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Abstract 
Pancreatic ductal adenocarcinoma (PDAC) comprises 85% of all pancreatic cancers and 

is characterized by an extremely poor prognosis. It is becoming increasingly obvious 

that attention has to be focused on early tumour development, when the disease is still 

manageable. Thus, in this study, I aimed to assess the contribution of adult acinar and 

duct cells to PDAC development and to identify PDAC tumour-initiating cells (TICs). 

Our laboratory had previously identified Fbw7 as a potent tumour suppressor in PDAC 

(unpublished data). Fbw7F/F; KRasLSL-G12D/wt; Pdx1-Cre mice exhibited accelerated 

PDAC onset compared with KRasLSL-G12D/wt; Pdx1-Cre mice. I confirmed this 

observation and demonstrated that Fbw7 loss in the pancreatic epithelium had a greater 

proliferative effect in ductal cells, in the presence and absence of KRasG12D, leading to 

increased numbers of duct cells positive for phosphorylated histone 3. The selective loss 

of Fbw7 in adult ductal cells with concomitant KRasG12D expression (Fbw7F/F; KRasLSL-

G12D/wt; Ck19-CreER mice) led to PDAC development, which was not preceded by 

mucinous lesions. These results were confirmed with the loss of p53 with simultaneous 

KRasG12D expression in adults duct cells (p53F/F; KRasLSL-G12D/wt; Ck19-CreER mice). 

The absence of mucinous PDAC precursors was not dependent on the genotype, as loss 

of Fbw7 in KRasG12D-expressing acinar cells allowed the development of mucinous 

murine pancreatic intraepithelial neoplasia (PanIN). Additionally, I induced bystander 

PanINs using orthotopic transplantation of PDAC cells. These results provide evidence 

that ductal cells can originate PDAC and that different pancreatic cells types might 

adopt different routes to PDAC development. Additionally, the observation of bystander 

PanINs questioned the sole pre-neoplastic nature of these lesions highlighting the need 

for a deeper understanding of PDAC biology.  

 In the present work, I have also described CD9 as a marker of TICs within PDAC 

derived from pancreatic progenitors and adult ductal cells. CD9High PDAC cells 

exhibited higher in vitro organoid-forming capacity, compared with CD9Low cells, 

isolated from the primary tumour and after long-term cultures. Contrasting with CD9Low 

tumour cells, CD9High cells were capable of forming secondary tumours at low numbers, 

demonstrating efficient tumour-initiating capacity and recapitulating the histology of 

the primary tumour source. These results could provide useful information for the 

development of PDAC targeted therapies.  
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SMA   Smooth muscle alpha-actin 

SMAD4  Mothers against decapentaplegic homolog 4 

SPT   Solid pseudopapillary tumors 

STK11   Serine/threonine kinase 11 

Strep   Streptomycin 

 

TACE   Tumour necrosis factor-α converting enzyme 

TAE   Tris acetate EDTA buffer 

TE   Tris-EDTA 

TEMs   Tetraspanin-enriched microdomains 

TFF2   Trefoil Factor 2 

TIC   Tumour initiating cell 

TGFβ   Transforming growth factor-β 

 

U   units 

Ub   Ubiquitin protein 

UPS   Ubiquitin-proteasome system 

 

V   Valine 

v/v   Volume per volume 

 

WHO   World Health Organization 

w/v   Weight per volume  
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YFP   Yellow fluorescent protein 

 

α    Alpha  

β    Beta  

β gal   Beta galactosidase 

δ   Delta 

µg   Microgram 

µL   Microlitre 

µm   Micrometre 

µM   Micromolar 

 

5-FU   Fluorouracil 
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Chapter 1. Introduction 

1.1  The mammalian pancreas 

Mammalian life is sustained by the complex coordination of internal organs, which, as 

systems, work together to perform crucial body functions. However, this intricacy is not 

only observed in organ systems, and sometimes, a single organ can serve as an 

equivalent representation of such complexity. The pancreas is probably one of the best 

examples of multifunctioning organs, where an exocrine and an endocrine compartment 

work in harmony to participate in different functions, but it might be one of the least 

understood. 

Residing in the abdominal cavity, the pancreas is a component of both digestive and 

endocrine systems. Topologically, the human pancreas is divided into three regions: 

head, body and tail. The head of the pancreas is located in the concavity of the 

duodenum, where it establishes a direct connection with the duodenum and bile duct 

(ampulla of Vater). The body is located below the stomach and the tail borders the 

spleen. In the mouse, the pancreatic organ is not as well defined, consisting of a soft and 

diffuse tissue mass divided into three lobes: the splenic lobe (corresponding to the 

human pancreatic tail), the gastric lobe (corresponding to the human pancreatic body) 

and the duodenal lobe (corresponding to the human pancreatic head and body) (Figure 

1a). Although pancreatic size and shape might differ between mammals, pancreatic 

composition remains conserved (Figure 1b). An exocrine and an endocrine 

compartment, each consisting of different cells, constitute the pancreas. The exocrine 

portion comprises 95% of the entire pancreatic gland and is represented by two main 

cell types: acinar and duct cells. Embedded in the exocrine pancreas, surrounded by 

acinar tissue, we find the endocrine pancreatic compartment organised in spheroidal 

structures entitled Islets of Langerhans. 

Acinar cells are arranged in aggregates named acini and are thought to be the main 

functional cell type within the exocrine gland, producing over 20 proenzymes and 

enzymes which are then secreted to aid digestion. These acini rest at the tips of an 

intricate network of channels lined by the second exocrine cell type, the ductal cells, 

which conduct the acinar-derived enzymes to the duodenum through the main 

pancreatic duct. The endocrine islets of Langerhans are crucial in blood sugar regulation, 
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as their main cellular components are beta (β)-cells, alpha (α)-cells, delta (δ)-cells and 

PP-cells, which produce and secrete insulin, glucagon, somatostatin and pancreatic 

polypeptide, respectively, hormones that are mainly involved in glucose homeostasis 

(Slack, 1995, Benitez et al., 2012, Puri and Hebrok, 2010). 

Given the distinct function and composition of each compartment, they are usually 

studied separately, impairing the comprehensive understanding of the organ as a whole. 

 

 
 

 

Figure 1 – Illustration of the human pancreas and its cellular components 

a) Schematic representation of the human pancreas. The pancreas (in yellow) is located 
in the peritoneal cavity surrounded by stomach (above), spleen (right) and intestine 
(left). The main pancreatic duct is connected to the liver by the common bile duct. The 
figure also illustrates the virtual subdivision of the human pancreas into 3 main regions: 
head; body; tail. b) Schematic illustration of the two pancreatic compartments and their 
cellular composition. The exocrine pancreas consists of a mass of acinar cells located at 
the tips of a network of ducts. The endocrine compartment is organized in islets of 
Langerhans embedded in the exocrine compartment. Figure adapted from Shih et al., 
2013 
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1.1.1 Pancreatic developmental biology 

Driven by the alarming outcomes of pancreatic diseases, considerable attention has been 

devoted to the understanding of pancreatic development,. 

The complex process of mouse pancreatic organogenesis can be subdivided into three 

distinct stages: primary transition (from embryonic day E9.5 to E12.5); secondary 

transition (from E12.5 to birth); and the postnatal period (from birth to onset of 

adolescence) (Pictet et al., 1972). 

Initial determination steps dictated by a notochord-induced repression of endodermal 

Sonic Hedgehog (Shh) allows the specification, at E8.5, of the position of the pancreatic 

buds in the foregut endoderm (Hebrok et al., 1998) (Figure 2a). The patterning of the 

endoderm and commitment to a pancreatic fate is dictated by extrinsic signals 

originating from surrounding tissues such as the cardiac mesoderm and endothelial cells. 

These molecular signals induce the formation of dorsal and ventral pancreatic buds that 

become morphologically evident at E9.5 (Spagnoli, 2007). Subsequent elongation, with 

concomitant stomach and duodenum rotation, leads to their fusion and consequent 

formation of the primordial unified pancreas. Concurrently, cellular proliferation leads 

to an increase in size and to a transient state of epithelial stratification, promoting 

microlumens to coalesce, giving rise to a primitive network of ducts composed of 

multipotent progenitors (Villasenor et al., 2010, Puri and Hebrok, 2010). 

On a molecular level, pancreatic specification signals induce the expression of 

transcription factors important for pancreatic induction and identity maintenance. Some 

of the transcription factors present in the primordial pancreas are restricted to the 

pancreatic domain, such as Pancreatic and duodenal homeobox (Pdx) 1, Pancreas 

transcription factor 1a (Ptf1a, also known as p48) and Sox9, while the expression of 

others (Gata4/6, Foxa1/2, Onecut1, Hes1, Tcf2, Prox1 and Mnx1) extends to the foregut 

endoderm (Figure 2a). It is not yet well known which transcription factors regulate 

pancreatic fate; however, amongst the above, Pdx1 and Ptf1a appear to be key for 

pancreatic identity.  Ectopic pan-endodermal expression of Pdx1 and Ptf1a, during 

Xenopus embryogenesis, converted duodenal domains into pancreatic endoderm. In the 

same study, morpholino antisense oligonucleotide (MO) injection against both 

transcription factors, in combination or individually assessed, led to the loss of exocrine 

pancreas (Solomon Afelik, 2006). Additionally, homozygous deletion of Pdx1 during 
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mouse embryonic development prevents pancreatic tissue formation, leading to lethality 

soon after birth with no additional abnormalities (Jonsson et al., 1995). 

During secondary transition, tightly controlled signals derived from the epithelium and 

mesenchyme regulate cell lineage determination of the pancreatic progenitors. In vivo 

analysis of fixed tissue, together with lineage tracing experiments, have demonstrated 

that, during the secondary transition, expansion and branching generates a topological 

organization of the pancreas that largely resembles that of the adult animal. In the 

beginning of the secondary transition, multipotent progenitors lose their potency and 

become committed to the acinar cell lineage at the tips while the stalk becomes 

composed of bipotent progenitors that develop towards endocrine and ductal cell fates 

(Shih et al., 2013) (Figure 2b). 

Knowledge of the specific regulatory cues is scarce, however, genetic studies have 

implicated Notch signalling as one of the main epithelium-induced regulators of early 

pancreatic growth and differentiation. Impairment of Notch signalling by deletion of 

Notch ligand delta-like gene 1 (Dll1) or its intracellular mediator, Recombination Signal 

Binding Protein for Immunoglobulin kappa J (RBP-J), in the murine embryonic 

pancreatic domain, accelerates the onset of endocrine over exocrine differentiation and 

promotes pancreatic growth arrest (Edlund et al., 1999). Similar observations were 

made by deletion of the Notch downstream effector Hairy/Enhancer of Split-1 (Hes1). 

Hes1-/- mice displayed pancreatic hypoplasia due to premature endocrine differentiation 

(Madsen et al., 2000). 

The influence of the microenvironment adds a layer of complexity to pancreatic 

organogenesis. Explant cultures of pancreatic primordium have demonstrated that the 

mesenchyme plays a crucial role in providing the environmental cues necessary for 

epithelium growth and differentiation. Cultured pancreatic buds devoided of 

mesenchyme failed to differentiate into the pancreatic cell lineages and displayed 

architectural abnormalities (Golosow and Grobstein, 1962). Although the effect of the 

mesenchyme on pancreatic development has long been observed, light is only recently 

being shed on the pathways involved. Critical pathways include FGF, Wnt and BMP 

(Shih et al., 2013). 

In response to the environmental signals, gene expression profiles change. Multipotent 

progenitors give rise to two main pancreatic precursors: acinar precursors located at the 
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tips of the pancreatic primordium, where they lose Pdx1 expression and acquire acinar 

determined signatures with expression of Ptf1a, carboxypeptidase A (Cpa) and c-myc 

(Zhou et al., 2007) and duct/endocrine precursors, identified by the expression of Pdx1, 

NK homeobox (Nkx) 6.1, Nkx6.2 and Sox9 (Figure 2b). The molecular mechanism 

underlying the dual fate determination has been suggested to rely on a cross-repressive 

interaction between Ptf1a and Nkx6.1/6.2. Immunofluorescence analyses have shown a 

temporal window where both transcription factors are expressed in the multipotent 

domains. Nkx6.1- and Nkx6.2-deficient mouse embryos exhibit ectopic Ptf1a 

expression in the trunk of the pancreatic primordium with a simultaneous reduction in 

the number of endocrine progenitors and an increase in acinar cell markers. Moreover, 

Nkx6.1 or 6.2 ectopic expression driven by the Pdx1 promoter (Pdx1-Nkx6.1/2) 

repressed Ptf1a expression and impaired acinar cell differentiation. Conversely, Pdx1-

Ptf1a ectopic expression blocked endocrine differentiation and devoided the pancreatic 

trunk of Nkx6.1 expression (Zhou et al., 2010). Once cells are committed to an acinar 

fate, these cells polarize, form aggregates at the tip of the primordial trunk and continue 

to mature and proliferate until adolescence (Desai et al., 2007). 

Still during secondary transition, pancreatic trunk bipotent progenitors undergo the last 

step of cell fate determination and become committed to endocrine progenitors or ductal 

exocrine lineages (Figure 2c). The key transcription factor that marks the onset of 

endocrine differentiation is Neurogenin 3 (Ngn3). It has been observed that, prior to 

endocrine cell delamination from the primordial ductal network, a subset of bipotent 

progenitors upregulate Ngn3, becoming committed to the endocrine lineage, while the 

remaining progenitors retain Sox9, Tcf2 and onecut1, determining duct cell fate. The 

importance of Ngn3 has been extensively demonstrated and highly studied, mainly due 

to the fact that a better understanding of endocrine specification could aid in the 

development of therapeutic tools for diabetes. Ngn3-deficient mouse pancreata exhibit a 

complete lack of endocrine lineages with concomitant aberrant ductal morphology 

(Magenheim et al., 2011). The ductal enlargement observed during that study was most 

apparent in areas where Ngn3-positive progenitors usually reside, emphasizing the 

preferential ductal lineage fate determination over endocrine fate when Ngn3 is lost, 

rather than loss of endocrine progenitors alone. Additionally, the authors demonstrated 

that the increased number of Ngn3-expressing cells during development, by gamma 
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secretase inhibitor treatment (previously shown to promote in vitro endocrine 

differentiation of embryonic pancreatic progenitors (Mason and Mahoney, 2010)), was 

accompanied by a thinning of the ductal network (Magenheim et al., 2011). 

Following Ngn3 expression, endocrine progenitors, expressing Pdx1, Ngn3 and Mafa 

(amongst other genes), exit the cell cycle, delaminate from the primitive ducts, further 

differentiate into the different pancreatic hormone-producing cells (β-, α-, δ- and PP-

cells) (Figure 2c) and aggregate in clusters designated Islet of Langerhans (Desgraz and 

Herrera, 2009).  

The knowledge of the mechanisms involved in pancreatic development constitutes a 

powerful tool in the understanding of the organ in the context of disease. However, 

thorough comprehension of disease mechanisms requires a deeper assessment of the 

adult scenario. 
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Figure 2 – Schematic representation of the main events in pancreatic embryogenesis 

a) Primary transition - Repression by Shh dictates the pancreatic bud position. The 
pancreatic bud is constituted of progenitors expressing transcription factors restricted to 
the pancreatic bud (Pdx1, Ptf1a, Sox9) and transcription factors whose expression is 
extended to the remaining endoderm (Gata4/6, Foxa1/2, Onecut1, Hes1, Tcf2, Mnx1). 
Primary transition terminates with the formation of a primordial trunk with multipotent 
progenitors. b) Secondary transition – The expression of Nkx6.1 suppresses Ptf1a and 
vice versa. Multipotent progenitors commit to acinar cells or bipotent trunk progenitors. 
Tip progenitors express Ptf1a, Cpa and c-Myc while trunk progenitors express markers 
of both endocrine and ductal cells (Pdx1, Nkx6.1, Nkx6.2, Sox9). c) Bipotent trunk 
progenitors differentiate between endocrine or exocrine lineages. Ngn3 expression 
specifies the endocrine fate.  
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1.1.2 The adult pancreas and organ plasticity 

Throughout pancreatic development, the primordial pancreas is exposed to a wide range 

of genetic, epigenetic and environmental factors, which modulate cellular responses that 

regulate organogenesis. During this period, epithelial sheets are composed of 

progenitors provided with delicate machinery capable of detecting and responding, with 

a high level of plasticity, to a complex signalling network. In most tissues, it is thought 

that the differentiated progeny matures and loses flexibility of cellular identity in 

response to environmental cues. However, genetic, and epigenetic, manipulations of 

developmental pathways in differentiated tissues have uncovered a latent ability of cells 

to de-differentiate or directly convert into a different lineage. Moreover, during disease 

development, it is observed that differentiated cells become more plastic and up-

regulate embryonic pathways (Graf, 2011).  

Regarding the murine pancreas, at the onset of puberty (weaning), the pancreatic 

topological organization and cellular differentiation are complete. While knowledge 

gained from the homeostatic organ suggests that the pancreas is generally quiescent, 

increasing evidence reveals that a large number of differentiated pancreatic cells have 

the capacity to change cellular fate and rapidly proliferate upon stimulation. 

 

In order to identify and understand pancreatic plasticity, injury models and gene 

expression modulation approaches have been developed to challenge the pancreas into 

unveiling its latent capabilities. The most commonly used injury models are: (1) 

pancreatic duct ligation (PDL), (2) partial pancreatectomy (Px), (3) β-cell depletion by 

drug treatment or genetically engineered mouse (GEM) models, and (4) induction of a 

pancreatic inflammatory response, i.e., pancreatitis by caerulein treatment. 

PDL consists of the ligation of the main duct near the tail. Ductal obstruction leads to 

accumulation of the pancreatic secretion, composed of the acinar-derived digestive 

enzymes, with consequent onset of cell death-triggered pancreatitis (Watanabe et al., 

1995). This method leads to a quick, and drastic, ablation of the acinar cell 

compartment, with consequent slower duct and islet cell destruction, and it has been 

extensively used to uncover certain plasticity in pancreatic cell fate. Partial 

pancreatectomy, as the name indicates, is the surgical removal of a portion of the 

pancreas. Removal of up to 90% of the rat pancreas has been demonstrated to promote a 
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drastic remodelling of the organ leading to tissue regeneration. β-cell depletion has also 

been shown to induce β-cell neogenesis from different pancreatic cell sources. 

Treatment with the cytotoxic agents streptozotocin or alloxan leads to selective β-cell 

death due to the drug’s glucose resemblance and subsequent uptake via Glut2 

transporters. Alternatively, GEM models can be used to specifically deplete this 

population by expression of diphtheria toxin (DT), or its receptor (DTR), driven by β-

cell specific promoters (Ferrer et al., 2007). Lastly, the induction of pancreatitis by the 

use of caerulein has also been used as a pancreatic injury. Caerulein is a cholecystokinin 

analogue, a peptide hormone involved in digestion, which induces the premature 

activation and release of acinar cell-produced digestive enzymes, leading to vast acinar 

cell death. Examples of the use of such strategies and their outcomes are discussed 

below. 

 

1.1.2.1 Endocrine cells 

As previously mentioned, the endocrine pancreas harbours a group of hormone-

producing cells, clustered into islet of Langerhans. During pancreatic organogenesis, 

through an intricate web of signalling events, a common post mitotic Ngn3-expressing 

progenitor is able to give rise to insulin producing β-cells, glucagon-producing α-cells, 

somatostatin-producing δ-cells and pancreatic polypeptide-producing PP-cells (Slack, 

1995, Benitez et al., 2012, Puri and Hebrok, 2010). Amongst all endocrine cells, the 

greatest efforts have been dedicated to the study of β-cell biology. β-cells constitute a 

key component in the control of glucose homeostasis due to their ability to sense 

variations in blood sugar levels and respond accordingly, by producing and secreting 

insulin. Insulin is a crucial hormone for survival as it is responsible for the cellular 

uptake of glucose from the blood, regulating the metabolism of carbohydrates and fat, 

and prevents glucose release from the liver. The lack of glucose regulation can cause 

hyper- or hypoglycaemia, leading to cardiovascular diseases, neuropathy, nephropathy, 

kidney failure, retinopathy and cataracts or brain related complications. In the absence 

of stimuli, β-cell mass remains unaltered. However, in the presence of a higher insulin 

requirement, such as pregnancy, autoimmune loss of β-cells (Type 1 diabetes), genetic 

insulin resistance or insufficient β-cell mass (type 2 diabetes) and obesity, the elevated 
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systemic glucose stimulates β-cells to initiate a proliferative program increasing cell 

mass by self-replication (Teta et al., 2007, Rieck and Kaestner, 2010). Notwithstanding 

the fact that β-cells re-enter the cell cycle to cope with insulin depletion-induced stress, 

in the case of diabetes, an alternative β-cell source is required for the continuous insulin 

demand. The search for new methods to obtain β-cells has demonstrated that non 

insulin-producing endocrine cells have the ability to alter their identity towards a β-cell 

fate. Such is the case for α-cell, a combinatory treatment of alloxan and PDL led to a 

dramatic β-cell neogenesis by α-cells in the mouse pancreas (Chung et al., 2010). 

Additional evidence was generated by specific β-cell deletion using GEM models.  In 

the lab of Pedro L. Herrera, β-cell depletion was achieved by expression of DTR under 

the control of the rat insulin promoter (RIP) followed by DT treatment. β-cell 

neogenesis was observed and lineage tracing analysis, where α-cells were labelled 

before DT exposure, allowed the identification of glucagon-expressing cells as the 

source of newly formed insulin-producing cells (Thorel et al., 2010). Recent evidence 

also implicates δ-cells as a source for β-cells following β-cell ablation during puberty 

(Chera et al., 2014).  

The ability of other endocrine cells to repopulate the endocrine gland after β-cell loss is 

interesting, and per se, demonstrates that pancreatic differentiated cells are capable of 

altering their identity upon stimulation.  

 

1.1.2.2 Acinar cells 

Acinar cells are the most abundant cell type in the exocrine pancreas. Constituting 95% 

of the exocrine gland, the acinar cells are roughly triangular in shape and cluster in 

globular structures, named acini, at the terminal ducts. Their role in digestion is 

achieved by continuous production and secretion of over 20 proenzymes and enzymes 

into the ductal network, which conducts them into the duodenum. Besides their 

functional and morphological differences compared with other pancreatic cells, acinar 

cells present a specific transcriptional profile that allows their identification by 

immunostaining. The most commonly used markers include: Ptf1a, Mist1, Elastase I 

(Ela1), Cpa1 and amylase. As the major constituent of the pancreas, unparalleled efforts 

have been undertaken to thoroughly assess their regenerative potential and possible use 
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in current diabetic-related medicine. In the adult animal, acinar cells have been shown 

to be characterized by a low proliferative potential during homeostasis (Desai et al., 

2007) and thus, similarly to the assumption made for the whole organ, were thought to 

have low regenerative potential. The first hint that these cells could be a valuable and 

abundant source for β-cell regeneration emerged from in vitro studies, where the rat 

pancreatic acinar cell line AR42J initiated insulin and GLUT2 protein expression, with 

concomitant c-peptide detection (a by-product of insulin hormone processing), when 

exposed to the signalling molecules betacellulin and activin A (Mashima et al., 1996). 

However, the conclusions taken from this study were still questionable, as the cell line 

used was derived from a chemical-induced exocrine pancreatic tumour and exhibits 

major physiological differences from true acinar cells (Christophe, 1994). 

In vivo models have since been used to address acinar cell plasticity. Initial studies ruled 

out acinar cells as a plastic pancreatic population. Desai and co-workers generated an 

acinar cell-specific transgenic mouse model where a tamoxifen-inducible mutated form 

of Cre recombinase (CreER) was expressed under the control of the Elastase1 promoter 

(Ela1 - acinar cell specific enzyme). In this model, the Cre recombinase is fused to a 

mutated ligand-binding domain of the human oestrogen receptor (ER) and, only in the 

presence of tamoxifen, it can translocate to the nucleus. Tamoxifen treatment, in mice 

harbouring a Rosa26-loxP-STOP-loxP (LSL) –LacZ, allowed the removal of the stop 

cassette, by recombination of the loxP sites, and linage tracing of acinar cells by LacZ 

expression. Px, PDL and pancreatitis induced by caerulein, failed to demonstrate LacZ-

labelled newly formed β-cells, indicating that mature acinar cells lose their ability to 

alter cellular fate during adulthood (Desai et al., 2007). As with most lineage tracing 

and surgical approaches, the efficiency of labelling, and/or the extent of the injury 

induced may compromise the outcome. Nonetheless, efforts to demonstrate acinar cell 

plasticity persisted and, in 2008, Zhou and co-workers were able to reprogram acinar 

into insulin-producing cells in vivo. For this study, a mixture of adenovirus co-

expressing one of the three key pro-endocrine developmental transcription factors (Pdx1, 

Ngn3 and Mafa), with nuclear GFP, was injected into the pancreas of acinar-specific 

lineage traced mice (Cpa1CreERT2; R26LSL- β galactosidase (βgal)). Soon after 

transduction, lineage traced cells up-regulated an endocrine program and exhibited 
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insulin content and secretion with co-expression of additional β-cell markers (Zhou et 

al., 2008). 

Additional evidence has been obtained for acinar cell plasticity without the need for 

genetic manipulation. It has been observed that, although inefficiently, long term assault 

via prolonged PDL, can induce pre-labelled acinar cells to convert into β-cells (Pan et 

al., 2013). Moreover, the in vivo treatment of adult alloxan-treated mice with ciliary 

neurotrophic factor and epidermal growth factor demonstrated that acinar cells could 

convert into β-cells, restoring normal glycaemia (Baeyens et al., 2013). These results 

support the assumption that Desai and co-workers might have missed the labelling of 

acinar cells capable of conversion, possibly due to the use of different Cre mouse lines, 

or that the extent of injury was not enough to induce an acinar-dependent endocrine cell 

regeneration. 

If acinar cells are capable of restoring endocrine tissue, although with limited capacity, 

it is reasonable to investigate their ability to regenerate the exocrine pancreas. In vitro 

strategies have highlighted the capacity of acinar cell explants to convert into ductal 

cells when cultured on nitrocellulose filters with stimulating factors (Githens et al., 

1994). Nowadays, there is far-reaching knowledge of their ability to acquire a ductal 

molecular profile and morphology upon injury in vivo. It has been extensively observed 

that PDL, Px and caerulein treatments stimulate intense ductal cell expansion upon 

acinar cell death (Slack, 1995). By the use of lineage tracers, it was possible to identify 

that the observed ductal expansion was, in fact, a transdifferentiation of acinar cells into 

ductal cells, denominated acinar-to-duct metaplasia (ADM) (Means et al., 2005). ADM 

will be extensively addressed in this thesis (see 1.6.2, page 74). 

 

1.1.2.3 Ductal cells 

Despite their proportionally small tissue representation, the ducts play a crucial role in 

pancreatic physiology. Ductal cells are responsible for the production of bicarbonate-

rich fluid which, combined with the acinar-derived enzymes, forms the pancreatic juice. 

Moreover, ductal cells are also responsible for the delivery of the pancreatic juice into 

the duodenum, to help digestion. The pancreatic ductal compartment consists of a 

convoluted network of ducts that can be subdivided according to their calibre and 
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histological features. Proximal to the bile duct, with the biggest calibre and initiating the 

network, is the main duct, composed of a columnar epithelium. Branching out of the 

main duct are the interlobular ducts constituted of cuboidal epithelia, which divide into 

intralobular and intercalated ducts containing flat cells. At the terminal end of the ductal 

network, a poorly characterized ductal cell, named centroacinar cells, is located 

(Reichert and Rustgi, 2011) (Figure 3). While ductal cells seem to differ 

morphologically between different segments, so far, their identification relies on 

common marker expression: cytokeratin 19 (CK19), Sox9, hepatocyte nuclear factor-1-

beta (Hnf1β) and the surface affinity for the dolichos biflorus agglutinin (DBA). 

 

 
Figure 3 – Schematic representation of the ductal network and cellular composition 

The ductal network is composed of ducts of different calibres and different histological 
features. The main duct has the largest calibre and is composed of columnar cells. 
Interlobular ducts have a reduced calibre, compared with the main duct, and are 
composed of cuboidal cells. Branching out of intelobular ducts are the intralobular ducts 
that give rise to the intercalated ducts. Both present flat cells. At the tips of the ductal 
network, centroacinar cells connect with the acinus. 
 

Despite their low proliferative index, similar to acinar and endocrine cells (Githens, 

1988), lessons from development have exposed the possibility of a higher plasticity for 

ductal cells compared with other pancreatic cell types. During pancreatic organogenesis, 

the population of progenitors sits in a primordial network, which culminates in the 

development of the ductal system. Therefore, the presence of a facultative stem cell 

population in the adult ductal compartment is hypothesised. Initial in vitro cultures of 

human ductal tissue demonstrated that cultured ductal cells reactivate an embryonic 

program, up-regulating Pdx1 and subsequently converting into insulin-producing cells 

able to respond to the presence of glucose (Bonner-Weir et al., 2000). In vivo evidence 
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of ductal plasticity was obtained after Px of rat pancreata. Bonner-Weir and co-workers 

observed, in 1993, that after 90% Px, part of the ductal compartment drastically 

increased proliferation with concomitant Pdx1 expression. Furthermore, during 

regeneration of the damaged organ, it was observed that 6% of the ductal cells in the 

main duct expressed insulin with 1% exhibiting insulin granules (Bonner-Weir et al., 

1993, Bonner-Weir et al., 2004). In a different study, the pancreatic tail of Balb/c mice 

was ligated, with, as observed for other models, a measurable regeneration of the β-cell 

population. The phenomenon was shown to be dependent on the expression of the 

endocrine fate determinant Ngn3. By tracing Ngn3 expression using Ngn3-nLacZ mice, 

the authors demonstrated that β-cell neogenesis was derived from the ductal cells given 

its co-expression with CK19 (Xu et al., 2008). Despite the numerous studies 

demonstrating the occurrence of insulin-expressing clusters near/within ducts upon 

injury, lineage-tracing analysis was still needed to unquestionably demonstrate the 

potential of ductal cells for β-cell neogenesis. 

Conflicting results have been presented regarding ductal cell plasticity. The use of duct 

cell specific, tamoxifen inducible, Cre-expressing mice, where Hnf1β (Hnf1β-CreER) 

and Sox9 (Sox9-CreERT2) promoter expression drive βgal labelling, pointed towards an 

absence of ductal cell-derived endocrine neogenesis. PDL and β-cell ablation were used 

as models of injury to promote β-cell regeneration. Notwithstanding observation of β-

cell mass expansion, no contribution from the pre-labelled ducts was detected (Solar et 

al., 2009, Kopp et al., 2011). On the other hand, the use of carbonic anhydrase II (CAII) 

or Ck19 genes driving a tamoxifen inducible Cre (CreER) have shown otherwise. In the 

first study, CAII-CreER; Rosa26-LSL-LacZ mice showed a marked increase in the 

number of labeled endocrine cells, after PDL, in the ligated pancreatic tail compared 

with controls (Inada et al., 2008). Genetic modulation of Fbw7 protein, a recognition 

component (F-box) of a Skp1-Cul1-Fbox (SCF)-type ubiquitin ligase, has also unveiled 

the ability of ductal cells to convert into insulin-expressing cells. Deletion of Fbw7 in 

ductal Ck19-expressing cells led to the conversion of a small number of labeled cells 

into functional β-cells. The authors demonstrated that Ngn3 protein is a direct target of 

Fbw7-dependent proteasomal degradation and thus, deletion of the ligase component 

led to Ngn3 accumulation and consequent ductal cell transdifferentiation (Sancho et al., 

2014). These contradictory results can be explained by the selective labelling of ductal 
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cells with the different Cre lines. Hnf1β-CreER and Sox9-CreERT2, although efficient, 

only labelled 65% of the ductal population. It is still an open question if the same ductal 

populations were labelled with the different Cre drivers or if progenitor-like ductal cells 

could have been selectively unlabelled. Moreover, Sox9 labelled cells showed Ngn3 

upregulation upon injury. 

As demonstrated by Sancho and co-workers, it is possible that the stability of the Ngn3 

protein was not enough for completion of the endocrine differentiation program 

(Sancho et al., 2014). Since the extent of the injury dictates the signals to which the 

cells are exposed, different levels of injury could culminate in different outcomes. 

Lastly, ductal cells were also shown to be able to generate acinar cells. By the use of a 

duct specific Cre mouse model (Sox9-CreER) with a Cre-dependent lineage tracer, the 

authors were able to identify traced acinar cells when tamoxifen treatment was 

performed in the adult mouse. In this study, it was not clear if this was a plasticity of the 

ductal cells converting into acinar cells or if a pool of progenitors residing within the 

ductal tree expresses Sox9 (Furuyama et al., 2011). This finding is still under debate 

(Carpentier et al., 2011). 

Nonetheless, the observations obtained so far for acinar, endocrine and ductal cells 

unveil a cellular plasticity within the pancreas that might compensate for cellular loss 

after sustained injury (Figure 4).  

 
Figure 4 – Pancreatic cellular plasticity 

Summary of the cellular plasticity observed for the different pancreatic compartments.  
Glucagon (α) and somatostatin (δ)-producing cells can transdifferentiate into insulin-
producing β-cells. Acinar cells can give rise to ductal cells and β-cells and ductal cells 
can give rise to acinar cells and β-cells.  
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1.2 Pancreatic cancer 

Cellular plasticity is an important feature of tissues exposed to damage and provides a 

unique tool for organ/tissue regeneration. However, the same mechanism used to 

repopulate different lineages after injury uncovers a cellular vulnerability to neoplastic 

hits. As mentioned before, all pancreatic cell types are provided with a cellular and 

genetic flexibility, which enables their tumourigenic transformation. Therefore, 

mimicking the pancreatic complexity, a whole spectrum of pancreatic tumours has been 

identified. The three most common pancreatic neoplasias will be described here. With 

defined histological features, resembling their normal counterparts, and characterized 

molecular alterations, pancreatic tumours can be presented as endocrine tumours 

(harbouring multiple endocrine neoplasia type 1-MEN1 mutations, amongst others) 

(Mingyi Chen, 2012), acinar cell carcinomas (harbouring APC/β-catenin mutations) and 

ductal adenocarcinomas (harbouring mutations in a wider range of genes, see 1.3.2, 

page 37 (Hezel, 2006) (Table 1). 

 

Pancreatic cancer 
type 

% of 
pancreatic 

cancers 

Histological 
presentation Genetic alterations References 

Endocrine tumours 
(Gastrinomas, 
Insulinomas, 

Glucagonomas, 
Somatostatinomas) 

1-2% 

Round to oval 
nuclei; Granules; 

Hormone 
production 

MEN1; VHL, NF-1; 
TSC; 

Loss of 1 and 11q; 
 Gain of 9q 

(Mingyi Chen, 
2012) 

Acinar cell 
carcinoma < 2% Polygonal shape; 

Zymogen granules APC/β-catenin 
(Stelow et al., 
2006b, Hezel, 

2006) 

Ductal 
Adenocarcinoma > 85% 

Ductal 
morphology; 
Desmoplasia 

KRAS; TP53, 
SMAD4, p16INK4A (Hezel, 2006) 

Table 1 - Summary of the histological features and genetic alterations of pancreatic 

tumours 

 
 For the purposes of this thesis, only pancreatic ductal adenocarcinomas, from now on 

referred to as PDAC, will be addressed.  
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1.3 Pancreatic Ductal Adenocarcinoma (PDAC) 

Comprising more than 85% of all pancreatic cancers, PDAC, whose name stems from 

its histological resemblance to ductal cells, is a devastating disease representing the 

fourth most common cancer-related death across the world (Hariharan et al., 2008). 

Contrasting with other tumour types, the increase in PDAC biology knowledge is not 

reflected in a improved patient outcome, where mortality mimics incidence rates (Jemal 

et al., 2008). Thus, although an overwhelming number of detailed and well-crafted 

studies have been conducted so far, much remains to be understood about the disease.  

 

1.3.1 Clinical data and disease management  

The absence of specific symptoms (abdominal pain and rare jaundice) and the 

aggressive nature of the disease, with early lymphatic and haematogenic dissemination 

to the lungs and liver (Schneider et al., 2008, Rhim et al., 2012), are the main 

contributors to the low prognosis of PDAC. Less than 4% of patients survive 5 years 

after diagnosis, due to presentation of unresectable cancerous tissue and presence of 

metastatic disease. Nonetheless, even in the manifestation of a localized tumour, a 

combination of surgery and chemotherapy only increases the 5-year survival to 20%, 

(Hezel, 2006). 

Increased susceptibility to PDAC has been documented for some environmental and 

genetic factors such as advanced age, chronic pancreatitis, smoking, obesity, long-

standing diabetes and familial history (Everhart, 1995, Fuchs, 1996, de Gonzalez et al., 

2003, Schenk et al., 2001), with some risk factors showing a stronger evidence over 

others. Hereditary PDAC has been reported, which accounts for approximately 10% of 

all PDAC cases. If little is known about the genetic alterations that confer increased 

PDAC risk in a hereditary context, less is known about the initial causative mutations. 

Nevertheless, germline mutations in the tumour suppressors INK4A, LKB1, MLH1, the 

hereditary pancreatitis-causing gene PRSS1 and the cystic fibrosis gene CFTR, have 

been reported (Whitcomb et al., 1996, Jaffee et al., 2002). Given the accentuated 

paracrine effect that exocrine dysfunctions, such as pancreatitis, might exert on normal 

tissue (by induction of reactive oxygen species and growth factor and cytokine-induced 
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responses), it is not surprising that familial pancreatitis, induced by mutations in the 

cationic trypsinogen gene PRSS1, appears to be the major risk factor, increasing PDAC 

risk by 50-fold in older patients (Lowenfels et al., 1997). The role of pancreatitis in 

PDAC onset will be discussed in detail in the thesis (see 1.5.2, page 71). 

Initial detection methods rely on imaging by computed tomography (CT) coupled with 

intravenous administration of contrasting agents. Additional imaging approaches might 

be required if negative results are obtained (Hidalgo, 2010). Serological marker 

detection usually represents the least invasive approach for tumour 

diagnosis/monitoring. However, the search for PDAC specific biomarkers has 

constituted a challenge. The haematogenic presence of the tumour-associated antigen 

CA19-9 has been described as a biomarker for PDAC presence (Forsmark et al., 1994). 

However, non-specificity reports and the high percentage of false negatives 

compromises its value (Chan et al., 2014). 

When PDAC is detected, staging is performed so that the therapeutic strategy can be 

outlined. Given the usually advanced stage of the disease at the time of diagnosis, and 

the complications of surgical procedures performed in aged patients, less than 15% of 

patients are candidates for surgical resection. Consequently, adjuvant and neoadjuvant 

therapies have been developed to improve prognosis. Response to chemotherapy has not 

been uniform for PDAC patients (Bittoni et al., 2014). Nonetheless, encouraging results 

have been obtained with pre-surgical FOLFIRINOX treatments, a combinatory 

treatment using fluorouracil (5-FU, pyrimidine analogue), irinotecan (topoisomerase I 

inhibitor), oxaliplatin (platinum-based antineoplastic agent, alkylating agent) and 

leucovorin (folinic acid) (Ferrone et al., 2015), or, more efficiently, Gemcitabine 

(nucleoside analogue) alone (Burris et al., 1997), or in a dual combination with either 

Erlotinib (HER1/EGFR tyrosine kinase inhibitor) (Moore et al., 2007) or cisplatin 

(platinum-based antineoplastic agent, alkylating-like agent) (Palmer et al., 2007). 

Despite all efforts to improve treatment, the drastic PDAC stromal reaction, which, 

notwithstanding its possible role in slowing down tumour progression (Wang et al., 

2014) forms a barrier impairing chemotherapy perfusion (Erkan et al., 2012), the low  

tumour vascularization (Olive et al., 2009) and the inherent cellular resistance to the 

drugs (Miranda-Lorenzo et al., 2014) compromise chemotherapy response. In order for 
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better neoadjuvant treatments to be generated, a deep understanding of PDAC 

molecular biology is crucial. 

1.3.2 PDAC molecular genetics 

Molecular analyses of patient derived PDAC have unravelled a comprehensive range of 

genetic alterations within these tumours. Advanced stage tumours are characterized by a 

marked aneuploidy, which might be the result of mutations in genomic stability 

regulator genes. Recent genetic analyses have identified at least 63 different gene 

alterations to be present and relevant in PDAC development/maintenance. Despite the 

fact that this overwhelming genetic variability culminates in the development of high 

inter- /intra-tumour heterogeneity, there is a consistency in the signalling pathways 

affected: apoptosis, DNA damage repair, cell-cell adhesion, invasion and cell cycle 

regulation (Jones et al., 2008). Some of the most common molecular abnormalities 

found in PDAC will be discussed below and include: mutations in the tumour 

suppressors TP53, SMAD4 and CDKN2A, mutations in the KRAS proto-oncogene and 

de-regulations of pancreatic embryonic signalling pathways.  

1.3.2.1 KRAS proto-oncogene and effector pathways 

KRAS, named after Kirsten rat sarcoma viral oncogene homolog, where it was first 

described (E H Chang, 1982), is a small GTPase protein, consisting of 188 amino acids 

(approximately 21kDa), and it is involved in the intracellular transduction of 

extracellular signals. KRAS activity is tightly regulated by a switch between an active 

and inactive state, depending on the type of guanoside N phosphate it is bound to. 

Activation occurs upon binding to guanosine triphosphate (GTP) promoted by guanine 

nucleotide exchange factors (GEFs). The active, GTP-bound, KRAS undergoes 

conformational changes allowing it to interact with downstream effectors. At the same 

time, KRAS also interacts with GTPase-activating proteins (GAPs), which induce the 

removal of GTP by enhancing KRAS intrinsic ability to hydrolyse GTP into guanosine 

diphosphate (GDP) (Figure 5). 

Upon stimulation of receptor tyrosine kinases (RTKs), and their consequent activation, 

the growth factor receptor binding (GRB2) adaptor protein, which under basal 

conditions is bound to the SOS domain of the GEF protein by the Src homology 3 
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(SH3) domain, is recruited to the plasma membrane and interacts with the RTK, via its 

SH2 domain. This leads to the proximity of the GEF with RAS and consequent 

formation of the RAS-GTP active complex (Rajalingam et al., 2007). When active, 

KRAS promotes transduction of cell surface-derived signals and activates a convoluted 

signalling cascade involving numerous pathways that culminate with a gene expression 

response that affects growth, differentiation and apoptosis (Figure 6). 

KRAS point mutations, leading to KRAS activation, are found in almost all PDAC (over 

90%) (Waddell et al., 2015) and mainly occur (98%) in codon 12 (exon 1), resulting in 

a amino acid change from Glycine (G) to either Aspartic acid (D) or Valine (V), 

referred to as G12D and G12V, respectively. These mutations impair the intrinsic 

hydrolytic activity, by blocking KRAS interaction with the GAP, which results in a 

constitutively active form of RAS with persistent signal transmission. Besides its 

overwhelming presence in late-stage PDAC, KRAS mutations are the first genetic 

alteration found in the early stages of tumour development, suggesting a key role in 

PDAC biology. Several mouse models have addressed PDAC requirement for KRas 

mutations showing that not only is it crucial for murine PDAC (mPDAC) initiation, it is 

also required for tumour maintenance. By means of a tetracycline inducible oncogenic 

KRas, it was possible to remove the oncogenic insult at different points. It was observed 

that silencing mutant KRas, at either early or late stages of tumour growth, halts 

mPDAC development with noticeable tumour regression (Collins et al., 2012a). 

Although the RAS protein is involved in the activation of numerous downstream 

signalling pathways, the canonical RAF/MEK/ERK and PI3K/PDK1/AKT pathways 

are the main ones involved in PDAC tumourigenesis (Eser et al., 2014).  

 
Figure 5 – The KRAS switch 

Illustration of the switch between the inactive and the active form of KRAS. Inactive 
KRAS is bound to GDP. Guanine nucleaotide exchange factors catalyse the dissociation 
of GDP and the binding of GTP molecules. GTP-bound KRAS is active and promotes 
downstream signal transduction. Inactivation of KRAS occurs by GTPase-activating 
proteins that increase the rate of GTP hydrolysis.  
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1.3.2.1.1 RAF/MEK/ERK pathway 

In a very simplified description, oncogenic KRAS activates the rapidly accelerated 

fibrosarcoma (RAF) serine/threonine-specific kinase, leading to consequent 

downstream phosphorylation and activation of the tyrosine/threonine kinase MEK (1/2). 

MEK activates, by phosphorylation, the extracellular signal-regulated kinase (ERK) 

protein (Seger and Krebs, 1995), and ERK phosphorylates downstream effectors 

modulating proliferation and other cellular functions (Figure 6). Members of this 

pathway are rarely mutated in PDAC. However, BRAF, a member of the RAF family, 

has been reported to be mutated in 7 to 15% of human PDAC. Interestingly, BRAF and 

KRAS point mutations are mutually exclusive, emphasizing the importance of this 

pathway for PDAC development. In the absence of KRAS mutations, BRAF mutations 

might be selected to activate the pathways (Calhoun et al., 2003).  Additionally, 

activation of the pathway downstream of RAS by the constitutive expression of mutant 

BRAF (BRAFV600E) in the embryonic pancreas, has demonstrated that this pathway 

alone is capable of PDAC formation, similarly to KRAS mutant mice (Collisson et al., 

2012). 

 

1.3.2.1.2 PI3K/PDK1/AKT pathway  

In a very brief overview, phosphatidylinositol 3-kinase (PI3K) is composed of a 

catalytic p110 and regulatory p85 subunits. Activation of PI3K leads to the conversion 

of phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidylinositol 3,4,5-

triphosphate (PIP3), allowing PIP3 to subsequently bind and activate the complex 

phosphoinositide-dependent kinase 1 (PDK1)/AKT. This activation can be inhibited by 

the phosphatase and tensin homolog (PTEN) protein that dephosphorylates PIP3 to PIP2. 

Activated serine/threonine-specific protein kinase AKT promotes cell survival and 

proliferation through modulation of the activity of several downstream effectors. 

Activation of the PI3K/PDK1/AKT pathway can be accomplished in three different 

ways: (1) activated RTKs promote the binding of the PI3K-p85 domain to their 

phospho-YxxM motif triggering p110 activation; (2) GRB2 proteins bind to scaffolding 

proteins and the complex binds to p85; (3) interestingly, activation of the RAS pathway 
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also activates PI3K-p110 domain independently of p85 (Castellano and Downward, 

2011) (Figure 6). 

Despite the absence of point mutations in components of this pathway in human PDAC, 

strong evidence supports its crucial role in PDAC development and maintenance. It has 

been observed that PDAC cell lines and tumour tissue samples exhibit low expression 

of the tumour suppressor PTEN. Methylation-specific PCR analyses have suggested 

promoter methylation to be the main cause of PTEN downregulation. The consequent 

AKT activation was shown to lead to increased cell proliferation that could be 

counteracted by the PI3K inhibitor, LY294002 (Asano et al., 2004). Moreover, 

constitutive in vivo pancreatic expression of an active form of PI3K (PIK3CAH1047R/+), 

which presents a mutation in the catalytic domain of p110α, was demonstrated to 

generate PDACs, phenocopying the observations obtained with mouse models with 

KRas oncogenic pancreatic expression (Eser et al., 2013). These results were further 

strengthened by inhibition of this pathway in mutant KRas-derived murine PDAC. 

Genetic deletion of PDK1 (AKT activatior upon PIP2 to PIP3 conversion) abrogated 

KRasG12D-induced PDAC formation, while the loss of Craf, component of the 

RAF/MEK/ERK pathway, in KRasG12D mouse model of PDAC had no inhibitory effect 

in PDAC formation (Eser et al., 2013). 
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Figure 6 – RAS signalling via RAF/MEK/ERK and the PI3K pathway 

The figure provides a simplified overview of RAS canonical signalling and its 
interaction with the PI3K pathway. Activation of KRAS occurs by growth factor (GF) 
binding to receptor tyrosine kinases (RTK). Active KRAS (GTP) signals downstream to 
RAF/MEK/ERK. The PI3K signalling pathway can be activated by RAS or independent 
of RAS. Active PI3K promotes PIP3 formation from PIP2 and initiates downstream 
activation of PDK/AKT. PTEN can inhibit PI3K-dependent signalling.  
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1.3.2.2 The CDKN2A tumour suppressor 

The ability to escape checkpoints during the cell cycle is a very important feature of 

tumour cells. For this reason, cell cycle regulators are commonly altered in human 

cancers. Cell cycle initiation, and progression, roughly depends on the formation and 

activation of complexes containing the following proteins: cyclins and cyclin-dependent 

kinases (CDKs). These proteins are the main regulators of the cell cycle. Nonetheless, 

they are also a target for regulation by CDK inhibitors. Two inhibitor families have 

been described based on their structure and CDK specificity: the CIP/KIP family and, 

the focus of this sub-chapter, the INK4/ARF family (Lim and Kaldis, 2013). 

One of the most studied CDK inhibitors is the cyclin-dependent kinase inhibitor 2A 

(CDKN2A), which is involved in the inhibition of the G1/S phase transition of the cell 

cycle. This gene encodes 2 proteins: p16INK4a and p14ARF (or p19ARF in mice) derived 

from alternative splicing. The different proteins generated by the CDKN2A gene have 

independent functions in regulating cell cycle progression. While p16INK4a inhibits the 

phosphorylation of the Retinoblastoma (Rb) protein by the complex cyclin1-CDK4/6, 

which is required for G1-S progression in the cell cycle, p14ARF inhibits mouse double 

minute 2 homologue (MDM2)-dependent proteasomal degradation of p53, stabilizing it 

(Kim and Sharpless, 2006) (Figure 7). 

Preliminary indication of the involvement of CDKN2A in pancreatic cancer arose from 

the higher familial predisposition to PDAC development in CDKN2A germline 

mutation-harbouring siblings (Whelan et al., 1995). In depth analysis of sporadic PDAC 

revealed an overwhelming representation (over 80% of PDAC) of CDKN2A 

inactivation (Rozenblum et al., 1997). These mutations have been documented, in 

PDAC, to affect p16INK4a alone or both p16INK4a and p14ARF, while mutations affecting 

only p14ARF have never been observed. The occurrence of these mutations has only been 

described for advanced PDAC, positioning them as a later requisite for PDAC 

development. In line with the observation, the genetic ablation of both p16INK4a and 

p19ARF, in the mouse pancreas, had a drastic synergistic effect on PDAC progression 

when combined with KRAS embryonic oncogenic activation. However, deletion of the 

tumour suppressors alone failed to promote tumourigenesis excluding them as PDAC 

drivers (Aguirre, 2003).  
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Figure 7 – The CDKN2A tumour suppressor gene and encoded proteins 

The figure provides a simplified view of the two main protein encoded by the CDKN2A 
gene, products of alternative splicing. CDKN2A encodes p14ARF and p16INK4a. Protein 
p14ARF inhibits MDM2-dependent p53 proteasomal degradation. Protein p16INK4a 

inhibits CDK4/6-dependent Rb phosphorylation. This step is required to release 
inhibitory Rb function over E2F and promote consequent G1/S progression of the cell 
cycle.  
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1.3.2.3 The TP53 tumour suppressor 

The p53 protein, also referred to as the gardian of the genome, is a potent tumour 

suppressor involved in the regulation of a vast number of key cellular features. 

Activation of this protein can be initiated by different stimuli that induce cellular stress, 

leading to induction of numerous cellular responses including differentiation, DNA 

damage repair, cell cycle arrest, apoptosis and senescence, among others. Given the 

protein’s broad impact on cellular biology, extensive and thorough studies have been 

performed to understand how this protein is regulated and to shed light on the 

mechanisms by which it exerts its effect. However, a comprehensive knowledge is still 

yet to be achieved. p53 functions, mainly, as a transcriptional regulator, inducing or 

repressing gene expression upon activation. Stimuli lead to p53 binding to DNA with 

consequent promotion/repression of expression of downstream effectors involved in the 

above-mentioned cellular responses. Nevertheless, p53 has also been shown to harbor 

some transcriptionally-independent functions, mainly for apoptotic responses 

(Vogelstein et al., 2000). 

Regulation of p53 is a critical step for maintenance of cell viability. Levels of this 

protein are tightly controlled by transcriptional and post-translational mechanisms. The 

key p53 post-translational regulator is MDM2. The MDM2 gene encodes an E3 

ubiquitin-ligase protein. By promoting the addition of ubiquitin chains to the target 

protein, E3 ligases generate the critical signal for proteasome-dependent protein 

degradation. Hence, MDM2 facilitates p53 ubiquitination, inducing its degradation by 

nuclear and cytoplasmic proteasomal degradation (Figure 8). A further regulatory 

mechanism has been observed for MDM2, as it is able to physically bind to the NH2-

terminal domain of p53, directly inhibiting its transcriptional activity (Moll and 

Petrenko, 2003, Oliner et al., 1993). A third layer of complexity is achieved with p53’s 

ability to transcriptionally regulate MDM2. This creates an autoregulatory negative 

feedback loop with p53 regulating MDM2 expression and MDM2 regulating p53 

protein stability and function (Figure 8). Thus activation of a p53-dependent response 

can be achieved by the induction of post-translational modifications that promote 

conformational changes allowing the protein to evade MDM2-dependent degradation. 

Conversely, activation can also be promoted by induction of changes on the MDM2 

protein impairing its ability to recognise p53 (Moll and Petrenko, 2003).  
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The protein p53 was initially implicated in tumour progression due to the observation 

that a familial condition caused by p53 mutations, Li-Fraumeni syndrome, led to 

increased susceptibility to tumour development. It was later described that this disease 

is a rare autosomal-dominant disorder that relies on germline inactivating mutations of 

the p53 and CHEK2 genes, the latter being able to stabilize p53 (Marielle WG Ruijs, 

2009, Srivastava et al., 1990). Additional evidence from mouse models indicated that 

the absence of p53 protein, by generation of a mouse harbouring a homozygous p53 

null allele, greatly increases spontaneous tumour susceptibility (Donehower et al., 1992). 

Nowadays, it is known that aberrant expression of p53 is one of the most common 

features of human cancers, with point mutations being observed in 50% of these 

tumours (Freed-Pastor and Prives, 2012).  

Mutations in p53 are also extremely common in PDAC patients. While no p53 mutation 

has been observed in early phases of disease development, more than 80% of the later 

stage tumours harbour p53 aberrant expression (Rozenblum et al., 1997). The late 

presentation of p53 mutations, together with their high incidence in PDAC and the fact 

that Li-Fraumeni syndrome patients do not present pancreatic cancer, led to the 

suggestion that this gene could be more important for PDAC progression rather than 

initiation. Confirming the hypothesis, whole body genetic ablation of p53, both 

heterozygous and homozygous, using mouse models, failed to give rise to pancreatic 

tumours. However, it drastically promoted the formation of malignant lymphomas and 

sarcomas (Donehower et al., 1992). Moreover, the expression of a gain of function 

mutant form of p53 (Trp53R172H), present in human PDAC, failed to induce PDAC 

formation by itself. Nonetheless, it demonstrated a drastic synergistic effect when 

concomitantly expressed with oncogenic KRasG12D (Hingorani et al., 2005).  

PDAC is characterized by an intricate landscape of abnormalities. Detailed analyses of 

human samples have documented a step-wise acquisition of chromosomal aberrations 

that would initiate the activation of cell cycle checkpoints and, consequently, hinder cell 

survival and proliferation. Thus, it is likely that p53 inactivation confers a clear growth 

advantage on tumour cells. 
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Figure 8 – MDM2-p53 regulation (feedback loop) 

Simplified illustration of p53 regulation and the feedback loop. The E3 ligase MDM2 
targets p53 for proteasomal degradation. MDM2 is also able to directly bind to p53, 
inhibiting its transcriptional activity. The protein p53 functions mainly as a 
transcriptional regulator, repressing cell cycle progression genes and promoting the 
expression of apoptotic genes and of its own regulator MDM2. 
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1.3.2.4 SMAD4 and TGFβ signalling 

SMAD4 (mothers against decapentaplegic homolog 4), also known as “deleted in 

pancreatic carcinoma locus 4” (DPC4), is a fundamental component of the transforming 

growth factor-β (TGFβ) family. The TGFβ signalling pathway plays a crucial role in 

modulating key cellular responses including tissue morphogenesis, apoptosis, 

proliferation and differentiation. The TGFβ pathway can be activated by various 

different ligands, including bone morphogenetic proteins (BMPs), growth and 

differentiation factors (GDFs), anti-müllerian hormone (AMH), activin, nodal and 

TGFβ (Weiss and Attisano, 2013). However, for the purpose of understanding the 

pathway and its involvement in pancreatic cancer, a simplified view will be provided. 

Two types of cell surface serine/threonine kinase receptors detect TGFβ signals, type I 

and type II. Upon external signal stimulation, and consequent formation of a 

heterotetrameric complex, the receptor II, which is constitutively phosphorylated, 

phosphorylates receptor I, activating it for signal transduction. Signal transduction is 

carried out by type I receptor substrates called SMAD proteins, referred to as SMADs 

from hereafter. There are different types of SMADs responsible for signal transduction 

of specific signals and with different modes of action: receptor-regulated SMADs, 

coSMADs and antagonistic SMADs. SMAD1, 2, 3, 5 and 8 are designated receptor-

regulated SMADs, as they are direct substrates of the TGFβ-family receptor. Regarding 

their function, while SMAD2 and SMAD3 are involved in signalling stimulated by 

TGFβ's, activins, and nodals, SMAD1, SMAD5 and SMAD8 transduce BMP-derived 

stimuli. On the other side of the spectrum, antagonistic SMAD6 and SMAD7 inhibit the 

activating function of receptor-regulated SMADs. Despite the distinctive roles of 

receptor-regulated SMADs, all of them associate with a coSMAD to be able to 

translocate to the nucleus and regulate transcription. The only known coSMAD is 

SMAD4, making it a key component of the TGFβ signalling pathways  (Figure 9) 

(Massagué, 1998). 

Another important feature to be mentioned is the ability of this pathway to stimulate 

activation of other equally important signalling pathways, such as the RAS signalling 

pathway. RAS pathway activation occurs independently of SMADs. Despite being a 

serine-threonine kinase, TGFβ receptor II can also autophosphorylate tyrosine residues, 

although inefficiently. Moreover, it can also be tyrosine-phosphorylated by Src proteins. 
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This tyrosine phosphorylation constitutes a docking site for the SH2 domain of the 

GRB2 adaptor protein, initiating the RAS signalling cascade (Figure 9) (Zhang, 2009). 

As the name indicates, DPC4 (SMAD4) is frequently lost in pancreatic cancers. It was 

initially observed that 90% of PDAC harbours allelic loss at chromosome 18q. Detailed 

genetic mapping of a wide range of pancreatic tumours enabled the identification of a 

consensus lost region at 18q21.1, where SMAD4 is located (Hahn et al., 1996). 

Following the identification of the tumour suppressor, it has been observed that SMAD4 

is lost in about 30% of PDAC, although its expression is reduced in about 55% of 

PDACs due to additional inactivating mutations (Iacobuzio-Donahue et al., 2000b). 

Loss of SMAD4 expression is a late event in PDAC tumourigenesis (Wilentz et al., 

2000), thus attributing a tumour progression-related role to the protein. Supporting the 

hypothesis is the observation that blocking the TGFβ signalling pathway, by genetic 

deletion of either TGFβ receptor type II or SMAD4 in mouse pancreas, has no effect in 

tumour formation, unless in combination with oncogenic KRAS, where it accelerates 

tumour onset (Ijichi et al., 2006, Bardeesy et al., 2006b). 
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Figure 9 – TGFβ and BMP signalling 

Simplified illustration of TGFβ and BMP signalling. Upon receptor activation receptor-
regulated SMADs (green) get phosphorylated and associate with the coSMAD4 (pink). 
This complex is translocated to the nucleus where it transcriptionally regulates several 
cellular functions. The signal can be blocked by the inhibitory activity of antagonistic 
SMADs 6 and 7. Type II receptors can also, inefficiently, activate the RAS pathway.  



Chapter 1 Introduction 

 50 

1.3.2.5 NOTCH pathway and FBW7 regulation 

During tumourigenesis, cells acquire the ability to re-enter cell cycle and modulate their 

own growth, as well as the microenvironment. It is thought that tumourigenesis roughly 

recapitulates embryonic development. Hence, it is not surprising to find de-regulated 

embryonic pathways in cancer cells. One important pathway activated in PDAC is the 

Notch signalling pathway (Jones et al., 2008). 

The NOTCH pathway is a highly conserved pathway responsible for the mediation of 

short-range signals, whose function is crucial during embryonic development and 

adulthood. Although it is mainly known to participate in cell fate decisions, NOTCH is 

also involved in survival and cell cycle regulation, under specific signals.  It is 

functional in different cell types, promoting different cellular responses. Therefore, and 

highlighting its importance, genetic alterations in this pathway lead to a long list of 

human disorders and cancers (Andersson et al., 2011). 

There are 4 Notch receptors, NOTCH1, NOTCH2, NOTCH3 and NOTCH4. These 

receptors are located at the cell surface and are composed of: (1) extracellular EGF-like 

repeats (EGF-LR) enabling receptor/ligand interactions; (2) LIN-NOTCH repeats 

(LNR) adjacent to the membrane which modulate the interaction between the receptor’s 

extracellular and intracellular domains; (3) a RBPJ-associated molecule (RAM) domain 

(4) six intracellular ankyrin repeats (which enable protein-protein interaction) flanked 

by nuclear localisation signals (NLS); (5) a PEST domain responsible for rapid protein 

degradation, preventing the signal peptide from long lasting signal transmission; and (6) 

a transactivation domain (Figure 10a). NOTCH receptors respond to two types of 

ligands: Delta-like and Jagged/Serrate. NOTCH ligands are transmembrane proteins and 

thus, in order for Notch signal activation, cell-cell contact is required. There are 3 Delta-

like ligands, Delta1, Delta3 and Delta4, and 2 Jagged ligands, Jagged1 and Jagged2. 

Although structurally different, both ligand types share a Delta Serrated and Lag2 

(DSL) domain that mediate the interaction between the ligand and the EGF-like repeats 

of the receptors. Upon ligand/receptor interaction, the receptor exposes an extracellular 

cleavage site susceptible to the protease activity of the transmembrane proteases 

ADAM10 (A desintegrin and metalloprotease 10) and ADAM17, also known as TACE 

(tumour necrosis factor-α converting enzyme). This step is followed by another 

cleavage mediated by a membrane protein, designated ɣ-secretase, leading to the release 
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of the NOTCH receptor intracellular domain (NICD) to the cytoplasm. NICD contains 

nuclear localisation signals allowing it to be translocated to the nucleus, where it binds 

to RBP-J (Fiúza and Arias, 2007). In the absence of activated Notch, RBP-J is bound to 

DNA exerting a repressive effect on gene transcription. However, upon Notch 

activation, NICD binds to RBP-J, inducing the recruitment of transcription co-activator 

mastermind-like (MAML). The formation of the complete complex ultimately leads to 

transcription of NOTCH targets; the best studied so far being the transcriptional 

repressors HES (1 and 5) and HEY1 (Figure 10b). Following transcription, HES and 

HEY lead to repression of differentiation and promotion of proliferation (Borggrefe and 

Oswald, 2009). 

As mentioned before, the NOTCH pathway is implicated in tumourigenesis. Similarly, 

the role of NOTCH in PDAC biology has been described.  By comparing normal tissue 

expression with pancreatic precursors, Miyamoto and co-workers have detected that 

several members of the pathway were upregulated in early stages of PDAC, both at the 

RNA and protein level, with consequent upregulation of the transcriptional target HES1. 

Moreover, ectopic NOTCH activation in normal pancreas explant cultures led to the in 

vitro generation of PDAC precursors – ADM (see 1.6.2, page 74) (Miyamoto et al., 

2003). Additionally, it has been documented that a panel of PDAC cell lines treated 

with ɣ-secretase inhibitor (GSI) have reduced proliferation indexes and reduced colony 

formation ability in soft agar compared with untreated cultures. When GEM models 

harboring a heterozygous deletion of the tumour suppressor p53 with concomitant KRas 

oncogenic activation in the embryonic pancreas were treated with GSI after precursor 

lesions were observed, they exhibited a reduction in the progression from precursors to 

PDAC (Plentz et al., 2009). 

Given the broad cellular responses that NOTCH modulates, its regulation has to be 

extremely tight. Different responses might be achieved depending on the level of 

activation. This hypothesis was originated due to the observation that, unlike most 

signalling pathways, the NOTCH pathway does not exhibit an intracellular signal 

amplification. Instead, a stoichiometric relationship is observed, where one ligand binds 

to the receptor, releasing one downstream effector. Additionally, post-translation 

regulation ensures a proper signal transduction by enhancing activation or inducing 
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repression of the pathway. For the purposes of this thesis, only proteasome-mediated 

regulation by the protein FBW7 will be discussed. 

The FBW7 protein is an F-box component of the S-phase-kinase-associated protein-1 

(SKP1)-cullin-1 (Cul1)-Fbox protein (FBP) (SCF)-type E3 ubiquitin ligases, members 

of the ubiquitin-proteasome system (UPS).  The UPS is an important pathway that 

allows quick and regulated protein degradation. Due to its ability to alter protein levels, 

it is crucial for cellular homeostasis and signal response. The initiation of the pathway is 

dependent on the activation of ubiquitin protein (Ub) by an E1 Ub-activating enzyme, in 

an adenosine triphosphate (ATP)-dependent manner. The activated Ub is then 

transferred to an E2 Ub-conjugating enzyme. Lastly, an E3 ligase promotes the transfer 

of the activated Ub to a specific substrate, establishing the protein degradation signal 

(Ravid and Hochstrasser, 2008).  

Protein degradation is a highly selective event, relying on the identification of specific 

substrates. In the case of SCF-type E3 ligases, the F-box protein provides such 

specificity. Although different classes of F-box proteins have been described, only 

FBWs will be discussed. As the name indicates FBWs are WD-40 repeat containing-F-

box proteins. These repeats form a circularized β-propeller that recognizes serine and 

threonine phosphorylation signals at specific consensus sequences (phosphodegrons) 

(Cardozo and Pagano, 2004).  

The list of substrates of the FBW7-containing E3 ligase is ever-growing. Some of the 

substrates identified include c-Myc, cyclin E, NOTCH, c-Jun, and Mcl-1 (Figure 10b). 

Given its main targets, FBW7 has been described as a potent tumour suppressor and 

plays a major role in cell differentiation, proliferation and maintenance of genomic 

stability. FBW7 deletion and the consequent increase in downstream targets has been 

implicated in several human cancers (Cheng and Li, 2011, Sancho et al., 2010). 

However, its relevance in PDAC biology has been poorly addressed. The first report of 

FBW7 deregulation in PDAC was submitted by Calhoun and co-workers, who have 

identified that 6% of PDAC present cyclin E overexpression partially due to 

inactivating mutations in the FBW7 gene (Calhoun et al., 2003). Additional studies also 

described a link between the RAS pathway and FBW7 by demonstrating that Ha-RAS 

activation inhibits FBW7-dependent cyclin E degradation (Minella et al., 2005).  
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Nonetheless, FBW7 involvement in PDAC biology, as well as its role in mediating 

NOTCH de-regulation in PDAC, is still an open question. 

 
Figure 10 – The NOTCH signalling pathway and FBW7 

a) Schematic representation of the domains present in the NOTCH receptor. EGF-LR – 
EGF-like repeats. LNR – LIN-NOTCH repeats. RAM - RBPJ-associated molecule 
domain. NLS – Nuclear localisation signal. ANK – ankyrin repeats. TAD – 
transactivation domain. PEST – protein degradation domain b) Simplified illustration of 
the NOTCH signalling pathway and FBW7-dependent degradation of substrates. 
NOTCH ligands are present at the surface of neighbouring cells, thus, cell to cell 
contact is crucial. Upon binding of the NOTCH receptor (via EGF-LR) to the DSL 
region on the ligand, the transmembrane domain gets cleaved by ADAM10/ADAM17 
and ɣ-secretase. The intracellular domain (NICD) is released to the cytoplasm, 
translocated to the nucleus and forms a complex with RBPJ and MAML. This 
transcription-activating complex leads to expression of transcriptional repressors 
(HES1/5 and HEY). FBW7 provides a post-translational regulation of NOTCH and 
additional proteins by proteasome-dependent degradation.  
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1.4 Morphological clinical presentation of PDAC and precursor 

lesions 

At the time of diagnosis, PDAC patients already exhibit an advanced stage of the 

disease. Low response to chemotherapy and high aggressiveness impair any chance of 

patient survival. Great knowledge has been gained on the molecular requirements for 

PDAC development and maintenance. However, despite the use of this information in 

the improvement of chemotherapy, little success has been obtained (Bittoni et al., 2014). 

Therefore, better understanding of the initial events leading to PDAC onset and the 

comprehension of its precursor lesions are crucial to improve early detection and 

change current survival figures. 

Following the development achieved for other tumour types, a progression model has 

been proposed for pancreatic cancer (Hruban et al., 2000a). Based on morphological 

and histological analysis, lesions with increased cellular atypia have been described. 

These lesions were postulated as precursors of PDAC based on their genetic alteration 

landscape (Cubilla and Fitzgerald, 1976). Observations made so far have identified 4 

types of neoplastic precursors which can present a convergent evolution towards 

PDAC: intraductal papillary mucinous neoplasia (IPMN); pancreatic mucinous cystic 

neoplasm (MCN), intraductal tubular papillary neoplasm (ITPN) and pancreatic 

intraepithelial neoplasia (PanIN) (Hruban et al., 2007).  

These lesions have been detected and documented before nomenclature was established. 

Hence, it is very common to find different references to these morphological entities, 

such as “lesions”, “metaplasias”, “hyperplasias” and “dysplasias”. The absence of a 

universal classification hampered the identification and consequent distinction of these 

independent precursors. To address this issue, the “Pancreas Cancer Think Tank” 

meeting, involving several experts, was held in 1999 to generate a standard 

categorization (Kern et al., 2001). A consensus nomenclature, and mode of operation 

for diagnosis, was generated. Nevertheless, there is still great controversy and difficulty 

in the distinction between lesions. 
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1.4.1 Intraductal Papillary Mucinous Neoplasm (IPMN) precursor 

IPMNs were initially described as rare mucin-secreting pancreatic cancers. Nowadays, 

they are classified as infrequent cystic pancreatic lesions. On a morphological and 

histological level, IPMNs, as the name indicate, are characterized by a columnar 

epithelium with a papillary architecture and detectable mucin (Muc) production, 

identified by either immunohistochemistry or alcian blue/periodic acid-Schiff stain 

(AB/PAS). They consist of large legions (≧1cm), usually detectable by medical 

imaging techniques, such as computed tomography (CT) and magnetic resonance 

imaging (MRI), and are thought to generated from the increased proliferation of the 

main pancreatic duct epithelium or major branches. Concerning their clinical 

significance, it has been observed that one third of patients harbouring IPMNs progress 

to invasive carcinoma. As mentioned before for precursor lesions in general, there is an 

on-going discussion for the classification of these lesions (Cooper et al., 2013). Several 

subtypes of IPMNs have been described based on histological features and mucin 

expression. However, the diversity reported might be overestimated as some of the 

identified lesions have similar features but appear to be classified under different names.  

According to World Health Organization (WHO) Classification of Tumours of the 

Digestive System, there are four types of IPMNs with different grades of dysplasia:  

Gastric, Intestinal, Pancreatobiliary and Oncocytic (Hamilton and Aaltonen, 2000) 

(Table 2). Given the variable classification, several attempt were made to fully 

characterize IPMN subtypes (Yonezawa et al., 2008, Cooper et al., 2013, Distler et al., 

2014), which will be summarised below: 

 

Gastric IPMN, the most common subtype and presenting low-grade dysplasia, is 

characterized by a papillary columnar epithelium with mild atypical nuclei located 

basally and supranuclear mucin production. While other IPMN are thought to be mainly 

formed from the main duct, the gastric type is found on branching ducts. It is very 

similar to another low-grade precursor, PanIN-1 (see 1.4.4, page 59), being separated 

from this lesion on the basis of size and location within the ductal network. Gastric 

IPMN are larger lesions than PanINs. Regarding mucin production, these lesions 

express Muc5ac (a secreted mucin) and Muc6 (membrane mucin) but do not express 
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Muc1 and Muc2 (membrane-associated mucins). From a clinical point of view, the 

gastric subtype rarely progresses to invasive carcinoma (Figure 11a).  

 

Intestinal IPMN, originating in the main duct and with low to intermediate dysplasia, 

resembles colorectal villous adenoma for its morphological appearance and mucin 

expression. These lesions are characterized by long papillae composed of columnar 

epithelium with oval and elongated nuclei. The level of dysplasia is higher compared to 

the gastric type, thus, it is not surprising that their association with invasive carcinoma, 

mainly to colloid (mucinous noncystic) pancreatic carcinoma, is greater (20 to 40%). 

Regarding mucin expression for immunologic diagnosis, intestinal IPMNs express the 

intestinal marker CDX-2, Muc2 and Muc5ac, being negative for Muc1 and Muc6 

(Figure 11b). 

 

Pancreatobiliary IPMNs present high-grade dysplasia, being commonly associated with 

invasive carcinoma, and are characterized by the presence of complex branching 

papillae, lined by a cuboidal epithelium containing round nuclei. Similarly to the 

intestinal type, pancreatobiliary IPMNs have their origin in the main duct. These lesions 

exhibit Muc1 and Muc5ac expression, being negative for Muc2 (Figure 11c). 

 

Oncocytic IPMNs, the rarest type of IPMNs, are very similar to the pancreatobiliary 

type regarding histo- and morphologic features, with a complex branching of the 

epithelium. However, they exhibit a large number of goblet cells and cells with denser 

cytoplasm. Inconsistent data has been gathered regarding their mucin production. 

However, they appear to express Muc5ac and Muc6 (Figure 11d). 

IPMN subtype Origin (duct) Immunologic diagnosis Level of dysplasia 

Gastric Branching Muc5ac+ Muc6+ low/mild 

Intestinal Main Muc5ac+ Muc2+ CDX-2+ high 

Pancreatobiliary Main Muc5ac+ Muc1+ high 

Oncocytic Main Muc5ac+ Muc6+ high 

Table 2 - Summary of IPMN subtypes and main features 
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Figure 11 – Histological features of IPMN subtypes 

a) H&E of gastric IPMN showing papillary columnar epithelium with basally oriented 
nuclei and abundant supranuclear cytoplasm. b) H&E of intestinal IPMN showing long 
papillae composed of columnar epithelium and pseudostratified nuclei. c) H&E of 
pancreatobiliary IPMN showing branching papillae lined by cuboidal cells. d) H&E of 
oncocytic IPMN showing complex arborizing papillae composed of cuboidal and 
columnar cells. Adapted from Tanaka et al., 2012 with permission from Elsevier (see 
Chapter 6, Appendix) 
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1.4.2 Pancreatic Mucinous Cystic Neoplasm (MCN) precursor 

MCN lesions are the least common neoplastic precursors found in pancreatic cancer 

patients, although they are the largest (median size between 60 and 100 mm). Similar to 

IPMNs, MCNs are cystic lesions with high mucin production presenting Muc5ac and 

Muc2 expression. However, they have no detectable connection to the ductal network 

and occur in the body or tail of the pancreas. Detection of these lesions is usually 

accidental and presents a favourable prognosis. Nevertheless, reports have suggested a 

worse prognosis in comparison to IPMNs (Hamilton and Aaltonen, 2000). 

Histologically, MCNs present a flat columnar epithelium with occasional papillae and a 

fibrous pseudocapsule (Figure 12). Cells have expanded cytoplasm with nuclei located 

basally and supranuclear mucin production. The level of dysplasia can vary from low to 

high and progression culminates in PDAC. They can be readily distinguished by the 

presence of an ovarian-like stroma, which is their main diagnostic feature (Distler et al., 

2014, Cooper et al., 2013, Yonezawa et al., 2008).  

 

 
Figure 12 – Histological features of MCN lesions 

H&E of MCN showing flat columnar epithelium and underlying ovarian type stroma. 
Adapted from Distler et al., 2014. For permission of use see Chapter 6, Appendix.  
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1.4.3 Intraductal Tubular Papillary Neoplasm (ITPN) precursor 

Recently, as a consequence of sub fragmenting the IPMN category, a new precursor 

lesion has been included to the list by the WHO, entitled intraductal tubular papillary 

neoplasm. Abundant, and localized tubular nodules, with little mucin production, 

characterize this neoplasm. These lesions are highly dysplastic and somewhat resemble 

the pancreatobiliary IPMNs. However, the prognosis is relatively favourable. The recent 

established nomenclature, and its underrepresentation within exocrine neoplasias (0.9%), 

impairs the proper definition of this lesion. Nonetheless, reports so far indicate that it is 

located in the main duct or major branches and can be found throughout the pancreas 

(head, body and tail). Cells can be cuboidal or columnar, arranged in a cribriform 

epithelium, with round nuclei. Although mucin production is low, as assessed by the 

almost absent AB/PAS stain, membrane-associated mucins present in PDAC are also 

present in the pre-neoplastic precursor, such as Muc1 and, less frequently, Muc6 

(Cooper et al., 2013). 

 

1.4.4 Pancreatic Intraepithelial Neoplasia (PanIN) precursor 

By far the most common pre neoplastic PDAC precursor, and the most thoroughly 

studied, is the pancreatic intraepithelial neoplasia. Being the first documented pre-

neoplastic lesion, the variability in its classification is not unexpected. Similarly to the 

approach undertaken for other precursors, a consensus was generated for diagnosis and 

classification of PanINs (Hruban et al., 2001). According to several reports, PanINs are 

microscopic lesions (<5mm) that occur mainly in intralobular ducts.  

A sub classification for PanINs has also been proposed and, despite the fact that, in 

broad terms, all PanINs express the same mucins (Muc1, Muc6 and Muc5ac), they can 

be distinguished by their increased degrees of architectural and cytological atypia 

(Table 3) (Yonezawa et al., 2008, Hamilton and Aaltonen, 2000). 

 

PanIN1 is the earliest stage of PanIN development with low-grade dysplasia. In the 

human it can be subdivided into two different types (1A and 1B) according to its 

architecture. However, such distinction is not made in the mouse where only PanIN1 is 
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reported. As mentioned before, PanIN1 resembles the gastric IPMN, but can be 

distinguished from these lesions based on their smaller size. 

 

PanIN1-A is characterized by a flat epithelium composed of cells with a prominent 

enlargement of the cytoplasm (columnar) towards the lumen and nuclei located basally 

(Figure 13). Abundant mucin is produced and, thus, it can be clearly identified at early 

stages of development by AB/PAS stain. It is a fairly common lesion being observed in 

40% of the pancreata not presenting invasive carcinoma (Figure 13). 

 

PanIN1-B presents a papillary or pseudostratified architecture with the same 

histological and molecular features observed in PanIN1-A (Figure 13). 

 

PanIN2 lesions are characterized by a columnar epithelium with papillary architecture. 

Dysplasia is greater than in the previous PanINs, with increased nuclear abnormalities, 

such as loss of polarity and nuclear enlargement (Figure 13). Similarly to the lower-

grade PanINs, PanIN2 is highly mucinous and readily detected by AB/PAS stain. 

Moreover, proliferation is not evident, although some rare mitoses are reported. 

 

PanIN3 is characterized by the presence of a papillary, micropapillary or true cribriform 

epithelium. Fragmentation and budding of epithelial clusters towards the lumen is 

occasionally detected in combination with necrosis. Loss of polarity concomitant with 

nuclear positioning near the lumen is frequently observed (Figure 13). It is a highly 

proliferative lesion but mitoses are abnormal. These lesions present a lower mucin 

production compared to other lesions. If not absent, they exhibit low AB/PAS stain and 

Muc5ac. PanIN3 is present in nearly all PDAC specimens reported so far. However, 

their observation in the absence of invasive carcinoma has not been reported. Due to 

their high frequency and prominent dysplasia, a distinction between pre-neoplastic and 

neoplastic is close to impossible. It has been suggested that these lesions actually 

constitute a PDAC extension. Hence, they are also referred to as “carcinoma in situ” 

(Hruban et al., 2007, Cooper et al., 2013). 
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PanIN grade Histo/Cytological features Markers 

1A 
Flat columnar epithelium 

Supranuclear mucin, 
Round to oval nuclei 

Muc5ac 
AB/PAS 

1B 
(micro) Papillary columnar epithelium 

Supranuclear mucin 
Round to oval nuclei 

Muc5ac 
AB/PAS 

2 
Papillary columnar epithelium 

Nuclear abnormalities 
Pseudo-stratification 

Muc5ac 
AB/PAS 

3/"carcinoma in situ" 

Papillary to cribriform cuboidal 
epithelium 

Severe nuclear abnormalities 
Budding of clusters 

Frequent mitosis 
Loss of polarity 

- 

Table 3 - Summary of histological and cytological features of human PanINs 

 

 
Figure 13 – Histological features of PanIN lesions 

H&E showing histological features of human PanIN lesions. PanIN1A presents a flat 
epithelium with columnar cells and nuclei located basally. PanIN1B (black arrow) 
constitutes a papillary variant of PanINA. PanIN2 present papillary architecture with 
moderate cytological atypia. PanIN3 presents loss of nuclear polarity and papillary 
architecture with cuboidal and columnar cells. Images are not in the same scale. 
Adapted from Distler et al., 2014.For permission of use see Chapter 6, Appendix. 
 

Despite the efforts made for a unanimous classification of PanINs, some inconsistencies 

have been pointed out. Importantly, PanINs are found in almost all pancreata analysed 

for other pancreatic diseases besides PDAC (Cooper et al., 2013), which questions the 

true prognostic power of these lesions to predict PDAC development. 
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1.4.5 PDAC progression model 

Regardless of the type of tumour and the field of expertise, cancer progression models 

constitute a valuable tool for the understanding of the tumourigenic process by 

dissecting and simplifying complex events. Vogelstein has provided a crucial 

contribution to the elaboration of such a approaches, using colorectal cancer as his 

model of choice (Vogelstein and Kinzler, 1993). 

Epidemiological data, together with in vitro and in vivo approaches, have been used to 

understand how a normal cell undergoes transformation. Initial evidence indicated that 

cancer incidence increases with age. Furthermore, exposure to carcinogenic cues, such 

as radiation, were shown not to have an immediate effect on tumour formation. Tumour 

manifestation occurs with long latency, indicating that one damaging hit (mutation) is 

not sufficient for cancer development. Instead, a prolonged survival of the mutation-

containing clone, with further acquisition of genetic alterations, would explain this 

observation (Miller, 1980). In vitro and in vivo experiments with genetic transfer and 

ectopic expression, respectively, of oncogenes have also demonstrated the increased 

tumorigenic power of cooperation.  It has been observed that some oncogenes have little 

to no effect on tumour formation when present on their own. However, the concomitant 

expression of one additional hit promotes a synergetic response, thus highlighting that 

additional hits promote the acquisition of greater tumourigenic features (Land et al., 

1983). Interestingly, the gradual acquirement of genetic alterations can be correlated 

with morphological and histopathological features. It has been observed for human 

cancers that higher-grade tumours present a wider panel of genetic alterations when 

compared with lower-grade neoplasms. Moreover, human cancer data has demonstrated 

the presence of more than one genetic alteration in more aggressive tumours when 

compared with less aggressive/progressed ones (Alexandrov et al., 2013). 

The beauty of these models is the ability to infer cause/consequence relationships and 

make predictions based on current stages. Thus the proposal of a human tumour 

progression model, and consequent verification by mouse model strategies, constituted 

a pillar in colorectal cancer patients’ prognosis, as it provided critical information for 

the development of better genetic screening and chemoprevention approaches 

(Vogelstein and Kinzler, 1993). 
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The establishment of a model requires an unequivocal identification of lesions 

preceding the neoplasm. The identification of early lesions for cancers of accessible 

regions, such as the cervix and colon, is relatively non-invasive and thus possible to 

easily screen. However, other types of tumours, such as PDAC, require invasive 

approaches impairing access. Consequently, screening is not performed in the absence 

of symptoms. Therefore, the PDAC progression model has been inferred based on 

exhaustive assessments of PDAC resection specimens, pancreata of non-cancerous 

patients and mutational analysis (Hruban et al., 2000b, Hruban et al., 2000a). 

The triggering forces for the proposal of the PDAC progression model were: (1) the 

identification, in non-cancerous patients, of hyper proliferative ducts, commonly found 

in cancer; (2) the consequent observation that these proliferative ductal regions 

exhibited a higher level of atypia when present in cancer patients (Cubilla and 

Fitzgerald, 1976); and (3) the documentation that highly dysplastic lesions commonly 

occurred within regions presenting mild atypia (Furukawa et al., 1994). The model was 

re-enforced by the identification of a similar phenomenon in conditions with increased 

risk of pancreatic cancer development. Such was the case for pancreatitis and the 

presence of hyper-proliferative ducts (Yanagisawa et al., 1993). Although powerful and 

informative, the cases reported until then were only based on morphological features 

and thus, sensitive to misinterpretation. It was also possible that these abnormal ducts 

were just hyperplastic and reactive to environmental cues. A correlation with tumour 

development was only implied.  

Genetic tools provided the missing link between these structures and PDAC 

development. Assessment of the mutational landscape of these putative precursor 

lesions led to the observation that they harbour a simpler, although, similar genetic 

profile as their tumour counterpart (Kanda et al., 2012, Yanagisawa et al., 1993, Caldas 

et al., 1994). Microdissection of the different precursor lesions, of different grades, with 

follow up genetic analysis have allowed the elaboration of a progression model that 

correlates the sequential acquisition of genetic alterations with the increase in 

morphological and cytological dysplasia (Hruban et al., 2000a, Hruban et al., 2000b, 

Kanda et al., 2012). 
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In summary: KRAS mutations are the most common genetic alterations found in human 

PDAC. Not only are KRAS mutations the most common, they are also the earliest 

mutation, detected in 30% of PanIN1 lesions increasing to approximately 75% 

representation in PanIN3 (Feldmann et al., 2007). This is also the case for the remaining 

precursor lesions where it was observed that one third of the early IPMNs present KRAS 

mutations, culminating in 50% of invasive IPMN. Additionally, MCNs also harbour 

KRAS mutations in 20% of early lesions to 89% in malignant lesions (Delpu et al., 

2011). 

Another equally prevalent abnormality in PDAC is epidermal growth factor receptor 

(EGFR) and human epidermal growth factor receptor 2 (Her-2/neu) overexpression. 

From the immunohistochemical analyses of PDAC and adjacent duct hyperplastic 

lesions, it was observed that, in contrast to the absence of expression in normal ducts, 

82% of the flat hyperplastic ducts exhibit high levels of Her-2/neu expression which 

increases in proportion with the increase in atypia (Day et al., 1996). 

Other mutational events present in PDAC have also been identified in pre-neoplastic 

lesions. However, their absence in low-grade precursors suggests a role in the 

progression of dysplasia and excludes their involvement in tumour initiation. Such is 

the case for SMAD4, CDKN2A and p53, amongst other less represented molecular 

alterations. 

As a surrogate for CDKN2A mutations, the expression of p16INK4a has been analyzed. It 

has been observed that, although in cancer-associated PanINs p16 INK4a expression is 

low, PanINs in the context of pancreatitis present normal expression until later stages 

(low expression observed in 0% of PanIN1-A, 11% of PanIN1-B, 16% of PanIN2 and 

40% for PanIN3) (Rosty et al., 2003). P53 mutations are also detected at later stages of 

tumour development. Mutations in this gene are barely seen in early precursors, such as 

PanIN1 (0%), but are evident in a subset (12%) of PanIN3 (Delpu et al., 2011).  Lastly, 

SMAD4 mutations have also been observed in precursor lesions. Despite their absence 

in PanIN1 and 2, SMAD4 mutations, and consequent reduced expression, is observed in 

30% of high-grade PanIN3 (Hong et al., 2011).  

 

Given that PanINs are the most abundant precursor lesion, the pancreatic progression 

model (Figure 14), proposed by Hruban and co-workers (Hruban et al., 2000a) is now 
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accepted worldwide and used as a starting point for further in-depth analyses. 

Nonetheless, the fact that the data obtained for the generation of the model was based 

on fixed resected tissue, and the lack of screening methods, hinders the complete 

understanding of these lesions and their immediate role in tumour formation. In fact, the 

results obtained with the analysis of KRAS mutations have been controversial. While 

some have reported a high percentage of ductal lesions harbouring KRAS mutations, 

others show that this event only occurs in a small proportion of low-grade precursors 

(Lüttges et al., 1999, Löhr et al., 2005). This suggests that, either oncogenic KRAS 

might not be the only driving force for PDAC development, or that low-grade lesions 

do not necessarily progress to PDAC. Instead, they might be indicative of increased risk 

of development. Furthermore, the predictive power of PanIN presence is also being 

investigated. It has been observed, in a short-term study (10 years follow up), that the 

presence of PanIN lesions in the surgical margins upon PDAC resection does not 

correlate with increased risk of relapse (Konstantinidis et al., 2013). Additionally, 

PanINs have also been observed in the presence of other pancreatic neoplasms, such as 

acinar cell carcinomas (ACCs), MCNs, pancreatic endocrine tumours (PETs), 

cystadenomas (SCs), and solid pseudopapillary tumours (SPTs) (Stelow et al., 2006a). 

The ubiquitous presence of PanINs challenges their status as PDAC precursors, 

suggesting a broader relevance and origin in pancreatic insults. Thus, the successive 

evolution from low-grade lesion to PDAC is still under debate. 

 
Figure 14 -  PDAC progression model based on human data 

Illustration of the histological and architectural features of PDAC and its precursor 
lesions. Normal ducts are thought to acquire mutations leading to the generation of 
PanIN1A-1B, which progress to PanIN2, PanIN3 and PDAC.  
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1.4.6 PDAC cell of origin hypothesis (clinical data-based assumption) 

The identification of a cancer’s cellular origin has immeasurable benefits for the clinic 

as it provides unique information about tumour molecular origins/dependencies.  

PDAC is usually a moderately differentiated tumour with glandular, duct-like structures 

surrounded by abundant stroma. On a histological level, it presents large/medium 

tubular structures that can be papillary or cribriform. While its precursors are usually 

mucinous with a columnar epithelium, PDAC is less mucinous, presenting cuboidal 

cells with variable-sized nuclei. If well differentiated, neoplastic duct structures can be 

difficult to distinguish from normal ducts. These tumours retain some of the markers 

present in ductal cells, such as CK7, 8, 18 and 19, Muc1 and HNF1β, but also 

upregulate others, such as the embryonic transcription factor Pdx1 and 

carcinoembryonic antigen (CAE) (Hamilton and Aaltonen, 2000). Moreover, early 

studies detected hyperplastic ducts before and during PDAC onset. Given the 

morphological resemblance of PDAC and PanIN cells with pancreatic ductal cells, and 

the observation of hyperproliferative ducts before, and upon tumour formation, it was 

proposed that PDAC would have its origin in a ductal cell. Recent findings have 

challenged this hypothesis, as it will be discussed in this thesis (see 1.6.2, page 74). 

 

1.5 Genetically engineered mouse models (GEMs) of PDAC 

Great discoveries and deep understanding of PDAC biology and genetics can be 

achieved based on analyses of tumour resected fixed tissue. Clinical observations have 

provided the driving force for the understanding of the genetic and environmental 

components leading to PDAC. However, correlation analyses have to be challenged and 

put to the test so that stronger statements can be made. While in vitro studies are useful 

for isolated questions, the big picture can only be obtained by modulating cellular 

responses in their own environment. Animal models are powerful tools to shed light 

into the mechanisms of pathogenesis. 

Initial pancreatic cancer models used to understand PDAC biology were based on 

xenografts, where human tumour cells are transplanted in the mouse (subcutaneous or 

orthotopic tumours). Considering the injected cells are already coming from an 
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established tumour, issues such as the cell of origin and mechanisms of tumour 

initiation are difficult to address. Additional approaches took advantage of carcinogens 

to induce tumourigenesis. The results obtained with these approaches, although 

histologically mimicking the human disease, failed to clarify the events under a precise 

molecular alteration (Bardeesy et al., 2001). The generation of GEMs completely 

revolutionized cancer research. Deletion or ectopic expression of specific genes can, 

nowadays, be easily achieved. A great contribution was the generation of a Cre 

recombinase-dependent genetic manipulation. The Cre-based system provides an 

incomparable genetic tool that allows the irreversible induction of a genetic alteration 

by the recombination, and consequent excision, of DNA sequences flanked by loxP 

recognition sites (Sauer, 1998). Cre is expressed under the control of a tissue-specific 

promoter allowing tissue-specific genetic modulation. Similar to the specificity 

provided by Cre models, other approaches have been developed that serve a similar 

purpose. Lastly, the possibility to regulate Cre function provided another layer of 

control. This was achieved by fusing Cre to a mutated ligand-binding domain of the 

human oestrogen receptor (ER). Only in the presence of tamoxifen (an oestrogen 

agonist/antagonist), Cre is translocated to the nucleus and mediates loxP recombination 

and DNA excision (Feil et al., 1996). 

 

In the pancreatic cancer field, mouse models have been crucial to the understanding of: 

(1) the role of oncogenes and tumour suppressors in PDAC; (2) progression from 

normal tissue to neoplasia; (3) the cellular origin of pancreatic tumours; (4) the impact 

of the environment, such as inflammation, in PDAC development; and (5) the interplay 

between genetic and environmental insults. These finding are explored below and will 

be subdivided into embryonic or postnatal models.  
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1.5.1 Lessons from embryonic GEMs of PDAC 

In this chapter, a summary of the most common GEM models used (Table 4) and the 

main findings obtained will be discussed. 

 

The role of oncogenes and tumour suppressors in PDAC - Progression Model 

Studies have identified several genetic and epigenetic alterations to be present in both 

PDAC and its pre-neoplastic precursors. While these changes are observed, a 

cause/consequence relationship was not solid. GEM models have helped to clarify the 

role of these molecular aberrations and, thus, to better understand the step-wise 

progression of the disease.  

Initial attempts to create a GEM model for PDAC were made by ectopically expressing 

oncogenic KRasG12D under the control of the Ck19 (duct marker in adult pancreas; 

progenitor population during development) or Elastase 1 (Ela1 - acinar cell marker in 

embryonic development and adulthood) promoters (Grippo et al., 2003, Brembeck et al., 

2003). However, in both cases, KRas oncogenic expression was dependent on the 

regulation of the respective promoters used, and thus, the levels of expression did not 

mimic the human scenario. 

In 2003, Hingorani and co-workers generated a more physiologically relevant mouse 

model where KRas oncogenic expression was regulated by its own promoter (Hingorani 

et al., 2003). In this model, an oncogenic KRasG12D sequence, preceded by a loxP-

STOP-loxP (LSL) cassette, was knocked-in after the promoter region of the KRas locus 

and upstream of the coding sequence. This mouse model was then crossed to a Pdx1-

Cre deleter strain. In this model, the expression of the transcription factor Pdx1 at E8.5, 

in embryonic pancreatic progenitors, drives Cre expression, promoting the excision of 

the STOP cassette and transcription of the oncogenic KRasG12D. For the first time, a 

multi-step carcinogenesis of PDAC was documented, closely recapitulating the human 

disease. These animals developed murine PanINs (mPanINs) as early as 2 weeks of age. 

As proposed for the human disease, these mPanIN lesions progressed from grade 1 to 3 

and culminated with focal murine PDAC (mPDAC) development close to one year of 

age (Hingorani et al., 2003). Similar results were obtained using the Ela1-tTA/tetO-Cre 

model (Cre expression is promoted by tTa regulated by the Elastase promoter, in the 

absence of doxycycline) in combination with another endogenously regulated 
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oncogenic KRas (KRas+/LSLG12Vgeo) (Guerra et al., 2007). Since Elastase expression starts 

in the embryo, at E16.5, tumourigenesis begins before birth, in embryonic acinar cells. 

Doxycycline untreated KRAS+/LSLG12Vgeo; Ela1-tTA/tetO-Cre mice developed focal low-

grade mPanINs at 3 months, meeting the consensus classification described by Hruban 

and co-workers in the 2006 pancreatic GEM model report (Hruban, 2006). Over time, 

these lesions increased in grade and, at one year of age, half of the mice presented 

PDAC, supporting the progression model. These studies confirmed the common KRAS 

mutation found in humans (G12D) as being sufficient for PDAC initiation and 

progression. Nonetheless, the long latency of tumour onset also confirmed the observed 

need for additional molecular abnormalities for tumour development.  

It is known from the clinic that PDAC harbours more than just KRAS mutations. Given 

their absence in low-grade lesions and presence in the established tumour, these 

additional molecular alterations were suggested to be involved in the progression from 

pre-neoplastic to neoplastic disease. Such is the case for alterations in the genes 

CDKN2A, p53 and SMAD4. Similarly, GEM models were created that either 

deregulated these genes alone, or in combination with KRas constitutive activation. In 

summary, deletion of either p16INK4A/p19ARF (Ink4a/Arflox/lox), p16 INK4A or p53, in 

KRasG12D; Pdx1-Cre or KRas+/LSLG12Vgeo; Ela1-tTA/tetO-Cre mice, led to a drastic 

acceleration of tumour formation with no observable effect in the absence of oncogenic 

KRas (Bardeesy et al., 2006a, Aguirre, 2003, Guerra et al., 2011). Similarly, deletion of 

Tgfβ receptor 2 (Tgfbr2lox/lox), with concomitant expression of oncogenic KRasG12D in 

the embryonic pancreas (Ptf1a-Cre), significantly accelerated PDAC onset while having 

no effect in tumour formation when deleted alone (Ijichi et al., 2006). These mouse 

models have shed light on the importance and role of the tested oncogenes and tumour 

suppressors. Moreover, they have strengthened the proposed progression model by 

demonstrating the time-wise requirement for genetic alteration. An increasing number 

of genes and pathways are being put to the test using similar approaches, providing an 

extremely detailed understanding of the key players involved in PDAC tumourigenesis 

(Hanlon et al., 2010, Eser et al., 2013, Pérez-Mancera et al., 2012). 
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Molecular 
alterations Driver Target cell PanIN 

onset  
PDAC 
onset  Reference 

KRas+/LSL-G12D Pdx1-Cre Progenitor 
(E8.5) 2w 1y (Hingorani et 

al., 2003) 

KRas+/LSL-G12D p48/Ptf1a-Cre Progenitor 
(E9.5) 2w 1y (Hingorani et 

al., 2003) 

KRas+/LSLG12Vgeo Ela1-tTA/tetO-Cre 
No Dox 

Acinar 
progenitor 

(E16.5) 
3m 50% 

1y 
(Guerra et 
al., 2007) 

KRas+/LSL-G12D 
Ink4a/Arflox/lox Pdx1-Cre Progenitor 

(E8.5) No info 7/11w (Aguirre, 
2003) 

KRas+/LSL-G12D 
Ink4a/Arflox/lox  lox/+ Pdx1-Cre Progenitor 

(E8.5) No info 2/8m (Bardeesy et 
al., 2006a) 

KRas+/LSL-G12D 

p53lox/lox or lox/+ Pdx1-Cre Progenitor 
(E8.5) No info 1.5/5m (Bardeesy et 

al., 2006a) 

KRas+/LSL-G12D 
p16lox/lox Pdx1-Cre Progenitor 

(E8.5) No info 4.5m (Bardeesy et 
al., 2006a) 

KRas+/LSL-G12D 
p53lox/lox 
p16lox/lox or lox/+ 

Pdx1-Cre Progenitor 
(E8.5) No info 6/7w (Bardeesy et 

al., 2006a) 

KRas+/LSLG12Vgeo 
p53lox/+ 

Ela-tTA/tetO-Cre 
No Dox 

Acinar 
progenitor 

(E16.5) 
No info 6m (Guerra et 

al., 2007) 

KRas+/LSL-G12D 
Tgfbr2lox/lox or lox/+ p48/Ptf1a-Cre 

Pancreatic 
progenitor 

(E9.5) 
3w  2/6m (Ijichi et al., 

2006) 

Table 4 - Summary of the most commonly used prenatal PDAC GEM models and their 

respective phenotypes 

Table summarising the most commonly used mouse models of PDAC targeting the 
pancreas of pre-natal mice. w – weeks. m – months. y – years 
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1.5.2 Lessons from postnatal GEMs of PDAC 

PDAC is more prevalent in the aged population, thus it is very improbable that the 

driving mutations occur during human embryogenesis. The likeliest scenario is the 

acquisition of somatic mutations during adulthood. Hence, embryonic GEMs are limited 

in their capacity to fully mimic the human disease. Moreover, embryonic models do not 

answer the longstanding question of the cell of origin of PDAC (see 1.6.2, page 74). 

Thus, conditional modulation of gene expression constitutes an invaluable tool for 

investigating PDAC in the adult (Table 5). 

 

Tumourigenic resistance of the adult pancreas (possible stem cell-like pool?) 

A plethora of studies have demonstrated that KRasG12D activation in pancreatic 

progenitors is sufficient to drive tumourigenesis by induction of mPanIN lesions. 

Nonetheless, progenitor cells are thought to harbour the required activated mechanisms 

to rapidly respond to oncogenic hits. Thus, it does not answer the question of whether 

KRas oncogenic mutations would be able to transform an adult population. In order to 

address this issue, the activation of the oncogenic hit has been induced in the adult 

pancreas. Studies have addressed the ability of both adult acinar and ductal cells to give 

rise to PDAC. However, ductal-specific targeting has been unsuccessful (see 1.6.2, page 

74). Thus, the main findings obtained so far targeted adult acinar cells. Guerra and co-

workers have activated KRasG12V in acinar cells of an adult mouse. KRas+/LSLG12Vgeo; 

Ela1-tTA/tetO-Cre mice (tet-off system) were treated with doxycycline until 2 months 

of age (P60) to prevent Cre-dependent recombination. After doxycycline removal, mice 

were followed up to one year with no detectable histological aberration (Guerra et al., 

2007). In a follow up study, the concomitant homozygous deletion of p53 or 

p16INK4A/p19ARF, with KRASG12V expression, in adult acinar cells, also failed to induce 

any neoplastic growth (Guerra et al., 2011). These results suggest a high refractory 

nature of the adult organ to tumourigenesis. It is known that inflammation constitutes a 

high PDAC susceptibility state. Thus, the authors repeated the approaches with parallel 

induction of pancreatic inflammation (pancreatitis). Pancreatitis was induced with 

caerulein, a cholecystokinin analogue, treatment that promotes the premature activation 

and uncontrolled release of the acinar digestive enzymes, with consequent damage to 

the pancreas, mainly to acinar cells. The inflammatory environment acted 
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synergistically with KRas mutations to promote the formation of pre-neoplastic 

precursors and rare focal murine PDAC at 8 months post-Cre expression (Guerra et al., 

2007). Human PDAC aetiology had already established pancreatitis as a main risk 

factor. Nonetheless, theses studies have re-classified pancreatic inflammation as a 

crucial component of PDAC development.  

In contrast to the above-mentioned studies, it has been observed that adult acinar cells 

are, in fact, able to give rise to KRASG12D-dependent murine PanIN initiated mPDAC 

development (Habbe et al., 2008). This observation can be explained by: either the non-

comparable tumourigenic capacity of different KRas mutations (G12D vs G12V); the 

use of different Cre lines and consequently the different population targeted, or due to 

the different age of induction (6 weeks versus 8 weeks of age).  

 
 Molecular 

alterations Cre Driver Target 
cell Observation Reference 

A
ci

na
r 

KRas+/LSLG12Vgeo Ela1-tTA/tetO-Cre 
 Dox up to P60 

Adult 
acinar 

P60 

ADM, PanIN and PDAC 
development  require 

pancreatitis 

(Guerra et al., 
2007) 

KRas+/LSLG12Vgeo 

p53lox/lox or 
Ink4A/Arflox/lox 

Ela1-tTA/tetO-Cre 
Dox up to P60 

Adult 
acinar 

P60 

ADM, PanIN and PDAC 
development  require 

pancreatitis 

(Guerra et al., 
2011) 

KRas+/LSL-G12D Ela-CreERT2Tg/+ 

Tamox at 6w 

Adult 
acinar 

6w 

PanIN without requirement of 
pancreatitis 

(Habbe et al., 
2008) 

KRas+/LSL-G12D Mist1CreERT2/+ 
Tamox at 6w 

Adult 
acinar 

6w 

PanIN without requirement of 
pancreatitis 

(Habbe et al., 
2008) 

KRas+/LSL-G12D 

p53lox/lox CPA1-CreER 
Adult 
acinar 

P60 

PanIN and PDAC development 
in the presence of pancreatitis 

(Friedlander et 
al., 2009) 

E
nd

oc
ri

ne
 

KRas+/LSL-G12D 
alone or in 
combination w/ 
p53lox/lox 

RIP-CreER 
Adult 
β-cells 

P30/P60 

No transformation without 
caerulein. Chronic pancreatitis 
induced PDAC only in double 

mutants. 

(Friedlander et 
al., 2009) 

D
uc

t 

KRas+/LSL-G12D Ck19-CreER 
Tamox at 6w 

Adult  
duct 
6w 

No transformation. 
Rare PanIN 

Unspecific Cre diver. 
(Ray et al., 2011) 

KRas+/LSL-G12D Sox9-CreER 

Tamox at P10 

Postnatal 
duct 
P10 

No transformation 
Rare PanIN 

Possible unspecific Cre line. 

(Kopp et al., 
2012) 

Table 5 - Summary of the most commonly used postnatal PDAC GEM models and their 

respective phenotypes 

Table summarising the most commonly used mouse models of PDAC targeting the 
pancreas of postnatal mice. P – postnatal day. w – weeks. Dox – Doxycycline. Tamox - 
tamoxifen 
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1.6 PDAC cell of origin 

A great part of understanding the nature of any tumour is the knowledge of the cells 

from which it originates. The awareness of the cell of origin has already been shown to 

provide crucial information regarding the initial stages of tumour development in 

different organs, as well as the molecular mechanisms involved in early tumourigenesis 

(Gangopadhyay et al., 2013, Jordan, 2007, Barker, 2014). Additionally, the 

identification of a more tumourigenic population can provide valuable insight into the 

biology of the organ homeostasis and regeneration. The search for pancreatic adult 

progenitor cells and PDAC cell of origin has been restless. An increasing amount of 

evidence points to the existence of cells with different tumourigenic potential, urging 

for a different handling in the clinic. 

 

1.6.1 PDAC heterogeneity and tumour molecular subtypes 

PDAC, as described before, is a disease that exhibits an extremely poor prognosis. This 

unfortunate phenomenon can be partially attributed to its extremely aggressive nature 

coupled with the lack of distinctive symptoms. Nonetheless, effective therapies should 

be capable of tumour remission, which is not the case. An important factor for evasion 

of chemotherapy is the heterogeneity of the tumour (Dexter and Leith, 1986). In fact, 

detailed genetic analyses have broadened the panel of molecular alterations detected in 

PDAC. In 2008, a comprehensive analysis of deletions, amplifications, mutations and 

gene expression of 24 PDAC patient samples identified an average of 63 genetic 

alterations whose functions spread over 12 signalling pathways (Jones et al., 2008). 

Furthermore, whole genome sequencing and copy number variation studies on 100 

tumour samples from PDAC have reinforced the great genetic variation present in these 

tumours. Chromosomal rearrangements were frequent and led to the deregulation of 

genes known to be important for PDAC development, as well as the identification of 

new potential drivers. Genetic instability was found to be extremely important to the 

chemotherapy outcome and thus, PDAC was sub-classified into 4 different categories 

according to their chromosomal structure: stable; locally rearranged, scattered and 

unstable (Waddell et al., 2015). In a different study, a distinctive classification was 
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made where a combined analysis of publicly available transcriptional datasets of 

resected PDAC with the laboratory’s own microdissected PDAC gene expression 

microarray data, was performed. In this study, a 62-gene molecular PDAC signature 

(PDAssigner) was obtained, that assigned particular expression profiles to different 

tumour subtypes with distinct clinical outcomes and responses to therapy. The subtypes 

were named “classical” (with a better prognosis), “exocrine-like” (with an intermediate 

prognosis) and “quasi-mesenchymal” (with the worst registered prognosis) due to the 

main functions of the genes expressed in each signature. Hence, the “classical” type 

expressed epithelial genes and genes commonly involved in adhesion, the “exocrine-

like” type exhibited high expression of genes involved in production and secretion of 

acinar cell digestive enzymes and the “quasi-mesenchymal” was shown to express high 

levels of genes associated with the mesenchyme (Collisson et al., 2011). At this point a 

complete understanding of the underlying reason for the different subtypes is not 

obvious. A correlation with KRAS dependency was proposed, but it does not segregate 

the samples into 3 different groups. One possible explanation for the different 

expression is that the expression is reminiscent profile of the cell of origin. It has been 

hypothesised that PDAC could arise from different pancreatic cellular compartments 

and thus the consequent tumours would be expected to fall into different profiles.  

 

1.6.2 Pancreatic cellular compartment of origin 

As mentioned above, the human data obtained for PDAC and its pre-neoplastic lesions 

has suggested that PDAC arises from ductal cells. Nevertheless, the cellular 

compartment of origin of PDAC is still a subject of pronounced debate. Using the 

knowledge of the detailed marker expression of the different pancreatic compartments, 

it was possible to generate GEM models that are specific for distinctive cell lineages 

(Table 5). 

Up to the initiation of the currently presented study, attempts to provide solid proof of a 

duct cellular origin had failed to demonstrate the tumourigenic capacity of these cells. 

Encouraging data on the ductal origin was originally provided by the deletion of Pten, 

an antagonist of the PI3K/PDK1/AKT pathway, in the embryonic pancreas. Ptenlox/lox; 

Pdx1-Cre mice exhibit an acceleration of the previously observed KRasLSL-G12D/wt; Pdx1-
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Cre model. This acceleration was suggested to be due to centroacinar cell expansion, a 

specialized type of ductal cells, and consequent transformation (Stanger et al., 2005). 

Nevertheless, Pdx1-Cre targeting is not specific to the ducts and thus the finding was 

later put to the test. 

Specific ductal cell targeting was achieved with the use of Ck19-CreER or Sox9-CreER 

mice. Both Ck19 and Sox9 have been proposed to be exclusively expressed in the 

ductal network. Crossing KRasLSL-G12D/wt with Ck19-CreER or Sox9-CreER failed to 

generate PDAC. The only observation, in both studies, was the presence of extremely 

rare PanINs, detected long after tamoxifen-induced recombination (Ray et al., 2011, 

Kopp et al., 2012). Thus, the current results discouraged PDAC as having its origin in 

the ductal compartment and triggered an extensive search for the cell of origin. 

It has been extensively demonstrated that plasticity is a characteristic of all pancreatic 

cells (see 1.1.2, page 26). Since the ductal cell of origin hypothesis was not confirmed, 

attention has been focused on the remaining cellular compartment. In order to narrow 

down the responsible compartment, Friedlander and co-workers used cell-specific Cre 

drivers that restricted the KRAS oncogenic activation to endocrine β-cells (RIP-CreER) 

and acinar cells (CPA1-CreER) (Friedlander et al., 2009). Two observations were made 

from this study. Firstly, it was reinforced that inflammation is important for promotion 

of tumour development, as the absence of a caerulein treatment failed to give rise to 

tumours in both compartments. Secondly, while β-cells required the concomitant 

homozygous deletion of p53 and caerulein treatment to induce rare mPDAC, acinar 

cells responded strongly with KRasG12D alone and inflammation. Furthermore, the use 

of the RIP-CreER model showed some labelled exocrine cells. Thus, it seemed that 

acinar cells constituted the main cellular source for PDAC. 

Although it seems counterintuitive, several studies had previously focused on the PDAC 

tumourigenic capacity of acinar cells. It had been previously reported that c-myc ectopic 

expression in acinar cells, by means of a Ela1-myc transgene, culminated in the 

formation of acinar cell carcinomas in half of the mice, while the other half presented a 

mass of duct-like cells which progressed to ductal adenocarcinomas (Sandgren et al., 

1991). In a following study, a similar approach expressing TGFα (Ela1-TGFα) was 

undertaken. It was observed that acinar cells from transgenic mice would progressively 

gain a ductal morphology with parallel upregulation of ductal markers (Wagner et al., 
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1998). This observation was then named acinar-to-duct metaplasia (ADM, conversion 

of an acinar cell into a ductal cell) and was thought to precede PanIN formation leading 

to PDAC. In accordance with these observations, it was demonstrated that soon after 

KRasG12D activation in the embryonic pancreas, ADM was the predominant 

morphological change. Interestingly, normal acinar cells near the ADM ductal clusters 

also presented ductal cell markers. Moreover, in the same study, a time course analysis 

demonstrated that early mPanIN lesions retain some acinar markers suggestive of an 

acinar cell origin or a partial acinar contribution to the pre-neoplastic lesion (Zhu et al., 

2007).  

Nowadays, it is known that KRas mutations induce ADM in vivo and in vitro (Shi et al., 

2012). Furthermore, caerulein-induced pancreatitis promotes extensive ADM, which 

might at least partially be the cause of the acceleration of acinar-derived PDAC 

observed in caerulein-treated KRas+/LSLG12Vgeo; Ela1-tTA/tetO-Cre mice (Guerra et al., 

2007).  

In summary, despite the ductal morphology, the greatest amount of evidence supports 

an acinar cell origin for PDAC via ADM-PanIN-PDAC progression (Figure 15). 

Nonetheless, a ductal cell origin cannot be excluded solely based on the studies 

performed so far. 

 
Figure 15 – PDAC progression model based on GEM data 

Illustration of the histological and architectural features of PDAC and its precursor 
lesions. Acinar cells undergo a transdifferentiation step, named Acinar to ductal 
metaplasia – ADM, and acquire a ductal morphology. These duct-like structures 
progress towards PDAC via the intermediate development of murine PanIN1, PanIN2 
and PanIN3.  
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1.6.3 Tumour-initiating cells 

Tumour-initiating cells (TICs), commonly referred to as cancer stem cells (CSCs), are 

an interesting, yet, still controversial concept. Tumours can be roughly seen as a 

hierarchical organization, where, over time, mutations in a cell or in a small group of 

cells confer a growth advantage over the neighbouring population.  

Xenograft-based studies have demonstrated that a high number of tumour cells is 

required to establish the new tumour, upon transplantation (Polyak and Hahn, 2006). 

While cell death is expected due to implantation procedures and crosstalk with the host, 

it would be estimated that, if all tumour cells have the same tumourigenic potential, that 

a smaller number of cells would be required for tumour formation. Hence, the theory of 

cancer stem cells emerged, as the subpopulation of cells within tumours with a unique 

capacity to initiate and maintain tumour development, and it has been a subject of 

discussion ever since (Jordan et al., 2006). 

A plethora of studies have been conducted in order to identify a cancer population 

responsible for tumour generation and maintenance. As a result, the establishment of 

subpopulations with high tumourigenic capacity, self-renewal ability and increased 

proliferative index have been detected for tumours of different organs, such as the brain, 

intestine, breast and the haematopoietic system (Barker, 2014, Gangopadhyay et al., 

2013, Wang and Dick, 2005).  

 

1.6.4 Clinical relevance of cancer stem cells 

CSCs are of extreme importance given their unique role in tumour initiation. However, 

many other features enhance their importance and relevance in therapeutic outcome. 

Chemotherapy drugs are developed based on the molecular information provided by 

cancer cell lines and patient biopsy samples. This means that the average molecular 

aberrations are detected while lowly represented changes are diluted out. CSCs 

constitute a minority in the tumour. Thus, while chemotherapies are designed for the 

molecular dependencies of the bulk tumour, they usually fail to target the CSC 

subpopulation. Tumour recurrence, despite evident remission after chemotherapy, has 

been a common finding, reported extensively (Vidal et al., 2013). Resistance to 
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chemotherapy can be attributed to several factors such as selection of resistant clones 

and microenvironment protection, amongst others. Nevertheless, CSCs have been 

shown to efficiently evade chemotherapy, in vitro and in vivo, by numerous 

mechanisms, such as dormancy, efflux pump-mediated drug exclusion or adapted 

molecular regulation (Rich and Bao, 2007). 

An additional layer of importance is given concerning the metastatic process. A parallel 

connection between CSCs and epithelial to mesenchymal transition (EMT) has been 

suggested. EMT is a biological process by which epithelial cells acquire a more 

mesenchymal phenotype, as a consequence of changes in the transcriptional profile. 

This enhances the migratory and invasive nature of these cells, allowing them to leave 

the primary tumour and colonize distant sites. It has been observed in different cancers 

that the CSC population harbours an increased metastatic potential, with a more 

pronounced EMT phenotype. Specific pharmacological targeting of these cells greatly 

reduces their invasive and colonization capacity (Sampieri and Fodde, 2012).  

Great knowledge has strengthened the relevance of CSCs in pathogenesis. Thus, the 

identification of such cells, and the understanding of their biology, might have 

immeasurable benefits for the development of better chemotherapeutic strategies.  

 

1.6.5 Pancreatic cancer stem cells 

PDAC is an extremely heterogeneous disease with poor response to chemotherapy. As 

discussed above, both heterogeneity and drug resistance can be attributed to the 

comprehensive molecular alterations and chromosome instability observed in these 

tumours, coupled with the intense desmoplastic reaction and low vascularity that 

accompanies tumour formation (Olive et al., 2009, Samuel and Hudson, 2011). 

However, evidence for a pool of cells with distinct and enhanced tumour-initiating 

potential has been documented (Hermann et al., 2007).  

The embryonic progenitor cells of the developing pancreas are equipped with extremely 

efficient molecular machineries capable of great plasticity. However, the regenerative 

capacity is greatly reduced after birth (Solar et al., 2009, Pan et al., 2013). Analogously, 

the ability to generate PDAC in mouse models decreases with age. When KRas 

mutations are targeted to the pancreatic embryonic progenitors, by the use of Pdx1-Cre 
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or Ptf1a-Cre mice, pre-neoplastic mPanIN lesions can be observed as soon as two 

weeks after birth, with PDAC onset at one year of age (Hingorani et al., 2003). 

Oncogenic insults in young mice, soon after birth, greatly delayed tumour onset as seen 

by Guerra and co-workers. Activation of oncogenic KRasG12D 10 days after birth 

initiated the tumourigenic program in acinar cells (KRas+/LSLG12Vgeo;Elas-tTA/tetO-Cre, 

doxycycline up to P10) with detectable early-grade mPanINs only at 6 months and rare 

focal PDAC one year post Cre-mediated recombination. The effect of age on 

tumourigenesis is even more obvious in adult mice. In the same study, the KRasG12V 

mutation was induced in adult acinar cells (P60) where no pathogenesis was observed 

up to one year, even with concomitant homozygous deletion of p53 (Guerra et al., 2007). 

These results nicely point to an exhaustion or reduction in the tumour-initiating 

population with age.  

Tumour formation can be induced in the adult pancreas, however it requires the 

concomitant presence of an inflammatory environment (Guerra et al., 2011). It has been 

described before that pancreatitis-induced regeneration relies on the repression of 

exocrine programs and the re-activation of embryonic pathways with simultaneous re-

expression of embryonic markers, such as Pdx1 (Jensen et al., 2005). Thus, it is 

reasonable to conjecture that adult PDAC tumourigenesis is dependent on the presence 

of stem cells/committed progenitors or the reactivation of stem cell programs.  

The search for tumour-initiating cells led to the development of technical strategies that 

could test, both in vivo and in vitro, the phenotypic tumourigenic differences between 

these cell populations. Currently accepted cancer stem cell assays rely on the 

identification of surface markers that enable the physical separation of this population 

versus the remaining tumour cells. This allows the comparison of the two populations 

regarding their ability to self-renew and give rise to differentiated progeny. Most 

commonly used in vitro assays compare the cellular capacity to grow as spheroids in 

non-adherent conditions where tumour-initiating cells overcome anoikis. Additionally, 

recent strategies have been developed, which rely on the ability of tumour-initiating cell 

to form organoids in soft matrices (Clarke et al., 2006). While in vitro approaches allow 

the high-throughput study of this specialized subpopulation, as the name indicates, the 

ultimate test for a tumour-initiating property is their unique ability to generate tumours 

in recipient mice, when isolated from the bulk, non-tumour-initiating population. Thus, 
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for a cell to be proposed as a tumour-initiating cell, it has to generate in vivo tumours in 

recipient mice, following injection of a small number of cells, and to recapitulate the 

cellular heterogeneity present in the primary tumour (Clarke et al., 2006). 

The increasing evidence for cellular heterogeneity within PDAC tumours triggered the 

search to define the tumour-initiating population. Cell surface marker screening of 

human PDAC samples demonstrated heterogeneity in expression of CD44, CD24, and 

Epithelial-specific antigen (ESA), previously described cancer stem cell markers. 

Transplantation into Non-obese diabetic/ Severe combined immunodeficient 

(NOD/SCID) mice indicated that CD44+CD24+ESA+ cells had the highest tumour 

initiating potential, where as few as 100 cells were capable of PDAC initiation, 

phenocopying the primary human tumour (Lee et al., 2008). In a different study, 

Hermann and co-workers identified a subpopulation expressing prominin1 (also known 

as CD133). The orthotopic transplantation of these isolated cells was able to generate 

tumours with as little as 500 cells, while their negative counterpart failed to do so even 

when 106 cells were transplanted. Tumours generated after serial transplantation of 

CD133+ cells maintained the histological features observed in the first generation 

tumours, indicating a stem cell-like capacity to give rise to differentiated progeny. 

Moreover, as suggested for most cancer stem cells, the CD133+ population was shown 

to be more resistant to common PDAC chemotherapy (Gemcitabine). Interestingly a 

double positive population for CD133 and C-X-C chemokine receptor type 4 (CXCR4) 

was present at the migratory front of the tumour. Orthotopic transplantation of 

CD133+CXCR4+ versus CD133+ cells demonstrated that both populations presented the 

same tumourigenic capacity, but tumour cells circulating in the blood were only 

detected when xenografts were performed with the double positive population. These 

results indicate that the tumour-initiating population described in this study contained a 

metastatic group of cells. This suggests that the tumour-initiating population is the one 

responsible for metastasis from PDAC tumours, highlighting the need for specific 

targeting of PDAC TICs (Hermann et al., 2007). 

Despite the encouraging results, immunohistochemical analysis of these CD133, CD44 

markers in human neoplastic pancreas indicates that cells positive for either CD133, 

CD44 or both might be more represented than what was initially reported (Matsuda et 

al., 2012, Immervoll et al., 2011). Moreover, some caveats in the studies mentioned 
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above, such as the possible inclusion of stromal cells in the cellular fraction that was 

negative for the selected tumour-initiating marker, might compromise the findings 

proposed. Thus, it is still not clear if CD133 or CD44 can identify a tumour-initiating 

population in the pancreas, or even if one exists. 

 

1.7 Aim of this Thesis 

Pancreatic ductal adenocarcinoma has been extensively studied. However, regardless of 

the great amount of molecular and histological knowledge gained so far, prognosis has 

remained poor with only 4% of the patients surviving more than 5 years (Hezel, 2006). 

It is becoming increasingly obvious that attention has to be focused on the initial stages 

of tumour development, when the disease is still manageable. In the study presented 

here, I aimed to investigate the origins of PDAC in the different pancreatic exocrine 

compartments at early stages of tumour development to better understand the 

contributions of each compartment to PDAC development. Additionally, I aimed to 

specifically identify the PDAC tumour-initiating cell for the future development of 

targeted chemotherapeutic strategies. 
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Chapter 2. Materials & Methods 

2.1 Materials 

2.1.1 Reagents and Consumables 

The consumables and reagents used for the development of this study were acquired 

from the companies listed or the Cancer Research-UK London Research Institute (LRI) 

Central Services: 

 

0.5 ml, 1.5 ml, 2 ml tubes   Eppendorf (Cambridge, UK) 

100bp DNA ladder    Life Technologies (NY, USA) 

1 kb DNA ladder    Life Technologies (NY, USA) 

1 ml, 5 ml, 50 ml syringes    BD Plastipak (Oxford, UK) 

5 ml, 10 ml, 25 ml serological pipettes Corning (Corning, USA) 

15 ml, 50 ml tubes     Corning (Corning, USA) 

18G, 19G needles       BD Microlance (Oxford, UK) 

6 cm diameter dishes (adherent cells)  Corning (Corning, USA) 

10 cm diameter dishes (adherent cells) Corning (Corning, USA) 

25 cm2 flasks (adherent cells)   Corning (Corning, USA) 

75 cm2 flasks (adherent cells)   Corning (Corning, USA) 

150 cm2 flasks (adherent cells)   Corning (Corning, USA) 

25 cm2 flasks (suspension culture)   Sarstedt (Leicester, UK) 

75 cm2 flasks (suspension culture)   Greiner bio-one (Stonehouse, UK) 

6-well plate (flat bottom)   BD Falcon (Oxford, UK) 

24-well plate (flat bottom)    BD Falcon (Oxford, UK) 

96-well plate (flat bottom)    BD Falcon (Oxford, UK) 

96-well plate (non-sterile)    Nunc (Rochester, USA) 

LS MACS columns     Miltenyi Biotec (Sussex, UK) 

QuandroMACS separator   Miltenyi Biotec (Sussex, UK) 

3,3,5-Triiodo-L-trhyronine    Sigma-Aldrich (Poole, UK)  

4-hydroxytamoxifen    Sigma-Aldrich (Poole, UK)  

ABC Kit Vector Laboratories   Vector Laboratories (Peterborough, UK) 
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Adenovirus     Gene Transfer Vector Core (Iowa USA) 

Advanced DMEM/F12   Life Technologies (NY, USA) 

Agarose     Bioline (London, UK)  

Alcian Blue     Sigma-Aldrich (Poole, UK)  

Ammonium chloride    LRI/CR-UK (London, UK) 

Ammonium persulfate   Sigma-Aldrich (Poole, UK)  

Ampicillin     Sigma-Aldrich (Poole, UK)  

B27 Supplement    Life Technologies (NY, USA) 

Bovine Pituitary Extract   BD Biosciences (Oxford, UK) 

Bovine serum albumin   Sigma-Aldrich (Poole, UK) 

Bromophenol blue    Sigma-Aldrich (Poole, UK)  

Caerulein     Sigma-Aldrich (Poole, UK) 

Calcium Chloride     Sigma-Aldrich (Poole, UK) 

Cell strainer (45 µm Nylon)   BD Falcon (Oxford, UK) 

Cell strainer (70 µm Nylon)   BD Falcon (Oxford, UK) 

Cholera Toxin     Sigma-Aldrich (Poole, UK) 

Collagenase type V    Sigma-Aldrich (Poole, UK) 

Collagenase P     Roche (Welwyn Garden City, UK) 

Collagen Rat Tail type I   BD Biosciences (Oxford, UK) 

Coverslips     Menzel-Glaeser (Braunschweig, Germany) 

DAB solution      BioGenex (Burlingame, UK) 

DAPI      Sigma-Aldrich (Poole, UK)  

ddH2O      LRI/CR-UK (London, UK)  

Dexamethasone    Sigma-Aldrich (Poole, UK) 

DirectPCR Lysis Reagent   Viagen Biotech (Los Angeles, USA)  

Disodium tetraborate    AppliChem (Darmstadt, Germany) 

DMEM     Life Technologies (NY, USA) 

DyeEx® 2.0 Spin Kit    QIAGEN (Crawley, UK) 

EDTA      Sigma-Aldrich (Poole, UK) 

EGF (human)      PeproTech (London, UK)  

Embedding cassetes    Tissue Tek (Basingstoke, UK) 

Eosin Y     Sigma-Aldrich (Poole, UK) 
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Ethanol     Fisher Scientific (Loughborough, UK)  

Ethidium Bromide    Sigma-Aldrich (Poole, UK) 

FACS tubes     Becton Dickinson (Oxford, UK)  

FGF-basic (human)     PeproTech (London, UK)  

FGF10 (human)     PeproTech (London, UK) 

Fluorescent Mounting Medium  DAKO (Ely, UK) 

Foetal calf serum (FCS)    PAA (Yeovil, UK) 

Gastrin      Sigma-Aldrich (Poole, UK) 

GoTaq PCR DNA Polymerase  Promega (Southampton, UK) 

Glucose      Sigma-Aldrich (Poole, UK) 

Glycerol     Sigma-Aldrich (Poole, UK)  

Glycine     Sigma-Aldrich (Poole, UK) 

Goat serum      Sigma-Aldrich (Poole, UK) 

Harris Hematoxylin (Shandon)  Fisher Scientific (Loughborough, UK) 

HBSS Ca2-/Mg2-     Invitrogen (Paisley, UK) 

Histo-Clear     Fisher Scientific (Loughborough, UK) 

Hydrochloric acid    Fisher Scientific (Loughborough, UK)  

Hydrogen peroxide    Sigma-Aldrich (Poole, UK) 

Illustra GFX DNA Purification Kit GE Healthcare (Little Chalfont, UK)  

Industrial methylated spirit (IMS)  LRI/CR-UK (London, UK)  

Isopropanol     Fisher Scientific (Loughborough, UK) 

ITS+ premix     BD Biosciences (Oxford, UK) 

MACs separation columns, 25 MS  Miltenyi Biotec (Surrey, UK) 

Marvel skimmed milk powder  A1 Laboratory Supplies Ltd (Enfield, UK) 

Matrigel, Growth Factor Reduced   BD Biosciences via VWR 

Mayer`s hematoxylin    LRI/CR-UK (London, UK) 

Magnesium Chloride    LRI/CR-UK (London, UK) 

N-2 supplement    Life Technologies (NY, USA) 

N-Acetylcysteine    Sigma-Aldrich (Poole, UK) 

Neutral buffered formalin (NBF)  LRI/CR-UK (London, UK) 

Nicotinamide     Sigma-Aldrich (Poole, UK) 

Nu-Serum IV     BD Biociences (Oxford, UK) 
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Paraffin wax     Tissue Tek (Basingstoke, UK)  

Paraformaldehyde    Sigma-Aldrich (Poole, UK)  

PBS      Life Technologies (NY, USA) 

Peanut oil     Sigma-Aldrich (Poole, UK)9 

Penicillin/Streptomycin   Life Technologies (NY, USA)  

Periodic Acid-Schiff    Sigma-Aldrich (Poole, UK) 

Phenol Chloroform Isoamyl Alcohol 24:24:1 Sigma-Aldrich (Poole, UK) 

Proteinase K     Melford Laboratories (Ipswich, UK)  

Rainbow markers    GE Healthcare (Little Chalfont, UK)  

Rat tail Collagen type I   BD Biosciences (Oxford, UK) 

Ribonuclease     Sigma-Aldrich (Poole, UK)  

RNase-Free DNase Set   QIAGEN (Crawley, UK 

RNeasy Mini-kit    QIAGEN (Crawley, UK)  

Sodium Acetate    Sigma-Aldrich (Poole, UK)  

Sodium Chloride    LRI/CR-UK (London, UK)  

Sodium Fluoride    Sigma-Aldrich (Poole, UK) 

Soybean trypsin inhibitor    Sigma-Aldrich (Poole, UK) 

Superfrost Ultra Plus charged slides  Menzel-Glaeser (Braunschweig, Germany) 

Superscript III cDNA synthesis kit  Life Technologies (NY, USA) 

SYBR Green     Life Technologies (NY, USA) 

Taq PCR Core Kit    Qiagen (Crawley, UK) 

Tamoxifen      Sigma-Aldrich (Poole, UK) 

Tris      Sigma-Aldrich (Poole, UK)  

Trisodium Citrate    Sigma-Aldrich (Poole, UK)  

Trypan Blue     Sigma-Aldrich (Poole, UK)  

Trypsin     Life Technologies (NY, USA) 

Vi-Cell™ sample vial    Beckman Coulter (High Wycombe, UK) 

Waymouth’s MB725/1 Medium  BD Biosciences (Oxford, UK) 

Xylene      LRI/CR-UK (London, UK) 
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2.1.2 Media and Buffers 

Blocking Buffer (IF/IHC)    final concentration: 

Bovine serum albumin   1% 

Goat/Donkey Serum    10% 

Triton X-100     0.4% 

PBS      89.6% 

 

Citrate Buffer 

Sodium citrate     2.94 g  

HCl (0.2 M)      18 ml  

ddH2O      up to 1 l 

 

DMEM (complete Media) 

DMEM     445 ml 

(+ 4.5 g/l glucose, + l-glutamine, + pyruvate) 

FCS      50 ml 

1% (v/v) Penicillin/Streptomycin (10000 U/ml) 5 ml 

 

DNA Extraction Buffer  

DirectPCR Lysis Reagent (mouse tail) 95 µl 

Proteinase K (10 mg/ml)    5 µl 

 

Harri’s hematoxylin 

Hematoxylin     2.5 g 

Absolute alcohol    25 mL 

Potassium alum    50 g 

ddH20      500 mL 

Sodium iodate     0.5g 

Glacial acetic acid    20 mL 
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G solution – 1 L (stock)   volume (final concentration): 

HBSS      1L 

CaCl2 (0.119 M)    0.4 mL (47.6 µM) 

Glucose     0.9 g 

 

MACS sorting buffer – 50 mL  volume (final concentration): 

PBS endotoxin free    49.8 mL  

BSA      0.25g (0.5% w/v) 

EDTA (0.5M)     200 µL (2 mM) 

FACS Buffer – 500 mL   volume (final concentration): 

PBS endotoxin free    490 mL 

FCS      10 mL (2% v/v) 

 

Pancreatic ducts 2D media - 50mL (stock) volume (final concentration): 

Advanced DMEM/F12   45.72 mL 

Nu-Serum (100x stock)   2.5 mL (1x) 

Bovine Pituitary Extract (3 mg/ml stock) 420 µL (25 µg/mL) 

ITS+ premix (100x stock)   250 µL (1x) 

EGF (100 µg/mL stock)    10 µL (20 ng/mL) 

Cholera Toxin (1 mg/mL stock)  5 µL (100 ng/mL) 

3,3,5-Triiodo-L-thyronine (50 µM stock) 5 µL (5 nM) 

Dexmethasone (20 µg/mL stock)  1 mL (1 µM) 

Glucose      0.25g (5 mg/mL) 

Nicotinamide     66mg (1.22 mg/mL) 

Penicillin/Streptomycin (100x stock)  500 µL (1x) 

 

Pancreatic organoid media - 50mL (stock) volume (final concentration): 

Advanced DMEM/F12   37.275 mL 

B27 (100x stock)    1mL (1x) 

N-Acetylcysteine (625 mM stock)  100 µL (1.25 mM) 

Gastrin (10 µM stock)    50 µl (10 nM) 

EGF (100 µg/mL stock)   25 µL (50 ng/mL) 
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RSPO1-conditioned media (100% stock) 5 mL (10%) 

NOGGIN-conditioned media (100% stock)  5 mL (10%) 

FGF10 (100 µg/mL stock)   50 µL (100 ng/mL) 

Nicotinamide (500 mM stock)  1 mL (100 mM) 

Penicillin/Streptomycin (100x stock)  500 µL (1x) 

 

Phosphate buffered saline (PBS)  final concentration:  

KCl      3 mM  

NaCl      136 mM  

Na2HPO4 2O    8 mM  

KH2PO4     15 mM 

 

Protein loading buffer (Laemmli buffer) final concentration 

Tris-HCl (pH 6.8)     63 mM 

SDS (w/v)      2% (w/v) 

Glycerol (v/v)      10% (v/v) 

bromophenol blue (w/v)    0.0025% (v/v) 

β-mercaptoethanol (v/v)    2.5% (v/v) 

 

Sodium acetate buffer 

1 M sodium acetate    99 ml 

1 M acetic acid    960 µl  

ddH2O      up to 1 l 

 

Tris-EDTA buffer (10mM Tris Base, 1mMEDTA, 0.05% Tween, pH9.0) 

Tri base      1.21g 

EDTA      0.37g 

ddH2O      1000mL 
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10X Waymouth’s (100mL)   volume (final concentration) 

10X Waymouth’s powder   14g (1X) 

7.5% (w/v) Sodium Bicarbonate  30mL (2.25% (w/v)) 

Adjust the pH to 7.3 

 

 

1X Waymouth’s complete media (100mL)  volume (final concentration) 

1X Waymouth’s     98.725 mL 

Trypsin Inhibitor (40mg/mL)   250 µL (0.1mg/mL) 

Dexamethasone (4mg/mL)   25 µL (0.001mg/mL) 

FCS      1 mL (1%) 
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2.1.3 Oligonucleotides 

The primers indicated in the tables below were used in the present study for mouse 

genotyping PCR (table 1), mouse Q-PCR (table 2) and generating the southern blotting 

probes (table 3) 

 

Table 6 - Mouse genotyping primers 

Gene/alelle Primer Sequence PCR product 
Fbxw7 
Wild type allele 
(wt) 
Floxed allele (F) 
Deleted allele 
(𝛥𝛥) 

Forward: 
5’– CAGTGGAGTGAAGTACAACTCTGG – 3’ 
Reverse: 
5’– GCATATTCTAGAGGAGGGTATCGG – 3’ 
Deleted reverse: 
5’ – GGCCAGCCTGGTCTGTATAGAG – 3’ 

wt: 288 bp 
F: 388 bp 
𝛥𝛥: 744 bp 
 

Cre 

Forward: 
5’ – CGGTCGATGCAACGAGTGATGAGG – 3’ 
Reverse: 
5’ – CCAGAGACGGAAATCCATCGCTCG – 3’ 

Cre: 600 bp 

p53 
Wild type allele 
(wt) 
Floxed allele (F) 
Deleted allele 
(𝛥𝛥) 

Forward: 
5' – CACAAAAACAGGTTAAACCCAG – 3’ 
Reverse: 
5' – GAAGACAGAAAAGGGGAGGG – 3’ 
Delta: 
5’– AGCACATAGGAGGCAGAGAC – 3' 

wt: 288 bp 
F: 370 bp 
𝛥𝛥: 612 bp 

KRasLSL-G12D 

Wild type allele 
(wt) 
Floxed allele 
(LSL) 
Recombined 
allele (Lox) 

1: 5' – GTCTTTCCCCAGCACAGTGC – 3’ 
2: 5' – CTCTTGCCTACGCCACCAGCTC – 3’ 
3: 5' –AGCTAGCCACCATGGCTTGAGTAAGTCTGCA 
- 3’ 

wt: 622 bp 
 
LSL: 500 bp 
 
Lox: 650 bp 

Rosa26-LSL-
YFP 
Wild type (wt) 
Floxed (mut) 
Recombined 
(Lox) 

1: 5’– GCGAAGAGTTTGTCCTCAACC – 3’ 
2: 5’– AAAGTCGCTCTGAGTTGTTAT – 3’ 
3: 5’– GGAGCGGGAGAAATGGATATG – 3’ 

wt: 600 bp 
mut: 300 bp 
Lox: 650 bp 

Pten 
Wild type allele 
(wt) 
Floxed allele (F) 
Deleted allele 
(𝛥𝛥) 

Forward: 
5' – CCATCACACTAAGGTCTGTGG – 3’ 
Reverse1: 
5' – ACTCCCACCAATGAACAAAC – 3’ 
Reverse2: 
5’– CCAGTAGTGATAGAACGGAAGTC – 3' 

wt: 135 bp 
F: 346 bp 
𝛥𝛥: 410 bp 
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Table 7 - Mouse Q-PCR primers 

Gene Primer Sequence 

Cd9 
Forward: 5’ – ATATTCGCCATTGAGATAGCC – 3’ 

Reverse: 5’ – TGGTAGGTGTCCTTGTAAAACTCC – 3’ 

Cd44 
Forward: 5’ –  GGCTCATCATCTTGGCATCT – 3’ 

Reverse:5’ – GCTTTTTCTTCTGCCCACAC – 3’ 

Ck19 
Forward: 5’ – TGACCTGGAGATGCAGATTG – 3’ 

Reverse: 5’ – CCTCAGGGCAGTAATTTCCTC – 3’ 

EpCam 
Forward: 5’ –  AGAATACTGTCATTTGCTCCAAACT – 3’ 

Reverse: 5’ – GTTCTGGATCGCCCCTTC – 3’ 

Pdx1 
Forward: 5’ –  GAAATCCACCAAAGCTCACG – 3’ 

Reverse: 5’ –  CGGGTTCCGCTGTGTAAG – 3’ 

Ptf1a 
Forward: 5’ –  GGGACGAGCAAGCAGAAGTA – 3’ 

Reverse: 5’ –  CGCGGTAGCAGTATTCGTG – 3’ 

Pol II 
Forward: 5’ –  AATCCGCATCATGAACAGTG – 3’ 

Reverse: 5’ –  TCATCCATTTATCCACCACCT – 3’ 

Sox 9 
Forward: 5’ – GTACCCGCATCTGCACAAC – 3’ 

Reverse: 5’ –  CTCCTCCACGAAGGGTCTCT – 3’ 

Fbw7 (exon 5) 
Forward: 5’ – TTCATTCCTGGAACCCAAAGA – 3’ 

Reverse: 5’ –  TCCTCAGCCAAAATTCTCCAGTA – 3’ 

 

  



Chapter 2 Materials and Methods 

 

 92 

2.1.4 Antibodies 

Table 8 - Primary Antibodies 

Primary 
Antibody 

(reactivity) 

Species 
(details) 

Application, 
(Dilution, 
antigen 

retrieval) 

Supplier, Cat Number 

APC Rat isotype 
control 

Rat monoclonal 
(IgG2b, κ) 

FACS 
(1:500,na) 

BD (Oxford, UK), 553991 

CD9 (mouse) 
Rat monoclonal 
(KMC8.8 IgG2a) 

IHC-p (1:100, 
TE), IHC-IF 
(1:100, TE), 
FACS 
(1:500,na) 

Santa Cruz (CA, USA), sc-
18869 

CD44-APC 
(mouse) 

Rat monoclonal  
(IM7, IgG2b, κ) 

FACS 
(1:500,na) 

BD (Oxford, UK), 559250 

CD44S 
(mouse) 

Rat monoclonal 
(A020, IgG2b) 

IHC-p (1:100, 
SC), IHC-IF 
(1:100, SC), 
FACS 
(1:1000,na)  

Chemicon/Millipore 
(Watford, UK), MAB2137 

CD45-PE 
(mouse) 

Rat monoclonal  
(30-F11, IgG2b, 
κ) 

FACS 
(1:500,na) 

BD (Oxford, UK), 9012-
9459 

CK19 
(mouse) 

Rat monoclonal 
(IgG2a, κ) 

IHC-p (1:100, 
SC) IHC-IF 
(1:100, SC)  

DSHB (Iowa, USA), 
Troma-III 

DBA-Biotin 
(mouse) 

- 
MACS 
(1:100,na) 

Vector Laboratories 
(Peterborough, UK), B-
1035 

DBA-Fluorescein 
(mouse) 

- IHC (1:100,SC) 
Vector Laboratories 
(Peterborough, UK), FL-
1031  

DBA-Rhodamine 
(mouse) 

- 
IHC-IF 
(1:100,SC) 

Vector Laboratories 
(Peterborough, UK), RL-
1032 

E-Cadherin 
(mouse) 

Rabbit 
monoclonal (IgG) 

IHC-p (1:400, 
SC) 

Cell Signalling, (Hitchin, 
UK), 3195 

GFP 
Goat polyclonal 
(IgG) 

IHC-p (1:300, 
SC) IHC-IF 
(1:100, SC) 

Abcam (Cambridge, UK), 
ab6673 



Chapter 2 Materials and Methods 

 

 93 

 

  

HNF1beta 
(human/mouse) 

Rabbit polyclonal 
IHC-p (1:200, 
SC) IHC-IF 
(1:200, SC) 

Sigma-Aldrich (Poole, 
UK), HPA002083 

Hes1 (mouse) Rabbit polyclonal IHC-p 
Chemicon/Millipore 
(Watford, UK), AB5702 

Phosphorylated 
histone 3 (mouse) 

Rabbit polyclonal 
IgG 

IHC-p (1:100, 
SC) 
IF-p (1:100, 
SC) 

Santa Cruz (CA, USA), sc-
8656-R 

Ptf1alpha 
(human/mouse) 

Rabbit polyclonal IHC-p (1:1000) 
Beta Cell Consortium 
(Tennessee, USA), 
AB2153 

pERK (p44/42 
MAPK) 

Rabbit, polyclonal IHC 1:100 
Cell Signalling, (Hitchin, 
UK), 4370 

Rat IgG2a 
isotype control 

Rat monoclonal 
(IgG2a) 

IHC-p (1:100, 
TE), IHC-IF 
(1:100, TE), 
FACS (1:500,na 

Santa Cruz (CA, USA), sc-
3883 

Β-catenin Rabbit polyclonal 
IHC-p (1:200, 
SC) 

Sigma-Aldrich (Poole, 
UK), C2206 
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Table 9 - Secondary Antibodies 

Secondary 
Antibody 

Species Application, 
Dilution 

Supplier, Cat Number 

Alexa Fluoro 488, 
anti Mouse 

Donkey anti-
Mouse IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A21245 

Alexa Fluoro 488, 
anti Mouse 

Goat anti-
Mouse IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A11029 

Alexa Fluoro 488, 
anti Rabbit 

Donkey anti-
Rabbit IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A21206 

Alexa Fluoro 488, 
anti Rabbit 

Goat anti-
Rabbit IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A11008 

Alexa Fluoro 546, 
anti Mouse 

Goat anti-
Mouse IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A10036 

Alexa Fluoro 546, 
anti Rabbit 

Donkey anti-
Rabbit IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A10040 

Alexa Fluoro 568 
anti Mouse 

Donkey anti-
Mouse IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A10037 

Alexa Fluoro 568 
anti Rabbit 

Donkey anti-
Rabbit IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A11011 

Alexa Fluoro 555 
anti Rat 

Goat anti Rat 
IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A21434 

Alexa Fluoro 647 
anti Rat 

Goat anti Rat 
IgG 

IHC-IF (1:200) 
FACS (1:2000) 

Life Technologies (NY, 
USA) A21247 

Biotin-conjugated 
anti-Goat 

Rabbit, anti-
Goat IgG 

IHC-p 1:250 Vector Laboratories 
(CA, USA) BA-5000 

Biotin-conjugated 
anti-Mouse 

Horse anti-
Mouse IgG 

IHC-p 1:400 Vector Laboratories 
(CA, USA) BA-2000 

Biotin-conjugated 
anti-Rabbit 

Goat anti-
Rabbit IgG 

IHC-p 1:250 Vector Laboratories 
(CA, USA) BA-1000 

Biotin-conjugated 
anti-Rat 

Rabbit, anti-
Rat IgG 

IHC-p 1:250 Vector Laboratories 
(CA, USA) BA-4000 
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2.2 Methods 

2.2.1 Animal work 

2.2.1.1 Housing and animal care 

All mice used during the course of this study were housed in the Biological Resource 

Unit, at either Lincoln’s Inn Fields or Clare Hall sites, of the London Research Institute.  

Mice were culled by Schedule 1 Methods, in accordance with the Animal Scientific 

Procedures Act 1986 (revised in 1997), via cervical dislocation followed by 

exsanguination through the severing of a major blood vessel.  New-borns were culled 

by decapitation and death confirmed by verification of onset of rigor mortis. All 

scientific procedures performed during the course of this study were approved by the 

London Research Institute Animal Ethics, following UK home Office guidelines. 

2.2.1.2 Mouse lines 

 

Mouse Line Reference 

Ck19-CreER (Means et al., 2008) 

Ela1-CreER (Desai et al., 2007) 

Fbw7F/F (Hoeck et al., 2010) 

Hnf1β-CreER (Solar et al., 2009) 

KRasLSL-G12D/wt (Jackson, 2001) 

Nu/Nu (Flanagan, 1966) 

p53F/F (Marino et al., 2000) 

Pdx1-Cre (Hingorani et al., 2003) 

PtenF/F (Lesche et al., 2002) 

Rag2KO (Hao and Rajewsky, 2001) 

Rosa26-LSL-YFP (Srinivas et al., 2001) 
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2.2.1.3 Tamoxifen preparation and injections 

For an inducible regulation of Cre recombinase expression, CreER mouse models were 

used. In these mice, Cre recombinase is fused to a mutated ligand-binding domain of the 

human oestrogen receptor. Thus, Cre is expressed but unable to translocate to the 

nucleus. Cre function is dependent on hydroxytamoxifen (metabolic product of 

tamoxifen) administration.  A 20 mg/mL of tamoxifen solution was prepared by 

dissolving the tamoxifen powder in peanut oil. To promote dissolution, the mixture was 

subjected to 3 cycles of 15-minute incubations at 50C℃ followed by 15 minutes on a 

rotating wheel. To induce Cre-dependent recombination of the floxed alleles present in 

the various genotypes used, mice were intraperitoneally injected once a day (for two 

consecutive days) with 5 µL/g bodyweight of the 20 mg/mL stock solution.  

 

2.2.1.4 Hydroxytamoxifen preparation  

When local pancreatic induction of Cre recombinase fucntion was required, the 

intraperitoneal injection of tamoxifen was substituted by the intrapancreatic injection of 

4-hydroxytamoxifen (see surgery section). A 10 mg/mL solution of 4-

hydroxytamoxifen was prepared by dissolving 10 mg of 4-hydroxytamoxifen in 1 mL of 

peanut oil. Dissolution was promoted by cooled sonication of the mixture for 2 cycles 

of 30 minutes (30 s on/off cycle) using a BioRuptor water bath. Mice were subjected to 

surgery (see 2.2.1.7, page 97) and 100 µL of the 10 mg/mL 4-hydroxytamoxifen 

solution was injected directly into the tail of the pancreas. 

 

2.2.1.5 Acute pancreatitis – caerulein treatment 

To induce acute pancreatitis, mice were subjected to a short caerulein treatment. A stock 

solution of caerulein was prepared to a final concentration of 100 µg/mL by dissolving 

1 mg of caerulein in 10 mL of PBS. Working solutions were obtained by dissolving the 

stock solution to a concentration of 10 µg/mL in PBS. Mice were intraperitoneally 

injected 6 times a day, at hourly intervals, for 2 days. Per injection the caerulein dose 

was as follows: 5 µl per gram of body weight of caerulein (50 µg/kg of body weight). 
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2.2.1.6 Chronic pancreatitis – caerulein treatment 

To induce chronic pancreatitis, mice were subjected to a long caerulein treatment. A 

stock solution of caerulein was prepared to a final concentration of 100 µg/mL by 

dissolving 1 mg of caerulein in 10 mL of PBS. Working solutions were obtained by 

dissolving the stock solution to a concentration of 10 µg/mL in PBS. Mice were 

intraperitoneally injected 3 times a day, at hourly intervals, for 3 consecutive days, for 4 

weeks. Per injection the caerulein dose was as follows: 5 µl per gram of body weight of 

caerulein (50 µg/kg of body weight). 

2.2.1.7 Surgery – Intrapancreatic/ductal injection of cells/ substances 

Twenty-four hours before the surgery Rimadyl (Carprofen-based anagesis) was added 

to the water. Two mL of 50 mg/ml Rimadyl solution were added to 1 L of water. On the 

day of the surgery, mice 8 to 12 weeks of age (genotype depending on the experimental 

goal, specified in result section) were subcutaneously injected with Rimadyl 1 hour 

before surgery. For the subcutaneous injection of Rimadyl, a 1:10 dilution was prepared 

with a stock solution of 50 mg/mL. Mice were injected with 1µ of the solution per gram 

of body weight. Following anaesthesia by Isoflurane inhalation, the abdominal and 

splenic areas were shaved and their eyes protected with Lacri-lube. The shaved area was 

thoroughly cleaned with Medihex-4 (surgical scrub) and a sterile incise drape was used 

to cover the non-shaved parts. With sterile surgical scissors, a small incision was 

performed in the skin and the peritoneal wall exposed. After opening the peritoneum, 

the pancreas was located and either a tumour cells suspension in growth factor reduced 

matrigel (50 µL) or (2) 4-hydroxytamoxifen (100 µL) were injected in the pancreatic 

tail. Having concluded the procedure, the peritoneal was sutured with absorbable 

sutures and the skin closed with clips. A dose of 0.05 mg/Kg of Vetergesic was 

subcuteneosly injected immediately after surgery and the mice placed in a clean cage on 

a heating pad until recover. The next day, mice were subcutaneously injected with 

Rimadyl as before and the drinking water was supplemented Rimadyl for three days. 
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2.2.1.8 Limiting-dilution transplantation assay of cells in mouse flanks 

To assess the tumour initiating capacity of CD9High-expressing cells, epithelial tumour 

cells were obtained either from primary tumours of GEM models or from GEM tumour-

derived organoids. In both cases, tumour cells were identified by GFP expression, 

enabled by the presence of the lineage tracer R26-LSL-YFP. Following fluorescence 

activated cell sorting for CD9 expression and CD45 exclusion (pan-immune cell 

marker), serial dilutions of single GFP+CD9HighCD45- cells were prepared (200, 2000, 

20.000 and 200.000 cells) in 50 µL of growth factor-reduced matrigel and injected in 

the flank of age and gender matched NuNu immunodeficient mice. To control for 

tumour development and tumor-initiating potential of the selected population, the 

negative counterpart (GFP+, CD9LowCD45- cells) were injected in the opposite flank. 

Tumour measurements were performed twice a week and volume was calculated using 

the following equation: volume = (1/2)*length*width*height (Tomayko and Reynolds, 

1989). Tumours were collected when one of the flanks exhibited a tumour of 1cm3 in 

volume or when location of the tumour presented a health hazard.  
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2.2.2 Primary cell manipulation 

2.2.2.1 Primary pancreatic wild type and tumour cell isolation 

To isolate primary pancreatic wild type and tumour cells, a modified version the 

protocol described before (Reichert et al., 2013) was applied. The mouse was culled by 

cervical dislocation followed by exsanguination, according to the Home Office 

guidelines. The pancreas was dissected out carefully, including the tail, body and head 

of the pancreas, as well as the connection with the bile duct. The dissected pancreas was 

immediately put in 5 mL of cold G solution (see 2.1.2, page 86) and kept on ice. Under 

the primary tissue culture hood, the pancreas was placed on paraffin and mechanically 

dissociated with curved scissors. The minced pancreas was then transferred to a 50 mL 

falcon with 15 mL of collagenase V (1 mg/mL in DMEM plus 1% (v/v) 

Penicillin/Streptomycin (10,000U/mL with no FCS). Following a 20 minute incubation 

in a water bath at 37°C with gentle shaking, 15 mL of ice-cold G solution were added to 

stop the reaction. The digested pancreas was centrifuged at 300g for 5 minutes with no 

break, the supernatant discarded and then incubated in Trypsin-EDTA for 5 minutes at 

room temperature. To stop the reaction, 2 mL of Soybean Trypsin Inhibitor were added, 

followed by 15 mL of ice-cold G solution and centrifugation for 5 minutes at 300g. The 

supernatant was ressuspended in 10mL of PBS with 2% (v/v) FCS and passed through a 

70 µm filter. At this point, the isolated single cells could be used for different 

applications such as, direct culture, Dolichos biflorus agglutinin magnetic bead cell sort 

(DBA-MACS), xenograft experiments, fluorescent activated cell sorting/analysis or 

biochemical experiments (see respective sections). 

 

2.2.2.2 Dolichos biflorus agglutinin magnetic bead cell sort (DBA-MACS) 

Pancreatic ductal cells present DBA lectin in their cell surface allowing the isolation of 

these cells by magnetic bead cell sorting. In order to isolate pancreatic ductal cells, a 

modified version of the protocol described before (Reichert et al., 2013) was applied. 

Following pancreatic cell isolation, as described above, single cells were ressuspended 

in 3ml of MACS sorting buffer (0.5% BSA and 2mM EDTA in endotoxin free PBS) 

with 1:200 DBA-FITC conjugated antibody. The suspension was incubated for 10 
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minutes, at 4 ℃ in the dark, with mild shaking and then 2.8 mL of MACS sorting 

buffer were gently mixed. Following centrifugation at 300 g for 5 minutes with no 

break, the cell pellet was ressuspended in 360 µL of Sorting buffer plus 40 µL of anti-

FITC-Microbeads and incubated for 15 minutes at 4 ℃ with gentle shaking.  Cells were 

washed by adding 4 mL of MACS sorting buffer and centrifuging the suspension at 300 

g for 5 minutes with no break. After discarding the supernantant, cells were 

ressuspended in 2 mL of MACS orting buffer and kept on ice until the separation 

columns were ready for use. For primary pancreatic wild type and tumor cells DBA-

MACS, LS MACS columns were used. The preparation of columns consisted on 

placing them on a QuadroMACS separator and adding 3 mL of MACS sorting buffer. 

After the buffer had flowed through the columns by gravity, the cells suspension was 

then applied to the buffered columns. At this point the labelled cells are retained in the 

columns by magnetic forces. The columns were washed three times by adding 2 mL of 

MACS sorting buffer and allow flow by gravity. After the lst washing, the columns 

were removed from the stand and placed in collection tubes. To allow separation of the 

cells from the columns, 3 mL of MACS sorting buffer were added to the columns and 

with the plunger, flushed to the tube. At this point the isolated ductal cells were used for 

different purposes. 

 

2.2.2.3 Flow cytometry and Fluorescent activated cell sorting (FACS) 

Following primary pancreatic cell isolation as described above, cells could then be used 

for flow cytometry analysis or cell sorting. Single cells were ressuspended in endotoxin 

free PBS with 2% (v/v) FCS (FACS buffer) and then split into the different control and 

test samples (unstained, secondary antibodies alone, primary plus secondary antibodies, 

and/or conjugated primary antibody, and FMOs (fluorophore minus one, where all 

combinations of the fluorophores used, minus one, are included for specific signal 

detection purposes). Cells were pelleted into a 96-well plate (round bottom) for 3 

minutes at 300 g, the supernatant was discarded by rapidly inverting the plate, and the 

cells ressuspended in 100 µL FACS buffer with the appropriate primary antibody 

(specific dilutions were used for different antibodies, see 2.1.4, page 92). All primary 

antibodies were incubated for 30 minutes on ice. Following incubation, cells were 
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pelleted at 300 g for 3 minutes, at room temperature, and washed 3 with 100 µL of 

FACS buffer. Secondary antibody was diluted in FACS buffer and 100 µL were added 

to the cells. Incubation was performed in the dark for 30 minutes at 4℃. Cells were 

washed 3 times in FACS buffer and ressuspended in FACS buffer containing DAPI 

0.003 mM (1 µL per mL of buffer from 3mM stock). A sortings were performed in one 

of the three flowing machines: FACS ARIA fusion, FACS Aria or Influx, using the diva 

software and adjusting the flow pressure to 20psi. Flow cytometry was performed using 

Fortessa Diva and analysis was carried out using FlowJo 9 software. 

 

2.2.2.4 2D primary pancreatic ductal cell culture 

Pancreatic ductal cells were grown in 2D, on top of a rat tail type I collagen matrix, on a 

6-well plate. The matrix had to be prepared the day before, as to allow the collagen to 

set. For each well of the 6-well plate, a 1.5 mL of collagen solution were prepared by 

mixing 2.31 mg/mL of cold rat tail collagen solution with 0.0165 mL of 1M NaOH 

(1.65% (vol/vol)) and 100 µL of 10X sterile PBS (10% (vol/vol)), and toping up with 

sterile ice-cold deionized water. The solution was poured into a well of a 6-well plate 

and allowed to set O.N. in the incubator (37 ℃). The next day, and after primary 

pancreatic cell isolation and DBA-MACS (see 2.2.2.2, page 99), the isolated ductal 

cells were ressuspended in PDAC media composed of Advanced DMEM/F12 

supplemented with 1X Nu-serum, 25 µg/mL of bovine pituitary extract, 1x ITS+ premix, 

20 ng/mL of EGF, 100 ng/mL of cholera toxin, 5 nM of 3,3,5-Triiodo-L-thyronine, 1 

µM of Dexmethasone, 5 mg/mL of glucose, 1.22 mg/mL of Nicotinamide and 1x P/S. 

The media was changed every other day to maintain the culture. Both wild type and 

tumour primary pancreatic ductal cells grow very slowly in these conditions and thus, 

this methods was only used to maintain the cells for long periods of time. 

 

2.2.2.5 2D primary pancreatic ductal cell passaging 

To remove the pancreatic ductal cells from the collagen matrix, the collagen sheet was 

transferred into a 50 mL falcon tube with 10 mL of collagenase type V in DMEM (1 

mg/mL). Following 15 minutes incubation at 37℃ in a water bath, the cells were 
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pelleted at 300 g for 5 minutes at 4 ℃. The supernantant was discarded, 1 mL of 1X 

trypsin was added and a 5-minute incubation at room temperature took place. To stop 

the reaction, 2 mL of soybean trypsin inhibitor were added, followed by 25 mL of ice-

cold G solution. Cells were pelleted as before and either re-plated (see 2.2.2.4, page 

101) or used for various purposes. 

 

2.2.2.6 3D primary pancreatic ductal cell culture - organoid 

Following primary pancreatic cell isolation and, in some specified cases, DBA-MACS, 

the isolated cells were ressuspended in 100% Growth factor reduced matrigel and 

placed in a 24-well plate as 50 to 100 µL drop. The matrigel solidifies at warm 

temperatures so, to allow the formation of a matrix, the 24-well plates were then 

incubated for 15 minutes at 37 ℃. After the matrigel was set, organoid media 

composed of Advanced DMEM/F12 supplemented with 1x B27, 1.25 mM N-

Acetylcysteine, 10 nM Gastrin, 50 ng/mL EGF, 10% RSPO1-conditioned media, 10% 

NOGGIN-conditioned media, 100 ng/mL FGF10, 100 mM Nicotinamide and 1X P/S, 

was added. Cells were passaged once a week. 

 

2.2.2.7 3D primary pancreatic ductal cell passaging 

 To obtain a single cell suspension of the organoid cultures, the matrigel-embedded 

organoids were ressuspended in 15 mL of endotoxin free PBS. Organoids were pelleted 

for 5 minutes at 1500 rpm, to assure the matrigel goes to the bottom of the tube, and the 

PBS discarded. Dissociation was carried out for 10 minutes with 500 µL of 1mg/ml 

trypsin at 37 °C, and immediately inactivated with 1 mL of 1X soybean trypsin inhibitor. 

A washing step was performed with an additional 15ml of endotoxin free PBS and 

single cells were either ressuspended in matrigel for further expansion or passed by a 40 

µm cell strainer and used for downstream experiments. 
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2.2.2.8 Explant culture of mouse primary acinar cells 

It has been demonstrated that acinar cells have the ability to in vivo transdifferentiate 

into duct-like cells upon injury and in the context of pancreatitis and tumour formation. 

Recently, this phenomena was mimicked in vitro, allowing the culture of explants of 

acinar tissue which undergo ADM (Means et al., 2005). Before starting the procedure 

the cell culture plates were coated with an ice-cold rat tail collagen I solution composed 

of 5.5mL of 4.5g/mL Rat tail Collagen I solution, 550 µL of 10X Waymouth’s medium 

and 336.7 µL of 0.34N NaOH. Each well of a 6-well plate was covered with 800 µL of 

the aforementioned collagen solution and placed in the incubator until needed 

(approximately 3h). 

In order to obtain the acinar explants, the mouse of interest was culled by cervical 

dislocation followed by exsanguination, as mentioned above. With the help of sterile 

tweezers, the pancreas was dissected out, including the tail, body and head of the 

pancreas. The dissected pancreas was immediately put in 20 mL of ice-cold HBSS with 

1x P/S and kept on ice. Under the primary tissue culture hood, the pancreas was placed 

on a 1.5 mL eppendorf, minced with sharp scissors and transferred to a 50mL falcon 

tube containing 30 mL of ice-cold HBSS 1x P/S. Centrifugation at 2000rpm at 4 °C for 

2 minutes was carried to remove any floating fat or mesenteric tissue that could have 

been extracted during the pancreas dissection. After discarding the supernatant, the 

remaining pancreatic tissue was enzymatically digested in 5mL of 2 mg/mL collagenase 

P, dissolved in HBSS, in a 37°C water bath for 15 minutes with occasional shaking. The 

digestion was stopped by adding 5 mL of ice-cold HBSS supplemented with 5% FCS 

and the digestion was centrifuged for 2 min at 4 °C at 2000 rpm. Following 2 washing 

steps with 10m L ice-cold HBSS supplemented with 5% FCS, the pellet was 

ressuspended in 5mL of the same solution and filtered twice. Initially it was passed 

through a 500 µm sterile cone-mesh followed by a 105µm mesh. These filtering steps 

allow the purification of small acinar cell aggregates by removal of big cell clumps. The 

acinar cell aggregate suspension was then added, in a drop-wise manner, on top of a 

HBSS solution supplemented with 30% FBS and centrifuged at 1000rpm at 4°C for 2 

minutes. This density-based separation step allows the elimination of any acinar or duct 

single cells that could contaminate and compromise the explant culture. The pellet was 

ressuspended in Waymouths complete medium and either used immediately for culture 



Chapter 2 Materials and Methods 

 

 104 

or Ad-CMV-Cre infected and then embedded. Acinar aggregates were embedded in 

collagen by mixing equal volumes of the cell suspension and collagen solution (700 µL 

10x Waymouth’s medium supplemented). The mixture was added to the pre-coated 

plates (2 mL of embedding suspension per well of a 6-well plate), the plates were 

carefully placed at 37°C in the incubator for the collagen to set for 1 hour and 3 mL of 

Waymouth’s media were added. Cultures were followed under the microscope, the 

media was changed every two days and duct structures harvested after 7 days of culture. 

 

2.2.2.9 Harvest of acinar explant-derived duct structures 

As mentioned above, culturing KRasG12D mutation-harbouring acinar explants under 

the above conditions induces the formation of ring structures composed of pancreatic 

duct-like cells. The structures take an average of 7 days to form and, once formed, they 

can be harvested for further culture or downstream biochemical applications. To harvest 

the cells, the media was aspirated and the collagen sheet was placed in a 15mL tube 

with 5mL of 1mg/mL collagenase P solution in HBSS. Following a 15 minute 

incubation at 37°C in a water bath, the digestion solution was centrifuged at 2000rpm 

for 5 minutes at 4°C. The cell pellet was washed once with ice-cold PBS and cells 

ressuspended in appropriate buffer or media, depending on the downstream application. 

 

2.2.2.10 Adeno virus transduction 

To induce in vitro Cre recombinase-mediated excision of loxP site, cells harbouring 

alleles flanked by loxP sequences (e.g. LSL-KRasG12D) were transduced with Adeno-

CMV-Cre-GFP virus. This procedure was performed in duct-derived organoids and 

acinar cells aggregates harbouring the following alleles: p53F/F; KRasLSL-G12D/wt; R26-

LSL-YFP. For ductal cell infection, duct-derived organoids were dissociated into single 

cells (see 2.2.2.7, page 102), the single cell suspension was incubated with 0.375 µl of 

either Adeno-Cre-GFP or Adeno-GFP (Gene Transfer Vector Core) in 1.5ml of 

organoid media for 1hour at 37°C. Following transduction, cells were pelleted, 

ressuspended in matrigel and a drop of 25 µl was placed in the center of each well of a 

24-well plate. A 15 minute incubation at 37°C was carried out to set the matrigel and 
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500 µl of organoid media were added with the same amount of fresh Ad-CMV-Cre-GFP 

virus. Acinar cell aggregates were infected immediately after their isolation from 

primary tissue, as described for ductal cells. Following transduction, the cell suspension 

was mixed in a 1:1 ratio with collagen solution (as described for expant culture), placed 

on top of rat tail collagen I pre-coated plates and allowed to set for 1h at 37°C before 

adding Waymouth’s media. In both cases, media was changed 24h later. Infection 

efficiency was estimated by quantifying the percentage of GFP expressing cells, and the 

efficiency of recombination assessed by DNA isolation and genotyping for the floxed 

and delta alleles. All infection steps were carried out in a Category II Containment Suite 

 

2.2.2.11 In vitro self-renewal assessment – organoid formation 

Assessment of in vitro self renewal ability was performed as described in (Huch et al., 

2013). Pancreatic duct cells were either isolated from primary tumours by DBA MACS. 

Isolated cells were incubated with CD9 primary antibody (1:500) for 30 minutes on ice. 

Following 3 washes with ice-cold PBS with 2% FCS, a 30 minute incubation with a 

secondary antibody (1:2000) was performed on ice and in the dark. Cells were washed 

three times with PBS with 2% FCS, passed through a 40 µm cell strainer and DAPI was 

added (1:1000) from a stock solution of 3 mM. Fluorescence activated cell sorting 

allowed the separation between the CD9High and CD9Low populations. One hundred cells 

of each population was sorted directly into wells of a pre-cooled 96-well plate 

(100cells/well) containing 20 µL of ice-cold matrigel. Or 1000 cells were plated into 

single wells of a 24-well plate. Following sorting, the matrigel was allowed to set at 

37°C for 15 minutes and organoid media was added. Organoids were counted and 

measured using ImageJ 10 days later.  
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2.2.3 Cellular and molecular biology 

2.2.3.1 Histology - Tissue processing 

For histological studies, tissues were collected from recently sacrificed mice and placed 

in 10% neutral buffered formalin (NBF) solution overnight (approximately 16h) for 

protein cross-linking and consequent tissue fixation. The next day, the NBF solution 

was replaced by 70% ethanol. The fixed and dehydrated tissue was paraffin embedded 

sectioned in 3 or 4 µm paraffin sections, for pancreas or tumour analysis, respectively, 

using a manual microtome (RM2235 Leica) and placed in a 37°C water bath to unfurl. 

Sections were mounted on Superfrost Ultra Plus charged slides (Menzel-Glaeser) and 

incubated in the oven for 15 minutes to increase adherence. 

 

2.2.3.2 Hematoxylin and eosin (H&E) stain 

Histological enquiry based on tissue morphological features was carried out by analysis 

of hematoxylin and eosin stains. This procedure takes advantage of the affinity of 

certain compounds for particular cellular structures. Hematoxylin is a dark blue 

coloured basic compound that binds acidic or basophilic structures, namely nucleic 

acids, giving the nucleus a blue colour. Eosin is a pink compound that binds basic or 

eosinophilic structures, namely proteins, staining the cytoplasm and membranes pink. 

To perform the stain, 3 or 4 µm paraffin section sections, for pancreas and tumours, 

respectively, were obtained and de-waxed in xylene two times for 10 minutes. Re-

hydration was carried out by incubations in water solutions with decreasing ethanol 

concentration: 2x in 100% ethanol for 3 minutes, 1x in 95% (v/v) ethanol for 3 minutes, 

1x in 80% (v/v) ethanol for 3 minutes, 1x in 50% (v/v) ethanol for 3 minutes and 1x in 

running water for 5 minutes. Nuclear staining was performed by incubating the 

hydrated sections in Harri’s hematoxylin solution for 5 minutes and washed in running 

tap water for 5 minutes. Differentiation was performed for 5 seconds in 1% (v/v) acid 

alcohol (1% HCL in 70% alcohol) and sections were washed in running tap water for 5 

minutes. Cytoplasm staining was accomplished by incubation of the section in 1% (w/v) 

eosin Y and final washing in running tap water for 5 minutes.  Before mounting, the 

section were dehydrated through graded alcohols: 2x in 70% (v/v) ethanol for 3 minutes, 
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and 2x in 00% ethanol for another 3 minutes. At the final step sections were cleared 

twice in xylene for 3 minutes and mounted with DPX mounting medium (Raymond A. 

Lamb). All H&E stains were performed by the experimental histopathology facility. 

 

2.2.3.3 Histological analysis 

Histological analysis, the identification of tumour progression and the classification of 

mPDAC from different GEM models was performed with the help of London Research 

Institute’s experienced consultant histopathologist Professor Gordon Stamp. 

 

2.2.3.4 Immunohistochemistry 

For protein detection in the embedded tissues, thin sections were obtained and re-

hydrated as performed for H&E stains. Antigen retrieval was performed to expose the 

masked epitopes and different antibodies required different antigen retrievals (see 2.1.4, 

page 92). The most common antigen retrieval performed was a heat-based treatment 

with 10 mM Sodium citrate buffer pH 6.2. In sum, dissolving 2.94 g of sodium citrate in 

water and adjusting the pH with HCl to 6.2 performed a 1L 10 mM of sodium citrate 

solution. Sections were submerged in this solution and microwaved for 10 minutes at 

full power, avoiding boiling. Following the heat treatment, section were placed in a sink, 

under a barely running tap for 5 minutes to both cool and dilute the buffer solution to 

prevent salt crystallisation. Slides were washed with PBS and the endogenous 

peroxidase was blocked by a 10-minute treatment in 1.6% (v/v) solution of hydrogen 

peroxide in PBS (13.3mL of 30% (v/v) H2O2 in 250 mL final volume of PBS) 

terminated by a 5-minute incubation in dH2O. To stain the slides, the excess fluid was 

carefully wiped from the slide and a barrier around the tissue section was drawn using a 

hydrophobic pen. Section were first blocked for 45 minutes with a blocking solution 

composed of PBS supplemented with 10% (v/v) donkey serum, 1% BSA (w/v), 0.4% 

(v/v) Triton X-100 and then incubated either overnight at 4°C or 1h at room temperature 

with the primary antibody diluted in the blocking solution. Slides were kept in a humid 

chamber until the end of the incubation. Following primary antibody incubation, the 

appropriate secondary antibody conjugated with biotin was used. The secondary 
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antibody dilution depended on the antibody used (see 2.1.4, page 92), antibodies were 

diluted in the blocking solution and incubated, at room temperature for 45 minutes. 

Before the end of the secondary antibody incubation, the Avidin-Biotin Complex 

(ABC) solution was prepared by adding 9 µL of reagent A and B from the 

VECTASTAIN ABC kit to 1mL of PBS. The sections were incubated with ABC 

solution for 30 minutes in a humid chamber, at room temperature, and then washed 3 

times for 3 minutes in PBS. For developing the staining, the Peroxidase substrate kit 

DAB from Vector was used. This last step was performed under a microscope to closely 

monitor the signal strength. The DAB solution was performed as instructed by the kit. 

Two drops of Buffer solution were added to 5mL of distilled water. The solution was 

mixed and 4 drops of DAB substrate solution were added. After mixing, 2 drops of 

provided hydrogen peroxide solution were added and the DAB solution was mixed 

again. DAB solution was applied to the washed slides, the signal monitored and the 

reaction stopped my immersing the slides in distilled water. To counterstain the nuclei a 

light hematoxylin protocol was followed. Slides were immersed in hematoxylin (120mL 

Mayer’s Hematoxylin and 80mL of dH2O) for 1 minute and then washed with tap water 

for 5 minutes. Lastly, the slides were dehydrated through incubations in 70% and 100% 

IMs, cleared in xylene and mounted with DPX.  

 

2.2.3.5 Immunofluorescence 

For immunofluorescence analysis, thin sections were obtained and re-hydrated as 

performed for H&E stains. Antigen retrieval was performed to expose the masked 

epitopes and different antibodies required different antigen retrievals (see 2.1.4, page 

92). Following antigen retrieval (as described for immunohistochemistry), the sections 

were washed with PBS a barrier was drawn around the tissue section using a 

hydrophobic pen. Section were first blocked for 45 minutes with a blocking solution 

composed of PBS supplemented with 10% (v/v) serum of the species of the secondary 

antibody to use, 1% BSA (w/v), 0.4% (v/v) Triton X-100 and then incubated either 

overnight at 4°C with the primary antibody diluted in the blocking solution. Slides were 

kept in a humid chamber until the end of the incubation. Following primary antibody 

incubation, the appropriate secondary antibody conjugated with the fluorophore of 
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interest was used. The secondary antibody dilution depended on the antibody used (see 

2.1.4, page 92), antibodies were diluted in the blocking solution together with DAPI 

(0.003 mM) for DNA stain, and incubated, at room temperature for 2 hours. Following 

incubation with the secondary slides were washed 3 times for 5 minutes in PBS and 

incubated in 0.1 % (w/v) Sudan Black B in 70% (v/v) ethanol to reduce 

autofluorescence. Slides were washed 3 times in PBS for 5 minutes, mounted with 

DAKO mounting media and kept in the dark until imaging. 

 

2.2.3.6 Alcian Blue and Periodic acid-Schiff stain  

To detect mucinous structures in pre-neoplastic lesion of PDAC the alcian blue and 

periodic acid-schiff stain was performed for being extensively used to detect these 

lesions. Alcian blue (AB) is a polyvalent basic dye that stains acidic polysaccharides 

and mucopolysaccharides. Tissues that stain positive for this dye are called 

alcianophilic and acquire a dark blue colour. The Periodic acid-Schiff (PAS) stain 

detects polysaccharides and mucosubstances. Tissues that stain positive for this method 

acquire a purple/magenta colour. The AB/PAS stain is a combination of both methods 

where AB is performed first. It is important to bear in mind that acid mucin that are also 

PAS-positive will not stain for PAS after the AB stain is performed.  

To perform the stain in paraffin section, the paraffin was first removed by xylene 

treatment twice for 5 minutes. The tissue was incubated in 100% IMS for 3 minutes 

twice and incubated once in 70% IMS for 3 minutes. After washing in tap water, the 

slides were incubated for 5 minutes in alcian blue solution (1% (w/v) Alcian blue – 1 g 

in 100 ml of 3%(v/v) acetic acid). Slides were then washed intensively in tap water and 

then distilled water before the performing the PAS satin. Following washes, slides were 

incubated in 1% (w/v) periodic acid in distilled water for 5 minutes and washed again in 

distilled water. The Schiff reagents was obtained from Fisher and the tissue was 

incubated in the solution for 15 minutes with a follow up washing step of 10 minutes in 

running tap water. The nuclei were counterstained with Mayers hematoxylin for 1 

minute. The stain was differentiated in 1% acid alcohol for a few second (arbitrary time, 

dependent on monitoring) and washed in tap water for 5 minutes. For mounting, the 
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tissue was dehydrated in ethanol and cleared in xylene as mentioned before (see 2.2.3.2, 

page 106), and slides were mounted with coverslips using DPX mounting medium.  

 

2.2.3.7 DNA isolation from tissue for genotyping 

For genotyping, murine tissue fragments (ear or tail snips) were incubated in 100 µL of 

DirectPCR Lysis Reagent (Viagen) supplemented with 3 µL of Proteinase K (10mg/mL, 

Melford) overnight at 56 °C in a shaking platform. The next day, the enzyme was 

inactivated by a 45-minute incubation at 85 °C. Samples were vortexed and centrifuged 

at full speed for 15 minutes (eppendorf Centrifuge 5415 D). For genotyping purposes, 2 

µL of extracted DNA solution were used for PCR. DNA solution was kept at -20 °C. 

 

2.2.3.8 DNA isolation from tissue embedded in paraffin blocks for genotyping 

To extract DNA from tissue embedded in paraffin block, sections 10-20 10 µm section 

were obtained in one eppendorf tube. Paraffin was removed by adding 1 mL xylene and 

incubating the tube at 55°C for 15 minutes.  Following incubation the samples were 

centrifuged and the supernatant discarded. A second xylene incubation was performed 

to ensure complete removal. Before the next step, tubes were opened to release pressure. 

Following xylene incubations and, 1 mL of 100% ethanol was added to the pellet and 

the samples were incubated for 15 minutes. Tubes were centrifuged, the supernatant 

discarded and an additional ethanol washing step was performed. Following 

centrifugation, the supernatant was carefully discarded and the tubes were left opened to 

allow the pellet to air dry. One mL of Proteinase K (final concentration of 0.5 mg/mL) 

in digestion buffer (100nM NaCl, 10mN Tris-HCl pH8, 25mM EDTA pH8 and 0.5% 

SDS) was added to the dry pellet and the samples were incubated overnight at 55°C. 

The next morning DNA precipitation was performed. An equal volume of 

phenol/chloroform/isoamyl alcohol (Ameresco) was added to the digestion solution. 

The tubes were centrifuged for 2 minutes and the upper aqueous phase was collected to 

a new tube. The previous step was repeated. Following removal of the aqueous phase, 

330 µL were removed to a new tube and ammonium acetate (7.5M) was added (1/2 of 

the original volume). Additionally, 2.5 times the volume were added of 100% ethanol. 
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The solution was incubated at -20°C overnight. The next morning, the solution was 

centrifuged for 20 minutes at 4 °C at maximum speed (eppendorf Centrifuge 5415 D), 

the ethanol was decanted and the pellet was allowed to air dry. The dry pelleted was 

eluted in 20 µL of TE buffer overnight at 4°C. For genotyping, 200 to 500 µg/mL of 

DNA were used. 

 

2.2.3.9 Polymerase Chain Reaction (PCR) 

After DNA isolation, genotyping PCR was performed using approximately 2 µL of the 

isolated DNA. 

A mixture of 20 µL of final volume was prepared containing the following components: 

1x Coral Load PCR Buffer   2 µL (10X stock) 

1x Solution Q (DMSO based)   4 µL (5X stock) 

dNTPs (0.25 mM)     0.2 µL (25mM stock) 

Forward primer (1 µM)   0.2 µL (100 µM stock) 

Reverse primer (1 µM)   0.2 µL (100 µM stock) 

Taq-polymerase (0.2 U)   0.2 µL (5 U/µL stock) 

ddH2O      11.2 µL 

DNA      2 µL 

 

 The list of primers can be found in Table 6 (page 90). PCR program below: 

(1) Initial denaturation:  94 °C for 3 minutes 

(2) Denaturation within cycle: 94 °C for 30 seconds 

(3) Annealing:    55 °C for 45 seconds 

(4) Extension within cycle:  72 °C for 45 seconds 

(5) Repeat 2, 3 and 4 34 times (35 cycles total) 

(6) Final extension:   72 °C for 10 minutes 

 

 



Chapter 2 Materials and Methods 

 

 112 

2.2.3.10 Agarose gel electrophoresis  

PCR products for Fbw7, Rosa26-LSL-YFP, Cre, p53, Rosa-CAG-Tomato and Pten were 

separated on a 1.5% (w/v) agarose (Bioline) gel. The KRasLSL-G12D PCR product was 

separated using a 3% (w/v) agarose gel. The gel was prepared diluting the appropriate 

amount of agarose in 1X TAE and dissolving by heat treatment. Following cooling 

down of the solution, ethidium bromide (10 mg/mL, Sigma-Aldrich) was added (1 µL 

per 100 mL of gel solution). The PCR producr was loaded in totality and the gel was 

subjected to 120 V until a clear separation was observed. To determine band size, 10 µL 

of 1 Kb DNA Ladder (Invitrogen) was loaded in parallel.  

 

2.2.3.11 RNA isolation 

For large amounts of material RNA extraction was performed using the RNeasy Mini- 

or RNeasy Midi-kit (QIAGEN) according to the manufacturer’s instructions. Cells were 

obtained from cultured condition or from primary tissue and lysed by physical rupture 

using an 18-gauge needle (BD) and passing the material through it several times. On-

Column DNase digestion was performed using the RNase-Free DNase Set (QIAGEN). 

RNA concentrations and quality were measured using the NanoDrop spectrophotometer 

(Thermo Scientific. The ratio of OD260/OD280 between 1.8 and 2.0 were considered as 

indicative of a non-contaminated RNA sample. RNA was immediately used for cDNA 

synthesis or stored at -80 °C. 

 

For small amounts of tissue, such as RNA extraction after cell sorting of primary 

tumours for microarray purposes (1-50x103 cells), the MagMAXTM-96 Total RNA 

Isolation Kit (Ambion) was used. This protocol is a bead based isolation where 

nucleotide-binding beads bind to both DNA and RNA, thus, DNase treatment is 

essential. RNA extraction was performed according to the manufacturer’s instructions. 

All solutions are provided. Final RNa elution was performed with 20 µL of Elution 

buffer and the quality and concentrations were analysed using a Bioanalyser using Nano 

or Pico chips (Agillent Technologies). 
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2.2.3.12 cDNA synthesis 

RNA amounts were standardised using RNase-free water and cDNA suntehsis was 

performed using the Superscript III First-Strand cDNA synthesis kit (Invitrogen). 

Random hexamer primers were used (Invitrogen). For each sample, 500 ng of RNA 

were used as a template for cDNA synthesis. 

The cDNa synthesis mix was composed of (Kit components): 

Hexamer primers:   4 µL 

5X RT Buffer    8 µL 

Protector RNase inhibitor  1 µL 

dNTPs     4 µL 

Reverse transcriptase enzyme  1 µL 

RNA     500 ng 

DEPC water    (up to 40µ) 

 

Tubes were placed in 25°C for 10 minutes, followed by one hour at 50°C and 5 minutes 

at 85°C. The synthesised cDNA was diluted 1:10 with DEPC water and stored at -20°C 

for downstream applications.  

 

2.2.3.13 Quantitative real-time PCR 

For quantitative real-time (Q-PCR) analysis, cDNa was diluted 1:10 in DEPC-treated 

ddH2O. 4 µL of diluted cDNA were used per Q-PCR reaction, which was conducted in 

triplicates. Q-PCR was performed measuring Express SYBER®GreenER on an 

ABI7500 (Applied Biosystems). Data were analysed using the SDS software (Applied 

Biosystems). Primers were designed using the Universal ProbeLibrary Assay Design 

Center from Roche, avoiding intronic regions. Normalization was performed against 

values of Polimerase II, Actin and Tubulin. 

List of Q-PCR primers can be found in Table 7 (page 91). 

To exclude primer dimer and unspecific amplification, a “no template control was 

included” and dissociation and standing curves were performed. To retrieve Ct values, 

the threshold was set within the exponential phase of the amplification plots.  
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Components of each reaction: 

Express Syber®GreenER    10 µL 

Primer mix (Forward and reverse 5 µM each) 2 µL 

cDNA       4 µL 

DEPC water      5 µL 

 

2.2.3.14 Statistical analysis 

Statistical analysis dependen on the experiment performed. Since, in most experiments, 

the number of biological and technical replicates did not exceed 20, the Student’s t-test 

(which assumes normal distribution of samples) could not be used. Thus, un-parametric 

tests (does not assume normal distribution, distribution is unknown) were used. For 

paired samples (normalized to each other) the Wilcoxon paired test was used. For 

unpaired samples (most of the experiments performed), the Mann Whitney U-test was 

used. Data was presented as mean +/- standard deviation (S.D.). P ≦ 0.05 was 

considered statistically significant. The exact value of significance are represent for 

each experiment. 
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Chapter 3. Results 

3.1 Pancreatic ductal adenocarcinoma can originate from either 

acinar or duct cells. Acinar and duct-derived PDAC have 

different progression models. 

3.1.1 Introduction to the aim 

Pancreatic ductal adenocarcinoma (PDAC) constitutes the most common type of 

pancreatic neoplasias and carries an alarmingly low prognosis (Ryan et al., 2014). Due 

to the non-specific nature of its symptoms, PDAC is detected at late stages of tumour 

development when the presence of metastases and the tumour burden reduce the 

possibility of resection (Ryan et al., 2014). Therefore, improvement of current 

therapeutic strategies relies on a better understanding of both the molecular and cellular 

biology of the initial tumourigenic events, when disease is still manageable.  

Knowledge gained from clinical observations, and genetically engineered mouse 

(GEM) models, have greatly contributed to the proposal of a step-wise progression 

model, where sequential genetic alterations correlate with morphologic abnormalities 

(Hruban et al., 2000a). However, there is still much to be discovered regarding 

molecular players and cellular origins. 

FBW7, the substrate recognition component of an SCF-type E3 ubiquitin ligase, has 

been described as a potent tumour suppressor in several organs (Welcker and Clurman, 

2008). Its importance in the gastrointestinal tract was highlighted by Rocio Sancho, a 

postdoctoral fellow in our group, who described Fbw7 as a haploinsufficient tumour 

suppressor that regulates intestinal tumourigenesis (Sancho et al., 2010). Additional 

work unveiled the potential role of Fbw7 in pancreatic tumourigenesis as its deletion in 

the mouse embryonic pancreas induced pancreatic hyperplasia (Sancho et al., 2014). 

While Fbw7 mutations had been identified in some human pancreatic tumours (Calhoun 

et al., 2003), no in depth studies had been conducted on the role of this protein in PDAC 

development and progression. Therefore, the obvious need for further assessment led 

Rocio Sancho to address the tumour suppressive role of Fbw7 in the pancreas using 

genetically engineered mouse models. 
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The most commonly used GEM to study PDAC biology has been developed by Dr 

David Tuveson’s laboratory, which promotes the induction of an activating mutation 

(G12D) in the endogenous PDAC driver gene - KRas (KRasLSL-G12D/wt ). In the model 

described by Hingorani and co-workers, the KRasLSL-G12D/wt mutation was induced in 

pancreatic progenitor cells, by means of a Pdx1-Cre (see 1.5.1, page 68), leading to the 

recapitulation of the human disease. The KRasLSL-G12D/wt; Pdx1-Cre animals initially 

developed low-grade murine pancreatic intraepithelial neoplastic lesions (mPanIN1-2), 

which later progressed to high-grade mPanIN3 lesions and PDAC (Hingorani et al., 

2003). 

By crossing Fbw7F/F mice (where exon 5 is flanked by loxP sites, allowing its removal 

after Cre expression and consequent formation of a truncated and non functional protein 

(Jandke et al., 2011)), with the previously described KRasLSL-G12D/wt; Pdx1-Cre mouse 

model, Rocio Sancho observed a drastic acceleration of PDAC development, 

confirming Fbw7 as a tumour suppressor in the embryonic pancreas. Moreover, before 

the start of my project, to study the role of Fbw7 in the adult pancreas, Rocio Sancho 

took advantage of an inducible Cre model that targets the exocrine pancreas, mainly 

ductal cells (Ck19-CreER) and could verify that, also in the adult organ, Fbw7 deletion 

with concomitant oncogenic KRasG12D activation led to PDAC onset (all mouse models 

will be explained in detail in the sections below). 

Thus, I aimed to follow up on Rocio Sancho’s observations and assess and characterize 

the effect of Fbw7 deletion in KRasG12D-induced mPDAC derived from embryonic and 

adult pancreas.  
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3.1.2 Fbw7 embryonic deletion drastically accelerates KRasG12D-induced murine 

PDAC development 

To interrogate the effect of Fbw7 deletion in the KRasG12D-induced embryonic murine 

PDAC model, I obtained, from Rocio Sancho, KRasLSL-G12D/wt; Pdx1-Cre mice, 

hereinafter referred to as KPdx1-Cre, and the Fbw7F/F; KRasLSL-G12D/wt; Pdx1-Cre, 

hereinafter F7KPdx1-Cre mice. 

As mentioned above, and as it has been described (Hingorani et al., 2003), the KPdx1-

Cre mice present an activating mutation in the KRas locus, leading to the constitutive 

activation of the Ras pathway. This mutation is inactive in the absence of Cre due to the 

presence of a lox-STOP-lox (LSL) cassette before the inserted mutated sequence. Upon 

Cre expression, the loxP sites recombine and the STOP cassette is excised, allowing 

KRasG12D expression. In this model, Cre expression is driven by the Pdx1 promoter. 

Pdx1 is a transcription factor expressed during pancreatic embryonic development 

(from embryonic day 8.5) and thus, recombination of the STOP cassette occurs in 

pancreatic progenitors, being present in all pancreatic differentiated cells of the adult 

mouse (Figure 16a) 

The F7KPdx1-Cre model also induces KRasG12D expression in pancreatic progenitors. 

However, this model presents and additional genetic alteration in the Fbw7 gene. Exon 

5 on both copies of Fbw7 harbours loxP sites, flanking the region. Upon Cre expression, 

exon 5 is excised resulting in a non-functional truncated protein (Jandke et al., 2011) 

(Figure 16a). The deletion of the protein Fbw7 in the F7Pdx1-Cre model has been 

assessed before and demonstrated to be efficient (Sancho et al., 2014).  

 

Simultaneous Fbw7 deletion and constitutive oncogenic KRas activation markedly 

decreased the survival of F7KPdx1-Cre mice compared to KPdx1-Cre, with a median 

survival of approximately 30 days (Figure 16b). F7KPdx1-cre mice were euthanized 

due to weight loss and growth retardation (data not shown), with visible swelling of the 

abdomen. Autopsies and histological analysis of 4-week-old F7KPdx1-Cre mice 

revealed the presence of a hyperplastic ductal epithelium with papillary architecture, 

sometimes cribriform, resembling the KPdx1-Cre model at 20 weeks of age. A strong 

stromal expansion (desmoplasia), characteristic of pancreatic tumours, was also 

observed (Figure 16c).  
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Human PDAC, marked by accentuated expression of the duct cell marker CK19, is 

known to be deregulated in several key signalling pathways, such as the RAS and 

NOTCH pathways (Hingorani et al., 2003, Hezel, 2006). In order to address the 

molecular profile of the generated murine tumours, I performed immunohistochemical 

analysis on murine PDAC (mPDAC) from KPdx1-Cre and F7KPdx1-Cre for Notch 

downstream effector, Hes1, for phosphorylated Erk (pERK, downstream effector of 

Ras) and for CK19. Analyses revealed that mPDAC from both KPdx1-Cre and 

F7KPdx1-Cre mice expressed CK19 (Figure 16d, first row). I additionally observed 

high levels of nuclear Hes1, indicating an increase in Notch signalling, and 

phosphorylated Erk (pERK), indicative of active KRas signalling (Figure 16d, second 

and third rows) in both models when compared with wild type controls (Pdx1-Cre). 

Interestingly, the increase in Hes1 protein levels seemed to be more pronounced in 

F7KPdx1-Cre mPDAC mice when compared to KPdx1-Cre-derived PDAC (Figure 

16d). 

Results obtained with the KPdx1-Cre model confirmed previously published data 

(Hingorani et al., 2003). Additionally, these results demonstrate that mPDAC generated 

by the F7KPdx1-Cre model resembles, on a morphological and molecular level the 

mPDAC in the KPdx1-Cre model.  Therefore, Fbw7 deletion with concomitant KRas 

oncogenic activation does not change the tumour type but accelerates mPDAC 

formation of the commonly used KPdx1-Cre model. 
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Figure 16 - Fbw7 embryonic deletion drastically accelerates KRasG12D-induced mPDAC 

development 

a) Schematic representation of the KPdx1-Cre (KRasLSL-G12D/wt; Pdx1-Cre) and the 
F7KPdx1-Cre (Fbw7F/F; KRasLSL-G12D/wt; Pdx1-Cre) mouse models. Scheme shows Cre 
expression driven by the Pdx1 promoter. Fbw7 wild type gene or with loxP sites (black 
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triangles) flanking exon 5, and KRas gene with a STOP cassette, flanked by loxP sites, 
preceding the mutation (asterisk) in exon 1. b) Survival analysis. Kaplan-Meier curve, 
generated by Rocio Sancho, with 19 KPdx1-Cre mice (red) and 12 F7KPdx1-Cre mice 
(blue). Mice were euthanized upon observation of deteriorating health conditions within 
the project license limits. c) Hematoxylin (nuclear) and eosin (cytoplasmic) (H&E) stain 
of mPDAC of a 20-week-old KPdx1-Cre mouse and a 4-week-old F7KPdx1-Cre 
mouse. d) Immuno-histological analysis of Cytokeratin 19 (CK19), Hes1 and 
phosphorylated ERK (pERK) of Pdx1-Cre (wild type control) pancreas and KPdx1-Cre 
and FKPdx1-Cre derived mPDAC. 
All scale bars represent 100µm.  
  

(Figure 16, legend continued) 
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3.1.3 The F7KPdx1-Cre model encompasses an initial ductal transformation 

step, preceding classic signs of mPDAC oncogenesis 

While human PDAC clinical observations have suggested a ductal origin for this 

disease, mouse model approaches have described acinar cells to be the origin of 

mPDAC. It has been proposed that, upon oncogenic hits, acinar cells transdifferentiate 

into ductal cells (Acinar to ductal metaplasia - ADM) expressing the marker CK19, 

which progress to PanIN (low-grade to high-grade) and PDAC (Zhu et al., 2007, Shi et 

al., 2012, Guerra et al., 2007). Since the Pdx1-Cre mouse line induces Cre-dependent 

recombination in both acinar and ducal compartments, I wanted to further characterize 

our model by analysing early time points of tumour development and describe the initial 

alterations of both compartments (Figure 17). Since, during the first weeks after birth, 

the mouse pancreas sill undergoes considerable morphologic alterations (Shih et al., 

2013) (1.1.1, page 21), I included a time point analysis of the Pdx1-Cre wild type 

control mice, to better distinguish the oncogene-related morphological alterations from 

the ones derived from normal pancreatic development. Therefore, Pdx1-Cre and 

F7KPdx1-Cre mice were euthanized at postnatal days 0 (P0), 3 (P3) and 7 (P7) (Figure 

17a,b). 

Time point analysis of control mice (Pdx1-Cre) demonstrated that at P0, the pancreas 

already contained all differentiated cells, acinar cells, ductal cells and clusters of 

endocrine cells, however lobule organization was still not obvious (Figure 17a1). Ductal 

cells in newborn pancreas did not show frequent mitotic figures (not quantified) (Figure 

17a4) and expressed CK19 (Figure 17a7), while acinar cells were negative for this 

cytokeratin marker (Figure 17a10). Three days after birth (P3), lobules became evident, 

ductal cells exhibited a clear cuboidal morphology in a flat epithelium and expressed 

CK19, however, acini still presented an immature morphology with no clear CK19 

expression (Figure 17a2,5,8,11). One week (7 days) after birth the topological 

organization of the pancreas resembled that of the adult organ (Figure 17a3,6,9,12). 

It is described that the KRas oncogenic activation, in the embryonic pancreas, allows a 

normal pancreatic development and initial transformation events are only, and rarely, 

detected 2 weeks after birth (Hingorani et al., 2003). I confirmed that Fbw7 deletion 

greatly accelerates KRasG12D-initiated tumour development, as 7 days after birth CK19-

expressing PDAC is already evident, presenting multifocal ductal structures with 
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papillary architecture, pseudo-stratified epithelium, loss of cell polarity, and 

desmoplasia (Figure 17b3,6,9). 

Interestingly, Fbw7 deletion on top of KRas oncogenic activation appeared to have little 

impact on pancreatic organo- and morphogenesis, as pancreata of new-born (P0) 

F7KPdx1-Cre mice (Figure 17b1) were shown to possess a roughly similar cellular 

composition and topological architecture to that observed in Pdx1-Cre control mice 

(Figure 17a1), with the main difference being observed in the ductal compartment 

(described below). Careful analyses of different time points revealed an increase in the 

number and type of atypical ductal structures in the F7KPdx1-Cre compared with Pdx1-

Cre. At P0, ducts of F7KPdx1-Cre mice were already crowded, with obvious and 

frequent mitotic figures (Figure 17b4). At P3, ductal cells did not resemble the ones 

observed in the control. F7KPdx1-Cre ductal cells, at P3, became enlarged with 

expansion of the cytoplasm towards the duct lumen and increased nuclear size (not 

measured) (Figure 17b25). Surprisingly, similar to control mice (Figure 17a10,11) 

acinar cells  from F7KPdx1-Cre mice, at P0 and P3, did not show any obvious CK19 

expression (Figure 17b10,11) suggesting that transformation of the ducts preceded 

acinar to ductal metaplasia (ADM). 
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Figure 17 - The F7KPdx1-cre model encompasses an initial ductal transformation step 

that precedes ADM 

Time-course analysis of normal pancreatic and PDAC development in the Pdx1-Cre and 
F7KPdx1-Cre mouse models. Animals were culled at postnatal day (P) 0, 3 and 7. 
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a 1-11 show the respective wild type controls (Pdx1-Cre) for b 1-11 (F7KPdx1-Cre). 
a) Time point histological analysis of pancreas of the Pdx1-Cre mouse model at P0, P3 
and P7. 1-3) H&E low magnification of pancreas of 1 - P0, 2 - P3 and 3 - P7. 4-6) H&E 
high magnification of pancreas of 4 - P0, 5 - P3 and 6 - P7. High magnification of 
nuclei in P0 demonstrates absence of mitotic figures in ductal cells. 7-9) Ck19 
immunohistochemical analysis of ductal cells of 7 - P0, 8 - P3 and 9 - P7. 10-12) CK19 
immunohistochemical analysis of acinar cells of 10 - P0, 11 - P3 and 12 - P7. 
b) Time point histological analysis of pancreas of the F7KPdx1-Cre mouse model at P0, 
P3 and P7. 1-3) H&E low magnification of pancreas of 1 - P0, 2 - P3 and 3 - P7. 4-6) 
H&E high magnification of pancreas of 4 - P0, 5 - P3 and 6 - P7. High magnification of 
nuclei in P0 demonstrates presence of mitotic figures in ductal cells. White arrows show 
mitotic figure. Black arrow shows loss of polarity (nuclear orientation) 7-9) Ck19 
immunohistochemical analysis of ductal cells of 7 - P0, 8 - P3 and 9 - P7. 10-11) Ck19 
immunohistochemical analysis of acinar cells of 10 - P0 and 11 - P3.  
For each time point two litters, each comprising of more than 3 Pdx1-Cre animals and at 
least two F7KPdx1-Cre, were used for histological analysis. 
Scale bars in a1-3 and b1-3 represent 100 µm.  Scale bars in a4-12 and b4-11 represent 
50 µm.  
  

(Figure 17, legend continued) 
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ADM is described as the initial step towards tumour formation from mutated acinar 

cells. However, ADM is also observed in wild type acinar cells, in response to 

inflammatory cues, with no progression to PDAC (Liou et al., 2013). Hence, ADM can 

be both a pre-neoplastic entity and a response to injury. Thus, it is still not clear if ADM 

is a compulsory lesion for PDAC formation. For this reason, I wondered if the observed 

ductal transformation also preceded the classical pre-neoplastic mPDAC lesions, 

mPanINs, described to be the progeny of the PDAC-initiating ADM. It has been 

described that mPanINs are classified from low (PanIN1) to high-grade (PanIN3) 

according to their cellular dysplasia and marker signature (see 1.4.4, page 59) (Hruban 

et al., 2000a, Hruban et al., 2001). Human PanINs are mucinous structures and have 

been shown to be identified by alcian blue (AB) or periodic acid-schiff (PAS) stain, 

which detect polysaccharides present in mucins (see 2.2.3.6, page 109) (Yonezawa et al., 

2008). 

I performed AB/PAS stain in P0, P3, P7 (one week) and P14 (2 weeks) pancreatic 

samples from F7KPdx1-Cre mice to detect when mPanINs first appear in the F7KPdx1-

Cre model (Figure 18a). 

As a positive control for the AB/PAS stain, I used pancreatic samples from a 20-week-

old KPdx1-Cre mice. These mice are known to develop rare low-grade mPanINs as 

early as 2 weeks after birth (Hingorani et al., 2003). Thus, 20-weeks after birth, several 

mPanINs were expected. mPanIN quantification was performed by counting the number 

of AB/PAS positive lesions per mm2 of pancreatic tissue (Figure 18b).  

At P0 and P3, no lesions histologically similar to mPanINs were observed (Figure 18a  

P0, P3). Moreover, AB/PAS stains failed to identify AB/PAS positive structures at 

these early time points (Figure 18b, P0, P3). AB/PAS positive structures were only 

detected in the F7KPdx1-Cre mouse 7 days after birth (P7) and increased in number one 

week later (P14) (Figure 18a,b P7, P14). 

These results suggest that the F7KPdx1-Cre model follows a similar mPDAC 

progression as described for the KPdx1-Cre mice and that evident ductal atypia 

precedes early grade mPanINs. 
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Figure 18 - The F7KPdx1-Cre model encompasses an initial ductal transformation step 

that precedes mPanIN 

Time-course analysis of AB/PAS positive lesions development in the F7KPdx1-Cre 
model. 
a) AB/PAS stain of F7KPdx1-Cre pancreas at P0, P3, P7 and P14. KPdx1-Cre mice 
pancreas was also collected 20 weeks after birth to be used as a positive control for the 
AB/PAS stain of mPanIN lesions. b) Number of AB/PAS positive lesions per mm2 of 
pancreatic tissue. For quantification, 2 mice per time point were used and 3 levels of 
tissue were stained for quantification (n mice = 2). Bar chart shows the mean values. 
Error bars indicate standard deviation (SD). Statistical significance was tested with the 
Mann-Whitney test. P values are indicated 
All scale bars represent 100 µm. 
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3.1.4 Fbw7 embryonic deletion mainly affects duct cells 

It has been reported that ductal cells demonstrate the highest levels of Fbw7 expression 

amongst all pancreatic compartments (Sancho et al., 2014). Given the previous 

observation that ductal cells seem to undergo oncogenic transformation before acinar 

cells show signs of disturbance (ADM and PanIN) in the F7KPdx1-Cre model, I 

hypothesized that the ductal cellular compartment might respond more significantly to 

Fbw7 deletion when compared to acinar cells. The effect of Fbw7 deletion was assessed 

by the change in number of proliferative cells.  

Proliferation was assessed by counting the number of cells positive for the mitotic 

marker phosphorylated histone 3 (pH3). I performed immunofluorescence stain on 

pancreas from Fbw7F/F; Pdx1-Cre (F7Pdx1-Cre) and Pdx1-Cre control mice for pH3 

(Figure 19a) and observed a statistically significant increase in the percentage of pH3-

positive cells in the ducts upon embryonic Fbw7 deletion (F7Pdx1-Cre mice), compared 

with ducts from Pdx1-Cre control mice. No change in the number of pH3-positve cells 

was observed for the acinar compartment after Fbw7 deletion (Figure 19b). These 

results indicate that, in terms of proliferation, Fbw7 deletion mainly affects the ductal 

compartment. 

 

I next tested if the concomitant expression of the activated KRasG12D would also 

preferentially affect one compartment over the other, in the absence of Fbw7. To avoid 

detecting increased proliferation due to secondary effects of tumourigenesis, such as 

inflammation, I focused on early stages of tumour development (P0). I performed pH3 

immunofluorescence stains on pancreas of P0 F7KPdx1-Cre mice and compared them 

with P0 Pdx1-Cre mice (Figure 19c). While no increase in proliferation was detected in 

acinar cells, the ductal compartment of F7KPdx1-Cre mice showed a marked increase 

in the number of pH3 positive cells compared with ducts of a Pdx1-Cre P0 pancreas 

(Figure 19d). These observations support the idea that Fbw7 deletion, with or without 

KRas oncogenic activation, mainly affects ductal cells. Contrasting with commonly 

accepted proposals of the non-involvement of ductal cells in tumour development (Ray 

et al., 2011, Kopp et al., 2012), these results highlight a possible contribution of the 

ductal compartment to PDAC. 
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Figure 19 - Fbw7 embryonic deletion mainly affects duct cells 

a) Immunofluorescence staining of Ck19 and pH3 in age-matched pancreas of Pdx1-
Cre control and F7Pdx1-Cre mice. 8 and 15 weeks old mice were used. For each age, 
the control Pdx1-Cre and F7Pdx1-Cre were siblings collected at the same time b) 
Percentage of pH3 cells in acinar or ductal compartments of age-matched Pdx1-Cre and 
F7Pdx1-Cre mice (calculated as number of pH3 cellsduct or acinar/total cellsduct or acinar)*100) 
c) Immunofluorescence staining of Ck19 and pH3 in pancreas of P0 Pdx1-Cre control 
and F7KPdx1-Cre mice. d) Percentage of pH3 cells in acinar or ductal compartments of 
P0 Pdx1-Cre and F7KPdx1-Cre mice (calculated as number of pH3 cellsduct or acinar/total 
cellsduct or acinar)*100). 
The number of pH3-positive cells was counted per genotype, per cellular compartment 
(acinar vs duct). pH3-positive cells are indicated in white for ducts and yellow for 
acinar cells. Each dot represents one pancreatic region used for quantification. For the 
quantification, 2 mice per time point were used and 3 levels of tissue were stained (n 
mice=2). Graph shows mean values +/- SD. Statistical significance was tested with the 
Mann-Whitney test. P values are indicated.  
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3.1.5 Fbw7 loss in KRasG12D-expressing adult ductal cells induces mPDAC 

without low-grade mPanIN (1-2) formation 

To better assess the role of ductal cells in PDAC development, I generated mice where 

Fbw7 protein deletion and simultaneous KRasG12D activation could be induced, mainly, 

in ductal cells by means of a Ck19-CreER inducible mouse line (Fbw7F/F; KRasLSL-

G12D/wt; Ck19-CreER, hereinafter referred to as F7KCk19-CreER). For full 

characterization of the F7KCk19-CreER mouse model, such as lineage tracing analysis 

and recombination efficiency see 4.1.2, page 162. 

Similar to the models explained above, upon Cre expression, and its subsequent 

translocation to the nucleus following tamoxifen treatment, the exon 5 of Fbw7 is 

excised, deleting the protein, and the KRasG12D mutation is expressed. However, this 

model differs from the previous F7KPdx1-Cre in two key aspects: (1) the Ck19, and not 

the Pdx1, promoter drives Cre expression, which is active in ductal cells, allowing 

ductal cell targeting, (2) this models harbours a mutant version of Cre that only 

translocates to the nucleus in the presence of metabolized tamoxifen. Therefore, the 

silencing of Fbw7 and expression of the oncogenic KRas can be induced by tamoxifen 

treatment. Since PDAC mainly affects adults, Cre-mediated recombination was 

stimulated in adult animals by treating 8-week-old mice with intraperitoneal (IP) 

tamoxifen injections (Figure 20a). 

One month following tamoxifen treatment, mice became symptomatic and were 

euthanized due to swollen abdomen and rapid breathing (the rapid breathing will be 

explained in 3.1.6). Post mortem analysis revealed the presence of pancreatic tumours, 

which were immediately fixed, embedded in paraffin and tissue sections were obtained 

for histological analysis. Histologically, F7KCk19-CreER generated tumours resembled 

mPDAC, exhibiting dysplastic ductal structures with papillary architecture and 

accentuated desmoplasia (Figure 20b H&E), as previously observed by Rocio Sancho. 

Similarly to the human disease, I also observed strong Ck19 protein levels together with 

high Hes1 and pERK protein levels (Figure 20b). These results support the role of 

ductal cells in PDAC development and add ductal cells to the group of currently known 

PDAC cells of origin. 
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PDAC can originate from different types of precursor lesions such as IPMN, MCN, 

ITPN and PanIN (see 1.4, page 54) (Distler et al., 2014, Yonezawa et al., 2008, Hruban 

et al., 2007). GEM models have been used to better understand the causative events for 

the different lesions. It is hypothesized that different pre-neoplastic lesions might be 

determined by the cell of origin, or, alternatively, by the genetic alteration induced (von 

Figura et al., 2014, Bardeesy et al., 2006b, Hingorani et al., 2003, Guerra et al., 2007). 

It is currently accepted that murine PanIN lesion are derived from acinar cells which, 

upon oncogenic hits and pancreatitis, undergo ADM and progress toward PDAC 

(Tuveson et al., 2006, Grippo and Sandgren, 2012, Guerra et al., 2007). Since the 

F7KCk19-CreER model mainly targets ductal cells, with some, acinar cells targeting 

being reported (Ray et al., 2011), I decided to, first confirm that transformation was 

occurring in ductal cells and, secondly, to closely analyse how PDAC is formed in this 

context. 

To investigate tumour progression, I tamoxifen-treated 8-week-old F7KCk19-CreER 

mice and collected the pancreas at different time points (0, 14, 21 and 28 days post 

tamoxifen treatment). To control for, and detect, morphological alterations soon after 

tamoxifen treatment (Day 0), I also collected the pancreas of wild type non-tamoxifen 

treated 8-week-old mice. 

To most accurately identify the sequence of morphological alterations, I looked for 

morphological deviations from wild type pancreas. Given the fact that tamoxifen-

induced, Cre-dependent, recombination is not a synchronous event, i.e. some cells 

receive the metabolized tamoxifen before others, transformation is not expected to be 

synchronous. Therefore, I searched for lesions that were frequent at initial stages and 

persisted at later time points with simultaneous appearance of structures with higher 

cellular atypia. Thus, as performed for the human disease, a linear progression was 

identified, where ductal cells progressively acquire higher levels of dysplasia (Figure 

20c). 

At day 0, no alteration was detected in the pancreas when compared with pancreata of 

8-week-old wild type mice, except a possible crowding of the ducts. Two weeks after 

tamoxifen treatment, while the acinar compartment remained morphologically 

unchanged, ducts became obviously crowded and a ductal cell expansion towards the 

lumen was discernible, similar to that detected in the F7KPdx1-Cre model at P3 (Figure 
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17b2 and 5). This result confirmed a duct-specific transformation from the Ck19-

CreER-dependent cell targeting. Three weeks (Day 21) after tamoxifen treatment, I 

detected an increase in ductal dysplasia in F7KCk19-CreER mice. Ducts became 

papillary and shedding of clusters toward the lumen was observed. At this time point, 

ductal structures closely resembled carcinoma in situ (also known as mPanIN3), which 

is characterized by papillary or cribriform epithelium, occasional fragmentation of 

epithelial clusters and low or negative for AB/PAS (low-grade PanIN markers) (Cooper 

et al., 2013, Hruban et al., 2007). Onset of focal mPDAC was detected one month after 

tamoxifen treatment with loss of duct cell polarity in the papillary structures and 

pronounced desmoplasia (Figure 20c H&E, CK19 day 28). 

During mPDAC development, I did not detect lesions morphologically similar to 

mPanIN1 or mPanIN2 (low-grade). Interestingly, consistent with the previous finding, 

in all of the tested time points before tumour onset, I did not observe AB/PAS positive 

structures, the commonly used marker for low-grade mPanINs (Figure 20c AB/PAS).  
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Figure 20 - Fbw7 loss in KRasG12D-expressing ductal cells induces mPDAC without low-

grade mPanIN formation 

a) Schematic representation of the F7KCk19-CreER mouse (Fbw7F/F; KRasLSL-G12D/wt, 
Ck19-CreER and experimental approach). Black triangles indicate loxP sites and 
asterisk indicates the exon with the G12D mutation. 8-week-old mice were 
intraperitoneally injected with tamoxifen (100 mg/kg of body weight) once a day for 
two days. Pancreatic tissue was collected for analysis at day 0, 14, 21 and 28 after last 
tamoxifen dose. b) Histological analysis of F7KCk19-CreER-derived mPDAC. One 
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month after tamoxifen treatment, H&E (upper left), CK19 (upper right), Hes1 (lower 
left) and pERK (lower right) stain. c) Immunohistological analysis of wild type (WT) 8-
week-old pancreas and time-course analysis of mPDAC development in the F7KCk19-
CreER model. Animals were culled at P0, P14, P21 and P28 after last tamoxifen 
injection. The figure displays low magnification H&E stain (first row) of different time 
points. Regions of interest are marked. Second row shows AB/PAS for the respective 
regions of interest. Third row shows CK19 immunological staining for the respective 
regions of interest. Black dashed line illustrates the ductal cell expansion. Black 
arrowheads indicate loss of cell polarity. 
For histological analysis, more than 6 animals per time point were used. Four levels of 
tissue were obtained for H&E and immunostaining to thoroughly assess the 
morphological changes.   
All scale bars represent 100 µm.  

(Figure 20, legend continued) 
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3.1.6 Uncoupling cell of origin from genetic alteration effect during PDAC 

oncogenesis 

Results obtained so far suggest that either duct cell-derived murine PDAC does not 

evolve from low-grade mPanINs, or that Fbw7 deletion promotes mPDAC in a low-

grade mPanIN independent manner. 

While the observation of low-grade mPanINs in the F7KPdx1-Cre model (Figure 18a) 

argues against the latter, the observed AB/PAS positive lesions were in fact rare in 

F7KPdx1-Cre mice when compared to the number detected in the KPdx1-Cre model 

(Figure 18b). Therefore, I aimed to more elegantly dissociate the effect of cell of origin 

versus genetic alteration on tumour development. 

The experimental approach is schematically summarized in Figure 21. To understand if 

loss of Fbw7 protein was the cause of early mPanIN absence, I interrogated Fbw7 loss 

effect with simultaneous KRasG12D genetic activation in the acinar compartment (by 

using a tamoxifen inducible, acinar cell specific, Cre line, Elastase1-CreER or Ela1-

CreER). If the absence of mPanIN1 and mPanIN2 in the F7KCk19-CreER was due to 

ductal cell targeting, then the acinar cell-derived PDAC progression from F7KEla1-

CreER should allow the easy detection of low-grade mPanINs (Figure 21a). I obtained 

additional confirmation by using the duct cell specific induction of alternative genetic 

alterations that have been shown to accelerate PDAC development through mPanIN1-

mPanIN2-mPanIN3 progression in the developing pancreas. It has been described that 

p53 or PTEN deletion, on top of KRas oncogenic activation, in the embryonic pancreas 

accelerates mPDAC oncogenesis with initial development of mPanIN1 (Hill et al., 2010, 

Guerra et al., 2007). Thus, I decided to induce the same genetic alterations using the 

duct-specific Cre mouse model (Ck19-CreER). The detection of low-grade mPanIN 

lesions formed from duct-targeted cells would suggest that the absence of low-grade 

mPanIN in the F7KCk19-CreER was a genotype specific event. On the other hand, if no 

mPanIN1 and 2 lesions would be observed, it would indicate that their absence in the 

F7KCk19-CreER was a cell of origin specific phenotype (Figure 21b). 
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Figure 21 - Uncoupling cell of origin from genetic alteration effect during PDAC 

oncogenesis 

Experimental approach undertaken to uncouple the effect of cell of origin from genetic 
alteration in PDAC initiation and progression. The mouse Cre lines used identify the 
pancreatic compartment that they target in the figure. Ela1-CreER induces tamoxifen-
dependent recombination in acinar cells while Ck19-CreER targets duct cells. a) Fbw7 
deletion will be induced in KRasG12D-expressing acinar cells (F7KEla1-CreER). If 
tumour formation occurs without low-grade mPanIN formation, it indicates that Fbw7 
deletion is the decisive factor for the lack of formation of these pre-neoplastic lesions. 
Therefore, the absence of mPanIN1 and mPanIN2 in the F7KCk19-CreER model was a 
genetic specific event. However, if low-grade mPanINs are detected, then Fbw7 
deletion has no role in pre-neoplastic lesion determination. b) p53 or PTEN deletion 
(two genetic alterations described to induce mPDAC via mPanIN1-mPanIN2-mPanIN3 
progression) will be induced in KRasG12D-expressing duct cells (p53KCk19-CreER or 
PTEN-KCk19-CreER). PDAC formation in the absence of low-grade mPanIN suggests 
that ductal cells, regardless of the oncogenic hit, do not evolve into PanIN1 and PanIN2 
during PDAC development, i.e. cell specific phenotype. However, if low-grade mPanIN 
lesions are detected, we can conclude that ductal cells, like acinar cells, can generate 
low-grade PanINs and their absence in the F7KCk19-CreER model was an Fbw7 
deletion-specific phenotype.  
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In order to test this hypothesis, I generated a panel of mouse models where the same 

genetic alteration was induced in the embryonic pancreas (Pdx1-Cre), or in adult acinar 

(Ela1-CreER) or adult ductal (Ck19-CreER) compartments (Table 10) 

Analyses started by assessing if and how mPDAC is formed in PTEN-KCk19-CreER 

mice. PTEN, an antagonist of the PI3K/PDK1/AKT pathway (a pathway involved in 

PDAC formation (Eser et al., 2013)), has been shown to be a potent tumour suppressor 

in the developing pancreas (Stanger et al., 2005, Hill et al., 2010). To test its role during 

adult pancreatic tumourigenesis, from duct cells, I deleted the tumour suppressor PTEN 

in KRasG12D, CK19-expressing cells. CK19 is a cytokeratin expressed in pancreatic 

ducts. However, other murine tissues are known to express it, such as epithelial cells in 

the oral cavity, lung, liver, kidney, stomach and intestine (Ray et al., 2011). PTEN is 

also a potent tumour suppressor in the lung, which has been shown to cooperate with 

oncogenic KRas during lung tumourigenesis (Iwanaga et al., 2008, Cui et al., 2014). 

Therefore, it is not surprising that intraperitoneal injections of tamoxifen in PTEN-

KCk19-CreER mice led to the rapid development of lung hyperplasia and respiratory 

distress. Unfortunately, mice had to be euthanized only two weeks after tamoxifen-

induced recombination with only minor alteration to the pancreas (data not shown). As 

a side observation, F7KCk19-CreER also developed lung tumours. However, the 

pancreatic tumours appeared before mice had to be culled from respiratory distress.  

To avoid whole body dissemination of tamoxifen, and consequent recombination 

outside the pancreas, I decided to inject 4-hydroxytamoxifen (the active metabolite of 

tamoxifen) intrapancreatically by non-invasive ultrasound-guided injection. A drawback 

of this approach is the trail of injectable substance that is dragged with the needle upon 

removal after injection. As a consequence, and due to PTEN’s role as tumour 

suppressor in the skin (Ming and He, 2009), mice promptly developed papillomas on 

the injection site (data not shown), impeding long term analysis of pancreatic 

tumourigenesis. Hence, I decided to stop the assessment of PTEN deletion and focus on 

the remaining models. 
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Full genotype Abbreviation Activation Target 
cell 

Usage 
in study 

P53F/F; KRasLSL-G12D/wt; 
Ck19-CreER 

p53KCk19-
CreER 

Adult 8 weeks 
(conditional) Duct Used 

Fbw7F/F; KRasLSL-G12D/wt; 
CK19-CreER 

F7KCk19-
CreER 

Adult 8 weeks 
(conditional) 

Duct Used 

PTENF/F; KRasLSL-G12D/wt; 
CK19-CreER 

PTEN-KCk19-
CreER 

Adult 8 weeks 
(conditional) 

Duct Used 

P53F/F; KRasLSL-G12D/wt; 
Ela1-CreER 

p53KEla1-
CreER 

Adult 8 weeks 
(conditional) 

Acinar 
Not 
used 

Fbw7F/F; KRasLSL-G12D/wt; 
Ela1-CreER F7KEla1-CreER 

Adult 8 weeks 
(conditional) 

Acinar Used 

PTENF/F; KRasLSL-G12D/wt; 
Ela1-CreER 

PTEN-KEla1-
CreER 

Adult 8 weeks 
(conditional) 

Acinar 
Not 
used 

P53F/F; KRasLSL-G12D/wt; 
Pdx1-Cre p53KPdx1-Cre 

Embryonic 
(E8.5) 

Whole 
pancreas 

Used 

Fbw7F/F; KRasLSL-G12D/wt; 
Pdx1-Cre F7KPdx1-Cre 

Embryonic 
(E8.5) 

Whole 
pancreas 

Used 

 

Table 10 - Mouse models generated for the study 

p53, Fbw7 or PTEN homozygous deletion was induced together with KRasG12D 
oncogenic activation in different pancreatic cell types, at different stages of 
development. The mouse line Pdx1-Cre was used to induce recombination in the 
developing pancreas by Pdx1-driven Cre expression at E8.5. Ck19-CreER was used to 
induce recombination in adult (8-week-old) duct cells by Ck19-driven CreER 
expression. Ela1-CreER was used to induce recombination in adult (8-week-old) acinar 
cells by means of Elastase1-driven CreER expression. CreER-dependent genetic 
recombination was induced by tamoxifen treatment.  
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3.1.7 Fbw7 loss in KRasG12D-expressing adult acinar cells leads to low-grade 

mPanIN formation 

Acinar cells have been shown to generate PDAC upon oncogenic hits. These fully 

committed exocrine cells regain plasticity in the oncogenic context and 

transdifferentiate into ductal cells by a process named acinar to ductal metaplasia 

(ADM). ADM can further progress to PDAC with the intermediate development of 

PanIN1, 2 and 3 lesions (Guerra et al., 2007, Tuveson et al., 2006, Grippo and Sandgren, 

2012, Habbe et al., 2008). Formation of mPanIN lesions, from acinar cells upon 

oncogenic transformation, appears to be a robust phenotype, as different genetic 

alterations, such as the simultaneous deletion of p16INK4A/P19ARF in KRasG12D-

expressing adult acinar cells, with induced pancreatitis, also leads to mPDAC 

development with initial mPanIN1 formation, as observed for KRasG12D genetic 

alteration alone (Guerra et al., 2011).  

In order to assess if, and how, Fbw7 deletion, with KRasG12D oncogenic activation, 

leads to PDAC from acinar cells, I generated Fbw7F/F; KRasLSL-G12D/wt; Ela1-CreER 

mice, hereinafter F7KEla1-CreER, where Fbw7 deletion and KRasG12D simultaneous 

activation occurs in acinar cells and is dependent on tamoxifen treatment (Figure 22a). 

Adult acinar cells are extremely resistant to multiple oncogenic hits. While it is 

described that, induction of oncogenic genetic alterations in embryonic or young acinar 

cells (up to 6-week-old mice) leads to tumour formation, the same does not happen if 

recombination is induced in the adult compartment (8-week-old mice) without 

additional injuri, even when potent tumour suppressors are deleted in a KRasG12D-

expressing background (Guerra et al., 2011, Habbe et al., 2008). In line with published 

data, I observed no pancreatic phenotype in F7KEla1-CreER mice 3 months after 

tamoxifen treatment in 8-week-old mice  (data not shown). Since pancreatitis is a 

known promoter of PDAC, and it has been shown to accelerate KRasG12D-dependent 

PDAC, a combinatory caerulein treatment, to induce acute pancreatitis, was used to 

promote mPDAC formation in the adult animal as described before (Carrière et al., 

2009, Carrière et al., 2011). 

Caerulein is a cholecystokinin analogue that promotes the premature activation and 

uncontrolled release of acinar-produced digestive enzymes. This release induces 

extensive acinar cell death and promotes the generation of an inflammatory 
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environment stimulating remaining acinar cells to transdifferentiate into ductal cells 

(ADM). If the treatment is performed in a wild type scenario, regeneration of the organ 

occurs within 7 days, metaplastic ductal lesions regress and the pancreas adopts a 

normal morphology. However, in the presence of oncogenic KRasG12D, metaplastic 

structures persist and tumourigenesis is promoted (Morris et al., 2010). 

As shown in Figure 22a, I induced genetic recombination by intraperitoneal tamoxifen 

injection over a 5-day period (one injection per day – 100 mg/kg of body weight/day). 

One week after recombination, mice were subjected to an acute pancreatitis protocol by 

caerulein intrapancreatic injections (6 IP injections per day, given at hourly intervals, 

over 2 days (50 µg/kg of body weight/injection) (see 2.2.1.5, page 96)). In order to 

compare the results obtained with those observed for the F7KCk19-CreER model, I 

collected the pancreas from F7KEla1-CreER tamoxifen- and caerulein-treated mice 1 

month after pancreatitis (same time point as before) (Figure 22a). Surprisingly, while 

F7KCk19-CreER mice already presented mPDAC at this particular time point in the 

absence of caerulein (Figure 20b), the F7KEla1-CreER mice only showed low-grade 

atypia with extensive ADM and stromal expansion, even after caerulein treatment 

(Figure 22b, low magnification H&E). Interestingly, I observed ductal dysplastic 

lesions with flat epithelium, expanded cytoplasm toward the lumen and nuclei located 

basally exhibiting low-grade atypia (Figure 22b high magnification H&E), 

characteristic of mPanIN1. Supporting their ductal appearance and low-grade PanIN 

biology, these structures were highly positive for Ck19 and presented supranuclear 

mucin production identified by AB/PAS stain (Figure 22b). 

The number of AB/PAS positive lesions was quantified for F7KEla1-CreER and 

F7KCk19-CreER pancreas, one month after tamoxifen induced, Cre-dependent, 

recombination. Quantification was performed counting the number of positive lesions 

per transformed area. Transformed area was used, instead of total area, for 

normalization purposes, given the difference in extent of pancreatic transformation in 

both models. Comparison of AB/PAS positive lesions in both models, demonstrated 

that Fbw7 deletion with simultaneous KRasG12D expression, in acinar cells, leads to 

extensive appearance of mPanIN1, AB/PAS positive lesions (Figure 22c,d). 

The results demonstrate that deletion of Fbw7 in KRasG12D-expressing adult acinar or 

ductal cells has different effects. While ductal cell-targeting led to mPDAC oncogenesis 
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without the development of low-grade mucinous mPanINs, acinar cell-targeting 

promoted the formation of mPanIN1 lesions. This suggests that Fbw7 deletion has no 

role in determination of the pre-neoplastic lesion and mode of progression, proposing 

the cell of origin to be an important factor in this decision. Nonetheless, I could not 

observe PDAC in the F7KEla1-CreER model, and thus, while longer time points are 

still to be analysed, further confirmation of the observed phenotype was necessary. 

 
Figure 22 - Fbw7 loss in KRasG12D-expressing adult acinar cells leads to low-grade PanIN 

formation 

a) Schematic representation of the F7KEla1-CreER mice (Fbw7F/F; KRasLSL-G12D/wt, 
Ela1-CreER) and experimental approach. Black triangles indicate loxP sites and 
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asterisk indicates the exon with the G12D mutation. 8-week-old mice were 
intraperitoneally injected with tamoxifen for a 5-day period (one injection per day – 100 
mg/kg of body weight/day). One week after tamoxifen treatment, mice were subjected 
to an acute caerulein protocol with 6 IP injections per day, given at hourly intervals, 
over 2 days (50 µg/kg of body weight/injection). Mice were culled 1 month after the last 
tamoxifen injection and the pancreas was removed and used for histological analysis. 
Eight mice were used and 4 levels of tissue of each pancreas were analysed. b) 
Histological analysis of F7KEla1-CreER pancreas one month after tamoxifen treatment. 
From left to right: H&E low magnification (region of interest illustrated by black 
square); H&E, AB/PAS and Ck19 stain of region of interest. c) H&E and AB/PAS 
representative images of acinar (F7KEla1-CreER) and duct (F7KCk19-CreER) Fbw7 
deleted, oncogenic KRasG12D pancreas, one month after tamoxifen treatment. Black 
arrows show AB/PAS positive lesions. d) Number of AB/PAS positive lesions per 
transformed area (mm2) in F7KEla1-CreER and F7KCK19-CreER mice, one month 
after tamoxifen treatment. For quantification, 2 mice were used and 3 levels of tissue 
were stained (n mice=2). Bar chart shows the mean values plus SD. Statistical 
significance was tested with the Mann-Whitney test. P values are indicated. 
All scale bars represent 100 µm.  

(Figure 22, legend continued) 
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3.1.8 p53 loss in KRasG12D-expressing adult ductal cells mimics the F7KCK19-

CreER phenotype 

Since F7KEla1-CreER mice did not form murine PDAC, up to one month following 

recombination, it was difficult to uncouple the genetic alteration from the cell of origin 

in determination of tumour progression. Hence, I decided to confirm if other genetic 

profiles would also lead to duct-derived PDAC development without low-grade 

mPanIN formation.  

P53 is commonly deleted or mutated in PDAC patient samples (Rozenblum et al., 1997). 

The role of p53 in pancreatic tumourigenesis has been extensively demonstrated by its 

simultaneous deletion with KRas oncogenic activation in the developing pancreas. 

While the loss of p53 alone has no effect in the pancreas, it drastically accelerates 

KRasG12D-driven PDAC oncogenesis via mPanIN1-2 and 3 formation (Bardeesy et al., 

2006a, Hingorani et al., 2005). The role of p53 in adult mPDAC tumourigenesis was 

also assessed where the concomitant expression of KRasG12V and pancreatitis greatly 

accelerated acinar cell-derived PDAC development. However, no comment was made 

regarding the mode of progression (Guerra et al., 2011).  If it is in fact true that tumours 

derived from duct cells do not evolve from low-grade PanIN lesions, I hypothesized that 

p53 deletion in KRasG12D-expressing adult duct cells should reproduce the F7KCk19-

CreER phenotype. 

To address this question, I treated 8-week-old p53F/F; KRasLSL-G12D/wt; Ck19-CreER 

mice, hereinafter p53KCk19-CreER, with tamoxifen (intraperitoneal injection) to 

induce duct specific recombination (Figure 23a). These mice exhibited swollen 

abdomen and respiratory distress (due to recombination in the lungs, as well as in the 

pancreas) close to one month after tamoxifen injections, at which time they were 

euthanized. Post mortem analysis revealed extensive pancreatic damage with the 

presence of a solid mass replacing the pancreatic organ and expansion of this mass to 

the intestine. Histological evaluation at endpoint demonstrated the presence of mPDAC 

represented by multiple foci of ductal transformation, loss of basement membrane from 

the epithelial structures and extensive desmoplasia (Figure 23b). It has been described 

that mPanIN lesions, although precursors to mPDAC, are also observed at the end stage 

of murine tumour development, as progression is not synchronous (Collins et al., 2012b, 

Hingorani et al., 2005). My analysis of late stage mPDAC did not identify low-grade 
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mPanIN lesions providing the first indication that duct derived PDAC does not 

encompass mPanIN1 or 2 generation. To confirm that low-grade mPanINs were not 

missed during tumour development, I collected the pancreas of p53KCk19-CreER mice 

at day 0, 21, 28 and 35 after tamoxifen treatment and assessed the morphological 

alterations. Pancreata of, 8-week-old, wild type mice were also collected to serve as a 

control for morphological changes (Figure 23c).  

Similar to the approach taken for the F7KCk19-CreER, I searched for lesions with low-

grade dysplasia at initial time points that increase in frequency over time, with 

concomitant appearance of higher-grade dysplasia at later time points. Initial 

morphological deviations from wild type and control time point (Day 0) ducts were 

detected 21 days post recombination, I could observe the crowding of the ductal 

epithelium with cellular enlargement of some ductal regions towards the lumen. Unlike 

mPanIN lesions, which also exhibit cytoplasmic expansion, the nuclei of these 

morphologic alterations were not organized basally. Instead, they expanded with the 

cytoplasm and occupied different positions within the cells (Figure 23c Day 21, H&E). 

28 days post recombination, while most pancreatic regions remained unaltered, with 

only the ductal expansion being detected, I could observe the initial appearance of 

papillary structures. However, I still could not detect any evidence of columnar 

epithelium characteristic of low-grade mPanINs (Figure 23c Day 28, H&E). Consistent 

with the failure to identify lesions morphologically similar to previously described 

mPanIN1 and mPanIN2, I could not detect any AB/PAS positivity at any of the time 

points (Figure 23c AB/PAS panel), indicating that, also in the p53KCk19-CreER model, 

duct-derived mPDAC is not preceded by mPanIN formation. 
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Figure 23 - P53 loss in KRasG12D-expressing adult ductal cells mimics the F7KCk19-CreER 

phenotype 

a) Schematic representation of the p53KCk19-CreER mouse (p53F/F; KRasLSL-G12D/wt, 
CK19-CreER) and experimental approach. Black triangles indicate loxP sites and 
asterisk indicates the exon with the G12D mutation 8-week-old mice were 
intraperitoneally injected with tamoxifen (100 mg/kg of body weight) once a day for 
two days. Pancreatic tissue was collected for analysis at day 0, 21, 28 and 35 after last 
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tamoxifen dose. b) H&E of p53KCk19-CreER-derived mPDAC, 35 days after 
tamoxifen treatment. c) Immunohistological analysis of wild type (WT) 8-week-old 
pancreas and time-course analysis of mPDAC development in the p53KCk19-CreER 
model. Animals were culled at P0, P21, P28 and P35 after last tamoxifen injection. The 
figure displays low magnification H&E stains (first row) of different time points. 
Regions of interest are marked. Second row shows AB/PAS stain for the respective 
regions of interest. Third row shows CK19 immunological staining for the respective 
regions of interest. Pancreas of four p53KCk19-CreER mice were used for the 
histological analysis of the time points day0, 21 and 28. Three mice were used for time 
point day 35. Black squares in the H&E identify regions of interest magnified in 
AB/PAS and CK19 panels. Black dashed line illustrates the ductal expansion.  
All scale bars represent 100 µm. 
  

(Figure 23, legend continued) 
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Interestingly, simultaneous with mPDAC formation, I detected pancreatic regions 

containing a different type of tumour. Histologically, the additionally found tumours 

exhibited a mesenchymal differentiation, composed of a homogeneous mass of spindle 

shaped cells (Figure 24a and b H&E). 

To better understand the biology and origin of these tumours, I performed 

immunohistological analysis for the ductal epithelial marker Ck19 and the 

mesenchymal marker smooth muscle alpha-actin (SMA). These tumours were SMA 

positive and Ck19 negative, corroborating a mesenchymal differentiation (Figure 24b). 

With the help provided by our on-site consultant histopathologist, Professor Gordon 

Stamp, the origin of these tumours was identified as being external to the pancreas and 

possibly derived from the mesenteric tissue surrounding the organ. 

In fact, by analysing R26-LSL-YFP; Ck19-CreER mice, where the expression of the 

yellow fluorescent protein is under the control of the Rosa26 promoter and preceded by 

a loxP flanked STOP cassette (Figure 24c), I have observed that the Ck19-CreER 

mouse line, upon tamoxifen treatment, promotes recombination in the pancreatic 

mesothelium as well, demonstrated by the YFP immunological staining (Figure 24d), 

confirming the previously published detection of Ck19-expressing cells in this tissue 

(Terada, 2011). 
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Figure 24 - p53KCk19-CreER mice also develop mesenteric tumours 

a) Schematic representation of the p53KCk19-CreER mouse (p53F/F; KRasLSL-G12D/wt, 
Ck19-CreER) and experimental approach. Black triangles indicate loxP sites and 
asterisk indicates the exon with the G12D mutation. 8-week-old mice were 
intraperitoneally injected with tamoxifen (100 mg/kg of body weight) once a day for 
two days. Pancreatic tissue was collected for analysis 35 days after last tamoxifen dose. 
b) Immunohistological analysis of mesenteric tumours detected in the p53KCk19-
CreER model. Upper image: H&E of a p53KCk19-CreER mouse pancreas, 5 weeks 
after tamoxifen-induced recombination. White dashed lines surround the mesenteric 
tumours and black square marks region of interest. Lower panels: magnifications of 
region of interest. From left to right: H&E, immunohistochemical stain for Smooth 
muscle alpha-actin (SMA) and Ck19. c) Schematic representation of the YCk19-CreER 
(R26-LSL-YFP, Ck19-CreER) to lineage trace recombined cells with the Ck19-Cre 
model. YFP can be recognised by the GFP antibody, hence its description as green 
cells. d) Immunohistochemical stain for the lineage tracer YFP in pancreatic samples 
from an YCk19-Cre mouse, 14 days after tamoxifen-induced recombination. High 
magnification demonstrates recombination in the pancreatic mesothelium. 
All scale bars represent 100 µm except when indicated otherwise in the figure. 
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3.1.9 PDAC oncogenesis promotes low-grade mPanIN formation in wild type 

adjacent tissues 

In this study, I have detected a different route of PDAC progression from those 

described so far. While it is commonly accepted that PDAC progresses from low-grade 

PanIN (Hruban et al., 2000a), PanINs are also observed in the context of other 

pancreatic diseases, such as acinar cell carcinomas, mucinous cystic neoplasms, 

pancreatic endocrine tumours, serous cystadenomas, solid pseudopapillary tumours and 

ampullary tumours. Therefore, it is still debatable if these ductal structures solely 

constitute  PDAC pre-neoplastic lesions (Recavarren et al., 2011, Stelow et al., 2006a). 

While studying tumour progression in the F7KCk19-CreER, I did not identify low-

grade mPanINs (1-2) before tumour onset (Figure 20c). However, when carefully 

analysing the end-stage sample, rare mucinous structures were identified by AB/PAS 

stain (Figure 22d). Moreover, lineage-tracing analysis (Rosa26-LSL-YFP) of the 

F7KEla1-CreER (F7KYEla1-CreER - Figure 25a) revealed the presence of rare, yet 

identifiable, AB/PAS positive low-grade mucinous mPanINs that were negative for 

YFP, suggesting the absence of genetic modification by Cre-mediated recombination, 

(Figure 25b). 

 
Figure 25 - Occurrence of lineage tracing negative mPanINs in the F7KYEla1-CreER 

model 

a) Schematic representation of the F7KYEla1-CreER (Fbw7F/F; KRasLSL-G12D/wt, 
Rosa26-LSL-YFP; Ela1-CreER) model. Black triangles indicate loxP sites and asterisk 
indicates the exon with the G12D mutation. YFP can be recognised by the GFP 
antibody, hence its description as green cells. b) Eight 8-week-old mice were 
intraperitoneally injected with tamoxifen for a 5-day period (one injection per day - 
100mg/kg of body weight/day). One week after tamoxifen treatment, mice were 
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subjected to an acute pancreatitis protocol with 6 caerulein IP injections per day, given 
at hourly intervals, over 2 days (50 µg/kg of body weight/injection). Mice were culled 1 
month after last caerulein injection and the pancreas was removed and used for 
histological analysis.  Upper panel demonstrates low magnification of YFP stain. YFP 
negative mPanIN highlighted by dashed black square. Lower panels present 
magnification of region of interest. From left to right: YFP, AB/PAS and H&E. 
AB/PAS positive, GFP negative lesions were observed in at least 2 of the 8 mice used. 
All scale bars represent 100 µm. 
  

(Figure 25, legend continued) 
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Given the conspicuous presence of mPanIN in non-PDAC scenarios, their increased 

incidence with age, the low risk of progression to PDAC (Hruban et al., 2001) and my 

observation of their unlabelled occurrence upon mPDAC onset, I hypothesized that low-

grade PanIN could represent a reactive response from acinar cells to damage. This 

would imply that wild type tissues could generate low-grade mPanINs as bystander 

entities, in the absence of KRasG12D mutations, in response to PDAC formation in 

adjacent areas. Thus, I attempted to induce bystander mPanINs in unlabelled wilt type 

pancreas in a homograft model with YFP-labelled tumour cells. 

To readily, and abundantly, obtain mPDAC tumour cells, I took advantage of the 

p53F/F; KRasLSL-G12D/wt; R26-LSL-YFP; Pdx1-Cre mouse model, hereinafter 

p53KYPdx1-Cre. In this model, p53 homozygous deletion is induced simultaneously 

with KRasG12D oncogenic activation in embryonic pancreatic progenitors. Additionally, 

the Cre-dependent recombined cells express the lineage tracer YFP, allowing easy 

detection of tumour cells. It has been described that p53KYPdx1-Cre mice develop 

murine PDAC (Bardeesy et al., 2006a), therefore, I obtained primary mPDAC tumour 

cells by enzymatic dissociation of p53KYPdx1-Cre derived tumours and expanded them 

in vitro. 

It has been recently shown that murine PDAC tumour cells can be grown in vitro as 

organoids, retaining their molecular signature and recapitulating PDAC development 

upon homograft transplantation (Boj et al., 2014). Therefore, after enzymatic 

dissociation, I plated the isolated cells in matrigel with organoid media (see 2.2.2.6, 

page 102). After two passages in culture it was possible to observe that all organoids 

were YFP lineage-traced. Nonetheless, to avoid the presence of rare genetically 

unrecombined cells in the culture (YFP-negative cells) that could compromise the 

interpretation of the results, I FAC sorted the isolated tumour cells for YFP (similar 

excitation and emission wavelength as GFP) (Figure 26a). This YFP pure PDAC 

tumour cell culture was then dissociated into single cells and used for orthotopic 

transplantations into the pancreas 10-week-old immunodeficient Nu/Nu mice. Nu/Nu 

mice were subjected to surgery for opening of the peritoneum and YFP-labelled tumour 

cells, mixed in matrigel, were injected into the tail of the pancreas (see 2.2.1.7, page 97). 

The pancreas of these mice was removed 14 and 21 days after surgery  (Figure 26a). 14 

days post surgery, histological analysis (H&E) and immunohistochemical analysis 
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allowed the detection of a focal Ck19 positive, YFP-labelled mPDAC (Figure 26b). 

According to published reports (Boj et al., 2014), the orthotopic transplantation of 

isolated PDAC cells from p53KYPdx1-Cre tumour-derived organoids recapitulated 

PDAC development, whereby AB/PAS-positive mPanINs are formed as well as 

AB/PAS-negative PDAC. As expected, and demonstrating the ability of the tumour 

cells to recapitulate early stages of tumour development, I observed YFP-labelled low 

and high-grade mPanINs positive for AB/PAS, as well as AB/PAS-negative advanced 

YFP-mPDAC (Figure 26b1). Surprisingly, as early as 14 days after orthotopic 

transplantation, I could observe, within the host tissue, regions of ADM with the initial 

development of small ductal mucinous structures. These duct-like lesions were Ck19-

positive with expanded cytoplasm. Their mucinous nature was identified by AB/PAS 

positivity and, importantly, they were YFP-negative, specifying their wild type 

background (Figure 26b2). Longer time points confirmed the hypothesis. 21 days 

following orthotopic transplantation, I could detect, near the YFP-positive tumour, 

YFP-negative flat ductal structures containing columnar epithelium typical of mPanIN1. 

These structures were immunohistochemically positive for early mPanIN markers, such 

as AB/PAS and Muc5AC, while labelled tumour cells were negative for both markers 

(Figure 26c). The fate of these mucinous ductal structures was not followed. 

Nevertheless, the results suggest that low-grade PanINs can be formed as a response to 

tumour formation in a wild type scenario and not necessarily only as a pre-neoplasm.  
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Figure 26 - PDAC oncogenesis promotes low-grade mPanIN formation in adjacent wild 

type tissues 

a) Schematic representation of the experimental approach to induce bystander mPanIN 
formation. p53KYPdx1-Cre mice were euthanized at 5 weeks. Tumour cells were 
isolated and expanded in vitro as organoids. YFP fluorescence activated cell sorting was 
performed to exclude any YFP-negative cells. 500x103 cells were mixed with 50 µl of 
growth factor reduced matrigel and orthotopically transplanted into the pancreas of 
Nu/Nu mice. b) Histological analysis of orthotopic tumours 14 days post 
transplantation. Four mice were injected with PDAC tumour cells. First row with low 
magnification H&E and YFP and CK19. Black dashed line representing the extent of 
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damage caused by PDAC formation. Black squares highlight regions of interest. 1 and 2 
- YFP-tumour regions and mucinous YFP-negative region, respectively. 1 – AB/PAS, 
YFP and Ck19 staining of tumour-derived mPDAC (left) and mPanIN lesion (right) 
separated by white dashed line. 2 - AB/PAS, YFP and Ck19 staining of bystander lesion 
with mucinous structure. Black arrowheads show mucinous cells. c) Histological 
analysis of orthotopic tumours 21 days post transplantation. Four mice were injected 
with PDAC tumour cells. H&E, YFP, AB/PAS and Muc5AC staining were performed. 
Pictures on the right are magnifications of region of interest on the left. Black dashed 
line delineates YFP-PDAC. All scale bars represent 100 µm, except if stated otherwise 
in the figure. 
  

(Figure 26, legend continued) 
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3.2 Discussion: The impact of the compartment of origin on PDAC 

development and the role of Fbw7 in pancreatic tumourigenesis 

 

3.2.1 Fbw7 as a tumour suppressor in PDAC  

As for most diseases, PDAC has a strong genetic component, which can be exploited 

for improvement of current therapies. The understanding of the molecular key players 

during PDAC oncogenesis is, therefore, of great importance and extensively 

investigated (Schneider et al., 2008, Hezel, 2006). 

FBW7 mutations have been identified in human pancreatic tumours (Calhoun et al., 

2003). However, no in depth studies had been performed before the start of this thesis. 

Rocio Sancho had identified Fbw7 as a strong tumour suppressor in mPDAC 

development, where the homozygous deletion of Fbw7 in the embryonic pancreas, with 

concomitant KRasG12D activation (the main PDAC driver mutation), led to strong 

acceleration of mPDAC initiation and progression compared to KPdx1-Cre mice. I 

could confirm that F7KPdx1-Cre mice developed murine PDAC with close 

recapitulation of the human disease on a molecular and morphological level. 

Results obtained during the assessment of the role of Fbw7 in PDAC biology deviated 

the scientific interrogation. The mechanism by which Fbw7 accelerates mPDAC 

tumourigenesis and how Fbw7 is regulated in this context are still open questions (In 

depth discussion in Chapter 5, page 202).  
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3.2.2 A new mPanIN-independent mPDAC progression model for duct-derived 

tumours 

Great effort has been employed towards a better understanding of PDAC biology and 

progression. The knowledge gained on the lesions that precede PDAC offers 

incomparable opportunities to detect and tackle PDAC at its earliest stages of 

development. Data obtained from the clinic, together with molecular studies and 

dynamic mouse model approaches, have allowed the identification of pre-neoplastic 

lesions that, in a step-wise manner, evolve to PDAC (Hruban et al., 2007).  

The most common lesions found in PDAC patients are PanIN lesions and, based on 

mouse model findings, are now thought to originate from acinar cells through an 

intermediate process known as acinar to ductal metaplasia (Guerra et al., 2007, Zhu et 

al., 2007, Grippo et al., 2003, Tuveson et al., 2006).  

Interestingly, results obtained in this thesis have highlighted the possibility of a 

different mode of progression. I have observed that F7KPdx1-Cre mice develop murine 

PDAC with morphological alterations to the ductal compartment preceding both ADM 

and mPanIN lesions. Moreover, Fbw7 loss had a higher proliferative impact in the 

ductal compartment. Analysis of F7Pdx1-Cre mice revealed an increase in 

phosphorylated histone 3 (pH3) in the ductal compartment compared with acinar cells. 

It is possible that acinar and ductal cells have different recombination efficiencies in the 

Pdx1-Cre model, which could compromise the interpretation of the results. While 

confirmation of equal recombination should be performed, there is no evidence in the 

literature that suggests a difference.  

Additionally, the concomitant expression of oncogenic KRasG12D did not change the 

outcome, as analysis of pH3 in pancreas of P0 F7KPdx1-Cre mice revealed an increase 

in proliferation in ductal cells, while no change was detected in acinar cells at early 

stages. This suggests that the acceleration of PDAC in the developing pancreas might be 

partially due to the contribution of the ductal compartment to tumourigenesis. 

In fact, I confirmed that Fbw7 homozygous deletion with simultaneous oncogenic 

KRasG12D activation in adult ductal cells was sufficient to develop murine PDAC, re-

adding ductal cells to the group of potential PDAC cells of origin. 
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PDAC has been proposed to arise from IPMN, MCN, ITPN or PanIN lesions (Hamilton 

and Aaltonen, 2000). Interestingly, based on histology and mucinous staining, I did not 

find any of the previously described mucinous pre-neoplastic lesions during duct-

derived mPDAC development. Fbw7-deleted, KRasG12D-expressing, duct-derived 

tumours developed through an increased acquisition of cellular dysplasia and nuclear 

atypia. I observed initial crowding of the ducts, possibly due to an increase in 

proliferation (not assessed in the Ck19-CreER model), with focal cytoplasmic and 

nuclear expansion towards the lumen. The increase in dysplasia over time led to a 

papillary architecture of the epithelium, which culminated in structures resembling 

murine carcinoma in situ (mPanIN3) and mPDAC.  

It is still not clear if determination of the type of pre-neoplastic lesion is dependent on 

the cell of origin or the genetic alteration induced (von Figura et al., 2014, Hingorani et 

al., 2003, Guerra et al., 2007, Bardeesy et al., 2006b). I observed that the same 

tumourigenic genetic alteration in different pancreatic compartments of origin promoted 

different phenotypes. While acinar cells, in the F7KEla1-CreER mouse model, 

developed mucinous positive low-grade mPanIN lesions, as expected for acinar-derived 

transformation, ductal cells from F7KCk19-CreER mice (same oncogenic background) 

failed to do so, evolving to PDAC in the absence of described mucinous pre-neoplastic 

lesions. Confirming my results was the observation that different genetic alterations, 

such as p53 homozygous deletion with KRasG12D oncogenic activation, led to a similar 

phenotype when induced in the ductal network (Figure 27). Therefore, results strongly 

suggest that the mode of PDAC progression is highly dependent on the cellular 

compartment of origin and not so much the oncogenic hit driving tumourigenesis (In 

depth discussion in Chapter 5, page 205) 
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Figure 27 - Uncoupling cell of origin from genetic activation on PDAC development and 

progression 

Schematic representation of the results obtained with F7KCk19-CreER, p53KCk19-
CreER and F7KEla1-CreER mice.  
I have observed that, the homozygous deletion of either Fbw7 or p53 in KRasG12D-
expressing duct cells forms mPDAC without the intermediate formation of low-grade 
mPanIN lesions, while the deletion of Fbw7 in KRasG12D-expressing acinar cells leads 
to the development of mPanIN1 lesions. 
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While extremely encouraging, these results still leave some questions unanswered due 

to technical issues. While Fbw7 deletion in KRasG12D-expressing ductal cells led to 

mPDAC, the same was not observed for acinar cells following the same time after 

induction. Hence, it is still not clear if F7KEla1-CreER mice can develop mPDAC, 

which raises the question, if Fbw7 loss was capable of inducing KRasG12D-driven 

mPDAC in acinar cells, would they progress via mPanIN? In order to address this 

question, F7KEla1-CreER mice should be analysed at longer time points after 

tamoxifen treatment. Simultaneously, it has been shown that chronic pancreatitis is 

more efficient in inducing acinar cell-derived mPDAC than the acute treatments (Guerra 

et al., 2007). Thus, the caerulein protocol should be changed and the acute treatment, 

after tamoxifen, should be substituted for a prolonged exposure to caerulein. 

 

Mouse models are powerful tools to study biology in the context of a whole organism. 

However, biological systems are not straightforward and some caveats arose during this 

study. It is known that CK19 is expressed in several epithelial tissues, besides 

pancreatic ductal cells, such as the oral cavity, lung, liver, kidney, stomach and intestine 

(Ray et al., 2011). Its expression has also been reported in the mesothelium (Terada, 

2011). Therefore, regarding the p53KCk19-CreER model, I cannot exclude the effect of 

the mesenteric tumour in promoting a hostile environment that suppresses mPanIN 

formation.   

Moreover, during the course of my studies, I, and other member of our research group, 

have realized that Ck19-CreER also promotes some limited recombination in acinar 

cells, as reported previously (Means et al., 2008). The reason for this acinar cell 

recombination is not immediately clear. Immunohistochemical analysis of the Ck19 

protein shows no Ck19 protein in the acinar compartment. Given their plasticity and 

ability to quickly convert into ductal cells (Strobel et al., 2007, Means et al., 2005), it is 

possible that some acinar cells regulate the Ck19 gene and, thus, harbour a constant low 

activation of the locus or a high protein degradation.  

As we know from the literature, adult acinar cells do not undergo any tumourigenic 

transformation up to one year after tumour induction, even in the context of p53 

homozygous deletion with KRasG12V oncogenic activation, without chronic caerulein 

treatment (Guerra et al., 2011). Moreover, my time course analysed allowed me to 
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observe time-dependent transformation in the ducts without acinar cell transformation 

before mPDAC onset. Therefore, it is improbable that the acinar cell targeting of the 

Ck19-CreER affects my observations. Nonetheless, the ductal targeting should be 

repeated, both for the Fbw7 and for p53 loss with a different CreER mouse line that is 

more specific to ductal cells. We have recently obtained the Hnf1β-CreER mouse, 

kindly provided by Dr Jorge Ferrer (Solar et al., 2009). Hnf1β is a transcription factor 

expressed in ductal cells during embryonic development and adulthood. While this 

protein is also present in other tissues, such as liver, intestine and kidney (Serfas and 

Tyner, 1993, Coffinier et al., 2002), it has been reported, by means of lineage tracing 

(Rosa26-LacZ) (Solar et al., 2009), and preliminary results from our group confirm, that 

in the pancreas, tamoxifen treatment of Hnf1β-CreER mice does not induce Cre-

dependent recombination in acinar cells. Moreover, no mesenteric recombination was 

detected. Thus, the substitution of the Ck19-CreER for the Hnf1β-CreER model can 

provide solid data supporting the cell of origin effect in determining PDAC pre-

neoplastic lesions. 

 

3.2.3 Origin of low-grade mPanIN lesions 

Low grade PanINs are described as the earliest, and most common, PDAC pre-

neoplastic lesions (Hruban et al., 2007). In my efforts to understand PDAC progression 

from different cell types, I observed that the ductal-derived mPDAC from the 

F7KCk19-CreER model does not develop mPanIN1 before tumour onset. However, to 

my surprise, end-stage murine tumours revealed the presence of rare low-grade, 

AB/PAS-positive mPanINs embedded in the stroma, in close proximity to mPDAC. 

This finding was considered at the time to be a possible side effect of the acinar cell 

targeting with the Ck19-CreER line. This hypothesis was then challenged when I 

observed the presence of rare, non-lineage traced, low-grade mPanINs in the 

F7KYEla1-CreER. 

These low-grade mucinous PanINs, present in the context of duct-derived tumour or as 

a non-labelled lesion in acinar cell specific tumour models following caerulein 

treatment, both appeared in pancreatic scenarios of extensive injury. Therefore, I 

hypothesized that low-grade PanINs, such as PanIN1, could be generated in hostile 
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environments, in a KRas wild type background. I observed that orthotopic 

transplantation of cultured YFP lineage-traced tumour cells from p53KYPdx1-Cre mice 

into immunodeficient Nu/Nu mice led to the development of YFP-negative PanIN1 

lesions in close proximity with the tumour. These low grade PanINs presented a 

columnar epithelium and were positive for markers of early grade PanIN, such as 

AB/PAS and Muc5AC. While the true wild type nature of these lesions has to be 

assessed by possible laser capture microdissection of the bystander mPanINs followed 

by genotyping PCR, these results suggest that KRas wild type cells are able to give rise 

to PanIN1, which might have a great impact in both PDAC diagnosis and prognostic 

value of these structures following surgical pancreatectomy in PDAC patients (In depth 

discussion in Chapter 5, page 205). 
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Chapter 4. Results 

4.1 CD9 marks a tumour-initiating population in multiple mouse 

models of PDAC 

4.1.1 Introduction to the aim 

It has been proposed, and demonstrated, for numerous neoplasias, such as for brain 

(Singh et al., 2004), breast (Al-Hajj et al., 2003), colon (Ricci-Vitiani et al., 2006) and 

small intestinal cancers (Barker et al., 2008), that the capacity to initiate tumour 

formation (tumourigenicity) relies on a subset of specialized cells, commonly referred 

to as cancer stem cells (CSCs) or tumour-initiating cells (TICs). These cells are 

particularly important for tumour biology given their unique ability to self-renew and 

give rise to differentiated progeny, initiating and maintaining tumour growth (Nguyen et 

al., 2012). Hence, great efforts have been employed towards the better understanding of 

tumour hierarchy.  

The existence of PDAC TICs has been a controversial subject. Studies conducted so far 

have failed to provide an accurate identification of the PDAC cells with a higher 

tumourigenic capacity, mainly due to lack of distinction between tumour cells versus 

stroma (Li et al., 2007, Hermann et al., 2007, Oshima et al., 2007, Immervoll et al., 

2011) (for in depth explanation see Chapter 5, page 216). 

As mentioned above, Fbw7 deletion (Fbw7F/F, where loxP sites flank exon 5), with 

concomitant KRasG12D activation (KRasLSL-G12D/wt), in adult ductal cells (F7KCk19-

CreER), led to the development of murine PDAC following tamoxifen treatment 

(Chapter 3, Figure 20). This provided me with a model to study the tumour-initiating 

capacity of adult epithelial cells. 

With the present study I aimed to identify and characterize a PDAC tumour-initiating 

population by studying early stages of adult duct-derived murine PDAC. 
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4.1.2 Duct cells have different susceptibilities to tumour formation 

Most investigations on PDAC TICs use human xenografts as source of tumour material 

(Hermann et al., 2007, Li et al., 2007). However, the use of fully developed tumours as 

a starting point hampers the distinction between pre-existent susceptible cells or de novo 

acquisition of self-renewal potential of TICs from progenitors or more differentiated 

cells. Therefore, I focused on the use of mouse models where tumour initiation could be 

thoroughly analysed. As mentioned above, in our research group I had access to a 

mPDAC inducible tumour model where Fbw7 loss with simultaneous KRasG12D 

oncogenic activation in adult duct cells led to murine PDAC development. To follow 

tumour cells throughout tumour development, I crossed in the lineage tracer R26-LSL-

YFP (explained in 3.1.9). The resulting mice from the mentioned cross will be referred 

hereinafter as F7KYCk19-CreER (Fbw7F/F; KRasLSL-G12D/wt; R26-LSL-YFP; CK19-

CreER) (Figure 28a). 

Given the structural and protein sequence similarity, as well as absorption and emission 

spectra resemblance, between the green fluorescence protein (GFP) and, its mutant 

derivative, yellow fluorescence protein (YFP), YFP can be detected using the GFP 

antibody and the same fluorescent lasers and detection filters used for GFP in flow 

cytometry analysis. Thus, in this chapter cells expressing the YFP will be referred to as 

GFP-expressing cells. 

As demonstrated in Figure 28a, 8-week-old adult mice were intraperitoneally injected 

with tamoxifen at a dose of one injection per day, for two days (100mg/kg of body 

weight). Following 4 weeks after tamoxifen treatment, mice were euthanized due to 

weight loss (data not shown) and presence of a prominent swollen abdomen. Post 

mortem analyses revealed the presence of GFP-positive mPDAC (Figure 28b).  

In order to understand if all ductal cells have the same potential for tumour initiation, I 

decided to analyse early time points after tamoxifen-induced recombination, in search 

of recombined cells (GFP-expressing cells) with different responses to the oncogenic 

hits. As a result of my previous characterization of duct-derived murine PDAC of 

F7KCk19-CreER mice (Figure 20c from Chapter 3), I focused on 2 weeks after 

tamoxifen treatment as the time point of choice, as it was the earliest stage transformed 

cells could be identified by histological analysis. By performing GFP 

immunohistological studies on pancreas of F7KYCk19-CreER mice, two weeks after 
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tamoxifen treatment, I observed that some GFP-expressing recombined cells had 

acquired a different morphology (Figure 28c1) while others remained unaltered (Figure 

28c2). Based on my previous characterization of the F7KCk19-CreER derived PDAC 

(Figure 20 from Chapter 3), the morphological difference found in these cells resembled 

the initial stages of tumour formation from duct cells. Therefore, I considered these 

cells to be transformed.  

Interestingly, this observation was not only restricted to early time points, but also 4 

weeks after recombination. Pancreas of adult F7KYCk19-CreER mice, 4 weeks after 

tamoxifen treatment, exhibited 2 fundamentally different responses: focal PDAC lesions 

composed of GFP-expressing transformed cells (Figure 28c3), and ducts harbouring 

GFP-positive cells with no evident tumourigenic response (Figure 28c4), suggesting a 

ductal heterogeneity regarding tumour susceptibility. 

To ensure that all cells that recombined the Rosa26 locus (GFP-expressing) had also 

recombined, and excised, the Fbw7 floxed exon 5 and the STOP (LSL) cassette before 

the KRasG12D mutant sequence, I sorted live (DAPI-negative) GFP-positive 

(recombined) and negative (non recombined) cells from F7KYCk19-CreER mice, 2 

weeks after tamoxifen treatment (Figure 28d), extracted DNA from these two 

populations and performed a genotyping PCR (Figure 28e). A 3-primer set was used to 

test recombination of the Fbw7 locus that recognizes the floxed (388 bp) and the 

recombined (744 bp) sequences in the same reaction. I observed that the GFP-

expressing population had completely lost the floxed-specific band (388 bp) indicative 

of complete recombination. Similarly, a 3-primer set was used to assess the 

recombination in the KRas locus. The selected primers amplify the LSL cassette (500 

bp), the wild type band (622 bp) and the recombined sequence (650 bp). Results 

demonstrated a complete recombination of the LSL cassette in the GFP-positive 

population based on the complete loss of the LSL-specific band (500 bp) and 

appearance of the recombined mutant G12D band (650 bp). As expected, the 

genotyping PCR on the GFP-negative cells demonstrated the presence of the floxed 

band for the Fbw7 locus (388 bp) and LSL cassette (500 bp). A faint band for the Fbw7 

recombination (744 bp) was detected in the GFP-negative population, which 

demonstrates that the Fbw7 locus recombines more efficiently than the Rosa26 locus. 
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Nonetheless, this does not interfere with the observation of differential susceptibility of 

ductal cells. 

 
Figure 28 - Duct cells have different susceptibilities to tumour formation 

a) Schematic representation of the F7KYCk19-CreER mouse (Fbw7F/F; KRasLSL-G12D/wt; 
R26-LSL-YFP; Ck19-CreER) and experimental approach. Black triangles indicate loxP 
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sites and asterisk indicates the exon with the G12D mutation. 8-week-old mice were 
intraperitoneally injected with tamoxifen (100 mg/kg of body weight) once a day for 
two days. Pancreatic tissue was collected for analysis at day 14 (2 weeks) and 28 (4 
weeks) after last tamoxifen dose. b) Histological analysis of F7KYCk19-CreER-derived 
mPDAC generated 4 weeks after last tamoxifen (tam.) dose. H&E (above) and GFP 
immunostain (below; to detect the YFP tracer in consecutive sections). c) GFP 
immunological stain of pancreatic sections of F7KYCk19-CreER mice 2 and 4 weeks 
after tamoxifen treatment. Transformed ducts (c1 and c3) and non-responsive ducts (c2 
and c4) and 2 and 4 weeks after last tamoxifen dose, respectively, are magnified on the 
right. Black arrows point to examples of transformed cells. The difference in 
transformation was observed in all the mice analysed (n=6 mice for each time point) d) 
Flow cytometry plot of the sorting performed on the isolated pancreatic cells of 
F7KYCk19-CreER mice, 2 weeks after tamoxifen injection. DAPI was used to assess 
viability (DAPI-negative, live cells). Sorted populations are indicated in black (GFP-
negative) and green (GFP-positive). e) DNA agarose gel for the assessment of Cre 
dependent recombination on GFP positive and negative populations by PCR. Expected 
bands and respective fragment sizes (in base pairs) are indicated. 
Scale bars in b and c (low magnification) represent 100 µm while high magnifications 
in c represent 50 µm. 
  

(Figure 28, legend continued) 
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4.1.3 CD44 expression marks early stages of tumour development allowing 

distinction between transformed and non-transformed cells 

It is believed that not all tumour cells are capable of tumour initiation. Instead, a subset 

of cells with stem cell-like properties is able to initiate and maintain tumour 

development (TICs). Different surface proteins have been described as identifiers of 

PDAC TICs, such as cluster of differentiation 133 (CD133), also known as prominin-1, 

and CD44 (Hermann et al., 2007, Li et al., 2007). However, the significance of their 

expression is still not clear (Immervoll et al., 2011). 

In order to assess if these proteins could also identify TICs in our model, I performed 

immunological stains on F7KYCk19-CreER mouse pancreas, at early stages of tumour 

initiation (2 weeks after tamoxifen treatment). Confirming previous published data 

(Oshima et al., 2007, Immervoll et al., 2011), CD133 was present in the apical surface 

of every ductal cell, excluding it as a good marker for a subpopulation of tumour 

initiating cells (Figure 29a). On the other hand, there was a correlation between cell 

surface expression of CD44 and oncogenic transformation. As described above (see 

3.1.5, page 129), ductal cell transformation is initially detected by change in cellular 

morphology (cell enlargement) with no obvious change in the nucleus:cytoplasm ratio. 

Following CD44 immunological stain, I observed that morphologically different cells 

(transformed) expressed CD44, while flat cuboidal cells in the same duct did not 

(Figure 29a), suggesting that CD44 is marking cells with tumour initiation capacity, 

supporting previous findings (Li et al., 2007). 

I decided to further assess CD44 expression in pancreatic cancer. In order to validate 

CD44 as a TIC marker, I performed CD44 antibody stains in pancreatic sections of 

control mice (Ck19-CreER) and of different stages of PDAC development from 

F7KYCk19-CreER mice (Figure 29b). I observed that duct cells from Ck19-CreER 

mice did not express CD44, even after tamoxifen treatment. As mentioned above, in 

contrast, 2 weeks after tamoxifen treatment in F7KYCk19-CreER mice, duct cells 

changed their morphology, expanded towards the lumen of the duct and initiated CD44 

expression, while morphologically unaltered cells remained negative for CD44. 4 weeks 

after tamoxifen treatment the entire tumour was composed of CD44-expressing cells 

(Figure 29b). Given the global expression of CD44 in the developed tumour, instead of 

its presence in a selected sub-population, the value of CD44 expression shifted from 
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TIC marker to general tumour cell marker, as it had also been demonstrated before for 

human and murine PDAC (Hill et al., 2010). These results highlighted a possibility for 

distinction of transformed and non-transformed cells at a molecular level by the use of 

CD44 levels.  

The results in Figure 28e suggested that recombination in GFP-expression cells was 

complete. However, it was possible that some incomplete recombination in non-

transformed, GFP-positive, cells could be masked by a larger population of transformed 

GFP-positive cells. To control for this possibility, I repeated the genotyping PCR with a 

more stringent approach. As CD44 expression could discriminate a transformed from a 

non-transformed population, I obtained, by fluorescent activated cell sorting (FACS), 

GFP-recombined cells, positive for CD44 (targeted and transformed) and GFP-

recombined, CD44-negative cells (targeted and non-transformed) and repeated the 

genotyping PCR. 

F7KYCk19-CreER mice were intraperitoneally injected with tamoxifen and the 

pancreas was collected at early stages of tumour development (2 weeks after tamoxifen). 

The pancreatic tissue was digested and stained for CD44. To control for CD44-specific 

staining, I included a control where only the secondary antibody for CD44 stain was 

used. As observed in Figure 29c, secondary antibody alone gave no significant signal. 

Consistent with the existence of a more susceptible population within the ducts, I 

observed that, soon after recombination, only 0.13% of live pancreatic cells (9.5% of 

live GFP recombined cells) underwent oncogenic transformation and exhibited CD44 

protein on the cell surface. DNA was extracted from GFP+CD44+ (recombined and 

transformed) and GFP+CD44- (recombined and non-transformed) cells, and a 

genotyping PCR was performed for the Fbw7 and KRas loci (Figure 29d). Both 

GFP+CD44+ and GFP+CD44- cell DNA lacked the flox specific sequence (388 bp) for 

the Fbw7 locus and exhibited the recombined specific sequence (744 bp). Similarly, 

both populations lost the LSL cassette on the KRas locus, indicated by the absence of 

the LSL specific band (500 bp), and exhibited the G12D recombined sequence (650 bp). 

These results confirmed that absence of transformation of some recombined duct cells 

was not due to inefficient recombination of one of the genetic alterations induced, and 

that CD44 expression could be used at, early stages of tumour development, to 

distinguish cells with different susceptibilities to tumour formation. 
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Figure 29 - CD44 expression marks early stages of tumour development allowing 

distinction between transformed and non-transformed cells 

a) Immunological stain of CD44 and CD133 in semi consecutive section of pancreatic 
samples of 3 F7KCk19-CreER mice (n=3), 2 weeks after tamoxifen treatment. Non-
transformed regions are digitally magnified. Black arrows show apical expression of 
CD133 in non-transformed cells. b) CD44 immunological stain in pancreas of 2 CK19-
CreER control mice two weeks after tamoxifen treatment and 3 F7KCk19-CreER mice 
two and four weeks after tamoxifen treatment. Magnifications of regions of interest are 
marked. NT- non-transformed; T- transformed. c) Flow cytometry analysis of pancreas 
of F7KYCK19-CreER mice 2 weeks after tamoxifen injection. DAPI was used to assess 
viability; cells were gated for DAPI negativity. Plot shows entire live pancreatic 
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population assessed for CD44 (647 nm excitation - Y axis) and GFP (488 nm excitation 
- X axis) fluorescent signal. Secondary fluorescent antibody alone was used to gate the 
CD44 positve and negative populations. Sorted populations are indicated in green 
(GFP+CD44-) and red (GFP+CD44+) d) DNA agarose gel for the assessment of Cre 
dependent recombination in GFP+CD44+ (red) and GFP+CD44- (green) populations by 
PCR. Expected bands and respective fragment sizes (in base pairs) are indicated. The 
genotyping assessment was performed for 2 F7KYCK19-CreER mice. 
All scale bars represent 50 µm. 
  

(Figure 29, legend continued) 
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4.1.4 Gene expression analysis and validation to identify novel PDAC TIC 

markers 

The observation that not all duct cells harbouring the same oncogenic hits get 

transformed, together with the detection of CD44 expression in early transformed cells, 

provided a valuable strategy to distinguish between adult duct cells susceptible to 

transformation (TICs) and cells not capable of tumour initiation with the same genetic 

background, excluding any additional mutation that could lead to higher 

tumourigenicity. Therefore, to identify PDAC TIC markers, I performed a microarray to 

assess genome-wide differential gene expression between GFP+CD44+ (transformed - 

T) and GFP+CD44- (non transformed - NT) cells at early stages of tumour development 

(Figure 30a). 

Ten F7KYCk19-CreER mice were treated with tamoxifen for 2 days (one IP injection 

per day of 100 mg/kg of body weight), pancreata were collected 2 weeks after last 

tamoxifen injection and pooled for further processing. Following enzymatic cellular 

dissociation and CD44 antibody stain, live cells (DAPI negative) were sorted according 

to their GFP and CD44 expression (GFP+CD44+ vs GFP+CD44-). Due to the harsh 

enzymatic treatment, and possibly the additional deleterious effect of acinar-derived 

enzymes, the viability after cellular dissociation was extremely compromised. Less than 

25x103 cells were obtained for each population providing less than 0.5µg of RNA. 

Given the low amount of RNA, an amplification step took place and GeneChip ® 

Mouse Gene 1.0 ST Array from affymetrix was performed. Results were analysed by 

Richard Mitter from the Bioinformatics and BioStatistics core facility at The Francis 

Crick Institute – Lincoln’s Inn Fields Laboratories, who normalized the raw values and 

calculated the fold change in gene expression between both populations (relative to 

GFP+CD44-). Significance was not calculated due to the lack of replicates. 

Differences in gene expression were extremely subtle, as expected for initial steps of 

tumour formation (Figure 30c). I observed that amongst the 30 most upregulated genes 

were several well established, and previously described, PDAC markers. Cathepsin E 

(CTSE) (Cruz-Monserrate et al., 2012); Matrix metalloproteinase-7 (Mmp7) (Park et al., 

2012), Anterior Gradient 2 (Agr2) (Riener et al., 2009),  Trefoil Factor 2 (TFF2) 

(Buchholz et al., 2005) and Mucin 1 (Muc1) (Rachagani et al., 2012) were 3.36, 3.44, 

3.32, 3.20 and 2.25 fold, respectively, upregulated in the transformed population 
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(GFP+CD44+) (Figure 30b). Moreover, CD44 was 3.8-fold upregulated in GFP+CD44+ 

cells reinforcing the validity of the array (Figure 30c).  

Specific criteria were followed for the selection of genes of interest: (1) overexpressed 

in the GFP+CD44+ cell fraction (downregulated genes were discarded from the 

analysis); (2) coding for proteins with an extracellular domain (to allow further and easy 

identification/isolation and possible therapeutic approaches); and (3) overexpressed at 

least 1.5 fold above the GFP+CD44- fraction (given the already low expression of global 

PDAC markers the cut off was established low to allow inclusion of very rare 

populations). A second selection step was employed to narrow down the number of 

genes of interest. For this next step, a bibliographic search on the relevance of the gene 

in cancer and tumour initiation biology was carried out. In parallel, the protein 

expression profile was virtually analysed using The Human Protein Atlas (Uhlen et al., 

2015). Only proteins detected by antibody stain in scattered ductal cells in the normal 

pancreatic tissue and present either in all or in a subpopulation of PDAC cells were 

selected. A handful of genes was classified as potential TIC markers and, in this thesis, I 

describe my characterisation of the most promising candidate. 

I focused on CD9, also known as Motility related protein 1 (MRP1), as a potential gene 

of interest as it met all criteria required. It was 1.5 fold upregulated in the GFP+CD44+ 

population (Figure 30c); it is a tetraspanin protein and consequently it consists of four 

transmembrane helices, one small intracellular loop and a large extracellular loop 

(extracellular domain); it has been shown to be involved in several types of cancer, such 

as gastric, lung and breast tumours (Hemler, 2014); it has been suggested as a stem cell 

marker in certain human malignancies, mainly haematopoietic (Nishida et al., 2009) and, 

according to The Human Protein Atlas, it is expressed in a subset of duct cells in normal 

human pancreatic tissue and, depending on the sample, in all or a subpopulation of 

human pancreatic cancer cells. 

Microarray validation was performed by quantitative RT-PCR (Q-PCR) (Figure 30d). 

F7KYCk19-CreER mice were treated as described in Figure 28a and GFP+CD44+ (T) 

and GFP+CD44- (NT) cells were sorted 2 weeks after the last tamoxifen intraperitoneal 

injection. As expected, expression of Fbw7 exon 5 (loxP flanked exon) was 

undetectable in both transformed (T) and non-transformed populations (NT) when 

compared to the remaining pancreatic tissue (WT) indicative of efficient deletion of the 
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gene. Ck19 expression levels were not changed. CD44 and epithelial cell adhesion 

molecule (EpCAM), both upregulated in the microarray by 3.8 and 2.25-fold, 

respectively, exhibited an approximately 4-fold upregulation by Q-PCR. Finally, CD9 

expression demonstrated a statistically significant increase in the transformed cellular 

fraction, being 2.5-fold upregulated. 

Therefore, CD9 was followed for further characterization as a PDAC TIC marker.  

 
Figure 30 - Gene expression analysis and validation to identify novel PDAC TIC markers 

a) Schematic representation of the experimental rationale and approach. Ten 
F7KYCk19-CreER mice were injected with tamoxifen for 2 days (one intraperitoneal 
injection per day 100 mg/kg of body weight). Recombined cells initiate GFP 
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expression. 2 week after tamoxifen injection some recombined cells (GFP+) undergo 
oncogenic transformation and upregulate CD44 expression (GFP+CD44+ - transformed 
T) while other recombined cells do not respond to the oncogenic hit (GFP+CD44- - 
Non-transformed NT). T and NT were sorted and RNA used for gene expression array. 
b) List of known human PDAC markers that were also upregulated in the present 
microarray amongst the 30 top upregulated hits. Respective fold changes in gene 
expression of T compared to NT are represented. c) Gene expression profiles of T and 
NT cells. Normalized expression values (arbitrary units – a.u.) for each identified gene 
were plotted; each dot represents one gene. CD9, CD44 and EpCam are indicated with 
respective fold change calculated. d) Validation of selected hits by quantitative PCR. 
Fbw7 floxed exon 5, CK19, CD44, EpCam and CD9 expression levels were measured 
in freshly sorted GFP+CD44+ (T) and GFP+CD44- (NT) cells. WT – non-recombined 
pancreatic cells (GFP-). Q-PCRs were performed in biological triplicates (3 independent 
sorts). In each experiment, a pool of 2 mice was used. Gene expression values were 
normalized to a loading control (tubulin) and fold changes were calculated relative to 
NT or WT in the case of Fbw7. Bar chart shows the mean values plus SD. Significance 
was calculated with the Mann-Whitney test. * Shows p= or <0.05. n.s =  not significant 
  

(Figure 30, legend continued) 
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4.1.5 CD9 expression marks a subpopulation of transformed cells in the 

F7KYCk19-CreER mouse model of PDAC 

As indicated by the microarray and Q-PCR validation, the CD9 gene was shown to be 

overexpressed in the transformed population at early stages of tumour development. 

Nonetheless, there was a possibility of global presence of this protein in all tumour cells. 

To investigate CD9 protein expression, I performed flow cytometry analysis on live 

PDAC tumour cells from F7KYCk19-CreER mice (Figure 31a). Mice were injected 

with tamoxifen as described in Figure 28a and the pancreas collected 4 weeks after the 

last tamoxifen injection. As demonstrated in Figure 31a, the analysis was performed on 

live (DAPI-negative) recombined (GFP-positive) cells. For this particular staining, I 

used a CD44 antibody conjugated to the fluorophore allophycocyanin (CD44-APC; 

emission peak at 660 nm) and an unconjugated antibody was used for CD9. Therefore, I 

included a control for the specificity of the secondary antibody used for the CD9 

staining (antibody isotype controls were also performed – see Figure 33, discussed 

below). It was observed that 90% of the GFP+ live cells were expressing CD44, 

consistent with the advanced stage of tumour development. Compatible with the 

definition of a TIC marker, CD9 protein was not observed in all tumour cells. CD9 was 

only detected in approximately 15% of the GFP+ population and was restricted to 

CD44-expressing cells (Figure 31a). Replicates were performed to allow quantification 

of the percentage of GFP+ cells expressing CD44 only, CD9 only and both CD44 and 

CD9 (Figure 31b). It was observed that the CD44+CD9+ population was consistently, 

and significantly, smaller than the CD44+ (tumour cell) population, reinforcing the 

potential value as a TIC marker. 

To confirm the results obtained by flow cytometry, I performed immunofluorescence 

stains for CD9 and E-Cadherin (an epithelial cell marker that distinguishes tumour cells 

from stroma) in tumours of F7KYCk19-CreER mice, 4 weeks after tamoxifen treatment 

(Figure 31c). I observed that, while the majority of the tumour cells were negative for 

CD9 (Figure 31c1), a small subset of E-cadherin-expressing tumour cells exhibited 

membrane CD9 stain and were organized in clusters (Figure 31c2). The dotted pattern 

of expression of CD9 was not surprising, as it has been described that the tetraspanin 

CD9 protein can cluster laterally in the cell membrane forming tetraspanin-enriched 

microdomains (TEMs) (Hemler, 2014).  
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Figure 31 - CD9 expression marks a subpopulation of transformed cells in the F7KYCk19-

CreER mouse model of PDAC 

a) Flow cytometry analysis of pancreas of F7KYCk19-CreER mice 4 weeks after 
tamoxifen injection. DAPI was used to assess viability. Plot on the left shows cells 
gated for DAPI negativity and GFP positivity to only assess live, recombined cells. 
Analysis was only performed in this DAPI-GFP+ population. Plots on the right show 
CD44 (647 nm excitation - Y axis) and CD9 (555 nm excitation - X axis). CD9 
secondary fluorescent antibody alone control (555nm emission) was used to set up 
gates. Sample - all antibodies used. Percentages (of DAPI-GFP+ population) are 
highlighted within the respective gates. b) Percentage of CD44 only, CD9 only and 
CD44, CD9 double positive cells within DAPI-GFP+ cells. Significance calculated using 
unpaired t test. Bar chart shows the mean values plus SD. Flow cytometry analysis was 
performed in triplicates (n=3 mice). c) Immunofluorescence analysis of CD9 and E-
Cadherin on pancreatic tumours of F7KYCk19-CreER mice, 4 weeks after tamoxifen 
injection. DAPI used for DNA stain (nuclear). Regions of interest are highlighted: 1 - 
magnification of CD9-negative cells. 2 - magnification of CD9-expressing cells. Scale 
bars in low magnification image represent 50 µm and 10 µm in high magnification. 
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4.1.6 CD9 expression marks a subpopulation of transformed cells in the 

p53KYPdx1-Cre mouse model of PDAC 

The value of tumour initiation cell markers, and their applicability in human disease, 

relies on their robustness to identify a subset of cells with tumour initiation capacity in a 

wide range of genetic backgrounds. Therefore, to rule out a dependency of the existence 

of the CD9 population on Fbw7 deletion, I also assessed the presence of CD9-positive 

tumour cells in the well-established p53KYPdx1-Cre (p53F/F; KRasLSL-G12D/wt, R26-LSL-

YFP, Pdx1-Cre) mouse model of PDAC (Bardeesy et al., 2006a). In this model, the 

Pdx1 transcription factor’s promoter, active in pancreatic progenitors, drives Cre 

expression inducing p53 deletion and KRasG12D oncogenic activation, during pancreatic 

development. At 5 to 8 weeks of age, mice had to be euthanized  (Figure 32a) due to the 

presence of a swollen abdomen and weight loss (data not shown). 

Autopsies revealed a solid and enlarged cell mass in the abdominal cavity in the 

pancreatic region. Regarding histological presentation, haematoxylin and eosin analysis 

demonstrated the presence of a strong stromal expansion (desmoplasia) and expanded 

neoplastic ductal structures, both commonly found in PDAC (Figure 32b H&E). 

Tumour cells were shown to be GFP-positive by immunological analysis, indicating 

that transformed cells could be traced by R26-LSL-YFP (Figure 32b GFP). As 

described previously (Bardeesy et al., 2006a), some regions exhibited cells with a 

spindle-like morphology embedded in the stroma, thus this tumour was classified as 

poorly-differentiated PDAC (Figure 32b). 

To assess the presence of CD9-expressing cells in the p53KYPdx1-Cre-derived tumours, 

I collected the pancreatic tumours of 5-week-old mice, stained for CD9 and performed 

flow cytometry (Figure 32c). A fluorescent secondary antibody control was included to 

validate the specificity of the CD9 stain in this new sample. Only live (DAPI-negative) 

GFP+ cells were used for the analysis. I observed that, also in this model, there is a 

CD9-positive subpopulation of PDAC tumour cells, composing approximately 5% of 

the GFP+ cells.  

The results obtained confirmed heterogeneity within the tumour population (at least at 

the molecular level of CD9 expression). 



Chapter 4 Results 

 

 177 

 
Figure 32 - CD9 expression marks a subpopulation of transformed cells in the 

p53KYPdx1-Cre mouse model of PDAC 

a) Schematic representation of the p53KYPdx1-Cre mouse (p53F/F; KRasLSL-G12D/wt; 
R26-LSL-YFP; Pdx1-Cre) and experimental approach. Black triangles represent loxP 
sites and asterisk represents KRasG12D mutation. Mice developed pancreatic tumours 5 
weeks after birth. b) H&E and GFP immunological stain of PDAC tumours from 5-
week-old p53KYPdx1-Cre mice. Regions of interest are highlighted and magnified. 
Black arrows show spindle-shaped tumour cells. Scale bars in low magnification 
represent 500 µm and in high magnification represent 100 µm. c) Flow cytometry 
analysis of pancreas of 5-week-old p53KYPdx1-Cre mice. DAPI was used to assess 
viability. Plot on the left shows cells gated for DAPI negativity and GFP positivity, to 
only assess live, recombined cells. Analysis was only performed in this DAPI-GFP+ 

population. Plots on the right show GFP (488 nm excitation - Y axis) and CD9 (555 nm 
excitation - X axis). CD9 secondary fluorescent antibody alone control (555 nm 
excitation) was used to set up gates. Sample - all antibodies used. Percentages (of DAPI-

GFP+ population) are highlighted within the respective gates. 
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It has been described that CD44 expression in tumour-initiating cells goes from low 

(non-TICs) to high (TICs) expression rather than absent to positive, i.e, there is not a 

distinctive observable population expressing CD44 (Li et al., 2007). The same has been 

demonstrated for other tumour initiating markers, such as CD133 and CD24, and not 

only for pancreatic samples (Hermann et al., 2007, Li et al., 2007, Al-Hajj et al., 2003). 

Since the flow cytometry results obtained with both the CD44 conjugated antibody and 

the CD9 unconjugated antibody were shifts of the fluorescence intensity, rather than the 

appearance of a distinct positive population, I decided to validate our antibodies by 

performing additional analysis with the respective isotype controls. Validation of the 

CD9 antibody was performed with cultured cells from the p53KYPdx1-Cre-derived 

tumours (Figure 33a). Cells were expanded as organoids (see Chapter 2, page 102), 

dissociated by trypsin and stained with the fluorescent secondary antibody alone, with 

the CD9 primary antibody plus secondary, or with rat IgG2a isotype primary antibody 

plus secondary. While “unstained”, “secondary antibody alone” and “rat IgG2a isotype 

primary antibody plus secondary” samples showed no positive signal, the combination 

CD9 primary antibody plus secondary promoted a shift in the population to give a 

CD9Low/Intermediate and a CD9High populations (these populations will hereinafter be 

referred to as CD9Low and CD9High). 

A similar specificity was observed for the CD44 conjugated antibody. Fully developed 

tumours from F7KYCk19-CreER mice were dissociated and stained for CD44 (Figure 

33b). Only live recombined cells (DAPI-GFP+) were included for the analysis. As seen 

for the CD9 antibody, the rat APC-isotype IgG2b showed no staining while the APC-

conjugated CD44 antibody marked most of the GFP tumour cells, as expected. 
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Figure 33 - Assessing CD44-APC and unconjugated CD9 antibody specificity 

a) Flow cytometry analysis of CD9 unconjugated antibody specificity using cultured 
cells from p53KYPdx1-Cre-derived PDAC organoids. Only live cells were included in 
the analysis (DAPI negative –marked red in the plot on the left). Flow cytometry plots 
on the right show fluorescence intensity following 555 nm excitation, on the x axis, as a 
readout of CD9 signal for: unstained, secondary antibody alone, rat IgG2a plus 
secondary antibody and rat CD9 plus secondary antibody. b) Flow cytometry analysis 
of CD44 APC-conjugated antibody specificity using primary tumour cells from 4 weeks 
F7KYCk19-CreER-derived PDAC. Only live recombined cells were included in the 
analysis (DAPI-GFP+ – marked red in plot on the left). Flow cytometry plots on the 
right show fluorescence intensity following 647 nm excitation, in the x axis, as a 
readout of CD44 signal for: rat IgG22b-APC and rat CD44-APC. 
Percentages of positive cells from previous gate are indicated. 
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4.1.7 CD9 surface expression identifies a subpopulation with higher in vitro 

organoid-forming capacity in primary and cultured tumour cells of 

different mouse models of PDAC 

TICs, initially referred to as “cancer stem cells”, have been described as a population 

with stem cell-like properties, such as the ability to self-renew and to give rise to 

differentiated progeny (Clarke et al., 2006). These stem cell-like features have been 

extensively studied in vitro. Numerous research groups have demonstrated that TICs of 

different tumour types and tissues, unlike non-tumourigenic cells, can initiate and 

propagate cell cultures, in non-adherent conditions as spheres or as organoids in 3D 

matrices (Pastrana et al., 2011). 

Sphere-forming assays have also been established for pancreatic cancer TICs, where 

tumour cells expressing TIC markers are isolated from the remaining population and 

their ability to propagate the culture in non-adherent conditions is compared to their 

marker-negative counterpart (Gaviraghi et al., 2010, Hermann et al., 2007, Lonardo et 

al., 2011). However, it is known that not all pancreatic tumour cell lines are able to form 

spheres, even though they are able to give rise to tumours upon transplantation into 

recipient mice (in vivo self-renewal property) (Gaviraghi et al., 2010). Therefore, I 

assessed the ability of freshly isolated tumour cells from F7KYCk19-CreER and 

p53KYPdx1-Cre-derived PDAC to grow as floating spheres in serum-deprived medium, 

as previously described (Gaviraghi et al., 2010, Hermann et al., 2007). Unfortunately, 

the F7KYCk19-CreER tumour cells failed to grow in these conditions (data not shown), 

which led me to use 3D matrices. 

It has been recently shown that pancreatic tumour cells derived from murine PDAC can 

be maintained and expanded as organoids in a matrigel matrix (Boj et al., 2014). It has 

also been shown that these conditions favour the growth of cells with stem cell-like 

phenotypes that are able to give rise to differentiated pancreatic progeny, while the 

remaining cells fail to grow (Huch et al., 2013). Therefore, I decided to use this 3D 

culture system to assess differences in organoid-initiation potential (see Chapter 2, page 

105) of CD9High versus CD9Low freshly isolated tumour cells from both F7KYCk19-

CreER and p53KYPdx1-Cre-derived murine PDAC (Figure 34a). 

F7KYCk19-CreER mice were intraperitoneally injected with tamoxifen for 2 days (one 

injection per day 100 mg/kg of body weight). Four weeks after injection, tumours were 
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removed, isolated DAPI-GFP+ cells were FAC sorted according to their CD9 expression 

and 1000 cells per well were plated in matrigel in 24-well plates. The experiment was 

repeated four times (four independent cell sortings, biological quadruplicates) and, at 

least technical duplicates were performed per experiment for significance assessment (n 

mice = 4). I observed that CD9High cells were significantly more capable of forming 

organoids (p<0.001) when compared with their negative counterparts, being able to 

generate an average of 0.0025 organoids per plated cell (0.25%) (Figure 34b,c). 

To verify if the organoid-initiating capacity was conserved throughout different 

oncogenic genotypes, a similar assessment was performed for tumour cells from the 

p53KYPdx1-Cre-derived PDAC. Five weeks after birth, PDAC tumours from 

p53KYPdx1-Cre mice were collected, the cells dissociated and 1000 GFP+ cells, sorted 

according to their CD9 expression, were plated per well in matrigel in 24-well plates. 

The experiment was performed in biological duplicates for significance assessment (n 

mice = 2). A significant difference was observed (p=0.05) when comparing both 

populations. While approximately 10% of the GFP+CD9High cells were capable of 

organoid formation, only 1% of GFP+CD9Low cells formed organoids (Figure 34d,e). 

Moreover, it was visually evident that the GFP+CD9High-derived organoids were bigger 

in size (no measurement was performed) (Figure 34c,e). 

Thus, the in vitro results provided the first functional evidence of a higher tumourigenic 

capacity of CD9High tumour cells. 
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Figure 34 - CD9High murine PDAC primary tumour cells have a higher organoid forming 

capacity 

a) Schematic representation of the experimental approach. Murine PDAC from 
F7KYCk19-CreER or p53KYPdx1-Cre mice were isolated and tumour cells (GFP+) 
were sorted according to their CD9 expression. GFP+CD9High and GFP+CD9Low cells 
were plated in matrigel and the organoid formation capacity was compared between the 
populations. b) Number of organoids per plated cell (1000 cells plated) formed by the 
sorted F7KYCk19-CreER tumour cells. (n=4 mice) c) Representative bright field 
images of generated organoids from the F7KYCk19-CreER GFP+CD9High (above) or 
GFP+CD9Low (below) sorted cells, 10 days after plating. d) Number of organoids per 
plated cell (1000 cells plated) formed by the sorted p53KYPdx1-Cre tumour cells. (n=2 
mice) e) Representative bright field images of generated organoids from the 
p53KYPdx1-Cre GFP+CD9High (above) or GFP+CD9Low (below) sorted cells, 10 days 
after plating. 
All scale bars show 250 µm. 
Dot blots show mean +/- SD. Significance was calculated with the Mann Whitney test. 
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Given the low percentage of tumour cells which were CD9High in both PDAC mouse 

models (10% for F7KYCk19-CreER and 5% for p53KYPdx1-Cre – Figure 31a,b and 

Figure 32c) it became apparent that the number of cells extracted per murine tumour 

constituted a challenge for in vivo studies, i.e., the number of cells obtained was not 

enough for homograft tumour analysis. Consequently, PDAC tumour cells had to be 

expanded before any in vivo approach could take place. 

For tumour cell in vitro expansion, I decided to use the 3D organoid system since cells 

from these cultures can recapitulate the human disease upon orthotopic transplantation 

(Boj et al., 2014). To ensure that culturing these freshly obtained tumour cells would 

not change the phenotypic difference between the CD9High and the CD9Low tumour cells, 

p53KYPdx1-Cre bulk tumour cells were expanded in vitro as organoids for several 

passages, sorted as single cells according to their CD9 expression and assessed for their 

ability to generate further organoids (Figure 35a). 

I dissociated murine PDAC from p53KYPdx1-Cre mice and plated the unsorted 

population in matrigel with organoid media (see Chapter 2, page 102). Six passages 

later, the cultured cells were dissociated with trypsin, stained for CD9 and plated in 

organoid-forming conditions according to their CD9 expression, as above. While in the 

previous assessment cells were plated by hand, for this experiment, to avoid human 

error during cell counting and plating, I FAC sorted 100 GFP+CD9High or 100 

GFP+CD9Low cells directly into pre-cooled, matrigel-coated wells of 96-well plates (100 

cells per well). Experiments were performed in duplicate (two independent sorts, 

biological duplicates) with, at least, technical triplicates (n mice = 2). A secondary 

antibody control was used to assess the specificity of the stain in these new conditions, 

which was shown not to have a signal (Figure 35b). 

As observed for the primary tumour cells, GFP+CD9High organoid-derived tumour cells 

formed 10 times more organoids than GFP+CD9Low cells with a significance of P=0.006. 

While the CD9High population showed 12% efficiency in organoid formation, only 2.5% 

of the CD9Low cells formed organoids (Figure 35c). The organoids formed by the 

CD9High sorted population were not only greater in number but also statistically 

significantly bigger in size (p<0.0001) (Figure 35d).  
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These results demonstrated that the organoid forming capacity of the CD9High tumour 

cells was a robust phenotype over several passages and allowed me to proceed to in vivo 

analysis. 

 
Figure 35 - CD9High murine PDAC organoid-derived tumour cells retain a higher organoid 

forming capacity 

a) Schematic representation of the experimental approach. Murine PDAC from 
p53KYPdx1-Cre mice were isolated and tumour cells grown for several passages as 
organoids. Organoids were dissociated and sorted according to their CD9 expression. 
GFP+CD9High and GFP+CD9Low cells were plated in matrigel and the organoid 
formation capacity was compared between the populations. b) Representative flow 
cytometry plot of a sort performed on the P53KYPdx1-Cre-derived tumour organoids. 
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Only live cells (DAPI-negative) were analysed (upper plot). Lower plots show 
secondary antibody alone control (left) and the CD9 stain (right). Positive CD9 gate was 
established based on the unstained population; negative CD9 gate was designed to 
reduce the chance of including cells with intermediate CD9 expression. c) Number of 
organoids per plated cell (100 cells plated) formed by the sorted p53KYPdx1-Cre-
derived PDAC tumour organoids. (n=2 mice, 4 experimental replicates). d) Organoid 
size. Pixel area (arbitrary units - a.u.) was measured using ImageJ to quantify organoid 
size. Every organoid formed in c was measured and their respective sizes were plotted 
in the dot plot (nCD9Highorganoids = 96; nCD9Loworganoids = 23). 
Dot plots show mean +/- SD. Significance was calculated with the Mann Whitney test. 
  

(Figure 35, legend continued) 
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4.1.8 CD9 surface expression identifies a murine PDAC tumour population with 

higher in vivo tumourigenic potential 

While in vitro observations of higher organoid-forming potential from CD9High cells 

suggest a tumour-initiating property, by definition, tumour-initiating cells have to be 

capable of tumour formation and maintenance in xenograft or homograft models, 

reproducing the primary disease (Clarke et al., 2006). 

Therefore, the classification of tumour-initiating cells is highly dependent on the greater 

ability of the putative TIC population to form tumours, when compared to the negative 

population in recipient mice. To assess, in vivo, the cancer stem cell-like potential, I 

generated and expanded p53KYPdx1-Cre PDAC tumour-derived organoids, sorted the 

expanded tumour cells according to their CD9 expression (GFP+CD9High versus 

GFP+CD9Low) and subcutaneously injected the sorted population into the flanks of 

immunodeficient NuNu mice (the same mouse was subcutaneously injected with both 

populations, one in each opposite flank, for comparable analysis) (Figure 36a). 

Represented results are the combination of two independent experiments. 

The tumorigenic capacity was measured by: (1) the ability of selected populations to 

form tumourigenic nodules (a nodule was considered a mass equal to 4mm3), at a 

particular time (time X), following serial dilution and (2) their capacity to maintain 

tumour development by comparing tumour sizes at endpoint. I injected 200x103, 20x103, 

2x103 or 0.2x103 GFP+CD9High and GFP+CD9Low tumour cells in the flanks of NuNu 

mice. I had observed before that p53KYPdx1-Cre organoid-derived PDAC cells have a 

pronounced tumour formation capacity even as a bulk population, since orthotopic 

transplantation of 500x103 cells generated palpable sized tumours two weeks after 

surgery (Figure 26b, Chapter 3, page 148). Therefore, measurements of initial nodules 

started one week after homograft transplantation and continued until all experimental 

animals developed tumours. 

It was seen that, in all dilutions, the CD9High cell-containing flanks developed nodules in 

all mice before all flanks with CD9Low-injected cells showed nodule formation (Figure 

36b). As expected, the biggest difference in nodule onset was observed when 2x103 and 

0.2x103 cells were injected. Upon injection of 2x103 cells, 50% of the CD9High cell-

containing flanks developed nodules at 2 weeks and all flanks were found with nodules 

at 4 weeks. However, when the same number of CD9Low cells was injected, at the third 
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week, only 50% of the mice were found with nodules, with the last nodule formation 

being registered 6 weeks after injection (Figure 36b,c). When 0.2x103 cells were 

injected, 50% of the mice developed nodules in the flank injected with CD9High cells as 

soon as 2 weeks after injection while no nodule was detected at this time point for 

CD9Low cell-containing flanks (Figure 36b,d). It is important to mention that, in 

accordance with the inability of CD9Low cells to sustain tumour development, when 200 

cells were injected, 1 out of the 4 mice demonstrated CD9Low-derived tumour regression 

and, consequently, no tumour was detected when the experiment was terminated. 

Moreover, 1 out of the remaining 3 tumours was so small at the time of removal that 

embedding and sectioning was compromised. Thus, only two tumours from the flanks 

of 0.2x103 CD9Low injected cells were left for histological analysis. 

Tumour initiation is a feature that only self-renewing cells possess given their unique 

ability to continuously give rise to tumour cells. Nevertheless, the remaining “non-

tumour-initiating cells” harbour some limited proliferative potential enabling nodule 

formation (Reya et al., 2001). Therefore, the functional assessment of TICs cannot be 

restricted to their ability to initiate nodules in recipient mice, but also to sustain the 

growth of the initiated tumour. For this reason, tumours were allowed to grow until one 

of the flanks reached 1 cm3 of tumour content or appearance of animal distress due to 

tumour load or location. Mice harbouring one 1 cm3 tumour were culled, tumours from 

both flanks were removed and their size measured. Tumour volume was calculated 

using the following formula: volume=(Height*Length*width)/2 (Tomayko and 

Reynolds, 1989). 

It was observed that while CD9High tumour cells were able to form 1cm3 tumours, 

regardless of the number of cells injected, CD9Low tumour cells failed to maintain 

tumour growth with increase in dilution (Figure 36e). I calculated the fold difference in 

tumour size between CD9High and CD9Low-developed tumours, for all dilutions 

performed, and observed that, despite the low difference in tumour onset, CD9High cells 

were 4, 3.5, 8 and 13-fold more capable of tumour growth than CD9Low cells when 

200x103, 20x103, 2x103 and 0.2x103 cells were injected, respectively (Figure 36f).  

To assess tumour maintenance, i.e., the ability to propagate and maintain tumour growth 

after tumour initiation, I calculated the final tumour volume relative to the volume of 

the initially detected nodule (=VolumeFinal/VolumeInitial). The biggest difference was 
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observed when 200 cells were inoculated. While CD9High cells demonstrated over a 

100-fold increase in tumour size compared to the initial nodule, the CD9Low cells were 

only capable of a 10-fold increase (Figure 36g). Importantly, and as mentioned above, 2 

out of 4 nodules from 200 CD9Low injected mice exhibited tumour growth 

regression/inefficient growth following nodule onset, reinforcing their limited 

proliferation capacity. 

These results corroborate the higher tumourigenic capacity suggested from my in vitro 

studies and demonstrate that CD9High PDAC tumour cells are capable of both tumour 

initiation and maintenance, while the CD9Low tumour cells fail to maintain tumour 

growth. 
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Figure 36 - CD9 surface expression identifies a murine PDAC tumour population with 

higher in vivo tumourigenic potential (TICs) 

a) Schematic representation of the experimental approach. Murine PDAC from 
p53KYPdx1-Cre mice were isolated and tumour cells grown for several passages as 
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organoids. Two independent cell lines were generated from 2 individual p53KYPdx1-
Cre mice-derived PDAC. Organoids were dissociated and sorted according to their CD9 
expression. GFP+CD9High and GFP+CD9Low cells were injected (serial dilutions) in the 
flanks of NuNu mice and tumour initiation and growth were analysed. b) Tumourigenic 
capacity of CD9High versus CD9Low tumour cells from p53KYPdx1-Cre PDAC-derived 
organoids. 200x103, 20x103, 2x103 and 0.2x103 sorted tumour cells were injected in the 
flanks of NuNu mice and the number of weeks necessary for nodule (4mm3) detection 
was registered. c) Percentage of mice injected with 2x103 sorted CD9High or Low tumour 
cells that developed tumours per week x. d) Percentage of mice injected with 0.2x103 
sorted CD9High or Low tumour cells that developed tumours per week x. e) Tumour sizes 
per flank, per dilution, in cm3. Mice were culled when one of the flanks developed a 
tumour of 1cm3. Each dot indicates a tumour (one CD9High and one CD9Low tumour per 
mouse). Dot blot indicates mean +/- SD. Volume was calculated as: 
volume=(Height*Length*width)/2. Representative image of generated tumours. Scale 
bar represents 1cm. f) Fold change of the volume between the CD9Low and CD9High-
derived tumours at each dilution. Bar chart shows mean +/- SD. g) Relative tumour 
volume (RTV) of the CD9High and CD9Low-derived tumours when 0.2x103 cells were 
subcutaneously injected. RTV = VolumeFinal/VolumeInitial. Bar chart shows mean plus 
SD. 
Significance was calculated using the Mann Whitney test for e and g, and the Wilcoson 
test was used to calculate significance in f (values were normalized to the CD9Low 
control) 
  

(Figure 36, legend continued) 
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4.1.9 CD9High PDAC TICs re-establish the cellular heterogeneity observed in the 

primary tumour 

Similar to tissue stem cells with their capacity to give rise to different cell types, 

tumour-initiating cells are known to be responsible for the cellular heterogeneity found 

in cancers, given their ability to generate differentiated progeny (Clarke et al., 2006). I 

performed histological studies in order to compare the tumours generated by the 

CD9High and CD9Low cells with their original primary tumour. For the purpose of 

simplicity, only the tumours derived from 2x103 injected cells will be described. 

Tumours formed after injection of 200x103 and 20x103 cells followed a similar pattern 

as 2x103-derived tumours. Regarding tumours formed following injection of 0.2x103 

CD9Low tumour cells, their histologic assessment is still ongoing.  

Hematoxylin and eosin analysis of tumours generated following injection of 2x103 cells 

demonstrated that, while both the primary and the CD9High-derived tumours were 

compact masses of tissue, the CD9Low-derived tumours possessed mainly cystic 

structures (Figure 37a,b,c). Ck19 and GFP immunohistochemical analysis allowed a 

better understanding of the tumour histology. Ck19 stain demonstrated that all three 

tumours presented regions of ductal differentiation by the detection of branching 

epithelial elements with ductal morphology and thus could be classified as PDAC 

(Figure 37d,e,f). However, when analysing the GFP signal (lineage tracer of injected 

tumour cells), I could detect that, while there was a good co-localization with the Ck19 

stain in the CD9Low-derived tumours, the primary and the CD9High-generated tumours 

exhibited large regions that expressed GFP but had lost Ck19 protein (Figure 37g,h,i). 

Since GFP is expressed in all tumour cells, the results suggest that some of the tumour 

cells had lost their ductal epithelial identity. Confirming the previous hypothesis, high 

magnification of GFP expression regions, that had lost Ck19 expression, demonstrated 

that most of the tumour cells in the primary and the CD9High-derived tumours presented 

a mesenchymal differentiation with cells exhibiting a spindle shape. On the other hand, 

CD9Low-derived tumours were entirely composed of cells expressing Ck19 and GFP 

with a ductal cuboidal/columnar epithelial morphology (Figure 37j,k,l,m,n,o).  

Given the difference between the generated tumours, I requested a complete pathology 

report, which was provided by our on-site consultant histopathologist, Professor Gordon 

Stamp. It has been described before that the homozygous deletion of p53 in pancreatic 
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progenitors with concomitant KRasG12D activation leads to the development of 

pancreatic ductal adenocarcinoma embedded in dense fibrous stroma or in conjunction 

with sarcomatoid or anaplastic carcinomas, characterized by the presence of spindle-

shaped cells and concomitant ductal differentiation (Bardeesy et al., 2006a). Similar to 

the primary tumour, CD9High-derived tumours presented regions with semi-polarized 

cuboidal cells, resembling a pancreatic ductal phenotype, combined with GFP-

expressing sarcomatous elements with single cell invasion. Both tumours were 

classified as carcinosarcomas. In contrast, CD9Low-derived tumours were described to 

possess similar branching tubuloglandular ductal structures but no obvious sarcomatous 

transformation, with epithelial cells clearly distinct from the desmoplastic stroma. These 

tumours were not classified as carcinosarcomas. 

The results suggest that CD9High-sorted PDAC organoid-derived tumour cells were 

capable of giving rise to the cell types found in the primary tumour reproducing the 

p53KYPdx1-Cre-derived PDAC histological heterogeneity, and that CD9Low cells retain 

their epithelial differentiation, failing to generate more mesenchymal cells. 
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Figure 37 - CD9High PDAC TICs re-establish the cellular histological heterogeneity 

observed in the primary tumour 

Representative histological analysis of the p53KYPdx1-Cre primary tumour and the 
tumours generated following injection of 2x103 p53KYPdx1-Cre PDAC organoid-
derived sorted CD9 high and low tumour cells. More than 3 p53KYPdx1-Cre primary 
tumours were analysed. Tumours from all injected mice were collected and used for 
histological analysis. a,b,c) H&E section of (a) primary, (b) CD9High and (c) CD9Low 
tumours. d,e,f) CK19 immunological staining of (d) primary, (e) CD9High and (f) 
CD9Low tumours. g,h,i) GFP immunological staining of (g) primary, (h) CD9High and (i) 
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CD9Low tumours. j,k,l) Magnified regions highlighted in g, h and i, respectively. Black 
arrows highlight ductal differentiation in primary and CD9High-derived tumours. All 
regions in CD9Low tumours possess ductal differentiation. m,n,o) Magnified regions 
highlighted in j, k and l, respectively. 
All scale bars represent 100µm, unless indicated otherwise in the figure. 
  

(Figure 37, legend continued) 
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4.1.10 Tumours derived from CD9High cells are more proliferative than the CD9Low 

generated tumours 

The assumption that the CD9Low tumour cells are non-tumour-initiating cells with 

limited proliferative potential requires the observation of reduced proliferation in 

CD9Low-generated tumours when compared with tumours generated by CD9High sorted 

cells. For this purpose, I stained the tumours generated by subcutaneous injection for 

phosphorylated histone 3 (pH3) (Figure 38a), a marker of on-going mitosis (Hans and 

Dimitrov, 2001). I could observe that CD9High tumours were significantly more 

proliferative than CD9Low-derived neoplasias (Figure 38b). As described above, 

tumours generated from CD9Low injected cells exhibited a pronounced ductal 

differentiation compared to the ones generated by CD9High injected cells. Nonetheless, I 

also observed increased proliferation in epithelial regions with ductal differentiation of 

CD9High derived tumours, excluding the status of differentiation as a cause of the 

proliferative difference (Figure 38a). 

These results corroborate a limited proliferative potential of CD9Low cells and 

incapability to maintain tumour growth, hence, their classification as non-TICs. 

 
Figure 38 - Tumours derived from CD9High cells are more proliferative than CD9Low-

generated tumours 

a) Immunological staining of CD9High and Low-derived tumours for pH3. Images show 
ductal epithelial regions of CD9Low-derived tumours and both ductal and mesenchymal 
differentiated regions of CD9High-derived tumours. Scale bars represent 100µm. b) 
Quantification of number of cells positive for pH3 per mm2. Four tumours per 
population and 3 levels per tumour were used for quantification (n mice =4). Bar chart 
shows mean plus SD. Significance was calculated using the Mann Whitney test. 
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4.2 Discussion: Identification of a specialized tumour-initiating 

population in murine PDAC 

4.2.1 Differential cancer susceptibility of ductal cells 

The pancreatic ductal compartment is commonly described as a structure composed of a 

homogeneous cellular population (ductal cells) responsible for the conduction of acinar-

derived digestive enzymes to the duodenum (Reichert and Rustgi, 2011). However, 

injuries to the organ and selective genetic manipulations have unravelled a cellular 

plasticity that might only be present in a subset of ductal cells (Sancho et al., 2014, 

Inada et al., 2008).  

Adding to this cellular heterogeneity, I observed a differential susceptibility to 

tumourigenic transformation in adult ductal cells. When the initial stages of adult 

PDAC development of F7KYCk19-CreER mice were analysed, it was observed that 

only a fraction of the lineage traced cells (recombined, GFP+) exhibited morphological 

features of transformation. Protein level analysis identified CD44, a surface protein 

previously identified in human PDAC TICs to be selectively expressed in transformed 

cells. Its presence was detected as early as 2 weeks after tamoxifen treatment, allowing 

distinction between early transformed and non-transformed cells, and persisted 

throughout tumour development proving to be a good tumour cell marker. Important to 

highlight is the fact that the GFP+CD44+ and GFP+CD44- populations harboured the 

same oncogenic hits, since genotyping PCR could not detect inefficient recombination 

for the Fbw7 and KRas loci in any of the populations assessed.  

Our research group has previously described that loss of Fbw7 protein, in adult ductal 

cells, promotes a cellular conversion of ductal cells into endocrine insulin-producing β-

cells  (Sancho et al., 2014). In that study, a simultaneous increase in proliferation was 

also observed with Fbw7 loss, which was independent from the conversion, as ductal 

cell-derived newly formed β-cells did not arise through a proliferation step. This 

suggested that, within the ductal network, some cells are more prone to proliferate than 

others (Sancho et al., 2014). Corroborating previous findings, my results support this 

proliferative heterogeneity by demonstrating that ductal cells respond differently to the 

same oncogenic hit.  These results encouraged me in the search for markers of tumour 

initiating cells for PDAC development.  
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4.2.2 CD9High PDAC cells constitute a tumour-initiating population 

The identification of tumour-initiating cells has increased the understanding of tumour 

biology and changed the way medicine approaches cancer treatments. While TIC 

identification was initially reported in haematological malignancies (Lapidot et al., 

1994), solid tumours have also been the target of tumour-initiating cell identification. 

Pancreatic cells with higher tumourigenic capacity have been reported (Hermann et al., 

2007, Lonardo et al., 2011, Li et al., 2007). However, inconsistent data has been 

obtained in different laboratories (see Chapter 5, 5.4) highlighting the need for better 

understanding of PDAC tumour-initiating biology. 

I performed a gene expression array to assess differentially expressed genes in 

transformed versus non-transformed pancreatic cells (GFP+CD44+ vs GFP+CD44-) with 

the same oncogenic hits (Fbw7 deletion and KRasG12D oncogenic activation), and 

combined it with literature and database searches (Uhlen et al., 2015). I identified CD9 

as a potential marker for a subpopulation of transformed cells. Due to technical 

difficulties, such as the number of cells of interest obtained in each pancreatic isolation, 

the execution of replicates was not possible. However, the observation that described 

pancreatic tumour markers such as CTSE, Mmp7, Agr2, TFF2 and Muc1 were included 

amongst the most upregulated genes in the transformed cell population illustrated a 

biological accuracy of the expression array. Nevertheless, validation was performed 

following repetition of the experimental outline and Q-PCR analysis of selected hits. 

 

The cancer stem cell hypothesis postulates that tumour-initiating cells are equipped with 

stem cell features; such as self-renewal capacity and ability to give rise to differentiated 

progeny, culminating in the observed cellular heterogeneity. These features are 

routinely assessed by in vitro differential sphere/organoid-forming capacity and by the 

unique aptitude to generate tumours when transplanted into recipient mice (Nguyen et 

al., 2012, Clarke et al., 2006, Jordan et al., 2006, Pastrana et al., 2011). The in vitro 

organoid-forming capacity and the in vivo tumourigenic potential, following homograft 

transplantation, of the CD9High murine PDAC population was significantly increased 

when compared with their CD9Low-expressing counterpart. 

In particular cases, such as in haematopoietic malignancies, tumour-initiating cells 

depend on the oncogenic hit received. While some genetic alterations were shown to be 
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capable of inducing TIC properties in progenitor cells, other oncogenic hits failed to do 

so (Huntly et al., 2004). Thus, my assessment included two different genetic 

backgrounds: Fbw7 or p53 homozygous deletion, both harbouring the PDAC oncogenic 

driver mutation (KRasG12D activation). I observed that, independently of the oncogenic 

hit, CD9High cells, present in murine PDAC, exhibit a significantly increased in vitro 

organoid-forming potential compared to CD9Low tumour cells. 

Interestingly, despite the higher number of CD9High cells present in the F7KYCk19-

CreER-derived murine PDAC (approximately, 15% of the tumour cell population), the 

p53KYPdx1-Cre murine PDAC-derived CD9High cells (containing approximately 5% 

CD9High cells of the tumour cell population) exhibited higher in vitro organoid-forming 

potential. Unfortunately, the organoid formation from CD9High cells of the two 

genotypes was not simultaneously assessed, introducing a great experimental variability, 

which impedes comparison. Nonetheless, replicates within each genotype were 

consistent, excluding inter-experiment variability as a causative element. The cellular 

origin of these murine PDAC should also be borne in mind. While the F7KYCk19-

CreER-derived PDAC have their origin in adult duct cells, the murine PDAC derived 

from p53KYPdx1-Cre is formed from pancreatic progenitors. It is clear that both initial 

cell types (adult ducts and pancreatic progenitors) greatly differ in their transcriptional 

programs and expression profiles, which might affect the self-renewal potential of the 

tumour-initiating cells. To accurately compare both genetic alterations, the same Cre 

driver should be used. Thus, the in vitro organoid-formation assessment should be 

repeated comparing F7KYPdx1-Cre with p53KYPdx1-Cre PDAC-derived CD9High cells 

(pancreatic progenitors) and the F7KYHnf1β-CreER with the p53KYHnf1β-CreER 

CD9High PDAC-derived cells (adult duct cells). However, the fact that the CD9-positive 

TIC population was present in PDACs originated from 2 different genetic profiles and 

cells of origin suggests that CD9 might be a general marker for PDAC TICs. 

I have also observed that the frequencies of organoid-initiating cells were extremely low 

for both murine PDAC models. Only 0.3% of the F7KYCk19-CreER PDAC-derived 

CD9High cells and approximately 10% of the p53KYPdx1-Cre PDAC-derived CD9High 

cells were capable of organoid initiation. This result can be partially explained by the 

cellular viability after FACS sorting. The tumour dissociation, the long term incubation 

of the cells in media deprived conditions before FACS (2% FBS in PBS cell 
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suspension), followed by the fluorescence activated cell sorting at high pressures, 

constitutes an extremely harsh process, which compromises cell survival. It is, thus, 

likely that not all sorted cells survive in culture and are capable of organoid formation. 

Nonetheless, the same methodology has been applied to other systems and, while 100% 

efficiency in organoid formation is never observed, a higher percentage of organoid-

forming cells is expected if the selected population constitutes a pure tumour-initiating 

cell population. It is possible that the CD9High is still a heterogeneous population. 

Therefore, it would be interesting to know if this TIC population could be further 

narrowed down. This could be addressed by single cell gene expression. Single cell 

RNA sequencing has been used to identify subpopulation within tissues based on their 

gene expression profile, reconstructing lineage hierarchies (Treutlein et al., 2014). 

Hence, the single cell gene expression analysis of the CD9High population could unveil a 

possible heterogeneity and identify additional markers that would allow the enrichment 

of the PDAC TICs. 

 

Homograft transplantation of CD9High and CD9Low PDAC tumour cells from 

p53KYPdx1-Cre-derived organoids confirmed the CD9High population as PDAC 

tumour-initiating cells. CD9High PDAC cells injected subcutaneously in a serial dilution 

approach were capable of generating tumour nodules faster than the CD9Low injected 

cells and were uniquely able to maintain tumour development demonstrating a 100-fold 

increased growth of the originating nodule when 200 cells were injected. On the other 

hand, CD9Low PDAC cells showed very limited tumour maintenance capacity with only 

a 10-fold increase in tumour growth when compared with the size of the initial nodule. 

Moreover, regression of two out of four nodules formed was observed (200 cells 

injected). 

It is common to focus only on nodule formation to identify TICs. However, tumours 

exhibit a cellular hierarchy that can be correlated with their proliferative potential. 

While tumour-initiating cells, or cancer stem cells, are described to possess unlimited 

proliferative capacity, the remaining tumour mass is known to have a limited 

proliferative potential (Reya et al., 2001). This definition suggests that, when injected, 

these non-tumour-initiating cells can expand the population to a certain extent being 

able to form nodules that do not grow extensively. In accordance with the previous 
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statement, despite their ability to form nodules, at low cell numbers the CD9Low tumour 

cells were not capable of maintaining the growth of the tumour as efficiently as the 

CD9High cells and exhibited significantly reduced proliferation, as assessed by the 

presence of phosphorylated histone 3. 

The complete absence of nodule formation by CD9Low cells might be observed if a less 

aggressive/highly proliferative genotype is used for homograft transplantation assays. It 

is known that the homozygous deletion of p53 in the embryonic pancreas with 

simultaneous KRasG12D oncogenic activation leads to anaplastic PDAC with visible 

EMT and undifferentiated cellular populations (Bardeesy et al., 2006a). Therefore, 

organoids from a less aggressive genetic background known to give rise to well-

differentiated PDAC with later onset, such as the p53F/WT; KRasLSL-G12D/Wt; Pdx1-Cre 

(Rhim et al., 2012), should be generated and the experiment repeated. 

 

As mentioned above, TICs are known to reproduce the originating disease. I observed 

that CD9High-derived tumours reproduced the p53KYPdx1-Cre-derived carcinosarcoma 

with local ductal differentiation. Conversely, CD9Low-derived tumours failed to 

reproduce the PDAC heterogeneity of the originating tumour giving rise to a well-

differentiated PDAC with no sarcomatous elements. As opposed to the approach taken 

for in vitro studies, for in vivo assessment of tumour initiating potential, only cells 

derived from p53KYPdx1-Cre tumours were used. For this reason, it is still not clear if 

this in vivo tumourigenic potential is dependent on the oncogenic hit. Hence, a similar 

approach with a comparable Cre model and a different induced genetic alteration (such 

as F7KYPdx1-Cre) should be performed. 

 

The results obtained so far strongly suggest that CD9 expression and surface 

localization marks a population within pancreatic tumours that is responsible for tumour 

initiation, maintenance and cellular heterogeneity. The implications and potential utility 

of such marker will be discussed further in Chapter 5. 
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Chapter 5. Discussion 

5.1 Introduction to the aim 

Pancreatic ductal adenocarcinoma (PDAC), comprising 85% of all pancreatic cancers, 

is a neoplastic disease of the pancreas with an extremely poor prognosis (less than 4% 

5-year survival) (Hariharan et al., 2008, Hezel, 2006). Given the non-specific nature of 

symptoms, PDAC is usually detected at advanced stages, where tumour grade/stage and 

presence of metastases compromise the benefits of surgical resection. Current PDAC 

chemotherapy strategies rely on the unspecific targeting of proliferative cells by the use 

of nucleoside analogues, such as Gemcitabine (Burris et al., 1997). However, not all 

patients benefit from this approach. So, there is a urgent need for improvement in drug 

development and cell-specific therapeutic targeting (Bittoni et al., 2014). Therefore, 

extensive efforts have been made to fully understand the molecular and cellular biology 

of the disease. 

 

At the molecular level, it is well known that PDAC tumour initiation is driven by KRAS 

mutations, mainly occurring in exon 1 (codon 12), leading to a glycine to aspartic acid 

or valine change (G12D or G12V) (Eser et al., 2014). While KRAS mutations are 

present in over 90% of human PDAC samples, other, less represented, 

genetic/epigenetic alterations, such as inactivation of p53 (50-70%), SMAD4 (30-80%) 

and CDKN2A (35-50%), have also been reported to have crucial roles in PDAC biology 

(Waddell et al., 2015, Eser et al., 2014, Rozenblum et al., 1997, Hong et al., 2011). 

Moreover, comprehensive genetic analysis and genome-wide studies on human PDAC 

samples confirmed its complex molecular profile and highlighted the possible 

contribution of other genes to PDAC development (Waddell et al., 2015, Jones et al., 

2008), calling for more in depth studies on additional genetic players. 

 

At the cellular level, based on human and mouse data, a histological progression from 

low to high-grade cellular dysplasia has been proposed. Four types of precursor lesions 

have been described to precede PDAC: intraductal papillary mucinous neoplasia 

(IPMN); pancreatic mucinous cystic neoplasm (MCN); intraductal tubular papillary 

neoplasm (ITPN); and, the most common pre-neoplastic lesion, pancreatic 
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intraepithelial neoplasia (PanIN) (Distler et al., 2014, Cooper et al., 2013). The 

identification of pre-neoplastic lesions has made it possible to develop strategies for 

PDAC early detection (Cruz-Monserrate et al., 2012, Stefan Eser, 2011, Tanaka et al., 

2012). Furthermore, survival studies have reported that different pre-neoplastic lesions 

confer different prognosis for the developed PDAC (Cooper et al., 2013). Since mouse 

models of PDAC have demonstrated that PDAC arising from different pre-neoplastic 

lesions have no discernible features at endpoint (von Figura et al., 2014, Bardeesy et al., 

2006b), a better understanding of PDAC origin and biology might allow patient 

stratification and development of personalized medicine. 

 

During the course of my studies I focused on the role of the tumour suppressor gene 

Fbw7 in PDAC development and investigated the cellular origins of this pancreatic 

neoplasia. 

 

5.2 The role of FBW7 in PDAC tumourigenesis 

FBW7 is an F-box protein that confers substrate specificity to an SCF-type E3 ubiquitin 

ligase, responsible for protein ubiquitination and consequent proteasomal degradation of 

its targets. Due to the nature of its substrates, FBW7 has been described as a tumour 

suppressor, targeting several proteins involved in cell fate decisions and proliferation 

for degradation, such as c-Myc, cyclin E, Notch, c-Jun and Mcl-1 (Welcker and 

Clurman, 2008). Numerous studies have addressed the role of FBW7 in cancer 

development and progression (Cheng and Li, 2011, Crusio et al., 2010). However, its 

relevance in PDAC tumourigenesis is still not well established.  

In this thesis, I confirmed and followed up Rocio Sancho’s findings that Fbw7 protein 

loss with concomitant KRasG12D oncogenic activation, in the developing pancreas, 

greatly accelerates murine PDAC (mPDAC) onset, when compared to KRasG12D 

activation alone. Histologically, Fbw7F/F; KRasLSL-G12D/wt; Pdx1-Cre pancreatic tumours 

(F7KPdx1-Cre mice) resembled the mPDAC derived from the established KRasLSL-

G12D/wt; Pdx1-Cre model (KPdx1-Cre mice) (Hingorani et al., 2003). Furthermore, 

tumours from both models exhibited increased pErk (downstream target of the Ras 
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pathway) and nuclear Hes1 (readout of Notch pathway activation) immunoreactivity, as 

described for human PDAC (Hezel, 2006). 

The mPDAC obtained with the KPdx1-Cre model has been described to closely mimic 

human PDAC (Hingorani et al., 2003). Therefore, the similarity between mPDAC from 

the KPdx1-Cre and the F7KPdx1-cre mouse models indicates that Fbw7 deletion does 

not change the tumour type of a KRasG12D-driven pancreatic tumour, but it accelerates 

PDAC onset and recapitulates the human disease, adding Fbw7 to the list of mPDAC 

tumour suppressors. 

Interestingly, I also observed that Cre-dependent Fbw7 deletion in the embryonic 

pancreas, with or without KRasG12D, mainly increased proliferation of the ducts, having 

no effect on acinar cell proliferation, and that ductal dysplasia occurred without any 

obvious alteration to remaining organ. This finding highlighted the importance of Fbw7 

in ductal cell biology and shifted the focus of my research to explore this new finding. 

Thus, the mechanism by which Fbw7 deletion accelerates PDAC in the F7KPdx1-Cre 

model is still an open question.  

 

FBW7 mutations have been identified in KRAS wild type human pancreatic cancer 

samples (Calhoun et al., 2003). However, while no mutations have been reported in 

KRAS mutant PDAC, downregulation of FBW7 has been observed by 

immunohistochemistry of some KRAS mutant patient samples and in mouse models of 

PDAC harbouring mutant KRas (Ji et al., 2015). In that study, the mechanism by which 

FBW7 is downregulated was attributed to ERK kinase-dependent FBW7 degradation. 

The authors demonstrated that overexpression of ERK1 in human PDAC cell lines led 

to phosphorylation of FBW7 at threonine 205 and protein ubiquitination, with 

detectable reduction in FBW7 levels. Expression of a phospho-deficient mutant version 

of FBW7 led to stabilization of the protein and reduction in tumourigenic potential, 

following subcutaneous injection of PDAC transfected cell lines (Ji et al., 2015), 

corroborating the role of FBW7 in PDAC biology. While the regulation of the protein 

has begun to be addressed, the tumour suppressive mechanism of FBW7 in PDAC 

biology is still poorly understood. 

The Notch pathway has been suggested to be involved in PDAC tumourigenesis, as 

members of the pathway, such as HES1 and NOTCH1, are upregulated in human 
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PDAC. Moreover, mouse model studies have identified this pathway as capable of 

increasing PDAC oncogenesis by promoting the development of pancreatic pre-

neoplastic lesions (Miyamoto et al., 2003, De La O et al., 2008). Interestingly, in the 

F7KPdx1-Cre-derived PDAC, I observed an increase in Hes1, compared with wild type 

pancreatic. Additionally, this increase in protein levels seemed to be more pronounced 

when compared to KPdx1-Cre-derived PDAC. It is, thus, possible that Fbw7 deletion 

accentuates the activation of the Notch pathway, promoting PDAC tumourigenesis. 

Nonetheless, in order to validate the hypothesis, Notch, or its downstream targets, 

should be knocked out in an Fbw7 deleted background.  

Additionally, it is possible that other FBW7 targets are involved in PDAC 

tumourigenesis. It has been observed that cyclin E is overexpressed in PDAC samples 

and that high levels of this protein is a good indicator of poor prognosis (Skalicky et al., 

2006). It has been shown that oncogenic Ras can promote cyclin E protein stability, and 

its consequent cellular increase, at least partially, by inhibiting FBW7-dependent cyclin 

E degradation (Minella et al., 2005). Furthermore, c-Myc has also been implicated in 

PDAC development, as its expression under the acinar-specific Elastase1 promoter, 

during pancreatic development, is sufficient to induce ductal adenocarcinoma (Sandgren 

et al., 1991). While it is necessary to address which of Fbw7’s targets are deregulated in 

the F7KPdx1-Cre-derived PDAC, given the suggested involvement of most of the 

targets in human PDAC oncogenesis, it is likely there is not one unique mechanism to 

PDAC development in the absence of FBW7, but a complex cooperation of various 

pathways. 
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5.3 Origins of PDAC: The importance of the pancreatic cellular 

compartment of origin. 

5.3.1 Adult ductal cells give rise to PDAC without the formation of mucinous 

pre-neoplastic lesions 

PDAC has been proposed to originate from different types of precursor lesions such as 

IPMN, MCN, ITPN and PanIN1 to 3 (Distler et al., 2014, Yonezawa et al., 2008, 

Feldmann et al., 2007). It is hypothesized that different pre-neoplastic lesions might be 

determined by the cell of origin, or, alternatively, by the genetic alteration induced (von 

Figura et al., 2014, Bardeesy et al., 2006b, Hingorani et al., 2003, Guerra et al., 2007, 

Izeradjene et al., 2007). 

Histological analysis of human samples has demonstrated that, while MCNs have no 

direct connection to the ductal network, IPMNs, ITPN and PanINs do. This observation, 

coupled with the ductal morphology of the pre-neoplastic lesions, led to the assumption 

that most of the PDAC precursors, and by association PDAC, had their origin in the 

ductal network. However, mouse model studies have allowed a better understanding of 

the pancreatic compartment of origin for PDAC. 

Initial GEM studies targeted the PDAC driver mutation (KRasG12D) to the developing 

pancreas, showing that KRasG12D initiates mPDAC development and KRasG12D-driven 

mPDAC evolves from mPanIN1-2 lesions (low-grade), which progress to mPanIN3 

(high-grade, carcinoma in situ) and PDAC (Hingorani et al., 2003). Additional work 

suggested that the type of pre-neoplastic lesion formed is dependent on the oncogenic 

hit, as the concomitant loss of Smad4 protein with the KRasG12D mutation, in the 

embryonic pancreas, led to the development of murine IPMN instead of mPanINs 

(Bardeesy et al., 2006b). However, later studies have also induced the loss of Smad4 

with KRasG12D expression in pancreatic progenitor and showed that it leads to the 

formation of MCN instead of PanIN and IPMNs (Izeradjene et al., 2007). Interestingly, 

different Cre mouse lines were used to target the genetic alteration to pancreatic 

progenitors. While Bardeesy and co-workers used Pdx1-Cre (expressed from E8.5), 

Izeradjene and co-workers used Ptf1a-Cre (Expressed from E9.5). Thus, while the 

molecular cell signalling at these two days might differ, it also raises the possibility of 

different cells being targeted by the Cre mouse line. 
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The development of inducible mouse models, able to target the genetic alteration to 

specific exocrine compartments in the adult pancreas (acinar vs duct), has greatly 

contributed to a better assessment of the compartment of origin of PDAC (Kopp et al., 

2012, von Figura et al., 2014, Guerra et al., 2007, Ray et al., 2011, Friedlander et al., 

2009). Using acinar-specific inducible models (Ela-tTA/tetO-Cre, Ptf1a-CreER and 

CPA1-CreER) it was demonstrated that, while acinar cells of young mice can initiate 

mPDAC development via mPanIN1-2-3 lesion formation, adult acinar cells (8-week-old 

mice) are very refractory to PDAC initiation. Nevertheless, the combination of 

oncogenic hit (KRasG12D) and pancreatitis (caerulein-induced, acinar cell-specific 

damage) enabled all grades of mPanIN formation and mPDAC onset (Kopp et al., 2012, 

Guerra et al., 2007, Friedlander et al., 2009). 

Conversely, the assessment of the ability of the ductal network to form PDAC had only 

been superficially performed at the start of this project. The Sox9-CreER and the Ck19-

CreER mouse models (duct-specific) were used to target the PDAC driver KRasG12D 

mutation to the ductal network. In both studies, ductal cells were shown to be refractory 

to tumourigenesis, as no significant transformation was observed, besides the formation 

of some rare low-grade mPanIN lesions (Kopp et al., 2012, Ray et al., 2011). From the 

results obtained with the oncogenic targeting of both exocrine compartments, before the 

start of my thesis, it was accepted that acinar cells were the origin of PDAC and they 

would evolve via PanIN lesions. 

However, a few caveats with the approaches taken at the time to assess ductal cell-

derived tumourigenesis were detected. Firstly, while the Sox9-CreER and the Ck19-

CreER mouse models mainly induce Cre-dependent recombination in ductal cells, 

results from our group, and from published reports, indicate that both models also 

induce some acinar cell recombination (Means et al., 2008, Kopp et al., 2012). 

Therefore, the possibility that the mPanIN lesions observed were due to acinar cell 

targeting remained. Secondly, while, acinar cell injury (by caerulein treatment) had to 

be performed to induce adult acinar cell-derived mPDAC, ductal cell injury was not 

tested. Lastly, the additional deletion of tumour suppressors in acinar cells such as p16 

and p19 or p53, reinforced the ability of this pancreatic compartment to induce PDAC 

(Guerra et al., 2011). However, before the start of my studies, this had not been done for 

the ductal compartment. 
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In this thesis, I reported that the loss of Fbw7 protein with concomitant activation of 

mutant KRasG12D expression in the adult ductal compartment (Fbw7F/F; KRasLSL-G12D/wt; 

Ck19-CreER – F7KCk19-CreER mice) led to mPDAC development, which was not 

preceded by low-grade mPanIN lesions. Other mucinous pre-neoplastic lesions, such as 

IPMN or MCN were also not detected. Additionally, loss of p53 protein with 

simultaneous KRasG12D expression in adult ductal cells (p53F/F; KRasLSL-G12D/wt; Ck19-

CreER – p53KCk19-CreER mice) was also able to induce mPDAC with no low-grade 

mPanIN lesion development. This is particularly important, as it has been shown that 

p53 deletion with concomitant KRasG12D expression leads to the formation of mPanINs 

in the developing pancreas (Aguirre, 2003). While results obtained in this thesis with 

the F7KCk19-CreER and p53KCk19-CreER mouse models need confirmation from 

more specific models, as discussed in Chapter 3, page 155, the data so far suggests that 

ductal cells can generate PDAC in the absence of previously described mucinous 

lesions. 

To confirm that the absence of mucinous precursor lesions in the F7KCk19-CreER 

model was dependent on the cell of origin, I induced acinar cell-specific loss of the 

Fbw7 protein with concomitant KRasG12D activation in adult acinar cells (Fbw7F/F; 

KRasLSL-G12D/wt; Ela1-CreER – F7KEla1-CreER mice) before acinar cell injury. I 

observed the presence of AB/PAS-positive mucinous low-grade mPanIN lesions, 

indicating that the loss of Fbw7 does not prevent their formation. These results suggest 

that the cell of origin has a great impact in determining the presence of mucinous pre-

neoplastic lesion. Hence, while acinar cells formed PanINs, ductal cells did not form 

mucinous precursor lesions with these genetic alterations. Nevertheless, it can be argued 

that ducts were able to give rise to PDAC in this study while acinar cells, with the 

genetic alteration, were not. Thus, it is not yet clear whether in our model the Fbw7 

deletion with KRasG12D activation in acinar cells would lead to PDAC preceded by 

PanIN lesions. Longer time points after tamoxifen-induced recombination are necessary 

to address the issue. 

In summary, contrasting with previous findings, results in this thesis demonstrate that 

ductal cells should also be considered cells of origin of PDAC (Figure 39). 
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During the course of my studies, work performed by Matthias Hebrok’s research group 

suggested that, while ductal cells are capable of PDAC formation, ductal cell oncogenic 

targeting leads to PDAC preceeded by IPMN lesions (IPMN-PDAC) (von Figura et al., 

2014, Roy et al., 2015). In the work published in 2014, von Figura and co-workers 

studied the effect of Brg1 deletion (a component of the SWI-SNF chromatin 

remodelling complex) in the developing pancreas with concomitant KRasG12D activation. 

They observed that loss of Brg1 protein rapidly accelerated KRasG12D-driven murine 

PDAC, which was preceded by AB/PAS-positive IPMN lesions (IPMN-PDAC). All the 

characterization of the murine IPMN lesions was performed in the pancreatic 

embryonic Cre driver model - Pdx1-Cre (Brg1F/F; KRasLSL-G12D/wt; Pdx1-Cre). Nine 

weeks after birth, mice developed cystic lesions expressing mucin (detected by 

AB/PAS), which resembled human pancreatobiliary IPMNs with pronounced tree-

resembling papillae. The suggestion of a ductal origin was indicated by the direct 

connection of these structures to the ductal network. However, acinar cells also have a 

direct connection to the ductal network. Since the Pdx1-Cre model induces Cre-

dependent recombination in pancreatic progenitors, work performed with this model did 

not provide sufficient evidence to establish a ductal origin. In order to assess if ductal 

cells give rise to IPMN-PDAC, the authors generated Brg1F/F; KRasLSL-G12D/wt; Hnf1β-

CreER mice. Hnf1β is a transcription factor and, in the pancreas, is specifically 

expressed in ductal cells. Therefore, in this model, upon tamoxifen treatment, Brg1 

expression is lost specifically in ductal cells, together with oncogenic KRas activation. 

Firstly, Brg1F/F; KRasLSL-G12D/wt; Hnf1β-CreER mice failed to generate mPDAC, 

impeding the assessment of whether ductal cell-derived PDAC progresses via IPMN. 

Secondly, only one out of 5 mice developed enlarged ductal structures that the authors 

refer to as mucinous reminiscent of the IPMN lesion (von Figura et al., 2014). 

Interestingly, the mucinous nature of this lesion was not assessed by any mucin or 

AB/PAS staining. Moreover, according to the images in the published work, these 

structures did not present a papillary structure, nor the extended papillae characteristic 

of IPMN. Images show an enlargement of the ductal cells morphologically similar to 

the ones obtained in early stages of my time point assessment of duct-derived PDAC. 

Therefore, while the proposal of Brg1 as a tumour suppressor in embryonic pancreas is 
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convincing, the suggestion that its deletion in a KRasG12D background induces duct-

derived IPMN-PDAC is not supported by their data. 

Nevertheless, Brg1 loss of expression has been shown to be common in IPMN lesions 

in human samples (Dal Molin et al., 2012). Therefore, while results presented in this 

thesis suggest that the cell of origin is the main determinant in the presence or absence 

of mucinous pre-neoplastic lesions, they do not exclude the possibility that genetic 

alterations can have a strong effect. It would be interesting to assess whether Brg1 loss 

in adult ductal cells with KRasG12D expression would, in fact, lead to PDAC, to better 

understand if, in the context of Brg1 loss, KRasG12D-driven duct cell-PDAC occurs via 

IPMN. 

 

The majority of the knowledge obtained so far on the precursor lesions of PDAC 

(IPMN, MCN, PanIN and ITPN) has been acquired from the study of human samples. 

This static analysis of fixed tissue and mutational landscapes from biopsies and tumour 

samples, fails to incorporate time course analysis and detailed investigation of initiating 

events. It is obvious from the literature that there is no consensus on the origin of these 

lesions. The integration of data obtained from GEM models is essential for the thorough 

understanding of these lesions and their roles in PDAC development. While some 

studies have reported that the cell of origin determines the pre-neoplastic lesion (von 

Figura et al., 2014, Roy et al., 2015, Kopp et al., 2012), others described the oncogenic 

hit as the determinant for the PDAC precursor (Izeradjene et al., 2007, Bardeesy et al., 

2006b). In this study I tested the same oncogenic hit in different pancreatic 

compartment components (acinar versus duct cells) and observed different 

morphological responses, suggesting that the cell receiving the hit has a great influence 

in the determination of the pre-neoplastic lesion. However, it is known that, while the 

different precursor lesions roughly harbour mutations in the main key genes (KRAS, p53, 

CDKN2A) some mutations are more common than others in particular lesions. As an 

example, it has been observed that while MCNs frequently present loss of SMAD4 

(Iacobuzio-Donahue et al., 2000b), IPMNs only rarely show low SMAD4 expression 

(Iacobuzio-Donahue et al., 2000a). Additionally, IPMNs present frequent inactivation 

of the Serine/threonine kinase 11 (STK11) gene, also known as liver kinase B1 (LKB1) 

(Sato et al., 2001); however, no alterations have been reported for MCNs, ITPNs or 
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PanINs. Therefore, it is possible, that additional mutations might define the route of 

PDAC development. Hence, it is important to test additional genetic alterations in 

acinar and ductal cells-derived PDAC.  

 

Moreover, the ductal network is a heterogeneous entity. While cells in large-calibre 

ducts have a columnar morphology, interlobular ducts exhibit a cuboidal epithelial 

morphology (Reichert and Rustgi, 2011). Thus, it is possible that different calibre ducts 

respond differently to oncogenic hits. Hence, the influence of the type of duct, in 

combination with additional genetic backgrounds, on the mode of PDAC induction and 

progression should be assessed. This could be performed in vivo by carefully analysing 

the oncogenic effect in ducts of different calibres or ex vivo by the use of slice cultures 

combined with in vitro recombination of ducts of different calibres (Marciniak et al., 

2013). By combining slice cultures with live imaging, the morphologic changes induced 

by oncogenic hits can be followed for individual ducts; thus enabling the identification 

of potential differences in response from ducts of different calibre.  

 

5.3.2 Clinical relevance of acinar and duct derived PDAC 

In this thesis, murine PDAC developed from either the developing pancreas or from 

adult duct cells were morphologically indistinguishable. However, as mentioned above, 

ductal targeting of oncogenic hits led to murine PDAC without the development of 

mucinous precursors. It is known that human PDAC derived from different pre-

neoplastic lesions is associated with different prognoses (Cooper et al., 2013). Moreover, 

it has been hypothesized that these tumours originating from different precursors might 

be biologically distinct (von Figura et al., 2014). Therefore, results obtained in this 

thesis raise important questions: (1) Are acinar and duct derived tumours different 

entities with regard to aggressiveness? (2) Are they characterized by different 

prognoses? (3) Are they equally represented in the human disease or is one type of 

origin more common than the other? (4) Can acinar and duct-derived tumours be 

distinguished?  

It has been reported that some human PDAC patients (9% of samples) do not exhibit 

PanINs at the time of diagnosis (Hassid et al., 2014). The absence of PanIN lesions in 
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these patients was associated with poor survival independent of tumour size, stage of 

the disease, tumour location and lymphovascular invasion (Hassid et al., 2014). The 

absence of PanINs could be explained by the high aggressiveness of the tumours, and 

thus quick progression of the pre-neoplastic lesions. Alternatively, It could be explained 

by the fact that some human PDAC might arise in a PanIN-independent manner. Given 

that the absence of PanINs was correlated to a worse prognosis independent of stage of 

the tumour, it is more luckily that some PDAC arise independently of these lesions. 

This has great implications based on the findings reported in this thesis. If in fact ductal 

cell-derived PDAC does not evolve via PanINs, PDAC arising from ductal cells might 

be rarer than acinar-derived PDAC but they might be biologically distinct, exhibiting a 

more aggressive phenotype. Another important point is that, I observed that low-grade 

PanIN lesions can be generated as a consequence of tumour formation (bystander 

PanINs) and not necessarily as a precursor lesion. Thus, some duct-derived tumours 

might not be identified as such due to detection of bystander PanINs at the time of 

diagnosis.  

 

Evidence regarding the different aggressiveness of acinar and duct-derived pancreatic 

tumours remains inconclusive. Fbw7 protein loss, in an oncogenic KRasG12D 

background, led to mPDAC from ductal cells, but it failed to induce tumour formation 

in acinar cells at comparable time points with additional injury. Moreover, p53 deletion 

in ductal cells led to more rapid mPDAC development, compared to the onset described 

in the literature for acinar cells with the same genetic alteration (Guerra et al., 2011). 

While the present results suggest that ductal cells exhibit a more profound 

transformation before observation of acinar-cell-derived PDAC, it is not clear if duct-

derived tumours are more aggressive than acinar cell-derived ones. Genetic alterations 

in different cells might have different phenotypes, which are cell-dependent. Thus, 

Fbw7 deletion might have no tumourigenic effect in acinar cells, impairing the cell 

dependence assessment. Additionally, the onset of PDAC development reported in this 

thesis for ductal cells cannot be compared with published data for acinar cells, as it is 

known that the strain background has a significant impact on tumour onset (J Puccini, 

2013, Demant, 2003). Moreover, the genetic Cre line used for acinar cell targeting in 

other studies relied on doxycycline rather than tamoxifen (Guerra et al., 2011); thus, the 
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treatments used to induce recombination are significantly different. To better assess 

differences in tumourigenic capacity and aggressiveness from the different pancreatic 

compartments, comparable genetic models should be generated, such as p53KEla1-

CreER (p53F/F; KRasLSL-G12D/WT; Ela1-CreER) and p53KHnf1β-CreER (p53F/F; KRasLSL-

G12D/WT; Hnf1β-CreER) mice.  

 

5.3.2.1 Acinar and duct-derived PDAC gene signatures 

The answers to the above questions will have great implications for PDAC medicine, as 

the full understanding of PDAC origins might allow patient stratification and 

development of different therapies based on the origin of the tumours (Figure 39). 

Therefore, a distinction between acinar and duct-derived tumours, such as gene 

signature, is necessary. In fact, it has been proposed that human PDAC can be 

molecularly sub-classified into 3 different types: classical; exocrine-like and quasi-

mesenchymal (Collisson et al., 2011). While gene signature analysis on PDAC samples 

mostly suggests a ductal origin, this study unveiled the existence of a tumour type 

(exocrine-like) that might reflect an acinar cell origin due to the high content of acinar-

specific digestive enzyme genes expressed. Interestingly, these PDAC subtypes showed 

different responses to therapy and were associated with different survival rates 

(Collisson et al., 2011). This study raises the idea that ductal and acinar cell-derived 

tumours might be identified on the basis of their molecular profile and that this could 

bring new critical information for the clinic. To assess the possible gene signature 

associated with ductal versus acinar-derived tumours, the tumours generated from adult 

duct- and acinar-specific PDAC mouse models (with the same genetic alterations) 

should be collected and compared at the gene expression level. If a differential signature 

is found, this should be compared with human samples. 
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Figure 39 – Proposed model for acinar and duct-derived PDAC  

Schematic representation of the proposed model for progression of PDAC tumours 
derived from the acinar and ductal pancreatic exocrine compartments. 
Acinar cells in the presence of a PDAC-generating oncogenic hit undergo a 
transdifferentiation process known as acinar-to-ductal metaplasia (ADM) where cells 
acquire a ductal morphology. These lesions develop increasing cellular atypia and 
progress to pancreatic intraepithelial neoplasias (PanINs). The initial low-grade PanIN 
(PanIN1A-B) is characterized by expansion of the cytoplasm with supranuclear mucin 
production and the nuclei organize basally. In PanIN2 the structure becomes papillary 
with increased nuclear abnormalities. These structures lose polarity and start budding 
into the lumen of the lesions where they form PanIN3 (or carcinoma in situ). 
Carcinoma in situ is the first recognized tumourigenic lesion and progresses to PDAC 
with observed loss of the basement membrane.  
When the oncogenic hit occurs in ducts, an increase in proliferation is observed, with 
increased cellularity of the ductal tree. Ductal cells increase in size, expanding towards 
the lumen of the duct. In this case, the nuclei do not organize basally, instead they 
increase in size with the cytoplasm. Without forming mucinous structures, the ducts 
become papillary, present pseudostratification, lose polarity, and shedding of cells 
towards the lumen is observed, resembling the carcinoma in situ neoplastic lesion. Loss 
of the basement membrane takes place and the lesions progress to PDAC.  
While morphologically and architecturally indistinguishable, PDAC derived from 
acinar cells and ductal cells might be different entities and better understanding of their 
biology might allow patient stratification. 
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5.3.3 Low-grade PanIN lesions can be formed as a consequence of tumour 

formation (bystander). 

In this thesis, I observed that low-grade PanIN lesions can be induced in wild type 

tissues in the presence of tumours. By injecting lineage-traced mPDAC tumour cells 

into the unlabelled pancreas of immunodeficient mice, I detected the formation of 

unlabelled mucinous low-grade mPanINs in close proximity to labelled mPDAC. 

Interestingly, while low-grade PanIN lesions, such as PanIN1, were described as pre-

neoplastic lesions that evolve into PDAC, reports have indicated that they can be 

detected in the context of other pancreatic neoplasias such as acinar cell carcinomas, 

mucinous cystic neoplasms, pancreatic endocrine tumours, serous cystadenomas, solid 

pseudopapillary tumours and ampullary tumours (Recavarren et al., 2011, Stelow et al., 

2006a). Additional evidence against the sole pre-neoplastic nature of these lesions is the 

fact that the majority of low-grade PanINs do not harbour mutations in the KRAS gene 

(Feldmann et al., 2007). Moreover, gene expression profiles performed in PanIN lesions 

of different grades have separated PanIN1 from the remaining PanINs. In that study it 

was suggested that PanIN1 lesions are not true pre-neoplastic lesions (Buchholz et al., 

2005). While the neoplastic nature of PanIN1 lesions was not addressed in this thesis, 

my results reinforce the fact that the diagnostic value of PanIN1 lesions should include 

the appreciation that they can arise as a result of tumour formation, as a bystander, and 

not always as precursor lesions. 

 

The mechanism behind this observation is still far from being understood. It is possible 

that the inflammatory environment signals to acinar cells, activating signalling 

pathways involved in ADM, such as Sox9 upregulation (shown to drive mucinous 

ductal structures when overexpressed in acinar cells) and cytokine-induced responses 

(Liou et al., 2013, Kopp et al., 2012). 

The fact that the observation was obtained in immunodeficient NuNu mice could lead to 

the exclusion of an inflammatory driven mechanism. NuNu mice have a homozygous 

deletion of Forkhead box protein N1 (Foxn1) leading to the lack of Thymus and 

consequently, lack of immune T-cells. However, it has been shown that ADM depends 

on macrophage-secreted cytokines (Liou et al., 2013). Hence, the absence of T-cells 

would not impair macrophage-mediated phenotypes. If the inflammatory response is the 
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driver of bystander PanIN formation, it would be by a mechanism independent of T-cell 

and macrophage interaction. The role of macrophages in this bystander PanIN 

formation could be tested chemically by intravenous treatment with gadolinium chloride 

promoting transient macrophage depletion or using inducible mouse models for cell 

targeted depletion (Gheryani et al., 2013). 

 Additionally, it is possible that tumour cells directly promote the acinar to mucinous 

ductal metaplasia conversion by vesicle-mediated signal exchange. Cancer cells have 

been shown to release exosomes, small vesicles of endocytic origin. These exosome 

carry cargo such as protein, DNA or RNA, which, are release in the microenvironment 

or transferred to neighbouring cells by internalization of the vesicle (Kahlert and Kalluri, 

2013, Zomer et al., 2015). Depending on their cargo, exosomes could mediate the 

cancer cell-dependent induction of bystander PanINs. To test the hypothesis, exosomes 

from murine PDAC could be isolated and injected into the pancreas of NuNu mice to 

generate bystander PanINs. Interestingly, all bystander PanINs observed during my 

studies were in close proximity to the tumour. This suggests that signals that induce 

bystander PanIN formation are mainly short-range. More in depth studies are necessary 

to further dissect the mechanism of PanIN bystander formation. 
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5.4 Origins of PDAC: CD9 as a marker for PDAC tumour-initiating 

cells 

5.4.1 CD9High PDAC cells constitute a tumour-initiating population 

It has become increasingly evident that tumours of most organs exhibit cellular 

heterogeneity regarding tumourigenic capacity, i.e., not all cells within a tumour are 

responsible for tumour propagation. An extensive search for and characterization of 

these tumour-propagating cells has been performed and it is now accepted that, a 

subpopulation of cells, named cancer stem cells or tumour-initiating cells (TICs), 

resides within certain tumours, that is able to propagate the tumour upon transplantation, 

to give rise to the cellular heterogeneity characteristic of the primary tumour and to 

recapitulate the primary tumour histology (Nguyen et al., 2012). 

This definition implies that for complete therapeutic remission, this specific 

subpopulation of cells should be targeted and eradicated. Moreover, numerous studies 

have addressed the clinical relevance of TICs by demonstrating that they possess a 

unique ability to evade or resist drug treatments and to generate metastases (Li et al., 

2007, Hirschmann-Jax et al., 2004, Zhou et al., 2001, Alvi et al., 2003). Therefore, it 

has been suggested that, in combination with tumour-bulk targeting strategies, more 

cell-specific therapeutic approaches are necessary for improvement of current survival 

figures (Jordan et al., 2006). 

While initially described in haematopoietic malignancies, cancer stem cells/TICs have 

been reported in solid tumours of the brain (Singh et al., 2004), breast (Al-Hajj et al., 

2003), colon (Ricci-Vitiani et al., 2006) and small intestine (Barker et al., 2008), 

providing important information on the tumour biology and its molecular dependencies. 

The importance of the identification of this tumour-initiating subpopulation has 

prompted the development of assays and tools that allow both their isolation and the 

investigation of their functional cancer stem cell-like features. Thus, efforts have been 

made to identify markers that might be differentially expressed in TICs versus non-TICs. 

Several proteins have been commonly described to be present at the surface of these 

tumour-initiating cells, such as CD133, CD24 and CD44, amongst others, with each 

type of tumour exhibiting a different marker or combination of markers. The 

identification of these surface proteins aided in the isolation of tumour-initiating cells 
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and their functional assessment versus the remaining tumour cells. As well as the 

identification of markers, cancer stem cell assays have been developed. Current in vitro 

investigation of tumour-initiating properties relies on the ability of cells to grow as 

spheres in non-adherent conditions or as organoids in soft matrices. However, as the 

name indicates, the gold standard in assessing tumour-initiating potential is their unique 

ability to initiate secondary tumours in recipient mice, when isolated from the bulk 

population, recapitulating the histology and cellular hierarchy of the primary source 

(Clarke et al., 2006). 

 

The identification of tumour-initiating cells in human PDAC has also been reported. In 

2007, two different groups approached the problem in different ways. Li and co-

workers took advantage of the described CD44, CD24 and ESA (epithelial-specific 

antigen) surface proteins to isolate human PDAC cells that were positive for one or 

more of these markers and tested their ability to generate tumours following xenograft 

transplantation (Li et al., 2007). On the other hand, Hermann and co-workers used 

CD133 surface protein to isolate a putative tumour-initiating population from human 

PDAC samples (Hermann et al., 2007). Both studies demonstrated that, following serial 

dilution and transplantation into immunodeficient mice, cells which were either positive 

for CD44+CD24+ESA+ or CD133+ exhibited a unique capacity to generate secondary 

PDAC, when compared with CD44-CD24-ESA- and CD133- cells, respectively. 

However, they failed to address the origin of the population negative for the markers of 

choice. According to their protocol description, human primary PDAC samples were 

enzymatically dissociated into single cells, stained for the proteins of interest (CD44, 

CD24, ESA and CD133) and injected into mice at a serial dilution. No epithelial cell 

isolation or stromal exclusion was performed. This generates a great concern of the 

possibility of inclusion of stromal cells in their negative cellular fractions. It is known 

that PDAC exhibits a pronounced stromal expansion (desmoplasia). While the extent of 

expansion varies from patient to patient, it has been reported that it can account for up 

to 90% of the tumour volume (Xie and Xie, 2015). Knowing that stromal cells are 

CD133-negative, as the authors have nicely shown by immunofluorescence (Hermann 

et al., 2007), and that pancreatic stromal cells are also ESA-negative (Miranda-Lorenzo 

et al., 2014), there is a high probability that the majority of their  CD44-CD24-ESA- and 
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CD133- cells were, in fact, stromal cells and thus it is not surprising that they are non-

tumourigenic. Moreover, follow up work from the group of Christopher Heeschen has 

highlighted that the presence of CD133 protein can vary between samples. Thus, they 

focused on the autofluorescence as a marker of cells with higher tumourigenic potential 

(Miranda-Lorenzo et al., 2014). While their results are compelling, it is well accepted 

that autofluorescence is a cell property that can result from the handling of the sample. 

In sum, before the start of this project, there were significant gaps in knowledge 

regarding PDAC tumour-initiating cells.  

 

During my studies, I used a mouse model where loss of Fbw7 protein, with concomitant 

KRasG12D expression, could be induced in adult ductal cells by tamoxifen treatment, 

leading to mPDAC development. To further characterize these duct-derived PDAC, I 

crossed in the R26-LSL-YFP tracer (F7KYCk19-CreER mice), which enabled the 

identification of recombined cells throughout different stages of tumour development. I 

observed that, soon after recombination, some lineage-traced cells exhibited 

morphological alteration, reminiscent of initial stages of tumour development, while 

others remained morphologically unaltered. This difference persisted even 4 weeks after 

tamoxifen treatment, excluding the possibility of asynchronous recombination at early 

time-points. Additional profiling for surface proteins by immunohistochemistry 

highlighted a correlation between CD44 and initial stages of tumour development. 

Furthermore, sorting of recombined cells (GFP+) positive and negative for CD44 

protein, and consequent genotyping PCR, demonstrated that the difference in the 

response to the tumourigenic hit was not due to incomplete recombination of any of the 

genetically altered alleles. Thus, I used this system to address the gene expression 

profile (by microarray) of cells with similar genetic backgrounds but different 

phenotypes (GFP+CD44+ [recombined and transformed] versus GFP+CD44- 

[recombined and non-transformed]) at early stages of tumour development. Analysis 

was performed searching for possible cell surface markers of tumour-initiating cells that 

would be upregulated by, at least, 1.5-fold in the GFP+CD44+ cellular fraction. The 

most promising candidate was the protein CD9. 

CD9, also known as motility-related protein 1 (MRP1), is a member of the tetraspanin 

protein family of transmembrane proteins. It is composed of four transmembrane 
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domains, 2 extracellular loops and a small intracellular domain (one loop, one small N-

terminus tail and one c-terminus region) and it is present at the cell membrane, in 

organelle membranes and in granules, such as exosomes. Little is known about 

tetraspanin proteins. However, evidence has been gathered demonstrating that members 

of this family can directly interact with intracellular and extracellular ligands, and 

associate laterally, forming tetraspanin-enriched microdomains (TEMs), which can 

modulate crucial cellular functions such as cell adhesion and migration, signalling and 

survival (Hemler, 2014). 

CD9 has been shown to identify cells with in vitro and in vivo tumour-initiating ability 

in human B cell acute lymphoblastic leukemia (Nishida et al., 2009). Moreover, it was 

recently described as a marker for haematopoietic stem cells, allowing a pure isolation 

of the entire population (Karlsson et al., 2013). Its role in cancer is still under debate as 

it has been described to promote, or be associated with, contrasting tumour-related 

phenotypes. CD9 was primarily described as a tumour suppressor where its high 

expression correlated with better prognosis and lower lymph node status in esophageal 

squamous cell carcinoma and gastric cancer (S Uchida, 1999, Yoko Murayama, 2015). 

Moreover, CD9 re-expression in CD9-depleted small-cell lung cancer cells reduced 

their in vitro and in vivo motility/metastatic and proliferative potential (Zheng et al., 

2005). Nevertheless, tumour-promoting features have also been associated with the 

CD9 protein. Overexpression was shown to increase in vitro cell invasion in human 

fibrosarcoma cells (Herr et al., 2013). Furthermore, the in vivo use of a CD9-blocking 

antibody reduced the establishment of bone metastasis following tail vein injection of 

highly metastatic breast cancer cells (Kishel et al., 2012). Interestingly, contradicting 

the abovementioned results, CD9 expression in gastric cancers has also been found to 

significantly correlate with lymphatic invasion, clinical stage and vessel invasion (Hori 

et al., 2004). It is difficult to speculate the reason for the conflicting data obtained so far. 

However, it is hypothesized that different functions might be due to association of CD9 

with different molecular partners, which include integrins, surface receptors and other 

tetraspanin proteins (Hemler, 2014). 

In PDAC, CD9 has not been thoroughly studied. As observed for other tumour types, 

data obtained by gene expression profiles and proteome arrays, comparing tumour and 

normal tissue, and survival analysis, has attributed conflicting roles to CD9 (Grønborg 
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et al., 2006, Sho et al., 1998, Gesierich, 2005). While initial studies have proposed low 

CD9 expression to correlate with PDAC poor prognosis (Sho et al., 1998), subsequent 

studies have described CD9 to be overexpressed in PDAC patient samples and 

pancreatic cancer cells lines compared with normal pancreatic tissue. CD9 expression 

was higher in high-grade PDAC and in PDAC-derived metastasis to the liver (Grønborg 

et al., 2006, Gesierich, 2005). 

 

In this study, I used CD9 as a surface marker to isolate tumour cells and address its 

potential in identifying a tumour-initiating population within murine PDAC. In addition, 

since variable results have been obtained with TIC markers, I addressed the value of 

CD9 across different genetic backgrounds. CD9High primary tumour cells from 

F7KYCk19-CreER and p53KYPdx1-Cre-derived PDAC exhibited higher in vitro stem 

cell potential compared to CD9Low cells, assessed by their capacity to form organoids 

when plated in, previously described, organoid-forming conditions (Huch et al., 2013). 

Interestingly, in vitro expansion of dissociated murine PDAC cells did not change the 

outcome. Sorted CD9High tumour cells, which grew in matrigel for several passages, 

continued exhibiting higher organoid-forming capacity compared to their CD9Low 

counterparts. Lastly, CD9High and CD9Low cells were sorted from murine PDAC 

organoids, grown for several passages, and injected into the flanks of immunodeficient 

NuNu mice, following serial dilution. Measurements of initial nodule formation 

indicated that CD9High cells were faster in establishing nodules. Upon termination of the 

experiment, CD9High-derived tumours recapitulated the cellular heterogeneity observed 

in the primary mPDAC, while the CD9Low tumour cells failed to do so. Moreover, 

contrasting with CD9High-derived tumours, which exhibited over a 100-fold increase in 

tumour size, CD9Low tumour cells were not capable of tumour maintenance, as injection 

of 200 cells led to the regression of the nodule initially detected. 

The results indicate that CD9 protein can identify a population within primary mPDAC, 

and cultured cells, with in vitro tumour-initiating properties and capable of in vivo 

tumour initiation, tumour maintenance and cellular heterogeneity (Figure 40). 
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Figure 40 - CD9 marks a PDAC tumour-initiating cell population 

Schematic representation of the cellular histological hierarchy in PDAC and main 
findings.  Advanced PDAC tumours exhibit a cellular heterogeneity with presence of 
both epithelial (cuboidal or columnar shaped cells) and mesenchymal-like cells (spindle 
shaped). PDAC TICs can be identified by their levels of CD9 protein at the cell surface. 
CD9High cells are able to initiate tumour formation in recipient mice (at serial dilutions 
of up to 200 cells) and maintain tumour growth. CD9High-derived tumours recapitulate 
the cellular heterogeneity of the primary source. The remaining population (CD9Low) is 
not capable of initiating and sustaining the growth transplants when 200 cells are 
injected. Injecting a higher number of cells leads to small tumours, but which do not 
recapitulate the primary counterpart. 
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5.4.2 Potential therapeutic value of CD9 

Contrasting with previously described PDAC TIC markers, the surface presence of CD9 

was able to identify a more tumourigenic population within murine PDAC across 

different genotypes and isolation protocols. Given that one of the main clinical concerns 

in using surface markers for the identification of the TIC subpopulation is their 

unreliability, CD9 seems to offer a more reliable identification of mPDAC TICs for 

therapeutic approaches. However, it is important to bear in mind that the findings 

obtained for CD9 were based on mouse tissues with genetic labelling of tumour cells. 

Thus, it is important to address whether CD9 also identifies a more tumourigenic 

population within human PDAC. Since CD9 is expressed in some immune cells, this 

assessment might require the additional use of tumour or epithelial cell specific markers, 

such as EpCam, to discriminate tumour cells from remaining microenvironment 

components. 

 

While I have demonstrated a higher tumourigenic capacity of CD9High tumour cells, in 

this study, I did not address whether eradication of the CD9-expressing population from 

an established PDAC would lead to tumour regression. Human PDAC is known for its 

strong drug resistance (Ryan et al., 2014) which is not only explained by the tumour 

molecular heterogeneity and strong desmoplasia, but also due to the presence of a drug 

resistant subpopulation of cells with tumour-initiating properties (Hermann et al., 2007). 

Therefore, the selective elimination of this population, and possible PDAC remission, 

could represent a promising therapeutic strategy with high probability of efficiency. In 

order to test the clinical value of CD9 two routes could be pursued. (1) The use of mice 

expressing conditional diphtheria toxin (DT) or diphtheria toxin receptor (DTR) under 

the control of a cell-specific promoter or knock-in in a specific locus, has allowed the 

selective eradication of specific cell populations (Saito et al., 2001). Mice with an 

inducible knock-in DTR in the CD9 locus could be crossed with the p53KYPdx1-Cre to 

address the effect of CD9High cell depletion specifically in murine PDAC at different 

stages of tumour development. (2) An alternative approach could be the use of cytotoxic 

drug-coupled antibodies  (antibody-drug conjugates – ADC) against CD9. One would 

have to initially check whether these antibodies are internalized upon binding to CD9 at 
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the cell surface. If that would be the case, then the antibody would bind to CD9-

expressing cells, would be internalized and selectively kill cells expressing CD9. 

This particular approach might be more relevant for clinical purposes, as human cells 

could be used in xenograft models and then targeted using ADC. Also, the effect of 

whole body CD9-expressing cell ablation could be addressed. Importantly, ADCs 

conjugated to toxins have been used in the clinic for the treatment of acute myeloid 

leukaemia, Hodgkin’s lymphoma and other haematopoietic malignancies (Scott et al., 

2012). Therefore, the successful regression of PDAC xenografts from human patients 

could constitute the first step for PDAC targeted therapies. 

Additionally, it would be interesting to compare the gene expression profiles of CD9High 

PDAC cells (human or murine) with CD9Low tumour cells in order to identify pathways 

that might be important for the survival and self-renewal of the CD9High cells, or to find 

druggable targets that could be explored in the clinic. 

 

The CD9High mPDAC cells studied here were shown to constitute a TIC population in 

tumours derived from both adult ducts (F7KYCk19-CreER) and developing pancreas 

(p53KYPdx1-Cre). However, it would be important to address if CD9 also identifies a 

TIC population in adult acinar cell-derived mPDAC (p53KYEla1-CreER) and human 

PDAC. In the search for the PDAC compartment of origin, acinar cells were proposed 

as the main origin of PDAC. It was described that, in the presence of an oncogenic hit 

and acinar cell injury (caerulein), acinar cells undergo a metaplastic change where they 

transdifferentiate into ducts (ADM) (Guerra et al., 2007, Kopp et al., 2012). Besides the 

morphologic similarity and the mutual presence of a small number of ductal proteins 

(including CK19 and Hnf1β), it is not clear if ADM-derived ductal cells are the same as 

true pancreatic ductal cells. Supporting a possible difference is my observation that 

tumour progression from ducts and acinar cells seems to differ in the morphology of the 

initial steps. Nonetheless, it is possible that the cells driving tumourigenesis in both 

models are comparable. Therefore, the potential of CD9 to identify a general PDAC 

TIC population should also be tested on acinar-derived mPDAC in order to gain a 

complete understanding of the origins of the disease. As mentioned before, it should 

also be addressed if human PDAC samples contain a CD9High population and if 
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xenograft transplantations also demonstrate a higher tumourigenic capacity for these 

cells to increase relevance for the human disease.  

 
 

5.4.3 Is CD9 a functional PDAC TIC marker? 

Conflicting data has been published on the value and role of CD9 in various tumour 

models. Also, for PDAC, it is not clear from the studies conducted so far if CD9 acts as 

a tumour suppressor or oncogene (Hemler, 2014). CD9 has a wide range of interacting 

partners, such as integrins (mainly α3β1) (Gesierich, 2005), growth factors (Shi et al., 

2000), membrane proteases (Yáñez-Mó et al., 2011), and other signalling proteins 

(Zhang et al., 2001, Hemler, 2014). For this reason, CD9 modulation has been shown to 

affect migration, angiogenesis, proliferation, apoptosis and drug resistance, which could 

explain the discrepant results reported. In this thesis, I did not assess whether the 

tumour-initiating capacities detected in the CD9High population were due to CD9 

expression itself or if CD9 surface detection was a consequence of additional molecular 

mechanisms. It would be interesting to either knockdown or knockout CD9 in CD9High 

cells and assess whether they retain their tumour-initiating potential. As a different 

approach, CD9Low cells could be used for overexpression of the CD9 gene. If CD9 has a 

functional role in this high-expressing population, the therapeutic value and 

applicability could be increased by the use of blocking antibodies. The use of 

monoclonal antibodies such as cetuximab (epidermal growth factor inhibitor), and 

trastuzumab (HER2/neu receptor inhibitor) has greatly improved clinical outcome for 

colorectal and breast cancer patients. By inhibiting the respective targeted receptor, the 

monoclonal antibodies have demonstrated to be extremely successful in abrogating 

tumour cell signalling, reviewed in Scott et al., 2012. 
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5.4.4 Do PDAC TICs originate from pancreatic adult progenitor cells? 

Nowadays, the concept of tumour-initiating cells, or cancer stem cells, does not 

necessarily reflect a stem cell origin of the formed tumours in question. It rather implies, 

that some cells within the tumour possess the capacity to initiate a tumour and maintain 

its growth, regardless of whether this property is derived from a transformation step of 

differentiated or progenitor/stem cells. Nevertheless, it is known that, in some, mainly 

hematopoietic, malignancies, it is in fact a tissue stem cell or an immediate progenitor 

that, upon an oncogenic hit, undergoes transformation and initiates tumour development. 

The existence of progenitor cells in the pancreas is still a controversial subject. Studies 

investigating the ability of the pancreatic organ to regenerate have suggested that 

differentiated cells undergo a transdifferentiation process to convert into other cell types 

and then proliferate, rather than an existence of a pool of progenitor cells that 

continuously gives rise to more differentiated cell types (see 1.1.2, page 26). However, 

studies from our laboratory have implied the existence of subpopulation within the 

ducts that responds differentially to genetic alterations (Sancho et al., 2014). 

I observed in the F7KYCk19-CreER model that, 4 weeks after tamoxifen treatment, not 

all recombined duct cells gave rise to tumours. Corroborating previous hypotheses, this 

suggests that the ductal network is a heterogeneous entity, since only a subset of cells 

was capable of being transformed by the genetic tools used. Given that CD9 was 

capable of distinguishing between TICs and non-TICs in murine PDAC, it would be 

interesting to assess whether the adult ductal network of wild type animals harbours a 

CD9High population and if so, whether these cells represent an adult pancreatic 

progenitor population more susceptible to tumour transformation. Preliminary data 

suggest that the ductal network does have a rare CD9High population. Thus, while 

genetic approaches could be developed to address the different tumourigenic potential 

of these cells, it would also be possible to sort CD9High and CD9Low cells from a p53F/F; 

KRasLSL-G12D/wt mouse and, following in vitro recombination of floxed alleles, assess the 

ability of the two cell populations to initiate PDAC in the flanks of immunodeficient 

NuNu mice. The meaning of the existence of a CD9High population in adult wild-type 

ductal cells is not yet clear. Nonetheless, it would be interesting to study a possible 
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progenitor nature of this population in the adult organ in more detail. Preliminary data 

could be gathered by genetically tracing CD9-expressing cells in the wild type pancreas 

and follow the fate of the labelled cells over time in both normal conditions and after 

various injuries to specific pancreatic compartments. 

 
 

5.5 Concluding remarks 

This thesis addresses the origins of pancreatic ductal adenocarcinoma by: (1) evaluating 

how the different components of the pancreatic exocrine compartment (acinar and duct 

cells) contribute to PDAC development, and (2) by identifying the cell population 

responsible for initiation and maintenance of PDAC. 

I was able to confirm that murine adult ductal cells can originate mPDAC when potent 

tumour suppressors (Fbw7 and p53) are deleted with concomitant induction of the 

PDAC driver mutation (KRasG12D). Adding to this observation, I described a different 

progression model for mPDAC development from that described for acinar cell-derived 

mPDAC (Figure 39), which could provide useful information for patient stratification in 

clinical strategies.  

Furthermore, the investigation of mPDAC TICs led me to the identification of CD9 as a 

surface marker for pancreatic tumour cells with the capacity to initiate secondary 

mPDAC upon transplantation and to recapitulate the cellular heterogeneity observed in 

primary mPDAC tumours (Figure 40). These findings offer valuable information on 

PDAC biology and might aid in the development of PDAC targeted therapies.  
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Chapter 6. Appendix 

- Figure 1 was adapted from Shih et al., 2013. No permission was required from the 

publisher Annuals Reviews for the purposes of thesis and dissertations (RightsLink). 

 

- Figure 11 was adapted from Tanaka et al., 2012. Reprinted from Pancreatology, Vol 

12/3, Masao Tanaka, Carlos Fernández-del Castillo, Volkan Adsay, Suresh Chari, 

Massimo Falconi, Jin-Young Jang, Wataru Kimura, Philippe Levy, Martha Bishop 

Pitman, C. Max Schmidt, Michio Shimizu, Christopher L. Wolfgang, Koji Yamaguchi, 

Kenji Yamao, “International consensus guidelines 2012 for the management of IPMN 

and MCN of the pancreas”, page 191, with permission from Elsevier. License number 

3702040187175. 04 September 2015 

 

- Figure 12 was adapted from Distler et al., 2014. No permission was required from 

BioMed Research International. Copyright © 2014 M. Distler et al. This is an open 

access article distributed under the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

- Figure 13 was adapted from Distler et al., 2014. No permission was required from 

BioMed Research International. Copyright © 2014 M. Distler et al. This is an open 

access article distributed under the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 
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