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Abstract

This thesis describes how wireless networks can inadvertently leak and broadcast users’

personal information despite the correct use of encryption. Users would likely assume

that their activities (for example, the program or app they are using) and personal in-

formation (including age, religion, sexuality and gender) would remain confidential

when using an encrypted network. However, we demonstrate how the analysis of en-

crypted traffic patterns can allow an observer to infer potentially sensitive data remotely,

passively, undetectably, and without any network credentials.

Without the ability to read encrypted WiFi traffic directly, the limited side-channel

data available is processed. Following an investigation to determine what information

is available and how it can be represented, it was determined that the comparison of

various permutations of timing and frame size information is sufficient to distinguish

specific user activities. The construction of classifiers via machine learning (Random

Forests) utilising this side-channel information represented as histograms allows for

the detection of user activity despite WiFi encryption. Studies showed that Skype voice

traffic could be identified despite being interleaved with other activities. A subsequent

study then demonstrated that mobile apps could be individually detected and, con-

cerningly, used to infer potentially sensitive information about users due to their per-

sonalised nature.

Furthermore, a full prototype system is developed and used to demonstrate that this

analysis can be performed in real-time using low-cost commodity hardware in real-

world scenarios. Avenues for improvement and the limitations of this approach are

identified, and potential applications for this work are considered. Strategies to prevent

these leaks are discussed and the effort required for an observer to present a practical

privacy threat to the everyday WiFi user is examined.
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1 Research Overview

This first chapter explains the motivation for research in the area of “cyber security” and

the topic of inferring user information despite WiFi encryption particularly. It provides

a summary of the content and research contributions of each chapter and lists the pub-

lications authored during the course of this research.

1.1 Research Motivation

‘Cyber Security’ is noted as one of four priority objectives of the United Kingdom’s Na-

tional Security Strategy (Cabinet Office (UK), 2010) with the EPSRC stating that “further

research into cybersecurity — its fundamentals and in particular its human and beha-

vioural aspects — is essential” (EPSRC, 2011). This work described in this thesis scru-

tinises the largely unpublicised privacy vulnerability that inferring user activity repres-

ents. Not only can information regarding (supposedly) private activities be inadvert-

ently broadcast, but analysis of these activities themselves can further leak information

regarding the user that initiates them.

Although there are a multitude of wireless communications, “WiFi” commonly refers

to the IEEE 802.11 protocol. This thesis uses these terms interchangeably, unless spe-

cifically stated. Wireless communications are now prevalent in modern society and

used by home, corporate and government users alike (Dutton and Blank, 2011). Despite

usually being encrypted, wireless network technologies still inadvertently leak side-

channel information. Side-channel information leakage is a result of optimisation pro-

cesses fundamental to efficient network communication. Although data cannot be read

directly, analysis of this information enables the ability to infer user activity by merely

observing these communications. Furthermore, this work takes a novel approach to

link wireless network activity directly to personal information. Depending on the de-

tails of a user activity, it is therefore demonstrated that sensitive information can be
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CHAPTER 1 Research Overview

inadvertently broadcast over a wide area to any interested observer due to the use of

WiFi. This work will demonstrate that — contrary to expectations — confidentiality

and privacy are not guaranteed even with 100% unbroken encryption working exactly

as designed.

Wireless communication methods are general purpose. Insecurity in an imple-

mentation potentially exposes all the other protocols, applications and devices that rely

upon it. Smartphones, tablets and other mobile devices provide a particularly invit-

ing research opportunity. Their popularity and ubiquity is recent (societally speaking)

and such devices contain a wealth of potentially vulnerable private information. The

security of this data as these devices operate wirelessly therefore warrants investiga-

tion. Commercial interest in wireless broadcasts has piqued in recent years with com-

panies recognising them as a powerful data source. Pertinent recent stories include

London’s controversial “tracking bins” that included hardware to collect WiFi-enabled

device identifiers as owners passed in the street to track their shopping habits (Vincent,

2013). This research aids in the evaluation of wireless devices and infrastructure to as-

certain how much information is being unintentionally leaked, whether this should be

remedied, and how it may be possible to do so through either technological or social

solutions.

Aside from aiding in the design of privacy-preserving networks that resist this kind

of analysis, this research is also useful for detecting undesired activities that would oth-

erwise be hidden or computationally expensive to discover. This may have applications

in the field of digital forensics to prioritise and guide the limited resources of forensic

examiners through progressively large datasets with increasingly prevalent quantities

of encrypted data. Similarly, live monitoring of wireless communications without the

need to break encryption may be useful for law enforcement purposes. Analysis tools

are designed to integrate with the wider security context; with organisational practic-

alities and ethical considerations taken into account.

Ultimately this research seeks to dispel the assumption that encryption provides

true confidentiality, inform the wider academic audience of this fact, and bring about

change in situations where it is determined greater user privacy is necessary. Due to the

wide deployment of wireless networking technology and the ability to generalise the
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techniques developed to other wireless data protocols (e.g. 4G LTE as used in cellular

mobile data networks), the findings detailed in this thesis should be of interest to both

the academic community and security practitioners alike, to better protect the privacy

of end users.

1.2 Research Contribution

This research makes the following novel contributions to the field:

• Undeniably establishes the ability to infer the personal sensitive information of

real-world users from their encrypted WiFi traffic.

• Practicably demonstrates activity detection and information leakage in a live, real-

world WiFi environment.

• Developed a real-time detection program capable of identifying the use of widely-

used mobile apps from a remote, unprivileged vantage point using only live en-

crypted network activity.

• Constructed a classifier capable of identifying Skype voice traffic from a remote,

unprivileged vantage point using only encrypted network activity samples.

• Assesses the applications of user activity inference techniques and the cost and

effort required to present a practical privacy threat to the everyday WiFi user.

Limitations are evaluated and strategies to thwart them are identified.

• Precisely specifies collection protocols, a sampling methodology and data rep-

resentation scheme that facilitates machine learning classification for this chal-

lenging scenario.

• Details the design of the hardware and software platform and user automation

techniques that allow encrypted WiFi data samples to be collected (or derived)

easily and cheaply.

In addition, full source-code for the data collection, analysis, detector program and de-

tector generation is made available alongside this thesis to provide a foundation plat-

form for future work in the same area.
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1.3 Publication Summary

The research contained within this thesis has resulted in five publications to date and

their content is summarised in the next section. In chronological order of publication

date, they are as follows:

1. J.S. Atkinson, J.E. Mitchell, M. Rio, and G. Matich. Your WiFi Is Leaking: Determ-

ining User Behaviour Despite Encryption. London Communications Symposium

(LCS), September 2011. (Atkinson et al., 2011).

2. J.S. Atkinson, O. Adetoye, M. Rio, J.E. Mitchell, and G. Matich. Your WiFi is leaking:

Inferring User Behaviour, Encryption Irrelevant. IEEE Wireless Communications

and Networking Conference (WCNC), pages 1097–1102. April 2013. ISBN 978-1-

4673-5939-9. (Atkinson et al., 2013).

3. J.S. Atkinson, J.E. Mitchell, M. Rio, and G. Matich. Your WiFi Is Leaking: Building

a Low-Cost Device to Infer User Activities. Cyberpatterns, April 2014. (Atkinson

et al., 2014a).

4. J.S. Atkinson, J.E. Mitchell, M. Rio, and G. Matich. Your WiFi Is Leaking - Ignoring

Encryption, Using Histograms to Remotely Detect Skype Traffic. IEEE Military

Communications Conference (MILCOM), October 2014. (Atkinson et al., 2014b).

In addition, a paper reporting on the study of inferring private information from mobile

apps using WiFi is currently under review:

5. J.S. Atkinson, J.E. Mitchell, M. Rio, and G. Matich. Your WiFi Is Leaking: What Do

Your Mobile Apps Gossip About You? Under review, to appear 2015.

Another paper was also published discussing the challenges that digital evidence (as

opposed to traditional ‘physical’ evidence) poses to the legal system. Although not dir-

ectly contributing to this thesis, the issues outlined will be of consequence to any po-

tential law enforcement or forensic application of information inference via WiFi leaks:

6. J.S. Atkinson. Proof is Not Binary: The Pace and Complexity of Computer Sys-

tems and the Challenges Digital Evidence Poses to the Legal System. Birkbeck

Law Review, 2(2), October 2014. (Atkinson, 2014).
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1.4 Thesis Outline & Research Progression

This thesis is structured so that research findings are presented in chronological or-

der with each chapter building upon previous results. The key research contributions

within each chapter, a summary of their content, and the publications they spawned

are as follows:

Chapter 1 – Research Overview: The chapter you are currently reading. Outlines

the motivation for research in the area of “cyber security”, lists the papers pub-

lished on the topics contained within this thesis, and provides a summary of the

content of each chapter.

Chapter 2 – Essential Concepts: Provides a review of the key literature that un-

derpins the work on wireless network leaks presented in this thesis. These con-

cepts are required to understand the background of WiFi security and related top-

ics. Additional literature is introduced in subsequent chapters as it is required.

Chapter 3 – Handling of Leaks: Experimental Foundations: Illustrates the scen-

ario that wireless devices operate within and how these communications can be

observed. The privacy implications of this are explained and the legal and ethical

issues surrounding the collection of encrypted WiFi traffic are discussed.

Chapter 4 – Acquiring Data: How To Collect Drips: Documents the acquisition

process for encrypted WiFi traffic data. This data enables the analysis techniques

developed through this thesis. The hardware and software used to receive this

data, as well as useful tools to automate the process are detailed. Alongside the

ethical and legal analysis from the previous chapter, this work was condensed

to form a guide for practitioners and presented at Cyberpatterns 2014 (Atkinson

et al., 2014a).

Chapter 5 – Finding & Visualising Information Leakage: Details an initial study

presented at the London Communications Symposium 2011 that illustrates how

information on user activities can be extracted from external observations of WiFi

traffic despite encryption (Atkinson et al., 2011). A selection of common user
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activities — such as web-browsing, email, video and music streaming, VoIP phone

calls and peer-to-peer downloads — were performed and the side-channel meas-

urements are shown visually. The differences in these side-channel measure-

ments demonstrate the feasibility of an outside observer inferring user activity

information despite the correct use of encryption.

Chapter 6 – Developing Activity Metrics: Finding Skype: Presents an initial ba-

sic mechanism for inferring and detecting user activity from encrypted wireless

network activity without using machine learning. The mechanism targets Skype

voice call activity specifically and looks to separate it from confounding inter-

leaved activity such as BitTorrent and web-browsing. As part of the development

of this mechanism, a program was developed to visualise and compare histo-

grams of timing and frame size measurements over a short time period. Thresholds

for these measurements were analysed, set, and used to determine when Skype

voice activity was occurring within the captured network traffic data.

Results published at the IEEE Wireless Communications & Networking Confer-

ence 2013 (Atkinson et al., 2013) showed that it is quite feasible to infer and detect

a specific kind of user activity despite the observer being entirely passive, despite

being external to the network, despite the correct use of encryption, and despite

the limited data this scenario provides. These metrics interpreted as histograms

form the foundation of this and all subsequent detection methods.

Chapter 7 – Improved Activity Detection: Random Forests: This work builds

directly upon the efforts of the previous chapter and presents the immediate suc-

cessor to the threshold-based detection mechanism. Again concentrating on the

detection of Skype voice activity, this chapter documents the development a re-

mote, undetectable, high accuracy mechanism to infer Skype voice activity on

WiFi networks with a success rate of ∼97% and only a ∼3% false positive rate.

This improvement was achieved via the use of Random Forests (a machine learn-

ing technique) to build the classifier/detector instead of setting thresholds via

manual analysis. Histograms representing frame size and interarrival distribu-

tions (and various permutations thereof) were adjusted so that the data within
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could be more optimally utilised by the machine learning algorithm. Optim-

isation of the Random Forest classifier and the feasibility of a real-time detector

implementation are analysed. The final product is an efficient classifier and an

approach that can be feasibly implemented at low-cost on portable, commodity

hardware as at IEEE Milcom 2014 (Atkinson et al., 2014b).

Chapter 8 – Inferring Personal Information: A final experimental study into how

mobile device apps can inadvertently broadcast personal information despite the

correct use of wireless network encryption. In contrast to previous studies, this

work both demonstrates live analysis of traffic in real-time as well as the inference

of personal and potentially sensitive information. Using a selection of personas,

this work illustrates how app usage can be tied to personal information. Users

would likely assume the confidentiality of personal information (including age,

religion, sexuality and gender) when using an encrypted network. However, we

demonstrate how encrypted traffic pattern analysis can allow a remote observer

to infer potentially sensitive data passively and undetectably without any net-

work credentials.

As before, without the ability to read encrypted WiFi traffic directly, we process

the limited side-channel data available (timing and frame size measurements) to

facilitate remote app detection. These side-channel data measurements are rep-

resented as histograms and used to construct a Random Forest classifier capable

of accurately identifying mobile apps from the encrypted traffic they cause. The

Random Forest algorithm was able to correctly identify apps with a mean accur-

acy of ∼99% within the training set.

Following the successful feasibility study conducted in previous chapter, the clas-

sifier was then adapted to form the core of a detection program that could mon-

itor multiple devices in real-time. Tests in a closed-world scenario showed 84%

accuracy and demonstrated the ability to overcome the data limitations imposed

by WiFi encryption. Although accuracy suffers greatly (67%) when moving to an

open-world scenario, a high recall rate of 86% demonstrates that apps can un-

wittingly broadcast personal information openly despite using encrypted WiFi.
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The open-world false positive rate (38% overall, or 72% for unseen activity alone)

leaves much room for improvement but the experiment demonstrates a clear

and proven privacy threat. This work is currently awaiting review for publica-

tion alongside a condensed version of the feasibility and applications discussion

in the next chapter.

Chapter 9 – Threat Feasibility, Mitigation & Applications: This chapter con-

siders to what extent the techniques developed will generalise to similar scen-

arios. Real-world applications for these techniques are presented alongside their

caveats and potential approaches to mitigate their effectiveness. We assess the

cost and effort required for an interested observer to present a practical privacy

threat to the everyday WiFi user and ways to defend against accidental broadcast

of personal information are discussed.

Chapter 10 – Conclusion: This final chapter concludes the thesis and reiterates

the key research contributions.
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2 Essential Concepts

This chapter sets the scene and outlines the essential concepts that form the founda-

tion of this thesis. Additional literature will be introduced as it is utilised in subsequent

chapters.

2.1 Ubiquitous Wireless Networks

Wireless networking is now an unavoidable feature of modern society; pervading homes,

business and almost everything between. This ranges from the typical WiFi (IEEE 802.11)

networks (‘WLANs’) employed by home users and businesses alike, but also includes

technologies such as LTE that are now a global standard for data access via cellular mo-

bile phone networks (Ghosh et al., 2010). Unless specifically indicated, this thesis uses

‘wireless network’ and ‘WiFi’ as shorthand for IEEE 802.11 communications. Although

of course there are many other wireless network protocols, IEEE 802.11 is the most ubi-

quitous and commonly referred to as ‘WiFi’ in everyday speech at the time of writing.

Dutton and Blank (2013) found that 96% of Britons with home internet access connec-

ted through WiFi as of 2013, up from 53% in 2009 and only 5% in 2005. An increased

availability of WiFi and cellular data plans has led to and coincided with an explosion

of popularity in mobile devices with 57% of households regularly using a phone or tab-

let to access the internet. WiFi has seen a similar rate of uptake for commercial use, so

much that specific technologies have been developed for the enterprise environment

(Murty et al., 2008).

WLANs are now so ubiquitous that companies such as Google and Apple are able to

use WiFi broadcasts alone to provide location services to mobile devices and provide a

lower-power alternative to Global Positioning System (GPS) in towns and cities through-

out the developed world (Google Inc., 2010; Apple Inc., 2010).

Figure 2.1 illustrates how a typical wireless device connects the the internet via a
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wireless Access Point (AP). The confidentiality of transmissions between these two are

(supposedly) protected from external eavesdropping by virtue of a wireless encryption

scheme.

WiFi networks are now almost ubiquitous. Although slower than traditional wired

networks, their popularity has been driven by the convenience of the mobile devices

that use them and the relative ease with which they can be set up. As with wired ethernet

networks, data is transferred in discrete blocks called frames (similar to the more com-

monly known ‘packets’ at the Network Layer). Although the physical implementation

of a wireless network differs greatly from their wired counterparts, the remaining logical

implementation is largely unchanged. This is a deliberate consequence of network pro-

tocol design reflected in the OSI model (Zimmermann, 1980). The OSI Model describes

how network protocols are designed as different ‘layers’ with different responsibilities.

The use of a wireless LAN instead of a wired LAN therefore only requires changes at

the Data-Link and (of course) Physical layer. Current generation wireless networking

technology interoperates according to the IEEE 802.11 group of standards (IEEE-SA,

2007, 2009). For example; 802.11b , 802.11g and 802.11n define wireless communica-

tions at progressively faster speeds. Other standards such as 802.11i (IEEE-SA, 2004a)

define how wireless communications can employ encryption to improve security as is

discussed in the next section.

Figure 2.2 shows the standard OSI Model (Zimmermann, 1980) which describes how

network protocols can be separated into different layers with different responsibilities.

Higher layers are reliant on the operation of those below them and their data is encap-

sulated by the communication mechanism of layers below. The 802.11 standards relate

Figure 2.1: Typical WiFi Network Setup
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to the first two layers of the OSI Model only; Physical and Data-Link.

Figure 2.2: OSI Model Diagram (WikiMedia Commons (GFDL JB Hewitt), 2007).
Adapted from Zimmermann (1980).

In summary, conceptually — although not always in practice — the OSI model defines

layers with specific responsibilities. The protocol at each layer performs its task and de-

fers responsibility for everything else to higher or lower layers as appropriate. The same

protocol stack is implemented by both the sender and receiver. Lower layers commu-

nicate data from higher layers through a method known as ‘packet encapsulation’ with

the data from higher layers often referred to as the ‘payload’. By this method the pay-

load encoded at one layer on the sender will be identical to the payload decoded at the

same layer by the recipient.

Changes to the underlying layers are therefore theoretically transparent to proto-

cols higher in the model. Similarly, a lower level protocol does not need to understand

the contents of its payload. For example, IP, TCP, UDP or application-specific protocols

and encryption should be entirely unaware and unaffected by a change at the Physical

Layer from a wired to a wireless network. The Data Link (or ‘MAC’) layer provides the

interface to support this transition with the IEEE 802.11 (wireless) (IEEE-SA, 2007) and

IEEE 802.3 (wired) (IEEE-SA, 2012) standards defining how data is transferred appro-

priately for the physical medium. For example, defining a collision detection scheme,

power saving information, and exchanging other information essential to efficient op-
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eration alongside the payload data itself. Internet-enabled apps on a smartphone are

similarly agnostic to as whether they are connected to WiFi or using mobile data for the

exact same reason (although conscientious developers can ask the smartphone oper-

ating system for this information to avoid expensive data charges) (Ghosh et al., 2010).

With a change in one layer not requiring changes in others, implementation is made

much simpler. However, from a security or privacy standpoint this can be worrisome:

data, behaviour or other information is exposed in ways the original implementers may

not have considered. As a consequence of moving from a physical to wireless transmis-

sion medium, user data becomes immediately more vulnerable due to the removal of

physical barriers as discussed in the next section. Furthermore, WiFi networks may op-

erate over distances far greater than one might expect with networks communicating

over hundreds of kilometres being demonstrated (Flickenger et al., 2008). While most

hardware is incapable of this, passive monitoring (which does not require the power-

hungry ability to transmit) can occur at distances greatly exceeding standard operating

range.

2.2 Security & Encryption

Users of WiFi would be forgiven for assuming that so long as the encryption being em-

ployed on their wireless network was not broken, the confidentially of the data being

sent across it (and related information about their activity) was securely protected. At

the core of the research presented in this thesis lies a challenge to this assumption.

The only thing that impedes direct visibility of wireless communication and access

to a particular network content is a WiFi encryption scheme. To set up this encryp-

ted connection, a user must first authenticate with the access point. This can be either

be via a pre-shared key (or ‘WiFi password’) as is common on most home routers or

through credentials for a dedicated authentication server (such as username/password

combinations as would be common in enterprise). Once authenticated this encryption

scrambles the data being transmitted over the wireless network such that only devices

with the correct decryption key can transform it back into the original data, as illus-

trated in Figure 2.3.
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Figure 2.3: Packet Encapsulation Example

Security for wireless networks is focused on the encryption mechanism used to pre-

vent communications simply being read by an eavesdropper. Eavesdropping upon

wireless communications is obviously significantly easier than eavesdropping upon

those using standard cable networks due to the lack of physical barriers. WiFi encryp-

tion is applied at the Data-Link layer. Thus, as is illustrated on the right of Figure 2.3,

all communications in layers above are also concealed. Without WPA2 encryption (or

an alternative) the vast majority of communications would be transmitted in plain text

over the air. Although encryption may also be employed at higher layers, this tends

to be the exception rather than the rule. For example, some websites using HTTPS at

the Transport Layer to protect passwords or (e.g. in the case of internet banking) en-

tire sessions. Similarly, VoIP phone calls are usually encrypted. However, most internet

communications including email, web browsing and streaming have no additional se-

curity applied.

WEP (‘Wired Equivalent Privacy’) was the first widely adopted attempt to provide

security to wireless network communications. However, Wired Equivalent Privacy is a

misnomer. If the level of privacy was truly equivalent to wired networks, then the col-

lection of data as described in this thesis would be impossible. As noted in the previous

section, user data is routinely broadcast over a wide area from every WiFi device. Al-

though encrypted, the removal of physical barriers means that communications can be

received simply and undetectably. Previously such intrusion would require a physical
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wiretap inside a building.

Any compatible device within range is capable of receiving these transmissions.

With the relaxation of physical restrictions on network access, it only is the encryp-

tion method used to encode and decode communications between devices that the-

oretically preserves confidentiality between the sender and recipient. If discovered (as

has been the case with successive generations of encryption schemes), flaws allow the

supposedly secret keys to be calculated; allowing any and all communications to be

decrypted and read in plain-text by an attacker. Due to a flaw in its implementation,

WEP has been retired and superseded by the WPA2 (WiFi Protected Access, version 2)

encryption scheme. Although WPA2 (which was itself an improvement on the original

WPA) can still be vulnerable in certain configurations (Marlinspike et al., 2012), it re-

mains the accepted standard and is considered ”the only system that protects wireless

transmissions against electronic eavesdropping” (Gold, 2010). WEP should certainly

not be used as it was found to have a fundamentally flawed implementation that can

be trivially defeated in mere seconds (Bittau et al., 2006).

It is important to note that the work presented here does not seek to ‘break’ en-

cryption schemes in the same way. Instead of attempting to extract these secret keys

and read information directly, the method presented attempts to infer user activities

directly from the encrypted transmissions. However, the same ‘side-channel’ informa-

tion that implementations of crypto-systems often leak is utilised in order to do so. Ex-

cept in rare circumstances discussed further in the next section, these side-channels are

common to all communications and should therefore be exploitable regardless of the

encryption scheme employed. Since WiFi encryption is applied at the Data-Link layer,

only the 802.11 header can be read directly from encrypted frames carrying user data.

The remainder of the frame and the data within cannot be read directly. An unbroken

encryption scheme therefore leaves little information to work with. However, all WiFi

frames have their headers in plain sight. This allows for the communications between

specific devices to be isolated. Similarly, non-encrypted frames are easily identified be-

cause they are not marked as ‘protected’ in the frame header. Unprotected frames will

not carry user data, but are used for various functions of network management as dis-

cussed later in Section 5.2. This allows for simple filtering to leave only the interesting
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frames containing actual user data. The following section details what information is

still measurable despite encryption and Chapter 5 elaborates as to how this information

can be used and interpreted.

2.3 Side-Channels & Inferring Personal Activity

Side-channels are any measurable phenomena that provides information about an oth-

erwise secure process. Described as “an often-overlooked threat” and no longer requir-

ing specialist equipment (Lawson, 2009), side-channels are seemingly inconsequential

measurements that can expose the secrets of a system.

Modern encryption relies on cryptographic ‘keys’ (actually very long binary codes)

that can be used to decrypt a communication remaining secret. In the case of wire-

less security, this key is usually derived from a passphrase or password in combina-

tion with other information. Except for validation purposes, the analysis performed in

this project assumes that the passphrase is not known and keys remain secure behind

sound cryptography and encryption procedures. However, to quote Schneier (2004),

“security is a chain; it’s only as secure as the weakest link” and that when it came to

real world use, the “weak points had nothing to do with the mathematics.” Flaws are

often the result of supposed ‘secrets’ not being kept secure in a wider, complex sys-

tem in which cryptography plays only a small part. A trivial example would be users

writing down passwords next to computers so they would not be forgotten, but can be

read by anyone. More subtle flaws can present themselves due to the implementation

of cryptographic systems. Even if mathematically sound, encryption requires a phys-

ical implementation and this may leak information that can be used to undermine the

system. Methods to defeat cryptography using this information are known as ‘side-

channel attacks’ where “a side channel is any observable side effect of computation

that an attacker could measure and possibly influence. Crypto is especially vulnerable

to side channel attacks because of its strict requirements for absolute secrecy” (Lawson,

2009).

The most well-known side-channel attacks are those that can be used to reverse

engineer the keys in cryptographic systems and therefore destroy the confidentially of
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any encrypted data. Kocher’s well known demonstrations of attacks against the then

widely-used RSA and DES encryption algorithms showed that analysis of power con-

sumption or response times could be used to severely undermine the strength of the

encryption process by narrowing down the possible keys that might have been used.

Those keys that remained could then be ‘brute-forced’ — tried exhaustively until the

correct one was found (Kocher, 1996; Kocher et al., 1999). Other side channels might

include any other physical output of a system implementation; from electromagnetic

to sound output or even blinking LEDs. In the military and security agencies, meth-

ods using emissions such as these to gain intelligence are known as TEMPEST attacks

and have been employed since at least the early 1960s (National Security Agency (USA),

1972). As a further example, side-channel information provided by clients reporting the

validity of communications was one of the flaws that made WEP insecure. By exploiting

a flaw in the protocol where the validity of transmissions was reported by the receiver,

malicious encrypted frames specially constructed by an attacker could eventually nar-

row down the key being used to secure communications (Borisov et al., 2001).

In contrast to the attacks above this research does not seek to use side-channels

to undermine and ‘break’ encryption schemes in the same way. Instead of attempting

to extract secret keys and read communication data directly, the method presented at-

tempts to infer user activity from the encrypted transmission. It is not an ‘attack’ as

such, but rather an investigation into what information about user activity is leaked

through the WiFi implementation despite encryption being in place.

Knowing what a user or users are doing can be valuable information. As a power-

ful example in this area is the investigation by McDaniel and McLaughlin (2009) into

the potential privacy implications of modern “Smart Grid” electricity supply devices.

They found that “energy use information stored at the meter and distributed thereafter

acts as an information-rich side channel, exposing customer habits and behavior”. The

original intention of these devices is laudable; to make power infrastructure more ef-

ficient by using improved reporting of consumption. However, although the only data

reported back by these devices was how much power was been used, it was done with

sufficient granularity (one minute intervals) to be able to distinguish the usage signa-

tures of different household appliances as shown in Figure 2.4.
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Figure 2.4: Inferring Activities from Power Usage (Quinn, 2009)

As illustrated by Quinn (2009), this information could potentially then be used to

discern an incredible amount of information about the activities of individuals. For ex-

ample: how many people live there, when occupants were likely to be out of the house,

whether occupants often regularly came home conspicuously close to bar or church

closing time, whether the occupant is a restless sleeper, or if a parent had left a child

home alone. Aside from the invasion of privacy in itself, there is concern that this in-

formation could be sold to third party advertisers. Where these studies inferred inform-

ation from use of power, this study will investigate if information is divulged by network

side-channels in a similar way.

2.4 Network Activity Classification with Restricted Data

Prior research has also investigated the identification of network traffic and users with

various limitations on the data that can be accessed. Table 2.1 summarises these stud-

ies. Karagiannis et al. (2005) investigated classifying network traffic with limited data

under the premise that more traffic was likely to be encrypted and obfuscated in the fu-

ture and that this would be useful for routing purposes. They were able to classify data

despite deliberately not associated port numbers with applications. Similarly, Wright
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and Masson (2006) analysed TCP streams encrypted at the Transport Layer (thereby

obfuscating payload content) and were able to determine the underlying activities in

most cases by utilising machine learning techniques.

With a recent increasing interest in hosted ‘cloud’ services, the work of (Chen et al.,

2010) looked at popular healthcare and tax services using HTTPS (encryption at the

Application layer) to infer private information and show that “side-channel informa-

tion leak is a realistic and serious threat to user privacy”. Another study found that

it was possible to deduce certain categories of Google search despite the user con-

necting over encrypted HTTPS to a distributed Content Delivery Network (Iacovazzi

et al., 2013). Observing older implementations of the SSH login protocol showed that

password length could be deduced from the size of the packets sent to the server and

padding was added to secure the process (Monrose et al., 1999) and the anonymity-

preserving Tor network also added methods to obfuscate the timing and size charac-

teristics of traffic after it was shown that the process of visiting certain websites could

be ‘fingerprinted’ (Panchenko et al., 2011).

The huge power of limited information is shown in the inspired study by White et al.

(2011) who showed that packet size and timing information could be used to recon-

struct entire conversations from encrypted Skype packets alone. By mapping these

sequences to spoken English phonemes, followed by probabilistic reasoning using a

language model, they were able to extract information about the spoken phrases des-

pite Skype’s encryption scheme. Although the authors were disappointed with general

case performance, the ability for it to work in some cases is still alarming given the de-

liberate effort taken to encrypt and obscure these communications. Their method did

require exact isolation of the Skype traffic (very difficult over encrypted WiFi) and fails

with slight changes from the language model (e.g. regional accents), but nevertheless

shows the extreme power of mere side-channel data. However, all these studies are

undertaken from a position within the network. While the challenges in dealing with

encrypted traffic are similar, any adversary must have a position of privileged access

like that of a network administrator or Internet Service Provider.

The analysis in this project will rely on even less information because encryption

is applied at lower level (Data-Link layer). However, the previous work outlined in this
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CHAPTER 2 Essential Concepts

Figure 2.5: Available WiFi Side-Channel Data

section has shown that limited information and encryption do not prevent analysis;

they just make it more difficult. With all useful data obfuscated as described earlier

in this chapter, we must instead rely on ‘side-channels’ or ‘metadata’ (data about the

data). These measurements outlined in Figure 2.5, can be analysed for patterns that

can be used to discern or ‘fingerprint’ certain network activities. As is demonstrated as

the thesis unfolds, this simple information may be further analysed to denote private

information about the device or user creating the network traffic.

Although not exploiting any side-channels, Cheng et al. (2013) investigated leaks

from open WiFi hotspots, finding an incredible wealth of personal information. Al-

though not necessarily observable directly, these details could be inferred from identi-

fiers and other information that was openly broadcast. They them proceeded to char-

acterizing privacy leakage in terms of the identity, location, financial and social data

discovered. The work of Zhang et al. (2011) presents work that is most similar to this

work in experimental terms. Observing from the same external vantage point, they

were able to use machine learning (hierarchies of Support Vector Machines and Ra-

dial Basis Function Networks) to attempt to infer activity on a wireless network without

breaking encryption. With a reported accuracy upwards of 80%, they were able to differ-

entiate between several broad categories of network activity: “web browsing, chatting,

online gaming, downloading, uploading and video watching”. However, accuracy fell

greatly when observing simultaneous traffic, with BitTorrent being particularly good at

hindering the detecting of other activity. As shown in Table 2.1 the distributions used in

this work provide much richer, finer grained metrics than the sums, means, medians,

variances, and relatively coarse distributions they use.

Except in special circumstances, these side-channels are common to all network

communications. Although the research presented in this thesis is focused on WiFi,

38



Essential Concepts CHAPTER 2

the same side-channel information and techniques should generalise to other encryp-

ted communication methods. One particularly noteworthy generalisation would be

to cellular data transfer protocol technologies such as 4G LTE (Stefania et al., 2009).

Aside from WiFi, this is the internet connection method for mobile devices like those

studied in Chapter 8 and has a much larger operating range. Specially designed VPNs

(Schulz et al., 2014) and anonymity networks such as Tor (Perry, 2011) can pad frame

sizes, adjust timings, and intermix network traffic to thwart traffic analysis. However,

these methods have not seen wide deployment and incur significant performance pen-

alties. A network with optimal throughput will attempt to send data as fast as possible

only when required (causing predictable timings), and only as much data as is needed

(causing predictable frame sizes). Shifting priority away from maximum throughput

introduces significant overhead by necessity, and is especially problematic for mobile

devices where performance is at a premium due to battery life limitations. While these

solutions exist, they are unlikely to see widespread deployment on consumer devices

in the short or medium term.

2.5 Summary

With these foundations, discussion and analysis of the specifics of inferring user in-

formation from observable WiFi communications can begin. Additional information

and supplementary academic literature will be introduced as it is required. However,

as explicitly noted this chapter, the security and privacy implications of these studies

are potentially worrisome. It is prudent to first consider the ethical precautions and

data-collection limitations that should be observed in this field of research. Therefore,

the next chapter outlines the basic experimental scenario and how these precautions

were be built into the experimental process.
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3 Handling of Leaks:
Experimental Foundations

This chapter presents a basic scenario to monitor, intercept, capture and store encryp-

ted WiFi communication data and outlines how this research will map observable en-

crypted wireless network traffic to user activities. Unless overly restricted, this pro-

cess will interact with devices external to the research scenario and the capture of data

from individuals otherwise uninvolved with these studies. Furthermore, any security

and privacy research is potentially dangerous if not carefully managed. Therefore this

chapter also presents an ethical analysis of the research and the steps undertaken to

mitigate or nullify the risks involved.

3.1 Experimental Design & Adversarial Model

Figure 3.1 illustrates the scenario that forms the foundation of all experimental envir-

onments to follow. This scenario reproduces a standard wireless network infrastructure

whereby user devices — in this case a laptop — connect to the internet via a stationary

access point.

Figure 3.1: Observing Encrypted WiFi Traffic

This is the most common form of WiFi network and given their prevalence will likely

be instantly familiar to the reader. In this model devices need only connect to dedic-

ated Access Points (APs) that are wholly responsible for routing. This ‘infrastructure
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CHAPTER 3 Handling of Leaks: Experimental Foundations

mode’ is the setup used recognisable for its use in enterprise networks (e.g. EduRoam),

home wireless routers (the router is the dedicated access point), and wireless hotspots.

It is also very similar to the model used by cellular mobile phone networks whereby

a cellular tower provides dedicated voice and data service access to nearby phones.

The alternative to this model is ‘ad-hoc’ wireless networks whereby devices have a flat

hierarchy (i.e. no specially designated Access Points) and must route packets between

themselves and are jointly responsible for service provision. This alternative network

configuration is not used in these studies, but could be analysed using the exact same

tools.

In addition to a normal user connecting to the network to access internet services

as intended, our scenario includes an adversary observing or ‘monitoring’ the commu-

nications of this user. This adversary is not necessarily malicious, but is attempting to

uncover information about the activities of the user without breaking the encryption of

the wireless network. This research seeks to determine to what degree the adversary’s

goal can be achieved. The adversary has no privileged access to the network. This en-

tails that the adversary has:

• No access credentials or decryption keys (and does not seek to uncover them).

• No ability to authenticate or connect to the network (and does not interact with

APs or devices in any way).

• No circuitous ability to read data from ‘inside’ the network.

Therefore anything encrypted by a user device or access point will remain encrypted.

The adversary is therefore:

• Entirely passive.

• Undetectable.

• Can operate anywhere within WiFi reception (not transmission) range.

WiFi encryption prevents any observer without a specific secret key from reading the

broadcast data. This work does not attempt to break the WPA2 encryption scheme or

any other security mechanisms employed by the network. Instead, data gathered des-

pite encryption is utilised to show that encryption alone is insufficient to prevent the
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revelation of details about a user’s activities. Encrypted WiFi’s current WPA2 imple-

mentation does not obscure the measurable variables of frame quantity, sender and

recipient, transmission timing, or frame size (nor do any implementations proposed,

or used previously). As will be demonstrated in later chapters, it is possible to deduce

user activity via statistical analysis by merely observing encrypted network activity.

‘User activity’ refers to a WiFi user’s actions or behaviour at the time of observation.

For example, whether a user is using Skype, streaming music, or browsing the inter-

net. In later research it is shown that analysis can provide surprisingly precise detail

regarding a user’s activities. Furthermore, it is also possible to tie certain user activities

to particular personal information about a user. The user is unlikely to realise that this

personal information is being broadcast over a wide area.

Successive experiments will incorporate more complex scenarios than that shown

in Figure 3.1. Larger scale wireless networks such as EduRoam to test the robustness

of our analysis. We may therefore collect data from other network users. Although we

are primarily only interested in specific encrypted communications, all WiFi networks

use similar hardware and same set of broadcast frequencies. It is inevitable that an ob-

server will also record data from devices that are not directly involved in experiments.

Furthermore, some of these communications may not use encryption. This data may

be retained as it may be useful to analyse in the case of interference or unexplained

variation in the results. As will be discussed in the next section, care will have to be

taken with this data so that the confidentially of any unintentionally observed data is

preserved. This is even the case for even encrypted data because it cannot be guaran-

teed that the encryption scheme will remain secure forever and (by the very nature of

encryption!) the sensitivity of the data contained within cannot be determined.

3.2 Inferring Information from Network Activity

Wireless network communications are broadcast openly with the assumption that en-

cryption makes their contents unreadable. This may not always be the case, but for the

purposes of activity inference it is assumed that this holds true. Therefore, the actual

content of communications cannot be analysed without an impractically large invest-
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ment of time and resources to discover the secret key. Instead it is hypothesised that it

is possible to identify users’ activities by merely observing the encrypted network traffic

they generate.

Users interact with computer programs to perform a various tasks. If this task re-

quires any kind of internet service, then this will result in the generation of network

traffic. Therefore, certain user activity will map to (i.e. cause) certain network activity

as shown in Equation 3.1.

User activity−→ Application activity−→Network activity (3.1)

∴ User activity−→Network activity

The ability to identify user activity from network traffic requires that some form of re-

verse mapping holds as well, as shown in Equation 3.2. For network activity to com-

pletely and uniquely identify user activity a total, one-to-one, bidirectional relationship

would need to be constructed. This mapping would be the ideal solution, however un-

covering such a perfect mapping is unlikely.

User activity
?←−Network activity (3.2)

Furthermore, the study conducted in Chapter 8 shows how the ability to detect user

activities can reveal private information about the user him/herself as denoted in Equa-

tion 3.3.

Personal Information
?←−User activity ?←−Network activity (3.3)

∴ Personal Information
?←−Network activity

As fully described later in the next chapter, it is relatively easy to collect data that de-

scribes the mapping in Equation (3.1) because user activity can be controlled and the

ensuing network activity recorded. However, the observable network activity inform-

ation will be limited by the use of encryption and obscured by interference and the
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emergent non-determinism of computer systems. It is expected that observable net-

work activity will still exhibit identifiable features, but constructing a reverse mapping

with such sparse data is a challenging problem. The research presented in this thesis

assesses the feasibility and practicalities of identifying these features and constructing

this mapping so that user activity can be inferred from the observable encrypted net-

work transmissions. In practice given the difficulties that encryption and noise impose

on collecting and observing network data, it is likely that such a mapping can be shown

to hold with a certain degree of accuracy instead.

3.3 Ethical Considerations

This section examines the ethical issues surrounding research into how commonplace

wireless networking technology may leak information about the activities of the people

using it. The fundamental ethical validity of this kind of research is discussed and vari-

ous written guidelines from relevant partner organisations and professional bodies to

help ensure it is performed in a proper fashion are identified. Finally, the three most

pertinent ethical issues are picked out and analysed before the conclusions about how

this research should be conducted are presented.

3.3.1 Ethical Challenges in Information Security

As is often the case in the field of computer security, the tools used in this body of work

have the potential to be used either maliciously or virtuously. As such, practitioners

should consider the ethical and legal implications of their use before wielding such

‘dual-edged swords’.

In order to assess the security of any system – technological or otherwise – it is es-

sential to know its flaws and vulnerabilities. Investigating such vulnerabilities can be

a double-edged sword. The very same knowledge required to help secure and under-

stand a system can also be used to undermine and attack it. The question is therefore:

do the benefits as a whole outweigh the risks? Renowned information security expert

Schneier (2008) writes,

“Unequivocally, yes. Despite the risks, vulnerability research is enormously
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valuable. Security is a mindset, and looking for vulnerabilities nurtures that

mindset. Deny practitioners this vital learning tool, and security suffers ac-

cordingly.”

This ‘adversarial mindset’ and approach to research is even considered essential and

endorsed by the likes of the United States military, a relatively risk-averse and authorit-

arian organisation (Conti and Carol, 2012). On balance the publication of research like

this is accepted and encouraged so that the knowledge required to improve security is

widely available. To mitigate any benefits given to potential attackers, the concept of

‘responsible disclosure’ is espoused and will be discussed in the sections following.

Of course, the unauthorised interception of communications and access of com-

puter systems is prohibited under law in most countries with the Data Protection Act

(Great Britain, 1998) and Computer Abuse Act (Great Britain, 1990) being the key le-

gislation in the United Kingdom. Therefore, legally and ethically permission should

therefore be sought from the owners of any device under observation.

However, less obvious is the fact that it is very easy to unintentionally collect the

communications of additional users and devices. Multiple WiFi networks often use the

same channel and channel frequencies overlap, meaning that data from these networks

can easily be recorded alongside any targeted communications. Practitioners should

therefore ensure they have a mechanism to identify then filter, anonymise or otherwise

purge communications not intended for observation. The easiest way to do this is to

filter out any communication from devices that are not part of the study.

If collecting from volunteers, Data Protection legislation states that any data collec-

ted on individuals is the responsibility of the collector. This is particularly important

in the case of sensitive data (e.g. sexuality, age, ethnicity) and personal identifying data

(which might include names, email addresses etc.). Unless volunteers are prevented

from using internet services as they would normally, it is highly likely that informa-

tion of this kind will be transmitted and recorded. Given the potential volumes of data

recorded and the additional complication of it being hidden behind a wireless encryp-

tion scheme, it is hard to even identify if this data exists. Unless specifically required,

it may therefore prudent to wipe all of the encrypted payload. Otherwise practitioners
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may wish to store collected data using stronger on-disk encryption, such as TrueCrypt

(TrueCrypt Documentation, 2014).

3.3.2 Codified Guidance

This research is part jointly funded by EPSRC1 and Selex ES2. It is therefore important

to examine the stated ethical codes of both entities, and reconcile any differences that

may arise.

Furthermore, UCL has its own research ethics framework (UCL, 2012) by which

all students and staff are bound. These are very much aligned with EPSRC’s, whose

guidelines are defined in the Research Councils UK Code of Conduct (RCUK, 2011).

Combined, these provide a definition of what constitutes legitimate ethical research.

At their core they define basic ethical principles, which are perhaps best summarised

by Pimple (2009):

1. Be honest.

2. Be fair.

3. Do no harm.

In addition, these codes of ethical research conduct specifically highlight the denounce-

ment of plagiarism, the issue of informed consent for research participants, and the

conscientious collection of personal data to be discussed in greater detail later. In con-

trast, as a business Selex ES has a very different code of conduct. It is primarily con-

cerned with employees operating within the law and explicitly condemns any form of

corruption or activities that will harm its shareholders or the reputation of the company

(Selex ES, 2012).

Professional engineering bodies such as the IET and IEEE also have their own eth-

ical guides. Usefully, these professional bodies span both academia and industry. How-

ever, of particular interest is the code of ethics from the Institute of Information Security

Professionals (IISP, 2007). Importantly, as a rather specific facet of the field, it explicitly

outlines the concept of responsible disclosure:

1The Engineering & Physical Sciences Research Council (of Great Britain), publicly funded.
2A technology company operating primarily in the defence sector, commercial.
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“[Members must] respect the confidentiality of information acquired dur-

ing the course of their duties and should not use or disclose any such in-

formation without proper and specific authority or unless there is a legal or

professional requirement to do so.”

Government legislation of particular relevance includes the Computer Misuse Act (Great

Britain, 1990) and Data Protection Act (Great Britain, 1998), for which UCL has a dedic-

ated process to aid compliance. These laws are closely intertwined with ethical research

policy.

3.3.3 Ethical Analysis

Three prominent and challenging ethical issues have arisen from the previous discus-

sion. The initial risk, affected stakeholders, potential mitigation methods and residual

risk presented by the following issues will be analysed:

Issue 1: Participant Consent

Issue 2: Data Protection

Issue 3: Publication & Responsible Disclosure

Participant Consent

Standard off-the-shelf consumer WiFi technology can have a range of anywhere between

30 and 200m, depending on environmental conditions and the precise technology be-

ing used (Belanger, 2007). In a dense urban environment like that surrounding UCL

and most residential areas, picking up data from users unaware of our experiment will

be almost unavoidable.

UCL has strict guidelines about informed participation in experiments, obtaining

consent to use data, and the ability to withdraw from experiments at any time. How-

ever, although we can identify devices by their unique MAC address identifiers, we can-

not directly link them to a person. If we wished to directly use their data, we would

therefore be in a position where we would require the consent of someone we cannot

identify. Furthermore, we have no way of excluding special groups like those under 18

years of age.
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There is also the unclear distinction as to which WiFi information is public (and

therefore does not require direct consent), given that WiFi technology has openly broad-

cast it over a public area, on a public transmission spectrum, and it is similarly access-

ible by anyone else who cares to look. We are not using their data itself (it is probably

encrypted anyway), but rather recording information about how that data itself is sent

(the side-channels discussed in the previous chapter).

This is a complex scenario. However, parallels can be drawn between our research

methods and the controversy surrounding Google’s StreetView data collection. While

taking photographs (on public roads) to aid visual navigation in Google Maps, Google

also recorded WiFi data (MAC addresses and network names) as these cars were driv-

ing. Mapping stationary access point identifiers to specific locations was performed

to aid its mobile device geolocation services as a supplement to GPS. However, they

also recorded and retained some communications being broadcast alongside this in-

formation. Although not analysed, this included some user data, both encrypted and

unencrypted.

The unprecedented collection of this data on such a wide scale lead to legal invest-

igations in both the United States and Europe. In the UK, an investigation was begun

by The Information Commissioner’s Office (ICO). The Office found that,

“[It] is unlikely that Google will have captured significant amounts of per-

sonal data. There is also no evidence as yet that the data captured by Google

has caused or could cause any individual detriment.” (ICO, 2010)

But interestingly still stated,

“Nevertheless it was wrong to collect the information. We will be alerting

Privacy International and others who have complained to us of our posi-

tion.” (ICO, 2010)

So while it was decided that no-one’s privacy was actually compromised, they found

the practice to be unethical. Our experiment is for a different purpose and is on a

vastly smaller scale, however it will still be prudent to minimise the amount of person-

ally identifying information that we collect. To effectively remove information directly
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pertaining to individuals from our experiment, but retain information about their in-

fluence on network activity, we will take steps to remove their data as is detailed in the

next section. If we are not using their data and it is immediately discarded (as would

usually occur automatically with WiFi hardware), then consent is not required.

Data Protection

Although UCL has an institutional responsibility, it is the responsibility of researchers to

ensure that UCL is aware of the data being collected and following the rules it prescribes

to comply with data protection law.

Similar to the inability to receive consent from unknowing participants discussed

in the previous section, we cannot know a priori what information may be collected.

This is further complicated by the fact that most of this data will be encrypted so it is

impossible to look even if that was appropriate. Although specific devices can be iden-

tified, data from them cannot always be completely discarded because it may be neces-

sary to understand the interoperation between devices for our analysis and understand

the emergent operation of the network.

Even once the data is collected, we cannot know what information is contained

within without breaking the encryption. Although technically possible, it is prohib-

itively difficult to decrypt all the collected data and would serve no useful research be-

nefit. Sensitive and personal data requires special consideration under the Data Pro-

tection Act (Great Britain, 1998) but we cannot know whether such data exists within

our collected datasets.

The Act also requires data to be stored for only as long as is necessary, although this

is potentially at odds with UCL’s requirement that data directly pertaining to research

be retained for 10 years. In the view of UCL, such long retention is necessary for cred-

ible and verifiable research. Although the encryption is problematic to decrypt with

current generation technology and knowledge, security is an iterative process and it is

a recurring trend that encryption schemes are broken over time. As discussed in the

previous chapter, the deprecated wireless encryption schemes of WEP, WPA (version

1), and many schemes before them for different applications have been broken. Even

those that remain mathematically secure, become increasingly ineffective as techno-
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logy improves and their secret keys become easier to guess by brute force (Bittau et al.,

2006). It is reasonable to assume that the information within our datasets will be easily

accessible in ten years.

When we are aware that we have collected data from devices external to our ex-

periment. If used and not immediately discarded, we must therefore assume that it

contains private and sensitive information. However, the real data ‘payload’ part of

collected frames can be overwritten with junk data without effecting the metrics we are

using (e.g. size, timing) in our analysis or the results of our experiment. Our datasets

will therefore be free of sensitive data in the direct sense.

However, inferred information could also potentially be sensitive. For example, as

studied in Chapter 8 it may be possible to identify patterns in network activity that

strongly correlate to the use of a mobile app tailored for gay dating. This is something

that cannot be mitigated, but the risk remains very minimal given that we cannot dir-

ectly tie a device identifier to a real person without actively attempting to locate the

device after the fact. This risk can be mitigated on recorded data by modifying device

identifiers so that they are anonymising and different from those truly observed.

In the field of network analysis, it is common for institutions to collaborate and

share data. Projects such as CRAWDAD (Dartmouth College, 2012) exist to provide a

wider variety of data sources to help drive better understanding. Programmes like this

are already in use and well scrutinised. Submissions to them are fully anonymised (in-

cluding even device identifiers) and have all payload data removed in the same way

as our collected data would. Should be ever wish to participate in this or similar pro-

jects, we will of course adhere to these rules but they can also act as a guide for our own

anonymisation efforts.

Publication & Responsible Disclosure

As embodied in the guidelines of institutions such as the IISP noted earlier, security

professionals have an ethical obligation to ensure that their knowledge is shared in a

responsible manner. This ideal is commonly referred to as ‘responsible disclosure’.

The most obvious part of this process is allowing those responsible for the security

of a system access to your results before would-be attackers. This allows time for any
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security risk to be fixed or mitigated before a flaw is made public. Not doing this not

only potentially harms the owners of a system, but also their customers/users. Fur-

thermore, not respecting the viewpoint of system owners can greatly hinder coopera-

tion between you, your research institution and the wider academic community and

therefore adversely affect research into the security field as a whole.

Not only is this the ethical responsibility of the researcher, in the United Kingdom

he/she could also potentially be found legally responsible. A somewhat vague section

of the recently amended Computer Misuse Act (Great Britain, 1990) states that,

“A person is guilty of an offence if he supplies or offers to supply any article

believing that it is likely to be used to commit, or to assist in the commission

of, an offence” where “an article” is defined as “any program or data held in

electronic form.”

However, responsible disclosure cuts both ways. As noted in the IISP caveat that mem-

bers “should not use or disclose any such information without proper and specific au-

thority or unless there is a legal or professional requirement to do so” (emphasis ad-

ded). Since professionals are ethically bound to more wide-ranging moral code, if a

researcher believes the inaction of an organisation is harming its users — perhaps for

financial gain or reputation reasons — then it is ethical to announce any flaws so that

users may make an informed choice and/or attempt to pressure an organisation into

fixing a problem. This would similarly apply to whistle-blowing security professionals

within an organisation.

However, unethical action by another party does not morally excuse unethical ac-

tions undertaken by oneself. It is therefore the responsibility of the researcher to do

all in their power to effect change before resorting to actions that might damage the

reputation, financial security or work of others. Large organisations are likely to have

layers of bureaucracy so ethically communicating security problems may require time

and perseverance.

Our research concerns WiFi security; a set of technologies that have become pervas-

ive world-wide. The nature of this specific research project means that finding a specific

serious flaw is unlikely. However, more likely minor flaws that are only problematic in
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certain scenarios can potentially effect a vast number of people and organisations.

This leads onto the more subtle element of responsible disclosure of accurately con-

veying the results and implications of research. Given the prevalence of WiFi and recent

media fondness for stories about “cyber war”, information security at the Olympics,

“hackers” being inherently bad people, and public sector IT failures, it is important that

the limitations of such research is reported correctly and in context.

Although there is only so much that can be done to prevent incorrect reporting, re-

searchers can pick who they talk to directly and work to correct inaccuracies. Failure to

do so can unduly harm the reputation of WiFi and potentially anyone or everyone using

it. In a wider sense, incorrect reporting could hinder society and technological progress

by nurturing misunderstanding of technology, security research and unnecessary res-

istance towards it.

It is of course just as important to explicitly note these limitations in scientific art-

icles as well, particularly as we have noted potential forensic applications for this re-

search. There is a huge gap between the level of certainty required in academic pub-

lication of privacy vulnerabilities and designing prudent countermeasures to analysis,

versus the scientific rigour required for the reverse implication to be used for forensic

analysis and in court. This could not only be detrimental to the research of others, but

also theoretically contribute to miscarriages of justice or errors of impunity.

3.4 Summary

The primary practical implications of the discussion in this chapter can be summarised

as follows:

1. Targeted data recording should be performed only on devices belonging to in-

formed individuals who gave their explicit consent.

2. All data collected that may contain personal data should be stored securely using

encryption and anonymised if required.

3. Any vulnerabilities or security issues discovered should be published in a respons-

ible fashion.
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It should be noted that this security research is placed under closer ethical scrutiny

than would be common in other scenarios. A variety of applications for this research

and the implications of our findings are discussed in Chapter 9. Any commercial en-

terprise looking to apply this research will likely have less institutional ethical and data

protection guidance, although they are still bound by law. Law enforcement itself is im-

mune to many of these legal restrictions so long as it can be justified as part of a crim-

inal investigation. Certain companies (Selex included) can also be granted exemptions

when developing tools for law enforcement use. Finally, criminals that misuse WiFi

data will pay no heed to any ethical or legal restrictions whatsoever. Data collection for

this research is therefore much more restricted than it would be in many of its potential

applications or if being performed maliciously.

The next chapter describes the construction of a framework to collect WiFi data.

By incorporating the ethical requirements outlined in this chapter into all studies de-

scribed in subsequent chapters, this collection can be performed ethically, legally, and

responsibly.
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How to Collect Drips

This chapter describes the methods used for the collection of ‘raw’ WiFi data. As will

be discussed in subsequent chapters, this data can later be submitted for filtering, pro-

cessing or analysis. This raw data is observed at the data-link layer. As already dis-

cussed, higher level layers are obscured from view due to the use of WiFi encryption.

It is possible to analyse even lower level Physical Layer activity with dedicated hard-

ware as shown in research like that of Danev et al. (2012) where they identified specific

instances of wireless hardware using only the physical characteristics of their commu-

nications. However, the focus of the studies in this thesis is to infer user activity despite

encryption where users are assumed to have legitimate access to the network and no

reason to act against current WiFi standards and deliberately obscure their (device’s)

identity. Any patterns in user activity should be fully represented at the data-link layer

and identifiable by MAC address because these users will only interact with the network

using standard programs via the operating system. Data collection efforts are therefore

focused on the data-link layer.

The implementation detailed can perform this entirely passively using only cheap

commodity hardware and freely available software. A paper (Atkinson et al., 2014a)

containing a condensed version of the hardware and software platform description

found in this chapter was published as reference for other researchers and practitioners

wishing to explore activity inference without breaking encryption.

4.1 Implementing a WiFi Collection Platform

To collect data showing network activity, a typical wireless network was set up. This

consisted of a single access point (AP) to which client devices can connect using com-

modity hardware. These studies were performed on a variety of wireless networks. In-

frastructure typical of a home router’s WiFi network or EduRoam (the university-wide
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WiFi network), has already been illustrated in Figure 3.1. For data collection on a net-

work wholly controlled by the researcher, this AP took the form of a ‘MiFi’ dongle as

shown in Figure 4.1. This provided internet connectivity through the cellular 3G mo-

bile network. The local wireless network provided access via 802.11g (max 54Mbit/s)

using WPA2 encryption with a shared secret passphrase (which is believed to be a se-

cure encryption method at the time of writing). Other configuration options were left

with their default settings.

Figure 4.1: Observing Encrypted WiFi Traffic using ‘MiFi’

With full control of this network it was possible to ensure that only chosen devices

(and therefore only chosen users) could connect and pick a communication channel

(frequency) with minimal congestion. Frequency saturation and interference is dis-

cussed further in the next section. Similarly, as this network configuration is experi-

ment specific it simplifies any ethical considerations relating to privacy that would arise

from capturing network traffic from an existing network with users who are not expli-

citly part of the experiment. To aid comprehension, this thesis adopts the convention

of colouring data throughout:

• Data sent from a user device in green

• Data sent from the access point in red

In addition to the network infrastructure, a monitor station was set up to observe the

traffic being transmitted. As a client communicates with the access point, this monitor

station (or any other device listening) will also receive the data which is broadcast. As

shown in Figure 4.2, the software used to monitor and record this data was Kismet,

a wireless ‘traffic sniffer’ (Kismet Wireless, 2012) utilising the PCap (Packet Capture)
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Figure 4.2: Monitor Station Packet Capture Process (promiscuous, via Kismet)

library (TCPDump Team, 2012). This monitor station operates entirely passively with

the wireless hardware set to operate in ‘promiscuous’ or ‘monitor’ mode; only listening

for and receiving broadcast data. The monitor station makes no transmissions of its

own. Although operating on multiple frequencies (channels), IEEE 802.11 devices are

not expected to change frequency as part of the data transmission process. A frequency

is set at initialisation and assumed to persist and must be re-initialised if the frequency

is changed. The monitor station can therefore ‘channel hop’ (change channel) at will

to observe communications on different channels if required. However, a wireless card

can only be tuned to one channel at a given time. With a vantage point external to the

network, encrypted WiFi communications will be scrambled from this perspective.

User devices must operate in ‘managed mode’ to communicate with an access point.

Following correct authentication, this provides network connectivity and is the usual

mode of operation for wireless hardware. These communications can also be recor-

ded. However, because wireless networking hardware is not designed to receive and

transmit simultaneously, the recording process must use a different method. (Although

802.11a/g/n are technically frequency division multiplexing, each network is restricted

to a single channel). As shown in Figure 4.3, network traffic is intercepted and recor-

ded between the operating system and wireless card firmware instead. Again, this can

be performed using the Wireshark packet analysis suite (Wireshark Foundation, 2012)
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alongside the PCap library, and can be used to validate any data collected by the mon-

itor station by comparison. However, this vantage point is internal to the network so

no WiFi-layer encryption will be visible. Incoming data will have been decrypted before

it can be recorded, and outgoing data will not have been encrypted yet because these

processes are handled by the wireless card firmware. Devices in managed mode cannot

channel hop as they are locked to the frequency used by the access point. Furthermore,

only communications that are directly addressed to the device (or multicast) will be vis-

ible. Communications to and from other devices as well as some management frames

will be silently handled and suppressed by the wireless card firmware because they are

not required by the operating system or applications for normal operation.

These recordings provide a time-ordered list of all the packets observed and their

contents in the form of a ‘packet capture file’. Wireshark provides functionality to read

and filter these files as appropriate. The client recording will show packets sent from

and received by the client. These will be unencrypted as this process is performed by

the wireless network card immediately before transmission or immediately after recep-

tion. The monitor station recording will consist of all data observed being transmitted

on the same channel as the network. The majority of these broadcasts will have been

encrypted and may also contain data from any other WiFi devices communicating on

the same frequency, especially those probing for available networks.

Figure 4.3: Client Packet Capture Process (managed, via Wireshark)
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Table 4.1: Capture Method Comparison

Mode of
Operation

Frames Visible
Device

Connectivity?
Decrypted?

Channel
Hopping?

Monitor All in range 7 7 3

Managed Device-addressed only 3 3 7

4.2 Minimising Spurious Variation

These studies attempt to identify features in network traffic that are the result of specific

user activities. Isolating these features will be easier if variation due to the experimental

environment itself is minimised. To minimise spurious results, repeated recordings of

various user activities will be required. Between each test the environment should be

returned to its previous default state. On a user device, this was achieved as follows for

the initial investigation:

• Consistent background processes

→ Same system services running for all tests

→ Disabled automatic update processes (e.g. Operating System, Antivirus, Flash)

→ Ensure no confounding network processes are running (e.g. web servers,

shared directories, remote user access, Dropbox sync)

• Caches and previously saved data cleared before tests

→ DNS cache flushed after all internet activities

→ Browser and Flash cache after web browser activities

→ Files deleted after downloads (so they may not be resumed)

→ Local cache cleared after media streaming

Minimising variation within the network environment is more complex because ex-

ternal devices using the same WiFi technology and frequencies as the test network can-

not be controlled. As illustrated in Figure 4.4, the dominant WiFi implementations of

802.11b , g and n operate at ∼2.4GHz, using several overlapping ‘channels’. 802.11n

may also operate at ∼5GHz, but overlapping channels are similarly present.

Given the physical location of the test sites in dense urban areas and the previously

mentioned ubiquity of WiFi technology, the frequency bands used by wireless network
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technology were found to be congested but not saturated. Tools such as the WiFi Ana-

lyzer app for Android (Farproc, 2013) can help visualise this. Figure 4.5 shows an ex-

ample of the WiFi networks that were within range of UCL test environment and the

channels being used by each. It is important to note that certain networks, namely en-

terprise networks with more advanced infrastructure such as EduRoam (pictured), will

operate on multiple channels. This prevents multiple access points providing access to

the same network from interfering with each other, and allows devices to connect using

the channel with highest signal-to-noise ratio to maximise network performance.

Despite the potential for spurious interference, it was determined that a shielded

room (anechoic chamber and Faraday cage) would be an unrealistic environment and

unnecessary. It was decided that a realistically noisy environment, as typical in the real

world, would be better to judge the feasibility of this research. However, when under

control of the researcher (as is the case in the initial experimentation with a decided

MiFi AP) the least congested wireless channel would be selected to minimise interfer-

ence from other WiFi sources. In addition to interference from competing WiFi hard-

ware, it should also be noted that the 2.4GHz band is an unlicensed part of the elec-

tromagnetic spectrum and used by a variety of other consumer devices. For example,

cordless phones, baby monitors and motion sensors, as well as other wireless commu-

nications standards including Zigbee and Bluetooth opt to operate over these frequen-

cies. This is also the frequency by which microwave ovens heat water. These sources

of interference were also removed where possible if required. Notably, devices such as

smart phones (which may use WiFi and Bluetooth) were disabled, Bluetooth peripher-

als like cordless keyboards and mice unused, and experiments were performed away

Figure 4.4: 2.4GHz WiFi Channel Frequency Overlap
(WikiMedia Commons (CC-SA M Gauthier), 2009). Adapted from

IEEE 802.11b /g /n PHY Specification (IEEE-SA, 2007).

60



Acquiring Data: How To Collect Drips CHAPTER 4

Figure 4.5: Example WiFi Saturation Visualisation

from microwave oven-containing kitchens.

Even when these steps are taken, there is still significant opportunity to observe

systemic variation. Consumer WiFi devices are typically built with cost and portab-

ility having precedence over reliability. Low-cost WiFi devices are reliant on frequent

retransmissions to actually receive and transmit data correctly. Due to differences in

range from the transmitter and the interference issues already discussed, an observer

device may not always observe exactly the same frames that a user devices receives and

transmits. Furthermore as will be discussed in Section 5.1, variation is possible within

applications themselves even when repeating the same user activity. This inherent vari-

ation is part of what makes this a challenging research topic.

4.3 Essential Software Tools

All software used to facilitate the collection of data for this research is both free-to-

download and open-source. The primary software tools have already been mentioned:

• Kismet: A ‘wireless network detector, sniffer, and intrusion detection system’. A

command-line utility, it allows for the capture of wireless network traffic. Any

traffic observed while Kismet is running will be saved to disk. It is possible to

filter what is recorded to some degree, by specifying which WiFi channel to listen
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on. Kismet provides the best way to simply record WiFi communications to disk

(Kismet Wireless, 2012).

• The Wireshark Suite: Functions as a ‘network protocol analyser’ to allow for closer

inspection of recorded packets. TShark is the command-line version of the more

interactive Wireshark GUI. Although both are capable of performing the same

tasks, TShark provides an easier way to invoke its functionality from automated

scripts. This tool allows for the extraction of data from each frame which can be

used for analysis. For example, the time a frame was observed, the sender and

receiver MAC address and the frame’s length (Wireshark Foundation, 2012).

• PCap Library: A software library depended upon by both Wireshark and Kismet.

Provides an interface to observe the communications seen by WiFi hardware and

defines a data format to store or restore them to and from disk (TCPDump Team,

2012).

Wireshark and the PCap library are cross-platform. However, WiFi drivers for Win-

dows that support promiscuous mode are rare. Kismet is Linux-specific. The collec-

tion platforms used during this research therefore use a Linux Operating System. Spe-

cifically, Ubuntu was used for desktop and laptops (or any other machine with x86 or

amd64 hardware) and Raspbian for the automated collection devices to be discussed

shortly (using ARM hardware). Although Microsoft Windows is the market-dominant

desktop Operating System (Net Applications, 2014) and may arguably represent access

to a greater selection of user activities, the choice of a Linux OS for WiFi recording does

not diminish their power. The platforms are still capable of observing the WiFi commu-

nications of Windows Systems (or any other OS). If on-device recording is required for

Windows as described in Section 4.1, this can still be performed thanks to the cross plat-

form nature of Wireshark. The same can be said of MacOS, although no Apple products

were used during this research.

Under Ubuntu and Raspbian, Kismet and Wireshark can be easily installed from

the OS’s central software repository. This will install any packages they are depend-

ent on automatically (including PCap). However, these repositories are not always up-

to-date. As Free Software, they can also be compiled from source code and installed
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manually. This requires additional effort but provides the latest features, bug-fixes and

cross-platform uniformity.

4.4 Hardware & Automated Collection Platforms

Some form of Linux will run on almost any off-the-shelf hardware you can buy. For

these experiments, the main concern when selecting hardware is to ensure that the

Linux version supports drivers for the WiFi interface that support monitor mode. Some

hardware vendors have better support than others so some research is required before-

hand. However, the laptops and desktops used during this research were not assembled

specifically for WiFi monitoring purposes. A simple solution to allow monitoring ma-

chines with unsupported WiFi hardware was to make USB WiFi dongles that did have

driver support available.

Although additional hardware and software installation is acceptable to a researcher

actively involved in these studies, it is overly burdensome for volunteers helping the

project in the short-term. An automated “just plug it in” collection device was there-

fore created for their use. As, illustrated in Figure 4.6, this platform operates identically

but collects data automatically based on a simple configuration file from the researcher.

Currently costing under $100, the essential components of the automated WiFi cap-

ture devices are as follows: a Raspberry Pi ‘credit-card sized computer’ (Model B), a USB

WiFi dongle, and a MicroSD Card of sufficient capacity. If an external Hard Disk is used

for additional storage then it may be necessary to provide an externally powered USB

hub (output current of the Raspberry Pi USB ports is limited). Conversely, although not

required for any studies in this thesis, for low-power scenarios with no mains access it

is possible to run Raspberry Pi hardware from batteries alone.

As noted previously, the core of the system is provided by Raspbian (a Linux operat-

ing system distribution tailored for Raspberry Pi devices (Raspberry Pi Project, 2013)).

The iwlist tool is part of the core operating system and interrogates wireless network

devices to provide textual output detailing nearby WiFi networks. It can be easily com-

bined with common Unix shell commands to form what is referred to in Figure 4.6 as the

‘Automated Collection System’. This is simply a script that runs as soon as the system
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boots, and (unless aborted) finds the channel associated with a given wireless network

name. It then and starts Kismet recording on that channel, saving to the external hard

drive. This provides a literal ‘plug and play’ portable system which can monitor and re-

cord WiFi communications. As shown in Figure 4.7, it is small, lightweight and the only

requirement of a volunteer is to provide mains power and supply the name of their WiFi

network beforehand.

In addition to performing mere data collection duties, in later research these devices

are used as a standard platform to analyse the feasibility of live WiFi communication

classification. As is also shown in Figure 4.6, TShark can also be configured to read

directly from the network interface as an alternative to Kismet storing data captured

to disk for later analysis. This allows for ‘live’ processing of packets by way of piping

TShark’s output directly into an analysis program. The diagram shows a classification

program. As will be discussed in later chapters, this could be capable of inferring a

given category of activity being observed and visualising this information as appropri-

ate. However, this requires the analysis to be fast enough to keep up with observed

Figure 4.6: Automated Collection Platform Software/Hardware Interaction
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packets arriving in real time. Direct analysis means that data is not stored to disk per-

manently. Although this may be useful for real-world applications, retaining the raw

data for verification will often be required in research situations. However, these two

methods are not mutually exclusive and can be performed simultaneously if necessary

at the cost of additional overhead.

Although collection can be performed on this low-cost hardware, the implement-

ation is not bound to it. The interaction diagram is just as representative for the more

powerful laptop or desktop machines that were also used, except that Raspbian OS

would be replaced by Ubuntu. Details of the information contained within the data

that these platforms actually collect is discussed in Chapter 5.

4.5 Supplementary Software Tools

A variety of other software tools were employed during the studies presented in this

thesis. They are listed here for completion, but a full discussion of their function can

be found in later chapters as they are used. A selection of software tools were used to

ease the automation of various research processes:

• Sikuli: When searching for patterns related to user activity, the ability to produce

Figure 4.7: Automated Collection Device
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repeated observations of the same activity is essential. The Sikuli automation

package allows for a user to record his/her desktop activity (mouse clicks and

keyboard input), then replay it at will. Built upon the Python programming lan-

guage, it has both a Windows and Linux version (MIT CSAIL, 2012).

• Hyenae: The ability to precisely isolate the patterns associated with a specific

activity is also essential. The Hyenae packet generator can be used to specifically

‘tag’ the beginning and end of activities. This was achieved by sending a known

combination of frames of known lengths at the start and/or end of each an activ-

ity. This can be detected by an observer without the need for decryption and al-

lows relevant activity data to be easily separated from the rest of a recording. Runs

on Windows (Hyenae Development Team, 2012).

• Skype4Py: A programmatic interface to the Skype client program’s API on Win-

dows using the Python programming language. Allows calls be made, received

etc. without direct user or GUI interaction. Now deprecated due to Skype Inc.

‘retiring’ the API via software updates (Wahlig and Ohtamaa, 2013).

• Aircrack-ng Suite: Primarily designed to crack WEP WiFi encryption, but that

functionality is not required. Instead the Airmon-ng tool is useful as a method of

forcefully overriding WiFi interface settings such as monitor mode and channel

tuning. Can also be used like as a packet generator like Hyenae, but runs on Linux

instead (Aircrack-ng, 2012).

When dealing with user activity on mobile device, several tools were used:

• WiFi Analyzer: As noted during the previous chapter, an Android app that can be

used to map nearby WiFi networks and illustrate the overlap of the channels they

are operating over (Farproc, 2013).

• WiFinspect: An app that provides a native GUI interface to the Android version of

PCap. Allows for on-device capture of packets on the Android platform (provided

it is ‘rooted’) (Hadjittofis, 2014).

• MyMobiler: Allows an Android device connected over USB to be controlled via

keyboard and mouse directly from Microsoft Windows. Displays and allows in-

teraction with the device’s touch-screen directly from the desktop (MTUX, 2014).
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Finally, there is of course the software used to analyse the WiFi data itself:

• R: A statistical programming language with a modular library system providing

a huge variety of useful tools. This powerful tool was used for the majority of

scentific analysis and statistical processing found in this thesis and to produce

many of the graphs. Cross-platform (R Core Team, 2013).

• Qt Creator: A development environment for the C++ language. Used in later

research to produce programs capable of live analysis where improving upon

the relatively poor performance of R was necessary. Cross-platform (Qt Project,

2014).

4.6 Summary

This chapter describes the solid platform used to collect raw WiFi data from a vari-

ety of scenarios in a portable, cheap, easy-to-use and repeatable fashion. Subsequent

chapters can now focus upon the analysis and activity inference aspects of these stud-

ies, and it is hoped that other research can do the same and build upon this platform

using the published guide (Atkinson et al., 2014a).

With WiFi communications becoming increasingly ubiquitous, a full understand-

ing of their security strengths and weaknesses is pragmatic, if not essential. The hard-

ware and software described in this chapter allow such investigations to be performed

at low-cost, on commodity hardware, entirely passively, and without the need to break

encryption.
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5 Finding & Visualising
Information Leakage

This chapter presents the findings of an initial study as to how current generation wire-

less network technology can inadvertently leak information about the activities of its

users. It examines the feasibility of an outside observer inferring user activity despite

the presence and correct use of encryption. A selection of common user activities —

such as web-browsing, email, video and music streaming, VoIP phone calls and peer-

to-peer downloads — were performed using internet access provided via an encrypted

wireless network. These findings were presented at the London Communications Sym-

posium (Atkinson et al., 2011).

A dataset of broadcast wireless network traffic was recorded using the passive col-

lection platform described in the previous chapter and automation scripts were pro-

duced to allow easy repetition of user activities. The collected communications were

then analysed and graphical visualisations of broadcast network traffic corresponding

to different user activities were created to demonstrate how features may be discerned.

The study found that side-channel information derived from the direction, rapidity,

throughput and relative timings of data transmission over the network is sufficient to

allow features pertaining to known user activity to be visually identified and provided

the foundational approach for subsequent studies. In addition, factors that complicate

the collection of data and ability to distinguish activity-identifying features are then dis-

cussed to show the limitations of this analysis. It is demonstrated that features can be

identified in spite of the data itself being encrypted. Therefore the possibility of infer-

ring user activity by merely observing encrypted network traffic is shown to be feasible.

5.1 Performing User Activities

This study investigated the network activity patterns observed as a consequence of user

activities. These activities are at what this chapter will term ‘mid-level’ activities. That
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is, certain general user tasks like “browse a website”, rather than complex macro-level

activity like “research a topic for two hours”, “shop online for 35 minutes”, or micro-level

activities such as a mere ‘click the search button’, or ‘open Firefox’. This would provide

a balance between the amount of data available for analysis and the variation possible

within a given activity definition.

As will shortly be discussed, activities at the mid-level scale can be easily automated

and, due to their relative shortness, capacity limitations on recorded data are not a con-

cern. Similarly, their analysis and visualisation can be quite concise. This is not to say

that these different levels of activity abstraction would not contain a wealth of inform-

ation and display identifiable features as well. Mid-level activity is of course composed

of micro-level activity so this can be analysed in isolation if necessary. Similarly, macro-

level activity is compound in nature so it may be possible to construct inferences from

micro and mid-level activity.

All possible user activities and all the possible ways of performing them are of course

an implausibly large set of possible activities. The sample size of this investigation is

therefore be limited to a relatively minor, but representative, subset of these. A selec-

tion of user activities were chosen based on the common internet activities outlined by

Dutton and Blank (2011) and use of some well-known internet services. These activities

were as follows:

• Web Browsing Activities

→ Web page search (via Google website)

→ Image search (via Google website)

→ Consult an article and several linked articles therein (via Wikipedia website)

• Webmail Activities

→ Send message (via GMail website)

→ Receive & reply to message (via GMail website)

• Social Networking Activities

→ Log in and view profile (on Facebook website)

→ Send message (via Facebook website)

→ Receive & reply to message (via Facebook website)
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→ Real-time chat (via Facebook website)

• Media Streaming Activities

→ Listen to music (via Grooveshark website)

→ Listen to music (using Spotify application)

→ Watch a video (via YouTube website)

• Peer-to-Peer Filesharing Activity

→ BitTorrent download of particular Linux ISO (using µTorrent application)

• VoIP Phone Call Activity

→ Make voice call (via Skype application)

These activities are categorised from a user-centric perspective. Technically knowledge-

able readers may have already realised that the underlying network interactions of web-

mail and search engine usage are quite similar. Likewise, they may be more comfort-

able with the distinction between VoIP phone calls and streaming music from a website

whereas a less technologically aware user may feel that the two are very similar because

they both produce audio. Technological understanding of how the internet works is

generally rather limited, even among the young (Yan, 2009). This choice of categorisa-

tion is deliberate and used throughout these studies. The primary aim of this investiga-

tion is to determine user activity and user information, not identify technical protocols

(although, of course, it may help to do so). This is a simple way to frame the problem

and any associated privacy issues in a way that is accessible to an audience wider than

just those with technical knowledge. As will be seen, this is particularly useful for the

study presented in Chapter 8.

As an interesting aside, features in network traffic from different Operating Systems

(OS) were also observed. This differs from previous activities as the user would have no

interaction (besides pressing the ‘on’ button). The operating systems observed are as

follows:

• Operating System Boot Activity

→ Windows Boot (Microsoft Windows 7)

→ Linux Boot (Ubuntu Linux 11.04)
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Figure 5.1: General Transition from User Activity to Network Activity

The OS determines which applications (and which versions) can be run to a large ex-

tent. This information may therefore so may potentially act as a useful diagnostic to-

wards the identification of a particular user activity. Full hardware details and software

version information can be found in Appendix C.

Data recordings were taken using the platform described in the previous chapter us-

ing the wholly researcher-controlled MiFi network. These samples observed network

activity from a mixture of user activities performed both manually and with automa-

tion. Manual recordings had no restrictions on the activity other than that specified

in the description. For example, a web or image search could be for any search term,

and any track could be listened to on Spotify. Automated scripts were composed with

at least two possible minor variations. Although many of these activities can be per-

formed by a lone user, Facebook chat and Skype conversations have a conversational

nature which usually require multiple participants. To enable consistent and easy re-

petition of the same activity, especially conversations, these activities were automated

using the Sikuli software package and some custom Python code. As an initial investiga-

tion, activities would always begin from a ‘clean’ starting position to minimise variation

as described in Section 4.2, although this will not represent all real-world situations.

All cached data and cookies would be cleared and services that require authentication

(GMail, Spotify and Facebook) would begin from a logged-out state. As will shortly be

demonstrated, web-based activities require navigation to a service’s index page first and

applications would need to be opened from the desktop. Examples of these automation
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scripts can be found in Appendix A.

Even with this identical starting point there is a large scope for natural variations in

the observed network traffic. In addition to the factors already outlined earlier in Sec-

tion 4.2, applications can exhibit varied activity even when performing identical user

tasks. For example, most web sites are dynamic in nature and may display random

advertisements. The same is true of Spotify, albeit in an audio format. Similarly, pre-

cise timings of network activity will depend on the availability of shared resources; pro-

cessor use may be blocked be by other programs running on the client via multitasking,

and differences in network congestion somewhere between the client device and a re-

mote internet server are unavoidable. Furthermore, while the example transition from

user activity to network activity about to be introduced has a specific order of events,

this may not always be the case. For example, BitTorrent has a random element to its

peer selection process and the Skype protocol can automatically adjust the quality of

the audio it sends.

With known user activities being performed on-demand, their network activity could

be recorded and the data patterns observed. This allows for the observation and map-

ping of the transitions between different types of activity shown in Figure 5.1. This gen-

eral diagram illustrates how, in general, recurring characteristics of these observations

can potentially be used to infer the activity that caused them if it was not known be-

forehand as detailed earlier in the equations of Section 3.2. To provide a more specific

example, a ‘web browsing’ activity incorporating a web search is illustrated in Figure 5.2

and might consist of the following (simplified) activities from the perspective of the

user, application and network:

• User (Alice)

1. Types web address into address bar (www.google.co.uk).

2. After page loads, types search text into address bar. Hits ‘enter’.

• Application (Firefox 5 on Windows 7)

1. Queries domain name typed (www.google.co.uk).

2. Connects to the server IP address received in response to the query and asks

for the index page. Displays it.
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Figure 5.2: Example: Web Search Activity to Network Activity Transition

3. Requests the relevant results page for Alice’s search text. Displays it.

• Network (Various encapsulated protocols — see diagram)

1 a. Send DNS query request: contains domain name (www.google.co.uk).

b. Receive DNS query reply: contains server IP address.

2 a. Send HTTP request: contains path corresponding to index page (/ ).

b. Receive HTTP reply: contains index page content.

3 a. Send HTTP request: contains path corresponding to results page.

b. Receive HTTP reply: contains results page content.

In this study the applications, infrastructure and often even the ‘user’ (in the case of

automated scripts) are fixed and standardised to allow for data collection with minimal

variation. The ideal solution satisfying the problem of inferring user activity from net-

work activity would require every activity to have its own network traffic pattern that

was identical every time the user activity was performed and with no two different user

activities producing the same network activity. However, this will never be observed

in reality. Even with an automated user and this simple example, there is still ample

possibility for the system to display large variations due to the complicating factors dis-

cussed in Section 4.2.

In actuality, the network activities in this example are made possible by a highly

complex underlying processes. Network protocols will handle all manner of variations

within the interconnected global chain of machines that form the internet. Most errors,

congestion, and delays will be transparently handled automatically while the machines
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involved will have to handle their own variable numbers of concurrent users or connec-

tions, changes in load, updates and content changes.

To further complicate matters, the application activities are also highly simplified.

Modern browsers and websites have many features that will also cause network activity.

To name but a few features that use internet access, Firefox will automatically pre-fetch

links on the current page to speed up load times, may use any number of user-added

plugins, will check security certificates, and check the website you navigated towards is

not on a blacklist for malicious websites. Far from just being a form submission that re-

trieves search results, the Google index page will get and set cookies to identify the user,

log in users with a Google account and provide personalised links, provide automatic

text completion for search box entries, provide instantaneous results as they are typed

(dynamically updating the page after every letter, and not just when ‘enter’ is pressed).

Despite these complications, these variations are still deterministic and quantifi-

able to some degree. Although they will not be identical, the challenge is to discover

enough similarity between recordings of the same activity for them to be identifiable.

Conversely, there must also be enough differences between different user activity samples

to separate them. A visual comparison to identify these similarities and differences is

presented shortly in Section 5.3. However, first we must discuss the data available to

make these comparisons possible.

5.2 Data In Plain Sight

As noted in Chapter 2.2, for WiFi networks employing an encryption scheme all frames

carrying data to and from actual user devices will be encrypted. However, some frames

used to facilitate the operation and management of the network itself remain plainly

broadcast. Full details regarding their purpose and protocol behaviour can be found in

the 802.11 standard (IEEE-SA, 2007). Types of management frame that can be observed

unprotected are as follows:

• Beacons: Advertises the presence and capabilities of an access point.

• Probe Requests: Announces client capabilities and requests a response from avail-

able access points.
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• Association: Conversation between client and AP when the client joins a network

using that AP to connect. (Also {de|re}-association).

• Authentication: Conversation between client and AP that verifies that the client

has the correct credentials (e.g. passphrase) to connect. (Also de-authentication).

• Management Data: Data transmitted regarding network infrastructure opera-

tions (e.g. power management notifications). These can vary with hardware man-

ufacturers.

Control frames are also broadcast without using encryption:

• Acknowledgement: Transmission a client or AP sends when it has successfully

received a transmission (otherwise it will be rebroadcast).1

• Request- & Clear-to-Send: Used as an optional collision avoidance technique.

Request-to-Send (RTS) is a signal from a WiFi client or AP indicating that it wishes

to transmit to another specified client or AP for a given duration. Clear-to-Send

(CTS) is a confirmation and acceptance from the receiver to begin the transmis-

sion. Other devices that hear the CTS frame will remain silent until the duration

specified has elapsed.

These frames will confer no information about user activity and can be discarded com-

pletely for purposes of activity inference. However, as employed in Chapter 8, they can

provide useful information about the characteristics of any WiFi devices in range that

can be observed. Obviously beacons advertise the networks nearby and what chan-

nels they are operating on. This is essential information for any observer. However,

these beacons also contain a MAC address that we know must belong to an AP. Sim-

ilarly, probe requests must come from client devices and also contain MAC addresses.

One is therefore able to distinguish between client devices and infrastructure hardware

and map the communications between them.

Authentication frames also provide information on user activity since any client

observed communicating with an access point using encryption must be authorised

anyway. However, the capture of these frames can allow the calculation of per-session

1 Acknowledgements at the Data-Link Layer only. Not to be confused with acknowledgements from
higher layers such as TCP ACKs. These are hidden behind encryption.

76



Finding & Visualising Information Leakage CHAPTER 5

encryption keys and allow easy, after-the-fact decryption of communications observed

by a monitor station. Wireshark is capable of decrypting recorded communications so

long as; a) The WiFi encryption scheme uses a known pre-shared key for all devices (i.e.

WPA-PSK authentication), and b) The entire key exchange during the authentication

process is captured.

The ability to inspect encrypted packets is useful for verification purposes in a con-

trolled study by allowing a researcher to compare remotely observed recordings with

on-device recordings. This was used to ensure that WiFi hardware was correctly oper-

ating in monitor mode and that the observer was within range and not overly affected

by interference. Due to the use of WPA-PSK, this is possible on simple home networks

and the WiFi network provided by the MiFi dongle. However, even with known creden-

tials, Wireshark cannot calculate per-session keys for networks using enterprise-level

authentication such as EduRoam. The simplest way to ensure that the key exchange

process is recorded is to disable, then re-enable WiFi on a user device. As the device re-

connects to the network, authentication must occur. WPA-PSK authentication is per-

formed using the EAPOL protocol (Extensible Authentication Protocol Over LAN) as

defined by IEEE 802.11X (IEEE-SA, 2004b) and can be quickly isolated using Wireshark’s

�eapol� filter.

Control frames are less useful, but should correspond with actual data frame trans-

mission. As noted earlier, an observer may not see exactly the same WiFi communica-

tions as a device being observed due to interference and differences in range from the

sender. A noticeable imbalance between control frames and observed encrypted data

frames, or RTS and CTS frames would imply that frames were being missed by the ob-

server.

In all frames containing actual data from user devices, the payload is scrambled as

illustrated earlier in Figure 2.3. However, the 802.11 headers preceding this encrypted

payload is not encrypted. If, like these studies, you are predominantly interested in

the network activity caused by users then the management and control frames can be

discarded using the ‘protected’ flag in the frame header. In Wireshark or TShark this

is achievable with the �wlan.fc.protected == 1� filter. Even those frames carrying

encrypted user data still contain the following pertinent information unencrypted in
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the header:

• Sender physical address (for Client or AP)

• Receiver physical address (for Client or AP)

• Total length (byte size) of the information transmitted

• Time the transmission was observed

This data can be read directly or measured by the observer regardless of encryption.

The physical sender and receiver addresses can be used to filter the observed data to

isolate and identify conversations between a specific client and the access point and

determine the direction of each packet. The time a transmission is observed can not

only be used to order the frames, but also as a basis for more complex timing analysis

as will be described in the sections to follow. Finally, the length of a frame provides a

precise measure of how much data is being transferred, and of course the quantity of

frames can be counted to calculate data rates over a specified interval. In combination

this frame data can be used to reliably record the side-channel information we outlined

in Section 2.4 and Figure 2.5.

5.3 Feature Identification & Visualisation

In itself, the information available from a single frame tells us very little. Encryption

renders all useful user data unreadable. However, in a similar way to the information

leaked by ‘Smart Grid’ appliances mentioned in Chapter 2, emergent patterns of this in-

formation over time can act as side-channels to infer information regarding user activ-

ity. From the measurable frame data identified in the previous chapter, the following

simple methods to measure data can be derived:

• On a Per Time Interval basis

→ Frame rate (F r a me C o un t / T i me )

→ Data rate (B y t e s / T i me )

• On a Per Frame basis

→ Data rate (B y t e s / F r a me C o un t )

→ Observation time (T i me / F r a me C o un t )

78



Finding & Visualising Information Leakage CHAPTER 5

This may still appear very limited but this aggregated data can be powerful, especially

when combined with directionality. For example, ‘Difference Between Outgoing Data

Rate and Incoming Data Rate’ or ‘Time Since Last Sent Packet’. Using these metrics to

analyse network activity, features specific to different applications and user activities

can be identified.

The processing, analysis visualisation of the data collected during this investigation

was performed in R, a statistical programming language (R Core Team, 2013). Proced-

ures were developed to extract and aggregate the relevant information from raw frame

data and then visualise it via customised graphing routines. These procedures were de-

signed to be reusable and modifiable and therefore also formed the foundations of data

analysis conducted in subsequent chapters.

5.3.1 Distinguishing User Activity

The combination of all metrics and user activities produce far more data than can be

contained in this chapter. Therefore, this section will demonstrate how progressive de-

grees of analysis can uncover a surprising wealth of information and graphically high-

light some examples of particular interest.

The most rudimentary form of analysis can be seen in Figure 5.3. This shows the

data transmission rate over the time period each user activity occurred. To calculate

this rate, packets were separated into bins of 0.5 second intervals. As anticipated, these

figures confirm the hypothesis that user activity-dependent differences in network traffic

can be observed despite cryptography. Skype shows a noticeably lower data rate and

web browsing displays the expected spikes of activity relating to navigating to a new

page. However, aside from total communication length (which is merely a result of the

total size of the chosen downloads), BitTorrent and YouTube streaming cannot easily

be discerned.

However, as shown in Figure 5.4, by employing the added dimension of directional-

ity distinct differences between the two are visible.2 As in previous chapters, red de-

notes frames received by a user device, and green denotes frames sent from a user

2 Although Figure 5.4 uses packets as a measure of data rate, an equivalent relationship is also present
when measured in terms of bytes.
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(d) YouTube Streaming

Figure 5.3: Total Bytes Transmitted per 0.5 Second Interval

device. To aid visual comparison, sent and received frame information can be plot-

ted as positive and negative values respectively. While the ratio of sent to received data

when streaming from YouTube remains relatively constant over time, BitTorrent has an

initial imbalance in favour of the number of frames sent by the client. This is due to the

client making initial connections to join the peer-to-peer network. In addition, we can

distinguish user activities that mostly download data (Wikipedia, YouTube and BitTor-

rent) from the contrasting Skype conversation activity which is a largely balanced and

bidirectional communication.

An alternative representation of the same data is to plot the difference between the

values for sent and received data in each bin (i.e. sum the negative and positive axes in

Figure 5.4). An example of this can be seen in Figure 5.5. Although providing less overall

context, this representation is the clearest way to illustrate predominant direction of

network communication and will be used to visualise a Skype conversation later in this

section.

These figures have used clock time as a continuous, absolute measure of time. An
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Figure 5.4: Direction of Packets Transmitted per 0.5 Second Interval
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Figure 5.5: Difference (Sent − Received) in Frames Transmitted over Time
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alternative representation is to use the order in which frames are observed to provide a

relative, discrete time basis. Figure 5.6 plots these two measures against each other. In

doing so, it is possible to easily identify different periods of activity based on changes

in the graph gradient. A shallower gradient denotes a faster frame rate, whereas a sharp

vertical jump denotes a period of idle time. Although this was also possible with a con-

tinuous time basis, it avoids the potential problems related to grouping data in bins that

will be discussed in Section 5.4. By isolating these different gradients, distinct stages of

network activity can be identified. With the ability to decrypt observed WPA-PSK com-

munications after the fact (as described earlier in this chapter), these can be verified,

cross referenced with Figure 5.4, and labelled as follows:
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Figure 5.6: Time of Observation per Frame

• Making Skype Call

→ S1: Login to Skype

→ S2: Call Negotiation (Ring, wait for answer etc.)

→ S3: Call in progress

• BitTorrent Download

→ B1: Querying trackers
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→ B2: Searching for peers

→ B3: Downloading file

• Wikipedia Browsing

→ W1: Load index page

→ W2: Load article page

→ W3-5: Load subsequent article pages

• YouTube Streaming

→ Y1: Search for video

→ Y2: Load video page (streaming begins via autoplay)

→ Y3: Load automatic suggestions for other videos after playback finished

For each frame, Figure 5.7 plots the time since a frame was last received and sent. A

regularly used network measurement. This is typically termed “interarrival time”, it

provides an example of how side-channel data can provide identifying features for a

specific protocol, in this case Skype.

Skype exhibits noticeable identifiable ‘bands’ at specific time intervals. Similar bands

are observable in other streamed traffic like YouTube, as compared. The baselines de-

note the fixed target transmission rates Skype and YouTube aim to attain. However, in

addition Skype displays repeated predictable changes in the interarrival time measures

between frames appearing as curves due to the logarithmic scale. This feature is not

present in any other sampled activity and occurs because of the interaction between

regular data transmission rates imposed by the Skype protocol to maintain call quality.

This periodicity remains unobscured and acts as clear identifier even though the ob-

served Skype traffic is encrypted at both the Data-Link layer and the Transport Layer.

Skype will be studied in much greater detail in future chapters.

The operations of Skype can be analysed further. Figure 5.8 plots only the call nego-

tiation (S2) and call in progress (S3) parts of Skype network activity labelled in previous

figures. The automated conversation consisted of a dialogue with 8 interleaved spoken

parts (4 from each side). By calculating the difference between incoming and outgoing

data it is possible to decompose S3 and infer the directionality of the conversation. The

spoken dialogue of participants ‘A’ and ‘B’ are marked A1-4 and B1-4. Although not al-
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Figure 5.7: Time Since Last Packet per Packet (Logarithmic Time Scale)
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Figure 5.8: Difference in Sent/Received Data Rate of Skype Conversation

ways as clear as this in all samples (and even fluctuates here between B3 and A4), when

combined with other measurements such as the aforementioned interarrival times, this

shows that a surprising amount of information can be extracted from a Skype conver-

sation on a quiet network.

Another interesting observable feature that implies very specific user activity is shown

during the use of the popular online encyclopaedia Wikipedia3. As highlighted in Fig-

ure 5.9, Wikipedia produces a large number of frames with a length of ∼150 and ∼350

bytes when loading the index or article pages. This differentiates it from the other web

browsing traffic tested and is caused by Wikipedia’s unusually large number of sys-

3 http://www.wikipedia.org/
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Figure 5.9: Data Rate in Bytes (with Observation Time as reference) per Packet

tematically named subdomains for different language versions. These trigger a cor-

respondingly large quantity of DNS queries and responses with similar sizes. Although

other websites are not distinguishable by this metric alone, it validates the hypothesis

that features of very specific user activity can be identified even on a site-by-site basis.

5.3.2 Distinguishing Operating Systems

Using the same metrics used to identify features of specific user activity, the ability to

determine the Operating System (OS) of a given device purely from its boot activity was

also tested. Network activity of the device connecting to the network (via saved creden-

tials) was observed for both a Linux and Windows installation on identical hardware.

The boot process was considered complete when the login screen appeared. The log-

in process was not recorded and therefore no user interaction or automation was used

(besides pushing the ‘on’ button).

Figure 5.10 shows the typical network activity generated by the boot process of each

OS in terms of data rate in each direction over time. Both systems share the charac-

teristic of a two-stage boot process in terms of network activity, as is visible from the

distinct areas of frame transmissions. Authentication with the WiFi network also takes
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Figure 5.10: Operating System Data Rate (Bytes) & Direction

place twice in both instances. The total boot time is also very similar at ∼100s with a

∼50s gap of (relative) network inactivity. However, the immediately obvious difference

between the two is the amount of data transferred overall, with up to 4 times as much

being sent and up to twice as much being received at the peak measurement by Win-

dows.

Differences also manifest in terms of frame size and timing. However, this is more

difficult to visualise than user activity due to the differences of scale and smaller sample

size (200-400 frames only). It is also interesting to note, that although some unencryp-

ted management frames contain ‘vendor-specific’ information, this cannot always be

relied upon for simple identification. For example, despite not being a Microsoft OS,

Ubuntu association requests will still announce WiFi capability identifying its WPA2 en-

cryption process as “Microsoft: WPA Information Element” for compatibility reasons,

just as Windows does.

5.4 Obscured & Lost Information

Even though identifiable characteristics of user activities have been shown to be ob-

servable despite encryption, it is important to realise that information can easily be lost

during the data capture and analysis process. This section outlines these problems so

that any analysis methods developed can be as accurate possible and their limitations

correctly determined.

Increased range and interference can impair the ability of devices to correctly re-

ceive data. This may result in some transmissions being ‘unheard’ or corrupted in
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the data collected by the monitor station. By comparing observed data (Kismet) and

transmissions logged at the client (Wireshark) it can be determined that there was little

packet loss. In fact, the data collection devices in these studies actually saw a ∼4% in-

crease in observed packet data due to automatic retransmission at the Data-Link layer

(that is not propagated to the recording software on the client as discussed in Sec-

tion 4.1). However, these tests were performed in a controlled experimental environ-

ment with low noise and devices separated by only a few tens of metres maximum. ‘Un-

heard’ data will be a greater problem for monitor stations that are significantly further

away from the transmitter than the recipient device. As distance increases, the likeli-

hood of interference affecting reception at the monitor station (but not the intended

recipient — so no retransmission) also increases. This may need to be corrected for in

scenarios where observation is performed from greater range or a noisier environment.

As mentioned earlier, another problem is the method used to collect transmission

data into periodic ‘bins’ for representations based on observation time. Figure 5.11

shows the same data divided into bins at 0.5 second intervals. However, the bins in the

second visualisation are offset from the first by ±0.25s. As highlighted, even this small

change can have a drastic effect on the features visible. In the first highlighted area the

number of peaks observed within that time period is altered, and the relative heights of

two peaks are reversed in the second.
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Figure 5.11: How Different Time Bin Offsets Alter Measurement Features

This effect can be mitigated by using larger bin sizes because each frame will have

a lesser effect on any aggregate data (e.g. total data transmitted). However this lessens

the granularity and detail observable in any features. Alternatively, as seen earlier in this
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chapter, bin sizes can be avoided completely by examining each frame on an individual

basis. But this comes at greater computational cost.

5.5 Discussion

Following practical data collection, its analysis and visualisation, the study outlined in

this chapter demonstrated the feasibility of determining user activity by observing en-

crypted wireless network traffic. The raw data available to perform this analysis and

various methods of representation were identified. Now that this approach had been

shown to yield results, the user automation scripts, collected network data and the

methods to process and visualise it could all be reused and improved upon in sub-

sequent investigations.

The previous section also outlined the inherent methodological problems of scale

and sampling that may obscure user activity information. However, although not en-

tirely isolated from external, this study was performed with data collected on a wholly

controlled network. In addition to these issues, subsequent studies will also have to

contend with greater network congestion and interleaved activities. Subsequent chapters

will need to incorporate increased complexity of the user and network activity so that

any analysis methods developed can be demonstrated to work in ‘real world’ scenarios.

WiFi networks are typically more complex and serve more devices than the one used in

this study. Similarly, users will multi-task and some activities continue in the back-

ground after initiation (for example, music streaming) resulting in multiple activities

being interleaved. Of course many more user activities are possible as well. Analysis of

these increasingly sophisticated scenarios will be much more challenging. These ad-

ditional complications will undoubtedly result in greater opportunity for user activity

features to be obscured.

Furthermore, although a human reader can quickly identify features such as the

gradients, plateaus, and repeated patterns when provided with an appropriate visual-

isation, calculating lines of best fit, estimating gradients and categorising data intelli-

gently is a highly computationally complex process. Even if it was practical for humans

to perform all this complex pattern recognition, there would still need to be general
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methods developed to produce understandable visualisations and represent this data

in a human understandable form first. Research into how to best visualise network

traffic is an active research area (Grégio and Santos, 2011).

5.6 Study Conclusions

The problems of scale and the ability to evaluate data at both the micro- and macro-

scopic level (and everything between) is far from trivial. However, if these problems

can be overcome then user activities could be classified based on features identified in

network traffic activity. Figure 5.12 shows an example decision tree illustrating how this

might be done.

Figure 5.12: Example Decision Tree for User Activity Classification

The features identified in this chapter are only sufficient to identify some of the

activities, however it shows that this kind of analysis is feasible. It was possible to visu-

ally differentiate Skype, BitTorrent, Wikipedia browsing, and streaming activities (al-

though not which type of streaming). No features were found to uniquely identify Email,

Social Networking and (Non-Wikipedia) Web Browsing. They have very similar imple-

mentations (via a web browser with input directly from the user) so similar network

activity which is difficult to distinguish is understandable. With further analysis, ad-

ditional recognised features and more data from which to produce them, it may be
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possible expand the tree to include these and uniquely classify these user activities. A

decision tree like this is a logical representation of a classification algorithm. As will be

discussed in the coming chapters, provided the data can be provided in a useful format,

this classification process can be automated.
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6 Developing Activity Metrics:
Finding Skype

The previous chapter illustrated how features signifying specific user activities could

be identified within encrypted WiFi traffic. In contrast to the previous manual visual

analysis, this chapter describes the first of several mechanisms capable of algorithmic-

ally detecting a specific activity. To begin, we focus on a single activity; Skype voice

communication because it displayed interesting visual characteristics in the previous

chapter and provides an interesting target for reasons that will be explained shortly.

As before, aside from being within range, the detection mechanism operates without

any level of network access and without the need to break any encryption. It demon-

strates how an entirely passive external observer can detect if and when a user is in-

volved in a Skype voice call. It is further demonstrated that this detection ability re-

mains even when Skype traffic is interleaved with confounding simultaneous traffic

such as BitTorrent. This study was published at the IEEE Wireless Communications

and Networking Conference 2013 (Atkinson et al., 2013).

Unlike the paper, this chapter also describes the analysis prior to producing this

mechanism. As discussed previously, appropriate representation of the available data

is an essential foundation of any detection mechanism. The program implemented to

allow interactive visual inspection of different samples, metrics and data representa-

tions is documented here. Unlike the visualisations created in R, this program featured

helpful interactive features including zoom, scrolling and selection to help mitigate the

problems of visualising patterns at vastly different scales.

Published as this work was undertaken, the paper of Zhang et al. (2011) used hier-

archies of Support Vector Machines and Radial Basis Function Networks to attempt to

infer activity on a wireless network without breaking encryption. With a reported ac-

curacy upwards of 80%, they were able to differentiate between several broad categor-

ies of network activity: “web browsing, chatting, online gaming, downloading, upload-

ing and video watching”. However, accuracy fell greatly when observing simultaneous
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traffic, with BitTorrent being particularly good at hindering the detecting of other activ-

ity. Skype traffic was not considered in their experimentation. This study attempts to

infer activity similarly, but without the use of machine learning. We do adopt machine

learning in later chapters, however the focus is on WiFi security and privacy leaks rather

than a demonstration of machine learning itself.

6.1 Why Skype?

Skype is a popular real-time voice communication program and has been the subject of

significant research interest. It allows users to chat to each other in real-time using VoIP

(Voice over Internet Protocol) technology. While the work presented in this chapter fo-

cuses on Skype voice calls only, the software also provides instant message (text) and

video communication. Skype makes a good detection target due to its wide appeal, dis-

tinct visual patterns as described in the previous chapter, and successful classification

in different contexts by others.

As a real-time communication mechanism, Skype has comparatively strict latency

requirements compared to the majority of internet traffic (e.g. web pages, large down-

loads). As a popular service, the detection and efficient routing of Skype traffic is there-

fore useful to network administrators. To ensure good Quality of Service (QoS) Net-

work Administrators may wish to prioritise Skype over other traffic which is less time-

sensitive (e.g. bulk downloads). Similarly, as a vehicle for unsupervised communica-

tion, certain organisations may wish to prevent its use. Of course, the actual conver-

sations carried by the voice and video payloads of Skype are of practical interest to law

enforcement, as well as groups with less socially benevolent goals.

Despite the demand for good QoS, the implementation underpinning Skype’s oper-

ation is unpublished and traffic is encrypted at the application level (i.e. within TCP and

UDP packets) to prevent unauthorised eavesdropping. It uses a peer-to-peer network

to distribute (and complicate) its call routing process, and program execution is de-

liberately obfuscated by design to hinder reverse-engineering (Baset and Schulzrinne,

2006). In light of this situation, significant third party effort has been undertaken to

classify Skype accurately. Even with this effort, the development rate of Skype can out-
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strip the speed of academic publishing meaning that third party analysis is often partly

outdated by the time it is published.

To overcome this obfuscation, classifiers of various forms have been developed to

identify Skype traffic in real-time. Since Skype traffic does not openly identify itself,

these classifiers must identify and detect features of Skype’s protocol to be effective. Je-

sudasan et al. (2010) outlines and compares the two data-centric approaches to solving

the problem of Skype classification:

1. Deep Packet Inspection: Identifies data within individual packets that corres-

ponds to Skype traffic. For example; packet types, port numbers, packet lengths

and IP addresses. Although some features of Skype payload are deterministic,

the majority of directly readable data appears random due to encryption. This

renders this type of classifier rather ineffective in isolation.

2. Flow Analysis: Identifies statistical trends of packet flows over the network. A

flow is a sequence of packets between two machines in one or both directions.

Measures used to analyse a flow include the likes of mean packet length, inter-

arrival times and or specific characteristic packet lengths.

Before presenting their own hybrid method, Jesudasan et al. (2010) note that the most

effective classifiers use a combination of both. In addition, Bonfiglio et al. (2007) present

an interesting method founded upon analysis of the encrypted payloads themselves to

complement the above techniques. Somewhat counter-intuitively, they recognise that

the apparent randomness of Skype’s payloads are a feature in themselves:

3. Payload Analysis: Measures the statistical similarity of observed packet’s data.

The encrypted, and therefore seemingly random, appearance of most Skype traffic

actually aids this identification. Skype payloads are dissimilar to everything, even

other Skype payloads.

The first and third approaches both use forms of deep packet inspection and must

read payload data to function. The second does not, but still uses Transport and Net-

work Layer information such as source and destination IP addresses, port number,

and packet type to segregate and identify traffic flows to allow the classification pro-

cess. The approach described in this study resembles flow analysis to some degree,
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although individual flows cannot be isolated fully due to the lack of IP address inform-

ation that identify remote hosts at the network layer. However, local hosts (user devices)

are uniquely identifiable by MAC address as described earlier. Any form of deep packet

inspection is impossible due to data-link layer obfuscation from WiFi encryption. Only

a small amount of the information commonly used to classify Skype is visible to an ex-

ternal observer of a WiFi network.

Although our external scenario complicates matters, the demonstrated successes of

these methods can be adapted and built upon. Flow analysis has shown that measur-

able side-channel information (rather than directly readable frame data) such as pack-

et/frame sizes and interarrival times and can exhibit features suitable for accurate clas-

sification. Similarly, while the vantage point of the observer in these studies makes ana-

lysis of Skype’s transport-layer payload impossible, Bonfiglio et al. (2007) showed that

encrypted data could also display recognisable patterns.

As noted in Chapter 2, White et al. (2011) exploited similar measures and corrob-

orates the existence of patterns found visually in the previous chapter. Although they

were unable to generalise their language model and worked with perfect, noise-free

Skype traffic recordings, extracting spoken phrases from sequences of encrypted Skype

packets is an incredible demonstration of information leakage. Despite all the obfus-

cation effort by the developers, side-channel information exists for Skype traffic and is

surprisingly powerful. This study exploits these same side-channels in order to distin-

guish Skype from other activities and isolate the voice activity itself in encrypted WiFi

traffic.

6.2 Collecting & Accurately Labelling Activity Data

As before, a passive observer can monitor communications between a user device (i.e.

a laptop running Skype) and a wireless access point (AP). Transmissions from both

devices are broadcast through the air and so can easily be received and stored by a third

party. As described fully in previous chapters, a combination of Linux drivers operating

a standard 802.11b /g /n wireless network card in ‘monitor mode’, Kismet — a wireless

packet ‘sniffer’ — was used to monitor WiFi traffic (Kismet Wireless, 2012). This stored
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the observed transmissions as de facto standard PCap (Packet Capture) files for analysis

(TCPDump Team, 2012).

Despite the communication between a device and access point being easily cap-

tured, it is still encrypted. The networks utilised current generation WPA2 encryption

applied at ISO layer 2 (the data-link layer). As shown earlier in Figure 2.3, this means

that all data from higher layers (e.g. IP Addresses; UDP or TCP port numbers; and, of

course, application data itself) cannot be read. Only the data contained within 802.11

headers, and information that can otherwise be measured remains. Specifically, frame

size and frame direction (from source and receiver MAC addresses) can be read from

802.11. Additionally, frame quantity and frame broadcast time can be recorded by the

observer.

Figure 6.1: Observing Encrypted Skype Traffic

This study utilised two datasets. The first was used to calibrate and develop the de-

tection mechanism and, similarly to the visualisation in the previous chapter, collected

as illustrated in Figure 6.1 on a wholly controlled WiFi network. However, obviously a

Skype voice conversation requires at least two participants. Another laptop was set up

to access the internet via the campus-wide network (represented by the access point in

the lower half of the diagram). The MiFi AP was configured so that it operated on a non-

overlapping channel to the campus network AP. The use of MiFi in combination with
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the campus-wide network forces the two devices to still communicate via the internet

(i.e. preventing direct communication over the WLAN) despite them being geograph-

ically local, making the simulation closer to a real-world scenario.

Having made an initial set of observations on this private network, the same activity

was then observed with the target devices connected to the campus-wide WiFi network

to form the second dataset. This provided the same conditions but the monitored AP

would also be open to all students and staff. This data served to validate any infer-

ence mechanism using from the private network. In reversing the scenario, the non-

targeted device would use MiFi to once again ensure a non-local network connection.

Although the campus-wide network had many other users while this was occurring,

only the traffic to and from the target devices was required and retained for analysis.

As described in Chapter 4, a series of scripts were written using Sikuli (MIT CSAIL,

2012) to re-enact known user activity. Data was recorded for Skype alone, BitTorrent

alone, simultaneous use of Skype and BitTorrent, and simultaneous Skype and Web

Browsing. BitTorrent was selected because related work (Zhang et al., 2011) had found it

problematic to distinguish, and for its outward similarity to Skype traffic: continual bid-

irectional data transfer, and its peer-to-peer nature. It was selected as a challenge. Web

browsing was chosen as a stark contrast: bursts of data predominantly in one direction,

and because it was a highly likely activity for people to perform while using Skype.

For Skype, automation of voice communication was required in addition to mouse

and keyboard input. A script for two participants was created with four interleaved

spoken parts each. These used pre-recorded audio played-back via the Skype API (Wah-

lig and Ohtamaa, 2013) to simulate conversation between two people. The scripts de-

scribed in the previous chapter (as exemplified in Appendix A) were further modified

to contain a system command that executed the Hyenae ‘packet injection’ program

(Hyenae Development Team, 2012) from the command-line. Each conversation part

was ‘tagged’ by deliberately sending two additional frames of known length before each

conversation part was sent for transmission. This effectively marked when each sim-

ulated user was speaking and provided a known signal visible to an external observer.

This would be used to accurately label samples and then removed prior to detection.
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6.3 Characterising Time Windows & Distribution Creation

In Chapter 3 we identified two key measures of network activity that were still access-

ible despite WiFi encryption: Frame size and timing information. As described, these

measures can be combined with directional data courtesy of the MAC addresses in the

unencrypted 802.11 header. The measures used in this study are as follows:

• I-RR: The interarrival time between a received frame and the previous received

frame. Composed from leaked direction and timing information.

• I-SS: The interarrival time between a sent frame and the previous sent frame.

Composed from leaked direction and timing information.

• FSize: The size (length) of each observed frame in bytes. Sent and received frames

form different parts of the distribution by offsetting the size of sent frames. Com-

posed from leaked direction and communication size (length) information.

Other directional combinations for interarrival time (i.e. I-RS and I-RS) are also pos-

sible. As will be discussed, although not used in this study they are utilised in future

chapters.

Using the Wireshark suite (Wireshark Foundation, 2012), this data was filtered to

be generated only from relevant frames. The accessible MAC addresses in the 802.11

header allow for easy identification of the devices used in the investigation and the re-

moval of any communications from other devices and networks operating on an over-

lapping channel. In addition, any frame without the ‘protected’ bit set (denoting en-

cryption) was removed to filter out traffic such as network management frames and

layer 2 acknowledgements. This left only frames containing encrypted data directly re-

lating to user and application activity to and from the target device.

Over time, these measures can be used to characterise network activity. The fre-

quency of each value of these measures per frame can be plotted over time and, as

will be seen shortly, visually represented as a familiar histogram plot. With this repres-

entation using frequency counts it also inherently incorporates leaked frame quantity

information.

Such distributions have a fixed domain boundaries (i.e. a maximum and minimum

value) and fixed number of bins. This representation helps avoid the problems of scal-
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ing found in the last chapter because any network activity can be represented using

the same fixed distributions and an identical number of variables. This makes them

directly comparable. Frames are processed as follows to generate each distribution:

1. Generate (sliding) time windows: Group frames that arrive within a given time

period. ‘Sliding’ windows are created by generating these windows at intervals

less than the time period they capture. A single frame will therefore reside within

several overlapping time windows. This helps prevent the loss of information that

would occur if user activity was spread over a window boundary as illustrated in

Section 5.4.

2. Generate metric distributions: For each of these windows, measure, count and

group identical values (or similar values with a given tolerance for continuous

variables) for each metric discussed below. The distribution of these metrics char-

acterises the network activity over that time window.

However, without time or frame number as an axis, frame size and interarrival time

distributions discard frame order information. It is hoped that the loss of information

due to this compromise can be mitigated by using appropriate sample rates. A time

period must be chosen appropriate to the activity or activities of interest, so that short

activities are not lost on the noise of a large time window and windows are not too short

for patterns from longer activities to be observed.

A distribution representing FSize can be generated by counting the number of frames

of a given size observed. Frame sizes are discrete, bounded values so plotting is simple.

Sent frame sizes were offset by +1600 (a number greater than the largest observable

frame size1) to distinguish the two but plot them as part of the same distribution. With

bounds of 1–1600 bytes in each direction, this provided 3200 bins for each possible

frame size.

Interarrival times are continuous, but can be similarly counted when grouped into

‘bins’ representing a given interval (e.g. 0.0–0.2ms, 0.2ms–0.4ms, . . . ). In this study in-

terarrival time measurements were bound to an upper limit of 5 seconds (the length of

1At 7981 bytes, the MTU (maximum transmission unit — see glossary) of 802.11 frames is actually much
larger than this. However no hardware encountered during the course of this research exceeded the 1500
byte MTU of 802.3 Ethernet. This serves a practical purpose: hardware will not have to manually fragment
WiFi frames before forwarding the encapsulated data over LAN.
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Figure 6.2: Expected FSize Distribution over 5s Window (subsection)

a time window, although most measurements would be far lower than this). Again, the

minimum is naturally bound to zero. Other interarrival time measurement combina-

tions (i.e. time between received and sent frames (I-RS), and vice versa (I-SR)) were set

aside for this study as they did not sufficiently improve classification to warrant their

inclusion. However, they do feature in future chapters as part of more complex classi-

fication techniques.

The distributions employed here provide more detail than measures in other re-

search that relies largely upon aggregated measures. The downside to the increased

level of granularity used in this study is the increased computational cost of both stor-

ing and processing all these variables. For the aforementioned traditional Skype clas-

sification approaches, aggregation is a sensible simplification (Jesudasan et al., 2010;

Bonfiglio et al., 2007; Baset and Schulzrinne, 2006). Histograms have also been demon-

strated previously in network traffic classification studies (Kind et al., 2009; Perona et al.,

2010). However, they are not widely used. Although they provide depth of information,

increased data comes at greater computational cost for classifier construction and pre-

dictions.

The majority of activity detection systems are designed to operate internally, within

a network (e.g. Network intrusion or or anomaly detection systems). Unlike our study,

these classifiers are designed to operate inside the network and are designed with much
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Figure 6.3: Expected I-RR Distribution over 5s Window (subsection)

Figure 6.4: Expected I-SS Distribution over 5s Window (subsection)

greater data throughput in mind. However, they are afforded the convenience of direct

access to data at higher network layers (e.g. IP addresses, port numbers). In contrast,

an external observer in our scenario operates a situation with comparatively low data

throughput, but due to encryption must rely on every scrap of information possible.

Although performance is an important consideration explored in Chapters 7 & 8, is a

lesser concern here. As an external network observer, the data throughput is limited to

only geographically nearby devices.
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Although also observing from an external vantage point, Zhang et al. (2011) used

sums, means, medians, variances, and coarse ranged measures of frame size granu-

larity. Unnecessarily discarding potentially useful information seems imprudent given

the overall lack of data available due to WiFi encryption compared to other scenarios.

This chapters demonstrates that this remains a tractable problem despite the greater

quantities of data resulting from this relatively high granularity.

Histograms providing expected values over a time period can be used in a way ana-

logous to probability density functions. These are a common statistical technique and

have been used for decades to describe general models of network traffic (Redner and

Walker, 1984; Jain and Routhier, 1986). A probability density function models the ex-

pected distribution of ‘Random Variables’ given a number of parameters. Despite the

name, these variables are not truly random. The likelihood a variable will take on a

given value is predicted by a probability function, and an expected distribution of these

values can also be determined. For example, in networking this may model expected

packet length, call duration or error rate (Gebali, 2008). This work uses previous activity

samples to provide the same data empirically. Analysis of the measurements from these

samples previous samples provides expected distributions and an estimate of each his-

togram bin’s value for a particular activity.

The data collected for the first dataset while observing the private MiFi network was

used to profile and characterise the typical appearance of Skype voice traffic. Using the

deliberately injected ‘tags’ at the beginning and end of the voice conversation, it was

possible to generate distributions for only the time windows containing Skype voice

traffic. By combining the distributions created for these time windows over multiple

recordings of only Skype voice traffic, it was possible to create expected distributions for

each metric to represent how Skype voice traffic typically appears. These distributions

used a time window period of 5 seconds at intervals of 50ms (thereby creating sliding

windows).

As a demonstration of how these distributions can differ depending on network

activity the histograms in Figures 6.2, 6.3 and 6.4 show Skype activity overlaid with Bit-

Torrent traffic. Only subsections of the distributions are shown for legibility. Notable

differences between distributions can be explained by analysing the goals and beha-
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Figure 6.5: Expected FSize Distribution over 5s Window (subsection)

viour of the different protocols. Skype attempts to maintain QoS for voice traffic so that

audio is transmitted both near-instantly and clearly. As such, it transmits at a regular

rate — shown by the I-SS peaks at 20ms and 40ms in Figure 6.4 and corroborating the

analysis of Baset and Schulzrinne (2006) — and with relatively small frame quantities

of data within certain bounds — 200 ±30 bytes as seem in Figure 6.2.

Conversely, as a bulk file download mechanism, BitTorrent will attempt to transfer

information as quickly as possible — denoted by peaks close to zero on the I-SS and I-

RR distributions in Figures 6.3 and 6.4 — and a large number of incoming frames hitting

at the limit (1546 bytes as measured in this study) caused by the MTU. Also of note is

the tendency of received interarrival times between received frames to peak at 10ms

intervals, this is true even for BitTorrent that (to the best of the author’s knowledge)

does not deliberately attempt to achieve this. It is assumed that is an artefact of the

underlying networks’ routing.

In this study we also wish to detect Skype traffic interleaved with other activities.

Figures 6.5, 6.6 and 6.7 illustrate the differences in distributions between Skype traffic

alone and Skype traffic interleaved with BitTorrent traffic.

Figure 6.5 shows that with the addition of Skype, Skype+Torrent traffic is closer to

plain Skype than BitTorrent alone was previously. The fact that these distributions are

not more similar is due to the variation displayed naturally as a variation of the Skype
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Figure 6.6: Expected I-RR Distribution over 5s Window (subsection)

Figure 6.7: Expected I-SS Distribution over 5s Window (subsection)

protocol. Despite being the same conversation, a slightly different range of frame sizes

are produced. This could be due to a variety of factors, but the most likely are the Skype

voice encoder encoding at a different offset from the start of the conversation and dif-

ferent (audio) background noise. Such inherent variance is a testament to the difficultly

of this problem.

Both Figure 6.6 and, most notably Figure 6.7, highlight a problem with the current

representation of interarrival times. As can be shown by the large shift to values less
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than Skype’s 20ms transmission rate, interarrival distributions will be skewed by addi-

tional traffic. For any interarrival time between two frames, any additional frame in-

serted between then will cause two interarrival times of lesser value to replace it. This

issue and an attempt to remedy it is discussed in the next chapter.

Despite these differences, distributions do become measurably more ‘Skype-like’

overall, even if this is not reflected in every variable as would be ideal. As a first attempt

at Skype detection using the distributions developed in this chapter, the next section

outlines a method to measure the difference between observed traffic and Skype in an

attempt to detect its presence.

6.4 Detection via Thresholds

As was demonstrated by comparing different network activity histograms in the previ-

ous section, a previously unseen recording of unknown data can compared to the ex-

pected values to determine its similarity to Skype voice traffic. In this section we present

a simple method to assign scores to observed distributions in order to quantify simil-

arity.

There are many pre-existing methods of comparing histograms and, as summarised

by Weken et al. (2003), are of particular use to determine the differences between im-

ages. As a necessity for accurate computer vision, there are also tailored algorithms for

tasks like shape matching, colour analysis, and 3D-object recognition (Ling and Okada,

2007). However, these are usually founded on traditional distance measures which, as

described shortly, are not a desirable property in this situation and tailored to over-

come common visual alterations such as changes in luminosity or added noise. These

differ from the perturbations we are likely to see due to network traffic. Ling and Okada

(2007) present an efficient form of the general ‘Earth Mover’s Distance Algorithm’, how-

ever even in this efficient form it is prohibitively computationally expensive. Using this

algorithm, histograms for network activity could be not processed at the rate they are

generated.

Equation 6.1 describes our alternative, inexpensive scoring system to assign time

windows of an unknown recording a score for each metric:
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Figure 6.8: Detector Scores for Skype Only

Sw =
N
∑

i=1

ei oi w (6.1)

Distributions are formed from N histogram ‘bins’ displayed as the domain axis in the

previous figures. A metric’s score for a given time window (Sw ) is given by multiplying

the values from the pre-calculated expected distribution (ei ) by the number actually ob-

served over that time window (oi w ), and taking their combined sum. Observing a more

likely value therefore increases the score for a metric more than an unlikely value. In

contrast to other potential measures, this deliberately avoids penalising the score of in-

terleaved traffic. For example, using a traditional distance measure like mean squared

error instead would cause both BitTorrent FSize and BitTorrent+Skype FSize to have

a score lower than Skype alone. Instead BitTorrent+Skype will have larger score. This

theoretically allows for distinction between the three.

In combination, these numeric scores can be used to quantify Skype-like activity.

Figures 6.8, 6.9, 6.10 and 6.11 show the metric scores over time for several examples of

different activities. A darkened background denotes when a Skype voice conversation

was in progress. Interarrival scores are scaled by a factor of 100 for illustrative purposes

only. FSize is the strongest indicator of Skype activity, but the addition of I-RR and I-SS

tighten the accuracy over our larger dataset. For example, in Figure 6.10 I-SS could be

used to suppress a potential false positive around the second highest FSize peak. By
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Figure 6.9: Detector Scores for BitTorrent Only

Figure 6.10: Detector Scores for Simultaneous Skype and BitTorrent

Figure 6.11: Detector Scores for Simultaneous Skype and Web Browsing

comparing the plots for each metric, thresholds for each metric could be determined

that, when exceeded, indicated that Skype voice traffic was probably occurring.
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Table 6.1: Detector Performance: Skype Only

Private Network Campus-Wide Network
Metric S% NS% All% S% NS% All%
FSize 94.58 89.95 90.66 79.96 88.04 86.76
I-RR 100.0 37.83 47.29 98.54 36.87 46.59
I-SS 100.0 48.47 56.31 100.0 46.05 54.55

Comb. 94.58 89.95 90.66 79.96 88.04 86.76

Table 6.2: Detector Performance: Skype+Torrent

Private Network Campus-Wide Network
Metric S% NS% All% S% NS% All%
FSize 97.56 64.12 69.02 93.92 68.55 71.82
I-RR 100.0 26.58 37.35 99.03 22.55 32.41
I-SS 100.0 29.66 39.98 100.0 29.08 38.22

Comb. 97.56 64.54 69.38 93.66 68.63 71.85

Table 6.3: Detector Performance: Skype+Web

Private Network Campus-Wide Network
Metric S% NS% All% S% NS% All%
FSize 95.25 84.97 86.56 98.13 79.22 81.92
I-RR 100.0 29.05 39.98 99.43 16.22 28.07
I-SS 100.0 40.19 49.41 100.0 31.27 41.06

Comb. 95.25 84.99 86.57 97.65 79.41 82.01

Table 6.4: Detector Performance: BitTorrent

Private Network Campus-Wide Network
Metric S% NS% All% S% NS% All%
FSize — 65.10 — — 59.45 —
I-RR — 30.21 — — 18.83 —
I-SS — 32.41 — — 34.53 —

Comb. — 65.10 — — 60.14 —

6.5 Detector Accuracy

From the observations of Skype-only activity on the MiFi network, 19 data recordings

were used to generate expected normalised distributions for each metric. Thresholds

were then set for each metric by visual inspection. For the purposes of this study, thresholds

were set erring on the side of caution and are therefore relatively low to prioritise true-

positive identification of Skype voice traffic.

The detection process was then performed on the remaining Skype-only obser-

vations as well as the other activities simulated on the private network. As a further
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test, the same detector was then used on recordings from the campus-wide network.

Tables 6.1, 6.2, 6.3 and 6.4 show the accuracy of each metric for the correct classifica-

tion of Skype (S%) and Non-Skype (NS%) time windows. ‘Comb.’ is the combination

of the three metrics, denoting when all are above their respective thresholds for a given

window.

6.6 Discussion

On the otherwise unused private network the positive detection rate of actual Skype

voice traffic was high with a detection rate in the mid-90s even with ongoing simultan-

eous activity. However, false positives for non-Skype traffic increased in cases of ad-

ditional activity. BitTorrent traffic especially being incorrectly detected as Skype with

comparatively low accuracy of∼65%. As found in similar work (Zhang et al., 2011), Bit-

Torrent proves to be a difficult problem to solve for the reasons outlined earlier in this

chapter, as demonstrated by high false positives for torrent-only traffic on both net-

works.

This study produced selection of metrics to identify particular network activity based

on metrics available despite encryption. Given the granular information available due

to the use of histograms, it may possible to improve accuracy by looking more precisely

at particular features within these distributions. For example, as noted earlier Figure 6.5

the comparison between Skype and BitTorrent traffic shows a marked difference in that

FSize distribution subsection. Although this would of course be expressed through the

overall score, its importance could be prioritised and assessed separately. With com-

parisons between BitTorrent, Skype and the combination of the two, how these distri-

butions are perturbed with the addition of interleaved activity was also demonstrated.

The study presented in the next chapter attempts to address both these issues.

Using the same metrics on the campus-wide network produced interesting results.

While accuracies were slightly poorer for combined activity, the correct detection rate

of Skype voice traffic fell by a much greater ∼15% when analysing Skype-only obser-

vations. This can be explained by the change in network environment causing Skype

activity to not quite meet the thresholds set on the original MiFi network. Differences
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in distribution were expected as a consequence when changing network environment,

but clearly there is a fine balance to be had in maximising the correct detection of Skype

traffic while retaining a low false-positive rate for distinct but similar looking traffic like

BitTorrent. Changes to network infrastructure obviously alter the outward characterist-

ics of activity so ways to overcome this and produce a generalised solution are therefore

considered carefully in future work.

Threshold levels were set by visual inspection from the initial Skype activity on the

private network and the ideal levels for the three metrics to simultaneously maximise

Skype detection and minimise false positives is not obvious, given that all three must be

met for the mechanism to classify something as Skype. Future work could methodic-

ally optimise these thresholds or, as seen in the next chapter, use a method to compare

distributions that creates these automatically. Furthermore, providing a ‘ground truth’

to represent the normal background traffic between a device on a target network when

it is otherwise idle could be used to adjust the mechanism to changes in network en-

vironment.

Although work is required to reduce false positives, this research demonstrated a

mechanism that is relatively robust against the ability to hide actual Skype traffic even

with this relatively rudimentary detection mechanism. In spite of relatively simplistic

score measure, it has shown that the side-channel information to perform this analysis

exists and inferring user activity is possible even on a (supposedly) secure network. It

is quite possible to infer and detect a specific kind of user activity despite the observer

being entirely passive, despite being external to the network, despite the correct use of

encryption, and using only the limited data this scenario provides.

Despite demonstrating high false-positive rates, this technique may still prove to

be a more cost-effective and tractable problem than breaking encryption first (which

is highly computationally complex), and then searching for Skype within. Design of ef-

ficient protocols to resist this analysis may prove very difficult, and awareness of this

security weakness can allow people to recognise where inference techniques such as

this may be a security risk and change their network use as appropriate. Further dis-

cussion of the potential applications of these methods can be found in Chapter 9.
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6.7 Study Conclusions

This chapter documents the creation of an initial detection mechanism for Skype voice

traffic. The study demonstrated that it is quite feasible to infer and detect a specific

kind of user activity despite the observer being entirely passive, despite being external

to the network, despite the correct use of encryption, and despite the limited data this

scenario provides. Frame size and timing metrics interpreted as histograms form the

foundation of this and all subsequent detection methods. The next chapter looks to

improve the detection mechanism and the data representation that supports it.
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7 Improved Activity Detection:
Random Forests

This work builds upon the efforts in the previous chapter using frame size and per-

mutations of interarrival distributions to infer Skype voice activity by monitoring wire-

less network traffic. However, instead of manual analysis and setting thresholds, ma-

chine learning is used to build a classifier program. Random Forests were chosen as the

machine learning approach to enable accurate identification of specific user activity

within encrypted WiFi traffic. Random Forests are only one of many machine learning

approaches. This chapter details how Random Forests were selected as the appropriate

tool for the task.

Alongside refined representations of the limited data available, the Random Forest

classifier demonstrates improved accuracy in identifying the targeted Skype voice activ-

ity within the sample set. Further analysis shows that following the initial construction

process, classification and monitoring can be performed efficiently so that they are ap-

propriate for low-cost, easily portable commodity hardware. Once again, any adversary

using these techniques need not be in a privileged position. An external observer can

operate while completely external to the network without connectivity or credentials

as long as they are within receiving range of WiFi transmissions. Furthermore the ad-

versary can perform this analysis entirely passively with no chance of being discovered.

7.1 Selecting A Machine Learning Approach

A machine learning algorithm will be used to decide what user activity (if any) is present

within a sample of network activity. Using the procedures in the previous chapter, these

samples are represented as a selection of frame size and interarrival metric distribu-

tions visualised as histograms. Machine learning is the collective name for a wide vari-

ety of computer algorithms that construct statistical models. These algorithms ‘learn’

from their inputs to make some form of prediction or decision regarding subsequent
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data. Thus, in contrast to traditional computer programs, they can adapt and improve

their output by altering their internal models as additional data is provided. These tech-

niques typically take one of two approaches (Russell and Norvig, 2009):

• Supervised: The machine learning method is given a data set to ‘train’ with. This

training data contains samples of input data matched to a known correct output.

The algorithm attempts to construct a model that best predicts all these desired

outputs using their corresponding inputs. Providing the sample training data is

representative, it is assumed that the constructed model will generalise to the

whole population the sample training data is drawn from.

• Unsupervised: The machine learning technique is again supplied with training

data, however this time no desired outputs are supplied. Instead, the algorithm

attempts to find and model the structures of the data itself.

Like many statistical tests, machine learning algorithms may also make assumptions

about the data they operate upon. This divides them into two categories:

• Non-parametric: No assumptions are made about the distributions of the data.

• Parametric: Each variable within the input sample data provided to the machine

learning algorithm is assumed to be sampled from a distribution with a known

structure. For example, often variables are be assumed to be normally distrib-

uted. This represents the common scenario where values have an expected value

(mean), but are sampled with some margin of measurement error (deviation).

We have no reason to believe that variables within the histogram distributions will be

normally distributed. Random Forests, as well as the other common machine learning

techniques mentioned, have non-parametric variants and do not make any assump-

tions about the distribution of the data.

Machine Learning techniques can also be categorised by the type of prediction they

are designed to make (i.e. their output) (Russell and Norvig, 2009):

• Classification: A supervised technique, new samples are classified based on the

model constructed from the training data (e.g. predict where an email is spam or

not-spam (Pantel and Lin, 1998)).
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• Regression: Another supervised technique, but instead produces a continuous

numeric value rather than a discrete class label (e.g. predict future stock prices

based on historic data (Trafalis and Ince, 2000)).

• Clustering: Similar to classification, but for unsupervised techniques. Classes or

‘clusters’ of similar samples are assigned by the algorithm (e.g. find geographical

crime hot-spots from incident reports (Wang et al., 2012)).

Another interesting machine learning approach to note is reinforcement learning:

• Reinforcement Learning: An algorithm attempts to perform a specified task within

a dynamic environment. The algorithm must react to changing circumstances to

achieve this (e.g. correctly drive an autonomous vehicle (Stafylopatis and Ble-

kas, 1998), or develop a strategy to win competitive games against an unpredict-

able adversary (Wender and Watson, 2012)). Here the useful output is the strategy

used to maximise success (as defined by the programmer).

Reinforcement learning is not a feasible approach due to the scenario our observer op-

erates within. The encrypted nature of WiFi communications prevents the creation of a

useful real-time feedback mechanism. Unfortunately this means that the primary fea-

ture of reinforcement learning is unavailable; an activity detector cannot update itself

as it is running. However, it is important to note that a detection mechanism can still be

developed offline then operated in a live environment, as is demonstrated in Chapter 8.

We therefore ideally wish to be able to make predictions on unseen live data based

on data sampled prior to constructing the detector. These predictions will be categor-

ical classes denoting the type of user activity (e.g. Skype, Not-Skype) so regression is not

required. As described in Chapter 4, the data collection process will provide samples

of network activity corresponding to a particular user activity and this can form a well-

labelled training set. Although unsupervised clustering would provide an interesting

analysis of the outward similarities and differences between different activities, activity

identification is our primary goal so supervised classification techniques fit this prob-

lem best. The task is therefore to decide which of the many supervised classification

methods to use.
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Figure 7.1: Machine Learning Process Flow Diagram (Kotsiantis, 2007)

7.2 Supervised Classification

Figure 7.1 outlines the process for selecting a machine learning classification algorithm.

The knowledge required prior to algorithm selection (problem, required data, and pre-

processing) have been detailed in previous chapters and can be summarised as follows:

Problem Identifying user activity from encrypted WiFi traffic

(Chapter 3).

Required Data A representative collection of observed, then saved encryp-

ted WiFi frames (Chapter 4).

Pre-processing Separate data into ‘time windows’ and create histograms for

interarrival and frame size information (Chapter 6).

The training set can therefore be defined:
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Training Set Many time windows labelled as containing to a specific user

activity class. The sample of each time window is represented

by several histograms (distributions of frame size and interar-

rival measurements) and each histogram bin holds a value

(frequency). Each bin value is an input parameter.

Now all that is required is the selection of the machine learning algorithm itself.

Fernéndez-Delgado et al. (2014) authors a paper enquiring “do we need hundreds of

classifiers to solve real world classification problems?”. They surveyed 179 classifiers

from 17 technique families over 121 varied data sets and found that while Random

Forests provided greatest accuracy in the paper, this was a minor and statistically in-

significant performance increase upon second-place Support Vector Machines (SVMs).

Kotsiantis (2007) also provides a useful, if subjective, pro/con comparison of common

machine learning classification techniques. The overall conclusion is that — provided a

machine learning technique is appropriate for the problem — then any of the common

machine learning classification approaches will produce similar results. Perhaps more

importantly, although certain techniques would sometimes excel by a small margin, it

is not possible to predict which technique would perform best in advance.

The choice of algorithm therefore ultimately comes down to personal preference

and Random Forests were chosen in this instance. The Support Vector Machines (SVMs),

Bayesian Classifiers, or monolithic Decision Trees (without being used in an ensemble

to form a forest) could be equally justified and should demonstrate similar accuracy

and overall results. However, in the author’s opinion Random Forests offer some use-

ful visualisation and analysis tools and have similarities to the widely understood flow

chart that are useful to explain their operation to non-researchers.

7.3 Random Forests of Decision Trees

To construct a classifier from the available distributions, we employed the Random

Forest machine learning technique using the BigRF package in R (R Core Team, 2013;

Lim et al., 2013). Popularised by Breiman (2001), Random Forests are a supervised, non-

115



CHAPTER 7 Improved Activity Detection: Random Forests

parametric technique and therefore rely on carefully collected labelled sample data.

However, Random Forests do not make any assumptions about the distribution of the

data. We have no reason to believe that variables within the histogram distributions will

be normally distributed. After construction the Random Forest will be able to predict

the app in use when given a sample of network activity.

The accuracy of this prediction process is measured as Out-Of-Bag (OOB) error.

This is a generalisation error based upon the ability for the Random Forest classifier to

correctly classify sets of test samples. Unlike many other machine learning algorithms,

Random Forests do not require manual separation of data into Training and Test sets.

This is performed automatically as part of the forest construction process. Each tree

selects approximately 2/3 of samples for construction and leaves aside 1/3. The se-

lection of these samples is random and therefore OOB error is calculated as the forest

construction process progresses. It is therefore considered unbiased unlike machine

learning methods that evaluate error with a single test following classifier construction

(Breiman, 2001).

Aside from the final classifier, Random Forests also produce an ordered ranking of

variable importance and the ability to construct class prototypes. As we will show, vari-

able importance can be incredibly useful to optimise the classification process by re-

ducing the variables provided to the Random Forest to only those that are most helpful.

Class prototypes specify which properties are exhibited by a typical class. Best plotted

as a box plot showing the median and interquartile range of each input parameter, they

can be very useful to visualise the differences between classes and provide a concrete

example of which characteristics best define a particular class.

Random Forests are an ensemble method, formed by building many Decision Trees.

Comparable to the common flowchart, a Decision Tree is a sequence of nodes and dir-

ected paths (‘branches’) used to predict the class of a given sample. Any route through

the tree starts at a single ‘root’ node and eventually ends at a terminal ‘leaf’ node provid-

ing a class prediction. The route taken depends on the decision made at each node. The

trees used here are binary decisions operating on a single variable. Each node compares

a variable from the sample data with the model’s predetermined value. The outcome

of this comparison then determines the branch taken to the next decision node or ter-
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minal leaf.

The variables used in the sample should be selected to allow differences between

classes to be characterised. Each decision attempts to separate classes based on these

characteristics. Providing the tree is well constructed, the sequences of decisions will

cause the available classes to gradually separate as the path through the tree is followed.

A Decision Tree within the Random Forest is grown as follows (Breiman, 2013):

1. Generate a new random training subset for each tree: N training samples with

known class labels are taken from the complete dataset with replacement (so the

same sample can be selected multiple times).

2. Grow the tree: At each node in the tree, select a different random selection of m

variables from the M total in each sample. The best decision on m to split the N

samples by classes is calculated and used for this node. The value of m is constant

across the entire forest.

3. Terminate with leaves denoting a class: Each tree is grown to the largest extent

possible. Decision nodes are grown until only a single class remains on a branch.

This branch will then lead to a terminal ‘leaf’ node denoting the relevant class

label.

The Decision Trees that constitute the forest attempt to optimally separate the classes

based on random subsets of the variables provided. Individually their ability to gener-

alise is poor due to working with only a small fraction of the available data. However,

their predictive power is much improved when used in combination. This ability is

the foundation of ensemble machine learning methods, where combining many smal-

ler less accurate classifiers can be easier to construct and just as powerful as a single

monolithic classifier. Unlike monolithic classification or regression trees, decision trees

within a Random Forest are grown to the maximum extent and there is no pruning.

The statistical measure used to evaluate how well samples are split is ‘Gini impurity’

(although other measures of impurity are available). As detailed in Equation 7.1, it is

a estimate of how likely samples are to be misclassified if they were labelled randomly

in proportion to the distribution of classes at that node. pc is the probability of being
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labelled as class c , of C total classes.

Gini impurity=
∑

c

1−p 2
c (7.1)

Gini impurity is therefore zero (completely pure) at terminal ‘leaf’ nodes where only

a single class exists in the remaining sample subset (i.e. p = 1 as there is only one class).

Gini impurity is at maximum where all classes have an equal chance of being chosen

as a prediction (i.e. p = 1/C ). The decrease of Gini impurity is used as measurement

of how ‘good’ a decision is. This informs the algorithm which decisions to use when

constructing each decision tree: prefer the one that minimises impurity in the two sub-

nodes. Weighting values can also be applied on a per-class basis to the impurity calcu-

lation if appropriate. We used fair weights that corrected for differences in total sample

count for each class. Thus, misclassifying any sample was equally ‘bad’ and added the

same level of impurity. In both this study and the subsequent app identification study,

although we wished to maximise true positive classification, we found that biasing the

impurity calculation against ‘Other’ and ‘Non-Skype’ traffic did not improve classifica-

tion accuracy any further. This is illustrated shortly in Section 7.6.

7.4 Sample Data & Representation

Using the same collection processes from the previous chapter and the same histo-

gram representation, the typical WiFi scenario presented in Figure 7.2 was recreated.

As before, our primary dataset user activity was emulated by utilising several laptops

with automation software to perform predefined user activities over WiFi. The internet

was accessible though WiFi either from a 3G portable hotspot (uncongested, controlled

wholly by us) or via the campus network (public and relatively congested, but with ac-

cess controls and well-provisioned). Skype voice activity was tagged specifically and

labelled as such to distinguish it from other traffic.

In addition, a secondary dataset was provided by volunteers who agreed to operate

our portable device at home for several days. This portable device was an automated

version of the platform described in Chapter 4 and presented in Atkinson et al. (2014a).

This would passively recorded data sent over their home WiFi network automatically
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Figure 7.2: Observing Encrypted Skype Traffic

as soon as it was plugged-in and was therefore untagged. Consisting of a Raspberry Pi,

WiFi dongle, and a memory card with sufficient storage; at the time of writing, a similar

device could be constructed for well under $100 using only off-the-shelf components.

As will be discussed shortly, we were able to construct our Random Forest classifier

for Skype voice traffic using the labelled data in from the primary dataset. Variable im-

portance was analysed to measure efficiency and trade-offs where they exist, and a pro-

totype model to embody Skype activity was created. The secondary dataset provided a

level of validation for the Random Forest, and sufficient quantities of data for an ana-

lysis of how easily detection could be implemented ‘live’ on low-cost hardware.

Our primary dataset was collected with full control over network access and user

activity. The user activities consisted of: Skype traffic alone, simultaneous Skype traffic

and web browsing, simultaneous Skype Traffic and BitTorrent, and BitTorrent alone.

As noted in the previous chapter, these were chosen because web activity is a likely

simultaneous activity when using Skype, and BitTorrent classification proved to be a

challenge in our previous work and the work of others from an external vantage point.

The number of distributions used (represented as histograms) was increased for use

with random forests. Whereas in the previous study it was difficult to use some of the

combinations of directionality, the machine learning was able to leverage all of them
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to some extent. This study therefore utilised all possible interarrival metric distribu-

tions as outlined in Table 7.1. Furthermore, cumulative interarrival time distributions

were added as will be explained shortly and time windows were shortened from 5s to

0.5s. However, the granularity of these distributions was decreased from 1ms histogram

bins to 3ms bins. Furthermore, these distributions were clipped to maximum of 150ms

whereas previous it was capped at 5000ms with the tail of the distribution having neg-

ligible values. Trials showed that the additional precision was not necessary and these

changes greatly increased construction speed while retaining classification accuracy.

Table 7.1: Distributions Created For Each 0.5s Window

Distribution No. Vars Description
FSize 3600→ 217 (1) Frame Size (received frames offset by +1600)
I-RR 50 Rcvd-to-Rcvd interarrival timing
I-RRCum 50 Cumulative transformation of I-RR
I-SR 50 Send-to-Rcvd interarrival timings
I-SRCum 50 Cumulative transformation of I-SR
I-RS 50 Rcvd-to-Send interarrival timings
I-RSCum 50 Cumulative transformation of I-RS
I-SS 50 Send-to-Send interarrival timings
I-SSCum 50 Cumulative transformation of I-SS
Total 4000→ 617 (1)

After collection, the data is separated into time windows. The classifier operates on

the distributions generated from the frames within these time windows. The primary

dataset produced 59319 windows in total, of which 7149 contained Skype and 52170

were Not Skype. This provides ∼8 hours of recorded (non-idle) network communica-

tion data, representing only the user activities discussed. Windows were of fixed 0.5

second length and proved to be reasonable to detect Skype voice conversation. This

may not be appropriate for other activities and future work could look to optimise this

choice.

As done previously, from each window we then calculate certain distributions from

our observations. Will all directionality combinations now represented, these distribu-

tions consist of Interarrival Times between frames in certain directions; Send-to-Send

(I-SS), Received-to-Received (I-RR), Send-to-Received (I-SR), and Received-to-Send (I-

RS) timings divided into 3ms bins. The Frame Size (FSize) distribution split into direc-

1 A FSize subset is selected prior to forest construction. See next section.
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Figure 7.3: Expected I-SS Dist. over 5s Window (subsection)

tions was also created by offsetting frame sizes by+1600 (a convenient number greater

than the maximum frame size). Frame sizes are already a discrete, bounded measure-

ment and so the FSize distribution uses these exact values.

To illustrate how differences from these distributions can still be used to delineate

different user activities with these changes, Figure 7.3 shows a subsection of the differ-

ences in the expected (averaged) I-SS distribution for Skype and BitTorrent traffic over

a 5 second time period. (Note: Although 5s provides a better visualisation, the shorter

sample period (0.5 seconds) is used for actual classifier construction. Also note that

data supplied to the Random Forest is not averaged or aggregated over many samples

in this way.)

7.4.1 Cumulative Distributions

Interarrival time distributions plot the time period between frame observations. How-

ever, as a continuous variable time must be ‘binned’ into given ranges to form a histo-

gram. We use bins 3 milliseconds in size, from 0 to 150ms (i.e. 0 < x0 ≤ 1ms, 3 < x1 ≤

6ms, . . . ). Again, this information can be partitioned using the direction of each frame.

The combinations of interarrival time measurements between frame direction result

in four distributions: Time R↔R, between Received frames and the previous Received

frame (I-RR); Time S↔R, between Received frames and the previous Sent frame (I-SR);

Time R↔S, between Sent frames and the previous Received frame (I-RS); Time S↔S,

between Sent frames and the previous Sent frame (I-SS).
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Figure 7.4: Interarrival Distribution Comparison

Cumulative Interarrival Time plots for each of the Interarrival Time distribution

combinations are also generated as an alternative representation of the interarrival

data. Like normal cumulative frequency charts, they are identical in construction, but

include the sum of previous (lower interarrival measurement) bins in addition to the

value of the bin itself. Figure 7.4a shows an example of a single 6ms interarrival meas-

urement. Using a standard distribution plot, should a frame from another activity be

sent at 3ms, then the original 6ms reading will change dramatically into two 3ms read-

ings as shown in Figure 7.4b. By plotting a cumulative distribution as shown in Fig-

ure 7.4c instead, additional packets cannot mask the original signal at 6ms.

Knowing that each decision within a Random Forest is based on a single variable,

we can reason that the condition x6 > 0 remains true for cumulative distributions when

spurious frames would otherwise interrupt an interarrival time comparison. Note that

the converse is true for x6 ≤ 1, and will hold for (standard) Interarrival Distributions. We

hope to create a classifier that remains accurate in non-ideal conditions and the com-

bination of these two representations allow for additional robustness when spurious

traffic is inevitably found in addition to the user activity we hope to detect.

7.4.2 Variable Selection

Although random forests are capable of dealing with large numbers of variables, provid-

ing parameters that convey little information is unnecessarily time consuming to pro-

cess. This is especially true when we wish to analyse variable importance and create

class prototypes as the processes are computationally expensive. Our objective was to

make the problem tractable (provide a classifier that can be constructed in a reasonable

timeframe) while minimising the amount of potentially useful information we discard.
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Table 7.2: Classification Confusion Matrix

Predicted Value
Not Skype Skype Error

Actual Not Skype 50644 1526 3.37%
Value Skype 241 6908 2.93%

Having already vastly reduced the number of variables in each interarrival distri-

bution by decreasing the granularity, we analyse the FSize distribution to see what can

be discarded for this particular activity. Analysing only the windows that contained

Skype voice data, we calculated which frame sizes occurred in less than 2% of cases (i.e.

which FSize bins had a non-zero value in <2% of cases). By excluding these we were

able to dramatically reduce the samples required from the FSize distribution from 3200

to only 217. This reduces the total number of variables provided to the Random Forest

to a much more manageable 617, down from 4000. As we are concerned with positive

identification of Skype (and not just Skype in isolation), these can be safely discarded.

The remaining variables provide the best distribution measurements reflecting Skype

activity. These can then be passed to the Random Forest algorithm as representative

samples of each time window. Time windows were labelled based on our tagging pro-

cess for Skype voice traffic the primary dataset. Windows after the indicator packets

and within the conversation length were tagged as containing ‘Skype’. All other win-

dows were assumed to be ‘Not Skype’. The process then attempts to construct a Ran-

dom Forest classifier separating the samples labelled as Skype from those labelled as

Not Skype. The Trees that constitute the forest attempt to optimally separate the classes

based on random variable subsets.

7.5 Random Forest Accuracy

A Random Forest of 200 trees using the distributions (617 parameters) produced from

each window was generated. Class weighting proportional to sample size provided an

impressive ∼97% accuracy for the classification of Skype traffic with only a ∼3% false

positive rate, as detailed in Table 7.2.
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7.5.1 Parameter Tuning

We can examine the trade-off between maximising finding Skype traffic (true positives),

and incorrectly classifying Non-Skype traffic (false positives). Class weights can be sup-

plied to the Random Forest algorithm that adjust how trees within the forest are con-

structed. The greater the weight, the ‘worse’ a misclassification of a class is considered.

Therefore, altering the weight ratio in favour of a one class will increase the true posit-

ive classification for that class. However, except in ideal datasets where classes do not

overlap, this will result in false positives for other classes.

The accuracy of our ∼97% accurate Random Forest as trees are added is shown

via the OOB error rate in Figure 7.5a. Proportional weighting produces a forest where

neither class is favoured in the classification. This weighting is default in many Ran-

dom Forest implementations (although not BigRF). In certain applications it may be

preferable to err on the side of caution and prioritise true positives at the cost of false

negatives. As expected, Figure 7.5b shows that attempting to push for greater Skype

classification increases false positives (hinders correct ‘Not Skype’ classification) with

little gain. Figure 7.5c provides further confirmation by showing how extreme weight-

ing in favour of Skype leads to hugely diminishing returns. In combination with the

convergence visible in Figure 7.5a this suggests that Skype classification error rate can-

not be improved beyond ∼97% with this approach on this dataset and affirms the ef-

fectiveness of proportional weighting.
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Figure 7.5: Error for Random Forest Composed of 200 Trees Utilising 617 Variables
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Figure 7.6: Classification Error of Top 200 Variables with X Trees

7.6 Considering Ease of Implementation

Implementation of classifiers on low-cost hardware can be made easier by minimising

the amount of memory and processing power required. First we investigate decreasing

the number of input variables used. As illustrated shortly, the Random Forest produces

a measure of variable importance to aid in this task. Removing them in reverse order

of importance, Figure 7.7a shows how iteratively decreasing the number of variables

by 10 effects classification accuracy. Figure 7.7b shows minimal sampling taken to the

extreme, using only 1–20 variables.

Interestingly, employing only two variables from the I-SS distribution was capable

of producing >80% accuracy. We can infer that this is due to Skype’s regular packet

transmissions. BitTorrent packets would interrupt this timing but would be less pre-

dictably regular. Cumulative distributions allow for the detection of Skype’s regularity

despite the outwardly different interarrival times. If we assume that we wish to achieve

at least 95% accuracy for detection of Skype traffic, Figure 7.7 shows us that this is pos-

sible from around 200 variables so we will set this as an accepted minimum for low-cost

analysis.

Classification trees can be implemented as iterative if-statements. These are simple

operations, but each tree in the forest requires processing to provide its vote for clas-

sification. We will therefore also attempt to minimise the number of trees. Figure 7.6

plots the error rate against the number of trees in our reduced 200-variable forest. The

error rate plateaus at around 20 trees. We can reason that a Skype classification of>95%

accuracy is possible using only 200 variables and 20 trees.

125



CHAPTER 7 Improved Activity Detection: Random Forests

Table 7.3 shows the execution time for predictions using both our initial highly ac-

curate classifier (∼97%), as well as the reduced classifier (∼95%) using fewer trees and

variables. These timings were performed on a standard business laptop with an Intel i7

processor at 1.7GHz (only one core used), and a Raspberry Pi ARM11 at 700MHz (single

core).

Table 7.3: Time Taken to Classify 59319 Windows

Forest No. Trees No. Vars Time taken (i7) Time taken (RPi)
Original 200 617 32.57sec 81min
Reduced 20 200 0.60sec 51sec

On the i7, our initial 96% accurate classifier took only slightly over 30 seconds to

predict a class for every window in our 8 hour primary dataset, while the reduced tree

only takes six tenths of a second. This excellently demonstrates how the analysis per-

formed in previous sections can provide a huge boost in efficiency if it is determined

the cost is acceptable (slightly lower accuracy). Although the original classifier took far

longer on the Raspberry Pi, a good percentage of the time was spent on overhead due

to the multi-GB dataset being far in excess of the meagre 512MB RAM. Despite this,

producing all this data inefficiently still took only a fraction of the 8 hours observation

time. It is therefore reasonable to assume that a real-time implementation could be

achieved.

Our secondary dataset was sourced from volunteers who allowed us to monitor

their home WiFi for several weeks in total. With no regular Skype users, any predic-

tion of Skype traffic produced on this data can be assumed to be a false positive. Unlike

our primary dataset, these home networks will be idle for large periods of time (e.g. at

night). False positives are therefore best reported as a count instead of a percentage

(which would be unrepresentatively low). Over a dataset consisting of tens of millions

of windows, only several thousand were detected as Skype. It is likely this could be re-

duced further if a minimum conversation length was used to filter spurious results. As

is the case with normal phone calls, real Skype calls are likely to last several minutes.
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Figure 7.7: Forest Classification Error, Top Nv a r Variables

7.7 What defines Skype?

Having constructed our accurate Random Forest Classifier, we can analyse the decisions

it took to learn more about our model and Skype itself. From this we are able to de-

termine exactly what characteristics Skype voice activity. Figure 7.8 plots the relative

importance of each input variable. As is clearly visible, the classifier places heavy reli-

ance on the timings between Sent and Sent frames, utilising both standard (I-SS) and

cumulative distribution (I-SSCum), justifying their use. The two versions of I-RS were

less important but similarly broadly sampled. Interestingly, the most important vari-

ables appeared to be in the I-SRCum distribution, despite the rest of the distribution

being relatively unused, revealing a key timing around 35ms. Certain Frame Sizes, for

example length 128 and 148 outgoing, were also found to be indicative of Skype voice

activity.

We can also ask the model to generate class prototypes. Figure 7.9 shows a proto-

type that represents a typical member of the Skype class. Having selected the top 100

variables of importance, the Medians show the typical value while the percentiles de-

note the possible variation. Prototypes can be used to judge how close a measurement

is to the ‘ideal’ Skype sample, and whether it falls within the expected level of variation

normally exhibited by that class. They are also a good way to visualise and communic-

ate what the classifier is looking for. The classifier could also easily construct a model

for non-Skype traffic however this would not be useful as it is an arbitrarily defined class

that only relates to this specific data set.
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Figure 7.9: Skype Prototype Constructed from Top 100 Variables

7.8 Study Conclusions

This work was published at Milcom 2014 (Atkinson et al., 2014b). The classifier proved

to be highly accurate on both the primary dataset and our secondary dataset produced

with relatively few false positives. Our approach combining Random Forests with com-

plete frame size and interarrival distributions improved upon the accuracy of our pre-

vious work (especially false positives) and overcame the issues with certain traffic com-

binations (e.g. BitTorrent). This clearly demonstrates an ability to infer and detect spe-
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cific user activity when using a supposedly secure network. Awareness of this security

weakness can allow people to recognise where this may be a security risk and change

their usage where appropriate.

A remote, undetectable, high accuracy mechanism to infer Skype voice traffic on

WiFi networks with a success rate of ∼97% and only a ∼3% false positive rate was de-

veloped within this chapter. In spite of any encryption scheme employed, user activ-

ity is inferred by exploiting a variety of frame size and interarrival time distributions.

We demonstrate ways to use these efficiently and optimise the Random Forest classi-

fier generated. The final product is an efficient classifier that we believe can be im-

plemented at very low-cost on portable, commodity hardware. Given its design and

the side-channel data used, these methods should easily generalise to other encrypted

communication methods such as 4G LTE. With longer range wireless communications

becoming more prevalent, and increased commercial interest in tracking and analys-

ing publicly broadcast wireless data, this chapter highlights a plausible threat to users’

private activities.

Now that it has been shown to be feasible, an obvious extension to this work is to

actually implement a live classifier on a low-cost device for various activities. Future

work will also look at identifying multiple user activities, rather than focusing on just

one.
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This chapter presents the final study in this series to be published in the near future.

Instead of focusing on a single user activity like Skype, this study attempts to identify

34 different activities in the form of mobile apps. Furthermore, the real-time detec-

tion of these apps is performed on live network traffic and, via the use of personas,

demonstrates how sensitive personal information can be leaked. Users would likely as-

sume the confidentiality of personal information (including age, religion, sexuality and

gender) when using an encrypted network. However, we demonstrate how encrypted

traffic pattern analysis can allow a remote observer to infer potentially sensitive data

passively and undetectably without any network credentials.

Without the ability to read encrypted WiFi traffic directly, we once again process

the limited side-channel data available (timings and frame sizes) to enable remote app

detection. These side-channel data measurements are represented as histograms and,

in the same way as the previous Skype study, used to construct a Random Forest classi-

fier capable of accurately identifying mobile apps from the encrypted traffic they cause.

The Random Forest algorithm was able to correctly identify apps with a mean accuracy

of ∼99% within the training set. The complication of simultaneous activity (e.g. con-

current BitTorrent and Skype) is removed. Although background services may still be

present, no parallel user activities were deliberately added. Due to the modal design of

mobile apps (small screen space and battery limitations discourage multitasking) this

is a reasonable assumption about the scenario. Future work could investigate this ad-

ded complication, but for this study simultaneous activities were deemed unnecessary

and unrepresentative of actual usage patterns.

The classifier was then adapted to form the core of a detection program that could

monitor multiple devices in real-time. Tests in a closed-world scenario showed 84% ac-

curacy and demonstrated the ability to overcome the data limitations imposed by WiFi

encryption. Although accuracy suffers greatly (67%) when moving to an open-world
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scenario, a high recall rate of 86% demonstrates that apps can unwittingly broadcast

personal information openly despite using encrypted WiFi. The open-world false pos-

itive rate (38% overall, or 72% for unseen activity alone) leaves much room for improve-

ment but the experiment demonstrates a plausible threat nevertheless.

8.1 The WiFi & Mobile Device Scenario

We have already discussed how WiFi communications are now an everpresent part

of modern society; pervading homes, business and almost everything between. This

availability of WiFi and cellular data plans has led to an explosion of popularity in mo-

bile devices (phones and tablets) and the apps that run on them. As discussed in Chapter

2, the ability to infer information about encrypted communications via side-channels

has been previously established, as have the privacy implications of persistently car-

rying personal mobile devices. The potential security risks of particular apps and ser-

vices as will also be discussed shortly. However, this study demonstrates how the three

in combination present a perfect storm making users’ private and sensitive informa-

tion vulnerable. This information can be leaked to any listening party within reception

range of the wireless network. The observer can operate despite WiFi encryption work-

ing exactly as designed, requires no access credentials, and can perform the analysis on

commodity hardware. The technique is therefore remote, passive, undetectable and

inexpensive.

To demonstrate this, 34 highly-ranked apps were chosen and the target demograph-

ics of their users identified. Network data was then collected as the apps were opened.

This network activity denotes the use of a particular app. However, due to encryption

only limited information is available in the form of side-channels. Interpretations of

frame size and interarrival time characteristics were used to create histograms detail-

ing the distribution of these metrics over a given time period. The distributions can

then be used to differentiate between samples of encrypted network activity from dif-

ferent apps. These distributions were labelled appropriately and used by a Random

Forest machine learning algorithm to produce a classifier that predicts app usage (or

lack thereof) based on samples of encrypted network activity. The Random Forest was
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then converted to compiled code for speedy analysis of data in real-time. Personas

were created to emulate different people, possible app choices, and then monitored in

real-time to demonstrate how personal information can be leaked.

As demonstrated in previous chapters, the methods used to identify apps can also

be used to ‘fingerprint’ other activity over encrypted communications (e.g. VoIP, web-

sites). However, the personal ties of mobile apps, an openly ranked market with rel-

atively low diversity (compared to website fingerprinting in other work), and ease of

collection make apps a particularly opportune and vulnerable target. As will be dis-

cussed further in Chapter 9, although the processes are demonstrated using standard

802.11g WiFi, the methods should generalise to other wireless communications proto-

cols unless they are specifically designed to resist analysis. Notably for mobile apps,

the measurements used to perform this analysis will also be present in longer range

protocols like 4G LTE in cellular phone networks.

The scenario presented here will be familiar: a mobile device connects to a WiFi

Access Point (AP) providing internet access. The apps on the device may then use this

connection to communicate with certain remote internet servers. Information from

these servers is used to provide the app’s content or functionality. Although reliant on

an internet connection, this centralised architecture minimises the storage and pro-

cessing power required by the device itself. Devices can therefore be smaller, cheaper,

and provide up-to-date content or backups whenever connected. Furthermore, as dis-

cussed further in Section 8.4, we found that even those apps that only provide static

local content may still use the internet connection to some degree when available. In

Figure 8.1: Observing Encrypted Mobile Device WiFi Traffic
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our scenario the AP provides an 802.11g WiFi network utilising industry standard en-

cryption (i.e. WPA2-PSK or WPA2-Enterprise with EAP) so only authorised users can

access the network.

As before, and illustrated in Figure 8.1, our adversary is a remote observer attempt-

ing to infer information about the users of mobile devices connected to an AP. As the

observation process is entirely passive, the observer is completely undetectable by the

user or network operator. They are not necessarily malicious but have no access to the

network’s credentials or security keys, nor do they ever attempt to crack or discover

them. As will be discussed in Chapter 9, the methods presented in this thesis can be

adapted for a variety of purposes including virtuous ones.

8.2 Mobile Devices & Mobile App Privacy

The abundance of private information stored on modern mobile devices is well-established

(Shilton, 2009). Following the jump from ‘dumb phones’ to smartphones, mobile devices

suffer from the same threats that previously targeted personal computers and are privy

to the same personal information. As useful services are added to mobile platforms,

malware that exploits these services and the data stored is soon to follow. This mal-

ware performs all the activities one would expect. For example; stealing personal data,

sending spam, or ramsomware. An interesting twist on the spam business model is to

generate revenue by calling premium-rate numbers or sending SMS (Felt et al., 2011).

Similarly, the propensity to install apps on mobile devices rather than visit a website,

plus easy-to-use virtual ‘app stores’ or ‘markets’, means installing software on mobile

devices is easy and routine. This is in stark contrast to traditional computers where in-

stalling specialised software just to see a particular news source or check the weather

seems very far-fetched. Given the wealth of personal information and functionality that

could be available to unrestricted programs, great efforts have been made to set up per-

missions systems to regulate app behaviour (Felt et al., 2011; Kuehnhausen and Frost,

2013).

The mobile aspect of these devices adds further privacy risks. The most efficient

methods of routing network communications rely upon the easy and unique identi-
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fication of the sender and recipient. These and similar unique identifiers pervade un-

protected network communications (Aura et al., 2008). Even from an external vant-

age point with WiFi encryption enabled, MAC addresses that uniquely identify devices

are still freely broadcast. Commercial interest in wireless broadcasts has piqued in re-

cent years with companies recognising them as a potentially huge data source for the

multi-billion dollar Customer Relationship Management market. London’s controver-

sial “tracking bins” that included hardware to collect WiFi-enabled device identifiers

as owners passed in the street to track their movements (Vincent, 2013), and Westfield

Groups’ programme to perform similar shopping habits analysis with mobile phone

identifiers (Censk, 2011). Furthermore, mobile devices may also actively search for fa-

miliar APs and in doing so may broadcast the names (SSIDs) of recently used networks.

These can be located using the same databases that aid mobile GPS navigation to de-

termine the home, workplace and other locations important to the user of a mobile

device (Wilkinson, 2014). Disposable Network IDs would work to inhibit analysis of

this kind (Gruteser and Grunwald, 2005) and while it would make tracking specific users

between sessions much harder, it would not prevent the analysis presented here.

The privacy threat of external tracking and the security of personal data held on

mobile devices is often considered separately. In our scenario these two concerns are

combined. We demonstrate how it is possible to exploit WiFi side-channels to infer

private user information without the need for a privileged position within the network

or on the device. This renders safeguards like app permissions and encryption irrelev-

ant. The distance over which this analysis can be performed may also be much greater

than expected. Although most commodity WiFi devices have a range of up to 100m, this

is with omnidirectional antenna and includes the need to transmit. With increased sig-

nal strength and directional antenna, WiFi networks using have been operated effect-

ively point-to-point over hundreds of kilometres (Flickenger et al., 2008). While most

WiFi hardware is of course incapable of this, the observer in our scenario only needs to

receive transmissions.
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Table 8.1: User Information Inferable from use of Mobile Apps
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8.3 Mobile App Selection

We selected 34 apps that we would attempt to detect remotely despite WiFi encryption

being employed. At the time of writing, the apps chosen could be found among the ‘top’

free app listings in their Play Store category. This is not Android-specific and most of

these apps will have equivalents on alternative platforms. If we assume that users are

representative of an app’s majority demographic, Table 8.1 shows how the ability to de-

tect the use of these apps allows personal information about their users to be inferred.

Inferences may change depending on context so we assume these apps were identified

in a public location such as a shopping centre in London, UK.

To assess the importance of the information being leaked, we loosely borrow from

the categorisations in EU Data Protection legislation. Information classified as ‘Per-

sonal’ is that which could be used to identify an individual. While it is not possible

to infer the canonical examples of this category (name and address), other personal

information including gender, age range and nationality can easily be inferred for the

typical app user. Information categorised as ‘Sensitive’ is personal information where

the importance of additional confidentiality is recognised. If disclosed such informa-

tion could be embarrassing, harmful to the well-being of the individual, or used as a

basis for prejudice. Less personal, but still intrusive is where use of an app implies a

‘Specific marketable interest or hobby’. While this may not be particularly important,

it could easily be used to help sell products, target advertising, or otherwise uncover

an individual’s personal interests. Finally, some apps may require certain capabilities

from a device in order to work (for example, geolocation or a HD screen).

It is important to recognise that these inferences are only generalisations based on

an app’s typical user demographic. They will likely hold in a majority of cases, but not

all. The accuracy of these inferences can vary. The nationality of a given news source

may correlate with its readers when generalised over all users. However, for a specific

user this is not necessarily the case. An American may just like to read (UK-based) BBC

News as a personal preference. Similarly, while the majority of AutoTrader users may

be male, there are still plenty of female car enthusiasts and while most people using

dating apps are single, some will be married. Conversely, the MySugr app is essentially
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useless to anyone who is not diabetic so it is highly likely that health information can

be inferred about the user correctly. Furthermore, the precision of these inferences can

also vary depending on the narrowness of an app’s appeal. While it is impossible to

infer the exact date of birth for a given user, an age range can be inferred depending on

the app. For example, apps may target specific age ranges (e.g. college students), and

many apps provide information that is only of use to adults (e.g. real estate) and there

are many apps designed for children (although we do not include any).

Popular apps like GMail and Twitter are so widespread that their use signifies little

about the user. News apps on the other hand can signify nationality based on their ori-

gin (BBC News is British, and New York Times from the US) or language (Le Monde is

French and written in French), and the likely political leanings of the reader (The UK

newspapers Daily Mail and Guardian are considered right- and left-wing respectively).

BuzzFeed is social-media based and attracts a certain younger demographic. Retail

apps can inform a great deal depending on their market specialisation. We chose sev-

eral from which a user’s likely income (Aldi and Marks & Spencer are UK supermarkets

at low and premium end of the market respectively) or gender can be inferred (The

audience of AutoTrader, a car sales app, and Game, a computer games retailer, will be

predominantly male. H&M’s app focuses on women’s clothing). Religious apps imply

the likely religion of a user that can be linked to common racial or ethnic trends.

Lifestyle apps cover a wide range of personal interests. Dating apps inform on the

probable marital status of the user and age range (‘young and single’ in the case of

Tinder or Grindr). Grindr further specialises to target gay men, and Divorced Dating

provides a dating service to a even more specific marital status. YPlan is an events

recommendation service limited to 5 major US and UK cities at the time of writing.

It implies a likely nationality, or more accurately a likely area of residence. Urban-

spoon provides information on nearby restaurants, Runkeeper is a map-based fitness

tracker and Sky Sports provides sports news. The Lottery app is used to check num-

bers from the UK’s (age-restricted) national lottery, and implies a positive disposition

to gambling. Real Estate apps provide information on the income of a user (i.e. wealthy

and old enough to wish to buy a house) with Sotheby’s focussing on the very wealthy

especially.

138



Inferring Personal Information CHAPTER 8

Health apps can relay private health information with MySugr for diabetics and

Anxiety United’s app for those who suffer from anxiety. Period Tracker (a menstruation

diary) and I’m Expecting (a pregnancy app) not only denote health information but also

specific gender and age ranges. Like Twitter and GMail, as a common activity Entertain-

ment and Travel apps belay little information with the possible exception that travellers

are likely to be (or accompanied by) adults. However, they do imply the marketable in-

formation that the user has free time at a location and device capabilities such as HD

screen and fast internet connection.

8.4 Measuring App Activity

Here we demonstrate the ability to build a classifier that identifies app usage from the

perspective of Figure 8.1’s external observer. However, the classifier itself need not be

built from data collected from this vantage point. Previous classification efforts attemp-

ted to sample network data directly from this position (Atkinson et al., 2014b; Zhang

et al., 2011; Saponas et al., 2007). Although identical to the scenario that the classifier

would operate, this makes recording accurately labelled samples difficult to coordinate

because the collection platform and device creating the network traffic have no direct

communication method. Synchronising the capture process with the desired activity

depends on the accuracy of careful timing or artificially-inserted indicator frames.

To avoid the complications of synchronising an external capture mechanism with

on-device app activity in previous data collection efforts, a method was developed to

capture network traffic locally (on the device) then transform the information to how

it would appear from an external perspective as the observer would see it. The ‘WiFin-

spect’ (Hadjittofis, 2014) app was used for this purpose. As an Android-specific inter-

face for the commonly known TCPDump (TCPDump Team, 2012), it saves network data

to standard PCap (packet capture) format for later processing. The same local sender

and receiver MAC addresses, frame size and timing data that would also be available

from an external perspective is extracted using TShark from the well-known Wireshark

packet analysis suite (Wireshark Foundation, 2012). The remainder of the data can be

discarded.
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The network activity observed will differ slightly from the activity that would be re-

corded naturally. For example, information on Data-Link layer frame retransmissions

will be lost and timing data will vary due to processing delays. However, we found that

this data more than sufficient for our purposes and greatly simplified the data collec-

tion process so that clean data could be easily gathered in large quantities. We used

Android devices during practical experimentation due to greater tool familiarity, how-

ever it is equally possible to collect data in similar ways on other mobile platforms (i.e.

iOS or Windows Phone) provided sufficient privileges required to run packet capture

software could be obtained. This usually requires device rooting.

We recorded the network activity when launching each app. This will load some

sort of main page or welcome menu. Depending on the app, this might trigger net-

work activity for a login or authentication process, fetch initial content (e.g. latest news

or location-sensitive content), display ads, or report usage statistics to the developer.

Internally, the recorded network activity is predominantly HTTP or HTTPS (e.g. for au-

thentication) with DNS alongside to resolve hostnames to usable IP addresses. These

specifics are not used by our analysis as they would be hidden from an external ob-

server by encryption. However, they are useful to understand the typical activities of

an app at startup. In the apps surveyed we found that even those with entirely static

local content (like Al-Quran, and Shazam’s home screen) used network communica-

tion at startup when connectivity was available.

Recorded over several weeks with automatic software updates disabled, our mobile

devices were controlled via USB connection in conjunction with automation software

(MIT CSAIL, 2012). We therefore simulated a user’s actions to begin packet capture,

open an app, wait until loading is complete, then halt the packet capture process. This

process can then be replayed to generate samples of app network activity without direct

human interaction. This on-device data is sufficiently close to the off-device equivalent

and TShark’s was configured so that external frame payloads are consistently reported

as 16Bytes larger than their on-device equivalent. By simply adding an offset to the

‘data length’, these measurements provide representative characterisation of app activ-

ity from an external observer’s perspective. These measurements can then be analysed

to differentiate mobile app network activity.
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In an attempt to build a classifier that wouldn’t overfit to the characteristics of a par-

ticular network, samples were collected from three different types of network. The first

was a home network employing a standard ISP-supplied router to provide internet ac-

cess over ADSL. Other devices on the network included several mobile phones, laptops

and media streaming devices. The second network was the University enterprise-grade

network. This utilised multiple Cisco APs and would operate with over ten connected

devices (predominantly phones and laptops) at any time. The third was a WiFi network

supplied from a 4G ‘MiFi’ dongle providing internet access via a LTE cellular network.

Aside from the tablet whose traffic was being recorded, this network had no other con-

nected devices. All networks used WPA2 (with PSK authentication for home and 4G

networks, and PEAP-MSCHAPv2 for the enterprise network). Our devices connected at

802.11g speeds, although all APs also provided b and n data rates.

In total, 7480 app samples were recorded. The 220 recordings per app consisted

of 120 recordings from the home network, plus an additional 50 each from both 4G

network and enterprise networks. Additionally, 1766 samples of other activities were

used. These recordings came from previous work and were composed of a wide variety

of activities including Skype, BitTorrent, web browsing and idle time, but importantly

no mobile apps. This allowed for the production of a classifier able to predict “activity

other than that of a known app” (denoted ‘OTHER’), and not just be forced to classify

activity as one of the 34 apps. Without this ability, false positives on any real imple-

mentation would be entirely unavoidable. The generalisation error of this OTHER class

label would also provide a lower limit for false positive detection rates.

8.5 Metric Distributions & Forest Construction

Once again, we develop a classifier to infer personal information without attempting

to break WiFi encryption directly. This results in a highly data-limited scenario. Al-

most identically to the previous study on Skype, these measurements can be represen-

ted as value distributions (histograms) and these distributions can be used to charac-

terise different network activities. For each of the 220 samples of each app, the distri-

butions listed in Table 8.3 were created. These distributions come in 3 broad categor-
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ies: Frame Size, Interarrival Time, and Cumulative Interarrival Time. Information from

these Frame Size and Timing measurements can then be further refined by separating

this data based on the direction of the observed frames.

This information only differs from that used in the previous chapter in the number

of FSize variables used. More of these are useful because we are attempting to identify

and distinguish 34 activities instead of just Skype. For efficiency, frame sizes that occur

in fewer than two of the app traffic samples are removed and not provided to the Ran-

dom Forest construction process. This is a very low threshold but nevertheless results

in the removal of 1517 redundant variables so that only approximately half of the 3200

FSize variables are provided to the Random Forest. In contrast, only 217 FSize variables

were used to identify Skype. This reduces the time required to build the Random Forest

(otherwise the algorithm would have to learn the unimportance these variables itself).

The size of this reduction is entirely data dependent. For other data sets (e.g. different

fingerprinting scenarios, or additional apps) the ability to perform this reduction may

be much harder or easier.

The combined output of these distributions is an array of 2483 integer variables

after processing. These distributions can be generated from labelled recordings of net-

work activity and used to construct the Random Forest classifier. Alternatively, they

can be generated from observed network traffic (recorded or live) and provided to the

Random Forest to predict the app activity within. Differences in these distributions per

app can be used to differentiate between the app in use for a given sample. To demon-

strate this, Figure 8.2 shows the most important variables within each distribution type

(Frame Size, Interarrival, or Cumulative Interarrival) and plots their respective values

for every recording of 6 different apps. The ability to rank variables by importance is a

useful feature of the Random Forest algorithm.

For example, the number of sent frames of size exactly 66 bytes can be used to separ-

ate the BBC and Spotify app activity from the others shown in most circumstances. The

Random Forest would use a decision equivalent to F Size 66 > 0. The number of 0-3ms

interarrival measurements between received frames and the previous sent frame could

then further split the majority of BBC activity from Spotify activity with a decision like

1 A FSize subset is selected prior to forest construction. See Section 8.5.
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Table 8.3: Distributions Created For Each 15s Window

Distribution No. Variables Description
FSize 3200→ 1683 (1) Frame Size (1600B per direction)
I-RR 50 Rcvd-to-Rcvd interarrival timing
I-RRCum 50 Cumulative transformation of I-RR
I-SR 50 Sent-to-Rcvd interarrival timings
I-SRCum 50 Cumulative transformation of I-SR
I-RS 50 Rcvd-to-Sent interarrival timings
I-RSCum 50 Cumulative transformation of I-RS
I-SS 50 Sent-to-Sent interarrival timings
I-SSCum 50 Cumulative transformation of I-SS
Total 4000→ 2483 (1)

I SR1 > 70. Similarly, the cumulative number of interarrival measurements between

sent frames less than 150ms, I SSCum 50 > 250, can separate the majority of Tinder

samples from Bible samples where the other variables cannot so easily.

Conversely the patterns shown by The Guardian, RunKeeper and Tinder are much

harder to separate using only these variables. Decision trees to classify these apps can

be much more complex and this is why the Random Forest algorithm is used. Of course,

the Random Forest has the entire set of variables to work with but must classify and

separate the characteristics of 34 apps plus other traffic, not just the 5 chosen as illus-

trations.

8.6 Classifier Results

Table 8.2 shows the generalisation error for each app and OTHER traffic over the col-

lected dataset. As mentioned earlier, it is important to note that Random Forests do

not manually define Test and Training sets. Therefore, OOB error is equivalent to the

generalisation error reported on the Test set in other machine learning methods and as

accuracy was reported in previous chapters.

Using this method we found that 14 of the apps were identifiable with 100% accur-

acy. The remainder all had less than 9% error on this sample data with an average app

identification rate of ∼98.5%. The hardest app to identify was GMail with 7.3% error.

GMail was also the app with smallest mean sample filesize. Plotting this data across

all sampled apps shows a general trend of lower error rates as average sample file size
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increases. This is perhaps unsurprising; with more bytes of network data to represent

an app’s startup activity, the more characteristics can be discovered and compared to

distinguish that activity from others.

While correct app identification rates are very high, the usefulness of the classifier

is limited unless it can be combined with a low false positive rate. The generalisation

error for our OTHER traffic was 8.8%. In real world scenarios the maximum accuracy

possible is therefore greater than 90%. This is encouragingly high and leaves room for

error in real-world scenarios that will inevitably present more noise and varied activity

than our sample data.

We have shown that the use of specific apps can be accurately ‘fingerprinted’ and

identified even when encryption is being used. As illustrated earlier in Table 8.1, we can

therefore also infer personal information about the users of these apps when they are

detected

8.7 Personas & Real-Time Activity Detection

Having created an accurate classifier, this section presents a study into how well the

classifier works in real-time on more varied and noisy real world WiFi communications.

A live analysis was then performed in which we attempted to identify the apps corres-

ponding to 7 different personas. Personas are a common user-experience testing and

marketing technique that allow the creation of a realistic (but fictional) representation

of a human individual. As with real individuals, the personas have their own interests

and potentially sensitive characteristics. These characteristics are expressed in their

use of mobile apps as detailed in Table 8.4. The detection of these apps by a passive

observer (and therefore personal information inference) is demonstrated in real-time

and despite WiFi encryption. The Random Forest classifier created in R was ported,

compiled in C++, and directly coupled to TShark to increase performance. The live de-

tection application is fast enough that it can analyse the activity of multiple devices in

real-time simultaneously. However, with a single WiFi adapter this is limited to devices

operating on the same channel. Figure 8.3 shows scanning and selection of the network

and channel. Any or all devices operating on that channel can be selected for observa-
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Figure 8.3: Live Detector: Device & AP Scanning

tion.

As was the case when collecting training data, the activities of personas could be

automated for easier repetition. During testing personas would take a total of 10 ac-

tions, actions included opening the apps belonging to that persona exactly once. In

addition to the apps from our ‘closed-world’, the remaining ‘Extra’ actions would other

activities that used the WiFi connection. ‘Extra’ activities would be to visit one of a se-

lection of websites at random using the mobile chrome browser or use another app not

included in this study and provide an ‘open-world’ scenario. Personas would perform

all ten actions in a random (but reported) order.

Every second, the live detection program would take all network activity observed

in the previous 15 seconds and attempt to predict the app activity within the traffic for

each monitored device. From our original activity observations, 15 seconds was the up-

per limit of the time required to automatically start recording, open an app, then stop

recording. Without the overhead of starting and stopping recording and no automa-
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Figure 8.4: Live Detector: App Detection on Targetted Devices

tion software delay, a real user would be able to complete these actions much faster.

Given that detection process was performed every second, it was determined that the

typical app startup activity would usually register 8 seconds of positive detection. As a

conservative estimate we therefore used a 5 second minimum threshold for a positive

identification of an app. This helps eliminate spurious momentary app identifications.

These are common in the few seconds before an accurate true-positive identification.

At these points the Forest is recognising that something besides OTHER traffic is present.

However, with only part of the information because opening the app is still in progress,

the consensus as to which app is present is incorrect. As we know that opening an app

will cause detectable network activity over a period of many seconds, these spurious

identifications of 4 seconds or less can be discarded.

Figure 8.4 shows an example of the detection screen. This shows the raw detector

output taken from samples taken once per second: once per second data from the pre-

vious 15 seconds is analysed (the time window described in Section 6.3). For evaluation
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purposes, a positive app identification is equivalent to 5 or more consecutive samples

identifying the same app.

The 10 actions of each persona were repeated 20 times. With 3–6 apps each these

provided a total of 540 time periods where mobile apps were launched. The remainder

of the observed activities were 860 additional activities (‘Extra’) that used the network.

Following each activity was a period of idle time before the next activity began. This

corresponded to an additional 1400 ‘idle’ time periods with no network activity other

than that caused by background processes. ‘Apps’ and ‘Idle’ activities were all contained

within the training data and therefore constitute a closed-world scenario. The addition

of ‘Extra’ activity provides an open-world test.

We consider these time periods as single units to provide an empirical measure of

performance as shown in Table 8.5. The detector’s output for each time period was

recorded. A true positive (TP) denotes a period of app activity where the app was cor-

rectly identified. Identification of any app in ‘idle’ or ‘extra’ time periods would be a

false positive (FP), otherwise this would be a true negative (TN) with no app detected

(for longer than the detection threshold). False negatives (FN) correspond to a period

of app activity occurring but not being detected. Measurement in this way groups all

app classes together. Although more concise, this does not show the case where app

activity is detected but the wrong app is identified. In Table 8.5 these are also counted

as false negatives and discussed further below. Similarly, it is important to note that

true positives not only denote correct detection of an app, but also which one.

In a closed-world scenario where the classifier was only required to detect activities

it had previously encountered, detection succeeded in spite of data limitations. If the

activity of a targeted app was present then it was correctly identified in 86.3% of cases

despite encryption (high recall). Of the 74 false negatives 30 (41%) were app activity

identified as the wrong app (with the remainder being identified as OTHER). A false

positive rate of 16.4% results in an overall closed-world accuracy of 84.4%. This entails

a gross lack of privacy for our personas. For example, traffic patterns from Dr. Black’s

device would imply that he is most likely relatively wealthy, gay, male, and an anxiety

sufferer provided he opened the M&S, Grindr and Anxiety Utd apps whilst under ob-

servation. Although there are occasional false positives, multiple observations of the
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same activity on the device would increase the certainty over time.

When considering the open-world scenario where ‘Extra’ activity (previously un-

seen by the classifier) was also included, a substantial increase in false positives was

observed. For ‘Apps’ and ‘Extra’ activity alone (i.e. excluding FPs from ‘Idle’ activity)

‘Extra’ activities produced a greatly increased false positive rate of 72%. Overall accur-

acy for all activity drops to 67.1% in the open-world case and only 50.5% when con-

sidering only ‘App’ and ‘Extra’ activity. Precision similarly suffers due to this increased

false positive rate at 35.5% and 42.9% respectively. In this open-world scenario Miss

Scarlett’s device would again identify her as a potential single female who enjoys music

via use of the Tinder, H&M, Spotify and Shazam apps. However, the increased number

of false positives for all apps gives the inference less credibility. A far greater number of

observations of the Tinder, H&M, Spotify and Shazam apps would need to be made to

provide the same level of confidence in the personal information inferences compared

to the closed-world.

The small number of false negatives means that a negative detection remains a

strong prediction that an app was not used in either scenario. Unfortunately, this is

not very useful information in context. For example, although Prof. Plum’s use of the

Al-Quran app strongly implies an interest in the religion of Islam, the converse is not

true. Prof. Plum may still be Muslim and not use the app. However, low false negatives

may be useful in other situations such as the forensic scenario discussed in the next

section.

8.8 Optimisation Analysis & Validation

As with the previous study, an analysis of how simplifying the classifier effects accuracy

was performed. Unlike the previous study these optimisations were not part of a feas-

ibility analysis because we already have a classifier capable of operating in real-time.

However, optimisation analysis is still useful to discuss whether the problem can be

made harder and still allow for live detection. The ability to simplify the detection pro-

cess and the ability to compromise accuracy for performance provides assurance that

this scenario does not represent the limitations of this detection process. Even though
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the process already operates in real-time, the ability to optimise further leaves room

the cost of additional identification targets (i.e. more apps), increased traffic through-

put (i.e. busier networks, more devices monitored), or easier use on lower cost hard-

ware. Although only a selection of apps are shown for clarity, Figure 8.5 demonstrates

how the number of variables used by the classifier could be decreased if required. Of

course, these could be removed in order of importance as shown in Figure 8.6. Since

they are ranked highly, this figure also validates the decision to use retain additional

FSize variables for this mobile app classifier compared to the Skype classifier in the

previous chapter.

Determining the importance of variables also allows for some interesting visual

analysis that aids in the understanding the Random Forest classification process. Fig-

ure 8.7 compares the prototypes for two religious apps on the top 100 most important

variables. This provides a clear visualisation of how a seemingly private detail can be-

come obvious to an observer as information is leaked in spite of WiFi encryption.

8.9 Discussion

The greatest impediment to a low false positive rate was the ‘Extra’ activities in the

open-world scenario. While the data from our OTHER dataset contained a variety of

common web traffic and allowed the Random Forest to usually discount idle (and near-

idle) traffic and some of the added activities correctly, it proved an insufficient baseline
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to accurately discount the universe of all traffic outside our targeted apps’ activities. Fu-

ture work could look to utilise a larger and more representative dataset of other traffic.

It may also be sensible to consider a two-tier classification process whereby interesting

activity (i.e. apps) is first separated from all other activity using a simpler boolean clas-

sifier before any samples classified as ‘interesting’ are passed onto a second classifier

specialising in identifying the correct app. This would partition the problem into two

separate questions that could be tackled separately.

Detection in terms of positively identifying the targeted apps was largely successful.

If an app’s network activity was truly present in live traffic, then the app would be iden-

tified with high recall (true positive rate) and any personal information associated with

that app was demonstrably leaked to the surrounding area. This means that identifiable

patterns that betray personal information are broadcast from mobile devices whenever

an app is used despite the use of encryption. Sensitive information including age, re-

ligion, sexuality and gender is there to be collected for anyone listening. However, in

an open-world scenario any positive result from the detector becomes less meaning-

ful. As indicated by the low precision score, without improvements to decrease the false

positive rate any positive result has low predictive value.
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Figure 8.7: Comparative Religion: Prototypes of Top 100 Most Important Variables

8.10 Study Conclusions

This study demonstrated that private information including sensitive data such as age,

religion, sexuality and gender can be inadvertently broadcast by mobile device apps.

This was achieved despite WiFi encryption being used exactly as intended. The de-

tection mechanism was able to overcome the data restrictions inherent to this diffi-

cult scenario. We developed a remote, undetectable, detection mechanism to infer

private user information through observation of encrypted app network activity. This
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was demonstrated to work in real time, and with appropriate hardware should gener-

alise to other encrypted communication methods.

Despite high false positive rates, these results are still useful in a variety of applica-

tions and have serious implications as will be discussed in the next chapter. With longer

range wireless communications becoming more prevalent, and commercial enterprise

becoming more interested in tracking and analysing publicly broadcast wireless data,

this chapter highlights a clear and demonstrable threat to users’ privacy.
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9 Threat Feasibility,
Mitigation & Applications

This chapter presents an analysis and discussion of how the detection methods de-

veloped during the course of this research might generalise over various interesting

changes to the scenario. Avenues for improvement and the limitations of this approach

are identified. We discuss strategies to prevent these leaks, and an analysis the effort re-

quired for an observer to present a practical privacy threat to the everyday WiFi user is

presented before concluding this thesis.

9.1 Generalisation

Side-channel data leaks, although incredibly limited, have nevertheless been shown

to allow user activity inference despite encryption working exactly as designed. This

side-channel data should be available and exploitable on all efficient networking im-

plementations except those specifically designed to resist fingerprinting. It is reason-

able to believe that similar methods would be effective on the majority of modern wire-

less communications, and not just the protocols found in our demonstration. The ap-

proach shown challenges the assumption that secure cryptography means secure in-

formation. Confidential network content does not necessarily imply confidential net-

work activity.

9.1.1 Networks

The features that allow activities to be identified occur because efficiency is a design

priority for most networks. By minimising transmission time and maximising through-

put, networks will always leak side-channel timing and frame/packet size information.

Because transmissions will be tailored to the data contained within, this side-channel

will occur regardless of encryption. Side-channel leaks are hard to ‘plug’ because they

are a natural result of a design decision, rather than a direct flaw. As will be discussed
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shortly, it is impossible to defend against this kind of attack unless data was always sent

and received at a constant rate or randomness is added to deliberately obstruct feature

identification as is the case with networks like Tor (Perry, 2011).

The data used in these studies was only sourced at a single data rate (WiFi 802.11g

as opposed to 802.11a, b or n). Changing the maximum rate at which frames could be

sent would not affect frame sizes, but would undoubtedly affect interarrival timings.

While the classifier is unlikely to operate well on different speed WiFi networks as cur-

rently calibrated, we did demonstrate that data for 3 different types of network allowed

for generalisation of detection over all three. Given that classification operated over a

variety of network types (particularly the 4G dongle), we can have confidence that the

techniques presented in this thesis would be just as effective if training data from net-

works with different data rates was sourced.

Although the precise detail (i.e. exact timings, amount of data transmitted) of the

features identified in these studies will be specific to the particular networking scen-

ario, the concepts used and characteristics observed should hold in the general case.

Assuming that frame size and interarrival metrics are common to both, we can also

have confidence that the same detection methods could be adapted from WiFi to 4G

LTE. This has been partially verified by ensuring that features similar to those identified

while using the ‘MiFi’ network could also be detected on standard WiFi networks with

a physical connection to the internet. This widens the privacy risk to another widely

used and longer range mobile protocol, but would require more complex hardware for

traffic observation (unlike WiFi, the upload and download protocols are asymmetric as

noted in the work of Stöber et al. (2013)). Similarly, although we can monitor any num-

ber of devices, our observations were limited to only observing a single WiFi channel

(frequency) at a given time. This is a hardware limitation, but could be overcome by

using multiple WiFi adapters in parallel.

9.1.2 Targeted Activities

We showed that the computational complexity for these classifiers was low enough for

them to potentially be used in parallel. Future work could investigate classifying a wide

variety of activity types from an external vantage point, but with much more specific
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targets. For example, web fingerprinting achieved in a similar way to our mobile app

detector described in Chapter 8 could be detected alongside BitTorrent, Skype, stream-

ing or any other activity. An obvious extension for Skype specifically would be the ability

to detect and distinguish video communications as well as voice.

Despite its targeted nature, an advantage of this approach is that the classifier auto-

matically generates a ‘fingerprint’ from the overall activity of a process, rather than

focusing on pre-defined constants (e.g. port numbers). The classifier should there-

fore generalise well, provided changes to the target activity are not too drastic. Minor

changes to an activity or protocol (e.g. additional packets sent to a client, or different

port numbers) may not affect the accuracy of the classifier at all. These less fragile clas-

sification metrics can be useful in some situations. For example, the work of Jesudasan

et al. (2010) shows how research sought to find commonality between protocols to re-

tain detection as Skype’s protocol changed between versions.

However, our classifiers only generalise as well as our datasets and despite our sim-

plified collection process, data collection is time-consuming. It may be possible to con-

vert public data from repositories such as CRAWDAD (Dartmouth College, 2012) for

our purposes. This would provide traffic data from contrasting perspective from inside

the network. However, due to the different point of collection, the conversion process

would require some assumptions to be made about the traffic observed. Technologies

such as NAT could complicate the process as multiple devices are assigned the same IP

address and cannot be identified uniquely. Furthermore, our approach relies on accur-

ately labelled data. Skype, app or other activity data within these large datasets would

need to be identified by a ‘normal’ classification system at the network level. This would

introduce its own biases and possible inaccuracies.

9.2 Feasibility of Developing a Practical Threat

Data collection is the main challenge to the development of an inference system like

this. The predictions can only ever be as good as the sample data provided to the clas-

sifier construction process. Aside from the previously discussed larger dataset of non-

interesting traffic to reduce open-world false positives, every app (or other interesting

157



CHAPTER 9 Threat Feasibility, Mitigation & Applications

activity) must have sufficient sample data for every permutation of the identification

problem. This will require additional data for every change to the scenario. As noted

earlier different data rates will affect interarrival timings. Although we demonstrated

that signatures could be automated and generalised by sampling a variety of networks

with different capabilities, these samples still need to be collected. Therefore, targeting

different WiFi data rates or cellular data protocols like LTE will require additional data

collection for each network.

Alterations to programming and behaviour are a potential problem for the longev-

ity of an effective activity detector (be it Skype, mobile app, or anything else). For ex-

ample, typically on-device apps are automatically update when a developer publishes

to the mobile app store or marketplace. While we demonstrated that changes in con-

tent (e.g. changes to the stories in News apps, or different active users on dating apps)

could be overcome by exploiting other similarities, automatic updates to mobile apps

and laptop programs were disabled for the purpose of these studies. The impact of an

update will be dependent on its effect (or lack thereof) on an app’s network commu-

nications. Random Forests will not be able to accurately classify something that wasn’t

provided as part of the training process: this approach remains ‘signature-based’ with

all the problems that entails.

For example, while stories featured on the BBC News app change routinely the abil-

ity to detect the app was retained. However, following the experimentation the Al-

Quran app was allowed to update. This update changed the ad library in use and caused

such major changes to the app’s network activity that it was no longer accurately iden-

tifiable. Ruiz et al. (Ruiz et al., 2014) estimate that “51–60% of free Android apps have

at least one ad or analytics library”, and that updates to the frameworks the sampled

occurred every 1–3 months. Future work could investigate the variance in signature

longevity in different apps as well as to what degree shared libraries complicate the

process. Despite this, the collection of data to create these signatures can be largely

automated and parallelised. User activity simulation and the ability to convert on-

device recordings is far more practicable than collecting data from an external vant-

age point. However, data collection must occur in real-time and is therefore the most

time-consuming part of the classifier construction process.
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Just as Skype only represents a single VoIP implementation, the 34 popular apps

used in Chapter 8 only represent a small fraction of entire mobile app market. While

free-to-download apps like the ones used in this study form approximately 90% the mo-

bile app market (Ruiz et al., 2014), there are many paid apps. For these apps, serving

ads or selling information about their users is not their primary business strategy. They

may therefore be less reliant on internet communication. As was seen with GMail’s

small network activity being more difficult to reliably fingerprint, less or no network

activity may make paid apps harder to identify. A further complication, across the app

market as a whole there will be many common libraries and shared code. If this com-

mon programming causes network communication — as would be the case with lib-

rary functionality such as serving ads, developer feedback, and mapping services — the

resultant activity will be difficult to differentiate. Using related activities as contextual

clues may help mitigate the problem of different app actions producing similar signa-

tures. For example, in the Tinder dating app composing a message must be preceded

by first opening the app and then viewing a profile. Tools such as NetworkProfiler (Dai

et al., 2013) could allow for all user actions (and therefore all network activity) paths to

be mapped through the app programmatically. However, the ability to identify greater

number of activities is once again ultimately limited by the ability to sample the net-

work traffic those activities generate.

Finally, the mobile apps identification study only considered scenarios where one

activity was present at a time. This was seen an appropriate assumption given the

modal nature of mobile apps and is a common assumption in related fingerprinting

studies (Wang et al., 2014). Although previous work on Skype has shown it is possible,

simultaneous activities present a much harder problem. Simultaneous downloads and

other background processes will always affect network activity, altering the observed

characteristics and adversely affect detection accuracy.

9.3 Real-World Applications

The analysis demonstrated in this thesis undoubtedly reveals a privacy vulnerability

in widely deployed WiFi technology that is largely ignored. Although the Centre for
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Protection of National Infrastructure (UK) (2007) notes that “transmission of packets

over the air are susceptible to interception and Man-in-the-Middle (MitM) attacks”, it

is assumed that encryption provides data confidentiality when unbroken and used cor-

rectly. The security concerns highlighted in the report are concerned with unauthor-

ised access, detecting security breaches and preventing intruders. Wireless Intrusion

Prevention Systems are the recommended countermeasure to active intruders (Zhang

et al., 2010). In contrast, the analysis described in this report is entirely passive and

therefore completely undetectable. However, whether this is actually represents a pri-

vacy threat depends on the context. Whereas the average home user is unlikely to be

concerned if a passer-by can – with a lot of effort – determine if they are using a par-

ticular internet service, mobile, users may be leaking more personal information over a

wide area than is realised. Government and business users may be inadvertently broad-

casting details about their supposedly secure activities.

9.3.1 Law Enforcement & Digital Forensics

With encryption becoming more common by default, law enforcement may also have

uses for activity inference. This is especially true if analysis can be performed in real-

time as it can indicate when a system is active. When active, volatile data is accessible

and encrypted data unlocked.

Conversely, this approach may be a useful supplement to the forensic analysis of

encrypted network traffic in bulk after-the-fact. Forensic analysis of encrypted data

is becoming an increasingly problematic and time-consuming issue (Garfinkel, 2007).

Decryption can be highly computationally expensive and the quantity of data requiring

analysis has grown hugely in recent years to the point where data mining techniques

are being employed (Pollit and Whitledge, 2006). The ability to detect specific activ-

ity without breaking encryption can help focus an investigation on certain devices and

time periods without needing to break all encryption beforehand. Even with false pos-

itives, this may be a more attractive and tractable prospect than attempting to break the

encryption of vast quantities of streamed data in bulk before it can be analysed and can

allow for insight into when operations should be performed to maximise the collection

of volatile data as evidence.
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9.3.2 Network Security

This research may also have applications in the context of ‘cloud computing’; a term de-

scribing centrally hosted internet services that are becoming increasingly popular with

organisations (Jamil and Zaki, 2011). This results in the transmission of data over pub-

lic networks that would previously have remained local. Although presumably this data

would be encrypted, this project has shown that it is feasible to extract information re-

gardless. Furthermore, cloud computing is not limited to just hosting data. Entire ser-

vices that replace traditional desktop applications can be provided over the internet.

This means that not only data, but every user interaction will be directly transmitted.

These activities could be analysed and detected in the same way as WiFi activity. Users

and organisations may wish to be aware of this potential privacy risk and seek to at-

tempt to disguise particular private activities. In addition, given the centralised sharing

of computing and network resources between huge numbers of users in cloud services,

similar techniques may be able to detect malicious behaviour without requiring direct,

unencrypted access to the confidential network traffic of all users.

9.3.3 Device Tracking and Local Demographic Information

Outside of law enforcement organisations that may be able to justify exemption from

privacy legislation, the legality of these methods is questionable. The legal standing

of partially anonymised information inference is untested and unclear. Furthermore,

it will vary with jurisdiction. While users often accept some information being shared,

for example to allow for targeted ads in internet services, it is difficult to justify anything

other than an explicit opt-in choice by the user. However, as noted in Section 8.2, mo-

bile devices are already used to track customer habits. Provided opne-world false pos-

itive rates can be reduced, it would be possible to infer deeper personal demographic

information from nearby WiFi users using low-cost hardware, although it would be a

significant undertaking to keep signatures up-to-date.

Although device tracking is already possible because WiFi hardware uses static iden-

tifiers (MAC addresses), this could undermine attempts at anonymisation using dispos-

able identifiers (Gruteser and Grunwald, 2005). Although largely ignored until now, an-
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onymisation efforts may become more attractive given the recent commercial interest

in WiFi tracking such as London’s controversial shopper “tracking bins” (Vincent, 2013).

Although complex, signature-based analysis similar to the methods developed within

this thesis could identify unique users by their activities similar to how online advert-

isers fingerprint the web browser (Eckersley, 2010).

9.4 Awareness & Mitigation

Perhaps most importantly, this research may lead to increased awareness of how the

privacy guarantees of WiFi encryption are perhaps weaker than expected. Awareness

can allow security conscious individuals, developers and organisations to re-evaluate

their use of WiFi technology if appropriate. Although not a ideal, the simplest solution

to prevent the inference of personal demographic information would be to not use apps

with an association to sensitive information in public areas where they are likely to be

monitored. We hope this work will spur interest and the development of countermeas-

ures appropriate for mobile devices, such as Tor’s Orbot (Tor Project, 2015). Awareness

of this security weakness can allow users and organisations to recognise where infer-

ence techniques such as this may be a security or privacy risk and change their usage if

appropriate.

Although we have demonstrated the ability to infer private user information despite

standard WiFi encryption, existing techniques to thwart web fingerprinting methods

will still work to prevent the detection shown in this thesis. Specially designed VPNs

(Schulz et al., 2014) and anonymity networks such as Tor (Perry, 2011) pad frame sizes,

adjust timings, and intermix network traffic. However, these methods do incur signi-

ficant performance penalties. A network with optimal throughput will attempt to send

data as fast as possible only when required (causing predictable timings), and only as

much data as is needed (causing predictable frame sizes). Shifting priority away from

maximum throughput introduces significant overhead by necessity, and is especially

problematic for mobile devices where performance is at a premium due to battery life

limitations. While these solutions exist, they are unlikely to see widespread deployment

on consumer devices in the short or medium term.
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It is useful to consider whether all side-channels are equally important. This is not

only interesting from a research perspective to aid future detection work, but poten-

tially helpful to drive mitigation attempts. As can be seen by comparing Figures 7.8

and 8.6, this research found that both the importance of individual variables and the fa-

vouring of variables from particular distributions was dependent on the type of activity

being ‘fingerprinted’. As such, we cannot say that any particular side-channel is more

important in the general case. However, it may be more useful to focus on different

side-channels for specific purposes. For example, increase timing information obfus-

cation to hinder the detection of QoS-reliant Skype.

Although not addressing the problem of side-channel leaks direction, another po-

tential protective measure against leaking private information is to make it more dif-

ficult to eavesdrop upon. Although WiFi can operate on multiple frequencies (‘chan-

nels’), these channels are designed to be largely static. Although devices can change

between channels on the same network, this is only intended as a way to maximise sig-

nal strength. Alternatively, authenticated devices can be issued with a frequency hop-

ping schedule that is unknown outside of the network making the communications

harder to fully track. These techniques are common in military communications (Eph-

remides et al., 1987; Cook and Bonser, 1999) where the radio spectrum is strictly reg-

ulated. Although this unpredictable frequency hopping makes monitoring difficult, it

would also prevent co-located networks from negotiating a schedule to prevent trans-

mission collisions. The ubiquitousness of WiFi makes this solution impractical due to

the sheer number of networks that can be found deployed within the same area. Fur-

thermore, it can still be overcome by monitoring multiple channels in parallel. This

would be costly to an observer, but of course also require costly support in the devices

used by legitimate network users.
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10 Conclusion

Beginning with only a theory of how leaks from WiFi side-channels may allow the in-

ference of personal information, this work has progressed to not only analyse and ex-

plain a plausible threat, but also develop an efficient and real-time detection program

to demonstrate the privacy vulnerability.

10.1 Summary of Key Contributions

This research accomplished the following:

• Undeniably established the ability to infer personal sensitive information of real-

world users from their encrypted WiFi traffic.

The ability to infer personal information from the encrypted WiFi traffic of

real-world users has been established by coupling remotely detectable tar-

get activities and user personas. This validates our original research premise

that sensitive information can be leaked over WiFi despite encryption work-

ing exactly as designed.

• Practicably demonstrated activity detection and information leakage in a live,

real-world WiFi environment via the development of a real-time detection pro-

gram capable of identifying the use of widely-used mobile apps from a remote,

unprivileged vantage point using only live encrypted network activity.

Relying on a Random Forest classifier with impressive accuracy on the train-

ing data (∼99%), this demonstrated highly accurate detection in a real-time

closed-world environment (∼84%). In a live open-world scenario accuracy

suffered (∼67%) but we believe the high false positive rate responsible can

be improved with improved background WiFi traffic data.
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• Constructed a classifier capable of identifying Skype voice traffic from a remote,

unprivileged vantage point using only encrypted network activity samples.

This produced a classifier that showed that activity inference was not only

feasible, but also highly accurate (∼97%) on the training data. This proof-

of-concept provided the foundation for the mobile app detection study fo-

cusing on greater personal information inference.

• Assessed the applications of user activity inference techniques and the cost and

effort required to present a practical privacy threat to the everyday WiFi user.

Limitations are evaluated and strategies to thwart them are identified.

Specially designed tools will prevent user activity inference, but are rarely

used by everyday users. Inference is therefore possible from a technical

standpoint in the majority of cases. However, these techniques require large

sets of accurately labelled training data to function well. Although the data

collection process can be automated (as we demonstrated), this data is still

time consuming to collect and keep up-to-date. This expense is encour-

aging for the typical WiFi-using individual, as their user activity informa-

tion is unlikely to be worth the cost. However, these techniques may still

be useful in a variety of applications including law enforcement, prioritisa-

tion during forensic analysis, network security and demographic sampling.

Furthermore, awareness of this privacy vulnerability allows users to make

their own decisions about the activities they perform over supposedly se-

cure wireless communications.

• Precisely specified collection protocols, a sampling methodology and data rep-

resentation scheme that facilitates machine learning classification for this chal-

lenging scenario.

Information can be extracted from external observations of encrypted WiFi

traffic to identify specific user activities despite the highly data-limited (and

potentially noisy) scenario. Time windows and frame size and timing in-

formation measurements can be used to construct histogram representa-
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tions of user activity. With a fixed number of variables per time window,

these allow direct comparison between samples and are an appropriate in-

put for automated machine learning classification techniques.

• Specified designed for a hardware and software platform and user automation

techniques that allow encrypted WiFi data samples to be collected (or derived)

easily and cheaply.

Raspberry Pi hardware alongside free-to-use, open-source software allow

for the construction of a low-cost, portable data collection platform. The

adaptation of software to record, automate and repeat user activities makes

sampling the respective WiFi data a tractable process. In addition, the abil-

ity to convert ‘on-device’ measurements to their equivalent values when ob-

served externally greatly simplifies the collection process. Future research

in this area can use and adapt these specifications for similar benefit.

10.2 Future Avenues of Investigation

In addition to the wider research areas discussed in the previous chapter, the method-

ologies, software and hardware specifications documented in this thesis lay a solid and

well-documented foundation for future work with the same goals. Subsequent WiFi

privacy leak studies may wish to pursue the reduction of false positives in the detection

process. As summarised in Section 9.3, improved data sources for background traffic

and a two-tier process for classification may greatly improve false positive rates.

Our representation discussed in Section 6.3 takes care not to discard information

by using fine-scale distributions rather than coarse metrics. However, as a natural con-

sequence of a histogram-like representation, the information on frame order is lost. Al-

ternative representations and machine learning techniques that preserve this sequence

information may also be helpful to improve detection rates.

As noted throughout this thesis, the side-channels that allow the identified privacy

leaks are not specific to IEEE 802.11 WiFi. A notable extension to this work would be

to determine if the same detection processes can be implemented to monitor mobile

data networks (4G, 5G, . . . ). Given their wide broadcast range and the prevalence of
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mobile devices in modern society this scenario not only provides interesting proof of

generalisation, but demonstrates a more detrimental effect upon the privacy of every-

day technology users.

This is a nuanced and difficult to solve privacy vulnerability that will not be made

obsolete without considerable changes to current- and next-generation wireless com-

munication protocols. The full source-code for data collection, analysis in R, the live

C++ detector, and the code that generates the latter is made available with this thesis

to encourage and provide a foundation for research into these areas.

10.3 Final Remarks

The research within this thesis investigating Inferring Private User Information Despite

Encryption has contributed to the academic literature over the course of four publica-

tions (Atkinson et al., 2011, 2013, 2014a, b), with another currently under peer review.

It has been undeniably demonstrated that Your WiFi is, in fact, Leaking and this

work provides a strong foundation and powerful motivation for future research into

private information leakage from allegedly confidential encrypted wireless protocols.
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A Automation Scripts

This appendix lists some examples of Sikuli scripts used to automate user behaviour.
Sensitive information such as usernames and passwords for online services have been
removed or obscured.

A.1 Web Browsing – Google Search, Solar flare Images

click( )

type("firefox www.google.com")

type(Key.ENTER)

wait(20)

type("solar flair") # TYPO

type(Key.ENTER)

wait( ,10)

click(Pattern( ).targetOffset(72,1))

wait(10)

click( )

wait(10)

hover( )

wait(5)

169



APPENDIX A Automation Scripts

A.2 Web Browsing – Wikipedia, 2012 Summer Olympics

click( )

type("firefox www.wikipedia.org")

type(Key.ENTER)

readingTime = 5

wait( ,20)

type("London olympics 2012")

type(Key.ENTER)

wait( ,20)

wait(readingTime)

for i in range(5):

type(Key.DOWN) # Scroll down

click( )

wait(readingTime)

click( )

wait( ,20)

wait(readingTime)

click( )

wait(readingTime)

click( )

wait(readingTime)
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A.3 Email – GMail, Send Message

click( )

type("firefox www.gmail.com")

type(Key.ENTER)

wait(35)

type( )

wait(15)

type(Key.TAB)

type( )

type(Key.ENTER)

composeLogo =

wait(composeLogo,25)

click(composeLogo)

addressLogo=

wait(addressLogo,25)

click(addressLogo)

paste( )

subjectLogo =

wait(subjectLogo,15)

click(subjectLogo)

type("this is an email from Tom")

<< USERNAME >>

<< PASSWORD >>

<< RECIPIENT EMAIL >>

type(Key.TAB)

type("What's up Tom?")

type(Key.TAB)

wait(5)

type(Key.ENTER)

wait(5)

accountLogo =

wait(accountLogo,10)

click(accountLogo)

signOutLogo =

wait(signOutLogo,5)

click(signOutLogo)

wait(5)
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A.4 Streaming – Youtube Video, Maru the Cat

click( )

type("firefox www.youtube.com")

type(Key.ENTER)

youtubeLogo = Pattern( ).targetOffset(61,0)

wait(youtubeLogo,30)

click(youtubeLogo)

type("maru box slide")

type(Key.ENTER)

maruBox =

wait(maruBox, 15)

click(maruBox)

wait(10)
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A.5 VoIP – Skype, Make Call

These code invokes a script to call a given recipient and play specified voice recordings
with pauses. When combined with the script in the next appendix subsection to mimic
a conversation.

pythonPath = "C:\\Python27"

scriptPath = "C:\\Users\\John\\Desktop\\skype-

callMake.sikuli"

scriptDrive = "C:"

username =

password =

recipient =

click( )

type("skype")

type(Key.ENTER)

wait(Pattern( ).similar(0.10),35)

click(Pattern( ).similar(0.56),35)

type(username)

type(Key.TAB)

type(password)

click( )

wait( ,20)

click( )

type("cmd.exe")

wait( ,25)

type(Key.ENTER)

wait( ,20)

<< USERNAME>>

<< PASSWORD>>

<< RECIPIENT USERNAME>>

type(scriptDrive)

type(Key.ENTER)

type("cd " + scriptPath)

type(Key.ENTER)

type(pythonPath + "\\python PlayAudio-MakeCall.py " +

recipient + " 1-goodnews.wav 8 2-quieter.wav 4 3-no.wav

4 4-ohallright.wav 4")

type(Key.ENTER)

wait(30)

rightClick( )

click( )
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B Wireshark
Fields & Filters

This appendix lists and explains the uses of key Wireshark data fields used during the

studies presented in this thesis. As will be explained, these fields contain a variety

of useful information. Aside from merely being read from, fields can be filtered us-

ing comparative operators (==, >, etc.) to select only certain frames. They can also

be used in combination via logical operators (NOT, AND, OR, etc.). Wireshark sup-

ports thousands of protocols with hundreds of thousands of field combinations. Full

listings per protocol can be found at http://www.wireshark.org/docs/dfref/, or http:

//www.wireshark.org/docs/dfref/w/wlan.html for WiFi specifically.

Table B.1: Useful Wireshark Filters

Wireshark Field [Example filter] Description
eapol Present only in frames used to perform client

authentication. Must be to captured to decrypt
WPA-PSK communications after-the-fact.

wlan.fc.protected [== 1] Equal to one in encrypted frames only. Allows for
filtering of management and control frames leav-
ing only those carrying data from user devices.

frame.len [> 400] Length (size) in bytes of the frame. Includes
header.

data.len The length (size) in bytes of the data payload. Po-
tentially misleading as anything that Wireshark
cannot decode is assumed to be data. Will there-
fore vary depending on whether frames can be
decrypted and which protocol dissectors are en-
abled.

wlan.addr
[==�XX:XX:XX:XX:XX:XX�]

MAC address within a WiFi frame. Can be filtered
as demonstrated to provide only frames contain-
ing the specified MAC address. More specific vari-
ations follow.

wlan.sa
wlan.da

Frames where specified MAC is the source (sa) or
destination (da) address.

cont.
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Table B.2: Useful Wireshark Filters (cont.)

wlan.ta
wlan.ra

Frames where specified MAC is the transmitter
(ta) or receiver (ra) address. Typically these are
identical to sa and da, but some enterprise hard-
ware will share a generic source MAC between
APs. This allows them to be distinguished.

wlan.sa_resolved
wlan.da_resolved
wlan.ta_resolved
wlan.ra_resolved

As above, except the first 3 octets of the MAC ad-
dress are replaced with text identifying the man-
ufacturer of that MAC range (e.g. “DC:2B:61:
XX:XX:XX” =⇒ “Apple_XX:XX:XX”). Useful for
mapping MACs to actual devices.

wlan.fc.type_subtype [== ?] Denotes a specific frame subtype. Allows for the
identification of useful management frame types
such as beacons (0x80) and probe requests (0x40).

wlan_mgmt.ssid In beacon frames contains the SSID (name) of the
wireless network being provided by that AP.

wlan_mgmt.ds.
current_channel [== 13]

In beacon frames contains the channel that the
wireless network is operating.
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C Hardware &
Software Specifics

This appendix details the specific hardware and software framework that provided data

for the studies in Chapters 5–7.

• MiFi Access Point

→ “3” (Pay As you Go) MiFi using 802.11g WPA2-Personal

→ Internet Access Provided via 3G cellular network

• Enterprise Network

→ UK-wide “Eduroam” service using WPA2-Enterprise

→ Internet Access Provided via JANET

• Monitor Station Hardware & Operating System

→ Ubuntu Linux 11.04

→ D-Link Wireless N USB Adapter (DWA-140) operating on 802.11g

• Targetted Client Hardware & Operating System

→ Samsung N120 Netbook

→ Windows 7 Starter Edition (+Ubuntu Linux 11.04 Dual Boot)

→ D-Link Wireless N USB Adapter (DWA-140) operating on 802.11g

• Application Software

→ Firefox 5.0

→ Skype 5.3.0.120

→ µTorrent 2.2.1

→ Spotify 0.5.2.84.g6d797eb9
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