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Preface

Abstract

The electrochemical reduction of uranium (IV) oxide to metallic uranium has been

studied in lithium chloride-potassium chloride eutectic at 450°C using electrochem-

ical and advanced material characterisation techniques.

Electrochemical characterisation identi�ed a single reduction peak occurring at

-2.57V with respect to the Ag|Ag+ reference electrode. Sweep voltammetry has

identi�ed that the electroreduction of uranium dioxide to metallic uranium occurs

via a single, 4-electron transfer, process. The electrochemical reduction has also been

observed to be dependent on the activity of O2- ions: An increase in the bulk activity

of the oxygen anion impeded the electroreduction process. This phenomena was

thermodynamically predicted using Littlewood diagrams produced for the system.

In addition, in situ energy dispersive X-ray di�raction investigations were car-

ried out on the I12 JEEP beamline at the Diamond Light Source which resulted

in the direct observation of the formation of uranium metal when a uranium diox-

ide electrode was exposed to electroreduction potentials. No intermediate phases

were observed which supports the electrochemical characterisation of this process

occurring in a single step.

Moreover, microstructural characterisation has been performed on micro-bucket

electrodes and metallic cavity electrodes. A coral-like structure was identi�ed after

reduction of uranium dioxide and has been attributed to the volume change asso-

ciated with the reduction. Microstructural reconstructions were performed on four

separate sub-volumes in the direction of propagation of the electroreduction pro-

cess. The porosity was seen to decrease signi�cantly from 16% to 4%. The pore

connectivity was also observed to decrease from 93% to 18%. This drastic change

in porosity and pore connectivity is re�ected in the pore tortuosity which is seen

to increase to in�nity. This microstructural evaluation is concluded to impede the
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di�usion of O2- ions out of the electrode resulting in an increased probability of

impediment of the electrochemical reduction process.
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Chapter I. Introduction

1 Introduction

This Ph.D thesis outlines the fundamental processes of the electrochemical reduc-

tion of uranium (IV) oxide to metallic uranium in the lithium chloride-potassium

chloride eutectic. This work examines the system by using a range of electrochem-

ical, chemical and structural experimentation techniques to deduce the phenomena

that occurs during this process.

The motivation behind this work is to increase the fundamental understanding

of the reprocessing of spent nuclear fuel using a pyroelectrochemical process. This

work has been funded by the Engineering and Physical Sciences Research Council's

REFINE Consortium. The drive behind this Ph.D thesis, as part of the REFINE

Consortium, is to ascertain the fundamental process conditions in the electroreduc-

tion of UO2 to U in the lithium chloride-potassium chloride eutectic (LKE) molten

salt. However, it could be said that the motivation behind the desire to research a

new, proliferation resistant, reprocessing strategy (and to take steps closer to closing

the fuel cycle) is the increasing concerns of global warming at the time of writing.

The world is moving into a new era of `green fuel' with a particular emphasis on

a reduction in CO2 emissions. The UK, speci�cally, has set out a plan aiming to

reduce its 1990 levels of CO2 emissions by 2020, with the ultimate goal of reducing

the level of emissions by 80% by 2050. To achieve these targets, the UK govern-

ment's Department of Energy and Climate Change has published �The Carbon Plan�

[1]. This document sets out the pathways to de-carbonise the UK whilst ensuring

a sustainable energy security and minimising costs to consumers. The document

highlights the fact that the power generation sector accounts for 27% of the total

CO2 emissions in the UK, which needs to be reduced to a level close to zero by

2050. The decrease in emissions from the power sector must be accounted for by an

increase of renewable energy sources and from nuclear energy.
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The document also highlights the fact that power generation from nuclear power

stations is currently projected as �the cheapest form of low carbon energy produc-

tion� and it is forecast that nuclear power will play a pivotal role in the UK reducing

its CO2 emissions. With di�erences in global political opinions on current and past

generations of nuclear power stations, the future of nuclear power may balance on

the innovation of future nuclear power stations being inherently safer and allowing

�closure� of the nuclear fuel cycle with proliferation-resistant reprocessing technolo-

gies.

With this in mind, this thesis strives to scienti�cally uncover a host of fun-

damentals of the �rst processing stage in pyroelectrochemical processing; selective

electrochemical reduction of actinide oxides. With a particular emphasis on ura-

nium species, the work that outlines this study - both in terms of thermodynamics

and scienti�c experimentation - is the elementary process conditions from the elec-

trochemical pathway to the microstructural evolution of the electrode.

The proceeding sub-sections of this chapter aim to expose the reader to an

introduction of the three main topics this thesis covers: nuclear energy in general; the

reprocessing of spent fuel and the use of molten salts as electrochemical electrolytes.

1.1 Nuclear Energy

The world has bene�ted from nuclear power since Queen Elizabeth II opened the

�rst full-scale nuclear power plant at Calder Hall in 1956 [2]. Ever since, the world

has pro�ted from the energy available from nuclear �ssion and it has been supplying

approximately 6% of the world's primary energy needs [3]. The energy available from

nuclear �ssion has signi�cantly less CO2 emissions compared to fossil fuels: A life

cycle analysis shows that typical nuclear �ssion reactors can, on average, produce up

to 95% less CO2 emissions compared to the fossil fuel life cycle analysis [4]. Nuclear

power generation has the ability to drastically help reduce carbon emissions.

Over time, the initial �ssile material used as the fuel in nuclear reactors is dimin-
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ished; some of the fuel undergoes �ssion, producing other �ssile nuclei, whilst some

is transmuted into minor actinides, transuranics and �ssion products [5]. Some of

the �ssion products can alter the structure of the fuel and the gasses formed pres-

surise the fuel. Due to this, the fuel becomes uneconomical to further irradiate and

thus it is removed from the reactor. This spent fuel is either disposed of directly

(known as an open fuel cycle), is stored in interim storage facilities for future �dis-

posal� (deferred fuel cycle) or undergoes reprocessing to extract the valuable �ssile

materials and to condition the minor actinide products into more suitable forms

for disposal/storage (partially closed fuel cycle). This partially closed reprocessing

route, which is described in more detail subsequently, removes the useful �ssile ma-

terial that can be burned up in thermal nuclear reactors. This allows one to re-use

the recovered uranium fuel and possibly, in the form of mixed oxide (MOX) fuel,

the recovered plutonium. However, in order to fully close the nuclear fuel cycle the

minor actinides that are produced as a product of �ssion also need to be burned in

an advanced fast nuclear power station.

Although no country has managed to fully close the nuclear fuel cycle to date,

the reader is urged to consider how valuable reprocessing of spent nuclear fuel can

be: Consider the fact that in 1993, 60 te of plutonium was produced from 430

nuclear reactors, giving rise to a possible 5000 PJ of energy available to be harnessed

from recycled plutonium [6]. In comparison, some 3.5x106 te. of coal would be

required to produce the same amount of energy [7]. This astonishing comparison

begs to highlight the fundamental advantages of nuclear energy compared to its high

carbon alternatives. Further to this, a fully closed nuclear fuel cycle would allow

these numbers to further increase as the burn up of minor actinides would also be

included.

However, the reprocessing of nuclear fuel currently has a signi�cant drawback;

proliferation of nuclear material. It goes without saying that reprocessing of nuclear

fuel was invested into heavily for this sole reason. Weapons grade uranium and
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plutonium is achieved by nuclear fuel reprocessing, namely using the Plutonium

- URanium EXraction (PUREX) process, although other liquid-liquid extraction

(LLE) processes exist. Ensuring proliferation resistance of reprocessed nuclear fuel

is vital in maintaining nuclear energy as a viable alternative to fossil fuel energy.

Future reprocessing routes would need to ensure proliferation resistance in order

to cement its potential place as a secure, long term, means of low carbon power

generation.

1.2 Reprocessing

Although nuclear reprocessing does reduce the amount of high level waste for stor-

age, it was plutonium production which was the initial driving force for the repro-

cessing of irradiated nuclear fuel. Weapons grade plutonium is able to be extracted

in almost perfectly pure amounts using solvent extraction [8]. Traditionally, the

technique which is best for nuclear reprocessing is the PUREX process which is

based on liquid-liquid ion exchange extraction. There are, typically, 3 steps involved

in the PUREX puri�cation process: The �rst is extraction of U(VI) and Pu(IV),

the second is U(VI) and Pu(IV) partitioning and the last is U(VI) stripping [9].

Tributylphosphate (TBP) in a solution of HNO3 is used for the extraction process,

whereas the second and third steps strip the TBP from the �ssile material. The

recovered uranium serves to re-enrich fuel and the recovered plutonium is diluted

with other fertile material to produce Mixed Oxide (MOX) fuel.

A major disadvantage of the PUREX process, in terms of spent fuel reprocessing,

is the increased risk of nuclear misuse. From Figure 1.1, one can see that a pure

plutonium product stream is produced, increasing the risk of weapons proliferation.

Due to the fact that this reprocessing technology is well de�ned and understood,

other LLE techniques are increasingly being researched into. As it is possible to

extract uranium and plutonium it is also possible to recover minor actinides too.

Other LLE processes, such as the Selective ActiNide EXtraction (SANEX) and
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Fig. 1.1: Flow sheet of the PUREX Process. Image adapted and reprinted from
Benedict et al., Nuclear Chemical Engineering, 2nd edition, 1981, McGraw
Hill. Reproduced with permission of McGraw-Hill Education.

the UNiversal EXtraction (UNEX) processes, which will extract di�erent species,

can be combined together in various schemes to recover all of the species required.

Although, this does increase the complexity and, therefore, the cost.

More recently, nuclear reprocessing via a pyroprocessing route has been gaining

more attention, particularly in parts of Asia and the USA [10-14]. Although the

technology has not been established commercially, only proven on the pilot plant

scale, there is a widespread understanding that this process could be more bene�-

cial in preventing weapons proliferation as weapons grade material is not produced.

Pyroprocessing operates using an electrochemical reaction scheme. A current is

passed through spent fuel electrodes which are immersed in an electrolyte, usually

a molten salt, in order to reduce the metal oxide to a pure metal. After which, the

reduced species may be selectively plated onto electrodes immersed in the molten

salt. This reaction pathway is able to produce both uranium and plutonium from
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their oxides without creating separate plutonium process streams, therefore greatly

reducing the risk of weapons proliferation. Moreover, this electrochemical system

has an advantage of being incorporated into a type of �generation IV� reactor, pro-

viding in-situ reprocessing and potentially closing the nuclear fuel cycle. Although

this Molten Salt Reactor (MSR) is only a generation IV concept, the bene�ts of

using this system are great compared to today's technology.

The work presented in this thesis looks to provide knowledge of a novel re-

processing route using electrochemical reduction techniques to spent nuclear fuel, as

opposed to traditional solvent extraction routes. The electrochemical technique pro-

vides many advantages compared with these traditional solvent extraction processes,

namely the potential to help close the nuclear fuel cycle. Future generation reactor

systems will also look to provide in-situ re-processing of which this electrochemical

route is feasible.

Nuclear power has a huge potential to drastically reduce carbon emissions. By

incorporating a novel and proliferation resistant reprocessing technology, nuclear

power may still ensure a future as a low carbon power production technology.

The electrochemical reduction of spent nuclear fuel is also a function of the

microstructural characteristics of the fuel pellets. The reduction reactions require

electrons and ions to be transported to the reaction site. The metal oxide phase is

usually electrically insulating (although uranium dioxide becomes somewhat more

electronically conductive above 400°C [15, 16]) and so electrons must be transported

to the reaction site via a current collector. This requires good microstructural

contact between the current collector and metal oxide phases. Also, for the ions to

also be present at reaction sites, the sample must contain a wealth of pores that

are well connected in order to provide good electrolyte penetration. The inherent

microstructural characteristics of these pores will determine how e�ciently the ions

can di�use to/from the reaction site. It is therefore important to characterise the

process on the micro-scale. By understanding the microstructure of the electrode,
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one can describe the electrochemistry on the micro-scale. This understanding can

then be translated to optimise the bulk performance of the electrode.

Therefore, this investigation aims to unearth a host of phenomena associated

with the electroreduction of uranium (IV) oxide to metallic uranium. By studying

the electrochemical performance of the system and investigating the microstruc-

tural characteristics of the system, one targets an increased understanding of this

reprocessing process. To conclude, the work described in this thesis provides an

overview of a novel reprocessing route using electrochemical reduction techniques

and examines the microstructural characterisation of the system.

The proceeding chapters of this thesis will explore the theory, experimentation

and a selection of previous studies with respect to the electroreduction of uranium

dioxide to uranium in molten salt media. Chapter II is comprised of a in-depth, high-

level literature review of actinide materials in molten salt media. It also explores

the microstructural characterisation of electrochemical devices. Chapters III and IV

describe the scienti�c theory and experimental design that have provided the foun-

dations for the hypotheses outlined within this thesis. They examine electrochemical

and microstructural characterisation techniques and describe how they have been

applied to experimentation. Chapters V-VIII provide theoretical and experimental

results of the research question this thesis attempts to answer. A combination of

experimental techniques and experimental set-ups described in Chapters III and IV

are used to characterise the electroreduction process. Lastly, a conclusion of the

thesis and topics of future work are discussed in Chapter IX.
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Chapter II. Literature Review

2 Literature Review

Due to the nature of the investigations of this thesis, this chapter is broken down

into two main topics. The �rst is a literature review of electrochemical processes of

actinide species in molten salts. The review of these studies aim to provide the reader

with a comprehensive overview of the electrochemical uses of molten salts both in

and out of the nuclear industry. The second topic of this section is the tomography

of electrochemical devices, not necessarily of molten salt based electrochemical cells.

The aim of this subsection is to provide the reader with an overall introduction of

how the microstructure of electrodes may e�ect the bulk performance of electrodes.

2.1 The FFC Cambridge Process

Although only lithium chloride-potassium chloride eutectic (LKE) is considered in

the electrochemical studies of this thesis, a useful place to begin to consider the

application of molten salts is the FFC Cambridge Process [17]. This process uses

molten salt media to electrochemically produce titanium metal from titanium diox-

ide. The traditional (and more expensive) processes of producing titanium is known

as the Kroll process. Developed by William Justin Kroll, the process involved a

number of high temperature steps to convert TiO2 to TiCl4 and then reduction of

TiCl4 to Ti using liquid magnesium [18]. The FFC Cambridge process, however,

uses an electrochemical cell to directly reduce the titanium dioxide.

During the FFC Cambridge Process, TiO2 is made into an electrode inside an

electrochemical cell. The electrolyte for this process is molten CaCl2. By apply-

ing a cathodic potential, the metal is reduced to metallic titanium. The oxygen is

transported to a graphite anode in the form of O2- ions, where it is consumed to

produce CO or CO2. In 2000, Chen et al. reported that direct electrochemical re-
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Fig. 2.1: Cyclic voltammograms of (a) titanium foils with an oxide coating and (b)
the as received foil (no coating). Comparison of both shows an oxidation
peak (7) and two reduction peaks (1 & 2) are absent on (b). This is
indicative of a reduction (and re-oxidation) of the oxide coating. Reprinted
by permission from Macmillan Publishers Ltd: Nature, Vol. 407, No. 6802,
pp. 361, (2000), copyright 2000.

duction of titanium oxide to metallic titanium was possible using a molten calcium

chloride salt [17]. A proposed intermediate for this reaction was that the oxygen

reacts with the calcium in the CaCl2 melt to form soluble CaO. However, an alter-

native, more favourable, mechanism was also suggested whereby titanium dioxide is

reduced directly to titanium, with the oxide ionizing directly into the melt and be-

ing evolved at the anode. Thin �lm oxide scales were grown onto titanium foils and

cyclic voltammetry (CV) was performed on these �lms and on pure titanium foils

(for an introduction to cyclic voltammetry, the reader is referred to Section 3.1.2 of

this thesis). The voltammograms clearly show peaks that can be attributed to the

reduction of oxide scales as these peaks were missing on the cyclic voltammograms

performed on metallic titanium foils, as shown in Figure 2.1. The results suggested

that direct electroreduction was feasible as ionization of the oxygen in TiO2 had

occurred.

Micro-hardness test showed that oxygen had in fact moved from the oxide surface

layer, into the neighbouring metal phase. Therefore, an electrochemical cell was set

up with the oxide-scaled foils set as the cathode, a graphite rod the anode and
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molten CaCl2 as the electrolyte. The cell was held at temperatures between 850-

960°C. The goal of this was to attempt the removal of the oxygen completely by

using more negative potentials. Voltages of 2.8-3.2 V were applied and this resulted

in an initial current of 1A to pass. The current gradually reduced to the background

value of, approximately, 0.2 A. Analysis of the results suggested that the oxide scale

had completely reduced to a porous metal layer.

Finally, 5-10mm diameter TiO2 pellets made from pressed powder were made

the cathode; via suspension on a kanthal cathodic current collector (or placed into a

titanium, graphite or alumina crucible - which also acted as the current collector).

Voltages of 3.0-3.2 V were applied, giving rise to a current density of approximately

104 A m-2. This resulted in foam like titanium metal with a similar microstructure to

that of titanium produced via the traditional Kroll process. This work thus proved

that a simpler, electrochemical, method could be deployed to produce titanium

compared to the Kroll process.

Further to this, Dring et al. proposed the electrochemical reduction mechanism

by using voltammetry techniques on titanium dioxide �lms in molten calcium chlo-

ride [19]. CV was performed on these titanium dioxide �lms, resulting in �ve peaks,

C0-C4, as shown in Figure 2.2. Chlorine formation from decomposition of calcium

chloride melt occurred 600-700 mV positive of the reference electrode. A peak at

ca. -1400 mV, C0, was attributed to calcium deposition from the electrolyte. The

remaining peaks (C4-C1) within the potential window were attributed to the various

electrochemical processes that occur during the electroreduction.

The phases formed at these peaks were characterised using SEM, X-ray energy

dispersive spectroscopy and X-ray di�raction. The observed de-oxygenation of tita-

nium dioxide, from peaks C0-C4, was:

TiO2 → Ti3O5 → Ti2O5 → TiO → Ti[O] (2.1)
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Fig. 2.2: Shows a cyclic voltammogram of a titanium dioxide �lm in molten calcium
chloride. 5 peaks (C0-C5) can be observed. Reprinted with permission
from J. Electrochem. Soc., 152, E104 (2005). Copyright 2005, The Elec-
trochemical Society.

Where Ti[O] is solid solutions of oxygen in titanium metal. It was also observed

that local increases in oxide concentrations, due to the removal of oxides, caused

the formation of calcium titanates. This was due to the activities of the oxide ions,

calcium ions and unreacted TiO2 exceeding the solubility product for the titanates

in calcium chloride.

This work was expanded further and, somewhat con�rmed, by Schwandt via

an investigation into the reduction pathway of TiO2 to Ti by a partial reduction

procedure [20]. Within this study, commercially available titanium oxide powder

was sintered into cathode pellets, similar to what has been previously described

[17]. The study was based on three phases of partial reduction. Firstly, a potential

di�erence of 1.5 V was applied and maintained for a period of 8 hours. During the

second phase, the potential di�erence was increased to 2.7 V and held for 24 hours

and the last phase saw the potential di�erence increased further to 2.9 V. Samples

were taken from the cell before each new phase was introduced and was prepared
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Phase # Reaction

1
4TiO2 + Ca2+ + 2e− → Ti3O5 + CaTiO3

3TiO2 + Ca2+ + 2e− → Ti2O3 + CaTiO3

2TiO2 + Ca2+ + 2e− → TiO + CaTiO3

2
2CaTiO3 + TiO → CaTi2O4

2CaTiO3 + 2e− → 2TiO + Ca2+ + 2O2−

3 CaTi2O4 + 2e− → 2TiO + Ca2+ + 2O2−

Tab. 2.1: Showing the proposed electrochemical reduction pathway in the FFC Cam-
bridge process.

for X-ray di�raction (phase composition) and electron microscope (microstructure)

characterisation. The results showed that the reduction process advances through

a series of de�ned reaction steps. These reaction steps are tabulated in Table 2.1.

After phase 3, it was understood that the TiO is reduced further to solid solutions

of oxygen in titanium metal, Ti[O]δ where δ denotes the oxygen content in the solid

solution that is in equilibrium with TiO.

In 2010, Bhagat et al. reported in situ synchrotron di�raction of the electro-

chemical reduction pathway of TiO2 [21]. In this study, Bhagat used synchrotron

white beam X-rays to study and characterize the phases that form during the pro-

cess. The advantage of producing an in situ di�raction pattern is that the cooling

and washing required in the ex situ studies could result in crystallographic changes

and the possible removal of water soluble species [21]. The experimental set-up was

similar to the cells used by authors mentioned above. However, the reaction vessel

was heated in a quartz glass vessel with slits in the furnace wall to allow the X-rays

to enter and exit. The electrolyte was contained within a glassy carbon crucible

which also acted as the anode. The cathode was formed of sintered TiO2 pellets

attached to a titanium current collector. The white X-ray beam (50 μm x100 μm)

was incident on to the pellet with a 5° scattering angle was de�ned by the beam slits.

This assembly was mounted on a translation stage which allowed nine locations at

di�erent heights in the pellet to be studied. The CaCl2 salt was pretreated, heated

and thermally equilibrated before the precursor was lowered and polarized.
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The study showed that TiO2 is immediately reduced to Ti4O7 and calcium ti-

tanate, CaTiO3, is also produced. The formation of CaTiO3 was attributed to the

release of oxygen ions into the electrolyte, formed from the reduction of TiO2. In-

triguingly, Bhagat was unable to detect the formation of Ti3O5, con�icting with

results produced from Dring, Schwandt and Alexander [19- 22]. The theory be-

hind this is that the homogeneity range for Ti3O5 is too small and would require

longer polarization in the speci�c conditions to form. A further signi�cant point is

that the CaTiO3 that is formed is most likely to be sub-stoichiometric. The in-situ

XRD analysis showed slight shifts in the main peaks of CaTiO3, resulting in lower

d-spacing values. This suggests that the crystal structure of CaTiO3 is altered as

oxygen ions are removed from the molecules.

In addition, this investigation was also able to con�rm that the production of

CaTi2O4 was in fact created via a comproportionation reaction as described by

Alexander [22], rather than the electrochemical pathway as described by Schwandt

[20]. Furthermore, during the latter stages of the reduction, CaO was detected

throughout the pellet. This was correlated to the reduction of CaTi2O4 resulting in

rapid evolution of oxide ions. However, the porosity of the pellet is reduced during

reduction (due to the sintering of Ti and formation of titanates) and causes the

pellet to become saturated with oxide ions, causing CaO to form.

The FFC Cambridge Process is an electrochemical reduction of titanium dioxide

in a calcium chloride melt at 900°C. By polarizing the TiO2 in a CaCl2 electrolyte, it

is possible to produce titanium metal with a similar microstructure to that produced

by the Kroll process. From the reports reviewed in this section, it is clear that the

reduction of titanium dioxide to titanium is not a simple 4-electron step process.

The complexity of the electrochemical reduction has been studied extensively to

better understand the reduction pathway. From this work, it is conceived that

reduction process in molten salt media may include chemical reactions as well as

electrochemical.
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2.2 Review of Actinide - Molten Salt Electrochemistry

Molten salts are ionic compounds which are, generally, solid at standard tempera-

ture and pressure (25ºC, 1 bar). They may be used in their liquid, non-aqueous,

state by elevating the temperature beyond their melting point, giving rise to a host

of advantages and making them applicable to many di�erent applications: from use

as solvents to electrochemical electrolytes [23]. In terms of their use as a solvent,

they may generally be classed as ionic solvents due to their di�ering chemical prop-

erties when compared to other aqueous or non-aqueous solvents. In addition, due to

the increased temperature in which molten salt solvents operate, this usually allows

reaction kinetics to be much more rapid; following the laws of chemical equilibrium.

Because molten salts consist of anions and cations, they are ideally suited to be elec-

trolytes in electrochemical processes. Alkali and alkaline earth metal salts possess

very negative Gibbs free energies of formation; hence, they possess very negative

cation deposition voltages and large electrochemical windows compared to aqueous

systems. Moreover, molten salts have the capacity to dissolve materials to very high

concentrations [24]. This high solubility results in high limiting current densities

and, hence, high productivities in electrochemical processes. Another advantage

of molten salts is that chemical reactions between the metal ions and the solvent

are generally absent. However, due to the multiplicity of metal oxidation states,

interactions between the metal ions and the solvent must be carefully monitored.

A mixture of two or more salts containing the same anion may form a eutectic

system. This is a mixture of compounds that solidi�es at a lower temperature than

any other percentage composition made up of the same salts. A eutectic system may

be easily identi�ed using a phase diagram of the chemical mixture; the eutectic point

being a well-de�ned point of lowest temperature of solidi�cation of the diagram.

Lithium chloride and potassium chloride form a eutectic at 59% mol. of lithium

chloride. The phase diagram for the lithium chloride-potassium chloride system
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Fig. 2.3: Phase diagrams for (a) The LiCl-KCl system and (b) The NaCl-KCl sys-
tem. The purple shaded areas denote the solid state of the system. The
eutectic point is clearly shown in (a) - a eutectic is the point is the lowest,
single, point at which the two compounds have the lowest melting point.
This is compared to (b) where there is no single point of lowest melting
point. Instead there are multiple values of molar ratio of NaCl and KCl in
which the lowest melting point is achieved.

is shown in Figure 2.3 with comparison to that of the potassium chloride-sodium

chloride system which does not form a eutectic.

Figure 2.3 shows the phase diagrams for a mixture of lithium chloride and potas-

sium chloride (a) and for a mixture of sodium chloride and potassium chloride (b).

The plots are molar percentage of one of the species versus (vs.) the temperature

of the mixture of chlorides. The purple regions in Figure 2.3 depict the solid states

of the mixture of salts. Above this purple region the salt mixture exists completely

as liquid. From the phase diagram for the LiCl-KCl system, it is noted that there is

a eutectic point. This is de�ned as the lowest possible melting point of any mixing

ratio of the species involved. This is comparable to the phase diagram of NaCl-KCl

which does not form a eutectic. This is because there are multiple mixing ratios of

NaCl and KCl in which the lowest melting point exists, albeit the range is small. As

one can see, the eutectic point for the lithium chloride-potassium chloride system is

at a molar ratio of 0.59:0.41 (LiCl:KCl).

For the work presented in this thesis, the molten salt adopted for all exper-

imentation is lithium chloride-potassium chloride eutectic (LKE). This particular
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eutectic may be regarded as a �low temperature� molten salt due to its relatively

low melting point of 352°C, compared to other salts (658°C and 772°C for NaCl-KCl

and CaCl2 respectively, for example) . LKE is an alkali chloride salt and, there-

fore, possesses a relatively large potential window. Lithium deposition occurs at

-3.57 V versus the standard chlorine electrode - which allows for its use as an elec-

trolyte in various, low temperature, electrochemical separation processes, including

the electrochemical study of this work.

2.2.1 Actinide and Lanthanide Stabilities in Molten Salts

The next stages of this literature review aim to provide a comprehensive review of

nuclear materials in molten salts. The most useful place to start is by reviewing the

stabilities of elements/compounds of spent nuclear fuel in molten salt environments.

By considering molten salts as an ionic solvent, compounds may exist, or even

co-exist, within a molten salt and that an element (or compound) may also exists

in multiple oxidation states. Halide/nitrate/silicate based compounds, for example,

would integrate into the ionic structure of the molten salt. As with any solvent,

whether it be organic or ionic, many compounds are also insoluble in molten salts.

Although the miscibility of di�erent solutes are not described in detail in this thesis,

this leads to a variation in a specie's ionic stability within molten salts, leading

to the possibility of molten salt liquid-liquid extraction processes. Dissolution of

a compound into a molten salt could be a complete dissociation into its own re-

spective anion and cation but, and more generally, would see the metallic cation

form complexes with the anions of the solvent. For example, the solvated form of

zirconium (II) in a chloride salt would be ZrCl42-, although it is common to drop the

compound's ions that are associated with the solute, i.e. Zr2+[25]. Once dissolved

into the ionic structure of a molten salt, the species would normally be exposed

to ion coordination interactions, as expected, but also to coulombic interactions as

well.
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One of the most important features of the ionic solvent characteristics of molten

salts is the oxygen anion, O2-. This anion is able to exist freely in a molten salt

environment and will alter the �oxoacidity� of the melt based on the activity of

oxygen anions in the melt [26, 27]. This concept is directly related to the acidity of

aqueous solvents, which is dependent on the activity of the hydronium ion, denoted

as aH+ : the negative logarithm of the activity of H+ions is referred to as pH in

aqueous systems, whilst in non-aqueous molten salt media, this principle may be

applied to the negative logarithm of the activity of O2-, the pO2-. This speci�c anion

is able to coulombically interact with species dissolved in a molten salt, leading to

oxocaid-oxobase couples. Adopting the general conventions, an oxoacid is de�ned

as an electron pair acceptor and an oxobase is de�ned as a complex containing the

O2-ion, which acts as an electron pair donor (although the transfer of electrons is not

restricted to pairs) [25]. This leads to one being able to describe the oxoacid-oxobase

system using Equation 2.2:

oxobase → oxoacid+O2− (2.2)

Depending on the activity of oxygen anions contained within a molten salt system,

this oxobase-oxoacid couple has the ability to react with dissolved compounds and is

a very important phenomena to control. Moreover, this couple may also coulombi-

cally interact with the system in an electrolytic cell. That is, if a molten salt based

solute is utilized as an electrolyte, the oxoacid-oxobase couple may take the form:

oxobase+ ne− → oxobase′ + oxoacid+mO2− (2.3)

Where the term �oxobase´� is a di�erent, lower oxidation state, oxobase to that of

the reactant. However, and more generally, the coulombic interactions of the O2-

ion on redox properties of electrochemical cells would take the form:
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Ox+ ne− → Rd+mO2− (2.4)

Where the redox potential of the system is given by the Nernst equation:

E = E0 +
RT

nF
ln

(
a(Ox)

a(Rd)

)
−mRT

nF
ln
(
a(O2−)

)
(2.5)

Therefore, it is apparent that one may diagrammatically represent the species con-

tained within a molten salt in terms of the redox potential and the pO2- of the

system, similar to that of well know Pourbaix diagrams for aqueous media; a plot

of potential vs. pH. These potential-pO2- diagrams are referred to within this thesis

as Littlewood diagrams, after Roy Littlewood who �rst described an in-depth dia-

grammatic representation in 1962 [28]. More information on the construction and

characteristics of these diagrams is given in Chapter 5. The proceeding sub-chapters

will study the various radioactive species that have been identi�ed in molten salt

media with Littlewood diagrams underpinning these studies.

2.2.1.1 Uranium Species in Molten Salts

In 1961 Molina et al. published work which provided an insight into the uranium

species that would be stable in the LKE melt. The Littlewood diagram presented

within predicted that 4 phases would be present in LKE � UO3, UO2, UO2
2+ and

U4+ species, with the �rst two of those species being insoluble in LKE [29]. In-

terestingly, the paper described three oxidising agents that could be used to form

UO2
2+ species within the melt via a oxoacid-oxobase reaction; reactions with Cu2+,

S2O8
2-and via bubbling Cl2 gas through the melt. The diagram depicted domains

of stability for the 4 species and the redox conditions required to change from one

region to another. However, uranium (V) species were observed in LKE in 1963 by

Adams et al. [30]. The pentavalent state of uranium, in aqueous systems, is well

known to rapidly disproportionate into uranium (IV) and uranium (VI) species,
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Fig. 2.4: A Littlewood (or predominance) diagram showing the proposed regions
of stability of uranium species in LKE. Reprinted with permission from
Elsevier: Analytica Chimica Acta, 65 (1973) 245-247.

such as the thermal disproportionation of UCl5 [31]:

2UCl5 → UCl6 + UCl4 (2.6)

On the other hand, Adams et al. were able to show that pentavalent uranium was

stable in inert atmospheres or in vacuo. This was deduced from absorption spectra

believed to be a result of the equilibrium:

UO2Cl2 → UO2Cl +
1

2
Cl (2.7)

However, the authors were unsuccessful in their attempts to produce the known pen-

tavalent species, UCl5 and UOCl3; the former being too volatile above the melting

point of the molten salt and the latter being unstable. In addition, it was remarked

that the UO2
+ ion exists within LKE in the equilibrium:

UO2+
2 + UO2 → 2UO+

2 (2.8)

This �nding was also reported by Komorov et al. [32].

This observation of UO2Cl species in molten LKE led to a revised Littlewood
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diagram in LKE in 1973 [33]. This diagram, reproduced in Figure 2.4, included the

species predicted previously with the addition of the UO2
+ and U3+ species; this

study used data from the studies of Molina et al. and Ishno et al. [34] and was

presented on the same mole fraction scale and so easy comparisons may be drawn

from each of the diagrams. The stability of the UO2
+ ion within LKE was debated:

many studies showed its stability and many showed its instability in the fused salt.

Uchida et al. published two works in the 1980s with evidence showing that this

species was unstable in fused LKE [35, 36]. It was noted that the UO2
+ ion would

exist as an intermediate during the two step, two electron, electrochemical reaction

UO2+
2 + e− = UO+

2 (2.9)

UO+
2 + e− = UO2 (2.10)

The �rst study utilized the polarography technique to deduce the half-wave potential

for the electrochemical couple of Equation 2.10. It was found that E1/2
Eq.2.10 was

equal to -0.487 ± 0.005 V vs. 1M Pt(II)|Pt. This study also highlighted that the

redox potential for uranyl reduction (Equation 2.11) had been well studied and all

values reported are -0.285 V, -0.262 V and -0.271 V [37-38] respectively.

UO2+
2 + 2e− = UO2 (2.11)

Therefore, the reduction from UO2
2+ to UO2 (Equation 2.11) is seen to occur before

that of UO2
+ to UO2 (Equation 2.10). Moreover, it is noted that the UO2

2+ species

acts as an electron pair acceptor. With the addition of O2- ions, this species un-

dergoes a oxobase-oxoacid reaction, forming insoluble UO3 in the melt. Therefore,

Uchida et al. proposed a new Littlewood diagram in 1981 showing no thermody-

namically stable region for UO2
+ ions with the discrepancy being attributed to the
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di�erent standard potential value deduced by both authors [35].

The debate continued in 1986 when Martinot et al. published yet a new dia-

gram showing the inherent stability of UO2
+ ions in LKE [39]. Martinot et al. uti-

lized cyclic voltammetry and di�erential pulse polarography to determine that the

UO2
2+|U couple did in fact follow the two step electrochemical reaction of Equations

2.9 and 2.10 and, in fact, produced standard potentials for the UO2
2+|UO2

+ couple

to be -0.84 V versus the Cl2|2Cl- reference; in broad agreement with that deduced

by Uchida et al. By using these values of standard potential, the author produced a

Littlewood diagram with a thermodynamic region of stability for UO2
+, although it

was more narrow than that predicted previously [33]. Martinot et al. commented on

the fact that the region of stability was evinced and Uchida et al. did not take into

consideration the UO2
+ species and seemed to ignore the spectroscopic evidence of

its stability.

2.2.1.2 Plutonium Species in Molten Salts

Similar studies to those for the uranium systems in the previous section have been

implemented for plutonium species in LKE at 500°C. Martinot et al. provided the

�rst depiction of plutonium species in LKE at 400°C in 1973 [40]. The diagram

showed the stability of four Pu species: PuO2; Pu(IV); Pu(III) and metallic Pu

which was again based on determination of solubility products coupled with ther-

modynamic data to deduce regions of stability. Landresse et al. predicted the

stability of Pu(III), Pu(IV), Pu(V) and Pu(VI) species within the melt. However,

the diagram presented showed the regions of stability of Pu4+, PuO2
+ and PuO2

2+

above the anodic melt deposition potential of the melt [41]. The author concluded

that these phases would only be stable in an atmosphere of O2-Cl2. The author

describes these phases as stable which cannot be true if they are only stable as

gas outside of the potential window of the melt; that is, the author attributes the

stability of these phases as the salt is being anodically decomposed. Moreover,
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the author seemed not to comment on the corresponding cathodic half-cell reaction

that would occur during anodic decomposition. This phenomenon was recognised

by Martinot et al. who, in due course, published a new diagram in 1986 showing

only the regions of stability within the potential window of the melt [40]. The most

recent publication of this system is that of Caravaca et al. in 2008 [42]. Although

the author did not acknowledge the Littlewood diagrams previously published. The

diagram presented here di�ers from the published diagrams mentioned above and

shows the stability of phases: PuO2; Pu2O3; PuCl3 and Pu. Di�erences between

these diagrams, speci�cally the addition of the Pu2O3 phase, are not commented

upon by the author.

2.2.1.3 Miscellaneous Species in Molten Salts

Littlewood diagrams for various lanthanides and actinides in molten LKE have also

been published. Some, if not all, of these species would be present in spent nuclear

fuel and, thus, assessing their stability in LKE is signi�cant. Perhaps the most

signi�cant conclusion to be drawn from these diagrams is the perceived di�culty to

separate them selectively from the bulk material in spent nuclear fuel (U and Pu

species). Littlewood diagrams for La, Nd, Gd, Cm, Th and Pa all show similar re-

duction potentials for the formation of metallic species from their respective oxides

[30, 33, 35, 39-43]. This results in the predicted di�culty of selectively separating

these elements via a direct electrochemical reduction pathway. However, as thermo-

dynamic data and experimental techniques have been updated these diagrams may

be out of date. Moreover, due to the e�ect of the oxide ion concentration in the melt

playing a role in the electroreduction potentials, it may be apparent to alter the pro-

cess conditions to provide a more favourable route for the selective electroreduction

for uranium dioxide and plutonium dioxide.

Littlewood diagrams are a useful tool for thermodynamically predicting stable

species within a molten salt. They allow visualisation of which species are stable
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and under which conditions those species will exists or co-exist. Moreover, the

diagrams are able to depict the necessary conditions to produce a particular species

in the molten salt from another. Many studies have been published which show

the stabilities (and instabilities) of uranium species in molten LKE. Although there

are some inconsistencies, particularly surrounding the stability of UO2
+species. All

of the previous work highlights the inherent stability of many species in the melt.

Moreover, one can conclude that uranium (IV) and uranium (VI) oxide are both

insoluble and precipitate out of the melt upon their formation. This gives rise to

the ability of one to recover uranium from spent nuclear fuel as a solid deposit at

a cathode and is reviewed more extensively in Section 2.2.3. The stability of Pu

species in LKE are, again, uncertain. All of the previously published diagrams are

in agreement with stability of Pu(III), Pu(IV) species but disagree on the other

species mentioned above. Moreover, it is noted that oxobase-oxoacid reactions may

play an important role in deducing which species exist within a molten salt. The

pO2- value should not be overlooked when attempting to control the conditions of

a molten salt system.

2.2.2 Dissolution into Molten Salts

Many of the studies highlighted in Section 2.2.1 produced species in the molten

salt via introducing a chloride of that species into the salt mixture itself. The

other method of introducing a particular species into a molten salt is via anodic

dissolution.

The dissolution of various nuclear materials in LKE has been studied and the

literature contains information regarding the solubilities of various nuclear based

compounds in this salt. Dissolution of these materials within a molten salt allows

one to contain appreciable quantities of nuclear elements in solution within the

salt. This can lead to various separation processes which will be expanded upon in

forthcoming sections. The solubility product describes how the solid phase of the



2 Literature Review 58

compound of the element in contact with a molten salt solvent is in equilibrium with

its dissociated ions. The solubility product (K) is de�ned as (e.g.):

KUO2 = aU2+ (aO2−) 2 (2.12)

As described in the previous subsection, Littlewood diagrams are able to predict

regions of stable phases within the melt. Solubility products have been used to con-

struct these diagrams. Dissolution of species into the molten salt (or precipitation

titration) allow solubility products to be calculated and, thus, pO2- values for phase

formation to be deduced.

2.2.2.1 Anodic dissolution of uranium mononitride

In an electrochemical cell, one is able to introduce elements into the melt via anodic

dissolution. Selectively recovering the metallic form onto the cathode in these cir-

cumstances is known as electrore�ning and is expanded upon in a latter subsection

(Section 2.2.5). It is possible to anodically dissolve uranium into molten LKE as

U3+ ions from uranium mononitride (UN) [44]. By cathodically polarising a graphite

rod dipped into UN powder (at -2.4 V versus an Ag|AgCl reference electrode and

molybdenum counter electrode), metallic uranium is deposited onto the graphite

electrode. This deposition leads to a UC alloy with a surface layer of metallic U.

It is then possible to anodically polarize this to dissolve a quantity of uranium into

the melt. This occurs at -0.55 V and the dissolution of UC alloys at a potential of

approximately -0.7 V. The threshold of dissolution of UN into the melt was observed

to occur at -0.66 V (all of the electrode potentials reported here are with respect

to the Ag|AgCl reference electrode). Above this electrode potential, UN is unstable

and decomposes to U3+ + N2 due to the reaction:

UN + 3{AgCl} = UCl3 +
1

2
N2 + 3Ag (2.13)
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Where the brackets denote components dissolved in the eutectic.

2.2.2.2 Anodic Dissolution of uranium and uranium dioxide

Work done by the Argonne National Laboratory concerned uranium dissolution

into LKE containing 10% by weight of UCl3 [45]. The aim of the study was to

ascertain the anodic processes with the goal of maximising uranium dissolution

from the zirconium metal cladding hulls and to minimise zirconium dissolution. The

author was able to ascertain that uranium dissolves in the melt via electrochemical

dissolution. The average dissolutions of 22 batches were analysed and gave, on

average, uranium dissolution of 96% wt. and retention of 86% wt. of the zirconium

cladding. The electrode potential for uranium dissolution in this work was not

reported.

Dissolution of uranium into LKE is also feasible by directly anodizing metal-

lic uranium electrodes [46]. By anodizing this electrode at low current densities

(<50 mA cm-2) one is able to form U3+ species via a single, 3 electron, step. The

electrochemical reaction is thus:

U → U(III) + 3e− (2.14)

This coulometric titration method has been applied in other studies e.g. Hill et al.

[37]. Pure, out-gassed, rods of uranium were anodically polarized with a current

density of approximately 10 mA cm-2. These authors reported 100% current e�-

ciency for this electrochemical reaction. Moreover, it is possible to produce U(IV)

species within the melt by reacting U(III) with coulometrically generated Pt(II)

from Pt foil anodes:

2U(III) + Pt(II) = 2U(IV ) + Pt (2.15)

The authors also described the direct anodic dissolution of uranium dioxide into the
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melt. This was done by stripping UO2 anodically. The dissolution was reported

to occur at approximately -0.285 V with respect to a Pt(II)-Pt reference electrode.

This value is reported to be in�uenced by oxide impurities within the melt which

agrees with Littlewood diagram predictions.

2.2.2.3 Plutonium dissolution

Anodic and direct dissolution techniques have not been extensively reported in the

literature. However it is reported that the dissolution of PuO2 into LKE is feasible

via a direct dissolution technique, that is [47]:

PuO2 + Cl2 ↔ PuO2Cl2 (2.16)

It has also been reported that plutonium dissolution into the melt can be achieved

via the anodic titration of a PuPt3 precursor. Detailed information of this process

is not presented [48].

The anodic dissolution of plutonium nitride is also possible. This is similar to

that of uranium nitride reported earlier. It is possible to produce a quantity of

plutonium(III) in the melt by polarising PuN anodically in a LKE melt containing

small quantities of PuCl3 [49]. The anodic titration equilibrium potential is -0.88V

versus the silver chloride reference electrode and was attributed, by the author, to

the reaction:

PuN + 3Ag+ = Pu3+ +
1

2
N2 + 3Ag (2.17)

Moreover anodic titration of Pu into LKE is feasible and occurs in a single, 3 electron,

step via the electrochemical half-cell reaction [50]:

Pu = Pu3+ + 3e− (2.18)
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Cyclic voltammetry has been used to con�rm this reaction. However reaction con-

ditions and requirements are not stated in the literature. From an electrochemical

point of view, the method and techniques required for anodic titration/dissolution

into the melt should broadly follow those speci�ed for uranium dissolution.

Dissolution of uranium species into LKE has been extensively researched and

published in literature. This has not been done for Pu. However, the dissolution of

Pu species (i.e. anodic polarization) would be possible, albeit at di�erent electrode

potentials. The Gibbs free energy change for the formation of U(III) species in the

melt is similar to that for Pu(III) species. The polarization potentials predicted from

the Nernst equation are slightly more negative to that for uranium. In practice the

dissolution potentials of uranium (-0.2V vs. Pt(II)-Pt(0)) and plutonium (-0.88V vs.

Ag|AgCl) are very di�erent. On this basis one could expect that the two materials

would be able to be selectively dissolved into the melt. Therefore separation of a

mixture of these two elements would be possible via a ��rst in last out� electrore�ning

technique. In addition, the dissolution of species into the melt depends strongly on

the solubility in the melt which is a function of operating conditions such as pressure

and temperature of the salt. Moreover, equilibria between the melts and the cell

atmospheres may be manipulated favourably. Dissolution also depends strongly on

the complexity of the system.

2.2.3 Electrodeposition using Molten Salts

As mentioned in Section 2.2.1, some species are insoluble within the molten salt.

This gives rise to the ability to remove these species via an electrodeposition tech-

nique. By electroplating an insoluble species onto an electrode, recovery of that

species may be achieved easily. The deposition of nuclear materials via electro-

chemical pathways has been extensively researched and data are readily available

[46-53]. The electrodeposition of radioactive species, in particular uranium species,

are known due to the electrore�ning process which is described in more detail in
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Section 2.2.5 of this thesis. However, although these studies are in broad agreement

with each other, one can conclude that because these results depend on various cell

designs, activities and electrodeposition techniques, there may be some discrepan-

cies.

2.2.3.1 Electrodeposition of uranium

The �rst report of metallic uranium formulation via electrolysis of a molten salt

solution was presented by Driggs and Lilliendahl in the 1930s [54]. Here, KUF5 and

UCl4 were added to a NaCl-KCl melt at 775°C. A voltage of 5 V was applied between

a molybdenum cathode and the graphite anode, with a current density of 1500 A

m-2. Uranium metal began to appear upon the cathode in what was described as a

�tree-like� deposit, thought to be dendritic. This occurred as soon as the uranium

source was added to the melt. It was also noted that changing the current density

to values as high as 3000 A dm-2 had no e�ect on the appearance and particle size

of the deposits.

Work carried out by Inman et al. also observed dendritic deposits of uranium on

tungsten/molybdenum cathodes [46]. The study was based on the electrochemistry

of uranium and uranium trichloride in molten LKE and it was deduced that the

reduction of UCl3 transpired in a single, 3-electron step from the U3+ species. It was

also reported that the dendritic deposits were more profound with a lower current

density. When the current density was increased, it was observed that the deposits

were compact powders overlaid with the dendritic deposits. This contrasts with the

observations by Driggs and Lilliendahl where the current density had no e�ect on

particle size. Inman et al. attributed the powdery deposit to a homogeneous liquid-

phase reduction of the uranium trichloride by lithium at the electrode surface.

By using a tungsten working electrode, it was found that the deposition of ura-

nium from uranium (III) occurs at a potential di�erence of -2.541 V at 500°C in LKE

with respect to a standard chlorine electrode . This value is in contrast with the



2 Literature Review 63

theoretical prediction of -2.744 V and to that in the Littlewood diagram presented

by Landresse [33], although this could be due to the experimental conditions used.

The author also presented results showing that the addition of oxide ions caused the

uranium potentials to change due to the fact that uranium oxide/ uranium oxychlo-

ride species were formed in the melt, which again agrees with Littlewood diagram

predictions.

To evince the disparity of electrodeposition potentials in the literature it is worth

noting a similar experiment conducted by Sakamura et al [52]. They reported that

the redox potential of the U(III)/U(0) couple is -2.83 V with respect to a chlorine

electrode. This discrepancy is due to the very low activities used in this work;

concentrations used were in the region of X = 0.03-3x10-5. Other redox potentials

are presented as -2.45 V [49], -2.6 V [53] and -3.099 V [55] all with respect to the

chlorine electrode.

More recently a study was conducted in order to provide more details about

this process in the open literature [56]. A solid iron cathode was employed, rather

than a steel one, as reported earlier. Dendritic deposits were observed, regardless of

the current density. They were more prominent on the side adjacent to the anode

and tended to break o�. This agrees with observations made by Inman et al. [46].

Perhaps the most important conclusion that can be drawn from this report are the

activity coe�cients of U and Pu in liquid cadmium. The activity coe�cient for

Pu is 1.4x10-4 whilst that of U is 75. In practice the reduction potentials of both

species are very close and so simultaneous deposition of both species may occur. It

should also be noted that the rotation of the solid cathode facilitates more uniform

deposits. It is apparent that fast rotational speeds, say 20 rpm, lead to non-adherent

uranium but rotational speeds of 10 rpm lead to more uniform deposits and high

collection e�ciencies, although the deposits are still observed to be dendritic.
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2.2.3.2 Electrodeposition of plutonium

Plutonium(III) in LKE can be prepared by anodic dissolution. It is then possible to

electrodeposit metallic plutonium onto a working electrode if the reduction potential

is -1.73 V with respect to the silver chloride reference electrode [57]. It is observed

that the current increases as the plutonium is deposited due to the increased surface

area caused by deposition. (The current density is related to electrode potential).

The deposits are a mixture of Pu metal and LKE salt. It is not certain whether this

is occluded melt or is just due to surface adhesion of the salt when the electrodes

are removed. This redox potential is similar to that observed by Serp et al. who

reported the potential to be -1.76V relative to the silver chloride reference electrode

[58]. The redox potential is also in agreement with a study by Roy et. al. [59].

The electrodeposition of nuclear metals onto electrodes has been highlighted

within this section. Perhaps the most striking conclusion one can draw from this

review is the discrepancy between deposition potentials. Although the authors' stud-

ies all reveal broad agreement, the deposition potentials are signi�cantly di�erent.

Of course, due to the Nernstian behaviour of electrochemical deposition, the redox

potential of the U|U3+ couple depends strongly on thermodynamics and reaction

conditions, such as the pO2-. Thus, comparing redox potentials between di�erent

authors is di�cult. On the other hand, it is important to note that many of the

deposits formed on solid cathodes were dendritic. This phenomenon is an important

complicating characteristic of the system. If the dendritic growth of uranium on a

solid cathode were to become too large then this could either break o� and fall into

the bulk melt, or could in fact cause short circuiting of the system. Although a

study has been conducted in which the cathode was rotated at low RPM �which

helps to inhibit dendritic growth � this introduces unnecessary complications into

the reaction design. However, there may be ways to facilitate the uniform growth

of uranium onto solid cathodes via an electrochemical pulse technique. That is,
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instead of applying a constant potential across the electrodes, one could pulse this

potential in order to achieve uniform deposits [60].

2.2.4 Reduction of Uranium Oxides in Molten Salts

As shown with the FFC Cambridge process in Section 2.1, molten salts may pro-

vide advantageous process conditions for the electroreduction of titanium dioxide to

titanium metal. This practice may also be adopted within the nuclear industry in

terms of reducing the actinides to their metallic form. Typically, compounds of the

actinides possess very negative Gibbs free energies of formation and hence they pos-

sess very negative electrochemical reduction potentials, as predicted by the Nernst

equation. However, because the alkaline earth - halide molten salts also possess very

negative Gibbs free energies of formation, the salt's cation deposition potential is

also very negative. This may prove to be very advantageous as it could allow for

the electrochemical reduction of actinide oxides to their metallic form in the molten

salts, which would not be feasible in aqueous systems.

2.2.4.1 Reduction in LiCl containing Li2O

Investigations into the reduction of uranium oxides to metallic uranium have been

reported in the LiCl molten containing 1 mol % percentage of Li2O [61-64]. The

Li2O added to the LiCl serves as a reduction agent; the reduction of uranium oxide

is not electrochemical but, instead, proceeds via reaction with lithium metal. The

thermodynamic decomposition of Li2O is less negative than that of the LiCl melt.

This o�ers the ability to chemically reduce compounds of the actinides by reaction

with lithium metal which is plated onto the metal oxide via decomposition of Li2O.

Hur et al. reported the both the electrochemical reduction of U3O8 to UO2

and the chemical reduction of U3O8 powder by electrochemically plating lithium

onto the U3O8 working electrode [61]. In the former study, Hur reported that the

reduction potential for the electrochemical reduction of U3O8 to UO2 to be much
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less negative to that of the decomposition potential of the molten salt (-0.48 V and

-3.46 V respectively). This is in broad agreement to Littlewood diagrams of uranium

species in LKE. However, the reduction potential of UO2 was reported to be only 60

mV more negative to the reduction of Li2O, whereby lithium metal is plated onto

the working electrode. With this particular experimental set-up, the sole direct

electroreduction of UO2 to U would prove di�cult, especially if an under-potential

for the reduction of Li2O were to exist, as it would be likely that the reduction

of Li+ would occur simultaneously. However, by deliberately plating lithium onto

the U3O8 working electrode, Hur et al. proved that the reduction proceeds via a

chemical reaction with lithium metal. The reaction pathway was attributed to be:

Li+ + e− → Li (2.19)

U3O8 + 16Li→ 3U + 16Li+ + 8O2− (2.20)

Seo et al. published work in 2006 relating to the reduction mechanism of uranium

oxide in LiCl containing Li2O [62]. Two mechanisms were provided; Mechanism I

and Mechanism II. The �rst was the chemical reduction of U3O8 by lithium metal

when the cell was held at a more cathodic cell potential with respect to the decom-

position potential of Li2O. The second mechanism proceeded via the formation of

lithium uranates at cell potentials more anodic to the decomposition potential of

Li2O. Within the study of Mechanism I, the local concentration of Li2O was mea-

sured during the reaction. The concentration was seen to increase, providing more

evidence that the reduction of uranium oxide proceeds via Equation 2.20, or more

generally;

UxOy + 2yLi→ xU + 2yLi+ + yO2− (2.21)
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Fig. 2.5: SEM Micrograph showing a partially reduced mixed oxide (MOX) sample.
The reduced region is seen to have a structured described as being �coral-
like�. Reprinted from Journal of Nuclear Materials, 328, Electro-chemical
reduction of MOX in LiCl, Pages 97�102, Copyright (2004), with permis-
sion from Elsevier

During Mechanism II, X-ray di�raction analysis of reaction products showed that

lithium uranates were formed during electrolysis. It should be noted that uranium

oxides may be converted into lithium uranates according to the partial pressure of

oxygen in the cell and the concentration of lithium oxide in the melt [65]. It is

also suggested that the uranates that are formed are electrochemically reduced to

uranium metal via the following equation:

LizUxOy + (2y − z)e− + (2y − z)Li+ → xU + 2yLi+yO2− (2.22)

Jeong et al. also observed the two reduction mechanisms in a LiCl melt contain-

ing 1% mol. Li2O [63]. X-ray di�raction analysis observed the formation of LiUO3

as well as the formation of U4O9 and UO2 during electrolysis of U3O8. Conver-

sion of UO2 to U was seen to be an electrochemical reduction as well as a chemical

reduction via reaction with lithium metal. The authors also provided a scanning

electron micrograph of the uranium product which showed a porous microstructure

made up of globules with an approximate width of 10 μm.

Kurata et al. investigated the electrochemical reduction of spent MOX fuel in
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LiCl [64]. Within this study, the author provided cyclic voltammograms showing

the electrochemical reduction of the MOX fuel to be 200 mV more positive to the

decomposition of Li2O. The peak provided is relatively broad and does not show

distinct reduction peaks for uranium oxide and plutonium oxide. This could be due

to the fact that both of these oxides possess similar reduction potentials, causing the

electroreduction peaks to be seen as a single, broad, peak. Also, it is possible that

increased levels of CaO in the molten salt reduced the resolution of the two peaks.

The microstructure of a partially reduced MOX fuel pellet was also provided and

may be observed in Figure 2.5. This image shows two distinct regions; one of the

regions shows the reduced part of the sample and other the unreduced region. The

author described the reduced regions to have a �coral-like� structure which is similar

to that provided by Jeong et al. There are a couple of noticeable di�erences between

the reduced and unreduced regions; namely, the reduced region appears to be less

dense to that of the unreduced regions. The reduction also appears to propagate

from one side of the pellet to the other. The grain boundaries were seen to be

reduced �rst before the reduction propagated into the grain itself. The di�erence in

volume between uranium and it's oxide is attributed to the formation of the porous,

�coral-like�, structure.

2.2.4.2 Reduction in CaCl2

Following on from the electrochemical reduction in LiCl-Li2O melts, the electro-

chemical reduction of UO2 has also been studied in CaCl2. Sakamura et al. studied

the direct electrochemical reduction of UO2 to metallic U in both LiCl and CaCl2

molten salts [66]. Within these investigations, the author showed the direct elec-

trochemical reduction potential of UO2 to U to be close to the cation's deposition

potential, in agreement to that predicted by the Nernst equation and those shown

by previous authors. Chronopotentiometry was used to reduce two samples in both

of the molten salts. The two samples were di�erent by their tap density; the �rst
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samples were 83% of the density of the pure oxide for both LiCl and CaCl2 salts.

The second samples were 98% of the density of the oxide for the LiCl study and

94% for the CaCl2 study.

During the electroreduction of UO2 in CaCl2, the author observed that the reduc-

tion propagated from the outside to the inside of the pellet. Considering the theory

of triple phase interlines (see Section 2.3.2), one would expect the electroreduction

to begin at the interface between the current collector and the pellet, located on the

inside of the pellet. However, UO2 is known to become su�ciently electronically

conductive at temperatures in which CaCl2 are used; UO2 possesses an electronic

conductivity of approximately 0.8 Ω-1 cm-1at 1000 K compared to approximately

0.05 Ω-1 cm-1 600 K [15, 16]. Because of the electronic conductivity of UO2 at

this temperature, the electrochemical reduction would be prominent at the point

where there is an excess of molten salt; the outer region of the pellet. The author

also observed the formation of a dense skin of metallic uranium which inhibited the

penetration of molten salt and hence suppressed the electroreduction. The result

was a pellet of unreduced UO2 covered in a coat of reduced U. This phenomenon

was not observed in the LiCl melt, even though it had a higher tap density and,

therefore, was less porous. This was likely due to the low electronic conductivity of

the oxide causing the electroreduction to not concentrate around the outside of the

pellet. This allowed the di�usion of O2- ions out of the pellet and into the bulk salt

to be consumed at the anode, resulting in a more reduced sample compared to that

in the CaCl2 melt.

The current e�ciency of the electroreduction in the CaCl2 melt was calculated

to be less than that in the LiCl melt. This was attributed to a calcium deposition

under-potential that was not observed in the LiCl melt. Calcium metal is much more

soluble in CaCl2 than lithium metal is in LiCl. This, according to the author, could

explain the presence of the under-potential. Because the electroreduction of UO2 is

close to the decomposition potential of the molten salt, any under-potential could
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see calcium metal being reduced at the cathode simultaneously to the reduction of

UO2. The calcium would dissolve into the melt and could then be oxidised at the

anode, causing a low current e�ciency. Similar observations were seen by Iizuka et

al. who reduced spent MOX pellets in CaCl2 [67].

The electrochemical reduction studies reviewed within this subsection all show

the feasibility of reducing UO2 to metallic U in molten salt media. Perhaps the

most important conclusion to draw from these investigations is the fact that the

electrochemical reduction of UO2 to it's metallic form appears to occur in a single

step which involves the transfer of 4-electrons;

UO2 + 4e− → U + 2O2− (2.23)

Moreover, it is important to conclude that the electrochemical reduction poten-

tial of Equation 2.23 is very negative (ca. -2.4 V wrt. Ag|Ag+), due to the very

negative Gibbs free energy of formation of UO2. This means that the reduction

potential is close to that of the cathodic deposition potential of the molten salt. In

a LKE molten salt, there is a chance of lithium metal plating onto the UO2 cath-

ode causing the reduction to proceed via a chemical reaction as described in Section

2.2.4.1. Although this development would achieve the ultimate goal of reducing UO2

to it's metal, this may not be desirable in an industrial process as it may inhibit the

ability to selectively reduce speci�c species.

In addition, the microstructural evaluation of the electrodes has shown signi�-

cant microstructural restructuring during the electrochemical reduction. Dense mi-

crostructures have shown to become more porous after electroreduction in molten

salts. This change has been seen to both inhibit and facilitate the electroreduction

in di�erent molten salts. However, it must be said, that these studies have been car-

ried out using electron microscopy and are thus two-dimensional studies. In order to

draw more valid conclusions, a three-dimensional evaluation of the microstructure
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should be adopted.

2.2.5 Pyroprocessing (Electrore�ning)

Because one is able to titrate species into a molten salt and then recover them elec-

trochemically, this opens up the possibility of an industrial process of the recovery

of species. The excellent electrolytic properties of molten salts allow their applica-

tion to the electrore�ning of actinide metals for nuclear recovery. Pyroprocessing

or electrore�ning is exempli�ed by the re�ning process developed by the Argonne

National Laboratory in the 1990's. The aim of this reprocessing technology was to

reprocess fuel from the integral fast reactor, a liquid metal cooled prototype reactor

which was abandoned by the US in the mid-nineties.

In the early 1990s, Pierce presented a method by which actinides could be re-

covered via a pyrochemical (a combination of pyrometallurgical and electrore�ning

processes) route [68]. This paper describes the entire pyrochemical process route, in-

cluding the electrore�ning of uranium in molten LiCl-KCl eutectic (LKE). However,

only a basic written description of the electrore�ner was presented. The electrore-

�ner was not widely understood until Laidler presented a more in-depth discussion

of the electrore�ning step [69, 70].

In these reports, Laidler presented a 100 cm diameter x 100 cm height electrore-

�ning cell made from stainless steel. A 15 cm thick layer of cadmium is placed at the

bottom of the cell and, above this; molten LKE is used as the electrolyte, operating

at 500°C (see Figure 2.6 for a schematic). The cell contained an anode basket in

which chopped fuel rods are placed. Cadmium chloride is also added to the melt as

a dissolution mechanism, allowing for a su�cient concentration of actinides in the

melt and to promote sustainable electro-transport. A solid stainless steel cathode

is used and this set-up allows for a dendritic uranium metal to be deposited at a

rate of 3 g Ah-1 using a potential di�erence of approximately 1 V. Any breakage of

this dendrite would settle into the cadmium layer which could then be recovered by
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Fig. 2.6: A schematic of an electrore�ning cell. Chopped spent fuel rods are placed
inside the anode basket. Cadmium chloride is added to the cell to titrate
some of the spent fuel into the molten salt. Uranium is deposited onto
the solid cathode as highlighted in Section 2.2.3.1. Plutonium is recovered
with the use of the liquid cathode. Proliferation resistance is maintained
due to the inability to deposit pure plutonium at the liquid cathode.

applying a voltage across the cadmium pool and the cathode. Laidler, also explored

the deposition mechanism of plutonium too. It was found that plutonium couldn't

be deposited at this solid steel cathode as the chlorides of plutonium and uranium

are in equilibrium with each other, according to the reaction:

UCl3 + Pu→ U + PuCl3 4G = −100.75 kJ/mol (2.24)

Therefore, any plutonium which was deposited would instantaneously react with

UCl3 in the melt, resulting in PuCl3. Laidler reported that in order to be able to

deposit plutonium, the Pu:U ratio needs to be increased and so a second, liquid

cadmium, cathode was introduced into the set-up to deposit plutonium. Prolifera-

tion resistance is maintained as this is not a pure plutonium deposit but a mixture

of plutonium, americium, neptunium, curium, uranium and some rare earth �ssion

products.

Further to this, Hur explored the reduction of spent Light Water Reactor (LWR)
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fuels, UO2 and U3O8, in a molten Li2O-LiCl salt in an inert atmosphere at 650°C [61,

71]. This work described the chemical route which saw lithium act as a transporter

of the oxygen in the uranium oxide. It was concluded that two lithium ions from the

salt would be reduced into Li2O, di�use through the salt and then become oxidised

at the anode producing two lithium ions and oxygen gas, when using a platinum

anode. When a graphite electrode was used, the oxygen ions were discharged as

CO or CO2. Linear sweep voltammetry was used to characterise the reduction

of uranium oxide concluding that the use of Li2O-LiCl molten salt was a feasible

option.

By understanding the stability and dissolution of species into molten salts, it is

apparent for separation processes to be conceived such as the pyroprocessing route

described in this section. However, the studies presented by Laidler and Pierce both

contain very vague descriptions of the process itself. The quantities of cadmium

chloride added to the melt are not described, leading to the inability to calculate

the activity of, say, U3+ ions in the melt. Moreover, the potential for electroplating

of uranium species was vague too. However, the reports in the section do show

the inherent success of actinide separation with the use of molten salts deployed as

electrolytes.

2.3 Review of Microstructural Characterisation and Tomography

Techniques

The microstructure of an electrode may have a signi�cant e�ect on the bulk per-

formance of the system [72-74]. Many of the characteristics of the microstructure

dictate the reaction kinetics of the system. For example, the shape of a number of

local 3D grains in porous media will dictate the local porosity and tortuosity, as well

as other characteristics. Phenomena that are governed by the connectivity between

microstructural features must be modelled in three dimensions [75]. Translating this

to the system described in this thesis, the di�usion of the ions from the electrolyte
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Fig. 2.7: A graph showing the volume analysed by tomography and the resolution
(or voxel size) of the reconstruction. The graph highlights the fact that
in order to analyse a larger volume, the resolution of the reconstruction is
reduced and vice versa. Adapted from [71].

to the reaction site (and vice versa) will be a function of the overall tortuosity of

the pores which is, inherently, the connectivity between microstructural features.

Two dimensional characterisation techniques, such as scanning electron microscopy

(SEM), are unable to analyse the three dimensional features such as the true poros-

ity and tortuosity of the bulk sample (Although SEM may provide a degree of 3D

information, the scale of this is negligible and is regarded as 2D information in

this thesis). Therefore, the microstructure can not be fully characterised in two

dimensions; it needs to be evaluated in three dimensions in order to extract true

information on how the microstructural phenomena e�ects the bulk performance of

electrodes.

It is important to highlight that with any tomography technique, there is always

a trade-o� between the volume of sample studied and the resolution, as shown in

Figure 2.7. It is necessary to analyse a volume that is characteristic of the bulk

electrode because local imperfections may be analysed that are not representative

of the bulk electrode. However, at higher volumes, the resolution of the images is
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typically lower and so all the physical phenomena may not be extracted. Figure 2.7

depicts the di�ering volumes and resolutions that di�erent tomography technologies

can achieve [76]. Focused ion beam tomography and X-ray computed tomography

are best suited for the work described in this thesis.

There are many tools available that allow one to analyse the microstructure both

invasively and non-invasively. Currently, the literature does not contain many stud-

ies regarding the microstructure of electrodes used for electroreduction. However,

the literature does contain many reports on the microstructure of other electro-

chemical cells; namely fuel cell and battery systems [77-81]. The latter sub-sections

explore the literature on studies completed regarding microstructural characterisa-

tion of fuel cell and battery electrodes to provide an insight into how the techniques

can be adapted into the work of this thesis. Sub-sections 2.3.1 and 2.3.2 explore the

FFC Cambridge process with a view of the microstructural characteristics that may

be extracted.

2.3.1 2D Microstructural Evaluation of the FFC Cambridge Process

In order to understand the microstructural characterisation of electrodes in molten

salt applications, the FFC Cambridge process (Section 2.1) is reviewed in this sec-

tion. However, the studies use scanning electron microscopy to deduce the mi-

crostructural characteristics and, thus, is only a two dimensional study. This will

highlight the need to study the microstructure in three dimensions.

Alexander et al. carried out a microstructural kinetic analysis of the reaction

procedure of the reduction of TiO2 to Ti [22]. The experimental procedure was

similar to that described by Schwandt. The work was broken down into a set of

stages, each describing the microstructural changes of the equations listed in Table

2.1 in Section 2.1. The characterisation during each stage showed signi�cant mi-

crostructural reconstruction throughout the three stages, as shown in Figure 2.8.

The microstructure of the initial samples of TiO2 powder and Indian rutile powder
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Fig. 2.8: SEM micrographs showing the microstructural evolution of (a) the initial
TiO2 powder to (b) CaTi2O4 to (c) TiO. Adapted and reprinted from Acta
Materialia, 54, Microstructural kinetics of phase transformations during
electrochemical reduction of titanium dioxide in molten calcium chloride,
Pages 2933�2944, Copyright (2005), with permission from Elsevier

had particle sizes of ca. 1 μm and over 100 μm respectively. During phase 1 it was

observed that the electrochemical reaction with the electrolyte caused CaTiO3 to

form on the perimeter of the particles. This was attributed to the fact that calcium

ions are more readily available at the surface of the particles. It was also observed

that the interior of the particles had reduced to Ti2O3. This reduction proceeded

with little e�ect on the microstructure. During the latter stages of phase 1, the

formation of the much denser TiO resulted in signi�cant reconstruction of the mi-

crostructure. Due to this reconstruction, the kinetics of the reaction are slowed as

the Ti2O3 breaks up, nucleates and grows. This growth causes voids to appear, al-

lowing for more electrolyte to reach the Ti2O3 particles and electrochemically react.

This phenomenon causes the exterior of the particles to become more reduced than

the interior. The particles can be seen to have grown to ca. 10 μm from ca. 1 μm.

Following this was the reduction of CaTiO3 and TiO to form CaTi2O4. This reac-

tion proceeds via a chemical, rather than electrochemical, reaction. Complementary

to this reaction is another substantial reformation of the microstructure and the par-

ticles were observed to have formed larger, `lath-shaped needles' of CaTi2O4 several

orders of magnitude in size compared to the initial samples. The last phase is the

formation of TiO from CaTi2O4. Again, a major microstructural reconstruction
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occurred with this electrochemical reaction. Alexander et al. describes the mi-

crostructure changing from the large needles into small, cubical and equiaxed, TiO

particles. The reaction occurred at the front of the particles and proceeded to move

inwards as calcium oxide dissolved into the melt and was transported to the carbon

anode producing carbon monoxide and carbon dioxide.

In conclusion, Alexander et al. was able to report that signi�cant microstructural

changes occur during the reduction of TiO2 to Ti. This microstructural reconstruc-

tion (nucleation and growth) has rate limiting e�ects on the reaction and thus not

prohibiting the estimation of the rate of reaction via a thermodynamic only route.

Further work is needed in order to be able to optimise the reduction process of

titanium dioxide to titanium. This study proves the inherent need to characterise

microstructures in three dimensions. Microstructural nucleation, growth and other

phenomena like salt percolation are all three dimensional characteristics and this

report highlights the need to characterise these complex structures in three dimen-

sions. By studying the microstructure in two dimensions, characterisation of the

microstructure signi�cantly reduces the resolution and does not permit for three

dimensional properties, such as porosity and tortuosity (which can dictate reaction

kinetics) to be extracted.

2.3.2 Three Phase Interlines

A three phase interline (TPI) is de�ned as the points whereby the current collec-

tor/fully reduced metal (electronic conductor), the metal oxide (which is typically an

electronic insulator) and the electrolyte meet, i.e. the conductor|insulator|electrolyte

interline [82]. This TPI is the point at which the reaction will take place; the insu-

lator needs to be present as this is the specimen that will be reduced; the conductor

phase will allow the transfer of electrons and the electrolyte allows for the transport

of ions.

TPIs are naturally a property of the microstructure; a microstructure that con-
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Fig. 2.9: A schematic to visualise Triple Phase Interlines. The schematic shows a
metal (electronic conductor, grey shade) in contact with the metal oxide
(insulator, purple shade) and electrolyte (ionic conductor, white). Only at
the interface between the three phases may the electrochemical reaction
occur. The zoomed region shows the oxygen reduction mechanism within
the microstructure. Note that the interlines would extend into/out of the
page.

tains a wealth of percolated pores would allow for a higher TPI density and, there-

fore, a higher reaction rate. Figure 2.9 is a schematic of triple phase interlines that

may be present in a microstructure of a metallic phase (grey) and an oxide phase

(purple) combination; the microstructure shown is surrounded by the electrolyte.

One can see that only the regions where the insulator, conductor and electrolyte

would be active in the electrochemical reaction. An example is shown in the zoomed

region of Figure 2.9. Any other pores that may exists within the macrostructure

(not shown) may be considered as inactive as they are not contributing to TPIs.

Because of a change of phase associated with electrochemical reductions, there may

be a change in the microstructure. This could lead to a change in TPI density and

percolation, resulting in a change in the performance of the electrode.

Deng et al. proposed a simple, thin layer, electrochemical model that accounted
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for a dynamic triple phase interline in CaCl2. This model was able to demonstrate

good predictions of the behaviour of a a silver wire in contact with AgCl in a KCl

solution [82]. The model was able to predict the linear expansion of a circular TPI

in contact with the silver wire and the exponential behaviour of the expansion as

a function of applied potential. However, the authors did not use experimentally

determined TPIs. Meanwhile, Xiao et al. proposed a novel �penetration� model

which allowed modelling of the dynamic TPIs. The model was able to deduce some

key information such as the optimum polarisation potential leading to the fastest

reduction and lowest energy consumption [83]. This model was further expanded in

2007 in order to estimate the di�usion coe�cient of the O2- ion and the resistivity

in the porous metal layer of the working electrode [84].

Triple phase interlines are de�ned as the point(s) in which the electronic insula-

tor, electronic conductor and ionic conductor phase are in contact with one another.

Although at the temperatures used within the scope of this thesis may be su�ciently

high for uranium oxide to be electronically conductive, this TPI may still play a vi-

tal role in the e�ciency of the electrochemical reduction process. From the models

reviewed in Section 2.3.2, it can be seen that the TPIs are a dynamic property of the

microstructure. Because of the continued evolution of the TPIs the microstructure

of the electrode become more or less dense with TPIs. This, inherently, will a�ect

the bulk performance of the electrode; showing the importance of the TPI density

within the microstructure.

2.3.3 Focused Ion Beam Tomography

Focused Ion Beam (FIB) tomography is an invasive tomographic technique and

can be used to reconstruct microstructures. For background information on this

technique, the reader is referred to Section 3.2.1. Morphology studies can be carried

out using imaging via SEM or FIB. The morphology of the cathode is particularly

important as it will have an a�ect on microstructural characteristics which can, in
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turn, have signi�cant e�ect on reaction kinetics. For example, if the morphology

contains poorly connected pore tortuosity, then the three phase interline density will

be reduced. This reduction in TPI density will cause a low metallic product yield

as the electrochemical reaction will not be able to take place across the whole of the

sample.

A report on the three-dimensional reconstruction of a solid oxide fuel cell anode

using the FIB tomography technique was presented in 2006 [79]. From this study,

the author was able to present the �rst direct measurement for the Triple Phase

Boundary (TPB) length; other measurements were estimated from 2D images (i.e.

[85]). Also, the gas phase tortuosity was extracted from this tomography data

using a �nite element mesh procedure using commercially available software. The

tortuosity was extracted for the three primary axis (x,y,z) and was deduced to

be approximately 2, which is consistent with typical fuel cell electrodes [86, 87].

Wilson was also able to reconstruct a 3D image of the electrode, highlighting the

di�erent phases. Moreover, a highly valuable 3D map of the triple phase boundaries

was presented which showed that 63% of the TPBs were connected. This report

highlights the key advantages of 3D tomography and proves that three dimensional

analysis is a powerful tool in characterising microstructures.

Furthermore, a study which also utilizes the focused ion beam tomography tech-

nique was presented in 2009 [88]. Two FIB tomography techniques were presented;

a single beam set-up and a dual beam set-up. The former uses the FIB to both

mill and image. For this set-up, the sample stage must be actuated in between each

milling and imaging step as the beam must be incident parallel to the sample (to

ensure uniform sputtering) whereas the beam should be at a 45° angle to the face

of interest during imaging. For the latter technique, the FIB/SEM combination

(described in Section 3.2.1) was utilized. Three dimensional reconstructions were

obtained from both tomography techniques and compared and contrasted. The

results showed a volume percentage porosity to be 11.36% and 11.30% for the sin-
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gle and dual beam reconstructions respectively. This result was to be expected as

samples for microstructural characterisation were taken from the same precursor.

The reconstructions, however, do show that the dual beam technique is able to af-

ford a much higher volume reconstruction. The total volume reconstructions were

75.05 μm3 and 721.96 μm3 for the single beam and dual beam respectively, thus

representing the bulk electrode more than the single beam approach.

This work was then extended in 2010 and 2011 respectively [89, 90]. The dual

beam approach was used to reconstruct a volume of 6.62 x 5.04 x 1.50μm by stacking

a sequence of 170 images. The tomography data obtained was coupled with electro-

chemical impedance spectroscopy. This data was then compared to electrochemical

simulations. The results indicated a broad agreement between the simulations and

characterisation with the discrepancies being put down to underlying assumptions.

Meanwhile, a �nite element mesh was also incorporated to the tomography data to

conduct a thermo-mechanical stress analysis. The results indicated that the thermal

expansion of the Ni and YSZ phases generate internal stresses within the microstruc-

ture. These stresses peaked at the interfaces of the two solid phases, indicating that

this is potentially an important mechanism for relieving stress in Ni-YSZ electrodes.

These studies highlight both the advantages and disadvantages of using tomog-

raphy. To take into account the former; being able to couple the microstructural

information with electrochemical/mechanical simulations provides an insight to the

phenomena on the sub-μm length scales. Understanding the physical phenomena at

these length scales provides the possibility of optimising electrode designs for prop-

erties such as porosity, tortuosity and TPB or TPI density. However, the drawback

with FIB tomography is the destructive nature of the technique. Once the sample

has been milled by the FIB, the material is unrecoverable. This translates into the

sample not being comparable to itself in a before/after reduction investigation, for

example.
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2.3.4 X-Ray Computed Tomography

X-Ray Computed Tomography (X-ray CT) is a non-invasive tomography technique.

The main disadvantage for traditional X-ray CT is the resolution of this tomog-

raphy technique is typically lower than that of FIB tomography (Figure 2.7). For

background information on this technique, the reader is referred to Section 3.2.2.

A report in early 2010 was published which adopts a nano X-ray CT technique

to look at the microstructure of solid oxide fuel cell (SOFC) electrodes [91]. In this

report, NiO-YSZ (Yttria Stabilized zirconia) was pressed, sintered and reduced to

create a Ni-YSZ pellet which was representative of a SOFC electrode. The nano-

CT scanner employed a rotating sample stage and enabled two magni�cations of

200x and 800x. The two magni�cations enabled a spacial resolution of 200nm and

50nm respectively. In order to reconstruct the images properly, it was important

to ensure that the sample is completely contained within the �eld of view (FOV)

during rotation. For this, a FIB lift out technique was used. X-ray projection images

were collected at steps of 0.2° across a total rotation of 180°. Amira visualisation

and analysis software was then used to reconstruct the microstructure of the SOFC

electrode (see [91] for details of the techniques used). The results enabled the author

to calculate the porosity of the microstructure to be 8.81% at 800x magni�cation

and 9.25% at 200x magni�cation which was in agreement to that calculated via

FIB techniques of 9.42%. Moreover, the solid phase reconstruction proved that X-

ray CT was a viable tool to reconstruct the microstructure of electrodes which is

representative of the bulk material.

Later that year, another study was published regarding an analysis of triple

phase boundary contact in Ni-YSZ microstructures using X-ray CT [92]. The aim

of this study was to depict a comprehensive microstructural map of a SOFC elec-

trode. The samples were prepared using the FIB lift-out method described previ-

ously and was characterized using nano-CT [91]. The results of this report showed
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that microstructures of electrodes provide some heterogeneous properties (such as

triple-phase contacts, porosity, compositions etc.) but these are compensated, at

large, by the majority of the microstructure being homogeneous.

This work was then extended to characterise the electrode of a lithium ion bat-

tery. Sample volumes of 43 x 348 x 478μm were reconstructed and computed physical

properties such as tortuosity, surface area, porosity and particle & pore size distri-

butions [93]. A geometrical analysis was able to provide data that 95% of the pores

actually percolated through the entire sample, meaning only 5% of the pores were

unable to facilitate electrochemical reactions. The report also provides mosaic plots

showing the spacial distribution of tortuosity, surface area and porosity through the

sample.

These studies clearly highlight the inherent advantages of X-ray CT; the tech-

nique is able to fully characterise microstructures that are representative of the bulk

electrode in a non destructive manner, allowing for microstructural evolution to be

studied. Moreover, many analytical tools can be used to extract a range of di�erent

properties of the microstructure which can be coupled with modelling simulations

to not only deduce what is happening within the microstructure but, also, to help

optimise the system.

2.3.5 Other Tomography Studies

Following on from the investigations reviewed in the two previous sections, this

subsection aims to review literature on tomographic studies that are not focused on

electrochemical devices. The aim of this is to deduce the importance of tomographic

studies and to show how these studies could be important to the work of this thesis.

A multi-scale tomography study was concluded in 2011 whereby the author used

synchrotron X-ray micro-tomography, FIB tomography and electron tomography to

study �ow channels in porous catalytic structures [94]. Two silica-alumina samples,

sintered at di�erent temperature, were studied using multi-scale tomography to de-
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duce the e�ect of sintering temperature on molecular transport through the catalytic

structure. By using the microstructural characteristics extracted from the tomog-

raphy data, the author was able to run a computational �uid dynamic study. This

marriage of techniques showed that the lower temperature sintering gave rise to the

catalytic structure having larger pores with signi�cantly better transport processes.

A study in 2009 used X-ray CT to discretize the three dimensional structure of a

metal based foam sca�old used as bone/cartilage implants [95]. The X-ray CT was

obtained using a commercial laboratory based X-ray micro-computed tomography

unit. A �nite element mesh was applied to this structure to model the elasto-plastic

deformation behaviour. A simulation was performed to characterize the mechanical

properties by incorporating static and incremental compression tests. The study

revealed the most vulnerable regions to failure during mechanical stress.

Synchrotron radiation was used to study the nucleation of micro cracks in a

study carried out in 2004 [96]. Miniature fatigue specimens were designed into the

cast iron sample which was exposed to a stress cycle. Tomography was conducted

before, after and at intervals during the stress cycling. From the reconstructions,

the author was able to detect and follow the nucleation of a series of micro-cracks

in the structure. The authors concluded that all of the cracks initially grew quickly

and then started to decelerate before arrest.

These studies aim to highlight the power of tomography as a research tool.

Perhaps the most important conclusion one can draw from this review is the ability

to marry tomography data with modelling and simulation software packages to

enable one to study how the microstructure a�ects the bulk performance of the

sample. In addition, having the ability to follow the evolution of microstructural

characteristics (such as micro-cracks) could be an invaluable tool for the work of

this thesis.
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2.4 Summary of Literature Review

This literature survey shows the complex nature of the topic under investigation.

Studies have all highlighted the apparent stability of actinide species in LKE and

have shown the ability to anodically dissolve and cathodically plate species. Other

reports have also shown the applicability of molten salt processing of nuclear fuels

on the kg scale.

Although many reports have shown the topic of this investigation to be feasible,

there is still a need to study the fundamental phenomena within this work. In terms

of the electrochemical reduction of uranium oxide to uranium, the studies presented

show that this process may be feasible within the lower temperature molten salt

of LKE. However, many of the reported potentials for electroreduction di�er which

could be due to the di�erences in experimental set-ups. There are also deviations

with the stability of uranium species in molten LKE, as well as other actinides and

�ssion products. Electrodeposition potentials also had deviations between authors.

Some very important conclusions may be drawn from the studies of the elec-

trochemical reduction of uranium oxides in calcium chloride and lithium chloride;

namely, the apparent direct electrochemical reduction from UO2 to U with no ob-

servable intermediate steps. The electrochemical reduction potentials were all re-

ported to be very close (ca. 200mV more positive) to the deposition voltage of the

molten salt's cation. With a LKE system, any decomposition of the electrolyte will

lead to the formation of lithium metal onto the uranium oxide working electrode.

This, will cause the uranium oxide to be reduced to uranium metal via a chemical

reaction rather than electrochemically. Although this will result in the desired prod-

uct, this may not be desirable in an industrial process where the selective reduction

of actinide oxides is critical.

One of the most striking observations drawn from this literature survey is the lack

of investigations into the e�ect of oxide ion concentration on the electrochemistry
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and how the evolution of the electrode's microstructure a�ects this phenomena.

It has been highlighted that the potential for the electrochemical reduction is a

function of the local activity of oxide ions within the microstructure; a variable

which would seem to be dynamic during the electroreduction - a function of the

inherent microstructure of the electrode.

The microstructure of the electrode is also known to play an important part of

the overall e�ciency and performance of the electrode. The technique of obtaining

tomography data will deduce the total volume that is able to be analysed and the

resolution. The techniques of X-ray CT and FIB tomography have both proven

successful in being able to reconstruct a representative volume of electrochemical

electrode microstructures with high resolutions. The main disadvantage of FIB

tomography is the destructive nature of the technique. It will be impossible to

analyse the exact same volume before and after electrochemical reduction.
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Chapter III. Methodology

3 Methodology

Drawing upon the topics discussed in the Literature Review, this part of the thesis

describes the experimental techniques used throughout the work underlining this

thesis. Each technique which has been used is described in context to molten salt

electrolysis. Process conditions, electrode con�gurations and the use of di�erent

techniques will be discussed and evaluated.

3.1 Electrochemical Techniques

Molten salts at operating temperatures (typically above 350°C) usually produce

complete dissociation of the salt, resulting in a high temperature ionic liquid sys-

tem. In addition, dissolution of salts into a molten salt cause that salt to completely

dissociate into its anion and cation respectively, followed by complete integration

into the ionic structure of the molten salt. With this, one is able to conceive elec-

trochemical systems within molten salts, as highlighted in Sections 2.2.1 - 2.2.5.

Therefore, molten salt systems may be used as electrochemical electrolytes which

provide higher kinetics compared to ionic liquids used at (or near) room temper-

ature. The following subsections will provide the theory and explanation of the

electrochemical techniques used in this work.

3.1.1 Linear Sweep Voltammetry

Linear sweep voltammetry (LSV) is a technique whereby the voltage between the

working electrode and reference electrode is swept linearly in time. The current

passed between the working electrode and counter electrode is recorded and redox

voltages of species is registered as a current peak at the voltage at which the species

is reduced or oxidised. This technique may be used to ascertain the decomposition
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(a) (b)

Fig. 3.1: Linear sweep voltammograms at a sweep rate of 100mV s-1and a tempera-
ture of 400°C using tungsten working and counter electrodes and a Ag|AgCl
reference electrode. (a) shows the deposition potential of lithium at -2.45
V. (b) is the evolution of chloride at the working electrode, occurring at
+1.3 V.

voltage(s) of an electrolyte, or indeed to study electrochemical phenomena in molten

salt electrochemistry [97].

The scan rate can be altered to study di�erent phenomena that may occur within

the electrochemical cell. The scan rate is simply the rate at which the voltage is

swept and has units, typically, of mV/s. If a low scan rate is adopted, the system

will be limited by electron transfer as the slow scan rate impedes the movement of

electrons. On the other hand, if a high scan rate is used, then the system will be

di�usion limited; electrons are readily available but ions, which are usually supplied

by di�usion through the molten salt (melt), are limited by the rate of di�usion.

LSV was used to experimentally determine both the anodic evolution potential

of chlorine gas and the cathodic deposition potential of lithium metal in the LKE

electrolyte. These values were calculated to be -2.45 V and +1.32 V respectively

(with reference to the Ag|AgCl reference electrode, see Section 4.6) and can be seen

in Figure 3.1. This gives rise to the LKE electrolyte having a potential window of

3.77 V, which is in agreement to the thermodynamic prediction presented in Chapter

5.
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Figure 3.1 (a) is the linear sweep voltammogram at the cathodic extreme. As

the potential is swept from a value of 0 V, the current response starts to become

more negative. This is likely due to double layer capacitance e�ects, as expected.

Once the potential reaches a value of -2.45V, there is a signi�cant increase in the

current response (ignoring the minus sign - this is only indicative of the direction of

electron �ow). At potentials more negative than -2.45V, the formation of lithium

metal is thermodynamically favourable, as described by the equation

Li+ + e− → Li ∆G = −349kJ/mol (3.1)

Where the Gibbs free energy stated is with respect to the Cl|Cl- system (i.e. the

Gibbs free energy of formation for chlorine is 0 kJ/mol.). Figure 3.1(b) shows the

anodic potential sweep voltammogram . Salt decomposition is seen to occur at ca.

1.1 V, after which the current response becomes more noisy. This is due to the

formation of chlorine gas bubbles on the surface of the electrode, as described by

the equation:

2Cl− → Cl2 + 2e− ∆G = 0kJ/mol (3.2)

The formation of bubbles reduces the surface area of the electrode that is open to

the electrolyte. This, in turn, causes the impedance of the electrode/electrolyte

interface to increase and hence current to decrease. Once the bubbles are evolved

from the surface of the electrode, the surface area increases, causing the impedance

to drop and thus the current to increase.

To conclude, linear sweep voltammetry is a DC based electrochemical method

based on sweeping the potential linearly in time. In the context of this section,

LSV has been used to calculate the decomposition potentials in LKE at 400°C. The

decomposition potentials were inferred by sweeping from 0V to extreme potentials

both positive and negative to this. This resulted in the decomposition of the salt onto
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Fig. 3.2: Cyclic Voltammogram of LKE at 400°C. A tungsten working electrode was
used with a graphite counter electrode and Ag|AgCl reference electrode.
Many similarities exist between the CV here and the LSV technique shown
in Figure 3.1. The main di�erence is the currents passed on the anodic
scan from -2.45 V to -1.8 V which is due to the re-oxidation of lithium.

the working electrode as described by Equations 3.1 and 3.2. It should also be noted

that LSV may also be used to study the reversibility of electrochemical reactions,

although a more popular technique for this type of study is cyclic voltammetry.

3.1.2 Cyclic Voltammetry

Cyclic Voltammetry, as with LSV, is a DC electrochemical technique. The di�erence

between cyclic voltammetry is that when a vertex potential is reached, the direction

of the linear sweep is then reversed. This allows for the applied potential to cycle

from one potential to another a number of times. A major di�erence between the

two voltammetry techniques is that cyclic voltammetry is able to identify redox

couples, i.e peaks associated with the reduction and oxidation of species.

A cyclic voltammogram (CV) was obtained from a cell operating at 400°C with

tungsten working and counter electrodes. The CV is shown in Figure 3.2. The scan

begins sweeping cathodically from 0 V to a minimum of -2.8 V. After -2.45 V, the

CV depicts a large current response. This is due to the scan reaching the deposition
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voltage of lithium (cf. Equation 3.1). Lithium continues to plate from -2.45 V

until the vertex potential of -2.8 V. At this point the sweep direction is reversed.

Lithium continues to plate until the potential of -2.45V is reached. As the potential

becomes more positive of this value, lithium ions become thermodynamically more

favourable. The result is a large, positive, current response which is due to the

dissolution of the deposited lithium back into the bulk melt:

Li→ Li+ + e− (3.3)

This is a good example showing the advantage of cyclic voltammetry over linear

sweep voltammetry. Comparing the decomposition potential inferred from Figure

3.2 to that obtained by LSV (Figures 3.1(a) and (b)) one can observe both meth-

ods have deduced equal anodic and cathodic decomposition potentials, de�ning the

potential window to be 3.77 V.

In conclusion, cyclic voltammetry sweeps from one potential to another, linearly

with time. The di�erence between cyclic voltammetry and LSV is the ability to

reverse the direction of sweep a number of times. This can be seen from the potential-

time curves in Figure 3.3.

3.1.3 ChronoAmperometry/ChronoPotentiometry

Following on from the sweep techniques outlined in Sections 3.1.1 and 3.1.2, the

last DC electrochemical techniques used in this work are chronoamperometry and

chronopotentiometry. Chronoamperometry is a technique whereby by the potential

of the working electrode is held constant for a de�ned period of time and the current

response is measured, where as the opposite is true for chronopotentiometry; that

is, the current drawn from/applied to the cell is held constant and the potential

di�erence of the cell is measured.

Chronoamperometry is a useful technique which may be employed, for example,
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(a) (b)

Fig. 3.3: Potential-time graphs for (a) linear sweep voltammetry and (b) cyclic
voltammetry. LSV is a single sweep from one potential, Et=0, to another
potential, Et=t. CV reverses the sweep after Et=thas been reached and re-
turns the potential to the same value as Et=0. This cycle may be repeated
N number of times.

to decontaminate a molten salt electrolyte. That is, a potential more positive of

the alkali/alkali earth metal deposition potential may be applied for a prolonged

period of time, known as pre-electrolysis [98]. Any electro-active species that are

contaminating the molten salt are therefore removed from the molten salt, either

by a solid/liquid deposit (the latter, if more dense than the molten salt, may collect

at the bottom of the cell) or by the formation of gaseous species. For example, if

the melt was contaminated by dissolved PbCl2 (existing as completely dissociated

anions and cations), pre-electrolysis would remove these species as described by the

following equations:

Cathode : Pb2+ + 2e− → Pb (3.4)

Anode : 2Cl− → Cl2 + 2e− (3.5)

The lead formed from Equation 3.4 would either alloy with the working electrode

or form a pool of liquid lead at the bottom of the electrochemical cell. The chlorine

formed from Equation 3.5 would escape the melt as gas.
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Fig. 3.4: A graph showing the pulsed chronoamperometry technique being utilized.
A concentration of lead (II) chloride is present in the salt leading to Pb
being plated onto a steel working electrode. The potential applied (blue)
is pulsed at a potential of -0.62V, with respect to the Ag|AgCl reference
electrode, for ten seconds and then OCP is maintained for 10 seconds. The
current response is shown in black

Moreover, pulsed chronoamperometry may be employed as a technique for pro-

ducing smooth deposits [60]. By pulsing the potential from OCV to a de�ned cell

voltage, adherent and less dendritic deposits may be formed. Figure 3.4 is a graph

depicting the pulsed technique being utilized. This process has been successfully

implemented to understand the nucleation and growth of chromium electroplating

in LKE [60].

Chronoamperometry is particularly useful for this work. Once the redox po-

tentials have been deduced, it will be possible to understand the kinetics of the

electrochemical reaction by holding the cell at the desired voltage. For example, if

a reduction process was discovered at a potential of -1.5 V vs. Ag|Ag+, one could

then polarise the cell at this voltage for a period of time to study reaction kinetics.

The current passed will slowly decay to, or close to, zero once the electrochemi-

cal reaction has completed. Integrating the area under the curve will allow one to
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Fig. 3.5: Electric circuit with resistance and inductance

deduce the amount of coulombs required to complete reduction at a given current

density.

3.1.4 Electrical Impedance Spectroscopy

Electrical impedance spectroscopy (EIS), also known as frequency response analysis,

is an AC technique that extends basic concepts of resistance in electric currents.

The main di�erence between resistance and impedance is the latter contains both

magnitude and phase, whereas the former only contains magnitude. Therefore,

impedance can be described as the complex ratio of voltage to current. One must

note that in DC circuits, there is no sinusoidal e�ect from current or voltage and so

the impedance and resistance are equal.

EIS was initially applied to determine the double layer capacitance of electrodes

and has since become increasingly popular as an electrochemical diagnostic tool

[99, 100]. EIS is a technique whereby an AC current (usually of low amplitude)

is perturbed over a constant DC current. The frequency of this perturbation is

changed and is usually swept from a high frequency to a low frequency. The high

frequency perturbations usually help resolve phenomena that occur quickly within

the system (such as charge transfer) whereas the low frequencies help describe those

that are limiting (such as di�usion of ions).

Consider a simple electric circuit containing a resistance, r, an inductance, L,

and an applied voltage of υ(t) = Vme
jωt, as shown in Figure 3.5 [101]. Kircho�'s

law for this closed loop is:
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r i(t) + L
di(t)

dt
= Vme

jωt (3.6)

This �rst order linear di�erential equation has a speci�c solution of the form i(t) =

Kejωt. Substituting this solution in;

rKejωt + jωLKejωt = Vme
jωt (3.7)

Impedance, Z, is de�ned as the ratio of voltage to current:

Z =
rKejωt + jωLKejωt

Kejωt
= r + jωL (3.8)

If a capacitance is considered instead of an inductance then the impedance is:

Z = r − j
(

1

ωC

)
(3.9)

Inspecting Equations 3.8 and 3.9, one can identify real and imaginary parts to

the equations. It can therefore be concluded that the real resistance of impedance

(which has no phase associated with it) is the real part of the solution whereas

the capacitance and/or inductance contribute to the imaginary part of the solution.

EIS, therefore, allows the study of the e�ects of phase changes on the electric circuit.

In conclusion, electrochemical impedance spectroscopy is an AC electrochemical

technique. The basis of this technique is to perturb an AC potential/current on

top of a stable DC potential/current. The bene�t of using EIS is that an analogous

circuit can be �tted to the data. This provides information such as electrolyte

resistance and double layer capacitance which is fundamental to the electrochemical

behaviour of electrodes. There is some literature on EIS for pyroelectrochemical

applications ([102-104]) but there is substantially more literature on the application

of EIS on fuel cells and batteries [105-109].
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3.2 Tomography Techniques

The microstructure of the electrode may have a substantial e�ect on the overall

performance of the electrode. It is also known that the local activity of pO2- within

the electrode may have an e�ect on the reduction potential. A highly tortuous

microstructure could therefore impede the di�usion of O2- ions out of the bulk

electrode, causing a change in the local activity of oxygen anions and, therefore, the

pO2-.

However, as the microstructure of the electrode is inherently a three dimensional

characteristic, it must be studied in three dimensions [110]. Two dimensional meth-

ods may be used to study phenomena such as the mean linear intercept which, in

turn, may be used to estimate the average grain size of particles in the microstruc-

ture. However, this can only be done under certain assumptions [111]. By employing

three dimensional techniques, these phenomena may be calculated without any bias

or assumptions which could lead to an increased performance of predictive modelling

tools.

There are many di�erent tools and techniques available to characterise the mi-

crostructure of electrodes. However, it is important to note that there is a trade

o� between the volume of the sample that can be analysed and the resolution of

the tool/technique, as summarised in Figure 2.7 in Section 2.3. The two main tech-

niques that have been identi�ed for this work are focused ion beam tomography and

X-ray computed tomography.

3.2.1 Focused Ion Beam Tomography

Focused ion beam (FIB) tomography is a technique that combines the milling ca-

pabilities of a FIB and the imaging capabilities of a scanning electron microscope

(SEM). The FIB is used to remove small layers of material whilst the SEM records

images after each layer has been removed. These images are then combined into
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Fig. 3.6: A schematic depicting the FIB Tomography technique: The FIB is used to
mill away sections (shown as shades of orange) whilst the SEM images the
surface. These images are then stacked together to reconstruct the sample
volume in three dimensions.

a stack of images and can then be reconstructed into a 3D representation of the

volume.

A FIB is composed of an ion source, usually gallium, which is accelerated and

focused onto the sample via electrostatic lenses. The gallium ions are able to sputter

material from the sample, allowing the sample to be milled. When a FIB is combined

with a SEM the sample may be milled via the FIB and sequential images are taken by

the SEM via an alternating milling/imaging. The SEM is held at a constant, known,

angle to the FIB (usually 45-55°) which is normal to the cross section of the sample.

This combination of FIB and SEM to reconstruct 3D volumes is commonly known

as �slice and view�. Using algorithms, the images may be concatenated to render a

3-dimensional image of the sample from the collection of 2-dimensional images. Due

to the milling nature of the FIB the sample is destroyed during analysis. Figure 3.6

is a schematic of the technology.

Because the volume reconstruction is derived by stacking sequential 2D SEM
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micrographs, the resolution of the �nal reconstruction is a function of the SEM's

speci�cations. Although describing the e�ect of the SEM speci�cations is beyond

the scope of this report, it is important to understand that parameters such as the

acceleration voltage, magni�cation and scanning speed all can have a huge e�ect on

the �nal resolution of the sample. Moreover, the resolution is also a function of the

FIB as the voxel size is de�ne by parameters associated with both the SEM and

FIB. The SEM will de�ne the x and y dimensions, whereas the z dimension is de�ne

by the FIB; that is, the thickness of sample that is milled away during each step

will deduce the z voxel dimension [112].

A Carl Zeiss XB1540 �Cross-Beam� focussed-ion-beam microscope was used for

FIB tomography reconstructions. Typically, the FIB was operated with an accelera-

tion voltage of 30 kV and milling currents were between 5-20 nA. For SEM imaging,

acceleration voltages ranging from 1-30 kV were used. Experimental set-up produced

a voxel size of, typically, 80 nm3 to be achieved.

3.2.2 X-Ray Computed Tomography

X-ray computed tomography (CT) is another tomographic technique used to re-

construct a three dimensional reconstruction of a sample. X-ray CT directs X-rays

towards the sample which produces a two dimensional radiograph of the sample.

This is repeated a number of times as the sample is rotated along a single axis.

For medical applications, the X-ray source and detector rotate around the sample

allowing for the measurement at di�erent angles. For material applications, another

con�guration is typically used whereby the detector and X-ray source are static

and the sample rotates, as shown in Figure 3.7. Once the measurements have been

taken, algorithms are then used to reconstruct a three dimensional image. The

great advantage that X-ray CT has over FIB tomography is the fact that it is a

non-destructive technique. That is, the sample is able to be used again whereas the

use of FIB tomography destroys the sample. This advantage also paves the way for
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Fig. 3.7: X-Ray CT Scanner

the possibility of in situ tomography, enabling studies of microstructural evolution.

Although this technique is non-destructive, the resolution is typically not as

good as that of FIB tomography. Also, artefacts are very typical in X-ray CT

reconstructions. These artefacts (such as streaks and contrast e�ects) are usually as

a result of beam hardening and re�ections/refractions of the photon beam during

measurement acquisition.

For X-ray CT measurements taken for the work of this thesis, a Nikon XTH225

ST laboratory scanning system was used, which allows for a maximum resolution of

3 μm. A photon energy of 120 kV was used with a 0.1 mm tin �lter. This �lter was

applied to reduce beam hardening e�ects. This set-up resulted in MCEs measuring

ca. 5 x 8 x 0.5 mm (W x L x D) to be reconstructed.

3.2.3 Microstructural Characterisation Techniques

After the tomography of the electrodes has been carried out, the output data will

typically be an image sequence or ortho-slices of the sample volume. Depending

on the technique that has been used to acquire the data, the image sequence may

need to be cropped and �ltered in three dimensions prior to full reconstruction.
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Figure 3.8 is a diagrammatic representation of the algorithm adopted in this work

to crop, align and �lter images sequences acquired from FIB tomography prior to

microstructural reconstruction. This is important as it allows for the removal of

any artefacts that may appear during production of the image sequence. Figure

3.8(a) shows an example of an electrode during milling with the FIB. Firstly, the

face of interest is cropped and is shown in (b). This is done for all images and

then aligned with one another. The next step is to convert the images into a binary

image to allow for segmentation of the pore phase and solid phase. Figure 3.8(e)

shows the pixel count histogram of the cropped image and shows that there is not a

great peak separation between the pore (dark) and solid (light) phases. Therefore,

�ltering processes are required in order to accentuate this di�erence. In this example,

an adaptive histogram equalisation �lter has been performed in three dimensions

to produce the image in Figure 3.8(c). The pixel count histogram for this image is

shown in Figure 3.8(f) which now shows a very good peak separation. The minimum

pixel count between these two histogram peaks is then used as the threshold to

convert the image into a black and white image; that is, greyscale pixels with a

value equal to or higher than the threshold value are assigned a value of unity in the

binary image whereas those below are assigned to zero. This produces the binary

image shown in in Figure 3.8(d). This image will then be �ltered using erosion and

dilation methods to remove the �salt and pepper� noise from the image, if necessary.

Once this has been achieved, the microstructure is then reconstructed in three

dimensions using the Avizo Fire 8 software package. This allows for easy phase

segmentation of each of the phases and allows for precise microstructural information

to be extracted.

The tortuosity of microstructures is one speci�c characteristic that may be de-

�ned in a number of forms. Firstly, the geometric tortuosity may be de�ned as the

ratio of the shortest tortuous pathway length over the length of the microstructure

[113]. Also, the tortuosity may also be extracted from the ratio of the macroho-
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Fig. 3.8: Shows (a) the raw data image which is then (b) cropped and aligned with
the rest of the sequence, (c) �ltered to accentuate the contrast di�erence
between the solid and pore phase and then (d) binarised. Pixel count
histograms are shown for (e) the cropped image and (f) the �ltered image,
to show the e�ect of the �ltering.

mogeneously de�ned heat �ux through a control volume to the average heat �ux

within the pore phase sample volume [79, 114]. This methodology will be adapted

in the work of this thesis to gain an insight into the tortuosity of the pore phase of

the electrodes.

Firstly, a surface mesh was created in Avizo Fire 8 and imported into the Star-

CCM+ computational �uid dynamics software package. A volume mesh is then cre-

ated to enable modelling of the heat �ux (which is analogous to mass �ux) through

the pore phase. This is then to be compared to the heat �ux through a control

volume of equal dimensions (a sold box of equal x, y and z dimensions to that of the

pore phase). The tortuosities in each direction (τx, τy and τz) may be calculated

by modelling the heat �ux through the surfaces in the required axis and keeping all

other surfaces adiabatic. The tortuosities may then be extracted by the application

of Equation 3.10

τ = ε
QCV
QPORE

(3.10)
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Where τ is the tortuosigy, ε is the porosity, QCV is the �ux of the control volume

and QPORE is the �ux of the pore phase. For derivation of this equation, the reader

is referred to [114]. By applying a heat gradient from one surface to the opposite

direction while keeping all other surfaces adiabatic, the heat �ux may be determined

for that coordinate system. Therefore, tortuosities in the x,y and z directions may all

be modelled and used to extract the tortuosity of the pore phase in those directions.

3.3 Di�raction Techniques

3.3.1 X-Ray Di�raction

Chemical identi�cation is an extremely important tool and may be combined with

electrochemical characterisation techniques to provide extremely robust evidence of

electrochemical processes. One of the most important aspects of characterisation

is phase identi�cation, which can be achieved using X-ray di�raction (XRD). The

basis of XRD is that electromagnetic waves of similar size to the crystal structure

(i.e. X-rays) may be di�racted by a crystal structure. In 1912 Bragg o�ered a

mathematical expression to denote the conditions necessary for di�raction to occur,

known as Bragg's law:

ηλ = 2dsinθ (3.11)

where n is a positive integer, λ is the wavelength of the incident X-ray, d is the

interplanar distance and θ is the di�raction angle. Powder di�raction - a common X-

ray di�raction technique - makes use of monochromatic X-rays of known wavelength.

The angle at which the incident X-rays are di�racted is measured, and by using

Bragg's law, it is possible to derive the crystal spacing of the sample.

An X-ray di�raction spectrometer works by directing X-rays at a known angle

to the sample. The di�racted X-rays are detected by an ionizing chamber. Both

the X-ray source and ionisation chamber are capable of moving in order to change
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Fig. 3.9: X-ray Di�raction Spectrometer

the scattering angle, θ. A schematic of the X-ray spectrometer is shown in Figure

3.9. The resulting dataset of XRD are di�raction peaks or Bragg peaks; typically,

a graph of intensity (arbitrary units) versus twice the di�raction angle, 2θ. The

spectrometry data obtained can then be compared to a database to deduce the

composition and or crystal structure of the sample [115-119].

For the purposes of an example, X-ray di�raction has been used to analyse a

metallic tungsten rod. A sample of commercially available tungsten was analysed

using XRD. Figure 3.10 shows the spectra that has been re�ned using Rietveld

re�nement (a theoretical line pro�le �tting of the spectra based on a least squares

approach, for more information see [120]) . The di�erent peaks have been identi�ed

and are attributed to the di�erent crystal spacings.

Visual inspection of Figure 3.10 con�rms no contamination is present within the

tungsten rod as all di�raction peaks have been identi�ed and are comparable to

database spectra [121, 122].

To conclude, X-ray di�raction is an extremely useful tool in phase identi�cation

of chemicals. It allows for rapid phase identi�cation and is a non-destructive tech-

nique. By measuring the scattering angle and the intensity of these di�racted X-rays

(of a known wavelength) one is able to deduce the three dimensional structure of

the crystal. This is extremely important as it is able to deduce whether samples

possess contaminants and to infer their crystal structure.
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Fig. 3.10: XRD of a Tungsten rod taken at Diamond Light Source. Due to the
high �ux, there is an extremely good signal to noise ratio. All planes of
tungsten have been �tted using Rietveld re�nement.

3.3.2 In-Situ Synchrotron Di�raction Techniques

Synchrotron radiation is an extremely powerful tool which can provide an insight

into electrochemical pathways in situ. The major advantage of gaining phase iden-

ti�cation in situ is due to the fact that there is no risk of contaminating or changing

the phase of the sample when preparing for ex situ analysis. Within the work of this

thesis, X-ray synchrotron di�raction and neutron di�raction have been utilized. A

brief description of these techniques is highlighted below.

3.3.2.1 X-ray Synchrotron Radiation

When electrons experience acceleration they emit electromagnetic radiation. When

the electrons are accelerated radially, they produce synchrotron radiation in the

form of high energy X-rays. This synchrotron radiation can be tailored to obtain

the desired electromagnetic wavelength or energy. The type of acceleration that

electrons experience can be classi�ed into two main types of acceleration device;
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(a) (b)

Fig. 3.11: Synchrotron radiation created by (a) bending magnets and (b) undulators

bending magnets and insertion devices. Bending magnets typically provide a broad

range of electromagnetic wave energies which is also known as a white beam. Inser-

tion devices may provide a electromagnetic waves of speci�c �ux. This is done by

passing the electrons through a periodic magnetic structure, causing the electrons

to wiggle a speci�c number of times with a certain frequency. The two types of

acceleration are shown schematically in Figure 3.11.

Once the X-rays have been emitted, they go through a series of optics to collimate

and focus the beam. One of the most important optics can be regarded as the

monochromator which allows only X-rays of certain energies to be passed. The

monochromator works on the basis of Bragg's law. By determining the frequency

of X-rays required, the angle at which the monochromator sits (which has a well

de�ned d-spacing) can be manipulated to re�ect certain wavelengths. It should be

noted that if no monochromator is used then a white beam is produced.

Electron synchrotron radiation can be applied to electrochemical cells by looking

at the X-ray di�raction in situ, such as the work done by Bhagat [21]. However, for

heavy metals, such as tungsten and uranium, there is a possible problem as X-ray

attenuation is signi�cant. Figure 3.12 shows the attenuation length of X-rays of

varying energies for uranium [123]. From this, one can see that the attenuation

length of uranium is ca. 12.5 µm at 30 keV. This could prove di�cult in gaining
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Fig. 3.12: Attenuation length of uranium, adapted from [115]

a good signal to noise ratio, although some synchrotrons allow for higher energy

photons (say 150 keV).

3.3.2.2 Neutron Synchrotron Radiation

Neutron radiation is another type of synchrotron radiation which is produced via

a proton accelerator. Unlike X-rays, which interact with the electron cloud sur-

rounding the atom, neutrons interact directly with the nuclei of atoms. Neutrons

are produced by accelerating negatively charged protons via a linear accelerator and

synchrotron ring. After leaving the synchrotron ring, the protons are driven towards

a tungsten target. Bombardment by these protons drives neutrons from the nuclei

of the tungsten target, which are then directed to di�erent instruments. One of

these instruments can be a neutron di�ractometer.

The problem highlighted in Section 3.3.2.1 can be ameliorated to an extent

with neutron di�raction. The attenuation of neutrons by heavy metals is not as

signi�cant to that of X-rays. Literature values show that uranium and tungsten

have an absorption cross section of 7.57 and 18.3 barns respectively (for 2200m/s
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neutrons). This is comparable to known attenuators of neutrons, such as lithium,

which has an absorption cross section of 70.5 barns [124].

These two synchrotron techniques have the potential to provide in situ di�raction

data, permitting the electrochemical reaction pathway to be followed as the reaction

happens. This has the great advantage of removing potential contaminations that

may arise in the ex situ analysis preparation procedures.

3.4 Summary of Methodologies

Throughout this chapter, the scienti�c methods and techniques have been presented

with examples of their use in order to de�ne a clear outset to the acquisition of the

scienti�c results that are presented in proceeding chapters of this thesis.

As discussed in Section 3.1, the electrochemical techniques used in this thesis

range from potential sweep methods to electrical impedance spectroscopy. By utiliz-

ing a range of techniques, many di�erent electrochemical e�ects may be investigated

in order to provide in-depth electrochemical studies.

In addition, by coupling the chemical characterisation with microstructural in-

vestigations, presented in sections 3.2 and 3.3 to the electrochemistry, a full analysis

of the electrochemical reduction and any chemical or structural e�ects may be un-

derstood.

The next chapter of this thesis - experimental rig design - works in tandem with

this chapter to provide a full de�nition of the experimental techniques and methods

used. It is perceived that the combination of these two chapters will allow for full

reproducibility of the results that are presented in Chapters V-VIII.
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Chapter IV. Experimental Rig Design

4 Experimental Rig Design

This section further expands on the methods used within this work and, in par-

ticular, de�nes the experimental set-ups used to produce the experimental results

presented in Chapters VI-VIII. The previous chapter is to be used as a basis of

understanding of the di�erent techniques, whereas this chapter uses those methods

to show the evolution of the experimental design and how this design allows for the

control of process variables. Speci�cally, it denotes the experimental conditions and

the equipment used throughout the studies that underline this thesis.

Reproduction of scienti�c results is largely a�ected by the experimental set-up

chosen and so, therefore, the experimental rig design is expanded upon largely within

this chapter. It is beyond the scope of this thesis to outline an exhaustive list of con-

ditions that require adequate controlling (in terms of the electrochemistry, molten

salt environment) but, instead, the reader is directed to the following reference, if

necessary [125]. This chapter will describe the general experimental set-ups used

to study the electrochemical reduction of uranium dioxide to uranium in LKE. It

should be noted that all potentials reported within this thesis are with respect to

the Ag|AgCl reference electrode, unless otherwise stated. For more information, the

reader is directed to section 4.6.

4.1 Laboratory Reaction Vessel

The reaction vessel for the work of this thesis has undergone a series of iterations

in order to optimise safety, integrity and optical visibility. Heavily oxidising and

corrosive environments can exist within a molten salt cell and these must be ac-

counted for during the design [126, 127]. The cell has incorporated argon inlet and

outlet streams to reduce the oxidising environment and reference electrodes have
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Fig. 4.1: Showing the Electrochemical Cell. The molten salt is contained within the
Reaction Crucible which sits inside the Safety Envelope. The electrodes
are held into the cell head using Suba-Seals. The cell head incorporates
gas in/out line and is �xed to the safety envelope via a metallic clamp.

been designed in order to minimise ionic resistance between itself and the working

electrode.

4.1.1 Electrochemical cell

The electrochemical cell is composed of two glass vessels; a reaction crucible and a

safety envelope. The safety envelope is incorporated to prevent the salt from leaking

from the electrochemical cell into the experimental environment due to a breakage.

A vertical, tall form, �at bottom Pyrex glass cylinder (GPE Scienti�c) was custom

built to act as the safety envelope. The top of the cylinder contains a �ange to allow

for an air tight seal managed by the use of a ceramic vessel head (see below). The

actual reaction vessel is a smaller Pyrex tall form beaker which sits inside the safety

envelope. A schematic of the electrochemical cell vessel can be seen in Figure 4.1.
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4.1.2 Temperature control

4.1.2.1 Optical Access Furnace

Due to the relatively low melting point of the LiCl-KCl eutectic (compared to other

common molten salts) a furnace was conceived and built in order to provide optical

access to the LKE electrolyte. This furnace set-up has the main advantage of allow-

ing identi�cation of contamination of the salt and the state of the electrodes in the

electrochemical cell both easily and rapidly. The main disadvantage of this set-up

is the longer time required to reach the reaction temperature.

The temperature is maintained via an equimolar sodium nitrate � potassium

nitrate salt bath, heated by an in-house custom built nichrome wire immersion

heater which is comprised of a 0.5 mm diameter, 4.5 m long coil of nichrome wire

contained within a custom built silica glass sheath. The salt bath is contained within

a 5 L (180 mm O.D) heavy duty Pyrex glass beaker (Scienti�c Lab Supplies) to allow

optical visibility. The temperature of the system is monitored via a thermocouple

which is immersed in the reaction vessel. The power of the immersion heater is

controlled via a variable AC controller (variac) which is connected to a mains power

supply. A schematic of the temperature control equipment can be seen in Figure

4.2 and a photograph of the electrochemical cell inside the thermostatic bath can

be seen in Figure 4.3.

Due to the high thermal conductivity of the nitrate salt, the temperature of the

reaction vessel is kept relatively constant when disturbances occur. This is shown

by Figure 4.4. The temperature gradually increases in an hour to the melting

point of the eutectic; 352°C. after which the temperature remains constant due to

the latent heat of melting. After approximately one hour, the salt has completely

melted and the temperature of the salt begins to increase. The salt reaches the

working temperature (in this instance) of 410°C where it remains for the duration of

experimentation. After a total time of approximately 4.5 hours, the cell is removed
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Fig. 4.2: Shows the optical access furnace. It is comprised of custom built immersion
heater which sits in the thermostatic salt bath. Once molten the electro-
chemical cell is lowered into the furnace.

Fig. 4.3: Shows the electrochemical cell inside the optical access furnace. Note, the
LKE salt is not molten to aid visualisation
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Fig. 4.4: A graph showing the temperature of the eutectic molten salt inside the
optical access furnace. There is an initial temperature increase until 352°C;
the melting point. The temperature remains stable until all of the salt is
molten. After which the temperature increases to 410°C at which it remains
constant until the reaction vessel is removed from the furnace.

from the furnace. At this point, the thermocouple is removed from the melt itself

to avoid the thermocouple becoming frozen into the salt.

4.1.2.2 Lenton Vertical Tube Furnace

An alternative furnace was also available to provide heat to the electrochemical

cell. The furnace is a horizontal split-tube furnace (CSC 12/90/300V Furnace,

Lenton). The furnace was custom built to �t the electrochemical cell and allowed

faster heating to the electrochemical cell. This furnace was also able to provide

a stable temperature as seen in Figure 4.5. From this plot, one can draw many

similarities to Figure 4.4. Both images show that the salt undergoes an initial

increase in temperature until the melting point. Once all salt has become molten,

the temperature of the molten salt increases to the working temperature of 400°C.

Once at the working temperature, there is only slight deviation in the temperature

(1°C) which is deemed negligible.

Two furnace set-ups have been employed throughout the experimentation of
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Fig. 4.5: A plot of temperature of the LKE salt versus time during heating in the
Lenton furnace. There is an initial temperature increase until 352°C; the
melting point. The temperature remains stable until all of the salt is
molten. After which the temperature increases to 400°C (the working tem-
perature) at which it remains constant until the reaction vessel is removed
from the furnace.

this thesis. An optically accessible furnace was conceived and built to facilitate the

identi�cation of any issues with the molten salt, such as contamination. Figures 4.2

and 4.4 show the inherent stability of the temperature of the molten salt inside each

furnace set up. Only small deviations (approximately 1°C) occur when the fused

salt is at working temperatures in excess of 400°C which is deemed negligible.

4.1.3 Cell Head

The cell head is an airtight �tting which allows the electrodes to penetrate into

the cell. Phyrophillte (Aluminium Silicate) (Ceramic Substrates and Components

Ltd) was chosen as the cell head as it is has the bene�ts of being machinable before

sintering and it becomes thermally insulating after sintering. A number of holes

were drilled into the ceramic prior to sintering, depending on the experiment. Table

4.1 depicts which holes were drilled for each particular experimental set-up.

Once drilled, the ceramic is then sintered at a ramp rate of 250°C hr-1 to 1000°C

and is then held for one hour. Electrodes and thermocouples are held in the ceramic
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Holes drilled for Electrochemical

Characterisation

E�ect of pO2-

studies

UNH

decomposition

(see Chapter

VI)

Argon In/Out ! ! !

Pre-electrolysis WE ! ! #

Working Electrode ! ! #

Counter Electrode ! ! #

Reference Electrode ! ! #

Thermocouple ! ! !

pO2-indicator electrode # ! #

Tab. 4.1: Description of holes drilled for use of di�erent experimentation

head using size 13 Suba-Seals (Sigma-Aldrich) which are capable of maintaining the

airtight environment. A PTFE gasket (Sci-Labware) is used to facilitate a good

seal between glass �ange and ceramic head. The ceramic head is �xed to the safety

envelope using a metallic clip (Sci-Labware). The gas inlet and outlet connections

were also �tted with check valves to ensure that the airtight environment was not

compromised during attachment of the purge gas system.

4.1.4 Typical Laboratory Experimental Set-up

All glassware was cleaned with hot soapy water and Decon 90 (Decon Laboratories

Ltd) and then rinsed with deionised water and acetone. All equipment was adminis-

tered into the MBraun glove box (see Section 4.8) and the cell was assembled using

the following procedure:

1. The salts were weighed using scales with an accuracy of ±50 μg. Typically a

mass total of 100 g LKE was used.

2. The salts were mixed together by shaking them together in a sealed container

for 60 seconds.

3. The salt mixture was poured into the reaction crucible.
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4. The reaction crucible was inserted into the safety envelope.

5. The cell head (containing all electrodes) was a�xed to the safety envelope with

a metal clamp. PTFE gaskets are also used to ensure a gas-tight environment.

6. The air-tight cell was removed from the MBraun glove box and inserted into

the furnace.

7. Gas lines were purged and attached to the electrochemical cell.

8. Once the working temperature was achieved (400-450°C) pre-electrolysis was

performed for 2 hours.

9. After pre-electrolysis had terminated, the pre-electrolysis working electrode

(Mo or W rod, 1-3 mm Ø) was removed and the UO2 working electrode was

inserted into the molten salt and left for 10-30 minutes to stabilize.

10. Electrochemical measurements were taken using an IVIUMStat potentiostat

/ galvanostat (IVIUM Technologies).

4.2 In Situ Di�raction Reaction Vessel

A novel electrochemical cell has been designed for use with neutron and X-ray

di�raction experiments. Considering neutron di�raction, lithium and chloride are

both strong attenuators of neutrons. The nuclei of lithium are of a relatively similar

size to that of a single neutron and hence posses a high absorption cross section.

Considering X-ray di�raction, as X-rays interact with the electron cloud of atoms,

the elements in the periodic table with a large number of electrons o�er high atten-

uation to X-rays; for example, uranium. Because of this, the cell had been designed

to ensure the path of the neutron is minimized through the LKE to increase the

possibility of a high signal to noise ratio. The material of construction was also

extremely important. The material would have to be able to withstand the molten
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Fig. 4.6: Periodic table showing the attenuation lengths for the elements for both
thermal neutrons (top) and X-rays (bottom). Adapted from [128]

salt environment, temperature and not be attenuating. Therefore, the cell was con-

structed from aluminium as this material may be considered relatively neutron and

X-ray �transparent� For example, aluminium has an absorption cross section of 0.231

barns, compared to lithium which has an absorption cross section of 70.5 barns [124].

A summary of the attenuation lengths for the elements for both thermal neutrons

and X-rays is provided in Figure 4.6 [128].

4.2.1 Electrochemical Cell

The electrochemical cell was manufactured from aluminium due to it's low attenu-

ation to neutrons and X-rays. The cell also incorporates a �well� at the bottom of

the cell where the working electrode is located. This is to reduce the beam path

through the cell, thus, reducing attenuation and increasing the signal-to-noise ratio.

The balance-of-apparatus components (counter electrode, reference electrode etc.)

are contained within the main body of the vessel. A photograph of the electrochem-

ical cell can be seen in Figure 4.7(a). On the �ange of the cell, six holes were drilled
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to allow for the cell head to be bolted on.

4.2.2 Cell Head

The cell head was manufactured from 316 stainless steel and incorporated many

design aspects to optimise a number of attributes. Firstly, the material of construc-

tion - stainless steel - was chosen to due to its lower thermal conduction coe�cient

compared to aluminium. This would help keep the top of the cell cool and allow

the introduction/removal of electrodes. Also, stainless steel is easy to weld and

assisted in production time and cost. The cell head also incorporated a number of

hollow, open-ended, cylinders which were welded on top of the head. These were

included to help ensure the electrodes were held horizontally and also acted like heat

transfer �ns; again, aiding cooling of the electrodes. The cell head also incorporated

Swagelok �ttings to allow for gas to �ow through the cell. Lastly, the cell head

included 6 holes to allow for bolting onto the cell. A graphite gasket was also used

to ensure a gas-tight �t. A photograph of the electrochemical cell head can be seen

in Figure 4.7(b).

4.2.3 Heating Jacket

Heating was supplied to the electrochemical cell head via a custom built �exible

ceramic pad heater. This is comprised of a high grade nichrome wire encapsulated

inside aluminium oxide �beads� which allow for its �exibility. The heating pad and

insulation was wrapped around the electrochemical cell body and secured into place

with a number of jubilee clips. Power was provided via a 3-phase power supply

which was controlled using a Eurotherm PID controller whose input was a K-type

thermocouple which was immersed into the molten salt.
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(a) (b)

(c)

Fig. 4.7: (a) In situ di�raction cell body, (b) di�raction cell head and (c) an exploded
schematic of the cell and cell head assembly
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4.2.4 Experimental Set-up Of The Molten Salt Cell

The electrochemical cell was assembled inside an inert gas �lled glove box which

maintained an oxygen and moisture composition of <0.1 ppm. 300 g of dried LKE

(see Section 4.4) was loaded into the electrochemical cell, along with the electrodes

and thermocouple. Note, due to local rules within the synchrotron buildings, the

uranium dioxide working electrode was unable to be loaded into the electrochemical

cell inside the glove box and was required to be inserted into the cell on the beamline

itself. All electrodes were secured to the cell head via silicone Suba-Seals (Sigma-

Aldrich).

Check valves were incorporated into the cell head to ensure a �ow of inert gas

could pass through the cell during the experimentation and to ensure a gas tight

environment during transportation from the glove box to the beam line. Once the

electrochemical cell was secured onto the beamline sample stage, the source gas line

(research grade argon for X-ray di�raction experiments and research grade helium for

neutron di�raction experiments (<0.5 ppm H2O & O2)) was purged and connected

to the electrochemical cell. The outlet gas was pumped through a �gas trap� to

absorb any chlorine gas that may form during electrochemical measurements. The

gas trap was comprised of a sequence of four Dreschel bottles: the �rst was empty to

ensure no liquid �owed into the cell's gas outlet stream due to any back pressure; the

second and third bottles contained NaOH solutions to absorb chlorine containing

vapours from the cell and the last bottle was �lled with de-ionised water.

The heating jacket was then secured to the electrochemical cell and connected to

the PID-controlled power source. A layer of ceramic-based, �exible, furnace-grade

insulation was also wrapped around the heating jacket. The insulation and heating

jacket were �xed to the cell via a number of jubilee clips. The cell was heated at

a ramp rate of 10°C min-1 from room temperature to a working temperature of

450°C. Once the electrolyte became molten and reached the working temperature,
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pre-electrolysis was performed for 2 hours to remove any electro-active contaminants.

Once pre-electrolysis had terminated, the UO2 metallic cavity electrode (see

Section 4.3.1) working electrode was inserted into the cell. During this procedure,

the inert gas �ow rate was increased to help reduce the risk of oxygen and moisture

entering the cell from the ambient atmosphere. The working electrode was placed

into the well of the cell and connected to the potentiostat. The electrode was left

for 30 minutes to stabilise in the molten salt before electrochemical measurements

were taken.

4.2.5 In Situ X-Ray Di�raction Experimental Set-up

Energy Dispersive X-ray Di�raction (EDXD) measurements were taken on beam line

I12 (JEEP) at Diamond Light Source in the UK. This di�raction technique di�ers

from conventional, angle-dispersive, X-ray di�raction as the lattice plane distance

� or d-spacing � is derived by determination of the wavelength of the di�racted

polychromatic photons, as opposed to being derived from the di�raction angle of

monochromatic photons [129]. The di�raction angle may be kept constant by the use

of a collimator. As a direct result of using a collimator to de�ne a constant Bragg

angle, a lozenge shaped gauge volume in space is de�ned whereby only photons

that are scattered within this volume will be detected by the detector. Placing the

sample within this gauge volume has an advantage of being able to eliminate the

signal from balance-of-apparatus components (the electrochemical cell, for example)

and ensures that a high signal-to-noise ratio from the working electrode is collected.

This is a useful advantage when using small samples, such as MCEs, which are on

the sub-milligram range.

The sample stage allowed translations in three dimensions with a 10 μm reso-

lution. This ensured that the cell could be aligned in each direction by remotely

moving the stage; the MCE was aligned in the X and Y directions using an X-ray

imaging detector (which was removed during EDXD measurements). Figure 4.8
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Fig. 4.8: X-ray images of the MCE in the well of the electrochemical cell showing
X-Y alignment. (a) Shows the MCE with the slits open and (b) shows a
UO2 �lled hole in the MCE aligned

shows X-ray images of a UO2 �lled MCE in the electrochemical cell. X-Y alignment

was achieved by moving the X-ray slits over a UO2 �lled hole using live images.

The slits created a 0.3 mm2 square X-ray beam which helped to increase the signal

to noise ratio of UO2. For alignment in the Z-direction, it was necessary to move

the MCE into the middle of the lozenge-shaped gauge volume. This was achieved

by varying the stage's position in the Z direction and measuring the signal-to-noise

ratio of UO2.

During the experimentation, a 0.3 Ö 0.3 mm white X-Ray beam of energies rang-

ing from 45 to 150 keV irradiated a single UO2 �lled cavity on the MCE working

electrode, inside the electrochemical cell. EDXD data was collected with a cryo-

genically cooled 23-element, high-purity, germanium detector (Canberra Industries,

Inc.), as shown in Figure 4.9(b). The 23 detector elements are spaced every 8.18°,

allowing azimuthal angles from 0° to 180° to be covered. The EDXD data collection

was synchronised with the electrochemical measurements using an exposure time of

60 seconds. The take-o� angle of 4.5° is de�ned by the collimator; all other X-rays

which are di�racted at angles not equal to 4.5° are not detected. The collected

di�raction patterns over the 23 elements were then averaged to produce a powder
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Fig. 4.9: Showing (a) the direction of X-rays and their positions relative to the elec-
trochemical cell and (b) the experimental set-up on the I12 JEEP beamline
at Diamond Light Source (c) is a photograph of the experimental set-up.

averaged di�raction pattern, improving the quality of the gathered data. The re-

sulting EDXD data are plotted as a function of the photon energy of the di�racted

X-rays, in contrast to powder X-ray di�raction data. These are obtained at a single

wavelength and are plotted as a function of the scattering angle, 2-theta.

4.2.6 In Situ Neutron Di�raction Experimental Set-up

Neutron di�raction experimentation was done on the ENGIN-X beamline at the ISIS

neutron source, UK. Neutron di�raction is similar technique to X-ray di�raction but

it is able to provide complimentary data, due to the di�erence in the interaction of

neutrons with nuclei compared to X-rays.

The electrochemical cell was bolted onto the sample stage via a custom built

clamp-stand. The sample stage permitted movement of the cell in the X,Y and Z

directions all with an accuracy of 5μm. Stage rotation was also permitted with an

accuracy of movement of 0.002°. This stage movement allowed for sample alignment

to the incident neutron beam. Coarse alignment was conducted with a theodolite

which is located at ±45° to the incident beam. Fine alignment was done by moving

the sample in the X, Y and Z directions and measuring the signal to noise ratio of

the sample.

During experimentation, a 0.5 x 0.5 mm neutron beam irradiated the MCE
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Fig. 4.10: Showing the experimental set-up of the in situ electrochemical cell on the
ENGIN-X beam line at ISIS neutron source, UK.

working electrode and data was collected using two detector banks. The ENGIN-X

detector set-up comprised of two di�raction detector banks which were located at

horizontal di�raction angles of ±90° to the incident neutron beam. These two detec-

tors spanned 30° both horizontally and vertically. Each detector bank was comprised

of 1200 ZnS/6Li scintillator elements which are arranged in 5 units, stacked on top

of one another (each unit is made of 240 horizontally stacked elements). This gives

rise to a spatial resolution of 3 x 150mm (horizontal by vertical).

A photograph of the experimental set-up may be observed in Figure 4.10. Obser-

vation of Figure 4.10 shows the electrochemical cell which is bolted onto the sample

stage (and covered with insulation). One of the two detector banks is visible on the

far left of the photo.

4.3 Cathode

For experiments concerning the reduction of titanium dioxide to titanium and al-

loys (the FFC Cambridge process), the electrode is predominantly a pellet [17-22,

130-132]. The precursor is a (mixture of) metal oxide powder(s) which, typically,
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are pressed between 50-100 MPa and then sintered at a temperature of 1100°C. This

gives rise to a porous pellet of open porosity ca. 25-35%. However, due to the limited

quantities of uranium dioxide powder available, the cathode design utilized within

this thesis has been those which hold sub-milligrams of powder. Throughout this

study, di�erent forms of cathode have been prepared for the electrochemical reduc-

tion of uranium dioxide to uranium of which are expanded upon in the proceeding

sub-sections.

It should be noted that the current collector assembly for all electrodes were

cleaned via the same systematic procedure: Firstly, the electrode current collectors

were dipped into aqua regia for up to two minutes. After which, they were then

quickly transferred to a bath of deionized water to remove the acid. The current

collectors were then cleaned with hot soapy water, rinsed with deionized water and

then washed in acetone to remove water stains. The current collectors would then

be ready for use.

4.3.1 Metallic Cavity Electrodes

A more recent development of electrodes (compared to pellets) used for studying

the reduction of powders is the metallic cavity electrode (MCE). The MCE was

�rst described by Qui et al. and was developed in order to study the reduction

of powders [133]. The fundamental advantages of this electrode is that it permits

the fundamental electrochemical study of powders with substantially less amount

of powder required, compared to a pellet. The latter phenomenon is particularly

important as relatively large amounts of powder may cause high current responses,

which cause high ohmic drops; this is not ideal for potential controlled experiments.

As a result, the MCE has been an electrode that features in many papers regarding

the reduction of various powders in molten CaCl2 [134-138].

In the experiments presented here, the MCEs were fabricated from 0.5mm thick

foils of molybdenum. A number of holes with a diameter of 0.5 mm were drilled
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(a) (b)

Fig. 4.11: (a) A UO2 packed MCE and (b) a UO2 packed MBE

into the foils (see [133]). The foils with the holes drilled were then cut into strips

with a width of ca. 4 mm by using a steel guillotine. Once the MCEs had been

cut, they were washed with a mixture of Decon 90 and deionised water and dried.

Afterwards, they were washed in acetone before being stored, ready for use.

The MCE foils were attached to a molybdenum rod current collector (3 mm Ø, 35

mm length) with 0.2 mm diameter molybdenum wire to ensure an all-molybdenum

current collector system was employed. This allows the current response of blank

MCEs (MCEs which have not been packed with powder) to be attributed to molyb-

denum only. Packing of the UO2 powder was achieved by pressing the powder into

the MCE between two optical microscope glass slides by hand. A pin (0.4mm diam-

eter) was also used to push powder inside the MCEs to ensure a high packing of the

powder. A 5-hole MCE packed with UO2 powder can be seen in Figure 4.11 (a).

4.3.2 Micro-Bucket Electrodes

The main disadvantage of the MCE is the fact that powder tends to fall out from

the holes during the electrochemical reduction, especially if the powder has a large
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particle size distribution. The mechanical stability of packed, non-sintered, powders

is low. This combined with a signi�cant volume change during electrolysis in the

packed powder could cause the structural integrity of the �pellet� to be compromised

and hence result in the powder falling into the bulk electrolyte.

A novel type of micro electrode has been conceived in order to reduce the risk

of this phenomena; the micro-bucket electrode (MBE). As the name suggests, the

MBE can be pictured to be the shape of a bucket. The �bucket� is packed with

powder and attached to a current collector. This arrangement reduces the risk of

powder falling out as there is only one cross section open to the bulk salt.

The MBE is comprised of a 3 mm diameter metallic rod (molybdenum, tungsten,

etc.) with an approximate length of 10 mm. A 0.8 mm diameter hole is then drilled

into the circular cross section of the rod, approximately 2-3 mm deep. Powder can

then be pressed into the cavity as in the MCE. The MBE is then attached to a

molybdenum current collector with the face of the cavity pointing up. The main

advantage of this cathode con�guration is that the powder does not fall out of the

electrode during electrochemical reduction. An image of an MBE can be seen in

Figure 4.11 (b).

4.4 Electrolyte

One of the main advantages of using LKE is the absence of highly basic and acidic

environments. However, hydrolytic decomposition can occur within the melt if resid-

ual moisture is not removed from the system. This hydrolytic decomposition occurs

as the temperature of the system is raised and HCl is lost from the system, causing

the melt to be contaminated with alkaline products [139]. This is a much greater

problem when using LiCl due to its high deliquescent properties. It is therefore

necessary to remove any residual moisture from the salts before the reaction tem-

perature is reached. There are a couple of methods in the literature that describe

methods of removing moisture [139, 140]. The latter, describes how the dehydration
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of LiCl.H2O occurs and states that full dehydration of LiCl occurs via a two step

reaction between 99-110 and 160-186°C. The measurements were carried out at low

ramp rates (1-10°C) which resulted in a slow moisture removal process. Therefore,

all salts procured for experimentation were dried under vacuum for 24 hours prior

to use.

Commercially available anhydrous lithium chloride and potassium chloride (>

99.98%, Sigma Aldrich) were used for all experiments. During the drying procedure,

the vacuum oven was �rst �lled with argon gas prior to inserting the salts. Once

the salts were loaded, the oven was subjected to a vacuum and re-�lled with argon.

This purge sequence was repeated 3 times whilst the oven ramped up to a working

temperature of 175°C to ensure the salts did not absorb moisture from the oven's

environment. Once the working temperature was achieved, the oven was subjected

to a vacuum and left for at least 24 hours. After the vacuum drying was complete,

the oven was left to cool under vacuum. Once room temperature was achieved, argon

was administered into the vacuum oven. The salts were removed and gas-tight lids

were a�xed to the containers within seconds of opening the vacuum oven. The salts

were then transferred to an argon �lled glove box (boasting levels of O2 and H2O

of <0.5ppm) for use or storage. The eutectic was made by mixing the two salts in

a ratio of 41:59 mol/mol% LiCl:KCl [25] inside the glove box.

XRD was also used to identify any contamination that may be present in a

sample of LKE that was dried using the technique described in above. Figure 4.12

contains the results of this analysis and it is clear that little or no contamination

is present due to the high intensity of KCl (1) and LiCl (2) peaks within the data.

A full Le Bail re�nement was performed and the re�ned lattice parameters for LiCl

and KCl were extracted to be 5.08854 Å and 6.22967 Å which match very closely

to the literature data of 5.08 Å and 6.22 Å respectively [141, 142]. It is therefore

understood that the drying of salts using the vacuum oven described is adequate to

ensure a contamination free eutectic is produced.
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Fig. 4.12: XRD results of LKE that was dried using the technique described in
Section 4.4. The peaks are identi�ed to be (1) KCl and (2) LiCl. There
are a couple of small peaks due to X-ray �orescence of the XRD equipment

4.5 Anode

Unless otherwise stated, all electrochemical measurements taken were used with a

dense graphite rod (Alfa Aesar). These graphite rods typically possessed 3 mm Ø

and were 35 mm in length. Prior to use, the graphite rods were heated in a �ame

until they glowed red. This was done to remove any residual water contained within.

4.6 Reference Electrode

The reference electrode is very important whilst carrying out electrochemical mea-

surements. Ideally, the reference electrode will provide a stable, well de�ned elec-

trode potential which is used to relatively compare the potential of the working

electrode. However, in practice, a completely stable reference is not achievable. In-

stead, reference electrodes are manufactured to provide as stable of a potential as

physically possible, of which one is the silver-silver chloride (Ag|AgCl) reference elec-

trode. This reference electrode de�nes a relatively stable potential by incorporating

an electrochemical reduction-oxidation (redox) reaction. The redox reaction for the
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Ag|AgCl reference electrode occurs at a potential of -0.197 V with respect to the

standard hydrogen electrode, according to the Nernst equation, which is described

in more detail in Section 5.

In the work presented in this thesis, Ag|AgCl reference electrodes were manufac-

tured for use with all experiments. The Ag|AgCl reference electrode functions via a

reversible redox reaction between a silver wire and its chloride salt. The reactions

can be presented as:

Ag+ + e− ↔ Ag (4.1)

AgCl↔ Ag+ + Cl− (4.2)

Giving rise to an overall equation

AgCl + e− ↔ Ag + Cl− (4.3)

The membrane of the Ag|AgCl reference electrode has been studied in order to

attain the reference electrode with least ionic resistance in the junction between

the reference electrode electrolyte and bulk electrolyte. AC phase shifts in electro-

chemical measurements obtained via potentiostats may occur due to high reference

electrode membrane impedance at this junction. Therefore, reference electrodes

with a lower membrane junction impedance give rise to a greater sensitivity of po-

tentiostat readings [143]. A phenomena which could be particularly important when

investigating small electrodes.

Two membrane materials were used for this study. The �rst was an alumina

based (ca. 60% β-Al2O3) material named Pythagoras (Multi-Lab Ltd.). This ma-

terial has been used extensively in molten salt based work [144-148] . The second

was a glass membrane based on an all-glass reference electrode conceived by Bockris

et al. [149]. The reference electrodes were composed of 350 mm (L) x 4 mm (ID)
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(a) Pyrex Glass RE (b) Pythagoras RE

Fig. 4.13: Reference electrode impedance

Fig. 4.14: Equivalent circuit model

x 6 mm (OD) Pyrex glass and Pythagoras, closed one end tubes. 0.75 mol kg-1 of

silver chloride (>99%, Sigma) was added to LKE and was dried under vacuum for

24 hours at 175°C before being transferred to an Argon �led glove box, ready for

assembly. The dried salts were funnelled into the electrode membrane and a 0.2 mm

diameter silver wire was pushed into the electrodes and sealed with Suba-Seals. This

sealed assembly was then removed from the glove box and inserted into the reaction

vessel (with temperatures exceeding 400°C) to ensure the salt became molten. The

silver wire was pulled up from the bottom of the tube by 2 mm. The electrode was

then ready to be used immediately or could be removed, cooled and then stored for

later use.

Both Pyrex glass and Pythagoras reference electrodes were tested for ohmic re-

sistivity using electrical impedance spectroscopy (EIS) to ensure that the reference

electrode with the lowest ohmic resistivity was employed in later experiments. In

these tests, a two electrode set-up was employed whereby the reference electrodes
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Ohmic resistance (kΩ)
380°C 400°C 425°C

Pyrex 59.55 51.79 25.20
Pythagoras 174.7 100.9 61.76

Tab. 4.2: Ohmic resistance of reference electrodes

were made the working electrode and a graphite rod was made the counter elec-

trode. The molten salt crucible containing 100g of LKE and was raised to working

temperatures of 380°C, 400°C and 425°C of which the impedance on both electrodes

was tested.

Figure 4.13 shows the results of the test for both electrodes. The data was

then analysed by �tting an equivalent circuit model using the IVIUMsoft software

package, as shown in Figure 4.14. The �rst resistance was attributed to the electronic

resistance of the silver wire. This is con�rmed by similar resistances exhibited

for both types of reference electrode at all temperatures. The capacitance was

attributed to the double layer which is built up due to the reversible redox reaction

of the reference electrode according to Equations 4.1-4.3. The second resistance is

attributed to the ohmic resistivity of the membrane material. The results of the

ohmic resistances of both electrodes at given temperatures are presented in Table

4.2

From Table 4.2, it is clear that the ohmic resistance of both types of electrodes

reduces as the temperature increases. However, the Pyrex glass reference electrodes

give rise to signi�cantly smaller ohmic resistance at the desired working temper-

atures. The results suggest that the ionic movement of ions through the Pyrex

glass membrane is more e�cient than that of the Pythagoras tubing. Therefore, the

all-glass reference electrode was used within the cell during experiments.
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4.7 pO2- Indicator Electrode

In molten salts, a phenomenon named oxo-acidity exists; this is a system containing

oxo-acids (oxide anion acceptors) and oxo-bases (oxide anion donors). Analogous

to acid-base couples in aqueous solutions, the oxo-acidity of a molten salt may

play a key role in de�ning the stabilisation of species in the melt. By de�nition,

the oxo-acidity of a melt is characterised by the (negative logarithm of) activity

of oxide anions dissolved in the melt. Again, one can draw comparisons with the

aqueous acid-base system whereby the pH of the solution is de�ned as the (negative

logarithm of) activity of hydrogen cations. That is, the oxo-acidity (or oxo-basicity)

of a molten salt system is de�ned as the value pO2-: the negative logarithm of the

activity of oxide anions within the melt:

pO2− = −log
(
O2−) (4.4)

Where the parenthesis denote the activity of the ion in which they contain. In

practice, it may be highly di�cult to compute the real activity of the ionic solutes

in molten salt media. However, because of the strong ionic nature of the molten

salts, they tend to act as ideal solutions. Therefore, one can approximate the activity

of ions dissolved inside the melt to be equal to the concentration (molality) of that

ion. That is, the activity coe�cient of ionic solutes is unity. This assumption

is, generally, permitted because the ionic solutes, generally, do not alter the ionic

strength (or idealisation) of the molten salt solvent [25].

In order to understand the e�ect of the pO2- on electrochemical redox reactions,

the reader is referred to Section 5. However, in terms of allowing one to monitor the

oxo-acidity of a molten salt, the use of a pO2- indicator electrode may be utilized

and is described here.

As the oxo-acidity of a molten salt is dependent on the oxygen anion, O2-,

the use of a membrane allowing the selective mobility of O2- is necessary. Yttria
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stabilized zirconia (YSZ) is a membrane that contains such properties and may be

used in order to create such a device. By doping zirconia with a percentage of yttria,

vacancies are created within the material which are large enough to accommodate

oxide anions. Because the valency of yttria (Y3+) is lower than that of zirconia

(Zr4+), for every 2 molecules of Y2O3 inside the lattice, an oxygen vacancy is created

to ensure overall charge compensation [150, 151]. The concentration of yttria inside

the membrane will de�ne the number of vacancies within the lattice; the more

yttria inside the lattice, the higher the number of vacancies and, therefore, a higher

ionic conductance is foreseen. On the other hand, increasing the concentration of

yttria inside the lattice will have other undesirable e�ects on the material. As such,

a typical percentage doping of yttria is around 3-8 mol% [152]. These vacancies

inside the lattice allow the conductivity of oxide anions via the vacancy di�usion

mechanism; oxygen �hopping� through the vacancies. With this is mind, one can

conceive a reference electrode which is susceptible to a change in the activity of

oxide ions. By measuring the potential of this electrode to that of one which is

not susceptible to changes in the activity of O2- ions (such as an all-glass Ag|Ag+

reference electrode), any changes in the measured potential must be due to a change

in pO2-.

YSZ tubes containing 8 % mol. yttria were procured measuring 6.35 mm OD x

4.78 mm ID x 350 mm L (Multi-Lab). The tubes were baked at 400°C for 2 hours

to remove any residual moisture. The tubes were then transferred to the MBraun

glove box (see Section 4.8) for storage. During preparation of the pO2- indicator

electrodes, the same procedure was followed as in the manufacture of the Ag|Ag+

reference electrodes described in Section 4.6 . However, a known quantity of Na2CO3

or Li2CO3 is also added to the salt. These carbonates decompose in the molten salt

and introduce a O2- ions into the electrode via the following equations:

(Na,Li)2CO3 → 2(Na,Li)+ + CO2−
3 (4.5)
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Fig. 4.15: Showing a schematic of a pO2- indicator electrode.

CO2−
3 → CO2 + 2O2− (4.6)

The dissociation constant for the carbonate ion (Equation 4.6) is su�ciently large

so that if the partial pressure of CO2 in the atmosphere is low, full dissociation

occurs [25]. By ensuring a �ow of inert gas in the cell, for example, these conditions

may be achieved. Therefore, the addition of one mole of (Na,Li)2CO3 into the salt,

introduces one mole of O2- ions into the bulk. A schematic of a pO2- indicator

electrode is shown in Figure 4.15

4.8 Glove Box

A glove box is required for all experimentation and preparation due to the hygro-

scopic nature of the salts, as described in Section 4.4. Two glove boxes have been

used in this work; the �rst for cell preparation and the second to carry out experi-

ments.

For preparation of the cell, it is imperative that the salts are open to a dry

inert atmosphere. An MBraun glove box is utilised for this work, maintaining an
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argon atmosphere with <0.5ppm of oxygen and water. This glove box, however, is

not large enough to accommodate all of the heating equipment to take the cell up

to the required reaction temperature and so a custom built glove box is used for

experimentation.

Once the cell has been sealed inside the MBraun glove box, it is transferred to

the custom built glove box. The atmosphere is dried by pumping the air through a

calcium carbonate desiccant and back into the box. The humidity is controlled via

a Pico Humidiprobe attached to a Eurotherm PID controller and solid state relay

which controls the desiccant pump. This glove box is able to maintain an envi-

ronment of 0.3% relative humidity. The temperature of the glove box is monitored

via 6 K-type thermocouples, attached to each panel, and two convection fans to

ensure heat is distributed evenly inside. If the temperature reaches a level ≥80°C,

the power supply to the furnace is automatically disengaged until a manual reset is

performed.

4.9 Summary

This chapter has outlined all of the experimental equipment used to procure exper-

imental results in the proceeding chapters. The combination of Chapters III and IV

should adequately describe the experimental set-up, procedures and theory all used

to derive the experimental results outlined in Chapters VI, VII and VIII.

Chapter V will present novel Littlewood diagrams which have been used exten-

sively throughout the design of experiments. Chapter VI will portray the production

of uranium dioxide powder whilst Chapters VII and VIII focus on the characterisa-

tion of the electroreduction and materials respectively.
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Chapter V. Littlewood (Predominance)

Diagrams

Sections of this work have been peer reviewed and published in the Journal of

Applied Electrochemistry (Brown, L. D., Abdulaziz, R., Simons, S., Inman, D.,

Brett, D. J. L., & Shearing, P. R. (2013). Predominance diagrams of uranium and

plutonum species in both lithium chloride�potassium chloride eutectic and calcium

chloride. Journal of Applied Electrochemistry, 43(12), 1235-1241.)

5 Littlewood Diagrams

Littlewood (or Predominance) diagrams are a useful tool for rapid prediction of a

metal-oxide-halide molten salt system (although other molten salt systems - such as

nitrates - may also be used). The use of thermodynamic data, experimentation or a

combination of both may allow visualisation of a molten salt system and to predict

the conditions necessary for certain species to be stable. Analogous to Pourbaix

diagrams, Littlewood diagrams are a plot of potential vs. the negative logarithm of

the activity of O2- ions, commonly known as pO2-.

With pure molten salts - using a metal halide salt as an example - the system

can be understood to be a complete dissociation of the metal cations and halide

anions. That is, the salt exists as a liquid composed of ionic media. By employing

the Gibbs free energy of formation of this halide cation to be equal to zero, the

molten salt system may be depicted with the Gibbs free energy of formation of the

halide acting as an internal reference. This notion is very simple and is the basis of

the thermodynamic prediction of molten salt systems.

Assuming that a small concentration of the cation's metal oxide is added and

is soluble in the salt, not only does the salt now consist of the metal cation and

halide anions, but a new anion, O2-, exists. The relative Gibbs free energy of
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formation of this oxygen anion may be then also be calculated (with respect to the

internal reference) and be used to deduce the Gibbs free energy of electrochemical

half cell reactions, that involve O2- ions. This allows for thermodynamic description

of electrochemical reductions or oxidations of, say, an oxide or oxychloride. This

de�nes the foundations in which Littlewood diagrams are used to describe a molten

salt system.

5.1 Thermodynamic De�nition of a Molten Salt System

Novel, thermodynamically calculated, Littlewood diagrams at unit activity are pre-

sented for the �rst time in LKE at 500°C. Named after R. Littlewood, who �rst

described them in 1962 [28], these diagrams are analogous to Pourbaix diagrams

in aqueous media and are able to thermodynamically describe a metal-molten salt

system. Littlewood diagrams are constructed by plotting the electrode potential,

E, versus the negative logarithm of the activity of oxide ions in the melt, the pO2-

(as opposed to pH in Pourbaix diagrams). Lines are used to separate regions of

stability of di�erent species in the molten salt media. The interface between two

species de�ne when those two species co-exist together, both with an equal activity.

The thermodynamic de�nition of the U-LKE system is important as it highlights

the complexity of di�erent species that can exist/co-exist within the melt.

A fundamental phenomenon of these diagrams is the three di�erent types of

reaction that can occur within a molten salt electrochemical cell: the sole transfer

of oxygen anions; the sole transfer of electrons and the transfer of both electrons

and oxygen anions. Vertical lines depict reactions that describe oxide ion transfer,

horizontal lines portray reactions involving electron transfer and, lastly, diagonal

lines depict the reactions that involve transfer of both electrons and oxygen anions.

Examples of these di�erent reactions can be seen in Equations 5.1 - 5.3 respectively

(where �M� denotes a generic metal).
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MO + 2Cl− ↔MCl2 +O2− (5.1)

MCl2 + 2e− ↔M + 2Cl− (5.2)

MO2 + 4e− ↔M + 2O2− (5.3)

In order to plot the interfaces, equations linking the pO2- to the cell potentials

for each half-cell reaction are required. The free energies of these system equations

can be related to electromotive force, E, via Equations 5.4 and 5.5. The pO2- is

then related to the cell potential via the Nernst equation (Equation 5.6).

−∆G0 = nFE0 (5.4)

−∆G = nFE (5.5)

E = E0 +
RT

nF
ln

(
Πja

υj
j

Πia
υi
i

)
(5.6)

By applying this equation to the electrochemical reaction of Equation 5.3, for ex-

ample;

E = E0 +
RT

nF
ln

(
aMO

aM aO2−

)
(5.7)

The lines separating each region may be de�ned as the point at which both species

co-exist each at unit activity which allows Equation 5.7 to be written in a more



5 Littlewood Diagrams 142

suitable form:

E = E0 −
2.303RT

nF
log(aO2−) (5.8)

To incorporate oxygen into the system, a de�nition of the standard state of oxide

ions is required. The pure oxide of the cation of the chloride melt is therefore de�ned

as unit activity. Due to the standard free energy being de�ned in this way, values

will change depending on which melt is used to de�ne the oxide ion. In the case of a

a mixed system or a eutectic, the activity of O2- ions may be de�ned by one of the

metal chlorides and adhered to throughout. One will �nd that by calculating the

diagrams using another cation oxide as the basis, the diagram will look the same

but will be shifted along the X (pO2-) axis.

However, in the case of this work in LKE, a weighted molar average of formation

of O2- ions will be taken under the principle that O2- ions will have a Li+, K+ and Cl-

environment as their nearest neighbour shells. This is due to the melt having a quasi-

crystalline structure [153-155]. As the O2- ions are a minority in the melt, and that

the melt is a eutectic formed from two alkaline metal salts, the nearest neighbour

shells would be that of chloride ions, of which are produced via dissociation of both

lithium chloride and potassium chloride at the molar average of 59% LiCl and 41%

KCl. Therefore, the pure oxide of the cation is calculated to be of a weighted average

of both Li2O and K2O. The following passage shows how the standard free energy

of O2- ions has been calculated:

In a pure potassium chloride melt, the standard state of oxide ions would be

K2O. The reaction to form oxide ions would thus be

2K +
1

2
O2↔2K+ +O2− = ΔGK2O (5.9)

The standard free energy of formation of the oxide ion can therefore be de�ned as
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∆G0
O2−
K

= ∆G0
K2O − 2∆GK+

0 (5.10)

Similarly, Equations 5.9 and 5.10 can be written for Li2O:

2Li+
1

2
O2↔2Li+ +O2− = ΔGLi2O (5.11)

∆G0
O2−
Li

= ∆G0
Li2O − 2∆GLi+

0 (5.12)

At 773 K the standard free energy of K2O & metallic K are -252.77 kJ/mol [156, 157]

& -362.66 kJ/mol [158, 159] respectively. For Li2O & LiCl the values are -496.75

kJ/mol [156, 157, 159] & -344.85 kJ/mol [159, 160] respectively. By assuming a

weighted average of oxide ions produced from lithium and potassium, a standard

free energy of oxide ions in the melt can be calculated:

∆G0
O2− = 0.59*∆G0

O2−
Li

+ 0.41 ∗∆G0
O2−
K

(5.13)

Using Equation 5.13, the standard Gibbs free energy of oxide ion formation has been

calculated to be -357.91 kJ/mol.

Now that the standard free energy of the oxide ion is known, it can be used to

deduce the relationship between the oxygen pressure, oxide activity and potential,

i.e:

1

2
O2 ↔ O2− + 2e− (5.14)

Applying the Nernst relationship to Equation 5.14, one yields:

EO2− = E0O2− −
RT

nF
ln

(aO2)0.5

aO2−
(5.15)

By varying the pressure of oxygen within the system, Equation 5.15 can be used to



5 Littlewood Diagrams 144

Fig. 5.1: Shows the relationship between oxide activity, potential and (logarithm of)
oxygen pressure for (a) LiCl, (b) KCl and (c) LKE at 773 K.

plot the relationship between oxygen pressure, oxide activity and potential. These

base graphs have been constructed for both LiCl and KCl in order to present the

di�erent conditions each salt possess. These are shown in Figures 5.1(a) and 5.1(b)

respectively. A third diagram is also presented in Figure 5.1(c) using the analogy

of O2- ions being formed from both Li2O and K2O, as mentioned previously. The

diagrams shown in Figure 5.1 can then be used as a base diagram whereby the

di�erent regions of stability are superimposed. The regions of stability are calculated

by applying the Nernst equation to each reaction that may occur in the molten salt
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environment, such as those shown in Equations 5.1 - 5.3. Thermodynamic data used

was obtained from references [156 -168].

5.2 Uranium Species in Molten Salts

Novel Littlewood diagrams (using thermodynamic calculations only) are presented

at unit activity for uranium species in both LKE and CaCl2. Additional calculations

were made in the CaCl2 molten salt due to the recent high interest in this particular

salt and to enable comparisons to be drawn with a salt that operates at a higher

temperature compared to LKE. It should be noted that all diagrams presented in

this chapter are with reference to the Cl-|Cl2 couple. The regions of stability are

named from the thermodynamic data used to construct the diagrams. However, this

does not necessarily depict the species that actually exist, but instead describes the

oxidation state of the metal. For example, a region named UCl3 does not necessarily

mean that UCl3 exists. However, it does describe that U exists in the salt in the 3+

oxidation state, as indicated by Equation 5.16:

UCl3 → U3+ + 3Cl− (5.16)

5.2.1 LKE

The Littlewood diagram for uranium species in LKE is presented in Figure 5.2.

The solid black lines depict the conditions necessary for the two species (which that

line separates) to co-exist together, both at unit activity. The regions themselves

depict when only the species that belongs to that region exists at unit activity.

Other species may exist; however, their activity will be less than unity. Observation

of Figure 5.2 shows many regions of stability for various uranium species. These

regions include a large region for lithium uranate, regions for oxides and chlorides

as well as a small region for an oxychloride. This shows the complexity of the

uranium-LKE molten salt system.
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Fig. 5.2: Uranium species in the LKE molten salt at 773 K. Potassium deposition
has been been omitted due to it having a more negative deposition potential
to lithium. Potassium uranate has also been omitted.

Perhaps the most important aspect of this diagram is that of the thermodynam-

ically predicted reduction mechanism for the electroreduction of uranium dioxide

to metallic uranium. The diagram predicts a simple, 4-electron transfer reduction

to the metallic phase. This is in agreement to the observations made by Sakamura

et al. and Iizuka et al., who also observed a 4-electron transfer [66, 67]. Another

important prediction of this electroreduction is the dependency of the activity of

O2- ions. Figure 5.2 predicts that the electrochemical reduction will only occur with

a pO2- level between 6-23. If attempting to electrochemically reduce at a pO2- of

< 6, one will reach the cathodic decomposition potential of the molten salt before

reaching the electrochemical reduction potential. Therefore, the microstructure of

the UO2 working electrode may have a signi�cant e�ect on the electrochemical re-

duction. For example, if one assumes a highly tortuous electrode with a low density

of TPIs then this would result in the inhibition of the di�usion of O2- ions away from

the electrode. This, in turn would increase the local level of pO2- at the electrode

and, thus, a�ect the electrochemical reduction potential.

In addition, it is worth noting that if one desired to produce uranium metal via
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the electrochemical reduction of U3O8, then the electrochemical reduction mecha-

nism is predicted to be:

U3O8 → UO2 → U (5.17)

The reaction pathway shown in Equation 5.17 is the same reaction pathway as seen

by Hur et al. and by Jeong et al. [61, 63].

It is also important to note that the electroreduction of UO2 to metallic U in

LKE is more facile at higher temperatures, with respect to controlling the pO2-

of the melt. This is due to the fact that at low temperatures and low values of

pO2- (ca. 0�6) lithium deposition would occur preferentially to the oxide reduction.

These observations show that Littlewood diagrams are a very useful tool to predict

metal-molten salt systems.

5.2.2 CaCl2

The Littlewood diagram for uranium species in the CaCl2 is presented in Figure 5.3.

Perhaps the most striking comparison of the diagrams in Figures 5.2 and 5.3 are the

di�erences in location of the phases: the region for stability of UO2 is smaller and is

shifted to lower values of pO2- in the calcium chloride melt, compared to that of LKE.

This is explained thermodynamically: as the temperature of the system is increased,

the Gibbs free energy change of the electrochemical reaction is less negative and,

therefore, the Nernst potential becomes less negative for given activities of oxide

ions. Di�erences in stability between Li2O and CaO are not considered.

Again, the electrochemical reduction from UO2 to U in CaCl2 is also predicted

to be a single, 4-electron transfer process. This prediction is also in agreement

with studies that observed this electrochemical mechanism and with the predicted

reaction mechanism in the LKE melt [63, 169].

Additionally, the region of stability of UO3 has now shifted to potentials more
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Fig. 5.3: Littlewood diagram showing uranium species in CaCl2 at 1073 K

anodic than the anodic decomposition potential of calcium chloride. That is, if one

were to assume a pO2- level of 7 and were to sweep the potential from ca. -0.4

V to more positive potentials, then one would evolve chlorine gas as a product of

melt decomposition before reaching the potential to oxidise U3O8 to UO3.Therefore,

the Littlewood diagram predicts that it would not be possible to electrochemically

reduce UO3 to U3O8 in CaCl2 at 1073 K.

Moreover, it is important to note that the electroreduction of UO2 to U in CaCl2

is facile compared to that of LKE. This is because there is a large region of stability

of UO2 to U, which does not depend on the activity of oxide ions. This would,

therefore, mean that the microstructure of the electrode would not be as important

in ensuring the local level of pO2- remains within the necessary levels.

5.3 Plutonium species in Molten Salts

Plutonium species have also been considered during this investigation as spent nu-

clear fuel will contain a certain percentage of plutonium dioxide. And, as mentioned

in Section 1.1, plutonium may also be burned up inside a (MOX) nuclear reactor.

Therefore, the electrochemical reduction of plutonium dioxide would also be of great



5 Littlewood Diagrams 149

Fig. 5.4: Littlewood diagram of plutonium species in LKE at 773 K.

interest within the scope of this Ph.D thesis. Again, the Littlewood diagrams are

constructed in both LKE and CaCl2 molten salts.

5.3.1 LKE

Figure 5.4 shows the Littlewood diagram for plutonium species in LKE at 773 K.

For the plutonium Littlewood diagrams, dashed lines are used to separate regions

of stability instead of solid black lines used in Figures 5.2 and 5.3. Figure 5.4

shows only 5 regions of stability for various plutonium species, including a relatively

large region of stability for the oxychloride, PuOCl. Interestingly, the Littlewood

diagrams predicts intermediate phases in the electroreduction of PuO2 metallic Pu:

the �rst is Pu2O3 and the second is PuOCl. Moreover, similar to the uranium

species in LKE, the Littlewood diagram predicts that the pO2- must not fall below

a level of ca. 7.5 as this would cause the reduction potential of Pu2O3 to Pu to be

more cathodic than the cathodic decomposition potential of LKE.
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Fig. 5.5: Littlewood diagram of plutonium species in CaCl2 at 1073 K

5.3.2 CaCl2

Lastly, the stability of plutonium species in CaCl2 are presented in Figure 5.5. This

Littlewood diagram also shows 5 stable species. However, the region for stability

for Pu2O3 is much smaller. Again, the diagram predicts an intermediate species in

the electrochemical reduction of PuO2 to metallic Pu. Similarly to Figure 5.3, the

reduction is not dependent on the level of pO2-. However, if the electroreduction

occurs at low levels of pO2- (say 0.1), any under-potential associated with elec-

trolyte decomposition could see electroplating of calcium metal to occur (due to

decomposition of the molten salt).

5.4 Prediction of Selective Electroreduction

Considering that spent nuclear fuel pellets contain both uranium and plutonium

dioxide (alongside other rare earths and actinides), thermodynamic prediction of

the feasibility of selective electrochemical reduction and separation of these species

is desirable: this can be achieved by superimposition of the uranium and pluto-



5 Littlewood Diagrams 151

Fig. 5.6: Superimposed Littlewood diagrams of uranium species and plutonium
species in LKE at 773 K. Points A and B show the regions in which one
could selectively electrochemically reduce UO2to metallic U without also
producing metallic Pu.

nium based diagrams in LKE. Figure 5.6 shows a magni�ed section of the result of

superimposing Figures 5.2 and 5.4.

It can be seen that there would be an inherent di�culty at separating both

species at unit activity due to the reduction potentials of UO2|U and Pu2O3|Pu

being very similar (ca. 100 mV apart), as denoted by point A on Figure 5.6. The

diagram also shows that in order to produce metallic uranium from a mixed oxide

sample, PuO2 will also be electrochemically reduced to produce Pu2O3. However,

the reduction potentials of PuOCl|Pu, and UO2|U diverge at higher values of pO2-,

leading to a greater possibility of being able to selectively reduce to metallic species,

as shown by point B. Figure 5.6 provides a priori guidelines to inform the exper-

imental conditions required for selective reduction of mixed oxides; for example,

production of metallic uranium is feasible by reducing a mixture of uranium dioxide

and plutonium dioxide, as the reduction potential of UO2|U is more positive than

that of the Pu2O3|Pu reduction potential. The lines are, however, very close to

one another and give a narrow region whereby reduction to produce metallic ura-
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nium only, as depicted by point A. The diagram is extremely useful in predicting

the conditions necessary for this selective electrochemical reduction to occur. The

Littlewood diagram is also able to predict di�erent reduction mechanisms and the

conditions necessary to achieve this.

5.5 Di�erences Between Previously Published Diagrams

In previously published papers containing Littlewood diagrams of uranium and plu-

tonium (see Section 2.2.1), information has been empirically derived through titra-

tion methods of the nuclear elements into the molten salt. As a direct result of

this, the activities of these nuclear species are all less than unity (approximately,

in concentrations of 0.02 mol kg-1). Thus, the location of lines depicting regions of

stability are shifted to di�erent values of pO2-.

The method of producing these diagrams here is based purely on thermody-

namic data and is, therefore, inherently more �exible in accounting for the e�ects

of changing activity. For example, if one were to take the concentration of PuOCl

to be 1x10-1 mol kg-1 (an approximation to the activity) then the pO2- value at the

equilibrium of Pu2O3|PuOCl would be shifted towards the left on the diagrams to

lower pO2-. This can be calculated as follows:

E0 =
2.303RT

nF
log

(
[Pu2O3]

[PuOCl]2[O2−]3

)
(5.18)

Assuming the activity of Pu2O3 to be unity Equation 5.18 simpli�es to:

pO2− =
4G

3x2.303RT
+

2

3
log([PuOCl]) (5.19)

This would result in the line separating Pu2O3 and PuOCl to shift to a value of

ca. 9.9, as shown by point C in Figure 5.7. Furthermore, points D and E show

where the line would be if the activity of PuOCl were 10-2 , and 10-3, respectively.

It can therefore be seen that one would be able to alter these regions by changing
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Fig. 5.7: Littlewood diagram at 773 K showing the e�ect of changing the activity
of PuOCl to be less than unity. Points C, D and E depict the level of
pO2- where the line separating the Pu2O3 and PuOCl regions would be at
activities of 10-1, 10-2 and 10-3 respectively.

the activity of the appropriate species within the melt. Lower activities could be

used, for example, creating larger regions of stability. By ensuring all species are at

a lower activity, the diagrams would change further.

5.6 Conclusion

To conclude, novel Littlewood diagrams have been presented for both uranium and

plutonium species in LKE and CaCl2 molten salts based solely on thermodynamic

data. Inherently, these diagrams are limited by the thermodynamic data available

but they provide a useful tool to predict the state of molten salt systems. Although

the eutectic is assumed to be ideal, in the case of LKE, the diagrams agree with pre-

viously published diagrams obtained experimentally, allowing for changes in species

activity. There is no issue of complex ion formation in the LKE mixture and so

ideality is a good approximation to the real system.

The diagrams presented allow for the thermodynamic prediction of separation of

these species via a direct electrochemical reduction technique. The electrochemical

reduction of UO2 to metallic U is more facile at higher temperatures, as at lower
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temperatures there is a need to control the pO2- values to ensure electrochemical

decomposition of the melt is not favoured over the electrochemical reduction process.

However, if the level of pO2- is adequately controlled, the Littlewood diagrams

predict this electroreduction to be feasible. If the level of pO2- is not adequately

controlled, lithium electroplating due to decomposition of the molten salt could

become more favourable. Therefore, the microstructure of the electrode could play

an important role in the e�ciency of the electroreduction. If the microstructure

impedes the di�usion of O2- ions out of the electrode, this would lower the local

level of pO2-: causing the deposition of lithium to become more favourable.

This phenomenon is not observed in the CaCl2 molten salt, due to the higher

temperature in which this system operates; that is, the level of pO2- does not cause

the decomposition of the molten salt electrolyte to become more favourable. How-

ever, in the case of the reduction of Pu2O3 to metallic Pu, low values of pO2- may

electroplate Ca metal simultaneously if any underpotentials exist.

Moreover, superimposition of the uranium and plutonium Littlewood diagrams

in LKE show a narrow window for selective reduction to metallic uranium in a

mixed oxide system containing both UO2 and PuO2. The diagrams predict that the

electrochemical reduction of PuO2 to Pu2O3 or PuOCl is inevitable in this process.

Depending on the reduction mechanism, the window for selective production of

uranium metal is as small as 100 mV at low values of pO2- up to ca. 400 mV at high

levels of pO2-.

Lastly, the �exibility of the Littlewood diagrams has been described: techniques

that can be used to predict regions of stability at various activities (or concentra-

tions) of species in molten salt systems. This approach can be adopted to help

optimise molten salt electrochemical cell designs to be able to selectively favour

speci�c electrochemical reactions.
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Chapter VI. The Production of Uranium (IV)

Oxide

6 Production of Uranium Dioxide

This chapter of the report describes the how uranium dioxide was produced in-

house. Chemical characterisation was also performed on the product to con�rm its

chemical structure.

6.1 Production of UO2 from UNH

At the time of writing, pure grade samples of uranium dioxide are not stocked

by commercial suppliers. Therefore, in order to have studied the electrochemical

reduction of this compound, it was necessary to produce uranium dioxide from

available uranium compounds.

The proceeding subsections will highlight experimentation that was undertaken

to allow for a relatively pure grade of uranium dioxide to be produced. This sec-

tion will �rst chemically characterise the precursor, uranyl nitrate hexahydrate, and

describe experimentation used to produce uranium dioxide. Lastly, a chemical char-

acterisation of the product is presented.

6.1.1 Characterisation of UNH

Depleted uranyl nitrate hexahydrate (UNH), considered as legacy waste at UCL,

was used for the experiments of this thesis. The UNH was �rst characterised by X-

ray di�raction to deduce the chemical structure. UNH crystals were crushed using a

pestle and mortar and then inserted into a 0.5mm Ø glass capillary. A lab based X-

ray di�ractometer (STADI P, STOE & Cie GmbH) with a molybdenum source was

used to gain an X-ray di�raction pattern. The resulting X-ray di�raction pattern

can be observed in Figure 6.1.
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Fig. 6.1: Di�raction pattern (black) and re�ned data (red) of the uranyl nitrate
hexahydrate precursor. The inset is a selected range of the data which
shows a very good �t.

A Rietveld analysis was conducted on the di�raction pattern which �tted to that

of uranyl nitrate hexahydrate. The lattice parameters were extracted to be 13.27,

8.07 and 11.53 Å (a,b,c) which is comparable to 13.18, 8.00 and 11.47 Å as analysed

by Hall et al. [170]. Visual inspection of Figure 6.1 shows the Rietveld re�nement

to �t the raw data well. The inset also shows an enlarged region between 14 and

18° which allows one to see how well the re�nement �ts. In addition, there were no

peaks that were unidenti�ed in the data set. This suggests that the UNH precursor

is of a good purity and would allow accurate transformation into uranium dioxide

6.1.2 Thermal Decomposition of Uranyl Nitrate Hexahydrate

Uranyl nitrate hexahydrate (UNH) may be used to produce uranium oxides via

a thermal decomposition reaction pathway: The thermal decomposition has been

extensively studied and the result of the thermal decomposition is either U3O8 or
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UO3, depending on the reaction conditions [171-178]. From the literature studied,

it is apparent that the thermal decomposition occurs in a two steps; a dehydration

reaction followed by a de-nitri�cation reaction. The reactions are shown as Equation

6.1 and 6.2 respectively.

UO2 (NO3)2 · 6H2O → UO2 (NO3)2 ·H2O + 5H2O (6.1)

UO2 (NO3)2 ·H2O → UO3 +H2O + 2NO2 +
1

2
O2 (6.2)

Studying Equation 6.2 one can evaluate that toxic nitrogen dioxide gas is produced

along with uranium (VI) oxide which could be reduced in hydrogen to form uranium

(IV) oxide (see Section 6.1.3).

Uranyl nitrate hexahydrate was thermally decomposed via heating in an argon

atmosphere using a hot plate. 5 g of UNH crystals were placed into a small Pyrex

beaker which itself was placed into a larger �anged Pyrex vessel. A ceramic cell head

was custom built from Phyrophillte (Ceramic Substrates and Components Ltd.)

and was used to seal the reaction crucible. The ceramic cell head incorporated

Swagelok connections for gas inlet and outlet, as well as a hole for a sheathed K-

type thermocouple which was held into the cell head via a Suba-Seal. Because

of the production of toxic nitrogen dioxide, it was decided to use a �ow of inert

gas to remove the NO2 that was produced during the decomposition. A �ow of

approximately 0.3 standard litres per minute of argon gas was admitted into the cell

for 2 hours prior to starting the experiment in order to purge the cell atmosphere.

This set-up maintained an airtight seal, with the outlet gas being vented into a fume

cupboard via a one way valve. The whole assembly was placed on top of a hot plate

(Cimarec) which was set to 300°C, after purging was complete. The thermocouple

was placed within 5mm of the UNH crystals to ensure an accurate measurement of

temperature. A schematic of the set-up can be seen in Figure 6.2.
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Fig. 6.2: Photograph of the experimental set-up showing the UNH, hot plate, gas
lines and thermocouple

Fig. 6.3: Images of the cell at various stages in the thermal decomposition showing
(a) melting of the UNH, (b) de-nitri�cation of UNH and a change in colour,
(c) towards the end of de-nitri�cation the product remained in the liquid
state and (d) the product has turned into a brick-red crust.

During the heating of uranyl nitrate hexahydrate, a number of observations

were made. A photographic time-line of the reaction cell is shown in Figure 6.3.

At 70°C, the crystals had become molten and the liquid began to bubble slowly.

This would be expected as the melting point of UNH is 62°C. Once the melt had

reached a temperature of 103°C, a colour change was observed: the melt turned from

a �uorescent yellow/green (typical of UNH) to a burnt-orange colour. Although

no in situ chemical analysis was possible while the sample was in this state, it

is expected that this was the complete dehydration of UNH to form yellow cake,

which has a characteristic burnt orange colour (another theory of this colour change

is attributed to be �polymerization products� [179]). This step has been attributed
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Temperature of
phial

Observations

70°C UNH became liquid. Whilst in the molten state
the UNH bubbled at a slow rate

103°C A colour change from �uorescent green/yellow
to a burnt orange liquid (similar to a 0.01M
iodine solution). Slow bubbling was also

present.
110°C Bubbling became more vicious. The viscosity of

the liquid appeared to become higher. The
viscous liquid started to become a burnt orange

colour. Cell �lled with an orange gas.
150°C and above The liquid began to solidify into a brick-red

coloured powder. The formation of orange gas
reduced signi�cantly. The powder that formed
started to become a brick-red coloured crust.

Tab. 6.1: Observations during the thermal decomposition of UNH

to the following reaction:

UO2(NO3)2.6H2O�UO2(NO3)2 + 6H2O (6.3)

After a temperature of 110°C had been reached, a more aggressive bubbling was

observed along with the production of an orange gas, as seen in Figure 6.3(b). This

is due to the de-nitri�cation of nitrogen oxide, which is well known to be an orange

gas. This de-nitri�cation is attributed to the equation:

UO2(NO3)2�UO3 + 2NO2 + 1/2O2 (6.4)

Once the reaction displayed in Equation 6.4 had completed (no more gas was formed)

the melt remained a burnt orange colour as seen in Figure 6.3(c). Upon increased

heating, the melt solidi�ed into a brick-red coloured crust, as seen in Figure 6.3(d).

No further reactions occurred as the sample was taken above 150°C. A summary of

the observations can be seen in Table 6.1

A sample of the brick-red crust was ground into a �ne powder and inserted into
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Fig. 6.4: Raw XRD data (black) of the brick-red compound formed from the thermal
decomposition of UNH. A reference pattern for UO3 is superimposed onto
the graph (red).

a 0.5 mm Ø capillary tube for XRD analysis. The data is displayed along side a

reference pattern for UO3 in Figure 6.4. A full Rietveld analysis was not possible

on this data set owing to a poor signal-to-noise ratio. This is most likely due to

combination of large powders (typical product of a pestle and mortar) and the high

attenuation of UO3. It is likely that creating smaller powders and using a smaller

XRD capillary would yield better results.

However, by comparing the raw XRD data obtained to a reference pattern for

UO3, one is able to conclude that there are similarities in the peak positions; speci�-

cally, the most intense peak in the raw data resides at a 2θ value of 11.87° (±0.005°),

which is comparable to a 2θ value of 11.8(±0.05°) from literature [180]. Although

lattice parameters were not able to be extracted and compared, it is likely that the

product is, at least, an oxide of uranium which is likely to be UO3. This conclusion

is supported by authors who have all produced uranium oxides (UO3 and U3O8

only) from the thermal decomposition of UNH [172-176].

Thermal decomposition of UNH is known to produce an oxide of uranium where

uranium possesses an oxidation state greater than 4. The observations concluded
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in Table 6.1 are similar to those reported by Hartland and Nesbit [174]. The oxide

that is produced is likely to depend on the conditions in which the decomposition

occurs but the result of the thermal decomposition seems to produce UO3 or U3O8.

Because of the apparent inability to produce UO2 from the thermal decomposition

of UNH, a further reduction step is necessary.

6.1.3 Production of UO2 via Hydrogen Reduction

An interesting property of uranium (IV) oxide is it's thermodynamic stability within

a hydrogen atmosphere. That is, there is no apparent hydrogen reduction of UO3

and U3O8 below the composition of UO2.0 [31]. Therefore, the reduction of either

UO3 or U3O8 (or a combination of both) to form pure UO2 in a H2 atmosphere is

possible.

Indeed, the kinetics of this chemical reaction has been characterised by using

thermo-gravimetric analysis (TGA) of UO3 and U3O8 produced via the calcination

of ammonium diuranate [182]. The author investigated the reduction of UO3 to

UO2 using TGA at temperatures of 500-600°C in various concentrations of hydrogen.

From this study, one can extract that the reduction reaction occurs in two steps; the

�rst being a reduction of UO3 to U3O8 and the second being the reduction of U3O8

to UO2. The chemical reactions can be seen in Equations 6.5 and 6.6 respectively.

The order of reaction for Equation 6.5 was found to be zero whilst that of Equation

6.6 varied between zero and 0.65; depending on the reaction conditions [182].

3UO3 → U3O8 +
1

2
O2 (6.5)

U3O8 → 3UO2 +O2 (6.6)

From this information, it was conceived that the product of the thermal decomposi-

tion of uranyl nitrate hexahydrate (whether it is pure UO3 ,U3O8 or a combination
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of both) presented in Section 6.1.2, would be applicable for this reaction.

For this experiment, a horizontal tube furnace (Lenton Furnaces) equipped with

PID temperature control was used as a heat source. A sealed quartz glass reaction

tube twice the length of the furnace was used to hold the UO3 powder obtained by

thermal decomposition of uranyl nitrate hexahydrate. Silicone rubber stoppers were

equipped with gas inlet/outlet connections on each side of the furnace, allowing for

gasses to be �owed through the entire tube. This experimental set-up allows for the

tube to be completely purged with an inert gas prior to introducing hydrogen at

temperatures above the auto-ignition temperature of hydrogen.

The product of the thermal decomposition of UNH was �rst ground into a powder

using a pestle and mortar to increase the surface area to volume ratio. The powder

was placed into a ceramic boat and was then placed into the hot zone of the furnace.

The tube was then sealed with the silicone stoppers and a gas leak test was performed

with argon. The tube was purged with argon gas until all oxygen was removed,

according to the following reaction:

tp = −V
Q̇
ln

(
Cf − Cp
Ci − Cp

)
(6.7)

Where tp is the purging time for the initial concentration of oxygen, Ci to reach

the �nal concentration, Cf. Cp is the concentration of oxygen in the purging gas,

whilst V is the vessel ullage volume and Q̇ is the purge gas volumetric �ow rate.

The furnace was then ramped to a working temperature of 500°C before the

hydrogen was admitted at a ratio of 20% in argon. After 2 hours, the hydrogen �ow

was stopped and the furnace allowed to cool to room temperature with the argon

�ow remaining on. The product of this was a dark brown / black powder, con�rmed

by XRD to be uranium (IV) dioxide (a sample of the product was inserted into a

0.5 mm Ø XRD capillary and was subjected to XRD analysis). The results of the

XRD can be seen in Figure 6.5.
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Fig. 6.5: XRD analysis of the product of hydrogen reduction. A Rietveld re�nement
(red) has been �tted to the raw data (black). The error of this is displayed
as a di�erence plot (blue) below the raw and re�ned data.

A full Rietveld analysis of this data yielded a cubic lattice parameter of 5.465 Å.

The error of this Rietveld analysis is displayed as a di�erence plot underneath Figure

6.5. This value for the lattice parameter is comparable to the cubic lattice parameter

of 5.468 Å obtained by both Barrett et al. and Desgranges et al. [183, 184]. More-

over, there are no peaks in the raw data that are unaccounted for. This chemical

characterisation is, therefore, indicative of a high purity UO2, which supports the

theory of the thermodynamic stability of UO2 in a hydrogen atmosphere at 500°C.

6.2 Conclusion

Due to the apparent thermodynamic stability of uranium dioxide in hydrogen atmo-

spheres, there is no danger in reducing uranium oxides below a composition of UO2.0.

Therefore, it is feasible to produce a high grade of uranium dioxide via the thermal

decomposition of uranyl nitrate hexahydrate and subsequent hydrogen reduction.

The product of this experimentation was a relatively coarse powder that would be

applicable in the use of metallic cavity electrodes and micro-bucket electrodes, as

described in Sections 4.3.1 and 4.3.2 respectively.
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Chemical analysis of the product showed that pure uranium dioxide had been

produced from the UNH precursor.





167

Chapter VII. Electrochemical Characterisation

7 Electrochemical Characterisation of UO2|U

This chapter will expand upon the theory presented in the form of Littlewood di-

agrams in Chapter V. Figure 5.2 predicts that the electroreduction of uranium

dioxide to uranium is feasible and presents the conditions necessary. These predic-

tions and conditions are then used to study the electroreduction using the uranium

dioxide powder that was produced in-house (as shown in Chapter VI). All elec-

trode potentials within this chapter are reported vs. Ag|Ag+ reference electrode

(see Section 4.6).

The �rst section of this chapter focuses on the sweep voltammetry techniques to

study the electroreduction, before looking at constant potential electrolysis. Lastly,

this chapter studies the e�ect of the oxygen anion on the electroreduction.

7.1 Sweep Voltammetry on UO2 electrodes

Uranium dioxide electrodes have been studied in LKE by utilising some of the

electrochemical techniques described in Section 3. Both metallic cavity electrodes

(MCE) and micro-bucket electrodes (MBE) have been used throughout these stud-

ies. Each pressed MCE hole allows in the region of 0.04 mg of powder to be studied,

whereas MBEs provide in the region of 0.2 mg of powder. In order to gain a higher

current response, a number of holes may be studied with MCEs.

7.1.1 Single Scan Cyclic Voltammogram of UO2 Electrode

In order to study the electrochemical reduction of uranium dioxide to uranium,

electrochemical techniques have been adopted. To characterise the e�ect of UO2,

baseline tests were �rst carried out on blank (or empty) MCEs.

Using the laboratory experimental set-up, blank MCEs were studied in LKE.

During this investigation a sweep rate of 50 mV s-1 was employed. The resulting
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(a) (b)

Fig. 7.1: Cyclic Voltammogram of (a) an empty MCE working electrode and (b)
UO2 MCE working electrode in LKE at 400°C. Both experiments are vs.
the Ag|Ag+ and used a graphite counter. The scan rate for both CVs was
50 mV s-1. Peak C2 is missing from the CV performed on a blank MCE.

cyclic voltammogram can be observed in Figure 7.1(a). Peaks arising from the

cathodic sweep are labelled with a �C� and those arising from the anodic sweep

labelled �A�.

Observation of the cathodic sweep in Figure 7.1(a) reveals two peaks: C1 and

C3. Peak C1 is likely to be due to a reduction process occurring on the molybdenum

current collector; possibly the reduction of an oxide �lm present on the electrode.

The shape of peak C3 is very typical of electrolyte deposition; therefore, this peak

is attributed to be due to the electrochemical deposition of lithium from the LKE

melt (potassium is expected to plate at more negative cell voltages). Peak A1 is

due to re-oxidation of the lithium (and possibly potassium) that was electroplated

at peak C3. The two other peaks further along the anodic sweep, A2 and A3, are

attributed to oxidation processes occurring on the current collector.

Cyclic voltammetry was also performed on a UO2 �lled MCE, resulting in the

voltammogram presented in Figure 7.1(b). Comparison of Figure 7.1(b) to Figure

7.1(a) shows one obvious di�erence: the extra reduction peak C2. Because this

reduction peak was not observed in the blank cyclic voltammetry, it is attributed
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Fig. 7.2: Shows Figure 7.1(a) and Figure 7.1(b) superimposed onto one another. The
peak C2 is clearly shown to be due to the addition of UO2 powder to the
working electrode.

to the electrochemical reduction of uranium dioxide to metallic uranium, as shown

by Equation 7.1:

UO2 + 4e− → U + 2O2− (7.1)

This reduction mechanism is also supported by the Littlewood diagrams presented

in Section 5; that is, one reduction peak is indicative of a 4-electron process, as

predicted by the Littlewood diagram. The reduction peak, C2, is in close proximity

to the decomposition potential, which suggests that the pO2- of the melt is ca.

6 (predicted by the Littlewood diagrams in Chapter 5). In addition, there is no

observable oxidation peak on the anodic scan with the UO2 �lled working electrode.

This suggests that the oxygen anions that have been liberated due to Equation 7.1

have di�used away from the boundary of the electrode, and have reacted with the

counter electrode. Therefore, these oxygen anions are not available at the working

electrode to re-oxidise the uranium.
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Another di�erence in the two cyclic voltammograms is the change in peak height

of A1, shown clearly in Figure 7.2. In the CV of the blank MCE, this peak is seen

to be a positive current, which is expected of re-oxidation of lithium metal. How-

ever, peak A1 is seen to be negative in Figure 7.1(b). This can be explained by the

following: Because the reduction of UO2 to U is very close to the decomposition of

the electrolyte, the electroreduction of uranium dioxide to metallic uranium is still

occurring during lithium electroplating and dissolution. Therefore, whilst dissolu-

tion of lithium is occurring, the electrochemical reduction is too. The net current

passed during these two electrochemical reactions equates to be a negative current.

Additionally, lithium metal will chemically reduce UO2 to U to via Equation 7.2

UO2 + 4Li→ U + 2Li2O (7.2)

Li2O is soluble in LKE and so once formed, will dissolve into the molten salt. This

would, therefore, also decrease the charge passed on peak A1 due to less lithium

being available to be anodically dissolved.

It is also important to note the di�erence in background current passed within

the region of -1 to -2 V both cathodically and anodically. Because two di�erent

electrodes were used in each investigation, the immersed surface area is not equal.

Thus, the di�erence in current passed is due to the e�ects of double layer capacitance:

a direct function of the surface area of the electrodes.

Single scan cyclic voltammetry has been utilized to deduce that electrochemical

reduction of UO2 powder has occurred in LKE at 400°C. Due to the very negative

potential at which this peak is formed suggests that it is due to the 4-electron

reduction of uranium dioxide to uranium metal, supported by the predictions made

by the Littlewood diagrams presented in Chapter 5.
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Fig. 7.3: Cyclic voltammogram of a two-hole UO2 working electrode in LKE at
400°C. The peak current of C2 is seen to decrease as the scan number
increases.

7.1.2 Multiple Scan Cyclic Voltammetry studies

Following on from the single-scan cyclic voltammograms presented in the previous

subsection, this subsection investigates the e�ect of a number of scans on the UO2

MBEs.

A single hole MBE �lled with UO2 was subjected to three scans within cyclic

voltammetry to investigate its e�ect on peak C2. This technique was also employed

to further investigate the absence of an oxidation peak in Figure 7.1(b). A scan rate

of 10 mV s-1 was utilized and the results are displayed in Figure 7.3.

As the cyclic voltammetry was cycled between -2.0 V and -2.65 V, peak C1 is

not easily observed (the CV begins at the same potential as peak C1). Peak A3

occurred at a potential of ca. -1.6 V and so is not present. Observation of peak

C2 in Figure 7.3 shows that the peak current passed is reduced after each scan. In

addition, there is still no observable re-oxidation peak associated with C2. This is



7 Electrochemical Characterisation of UO2|U 172

indicative of the O2- ion di�using to, and being consumed at, the counter electrode

and not being available for re-oxidation. These phenomena may be explained by

the following: The reduction of the peak current at C2 may be attributed to less

material being available for electroreduction. That is, during the cathodic sweep a

certain amount of UO2 is electrochemically reduced to uranium via Equation 7.1.

As there is no re-oxidation of this uranium occurring, there is less material available

to be reduced on the next scan and hence the peak current is reduced.

It is also important to note the absence of peak A1. This is due to the fact

that the cathodic range is less negative to that compared in Figure 7.1. Therefore,

no lithium metal is expected to have electroplated onto the electrode (unless an

underpotential exists). This causes the absence of the dissolution peak, A1.

To expand this investigation further, a single-hole MCE (which contains less

powder than the MBE) was exposed to the same conditions but with a larger num-

ber of cycles/scans. The results of this investigation are displayed in Figure 7.4.

The results seen in Figure 7.4 are similar to those shown in Figure 7.3 with a few

di�erences.

The �rst is that a less negative current is passed in Figure 7.4. This is due to

the fact that there is approximately half of the powder in the MCE compared to

Figure 7.3. Secondly, the shape of peak A2 is di�erent. Because this peak has been

shown not to be involved with the electrochemical reduction of UO2, this di�erence

is not considered here.

The peak current, again, is seen to reduce with an increase in the number of

scans. This further supports the theory that the UO2 electrode is undergoing a net

reduction during cyclic voltammetry. In addition, the reduction of the peak current

is seen to become increasingly smaller after each scan. To compare, a reduction

charge of -546 μC is passed on scan 2 compared to -51 μC on scan 10. This reduction

in charge passed is indicative of the UO2 becoming fully reduced to U metal, but

could also be due to the loss of powder. This could occur due to the mechanical
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Fig. 7.4: Cyclic voltammogram of a single-hole UO2 �lled MCE working electrode
in LKE at 400°C.

integrity of the electrode being compromised by the reduction in volume associated

with the reduction of UO2 to U.

Moreover, peak A1 appears to become visible after scan 9 and scan 10. The shape

of the CV on these scans show a more typical shape of re-oxidation of lithium. The

fact that this peak becomes more visible supports the theory that the UO2 inside

the MCE is experiencing a net reduction. This is because as the reduction pro-

ceeds towards completion (or an inhibition), the combination of negative reduction

current and positive dissolution current becomes less negative. The observation of

A1 towards the end of electroreduction could also be indicative of the formation of

underpotentials associated with a change in the electrode surface. The peak current

of C2 seems to reach a steady state value of peak current after scan 7. This is shown

by the peak current of C2 in scans 7,8,9 and 10 all being approximately 2.6 mA.

This is indicative of the electrode becoming fully reduced, material is being lost

from the electrode (due to the volume change associated with the electroreduction)



7 Electrochemical Characterisation of UO2|U 174

or the electrochemical reduction is becoming inhibited. The latter could be due to

a build up of oxygen anions inside the MCE preventing further electroreduction.

Faraday's law of electrolysis was, therefore, applied to the cyclic voltammograms

shown in Figure 7.4. The total charge passed from scans one to seven was -2.16 mC.

Using Equation 7.3, the total mass of UO2 reduced at the electrode was calculated

to be 1.5 µg.

m =

(
QM

Fz

)
(7.3)

Therefore, it is reasonable to deduce that the reduction of the peak current is not

due to the reduction proceeding to completion. Rather, it is likely to be due to

inhibition of the electroreduction. This inhibition could be due to a number of

phenomena: one proposed theory is that the density of TPIs within the centre of the

electrode is low. This would be due to the inherent microstructure of the electrode

which is a function of, for example, the porosity, tortuosity and salt penetration.

Another theory is that the volume change associated with the reduction of uranium

dioxide to uranium (approximately 50% reduction in volume) is causing the UO2 to

lose contact with the current collector. The uranium that is formed could also be

sintering which would also reduce the volume.

To conclude this subsection, the electroreduction of peak C2 has been studied

using multiple scan cyclic voltammetry. From these investigations, it is apparent

that the electrochemical reduction occurs at a potential close to the decomposition

potential of the melt. During successive scans, the reduction peak current of C2

is seen to decrease. This is indicative of the the UO2 electrode experiencing a

net reduction. This is also supported by the absence of an oxidation peak for re-

oxidation of the reduced UO2. This absence implies that the oxygen anion is able to

di�use away from the working electrode and be consumed at the counter electrode.

Therefore, these O2- ions are unavailable for re-oxidation which is responsible to the

lack of an oxidation peak. Lastly, the peak current is seen to converge after a high
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number of scans. This could be due to the electroreduction reaching completion.

7.2 Constant Potential Electrolysis of UO2 Electrodes

Following on from the potential sweep investigations presented in the previous sub-

section, this subsection focuses on potential controlled electrolysis of uranium diox-

ide electrodes. Chronoamperometry, as described in Section 3.1.3, is a DC elec-

trochemical technique whereby the potential of the cell is held at a constant value

while the current response is measured. In order to study the electroreduction with

this technique, the potential of the working electrode was held at the peak current

potential of peak C2; -2.62 V with respect to the Ag|Ag+ reference electrode.

7.2.1 Constant Potential Electrolysis at Peak C2

Using the optical laboratory set-up, multiple MBE and MCE working electrodes

were immersed into the cell and a reduction potential corresponding to peak C2

was applied. The chronoamperomogram of a UO2 MBE (after baseline subtraction

to account for double layer capacitance e�ects of the current collector assembly)

may be observed in Figure 7.5(a). For reference, another chronoamperomogram is

presented in Figure 7.5(b) showing the current decay to zero after ca. 350 seconds.

It can be seen that the current passed begins to increase until about 100 seconds

into the electrolysis after which the reduction current begins to decrease towards

zero. This is indicative of an electrochemical reduction approaching completion;

while the reactant is being converted to product, there is less reactant and hence

the reduction current decreases.

By integrating the current passed over time, it is calculated that a total of 1.04

C were passed during electrolysis. By utilizing Faraday's law of electrolysis, the

total, theoretical, mass of UO2 which would be reduced at the electrode equates to

0.728 mg of UO2. Assuming a 15% porosity of the UO2 powder (see Section 8.4) in

the MBE, an approximate total of ca. 0.12 mg of UO2 would be present. Therefore,
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Fig. 7.5: (a) Chronoamperomogram of the constant potential electrolysis (-2.57 V)
of a UO2 �lled MBE in LKE (black) with a polynomial �t (red) to clearly
show the reduction of the average current. (b) shows chronoamperometry
performed on a separate sample resulting in a fully reduced sample.

theoretically, the powder inside the MCE should have been completely reduced.

Although the current e�ciency was not possible to calculate for this process (due

to the di�culty in ensuring all of the powder remains inside the MCE/MBE during

electrolysis) the fact that such a signi�cantly higher current was passed assumes a

relatively low current e�ciency for the process.

Figure 7.6 shows SEM micrographs of the MBE that was the result of the

chronoamperomogram presented in Figure 7.5(a) (the particles seen towards the

lower right of Figure 7.5(a) are silicon carbide particles left over from sample prepa-

ration). Speci�cally, Figures 7.5(a) and (b) appear to posses the same �coral-like�

structure to that shown by Kurata et al. during the reduction of MOX fuels [64].

The presence of this coral-like structure provides strong evidence into the reduction

of uranium dioxide to uranium metal. The formation of this structure is attributed

to the volume change associated with the reduction from oxide to metal: uranium

dioxide has a molar volume of 24.61 cm3 mol-1 compared to 12.46 cm3 mol-1 of

uranium metal, at room temperature. This reduction in volume would inherently

produce porosity within the microstructure of the electrode, producing the coral-like
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Fig. 7.6: (a) SEM micrograph of the MBE sample reduced using the chronoamper-
omogram presented in Figure 7.5, (b) zoomed region showing a coral-like
structure and (c) showing a dense and coral-like structure.

structure.

Figure 7.6(c) depicts the structure towards the centre of the MBE electrode

which shows a small dense region. This dense region is likely to be unreduced

uranium dioxide. The electroreduction is dependent on the triple phase interlines

which, in the case of MBE/MCE electrodes, propagates from the current collector

(which located on the outer edge of the powder) inwards. This results in the centre

of the electrode being the last part of the electrode that would undergo reduction.

Because the actual charge passed during electrolysis was much greater than the

theoretical charge passed, the electrochemical reduction of this material seems to

have a low current e�ciency. However, due to the small quantities of powder used

in the electrodes, determination of the actual current e�ciency is not possible. The

presence of this dense phase suggests that the electroreduction is being impeded.

The most likely cause of this is due to the build up of O2- ions in the electrode. As

mentioned in Chapter 5, a local build up of O2- ions may cause the potential for

electroreduction to be dynamic, which would a�ect the constant potential electroly-

sis. In extreme cases a change in the O2- ion concentration could completely inhibit

further electroreduction. This phenomena would be accelerated towards the centre

of the electrode as there would be a higher local concentration of O2- ions liberated

at the centre of the electrode compared to the outer edges of the electrode.
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7.3 The E�ect of O2- ions

As mentioned in Chapter 5, the oxygen anion may have a signi�cant e�ect on the

electroreduction of uranium dioxide to uranium in LKE. The Littlewood diagram

presented in Figure 5.2 predicts that the pO2- of the melt must be controlled to

higher values than 6 in order for the electroreduction of UO2 to U to be more

favourable than cathodic decomposition of the molten salt.

Because the activity of O2- ions in the melt is predicted to play a signi�cant role

in the electrochemical reduction, proper maintenance of the molten salt must be

adhered to: in order to avoid oxygen entering into the system. Moreover, the local

pO2- level within the electrode may di�er from that of the bulk of the electrode.

This would occur if the di�usion of O2- ions out of the electrode were to be impeded.

Within this subsection, the e�ect of the bulk activity of O2- ions will be inves-

tigated. The main focus of this investigation is to deduce the e�ect of O2- ions on

the reduction peak C2 shown in Figure 7.1(b).

7.3.1 Dissolution of Na2CO3

Within the context of this investigation, sodium carbonate has been used as a source

of O2- ions. Sodium carbonate is known to dissolve and fully dissociate, under

speci�c conditions, providing a source of O2- ions. The dissociation of this compound

could proceed via a sodium oxide intermediate or via the equilibrium between the

oxygen anion and carbonate anion [185, 186]:

Na2CO3 → CO2 +Na2O → 2Na+ +O2− (7.4)

Na2CO3 → 2Na+ + CO2−
3 → CO2 +O2− (7.5)
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By inspection of Equations 7.4 and 7.5, both mechanisms provide the production

of sodium cations, oxygen anions and carbon dioxide. It should also be noted that

for each mole of sodium carbonate added one mole of oxygen anions is produced via

dissociation, which is driven by keeping the partial pressure of CO2 low (achieved by

having a �ow of inert gas through the cell). Therefore, by adding known quantities

of sodium carbonate to the bulk molten salt, the change in pO2- of the salt may be

accurately determined.

7.3.2 pO2- Indicator electrode calibration

Measurement of the pO2- of a molten salt system may be realised with the use

of a pO2- indicator electrode, as described in Section 4.7. The main advantage

of this technique is the ability to measure the activity of oxygen anions in situ.

Employment of a pO2- indicator electrode is possible for such measurements to be

taken. Calibration of the device is essential, in order to ensure it's Nerstian response

and to deduce the value E0.

Because the potential pO2- indicator electrode is a�ected solely by changes in

the activity of oxygen anions, the Nernst equation for this electrode may be written

as:

E = E0 − 2.303RT

2F
log (aO2−) (7.6)

Calibration of the pO2- indicator electrode may, therefore, be achieved by changing

the activity of oxygen anions and measuring the change in potential. E0 may be

deduced by saturating the molten salt with oxygen anions. For comparison, the

theoretical slope of Equation 7.6 may be computed. At 400°C this value is calculated

to be equal to 0.0667.

In order to calibrate the pO2- indicator electrode experimentally, a pO2- indica-

tor electrode was inserted into the laboratory experimental set-up, as explained in

Section 4.1. The potential of the pO2- indicator electrode was left to stabilise vs.
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Fig. 7.7: A graph showing the potential of the pO2- indicator electrode vs. the neg-
ative logarithm of the total concentration of Na2CO3 added to the molten
salt.

the Ag|AgCl reference electrode for an hour before the addition of known quanti-

ties of sodium carbonate. Again, the potential of the pO2- indicator electrode vs.

Ag|AgCl was left to stabilize for an hour and the potential recorded. This proce-

dure was repeated until saturation was achieved (reaching the saturation of Na2CO3

could be visibly seen using the optical access furnace) in order for the value of E0

to be deduced.

A plot of potential di�erence vs. the negative logarithm of the added concen-

tration of O2- ions was then produced and is displayed in Figure 7.7. Observation

of Figure 7.7 depicts the linear, Nerstian behaviour of the pO2- indicator electrode,

as expected. A line of best �t was added to the data points in order to deduce the

gradient. Experimentally this gradient is calculated to be 0.0601 (see Figure 7.7),

which is in good agreement with the thermodynamic prediction of 0.067.

The potential of the pO2- indicator electrode was also measured during potential

stabilization after saturation of oxygen anions was achieved. Figure 7.8 depicts the
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Fig. 7.8: A graph showing the potential of the pO2- indicator electrode vs. time
after saturation of the molten salt with oxygen anions.

last three minutes of this potential stabilization. Observation of this graph shows

the potential oscillates around an average potential. This average potential was

extracted to be -0.044 V by averaging data points taken in the last 20 minutes of

potential stabilization.

One will notice that the E0 value calculated from Figure 7.8 is di�erent from

the y-intercept calculated in Figure 7.7. This is due to the fact that the initial pO2-

of the salt is unknown. Therefore the y-intercept of this value is not equal to the

standard cell potential of the pO2- indicator electrode. However, because the pO2-

indicator electrode exhibits Nerstian behaviour, the gradient extracted from this

study is still valid, provided the same temperature is adhered to.

To conclude, the pO2- indicator electrode has been successfully calibrated and

has been shown to exhibit Nernstian behaviour. The gradient of the response agrees

with the theoretical value and the value of E0 has been derived. Therefore, in order

to deduce the pO2- of the molten salt, Equation 7.7 may be used:

pO2− =
E + 0.044

0.06
(7.7)
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Fig. 7.9: Cyclic voltammograms of UO2 MBEs in LKE at di�erent value of pO2-. A
sweep rate of 100 mV s-1 was used.

7.3.3 E�ect of pO2- on the reduction

Due to the successful calibration of the pO2- indicator electrode in Section 7.3.2,

the pO2- of a molten salt cell can be altered to investigate its e�ect on the electrore-

duction of UO2 to metallic U. Referring back to Chapter 5, Figure 5.2 indicates

the electroreduction may only occur at levels of pO2- greater than 6. Therefore,

this subsection investigates the behaviour of the electrochemical reduction peak C2,

with a change in the activity of O2- ions.

The laboratory set-up as explained in Section 4.1 was used for these studies.

Both MCEs and MBEs were used as working electrodes. Sodium carbonate was

also used as a source of O2- ions. To begin with, the electrochemical cell was heated

to the reaction temperature and a UO2 working electrode was immersed into the

molten salt. A cyclic voltammogram was performed, resulting in the voltammogram

displayed in Figure 7.9

Figure 7.9 shows two cyclic voltammograms. These were taken at two di�erent

values of pO2-. At a pO2- value of 6.2, the cyclic voltammogram is very similar to

the CV shown in Figure 7.1(b), including the reduction peak C2 which is attributed
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to the electroreduction of UO2 to metallic U. It should be noted that the anodic scan

labels have been omitted from Figure 7.9. After this CV was performed, sodium

carbonate was inserted into the molten salt. The melt was left to stabilise for an

hour and the pO2- was measured to be 0.95. After which, cyclic voltammograms

of various MBEs and MCEs were performed. This resulted in no observable C2

reduction peak, as highlighted by the red CV in Figure 7.9.

The absence of peak C2 at a pO2- value of 0.95 supports the thermodynamic

predictions of the Littlewood diagram presented in Figure 5.2. Because the activity

of oxygen anions has increased, the standard potential for the UO2|U couple has

become more negative. This can be seen in the form of the Nernst equation for the

electrochemical reduction of Equation 7.1:

E = E0 +
RT

nF
ln

(
aUO2

aU aO2−

)
(7.8)

As both UO2 and U are insoluble in LKE, the activities are unity. The activity

of O2- ions is high after the addition of sodium carbonate and so the reduction

potential becomes more negative than the cathodic decomposition of the molten

salt electrolyte.

It should also be noted that the electrochemical wave seen in Figure 7.9 has

been attributed to reduction and oxidation of the molybdenum current collector, as

mentioned in Section 7.1.1.

7.4 Conclusion

This chapter of the thesis has investigated the electrochemical characterisation of the

electroreduction of UO2 to U in LKE at 400°C. Electrochemical sweep voltammetry

techniques have all observed a single reduction peak suggesting that the electrore-

duction occurs via a single, 4-electron transfer, process. In theory, however, this

could be the summation of two 2-electron processes, proceeding via the electro-
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chemical reduction pathway:Constant potential electrolysis has also been used to

reduce a number of MBE/MCE electrodes which have resulted in a coral-like struc-

ture to form, similar to that observed by Kurata et al., which is likely to be due to

the reduction in volume associated with the reduction from UO2 to U.

The electrochemical reduction of UO2 to metallic uranium has been shown to be

very dependent on the activity of O2- ions in the bulk salt. This is due to the fact that

the reduction potential is a function of the activity of oxygen anions. By increasing

the activity of oxygen anions to levels near saturation, the cell potential for the

UO2|U couple becomes less negative than the cathodic decomposition potential of

the molten salt. This results in the inability to reduce UO2 to U. This e�ect was

thermodynamically predicted in Chapter 5, which showed the reduction potential

become more negative than the cathodic decomposition potential. Although this

study was performed in the bulk salt, the results suggest that this e�ect could

also occur on a more local level; speci�cally, within the UO2 microstructure. If

the microstructure of the UO2 electrode inhibits the di�usion of O2- ions out of

the microstructure, this could cause a local increase in the activity of O2- ions.

This would have negative consequences on the electroreduction, particularly if the

reduction is being performed at a static reduction potential.
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Chapter VIII. Advanced Material

Characterisation

Sections of this work have been peer reviewed and published in the Journal of

Nuclear Materials (L.D. Brown, R. Abdulaziz, R. Jervis, V. Bharath, R. Attwood,

C. Reinhard, L.D. Connor, S.J.R. Simons, D. Inman, D.J.L. Brett, P.R. Shearing,

Following the electroreduction of uranium dioxide to uranium in LiCl-KCl eutectic

in situ using synchrotron radiation. Journal of Nuclear Materials (2015), In press,

10.1016/j.jnucmat.2015.04.037)

8 Advanced Material Characterisation

Following on from the electrochemical characterisation of the UO2-U-LKE system

in Chapter VII, this chapter focuses on material characterisation of the system.

That is, advanced characterisation techniques have been utilized to provide strong

evidence to support the electrochemical based analysis. To begin with, is an inves-

tigation on peak C2 on the cyclic voltammograms presented in Section 7.1.1 using

in situ energy dispersive X-ray di�raction (EDXD). The main advantage of using

such an in situ technique is the fact that it allows for the chemical characterisation

of samples during chemical change. This, therefore, allows for one to investigate

phenomena such as the reaction pathway.

Secondly, the e�ect of the microstructure on the electrochemical reduction of

UO2 is investigated. Because the microstructure of the electrodes are inherently

a three-dimensional property, the microstructure is studied in three-dimensions to

allow for true microstructural information to be extracted. The use of FIB tomogra-

phy and X-ray computed tomography have both been utilized to provide an in-depth

analysis of the microstructural evolution.
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8.1 In Situ X-ray Di�raction

Littlewood diagrams serve as a useful tool for predicting metal-metal oxide-molten

salt systems and have been widely applied for nuclear species in molten salt systems

[33, 40, 42, 187]. The Littlewood diagrams predict the electroreduction of UO2 to U

to be a single, 4-electron-step, process, as shown in Figure 5.2. The electrochemical

characterisation of peak C2 in Figure 7.1 also supports this. However, to date there

is limited experimental evidence to support this � indeed experiments tracking the

reaction mechanism for the molten salt electroreduction of TiO2 to Ti (the FFC

Cambridge process) show a departure from the theory [21]. Although the reduction

of TiO2 to Ti metal using molten salts has recently been extensively investigated (see

Section 2.1), ex situ investigations led to much debate of the actual electrochemical

reduction pathway, which seemed to di�er from the thermodynamic predictions.

It was only after an in situ investigation, using white beam synchrotron radi-

ation, that a detailed insight into the true electrochemical reduction pathway was

obtained [21]. Within this subsection, an investigation to deduce the electrochem-

ical reduction pathway of uranium dioxide to metallic uranium by combining elec-

trochemical studies with in situ phase characterisation using synchrotron radiation

is detailed.

8.1.1 UO2 Sample Identi�cation

The uranium dioxide precursor was �rst analysed using powder di�raction on a lab

based X-ray di�ractometer (STADI P, STOE & Cie GmbH). The powder X-ray

di�raction pattern can be seen in Figure 8.1. A full Rietveld analysis of this data

yielded a cubic lattice parameter of 5.465 Å. The error of this Rietveld analysis is

displayed as a di�erence plot underneath Figure 8.1(a). This value for the lattice

parameter is comparable to the cubic lattice parameter of 5.468 Å obtained by both

Barrett et al. and Desgranges et al. [183, 184]. In order to obtain the energies
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Fig. 8.1: X-ray di�ractogram of UO2 powder showing: (a) the measured powder
di�raction pattern (black), the Rietveld �t (red) and the di�erence plot
(blue). The di�erence plot is the di�erence between the �tted data points
and the observed data points. (b) shows the raw data plot after conversion,
as a function of energy.

Crystal Plane (h
k l)

d-space (Å)
Di�raction
angle (2 θ)

X-ray Energy
(keV)

111 3.1 12.96 20.14
002 2.72 14.96 58.12
022 1.93 21.22 82.10
113 1.6 24.95 96.17

Tab. 8.1: UO2 X-ray di�raction angles and the calculated X-ray energies for the
crystal planes shown.

at which di�raction peaks for UO2 would be expected in the EDXD di�ractogram,

the XRD data was converted from a function of 2-theta to a function of energy

using Bragg's law with a �xed angle of 4.5°. The X-ray energies for the four most

prominent peak intensities of uranium dioxide were extracted and are tabulated in

Table 8.1. EDXD data of an empty MCE working electrode and one packed with

UO2 were measured using the same beam line set-up to validate the peak intensities

calculated and to con�rm the beam placement on the small MCE sample. Figure

8.2 shows EDXD di�ractograms of an empty MCE (a) and one �lled with UO2 (b).

Referring back to Table 8.1, one can see that the expected peaks for UO2 are

missing from Figure 8.2(a), as expected. However, peaks are present at 49.61, 57.37,

81.05 and 95.05 keV when the MCE was loaded with UO2 powder. The di�erence
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Fig. 8.2: EDXD di�ractograms of (a) an empty MCE and (b) a UO2 �lled MCE.
The insets in each �gure show, in detail, the region between 80 and 98 keV
at which peaks for UO2 were expected.

between these values and those calculated in Table 8.1 are due to changes in the

d-spacing caused by the di�erence in temperature in which both data sets were col-

lected. It should be noted that there are tungsten �uorescence peaks at W Kα1 =

58.00, W Kα2 = 59.33 and W Kβ1 = 67.24 keV (due to tungsten instrument shield-

ing) which overlap with the (0 0 2) UO2 peak at 58.12 keV. Also, lead �uorescence

peaks are present at Pb Kα1 = 74.98, Pb Kα2 = 72.81 and Pb Kβ1 = 84.87 keV

which are, again, due to shielding of instruments. This phase identi�cation allowed

for rapid recognition of UO2 powder during alignment in the Z direction.

8.1.2 Electrochemical Characterisation on the Beamline

Pre-electrolysis of the molten salt electrolyte was performed to remove contami-

nants: a potential 200 mV more positive than the cathodic electrolyte decomposi-

tion potential was maintained for 2 hours prior to all electrochemical measurements.

Subsequently, the UO2 MCE was inserted into the molten salt and was made the

cathode. Cyclic voltammetry was performed between -1.9 V and -2.6 V, the onset

potential of decomposition of the molten salt, with respect to the saturated Cl-

Ag|AgCl reference electrode. Figure 8.3 shows a cyclic voltammogram of the UO2

MCE in LKE and contains four peaks labelled C2, C3, A2 and A2'. Peak C1, as
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Fig. 8.3: Cyclic voltammogram of a UO2 �lled MCE working electrode at 10 mV/s.
The CV has been divided into three regions, moving in the negative poten-
tial direction: Region A shows the current response before the electrochem-
ical reduction; region B de�nes the potential range for the electrochemical
reduction and Region C depicts potentials more negative of the cathodic
decomposition potential of the molten salt. Point P de�nes the in�ection
current.

de�ned in Figure 7.1 in Section 7.1. The current has not been normalised to current

density due to di�culties in e�ciently assessing the immersed surface area in the

cell for di�erent electrodes. The electroreduction peak potential is close to the onset

potential of lithium decomposition of the molten salt; therefore the in�ection point

(P) is taken as the point of maximum current. Peak C2 - on the cathodic sweep

- shows the peak for the electrochemical reduction of uranium dioxide to metallic

uranium, as shown in Section 7.1.

Peak A2' was previously not observed in cyclic voltammograms displayed in

previous sections. It is thought that this peak could be due to the re-oxidation of

uranium to an oxide of uranium. The charge passed at A2' is less than that at peak

C2: 18.9 mC was passed on the cathodic sweep compared to 1.3 mC on the anodic

sweep. This discrepancy is thought to be due to the fact that some of the oxygen

anions that were liberated during the electroreduction reaction have di�used away

from the electrode and are not readily available at the MCE again for oxidation on
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the anodic sweep, resulting in a net reduction of the UO2 electrode. Peak A2 is

attributed to an oxidation of the molybdenum current collector. Again, the absence

of peak A1 is due to the fact that the cathodic potential limit does not permit a large

amount of lithium metal to plate onto the electrode and therefore the dissolution

peak is unobservable.

8.1.3 In situ EDXD characterisation of Peak C2

Energy dispersive X-ray di�raction patterns were taken of the UO2 working elec-

trode before, during and after all electrochemical measurements at 450°C. Linear

sweep voltammetry (LSV) was used for electrochemical reduction to allow for the

electrochemical pathway to be deduced at multiple potentials. A LSV sweep rate

of 0.1 mV s-1 was applied from a potential of -2.41 V to -2.57 V with respect to

the Ag|AgCl reference. This slow sweep rate was utilized to help capture processes

during the EDXD measurements. EDXD data were acquired during the entire LSV

process with an integration time of 60 seconds per scan point. Analyses of the ob-

tained di�raction patterns clearly show the electrochemical reduction of uranium

dioxide to uranium in lithium chloride potassium chloride eutectic. This electrore-

duction appears to occur via a single, 4-electron, step and no intermediate products

were observed. Uranium metal possesses three crystalline modi�cations; α, β and γ

[188]. The α phase is stable up to a temperature of 660 °C, the β phase is stable from

660-760 °C whilst the γ phase is stable from 760 to 1312 °C - its melting point. Le

Bail re�nement proved that the uranium phase formed during the electroreduction

was α-uranium, as expected.

Figure 8.4(a) shows the peak intensity of di�erent crystal planes of the uranium

dioxide phase. From -2.41 V to -2.43 V (region A in Figure 8.3), no electrochemical

reaction occurs, as expected, and so there is no change in peak intensity. However,

when the working electrode reaches a potential of -2.51 V (region B in Figure 8.3) a

reduction in the peak intensity of uranium dioxide for all crystal planes is observed.
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Concurrently, a signal for uranium metal is recorded (Figure 8.4(b)), in accordance

with Equation 7.1. The reduction in peak intensity of UO2 and sudden increase

in U peak intensity can be easily observed in Figure 8.4(c). As the potential be-

comes more cathodic, the peak intensities for UO2 continue to reduce and those for

uranium � speci�cally the 002 plane � continue to increase. This is indicative of

the electrochemical reduction as the potential is within the UO2|U electroreduction

regime, as shown by the Littlewood diagrams in Figure 5.2. The rate of decrease

of the peak intensities seems to decrease from within the potential range of -2.53 to

-2.56 V as compared to the potential range of -2.51 to -2.53 V. It is expected that

the reduction is curtailed at this point due to an increase in the concentration of

O2- ions in the melt, formed as a by-product of the reduction of UO2 . Due to the

working electrode being positioned in the well of the aluminium cell, the transport

of oxygen anions from cathode to anode would be more impeded compared to the

laboratory set-up in which the anode and cathode are in close proximity. For exam-

ple, assume that half (0.02 mg) of the UO2 inside the MCE was electrochemically

reduced; this would relate to a molality in the molten salt of 1E-04 mol kg-1 of O2-

ions liberated during electroreduction. If this concentration of oxygen anions was

not consumed at the counter electrode (as no O2- ions are available to react the

potential of the counter electrode is adjusted by the potentiostat to evolve Cl2 gas,

ensuring two half-cell reactions occur) then this would result in a pO2- value of 3.35.

The electrochemical reduction is predicted to not be possible at this level of pO2-

(see Figure 5.2) and could explain the discontinuation of electrochemical reduction

[187]. The geometry of the microstructure of the electrode could play an important

role in this. If the microstructure contains a highly tortuous pore phase then this

would impede the transport of O2- ions from the cathode to the anode, a�ecting the

local activity of oxide ions and, thus, the level of pO2-.

Table 8.2 shows the calculated lattice parameters for both UO2 (before electrore-

duction) and α-uranium deduced from the Le Bail re�nement analysis of the EDXD
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(a)

(b)

(c)

Fig. 8.4: (a) Peak intensities versus potential (0.1 mV s-1) for uranium dioxide, (b)
α-uranium and (c) U (002) and UO2 (311) planes. Regions A, B and C (as
de�ned on Fig. 8.3) are shown on all graphs.
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Calculated
lattice

parameter
{abc} at 703k

(Å)

Reference
lattice

parameter
{abc} at 298K

Calculated cell
volume at
703K (Å3)

Reference cell
volume at
398K (Å3)

UO2 5.488 5.568 [184] 165.32 163.49 [184]
α-U {2.88 5.88

4.98}
{2.854 5.87
4.955} [183]

84.33 83.01 [183]

Tab. 8.2: Calculated and reference values for the lattice parameters and cell volumes
for uranium dioxide and uranium

data. The di�erence in our calculated lattice parameters and derived cell volumes

to those referenced in Table 8.2 are attributed to the di�erence in temperature at

which these di�raction patterns were gathered: the thermal expansion of UO2 may

be described by the Equation 8.1 [189].

L = L273

(
9.9734x10−1 + 1.179x10−6(T )− 2.705x10−10(T ) + 4.391x10−13(T )

)
(8.1)

Equation 8.1 predicts a thermal expansion of 0.4% for UO2 at 703 K compared to

that at 273 K. This is comparable to the 0.36% change seen in Table 8.2 for the

lattice parameter for UO2.

To conclude, the electrochemical reduction of uranium dioxide to uranium metal

has been studied in a lithium chloride-potassium chloride eutectic molten salt at

450°C. Both electrochemical and synchrotron X-ray techniques have been utilized to

deduce the electrochemical reduction potential, mechanism and reduction pathway.

The electrochemical reduction of uranium dioxide to uranium metal seems to occur

in a single, 4-electron-step, process; indicated by a single reduction peak (C2) in the

cyclic voltammograms presented in Section 7.1 and from the Littlewood diagrams

presented in Section 5. Moreover, the the exclusion of any other phases in the EDXD

data provides great evidence that the electroreduction is in fact a single, 4-electron

step, process. Lastly, the electrochemical reduction potential of the UO2|U couple
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is seems to be dependent on the activity of oxide ion existing within the melt. This

was indicated by the inhibition of the electrochemical reduction during electrolysis.

Theoretically, if the pO2- of the molten salt remained constant, the electroreduction

of UO2 should have been observed to continue. The microstructure of the electrode

may have contributed to this phenomenon and is therefore investigated later in this

chapter.

8.2 Direct Oxide Reduction

A fresh MCE was also exposed to potentials more negative than the decomposition

potential of the LKE electrolyte. Due to this potential, Li+ would be reduced to Li

metal via Equation 8.2.

Li+ + e− → Li (8.2)

Lithium metal is known to chemically reduce uranium dioxide to uranium metal via

the following equation:

UO2 + 4Li→ U + 2Li2O (8.3)

EDXD measurements were obtained before and during lithium reduction. The peak

intensities for uranium and uranium dioxide are presented in Figure 8.5.

Figure 8.5 shows that the peak intensities for the α-uranium phases start at zero

while peaks for the uranium dioxide are all observable. After ca. 700 seconds, the

cell is subjected to potentials more negative than the decomposition potential of the

LKE electrolyte for ten seconds. At this point, Li metal would be electrochemically

plated onto the UO2 working electrode. The peak intensities for α-uranium all

begin to increase simultaneously as the peak intensities for uranium dioxide begin

to decrease after Li has been plated onto the electrode. This observation is due to

Equation 8.3.

In addition, the peak intensity for each observable plane for uranium dioxide

are all seen to fall to a value of zero. This is indicative of the chemical reaction
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Fig. 8.5: Peak intensities for uranium dioxide and uranium before and during the
Li+ reduction process

proceeding to completion. The direct oxide reduction process is usually performed

in a LiCl molten salt containing between 1-2% of Li2O [63, 190]. However, the direct

oxide reduction has been shown to be possible in a LiCl-KCl eutectic operating at

450°C. In the context of pyroprocessing, this oxide reduction process could poten-

tially be performed inside the electrore�ner unit, negating the use of the direct oxide

reduction unit.

8.3 In Situ Neutron Di�raction

An alternative in situ characterisation technique to X-ray di�raction is neutron

scattering. Indeed, neutron di�raction has been used to investigate the structure of

uranium-based compounds instead of X-ray di�raction [191-193]. Amongst others,

these studies highlight the pros and cons of each di�raction technique and may be

used to understand how each technique may compliment the other.

This subsection focuses on the in situ neutron di�raction characterisation of the
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Fig. 8.6: Di�ractogram of a tungsten rod inside the in situ cell, shown in red, and
after the addition of LiCl and KCl powders, shown in black

electrochemical reduction of uranium dioxide to uranium metal in LKE.

8.3.1 Preliminary studies on the ENGIN-X beamline

Prior to the in situ X-ray di�raction investigation presented in Section 8.1 and the

neutron di�raction study presented in this section, a preliminary neutron di�raction

investigation was �rst undertaken on the ENGIN-X beam line at ISIS neutron source,

UK. The aim of this experiment was to deduce the feasibility of the experimental set-

up described in Section 4.2.6. Within the preliminary experimentation, a tungsten

rod (acting as a surrogate to the working electrode) was placed inside the in situ cell

at room temperature and a neutron di�ractogram was taken. After which, a eutectic

mixture of LiCl and KCl powders was poured into the cell and the experiment

repeated. The results may be observed in Figure 8.6. From this, it is clear that

there is no signi�cant e�ect on the signal-to-noise ratio from the extra attenuation

due to the addition of LiCl and KCl. Although there are peak shifts, all peaks

present in the tungsten-only scan (red) are all present after the addition of the

LiCl and KCl powders (red). The additional peaks observed in the second scan are

attributed to the addition of LiCl and KCl.
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Fig. 8.7: Di�ractogram of a 200 μmWO3 thin �lm coated on a tungsten rod (black).
The tungsten phase has been �tted to the tungsten metal phase (red). The
oxide phase �tting has been omitted. A di�erence plot of the �tted data is
also shown below the di�ractogram (blue).

A second preliminary experiment was also concluded prior to the full investiga-

tion. This comprised of a tungsten current collector of which a 200 μm thin �lm of

tungsten trioxide was grown onto the surface. The results of this experimentation

may be observed in Figure 8.7. Rietveld re�nement was conducted on the results

and inspection of Figure 8.7 clearly shows a very good �t for the tungsten phase, as

expected. The �t for the oxide phase has been omitted due to the fact that the �t

from 2 reference patterns was not particularly good. This could be due to the fact

that the thermally grown oxide �lm was a mixture of di�erent oxidation states of

tungsten and/or became contaminated during transportation to the neutron source.

However, as the di�ractogram clearly shows the addition of a second phase (with

a good signal-to-noise ratio), the experimentation proved that this technique could

be applied to a uranium|uranium oxide system.
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Fig. 8.8: Sample neutron di�ractogram of a UO2 �lled MCE on the ENGIN-X beam-
line showing the observed data (black), the Rietveld re�nement (red) and
the di�erence plot (blue)

8.3.2 In situ Neutron di�raction of UO2 MCEs

Following on from the preliminary studies conducted on the ENGIN-X beamline, the

technique was deemed to be feasible to chemically characterise the electroreduction

of UO2 to U in LKE. For this experiment the in situ cell was used, as described

in Section 4.2.6. Once the cell had become molten, UO2 MCEs were inserted into

the molten salt and connected to the potentiostat. During alignment, the working

electrode was �rst coarsely aligned using the theodolite. Fine alignment was carried

by systematically moving the stage in the X, Y and Z directions and measuring the

intensity of the working electrode.

However, much di�culty arose from �ne alignment; a signal for UO2 was not

observed during neutron irradiation. Figure 8.8 shows a dataset of an MCE ex situ

that was irradiated for with thermal neutrons. The observable peaks in Figure 8.8

are all due to the molybdenum current collector of the MCE. Details of the peaks
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Peak position Miller index D-spacing Reference D-spacing [194]

18.335 3 1 0 0.997 0.995
23.679 2 1 1 1.286 1.285
29.004 2 0 0 1.575 1.573
41.011 1 1 0 2.228 2.225

Tab. 8.3: Showing calculated d-spacings of the molybdenum phase identi�ed during
neutron di�raction of a UO2 �lled MCE.

are tabulated in Table 8.3. From the collected data, no signal for UO2 was observed.

However, this is most likely attributed to experimental conditions rather than the

technique itself. For example, it is likely that a larger sample is required to increase

the signal to noise ratio for UO2.

8.4 FIB Microstructural Characterisation

Following on from the advanced chemical characterisation presented in the previous

subsection, this subsection focuses on the advanced microstructural characterisation

of the electrode. The need to characterise the microstructure in three dimensions

has previously been stated within this thesis (see Section 2.3.1) and so this sec-

tion focuses, speci�cally, on the three dimensional characterisation. Although FIB

tomography is a destructive tomography technique, it does permit high spatial res-

olution; voxel of sizes in the tens of nanometres are easily achieved.

The sample presented in this section is the same MBE that was exposed to

the cyclic voltammogram presented in Figure 7.3. The resulting MBE from this

voltammetry is presented in Figure 8.9(a) and (b). Figure 8.9(a) shows a �birds-

eye view� of the MBE electrode and clearly shows two distinct regions; a dense

phase towards the centre of the electrode and a more porous phase towards the

outer edges. This can be more clearly seen in Figure 8.9(b). Because the MBE,

in this case, was subjected to small reduction currents, the UO2 is known to have

only been partially reduced to U metal; a total of -0.22 mC were passed during

the three reduction peaks, relating to a total mass of approximately 0.2 μg of UO2
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Fig. 8.9: (a) SEM micrograph of the MBE showing two phases. (b) shows these
phases more clearly ans (c) is a reproduced micrograph of a partially re-
duced MOX pellet from Kurata et al.

being reduced. Because of the triple phase interline theory, the electrochemical

reduction is predicted to propagate from the current collector to the centre of the

MBE electrode and so a more porous phase is expected at the edge of a partially

reduced MBE.

Energy dispersive X-ray spectroscopy (EDS) was performed on two regions of the

MCE: around the outer edge of the MBE and towards the centre of the MBE, after

the interface between the dense and coral-like phases. A schematic of the regions

and resulting EDS data is shown in Figure 8.10. Although EDS is predominantly

a surface quanti�cation tool and is unable to provide information of the chemical

composition below the surface of the MBE (EDS is limited to volumes of ca. 5-8

μm deep [195]), it is clear that there is a signi�cant decrease in the observation of

the O (Kα) peak on the spectra of the coral-like structure.

This, coupled with the known charged passed, provides more support to the

partial reduction of the MBE electrode. It also supports the fact that the electrore-

duction appears to propagate from the edge of the electrode, towards the center,

coinciding with the theory of TPIs. Therefore, microstructural characterisation was

performed on the di�erent regions of this MBE electrode in order to gain an insight
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Fig. 8.10: Showing (a) the location of EDS collection and (b) the resulting EDS
spectra taken at point 1 (red) and point 2 (black)

into the microstructure of both phases and to deduce any e�ects it may have on its

performance during the electroreduction of UO2 to U in LKE.

A 50 x 20 x 150 μm trench was cut using the FIB in order to allow for microstruc-

tural reconstruction from the edge of the sample to the centre. This resulted in 4

reconstructed regions to be produced with a voxel size of 90 nm3. The �rst three re-

gions were of the porous, coral-like structure, whilst the last reconstruction included

the porous and dense phases. An SEM micrograph depicting the four reconstructed

regions is displayed in Figure 8.11. As shown in Figure 8.11, approximately, the

�rst one-third of the reconstruction is that of the porous, coral-like, structure. The

remainder of the reconstruction is of the denser phase of the MBE.

8.4.1 Reconstructions

The image sequences produced during FIB slice and view were �rst aligned using

the �StackReg� plug-in on the ImageJ software package, before being cropped using

MATLAB and analysed using the Avizo Fire 8 software package. This resulted in

a binary image of the solid phase and porous phase. Segmentation of these phases

allowed for the full reconstruction of these phases and allowed for speci�c microstruc-

tural characterisation of these phases. Presented in the following subsections are the
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Fig. 8.11: SEM Micrograph depicting the four regions that were reconstructed using
FIB tomography. The last section is a combination of the porous and
dense phases. The x, y and z directions are also all de�ned here, where z
is the direction into the page.

four sections as shown in Figure 8.11. A label analysis has been conducted on each

sample. This label analysis deduces which pores are connected (based on a 24 voxel

neighbourhood) and results in each connected pore being assigned a new colour,

allowing for visual identi�cation of the pore connectivity.

A reconstruction of part 1 is presented in Figure 8.12. Figure 8.12(a) shows

the segmented porous phase of the sample and depicts a highly connected pore

network, indicated by the bulk of the pores being a single colour. Figure 8.13(b) is

presented in order for the reader to observe all three planes. Also presented in Figure

8.12(c) and (d) are skeletization projections of the pore phase. These projections

visualise the centreline of interconnected pores as thinned �laments. That is, the

centreline of the porous phase is displayed as a network of �laments which help

to represent the centroid pathways of the pore network. A high density of these

�laments is representative of a highly porous and well connected system, whereas

a low density is indicative of a poorly connected network. The absence of these

�laments represents the solid phase of the material.

Observation of Figure 8.12 shows that the microstructure contains a high pore

connectivity, as indicated by large turquoise-coloured pore. The pore connectivity
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Fig. 8.12: Part 1 of the partially reduced MBE showing the the pore phase in (a)
the XZ plane and (b) the XYZ plane. (c) shows a skeletization of the pore
phase in the XZ plane and (d) in the XYZ plane.
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Fig. 8.13: Part 2 of the partially reduced MBE showing the the pore phase in (a)
the XZ plane and (b) the XYZ plane. (c) shows a skeletization of the pore
phase in the XZ plane and (d) in the XYZ plane.

was extracted and is equal to 88.32% which would permit good di�usion of species

through the microstructure. This can also be seen by the high density of �laments

in the skeletization show in Figure 8.12(c) and (d). The overall porosity was also

extracted to be equal to 17.36%.

Figure 8.13 shows the sample reconstruction in part 2, with the skeletization

projections also shown. By studying Figure 8.13, one is able to conclude, similarly

to part 1, that the reconstructed volume for part two is also highly porous and is

very well connected.

The porosity of this particular sample was extracted to be 17.62% with a total

pore connectivity of 92.78%. This high pore connectivity would support the di�usion

of O2- ions away from the sample, indicating that the local build-up of the activity

of oxygen anions would not be dramatically impeded by the microstructure. Figure

8.14 shows the sample reconstruction of part 3. Again, many similarities to the
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Fig. 8.14: Part 3 of the partially reduced MBE showing the the pore phase in (a)
the XZ plane and (b) the XYZ plane. (c) shows a skeletization of the pore
phase in the XZ plane and (d) in the XYZ plane.

previous two reconstructions may be drawn. However, the porosity of this region

was extracted to be 12.27% which is signi�cantly lower than the previous porosities

extracted. In addition, the pore connectivity (87.96%) was also extracted to be

lower than the previous two reconstructions.

Lastly, Figure 8.15 depicts similar reconstructions on part 4 of the MBE: XZ and

XYZ planes of the pore phase and skeletization are displayed. Drastic microstruc-

tural changes compared to the previously presented reconstructions may be observed

in Table 8.4. The overall porosity extracted is signi�cantly less than that of the rest

of the parts that were reconstructed. The porosity of part four - as a whole - was

extracted to be 7.36% with a pore connectivity of 60.12%. This result is somewhat
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Fig. 8.15: Part 4 of the partially electroreduced MBE reconstructions showing the
the pore phase in both (a) the XZ plane and (b) the XYZ plane. (c) shows
a skeletization of the pore phase in the XZ plane and (d) a skeletization
in the XYZ plane. The interface can be clearly shown as the porosity is
signi�cantly reduced.

expected as a dense phase was observed in Figure 8.9. However, the change in mi-

crostructure between the two phases strongly indicates that the di�usion of O2- ions

may be impeded at the interface: the point of the electroreduction reaction.

Figures 8.15(a) and (b) both show the drastic reduction in the connectivity

of the pore phase. The porosity is reduced from 10.40 % between the coral-like

structure and the interface to a value of 3.8% afterwards. The pore connectivity also

drastically reduces from a value of 84.80% to a value of 17.86% after the interface.

Although the porosity of the electrode will increase after O2- ions have been liberated

from the electrode due to the volume change associated with the electroreduction,

the electrochemical reduction would be dependent on this volume change causing

the isolated pores to become connected. However, if pores do not become connected

due to the volume change, this would cause a local increase in the pO2- and could

potentially impede the electrochemical reduction.
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Part # Porosity (%) Pore Connectivity (%)

1 17.36 88.32
2 17.62 92.78
3 12.27 87.96

4 (total) 7.36 60.12
4 (coral-like structure phase only) 10.40 84.80

4 (dense phase only) 3.91 17.86

Tab. 8.4: Showing the porosity and pore connectivity of all reconstructed parts of
the MBE. Region 4 has also been split into its two corresponding regions.

This phenomena is also portrayed via the skeletization reconstructions in Figures

8.15(c) and (d). Regions corresponding to the highly porous and highly connected

pore regions show a high �lament density which is supportive of the di�usion of

O2- ions. However, when looking at the dense phase, the density of these skeletal

�laments become signi�cantly lower. The length of these �laments also appears to

be smaller than that compared to the coral-like structure phase. This shows that the

pores are smaller than those in the coral-like structure phase and, again, represents

poor pore connectivity.

Table 8.4 shows some of the microstructural characteristics of each of the parts

of the MBE. Parts one and two share very similar microstructural characteristics.

However, part three shows a decrease in porosity and pore connectivity with part 4

showing an even more drastic decrease in porosity and pore connectivity as a whole.

In addition, by splitting part four into the two sections relating to the porous phase

and the dense phase, a general trend of decreasing porosity and pore connectivity

may be observed from the outer edge towards the centre of the MBE. This trend is

indicative of the electrochemical reduction propagating through the MBE electrode,

from the edge to the centre. The porosity values in Table 8.4 portray a general

trend of decreasing porosity from the outside of the electrode inwards. As this is

the direction in which the electrochemical reduction is predicted to propagate in, the

porosity change may be attributed to the volume change associated with the reduc-

tion of uranium dioxide. The decreased pore connectivity may have consequences
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Fig. 8.16: Shows (a) the surface mesh reconstruction of the pore phase in StarCCM
and (b) a representation of the Z-direction �ux through the pore phase.

on the e�ciency of the electroreduction process. This decrease in pore connectivity

could impede the di�usion of O2- out of the electrode and cause and increase in

the level of pO2-, which could cause the impediment of the electroreduction. This

phenomena is expanded upon in the following subsection.

8.4.2 Tortuosity Simulations

Surface meshes were imported into the StarCCM+ software package in order to

model the X,Y and Z direction heat �uxes, which is analogous to the mass �ux

through the pore phase. This was done to extract the tortuosities of each direction

(see Section 3.2.3). After importing surfaces meshes, volume meshes were created

and the �ux was modelled through the pore phase and a solid control volume. For

this, an arbitrary temperature of 100°C was chosen.

Figure 8.16(a) shows an example surface mesh reconstruction in the StarCCM+

software package (note that the triangle mesh interfaces are not shown) while Figure

8.16(b) shows a visual representation of the �ux through the volume. Inspection of

Figure 8.16(b) shows that the bulk of the microstructure is at a constant temperature

of ca. 298 K. Towards the top left of the image there is a large change in the

temperature which is indicative of an area of large �ux. The reason is because,

although there is a high pore connectivity, the pore pathway is concentrated in one

small region, as shown in Figure 8.17.
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Fig. 8.17: Showing a zoomed in region of the Z-direction �ux simulation. This shows
that, although the pore phase is connected, there is only a small region of
connectivity resulting in a high tortuosity.

Because the microstructure has only a small region of connectivity, this results in

a poor �ux throughout the bulk of the pore phase and, in turn, causes an increased

tortuosity of the microstructure. Ultimately, what this would mean is that would be

a higher probability of the microstructure of the electrode inhibiting the di�usion of

O2- ions out of the electrode and into the bulk salt to be consumed at the counter

electrode.

These simulations were carried out for all parts of the MBE electrode that were

reconstructed in Section 8.4 (for information of how the tortuousity in each axis

is calculated, please refer to Section 3.2.3). The results of these simulations are

displayed in Table 8.5. It should be noted that only the biggest pore of these

reconstructions were extracted and modelled. This is because the unconnected pores

would not have contributed to the �ux and could have caused the heat �ux to not

converge. Also, on part four, only the pore phase before the interface to the dense

phase was modelled. This is because of the very low pore connectivity would have

resulted in an in�nite tortuosity to be calculated.

From Table 8.5 it is clear that all of sample volumes that were reconstructed

all possess a high tortuosity. Interestingly, this reveals that the bulk microstructure

of the electrode is highly tortuous throughout. This, combined with the pore con-

nectivity data presented in Table 8.4, shows that the pores phase throughout the

bulk sample would provide a highly tortuous pathway for molten salt penetration.
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Part # τX τY τZ

1 1.46 4.42 12.41
2 18.85 3.68 12.93
3 15.02 7.22 ∞
4 ∞ ∞ ∞

Tab. 8.5: Table showing the tortuosities of each reconstructed part in the X, Y and
Z directions.

This could result in signi�cant inhibition of the di�usion of O2- ions away from the

electrode. In turn, this could lead to the local level of the pO2- to become less,

resulting in a change in the potential for electrochemical reduction. In fact, this

could explain the incomplete electroreduction of the UO2 MBE presented in Section

7.2.1.

The TPI theory predicts that the electrochemical reduction would propagate

radially from the current collector edge, to the centre of the MBE/MCE. This would

be along the y-direction de�ned in Figure 8.11. Observation of the tortuosity in

this direction, τY, for all reconstructed volumes it is seen to �rst reduce from a

value of 4.42 in part one to a value of 3.68 in part two. This follows the trend

of increased porosity and pore connectivity between the two regions. However, the

value increases signi�cantly from 3.68 in region two to a value of 7.22 in region three.

This, again following the decrease in porosity and pore connectivity, reveals a much

more tortuous route for the di�usion of O2- ions.

In addition, the tortuosity of the entire part four reconstruction, and τZ of part

three, are in�nite. This phenomenon occurs in regions where the pore connectivity

is low. Because of this, the pore phase is not well connected causing the �ux calcu-

lations to be unable to converge. This, coupled with the low porosity towards the

centre of the electrode, is indicative of the fact that the microstructure within this

region would impede the penetration of molten salt and, ultimately, the di�usion of

O2- ions. The pore connectivity seems to be a function of the volume change asso-

ciated with the electrochemical reduction. This is a dynamic variable which would
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change as the electroreduction propagates throughout the bulk electrode. Because

of this, it is suggested that the di�usion of O2- ions away from the electrode would

be dependent on the probability of the volume change during electroreduction caus-

ing the isolated pores to become connected. This would inherently be a function

of the initial microstructure that would require full characterisation and possibly

optimising during industrial processing.

8.5 X-ray Computed Tomography

Following on from the FIB tomography microstructural characterisation presented

in Section 8.4, this subsection uses the non-destructive nature of the X-ray computed

tomography technique to investigate MCE electrodes. MCE electrodes, rather than

MBE electrodes, were chosen for this reconstruction due to the fact that they o�er

less attenuation to X-rays. Two MCE electrodes were investigated using X-ray CT:

The �rst was a freshly prepared UO2 �lled MCE (5 holes) and the second was a fully

reduced MCE (3 holes remained after electroreduction). This investigation forms a

proof-of-concept for four dimensional studies.

In order to ful�l health and safety criteria during scanning, the electrodes were

required to be fully encapsulated in epoxy. An image of one of the sample in the

X-ray CT machine may be seen in Figure 8.18. An X-ray generation voltage of

120 kV was used to acquire all radiographs. Reconstructions provided a voxel size

of 3.37 μm3 which is noted to be much larger than the 90 nm3 acquired from the

FIB tomography reconstructions presented in Section 8.4. As a result, the data

sets presented here are unable to capture the some of the small porosity associated

with these electrodes. However, it is able to provide a �eld of view greater than the

sample, allowing for potential in situ microstructural characterisation.
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Fig. 8.18: A photograph of one of the sample inside the Nikon XTH225 ST X-ray
CT scanner

8.5.1 X-ray Reconstruction of the Microstructure

For each scan a total of ca. 3200 projections were acquired for each MCE which re-

sulted in a total of, approximately, 1500 orthoslices of the MCE to be reconstructed,

per scan. A sample radiograph of the surface of a UO2 �lled MCE and a resulting

orthoslice inside of the middle hole is presented in Figure 8.19.

From the orthoslice depicted in Figure 8.19, it is possible to see the metal current

collector phase, large void space (porosity) and solid powder particles. Segmentation

for all MCE holes was performed in the Avizo Fire 8 software suite allowing for three

dimensional reconstruction of each phase.

Presented in Figure 8.20 are reconstructions of the solid phase (UO2) inside the

MCE. Labels (a) - (e) correspond with holes 1-5, as de�ned in Figure 8.19. The

reconstructions all show that the MCEs are all relatively well packed, apart from

hole number three (Figure 8.20(c)). A large void is present in hole three which is

likely due to the initial packing of the electrode. This void is also visible in the

radiograph in Figure 8.19. It should also be noted that the holes are not completely
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Fig. 8.19: showing a sample radiograph of a UO2 �lled MCE acquired on the Nikon
XTH225 ST and a resulting orthoslice of a hole in the same plane. The
numbers 1-3 are used to identify the holes in the MCE. Holes 4 and 5 are
not shown in this radiograph.

�lled as the solid powder typically only occupies between 27-55% of the total volume

of the MCE hole. This porosity is quanti�ed in Table 8.6. The void fraction, or

porosity, is signi�cantly higher compared to the values calculated using the FIB

tomography technique. The reason for this is likely due to powder being ejected

from the MCE during epoxy impregnation.

It should be noted that because the solid phase has been reconstructed (as

opposed to the porous phase in the FIB tomography) the pellets appear to be

completely dense, although they are in fact very porous. The solid phase was re-

constructed in this study due to the low volume fraction of the solid.

The feature of low solid volume fraction was found to be much more signi�cant

in the reduced samples which may be observed in Figure 8.21. From this, it is clear

that the powder has been mostly ejected from the MCE. This is expected more in

the reduced samples because of a number of reasons: the �rst is that due to the large

volume change associated with the electroreduction, the structural integrity of the

electrode may be compromised after electroreduction. Moreover, after the electrodes
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Fig. 8.20: Microstructural reconstruction of the UO2 �lled MCE showing (a) the
�rst three holes of the MCE and (b)-(f) shows the �ve reconstructed holes
(labelled as hole 1-5 respectively).

UO2 �lled MCE hole number Calculated solid volume fraction (%)

1 32.22
2 54.94
3 27.83
4 41.27
5 47.13

Tab. 8.6: Tabulated values of the solid volume fraction of the UO2 powder within
each hole of the MCE
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Fig. 8.21: Showing the microstructural reconstructions of the electrochemically re-
duced MCE showing (a) hole one and (b) hole two. Hole three was com-
pletely empty after epoxy impregnation.

have been immersed in the molten salt, a thin layer of salt becomes frozen over the

electrodes. In order to remove this salt (which is highly hygroscopic) the electrode

is immersed in methanol for 72 hours to remove the residual salt. This process

could further compromise the structural integrity of the electrode. After these two

processes have occurred, the electrode is then impregnated in epoxy which would

penetrate the pellet more than the UO2 electrodes, due to the higher void space

created during electroreduction. The �ow of epoxy into this larger void space could

further increase the probability of the powder to be ejected from the electrode. This

theory is supported by the fact that solid powder is observed around the edge of the

MCE - a region which would be a�ected less.

Two particles are observable towards to bottom of Figure 8.21(b). These par-

ticles inherently show the suitability of this tomography technique to study the

microstructure of these electrodes. It is believed that improvements in the electrode

structure would permit full microstructural characterisation of this system as well

as higher resolution X-ray CT. This would also permit a step-wise scanning of the

same sample during the electrochemical reduction process.
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In conclusion, X-ray CT has been utilized as a technique to study the microstruc-

ture of a UO2 MCE and an MCE which had been electrochemically reduced to U.

The investigations provided an insight into the overall structure of the MCEs and

demonstrated proof of concept that this technique may be used to study this sys-

tem. The structural integrity of the MCE electrodes seem to be compromised during

epoxy impregnation as pore volume fractions as high as 72.17% have been calculated

for the UO2 electrodes. It is anticipated that a more rigorous electrode structure

(such as MBEs) would help to negate this e�ect and with some optimisation could

lead to the acquisition of high quality data that would compliment the FIB tomog-

raphy data presented in Section 8.4.

8.6 Conclusion

This section has investigated material characterisation of the electrochemical re-

duction process using advanced characterisation techniques. Firstly, the use of syn-

chrotron radiation has been utilized to follow the electrochemical reduction pathway

in situ. The results show that the electrochemical reduction does, indeed, occur via

a single, 4-electron transfer, process as electrochemically characterised in Chapter

VII.

Additionally, the microstructure of both MBE and MCE electrodes have been

studied. A partially reduced MBE was studied using FIB tomography resulting in

four volume reconstructions. The porosity along the axis of the propagation of the

electrochemical reduction was seen to reduce drastically from 17.62% in the coral-

like structure phase to a value of 3.91% in the dense phase. Moreover, the tortuosity

in this plane was also seen to increase from a value of 4.42 to an in�nite tortuosity

in the dense phase. This microstructural phenomena would impede the di�usion

of O2- ions from the bulk electrode which would decrease the local value of pO2-.

Referring to the Littlewood diagram presented in Figure 5.2, this could result in the

potential for electroreduction to be more negative than the cathodic decomposition
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potential of the LKE electrolyte. If this were to occur then this would cause the

electrochemical reduction in LKE to not be possible.
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Chapter IX. Conclusions and Future Work

9 Conclusions and Future work

9.1 Conclusions

The work of this thesis has combined thermodynamic predictions with electrochem-

ical and material characterisation techniques in order to demonstrate the feasibil-

ity of electrochemically reducing uranium dioxide to uranium in lithium chloride-

potassium chloride eutectic and to elucidate the electrochemical reduction mecha-

nism.

The following subsections draw the main conclusions associated with the ther-

modynamic predictions (Chapter V), the electrochemical characterisation (Chapter

VII) and material characterisation (Chapter VIII).

9.1.1 Thermodynamic predictions

The Littlewood diagrams constructed and presented in Chapter V allowed for a

visual representation of the thermodynamically predicted K-Li-U-O-Cl molten salt

system. Although these Littlewood diagrams are inherently limited by the thermo-

dynamic data used to construct them, they are a very useful tool to allow for a

rapid prediction of molten salt systems. The diagrams presented in LKE assume

that the Gibbs free energy of the formation of O2- ion is a weighted average of its

dissociation from Li2O and K2O. This is due to the O2- ions being a minority in the

melt with it's nearest neighbour shells being Li+, K+ and Cl-. This assumption is

validated due to the melt having a quasi-crystalline structure.

Perhaps the most signi�cant conclusion to be drawn from the Littlewood dia-

grams presented for uranium species in LKE is the predicted dependence upon the

pO2- of the molten salt. The diagrams predict that the electroreduction may only

occur above a pO2- value of approximately 6, at 773 K. Higher activities of O2-
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(lower values of pO2-) would see the potential for electroreduction of UO2 to be

more negative than the decomposition potential of the molten salt.

The �exibility of these diagrams was also presented by superimposition of the

diagrams for both plutonium and uranium species in LKE at 773 K onto one another.

This provides a thermodynamic prediction of the system which could be applied to,

for example, the selective electroreduction of uranium dioxide in a MOX fuel.

The thermodynamic representation of this system was used as a basis for the

experimentation and provided an insight into the dependence of the electroreduc-

tion on the pO2-. In fact, this dependence has been shown to be valid with the

experimentation presented in Section 7.3.

9.1.2 Electrochemical Characterisation

During the electrochemical characterisation presented in Chapter VII, MBE and

MCE electrodes were electrochemically reduced using sweep voltammetry and chronoam-

perometry. Using cyclic voltammetry, a single electrochemical reduction peak was

observed compared to un�lled MBE/MCE electrodes. This electrochemical reduc-

tion peak was seen to be close the cathodic decomposition potential of the molten

salt. The Littlewood diagram for uranium species (Figure 5.2) predicts the level of

pO2- to be ca. 6.5 at this point.

Multiple scan cyclic voltammetry was also performed, resulting in the decrease in

the electrochemical reduction peak current for UO2 to U (peak C2) after each sweep.

In addition, there was no observable re-oxidation peak associated with peak C2. This

is highly supportive of the theory that the liberated O2- ions are di�using away from

the working electrode (and likely being consumed at the counter electrode). This

results in the O2- ions not being available for re-oxidation. This reduction of the

peak current at C2, therefore, may be attributed to less material being available for

electrochemical reduction.

Chronoamperometry studies also showed the ability to electrochemically reduce
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UO2 to U via a constant potential electrolysis technique. During chronoamperom-

etry, the current was seen to initially increase before steadily reducing to a value

close to zero. SEM micrographs of the resulting electrodes showed the microstruc-

ture to be highly porous with a coral-like structure, similar to that observed by

Kurata et al. [64]. The total current passed during the chronoamperometry per-

formed in Figure 7.5 was calculated to be 420% more than the theoretical value

required. Although the current e�ciency of this electroreduction was not possible

to be performed (due to di�culties in ensuring the powder remained inside the elec-

trode during cleaning) this is indicative of a low current e�ciency being associated

with the electroreduction.

In addition, the e�ect of the bulk value of pO2- was investigated on the elec-

trochemical reduction peak C2. Firstly, a pO2- indicator electrode was built and

calibrated. This electrode allowed the direct measurement of the pO2- value to be

deduced without having to remove a sample of the salt and potentially compromis-

ing the cell's environment. Figure 7.9 showed that the electrochemical reduction

peak C2 was observable at a pO2- value of 6.2, as expected. However, this reduction

peak was then unobservable after the pO2- value was decreased to a value close to

zero. This result provides signi�cant support to the thermodynamic predictions of

the molten salt system and also con�rms the susceptibility of this electroreduction

to the activity of O2- ions.

9.1.3 Material Characterisation

Chapter VIII focused on the development and application of advanced material char-

acterisation techniques to study the e�ects of the electrochemical reduction on the

electrodes. Firstly, synchrotron radiation was utilized to follow the electrochemical

reduction pathway of the electroreduction in situ. Throughout the in situ EDXD ex-

perimentation, all phases of the system were identi�ed and characterised. The direct

observation of the reduction in peak intensity of UO2 and the simultaneous increase
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in peak intensity for U provides strong evidence that the electrochemical reduction

does, indeed, occur via a single, 4-electron transfer, process. The the exclusion of

any other phases in the EDXD data also supports this. The electrochemical reduc-

tion potential of the UO2|U appeared to be dependent on the activity of oxide ion

existing within the melt. This was indicated by the inhibition of the electrochemical

reduction during electrolysis. Theoretically, if the pO2- of the molten salt remained

constant, the electroreduction of UO2 should have been observed to continue. The

neutron di�raction technique was also utilized and was demonstrated to be a useful

technique for following electrochemical processes in situ.

Secondly, the microstructural evolution was also studied using a combination of

unreduced UO2 electrodes, partially reduced electrodes and fully reduced electrodes.

FIB tomography on the partially reduced electrode resulted in four sample volume

reconstructions of which one included both coral-like and dense microstructures.

The coral-like structure is attributed to the volume change associated with the elec-

trochemical reduction of UO2 to U. By studying the sub-volumes along the y-plane

(the plane in which the electrochemical reduction is believed to propagate along) the

microstructure was seen to drastically evolve. The total porosity of the and the pore

connectivities of the sample volumes were all seen to drastically reduce, especially

in the dense region. Moreover, the tortuosity of these sub-volumes were all seen to

drastically increase. A combination of the decrease in porosity, pore connectivity

and increases in the pore phase tortuosities all suggest that the microstructure of

the electrodes may impede the di�usion of O2- ions from the electrode. This may,

in turn, cause an increase in the local activity of O2- ions and cause the inability

to electrochemically reduce UO2 to U. Therefore, the microstructure of the initial

UO2 electrode is an extremely important factor in the overall e�ciency of the elec-

trochemical reduction process. A highly porous microstructure which promotes a

high pore connectivity and low tortuosity would be bene�cial in ensuring that the

electrochemical reduction in not impeded by a build up of oxygen anions within the
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electrode.
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9.2 Future Work

The following subsections brie�y describe possible future topics in which this work

may be expanded into.

9.2.1 Selective Electroreduction of Mixed Oxide Fuel

Although the work of this thesis elucidates the electrochemical reduction of uranium

dioxide to uranium in the lithium chloride-potassium chloride eutectic, one may

wish to consider expanding this study into UO2 electrodes that contain 1-2% of

PuO2. The motivation behind this work is due to the fact that, in reality, spent fuel

pellets contain 1-2% of PuO2. The selective electrochemical reduction of uranium

dioxide would be the head end process before the electrore�ner in the pyroprocessing

process, as opposed to the oxide reduction unit [190, 196, 197]. The Littlewood

diagrams presented in Chapter V predict the selective electrochemical reduction of

UO2 to be close to that of the reduction potential of Pu2O3 (a predicted intermediate

between PuO2 and Pu). Therefore, experimentation would be required to deduce

the feasibility of this selective electrochemical reduction.

9.2.2 X-ray Computed Tomography Studies

The work presented in Section 8.5 provided an insight into the bulk microstructural

characterisation of MBE/MCE electrodes. However, due to health and safety regu-

lations, the electrodes were required to be impregnated in epoxy which, in turn, lead

to arti�cial changes to the electrode microstructure. The work presented in Section

8.5 provides a proof-of-concept of the advantages of using X-ray CT to study these

electrodes in their entirety. It is suggested that the electrode structure is optimised

in order for these experiments to be carried out. One suggestion is the use of MBE

which have a much smaller outer diameter compared to the ones presented in this

thesis (Section 4.3.2). For example, 0.8 mm holes may be drilled into the cross
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section of 1 mm diameter rods (as opposed to 3 mm rods used in this thesis) would

signi�cantly decrease the attenuation of the X-rays. This would also permit the

microstructure to be characterised both before and after electrochemical reduction.

There is also scope to use higher resolution X-ray CT.

9.2.3 In Situ Microstructural Characterisation

In Chapter VIII, microstructural characterisation showed that the inherent mi-

crostructure of the electrode may directly impede the di�usion of O2- ions which

could result in the impediment of the electroreduction. However, the microstructure

of these electrodes were studied ex situ. In situ microstructural analysis would o�er

a unique insight into the microstructural changes occurring within the molten salt

environment.

9.2.4 Electrochemical Reduction Studies on Spent LWR Pellets

The microstructure of nuclear light water reactor (LWR) pellets is currently well

understood. Studying actual spent fuel pellets has obvious advantages and would

o�er a true ability to optimise the electrochemical reduction procedure and would

highlight any changes in the structure of the electrodes required to increase the

e�ciency of the electrochemical reduction process.

9.2.5 Pulsed Chronoamperometry for Uranium Electrodeposition

The electrodeposition of uranium metal is the overall end product of the pyropro-

cessing process [190]. However, many studies highlight the dendritic deposition of

uranium metal via electrodeposition (see Section 2.2.3.1). Process costs could be

eliminated if the electrore�ning unit were able to prepare metallic fuel pellets during

electrodeposition. In order to prepare uniform and homogeneous deposition of ura-

nium metal, a pulsed chronoamperometry technique could be implemented. Vargas

and Inman were able to control the nucleation and growth of chromium deposits
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by employing a pulsed chronoamperometry technique in the LiCl-KCl eutectic [60].

The authors were able to produce adherent and coherent �lms of chromium by uti-

lizing this technique. It is suggested that this would prove advantageous to the

electrodeposition of uranium metal in LKE.
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Appendices

Appendix A - Uranium Species Littlewood Diagram Equations

The following are equations used to construct the uranium species Littlewood dia-

grams in Chapter V.

UO2 + 4e−↔U + 2O2− (9.1)

ε
9.1=

−∆G9.1
nF

+ ηRTln10
nF

·pO2−

U + 3Cl−↔UCl3 + 3e− (9.2)

ε
9.2=

−∆G9.2
nF

UO2 + 3Cl− + e−↔UCl3 + 2O2− (9.3)

ε
9.3=

−∆G9.3
nF

+ ηRTln10
nF

·pO2−

UCl3 + 2O2−↔UO2Cl2 + Cl− + 3e− (9.4)

ε
9.4=

−∆G9.4
nF

+ ηRTln10
nF

·pO2−
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3UO2 + 2O2−↔U3O8 + 4e− (9.5)

ε
9.5=

−∆G9.5
nF

+ ηRTln10
nF

·pO2−

3UO2Cl2 + 2O2−↔U3O8 + 6Cl− (9.6)

ε
9.6=

−∆G9.6
nF

+ ηRTln10
nF

·pO2−

UO2Cl2 + 2Cl− + 2e−↔UCl4 + 2O2− (9.7)

ε
9.7=

−∆G9.7
nF

+ ηRTln10
nF

·pO2−

UCl3 + Cl−↔UCl4 + e− (9.8)

ε
9.8=

−∆G9.8
nF

Li2UO4 + 2e− ↔ UO2 + 2O2− + 2Li+ (9.9)

ε
9.9=

−∆G9.9
nF

+ ηRTln10
nF

·pO2−
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3Li2UO4 + 2e− ↔ U3O8 + 4O2− + 6Li+ (9.10)

ε
9.10=

−∆G9.10
nF

+ ηRTln10
nF

·pO2−

Li2UO4 ↔ UO3 +O2− + 2Li+ (9.11)

pO2− =
∆G9.11

RTln10
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Appendix B - Plutonium Species Littlewood Diagram Equations

The following are equations used to construct the uranium species Littlewood dia-

grams in Chapter V.

2PuO2 + 2e− ↔ Pu2O3 +O2− (9.12)

ε
9.12=

−∆G9.12
nF

+ ηRTln10
nF

·pO2−

2PuO2 + 2e− + Cl− ↔ PuOCl +O2− (9.13)

ε
9.13=

−∆G9.13
nF

+ ηRTln10
nF

·pO2−

PuO2 + e− + 3Cl− ↔ PuCl3 + 2O2− (9.14)

ε
9.14=

−∆G9.14
nF

+ ηRTln10
nF

·pO2−

Pu2O3 + 2Cl− ↔ 2PuOCl +O2− (9.15)

pO2− =
∆G9.15

RTln10

PuCl3 +O2− ↔ PuOCl + 2Cl− (9.16)
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pO2− =
∆G9.16

RTln10

PuCl3 + 3e− ↔ Pu+ 3Cl− (9.17)

ε
9.17=

−∆G9.17
nF

Pu2O3 + 6e− ↔ 2Pu+ 3O2− (9.18)

ε
9.18=

−∆G9.18
nF

+ ηRTln10
nF

·pO2−

PuOCl + 3e− ↔ Pu+O2− + Cl− (9.19)

ε
9.19=

−∆G9.19
nF

+ ηRTln10
nF

·pO2−
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