine, almost complete 

inactivation of α7 nAChRs is observed within milliseconds of agonist activation 

(Couturier et al., 1990). However, rapid desensitisation of α7 nAChRs is not seen with 

all agonists. A group of compounds, described as allosteric agonists, activate α7 

nAChRs with minimal levels of desensitisation (Gill et al., 2011; Gill et al., 2012; 

Papke et al., 2014). In contrast to conventional orthosteric agonists such as 

acetylcholine, there is evidence that allosteric agonists may act via a distinct 

transmembrane binding site (Gill et al., 2011). 

Previous studies have identified an extensive series of PAMs on α7 nAChRs (Faghih et 

al., 2008; Williams et al., 2011a). As discussed in more detail in section 1.6.4, α7 

nAChRs PAMs have been referred to as either ‘type I’ or ‘type II’ PAMs, depending on 

their effects on receptor desensitisation (Bertrand & Gopalakrishnan, 2007). The 

convention is to describe PAMs with little or no significant effect on desensitisation as 

type I PAMs and those causing a dramatic reduction in desensitisation as type II PAMs. 
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A novel series of compounds (Figure 3.1) was constructed involving a combination of 

structural elements from two previously described α7-selective allosteric modulators, 

4BP-TQS (Gill et al., 2011) and A-867744 (Faghih et al., 2008). Both 4BP-TQS and A-

867744 contain an arylsulfonamide unit linked to a heterocyclic core, which has both a 

bromoarene and a second lipophilic group attached. Five compounds were synthesised 

which retained the key structural features of 4BP-TQS and A-867744 but which 

contained a more polar triazole group as the heterocyclic core. For convenience, these 

compounds are referred to here collectively as ‘TBS’ compounds to reflect the fact that 

they all contain triazole and benzenesulfonamide groups. In this chapter, the properties 

of this series of compounds are examined on nAChRs. Evidence is provided showing 

that the TBS compounds constitute a novel series of potent α7-selective PAMs with a 

range of effects on receptor desensitisation.  
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Figure 3.1: Chemical structures of allosteric ligands examined in this chapter. 

Abbreviations: TBS-345: 4-(3-(4-bromophenyl)-5-phenyl-1H-1,2,4-triazol-1-
yl)benzenesulfonamide; TBS-346: 4-(3-(4-bromophenyl)-5-(4-methoxyphenyl)-1H-1,2,4-
triazol-1-yl)benzenesulfonamide; TBS-516: 4-(5-benzyl-3-(4-bromophenyl)-1H-1,2,4-triazol-1-
yl)benzenesulfonamide; TBS-546: 4-(3-(4-bromophenyl)-5-propyl-1H-1,2,4-triazol-1-
yl)benzenesulfonamide; TBS-556: 4-(3-(4-bromophenyl)-5-phenethyl-1H-1,2,4-triazol-1-
yl)benzenesulfonamide. 
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3.2 RESULTS 

The TBS series of compounds used for experiments in this chapter were synthesised by 

scientists at UCL in the Department of Chemistry (Jarryl D’Oyley and Dr Tom 

Sheppard). The pharmacological properties of the TBS series of compounds were 

examined by two-electrode voltage-clamp recordings in Xenopus oocytes expressing 

human recombinant nAChRs, unless stated otherwise, and with competition radioligand 

binding assays in mammalian cultured cells transiently transfected with human α7 

nAChRs. 

3.2.1 Characterisation of the effects of TBS compounds on activation of α7 

nAChRs by acetylcholine 

In agreement with previous studies (Couturier et al., 1990), acetylcholine activated α7 

nAChRs with an EC50 value of 132 ± 13 µM and Hill coefficient (nH) of 1.4 ± 0.2. In 

addition, activation by acetylcholine was associated with rapid desensitisation (Figure 

3.2). None of the TBS compounds examined displayed agonist activity when applied 

alone to human α7 nAChRs expressed in Xenopus oocytes but all of them potentiated 

responses evoked by a submaximal concentration of acetylcholine (100 µM; near the 

EC50) (Figure 3.3−3.7 and Table 1). TBS-346 potentiated submaximal acetylcholine 

responses with an EC50 of 2.83 ± 1.20 µM and Hill coefficient of 1.0 ± 0.1 and the 

maximum fold potentiation was 5.1 ± 0.5 (Figure 3.3 and Table 1). TBS-546 potentiated 

submaximal acetylcholine responses with an EC50 of 2.84 ± 0.01 µM, Hill coefficient of 

2.4 ± 0.3 and maximum fold potentiation of 3.5 ± 0.5 (Figure 3.4 and Table 1). TBS-

345 potentiated submaximal acetylcholine responses with an EC50 of 1.69 ± 0.31 µM, 

Hill coefficient of 1.2 ± 0.2 and maximum fold potentiation of 8.9 ± 1.1 (Figure 3.5 and 

Table 1). TBS-556 potentiated submaximal acetylcholine responses with an EC50 of 

2.08 ± 0.32 µM, Hill coefficient of 2.8 ± 0.9 and maximum fold potentiation of 6.1 ± 

0.6 (Figure 3.6 and Table 1). TBS-516 potentiated submaximal acetylcholine responses 

with an EC50 of 1.43 ± 0.15 µM, Hill coefficient of 2.4 ± 0.4 and maximum fold 

potentiation of 17.3 ± 3.0 (Figure 3.7 and Table 1). Notably, despite the relatively close 

chemical similarity between these compounds (Figure 3.1), they displayed a diverse 

range of effects on the rate of desensitisation of α7 nAChRs (Figure 3.3−3.7). For 
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example, TBS-346 caused minimal changes to desensitisation (Figure 3.3), a feature 

that is typical of type I PAMs, whereas TBS-516 caused a dramatic slowing of 

desensitisation (Figure 3.7), typical of type II PAMs. In addition, other compounds in 

this series (TBS-345, TBS-546 and TBS-556) had effects on receptor desensitisation 

that could be considered as being intermediate between those of classical type I and 

type II PAMs (Figure 3.4−3.6). A consistent feature in the potentiated responses by the 

intermediate compounds appears to be the existence of a fast-desensitising component, 

followed by a very slow-desensitising current. The ratio of the amplitude of the slow to 

fast current was determined for the TBS compounds and is shown in Table 1. TBS-516 

did not evoke a detectable fast-desensitising component, so this ratio was not 

determined. No slow-desensitising component was detected with TBS-346 and, 

consequently, the slow to fast ratio was determined as 0. 
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Figure 3.2: Agonist activation of recombinant human α7 nAChRs by ACh, examined by 
two-electrode voltage-clamp recording in Xenopus oocytes. 

A) Representative traces are shown illustrating responses to ACh (3 µM – 3 mM). The 
horizontal bars indicate the duration of agonist application.  

B) Concentration-response data are plotted for a range of concentrations of ACh. Data are 
means ± SEM of six independent experiments, each from different oocytes. Data are normalised 
to the maximum response, obtained with 3 mM ACh. 
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Figure 3.3: Positive allosteric modulation of α7 nAChRs by TBS-346, examined by two-
electrode voltage-clamp recording in Xenopus oocytes. 

A) Representative traces are shown illustrating responses to an EC50 of ACh (100 µM) and of 
ACh (100 µM) co-applied with a range of concentrations of TBS-346 (0.1 – 30 µM). TBS-346 
was pre-applied for 5 s before ACh was co-applied. The horizontal bars indicate the duration of 
ACh (black bars) and TBS-346 (red bars) application.  

B) Concentration-response data are plotted for a range of concentrations of TBS-346 co-applied 
with an EC50 of ACh (100 µM). Data are means ± SEM of four independent experiments, each 
from different oocytes. Data are normalised to the response obtained with 100 µM ACh. 
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Figure 3.4: Positive allosteric modulation of α7 nAChRs by TBS-546, examined by two-
electrode voltage-clamp recording in Xenopus oocytes. 

A) Representative traces are shown illustrating responses to an EC50 of ACh (100 µM) and of 
ACh (100 µM) co-applied with a range of concentrations of TBS-546 (0.1 – 30 µM). TBS-546 
was pre-applied for 5 s before ACh was co-applied. The horizontal bars indicate the duration of 
ACh (black bars) and TBS-546 (green bars) application.  

B) Concentration-response data are plotted for a range of concentrations of TBS-546 co-applied 
with an EC50 of ACh (100 µM). Data are means ± SEM of three independent experiments, each 
from different oocytes. Data are normalised to the response obtained with 100 µM ACh. 
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Figure 3.5: Positive allosteric modulation of α7 nAChRs by TBS-345, examined by two-
electrode voltage-clamp recording in Xenopus oocytes. 

A) Representative traces are shown illustrating responses to an EC50 of ACh (100 µM) and of 
ACh (100 µM) co-applied with a range of concentrations of TBS-345 (0.1 – 30 µM). TBS-345 
was pre-applied for 5 s before ACh was co-applied. The horizontal bars indicate the duration of 
ACh (black bars) and TBS-345 (purple bars) application.  

B) Concentration-response data are plotted for a range of concentrations of TBS-345 co-applied 
with an EC50 of ACh (100 µM). Data are means ± SEM of three independent experiments, each 
from different oocytes. Data are normalised to the response obtained with 100 µM ACh. 
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Figure 3.6: Positive allosteric modulation of α7 nAChRs by TBS-556, examined by two-
electrode voltage-clamp recording in Xenopus oocytes. 

A) Representative traces are shown illustrating responses to an EC50 of ACh (100 µM) and of 
ACh (100 µM) co-applied with a range of concentrations of TBS-556 (0.1 – 30 µM). TBS-556 
was pre-applied for 5 s before ACh was co-applied. The horizontal bars indicate the duration of 
ACh (black bars) and TBS-556 (blue bars) application. 

B) Concentration-response data are plotted for a range of concentrations of TBS-556 co-applied 
with an EC50 of ACh (100 µM). Data are means ± SEM of three independent experiments, each 
from different oocytes. Data are normalised to the response obtained with 100 µM ACh. 
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Figure 3.7: Positive allosteric modulation of α7 nAChRs by TBS-516, examined by two-
electrode voltage-clamp recording in Xenopus oocytes. 

A) Representative traces are shown illustrating responses to an EC50 of ACh (100 µM) and of 
ACh (100 µM) co-applied with a range of concentrations of TBS-516 (0.1 – 30 µM). TBS-516 
was pre-applied for 5 s before ACh was co-applied. The horizontal bars indicate the duration of 
ACh (black bars) and TBS-516 (orange bars) application.  

B) Concentration-response data are plotted for a range of concentrations of TBS-516 co-applied 
with an EC50 of ACh (100 µM). Data are means ± SEM of three independent experiments, each 
from different oocytes. Data are normalised to the response obtained with 100 µM ACh. 
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3.2.2 Examination of the ability of TBS compounds to facilitate recovery from 

desensitisation on α7 nAChRs 

A notable property of type II PAMs is their ability to reactivate α7 nAChRs after they 

have been desensitised by continuous application of an orthosteric agonist (Hurst et al., 

2005), while type I PAMs lack this ability (Grønlien et al., 2007). Figure 3.8 

demonstrates the effect of TBS compounds on the recovery from desensitisation of α7 

nAChRs after activation and desensitisation by a submaximal concentration of 

acetylcholine (100 µM). TBS-346 and TBS-546 elicited no detectable responses after 

the receptor had been desensitised, a feature that is characteristic of type I PAMs. In 

contrast, TBS-345, TBS-516 and TBS-556 caused recovery from desensitisation, albeit 

to differing extents (Figure 3.8 and Table 1). TBS-516 had the most profound effect, by 

eliciting a response that was 3.2 ± 0.9 - fold larger than the response to 100 µM 

acetylcholine. TBS-556 and TBS-345 elicited responses that were 57.3 ± 10.1% and 

23.0 ± 2.1% of the response to 100 µM acetylcholine, respectively (Figure 3.8). Where 

receptor reactivation was observed (when acetylcholine was co-applied with TBS-345, 

TBS-556 or TBS-516), no current decline was observed over a period of 30 s (Figure 

3.8). The total net charge transfer (the area under the curve for the current trace) 

measured during a 30 s application of TBS-345, TBS-556 and TBS-516 was 12 ± 2, 27 

± 6 and 250 ± 71 - fold larger than that measured during the initial application of 

acetylcholine alone (Figure 3.8). 
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Figure 3.8: Influence of TBS compounds on the recovery of α7 nAChRs from 
desensitisation, examined by two-electrode voltage-clamp recording in Xenopus oocytes. 

Representative traces showing prolonged exposure of α7 nAChRs to ACh (100 µM), causing 
activation, followed by rapid desensitisation. In the continued presence of ACh, application of 
(A) TBS-346 (10 µM) and (B) TBS-546 (10 µM) does not result in reactivation of the receptor. 
However, application of (C) TBS-345 (10 µM), (D) TBS-556 (10 µM) and (E) TBS-516 (10 
µM) results in reactivation of desensitised receptors. Traces have been scaled to their response 
to ACh. Horizontal bars indicate the duration of ACh (black bar) and TBS compound (coloured 
bar) application. 
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Table 1: Pharmacological properties of TBS PAMs on α7 nAChRs. 

Data are means ± SEM of at least three independent experiments. TBS compounds were pre-
applied for 5 s and then co-applied with ACh (100 µM). The EC50 values of all TBS compounds 
were not significantly different to each other (ANOVA with Tukey’s post hoc, p = 0.35). 
a Data for maximal currents (Imax) are normalised to the size of the acetylcholine response (100 
µM) in the absence of the PAM. 
b The ratio of the peak amplitude of the slow-desensitising component to the peak amplitude of 
the fast-desensitising component of the potentiated response. No fast-desensitising component 
was detected with TBS-516. 
c Recovery from desensitisation elicited by PAMs after a long application of acetylcholine. Peak 
amplitude is normalised to the initial acetylcholine response (100 µM). 

 

  

PAM EC50 (µM) nH Imax 

a Slow: Fast 
component b 

Recovery from 
desensitisation 

c 
TBS-345 1.69 ± 0.31 1.2 ± 0.2 8.9 ± 1.1 0.19 ± 0.04 0.2 ± 0.02  

TBS-346 2.83 ± 1.20 1.0 ± 0.1 5.1 ± 0.5 0.00 0.0 

TBS-516 1.43 ± 0.15 2.4 ± 0.4 17.3 ± 3.0 − 3.2 ± 0.9  

TBS-546 2.84 ± 0.01 2.4 ± 0.3 3.5 ± 0.5 0.08 ± 0.01 0.0 

TBS-556 2.08 ± 0.32 2.8 ± 0.9 6.1 ± 0.6 0.34 ± 0.09 0.6 ± 0.1  
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3.2.3 Displacement of [3H]-α-bungarotoxin by TBS compounds  

Competition radioligand binding was performed to examine the ability of the TBS 

compounds to displace [3H]-α-bungarotoxin from the orthosteric binding site of α7 

nAChRs (Figure 3.9). As expected, the competitive antagonist MLA fully displaced 

specific [3H]-α-bungarotoxin binding in a concentration-dependent manner with a Ki of 

49.2 ± 3.1 nM (Figure 3.9). This is higher than what is usually reported for MLA (~ 4 

nM) (Davies et al., 1999; Puinean et al., 2013), which could possibly be the result of 

MLA stock degradation. In contrast, none of the TBS compounds displayed any 

significant displacement of [3H]-α-bungarotoxin binding (Figure 3.9). These findings 

are consistent with TBS compounds acting as potentiators of α7 nAChRs via a site other 

than the extracellular orthosteric binding site. 
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Figure 3.9: Displacement of [3H]-α-bungarotoxin from the orthosteric site of α7 nAChRs 
by TBS compounds, examined by competition radioligand binding.  

Equilibrium radioligand binding was performed with [3H]-α-bungarotoxin (1 nM) with 
mammalian tsA201 cells transiently transfected with human α7 nAChR subunit and with human 
RIC-3 cDNAs (1:1 ratio). TBS-345, TBS-346, TBS-516, TBS-546 and TBS-556 (0.3 – 30 µM) 
cause no significant displacement of [3H]-α-bungarotoxin binding, whereas MLA causes 
complete displacement of specific radioligand binding (Ki = 49.2 ± 3.1 nM). This is higher than 
what is usually reported for MLA (~ 4 nM) (Davies et al., 1999; Puinean et al., 2013), which 
could possibly be the result of MLA stock degradation. Data points are means (± SEM) of three 
independent experiments, each done in triplicates.  
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3.2.4 Selectivity of TBS compounds 

All of the TBS compounds acted as potentiators of both human and rat α7 nAChRs 

(Figure 3.10−3.12 and Table 2). In contrast, none of the TBS compounds caused 

potentiation of human α4β2 nAChRs, human α3β4 nAChRs or mouse 5-HT3ARs. 

Instead, all of the compounds acted as inhibitors of this diverse group of receptors 

(Figure 3.10−3.12 and Table 2), indicating that, to the extent that we have examined, 

these TBS compounds can be considered to be α7-selective PAMs. The opposing 

effects of the TBS compounds on α7 nAChRs and 5-HT3ARs (potentiation and 

inhibition, respectively) prompted us to examine the effect of these compounds on an 

artificial subunit chimera (α7/5-HT3A) containing the N-terminal domain of the rat α7 

nAChR subunit and the transmembrane/C-terminal domain of the mouse 5-HT3A 

subunit. For all of the TBS compounds examined, inhibition of agonist-evoked 

responses was observed on the α7/5-HT3A subunit chimera (Figure 3.11, 3.12 and 

Table 2). Together, these results are consistent with these compounds interacting with 

the transmembrane domain, a location that has been proposed as being the site at which 

several other α7-selective PAMs interact with α7 nAChRs (Young et al., 2008; Collins 

et al., 2011; Gill et al., 2011). 
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Figure 3.10: Nicotinic subtype selectivity of TBS compounds, examined by two-electrode 
voltage-clamp recording in Xenopus oocytes. 

Representative traces illustrating responses to ACh (100 µM; black bars) and to TBS 
compounds (10 µM on α7 nAChRs; 50 µM on other subtypes; coloured bars) pre-applied for 5 s 
and then co-applied with ACh (100 µM; black bars). Left column of traces illustrates responses 
of α7 nAChRs, middle column illustrates responses of α4β2 nAChRs (mRNA injection in 1:1 
subunit ratio) and right column illustrates responses of α3β4 nAChRs (mRNA injection in 1:1 
subunit ratio). 
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Figure 3.11: Contrasting effects of TBS compounds between α7 nAChR, 5-HT3AR and a 
subunit chimaera, examined by two-electrode voltage-clamp recording in Xenopus 
oocytes. 

Representative traces illustrating responses to agonist (100 µM ACh for α7 and chimaera 
receptors; 1 µM CPBG for 5-HT3ARs; black bars) and to TBS compounds (10 µM on α7 
nAChRs; 50 µM on other subtypes; coloured bars) pre-applied for 5 s and then co-applied with 
the agonist. Left column of traces illustrates responses of α7 nAChRs, middle column illustrates 
responses of 5-HT3ARs and right column illustrates responses of a subunit chimaera consisting 
of the α7 nAChR N-terminus and 5-HT3AR TM domain and C-terminus.  
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Figure 3.12: Subtype selectivity of TBS compounds, examined by two-electrode voltage-
clamp recording in Xenopus oocytes. 

Bar charts illustrating the effects of TBS compounds (10 µM on α7 nAChRs; 50 µM on other 
subtypes) on the agonist response (100 µM ACh for nAChRs and chimaeric receptors; 1 µM 
CPBG for 5-HT3ARs) of different receptor subtypes. Bars represent means and SEMs of at least 
three independent experiments. Asterisks denote significance levels between human α7 and the 
other subtypes as determined by one-way ANOVA with Dunnett’s post hoc (* p < 0.05; ** p < 
0.01; *** p < 0.001).  
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Table 2: Subtype selectivity of TBS compounds. 

Data are means ± SEM of at least three independent experiments. Fold-potentiation and % 
inhibition data of TBS compounds (10 µM on α7 nAChRs; 50 µM on other subtypes) are 
normalised to control agonist responses in the absence of the TBS compounds (100 µM 
acetylcholine for nAChRs and chimaeric receptors; 1 µM CPBG for 5-HT3ARs). TBS 
compounds were pre-applied for 5 s and then co-applied with the orthosteric agonist. 
a Chimaeric subunit containing the rat nAChR α7 subunit N-terminal domain and mouse 5-
HT3A subunit transmembrane and C-terminal domain. 

 

Compound  Human 
α7 Human 

α4β2 Human 
α3β4 Rat  

α7 
Mouse 
5-HT3A Chimaeraa 

TBS-345 
fold-

potentiation 8.9 ± 1.1 − − 10.9 ± 0.4 − − 
% 

inhibition − 20.1 ± 11.0 53.7 ± 10.6 − 18.3 ± 7.7 47.3 ± 5.9 

TBS-346 
fold-

potentiation 5.1 ± 0.5 − − 8.7 ± 3.1 − − 
% 

inhibition − 23.1 ± 2.9 68.4 ± 1.5 − 30.8 ± 8.9 13.4 ± 4.4 

TBS-516 
fold-

potentiation 17.3 ± 3.0 − − 13.6 ± 6.2 − − 
% 

inhibition − 1.7 ± 0.2 31.1 ± 0.3 − 10.4 ± 4.3 9.3 ± 7.4 

TBS-546 
fold-

potentiation 3.5 ± 0.5 − − 1.9 ± 0.1 − − 
% 

inhibition − 20.5 ± 3.0 9.0 ± 1.7 − 15.2 ± 2.5 26.4 ± 9.2 

TBS-556 
fold-

potentiation 6.1 ± 0.6 − − 4.3 ± 0.3 − − 
% 

inhibition − 3.2 ± 0.6 15.6 ± 7.3 − 10.4 ± 1.1 1.0 ± 0.6 
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3.3 DISCUSSION 

A large number of ligands have been identified in recent years that potentiate α7 

nAChRs through an allosteric mechanism of action (Bertrand & Gopalakrishnan, 2007; 

Faghih et al., 2008; Arias, 2010; Mazurov et al., 2011; Williams et al., 2011a). In large 

part, this interest in α7-selective PAMs has been a consequence of the possibility that 

such compounds may have therapeutic use in the treatment of various neurological and 

psychiatric disorders (Romanelli & Gualtieri, 2003; Moaddel et al., 2007; Haydar & 

Dunlop, 2010; Williams et al., 2011b). Traditionally, α7-selective PAMs have been 

characterised as either type I or type II, depending on their effect on receptor 

desensitisation (Bertrand & Gopalakrishnan, 2007; Grønlien et al., 2007). Type I PAMs 

increase peak agonist-evoked currents, without altering receptor desensitisation, 

whereas type II PAMs reduce the fast desensitisation of the α7 receptors. Evidence is 

accumulating to indicate that both compounds identified as type I and type II PAMs can 

act via a transmembrane site in α7 nAChRs (Young et al., 2008; Collins et al., 2011).  

In the present chapter, five TBS compounds with close chemical similarity to one 

another were demonstrated to act as PAMs on α7 nAChRs but with range of effects on 

receptor desensitisation. For example, TBS-346 displays effects on receptor 

desensitisation that are typical of type I PAMs and TBS-516 displays effects that are 

more typical of type II PAMs. In addition, compounds with intermediate properties 

have been identified (TBS-546, TBS-345 and TBS-556). With several of the TBS 

compounds, there is evidence for two components to the rate of desensitisation of the 

potentiated acetylcholine-evoked response, but the proportion of the fast and slow 

component varied. TBS-516 did not evoke a detectable fast-desensitising component, so 

the ratio of the slow to fast component amplitude was not determined. The largest slow 

to fast component ratio of the intermediate compounds was observed with TBS-556, 

followed by TBS-345, followed by TBS-546. The slow-desensitising component was 

not detected with TBS-346 and, consequently, this ratio was determined as 0. 

Significantly, because of the similarity in chemical structure of these compounds, we 

can conclude that these differences in their ability to influence receptor desensitisation 

is due solely to changes in substitution at the 5-position of the triazole ring. 
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A notable property of type II PAMs is their ability to reactivate α7 nAChRs after they 

have been desensitised by continuous application of an orthosteric agonist (Hurst et al., 

2005), while type I PAMs lack this ability (Grønlien et al., 2007). A recent study has 

identified a compound that acts as an α7 PAM, JNJ-1930942, which has properties on 

receptor desensitisation that resemble those of the intermediate TBS compounds. 

However, no significant facilitation of the recovery from desensitisation was observed 

with JNJ-1930942 compared to control (Dinklo et al., 2011). In contrast, TBS-345, 

TBS-516 and TBS-556 caused recovery from desensitisation, albeit to differing extents. 

The proportion of the fast to slow component of the TBS compounds appears to be 

important in determining the ability of the PAMs to facilitate recovery from 

desensitisation, with TBS-516 evoking the largest current after receptor desensitisation, 

followed by TBS-556, followed by TBS-345. TBS-346 and TBS-546 elicited no 

detectable responses after the receptor had been desensitised, a feature that is 

characteristic of type I PAMs.  

The TBS compounds are potent α7 PAMs. The potentiation concentration-response 

curves of the TBS compounds in the presence of a submaximal concentration of 

acetylcholine reveal that the potencies of these compounds are relatively similar, with 

EC50 values ranging from 1.43 to 2.84 µM. However, the maximum peak fold-

potentiation of the acetylcholine response varied significantly, from 3.5-fold to 19.7-

fold. In addition, these compounds lack PAM activity on other nAChR subtypes (such 

as α4β2 and α3β4) and on 5-HT3ARs, indicating that they are relatively selective 

potentiators of α7 nAChRs.  

Competition radioligand binding assays indicate that the TBS compounds do not 

displace [3H]-α-bungarotoxin from its orthosteric-binding site on α7 nAChRs, 

supporting the conclusion that these TBS compounds are allosteric modulators. In 

addition, data obtained from studies of an α7/5-HT3A subunit chimera is consistent 

with TBS compounds interacting with a site within the transmembrane domain. It has 

been proposed previously that PAMs such as PNU-120597, LY-2087101 and NS-1738 

bind at the same or overlapping sites within an intrasubunit cavity in the transmembrane 

domain of the α7 nAChR (Young et al., 2008; Collins et al., 2011). In addition, recent 

studies with methyl-substituted TQS compounds have demonstrated how compounds 

can exert a number of different pharmacological effects by binding at the same binding 



 121 

site (Gill-Thind et al., 2015). It is plausible that the TBS compounds exert their effects 

by binding at a similar site in the transmembrane domain of the α7 nAChR.  

It is hoped that the ability to develop and identify compounds with differing effects on 

properties such as receptor desensitisation may be useful in developing therapeutic tools 

for a range of disorders. There is considerable interest in modulating nicotinic receptors 

in order to treat nervous system disorders such as Alzheimer’s disease, Parkinson’s 

disease and schizophrenia. A number of orthosteric agonists, partial agonists and 

antagonists have been developed, but allosteric ligands that modulate nAChRs have 

potentially significant advantages in regards to subtype selectivity and spatial and 

temporal specificity. The availability of PAMs with properties that are intermediate 

between those of classical type I and type II PAMs increases the pharmacological 

diversity of this family of allosteric modulators. Furthermore, the development of 

compounds with a range of effects on receptor desensitisation, such as the TBS series of 

compounds, could provide the valuable balance of maximising the therapeutic effects 

that could be obtained from potentiating nAChRs, while minimising cytotoxicity caused 

from prolonged opening of the calcium-permeable neuronal nAChRs. 
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CHAPTER 4 

EFFECT OF MUTATIONS ON 

MODULATION OF α7 NICOTINIC 

ACETYLCHOLINE RECEPTORS 

BY ALLOSTERIC LIGANDS 
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4.1 INTRODUCTION 

The discovery and characterisation of α7-selective nAChR agonists, antagonists and 

allosteric modulators constitutes a major goal of pharmacological research. In part, this 

is a consequence of these receptors being implicated in numerous neurological 

disorders. Activation of α7 nAChRs by orthosteric agonists results in activation 

followed by rapid desensitisation. However, rapid desensitisation of α7 nAChRs is not 

seen with all agonists. A group of compounds, described as allosteric agonists, activate 

α7 nAChRs with minimal levels of desensitisation (Gill et al., 2011; Gill et al., 2012; 

Papke et al., 2014). In contrast to conventional orthosteric agonists such as 

acetylcholine, there is evidence that allosteric agonists may act via a distinct 

transmembrane binding site (Gill et al., 2011). In many respects, such compounds are 

analogous to the allosteric agonists that have been described for GPCRs (Langmead & 

Christopoulos, 2006; Schwartz & Holst, 2006). It is probable that nAChRs contain a 

variety of distinct allosteric binding sites (Taly et al., 2009), but studies have provided 

evidence that one such site is located in an intrasubunit cavity located between the four 

α-helical transmembrane domains of a single α7 subunit (Young et al., 2008). In 

addition, there is evidence that this is a site at which allosteric agonists, as well as both 

type I and type II potentiators, can act (Young et al., 2008; Collins et al., 2011; Gill et 

al., 2011). 

In this chapter, studies with α7 nAChRs containing one of two point mutations in the 

second transmembrane domain (TM2) or a mutation on the N-terminal domain are 

conducted and the effect of these mutations on receptor activation and desensitisation is 

examined. Introduction of a single point mutation (L247T) in the 9' position of TM2 of 

the α7 nAChR has been reported previously to exert dramatic and diverse effects on the 

functional properties of this receptor (Revah et al., 1991; Bertrand et al., 1992). As 

discussed in section 1.4.4, the effects of the L247T mutation include increased potency 

of agonists such as acetylcholine and reduced levels of desensitisation (Revah et al., 

1991; Bertrand et al., 1992), which could be the result of destabilising the axial cluster 

of side chains that closes the channel (Labarca et al., 1995). In contrast, it is shown here 

that mutating the M260 residue, which is located near the extracellular site of the TM2 

domain (at the 22' position) and points towards an intrasubunit cavity that has been 
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previously proposed as a binding site for allosteric modulators of α7 nAChRs (Young et 

al., 2008; Gill et al., 2011), does not result in any difference in receptor desensitisation 

after activation by acetylcholine compared to wild-type receptors. In addition, a 

mutation on a residue situated on the complementary component of the orthosteric 

binding site, W54A, has been recently reported to convert type II PAMs into agonists, 

as a result of the ‘de-coupling’ between the orthosteric and allosteric binding sites 

(Papke et al., 2014). In this chapter, the effects of these mutations on receptor activation 

are examined using a variety of PAMs shown in Figure 4.1, including the ‘classical’ 

type I PAM, NS-1738 (Timmermann et al., 2007), and type II PAM, TQS (Grønlien et 

al., 2007), in addition to a series of novel compounds containing a substituted triazole 

group (Chapter 3). It is demonstrated that multiple mutations in α7 nAChRs can convert 

PAMs into allosteric agonists. In addition, it appears that the M260L mutation has a 

selective effect on PAMs that reduce agonist-evoked desensitisation (type II PAMs).  
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Figure 4.1: Chemical structures of allosteric ligands examined in this chapter. 

Abbreviations: 4BP-TQS: cis-cis-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline-8-sulfonamide; NS-1738: 1-(5-chloro-2-hydroxy-phenyl)-3-(2-chloro-5-
trifluoromethyl-phenyl)-urea; TBS-345: 4-(3-(4-bromophenyl)-5-phenyl-1H-1,2,4-triazol-1-
yl)benzenesulfonamide; TBS-346: 4-(3-(4-bromophenyl)-5-(4-methoxyphenyl)-1H-1,2,4-
triazol-1-yl)benzenesulfonamide; TBS-516: 4-(5-benzyl-3-(4-bromophenyl)-1H-1,2,4-triazol-1-
yl)benzenesulfonamide; TBS-546: 4-(3-(4-bromophenyl)-5-propyl-1H-1,2,4-triazol-1-
yl)benzenesulfonamide; TBS-556: 4-(3-(4-bromophenyl)-5-phenethyl-1H-1,2,4-triazol-1-
yl)benzenesulfonamide; TQS: cis-cis-4-(napthalen-1-yl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline-8-sulfonamide.  
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4.2 RESULTS 

The effects of α7 nAChR mutations on the pharmacological properties of a number of 

allosteric ligands (Figure 4.1) were examined by two-electrode voltage-clamp 

recordings in Xenopus oocytes expressing wild-type and mutated human recombinant 

α7 nAChRs. 

4.2.1 L247T (9') and M260L (22') transmembrane mutations 

There are several examples of individual point mutations in nAChR subunits that result 

in dramatic effects on the pharmacological properties of receptors. For example, in 

agreement with previous studies (Revah et al., 1991), a single point mutation (L247T), 

located towards the middle of the second transmembrane (TM2) domain (at the 9' 

position) of the α7 subunit (Figure 4.2) caused a dramatic slowing of receptor 

desensitisation and a large leftward shift (660-fold; p < 0.001) of the concentration-

response curve for acetylcholine, with the EC50 value for wild-type being 132 ± 13 µM 

and for L247T 201 ± 10 nM (Figure 4.2B and C). In contrast, another point mutation 

(M260L), located towards the top of TM2 (at the 22' position) (Figure 4.2A) was found 

to have no significant effect on the rate of receptor desensitisation after activation by 

acetylcholine. The desensitisation time constants of the current decay after activation by 

1 mM acetylcholine were τfast = 53.3 ± 8.4 ms (n = 20) for M260L and 76.1 ± 6.6 ms (n 

= 57) for wild-type (p = 0.06) and τslow = 242.5 ± 87.5 ms (n = 20) for M260L and 239.8 

± 21.8 ms (n = 57) for wild-type (p = 0.97). In addition, M260L caused a much smaller 

leftward shift (2.1-fold; p = 0.03) of the acetylcholine concentration-response curve, 

with the EC50 for wild-type being 132 ± 13 µM and for M260L 63 ± 12 µM (Figure 4.2 

and Table 3). 
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Figure 4.2: The influence of α7 nAChR mutations (L247T and M260L) on activation by 
ACh.  

A) The location of L247 (9') and M260 (22') residues in the α7 nAChR subunit transmembrane 
(TM2) domain. The transmembrane region of an α7 nAChR subunit homology model (Young et 
al., 2008) is shown viewed from the top (left) and from the side (right). The α-helical 
transmembrane regions are illustrated as ribbon structures with the side chains of the two 
mutated amino acids shown as space-filling models (L247 in red and M260 in blue).  

B) Representative traces are shown illustrating responses to maximal concentrations of ACh on 
human wild-type (WT) α7 nAChRs and α7 nAChRs containing the M260L mutation (M260L) 
and the L247T mutation (L247T). ACh concentrations: 1 mM for WT and M260L and 10 µM 
for L247T.  

C) ACh concentration-response data are presented for wild-type α7 nAChRs (circles) and for α7 
nAChRs containing either the M260L mutation (triangles) or the L247T mutation (diamonds). 
Data are means ± SEM of at least three independent experiments and are normalised to the 
respective maximum response obtained with each nAChR variant.  
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4.2.2 Effects of transmembrane mutations on modulation of α7 nAChRs by type 

I and type II PAMs 

Further differences were observed between wild-type and mutated (L247T and M260L) 

α7 nAChRs in the extent to which they are modulated by type I and type II PAMs. 

Initially, studies were conducted with two previously described ‘classical’ type I and 

type II PAMs (NS-1738 and TQS, respectively). As is illustrated, both compounds 

lacked agonist effects on wild-type α7 nAChRs but both potentiated agonist-evoked 

responses on wild-type receptors (Figure 4.3A). In agreement with previous studies 

(Grønlien et al., 2007; Timmermann et al., 2007), NS-1738 caused potentiation of 

agonist-evoked responses with little or no effect on desensitisation, whereas TQS 

resulted in a dramatic loss of desensitisation (Figure 4.3A).  

As has been reported previously (Gill et al., 2011), one of the effects of the L247T 

mutation is that it converts the type II PAM TQS into a potent agonist of the mutated 

receptor. Here it is demonstrated that a similar effect (the conversion of a PAM into an 

agonist) was also observed with NS-1738, a classical type I PAM (Figure 4.3B). In 

contrast to L247T, the M260L mutation had a selective effect on these two PAMs. As 

was observed with L247T, TQS (a type II PAM) acted as a non-desensitising agonist on 

receptors containing the M260L mutation, whereas NS-1738 (a type I PAM) had no 

agonist activity on this mutated receptor (Figure 4.3C). Thus, the two TM2 mutations 

(L247T and M260L) have differing effects on desensitisation of α7 nAChRs, when 

activated by acetylcholine (Figure 4.2) and also differ in their ability to convert the type 

I PAM into an agonist (Figure 4.3). However, they share an ability to convert the type II 

PAM into an agonist (Figure 4.3).  
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Figure 4.3: The influence of a type I (NS-1738) and a type II PAM (TQS) on wild-type and 
mutated (L247T or M260L) α7 nAChRs. 

A) Representative traces illustrating responses with wild-type α7 nAChRs to ACh (100 µM) and 
after the pre- and co-application of either NS-1738 (10 µM; left pair of traces) or TQS (30 µM; 
right).  

B) Representative traces illustrating responses with mutated (L247T) α7 nAChRs to ACh (10 
µM) and to NS-1738 (10 µM; left) or TQS (30 µM; right).  

C) Representative traces illustrating responses with mutated (M260L) α7 nAChRs to ACh (100 
µM) and NS-1738 (10 µM; left) or TQS (30 µM; right). 
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4.2.3 Effects of transmembrane mutations on modulation of α7 nAChRs by 

TBS compounds 

As described in chapter 3, a series of chemically related TBS compounds have been 

identified that differ in their ability to alter desensitisation of α7 nAChRs (Figure 4.4A). 

The influence of L247T and M260L mutations on the pharmacological properties of 

these compounds was examined. The reason for doing so was to determine whether the 

differing effects of the L247T and M260L mutations in converting TQS but not NS-

1738 into agonists reflect a consistent ability to discriminate between type I and type II 

PAMs. When examined on α7 nAChRs containing the L247T mutation, all five TBS 

compounds acted as agonists (Figure 4.4). Thus, it appears that a feature of the L247T 

mutation is the conversion of all PAMs examined, irrespective of their effect on 

desensitisation, into agonists. In contrast, with α7 nAChRs containing the M260L 

mutation, strong agonist activity was observed only with the two TBS compounds that 

had the greatest propensity to reduce desensitisation in wild-type α7 nAChRs (TBS-516 

and TBS-556; Figure 4.4C). Therefore, it appears that the M260L mutation has an effect 

on α7 nAChR structure that can discriminate between PAMs that differ in their 

influence upon desensitisation of wild-type α7 nAChRs.  

The α7-selective antagonist MLA blocked responses to acetylcholine on both L247T 

(Figure 4.5A) and M260L α7 nAChRs (Figure 4.6A). Similarly, MLA blocked 

responses with all of the allosteric modulators that act as agonists on these two mutated 

α7 nAChRs (Figure 4.5 and Figure 4.6). This is consistent with previous reports 

indicating that, in addition to acting as a competitive antagonist of acetylcholine, MLA 

can block activation of wild-type α7 nAChRs by allosteric agonists such as 4BP-TQS 

via a non-competitive mechanism (Gill et al., 2011).  
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Figure 4.4: Potentiation and agonist effects of TBS compounds on wild-type and mutated 
α7 nAChRs.  

A) Representative traces are shown illustrating responses of wild-type α7 nAChRs to ACh (100 
µM), together with responses to ACh (100 µM) after pre- and co-application of TBS compounds 
(10 µM). All responses on wild-type α7 nAChRs have been normalised to their peak response, 
so as to illustrate differences in the rate of desensitisation.  

B) Representative traces are shown illustrating agonist responses of α7 nAChRs containing the 
L247T (9') mutation to either ACh (10 µM) or TBS compounds (10 µM).  

C) Representative traces are shown illustrating agonist responses of α7 nAChRs containing the 
M260L (22') mutation to either ACh (100 µM) or TBS compounds (10 µM).  
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Figure 4.5: Antagonism of agonist responses on L247T α7 nAChRs by MLA.  

Representative traces with L247T α7 nAChRs illustrating initial agonist responses with (A) 
ACh (10 µM), (B) TQS (3 µM), (C) NS-1738 (10 µM), (D) TBS-346 (10 µM), (E) TBS-546 (10 
µM), (F) TBS-345 (10 µM), (G) TBS-556 (10 µM) and (H) TBS-516 (10 µM) (left) and 
antagonism by pre- and co-application of MLA (1 µM) (right).  
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Figure 4.6: Antagonism of agonist responses on M260L α7 nAChRs by MLA.  

Representative traces with M260L α7 nAChRs illustrating initial agonist responses with (A) 
ACh (1 mM), (B) TQS (10 µM) and (C) TBS-516 (10 µM) (left) and antagonism by pre- and 
co-application of MLA (1 µM) (right).  
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For wild-type and mutated α7 nAChRs, concentration-response curves were constructed 

for the orthosteric agonist acetylcholine and for the allosteric agonist 4BP-TQS (Figure 

4.7). In addition, agonist concentration-response curves were constructed for two type I 

PAMs (NS-1738 and TBS-346) and for two type II PAMs (TBS-516 and TQS) (Figure 

4.7). In agreement with previous studies (Gill et al., 2011), the allosteric agonist 4BP-

TQS generated larger maximal responses and a steeper Hill coefficient than the 

endogenous agonist acetylcholine on wild-type α7 nAChRs, whereas none of the PAMs 

tested (NS-1738, TBS-346, TBS-516 or TQS) had any detectable agonist activity on 

wild-type receptors (Figure 4.7A and Table 3). In marked contrast, all of the compounds 

tested (4BP-TQS, acetylcholine, NS-1738, TBS-346, TBS-516 and TQS) generated 

broadly similar maximal responses and had similar Hill coefficients on α7 nAChRs 

containing the L247T mutation (Figure 4.7B and Table 3). With α7 nAChRs containing 

the M260L mutation, the orthosteric and allosteric agonists (acetylcholine and 4BP-

TQS, respectively) differed in their maximal responses and Hill coefficients, much as 

they do on wild-type α7 nAChRs (Figure 4.7A and C). Also, with α7 nAChRs 

containing the M260L mutation, agonist responses were observed with the two type II 

PAMs (TBS-516 and TQS) but not with the two type I PAMs (NS-1738 and TBS-346). 

In addition, in contrast to the L247T mutation, maximal responses with TBS-516 and 

TQS (the type II PAMs) were much closer to that observed with acetylcholine than with 

4BP-TQS (Figure 4.7C and Table 3).  
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Figure 4.7: Concentration-response curves for wild-type and mutated α7 nAChRs. 

Data are shown from wild-type α7 nAChRs (A), α7 nAChRs containing the L247T (9') 
mutation (B) and α7 nAChRs containing the M260L (22') mutation (C). Data are presented for a 
range of concentrations of ACh (circles), the allosteric agonist 4BP-TQS (hexagons), the type II 
PAMs, TQS (squares) and TBS-516 (inverted triangles), and the type I PAMs, NS-1738 
(triangles) and TBS-346 (diamonds). Data are means ± SEM of at least three independent 
experiments and are normalised to the maximum acetylcholine response.  
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Table 3: Agonist properties on wild-type and mutated α7 nAChRs. 

Data are means ± SEM of at least three independent experiments.  

a Data for maximal currents (Imax) are normalised to the size of the maximum acetylcholine 
response for each receptor type. 

  

Receptor Agonist EC50 (µM) nH Imax a 

α7 WT  

Acetylcholine 132 ± 13 1.4 ± 0.2 1.0 
4BP-TQS 4.2 ± 0.3 5.2 ± 0.8 4.4 ± 0.3 
NS-1738 N/A N/A 0.0 
TBS-346 N/A N/A 0.0 
TBS-516 N/A N/A 0.0 

TQS N/A N/A 0.0 

α7 L247T 

Acetylcholine 0.2 ± 0.01 2.1 ± 0.2 1.0 
4BP-TQS 0.03 ± 0.003 2.3 ± 0.2 1.0 ± 0.1 
NS-1738 0.8 ± 0.1 1.6 ± 0.2 0.8 ± 0.1 
TBS-346 0.1 ± 0.04 1.7 ± 0.3 0.9 ± 0.1 
TBS-516 0.2 ± 0.04 2.5 ± 0.3 1.1 ± 0.1 

TQS 0.4 ± 0.1 1.7 ± 0.1 0.8 ± 0.1 

α7 M260L 

Acetylcholine 63 ± 12 1.3 ± 0.1 1.0 
4BP-TQS 2.5 ± 0.4 2.3 ± 0.4 9.0 ± 1.2 
NS-1738 N/A N/A 0.0 
TBS-346 N/A N/A 0.0 
TBS-516 8.9 ± 2.5 1.8 ± 0.3 3.7 ± 0.6 

TQS 12 ± 1.1 3.1 ± 0.4 1.5 ± 0.1 
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It is notable that compounds that had no agonist effect on M260L receptors (NS-1738, 

TBS-346, TBS-546 and TBS-345), in addition to the compounds that were converted 

into agonists (TQS, TBS-556 and TBS-516), retained their ability to potentiate agonist 

responses when co-applied with acetylcholine (Figure 4.8). The fold-potentiation 

(determined on the basis of maximum peak response compared to acetylcholine alone) 

was 2.5 ± 0.3 for NS-1738, 5.8 ± 3.1 for TQS, 2.8 ± 0.6 for TBS-346, 3.6 ± 0.6 for 

TBS-546, 6.2 ± 1.2 for TBS-345, 6.6 ± 1.0 for TBS-556 and 8.0 ± 3.1 for TBS-516 

(mean ± SEM of n ≥ 3). In contrast, on L247T α7 nAChRs, upon which acetylcholine 

acts as a non-desensitising agonist (Figure 4.7B), the amplitude of the maximum 

response elicited by application of acetylcholine or by allosteric ligands was very 

similar (Figure 4.7B and Table 3). Co-application of acetylcholine with the allosteric 

modulators on L247T α7 nAChRs did not potentiate or inhibit the response elicited by 

acetylcholine alone (data not shown).  

  



 138 

 

Figure 4.8: Potentiation of ACh responses by allosteric modulators on M260L α7 nAChRs. 

A-G) Representative traces are shown illustrating responses to ACh (100 µM) (left) together 
with responses from the same oocyte after pre- and co-application of an allosteric modulator (10 
µM) (right). Representative traces are shown for NS-1738 (A), TQS (B), TBS-346 (C), TBS-
546 (D), TBS-345 (E), TBS-556 (F) and TBS-516 (G).  

H) Bar chart showing fold potentiation of responses to ACh (100 µM) by PAMs on M260L α7 
nAChRs (mean and SEM of at least three independent experiments).  
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4.2.4 Type I PAMs block agonist effects of type II PAMs on M260L in a 

surmountable manner 

Previous studies have concluded that type I and type II PAMs, despite their differing 

effects on desensitisation, can bind competitively at a common allosteric 

transmembrane site (Collins et al., 2011). Therefore, although the type I PAMs (NS-

1738 and TBS-346) did not act as agonists on α7 nAChRs containing the M260L 

mutation (Figure 4.7C) it is possible that they may block the agonist response observed 

with type II PAMs on this mutated receptor. When either of the type I PAMs (NS-1738 

and TBS-346 at 10 µM) was pre- and co-applied with either of the type II PAMs (TQS 

or TBS-516 at 10 µM), an inhibition of agonist responses was observed (Figure 4.9A-

D). NS-1738 completely blocked responses to TQS, while TBS-346 blocked responses 

to TQS by 95.7 ± 1.1%. NS-1738 blocked responses to TBS-516 by 92.7 ± 2.3%, while 

TBS-346 blocked responses to TBS-516 by 83.4 ± 4.1% (n = 3). 

The antagonism caused would be expected to be surmountable at high concentrations of 

the type II PAM, if type I PAMs are causing antagonism by binding competitively with 

type II PAMs on α7 nAChRs containing the M260L mutation. This possibility was 

investigated by constructing an agonist concentration-response curve of TQS in the 

absence and the presence of a fixed concentration of NS-1738 (Figure 4.9E). The EC50 

for TQS was 11.5 ± 1.1 µM (n = 4) in the absence of NS-1738 and 45.4 ± 5.4 µM (n = 

5) in the presence of NS-1738 (Figure 4.9E). This corresponds to a significant rightward 

shift (4.0-fold; p < 0.001) of the concentration-response curve in the presence of NS-

1738. However, the two curves had similar maxima (Figure 4.9E), which suggests that 

NS-1738 is blocking responses to TQS by a competitive mechanism of action. A 

notable feature of the data is that the concentration-response curve is significantly less 

steep (p < 0.01) in the presence of NS-1738 (a Hill coefficient of 1.5 ± 0.2), than in the 

absence of NS-1738 (3.1 ± 0.4), which may be a consequence of NS-1738 acting as a 

potentiator of the TQS response, at low TQS concentrations, when not all sites of the 

receptor are occupied by TQS. 
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Figure 4.9: Type I PAMs block agonist activity of TQS and TBS-516 on α7 nAChRs 
containing the M260L mutation.  

Representative traces are shown, obtained by two-electrode voltage-clamp recording in oocytes 
expressing α7 nAChRs containing the M260L mutation, in which a type I PAM (NS-1738 or 
TBS-346) is pre-applied for 10 s and then co-applied with a type II PAM (TQS or TBS-516) 
(A-D). A) NS-1738 (10 µM) completely blocks responses to TQS (10 µM). B) TBS-346 (10 
µM) blocks responses to TQS (10 µM) by 95.7 ± 1.1% (n = 3). C) NS-1738 (10 µM) blocks 
responses to TBS-516 (10 µM) by 92.7 ± 2.3% (n = 3). D) TBS-346 (10 µM) blocks responses 
to TBS-516 (10 µM) by 83.4 ± 4.1% (n = 3).  

E) The agonist concentration-response curve for TQS on α7 nAChRs containing the M260L 
mutation is shifted to the right in the presence of NS-1738 (2 µM, pre-applied for 10 s and then 
co-applied with TQS). The antagonism by NS-1738 is surmountable at high concentrations of 
TQS. Data are means and SEM of at least three independent experiments. Data are normalised 
to the maximum response obtained with TQS in the absence of NS-1738. 
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4.2.5 Effects of the W54A mutation on modulation of α7 nAChRs by allosteric 

ligands 

A residue on the extracellular domain of the nAChR, W54, has previously been 

implicated in determining the efficacy and selectivity of specific orthosteric ligands in 

both α7 and heteromeric receptors (Williams et al., 2009). W54 is situated on the 

complementary surface of the orthosteric binding site (Corringer et al., 1995). It has 

been reported recently that the mutation W54A in α7 nAChRs also converts TQS and 

PNU-120596 (both type II PAMs) into agonists (Papke et al., 2014). In addition, 

agonism by allosteric ligands has been reported to not be susceptible to block by MLA, 

suggesting a de-coupling of the orthosteric and allosteric binding site on this mutated 

receptor (Papke et al., 2014). The influence of the W54A mutation on NS-1738 and 

TBS-346 (type I PAMs) and on TBS-516 and TQS (type II PAMs) was examined in 

order to determine whether this mutation also discriminates between PAMs that have 

differing effects on desensitisation.  

There was no significant difference in the potency of acetylcholine between wild-type 

and W54A α7 nAChRs. The EC50 for wild-type was 132.3 ± 12.7 µM (n = 6) and for 

W54A 155.3 ± 31.6 µM (n = 4; p = 0.46), while the Hill coefficient was 1.4 ± 0.2 (n = 

6) for wild-type and 1.6 ± 0.1 for W54A (n = 4; p = 0.36). In addition, very rapid 

desensitisation was observed after activation by acetylcholine, similar to the profile 

observed with wild-type α7 nAChRs. Figure 4.10 shows that all the PAMs tested 

elicited slow-desensitising agonist responses on the W54A receptor, albeit to different 

levels. The response to TQS (10 µM) was 2.4 ± 0.3 - fold larger than the maximum 

acetylcholine response (1 mM) (Figure 4.10A) and the response to TBS-516 (10 µM) 

was 3.4 ± 0.5 - fold larger (Figure 4.10B). Peak responses to type I PAMs were smaller 

than acetylcholine, with NS-1738 (10 µM) eliciting a response with amplitude of 16.9 ± 

0.7% of the maximum acetylcholine response (Figure 4.10C) and TBS-346 (10 µM) 

eliciting a response with amplitude of 10.1 ± 2.4% of the acetylcholine response (Figure 

4.10D). Concentration-response data collected for acetylcholine, the type I PAMs, NS-

1738 and TBS-346, and the type II PAMs, TQS and TBS-516, are shown in Figure 

4.10E and 4.10F. NS-1738 activated W54A α7 nAChRs with an EC50 of 5.7 ± 0.7 µM 

(n = 3) and TBS-346 with an EC50 of 7.6 ± 0.9 µM (n = 3). TQS activated W54A α7 

nAChRs with an EC50 of 4.1 ± 0.6 µM (n= 3) and TBS-516 with an EC50 of 1.5 ± 0.5 
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µM (n = 3). The Hill coefficients were not significantly different (p = 0.64; Tukey’s 

post hoc) between NS-1738, TBS-346, TBS-516 and TQS (3.0 ± 0.4, 2.6 ± 0.4, 2.6 ± 

0.3 and 3.4 ± 0.7, respectively; n = 3).  

It has been reported previously that activation of α7 nAChRs containing the W54A 

mutation by the allosteric agonist 4BP-TQS is insensitive to the competitive antagonist 

MLA (Papke et al., 2014). Here, the effect of MLA on activation of W54A α7 nAChRs 

by acetylcholine and allosteric ligands was examined (Figure 4.11). As expected, 1 µM 

MLA completely blocked responses to 1 mM acetylcholine (Figure 4.11A). In 

agreement to previous studies (Papke et al., 2014), the agonist response elicited by 10 

µM TQS was largely insensitive to block by 1 µM MLA (94.8 ± 5.0% of the TQS 

response; n = 4) (Figure 4.11B). However, responses to TBS-516, NS-1738 and TBS-

346 were blocked to different extent. 1 µM MLA reduced the response to 10 µM TBS-

516 to 34.6 ± 5.3% (n = 4) of the control response in the absence of MLA (Figure 

4.11C). The response to 10 µM NS-1738 was reduced to 18.3 ± 1.3% (n = 5) of control 

(Figure 4.11D) and the response to 10 µM TBS-346 was reduced to 41.4 ± 7.6 (n = 4) of 

control (Figure 4.11E). 
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Figure 4.10: Agonist activation of recombinant human α7 nAChRs containing the W54A 
mutation. 

A-D) Representative traces, obtained by two-electrode voltage-clamp recording in oocytes 
expressing α7 nAChRs containing the W54A mutation, showing responses to (A) ACh (1 mM; 
left) and TQS (10 µM; right), (B) ACh (1 mM; left) and NS-1738 (10 µM; right), (C) ACh (1 
mM; left) and TBS-516 (10 µM; right) and (D) ACh (1 mM; left) and TBS-346 (10 µM; right).  

E-F) Agonist concentration-response curves for ACh, TBS-516 and TQS (E) and ACh, NS-
1738 and TBS-346 (F) obtained with oocytes expressing W54A α7 nAChRs. Data are means 
and SEM of at least three independent experiments. Data are normalised to the maximum 
response obtained with ACh. 
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Figure 4.11: Antagonism of agonist responses on W54A α7 nAChRs by MLA.  

Representative traces obtained by two-electrode voltage-clamp recording in oocytes expressing 
α7 nAChRs containing the W54A mutation, illustrating initial agonist responses with (A) ACh 
(1 mM), (B) TQS (10 µM), (C) TBS-516 (10 µM), (D) NS-1738 (10 µM) and (E) TBS-346 (10 
µM) and antagonism by pre- and co-application of MLA (1 µM) (right). 
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4.3 DISCUSSION 

It is well established that orthosteric agonists, such as acetylcholine, bind to an 

extracellular site at the interface between two subunits (Arias, 2000). In contrast, 

evidence is accumulating to support that certain PAMs, such as PNU-120596, TQS and 

NS-1738, bind at an intrasubunit site in the nAChR transmembrane domain (Young et 

al., 2008; Collins et al., 2011). In addition, allosteric agonists have been identified that 

appear to bind at a similar transmembrane site but, in doing so, can activate α7 nAChRs 

in the absence of an orthosteric agonist (Gill et al., 2011; Gill et al., 2012; Gill et al., 

2013; Papke et al., 2014). Similarly, there is evidence for agonist activation, via an 

allosteric transmembrane site, for other pentameric LGICs (Amin & Weiss, 1993; Cully 

et al., 1996; Lansdell et al., 2015). 

Although previous studies have demonstrated that the L247T mutation can convert a 

type II PAM into an allosteric agonist (Gill et al., 2011), this finding has now been 

extended by demonstrating that this is a feature conferred by the L247T mutation on 

type I PAMs, type II PAMs and also on PAMs that can be considered to have 

intermediate (type I/II) properties. Based on structural studies from a variety of 

pentameric LGICs, the amino acid located at a position analogous to L247 (position 9') 

in the α7 nAChR is located close to the gate of the channel pore (Unwin, 2005; 

Beckstein & Sansom, 2006; Althoff et al., 2014; Hassaine et al., 2014). This may help 

to explain the profound effects that have been observed when this amino acid is 

mutated. It seems plausible that mutating this amino acid might disrupt the gate of the 

channel and mutations have been shown to increase the opening rate. Indeed, higher 

frequency of spontaneous openings has been reported in receptors containing the L247T 

mutation (Labarca et al., 1995; Bertrand et al., 1997) as well as other changes in 

pharmacological properties (Revah et al., 1991; Bertrand et al., 1992; Palma et al., 

1996). In contrast, the M260L mutation, which is located towards the extracellular site 

of the TM2 domain (position 22'), has a more selective effect on PAMs. With this 

mutation, agonist activation was observed only with PAMs that substantially reduced 

the levels of desensitisation in wild-type α7 nAChRs. This effect of the M260L 

mutation is unlikely to be due to it preventing the binding of type I PAMs because, even 

though type I PAMs are not converted into agonists on the mutated receptor, they retain 

their PAM activity in the presence of acetylcholine. In addition, type I PAMs block 
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agonist activation by type II PAMs in receptors containing the M260L mutation. It is 

thought that type I PAMs increase peak current in the presence of an agonist by 

facilitating the transition of the receptor from the resting to open state upon activation 

by the agonist without having an effect on receptor desensitisation. On the other hand, 

type II PAMs significantly reduce the fast desensitisation of the α7 nAChRs and may 

allow receptor reactivation from the desensitised state, perhaps by destabilising the 

desensitised state or converting the desensitised state into a new conducting state.  

As is illustrated in Figure 4.2, M260 is located near the extracellular site of the TM2 

domain, whereas L247 is located towards the intracellular site (at positions 22' and 9', 

respectively). It is also notable that the side chain of L247 is predicted to point towards 

the ion channel pore, whereas that of M260 points towards an intrasubunit cavity that 

has been proposed previously as a binding site for allosteric modulators of α7 nAChRs 

(Young et al., 2008; Gill et al., 2011). It is possible that these mutations may facilitate 

direct receptor activation by PAMs by altering the energy barrier for transitions between 

the closed, open and desensitised states of the receptor. Direct allosteric activation 

appears to be associated with a loss of rapid desensitisation. In the case of the M260L 

mutation, which has no significant effect on desensitisation, allosteric activation occurs 

only with type II PAMs (which themselves cause a loss of agonist-induced 

desensitisation). In contrast, the L247T mutation, which itself cause a loss of 

desensitisation, facilitates agonist activation by type I PAMs (which do not alter 

receptor desensitisation). The M260 residue is located towards the extracellular end of 

the TM2 domain in a region that has been referred to as the ‘M2-cap’ (Bafna et al., 

2008). Previous studies have indicated that a stretch of 10 amino acids this region can 

influence allosteric modulation of an α7/5-HT3A subunit chimera (Bertrand et al., 

2008). In addition, studies of this region (18'-28') on the α1 subunit of the muscle-type 

nAChR, indicate that mutations in this region have large effects on gating but smaller 

effects on channel conductance and desensitisation (Bafna et al., 2008). However, 

mutating the isoleucine on the 22' position to a leucine (which corresponds to M260 on 

the human α7 subunit) increased the apparent rate for entry into long-lived desensitised 

states by ~10-fold (Bafna et al., 2008). It is plausible that this mutation in the 

corresponding residue of the α7 subunit could have an effect on the rate of receptor 

desensitisation, which could alter its modulation by type II PAMs. 



 147 

Numerous mutations on the α7 nAChR have been reported to alter the properties of 

orthosteric and allosteric ligands. As discussed above, the L247T mutation has been 

reported to dramatically alter the properties of various ligands, possibly due to its 

significance in receptor gating (Revah et al., 1991; Labarca et al., 1995; Palma et al., 

1996). In addition, M260L points to an intrasubunit cavity, proposed to be the binding 

site of a number of PAMs, including TQS (Young et al., 2008; Gill et al., 2011). In 

contrast, a mutation located at a distant site to the proposed binding site of these PAMs, 

W54A, has been reported to influence receptor modulation by allosteric ligands (Papke 

et al., 2014). This mutation is situated on a highly conserved residue at the 

complementary component of the orthosteric binding site (Corringer et al., 1995). It has 

been reported recently that the type II PAMs TQS and PNU-120596 are converted into 

agonists on α7 nAChRs containing the W54A mutation. In addition, agonism by 

allosteric ligands was reported to be insensitive to MLA block, suggesting a ‘de-

coupling’ of the orthosteric and allosteric binding sites (Papke et al., 2014). Here, it has 

been shown that, similar to L247T, both type I and type II PAMs are converted into 

non-desensitising agonists. However, type I PAMs activated the receptor to a lesser 

degree than type II PAMs. In addition, even though TQS was largely insensitive to 

MLA block (in agreement with previous studies (Papke et al., 2014)), the other PAMs 

tested were not. This would suggest a compound-selective effect of MLA block, rather 

than a generalised de-coupling of the orthosteric and allosteric binding sites in α7 

nAChRs containing the W54A mutation. 

In conclusion, evidence for mutations located at different positions in the receptor 

subunit having distinct effects on allosteric modulation helps to provide a greater insight 

into the pharmacological diversity of these compounds.  
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CHAPTER 5 

ATYPICAL PHARMACOLOGICAL 

PROPERTIES OF A-867744 

  



 149 

5.1 INTRODUCTION 

As discussed previously, numerous allosteric ligands that potentiate nAChRs have been 

identified in recent years. A-867744 (4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-

pyrrol-1-yl) benzenesulfonamide) (Figure 5.1) is a compound first developed and 

characterised by Abbott as an α7-selective type II PAM (Faghih et al., 2009; Malysz et 

al., 2009). Similar to other type II PAMs, such as PNU-120596 and TQS, A-867744 

does not activate the receptor when applied alone, but, when co-applied with an 

orthosteric agonist, it potentiates peak agonist response and dramatically reduces the 

fast desensitisation observed with α7 nAChRs (Malysz et al., 2009). There is also 

evidence from subunit chimaeras that A-867744 exhibits its effect by binding at a 

transmembrane site. However, some unexpected results have been reported. Although 

A-867744 does not displace binding of [3H]-MLA from α7 nAChRs, it has been 

reported to displace the binding of another agonist ([3H]-A-585539) that is thought to 

interact with the orthosteric site (Malysz et al., 2009). 

Previous studies with receptors containing site-directed point mutations have identified 

critical residues for the functioning of orthosteric and allosteric ligands of α7 nAChRs. 

The orthosteric binding site has been extensively mapped (Corringer et al., 1998), and 

critical residues like Y188 and W149 have been identified (Akk, 2001; Stewart et al., 

2006; Horenstein et al., 2007; Williams et al., 2009). Likewise, residue M253 in the 

transmembrane domain has been identified to be essential for the function of allosteric 

potentiators and agonists, with the M253L mutation reducing or abolishing the effect of 

allosteric ligands such as PNU-120596, TQS and 4BP-TQS (Young et al., 2008; Gill et 

al., 2011). In contrast, the M260L mutation, which is situated near the same intrasubunit 

cavity as M253, was shown to convert PAMs that reduce the rate of desensitisation into 

agonists (Chapter 4). In addition, the L247T and W54A mutations have also been 

shown to convert PAMs, irrespective of their effect on desensitisation, into non-

desensitising agonists ((Papke et al., 2014) and Chapter 4). 

In this chapter, the effects of A-867744 are examined on α7 nAChRs containing 

mutations proposed to be significant for allosteric modulation, in order to investigate 

whether this compound behaves differently than other allosteric ligands examined 

previously.   
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Figure 5.1: Chemical structures of allosteric ligands examined in this chapter. 

Abbreviations: A-867744: 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl) 
benzenesulfonamide; TBS-516: 4-(5-benzyl-3-(4-bromophenyl)-1H-1,2,4-triazol-1-
yl)benzenesulfonamide; TQS: cis-cis-4-(napthalen-1-yl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline-8-sulfonamide. 
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5.2 RESULTS 

The pharmacological properties of A-867744 were examined on wild-type and mutated 

human recombinant α7 nAChRs expressed in Xenopus oocytes by two-electrode 

voltage-clamp recordings and on mammalian cultured cells transiently transfected with 

human α7 nAChRs by competition radioligand binding assays. 

5.2.1 A-867744 is a type II PAM of α7 nAChRs 

In agreement with previous studies (Malysz et al., 2009), A-867744 did not evoke 

responses when applied on α7 nAChRs in the absence of an orthosteric agonist. 

However, it potentiated responses to acetylcholine and dramatically reduced the fast 

desensitisation kinetics of the α7 nAChR at higher concentrations (Figure 5.2). 

Concentration-response data obtained for a range of A-867744 concentrations pre- and 

co-applied with 100 µM acetylcholine confirmed that A-867744 is a potent PAM, with 

an EC50 of 115 ± 21 nM and Hill coefficient of 1.4 ± 0.2 (Figure 5.2; n = 6). In addition, 

the maximum potentiation of a submaximal acetylcholine response (100 µM) was 17.1 

± 2.7 fold (n = 7).  

Competition radioligand binding was performed in order to examine the ability of A-

867744 to displace [3H]-α-bungarotoxin from the orthosteric binding site of α7 nAChRs 

(Figure 5.3). It has been reported previously that A-867744 does not displace the 

binding of [3H]-MLA, though, surprisingly, it displaces the binding of another agonist 

that is thought to interact with the orthosteric binding site (Malysz et al., 2009). Here it 

is demonstrated that A-867744 did not elicit any significant displacement of [3H]-α-

bungarotoxin binding (Figure 5.3). These findings are consistent with A-867744 acting 

as potentiator of α7 nAChRs via a site other than the extracellular orthosteric binding 

site. 
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Figure 5.2: Positive allosteric modulation of wild-type α7 nAChRs by A-867744, examined 
by two-electrode voltage-clamp recording in Xenopus oocytes. 

A) Representative traces are shown illustrating responses to an EC50 of ACh (100 µM) and to 
ACh (100 µM) co-applied with a range of concentrations of A-867744 (0.01 – 3 µM). A-867744 
was pre-applied for 5 s before ACh was co-applied. The horizontal bars indicate the duration of 
ACh (black bars) and A-867744 (blue bars) application.  

B) Concentration-response data are plotted for a range of concentrations of A-867744 co-
applied with an EC50 of ACh (100 µM). Data are means ± SEM of six independent experiments, 
each from different oocytes. Data are normalised to the response obtained with 100 µM ACh. 
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Figure 5.3: Displacement of [3H]-α-bungarotoxin from the orthosteric site of α7 nAChRs 
by A-867744, examined by competition radioligand binding. 

Equilibrium radioligand binding was performed with [3H]-α-bungarotoxin (1 nM) with 
mammalian tsA201 cells transiently transfected with human α7 nAChR subunit and with human 
RIC-3 cDNAs (1:1 ratio). A-867744 (3 nM – 30 µM) causes no significant displacement of 
[3H]-α-bungarotoxin binding, whereas MLA causes complete displacement of specific 
radioligand binding. Data points are means (± SEM) of three independent experiments, each 
done in triplicates. 
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5.2.2 The influence of M260L on the pharmacological properties of A-867744 

As described in chapter 4, PAMs that have a profound effect on α7 nAChR 

desensitisation were converted into agonists on α7 nAChRs containing the M260L 

mutation. A-867744 is an α7 PAM that dramatically reduces the fast desensitisation 

observed after activation with acetylcholine (Figure 5.2) and is classified as a type II 

PAM. However, A-867744 failed to evoke any responses when up to 100 µM were 

applied in the absence of an agonist on α7 nAChRs containing the M260L mutation 

(Figure 5.4), in marked contrast to the type II PAMs TQS and TBS-516, which evoked 

non-desensitising currents (Chapter 4). In addition, even though A-867744 was not 

converted into an agonist on M260L receptors, it retained its type II PAM activity 

(Figure 5.4B). The maximum fold potentiation of the response to 100 µM acetylcholine 

on M260L by 1 µM A-867744 was 14.9 ± 5.1 (n = 5), which is not significantly 

different to that observed with wild-type (17.1 ± 2.7; n = 7; p = 0.69). Furthermore, 1 

µM A-867744 completely blocked the agonist responses elicited by 30 µM TQS (Figure 

5.4C).  

5.2.3 The influence of W54A on the pharmacological properties of A-867744 

α7 nAChRs containing the W54A mutation convert type II and also type I PAMs into 

non-desensitising agonists (Chapter 4 and (Papke et al., 2014)). However, similar to 

M260L, A-867744 was not converted into an agonist when tested up to 100 µM on 

W54A receptors (Figure 5.5). A-867744 retained its activity as a type II PAM (Figure 

5.5B). The maximum fold potentiation of the response to 100 µM acetylcholine by 1 

µM A-867744 was 15.1 ± 1.8 (n = 12), which is not significantly different to that 

observed with wild-type (17.1 ± 2.7; n = 7; p = 0.54). In addition, 1 µM A-867744 

completely blocked the agonist responses elicited by 10 µM TQS (Figure 5.5C). 
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Figure 5.4: The effects of A-867744 on α7 nAChRs containing the M260L mutation. 

A) Concentration-response data are plotted for a range of concentrations of the type II PAMs A-
867744, TBS-516 and TQS. Data are means ± SEM of three independent experiments, each 
from different oocytes. Data are normalised to the maximum acetylcholine response. 

B) Representative traces illustrating responses to ACh (100 µM; left) together with ACh 
responses from the same oocyte after pre- and co-application of A-867744 (1 µM; right). A-
867744 was pre-applied for 10 s. 

C) Representative traces illustrating responses to TQS (30 µM; left) together with TQS 
responses from the same oocyte after pre- and co-application of A-867744 (1 µM; right). A-
867744 was pre-applied for 10 s. 

  

ACh 
A-867744 + ACh 

5 s 

1 
µA

 

10-8 10-7 10-6 10-5 10-4 10-3

0

1

2

3

4

[Compound] (M)

N
or

m
al

ise
d 

re
sp

on
se

TQS
TBS-516
A-867744

M260L 

 
10 s 0.

2 
µA

 

TQS 
A-867744 + TQS 

A 

B C 



 156 

 

Figure 5.5: The effects of A-867744 on α7 nAChRs containing the W54A mutation. 

A) Concentration-response data are plotted for a range of concentrations of the type II PAMs A-
867744, TBS-516 and TQS. Data are means ± SEM of three independent experiments, each 
from different oocytes. Data are normalised to the maximum acetylcholine response. 

B) Representative traces illustrating responses to ACh (100 µM; left) together with ACh 
responses from the same oocyte after pre- and co-application of A-867744 (1 µM; right). A-
867744 was pre-applied for 10 s. 

C) Representative traces illustrating responses to TQS (10 µM; left) together with TQS 
responses from the same oocyte after pre- and co-application of A-867744 (1 µM; right). A-
867744 was pre-applied for 10 s. 
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5.2.4 The influence of L247T on the pharmacological properties of A-867744 

As demonstrated in chapter 4 and in previous studies (Revah et al., 1991; Bertrand et 

al., 1992; Palma et al., 1996; Gill et al., 2011), α7 nAChRs containing the L247T 

mutation display dramatic differences in their pharmacological profile compared to 

wild-type receptors. These include converting all PAMs, irrespective of their effects on 

receptor desensitisation, into potent and efficacious non-desensitising agonists (Chapter 

4). However, the type II PAM A-867744 was not converted into an agonist on L247T 

receptors (Figure 5.6A). In contrast, 1 µM A-867744 inhibited maximum acetylcholine 

responses (10 µM) by 66.3 ± 1.2% (Figure 5.6B). In addition, the same concentration of 

A-867744 completely blocked agonist responses to a maximum TQS concentration (10 

µM) (Figure 5.6C). It is notable that when A-867744 was applied on α7 receptors 

containing the L247T mutation, a decrease in the baseline current was observed, which 

can be interpreted as inhibition of the more frequent spontaneously opened receptors (a 

feature of the L247T mutation (Bertrand et al., 1997)) by A-867744. 

5.2.5 The influence of M253L on the pharmacological properties of A-867744 

The M253L mutation on α7 nAChRs has been reported to reduce or abolish the effect of 

allosteric ligands such as PNU-120596, TQS and 4BP-TQS (Young et al., 2008; Gill et 

al., 2011). In agreement with previous studies (Gill et al., 2011), co-application of TQS 

(10 µM) with acetylcholine (100 µM) on M253L receptors did not result in an increase 

in peak current, while only very modest changes in desensitisation kinetics were 

observed (Figure 5.7A). In contrast, 1 µM A-867744 completely blocked the 

acetylcholine response (Figure 5.7B). This block was very persistent and the 

acetylcholine response could not be recovered even after a long wash (10 minutes) 

(Figure 5.7B). Interestingly, when TQS (10 µM) was pre-applied before co-application 

of A-867744 (1 µM) and acetylcholine (100 µM), the A-867744 block was not observed 

and there was no reduction in the acetylcholine response (Figure 5.7C). However, after 

TQS and A-867744 wash, no acetylcholine response could be detected, even after a 

prolonged wash (Figure 5.7C), suggesting a very high affinity block by A-867744. 
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Figure 5.6: The effects of A-867744 on α7 nAChRs containing the L247T mutation. 

A) Concentration-response data are plotted for a range of concentrations of the type II PAMs A-
867744, TBS-516 and TQS. Data are means ± SEM of three independent experiments, each 
from different oocytes. Data are normalised to the maximum acetylcholine response. 

B) Representative traces illustrating responses to ACh (10 µM; left) together with ACh 
responses from the same oocyte after pre- and co-application A-867744 (1 µM; right). A-
867744 was pre-applied for 10 s. 

C) Representative traces illustrating responses to TQS (10 µM; left) together with TQS 
responses from the same oocyte after pre- and co-application of A-867744 (1 µM; right). A-
867744 was pre-applied for 10 s. 
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Figure 5.7: The effects of A-867744 on α7 nAChRs containing the M253L mutation. 

A) Representative traces illustrating response to ACh (100 µM; left), response to ACh after pre- 
and co-application of TQS (10 µM; middle) and then response to ACh after TQS wash (right). 

B) Representative traces illustrating responses to ACh (100 µM; left) and block of ACh 
responses after pre- and co-application of A-867744 (1 µM; middle). The ACh response does 
not recover after A-867744 wash (10 minutes; right). 

C) Representative traces illustrating responses to ACh (100 µM; left) and ACh responses after 
pre- and co-application of TQS (10 µM) and A-867744 (1 µM) (middle). TQS was pre-applied 
for 10 s and A-867744 for 5 s. The ACh response does not recover after A-867744 wash (10 
minutes; right). 
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5.3 DISCUSSION 

In this chapter, the pharmacological properties of A-867744 (Figure 5.1) were examined 

on wild-type and mutated α7 nAChRs. As described previously (Faghih et al., 2009; 

Malysz et al., 2009), A-867744 potentiated agonist responses on wild-type α7 nAChRs 

both by increasing peak current and strongly slowing down the desensitisation kinetics. 

It has been demonstrated in previous studies that A-867744, similar to other PAMs, 

such as PNU-120596, TQS and NS-1738, does not displace [3H]-MLA. However, A-

867744 (in contrast to the other PAMs tested) displaces the binding of [3H]-A-585539 

(Malysz et al., 2009), an α7-selective agonist thought to bind at the orthosteric binding 

site (Anderson et al., 2008).  

Studies with subunit chimaeras suggest that A-867744 exerts its potentiating effects by 

binding at a site in the transmembrane domain. A-867744 does not potentiate responses 

on 5-HT3ARs, or chimaeric α7/5-HT3A receptors, composed of the N-terminal domain 

and TM2-3 loop of the α7 nAChRs and the TM domains of 5-HT3ARs (Malysz et al., 

2009). It has been proposed that the same allosteric binding site interaction is involved 

in positive modulation effects and displacement of [3H]-A-585539 on α7 nAChRs, 

although it is recognised that A-867744 could exert its effects by binding at two distinct 

sites (Malysz et al., 2009). Indeed, it is possible that A-867744 induces the 

displacement of [3H]-A-585539 via an allosteric mechanism and not competitive 

binding.  

[3H]-A-585539 has been reported to be an α7-selective agonist with unusually fast 

dissociation rate at room temperature (Anderson et al., 2008), which could contribute to 

an increased sensitivity of displacement by A-867744 via an allosteric mechanism of 

action. Displacement of [3H]-A-585539, however, is not observed with other allosteric 

ligands, which suggests that A-867744 displays different properties to PAMs, such as 

TQS (Malysz et al., 2009). Here, it is confirmed that A-867744 does not displace [3H]-

α-bungarotoxin binding and the effects of A-867744 have been examined on α7 

nAChRs containing mutations that are known to affect modulation by allosteric ligands.  

In chapter 4, α7 nAChRs containing the M260L mutation, located towards the 

extracellular site of the TM2 domain, were shown to convert PAMs with a significant 
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effect on desensitisation into agonists, while PAMs with no significant effect on 

desensitisation retained their PAM activity, but were not converted into agonists. The 

effects of A-867744 on α7 nAChRs containing the M260L mutation were somewhat 

unexpected. Even though A-867744 displays a dramatic reduction in desensitisation 

kinetics when co-applied with acetylcholine in wild-type α7 nAChRs, it displayed no 

agonist activity on M260L receptors even at the highest concentrations tested. In 

addition, A-867744 blocked TQS agonist responses on M260L. However, when A-

867744 was co-applied with acetylcholine it potentiated responses with a type II profile 

and fold-potentiation that was not significantly different to wild-type nAChRs.  

The M260 residue is located near an intrasubunit cavity that has been proposed to be the 

binding site for ligands such as PNU-120596, TQS and 4BP-TQS (Young et al., 2008; 

Gill et al., 2011) and it can be argued that, depending on the interaction of the various 

ligands with the side chain, the M260L mutation can influence the ligand effects in a 

different way. However, W54A, a mutation located on the complementary component 

of the orthosteric binding site (Corringer et al., 1995) is not located near the proposed 

transmembrane binding sites of the ligands tested. The W54A mutation has been 

previously shown to convert both type I and type II PAMs into non-desensitising 

agonists (Chapter 4 and (Papke et al., 2014)). However, A-867744 failed to elicit any 

agonist responses on W54A receptors. In addition, similarly to M260L, A-867744 

potentiated agonist responses with no significant difference to wild-type receptors and it 

also blocked agonist responses to TQS. Considering these two contrasting properties on 

both M260L and W54A (potentiation of acetylcholine response and inhibition of TQS 

response), it is proposed that inhibition of TQS by A-867744 is due to a competitive 

mechanism of action. However, it is possible that A-867744 binds at a distinct place 

from TQS, or it exerts its effects on TQS and acetylcholine responses by binding at 

multiple sites on the receptor. 

Perhaps a more surprising difference in the properties of A-867744 compared to other 

PAMs comes from analysis of the influence of the L247T mutation on A-867744. 

Mutating this residue on the TM2 domain, which has been reported to have an 

important role in receptor gating, produces a receptor with very dramatic differences in 

its properties compared to wild-type receptors. As shown in chapter 4 and in previous 

studies (Palma et al., 1996; Bertrand et al., 1997; Gill et al., 2011), α7 nAChRs 
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containing the L247T mutation convert numerous ligands, including some competitive 

antagonists and all PAMs, irrespective of their effect on desensitisation, into potent, 

efficacious and non-desensitising agonists. However, A-867744 had no agonist activity 

on L247T receptors. In addition, A-867744 inhibited both acetylcholine and TQS 

responses. Application of A-867744 also induced a reduction on the base current, which 

can be due to block of spontaneously open receptors (Labarca et al., 1995; Bertrand et 

al., 1997).  

The M253 residue is located near the same intrasubunit cavity as M260 and the 

mutation M253L on α7 nAChRs has been reported to significantly reduce or completely 

abolish the effect of PAMs and allosteric agonists (Young et al., 2008; Gill et al., 2011). 

Even though TQS had no significant effect on the peak current of acetylcholine-induced 

responses as reported previously (Gill et al., 2011), A-867744 completely blocked 

responses to acetylcholine. It appears that A-867744 induces a high affinity block, since 

the antagonism was irreversible, even after a prolonged wash. However, although TQS 

does not affect peak acetylcholine responses, it appears to be able to rescue the 

acetylcholine response from A-867744 block. 

In summary, evidence is presented from four different mutations on the α7 nAChRs to 

illustrate the different properties displayed by A-867744 compared to other PAMs. In 

addition, it is demonstrated that A-867744 antagonises the effects of TQS on M260L, 

W54A and L247T receptors, while TQS blocks the effect of A-867744 on the M253L 

receptors. Taken in combination, these results suggest that A-867744 elicits its effects 

on α7 nAChRs by binding at the same or overlapping site as TQS. However, this has 

not been demonstrated unambiguously and multiple binding sites may exist. 
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CHAPTER 6 

CHARACTERISATION OF NATIVE 

NICOTINIC ACETYLCHOLINE 

RECEPTORS ON NEURONS 

DERIVED FROM INDUCED 

PLURIPOTENT STEM CELLS 
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6.1 INTRODUCTION 

Neuronal nAChRs have been implicated in a variety of neurological and psychiatric 

disorders, including Alzheimer’s disease, schizophrenia, depression and attention deficit 

hyperactivity disorder (Wilens & Decker, 2007; Steinlein & Bertrand, 2008; Haydar & 

Dunlop, 2010; Parri et al., 2011). As a consequence, there has been a considerable 

interest, from both academic laboratories and pharmaceutical companies, in developing 

novel subtype-selective nAChR ligands (Gündisch & Eibl, 2011; Hurst et al., 2013). 

For this reason, the identification of novel cellular assays, in particular those providing 

access to native human nAChRs, is an important discovery role. 

As discussed above, most nAChRs contain more than one type of subunit (heteromeric 

nAChRs) whereas some subunits, such as α7, are capable of forming homomeric 

receptors, containing five copies of a single subunit (Millar & Gotti, 2009). In addition 

to the gene encoding the nAChR α7 subunit (CHRNA7) a partially duplicated variant 

(CHRFAM7A) has been identified in the human genome (Gault et al., 1998; Riley et al., 

2002) and both of these genes (CHRNA7 and CHRFAM7A) have been linked to 

schizophrenia (Freedman et al., 1997; Leonard et al., 2002; Flomen et al., 2006; Sinkus 

et al., 2009). CHRFAM7A encodes a fusion protein (dupα7), corresponding to the ion 

channel domain of α7 fused to an unrelated gene at its N-terminus. There is evidence, 

admittedly only in recombinant systems, that dupα7 can co-assemble with the α7 

subunit, and exert a dominant-negative effect, resulting in reduced functional expression 

of α7 nAChRs (Araud et al., 2011; Wang et al., 2014). 

Induced pluripotent stem cells (iPSCs) can be generated from somatic cells by retroviral 

expression of reprogramming factors (Takahashi et al., 2007) and, by using a 

combination of growth factors and culture conditions, iPSCs can be further 

differentiated into a large variety of cellular types, including CNS-like neurons and glial 

cells (Dimos et al., 2008; Chambers et al., 2009). Although it is possible to study the 

pharmacological properties of receptors expressed in naturally occurring neuronal 

preparations (for example, those obtained from neuronal tissues ablations), iPSC-

derived neurons provide a more readily available source and have the potential to 

increase our understanding of how native human receptors function. In addition, iPSC-

derived neurons can be generated from patients carrying a specific genetic background, 
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corresponding to a particular neuropsychiatric disease. Indeed, recent studies using 

iPSC-derived neurons generated from patients have been successful in demonstrating 

phenotypes associated with a variety of diseases, such as Phelan–McDermid, Timothy, 

and Rett syndromes (Park et al., 2008; Marchetto et al., 2010; Dolmetsch & Geschwind, 

2011; Grskovic et al., 2011; Paşca et al., 2011; Shcheglovitov et al., 2013; Wen et al., 

2014). 

Many of the initial studies on human iPSC-derived neurons focused on the assessment 

of the expression of specific neuronal markers (Dimos et al., 2008; Chambers et al., 

2009). However, subsequent studies have demonstrated the functional expression of a 

variety of ion channels and neurotransmitter receptors (Haythornthwaite et al., 2012). 

The human iPSC-derived neurons used in this study have been characterised previously, 

both in terms of their general gene expression profile and the functional expression of 

various ion channels (Dage et al., 2014). In addition, other studies have examined the 

electrophysiology profile of these cells (Haythornthwaite et al., 2012). The microarray 

data reported previously point to a gene expression profile that closely resembles that 

observed in neonatal prefrontal cortex tissue. In particular, genes which are known to be 

associated with neurite outgrowth, synaptic development or neuronal function were 

clearly expressed and upregulated in the iPSC-derived neurons (Dage et al., 2014). The 

nAChR gene expression profile has been recently characterised (Chatzidaki et al., 

2015). Quantitative PCR was performed on cDNA that was prepared from iPSC-derived 

neurons. Using gene-specific primers, the abundance of mRNA for individual nAChR 

subunits was determined (Figure 6.1a). The muscle-type nAChR subunits and neuronal 

nAChR subunit transcripts α2, α9, α10 and β3 were either not present or detected at 

only low levels. All other human nAChR subunit transcripts (α3-α7, β1, β2 and β4 

subunits, were detected at broadly similar levels. In addition, transcripts of 

CHRFAM7A, encoding dupα7, a partially duplicated variant of the α7 subunit gene 

CHRNA7 (Gault et al., 1998; Riley et al., 2002) were also identified (Figure 6.1). 

In this chapter, the functional properties of nAChRs expressed in the iPSC-derived 

neurons have been characterised by means of calcium flux assays, performed at either 

the single cell level or by a higher-throughput 96-well assay. In addition, it has been 

confirmed that functional nAChRs are expressed in these cells by use of the patch-

clamp electrophysiological technique.  
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Figure 6.1: Relative Expression of nAChR subunits in iPSC-derived neurons examined by 
RT-PCR (from (Chatzidaki et al., 2015)a). 

A) Levels of gene expression relative to TBP, using data generated from 10 ng RNA input. The 
following transcripts were either undetectable or detected only at very low levels at 10 ng input 
RNA: CHRNA1 (encoding the α1 nAChR subunit), CHRNA2 (α2), CHRNA9 (α9), CHRNA10 
(α10), CHRNB3 (β3), CHRNG (γ), CHRND (δ) and CHRNE (ε). Note, all of the CT values at 
lower input levels were near 35 or not detected. In contrast, the following transcripts were 
detected at relatively high levels: CHRNA3-CHRNA7 (α3-α7), CHRNB1 (β1), CHRNB2 (β2), 
CHRNB4 (β4) and the partially duplicated gene CHRFAM7A.  

B) Agarose gel electrophoresis using PCR products from the 50 ng input.  

 
a The results presented in this figure were generated by Li J. and Dage J. and published in (Chatzidaki et al., 2015). 
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6.2 RESULTS 

6.2.1 Characterisation of nAChRs with a FLIPR-based assay 

Based on the evidence obtained from quantitative PCR experiments, indicating that 

iPSC-derived neurons express a variety of nAChR subunit mRNAs, the expression of 

functional nAChRs was examined by a fluorescence-based calcium assay (Figure 6.2). 

Cells were loaded with a calcium-sensitive fluorescent dye (Fluo-4) and examined in a 

96-well format fluorescent imaging plate reader (FLIPR). No agonist-induced 

intracellular calcium responses were detected with the α7-selective orthosteric agonist 

compound B (Figure 6.2A). This is in agreement with previous studies of α7 nAChRs 

examined by fluorescence-based methods (Gill et al., 2013) and is likely to be a 

consequence of the low open probability and fast desensitisation of α7 nAChRs that is 

observed in response to activation by orthosteric agonists (Couturier et al., 1990; Gill et 

al., 2013). In contrast to α7 nAChRs, which display very rapid desensitisation, most 

nAChRs desensitise relatively slowly during prolonged agonist applications and are 

expected to be more easily detected in fluorescence assays using conventional 

orthosteric agonists. Application of epibatidine, a non-selective agonist of neuronal 

nAChRs, resulted in a detectable fluorescence response in iPSC-derived neurons 

(Figure 6.2B). However, although a response to epibatidine was detectable in these 

cells, it generated a relatively small signal, being only 1 ± 0.2% of a control response 

obtained by depolarisation of cells with KCl (Figure 6.2B; n = 3). Responses evoked by 

compound B (1 µM) and epibatidine (1 µM) were also studied at different culture times 

(4 days and 28 days) (Figure 6.2C and D). The data obtained at longer time in culture 

failed to show a significant increase in response amplitude. For compound B, the 

response was 0.2 ± 0.1% of the positive control after 4 days in culture, while after 28 

days in culture the response was 0.5 ± 0.5% of the positive control (p = 0.65, n = 3). For 

epibatidine, the response was 1.0 ± 0.1% of the positive control after 4 days in culture 

and 1.4 ± 0.4% of the positive control after 28 days in culture (p = 0.38, n = 3). In 

contrast to the small responses observed when nicotinic agonists were applied alone, a 

strong increase in intracellular calcium signal was observed when either compound B or 

epibatidine were co-applied with the α7-selective PAM PNU-120596 (Figure 6.2E and 

F). As reported previously, PNU-120596 dramatically reduces desensitisation kinetics 
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of α7 nAChRs (Hurst et al., 2005; Young et al., 2008; Gill et al., 2013). When co-

applied with PNU-120596, large responses were observed with both compound B and 

epibatidine (119 ± 2% and 110 ± 5% of control KCl responses, respectively; n = 3−5). 
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Figure 6.2: Nicotinic agonist-induced responses in iPSC-derived neurons, examined by 
FLIPR.  

A) and B) Representative examples of changes in fluorescence detected in iPSC-derived 
neurons with a range of concentrations of compound B (10 nM − 3 µM; A) and epibatidine (10 
nM − 3 µM; B).  

C) and D) Average data for agonist induced responses by compound B (1 µM; C) and 
epibatidine (1 µM; D) in experiments performed at 4 and 28 days in culture. Data represent 
mean of replicates ± SEM.  

E) and F) Co-application of the α7-selective PAM PNU-120596 (3 µM; pre-applied for 60 s) 
with either compound B (1 µM; E) or epibatidine (1 µM; F) resulted in large fluorescence 
responses. Data are means ± SEMs from 3 experiments. All values are normalised to a control 
response to application of KCl (30 mM).  
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6.2.2 Characterisation of nAChRs by single-cell calcium imaging  

In order to obtain information about the heterogeneity of nicotinic responses in iPSC-

derived neurons at the single-cell level, cell monolayers were examined by 

fluorescence-based intracellular calcium imaging (Figure 6.3). In agreement with 

FLIPR-based measurements (Figure 6.2), no response was detected to compound B 

when applied alone, whereas a large change in fluorescence was observed when 

compound B was co-applied with PNU-120596 (Figure 6.3A and B). In contrast to the 

absence of response to compound B, a small proportion of cells (4.9%) responded to 

application of epibatidine (Figure 6.3C). As illustrated in a representative example 

(Figure 6.3C), the second application of epibatidine did not cause an increase in calcium 

in the cells that had responded after the first application, presumably because of residual 

desensitisation to the initial agonist application. Similarly, only a very small number of 

cells (3.7%) responded to the α4β2-selective agonist 5-Iodo-A-85380 (Figure 6.3D), 

suggesting that there are only a small population of cells expressing functional α4β2 

nAChRs.  
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Figure 6.3: Characterisation of nAChRs in iPSC-derived neurons, examined by single-cell 
intracellular calcium imaging.  

A) Pseudocolour images of human iPSC-derived neurons corresponding to low initial resting 
calcium levels (left panel) and higher calcium levels after co-application of compound B (1 µM) 
with PNU-120596 (3 µM) (right panel).  

B) Single-cell traces for neurons present in the optical field, showing the effects of application 
of compound B (1 µM) followed by co-application of compound B (1 µM) with PNU-120596 (3 
µM).  

C) Single-cell traces in response to two consecutive applications of epibatidine (1 µM).  

D) Single-cell traces in response to two consecutive applications of 5-Iodo-A-85380 (1 µM). In 
B-D, individual single-cell traces are displayed in cyan, whereas a mean response (average of 
multiple cells) is shown in red.  
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6.2.3 Effect of temperature on agonist-induced nAChR responses  

The FLIPR and single-cell imaging experiments described previously were all 

performed with cells maintained at room temperature during agonist application. 

However, previous studies with recombinant nAChRs expressed in Xenopus oocytes 

have indicated that the magnitude of nAChR responses can be influenced by 

temperature (Sitzia et al., 2011; Jindrichova et al., 2012; Williams et al., 2012). When 

such experiments are performed at physiological temperature (37°C), rather than at 

room temperature, increased responses have been observed for α4β2 nAChRs 

(Jindrichova et al., 2012) and decreased responses for α7 nAChRs (Sitzia et al., 2011; 

Jindrichova et al., 2012; Williams et al., 2012). For this reason, FLIPR assays with 

iPSC-derived neurons were compared at room temperature and at 37°C. No significant 

differences were observed in responses to either compound B or epibatidine when 

applied alone. However, responses of reduced magnitude and different kinetics were 

observed at 37°C when compound B was co-applied with PNU-120596 (Figure 6.4). 

The maximum potentiated response at 37°C was significantly lower than that at room 

temperature (63.5 ± 5.4%, P = 0.04, n = 4) (Figure 6.4B), in agreement with previous 

studies (Sitzia et al., 2011; Jindrichova et al., 2012; Williams et al., 2012). Because of 

the relatively low proportion of cells expressing functional non-α7 receptors and the 

inability to enhance levels of functional expression in studies conducted at higher 

temperature, subsequent studies were focused on understanding in greater detail the 

pharmacological properties of the nAChRs expressed in these neurons that were 

activated by the α7-selective agonist compound B.  
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Figure 6.4: Influence of temperature on potentiation of compound B responses by PNU-
120596, examined by FLIPR.  

A) Representative FLIPR traces showing the change in fluorescence observed when compound 
B (1 µM) and PNU-120596 (100 µM) were co-applied to iPSC-derived neurons at room 
temperature (RT) and at 37°C.  

B) Concentration-response relationship of PNU-120596 in the presence of compound B (1 µM) 
at room temperature (RT) and at 37°C. Data points are means of 4 independent experiments, 
each of which generated paired data from the same batch of cells incubated at two temperatures.  
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6.2.4 Characterisation of α7 nAChRs expressed in iPSC-derived neurons 

The data described previously (Figure 6.2−6.4) are consistent with the conclusion that 

α7 nAChRs are the major functional nAChR subtype expressed in iPSC-derived 

neurons. Further studies were performed to examine in more detail the pharmacological 

properties of nAChRs in these cells. As discussed earlier, α7 nAChRs are characterised 

by very fast desensitisation kinetics and, therefore, agonist responses alone are not 

easily detected using calcium imaging. For this reason, responses to a range of 

concentrations of three agonists (compound B, epibatidine and choline) were examined 

in the presence of a fixed concentration of the α7-selective PAM PNU-120596 (3 µM; 

near maximal). Representative FLIPR traces and concentration-response relationships 

are illustrated in Figure 6.5 and the mean ± SEM of the EC50, maximum response and 

Hill coefficient values for 3−5 independent experiments are summarized in Table 4. 

Further evidence that these agonist-evoked responses in iPSC-derived neurons are due 

to activation of α7 nAChRs was provided by the α7-selective antagonist MLA. 

Responses to compound B in the presence of PNU-120596 were blocked completely 

and in a concentration-depended manner by MLA (Figure 6.5C) with an IC50 value of 

0.7 ± 0.1 µM (n = 3). This is very similar to the IC50 value for MLA (0.8 ± 0.1 µM) that 

has been determined previously for recombinant α7 nAChRs in the presence of PNU-

120596 (Collins et al., 2011). 
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Figure 6.5: Potentiation and antagonism of nAChR agonist responses in iPSC-derived 
neurons, examined by FLIPR.  

A) Representative of FLIPR traces produced with a range of compound B concentrations (0.3 
nM − 1 µM) in the presence of PNU-120596 (3 µM). 

B) Concentration-response curves for the agonists compound B (circles), epibatidine (squares) 
and choline (triangles), in the presence of PNU-120596 (3 µM). Data represent the maximum 
change in fluorescence during a 40 s co-application and are means ± SEM of 3 – 5 experiments.  

C) Responses to compound B (1 µM) in the presence of PNU-120596 (3 µM) were blocked 
completely in a concentration-dependent manner by the α7-selective antagonist MLA. Data are 
means ± SEM of 5 independent experiments.  
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Additional FLIPR experiments were performed to compare a series of α7-selective 

PAMs, including those classified as type I PAMs, or as type II PAMs. Concentration-

response curves were constructed (Figure 6.6A) using a range of concentrations of 

compound B in the presence of either a fixed concentration of a type I PAM (NS-1738) 

or in the presence of one of three different type II PAMs (PNU-120596, A-867744 and 

TQS). As illustrated in Figure 6.6A, significantly larger increases in fluorescence were 

observed in the presence of type II PAMs (PNU-120596, A-867744 and TQS) than in 

the presence of the type I PAM NS-1738 (Table 4). A similar series of FLIPR 

experiments were performed in which a range of concentrations of the four α7-selective 

PAMs was examined in the presence of a fixed concentration of compound B (Figure 

6.6B and 6.6C). As found previously, significantly larger maximal responses were 

observed with the type II PAMs than with the type I PAM (Figure 6.6 and Table 4). 

In contrast to orthosteric agonists, such as acetylcholine, which induce rapid 

desensitisation of α7 nAChRs, 4BP-TQS is an example of an α7-selective allosteric 

agonist that has been reported to interact with a transmembrane binding site and cause 

receptor activation associated with minimal desensitisation (Gill et al., 2011; Gill et al., 

2013). In contrast to α7-selective orthosteric agonists (such as compound B) when 

applied alone, clear concentration-dependent agonist responses were observed with 

4BP-TQS (Figure 6.7 and Table 4). The EC50 value for activation by 4BP-TQS was 4.3 

± 3.4 µM and responses to 4BP-TQS were blocked by MLA (Figure 6.7). Furthermore, 

block by MLA was not surmountable (Figure 6.7B), which is consistent with evidence 

that 4BP-TQS and MLA bind non-competitively at distinct allosteric and orthosteric 

binding sites (Gill et al., 2011). 
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Figure 6.6: Characterisation of α7-selective type I and type II PAMs in iPSC-derived 
neurons, examined by FLIPR.  

A) Concentration-response curves of compound B in the presence of PNU-120596 (3 µM; 
squares), A-867744 (10 µM; triangles), TQS (10 µM; diamonds), NS-1738 (30 µM; inverted 
triangles) and in the absence of a PAM (circles). Data are means ± SEM of 3 – 5 independent 
experiments.  

B) Concentration-response curves of the type II PAMs A-867744 (squares), PNU-120596 
(circles) and TQS (triangles), in the presence of maximum concentration of compound B (1 
µM). Data are means ± SEM of 3 – 5 independent experiments.  

C) Concentration-response relationship of the type I PAM NS-1738 in the presence of 
compound B (1 µM). Data are means ± SEM of 3 independent experiments.  
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Figure 6.7: Agonist activity of 4BP-TQS in iPSC-derived neurons, examined by FLIPR.  

A) Representative examples of FLIPR traces with the α7-selective allosteric agonist 4BP-TQS 
(10 µM). Responses to 4BP-TQS are inhibited by the α7-selective antagonist MLA (1 µM).  

B) Concentration-response curve for 4BP-TQS (circles) and 4BP-TQS in the presence of the 
α7-selective antagonist MLA (1 µM; triangles). Data are means ± SEM of 3 independent 
experiments.  
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Table 4: Pharmacological properties of nAChR ligands on iPSC-derived neurons, as 
examined by FLIPR. 

Data are means ± SEM of 3 − 5 independent experiments. 
a Data for maximal currents (Imax) are normalised to the fluorescence response to 30 mM KCl. 

  

Compound EC50 (µM) nH Imax 
a 

Epibatidine 0.38 ± 0.27 µM 1.8 ± 2.1 0.01 ± 0.002 

Epibatidine 
(+ 3 µM PNU-120596) 14.2 ± 5.6 nM 2.0 ± 0.4 1.10 ± 0.05 

Choline 
(+ 3 µM PNU-120596) 26.1 ± 3.2 µM 2.4 ± 0.5 1.21 ± 0.05 

Compound B 
(+ 3 µM PNU-120596) 2.6 ± 0.3 nM 2.0 ± 0.2 1.19 ± 0.02 

Compound B 
(+ 10 µM A-867744) 13.7 ± 3.1 nM 3.1 ± 1.3 0.79 ± 0.02 

Compound B 
(+ 10 µM TQS) 1.6 ± 0.3 nM 2.3 ± 0.7 0.23 ± 0.01 

Compound B 
(+ 30 µM NS-1738) 10.2 ± 5.0 nM 2.6 ± 1.6 0.04 ± 0.003 

PNU-120596 
(+ 1 µM Compound B) 1.5 ± 0.2 µM 1.7 ± 0.3 1.31 ± 0.03 

A-867744 
(+ 1 µM Compound B) 0.8 ± 0.1 µM 1.9 ± 0.9 1.81 ± 0.14 

TQS 
(+ 1 µM Compound B) 0.6 ± 0.1 µM 2.2 ± 1.2 0.30 ± 0.02 

NS-1738 
(+ 1 µM Compound B) 2.3 ± 0.2 µM 2.8 ± 0.5 0.03 ± 0.001 

4BP-TQS 4.3 ± 3.4 nM 2.2 ± 0.5 0.33 ± 0.06 
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6.2.5 Potentiated nAChR responses detected by patch-clamp recording 

The ability of nicotinic agonists to activate nAChRs expressed in iPSC-derived neurons 

was also examined by patch-clamp recordings. Surprisingly, no agonist-evoked currents 

could be detected when acetylcholine was applied alone. However, in the experiments 

where acetylcholine was co-applied with PNU-120596, a large inward current was 

observed with a value of 225.2 ± 85.9 pA (n = 5; Figure 6.8). Figure 6.8A shows a 

representative patch-clamp trace from iPSC-derived neurons, illustrating the absence of 

a response to acetylcholine and a slowly desensitising current in response to the co-

application of acetylcholine (1 mM) with PNU-120596 (3 µM). The pooled data from 5 

different recorded cells are presented in Figure 6.8B. 
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Figure 6.8: Agonist-induced responses in iPSC-derived neurons, examined by patch-clamp 
electrophysiology.  

A) Representative recording showing no detectable currents with acetylcholine (1 mM) (Left) 
and a slow-desensitising current in response to co-application of acetylcholine (1 mM; black 
bar) and PNU-120596 (3 µM; purple bar) (Right). PNU-120596 was pre-applied for 20 s before 
co-application with acetylcholine.  

B) The average response data from n=5 cells was 225.2 +/- 85.9 pA, when acetylcholine (1 
mM) was co-applied with PNU-120596 (3 µM). 
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6.3 DISCUSSION 

iPSC-derived neurons provide a readily available supply of human cells with which to 

study endogenous neuronal nAChRs and also provide several opportunities for both 

pharmaceutical drug-discovery and academic research. In this chapter, previous studies 

of iPSC-derived neurons (Gill et al., 2013; Dage et al., 2014) have been extended with a 

detailed pharmacological characterisation of nAChR subtypes expressed in these cells. 

Quantitative PCR experiments indicated that the iPSC-derived neurons examined in this 

study express mRNA for a variety of nAChR subunits. However, despite this finding, 

functional characterisation (performed by FLIPR, calcium imaging and patch-clamp 

recording), suggests that α7 nAChRs are the predominant subtype of functional 

nicotinic receptor in these cells.  

Initially, FLIPR assays were used to investigate the composition of the nAChR 

population expressed in these neurons. Application of the α7-selective agonist, 

compound B, did not elicit any detectable fluorescence responses. However, large 

responses were observed when compound B was co-applied with PNU-120596, an α7-

selective PAM that reduces agonist-evoked desensitisation of α7 nAChRs. As has been 

discussed previously (Roncarati et al., 2008; Gill et al., 2013) difficulties in detecting 

responses to α7-selective agonists such as compound B using fluorescence-based assays 

are likely to be due to the very fast desensitisation of α7 nAChRs. In contrast, small, 

concentration-dependent responses were observed with epibatidine, a non-selective 

nicotinic agonist, which are likely to be due to the activation of heteromeric non-α7 

nAChRs that desensitise more slowly. 

Single-cell calcium imaging was used with the aim of examining the proportion of 

iPSC-derived neurons responding to nicotinic agonists. As was found with the FLIPR-

based assay, α7 responses could only be detected when orthosteric agonists were co-

applied with a PAM. While almost all cells in the optical field showed a large increase 

in intracellular calcium when compound B was co-applied with PNU-120596 (assumed 

to be cells expressing functional α7 nAChRs), fluorescence responses were detected in 

only a very small number of cells when the non-selective agonist epibatidine was 

applied alone. In addition, the α4β2-selective agonist, 5-Iodo-A-85380, gave similar 
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results to epibatidine, suggesting that only a small number of cells express functional 

α4β2 nAChRs. 

Previous studies have indicated that changes in temperature can influence the magnitude 

of agonist responses with neuronal nAChRs (Sitzia et al., 2011; Jindrichova et al., 

2012; Williams et al., 2012). Experiments conducted with recombinant nAChRs have 

indicated an increase in responses with α4β2 nAChRs and a decrease in responses with 

α7 nAChRs when performed at physiological temperature (37°C), rather than at room 

temperature (Sitzia et al., 2011; Jindrichova et al., 2012; Williams et al., 2012). For this 

reason, functional responses in iPSC-derived neurons were examined at both room 

temperature (22°C; the standard experimental conditions used for the experiments 

reported in this study) and also at physiological temperature (37°C). No significant 

difference was observed when agonists such as compound B or epibatidine were applied 

alone but responses to agonists in the presences of α7-selective PAMs were lower at 

37°C. This is consistent with heteromeric nAChRs such as α4β2 being a minor 

component in these cells and α7 nAChRs being the predominant nAChR subtype in 

iPSC-derived neurons   

Perhaps not unexpectedly, the mRNA expression profile determined in the quantitative 

PCR study is not in direct agreement with the functional data. Although the expression 

profile suggests that mRNA for many neuronal nAChR subunits is expressed by these 

cells, the majority of functional nAChRs detected in these studies have pharmacological 

properties that are characteristic of the α7 receptor subtype. It appears therefore that the 

expression profile of nAChR subunit mRNAs does not reflect the profile of functional 

nAChRs in these cells. A more detailed pharmacological characterisation, with a variety 

of agonists, antagonists and PAMs, was consistent with α7 receptors being the 

predominant functional nAChR subtype in iPSC-derived neurons.  

Patch-clamp recordings were performed with the aim of investigating in more detail the 

properties of nAChRs expressed in iPSC-derived neurons. Responses to a variety of 

nicotinic agonists (acetylcholine, epibatidine, choline or compound B) applied alone 

were not detected. However, when these agonists were co-applied with PNU-120596, 

large, slow-desensitising inward currents were detected. This is consistent with previous 

evidence that α7 nAChRs have a low open probability and desensitise rapidly when 
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activated by conventional orthosteric agonists, but have greater open probability and 

reduced desensitisation when orthosteric agonists are co-applied with type II PAMs 

(daCosta et al., 2011; Williams et al., 2011a; Pałczyńska et al., 2012). The lack of 

agonist-induced α7 responses in the patch-clamp experiments can be also attributed to 

the general low expression of ion channels and receptors observed in the iPSC-derived 

neurons. Under identical experimental conditions and with similarly fast drug 

applications, nicotinic currents could be detected in other cell types, such as rodent 

hippocampal neurons in culture (Gill et al., 2013). 

In addition to transcripts for the α7 subunit (encoded by CHRNA7), the gene expression 

analysis has provided evidence for expression in iPSC-derived neurons of the partially 

duplicated gene CHRFAM7A. Interestingly, both CHRNA7 and CHRFAM7A have been 

implicated in cognitive disorders such as schizophrenia (Flomen et al., 2006; Sharp et 

al., 2008; Miller et al., 2009; Sinkus et al., 2009). CHRFAM7A encodes a truncated 

version of the nAChR α7 subunit (Riley et al., 2002), which does not itself form a 

functional ion channel but it can reduce functional expression of α7 nAChRs via a 

dominant negative effect (Araud et al., 2011; Wang et al., 2014). Evidence for the 

expression of CHRFAM7A transcripts in iPSC-derived neurons indicates that these 

readily available human neuronal cells may provide a valuable tool for studies aimed at 

investigating the role of CHRFAM7A. This is even more valuable considering that 

CHRFAM7A is only expressed in humans. 

In summary, evidence is provided showing that the predominant nAChR expressed as a 

functional receptor in iPSC-derived neurons has pharmacological properties typical of 

α7 nAChRs. These results have important implications for the development of drug-

discovery focused screening assays on native receptors that could be used to identify 

new modulators of nAChRs in the quest to develop novel therapies for psychiatric and 

neurodegenerative disorders.  
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CHAPTER 7 

FINAL CONLUSIONS AND 

FUTURE DIRECTIONS 
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The aim of this thesis was to characterise the pharmacological properties of neuronal 

nAChRs and particularly the action of allosteric ligands on the homomeric α7 nAChR. 

The major findings to emerge from this work include the characterisation of a novel 

series of compounds that act as selective α7 nAChR PAMs with a range of effects in 

receptor desensitisation and the identification of selective mutations throughout the α7 

nAChR (Figure 7.1) that can convert PAMs into allosteric agonists (Table 5). 

Furthermore, it was shown that, even though most PAMs tested had similar effect on 

nAChRs containing these mutations, A-867744 (a type II PAM) behaved differently 

(Table 5). Although initial studies were performed using recombinant receptors 

expressed in Xenopus oocytes, a pharmacological characterisation of native human 

nAChRs was also performed, using iPSC-derived neurons. It was demonstrated that 

these cells, which represent a valuable tool for therapeutic drug discovery, 

predominantly express functional α7 nAChRs. 
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Figure 7.1: Homology model of the α7 nAChR subunit highlighting the position of the 
mutated residues in relation to the orthosteric and allosteric binding sites. 

Side view of the homology model of a single α7 nAChR subunit (Cheng et al. 2006), based on 
the 4 Å structure of the Torpedo nAChR (Unwin, 2005). The backbone of the subunit is shown 
in grey and the side chains of the mutated amino acids examined in this thesis are shown in 
green (W54), red (L247) and blue (M260). The approximate locations of the orthosteric binding 
site and the proposed transmembrane allosteric binding site (Young et al., 2008) are also 
highlighted. The blue cylinder indicates the approximate location of the channel pore.  

 

Extracellular domain 

Transmembrane domain 

Intracellular domain 

Orthosteric 
binding site 

Intrasubunit 
allosteric 
binding site 

W54 

M260 

L247 



 188 

Table 5: Summary of compound effects on wild-type and mutated human α7 nAChRs. 

PAM: Potentiates effects of acetylcholine without displaying any agonist activity; with type I 
(I), type II (II) or intermediate profiles (I/II). 

Inhibitor: Inhibits the response to acetylcholine. 

N.D.: Not determined  

Compound Receptor 

 WT W54A L247T M260L 

NS-1738 PAM (I)  Agonist Agonist PAM (I/II) 

TBS-346 PAM (I)  Agonist Agonist PAM (I/II) 

TBS-546 PAM (I/II) N.D. Agonist PAM (I/II) 

TBS-345 PAM (I/II) N.D. Agonist Agonist 

TBS-556 PAM (I/II) N.D. Agonist Agonist 

TBS-516 PAM (II) Agonist Agonist Agonist 

TQS PAM (II) Agonist Agonist Agonist 

A-867744 PAM (II) PAM (II) Inhibitor PAM (II) 
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The main goal of chapter 3 was to characterise the pharmacological properties of a 

series of novel compounds on nAChRs (TBS compounds). The five TBS compounds 

have close chemical similarity to one another and are shown to act as PAMs on α7 

nAChRs. Traditionally, α7 PAMs have been characterised as either type I or type II, 

depending on their effect on receptor desensitisation (Bertrand & Gopalakrishnan, 2007; 

Grønlien et al., 2007). Type I PAMs increase peak agonist-evoked currents, without 

altering receptor desensitisation, whereas type II PAMs reduce the fast desensitisation 

of the α7 receptors. Here, evidence is provided of α7 PAMs having a range of effects on 

receptor desensitisation. For example, TBS-346 displays effects on receptor 

desensitisation that are typical of type I PAMs and TBS-516 displays effects that are 

more typical of type II PAMs. In addition, compounds with intermediate properties 

(TBS-546, TBS-345 and TBS-556) have been identified. With several of the TBS 

compounds, there is evidence for two components to the rate of desensitisation of the 

potentiated acetylcholine-evoked response, but the proportion of the fast and slow 

component varied. The TBS compounds were shown to potentiate α7 nAChRs with 

similarly high potency, with EC50 values at the low µM range. However, the maximum 

peak fold-potentiation of the acetylcholine response varied significantly, from 3.5-fold 

to 19.7-fold. These compounds were shown to lack PAM activity on other nAChR 

subtypes (such as α4β2 and α3β4) and on 5-HT3ARs, indicating that they are relatively 

selective potentiators of α7 nAChRs. Competition radioligand binding assays 

demonstrated that the TBS compounds do not displace [3H]-α-bungarotoxin from its 

orthosteric-binding site on α7 nAChRs, supporting the conclusion that these compounds 

are allosteric modulators. In addition, data obtained from studies of an α7/5-HT3A 

subunit chimera is consistent with TBS compounds interacting with a site within the 

transmembrane domain. This conclusion could be further verified by the use of 

radiolabelled allosteric ligands that bind at the transmembrane domain. Currently, no 

radiolabelled versions of nAChR PAMs are commercially available. Such compounds 

would be useful in displacement radioligand binding assays, in order to examine if 

novel allosteric ligands, such as the TBS series, or allosteric ligands with different 

pharmacological profiles exert their effects by binding at an overlapping site. 

In chapter 4, the series of TBS compounds, together with two ‘classical’ α7 PAMs, 

were used in order to examine the influence of α7 nAChR mutations on modulation by 

allosteric ligands. The main finding in this chapter was that the M260L and L247T 
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mutations on the transmembrane domain, as well the W54A mutation on the orthosteric 

binding site, can convert α7 PAMs into allosteric agonists. Although previous studies 

have demonstrated that the L247T mutation can convert a type II PAM into an allosteric 

agonist (Gill et al., 2011), this finding has now been extended by demonstrating that 

this is a feature conferred by the L247T mutation on type I PAMs, type II PAMs and 

also on PAMs that can be considered to have intermediate (type I/II) properties. It 

seems plausible that mutating this amino acid might disrupt the closed state of the 

channel and therefore allow PAMs to activate the receptor in the absence of an 

orthosteric agonist. Indeed, increased opening rate and higher frequency of spontaneous 

openings has been reported in receptors containing the L247T mutation (Labarca et al., 

1995; Bertrand et al., 1997) as well as other changes in pharmacological properties 

(Revah et al., 1991; Bertrand et al., 1992; Palma et al., 1996).  

In contrast to the effects of the L247T mutation, the M260L mutation, which is located 

towards the extracellular side of the TM2 domain, has a more selective effect on PAMs. 

With this mutation, agonist activation was observed only with PAMs that substantially 

reduced the levels of desensitisation in wild-type α7 nAChRs. This effect of the M260L 

mutation is unlikely to be due to it preventing the binding of type I PAMs because, even 

though type I PAMs are not converted into agonists on the mutated receptor, they retain 

their PAM activity in the presence of acetylcholine. In addition, type I PAMs block 

agonist activation by type II PAMs in receptors containing the M260L mutation. The 

M260 residue is located near an intrasubunit cavity (Figure 7.1) that has been proposed 

to be the binding site of certain allosteric ligands (Young et al., 2008). This residue is 

also situated towards the extracellular end of the TM2 domain in a region that has been 

referred to as the ‘M2-cap’ (Bafna et al., 2008). Previous studies have indicated that a 

stretch of 10 amino acids in this region can influence allosteric modulation of an α7/5-

HT3A subunit chimera (Bertrand et al., 2008). In addition, studies on the α1 subunit of 

the muscle-type nAChR, indicate that mutations in this region have large effects on 

gating but smaller effects on channel conductance and desensitisation (Bafna et al., 

2008). However, mutating the isoleucine on the 22' position to a leucine (which 

corresponds to M260 on the human α7 subunit) increased the apparent rate for entry 

into long-lived desensitised states by ~10-fold (Bafna et al., 2008). It is plausible that 

this mutation in the corresponding residue of the α7 subunit could shift the equilibrium 

in the absence of an orthosteric agonist towards a desensitised state that is converted to 
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a conducting state in the presence of the type II PAMs. Single-channel recordings with 

α7 nAChRs containing the M260L mutation can be performed in the future in order to 

investigate this theory. In addition, this work could be expanded further by examining 

additional mutations on the TM2-3 loop and the transmembrane domain of the α7 

nAChRs. Examining the influence of other mutations in the ‘M2-cap’ on PAMs with 

differing effects on desensitisation may increase our understanding of the α7 nAChRs 

desensitisation mechanisms. Furthermore, previous studies (Young et al., 2008) have 

identified a number of residues in an intrasubunit cavity of the rat α7 nAChRs that are 

important in the modulation of the receptor by PNU-120596. Even though mutating 

these residues (S222M, A225D, M253L, F455A and C459Y) has a significant effect on 

the effects of PNU-120596, this may not be the case for the series of TBS compounds.  

Interestingly, a mutation located at a distant site to the proposed binding site of these 

PAMs, W54A, has been reported to influence receptor modulation by allosteric ligands 

(Papke et al., 2014). This mutation is situated on a highly conserved residue at the 

complementary component of the orthosteric binding site (Corringer et al., 1995). It has 

been reported recently that the type II PAMs TQS and PNU-120596 are converted into 

agonists on α7 nAChRs containing the W54A mutation. In addition, agonism by 

allosteric ligands was reported to be insensitive to MLA block, suggesting a ‘de-

coupling’ of the orthosteric and allosteric binding sites (Papke et al., 2014). Here, it has 

been shown that, similar to L247T, both type I and type II PAMs are converted into 

non-desensitising agonists. However, type I PAMs activated the receptor to a lesser 

degree than type II PAMs. In addition, even though TQS was largely insensitive to 

MLA block (in agreement with previous studies (Papke et al., 2014)), the other PAMs 

tested were not. This would suggest a compound-selective effect of MLA block, rather 

than a generalised de-coupling of the orthosteric and allosteric binding sites in α7 

nAChRs containing the W54A mutation.  

Chapter 5 provides evidence from four different mutations on the α7 nAChR to 

illustrate the atypical properties displayed by the PAM A-867744 compared to other 

PAMs. The effects of A-867744 on α7 nAChRs containing the M260L mutation were 

somewhat unexpected. As discussed above, the M260L mutation converts PAMs that 

substantially reduce the levels of desensitisation on α7 nAChRs into agonists. However, 

even though A-867744 displays a dramatic reduction in desensitisation kinetics when 
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co-applied with acetylcholine in wild-type α7 nAChRs, it displayed no agonist activity 

on M260L receptors. In addition, A-867744 blocked TQS agonist responses on M260L. 

However, when A-867744 was co-applied with acetylcholine it potentiated responses 

with a type II profile and fold-potentiation that was not significantly different to wild-

type nAChRs. In addition, A-867744 failed to elicit any agonist responses on α7 

nAChRs containing the W54A mutation. Similar to M260L, A-867744 potentiated 

agonist responses on W54A receptors with no significant difference to wild-type and it 

also blocked TQS agonist responses. More surprisingly, A-867744 also failed to 

activate L247T receptors. As discussed above, mutating this residue on the TM2 

domain, which has been reported to have an important role in receptor gating, produces 

a receptor with very dramatic differences in its properties compared to wild-type 

receptors. As shown in chapter 4 and in previous studies (Palma et al., 1996; Bertrand et 

al., 1997; Gill et al., 2011), α7 nAChRs containing the L247T mutation convert 

numerous ligands, including some competitive antagonists and all PAMs, irrespective 

of their effect on desensitisation, into potent, efficacious and non-desensitising agonists. 

However, A-867744 had no agonist activity on L247T receptors. In addition, A-867744 

inhibited both acetylcholine and TQS responses. Another difference in the profile of A-

867744 comes from examining the M253L mutation. The M253 residue is located near 

the same intrasubunit cavity as M260 and the mutation M253L on α7 nAChRs has been 

reported to significantly reduce or completely abolish the effect of PAMs and allosteric 

agonists (Young et al., 2008; Gill et al., 2011). Even though TQS had no significant 

effect on the peak current of acetylcholine-induced responses, as reported previously 

(Gill et al., 2011), A-867744 completely blocked responses to acetylcholine. It appears 

that A-867744 induces a high affinity block, since the antagonism was irreversible, even 

after a prolonged wash. However, although TQS does not affect peak acetylcholine 

responses, it appears to be able to rescue the response from A-867744 block. In 

summary, the mutations shown in chapter 4 to convert other PAMs into allosteric 

agonists did not have this effect on the type II PAM A-867744. It is also demonstrated 

that A-867744 antagonises the effects of TQS on M260L, W54A and L247T receptors, 

while TQS blocks the effect of A-867744 on the M253L receptors. Taken in 

combination, these results suggest that A-867744 elicits its effects on α7 nAChRs by 

binding at the same or overlapping site as TQS. However, this has not been 

demonstrated unambiguously. A useful extension to this study would therefore be the 

construction of TQS agonist concentration-response curves on the M260L and W54A 
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α7 nAChRs in the presence and absence of A-867744, in order to examine if the block 

observed is surmountable. In addition, computer-docking experiments with A-867744 

and other PAMs on a homology model of the α7 nAChR may provide some indication 

on the differences in binding sites and interactions of the PAMs with the amino acid 

side chains, which could explain the unusual effects observed with A-867744. 

The chapters above describe pharmacological properties of recombinant nAChRs 

expressed in Xenopus oocytes and transfected mammalian cells. In chapter 6, the 

pharmacological properties of nAChRs were examined in a native environment, using 

human iPSC-derived neurons. iPSC-derived neurons provide a readily available supply 

of human cells with which to study endogenous neuronal nAChRs and also provide 

several opportunities for both pharmaceutical drug-discovery and academic research. 

Here, previous studies of iPSC-derived neurons (Gill et al., 2013; Dage et al., 2014) 

have been extended with a detailed pharmacological characterisation of nAChR 

subtypes expressed in these cells. Quantitative PCR experiments have indicated that the 

iPSC-derived neurons express mRNA for a variety of nAChR subunits. However, 

despite this finding, functional characterisation (performed by FLIPR, calcium imaging 

and patch-clamp recording), suggests that α7 nAChRs are the predominant subtype of 

functional nicotinic receptor in these cells. Initially, FLIPR assays and single-cell 

calcium imaging assays were used to investigate the composition of the nAChR 

population expressed in these neurons. In summary, evidence has been provided 

showing that the predominant nAChR subtype expressed in these cells is α7-containing 

nAChRs. Perhaps not unexpectedly, the mRNA expression profile determined in the 

quantitative PCR study is not in direct agreement with the functional data. Although the 

expression profile suggests that mRNA for many neuronal nAChR subtypes is 

expressed by these cells, the majority of functional nAChRs detected in these studies 

have pharmacological properties that are characteristic of the α7 receptor subtype. A 

more detailed pharmacological characterisation, with a variety of agonists, antagonists 

and PAMs, was consistent with α7 receptors being the predominant functional nAChR 

subtype in iPSC-derived neurons.   
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