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Abstract

Background: For conservation of highly threatened species to be effective, it is crucial to differentiate natural
population parameters from atypical behavioural, ecological and demographic characteristics associated with
human disturbance and habitat degradation, which can constrain population growth and recovery. Unfortunately,
these parameters can be very hard to determine for species of extreme rarity. The Hainan gibbon (Nomascus
hainanus), the world’s rarest ape, consists of a single population of c.25 individuals, but intensive management is
constrained by a limited understanding of the species’ expected population characteristics and environmental
requirements. In order to generate a more robust evidence-base for Hainan gibbon conservation, we employed a
comparative approach to identify intrinsic and extrinsic drivers of variation in key ecological and behavioural traits
(home range size, social group size, mating system) across the Hylobatidae while controlling for phylogenetic
non-independence.

Results: All three studied traits show strong phylogenetic signals across the Hylobatidae. Although the Hainan
gibbon and some closely related species have large reported group sizes, no observed gibbon group size is
significantly different from the values expected on the basis of phylogenetic relationship alone. However, the
Hainan gibbon and two other Nomascus species (N. concolor, N. nasutus) show home range values that are higher
than expected relative to all other gibbon species. Predictive models incorporating intraspecific trait variation but
controlling for covariance between population samples due to phylogenetic relatedness reveal additional
environmental and biological determinants of variation in gibbon ranging requirements and social structure, but
not those immediately associated with recent habitat degradation.

Conclusions: Our study represents the first systematic assessment of behavioural and ecological trait patterns
across the Hylobatidae using recent approaches in comparative analysis. By formally contextualising the Hainan
gibbon’s observed behavioural and ecological characteristics within family-wide variation in gibbons, we are able to
determine natural population parameters expected for this Critically Endangered species, as well as wider correlates
of variation for key population characteristics across the Hylobatidae. This approach reveals key insights with a
direct impact on future Hainan gibbon conservation planning, and demonstrates the usefulness of the comparative
approach for informing management of species of conservation concern.
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Background
In order to maximise the effectiveness of conservation in-
terventions for threatened species, it is necessary to
understand not only the extrinsic factors responsible for
past or current declines, but also the intrinsic characteris-
tics that such species would be expected to display under
optimal environmental conditions. However, remnant
populations of threatened species may exhibit atypical
behavioural, ecological and demographic characteristics
that can restrict population growth and recovery, for ex-
ample due to geographical restriction to environmental
refugia containing sub-optimal habitat [1, 2], or disruption
of mating systems by Allee effects (fitness impacts associ-
ated with population size) beyond low population density
thresholds [3]. Indeed, a fundamental concept in behav-
ioural ecology is that animals will respond to environmen-
tal changes first through modifications in behaviour, with
adaptations in life history, physiology and morphology
occurring over longer periods [4], such that flexibility in
key behavioural traits may be expected in response to
recent habitat changes due to human disturbance and
degradation. It is of particular importance to determine
natural population parameters for highly threatened spe-
cies that have been reduced to only a handful of surviving
individuals, as such species of extreme rarity will likely re-
quire urgent and intensive conservation management [5].
Unfortunately, these parameters may be particularly hard
to determine for such species; for example, direct assess-
ment of variation in population-level responses to differ-
ent environmental conditions is impossible if a species of
concern is now restricted to a single site. Successful
evidence-based conservation of species of extreme rarity
may therefore necessitate using alternative investigative
approaches to determine their expected natural behav-
ioural, ecological and demographic characteristics and
environmental requirements.
The Hainan gibbon (Nomascus hainanus) is the world’s

rarest ape, rarest primate, and possibly rarest mammal
species, consisting of a single population of c.25 individ-
uals constrained to Bawangling National Nature Reserve
on Hainan Island, China. This population persists in a
small (c.15 km2) area of fragmented, relatively high-
elevation forest that may represent suboptimal gibbon
habitat [6]. Conservation efforts for the species have fo-
cused predominantly on mitigating external factors re-
sponsible for past population decline, together with
ongoing monitoring [6–8]. More intensive, active manage-
ment has been largely constrained by a deficit of robust
data and general lack of clarity regarding even the species’
basic ecology. Crucially, it remains unclear which eco-
logical and behavioural characteristics observed in the tiny
remnant Hainan gibbon population may be “natural” for
the species even before human impact, and which may be
artefacts of the population’s currently compromised

situation. This lack of data represents a major barrier to
effective conservation planning, as it is difficult to assess
which factors might be managed and which aspects of the
species’ biology are unlikely to change despite intensive
management.
Gibbons (Hylobatidae) are generally considered to show

relatively consistent patterns of diet, territory and home
range size, group composition and mating strategy, despite
occurring across different forest environments [9]. They
typically occur in small monogamous social groups, con-
sisting of a nuclear family containing an adult male, adult
female and 1–3 offspring, which maintain relatively small
home ranges of c.0.40 km2 [9, 10]. The Hainan gibbon
appears remarkable in terms of these characteristics, with
large polygynous groups (typically >6 individuals, with
observations of up to 12 individuals in one group) main-
taining much larger home ranges (estimates between
c.1.5–10 km2) [11–13]. The drivers behind these appar-
ently anomalous ranging and social habits are not clear.
These features may constitute typical characteristics of
Hainan gibbon biology [11, 14]. Alternately, they may con-
stitute the current population’s response to extrinsic pres-
sures, with reduced habitat availability and suboptimal
habitat quality potentially driving large home range re-
quirements, which prevents establishment of new social
groups and forces individuals to remain within their natal
groups [6, 7, 12]. Limited mating opportunities generated
by the greatly restricted current population size may ex-
plain the observed polygynous mating system as an abnor-
mal behaviour [6, 15], and a lack of neighbouring groups
may permit expansion of existing group home ranges [7].
Understanding the intrinsic versus extrinsic drivers of

these behaviours to inform conservation efforts for the
Hainan gibbon requires wider consideration of eco-
logical and behavioural patterns observed under different
environmental conditions across other gibbon species. The
conventional description of gibbon ranging and social or-
ganisation is largely based on historical studies of Hylobates
[16]. However, studies of wild populations of increasing
numbers of species have revealed that while these general
habits may still be predominant, there is greater variation
in gibbon ecology and behaviour than originally supposed.
Occurrences of single social groups containing >2 adults
comprise at least 10 % of all groups studied [17], and
within-family variability in group size and ranging behav-
iour is also documented [18], with other highly threatened
gibbons (Nomascus and Hoolock species) in particular
showing considerable variation in these characteristics
[19–21]. These observations could therefore support
either the disturbance hypothesis of anthropogenic
pressure and habitat alteration regulating gibbon be-
haviour, with flexibility in gibbon behavioural ecology
in response to extrinsic drivers [18], or alternately the
existence of intrinsic phylogenetically-driven patterns
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of ecological and behavioural variation within the
Hylobatidae.
Despite the importance of clarifying the drivers of Hainan

gibbon ecology and behaviour for best-practice conserva-
tion planning, there has been no formal attempt to context-
ualise the species’ home range and social organisation
beyond simple descriptive comparisons with other gibbons
[6]. The comparative approach, whereby correlations be-
tween variables are investigated statistically while control-
ling for phylogenetic non-independence, has been widely
employed to inform conservation efforts. Macroecological
comparative analyses have been used to identify broad-
scale predictors of extinction risk and population decline
[22–24], and which species are more likely to benefit from
intensive intervention actions such as captive breeding [25]
and translocation [26]. Comparative analyses at the family
level can identify intrinsic and extrinsic drivers of variation
in ecological and behavioural traits seen within individual
groups of interest [27–29], thus representing a valuable tool
to inform management of species of conservation concern.
In order to generate a more robust evidence-base for

Hainan gibbon conservation, we employed a comparative
approach to identify drivers of home range size, social
group size and mating system across different gibbon spe-
cies. This analysis represents the first systematic attempt
to determine the contribution of intrinsic versus extrinsic
factors, and the evidence for phylogenetic versus non-
phylogenetic control, to variation in key behavioural,
ecological, and demographic traits across the Hylobatidae.
Our results are of direct relevance to Hainan gibbon con-
servation management, and have wider implications for
understanding gibbon ecology.

Methods
Data collection
A comparative dataset on home range (HR), group size
(GS) and mating system (MS) was compiled for the 19
currently recognised gibbon species [9], including obser-
vations for as many gibbon populations (separate study
sites) as possible to capture intraspecific as well as inter-
specific variation, and permit detection of extrinsic, site-
level influence as well as phylogenetic influence upon
expression of response traits. Hainan gibbon GS values
were derived from the most recent available data for the
species [13]; to account for variation in available esti-
mates of Hainan gibbon HR, separate analyses were con-
ducted using two differing recent estimates of HR for
this species: a high estimate of 7.67 km2 [12] and a much
lower estimate of 1.48 km2 [13]. Other data were obtained
from published and grey literature and by surveying gibbon
researchers with knowledge/experience across a range of
field sites. This combined approach captured comparative
data for 39 populations across the 19 species (Additional
file 1); data from >1 population were obtained for 58 % of

species, with further data collection limited in some cases
by the existence of only a single extant or studied popula-
tion per species.
Site-specific data for 11 potential predictors were col-

lected for use in predictive modelling (Table 1). To avoid
over-parameterisation, only data on key intrinsic and ex-
trinsic variables hypothesised a priori to influence our
response traits were incorporated [30, 31]. Fruit availabil-
ity and load may be an important predictor of HR size, with
GS and group density increasing in locations with higher
fruit tree densities [9, 32, 33]. Site-specific information on
gibbon food tree densities was generally unavailable; we
used data on a series of extrinsic variables (latitude, longi-
tude, altitude, annual mean temperature, annual precipita-
tion) that capture site climatic conditions and potential
productivity and are likely to determine food tree density
for gibbons, as has been demonstrated in species-specific
studies at smaller scales [34, 35] and for Asian tropical

Table 1 Potential predictor variables of home range, group size
and mating system in gibbons: potential intrinsic and extrinsic
predictor variables (fixed effects) hypothesised to influence
response traits and tested in predictive models, with data scale
and source(s)

Potential predictor
variable

Scale Source(s)

Adult body
mass (kg)

Species mean [9, 50, 51, 86, 87]

Group density
(mean number
of groups/km2)

Mean at site Details in Additional
file 1

Latitude
(decimal degrees)

Exact value for
site

Details in Additional
file 1

Longitude
(decimal degrees)

Exact value for
site

Details in Additional
file 1

Altitude
(metres asl)

Mean for site
across years,
1 km resolution

[88], extracted in
ArcMap
V.10.0 (ESRI 1999–2010);
site location used to
derive standardised
mean
values per site

Annual mean
temperature
(°C)

Mean for site
across years,
1 km resolution

Annual precipitation
(mm)

Mean for site
across years,
1 km resolution

Precipitation
seasonality
(coefficient of
variation)

Mean for site
across years,
1 km resolution

Normalized
difference
vegetation index
(NDVI; ratio)

Mean for site
across years,
8 km resolution

[89]

Global Human
Footprint
(GHF; %)

Mean for site
across years,
1 km resolution

[43]

Reserve area
(km2)

Value for reserve Details in Additional file
1
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forests more generally [36]. An additional, more direct
measure of productivity, the normalized difference vegeta-
tion index (NDVI; a satellite-based vegetation index derived
from the red:near-infrared reflectance ratio of light reflected
by vegetation and captured by satellite sensor, which corre-
lates strongly with above-ground net primary productivity),
was also included as a surrogate for vegetation structure
and therefore annual productivity and biomass [37, 38].
Seasonal variation in resources has been hypothesised to
determine gibbon HR and number of defendable females
[39], with gibbons possibly requiring larger areas to obtain
resources in more seasonal environments, relaxing con-
straints on GS [9]; NDVI correlates with seasonal average
energy availability [40, 41], and seasonality in precipitation
was also included to further capture inter-site variation in
seasonality. Low group density has been proposed as a pos-
sible explanation for the apparently high Hainan gibbon
HR and GS as a result of greater space available for the
small population [6, 7, 12], although delayed dispersal from
groups and thus potentially larger GS may occur in habitats
saturated with gibbon groups [42]. Gibbon group density
and reserve area (in lieu of generally unavailable data on
gibbon-suitable habitat availability) were therefore included
as measures of potential intraspecific site-specific competi-
tion for space and resources. Global Human Footprint
(GHF) data, comprising a composite index of relative
human influence derived from human population density,
land use and infrastructure [43], were used as a standar-
dised proxy for anthropogenic disturbance. Adult body
mass was included as a proxy for various life-history traits
that may interact with and influence numerous ecological
and behavioural characteristics in mammals (e.g. reproduct-
ive rate, gestation period, weaning length, interbirth interval
[22, 23]); no site-level body mass data were available, so
species mean data (where available), or medians calculated
from a range of reported body masses, were replicated
across all populations of that species.

Phylogenetic tree
To incorporate phylogenetic relatedness between gibbon
species into our analysis, we manually reconstructed a
phylogenetic tree for the Hylobatidae within TreeEdit
V.1.0a10 [44]. We recognise that a recent study [45, 46],
which incorporated only five species (two for Hylobates,
and one each for the other three gibbon genera), has
suggested that it is difficult to resolve the pattern of
phylogenetic branching within Hylobatidae or identify
any strongly-supported single tree topology due to rapid
initial radiation of all four gibbon genera. However, the
only recent phylogenetic study to incorporate all then-
recognised gibbon taxa, and the only published gibbon
phylogeny to include the Hainan gibbon [47], was able to
identify a single best-supported tree, although support for
some branches was low. To account for this phylogenetic

uncertainty, we investigated the impact of alternative tree
topologies upon the output of our principal analysis, and
showed that output signal strength remained consistent
across a range of available phylogenetic trees represent-
ing different possible relationships among gibbons (see
Additional file 2). Therefore, we retained the most
complete gibbon tree topology [47] as the basis for our
comparative analyses. Within this study, the small dataset
(n = 19 species) prevented the use of more advanced
methods to derive alternative tree topologies (e.g. via
phylogenetic estimation resampling).
The phylogeny of ref. [47] was modified as follows (see

Fig. 1): subspecies were excluded; Hylobates abbotti and
H. funereus were recognised as separate species rather
than subspecies of H. muelleri [9]; and a further recently
described species, Nomascus annamensis [48], was incorpo-
rated using unpublished genetic divergence data which in-
dicate this species split from N. gabriellae c.0.7 million
years ago (Christian Roos pers. comm., September 2013).
The lineage containing the two orangutan species (Pongo
abelii, P. pygmaeus), which constitutes the next oldest di-
vergence within Hominoidea, was included as an outgroup
when testing for phylogenetic signal; comparative data on
response variables were collected from published sources
for both orangutan species [49–53]. Orangutans represent
an ecologically relevant outgroup for this study as they
occupy similar and sometimes sympatric habitats to gib-
bons in south-east Asia, and exhibit several key biological
similarities including suspensory locomotory behaviours
and similar diets [53].

Data analysis
Continuous variables that varied by an order of magni-
tude were log-transformed prior to analysis to normalise
distributions and equalise error variance. GHF values
were reduced to proportions and Arcsine transformed.
Absolute latitude values were employed. The categorical re-
sponse variable MS was binary-coded to focus on the pres-
ence or absence of polygyny within gibbons (polygyny = 1;
monogamy = 0; for Pongo spp., solitary = 0), and due to the
inherent limitations of available tests of phylogenetic signal
for categorical variables which dictate use of binary categor-
ies [54]. Data transformations and all analyses were carried
out in R V.3.0.1 [55].
To test for phylogenetic signal in our continuous re-

sponse variables (HR and GS), we employed species average
values (across-population observations), and estimated
Pagel’s lambda, λ [56], under both maximum likelihood
(ML) and log likelihoods at λ = 0 (phylogenetic independ-
ence) and λ = 1 (Brownian phylogenetic dependence) using
phylogenetic generalized linear models (PGLMs [57];
revised version of code PGLM V.3.4 provided by R.
Freckleton, October 2013). As a control, we also tested for
phylogenetic signal in body mass; this trait has a significant
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phylogenetic signal across several bird and mammal groups
[57], including primates [58], and therefore could be ex-
pected to show a similar signal in gibbons. Binary categor-
ical variables cannot be tested using λ, so for the binary
trait MS, we tested for phylogenetic signal using D [54]
implemented within the “caper” package [59]. To assess D,
we employed the predominantly observed MS for each
species, which proved to be uniform (100 % of cases) across
all populations surveyed for each species.
Prior to running predictive models, correlations between

predictor variables were assessed to test for collinearity
using correlation matrices and simple linear models gen-
erated for each pairwise combination of predictors. All
pairwise comparisons yielded absolute correlation values
and variance explained by linear models (adjusted R2)
of <0.5, indicating no issues of collinearity, so all pre-
dictors were retained. Predictive regression models
were constructed using the linear mixed-effects kinship
model fit by maximum likelihood (lmekin) within the
“coxme” package [60].
Following a common approach in wide-scale compara-

tive analyses [22, 24, 61], we first conducted single pre-
dictor lmekin regressions of our response variables
against each predictor variable to examine the signifi-
cance of each predictor separately. As a population’s HR,
GS and MS may be interlinked, with some traits poten-
tially determining others, the response variables not
being tested within a given predictive model were also

used as predictors for each response in turn; in total, 13
single predictor models were therefore run per response.
Predictors that were significant at α < 0.05 were then in-
corporated into a global model for each response vari-
able. This approach aimed to reduce the number of
predictors within each global model to avoid issues of
overparameterization or overfitting of data and bias in
regression coefficients; a rule of ≥5 observations to one
predictor was adopted [62], which for n = 39 populations
meant using 4–7 predictors. This precluded the incorpor-
ation of any predictor interaction terms, meaning that
only main effects were fitted; given our small sample size
and the absence of collinearity in our predictors, we con-
sider this approach to be robust.
We employed an IT multimodel inference approach to

model selection [30]; a set of candidate models were gen-
erated representing all unique combinations of predic-
tors in the global model, and were ranked using Akaike’s
Information Criterion (AIC) [63]. For each model, the
relative log-likelihood, AICc, ΔAICc, and Akaike weights
(wi) were calculated using the “MuMIn” package [64]. We
used a model-averaging approach to check the validity of
the top-ranking model in each case, only including models
with ΔAICc < 7 [65]; this corresponded to a cumulative
wi > 0.95 in all cases, thereby constituting a 95 % confi-
dence set [30]. The relative importance (RI) of each par-
ameter after model-averaging was calculated by summing
wi across all models in which the parameter was present.

Pongo abelii

Pongo pygmaeus

Hylobates klossii

Hylobates albibarbis
Hylobates agilis
Hylobates lar

Hylobates funereus 
Hylobates abbotti 
Hylobates muelleri

Hylobates moloch
Hylobates pileatus

Nomascus leucogenys
Nomascus siki

Hoolock leuconedys
Hoolock hoolock

Symphalangus syndactylus

Nomascus hainanus
Nomascus nasutus

Nomascus concolor

Nomascus gabriellae
Nomascus annamensis

4.12

0.55

0.70

1.74

2.83

4.24

3.25

8.34

7.22

6.69

1.42

3.91

3.40

3.29

1.56

3.02

1.42

1.78

3.65

16.26

Fig. 1 Reconstructed hylobatid phylogenetic tree (with outgroup): phylogenetic tree of the Hylobatidae plus Pongo outgroup (indicated by
hollow circles) used for tests of phylogenetic signal and predictive modelling, with mean divergence times (in mya) indicated at nodes; after [47]
and Christian Roos (pers. comm., September 2013)
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Results
Phylogenetic signal
All three traits of interest (HR, GS and MS) had a sig-
nificant phylogenetic signal. A strong phylogenetic signal
was also detected for the control variable, body mass, in-
dicating that this analytical approach is appropriate and
the results for all traits tested are valid. Values of λ for
HR, GS and body mass were all close to one under ML
(Table 2); each ML-λ value for these traits was signifi-
cantly different from zero but not significantly different
from one, meaning that λ for each trait did not differ
from expected Brownian phylogenetic structure in each
case. These strong, statistically significant patterns of
phylogenetic signal therefore indicate that more closely
related gibbon species resemble each other in terms of
body mass, HR and GS more than expected by chance.
These signals were consistent across additional tests
employing alternative phylogenetic trees (see Additional
file 2). In order to assess the potential significance of
other underlying intrinsic or extrinsic drivers of these
traits, it was therefore necessary to control for phylogen-
etic relationships within our comparative dataset, as per
the lmekin predictive models.
To ascertain if any gibbon species display HR, GS, or

body mass values significantly different to those expected
from phylogenetic signal alone, the PGLM derived for each
trait was used to determine expected trait values for each
species based upon values observed across all other species,
with expected values compared to observed values using
Student’s t-tests. The resultant P-values (after Bonferroni
correction, adjusted P-value = 0.0024) revealed that no body
mass or GS values for any species were significantly differ-
ent to those expected according to the phylogenetic signal
for each trait, despite the larger group sizes reported for the
Hainan gibbon and some other Nomascus species. How-
ever, relative to all other gibbon species, HR values are
higher than expected for the Hainan gibbon (P = 0.001) and
two other Nomascus species (black crested gibbon N.
concolor, P = 0.001; Cao Vit gibbon N. nasutus, P = 0.002),

even under the strong phylogenetic signal observed for this
trait. These results remained the same irrespective of
whether a high or low estimate for Hainan gibbon HR was
used; as even the less extreme HR estimate is significantly
higher than expected, we therefore present only the outputs
of predictive models employing this smaller estimate. Sig-
nificant HR values were also detected for both Pongo spe-
cies (P < 0.0001 for both species), but this is not surprising
as these species are known to exhibit very large HRs (mean
P. abelii HR= 19 km2; mean P. pygmaeus HR= 16.75 km2)
and our study was focused primarily on variation across the
Hylobatidae.
A strong phylogenetic signal was also apparent in MS,

with an estimated D = −1.386 indicating substantial phylo-
genetic clumping in the binary representation of this trait,
and therefore that MS is highly phylogenetically conserved
within the Hylobatidae. The associated probability of ob-
serving this D value was not significantly different to
that simulated under Brownian phylogenetic structure
(P = 0.945), but was significantly different to that estimated
under no phylogenetic structure (P < 0.01), indicating that
the observed phylogenetic signal is statistically significant.
As D is calculated as a contrast rather than a linear model,
it was not possible to predict expected species MS values
under phylogenetic signal in this trait or compare observed
versus expected values for individual species; it was there-
fore not possible to determine if the observed MS for any
gibbon species differs from what might be expected under
the observed phylogenetic signal.

Predictive models
Five predictors (as derived from significant terms detected
in the single lmekin regression models) were incorporated
into each global model for HR and GS, although not all
terms remained significant when incorporated into mul-
tiple regression models (Additional file 3). From the HR
and GS global models, a set of 31 candidate models (in-
cluding global model and single predictor models) were
generated and ranked by AICc. In addition to the best-
approximating model with lowest AICc, 19 models with
ΔAICc < 7 were identified for HR (corresponding to a
cumulative wi = 0.985; Additional file 4), and 10 models
with ΔAICc < 7 were identified for GS (corresponding to a
cumulative wi = 0.957; Additional file 4).
When covariance between population samples due to

phylogenetic relatedness was taken into account, variation
in HR in the best-approximating model was explained by
GS, MS, and group density; larger HR was predicted by lar-
ger GS, polygynous MS, and lower group density (Table 3a).
Total variance explained by random (relatedness) effects
was 0.00024, with 99.6 % of variance due to phylogenetic
effects and 0.43 % contributed by inter-population variation
within a species. Model-averaged coefficient estimates de-
rived from the 98.5 % model confidence set agreed with the

Table 2 Trait phylogenetic signals: results of tests for
phylogenetic signal in two continuous traits of interest (home
range and group size) and one control variable (body mass)
using Pagel’s λ under maximum likelihood (ML-λ) and tests
against models of no signal (0) or complete phylogenetic
dependence (1)

Variable ML-λ Test χ2 P-value

Body mass 0.9999 λ = 0 45.38 <0.0001

λ = 1 −0.01 1.0

Home range 0.9999 λ = 0 30.32 <0.0001

λ = 1 −0.004 1.0

Group size 0.9731 λ = 0 20.61 <0.0001

λ = 1 0.58 0.45
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best-approximating model, with the same three variables
detected as significant predictors and each having RI values
of 0.70–0.84 (Table 4a). The top-ranking GS model indi-
cated that larger GS was explained by polygynous MS and
lower annual precipitation (Table 3b); annual mean
temperature, although included in the best-fitting model,
was not a significant predictor of GS. Total variance
explained by random effects in the final GS model was very
low (3.48 × 10−8), with 8.5 % contributed by phylogeny and
91.5 % contributed by inter-population (within-species)
variation. Model-averaged coefficient estimates derived
from the 95.7 % model confidence set again agreed with

the best-approximating model in terms of coefficient rela-
tive magnitude and significance, with MS and annual pre-
cipitation remaining the only significant terms and each
having high RI values (1.00 and 0.87 respectively; Table 4b).
Assessment of model fit supports the validity of the

best-approximating HR and GS models. Observed HR
and GS values display linear trends when compared to
values predicted by the top-ranking models (Fig. 2a–b),
indicating that specification of main effects only did not
result in poor fit due to omission of any major interaction
terms. Plots of residuals versus predicted values from each
model further confirms adequacy of both models, with
points scattering around zero and no obvious linearity or
curvature (Fig. 2c–d).
MS was not explained by any potential intrinsic or ex-

trinsic predictor variables, whether tested in single pre-
dictor regression models or together in an exploratory
global model combining all 13 potential predictors
(Table 5). The variance explained by phylogeny for the
random effects was infinite, indicating a strong effect of
between-species phylogenetic relationships relative to
within-species variation. As no significant fixed effects
predictors were detected, no further analysis of this re-
sponse variable was possible within the scope of this
analysis.

Drivers of family-wide trait patterns
Two intrinsic factors explained variability in home range
across gibbon populations: mating system and group size,
which were also linked. Despite the foraging advantages
that gibbons gain from their energy-efficient brachiation,
this positive association of home range with group size is
consistent with patterns seen more widely across other

Table 4 Model-averaged home range and group size predictive models: model-averaged fixed effects parameter estimates for: a)
HR (from n = 19 model set with ΔAICc < 7 and cumulative wi >0.95), and b) GS (from n = 10 model set with ΔAICc < 7 and
cumulative wi >0.95), with relative importance (RI) of each parameter

Coefficient Averaged estimate (β) SE z-value P-value RI

a) HR

(Intercept) 1.35 0.58 2.33 0.020 NA

Group density −0.13 0.05 2.58 0.010 0.70

Group size 1.22 0.50 2.44 0.015 0.84

Mating system (1 = polygyny) 0.33 0.15 2.22 0.026 0.83

Annual mean temperature −0.02 0.01 1.51 0.132 0.43

Annual precipitation −0.19 0.17 1.08 0.282 0.26

b) GS

(Intercept) 0.94 0.23 4.03 0.0001 NA

Mating system (1 = polygyny) 0.21 0.03 6.29 <0.0001 1.00

Aannual precipitation −0.15 0.06 2.63 0.009 0.87

Annual mean temperature 0.005 0.003 1.43 0.153 0.39

Latitude −0.001 0.001 0.48 0.634 0.22

P-values <0.05 are shown in bold

Table 3 Best-approximating home range and group size predictive
models: fixed effects parameter estimates from best-approximating
linear mixed-effects kinship models incorporating phylogenetic and
within-species variance-covariance fit by maximum likelihood for: a)
HR (residual error = 0.113) and b) GS (residual error: 0.045). Model
fitting incorporates both fixed and random effects in parameter
estimates

Coefficient Estimate SE z-value P-value

a) HR

(Intercept) 1.03 0.22 4.66 <0.0001

Group density −0.14 0.04 −3.19 0.001

Mating system (1 = polygyny) 0.30 0.11 2.58 0.010

Group size 0.99 0.40 2.49 0.013

b) GS

(Intercept) 0.98 0.18 5.55 <0.0001

Mating system (1 = polygyny) 0.22 0.03 6.85 <0.0001

Annual precipitation −0.16 0.06 −2.96 0.003

Annual mean temperature 0.005 0.003 1.59 0.110

P-values <0.05 are shown in bold
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primates, where larger groups will deplete food sources in
discrete patches more rapidly so must range further to
satisfy these greater energy requirements [66–68]. Primate
species adopting polygynous mating systems will form
larger groups, and so our discovery that polygynous popu-
lations are also linked to larger home ranges is likely to
represent an associated effect. Accounting for mating sys-
tem and group size, gibbon populations at sites with lower
group densities, and therefore fewer neighbouring groups,
were more likely to exhibit larger home ranges. This pro-
vides indirect evidence for a ‘disturbance’ effect regulating
gibbon social organization, with lower group densities
more likely to occur in threatened species due to their
typically small population sizes. Within-species variation
in gibbon density has also been shown to correlate with
site-level vegetation parameters such as food tree availabil-
ity, tree height/density, and/or canopy cover [33, 35, 69].
Site carrying capacity may therefore regulate gibbon home
range size through the effects of site-level resource avail-
ability on group density, with home range size interacting

with both intrinsic and extrinsic factors across the
Hylobatidae.
Gibbon group size was linked to climatic as well as social

drivers, with larger group sizes associated with low mean
annual rainfall in addition to polygynous mating system.
Drier areas predicting larger groups initially seems counter-
intuitive, as it is generally thought that habitats with higher
levels of annual rainfall have higher productivity than drier
habitats [70]. However, tropical forest productivity declines
when annual rainfall exceeds 2500 mm, likely due to
nutrient-leaching limiting plant growth [71]. Therefore,
increased precipitation within moist tropical habitats inhab-
ited by gibbons may negatively impact growth of gibbon
food trees. Indeed, tree density and primate biomass have
been shown to decline with increasing rainfall levels in
southeast Asian forests [72], and frugivorous primate bio-
mass declines with greater annual rainfall in Asia [73].
Across our sampled gibbon populations (annual precipita-
tion range: c.1100–4000 mm), drier sites may therefore be
relatively richer in available resources. Increased resource
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Fig. 2 Assessment of model fit for best-approximating home range and group size predictive models: scatterplots of model fit: (a) observed HR
values (log-transformed) versus values predicted under best-approximating linear mixed-effects kinship model for HR (log values); (b) observed GS
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availability could permit larger group sizes by reducing
intra-group feeding competition, a major cost of group
living among primates [66, 74].
Beyond a strong phylogenetic signal, no explanatory

variables were statistically associated with mating sys-
tem. It seems unlikely that this is solely the result of lim-
itations associated with our analytical approach; while
the predictive power of a binary response model may be
low, phylogenetic regression constitutes a robust analyt-
ical approach for binary response variables [75]. Our
results may therefore indicate that recent extrinsic factors
have limited importance for driving observed variation in
gibbon mating system, with present patterns instead result-
ing from longer-term evolutionary processes. Monogamy is
estimated to have evolved in gibbons c.19 mya [76], with
monogamous mating systems in primates evolving repeat-
edly from polygynous systems with a zero reverse rate
detected in this study. Polygyny in gibbons may therefore
be unlikely to represent a recent behavioural response to
compromised habitat conditions. Although several different
mechanisms have been proposed to explain the evolution
of mating systems in gibbons, causal links have not been
demonstrated convincingly between any suggested external
drivers and specific mating systems [77]. Future analyses in-
volving approaches such as evolutionary trait mapping and
ancestral character reconstruction (which were beyond the
scope of this study due to taxon sampling constraints which
can reduce the accuracy of trait inference [78], and limited
fossil material for extinct gibbon taxa [79] required to in-
form trait estimation models [80]) may be helpful in

clarifying evolutionary drivers and apparent flexibility in
mating system across the Hylobatidae.
Both Pagel’s λ and D can have reduced power when

dealing with small tree sizes, and high or low trait preva-
lence (proportions of one character state) may also reduce
detection of phylogenetic signal in binary traits tested via
D. However, false signals are unlikely under either analysis,
with λ relatively robust to both tree size and uncertainty
when signal strength is strong [54, 57, 81], and both tests
provided strong signals (phylogenetic signals were all close
to λ = 1, and D was high), giving us confidence in our re-
sults. Although we found evidence for both intrinsic and
extrinsic drivers of gibbon ranging requirements and
social group size, there was only limited support for any
association with site disturbance or quality. Home range
variation was explained by local group density, indirectly
indicating a possible effect of carrying capacity and thus
response to habitat conditions. Group size was associated
with a climatic variable (annual precipitation) that may
become an index of human-caused environmental change
in the near future under projected climate change scenar-
ios, but is not currently a correlate of human-caused
habitat disturbance. Similarly, we found no direct support
for the disturbance-hypothesis explanation for mating sys-
tem. None of our selected behavioural and ecological traits
were statistically linked to the proxies specifically employed
to represent site habitat productivity/quality (NDVI) or dis-
turbance (GHF). This lack of association could reflect limi-
tations of such metrics, which may be insufficiently
sensitive for capturing heterogeneity across high-biomass
areas such as tropical forests at fine spatial scales [82] and
will be unable to detect other key human impacts to
gibbons such as localised hunting. However, while it is not
possible to completely rule out a disturbance-associated ef-
fect to explain observed variations in behaviour and ecology
between gibbon populations, the evidence for such an
explanation is limited in contrast to the significant effect
detected for other drivers.

Discussion
Our study represents the first targeted assessment of behav-
ioural and ecological trait patterns across the Hylobatidae
using recent approaches in comparative analysis. Although
a small number of studies have demonstrated phylogenetic
signals for selected traits in primates, including mating
system [76], group size and home range [58], we present
important new evidence that these traits are all strongly
phylogenetically conserved within the Hylobatidae. This
phylogenetic trait conservatism may be an effect associated
with rapid initial evolution recently proposed for the main
hylobatid lineages [45, 46]. Notwithstanding the challenges
in resolving hylobatid tree topology identified in these
recent studies, by accounting for this phylogenetic signal
and further considering the potential effects of a range of

Table 5 Global mating system predictive model: exploratory
global multiple regression model for MS; linear mixed-effects
kinship model incorporating phylogenetic and within-species
variance-covariance fit by maximum likelihood (residual error:
0.129), with all possible putative fixed effect predictors

Coefficient Estimate SE z-value P-value

(Intercept) 0.34 0.16 2.07 0.039

Group size 1.36 0.50 1.86 0.063

Home range 0.50 0.23 1.82 0.069

NDVI −0.59 0.30 −1.79 0.073

Altitude 0.16 0.10 1.72 0.085

Reserve area −0.06 0.03 −1.66 0.097

Species adult body mass 0.45 0.33 1.38 0.170

GHF −0.32 0.31 −1.03 0.310

Annual precipitation −0.18 0.24 −0.73 0.460

Precipitation seasonality −0.27 0.37 −0.74 0.460

Latitude 0.00 0.01 0.37 0.710

Longitude 0.00 0.01 0.28 0.780

Annual mean temperature 0.01 0.03 0.24 0.810

Group density 0.02 0.08 0.22 0.830

P-values <0.05 are in bold
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different intrinsic and extrinsic factors on gibbon behav-
ioural ecology both between and within species, our pre-
dictive analyses have also revealed additional environmental
and biological determinants of variation in gibbon ranging
requirements and social structure. It is apparent that
gibbon mating system, group size and home range are in-
herently linked, with these factors being important, inter-
correlated predictors of each other, and with further
variation driven by a limited number of site-level factors
(Fig. 3). A combination of social dynamics and external
factors therefore seem to determine variation in these key
aspects of behavioural ecology within the Hylobatidae.
In the context of the existing paradigm of gibbon ecology

and behaviour, the Hainan gibbon has been regarded as dis-
playing unusual patterns of home range and social organ-
isation, which have often been interpreted as artefacts of
anthropogenic disturbance (driven either by reduced habi-
tat availability and/or quality, or by small population size
limiting mate availability and social group formation and al-
tering group structure [6, 7, 12, 15]). Our comparative
analysis constitutes the first attempt to formally contextual-
ise the Hainan gibbon’s observed behavioural and ecological
characteristics within family-wide variation observed across
gibbons in mating system, group size and home range, and
our results provide important new insights for understand-
ing the natural population parameters that would be
expected for this species.
Irrespective of whether we use high or low home range

estimates for the species, we show that Hainan gibbon
social groups in the remnant population at Bawangling
have larger home ranges than expected in the context of
the strong phylogenetic signal that exists for this trait
within the Hylobatidae. Our predictive models show that
large home range size in gibbons is associated with both
intrinsic and extrinsic drivers (low group density in

combination with polygynous mating system and larger
group size), suggesting that the large Hainan gibbon
group sizes at Bawangling may be an artefact of their
current reduced population condition; gibbon popula-
tion density and group density at Bawangling are critic-
ally low, so that home ranges of the last remaining
social groups may be expanded as a result of a lack of
adjacent groups [7].
However, our analyses show that populations of N.

concolor and N. nasutus, the two gibbon species that are
most closely related to N. hainanus [47], also have larger
home range values than expected on the basis of phylo-
genetic signal alone. These two Nomascus species have
the largest home ranges of any gibbons other than N.
hainanus, with home ranges of 1.3–1.5 km2, together
with large polygynous groups averaging >6 individuals,
having been reported in both species [20, 21, 83].
Nomascus concolor and N. nasutus are also Critically En-
dangered [53], and have greatly reduced population sizes
and densities restricted to limited, isolated and disturbed
habitat [84, 85]; low group densities, together with the
large polygynous groups observed in both species, may
therefore again explain these high home range values.
However, other less closely related Critically Endangered
gibbon species or isolated gibbon populations persisting
at low population densities (e.g. northern white-cheeked
gibbon Nomascus leucogenys; eastern hoolock gibbon
Hoolock leuconedys population in Gaoligongshan, China)
do not show unexpectedly high home range values in
our analyses, and the close phylogenetic relationship be-
tween Nomascus concolor, N. hainanus and N. nasutus
may alternately indicate a different rate of character
evolution in these three species, with large home ranges
evolutionarily characteristic for basal Nomascus taxa
rather than an ecologically abnormal feature exhibited
only by reduced populations. Whether quality of available
habitat at Bawangling contributes to the large spatial re-
quirements of the remaining Hainan gibbon groups will
therefore require further focused investigation; however,
the lack of direct correlation of home range with product-
ivity (NDVI), as a metric of site condition, would indicate
that actions designed to improve habitat quality alone will
be unlikely to address current constraints on Hainan
gibbon population recovery. Although we strongly recom-
mend that efforts to protect and enhance available habitat
in the Bawangling landscape should be continued and
would provide major benefits to the surviving Hainan
gibbon population [6–8], more intensive management
actions may also be required to enhance the species’
population growth.
In comparison, we show that Hainan gibbon group size,

for which there is a strong signal within the Hylobatidae,
is no larger than predicted on the basis of phylogeny
alone. Furthermore, as hylobatid-wide variation in group

group size

home range

mating system

group density precipitation

phylogeny

home range

group size

mating system

Fig. 3 Detected drivers of home range, group size and mating
system in gibbons: relationship between response variables
investigated showing inter-connectivity of HR, GS and MS as both
drivers and responses, along with two site-level extrinsic drivers
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size is best explained by species mating system and annual
precipitation levels, we find no support for the large size
of Hainan gibbon groups being directly linked to any
aspects of on-site anthropogenic disturbance at Bawan-
gling. Instead, our results demonstrate flexibility in this
behavioural trait across the Hylobatidae in response to
both intrinsic and extrinsic factors, but not those immedi-
ately associated with recent habitat degradation. Although
detection of a relationship between gibbon group size and
local habitat quality may require finer-scale data on site
condition than it was possible to collect, our results suggest
that large, polygynous groups may be the normal social
structure for the Hainan gibbon. This has important impli-
cations for the conservation management of the population.
First, social group size and structure are unlikely to repre-
sent reliable indicators of the condition of the surviving
Hainan gibbon population, in response to either past
human pressures or possible future management scenarios.
Second, any potential conservation activities that may
be considered in the future, for example translocation of
individuals to establish a second population, must take
into account the complex, polygynous social structure of
the species as an intrinsic component of its biology. This
is a crucial new insight that has a direct impact on future
Hainan gibbon conservation planning, and demonstrates
the wider usefulness of the comparative approach in the
conservation toolkit used to inform management of highly
threatened species.

Conclusions
Through employing a comparative approach which incor-
porates data from multiple populations of all 19 currently
recognised gibbon species, we revealed both intrinsic and
extrinsic drivers of home range size, social group size and
mating system across the Hylobatidae. Home range, group
size and mating system are all strongly phylogenetically
conserved in gibbons, meaning that more closely related
gibbon species resemble each other in terms of these be-
havioural and ecological traits more than expected by
chance. Once these phylogenetic signals are accounted for,
variation in these key traits is driven by a combination of
social and external factors: variation in gibbon home range
size is explained by gibbon group density at a site along
with mating system (monogamy versus polygyny) and
social group size; gibbon social group size is linked to mean
annual rainfall (at the site level) and mating system; and,
while no explanatory variables were statistically associated
with mating system, gibbon mating system, group size and
home range appear to be inherently linked traits, with these
factors being important, inter-correlated predictors of each
other.
By formally contextualising the Hainan gibbon’s ob-

served behavioural and ecological characteristics within
family-wide variation in gibbons, we were also able to

determine natural population parameters expected for
this Critically Endangered species, compared to those
that may be driven by current site conditions experi-
enced by the sole remaining Hainan gibbon population.
Our results indicate that remnant Hainan gibbon social
groups at Bawangling have larger home ranges than ex-
pected in the context of the strong phylogenetic signal
across the Hylobatidae, which may be a result of the
critically low population density and thus group density
at this site. However, current Hainan gibbon group size is
no larger than predicted from the pattern of phylogenetic
relationships alone, and there is no evidence that the
observed mating system (polygyny) is driven by any cur-
rently existing external drivers, indicating that large,
polygynous groups may be the normal social structure for
the Hainan gibbon. Our findings therefore have important
and direct implications for Hainan gibbon conservation
planning, but also more widely enhance our understand-
ing of gibbon ecology. Our study also demonstrates the
usefulness of the comparative approach for informing
management of species of conservation concern.
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