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Abstract 

The manufacture of large off-axis aspheric optics for the next generation of 

extremely large telescopes presents a number of unique challenges. For example, 

the European Southern Observatory (ESO) Extremely Large Telescope (E-ELT) 

requires the manufacture of one 1.4 m class ultra-precision mirror segment per 

week in order to satisfy the first-light deadline. One of the factors limiting the pace 

of manufacture is metrology. Many of the tasks associated with measurement, such 

as optic positioning, alignment and acquisition are carried out manually. It is also 

common for the optic to be removed to a laboratory for measurement, which can 

be time consuming and risk damage.  

This thesis presents research into the development of new on-machine metrology 

techniques, which allow measurement to be carried out in the manufacturing 

environment. This work is supported by a software application developed by the 

author to allow the design and control of on-machine metrology. This application 

uses the computer numerical control (CNC) polishing system as part of the 

positioning and alignment system. The inclusion of CNC has enabled the 

development of a close-loop control system which facilitates automatic alignment 

and acquisition of metrology data. The software presented uses a modular 

architecture, allowing many different types of metrology to be planned and control 

using a single application. This is demonstrated using two case studies, which allow 

automatic on-machine sub-aperture stitching metrology using a metrology tower 

placed over the machine, and automatic on-machine texture measurement. The 

use of a closed loop software application to control automatic on-machine texture 
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measurement is a novel step. It is also demonstrated that on-machine metrology in 

the manufacturing environment can produce measurement data of comparable 

quality to that of the laboratory. Automatic measurements systems such as those 

presented are likely to play an increasing role in the large and high-volume optical 

fabrication sectors. 
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1 Introduction 

1.1 Control of the surface 

Throughout our lives, we interact with the surrounding world by perceiving objects 

using our senses of sight, hearing and touch. Most of what we view is a series of 

surfaces, light interacting at an interface between an object and the air. A surface 

may be defined as;  

‘The outermost boundary (or one of the boundaries) of any material object, 

immediately adjacent to air, fluid or empty space, or to another object.’ [1] 

A surface is an infinitesimally fine layer, which forms the boundary between two 

media. However, this interface can often shape our perception of an object; its 

value, its quality, what it means to us and its function.  

At the beginning of human civilisation, commodities were traded based upon their 

perceived value. The first recorded use of money was that of shell currency [2]. 

These were commonly cowry shells found washed up on beaches near to 

settlements, collected primarily for their aesthetics. Being different from artefacts 

man could readily make, they were difficult to counterfeit. Shells held value based 

upon their size and colour, possibly due to the rarity of such specimens. Over time, 

these shells began to be drilled and threaded onto string for ease of carrying and 

trading. Eventually, people began to manufacture shell-like beads instead of 

collecting shells. Materials such as wood, bone, and stone were selected and 

subsequently modified into currency. This marks one of the earliest examples at 

which humans sought to modify surfaces for requirements not directly associated 
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with survival (tools or weapons) or aesthetics (jewellery) but for a function: The 

surface in this case forms a robust, easily recognised symbol of value. When 

currency came to be manufactured in pressed metal, some eastern cultures 

retained the central hole in their coinage. This is still seen today in examples such as 

the Japanese 5¥ and 50¥ coins. 

As technology developed, humanity began to make increasingly elaborate changes 

to surfaces for the purposes of functionality. In medicine, smooth, sharp needles 

allow the delivery of vaccination and curative preparations [3]. In aeronautics, the 

interaction of air with the refined surface of a wing provides lift and enables us to 

travel the world. These surfaces are modified and controlled purely for their 

functional quality rather than aesthetics, as with ancient currency.  

However, the origin of optics may predate all but the earliest forms of currency. 

One of the earliest known lenses, The Nimrud Lens (plano-convex), dates back to 

around 750BC to 710BC and was created from quartz [4]. This example was found 

in what is now Northern Iraq, but similar examples have been located in Greece [5] 

and Egypt. There is some evidence of Egyptian optics dating back to 2600 BC, 

however no specimens have been recovered [6]. Most of these early optics are 

considered to have been used for carving, or as burning glasses.  

Only much later did compound systems, of two or more lenses, became available. 

There remains debate over the origin of such systems. The compound microscope is 

often credited to either Zacharias Janssen, Hans Lippershey or Galileo Galilei 

between 1590 AD and 1605 AD [7], while the first refractive telescope is widely 

credited to Hans Lippershey in 1608, following a demonstration to Count Maurits of 
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Nassau [8]. Even after forming a commercial deal with the army, Lippershey was 

not granted a patent, as many others came forward to claim themselves as the 

inventors. The reason for the contention surrounding the origins of both the 

microscope and the telescope are two-fold; the potential for material gain and 

existing subconscious knowledge. It is thought that many were aware of the effects 

of compound optics, though there was little conscious awareness as to the 

applications. Regardless of this debate, it is certain that a revolution of astronomy 

followed the development of the telescope. By this time, society had developed 

such that basic survival was generally not a preoccupation. Many scholars were 

now able to turn their energy to exploration, not for material gain, but for the 

advancement of collective knowledge.  

Observational astronomers could now observe more than points of light. New 

details and objects, previously invisible due to their faintness, were revealed. A 

multitude of discoveries followed, such as Jupiter’s four largest moons, craters on 

Earth’s moon and the phases of Venus by Galileo Galilei alone.  

Following a further 400 years of development direct imaging of exoplanets, planets 

outside of our solar system, is a plausible pursuit [9]. One such example designed to 

allow characterisation of Earth sized exoplanets is the European Southern 

Observatory (ESO) European Extremely Large Telescope (E-ELT) [10]. This 

instrument is designed to deliver sufficient image quality and sensitivity to also 

study the era of first galaxy formation following the Big Bang, and the apparent 

acceleration of the expansion of the universe. Construction of the E-ELT will also 

challenge current practice in other fields, such as optical manufacturing and 
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metrology, as a result of system optical design. The E-ELT is scheduled for first light 

in 2024, with ESO adopting a 2-phase approach to construction in order to minimise 

risk of further delays and maximise instrument competitiveness [11]. One of the 

greatest challenges of the construction of the E-ELT is the fabrication of the primary 

mirror. As detector quantum efficiency nears 100%, obtaining greater optical 

performance becomes a matter of constructing a larger primary [12].  

The E-ELT primary mirror design was originally a 42 m diameter F1 parabola 

consisting of 984 closely tessellated hexagonal mirrors (plus 133 spares). This 

specification was reduced to a 39 m diameter F0.88 primary in 2011 to save cost, 

not only of optical components, but also by reducing enclosure size. The individual 

segments are off-axis aspheres which must be polished edge to edge. This allows 

the segments to be placed closely together (4 mm gaps), minimising near-field 

infra-red emissions entering the optical chain from between components which 

degrades signal-to-noise ratio [13]. The University College London team at OpTIC 

Glyndwr is part of a consortium involving Zeeko Ltd and led by Glyndwr University 

which has been commissioned to produce seven prototype segments for the E-ELT 

primary, as per the original specification. Later in this chapter, techniques used to 

manufacture and measure these prototypes will be discussed as well as how they 

must be improved to satisfy the project goals.  

Parallel to the development of optical technology is that of manufacturing. The E-

ELT requires mass production of metre-scale optical components of high quality in 

order to meet the first light target and achieve the specified science goals. As will 

be demonstrated in the remainder of this chapter, capability in manufacturing is 



27 
 

interwoven with that in metrology. These developments are driven forward, not by 

the human need to survive but because we are driven to learn. Although the 

modification of a surface can change our perception of an object, that surface can 

also be used to change our perception of the world around us. 

1.2 Techniques for the Manufacture of optical surfaces 

This section will discuss how optical components are commonly made and how 

recent developments in this field have facilitated the new work presented in this 

thesis.  

Optics such as the Nimrud lens were polished by hand or using simple equipment, 

such as that shown in [5]. This type of system was manually powered and labour 

intensive, especially with quartz being harder than other contemporary materials 

[14] [15]. Though crude by modern standards, such techniques are similar to those 

referred to as ‘classical polishing’. 

1.2.1 Classical Manufacturing Techniques 

Production of an optical surface is usually a subtractive process, where material is 

removed from a ground blank until the surface shape matches that of the 

specification. The blank is a glass or ceramic slab which is ground into shape to 

ensure compatibility with the available tooling and minimise processing time. The 

grind is carried out on a rigid system so that an accurate shape is imparted to the 

surface, using a tooling similar to a cup wheel or a lap. 

Lapping achieves removal by moving the work piece against an abrasive surface, or 

a non-abrasive surface in the presence of abrasive slurry. The lap is about the same 

size as the component to be polished and of equal and opposite radius of curvature 
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(ROC), ensuring it conforms to allow removal. With the two surfaces in contact, 

lateral movement is applied to achieve abrasion, typically by rotating the tool while 

moving the surface back and forth across the surface, as demonstrated in Figure 1.1 

using the overarm spindle machine. The lap material is varied through the process, 

from a steel grinding lap to a pitch lap. The former imparts the correct form to the 

surface while the pitch tool is typically used to control roughness [16]. The pitch 

tool will slowly conform to the surface shape, removing small features while 

maintaining the ROC. 

Originally manually operated, the lap has been increasingly automated and the 

speed at which the system worked can be accurately controlled. The rate of 

removal was found to be dependent upon the speed of motion across the surface 

(feedrate) and the amount of pressure exerted on the surface [17]. Slurry particle 

size and chemical composition also affect the removal and final finish of the process 

[18].  

 

Figure 1.1: Overarm spindle machine lap mechanism taken from [19] 
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Although the lapping process is well-used, it has limitations. Each surface of a 

different ROC produced requires tooling of the correct radius, which can become a 

large source of expenditure for the optical manufacturer. Furthermore, aspheres 

and free-form optics cannot easily be produced though lapping and the process is 

generally limited to rotationally symmetric parts of plano or spherical prescription 

and some mild aspheres. As the requirement for large optics has increased, larger 

full-aperture polishing systems have been constructed. However, the tooling costs 

associated with such large systems mean they are typically purpose built or 

adapted for specialist projects. Figure 1.2 shows the aluminium primary mirror of 

the Birr telescope being restored at UCL on a 2.5 m grinding and polishing machine. 

In this case the mirror was a 1.8 m diameter parabola, however, adapting this 

system to polish other prescriptions would incur substantial cost and time [20]. In 

the case of the UCL polishing system described, some computerisation was added 

to the polishing system and the final aspherisation was performed using a sub-

aperture regime [21].  
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Figure 1.2: Birr telescope primary installed on UCL 2.4 m lap system 

This application of Computer Numerical Control (CNC) and sub-aperture tooling 

allows the removal some of the cost limitations of classical techniques. Although 

CNC systems have been available commercially since the 1940s [22], they were not 

used in optical manufacturing until much later. CNC techniques have been 

combined with lapping to develop the stressed or active lap which allow the 

production of aspheric surfaces [23] [24]. However, greater flexibility has been 

achieved through the development of finishing using generic tooling smaller than 

the work piece, called sub-aperture polishing [25]. 

1.2.2 Application of Computer Numerical Control to Optical Surface 

Manufacturing 

The use of CNC and sub-aperture polishing techniques enable greater complexity 

optical surfaces to be produced, and so increased performance of the resultant 
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optical systems [26] [27]. CNC also forms a fundamental component in the work 

presented in this thesis. This section will therefore provide an overview of 

computer numerical control and discuss application to the field of optical 

manufacture.  

A CNC system is one in which a computer controls the motorised axes of a machine 

to behave as prescribed by a program. A single machine may perform many 

different tasks by changing the program. Figure 1.3 shows a schematic of a 

simplified system, where three motorised axes are controlled via a program loaded 

onto a computer. CNC machines have no intelligence, and only execute the 

program. If the program places the machine into a configuration such that a crash 

occurs, (an unplanned interaction between axes and/or the work piece) the 

machine will comply. It is therefore common for Numerical Control (NC) programs 

to be generated using a computer application, allowing the toolpath to be 

previewed and checked.  

 

Figure 1.3: Simplified CNC system model schematic of 3-axis machine 

While early CNC systems stored programs of punched paper tape, contemporary 

systems use the computer for program storage, allowing more complex programs 

between which the computer can rapidly switch. Modern systems also use a 

NC program

M

M

M
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dedicated controller to handle complicated axis arrangements while providing 

highly accurate control and the monitoring of safety systems. This dedicated 

computer allows, multiple systems to be controlled simultaneously from a single 

console computer. Figure 1.4 shows a schematic diagram of such a system with a 

single console controlling two three-axis systems. Such a system could be further 

scaled and the limiting factor tends to be the capability of the operator to monitor 

and control the system. This ability to control multiple dedicated CNC controllers 

will be shown to enable highly flexible operation by combining sub-systems as 

required. 

 

Figure 1.4: Modern CNC system with dedicated controller 

NC files are often written in a language called G-code, which provides a sequence of 

simple instructions for the CNC controller to interpret and follow. Figure 1.5 shows 

an example G-code program automatically produced by the Metrology Controller 

application, written by the author and discussed in Chapter 4. The program begins 

M

M

M

M

M

M
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with a title (O1889 in this case), which enables the system to differentiate between 

many programs stored in memory. Modal instructions are then given, which may 

instruct the system to make absolute or relative moves, for example and remain in 

effect until changed. Axis moves are specified by an axis label (e.g. X) followed by a 

number, which, depending on mode, could specify the absolute or relative target. 

The machine controller reads and executes a single line before moving onto the 

next. Therefore, multiple axis commands placed on the same line are interpolated 

as per the modal commands. In this way, complex and co-ordinated movements 

can be built.  

 

Figure 1.5: Example G-code program 

Although ISO6983 is a global definition of G-code functionality, this standard is not 

mandatory [28]. Typically, each manufacturer of CNC control systems implements 

the language differently to facilitate specific requirements. For the example given, 

the G and M codes used are provided in Table 1.1 and are correct for the Fanuc 

control systems used in all work presented. These differences in syntax result in a 

lack of code portability between systems.  
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Table 1.1: Command codes used in example program and compatible with Fanuc control units 

Command Definition 

G90 Absolute move command 

G01 Linear interpolation 

F Feed rate. Followed by desired value 
(mm/min) 

M30 Program end 
 

The application of CNC to the production of precision surfaces allowed a step 

change in production techniques. CNC of itself does not provide a great gain in 

surface quality achievable, as a skilled optical shop technician may produce similar 

surfaces by hand. However, CNC does offer versatility. The ability to control the 

process by changing the program allows the generation of any part within the 

capability of the machine. To realise the potential of CNC for optical manufacture, a 

machine is required which may support a wide range of part sizes and shapes, and 

uses similar tooling on many parts. The following sections presents two example 

systems, demonstrating how flexible state-of-the-art, high precision manufacturing 

systems have become. Fundamental to the developments presented in this thesis is 

that CNC based machines are able to operate automatically. Although CNC systems 

simply interpret instructions, it will be demonstrated that when combined with 

control software capable of automatically generating G-code programs, a more 

comprehensive control system may be developed.  

1.2.3 Sub-aperture Polishing Techniques 

Some of the limitations associated with the classical polishing of aspheres occur due 

to the aspheric misfit between the tooling and the part. Using a sub-aperture tool, 

to address an area smaller than the part, the polishing system can process a flat, 

sphere, asphere or free-form workpiece using generic tooling. This approach 
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presents the manufacturer with greater flexibility as well as the benefits of CNC. 

The example sub-aperture polishing systems presented here are QED’s Magneto-

Rheological Fluid (MRF) and the Zeeko Intelligent Robotic Polisher (IRP), although 

there are many more [29] [30].  

1.2.3.1 Magneto-Rheological Fluid Polishing 

MRF is distinct from most other optical processing in that the tool is rotated out of 

the plane of the work piece. Figure 1.6 shows a schematic depicting the MRF 

system tool assembly, taken from a patent filed by manufacturer QED [31]. The tool 

is made up of a vertically rotating wheel (12) on which a membrane is placed (14). A 

slurry made up of a colloidal suspension of magneto rheological particles (Carbonyl 

Iron) and abrasive (E.g. Cerium Oxide) is passed in between the workpiece and the 

wheel (22) [32] [33]. A magnetic field is applied to the gap, via an electro magnet 

(30), causing the slurry to stiffen. The interaction of the stiffened slurry between 

the workpiece and the membrane acts to produce a removal function on the 

workpiece. This removal function is adjusted through active control of the 

electromagnetic field, to achieve deterministic removal. Having been passed against 

the work piece, the slurry is collected (20) and re-circulated for continual use. 
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Figure 1.6: Schematic of the MRF process taken from [31] 

The tool path is pre-computed from knowledge of the surface error with respect to 

the specification and the removal function is adjusted in real time to maximise 

process determinism.  

The MRF process relies upon the accurate control of slurry flow during processing. 

In order to minimise the effect of gravity, the work piece is supported from above 

while the tool wheel is placed on the machine bed. While this has benefits for small 

parts, such as minimising slurry contamination of the part and support system, the 

work piece size is limited. Due to the aspect ratio of the E-ELT segments (1.4 m x 50 

mm), part deformation is a concern and supporting the part from below allows the 

use of gravity as part of the system [34]. QED have developed larger machines such 

as the Q22-2000F which use a downward facing tool wheel to allow the processing 

of much larger parts. A system of this type would be capable of processing 

segments of the E-ELT. However polishing of short radius surfaces beyond 30° 
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slope, or materials which will interact with the magnetic field is not possible. As 

well as the usual factors to be considered when developing a polishing process, 

such as tool path, temperature, pH, slurry concentration, etc., the MRF operator 

must consider the concentration of Carbonyl Iron in the slurry [35]. This extra 

variable can serve to further complicate process development, however, there is 

evidence to suggest rapid processing of high quality surfaces is possible [36] [37] 

[38]. 

1.2.3.2 Zeeko Inflatable Membrane Polishing 

The Zeeko process uses a spherical rubber membrane or bonnet, reinforced to 

ensure shape is retained when forced against the workpiece. A flat spot is produced 

against the surface, which is controlled in size by the displacement of the bonnet 

beyond the point of contact, the Z-offset. Offset adjusts the amount of force the 

bonnet exerts upon the work piece but this can also act to adjust the process 

footprint size shown in Figure 1.7 [39]. As the bonnet is rotated to produce 

removal, it must also be tilted, or precessed, to avoid the dead-spot at the centre of 

the axis of rotation, as shown in Figure 1.8.  
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Figure 1.7: Variation of polishing spot size with Z-offset 

 

  

Figure 1.8: Zeeko semi-rigid inflatable bonnet tool 

Slurry is fed into the interface between the bonnet and work piece, producing a 

Gaussian shaped removal function [40]. The bonnet is held at a constant precess 

angle relative to the surface normal, while being moved across the surface. With 

knowledge of the surface error, the feed rate may be modulated to cause the 

bonnet to move over high areas more slowly, reducing relative height. This process 
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is referred to as dwell time moderation, where the feed rate map is created from 

the error map and the tool influence function, characterised for the system 

operating conditions [41].  

The process removal rate can be varied by adjusting slurry concentration, slurry 

material, pH, feed rate, tool rotation speed, bonnet material and pressure, and 

offset [42]. Many of these variables are interlinked, further complicating the 

process of full process characterisation. Even when a stable, convergent process 

has been developed, many parameters must be adjusted to apply it to another 

material. 

Unlike the MRF polishing, the Zeeko machine can access any vector within a 

hemisphere and is able to process ferromagnetic materials. The Zeeko process can 

also make use of a wider range of tooling to achieve different removal rates and 

finishes [43]. However, in terms of the number of process variables, both are highly 

complicated and rely on accurate control of many parameters in order to produce 

reliable performance.  

1.2.4 Conclusion 

In this section, methods of pre-polishing and polishing surfaces have been reviewed 

as well as their limitations. The two sub-aperture systems discussed exemplify 

modern, complex polishing processes, which depend upon the control of multiple 

parameters to produce constant removal. In terms of the new work presented in 

this thesis, the integration of CNC into polishing machines is fundamental to the 

metrology systems developed, as will be discussed in Chapter 2. Although there has 

been a general progression towards deterministic processing, there remain many 
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variables which must be controlled in any polishing system. The polishing of glass is 

not fully deterministic and sub-aperture processing relies upon iterations, as 

controlling removal rate for material removal of comparable magnitude with the Z-

offset remains difficult. Following each iteration the surface is measured to 

determine error relative to the desired shape.  

There is a saying in the optical manufacturing industry; 

‘If you can’t measure it, you can’t make it!’ 

Measurement is used to provide feedback to the manufacturing process and ensure 

convergence. If this feedback is inaccurate, the subsequent tool path generated is 

unlikely to improve the surface condition beyond a certain point. In this situation, 

metrology will become the limiting factor of the final surface quality. The next 

section will provide background into the methods used to measure optical surfaces, 

and how these techniques led to the development of on-machine metrology. 

1.3 Characterisation of Surfaces 

Though there are many methods of characterising a surface at various spatial 

frequencies, such as profilometry, test plates and co-ordinate measuring machines 

(CMM), optical measurement performed using a phase-shifting interferometer will 

be concentrated on here. Measurement techniques which involve physical contact 

with the part are avoided as these pose greater risk of mechanical damage to the 

surface under test (SUT). Generally, two aspects of the surface property are of 

interest during metrology; form and texture. Although these are both essentially 

measurement of surface deviation from a reference, they provide information in 
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different spatial frequency ranges, require different measurement techniques and 

provide information about different aspects of optical performance [44]. Mid-

spatial frequencies (0.01 / mm – 1 / mm) fall in the overlap region between form 

and texture.  

One of the earliest optical methods of testing the shape of surfaces during process 

was the use of optical test plates. This involves placing the SUT in contact with a 

test plate known to be of better quality than the SUT target. A small air gap will 

remain between the two surfaces and if nominally monochromatic light, such as a 

Sodium or mercury lamp [45], is used to illuminate the two surfaces, Newton 

fringes become visible [46]. The presence of fringes depends upon the illumination 

source exhibiting sufficient coherence length to produce interference. Pressure 

exerted on the top surface will adjust the relative tilt of the surfaces and thus the 

fringe pattern. Each fringe represents half a wavelength of height variation and 

interpretation of the fringe pattern allows the skilled craftsperson to understand 

how the SUT deviates from the desired shape. Figure 1.9 shows a Sodium lamp test 

plate set up with a test flat placed on a wedged surface, with the slope running 

laterally across the image.  
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Figure 1.9: Optical plate testing using a sodium lamp 

Though optical plate testing allows the metrologist to observe the surface error 

with reference to the test plate, the result can only be considered relative, as any 

error in the test plate cannot easily be separated from that of the reference without 

computerisation of the test. Test plate error must therefore be negligible compared 

with that of the SUT to enable convergence. Furthermore, this test is subjective, 

unless it is captured into a computer for analysis. This means there is little way of 

referencing the measurement back to the surface, nor of observing small features, 

too fine for the naked eye.  

State-of-the-art digital data-acquisition interferometers, do not require contact 

between the reference surface and the SUT, and allow the capture of 

interferograms, typically using an area CCD, for computer analysis [47]. Although 

the recording of fringes provides great flexibility, such as allowing the quantification 
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of surface deviations and the opportunity of using CNC assisted polishing, these 

systems are sensitive to vibration [48] and air turbulence [49]. In the next section, 

current form measurement techniques are reviewed and their advantages and 

limitations discussed. 

1.3.1 Form Characterisation 

Form interferometry generally observes the variation of low slope, slow spatial 

frequency errors across a surface and provides information about the SUT 

departure from a reference radius of curvature. This is often applied as a full 

aperture technique, meaning that the whole surface is measured in a single field of 

view. Measured spatial frequency range is limited both by the instrument optical 

transfer function (OTF) and by the Nyquist limit of the CCD used to image the 

resulting interference pattern [50]. Both of these limitations vary depending upon 

the reference surface and SUT combination used. The Nyquist limit, and tolerable 

retrace error determine the maximum amount of asphericity which can be tested 

non-null with a spherical wavefront before a computer generated hologram (CGH) 

[51] or similar device must be employed. Retrace error results from mismatch 

between the test wavefront and SUT, preventing the retroreflection of light to the 

interferometer. This can cause poor image contrast and degrade measurement 

accuracy as the test and reference beams are no longer truly common path [52].  

Figure 1.10 shows a schematic Fizeau interferometer configuration for testing a 

concave spherical optic. The Fizeau system is a widely used configuration because 

the reference and test beams are common path, meaning they encounter the same 
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surfaces and thus aberrations. This provides some cancelling of systematic errors, 

not possible with instruments such as the Twyman-Green [53].  

 

Figure 1.10: Fizeau interferometer schematic 

The space between the transmission sphere and the SUT is referred to as the test 

cavity. The cavity length, Dc, is the sum of the radius of curvature of SUT and the 

reference optic and is given by (1.1) for spherical tests as shown in Figure 1.10.  

 𝐷𝑐 = 𝑅𝑆𝑈𝑇 + 𝑅𝑟𝑒𝑓 (1.1) 
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Where RSUT is the SUT ROC and Rref is the effective ROC of the transmission sphere. Rref is 

given by (1.2).  

 𝑅𝑟𝑒𝑓 = 𝐹𝐷𝑇𝑆 (1.2) 

 

Where DTS is the diameter of the transmission sphere and F is the F#. The 

transmission sphere is selected such that the test wavefront and SUT radii match at 

the surface, allowing the interferometer beam to strike the SUT normal and achieve 

retro-reflection with minimum retrace error when optimally aligned. 

In practice plano measurement test cavity lengths are minimised to avoid, 

atmospheric turbulence in the test path and diffraction effects. Reduction of the 

spherical test cavity length to minimise environmental effects requires the addition 

of further optical elements. For the ESO E-ELT segment test system, further power 

has been introduced to the test path using a 1.5 m diameter concave spherical 

mirror, reducing the cavity size from 84 m to 10 m for both signal-to-noise and 

space reasons. However, additional components may introduce further sources of 

error into the test. Optimisation of the design allows much of the additional error 

to be calibrated out, however, some trade-off is made between environmental and 

system errors.  

Recently, stitching interferometry has become commercially available. This 

technique parallels the move from full-aperture into sub-aperture processing, in 

that the SUT does not have to be examined as a single body. Instead of imaging the 

entire clear aperture of the SUT, the surface is split into a number of overlapping 

regions which are measured individually. Stitching interferometry allows the 

metrologist to select the optical testing configuration to minimise cavity length and 
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maximise spatial resolution. The resultant measurement data is then recombined, 

or stitched, using a computer algorithm, resulting in equivalent full-aperture data. 

The ability to increase spatial sampling frequency also allows increased system 

tolerance to tilt, increasing the scope to carry out non-null testing of aspheres [54]. 

In order to carry out stitching interferometry, good positional registration (ideally 

sub-pixel) of sub-apertures is required, so that the data may be accurately stitched 

[55]. Commercial units such as the QED SSI and AS, which can stitch highly aspheric 

surfaces using variable null optics, are available [56]. There are further examples of 

systems developed in academia [57] [58]. Zeeko have also applied a stitching 

algorithm developed in-house by C.W. King [59] to the development of the 

Metrology Station, presented in this thesis [60]. 

Currently, most metrology is carried out by first removing the SUT from the 

polishing machine and transporting it to a metrology laboratory. As the metrology 

environment is generally temperature controlled, a “soaking” period is required to 

allow the SUT to stabilise in this atmosphere. As the thermal conductivity of glass is 

relatively low, there can be a large thermal gradient across the material during 

soaking and internal stresses can cause the glass to deform [61]. Although most 

precision optical mirrors are manufactured using materials exhibiting a low 

coefficient of thermal expansion, measurement using averaged acquisitions can 

have a lower accuracy and repeatability during the acclimatisation period, than 

when fully acclimatised.  

The SUT is supported such that no stresses are induced and aligned with the 

interferometer for measurement. Alignment is generally carried out manually, 
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either by physically adjusting screws or commanding an actuated system to tilt 

either the SUT or interferometer itself. In order to minimise error resulting from 

effects such as air turbulence, electrical noise and vibration during measurement, a 

number of acquisitions are typically averaged. The level of averaging is chosen such 

that repeatability error is negligible compared with the measured SUT error. It is 

also possible to remove some systematic error associated with the interferometer 

by subtracting a calibration from the measurement dataset. Though residual tilt 

may be removed from the measurement using fitting algorithms, best results are 

obtained through optimal alignment, as system retrace error is minimised. 

Discretion must be used when removing terms from measurement data as the 

metrologist must ensure any component removed is the result test error and not 

present on the SUT. Removal of such aberrations from data can limit the 

convergence of subsequent corrective polishing and so limit convergence. Although 

applications may be written to obtain data, it is considerations such as those 

mentioned which currently prevent the automatic analysis of measurement data 

beyond well-defined situations. 

Form interferometry data is used as feedback for the corrective polishing process, 

when using CNC sub-aperture polishing. Measurement data is used to vary dwell 

time such that areas on the surface which are high relative to the desired ROC are 

preferentially polished to remove more material. Over a series of corrections, 

assuming proper polishing parameter selection, the surface is observed to converge 

to the desired form. However, even an optic of correct form may exhibit poor 

optical performance due to excessive scattering of light. Scattering is caused by 
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poor surface texture, which must also be controlled. The latter stages of polishing 

typically use a low removal tool to optimise surface texture. Measurement of 

texture is not used for corrective polishing, but to judge when sufficient smoothing 

has been applied. The following section outlines the techniques used for texture 

measurement and their limitations.  

1.3.2 Texture Characterisation 

Texture or micro-roughness characterisation allows analysis of SUT errors at spatial 

frequencies beyond the range of the form interferometer (> 1/mm) which influence 

surface scattering properties [62]. Systems such as grazing incidence x-ray optics 

are particularly sensitive to texture [63] [64], and various measurement techniques 

are employed to enable proper quantification, such as atomic force microscopy 

(AFM), profilometry, and interferometry [65]. 

It is generally the case that surface texture requirements form part of the optic 

specification and so the manufacturer must be able to adequately characterise the 

SUT. For example the prototype E-ELT specification [10] stipulates average texture 

must be < 2 nm arithmetic average (Ra). As with form interferometry, the SUT is 

commonly removed from the processing area and placed in the metrology lab. 

Most laboratory based instruments have the configuration of a bench top 

microscope, requiring that the SUT be placed underneath the objective for 

measurement [66], such as the ADE Phaseshift white light interferometer used at 

OpTIC Glyndwr, shown in Figure 1.11. This bench top configuration becomes 

impractical for surfaces greater than ~400 mm in diameter as the part can no longer 

be accommodated on the sample stage. In contrast with form interferometry, 
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texture measurement is generally carried out by taking a small, discrete 

measurements of the surface. Sufficient samples must be taken to ensure results 

are statistically representative but sample numbers are in practice limited. Though 

full-aperture techniques such as the Lyot test have been proven, they are generally 

not employed due to the amount of light required for sufficient image contrast, and 

can exhibit orientation dependent detection of errors [67].  

 

Figure 1.11: ADE Phaseshift MicroXAM white light interferometry 

In-situ texture measurement allows the SUT to remain in the manufacturing 

environment, avoiding the logistical problems associated with large optics. These 

systems are deployed onto the SUT, where they sit in contact with the surface [68] 

[69].  Depending upon the length of acquisition, some level of temperature control 
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may be required to prevent thermal drift during measurement acquisition. Though 

the application of such instruments negates the requirement to move the optic, 

accessing the central portion of large components is difficult as the operator has to 

lean over the surface to place the instrument.  

There are some reports of manufacturers employing surface replication for texture 

measurement [70]. This uses a material which is pressed into the SUT, and assumes 

the inverse surface texture. The material is then set or cures into a rigid state, 

retaining the negative surface impression. This replication is removed and tested as 

normal. Although this technique is labour intensive, it does alleviate many of the 

logistic issues of performing texture measurement on large surfaces. However, the 

available literature relates to the use of surface replication for SUTs with a texture 

of around 100 nm to > 1 µm Ra. There is little material which discusses the accuracy 

of such techniques for reproduction of texture at the nanometre level. Some 

experimental data of a replicated smooth sample is presented in Chapter 5 for 

comparison with the systems discussed in this thesis.  

1.4 Limitations of Existing Measurement Techniques 

The existing measurement techniques discussed are acceptable in small volume 

production of prototypes and where the SUT is easily handled. However, most 

commonly involve the removal of the SUT from the manufacturing system and 

transport to the measurement environment. Together with temperature soaking, 

this can account for a large portion of the overall manufacturing time, depending 

on part mass and dimensions, and introduce risk of damage due to handling. It has 

been estimated by Walker and Bingham that around 6% of large optics produced 
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between 1960 and 1995 were damaged [71] [72]. For example, during manufacture 

of the Birr Telescope primary at UCL, 91% of manufacturing time was spent either 

measuring or in set up activities associated with switching between polishing and 

measurement [73].  

Furthermore, both state-of-the-art form and texture measurement lack the 

flexibility to accommodate the range of optics required by diverse projects such as 

the ESO E-ELT, laser fusion, for x-ray mandrels, steep aspherical components of next 

generation photography optics as well as medical implants and moulds for 

consumer electronics casings. Although these examples require an array of 

different polishing techniques, all can be accommodated by a member the IRP 

machine family. There is no such case for measurement.   

Lab based metrology requires transport of large optics which is potentially risky. 

Modern on-machine interferometry generally relies on the use of a testing tower, 

which limits the range of SUTs which can be accommodated with a given range of Z-

axis motion and transmission spheres available. It is often the case that the testing 

tower specification is produced around a single large project. This approach can 

lead to the test system requiring a refit before another project may be 

accommodated and so a lack of flexibility. Other available form measurement 

techniques such as profilometry and CMMs pose many of the same limitations and 

provide a sparser dataset, unsuitable for certification against a specification for high 

precision optics.  

The greatest limitation of current texture measurement solutions is the inability to 

accommodate large and/or heavy components. Again the SUT must be relocated 
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from the manufacturing environment. The limited Field of View (FOV) of white light 

interferometers also causes practical difficulty measuring of the same region 

following subsequent treatments, for example edge effects or scratches. Existing 

on-machine texture measurement requires that a stand be placed in contact with 

the SUT, which does little to mitigate the damage risks associated with transport to 

lab based devices. Surface replication techniques offer reduced accuracy on smooth 

surfaces, when compared with interferometric techniques and require manual work 

in close proximity to the SUT.  

In order to address the identified limitations associated with state-of-the-art 

metrology, particularly of large surfaces, this thesis presents the development of 

on-machine metrology systems combining modern, vibration insensitive 

interferometers with a new control system. It will be demonstrated that these 

systems can support a range of measurement devices and machine hardware 

configurations to enable automatic on-machine metrology, which offers enhanced 

versatility compared with state-of-the-art systems.  

1.5 Work Presented 

The contribution of the author presented in this thesis is a software application, 

referred to as the Metrology Control Suite. This application is made up of two sub-

modules; Metrology Designer and Metrology Controller. The development of this 

application is presented using two case studies, concerned with on-machine form 

and texture measurement.  

Chapter 2 presents discussion of the elements which make up the on-machine 

metrology systems presented and their suitability for this application. Suitable 
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devices are outlined and a feasibility study conducted to establish the viability of 

on-machine metrology. Following this discussion, the requirements for the 

Metrology Control Suite are outlined.  

The functionality of the Metrology Designer application is described in Chapter 3, 

with examples of how the developed software is used with both case study 

instruments. The measurement plans developed with Metrology Designer are then 

executed with Metrology Controller, which is discussed in Chapter 4.  

Metrology Controller allows the metrology instrument to be automatically 

positioned at each measurement location and aligned by interfacing with the CNC 

controller. This is a novel step in terms of on-machine texture metrology. Chapter 4 

discusses the two modes of on-machine metrology operation: open-loop and 

closed-loop. Open-loop being the initial positioning of the measurement device at a 

location specified in the measurement plan. Closed-loop operation allows the 

correction of residual misalignment between the device and surface under test by 

using feedback from the interferometer compute correction moves. 

Chapter 5 presents discussion of measurement results obtained using the systems 

developed, and makes assessment of the planning and control functionality of 

Metrology Controller. The work presented is then summarised in Chapter 6 and 

conclusions drawn about the impact of automatic on-machine metrology. Finally, 

an overview is presented of the work required in order to fully realise the potential 

of automatic on-machine metrology.  
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2 On-Machine Metrology  

Having observed the practical limitations of state-of-the-art metrology, it is clear 

that significant benefit would result from applying metrology in the manufacturing 

environment. Given that most corrective polishing at the OpTIC facility is carried 

out using the three Zeeko IRP machines, the greatest gain would result from 

integrating metrology with one of these platforms. The machine itself is then used 

as a positioning system, minimising additional hardware requirements and allowing 

automation of the measurement process. 

This chapter will outline the features of the IRP machine as well as the limitations 

and advantages of using a system specifically designed for polishing as part of a 

metrology system. The various options of integrating metrology onto the machine 

will be discussed, along with those selected for development. Finally, the 

requirements of the software application used to facilitate automatic system 

operation will be outlined.  

2.1 Zeeko IRP machine 

The IRP machine has been developed to allow deterministic polishing of ultra-

precision surfaces using an iterative process of metrology and corrective polishing. 

Incorporating metrology more directly into this manufacturing process therefore 

seems a logical step, given the time lost and risk imposed during part transport, 

soaking and clocking prior to measurement, particularly for large parts. The existing 

IRP machines range in size from those capable of processing 50 mm parts up to the 

1.6 m system installed at the OpTIC facility. Owing to the size constraints of smaller 
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machines, the work presented here has been applied only to machines with 

capacities larger than 1 m. This allows early development work to proceed without 

considering the physical limitations of the polishing enclosure, which could pose a 

crash risk to the metrology device. Though the name, ‘Intelligent Robotic Polisher’ 

implies the machine has intelligence, it is a standard CNC machine and follows 

instructions provided by the operator, either manually or via a program. 

Figure 2.1 shows the UCL IRP1200 machine at OpTIC Glyndwr. This machine 

accommodates up to a 1.2 m component. In this case, the machine includes an 

opening roof system, allowing an interferometer positioned on the test tower 

above to view the part secured to the machine table. This is the first example of on-

machine interferometry developed by Zeeko, and requires the operator to climb 

the test tower and manually align the interferometer using screws on the 5-axis 

stage, visible at the top of the image. This system is currently configured to allow 

full-aperture measurement of 3 m ROC concave parts of approximately 300 mm 

diameter, which are used for E-ELT process development work. 
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Figure 2.1: IRP1200 machine with interferometer test tower at OpTIC, North Wales 

The IRP machine is typically made up of linear X, Y and Z-axes as well as a rotary C-

axis table. The C-axis is used to mount the optical component during polishing and 

is capable of continual rotation. The machine also has A and B-axes which 

effectively simulate an azimuth and elevation system respectively, as shown in 

Figure 2.2. However, the B-axis operates in a 45° plane to the Z-axis. This 

arrangement is designed to rotate the tool spindle (H-axis) about a point 10 mm 

from the front face of the spindle, known as the Virtual Pivot (VP). This allows a 

change in pointing vector of the polishing tool, while ensuring contact is maintained 

with the surface being processed. The A and B-axis arrangement allows the 

machine to access any surface-normal within a hemisphere and, combined with X, 

Y, and Z translation, is able to process at these vectors anywhere within the 
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machine limits. When carrying out on-machine metrology using the IRP machine, 

the system configuration falls broadly into two categories, outlined in Section 2.2 

and Section 2.3. The following sections outline the operation of the machine for 

polishing, as many of the set up tasks are analogous to those required for automatic 

on-machine metrology. 

 

Figure 2.2: A and B axis arrangement of the type-2 virtual pivot of the IRP1200 

2.1.1 Polishing Operation 

During automatic polishing operation, the IRP machine follows a set of instructions 

provided via a G-code program loaded into the control system. Programs are 

loaded via the operator console, shown in Figure 2.3, which also allows manual 

control and monitoring of machine position and status. The console machine 

communicates with the CNC controller via a High-Speed Serial Bus (HSSB) which 
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consists of an optical fibre connection. This CNC configuration is similar to that 

shown in Figure 1.4, but using a single dedicated controller. 

 

Figure 2.3: IRP1600 operator console PC 

Prior to execution of the polishing NC program, the operator must perform a series 

of set up tasks to ensure the process is accurately applied to the surface. These 

activities are summarised in the following sections.  

2.1.1.1 Supporting the Part 

When preparing for a polishing run, the part is mounted to the machine table via a 

suitable support system. The support system is designed to prevent the movement 

or deformation of the part under gravity or the loads of polishing. A significant 

deformation with respect to the Z-offset, would result in variation of polishing spot 
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size which would affect process convergence. For on-machine metrology, the part 

must be supported, while allowing it to be aligned with the measurement device. 

The support must remain dimensionally stable in the presence of expected 

environmental thermal drift, so as not to introduce distortion of the part through 

induced stress. Such distortions may invalidate the resulting data. The part support 

requirements for metrology are therefore more stringent, as the part must remain 

stable at the interferometric level for the duration of measurement. 

The complexity of a component support varies with the diameter and weight of the 

optic. A small part (<200 mm diameter), for example, may be waxed onto a metal 

plate, whereas the E-ELT prototype segments sit on a 3-point hard stand for 

polishing, minimising deformation under load, and are raised up on a 27-point 

hydrostatic support for metrology. Both of these supports are arranged into one 

structure, with the 27-point support emulating those of the E-ELT primary mirror. 

The configuration of the E-ELT segment support for metrology minimises the risk of 

error between test and operational optical performance when the telescope is 

pointing at zenith. Despite the variation in requirements between polishing and 

metrology, the E-ELT segment support is an example that both activities may be 

accommodated by a single support system, even for large components.  

2.1.1.2 Part Alignment 

Alignment should set the part co-ordinate frame to a known relationship with that 

of the machine. Part alignment is particularly important for corrective processes 

using a small polishing spot size, as the process footprint can miss the targeted 
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error, if not properly oriented and centred [74]. This is critical when polishing edges 

of components such as E-ELT segments. 

To ensure the specified spot size is used, the origin of the machine and part co-

ordinate frames must coincide. To simplify the setup of this arrangement, the IRP 

machine H-axis has a load cell incorporated, which allows the system to detect 

force as the bonnet contacts the surface. A G-code program instructs the machine 

to move the H-axis towards the surface, until just in contact. This program is 

executed when the bonnet is close but not in contact with the part and, with the 

surface found, the machine co-ordinate frame is offset to define the origin. Setting 

the co-ordinate frame origin is common to all CNC machines, as the system has no 

prior knowledge of where the workpiece is located in space. It will be shown in 

Chapter 4 that the same process is required for the correct operation of on-

machine metrology. 

2.1.1.3 Non-Linear Correction 

No matter how well designed the support system, and how well mounted the part, 

some residual slope due to mounting error of the part with respect to the machine 

coordinate frame, or wedge in the glass, will remain. Correction is possible by 

building tilt adjustment into the part support structure or by shimming the part. 

However, both methods can reduce the stability of the supporting system and, in 

the case of tilt adjustment, add significant weight and complexity.  

The approach typically employed by Zeeko is to measure the tilt (and other non-

linear terms) using a process called non-linear probing. In this process, the bonnet is 

used to probe the surface in a specified grid, while a record is made of co-ordinates 
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at which the surface is found. This file is then used to fit a tilt plane (or other terms) 

and correct the Z-coordinates of the polishing tool path for the measured error. 

This process can be repeated in between each run to ensure any shift of the part or 

support system during processing is accounted for. It will also be shown in Section 

4.3.2.2 that non-linear correction may be applied to improve on-machine metrology 

positional accuracy in a similar manner.  

2.1.1.4 Polishing 

With the pre-polish set up activities completed, a G-code program containing the 

corrected toolpath is loaded into the CNC controller and executed. Once polishing is 

underway and the process is stable, supervision is not required until the polishing 

cycle is complete.    

Polishing is the application for which IRP machine was designed, and there is a 

strong economic argument that the optical manufacturer should organise work-

flow to maximise the percentage of time spent polishing. All other activity such as 

aligning, metrology, mounting and un-mounting is an overhead and should be 

minimised. This work presented in this thesis takes a step in the direction of 

minimising these overheads, while maximising the accuracy of the polishing process 

though improved quality of metrology. 

2.1.2 Conclusion 

This section has outlined the configuration and operation of the Zeeko IRP machine, 

which will go on to form a core part of the on-machine metrology system presented 

in this thesis. Some of the routine activities required in order to prepare for 

polishing have also been briefly described. Even when using a small part on a simple 
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support system, the processes of mounting, aligning and carrying out non-linear 

correction can occupy 1-2 hours and is a potential source of error in the surface 

quality finally produced. These processes must be carried out each time a part is 

removed from the machine, such as for off-machine measurement. Though effort 

has been made to automate as many of these tasks as possible, they are still 

relatively labour intensive and become increasingly difficult as the part-size scales 

up and handling becomes difficult and risky.  

The logical approach is to move the part as little as possible. Instead of taking the 

part to the metrology laboratory, metrology should be carried out at the machine. 

However, in order to operate efficiently, the IRP machine should spend as much 

time as possible processing the surface rather than measuring. Therefore, any 

metrology carried out at the machine should be completed in less than the time 

otherwise lost in the usual cycle of part movement and repeating pre-polish 

procedures, and result in no greater surface measurement error. In order to 

minimise duration of metrology, and yet maintain quality, it is likely that some 

degree of automation will be required. 

As discussed, the IRP machine may be used to perform automatic on-machine 

metrology. However, one must first consider how to mount the metrology 

instrument. The next sections will review the options of supporting the metrology 

device and provide examples of instruments which may be used.  

2.2 H-axis Mounted Metrology 

As mentioned, polishing is carried out by fitting a tool to the precision Schunk chuck 

situated at the front of the H-axis spindle. In order to use the machine to position a 
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metrology device fitted to this chuck, the polishing tool must be removed. The 

device is then mounted so that, ideally, the optical axis is parallel to the machine H-

axis. Any misalignment between the H-axis and device optical axis would need to be 

removed by adding angular offset to the machine co-ordinate frame. It will also be 

seen in Section 2.2.3 that misalignment perpendicular to the B-axis arm can cause 

problems when attempting to align the measurement device.  

With the measurement device mounted to the spindle, the A and B-axes may be 

used for tilt alignment correction. However, as these axes are non-orthogonal, a 

compound move is required to effect correction. Furthermore, as the centre of 

rotation is about the machine VP, not necessarily the device focal point, a 

translation may also be required in order to maintain FOV at a constant position on 

the SUT, depending upon the measurement device optical configuration. 

2.2.1 On-Machine Stitching Interferometer 

Following the development of a commercial sub-aperture stitching software 

package, which allows multiple small-area measurements of a single surface to be 

joined in data to create a full-aperture map, Zeeko sought to develop a 

measurement device which could be installed on the IRP machine. The On-Machine 

Stitching Interferometer (OMSI) is designed to mount to the side of the machine VP, 

shown in Figure 2.4. The bonnet tool and slurry guard at the front of the H-axis 

remain in place for clarity. It is expected that, during measurement, these would be 

removed to minimise the risk of contamination of the interferometer by polishing 

slurry. 
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Figure 2.4: Zeeko OMSI CAD model fitted to a type-2 VP spindle (courtesy of Zeeko) 

The OMSI design incorporates a compact PC6000 interferometer, supplied by 4D 

Technology, along with an in-house reflex beam expander to allow a compact form-

factor. The system chassis is designed to maintain internal optical alignment under 

a frequently changing gravity vector during tilt alignment. A SIOS SP2000 distance 

measuring interferometer was included in the design to allow accurate 

measurement of variations in distance between the OMSI and the SUT. Due to the 

semi-rigid mechanics of the IRP machine, it is possible that A and B-axis sag could 

alter the cavity length sufficiently to affect the stitching result. Knowledge of these 

variations would be used to adjust the stitching parameters and ensure erroneous 

form did not propagate into the resultant synthetic dataset.  

However, during testing of an early prototype, the chassis of the OMSI proved 

insufficiently rigid to maintain internal alignment under a sufficient range of B-axis 
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motion for practical operation. Therefore, internal realignment was frequently 

required. Following a project review in April 2012, Zeeko decided that the concept 

of mounting the measurement module onto the machine VP was too ambitious and 

should be reconsidered. 

2.2.2 Surface Texture Analyser 

Another example of an H-axis mounted metrology device is the Surface Texture 

Analyser (STA), which was developed by Zeeko in partnership with 4D Technology. 

4D Technology supplies the device as the NanoCam, which sits on a tripod placed 

on the SUT, as shown in Figure 2.5 [75]. The STA features a Schunk chuck 

compatible spigot, replacing the original carry handle. The STA, therefore, does not 

require placement upon the SUT during testing, as with the NanoCam.  

 

Figure 2.5: 4D Technology NanoCam with tripod tilt alignment assembly (courtesy of 4D Technology) 

Figure 2.6 shows the STA in use on the IRP1600 machine during testing of the 

SPNO4 ESO E-ELT segment [76]. H-axis mounting of the STA is preferred to the 

tripod of the NanoCam as, the metrologist does not have to reach over the segment 
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to place the device, removing a potential risk of damage. Adjustments to the device 

are made prior to using the IRP machine axes to position the device over the SUT. 

 

Figure 2.6: STA mounted on the IRP1600 machine and while testing a prototype ESO E-ELT segment at OpTIC 
Glyndwr, North Wales 

Although mounting the metrology instrument as a replacement for the bonnet is 

convenient, devices in this configuration suffer a systematic limitation of the A and 

B-axis configuration. This is known as the [0,0,1] condition, referring to direction 

cosines, and is described in the following section.  

2.2.3 The [0,0,1] Condition 

The [0,0,1] condition is observed when the IRP machine VP attempts to align with a 

surface where the local surface normal vector is parallel, or near-parallel to, the Z-

axis. Polishing, and H-axis mounted on-machine metrology, are affected differently. 
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Although both conditions are referred to as the [0,0,1] condition, they are two 

distinct phenomena.  

2.2.3.1 The [0,0,1] Condition During Polishing 

As discussed, the IRP machine affects the media to be polished by rotating a tilted, 

or precessed, bonnet against the surface in the presence of slurry. The machine is 

instructed to move the bonnet along a prescribed toolpath, while varying the A and 

B-axes angles to maintain the precess angle relative to the local surface normal 

vector. However, in the example where the tool is passed over the centre of a 

spherical surface and must pass through the [0,0,1] surface normal vector, the A-

axis must rapidly rotate by 180° in order to maintain the relationship between the 

tool and part, while maintaining feedrate. In practice this cannot be achieved, and 

so a variation in removal rate is observed. This is analogous to the zenith blind spot 

for an alt-azimuth telescope.  

This issue may be overcome through adjustment of the code which produces the 

machine toolpath to avoid situations where very high angular velocity rotations are 

required. In this case the [0,0,1] condition is due to machine dynamic performance 

limitations, which can be allowed for. However, during metrology, a static condition 

occurs which has a greater impact upon metrology. 

2.2.3.2 The [0,0,1] Condition During Metrology 

The [0,0,1] condition also arises when testing a position with a local surface normal 

vector parallel to the machine Z-axis with an H-axis mounted device. To address 

such an orientation, the B-axis value is zero and variation of the A-axis serves only 

to rotate the instrument about the Z-axis. In this case a residual tilt error is 
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observed via interferometric fringes perpendicular to the B-axis, which remain 

constant for any A-axis orientation. Therefore, proper alignment of instrument and 

SUT cannot be achieved. This error is caused by a systematic error in the alignment 

of the B-axis relative to the A-axis, resulting in the B-axis not sitting exactly in the 

45° plane, as designed. This manifestation of the [0,0,1] condition has made 

measurement of plano surfaces on the IRP machine difficult. Therefore, other 

methods of mitigating the effects of the situation have been used such as tilting the 

SUT such that the B-axis is not equal to zero at any testing location. 

In order to analyse the effect of the [0,0,1] condition, an observation was made of 

the area of an E-ELT segment which would be affected. The STA was used to 

measure the ESO E-ELT master spherical segment (MSS), which is a hexagonally 

shaped 84 m ROC spherical part, with a 1.4 m cross-corner diameter. A series of 

points where measured in a line arranged from centre to corner, as shown in Figure 

2.7. The blue lines indicate the part boundary and the red points the STA testing 

locations.  



69 
 

 

Figure 2.7: Measurement plan used during characterisation of the [0,0,1] condition 

During testing it was found that locations greater than 600 mm from the centre 

could be measured without encountering the [0,0,1] condition. The SUT local 

normal vector at this test location corresponds to a limit of > ~0.5° from the axis 

about which the A-axis rotates, before becoming amenable to measurement. In the 

example of testing the E-ELT MSS, this would leave around 85% area of the SUT 

inaccessible, without modifying the system. Figure 2.8 shows an example testing 

plan which demonstrates the limitations of avoiding the region in which the [0,0,1] 

condition impacts performance. These plans were created with an early version of 

the Metrology Control Suite, presented in Chapter 3 and Chapter 4. 



70 
 

 

Figure 2.8: Resultant MSS testing plan designed to avoid region affected by the [0,0,1] condition 

An inability to characterise such a large area of the SUT is unacceptable. In order 

measure in the presence of the [0,0,1] condition, the metrologist must tolerate 

increased retrace error associated with having multiple fringes of tilt in the FOV. 

This systematic limitation exemplifies the restrictions which must be overcome in 

order to perform precision metrology on a machine primarily designed for 

manufacturing. A solution to the stated problem, allowing the STA device to test in 

the presence of the [0,0,1] condition, is discussed in Chapter 4. 

2.2.4 Conclusion 

This section has reviewed the potential solution of mounting the metrology device 

onto the IRP machine H-axis, either as a bonnet replacement or via a side-clamp 

arrangement. The potential problems caused by the machine [0,0,1] condition have 

been discussed, which affect instruments in either configuration.  
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During measurement, the device will also be repeatedly rotated and repositioned 

potentially to any vector within a hemisphere. The gravity vector of the device will 

therefore be repeatedly changed, which could cause internal optical alignment to 

become compromised, as with the OMSI. Devices operating in this arrangement 

may be subject to reduced service intervals or suffer internal failure. 

2.3 5-axis Stage and Testing Tower 

Many interferometric testing configurations designed to measure the SUT in a full-

aperture regime on long ROC parts require the interferometer to be positioned at a 

large distance from the part. This may prohibit mounting the device on the H-axis 

and so the instrument is commonly located on a testing tower, placed over the IRP 

machine.  

As the instrument is no longer mounted to the IRP machine, the A and B axis 

combination cannot be used to effect alignment correction, and so a 

supplementary tilt and translation system is used.  The 5-axis stage usually includes 

orthogonal X, Y and Z-axes for translation and A and B-axes for tilt correction [77]. 

The key kinematic difference between 5-axis stage measurement and IRP machine 

spindle mounting is that the A and B-axes of the 5-axis stage are orthogonal tilt 

axes. Therefore, when making an alignment correction, a single tilt move may be 

made, as the resultant translation is typically sub-pixel and so negligible. Figure 2.1 

shows an example of the arrangement described. Further examples of such 

measurement systems are discussed in the following sections. 
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2.3.1 OpTIC Glyndwr Testing Tower 

The ESO E-ELT project consortium has constructed a 10 m tall testing tower to allow 

full-aperture testing of E-ELT segments. As mentioned in Section 1.3.1, a Fizeau test 

requires that the cavity length be greater than the SUT ROC. In this case the 

interferometer would be at least 84 m from the SUT, resulting in an impractically 

long cavity. Therefore, the consortium opted to reduce the path length by placing a 

concave element at the top of the testing tower. The test tower is shown in Figure 

2.9, with the top sphere located out of the top of the image.  

 

Figure 2.9: Lower path of the OpTIC Glyndwr optical testing tower used for ESO E-ELT segment full-aperture 
measurement (Top sphere assembly not shown) 
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An IRP1600 machine located beneath the testing tower is used for polishing and 

positioning the SUT for measurement. Figure 2.10 shows the segment mounted on 

the 27-point support, with the support covered by black polythene to prevent slurry 

ingress during processing. The support contact points with the rear of the segment 

are visible as red circular patches. The support system and SUT weigh ~250 kg 

therefore moving these components repeatedly is undesirable. The part support 

system has three vertical tilt actuators, spaced at 120° intervals around the support 

periphery to allow adjustment of tilt alignment and piston. 

 

Figure 2.10: Prototype ESO E-ELT segment mounted on 27-point support 

Due to the complex optical chain of the testing system, as well as air currents in the 

large testing volume, achieving adequate signal-to-noise performance is difficult 

and measurement dominates the operational time. Automation of such a system 
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would reduce the duration of the measurements by being able to perform 

measurement continually, with automatic alignment.  

2.3.2 Zeeko Metrology Station 

The Metrology Station system was manufactured by Zeeko in 2012 as a platform for 

stitching interferometry and is also capable of some full-aperture measurement. 

Figure 2.11 shows the Metrology Station system installed at a customer laboratory. 

This system has the same base as an IRP600 machine, with an axis configuration 

which includes a tilting table system. The system uses a 4D Fizcam 3000 

interferometer, which is housed in the cabinet fitted to the test tower. The 

interferometer is installed in a 5-axis stage (X,Y,Z,A,B) to allow tilt correction. 

 

Figure 2.11: Zeeko Metrology Station installed at customer site 

To the right of the test tower, the electrical cabinet is visible behind the operator 

console and is separated from the system in order to minimise induced vibration. 
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The operator console allows the user to view measurement progress and control 

the system, in a similar manner to that of the IRP machine.  

Although the system hardware configuration is somewhat different, the Metrology 

Station provides the same data as the OMSI, and demonstrates the ability of the 

software presented in this thesis to automatically carry out sub-aperture 

measurement.  

2.3.3 Conclusion 

This section has reviewed the option of carrying out on-machine metrology by 

placing a tower structure over the polishing machine. Though the Metrology Station 

presented here is a specialised system and does not perform polishing, it does have 

many common characteristics with an IRP machine. In practice, such an 

arrangement could be executed using a testing tower over and IRP machine, as 

shown in Figure 2.1, which would represent little operational difference and 

provide an on-machine solution.  

The use of the testing tower presents the opportunity to rapidly switch between 

polishing and measurement. When compared with having to move the SUT to the 

metrology lab, up to a 1.5 days per cycle (estimated for the E-ELT) could be saved in 

pre-polish set up time. The test tower would also be quicker than mounting the 

metrology device to the H-axis as removal of the bonnet and slurry guard is not 

required. When used for sub-aperture interferometry, the test tower provides 

more flexibility in terms of range of ROC which can be measured compared with 

full-aperture metrology.  
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2.4 On-Machine Surface Texture Measurement 

In this section, the systems selected for development for automatic on-machine 

texture measurement will be outlined. The CNC machine and metrology instrument 

form a system and so neither can be considered in isolation. Deficiencies in 

performance of any part of the system are likely to impact data quality. Therefore 

the specifications of both the IRP machine and the STA interferometer are 

presented, and their suitability for on-machine metrology are assessed. The STA 

device was selected to provide an example of H-axis mounted metrology, and to 

support texture measurement for the ESO E-ELT project. 

2.4.1 IRP 1200 Machine Specification 

Table 2.1 reproduces the pertinent IRP1200 axis specifications [78]. The H-axes of 

the IRP machine available during development were configured in the CNC system 

as “spindles” rather than “axes”, and so may rotate freely when not powered. 

Therefore, in order to fix the relationship between the STA camera and the machine 

A-axis during measurement, adhesive tape was applied across the H-axis mounting 

during testing as a short term solution. This is visible in blue, above the STA in 

Figure 2.6. IRP machines currently in production offer an axis configuration for the 

H-axis, negating this requirement. 

The IRP machine base is formed from polymer granite, which sits upon rubber 

isolation legs, which provide a degree of passive damping to ambient vibration. 

However, the machine is internally semi-rigid and relies upon the compliance of the 

inflated bonnet tool to damp any residual axis vibration and prevent ripple in the 

process footprint. When the A and B-axis combination is not balanced, the machine 
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must apply holding torque to the drives in order to maintain axis position. The 

application of holding torque is dependent on feedback from the axis encoders. It is 

observed during testing that torque may be applied intermittently and acts to 

induce some vibration. The effects of such self-induced vibration are characterised 

in Section 2.4.3. 

Table 2.1: IRP1200 axis specifications 

Axis X Y Z A B C H 

Travel 
1300 
mm 

1300 
mm 

500 
mm 

±360 
deg 

±90 deg N/A N/A 

Step resolution 1 µm 1 µm 1 µm 
0.001 
deg 

0.001 
deg 

0.001 
deg 

N/A 

Accuracy 
< 20 
µm 

< 20 
µm 

< 15 
µm 

±1 
arcmin 

±1 
arcmin 

±2 
arcmin 

N/A 

Alignment X-Y X-Z Y-Z     

Circular 
interpolation 

< 0.05 
mm 

< 0.05 
mm 

< 0.05 
mm 

    

Squareness 
< 10 

arcsec 
< 10 

arcsec 
< 10 

arcsec 
    

 

2.4.2 Surface Texture Analyser Specification 

The relevant aspects of the STA specification are presented in Table 2.2. During 

testing and development of this system, only a 10x objective was available and so 

the specification related to this configuration is shown. The STA uses a 460 nm Light 

Emitting Diode (LED) light source. While this is practical for on-machine metrology, 

(sources such as Helium-Neon lasers tend to be larger) depth of focus is reduced 

due to the limited coherence length of LEDs. In practice, it is observed that moving 

± 1 um from best focus causes a loss of fringe contrast such that fringe acquisition is 

not possible. This results in fringes generally not being visible when arriving at a 

testing location. Some vertical scanning is therefore required to locate the surface. 
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Table 2.2: STA specification (10x objective) 

Item Specification 

Light source Pulsed LED, λ = 460 nm 

Camera 1.4 MPixels 12-bit 

Weight 4.6 kg 

RMS repeatability < 0.005 nm 

RMS Precision < 0.1 nm 

Spatial sampling (10x objective) 0.7 µm 

FOV (10x objective) 0.9 mm X 0.9 mm 
 

2.4.3 Suitability for On-Machine Metrology 

This section discusses the limitations of the separate system elements outlined in 

Section 2.4.1 and 2.4.2 and how they are likely to impact overall system performance. 

Understanding the performance of the STA and IRP machine together as a system is 

fundamental to establishing viability. 

2.4.3.1 Vibration Analysis 

As mentioned in the previous section, the IRP machine servo motors can act to 

induce vibration while attempting to maintain position. Although the acceleration 

parameters of the IRP control system may be tuned to minimise vibration during 

metrology, the machine is optimised for the primary task of polishing. The STA uses 

simultaneous phase shifting to minimise vibration sensitivity [79]. However, large 

oscillations at frequencies of around 1 kHz can reduce image contrast and increase 

fringe print through, where fringes are visible in analysed data [80]. To evaluate if 

such vibration is present, measurements were carried out using a SIOS SP2000 

distance measuring interferometer. This was secured to the IRP1200 machine H-

axis via a spigot and L-shaped bracket. The SIOS was aligned normal to a glass 

sample mounted on a tilt stage clamped to the IRP1200 machine C-axis table, as 

shown in Figure 2.12. The SIOS SP2000 can measure relative changes in distance 
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along the beam length with a resolution of 0.1 nm and a sampling frequency up to 1 

MHz.  

 

Figure 2.12: SIOS SP2000 distance measuring interferometer mounted to IRP1200 machine during vibration 
analysis 

Measurements were taken at four locations on the machine table, involving 

different combinations of axis positions, with some variation of A and B-axes in 

order to align the SP2000 with the reflector. Figure 2.13 shows the approximate 

test locations.  
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Figure 2.13: Approximate vibration analysis locations on the 1.3 m diameter machine table 

During initial testing, little lateral vibration was observed, therefore only oscillation 

normal to the machine C-axis was measured in detail. Observation of the vibration 

spectra at the locations indicated in Figure 2.13 revealed no component exceeded 

23 nm displacement or 300 Hz in frequency. A result representative of the test is 

shown in Figure 2.14. Although the measured vibration amplitude is significant in 

comparison to that of expected measured texture, the frequency of these 

vibrations are well below that reported to affect the STA. Provided exposure time is 

minimised, the resultant surface displacement occurring during exposure is 

negligible. This was confirmed by operating STA on the IRP1200 machine and 

measuring an ultra-smooth reference flat of <0.1 nm RMS texture. A measurement 

repeatability of < 1 Å was obtained when averaging 256 frames.  
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Figure 2.14: Sample IRP1200 vibration analysis FFT result 

2.4.3.2 Manufacturing Environment Repeatability  

In order to minimise the effects of residual mechanical or environmental instability 

on measurement data, it is normal practice to average several measurement 

acquisitions. Table 2.2, which reproduces data from the STA specification, indicates 

that the STA has repeatability of <0.005 nm (one standard deviation of RMS of 10 

datasets of 64 averaged frames) when tested in optimal conditions. However, 

application to the manufacturing environment is likely to degrade this performance 

through reduced environmental control and the presence of residual vibration, as 

established in Section 2.4.3.1.  

In order to observe how the on-machine application of STA affected measurement 

repeatability, static testing was carried out both in the metrology laboratory and on 

the IRP 1200 machine at OpTIC Glyndwr. Two measurements were carried out at 

each averaging level and subtracted to provide an indication of how measurement 

repeatability varies with number of frames averaged. The test result is shown in 

Figure 2.15. 
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Figure 2.15: Comparison of STA repeatability in laboratory and on-machine regimes 

It was observed that system repeatability was reduced by an average of 16.6% 

when operating the STA on machine. At low averaging levels (<4 frames), fringe 

print through dominates the resultant dataset, indicating that some residual 

vibration is present which is not found in the laboratory. For averaging levels up to 

256 frames, comparable repeatability to the laboratory is obtained by increasing 

the measurement averaging. However, at high averaging levels, e.g. 512 frames and 

greater, repeatability is reduced and obtaining measurement data without 

significant numbers of invalid pixels becomes difficult. This is due to thermal drift 

during the acquisition period. As the STA acquires around 1 – 1.2 frames per 

second, measurements using averaging of 512 frames take more than 10 minutes 

to complete and so thermal drift can act to reduce image contrast. However, when 

averaging 512 frames, the difference in repeatability between lab and machine is 

~0.03 nm RMS which is at the atomic scale and generally negligible. Differences in 
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repeatability could be reduced further through improved thermal control of the 

manufacturing environment, should measurement of super-smooth surfaces be 

required. This demonstrates that on-machine operation of the device imposes no 

constraints on measurement performance for the majority of surfaces. 

2.4.4 On-Machine Operation 

During these tests, the IRP machine was operated in manual mode (using the 

machine console to move individual axes) to position the STA. Achieving optimal 

instrument alignment with the SUT requires compound moves, using at least 3-axes 

for a basic alignment correction (A, B and Z) and 5-axes in order to maintain the 

point of interest in the FOV (also X and Y). This difficulty stems from the mentioned 

limited coherence length of the STA light source, and the IRP machine kinematics.  

When carrying out on-machine metrology, it is more convenient for the operator if 

the H-axis could rotate about the centre of the FOV of the measurement device, 

especially with the STA. However, this cannot be achieved manually without 

modification of either the IRP machine or the STA. It will be demonstrated in 

Chapter 4 that the device can maintain a position of interest in the FOV with the 

use of the control system developed by the author. 

2.4.4.1 Fringe Location Using the STA 

The short coherence length source of the STA limits the range within which fringes 

can be observed. This can make obtaining fringes difficult when arriving at a 

measurement location. The STA has an alignment mode in which the image 

returned from both the reference mirror and the SUT are displayed to the user. A 
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set of example images taken from the 4Sight software application, showing the 

alignment mode return images, are given in Figure 2.16.  

 

Figure 2.16: STA course alignment and focus system (a) correctly aligned and focused, (b) correctly focused 
and misaligned, (c) poor focus and misaligned 

Figure 2.16(a) shows the return image properly aligned and focused. The SUT return 

image is near symmetrical and square in shape. Figure 2.16(b) has the right hand 

corners have rounded as the image is truncated by an internal optical stop of the 

device, owing to the STA being tilted relative to the SUT. Figure 2.16(c) shows the 

SUT return image when the STA is not positioned the optimum distance from the 

SUT. The return is diminished in size and all corners are truncated.  

It is expected that some combination of both tilt and focus error will be 

encountered when arriving at a test location. Alignment mode is designed such that 

when the two images are correctly aligned and focused, fringes should be visible. 

However, in practice it is found with the return image optimised, as in Figure 

2.16(a), fringes are not visible in measurement mode. The device generally requires 

up to 50 µm of focus correction before fringes are located. Therefore, alignment 

mode is found to be of use only in providing a rough guide for device alignment and 
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focus under manual control. Coarse alignment mode is deemed unsuitable for 

automatic operation.  

2.4.5 Conclusion 

The results obtained from the vibration analysis of the IRP1200 indicate no 

significant vibration exists which is likely to cause displacement greater than one 

pixel in size laterally, nor significantly impact focusing performance. However, the 

repeatability test showed that, compared with the metrology laboratory 

measurements, on-machine repeatability performance was reduced. In order to 

minimise such a difference for a given acquisition averaging level, it is desirable to 

reduce camera exposure times. In order to allow any reduction in exposure time, 

fringe contrast should be maximised through optimal alignment. Although this will 

be influenced by SUT finish quality, reducing exposure time is the easiest way of 

minimising the deficit between on-machine and lab repeatability performance.  

The accuracy of the machine linear axes is specified as < ±20 µm error over the 

length of the axes. This corresponds to around 2.2 % of the STA FOV when 

measuring with the 10x objective. Therefore, should the operator wish to measure 

the same surface feature repeatedly following successive processing, the system 

should be able to return to the same position reliably and retain the point of 

interest in the FOV. This has been trialled using an early version of the control 

software presented in this thesis. It was found that the system could return to the 

same feature with a combined X and Y repeatability of 7.6 µm. This initial work was 

published by the author [81]. 
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Following the assessments made of combined STA and IRP1200 machine 

performance, both from specification and test, it was found that on-machine 

metrology with the system is practical. The potential performance limiting factors 

have been identified and solutions will be demonstrated in Chapter 4. 

2.5 Sub-Aperture Measurement 

Following the problem experienced with the OMSI when installed the H-axis 

assembly, the alternative concept of the test tower configuration remains as the 

preferred on-machine solution for measurement of form. Development of a sub-

aperture stitching system will focus upon the Metrology Station system presented 

in Section 2.3.2. Although this system has no manufacturing capability, it will be 

demonstrated in Chapter 6 that the techniques developed for this system may be 

utilised for an exemplar on-machine metrology system. This section will outline the 

specification of the hardware forming the Metrology Station and discusses any 

limiting factors.  

2.5.1 Metrology Station Base Unit 

As mentioned, the Metrology Station base is derived from that of an IRP 600 

machine, with the exception that the C-axis has been replaced with a tilting table 

arrangement. Figure 2.17 shows the tilt table assembly, which is able to translate 

along the W-axis. The U-axis is the equivalent of the IRP C-axis. The V-axis axis 

serves to rotate the table assembly about the X-axis, providing the tilt required to 

perform sub-aperture measurement of spherical parts. The table assembly sits 

below a cabinet which houses the interferometer and 5-axis stage.  
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Figure 2.17: Metrology Station tilt table assembly 

In order to affect tilt correction for both spherical and plano SUT types, the system 

must be able to tilt and translate the interferometer relative to the SUT. The 

required tilt axes are assembled into a 5-axis stage (X,Y,Z,A, B-axes), mounted inside 

the interferometer housing shown in Figure 2.11. The housing is mounted to the Z-

axis which allows the whole assembly to move vertically to control the 

interferometer cavity length. Figure 2.18 shows a CAD rendering of the Metrology 

Station 5-axis stage assembly. In this image, the Y-axis is labelled and the X-axes can 

be seen running perpendicular. The A-axis is seen above the Y-axis label and the B-

axis is hidden behind the interferometer mounting. The A and B-axes are configured 

as linear axes which drive a wedge under a radial bearing. The tilt stage is hinged at 

the opposing edge, and pivots as the corresponding wedge is driven.  
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Figure 2.18: Metrology Station 5-axis stage axes configuration (courtesy of Zeeko) 

A protective cabinet is fitted around the interferometer mounting assembly with an 

access door to a small screen secured to the front of the interferometer mounting. 

This arrangement is shown in Figure 2.19. 
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Figure 2.19: Fizcam 3000 access door on the Metrology Station 

The alignment screen to the bottom-right of Figure 2.19 allows the operator to 

observe the reference return spot while aligning the reference surface. The white 

case in the centre is the Fizcam 3000 interferometer [82], which is directed 

downward through the bottom of the cabinet. The interferometer is fitted with a 

4”-to-6” beam expander, visible through the 5-axis stage. The Fizcam 3000 Fizeau 

interferometer was selected, in contrast with the Twyman-Green PC6000 used in 

the OMSI, because the common path reference provides some cancellation of 

systematic errors. This reduces device sensitivity to small internal misalignments 

resulting from tilt movements made for plano SUT alignment. 
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Table 2.3 shows the specifications of the Metrology Station axes. The Metrology 

Station is fitted with the same hardware used on IRP machines and so is of 

comparable performance.  

Table 2.3: Metrology Station base unit axis specification 

Axis X Y Z A B U V W 

Travel 
185 
mm 

85 
mm 

1180 
mm 

±2 deg ±2 deg N/A 
±45 
deg 

475 
mm 

Step 
resolution 

1 µm 1 µm 1 µm 
0.001 
deg 

0.001 
deg 

0.001 
deg 

0.001 
deg 

1 
µm 

Accuracy 
< 20 
µm 

< 20 
µm 

< 15 
µm 

±1 
arcmin 

±1 
arcmin 

±2 
arcmin 

N/A 
 

Alignment X-Y X-Z Y-Z      

Circular 
interpolation 

< 0.05 
mm 

< 0.05 
mm 

< 0.05 
mm 

    
 

Squareness 
< 10 

arcsec 
< 10 

arcsec 
< 10 

arcsec 
    

 

 

During measurement, the system hardware is operated automatically by the 

Metrology Control Suite application, developed by the author and described in 

Chapter 3 and Chapter 4. During operation, the user interacts with the system 

through the console PC (Figure 2.20), primarily to monitor system activity.  
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Figure 2.20: Metrology Station control console 

Figure 2.20 shows the console PC with the left monitor containing the 4Sight 

window, displaying the interferometer image with a visible sub-aperture. The 

smaller window to the left shows the alignment screen output allowing the user to 

view the alignment camera return during measurement setup. The right-hand 

monitor shows Metrology Control Suite, presented in this thesis.  

2.5.2 Fizcam 3000 

The Metrology Station is fitted with a Fizcam 3000 interferometer manufactured by 

4D Technology, Arizona. As with the STA, the Fizcam uses a CCD phase mask to 

allow simultaneous phase imaging to reduce sensitivity to vibration [83]. The 

Fizcam uses standard Fizeau transmission optics which are common to many other 

instruments such as Zygo and Wyco. The Fizcam also makes use of an integrated 

HeNe light source which provides a coherence length greater than that of the STA, 

making locating fringes easier as interference occurs over a greater displacement 
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range. Table 2.4 presents the specification of the Fizcam 3000 system. Items such as 

spatial sampling and FOV are omitted as they are influenced by the combination of 

transmission optic and SUT.  

Table 2.4: Fizcam 3000 specification 

Item Specification 

Light source Helium-Neon, λ = 663 nm 

Camera 1.4 MPixels 12-bit 

Weight ~25kg 

RMS repeatability < 0.7 nm 

RMS Precision < λ/20 

 

2.5.3 Suitability for Automated Metrology 

Following an overview of the Metrology Station system specification, this section 

presents discussion of the pertinent aspects of the system for automated 

metrology. The Metrology Station has been developed to acquire form data for a 

wide range of surfaces, some of which (such as 0.5 m class optics) cannot be 

accommodated on state-of-the-art systems, such as the QED’s SSI [84].  

2.5.3.1 Metrology Station Tilt Table Assembly 

The rotary table installed on the Metrology Station presents a number of challenges 

during development. This system is designed to accommodate a half-metre scale 

part weighing up to 40 kg with slopes of up to 45° in both concave and convex 

forms.  

Figure 2.21 shows a side view of the rotary tilt table from the side. Due to the 

requirements to tilt to 45° and accommodate large parts, the pivot point of the 

table has been sited low on the assembly. In many practical situations when a part 

is affixed, the rotary table can become top-heavy, and so inherently unstable [85]. 
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In order to retain the SUT in the correct position during testing, the harmonic drive 

of the T-axis (table tilt) must therefore apply holding torque which, depending upon 

system tuning parameters selected, can induce oscillation of the table. Proper 

tuning of this assembly is difficult owning to the large range of part weights and 

sizes which the system may accommodate. During development, Zeeko engineers 

opted to tune the systems parameters such that the rotary table motion was over-

damped to ensure oscillation could not occur.  

 

Figure 2.21: Close-up view of the Metrology Station rotary tilt table 

While over-damped tuning offers stable and benign motion, it causes the system to 

respond more slowly to commands, and accelerations are reduced. In contrast, one 

of the great opportunities which system automation provides is that of increasing 

productivity. In the high-volume manufacturing facility, such sluggish motion of a 

single assembly can reduce efficiency, as the entire system is limited in speed by 



94 
 

the slowest component. This is an example of a trade-off between versatility and 

operational efficiency.  

2.5.3.2 Metrology Loop 

Optical metrology using an interferometer relies upon the comparison between the 

cavity length of the SUT against that of the reference. In order for this comparison 

to be valid, both the reference and the SUT should be secured so no significant 

movement occurs during measurement acquisition. When multiple frames are 

averaged to improve SNR, the measurement setup must be stable for the duration 

of acquisition. As demonstrated with the STA in section 2.4.3.2, even if the system 

exhibits stability for short measurements, external factors such as thermal drift can 

become significant over longer periods, on the order of 10 minutes. One of the 

factors which influences system sensitivity to such environmental factors is the 

metrology loop, as defined below.  

If one were to trace the shortest mechanical path from the SUT around the 

metrology system to the interferometer, this would be the “metrology loop” of the 

machine. A change in physical length of any of the components forming the 

metrology loop will result in a reduction in the system measurement performance. 

Figure 2.22 provides a visualisation of the metrology loop of the Metrology Station 

system. 
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Figure 2.22: Example of the metrology loop of the Zeeko Metrology Station system 

In the case of the STA and IRP machine combination, the metrology loop is simple, 

as the bridge of the machine is supported from the same rigid base as the C-axis. 

Any thermal drift experienced by the base is passed to the bridge and the C-axis, 

and so the two are well coupled. By contrast, the loop of the Metrology Station 

passes through the floor of the laboratory, increasing the length and complexity 

with comparison to the IRP machine and STA.  

Existing systems use techniques to mitigate the impact of the metrology loop, such 

as hanging the SUT support and metrology device from the tower as a single 

element, similar to the principle of the NANOMEFOS system [86]. Careful selection 

of construction materials may be employed to ensure any thermal expansion is 
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passively compensated, minimising disruption to alignment and cavity length during 

acquisition. However, the Zeeko machine range has been designed principally for 

manufacturing and, for this, dynamic performance is of main concern. The 

Metrology Station is derived from such systems, and so exhibits many of the same 

characteristics.  

It will be shown in this thesis that many of the issues associated with the complex 

metrology loop are reduced though proper environmental control. However the 

ultimate performance of any metrology system is determined at the design phase. 

In order to move metrology into the manufacturing environment, some 

compromise of performance may be inevitable. 

2.5.4 Manual System Operation 

The manual operation of the Metrology Station is similar to the IRP machine in the 

respect that a tilt correction requires multiple axes to be manipulated in order to 

hold position over the SUT test location. However, because the effective spatial 

sampling area is typically much larger than the STA, the lateral movement induced 

by a single axis to effect tilt correction is typically sub-pixel, and thus negligible. 

Therefore, tilt correction for plano testing requires only the use of the A and/or B-

axes, and the use of X and/or Y axes for spherical configurations, as translation is 

equivalent to tilt at a small scale. Furthermore, because of the longer coherence 

length light source, the Fizcam 3000 fringe contrast is negligibly affected by, single-

axis tilt correction moves and so subsequent Z-axis focus correction is not required.  

Single axis correction moves allow simple manual operation and setup of the 

system. However, if the V-axis must be adjusted when moving between sub-
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aperture locations, interferometric fringes are lost. There are also many 

configurations which can cause the table to crash into the Z-axis stage or bottom of 

the interferometer cabinet. The operator must therefore exercise caution when 

carrying out manual V-axis moves. Automation of the system can avoid such risks, 

because the kinematics equations used ensure that the table maintains clearance 

from other hardware.  

2.5.4.1 Fringe Location Using the Fizcam 3000 

The Fizcam 3000 includes an alignment camera, similar to that on the STA. 

However, owing to the larger coherence length of the Helium-Neon source, the 

system exhibits a larger range in both tilt and piston. This range is dependent upon 

the SUT ROC and reference optic F# combination for spherical tests. For the plano, 

tilt sensitivity is fixed and insensitive to Z-axis displacement.  

The Fizcam alignment mode displays the return spots from the Fizcam reference 

optic and SUT. When the operator aligns the SUT return with that of the reference, 

fringes are visible on the measurement screen. Unlike the STA system, fringes are 

easily found when the two spots are properly aligned and focused and the 

alignment camera and measurement camera outputs may be viewed 

simultaneously, as shown in Figure 2.23. 
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Figure 2.23: Metrology Station Fizcam 3000 alignment screen (l) and 4Sight measurement screen (r) 

The alignment camera feed is displayed on the console PC using an application 

developed by Dr Christopher King (Zeeko). This application also captures still images 

for use in automatic alignment, as discussed in Chapter 4. 

2.5.5 Conclusion 

This section has outlined the Metrology Station specification and some of the 

factors limiting system performance. Manual control operation of the Metrology 

Station is easier compared with that of the STA due to the relative insensitivity to 

translation when performing alignment. While this may suggest manual operation 

the system to obtain sub-aperture data is viable, it does not take into account that 

some sub-aperture configurations, demonstrated later, contain large numbers of 

measurement locations and so take many hours to measure. The benefits of system 

automation both in terms of ease of use and operational efficiency must therefore 

be considered. Also, when measuring short ROC convex components, separation of 

the rotary table from the Z-axis and interferometer cabinet may be difficult to 

judge, posing risk of a hardware crash. The Metrology Station is well suited to 
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development into a fully automated measurement system, as will be discussed in 

the following chapters. 

This chapter has discussed and compared two devices which are viable for 

application to automated on-machine metrology, as well as the OMSI. The 

remainder of this thesis will detail how these systems have been automated 

through the development of a flexible software application which allows the 

planning and execution of automated metrology. This application is sufficiently 

generalised to support other metrology systems, as will be discussed in Chapter 6. 

In order to develop such software, an understanding of what tasks are required to 

perform automated metrology must be developed. The following section provides a 

software specification for the application discussed in Chapter 3 and Chapter 4. 

2.6 Software Requirements for On-Machine Metrology 

As mentioned, although the use of on-machine metrology has parallels with 

processes of CNC polishing, the design and execution of a measurement plan has a 

set of unique requirements, not addressed by any existing application. These 

requirements are stated in Table 2.5. 

In order to provide a clear description of software development, the application 

presented in the following chapters is divided into two parts, each addressing one 

of the key tasks required; planning and execution of metrology.  
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Table 2.5: Metrology Control Suite software requirements 

Metrology Designer 

1.  Allow specification of the surface to be tested 

2.  Allow specification of device and optical setup to be used for 

testing 

3.  Allow simple design of metrology plan which will provide useful 

data 

4.  Provide customisation of plan for more demanding measurements 

5.  Prevent generation of a metrology plan which will cause damage 

to the machine, SUT, or present danger to personnel 

6.  Allow the plan to be saved for future use or modification 

Metrology Controller 

1.  Allow the measurement plan to be loaded and reviewed 

2.  Interface with machine controller(s) 

3.  Query system axis positions 

4.  Dynamically generate g-code and upload to the controller 

5.  Execute and delete g-code files from control system 

6.  Display measurement progress and system status clearly to the 

user 

7.  Prevent the system making movements which could damage the 

machine, SUT or pose a danger to the operator 

8.  Control the measurement device to make automatic 

measurement acquisitions and save the data to file 

9.  Ensure acquired data is useful for either correction or SUT 

measurement 

10.  Analyse device alignment and compute correction moves 

11.  Summarise measurement information to allow operator to 

interpret progress 

12.  Allow user to pause or cancel the measurement process 

13.  Record any system errors to allow remote debugging 
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2.7 Conclusion 

This chapter has reviewed the available hardware which will form the building 

blocks of the on-machine measurement system. Methods of integrating such 

metrology with the IRP machine have been discussed, along with example devices 

which have been previously considered for development. The two systems selected 

for development, the Surface Texture Analyser and the Metrology Station have 

been presented in detail and compared and contrasted with their predecessor, the 

OMSI. For each of system, a feasibility study has been conducted, with potential 

performance limiting factors demonstrated. Both of the systems selected are 

deemed suitable for automation development.  

In order to achieve full automation, a software application must be developed 

which allows both metrology planning and automatic execution of this plan. A set of 

requirements for such an application has therefore been stated, including the 

requirement to obtain feedback from the interferometer in order to compute 

subsequent correction moves, and properly align the device with the SUT. This 

software will therefore have two modes of operation; open-loop, where the 

machine moves the interferometer to the predicted measurement location, and 

closed-loop, where measurements are made in order to compute subsequent 

correction moves. The following chapters discuss the development of the planning 

and control applications respectively.  
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3 Metrology Designer 

Integration of metrology with CNC systems allows the metrologist to benefit from 

the ability to perform a series of measurements with minimal operator interaction. 

However, as with the Zeeko polishing process, the user must first define the tasks 

to be performed in order for the system to operate unattended. Although CNC 

enabled metrology parallels polishing in that the system must address a given 

location along a specified vector, the activities carried out at these surface locations 

differ greatly. The Zeeko polishing process moves a rotating bonnet against the part 

surface, modulating dwell time in order to remove a target quantity of material. For 

measurement, the system must reach a target location and align the device with 

the SUT. Full automation also requires that the device then be commanded to 

measure prior to moving to the next location.  

When planning a polishing run for the IRP machine, the operator computes a tool 

path using the Zeeko TPG software application. The tool path describes how the 

bonnet is moved across the surface of the part and typically consists of a chain of 

co-ordinates and vectors located closely together. At the end of the planning 

process a G-code file is generated, by converting the tool path from real to machine 

co-ordinates, using inverse kinematics equations. These equations describe the 

orientation of each axis to place the machine at a given position and attitude. On-

machine metrology requires a similar plan to be created, however, instead of 

generating a tool path, a set of discrete testing locations must be specified. The 

initial location the measurement device will arrive is calculated from the surface 

design, and so does not include error in the SUT or machine and test configuration. 
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If the operator knew exactly what the SUT surface looked like, measurement would 

not be required at all. As the requirements of this metrology planning process are 

different to those of tool path generation, programs such as TPG are unsuitable. 

Metrology Designer was therefore developed in order to provide a simple 

measurement planning process, analogous to Zeeko TPG. 

Following polishing tool path planning, the operator uploads the output G-code file 

to the machine control system at the start of polishing. The G-code file is executed 

sequentially and the CNC controller interpolates between the machine axis 

positions specified to produce a smooth movement over the surface. In the case of 

measurement, due to the subsequent alignment corrections required at each 

location, a single file cannot be used to address all measurement locations. A new 

file must be generated and uploaded for each individual move. This requires a more 

complex interface with the machine controller and is beyond the functionality 

available in the current Zeeko control system. For the purposes of this work, 

Metrology Controller was developed. Metrology Controller uses measurement 

device feedback to dynamically generate new G-code instructions and enable the 

measurement system to automatically correct misalignment in the initial 

measurement position calculation made by Metrology Designer. While it will be 

demonstrated that this closed-loop alignment system is capable of correcting for 

errors in the test setup, making an accurate initial guess is important in minimising 

the time spent making corrections and thus maximising the efficiency of 

automation.  
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3.1 Metrology Designer Development 

The Metrology Designer application allows the user to generate a measurement 

plan to be executed by the Metrology Controller application. As the application is 

intended for customer use, all software functionality is compiled with a GUI (Figure 

3.1) developed using Matlab. Full explanations of GUI button functionality can be 

found in the Metrology Control Suite Manual in Appendix 9.1.  

 

Figure 3.1: Metrology Designer main GUI 

3.1.1 Surface Design 

In order to begin planning metrology, the user must specify the surface to be 

measured. Knowledge of the surface shape, size, and form is required for the 

system to calculate how many measurement locations are required to address the 

surface completely, and in which direction to orient the metrology device to access 

these locations. 
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When carrying out polishing activities on the Zeeko IRP machines, the operator 

requires similar knowledge of the surface in order to generate tool paths. Surface 

design information is provided in the form of a Zeeko Design file. This contains 

meshes which describe the part form along with parameter information such as the 

part rotational base (plano, spherical, aspherical, etc.) and ROC. These parameters 

may be used as modal flags to switch the planning algorithms between modes 

without requiring extra computation, such as fitting.  

The Zeeko Design file is created using the Surface Designer application (Figure 3.2) 

(written by Zeeko), which is incorporated into all existing Zeeko applications. In 

order to keep functionality of Metrology Designer consistent with other 

applications and ensure operation of on-machine metrology parallels polishing 

where possible, Surface Designer has been integrated to the Metrology Designer 

application. The Surface Designer application is launched by selecting the icon, 

located on the main toolbar. Instead of generating a new surface design each time a 

measurement plan is required, a surface design may also be loaded. This design file 

is therefore transferable between different software applications, allowing better 

control of designs and minimising the risk of incorrect file use. 
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Figure 3.2: Screen shot of Zeeko Surface Designer (courtesy of Zeeko) 

When a surface design is loaded, the design parameters are checked to ensure the 

surface is either plano or spherical. If the user loads a surface file of an aspherical or 

free-form surface, a warning is displayed as these are not currently supported by 

Metrology Designer. Alignment with aspheric or free-form surfaces would require 

further development of the automatic alignment algorithms. With a compatible 

surface design loaded, the characteristics such as diameter, ROC, and SUT R# are 

displayed to the user to allow confirmation of the intended surface design.  

3.1.1.1 Device Configuration 

When planning measurement, Metrology Designer must also have knowledge of 

the measurement device and optical configuration to ensure a valid design is 

produced. Metrology Designer currently supports the design of measurements for 

sub-aperture interferometry and texture interferometry. Sub-aperture metrology 
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design requires the placement of sub-apertures such that the entire region of 

interest on the SUT is covered, with sufficient sub-aperture overlap to ensure a 

good stitching result. Texture interferometry requires a set of measurement 

locations of sufficient number to allow the operator to understand how texture 

varies across the surface of the SUT. Texture measurement locations are discrete 

and are not required to overlap. In order to support both modes of measurement 

and allow the user to switch between them, Metrology Designer uses a 

configuration file for each metrology device. An outline of the parameters 

contained in the device configuration file are given in Table 3.1. 

Table 3.1: Device configuration file overview 

Parameter  Description 

Mode String used to describe planning mode of device. 

XAxis Double indicating the index of the X-axis. Provides the system with 
device orientation information relative to the CNC axes. This 
provides knowledge of which machine axis to use to effect 
alignment correction in a given camera axis.  

YAxis Double indicating the index of the Y-axis. 

ZAxis Double indicating the index of the Z-axis. 

axisDirection Array of doubles in indicating the directions of the above device 
axes. As it is possible for interferometers to introduce optical axis 
flips, this effect must be considered. 

Brand String describing the device manufacturer. This is used as a flag for 
device interfacing code as different manufacturers can require 
different communication methods. 

Model String indicating the model of the device. Different models from the 
same manufacturer have different features.  

Name String containing descriptive device name. This is used in the 
Metrology Designer GUI.  

Two example device configurations are given in Table 3.2, for the STA on-machine 

texture interferometer and the Fizcam 3000 discussed in Section 2.4 and Section 

2.5.  
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Table 3.2: Device configuration file example 

Parameter STA1 Fizcam 3000 

Mode Point Subaperture 

XAxis 1 2 

YAxis 2 1 

ZAxis 3 3 

axisDirection [1,1,1] [-1,-1,1] 

Brand 4D 4D 

Model STA Fizcam 

Name STA1 4DFizCam 

As can been seen by comparing the two configuration files, the STA1 operates in 

point mode, using small test areas which are modelled as points on the SUT. The 

Fizcam requires sub-aperture mode. The Fizcam is also mounted orthogonally with 

respect to the CNC system axes and has a negative sign convention in the X and Y-

axes.  

As Metrology Designer starts up, the device configuration file folder is searched for 

files and the drop down menu on the GUI is populated with those available for 

planning. When generating a measurement plan, the device configuration is 

included with the plan, binding the measurement plan to a single device, thus 

preventing the operator using the plan with another device, risking device and SUT 

damage.  

3.1.2 Optics database 

With the correct device selected for measurement, Metrology Controller populates 

a second drop down box with compatible optical configurations. These are required 

as the optical parameters of an objective determine the size of the device FOV on 

the SUT as well as the required working distance. The available optical 

configurations are further filtered by the form of the SUT; plano or spherical, for 
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sub-aperture measurement. Point measurement does not require specific 

objectives for a given form and so the entire selection is displayed.  

In the case of sub-aperture interferometry, the optical parameters of the selected 

objective are used to calculate the number of sub-apertures to be placed and how 

they are arranged to provide the required overlap. The sub-aperture radii for a 

given transmission sphere or flat are given by (3.1) and (3.2) respectively.  

 𝑅𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = 
|𝑅𝑆𝑈𝑇|

2𝐹#
 (3.1) 

 

 

 𝑅𝑝𝑙𝑎𝑛𝑜 =
𝐷𝑇𝑆
2

 (3.2) 
 

Where RSUT is the ROC of the surface under test and DTS is the aperture diameter of 

the transmission sphere, as shown in Figure 3.3. R1 is the reference surface ROC and 

R2 is the effective ROC when considering the physical extent of transmission sphere 

cell. R2 is compared with the SUT ROC to ensure the measurement is physically 

possible with the selected optical configuration. For example, should the user is 

design a measurement of a convex sphere with a larger ROC than the selected 

transmission sphere R2 value, the SUT would come into contact with the 

transmission optic cell during positioning. This condition must be avoided at the 

design stage, as the Metrology Station does not include proximity or crash 

detection systems. Test optic and SUT incompatibility is therefore avoided by 

checking R2 and ROCSUT during planning and warning the user accordingly.  



110 
 

 

Figure 3.3: Transmission optic parameters for spherical test 

The optical parameters outlined are stored as a cell array which is used as an optics 

database [87]. The user may add and edit the optics database through an editor 

built into the software. Each time a new SUT design is loaded into Metrology 

Designer, the optics database is filtered and the only optics of compatible form with 

the SUT form are presented for selection. Table 3.3 provides explanation of the 

parameters stored in the optics database and Table 3.4 an example for the two 

development devices. 

Table 3.3: Optics database parameters 

Parameter Description 

Name String containing tem name displayed on Metrology 
Designer GUI 

Working distance / 
F# 

Double containing either (if applicable); 
Point measurement: Working distance of objective in mm 
Sub-aperture: F# of transmission optics  

Mode Double acting as flag to specify; 
0: Sphere = transmission sphere 
1: Plano =  transmission flat 
2 : Point measurement = microscope objective  

R1  Double, See Figure 3.3, if applicable 

R2  Double, See Figure 3.3, if applicable 

D0  Double, See Figure 3.3, if applicable  
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Table 3.4: Optics database example 

Parameter STA1 10X objective Zygo F1.5 transmission sphere 

Name 10x F1.5 

Working distance/ F# 25 1.5 

Mode 2 0 

R1 - 121.2 

R2 - 115 

D0 - 93.7 

 

Should the optics database be empty, or not contain an optic suitable for the 

currently loaded SUT, measurement planning is not possible and a warning is 

displayed to the user.  

3.2 Measurement planning 

When the user has a valid surface design file, device configuration file and a 

suitable measurement optic, a measurement may be planned. When the user 

presses the plan measurement button, Metrology Designer uses the information 

provided to classify the measurement and decide which planning algorithm to 

apply. At present, there are two main plan types; point measurement and sub-

aperture, which will be discussed in detail. This initial classification process is 

illustrated in Figure 3.4. 
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Figure 3.4: Initial planning function flow 

Following classification of the plan to be designed, the appropriate planning 

algorithm is executed. Section 3.2.1 and Section 3.2.2 detail sub-aperture and point 

measurement planning respectively.  

3.2.1 Sub-aperture planning 

Sub-aperture planning mode contains two sub-modes (plano and spherical), as 

shown in Figure 3.4. Both modes contain functionality to allow the operator to 

create a plan based upon the entry of a minimum sub-aperture overlap value as 

well as a more comprehensive sub-aperture placement editor. Although the sub-
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aperture stitching application used to stitch data can support aspheric surfaces, the 

required hardware is not included in the prototypes described in this thesis.  

3.2.1.1 Spherical Sub-aperture Measurement Planning 

Figure 3.5 shows the planning routine for a spherical sub-aperture test when using 

overlap optimisation mode. Vectors OC ̅  , OE ̅  , and OS ̅   are shown in Figure 3.6. As 

mentioned, in order to obtain a complete error map following data stitching, the 

measurement must contain data with sufficient overlap between adjacent sub-

apertures. Metrology Designer therefore tests the measurement design for 

complete overlap and enters an optimisation routine when non-covered areas are 

found. For spherical measurements, Metrology Designer places sub-apertures on a 

series of concentric rings and only the sub-aperture centre co-ordinates are 

required for kinematics calculation. Metrology Designer outputs testing locations in 

real co-ordinates as conversion to machine co-ordinates requires machine 

configuration information which is obtained during measurement set up. As such, 

this is inverse kinematics calculation is carried out in Metrology Controller and 

discussed in Chapter 4. 
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Figure 3.5: Spherical sub-aperture angles calculation work flow 
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At the start of the planning routine, the sub-aperture radius is calculated using (3.1) 

or (3.2) and the reference optic information. This provides information on how 

large the testing footprint is expected to be on the SUT when the interferometer is 

nulled. The part edge is then found to establish the measurement plan boundary. 

This is necessary in order to calculate the number of test locations required for full 

SUT coverage. Knowledge of the part centre from the design file is used to define 

the first test location and also to provide the (x,y) location of the SUT spherical 

origin. This has been defined in (3.3) and (3.4) for clarity. 

The co-ordinate origin is defined as the SUT centre at the part surface as this will 

also define the machine co-ordinate origin, and minimises the number of 

subsequent offsets which must be applied. Figure 3.6 shows an example convex 

surface viewed in the X-Z plane. The red arc indicates the outline of the central sub-

aperture.  

 𝐶 = [0,0,0] (3.3) 
 

Where C is defined as the SUT centre at the part surface. 

 𝑂 = [0,0, 𝑅𝑆𝑈𝑇] (3.4) 
 

Where O is defined as the part centre of curvature and RSUT is the SUT ROC, which is 

negative for convex parts.  
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Figure 3.6: Sub-aperture rotation calculation schematic 

Due to the spherical shape of the SUT, the first sub-aperture on subsequent rings 

may be placed by making an incremental rotation from the first sub-aperture 

position about the X-axis by an angle θ, which is effectively an elevation change.  

This elevation angle is found by first calculating the elevation change to move from 

the part centre to the edge of the first sub-aperture, S given by (3.5). 

 𝑆 = [0, 𝑅𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 , 𝑍′]  (3.5) 
 

Where Z’ is found by subtracting the x and y components from the design file X and 

Y-meshes respectively and finding the indices of the resultant minimum. These 

indices are looked up in the design file Z-mesh to provide the nearest Z-axis value 

on the surface.  

The SUT edge location is located in (x,y) at the SUT perimeter location found to be 

the furthest from the part centre. Although this may not lie along the Y-axis due to 

SUT orientation in the design file, this location is used only to calculate the 
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maximum number of expected sub-apertures to allow memory pre-allocation. The 

(x,y) position of the SUT edge, E, furthest from the part centre, C, is found by 

computing the distance between each perimeter point and the centre and finding 

the maximum. 

 𝐸 = [0,
𝐷𝑆𝑈𝑇
2
, 𝑍′′] (3.6) 

 

Where DSUT is the part diameter and Z’’ is the height of the SUT edge, found in the 

part mesh. The use of all perimeter co-ordinates increases calculation time but 

removes sensitivity to SUT orientation in the design file. Figure 3.7 shows an 

example in which the top image is the result of a search using all perimeter co-

ordinates, and the bottom a search using only points lying along the X and Y-axes. 

The SUT perimeter is shown in blue with the red and green points representing E. 

The area inside the dashed circles indicate the resultant measurement coverage. 

Measurement planning using the bottom search technique would result in the SUT 

corners being missed from measurement.  
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Figure 3.7: SUT centre to edge distance calculation (Top) using all points on perimeter (Bottom) using points 
located along X-axis only 

With the fundamental locations in the measurement geometry defined, it is 

possible to compute vectors OC ̅  , OE ̅  , and OS ̅   indicated in Figure 3.6. Where OC ̅   is 

the SUT centre-of-curvature to part centre vector, OE ̅   is the SUT centre-of-

curvature to part edge vector and OS ̅  is the SUT centre-of-curvature to sub-aperture 

edge vector. Therefore, the elevation increment angle, θ, is given by (3.7). 

 𝜃 =  cos−1( 𝑂𝐶
→  .

𝑂𝑆
→ 

|
𝑂𝐶
→ | |

𝑂𝑆
→ |
) (3.7) 

 

Similarly, the angle between OC ̅   and OE ̅   vectors, α, is given (3.8). 

 𝛼 =  cos−1( 𝑂𝐶
→  .

𝑂𝐸
→ 

|
𝑂𝐶
→ | |

𝑂𝐸
→ |
) (3.8) 

 

The number of concentric sub-aperture rings, Nrings, is then given by (3.9). 
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 𝑁𝑟𝑖𝑛𝑔𝑠 = ⌈
𝛼

𝜃(1 − 𝜏)
⌉ (3.9) 

 

Where τ is the overlap parameter input by the user, expressed as a decimal (0.5 for 

50% overlap). This reduces the incremental elevation angle to allow overlap 

between sub-aperture rings. This overlap level can only be assured for the first row 

of sub-apertures, which are placed along a single axis. As rotations about the Z-axis 

are applied to create testing locations around each ring, the overlap level varies. 

However, provided the SUT is covered completely, no variation in measurement 

stitching quality has been observed, as many sub-apertures usually overlap the 

same inter-ring location, producing an averaging effect during data recombination. 

The number of rings, Nrings, is rounded up, to ensure adequate SUT coverage at the 

part edge. 

Assuming the first sub-aperture is located at the part centre, it is possible to define 

a row of sub-apertures along a single axis between the SUT centre and edge, as 

shown in Figure 3.8. Each sub-aperture indicates the first test location at a new 

concentric ring and has the user specified overlap with those adjacent. 



120 
 

 

Figure 3.8: First sub-aperture at each ring of measurement plan 

The radius of each concentric sub-aperture ring is computed by performing a 

rotation of the first sub-aperture location, about the X-axis by the incremental 

elevation, θ, for each ring in turn, given by (3.10). This is required for calculation of 

the incremental azimuth rotation angle, ϕ, used to place sub-apertures around 

each ring. 

 [

𝑥𝑖
′

𝑦𝑖
′

𝑧𝑖
′
]

𝑖=1→𝑁𝑟𝑖𝑛𝑔𝑠

= [ 

1 0 0
0 cos ((𝑖 − 1)𝜃𝑖) −sin ((𝑖 − 1)𝜃𝑖)
0 sin ((𝑖 − 1)𝜃𝑖) cos ((𝑖 − 1)𝜃𝑖)

] [

𝑥𝑖
𝑦𝑖
𝑧𝑖
] (3.10) 

 

Where i is concentric ring index number and Nrings is the number of rings. The ring 

radius is provided by yi
’, which may be used to calculate ϕ. Figure 3.9 shows an 
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example arrangement of a sub-aperture ring, indicated by the dashed line. Two 

sub-apertures are shown in red with centres placed upon the sub-aperture ring. The 

angle ρ is the azimuth rotation angle which is required to move from the centre to 

the edge of one sub-aperture, given by (3.11). Assuming two sub-apertures are 

placed with their centres lying on the concentric ring and arranged with perimeters 

just touching, the angle required to rotate from one centre to the next about the Z-

axis is 2ρ. Figure 3.10 shows an example sub-aperture layout with a single ring on 

which the sub-apertures are just touching. The sub-apertures appear elliptical due 

to viewing an (x,y) projection of a 3-dimensional arrangement.  

 

Figure 3.9: Ring azimuth angle calculation schematic 

 
𝜌𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = 2sin

−1 (
𝑅𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙

2𝑦𝑖′
) 

(3.11) 
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Figure 3.10: Single ring spherical measurement plan 

The incremental azimuth angle to move between adjacent sub-apertures with 

overlap is given by (3.12). 

 
𝜑 =  2𝜌(1 − 𝜏) 

(3.12) 
 

Where τ is the overlap input by the user to the GUI, represented as a decimal (e.g. 

0.5 for 50%). The number of sub-apertures to be placed around a given ring, 

Nazimuth, is calculated using (3.13). 

 𝑁𝑎𝑧𝑖𝑚𝑢𝑡ℎ = ⌈
2𝜋

𝜑
⌉ (3.13) 

 

The values resulting from (3.10), (3.12), and (3.13) are used to populate a sub-

aperture angles table. The angle calculation step has been separated in code from 
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the sub-aperture layout procedure because the user has the ability to manually 

manipulate the sub-aperture placement angles. The sub-aperture angles table is a 4 

column by Nrings-row table formatted as shown in Table 3.5. An example sub-

aperture angles table is also given in Table 3.6 for a measurement plan with four 

concentric rings of sub-apertures.   

Table 3.5: Sub-aperture angles table 

Column 
number 

Contents Description 

1 Index Double. Incremental number providing the ring 
index. 

2 Elevation angle Double. Absolute elevation angle, specified in 
degrees with the Z-axis defined as zero.  

3 Number of sub-
apertures 

Double. Used to calculate the incremental 
azimuth angle for each ring 

4 Y-axis offset Resultant yi’ from calculation of elevation. 
Provides the ring radius.  

 

Table 3.6: Example sub-aperture angles table 

Ring number Elevation 
(˚) 

Sub-apertures Y-axis offset 
(mm) 

1 0 1 0 

2 11.4928 6 -17.3482 

3 22.9855 12 -34.0007 

4 34.4783 17 -49.2898 

Following calculation of the sub-aperture angles information, sub-aperture 

placement is carried out. This process follows procedure indicated in Figure 3.11 

using the information contained in the sub-aperture angles table. A centre sub-

aperture is first defined and recorded. This point is then rotated about the x-axis by 

the elevation angle for the first ring and recorded as the first sub-aperture in the 

second ring. Azimuth rotations are then performed and recorded as more sub-

apertures. This process is repeated for each ring until a complete plan has been 
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formed. Once a set of sub-aperture centre co-ordinates for the plan has been 

calculated, the local surface normal vector for each location is also found. This is 

required to allow inverse kinematics calculation to transform the measurement 

plan co-ordinates into machine axis values. An example plan without overlap 

optimisation is shown in Figure 3.12, created by inputting Table 3.6 into the 

spherical sub-aperture planning procedure.  
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Figure 3.11: Spherical sub-aperture planning work flow 
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Figure 3.12: Spherical sub-aperture measurement plan prior to coverage optimisation and using a small 
overlap value 

Although sub-aperture placement angles have been calculated to provide the 

specified level of overlap, complete coverage of the SUT is not assured. Following 

planning, the measurement plan must be tested to establish if the current level of 

overlap is sufficient to produce full coverage. The measurement plan shown in 

Figure 3.12 has been created without the use of overlap optimisation. In this case, 

an overlap of 10% was specified, which is insufficient to provide complete SUT 

coverage. If this plan were measured, the synthetic dataset obtained from stitching 

would contain gaps and be unsuitable for use to compute further corrective 

polishing. It is possible that the user can incrementally increase the overlap 

parameter manually, until complete coverage of the SUT is achieved, however, the 
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ethos behind the simple planning mode is that Metrology Designer will produce a 

basic plan which can be used immediately. The process of optimising surface 

coverage is discussed in Section 3.2.1.3.  

3.2.1.2 Plano Sub-aperture Measurement Planning  

The plano measurement planning regime is similar to that of spherical 

measurement planning, with the exception that no elevation changes are required. 

In this case the number of rings required is given by (3.14). 

 𝑁𝑝𝑙𝑎𝑛𝑜 𝑟𝑖𝑛𝑔𝑠 = ⌈
𝑅𝑆𝑈𝑇

2𝑅𝑝𝑙𝑎𝑛𝑜(1 − 𝜏)
⌉ (3.14) 

 

Where RSUT is the distance from the SUT radius. Rplano is given by (3.2) and τ is the 

user specified overlap. Nplano rings is rounded up to ensure at sufficient rings are used 

to cover the SUT. The ring radii are calculated using (3.15). 

 𝑅𝑝𝑙𝑎𝑛𝑜 𝑟𝑖𝑛𝑔𝑖=1:𝑁𝑟𝑖𝑛𝑔𝑠
= 2(𝑖 − 1)𝑅𝑝𝑙𝑎𝑛𝑜(1 − 𝜏) (3.15) 

 

Where i is the ring index. To complete the plano sub-aperture angles table, the 

number of sub-apertures on a given ring is calculated in the same way as for 

spherical SUT testing, using (3.12) and (3.13), following the calculation of ρ, given by 

(3.16). 

 𝜌𝑝𝑙𝑎𝑛𝑜 = 2 sin
−1 (

𝑅𝑝𝑙𝑎𝑛𝑜

2𝑅𝑝𝑙𝑎𝑛𝑜 𝑟𝑖𝑛𝑔𝑖
) (3.16) 

 

Where ρplano is the azimuth rotation required to move between a sub-aperture 

centre and edge on a concentric ring, shown in Figure 3.9. The plano sub-aperture 

planning routine is shown in Figure 3.13. The plano planning algorithm differs in 

that the ring and elevation step of the spherical plan has been replaced by a 
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translation, owing to the difference in SUT form. The sub-aperture overlap 

optimisation and manual adjustment procedures in the following sections are 

generalised to allow the same code to serve both planning routines. This 

generalisation of code to support multiple planning applications enables a modular 

approach to be taken to implementing new metrology devices in the existing 

architecture. 
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Figure 3.13: Plano sub-aperture planning work flow 
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3.2.1.3 Overlap optimisation 

Overlap optimisation is the process of ensuring that any sub-aperture measurement 

developed using the simple design mode of Metrology Designer provides complete 

SUT coverage, and therefore yields useful sub-aperture measurement data. Useful 

data is defined as that which may be stitched to provide a representative full 

aperture map of the surface and can be to generate tool paths for corrective 

polishing. The overall planning process for sub-aperture measurement is shown in 

Figure 3.14. This process includes the calculation of sub-aperture rotation angles 

and the layout processes discussed earlier, as well as checking to ensure complete 

surface coverage. If the operator were to enter a value of overlap which was too 

small to provide a measurement plan with complete coverage of the SUT, the 

planning routine would enter and iterative loop, increasing the overlap parameter 

by 1% on each pass until a viable measurement plan is computed. The final overlap 

parameter is used to replace the user input value on the GUI, to provide feedback. 

Finally, the testing locations are populated into a table to be saved in an OMM file.  
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Figure 3.14: Measurement plan overlap optimisation work flow 

SUT coverage checking is carried out by first creating a mask of zeros and ones 

using the part surface mesh dimensions. Figure 3.15 shows an example mask, red 

representing ones and blue for zeros. This process provides only a projection in the 

X-Y plane and so any information beyond the hemisphere is lost. Metrology 

Designer therefore con only support measurement requiring an elevation less than 

90˚.  
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Figure 3.15: SUT mask used for SUT coverage optimisation 

A mask is then created for each sub-aperture in turn. In the case of spherical 

surfaces, the sub-apertures may be rotated out of the X-Y plane when not at the 

part centre. Therefore, a simple circular mask cannot represent a sub-aperture for a 

spherical SUT. As the circle is a special case of an ellipse, it is possible to generally 

describe the sub-aperture shape in the X-Y plane with an ellipse for all SUT form 

types, as given by (3.17).  

 
𝑎𝑥2 +  𝑏𝑥𝑦 + 𝑐𝑦2 − (2𝑎𝑥0 + 𝑏𝑦0)𝑥 − (2𝑐𝑦0 + 𝑏𝑥0)𝑦 + 𝑎𝑥0

2

+  𝑏𝑥0𝑦0 +  𝑐𝑦0
2 = 1 

(3.17) 
 

Where (x0, y0) is the ellipse centre co-ordinates and a, b, and c are given by (3.18), 

(3.19), and (3.20) respectively.  

 𝑎 =
cos2(𝛾)

r𝐴2
+ 
sin2(𝛾)

r𝐵2
 (3.18) 
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 𝑏 =
2 cos(𝛾) sin (𝛾)

r𝐴2 − r𝐵2
 (3.19) 

 

 

 𝑐 =
sin2(𝛾)

r𝐴2
+ 
cos2 (𝛾)

r𝐵2
 (3.20) 

 

Parameters rA and rB are the major and minor radii of the sub-aperture, projected 

onto the X-Y plane. In the sub-aperture mask, all points within the sub-aperture are 

defined as ones and those outside zeros. Figure 3.16 shows an example sub-

aperture mask in the upper plot and the sub-aperture from which it was generated 

in the lower plot. The sub-aperture mask consists of a mesh the same size as that of 

the design file. The SUT mesh in the bottom image appears circular due to the areas 

around surface being padded with NaNs, which are not plotted by Matlab.   
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Figure 3.16: (Top) Sub-aperture mask used for SUT coverage optimisation and (Bottom) the equivalent sub-
aperture placed on the SUT 

The sub-aperture mask is then multiplied with the SUT mask, resulting in the area 

covered by the sub-aperture being removed from the resultant mesh, as shown in 

Figure 3.17. This process is carried out for each sub-aperture in the measurement 

plan. The resulting mesh is then summed. If the SUT mask is completely covered by 

sub-apertures, the sum of the resultant mesh is zero. If the sum of the SUT mask is 

greater than zero, the overlap parameter is increased and planning is carried out 

again. This process is iterated until the SUT is completely covered. Figure 3.17 

shows the result of multiplying the SUT mask of Figure 3.15 with the sub-aperture 

mask of Figure 3.16, producing a cut out region. The overlap checking routine is also 

used to remove sub-apertures which lie outside the SUT. Such testing locations may 

occur due to rounding up the number of rings (Nrings) during the planning process. If 
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the sum of the resultant mesh does not change following multiplication with a sub-

aperture mask, the sub-aperture is discarded.  

Allowing measurement locations which do not lie on the SUT to remain in the 

testing plan is both inefficient and risky during automated measurement as the 

interferometer may return bad data. This may result in large, erroneous correction 

moves during alignment, which risks SUT and device damage.  

 

Figure 3.17: Resultant coverage mask following SUT mask multiplication with a single sub-aperture mask 

This method of optimisation is inefficient as the measurement planning process 

may be carried out multiple times for overlap values far below that required for 

SUT coverage. The overlap value is currently incremented by 1% for each pass of 

the planning algorithm. When creating a design using a high F# transmission optic 
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and large diameter SUT, measurement planning can take a long time (2-3 minutes) 

due to the large number of small sub-apertures. It is possible to reduce planning 

time (<1 minute for large plans) by using a method such as gradient decent 

optimisation [88], and this is an area of expected future development. However, 

the incremental method has been found to be stable and, provided the correct RSUT 

value is obtained, performs reliably. Calculation of an undersized RSUT, due to 

problems in the search algorithm can cause optimisation to become stuck as the 

plan can never cover the SUT.  

3.2.2 Point measurement planning 

Metrology Designer is also used for the development of point measurement plans, 

for devices such as the STA. As this device is used to look at texture only, stitching 

of measurements is not required and therefore measurement overlap is not 

necessary. These measurements are performed over a small areas (typically < 1 

mm2) and are therefore modelled as discrete points.  

The planning process for point measurement is broadly similar to that of sub-

aperture measurement. This allows a modular approach to measurement planning 

routines and simplifies the development process by allowing a standard format of 

function arguments and returns.  
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Figure 3.18: Point measurement angles table planning 

Point measurement utilises a test location angles table, in a similar way to sub-

aperture measurement design, however a bulk plan rotation is incorporated. This 

allows the operator to carry out measurement along straight edges, such as those 

of the hexagonal E-ELT segments, when using a square grid planning mode. Such 

measurement can aid in the characterisation of texture near the part edge, where 

different processing steps interact. Both concentric ring and square grid mode 

calculate measurement points so that a uniform point density is maintained across 

the SUT, when using simple planning mode. As IRP polishing tool paths often follow 
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a raster pattern across the surface, it should be ensured that the point spacing is 

not a integer multiple of raster track spacing as texture measurement may 

encounter a periodic variation, which has not been completely randomised by 

subsequent precess runs. Figure 3.19 shows an example point measurement plan 

created by Metrology Designer. 

 

Figure 3.19: Point measurement plan - concentric rings 

 

3.2.3 Manual Editing of Sub-Aperture and Point Measurement Plans 

As well as the simple planning mode discussed, it is possible for the user to 

manually adjust azimuth and elevation angles between testing locations and create 

plans with incomplete coverage, in the case of sub-aperture measurement. This is 

often desirable in practical manufacturing due to aberrations such as edge roll-off, 
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where the slope at the part edge becomes so steep fringes become aliased or 

where the surface may be damaged. In this situation, interferometric measurement 

may become unreliable due to data dropout and so other measurement techniques 

are employed, such as a scanning probe. These regions should then be avoided 

during measurement due to unpredictable behaviour during automatic alignment.  

In order to facilitate the manual adjustment of the measurement plan, the test 

location angles editor is used (Figure 3.20). This allows the user to directly edit the 

test point angles table to adjust placement and remove rings, as required. This 

menu is used for both sub-aperture and texture measurement planning.  

 

Figure 3.20: Manual sub-aperture measurement placement window 

In order to adjust the plan, the user may edit some of the entries in the table shown 

in Figure 3.20, depending upon the SUT form. The sub-apertures column can be 

adjusted to vary the number of testing locations on a given ring. To adjust the inter-

ring spacing for spherical tests, the elevation angle is adjusted. In the case of plano, 
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testing, the Y-axis offset is adjusted as the elevation value is always equal to zero. 

When the test location angles editor has been used to manually configure a plan, 

overlap optimisation is disabled (for sub-aperture measurement) and the 

calculation of the sub-aperture angle table is skipped and a table is generated from 

the user inputs to the angles editor window.  

When used for adjusting point measurement plans, the editor menu is configured 

as shown in Figure 3.21. The user may also adjust the plan rotation to allow 

measurement along straight part edges. Should the user adjust any value in the 

plan rotation column, all rows are updated with the same value, ensuring 

measurement point density remains uniform over the surface.  

 

Figure 3.21: Manual point measurement placement window 
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3.2.4 Measurement Plan Description File Generation 

The final step in the metrology planning process is to package the measurement 

plan along with the device file and optic information into an On-Machine Metrology 

(OMM) file. At this point the user should also select the correct system 

configuration from the drop down box on the Metrology Control Suite GUI. The 

system configuration file contains parameters which tell the control software how 

to use the hardware intended to carry out measurement. Modification of the 

system configuration file can greatly alter system behaviour and potentially cause a 

safety hazard and so the file is encrypted using the 128-bit AES standard [89]. The 

decryption key is hard coded into the Metrology Control Suite so the user cannot 

access the system configuration. 

The device and system configuration are packaged with the measurement plan as a 

safety measure, to prevent the operator using an OMM file with hardware which 

may not support the measurement. 

3.3 Conclusion 

This chapter has outlined the procedures used for planning measurements for both 

the STA fitted to the IRP machine and the Metrology Station. The example devices 

have different requirements of the measurement planning process, as follows. The 

STA requires only a number of discrete points, evenly distributed across the surface 

to allow the metrologist to make an assessment of the behaviour of the process 

applied to the SUT. The Metrology Station system requires a series of sub-

apertures, laid out with sufficient overlap to allow the stitching algorithm to 

reassemble a complete map of the surface. While the requirements of the two 
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systems differ, they have both been accommodated in the same application with 

the use of configuration files. This approach allows a common interface which may 

support many different metrology types while minimising operator training for new 

metrology systems. The OMM file is analogous to the polishing toolpath generated 

by Zeeko TPG, however, instead of directly instructing the system hardware to 

move, the metrology plan is interpreted by Metrology Controller. Metrology 

Designer fits into the overall work flow of Metrology Control Suite as shown in 

Figure 3.22. The development of Metrology Controller is discussed in Chapter 4. 

 

Figure 3.22: Overall work flow of Metrology Control Suite 
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4 Metrology Controller Development 

Metrology Controller is an application, developed by the author as part of the 

Metrology Control Suite, which instructs the hardware forming the metrology 

system what to do throughout the measurement process in order to achieve the 

measurement plan outlined in Chapter 3. In order for the application to know what 

hardware is available, how to communicate with it, and where to go to carry out 

measurement, an OMM file generated using Metrology Designer is loaded. The 

metrology control system follows the instructions contained within the OMM file in 

a similar manner to the IRP machine following those contained within the NC file. 

The key difference between the two systems is the metrology control system uses 

feedback to dynamically generate G-code to correct residual alignment error found 

following arrival at a test location.  

With the OMM file loaded, the measurement configuration is displayed to the user, 

allowing confirmation of the correct plan being used with the system. From the 

Metrology Controller GUI, the user can then alter various operating parameters 

such as measurement averaging level and the residual alignment error at which to 

begin measurement. If the OMM file is valid, the operator can connect the machine 

to the metrology system and commence measurement, following some set up 

procedures. This chapter will discuss the steps required to set up the measurement 

system of automatic metrology as well as how the system uses interferometer data 

as feedback to ensure proper alignment with the SUT. 
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4.1 Communication 

Metrology Controller communicates with the CNC hardware available via a standard 

Ethernet connection [90]. The use of Ethernet allows direct communication with 

the CNC controller, as shown in Figure 4.1, allowing the metrology station to 

acquire status information and command CNC moves with minimal communication 

delay. The CNC console remains capable of overriding automatic metrology at any 

time and also displays the normal status information. However, the same 

information is accessed by the metrology console, allowing a single user interface 

for control and status monitoring of the entire system. 

 

Figure 4.1: Direct Ethernet communication topology 

The metrology devices used in systems discussed in this thesis have been 

manufactured by 4D technology and communication is carried out via a python web 

service running on the metrology console PC. Control commands are then sent to 

the device via HTTP over TCP/IP using a Soap protocol. As illustrated in Figure 4.1, 

this connection is kept separate from the CNC controller system on a separate 

interface provided by 4D. During system operation it is observed that measurement 

acquisition typically dominates the cycle time. The 4D Technology interferometers 

require up to 1 second to acquire a single frame, and depending upon 
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environmental stability and user accuracy requirements, an averaging level of 256 

frames, for example, may be selected.  

4.1.1 Web Service Error Handling 

During operation it is common for the python web service to experience 

intermittent errors such as time outs, when a task duration exceeds that allowed by 

the control system. Such errors prevent the interferometer performing the 

requested tasks and so can terminate measurement. Therefore Metrology 

Controller includes error handling routines which detect that an error has occurred. 

The observed errors are typically transient, for example caused by large vibrations 

due to other activity in the manufacturing environment or electromagnetic 

interference. Though it is desirable to eliminate these phenomena, such 

disturbances are characteristic of performing metrology on-machine. Metrology 

Controller therefore reissues a failed command to the interferometer to allow 

measurement to continue. 

It has been found in testing that the reissuing of commands is sufficient to allow the 

system to proceed with measurement. Occurrences of errors are logged for future 

debugging. The system configuration limits the number of times the same 

command may be reissued to prevent the system becoming stuck in a loop. Should 

this limit be exceeded, the Metrology Controller will abandon measurement. Errors 

resulting in automatic measurement being terminated by the control system 

typically result from incorrect measurement set up by the operator. Errors may be 

analysed by placing Metrology Controller into debugging mode, where all system 

information is output to the console (See Appendix 0).  
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4.2 Automatic Measurement Work Flow 

When executing automatic measurement using Metrology Control Suite, 

measurement typically follows a standard work flow, as shown in Figure 4.2. 

Following an initial set up tasks, the system is placed into plan execution mode. 

From this point onward, the system requires no user intervention. Status 

information is presented via the Metrology Controller GUI to allow the operator to 

view progress. The measurement process may be paused or cancelled during 

execution at the user’s request.  The system can also take the decision to halt 

measurement if any errors occur from which the system cannot recover by itself. 

Such issues are reported to the user via the error logging system and Metrology 

Controller GUI status display, shown in Figure 4.3.  

 

Figure 4.2: Overall automatic measurement work flow 
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Figure 4.3: Metrology Controller main GUI screenshot 

The remainder of this chapter discusses each of the main tasks contained in set up 

and automatic execution. The overall workflow is the same for both sub-aperture 

and texture metrology, however some of the specific tasks are dependent upon 

system hardware.   

4.3 Measurement Setup 

Measurement setup consists of the tasks carried out between applying power to 

the system and measurement execution. This can include optical setup of the 

measurement device, clocking of the SUT and defining the measurement co-

ordinate system. Set up tasks are typically carried out with at least some user 

intervention and acceptable and reliable automatic operation depends upon their 

being performed correctly.  
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The set up tasks to be carried out are dependent upon the metrology system being 

used and the two example systems are discussed separately.  

4.3.1 Sub-aperture Measurement 

This section details the set up activities required prior to the automatic execution of 

sub-aperture measurement using the Metrology Station. 

4.3.1.1 Part Clocking 

When carrying out sub-aperture measurement, Metrology Designer places sub-

apertures in a series of concentric rings as described in Chapter 3. This allows the 

system to rotate only the R-axis (Metrology Station table) when moving between 

sub-apertures on the same ring. In order to minimise subsequent correction moves 

at each measurement location, the SUT axis of symmetry should be coaxial with the 

rotary table axis. Should the SUT optical axis and the rotation axis have an angle 

between them, rotation of the R-axis will induce tilt and power error into the 

alignment at a new measurement location. Figure 4.4 shows an example test with 

an exaggerated error, β.  
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Figure 4.4: SUT optical axis alignment 

The interferometer beam is shown in red and is confocal with the SUT centre of 

curvature (COC). Error between the optical axis and the R-axis can result from part 

wedge or the SUT not being centred on the table. Such a misalignment error does 

not typically prevent successful measurement but increases the number of 

alignment corrections required at each measurement location. 

In order to minimise such setup error and aid the operator, Metrology Control Suite 

includes a semi-automatic procedure to enable the user to clock the part accurately 

to the R-axis. The operator first sets up the part and ensures there are non-aliased 

fringes in the interferometer FOV. Once the process is started, the system 

automatically nulls the interferometer to optimise alignment. The R-axis is then 

rotated by 180°, maximising the error in the return from the SUT. Figure 4.5 shows 
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a frame captured from the interferometer alignment camera using software written 

by C. W. King, displaying the reference surface return spot near the black cross-hair 

centre. The SUT return spot may be seen in the lower left quadrant. Unless the 

reference and SUT return spots are coincident and on the optical axis, no 

interference occurs and so measurement is not possible. The aim of the auto-

clocking process is for the two return spots to remain coincident for any rotation of 

the R-axis.  

Following the 180° R-axis rotation, if reference and return spot positions differ by 

more than a tolerance value (typically 5 pixels), the software instructs the operator 

to position the return spot on the green cross using the table translation (for 

spherical) or tilt (for plano) screws (shown in Figure 2.17). The green cross 

represents the centre of the SUT return spot orbit as the R-axis rotates. The angle, 

β, between the interferometer and R-axis is proportional to the radius of this orbit. 

As the operator adjusts the table screws, the R-axis tilt relative to the 

interferometer optical axis is adjusted. Placing the SUT return spot at the green 

cross will place the R-axis rotation axis parallel with the interferometer optical axis. 

Following placement, the system automatically realigns the reference and return 

spots. Another rotation is carried out and the process repeats until the returns 

spots are within tolerance.  
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Figure 4.5: Coarse alignment camera input displayed on Metrology Controller console PC using application 
developed by C.W. King 

During initial testing of the auto-clocking procedure, clocking to within the specified 

tolerance was found to be difficult. This was due to slight movement of the SUT 

return spot resulting from flexing of the rotary table chassis, caused by opening and 

closing the front access door of the Metrology Station. The CNC interlocking system 

required that this door be closed for automatic operation, but user access is 

required to the rotary table screws in order to make corrections following each 

rotation. This issue was resolved by including an interlock override facility to allow 

automatic operation during the auto-clocking procedure. The system feed rate is 

subsequently limited to minimise risk to the operator during the procedure, and the 

override is cleared upon completion. 
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With the R-axis and optical axis of the SUT properly aligned, the number of 

corrections required when arriving at sub-apertures on the same ring are 

minimised. This is particularly important for measurement plans featuring large 

numbers of measurement locations, as overall measurement time is also 

minimised.  

4.3.1.2 Pivot Distance 

In order to move between concentric rings within a spherical measurement plan, 

the Metrology Station must tilt the rotary table using the T-axis. Following this 

rotation, translations of both the Y and Z-axes are required owing to the T-axis not 

pivoting about the SUT COC, as shown in Figure 4.6. The size of this translation is 

dependent upon the elevation of the concentric sub-aperture ring, and 

proportional to the offset between the SUT COC and axis of rotation of the T-axis.  

The surface design file used to create the measurement plan does not include 

information such as part thickness and fixture dimensions required to compute 

these translation. In order to allow a simplified calculation, an assistant has been 

incorporated into Metrology Control Suite, which guides the user through the 

process.  
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Figure 4.6: Schematic representation of required corrective translations following T-axis rotation to measure 
concentric sub-aperture ring of spherical SUT (image by C.W. King) 

When the pivot distance calculation assistant is used, the user is instructed to place 

the interferometer focus at positions D1, D2, and D3 indicated in Figure 4.7 in turn. 

At each location the system Z-axis value is recorded. As both the table surface and 

the SUT are reflective, positioning the interferometer focus at D1 and D2 produces 

interferometric fringes. By adjusting the Z-axis to remove power, positions D1 and 

D2 may be accurately established. D3 is found by nulling the interferometer at the 

SUT, thereby matching the interferometer wavefront and SUT radii from the SUT 

centre of curvature.  



154 
 

 

Figure 4.7: Metrology Station table assembly representation showing T-axis pivot offset distance 

With the system Z-axis location recorded at each of the interferometer focus 

locations, the pivot offset distance, δ, is calculated using (4.1). 

 𝛿 = 𝐷𝑝𝑖𝑣𝑜𝑡 + 𝑅𝑆𝑈𝑇 + 𝐻𝑆𝑈𝑇 (4.1) 
 

Where SUT radius of curvature, RSUT, and the SUT offset, HSUT are given by (4.2) and 

(4.3) respectively.  

 𝑅𝑆𝑈𝑇 = 𝐷3 − 𝐷2  (4.2) 
 

 

 𝐻𝑆𝑈𝑇 = 𝐷2 − 𝐷1 (4.3) 
 

The pivot offset distance, Dpivot, cannot be characterised by the interferometer but 

does not change, and so is stored as part of the machine configuration. The SUT 

ROC has a negative sign convention for convex parts. With the pivot distance 
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characterised, the value is stored in the system configuration for use during 

kinematics calculation prior to measurement execution. The pivot distance value, 

along with the calculated ROC are displayed to the user to allow an opportunity to 

detect plan and SUT mismatch prior to measurement execution.  

With knowledge of the pivot offset distance, each measurement location may be 

corrected during kinematics calculation using (4.4) and (4.5), as indicated in Figure 

4.6.  

 ∆𝑦 = 𝜕 sin(𝑇) (4.4) 
 

 

 ∆𝑧 = 𝜕(1 − cos(𝑇)) (4.5) 
 

These corrections are only required for spherical surface measurement. During 

plano measurement, the T-axis is not required to rotate, therefore no correction is 

required. Following set up, interferometer is nulled at the first measurement 

location and the system axes are offset to zero to define the co-ordinate system 

origin at the SUT centre for measurement.  

4.3.2 Point Measurement 

As the STA is fitted to the IRP machine H-axis for on-machine measurement, it 

requires a different set of set up tasks to sub-aperture measurement using the 

Metrology Station. The set up tasks for the STA on the IRP machine are discussed in 

this section. 
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4.3.2.1 Co-ordinate System Set Up 

Prior to commencing measurement, the IRP machine coordinate system must be 

set to ensure it is coaxial and concentric with that of the metrology plan. This 

ensures locations specified in the measurement plan have the same relationship 

with the surface design as the SUT. As the machine cannot correct for any SUT 

orientation error between the surface design file and the set up on the machine, 

the operator must manually align the part rotationally and define the machine co-

ordinate frame origin.   

Part rotational alignment is achieved by securing a dial gauge to the IRP machine H-

axis. A flat datum is commonly machined onto the work piece edge, allowing 

alignment with one of the machine linear axes, such that change in the dial gauge 

reading when the axis is moves is negligible. In order to set the machine co-ordinate 

origin, the operator must locate the interferometer at the first measurement 

location in the plan and null the interferometer fringes. The IRP machine axes are 

then offset to define the first measurement location as the machine co-ordinate 

frame origin 

With the machine co-ordinate frame configured accurately, co-ordinates specified 

the measurement plan are the same for the machine configuration, ensuring 

measurement is applied at the correct surface locations. This also minimises 

measurement duration as fewer correction moves are required as there is less error 

between where the surface is expected to be and where it is measured.  
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4.3.2.2 Non-linear Correction 

In order to minimise measurement duration when operating the STA on the IRP 

machine, accuracy of the planned measurement location must be maximised. Focal 

error greater than ±1 µm (10x objective) results in no visible fringes within the 

device FOV. Although the system has an algorithm to enable fringes to be located 

prior to performing alignment correction, this is slower than fine alignment 

correction alone, as discussed in Section 4.5.2.  

In order to minimise the effects of part wedge and mounting error when polishing, 

Zeeko TPG can correct the polishing tool path using non-linear probing, as discussed 

in Section 2.1.1.3. In order to minimise the effects of part wedge and mounting 

error on STA measurement plan location accuracy, Metrology Controller is also able 

to accept the non-linear correction file. Currently, only a fitted plane is used for 

measurement plan correction, however more terms may be added in future. Figure 

4.8 shows example resultant probing data with a fitted plane in green overlaid.  

 

Figure 4.8: Non-linear correction map generated using Zeeko TPG 
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In order to assess any improvement when applying non-linear correction to 

automatic on-machine metrology a test was conducted. A 220 mm cross-corner 

hexagonal Zerodur test piece was secured to the IRP1200 machine. This piece was 

probed with a bonnet tool to produce probing data and plane fit shown in Figure 

4.8. The SUT was tested using the STA both before and after the application of the 

non-linear correction file to the measurement plan. The residual focus error at each 

location in the measurement plan was recorded and used to create the residual 

error maps shown in Figure 4.9. Comparison of the error before and after the 

application of non-linear correction shows that the focus error when first arriving at 

a testing location has been reduced by ~67%. The residual error shown in the 

bottom plot exhibits some higher order terms such as power as well as some 

remaining tilt. The use of more fitting terms would yield further improvement and 

minimise the measurement duration for STA measurement on the IRP machine. 
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Figure 4.9: Residual test location focus error for the same part (Top) before and (Bottom) after test plan 
correction using non-linear probing data 

In order for the non-linear probing data to be accurate, the part and fixturing must 

be properly acclimatised to the manufacturing environment as any thermal drift or 

mechanical settling my cause the set up error to change over time. However, as the 

objective behind on-machine testing is for the part to remain on the machine, 

thermal drift is unlikely to affect measurement processes applied in between 

successive processing runs as the part will have already acclimatised, assuming the 

manufacturing environment is stable. 
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4.3.3 Conclusion 

The procedures outlined in this section are applied in order to ensure the correct 

relationship between the measurement plan and the system hardware. Activities 

such as clocking and non-linear probing are identical to those applied when 

preparing for polishing and, assuming the SUT support is stable, the same 

correction used in polishing may be applied. Interferometer specific tasks such as 

optical clocking have parallels with polishing as the part must also be clocked to the 

machine axes prior to processing to ensure accurate process application. Such 

parallel in set up procedures between polishing and metrology allow on-machine to 

become another routine task of the optical manufacturer. The aid of the CNC 

machine when carrying out alignment and clocking reduce the difficulty of these 

activities in comparison with manually adjusting the SUT in the metrology 

laboratory.    

Where set-up tasks vary from the operations used on the IRP machine, such as 

pivot to SUT COC offset measurement or auto-clocking on the Metrology Station, 

software assistants have been used to guide the operator. The aim is to minimise 

the likelihood of any mistake resulting in the automatic measurement process 

either becoming stuck, or posing a risk of damage to part or machine. With the set 

up procedures completed, the measurement plan is automatically updated to 

maximise the accuracy of the predicted measurement locations, reducing 

measurement duration.   
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4.4 System Inverse Kinematics 

The testing location co-ordinates contained within the measurement plan cannot 

be used directly with the measurement system axes. This is because measurement 

locations are specified in (X,Y,Z) which require conversion to machine co-ordinates. 

In order to produce machine co-ordinates, a set of inverse kinematics equations, 

describing the geometric relationship between the machine axes are applied. These 

equations take as arguments the measurement location co-ordinates (X,Y,Z) and 

local surface normal vectors (nx,ny,nz) which are contained in the measurement 

plan. 

Inverse kinematics calculation is also performed at the generation of an IRP 

machine tool path, prior to polishing. The main difference between the two 

processes is that polishing specifies a fine pitch of points, in order to create a 

smooth, pseudo-continuous tool path. On-machine metrology only requires that 

the end point of any move be correct in orientation and location, while avoiding 

crashes. This section will discuss the inverse kinematics for the example systems 

presented.  

4.4.1 Metrology Station 

Following auto-clocking of the part and the setting of the Metrology Station co-

ordinate system, the measurement plan and machine are coaxial, therefore the 

measurement plan (X,Y,Z) locations can be used directly as machine axes. However, 

any measurement of a spherical surface requires T-axis rotations, and therefore the 

correction of the Y and Z components for the SUT COC to T-axis offset distance, as 
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discussed in Section 4.3.1.2. The corrected axis positions Yc and Zc are therefore 

given by (4.6) and (4.7) respectively.  

 𝑌𝑐 = 𝑌 + ∆𝑦 (4.6) 
 

 

 𝑍𝑐 = 𝑍 + ∆𝑧 (4.7) 
 

Where Y and Z are the measurement location co-ordinates provided by the 

measurement plan. The correction offsets, ∆y and ∆z are given by (4.4) and (4.5) 

respectively. The table tilt axis value, T, is given by (4.8).  

 
𝑇 =

𝑅𝑆𝑈𝑇
|𝑅𝑆𝑈𝑇|

𝛿

|𝛿|
(cos−1( 𝑛𝑧) +  𝜋) 

(4.8) 
 

 

Where nz is the Z-component of the local surface normal vector, RSUT is the SUT 

ROC, and δ is the pivot to SUT COC offset, given by (4.1).  

R is given by the negative of the azimuth angle of the sub-aperture, ϕ, shown in 

(4.9). This ensures the machine angle is given in part co-ordinates, allowing the sub-

apertures to be addressed in the same order as those specified in the measurement 

plan. 

 𝑅 =  −𝜑 

 
(4.9) 

 

The A and B-axes contained within the interferometer housing cabinet are set to 

zero by default. These are only used to correct misalignment for plano 

measurements and, since alignment error is not predicted, zero error is assumed 

for initial positioning. Although it would be possible to make an improved 
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prediction of local tilt error based upon the tilt found at adjacent measurement 

locations, this has not been implemented in the current software version.  

4.4.2 STA on the IRP Machine 

When performing inverse kinematics calculations for the IRP machine, the same 

calculations are applied as when generating a tool path for polishing. As with 

Metrology Station, these calculations rely upon knowledge of the measurement 

point location (X,Y,Z) and the vector along which the device must be oriented in 

order to address the location (nx,ny,nz). The type-2 VP IRP machine inverse 

kinematic equations presented in this section are provided by W. Messelink of 

Zeeko. The machine A and B-axis values are calculated using (4.10) and (4.12) 

respectively for each test location in the measurement plan.  

 𝐴 = tan−1 (
𝑛𝑦

𝑛𝑥
) +  Ψ − 𝜋 (4.10) 

 

Where Ψ is given by (4.11). 

 Ψ = 𝜋 − tan−1 √2 [
1 − 𝑛𝑧
sin(𝐵)

] (4.11) 
 

 

 𝐵 =  cos−1(2𝑛𝑧 − 1) (4.12) 
 

As with the Metrology Station, the measurement plan (X,Y,Z) components are used 

as machine axis values. However, owing to the IRP machine VP being located 10 

mm in front of the H-axis, some translation correction is required in order to 

accommodate the length of the STA. The corrected machine co-ordinates (Xc,Yc,Zc) 

are obtained by applying (4.13).  
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 [

𝑋𝑐
𝑌𝑐
𝑍𝑐

] = [ 

1 0 0 𝐿𝑛𝑥
0 1 0 𝐿𝑛𝑦
0 0 1 𝐿𝑛𝑧
0 0 0 1

] [

𝑋
𝑌
𝑍
1

] (4.13) 
 

Where L is the length of the measurement device, specified in mm. As this 

parameter does not change, it is stored in the device file saved with the 

measurement plan. The current device length for the STA is measured with the 10x 

objective fitted. As 4D Technology supply alternative objectives, offering other 

magnifications, this parameter will need to be calculated from the device base unit 

length added to the objective length selected in Metrology Designer. Objective size 

would then be stored in as a parameter in the optics database.  

The output from inverse kinematics calculation is a table of machine axis values, 

which will allow positioning of the measurement device at each measurement 

location in turn. Following calculation, the axis values are checked against the axis 

limits contained within the system configuration to ensure that the measurement 

locations are within the machine envelope. The axis values are used by Metrology 

Controller to generate G-code files to issue instructions to the system CNC 

controller. The correct kinematics set to use is selected using entries in the 

measurement configuration file, included with the OMM file. 

4.4.3 Conclusion 

This section has provided an overview the system inverse kinematics for both the 

Metrology Station and the STA measurement systems. These functions are used to 

transform the co-ordinates produced by Metrology Designer into machine axis 

values, directly compatible with G-code generation. As the system kinematics are 

selected using system configuration options, neither device is tied to any particular 
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hardware. However, practical limitations of mounting the STA onto the Metrology 

Station hardware result in incompatibility. However, such flexibility would allow a 

future OMSI device to be mounted on to the IRP machine, requiring only a 

modification to the system configuration file. Following inverse kinematics 

calculation, the systems moves to the first measurement location and automatic 

metrology commences.  

4.5 Device Alignment 

During automatic measurement plan execution, the measurement device is 

positioned, in turn, at each location specified in the measurement plan. To allow 

measurement acquisition, interferometric fringes must be located and nulled 

sufficiently to satisfy the user specified alignment error threshold. This threshold 

value is entered into the user configuration menu (See Appendix 9.1). The approach 

taken with both the Metrology Station and STA is to use feedback from the 

interferometer to form a closed-loop control system to iteratively correct residual 

alignment and power error (if applicable). In the case of on-machine texture 

measurement, this is a novel step. Both point and sub-aperture measurement 

routines have two main alignment modes; coarse and fine. Coarse alignment is 

defined as when fringes are not present in the device FOV, as determined by 4Sight, 

or are aliased and cannot be unwrapped. The point and sub-aperture systems 

presented have different routines for coping with coarse alignment due to the 

features and limitations of the two instruments, as outlined in Chapter 2. Fine 

alignment correction is carried out using a Zernike polynomial fit [91] to provide 

values of residual tilt along the device camera X and Y-axes. This section will discuss 
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the operation of both systems in coarse and fine alignment modes. Alignment 

correction is complete and measurement begins when residual fine alignment error 

falls below the user set threshold.  

4.5.1 Sub-aperture Measurement Alignment 

Sub-aperture measurement operations split tasks such as auto-alignment and 

measurement into one of two classes; plano or spherical. Automatic alignment 

therefore has separate work flows for each due to their differing requirements. 

Flow diagrams showing the plano and spherical auto-alignment function work flows 

are shown in Figure 4.10, Figure 4.11 and Figure 4.12, Figure 4.13 respectively. The 

star node symbol in both diagrams indicates the interrupt checking function. To 

allow the user to abort or pause execution of measurement at any time, a flag is 

raised when the user presses the pause or cancel buttons. The status of these flags 

are polled periodically during operation and the appropriate task is performed. This 

implementation has the drawback of having to wait until the preceding task has 

been executed before the user request may be serviced. All safety critical features, 

such as emergency stop, are hardware implemented. As the pause and cancel features 

are not used for safety critical inputs, this approach is acceptable. 
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Figure 4.10: Plano auto-alignment work flow 
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Figure 4.11: Plano auto-alignment work flow continued 
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Figure 4.12: Spherical auto-alignment work flow 
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Figure 4.13: Spherical auto-alignment work flow continued 
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environment in which the device is operating and the requirement to reduce 

iteration time. An increased averaging level will reduce the measurement 

uncertainty through noise and vibration print through reduction but will increase 

measurement time. If the overall measurement time is very large data stitching 

may be affected due to thermal drift during the measurement cycle.  

In order for coarse alignment corrections to be made, both alignment error data 

and sensitivity values are required. The procedure for calculating the system coarse 

alignment sensitivity is shown in Figure 4.14.  
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Figure 4.14: Coarse spot sensitivity calculation 
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Coarse alignment values are first calculated by recording the position of the test 

return spot on the interferometer alignment screen. The alignment spot is then 

moved by either translating (spherical) or tilting (plano) the interferometer relative 

to the SUT. The size of this move is calculated as a function of the transmission 

optic F# for spherical measurements and is constant for plano measurements. This 

initial step is designed to move the spot a small distance from the screen centre to 

minimise the risk of driving the spot off the screen during sensitivity calculation. 

The size of this translation step is given by (4.14).  

 
∆𝑋𝑐𝑜𝑎𝑟𝑠𝑒 =

𝑆

((
210.23
𝐹 ) −  9.2707)

 
(4.14) 

 

Where S is the step parameter in µm, given by the machine configuration, and 

∆Xcoarse is the resultant X-axis translation requires for the small spot move. F is the 

transmission optic F#. (4.14) was determined by finding the SUT return spot tilt 

sensitivity for a set of transmission spheres. For each objective, the system X-axis 

was incremented by a small amount and the resultant shift in interferometer 

alignment spot recorded. This data was then used to calculate a sensitivity of each 

transmission optic, allowing an equation for sensitivity versus F# to be fitted. As 

sensitivity is equal in both X and Y, (4.14) may be used for both axes. 

Although this sensitivity value could be used for automatic alignment of the system, 

in practice, it is found that the value can vary due to transmission sphere parameter 

accuracy and environmental conditions. Therefore, this value is used as an 

approximation to calculate a larger step move to position the alignment return at a 

target pixel, typically near the edge of the alignment screen. This move is much 
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larger than the previous and so a greater SNR ratio is achieved. A second sensitivity 

calculation is made at the target pixel and the two values obtained are compared. 

Should the sensitivity value of the large and small SUT spot moves vary by more 

than 20%, they are discarded and the process retried. The error handling system 

allows the sensitivity calculation to be retried a specified number of times before 

halting measurement to prevent the process becoming stuck in a loop.  

For example, if the user attempts to test a lens assembly (with multiple return spots 

due to there being several elements stacked together), the spot detection 

algorithm may switch between spots following axis moves, as the algorithm 

centroids the region of maximum intensity. This can cause erroneous values, 

preventing correct operation. In this case the error handling function would prevent 

the system becoming stuck in a loop. Phantom return spots have also been 

observed from some transmission optics, which can cause the same problem. A 

possible solution is to improve the alignment spot algorithms to track the SUT 

return spot during movement to retain the same feature for each calculation. 

Following the successful calculation of a coarse sensitivity value, the function 

performs coarse alignment to place the SUT return spot at the same position as the 

reference return spot. This allows interferometric measurement, permitting the 

computation of Zernike terms and their use in fine alignment correction. During 

coarse alignment, an image of the alignment screen is captured (using acquisition 

functions written by C.W. King) and the screen centre pixels, containing the 

reference return spot, are masked out. A threshold is applied and the SUT return 

spot centre is found. A correction may be computed from the spot centre position 
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obtained. This correction is dynamically written into a G-code file and uploaded to 

the control system for execution. However, in practice it has been found that the 

system behaviour may be unstable during coarse alignment. When making large 

correction moves, the system tends to oscillate around the target. This overshoot 

results from spatial distortion associated with the alignment screen imaging optics. 

Such distortion can manifest as a pin cushion effect, a non-linear stretching of the 

distance between the frame centre and edge. This would cause a surface return 

spot near the frame edge to produce an erroneously large correction move, 

producing an overshoot. The use of error bisection, moving half the correction 

distance between acquiring feedback, decreases the tendency to oscillate through 

over correcting. 

Following coarse correction, fringes are visible within the interferometer FOV and 

the system returns to the main alignment routine (Figure 4.10 or Figure 4.12) to 

perform fine alignment correction. In this mode, the interferometer is commanded 

to acquire data and a Zernike fit is calculated using 4Sight. The Zernike coefficients 

are returned to the control application for correction calculation. As with the coarse 

alignment algorithm, fine correction requires the calculation of a sensitivity value as 

tilt sensitivity varies with F# for spherical measurement. The sensitivity value is 

obtained by making a measurement from the initial location, followed by making a 

step move in both translation and power for spherical testing. The magnitude of 

these moves are given by (4.15) and (4.16) respectively. Plano measurement uses a 

fixed initial step value, specified in the system configuration and found empirically. 

 ∆𝑋𝑓𝑖𝑛𝑒 =
715.1

𝐹
 (4.15) 
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Where ∆Xfine is the translation move, which is equal to that used for the system Y-

axis. F is the transmission sphere F#. 

 ∆𝑍𝑓𝑖𝑛𝑒 =
125

𝐹2
− 
17

𝐹
 (4.16) 

 

Where ∆Zfine is the Z-axis translation required for fine sensitivity calculation. F is the 

transmission sphere F#. (4.15) and (4.16) were derived by characterising the 

sensitivity of different F# transmission spheres for tilt and power and fitting the 

resultant trends.   

Should fringes be lost during sensitivity calculation, the function will return to the 

main measurement function. The system will then return to the predicted sub-

aperture measurement location and start the process again.  

 𝑆𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 =
𝑃′(𝑥,𝑦,𝑧) − 𝑃(𝑥,𝑦,𝑧)

𝑍′(2,3,4) − 𝑍(2,3,4)
= 
∆𝑃(𝑥,𝑦,𝑧)

∆𝑍(2,3,4)
 (4.17) 

 

Where Sspherical is the fine sensitivity for spherical testing configurations, P(x,y,z) is the 

starting position and P’(x,y,z) the resultant position following a move by ∆Xfine in 

translation and by ∆Zfine in power, given by (4.15) and (4.16) respectively. Z’(2,3,4) are 

the resultant residual tilt and power Zernike terms following the move and Z(2,3,4) 

the initial Zernike terms. The definition of Z(2,3,4) are given in Table 4.1. Terms 

contained within the shaded area are not currently required during sensitivity or 

alignment calculation. However, terms Z5 to Z9 can be used develop a procedure for 

the automatic alignment of a CGH for aspheric testing. A similar process to (4.17) 

may be used to calculate fine tilt sensitivity for a plano test, Splano.  

 𝑆𝑝𝑙𝑎𝑛𝑜 =
𝑃′(𝑎,𝑏) − 𝑃(𝑎,𝑏)

𝑍′(2,3) − 𝑍(2,3)
= 
∆𝑃(𝑎,𝑏)

∆𝑍(2,3)
 (4.18) 
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Where P’(a,b) are the system A and B-axis positions following a step move of size 

given by the system configuration from position P(a,b).  

Having calculated the fine alignment sensitivity values, the system enters a cycle of 

iterative measurements followed by corrections until the residual error falls below 

the user set threshold. The new target (X,Y,Z) position at each iteration of a 

spherical test, Tspherical, is given by (4.19).  

 𝑇𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = 𝑃(𝑥,𝑦,𝑧) −
𝑍(2,3,4)

𝑆𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙
 (4.19) 

 

Where P(x,y,z) is the current position of the X,Y, and Z axes, read from the CNC 

control unit. Z(2,3,4) are the residual tilt and power terms in the interferometer FOV, 

obtained by remotely commanding the device to make a measurement and 

perform a Zernike fit on the resultant data. Sspherical is the spherical sensitivity, given 

by (4.17). Similarly, the target position for a correction move of a plano test, Tplano, is 

given by (4.20).  

 𝑇𝑝𝑙𝑎𝑛𝑜 = 𝑃(𝑎,𝑏) −
𝑍(2,3)

𝑆𝑝𝑙𝑎𝑛𝑜
 (4.20) 

 

Where P(a,b) is the current A and B-axis position and Splano is the fine plano 

sensitivity, given by (4.18).  
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Table 4.1: Zernike polynomials used in fine alignment correction - reproduced from [91] 

 

4.5.2 Point Measurement Alignment 

When comparing point and sub-aperture measurement alignment routines, the 

greatest difference results from the limited depth of field, and lack of alignment 

screen of the STA. The limited focal depth is caused by the use of an LED light 

source, exhibiting a limited coherence length. It is observed that interference does 

not occur beyond ±5 µm from best focus (poor contrast beyond ±1 um) and, 

without an alignment screen and SUT return spot, the system has limited 

information to aid in fringe location. This forces a different approach to automatic 

system alignment, which unlike sub-aperture measurement is negligibly affected by 
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SUT form. Furthermore, due to the non-orthogonal configuration of the IRP 

machine axes, alignment correction in one direction cannot be achieved through a 

single axis move. Every alignment correction requires a compound move of the A 

and B-axes, with a translation of the X, Y and Z-axes in order to hold station over 

the measurement location. Figure 4.15 shows the system work flow when 

performing alignment and Figure 4.16 and Figure 4.17 the fringe location routine.   
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Figure 4.15: STA automatic alignment work flow 
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Figure 4.16: STA auto focus work flow 
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Figure 4.17: STA auto focus work flow continued 
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It is likely that no fringes will be visible when first arriving at the measurement 

location. The alignment routine therefore begins by locating fringes. The long range 

focus and tilt sensors of the device were deemed unsuitable for automation (as 

discussed in Section 2.2.2) and so fringe location is carried out by scanning the 

device along the IRP machine H-axis direction vector and acquiring raw 

interferometric frames. The average modulation of these images is obtained from 

4Sight and compared with a threshold level defined in the system configuration. If 

sufficient tilt error is present, the fringes form a narrow band across the FOV and 

the average modulation falls to around the background noise level. An example of 

this situation is shown in Figure 4.18.  

 

Figure 4.18: Interferometric fringes of the STA exhibiting large surface tilt error 

As it is possible for this situation to occur during measurement, due to a poor non-

linear correction or inaccurate surface design, reading the average modulation level 
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during scanning can cause fringes to be erroneously ignored. In order to create a 

general solution for such cases, the captured frames are processed by a pattern 

recognition algorithm to detect lines in the image. The operation of this fringe 

detection algorithm is discussed in Section 4.5.2.1. However, each time a frame is 

acquired, modulation is checked and if the value is found to be sufficient, focus 

scanning is abandoned and alignment correction is carried out.  

During fringe detection, the system scans along the IRP machine H-axis direction 

vector. A working envelope is defined by the scan size specified in the system 

configuration and the step size. In testing, only a 10x objective was available and so 

an envelope of ±150 µm and a step size of 2 µm were found to give reliable results, 

giving 75 steps. When other objectives become available, this function will be 

adapted to use a calculation to provide these values. Instead of starting at one 

extreme of the search envelope and scanning to the other end, the system starts at 

the centre (the measurement location specified in the plan) and reverses direction 

every other move. As the best prediction is that at which the system first arrived, 

those scan positions closest to this location are most likely to yield viable fringes. 

Should the search envelope be exceeded without locating fringes, the system will 

skip this measurement location and continue to the next. It is critical that the 

search step size is set sufficiently small that the device does not pass through focus 

without detecting fringes.   

Following each step move modulation is checked and, if insufficient compared with 

the threshold given in the system configuration, fringe detection is attempted. If 

fringes are not found within the image, the system steps in the opposite direction 



185 
 

along the normal vector. If the last step direction was negative (towards the SUT) 

the size of size of the step is incremented by the step size. If fringes are found, the 

system attempts to place these fringes at the centre of the device FOV. This is done 

by first calculating the sensitivity of fringe lateral movement in the FOV to device 

translation along the H-axis vector. As well as indicating the presence of fringes, the 

fringe detection algorithm provides the co-ordinates of the centre of the detected 

fringe pattern. Device focus sensitivity, Sfocus, is given by (4.21) 

 
𝑆𝑓𝑜𝑐𝑢𝑠 =

√(𝐶′𝑥 − 𝐶𝑥)2 + (𝐶′𝑦 − 𝐶𝑦)2

(𝑃′𝐹 − 𝑃𝐹)
 

(4.21) 
 

To calculate focus sensitivity, a device frame is acquired at position PF, providing 

fringe pattern centre co-ordinates (Cx,Cy). A 1 µm move along the H-axis vector is 

made, placing the device at P’F. A second frame is acquired, providing fringe pattern 

centre co-ordinates (C’x,C’y).  

Following sensitivity calculation, the system makes correction moves using the 

calculated value and subsequent error values obtained from fringe fitting. After 

each move, a new interferometric frame is captured and the fringe pattern position 

is re-evaluated. This process continues until the distance between the pattern 

centre and the FOV centre falls below a threshold specified in the system 

configuration. Should the error increase, the sign of the sensitivity value is inverted. 

If fringes are lost, the focus routine is abandoned. When the auto focus function is 

aborted due to fringes being lost, the system uses the standard error handling 

procedure. 
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When interferometric fringes have been located and centred, the system switches 

to fine alignment mode. When correcting fine alignment, data is acquired from the 

interferometer and 4Sight performs a Zernike analysis to obtain tilt terms. Tilt 

information can then be used to calculate a correction move. However, unlike the 

Metrology Station example, alignment correction with the IRP machine cannot be 

carried out with X or Y-axis translation alone as fringes are easily lost through 

introduction of focal error. As the instrument FOV is also small, a residual 

translation could also cause features of interest to move out of the frame. It is 

therefore important that the interferometer hold station over measurement 

location during all correction moves. Figure 4.19 shows the STA device fitted to the 

tool chuck of the IRP1200 machine, with the interferometer beam visible on the 

SUT. In order to maintain focus and translation of the FOV, alignment corrections 

must be performed relative to the position at which the beam meets the SUT. 

When computing an alignment correction for the STA, the system first queries the 

machine position. From the machine position information, the H-axis direction 

vector, (nx,ny,nz), is calculated by applying the IRP machine forward kinematic 

equations, provided by A. Beaucamp of Zeeko and given in (4.22), (4.23), and (4.24).  

 𝑛𝑥 = 
cos(𝐴) (1 − cos(𝐵))

2
− 
sin(𝐵) sin(𝐴)

√2
 (4.22) 

 

 

 𝑛𝑦 = 
sin(𝐴) (1 − cos(𝐵))

2
− 
sin(𝐵) cos(𝐴)

√2
 (4.23) 
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 𝑛𝑧 =
cos(𝐵) + 1

2
 (4.24) 

 

Where A and B are the IRP machine A and B-axis positions respectively.  

 

Figure 4.19: STA fitted to the IRP1200 machine testing a 200 mm cross-corners hexagonal part 

To compute an alignment correction and retain the point of interest within the 

device FOV, the co-ordinates of the test location on the SUT must be found. Using 

the device and optical configuration information, an offset distance between the H-

axis front face, DVT, may be calculated as given by (4.25).  

 𝐷𝑉𝑇 = 𝐷𝑆𝑇𝐴 + 𝐷𝑂𝐵 + 𝐷𝑊 (4.25) 
 

Where DSTA is the STA body height, DOB is the objective height and DW is the 

objective working distance from the SUT, as shown in Figure 4.20. The test location 

co-ordinates, (X,Y,Z), are computed by projecting along the H-axis vector, (nx,ny,nz), 

by DVT, given by (4.26).  
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 [
𝑋
𝑌
𝑍
] = [ 

1 0 0 𝐷𝑉𝑇𝑛𝑥
0 1 0 𝐷𝑉𝑇𝑛𝑦
0 0 1 𝐷𝑉𝑇𝑛𝑧
0 0 0 1

] [

𝑋𝑚
𝑌𝑚
𝑍𝑚
1

] (4.26) 
 

Where (Xm,Ym,Zm) are the machine X, Y, and Z-axis positions which are read from 

the CNC controller. The error angle, α, between the local surface normal vector and 

the STA is then computed by acquiring measurement data and performing a Zernike 

fit to obtain residual tilt align the camera X and Y-axes to which (4.27) is applied.  

 ∝(𝑥,𝑦) =  
tan−1(𝜆𝑍(1,2))

𝐷(𝑥,𝑦)
 (4.27) 

 

Where λ for the STA is 460 nm, which is stored in the device configuration file. Z(1,2) 

are the Zernike terms for tilt in X and Y respectively. D(x,y) is the dimensions of the 

STA FOV in millimetres given in the device optical configuration. The H-axis vector is 

rotated about the test location (X,Y,Z) by α to obtain a corrected H-axis vector by 

calculating the angle between the H-axis X and Y components and the X and Y-axis 

respectively using (4.28).  

 𝛽(𝑥,𝑦) = cos
−1(𝑛(𝑥,𝑦)) (4.28) 

 

Where β is the angle between the IRP machine X and Y-axes and the H-axis vector. 

n(x,y) are the current H-axis vector X and Y components. Β(x,yI is subsequently 

modified error angle, α, given by (4.27). This results in the corrected angles, ω(x,y), 

given by (4.29). The corrected angles are used to compute a new H-axis vector. 

 𝜔(𝑥,𝑦) = 𝛼(𝑥,𝑦) + 𝛽(𝑥,𝑦) (4.29) 
 

Finally, a projection is made along the resultant vector by DVT to find the corrected 

virtual pivot position. This new co-ordinate and vector are used to compute a new 

set of machine axis positions using the inverse kinematics equations ((4.10) and 
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(4.12)) and the machine is moved. In practice, it is observed that surface features 

move slightly (typically < 10 pixels) in the FOV. This can be reduced through 

improved calibration of the instrument length at setup. 

 

Figure 4.20: Tilt correction of STA mounted on IRP machine 

In order to make an alignment correction as described, the orientation of the device 

camera relative to the IRP machine co-ordinate frame must be accounted for. All 

co-ordinates read from, and passed to the machine control system in the form of G-

code are specified with respect to the IRP machine co-ordinate frame. When 4Sight 

returns Zernike alignment terms, they are given in the camera co-ordinate frame. 

As the A-axis of the IRP machine rotates the STA camera plane out of alignment 

with the machine axes, alignment correction using the provided Zernike terms 

cannot be applied directly to the H-axis vector. Figure 4.21 shows the A-axis 
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assembly of the IRP machine when viewed from above, with the STA secured to the 

H-axis and the B-axis set to zero. It can be seen that, as the STA maintains a fixed 

relationship with the H-axis, rotations of the A-axis result in the misalignment of the 

STA camera co-ordinate frame with respect to that of the machine. During initial 

STA testing, it was found that co-ordinate frame error owing to camera and 

machine co-ordinate frame misalignment prevents alignment convergence.  

 

Figure 4.21: Relationship between STA camera and IRP machine co-ordinate frames when rotating IRP 
machine A-axis 

To account for the machine to STA camera co-ordinate frame error, the H-axis 

vector is computationally rotated about the Z-axis by the A-axis value using (4.30), 

to effectively place the STA camera axes consistent with those of the IRP machine. 

Following this correction, the Zernike terms may be applied to correct the H-axis 
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vector for misalignment using (4.27). The resultant vector is rotated by the A-axis 

value back to the original rotation. This allows the system to make camera relative 

alignment corrections, despite the machine and camera axes not residing in the 

same co-ordinate frame. 

 [

𝑛′𝑥
𝑛′𝑦
𝑛′𝑧

] = [ 
cos (−𝐴) −sin (−𝐴) 0

sin(−𝐴) cos (−𝐴) 0
0 0 1

] [

𝑛𝑥
𝑛𝑦
𝑛𝑧
] (4.30) 

 

Where (nx,ny,nz) is the H-axis vector obtained by applying (4.22), (4.23), and (4.24) 

to the machine position, obtained from the CNC controller. A is the A-axis value and 

(n’x,n’y,n’z) is the resultant corrected vector. Large B-axis rotations will also produce 

error between the camera and machine co-ordinate frames owing to the B-axis 

acting at a 45˚ in the Y-Z plane, with the A-axis at zero. For the relatively shallow 

(typically < 10˚) slopes measured during development, this affect proved negligible. 

However, this will be addressed in future work as control system performance on 

steep surfaces will be degraded.  

While tilt correction is ongoing, the system remains in an iterative loop of 

measuring and correction moves until the residual tilt error falls below a user 

defined threshold. At the start of each iteration of the fine alignment routine, the 

system checks the average modulation of the interferometer and, if fringes are lost, 

the auto focusing procedure will be executed.  

This section has discussed how, after arriving at a test location defined in the 

measurement plan, the STA locates fringes and is automatically aligned with the 

SUT prior to measurement. This process involves acquiring measurement data and 

using a Zernike fit to obtain tilt information relative to the SUT. This tilt information 
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is used to calculate an improved position and move the IRP machine. The 

application of this technique to on-machine texture interferometry is a novel step. 

When there is large tilt or focus error between the STA and the SUT, a pattern 

recognition algorithm is employed to allow fringe detection. This technique is 

discussed in Section 4.5.2.1.  

4.5.2.1 Fringe Detection for the STA 

As mentioned in Section 4.5.2, the average fringe modulation value calculated by 

4Sight cannot be reliably used for fringe detection in the presence of high tilt error 

(>~5 fringes) because the fringe pattern under fills the device FOV. The 4Sight 

application does produce modulation maps, frames where modulation with 

adjacent pixels is mapped to intensity. However, requesting these frames via the 

Python Web service causes the application to crash, and a solution to this could not 

be found. It is possible to check modulation by computing pixel-to-pixel variation in 

intensity from a raw frame. However, using this method, it would be difficult to 

implement a computationally efficient algorithm which would operate robustly in 

the presence of noise. Therefore this section presents the novel approach of 

applying a Hough transform to aid the detection of fringes for on-machine 

metrology. The Hough transform is a pattern recognition algorithm which allows 

feature extraction of imperfect objects based upon a voting system in parameter 

space.   

In the presence of large tilt error the interferometer remains capable of 

unwrapping fringes provided they are non-aliased, however it is difficult to 

determine if fringes are present. Measuring at each point in the scanning envelope 
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during coarse focusing would be time consuming and could potentially lead to false 

plane fitting and pose a collision risk to the instrument. It was therefore decided 

that pattern recognition would be used to identify fringes within the image.  

In order to carry out a Hough transform, a raw interferometric frame is captured 

from the interferometer. Background subtraction is used to remove any systematic 

error associated with the device optics, such as internal reflections or dust. The 

resultant image is passed through a Sobel filter to perform edge detection. The 

Sobel filter is a discrete differentiation operator which emphasises edges within the 

image. Though there are many common edge detection operators such as Canny 

and Gaussian, the Sobel operator was selected for ease of implementation.  

The Sobel filter convolves two 3x3 kernels with the image data, given in (4.31) and 

(4.32), producing two matrices containing the X-axis, Gx,  and Y-axis, Gy, gradient 

magnitudes respectively. A root sum squared (RSS) matrix is then calculated from 

the X and Y matrices, providing an image containing slope information within the 

original image given by (4.33).  

 𝐺𝑥  = [ 
−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐼 (4.31) 
 

 

 𝐺𝑦  = [ 
−1 −2 −1
0 0 0
1 2 1

] ∗ 𝐼 (4.32) 
 

Where I is the raw frame acquired from the STA.  

 𝐼𝐸 = √𝐺𝑥
2 + 𝐺𝑦 2 (4.33) 
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Where IE, is the resultant RSS edge image of Gx and Gy. As the Hough transform 

used for pattern recognition accepts as an input a matrix containing logic values, a 

threshold is applied. All pixels with a value greater than the threshold are set to 

one, and all below are set to zero. The return from the SUT is observed to vary in 

intensity depending upon factors such as sample reflectivity, alignment error, and 

device camera settings and so a fixed threshold value is unsuitable. Therefore the 

applied threshold is calculated from the mean value of IE, as shown in (4.34).  

 𝑇𝐸 = 1.5|𝐼𝐸|̅̅ ̅̅̅ (4.34) 
 

Where TE is the threshold value applied to edge image, IE, to provide a logical matrix 

for application of the Hough transform. The factor of 1.5 was established 

empirically as the most suitable. However, (4.34) will be reviewed when other 

objectives are used with the STA. An example resultant image following application 

of the threshold is shown in Figure 4.22. This image was generated by applying the 

Sobel filter discussed to Figure 4.18. It is observed that the fringe pattern becomes 

clearly visible in the resultant image along with some regions of noise.  
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Figure 4.22: Sobel filter output 

The Hough Transform was selected pattern recognition at it is particularly well 

suited to determining the presence of non-perfect patterns yet sufficiently flexible 

to allow the function to be reused for other applications [92]. When using the 

Hough transform, the problem is parameterised in terms of the distance of a line 

from the origin (r), defined as the bottom left of the image, and the orientation of 

that line within the image (θl). In parameter space, the equation of a line may be 

represented by (4.35). 

 𝑟(𝜃𝑙) = 𝑥𝑐𝑜𝑠(𝜃𝑙) + 𝑦𝑠𝑖𝑛(𝜃𝑙) (4.35) 
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Where r is limited in size by the image dimensions in pixels, and θl specified from 0 

to π. The number of increments θl is divided into controls the sampling resolution 

of the Hough transform and the processing time required. Each pixel detected as 

part of an edge in IE has (4.36) applied to it, mapping it to a sinusoid for every value 

of θl and is stored in a table called the accumulator. The algorithm then iterates 

through the accumulator placing votes for each combination of r and θl, thereby 

identifying all possible lines which pass though the pixels contained in IE. The r and 

θl combinations with the highest number of votes indicate the best fit line for the 

pixel contained in the image. Due to this voting process, the Hough transform is 

able to detect imperfect patterns and so can function with incomplete lines or 

those which may be slightly curved. This is useful in the case of fringe detection, as 

on small ROC surfaces with a low magnification objective, the fringe pattern may 

appear curved.  

Figure 4.23 shows an example Hough transform, produced during on-machine 

testing of the STA. The top-left image shows a raw frame acquired from the 

interferometer with fringes visible across the full frame. The top-right image shows 

the image following Sobel filtering. The remaining fringes are shown in white and 

are greatly diminished in number due to the thresholding process preserving only 

those of greatest contrast. The green lines are the inverse transforms of the lines 

detected by the Hough transform, which have been overlaid on the edge detection 

image to assess the fit. The inverse transform is performed using (4.36). It can been 

seen that some of the green lines run almost horizontal across the bottom of the 

image. This occurs because the Hough transform has placed votes in regions which 
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contain large areas of pixels and so may form a part of many different combinations 

of r and θl. Possible solutions to this are discussed later. 

The bottom-left image is a visualisation of the Hough space following the voting 

process. The black regions indicate no votes. The light yellow regions are those with 

the highest votes. The green crosses show the regions which have been selected for 

use in fitting and are those which have been inverse transformed and displayed in 

the top-right image. 

 𝑦 =  − (
cos (𝜃𝑙)

sin (θ𝑙)
) x + 

r

sin (θ𝑙)
 (4.36) 
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Figure 4.23: Fringe detection using the Hough transform 
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In this example the 50 Hough regions with the highest number of votes have been 

used for fitting. This value was arrived at empirically based upon the observed 

performance of Hough transform during on-machine testing. The selected r and θl 

values are averaged to reduce the effects of any combinations which produce a 

poorly fitted lines. Finally, the bottom-right image in Figure 4.23 shows the raw 

frame with a blue line, indicating the average line obtained from the 50 averaged 

Hough space values. The red line shows the vector between the frame centre, 

which is the target position for the fringe pattern centre, and the average fit line. 

The distance in pixels between the fringe pattern centre and the camera centre 

pixel is finally calculated. The error value is then used to obtain a focus sensitivity 

and monitor the progress of subsequent error correction moves, as described 

earlier in this section.  

The Hough transform is capable of fitting patterns to incomplete features or noise. 

While this is of benefit in situations where contrast can vary across an image, noise 

and surface defects can result in poorly fitted lines. During testing with a typical SUT 

used for process development of the E-ELT work, it was found that some light was 

returned from the back of the SUT. The source of these returns occur where the 

part was blocked to an aluminium runner using wax. When the STA first arrived at 

the predicted measurement location and began scanning for fringes, some of these 

features became visible. Figure 4.24 shows the resultant Hough transform of this 

image, with many of the discrete regions allowing line fitting. When these features 

detected, the systems stops scanning for fringes and attempts to calculate a focus 

sensitivity value with the erroneous data. This causes invalid values and the system 
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becomes stuck. In order for the STA to become a viable automatic on-machine 

metrology tool, the system must be able to cope with such features as surface dig 

or scratches. In order to reduce the effects of such practical problems, a cluster size 

filter was implemented.  
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Figure 4.24: Hough transform in the presence of noise 



202 
 

The problem illustrated in Figure 4.24 occurs because many small, discrete regions 

of pixels tend to remain following edge filtering, which can be fitted to many lines. 

Typically, fringes are larger regions of contiguous pixels. A filter was therefore 

created which scans a window across the edge image output by the Sobel filter. All 

pixels within this window are summed and the pixel at the centre of the window is 

set to the total value. A threshold is then applied to the resultant image to specify a 

minimum feature size which may remain in the image. Figure 4.25 shows an 

example frame following Sobel edge detection but without cluster filtering. Figure 

4.26 shows the same dataset following the application of the cluster filter 

discussed.  

 

Figure 4.25: Edge detection result prior to cluster filtering 
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Figure 4.26: Edge detection result with cluster filtering 

It can be seen that the occurrence of noise in the image is greatly reduced, leaving 

high contrast fringe edges. Given input data such as that shown in Figure 4.24, it is 

found that the small regions do not survive the cluster filter. The filter was tested 

with the same part which previously exhibited the problem of erroneous fringe 

detection and the issue could not be replicated.  

This section has discussed the application of a Hough transform to the detection of 

fringes for situations when the modulation value provided by 4Sight becomes 

unreliable. This unreliability occurs in the presence of large tilt errors, causing 

fringes to arrange in a band across the device FOV. It has been demonstrated that 

the Hough transform in combination with a Sobel filter and a cluster filter provides 

a robust method to detect the presence of interferometric fringes, while avoiding 

erroneous detection of noise and spurious features associated with part blocking 

and glass inhomogeneities.  
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Though the implementation discussed provides reliable operation, further 

improvements may be made to increase speed of operation. At present the Hough 

transform step alone takes approximately 1.5 seconds to complete. Execution time 

is directly proportional to the number of points contained within the accumulator. 

At present the Sobel filter provides an image containing bands of contiguous pixels, 

representing fringes. However, only lines a single pixel thick are required for fringe 

detection. Therefore a line thinning filter can be applied to reduce the thickness of 

the bands returned by the Sobel filter, and thus the number of points contained in 

the Hough accumulator. The application of a further filtering step must be 

evaluated to ensure a net decrease to processing time in achieved. This is to be 

addressed in future development. 

4.5.2.2 Mitigation of the [0,0,1] Condition for H-axis Mounted Metrology 

As mentioned in Section 2.2.3.2, the [0,0,1] condition can make proper alignment of 

any device mounted to the tool chuck of the IRP machine difficult. Avoiding areas 

prone to the [0,0,1] condition is not a viable for components such as the ESO E-ELT, 

due to the long base ROC of the part. This section discusses a method of minimising 

the effects of the condition, allowing proper alignment of the device without 

modification of the IRP machine.  

When aligning a device fitted to the machine H-axis to a part which is near plano or 

plano, interferometric fringes cannot be completely nulled. Instead a small number 

of fringes typically remain. In the case of the STA, these fringes are arranged 

vertically, indicating they occur perpendicular to the B-axis when projected onto an 

X-Y-plane. Under such conditions, the B-axis is usually near zero and so a rotation of 



205 
 

the A-axis does not provide adjustment. One option explored is to fit an extra axis 

in the form of a piezoelectric tilt system to the device, however, such a solution 

would require the addition of further control modules and system interfaces. The 

decision was taken to add as little additional hardware as possible, while not 

modifying the IRP machine in a manner which could impact the ability to 

manufacture optical surfaces or perform other metrology. The spigot by which the 

STA is mounted to the IRP machine was therefore modified to include a tilt of 1.9˚, 

as shown in Appendix 0. This angle was found by testing a series of locations on the 

ESO MSS part, and calculating the angle at which proper alignment becomes 

possible from knowledge of the local surface normal vector at the first unaffected 

location.  

When the STA is fitted to the IRP machine, the spigot tilt is arranged such that the 

STA optical axis is tilted along the X-axis of the machine with respect to the H-axis. 

During setup the A and B-axes of the machine must offset to compensate for the 

spigot tilt and null the device to the first measurement location. Thereafter, the 

system behaves as normal. When encountering the [0,0,1] condition, the control 

software can command the H-axis of the machine to rotate, thereby adjusting the 

orientation of the spigot tilt to compensate for the error in the B-axis which causes 

the condition to occur. The vertical fringes, which previously could not be nulled, 

are observed to be rotated to a horizontal orientation by the H-axis rotation. These 

horizontally arranged fringes may be nulled by adjusting the B-axis. Using a tilted 

spigot has allowed the use of the IRP machine H-axis, negating the requirement to 

add further axes or hardware.  
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However, in order to implement this solution to mitigate the [0,0,1] condition, the 

IRP machine H-axis must be integrated into the Fanuc control system as an axis, 

rather than as a spindle, where the motor is configured only to rotate at a known 

speed. The IRP1200 and IRP1600 machines installed at the OpTIC Glyndwr facility 

use H-axes which are configured as spindles only. Therefore, this solution has been 

verified experimentally with alignment and H-axis rotations performed manually. 

This solution was found to successfully remove the effects of the [0,0,1] condition, 

allowing the STA to be properly aligned for measurement of plano surfaces, which 

was previously not possible.  

To fully integrate this solution into the automatic operation of Metrology 

Controller, modifications of the control application are required. Knowledge of the 

instrument camera orientation with respect to the IRP machine must be 

maintained. To date, the STA has been mounted such that the device camera X and 

Y-axes are parallel with those of the machine, with the A-axis at zero. When 

rotating the H-axis, the camera co-ordinate frame becomes rotated compared with 

that of the machine. This requires the modification of the work presented in Section 

4.5.2 to perform correction for the H-axis axis as well as the A-axis. Figure 4.27 

shows the IRP automatic nulling function, which has been updated to determine 

whether the measurement point falls within the region affected by the [0,0,1] 

condition. This decision is made by observing the angle between the local surface 

normal vector and the machine Z-axis. If this angle is less than the minimum beyond 

which normal auto-alignment is possible, H-axis correction is required. Figure 4.28, 

shows the prototype function to perform the H-axis correction.  
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Figure 4.27: H-axis adjustment integrated into the STA automatic alignment script 

Find fringes

(autoFocus)

Check interrupts

Fringes found

successfully?

Increment attempt

counter

Counter > limit?

LogError

and 

Return

Check interfrometer

alignment

Check interrupts

Valid alignment

data returned?
Increment attempt

counter

Counter > limit?

LogError

and 

Return

Alignment error

<

user tolerance?

Check interrupts

Check machine postion

(getPosition)

Calculate local 

surface normal vector

(findNorms)

Find measurement

point co-ordinates

(findMeasurementPoint)

Calculate corrected normal

vector

(tipTilt)

Calcualte new machine

position

(IRPaxes)

Apply device offset correction

(alignmentCorrection)

Make alignment correction

move

(subapMoveProgram)

Check average modulation

(readModulation)

Modulation 

>

user tolerance?

Find fringes

(autoFocus)

Fringes found

successfully?

Increment attempt

counter

Counter > limit?

LogError

and 

Return

Update GUI

Check interrupts

Check interfrometer

alignment

Valid alignment

data returned?

Increment attempt

counter

Counter > limit?

LogError

and 

Return

Check interrupts

Optimise interferometer

modulation

(maximiseModulation)

Return

No

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Within [0,0,1]

region and non-vertial

fringes?

No

Yes
Perform H-axis 

correction

(correctHAxis)

Return



208 
 

 

Figure 4.28: H-axis correction function for [0,0,1] condition mitigation 

Having corrected the fringes to be horizontal in the device FOV, the function 

returns. Normal alignment is then performed and measurement proceeds as 

normal. It is likely that some further correction will be required to take into account 

that interferometer objective will be tilted out of the X-Y plane of the machine by 

the tilted spigot, however no noticeable problems were found during initial testing. 

This section has presented a solution to allow the STA to be operated on the type-2 

virtual pivot machine without modification to the machine, nor significant 

modification to the instrument itself. The tilted spigot used here can be easily 

removed and refitted with a normal mounting for other testing work. The solution 

given has been initially tested on the IRP1200 to confirm performance, however, 

full integration into the automatic control routines has not been possible owing to 

the spindle configuration of the H-axis on the systems at OpTIC. All modern type-2 
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virtual pivot IRP machines have H-axes configured as axes and therefore properly 

encoded to support this solution. 

4.5.3 Conclusion 

This section has discussed the automatic alignment of both point and sub-aperture 

measurement systems using closed-loop operation with feedback provided via 

4Sight and the alignment camera acquisition software for the Metrology Station. 

The alignment routines of both measurement systems have two modes of close-

loop operation: coarse and fine alignment. Owning to the differing hardware 

configurations of the STA and the Fizcam 3000, different coarse alignment routines 

are required.  

The Fizcam 3000 uses an internal alignment camera for coarse alignment, 

producing return spots from both the reference optic and the SUT. Placing both of 

these returns coincident at the centre of the alignment screen produces 

interference and allows the system to switch to fine alignment. However, the 

sensitivity of both coarse and fine alignment modes to translation (for spherical 

surfaces) is dependent upon the F# of the transmission optic used. Therefore, the 

alignment routine includes functionality to characterise this sensitivity for both 

coarse and fine alignment modes.  

Although the STA does include and coarse alignment mode, wherein the return 

from the objective is overlaid with that from the source, optimising this alignment 

does not generally produce interference in measurement mode. Therefore, a 

procedure of scanning the device along the H-axis vector has been adopted. In 

order for this procedure to prove effective in the presence of high tilt error, when 
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4sight cannot detect the presence of fringes, a pattern recognition algorithm has 

been successfully employed. With the fringe pattern located and centred in the 

device FOV, the alignment routine switches into fine mode.  

For both measurement systems, fine alignment mode uses Zernike terms computed 

by 4Sight from measurement data, to calculate subsequent correction moves. The 

residual error achievable in this mode is limited by the step resolution of the 

hardware. The step resolution for linear axes supplied by Zeeko is currently 1 µm, 

however this can be reduced to 100 nm by modifying the Fanuc control system. 

Even with the 1 µm step resolution, the Metrology Station is capable of 0.03 waves 

residual tilt error for a F1.5 test configuration when averaging 4 frames for Zernike 

fitting. Similar performance has been obtained with the STA using a 10x objective.  

4.6 Measurement Acquisition 

When sufficiently aligned, the system changes the interferometer configuration 

into measurement mode, which increased acquisition averaging to minimise 

vibration print through. Measurement acquisition is carried out and the data 

checked to ensure sufficient valid pixels are present, compared with a user 

specified threshold percentage. Should there be insufficient pixels, the system will 

check alignment and attempt measurement again, using the standard error 

handling procedure. Following a successful measurement, the interferometer data 

file is saved and the measurement report is updated. The measurement report is a 

text file which contains surface statistics for each measurement along with the valid 

pixel percentage and any notes of any problems. This allows the user to quickly 
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understand where any problems with the measurement process lie. The system can 

then be instructed to repeat single sub-apertures to fill in missing data, if required.  

When all measurement locations have been addressed, the system will return the 

axes to the home location and indicate to the operator that measurement is 

complete. If the user has requested more than one data set, the system will 

immediately start the next set.  

4.7 Application of Metrology Control System to Automatic 

Manufacturing Cell 

 At the point of completing the initial development of Metrology Control Suite, 

there was in place automated polishing and automated metrology. Both of these 

processes do not require human intervention during execution. However, setup and 

initialisation do require manual work. The next logical step must be to attempt to 

automate these intermediate tasks also. Therefore, Zeeko in partnership with 

Glyndwr University have engaged in a TSB project [93] to integrate a robotic arm 

with an IRP machine. This project aims to enable the automation of loading and 

unloading of optical components and tooling to the IRP machine, as well as wash-

down between process and metrology. Such work provides the ambitious prospect 

of developing a completely automated cell, containing an IRP machine, metrology 

and a robotic arm, to carry out part and tool handling activities. A prototype cell 

system is currently under construction at OpTIC Glyndwr, as shown in Figure 4.29.  
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Figure 4.29: Prototype optic production cell including a Zeeko IRP600 and Fanuc M20i-A robot arm 

As part of the Metrology Control Suite, a series of control and communications 

functions has been developed. These functions are currently being augmented to 

include interfacing for the robotic arm and will, in the future, include an interface to 

Zeeko TPG to allow the system to plan polishing activities. The amalgamation of tool 

path generation, metrology planning and control functionality will be governed by a 

decision making system which will include task scheduling algorithms to maximise 

cell productivity. This application of the work discussed in this thesis illustrates the 

flexibility of the architecture, in that new functionality can be added while 

maintaining the same performance used in other projects. The operator would 

control, not just an IRP machine or a metrology station but a whole production cell. 

In terms of process development for projects like the ESO E-ELT, which has taken 

around 7-years to date, small scale prototypes could be processed continually, 
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automatically exploring the parameter space and producing large quantities of 

process data. The process engineer is then freed from moving parts around 

manually to focus on analysing data to find the best possible route to a convergent 

process and the development of new finishing techniques.  

4.8 Conclusion 

This chapter has presented the development of a control application which allows a 

system comprised of both interferometer and CNC hardware to conduct automatic 

on-machine metrology, based upon a measurement plan created using the 

Metrology Designer module discussed in Chapter 3. The decision making behaviour 

of the system when operating in both open-loop and closed-loop modes has been 

discussed. Solutions to some of the problems identified in Chapter 2, such as the 

STA [0,0,1] condition and operation in the presence of an unstable environment.  

Although the STA and Fizcam 3000 have been applied to the IRP machine and 

Metrology Station respectively, there is no limit in software to prevent using each 

instrument with either machine. This is possible because the Metrology Control 

Suite is of a modular design and the choice of which kinematics to use during 

measurement is specified in the system configuration file. Therefore, new hardware 

may easily be supported in the future with little variation to either the existing 

code, or the behaviour of the user interface. This approach has been adopted both 

to enable simplified integration of further systems into the application and to 

minimise time spent developing the GUI. It was observed at various points during 

development that debugging the user interface takes a disproportionately large 

amount of time compared with the functionality it provides. However, the GUI 
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provides an essential window into the operation of an automated system, and so 

from the perspective of safety alone, a clear and effective interface serves an 

important role in a fully automatic system. As automatic metrology is expanded in 

both capability and complexity, it is critical that the human factors of such 

automation are understood [94].  

Chapter 5 will provide an assessment of the features of the Metrology Control Suite 

and the data produced by both the STA and the Metrology Station. It will be 

demonstrated that automatic on-machine metrology is capable of producing data 

of comparable quality with that of state-of-the-art techniques, even in an unstable 

testing environment. 
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5 Results and Discussion 

As discussed in Chapter 1, many state-of-the-art measurement techniques are 

unsuitable for the manufacture of next generation extremely large telescope optics. 

The combination of large, heavy optics, and their support systems, results in 

logistical problems transporting such components to the metrology laboratory. 

Many early on-machine solutions suffer from having to control the manufacturing 

environment and, in the case of texture measurement, require contact with the 

optical surface. The development of vibration insensitive interferometers and sub-

aperture stitching metrology has provided an opportunity to remove some of the 

problems currently associated with on-machine metrology. The author has 

combined these new techniques with existing CNC systems to enable automatic on-

machine metrology, as well as produce more reliable metrology in the 

manufacturing environment. 

Following the development of the Metrology Control Suite, the software has been 

used to carry out a series of measurements with both the Metrology Station and 

STA automatically. This chapter will discuss measurement results as well as the 

performance of the control system, and demonstrate that the techniques 

developed can support future production of ultra-precision large optics. Where 

possible, comparison will also be drawn between state-of-the-art techniques and 

those presented in this thesis. 
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5.1 Surface Texture Analyser 

As discussed in Chapter 1, surface texture measurement of large surfaces such as E-

ELT segments currently presents practical challenges due to the physical 

configuration of state-of-the-art instruments and the requirement to transport the 

SUT. On-machine instruments generally require placement onto the surface and 

manual alignment, posing a risk of surface damage. Also, in order to achieve the 

production rate required for the E-ELT to meet the first light deadline, duration of 

metrology must be minimised. Therefore, systems such as the STA used with 

Metrology Control Suite, provide an advantage over existing devices.  

As discussed in the preceding chapters, the STA device is fitted to the IRP1200 

machine and is classed by the control system as a point measurement device. This 

means the measurement design process produces a set of discrete points which are 

not required to overlap. This section will present example data taken with the STA 

mounted to the IRP machine and make comparison with existing texture 

measurement techniques. The measurements presented here were taken without 

the use of the tilted spigot arrangement, used to overcome the [0,0,1] condition. 

5.1.1 Application of STA to ESO segment measurement 

As part of the ESO E-ELT prototype project, the consortium are required to provide 

texture measurement data. A summary of the segment texture specification is 

given in Table 5.1. No requirements for sampling area or resolution are made, 

which demonstrates that there is no established best practice of how to measure 

texture for optics of this scale. This is in contrast to form measurement, for which 

the specification is more comprehensive [34].  
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As he E-ELT is difficult to move and cannot be accommodated on existing texture 

measurement systems, the STA is fitted to the IRP1600 machine to perform these 

measurements. As discussed earlier, most of the ESO segment falls within the 

region affected by the IRP machine [0,0,1] condition due to the long radius of 

curvature of the surface. Therefore, tilt actuators fitted to the segment support 

(discussed in Section 2.3.1) are driven to their extreme in order to introduce 

sufficient tilt to allow measurement over most of the surface.  

Table 5.1: Summary of ESO E-ELT texture specification 

Specification Requirement 

Maximum microroughness in useful area 3 nm 

Average microroughness in useful area 2 nm 

Number of samples to be taken 3  

It was found during testing that control system still struggles with this setup due to 

some regions remaining affected by the [0,0,1] condition. Use of automatic testing 

would also require the use of non-linear probing to correct the measurement plan 

for the extra tilt introduced by the segment support. As the operators of the 

IRP1600 use a non-standard method to perform non-linear probing, development 

would be required to enable compatibility with Metrology Designer. It was 

therefore decided that Metrology Controller would be used in semi-automatic 

mode for the ESO E-ELT segment pass-off measurements. Semi-automatic mode 

allows the user to interpret the live fringes in 4Sight and select which way the 

system should tilt. This reduces the effects of the [0,0,1] condition by allowing 

assessment of when alignment can no longer be improved. Semi-automatic mode 

uses the same control functions as fully automated measurement but accepts 

instructions from the operator. This mode is an improvement over manual 
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operation as orthogonal moves are produced by the control system, allowing 

simpler alignment control but without automatic alignment.  

Figure 5.1 shows an example ESO E-ELT prototype segment measurement (SPN04). 

The measurement was taken with the STA using the 10x objective over an area of 

approximately 0.9 mm x 0.9 mm. The STA has been used in the pass-off of 3 

segments and the master spherical segment (MSS) to date. 

 

Figure 5.1: Example of ESO E-ELT segment measurement, witnessed by ESO 

This measurement produced a result of 15.22 nm PV and 1.01 nm Sa and was 

calibrated by subtracting a reference dataset created by averaging 16 randomly 

arranged measurements of a super-smooth reference flat. During the course of the 

ESO E-ELT segment prototype production, STA measurements have been collected 

by the author to allow certification of segment texture for customer pass-off.  
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5.1.2 Automatic On-Machine Measurement 

During development, measurements were also carried out on the IRP1200 machine 

using the STA in automatic mode. This section reviews the data obtained during 

these measurements, as well as the performance of the control system during 

operation. Figure 5.2 shows the measurement used for this test, which was 

performed on a hexagonal 3000 mm ROC concave spherical surface with a corner-

to-corner diameter of 200 mm. This test was performed prior to the 

implementation of the tilted spigot (Section 4.5.2.2) and so the central 

measurement location was skipped in order to avoid the [0,0,1] condition during 

the test. It was found that the SUT slope was sufficient at all subsequent locations 

for measurement to proceed without problem. Measurement points were laid out 

in three lines from centre to corner. As the target of measurement was to assess 

control system performance, uniform surface coverage was not required.  
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Figure 5.2: STA automatic metrology measurement plan 

The modified test location position table is shown in Figure 5.3. This shows that a 

bulk rotation of 30° has been applied to allow the measurements to run into the 

part corners.  
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Figure 5.3: Modified test point locations table for STA automatic control testing 

Following execution of the setup procedures, measurement was started with an 

alignment averaging level of 4 samples and measurement averaging of 16 samples. 

It was observed that the system took approximately 20 minutes to execute the 

measurement plan. 30% of this time was occupied with data acquisition for both 

measurement and alignment testing, which is less than expected. Much of the 

remaining time (14 minutes) was spent in coarse alignment and surface location. As 

mentioned in Section 4.5.2.1, due to the small depth of focus of the objective, small 

stage iterations must be made to ensure interferometric fringes are not missed. As 

has been established in testing, even with the application of non-linear correction, 

the measurement location may be ±30 µm from the predicted location. 

The measurement data collected is saved as 4D data files (.h5 format) and must be 

interpreted manually by the operator. However, as with sub-aperture stitching 



222 
 

measurement, a summary of the measurement statistics (PV, RMS, valid pixels) is 

produced in a text file. In the case of the example automated measurement, the 

data showed < 0.3 nm RMS variation in texture across the surface.  As this surface is 

a development part for the ESO E-ELT project, it had previously been treated with a 

rigid pitch tool, providing a good finish (typically <3 nm RMS). Figure 5.4 provides an 

example dataset from automatic measurement. Although, a treatment using the 

pitch tool has been applied, visible artefacts of the previous process, using LP-66 

polyurethane, remain. The fine diagonal left-right marks indicate bonnet rotation 

direction as it moved against the surface, leaving some perpendicular waviness of 

small amplitude (<1 nm). Some underlying, lower spatial-frequency content is also 

present which shows that insufficient smoothing has been carried out. 

 

Figure 5.4: STA on-machine automatic measurement example of a small-scale E-ELT process development 
component 

This example illustrates the benefits of using automatic metrology to check surface 

texture. It is possible for such texture to occur on the surface non-uniformly. This is 
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particularly problematic for the aspheric ESO E-ELT segments, where the rigid pitch 

tools exhibit aspheric mismatch. Such a mismatch can cause the smoothing process 

to be more effective in some areas of the surface, where better conformity occurs, 

causing a variation in texture. Measuring texture in a small number of locations on 

a surface of this size poses a risk of areas of poor texture remaining. If such defects 

go undetected, a degradation in optical performance of the completed system will 

occur, particularly in stray light. The use of automated on-machine texture 

measurement therefore provides improved characterisation of both the application 

of the polishing process and the effectiveness of the final texture treatment. 

5.1.3 Comparison of STA with Existing Texture Analysis Techniques 

This section will present comparison between the on-machine STA measurement 

system developed in this thesis and existing texture measurement techniques. This 

comparison will demonstrate the viability of automated on-machine texture 

measurement when compared with laboratory based metrology.  

5.1.3.1 ADE Phaseshift White Light Interferometer 

The Author’s paper previous work [81] provided comparison data between the STA 

and the ADE Phaseshift device, used in small scale process development at OpTIC 

Glyndwr. The dominant reason for the numerical discrepancy between the two 

measurements was considered to be the different device spatial sampling levels, 

thought to be principally determined by the CCD resolution. In order to investigate 

this further, a two dimensional Fast Fourier Transform (FFT) was taken of the two 

datasets, prior to pixel re-sampling (Figure 5.5 and Figure 5.6). In order to allow 

direct comparison, the FFT images have been reduced to a plot of power against 

spatial frequency, with the -3dB points also displayed, shown in Figure 5.7. From 
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the FFT images, it can be observed that the ADE device does not contain power to 

the edge of the FFT plot, indicating that the CCD cut-off frequency is not the limiting 

factor in the system. If the CCD were the performance limiting factor, one would 

expect to see the data truncated at the edge of Figure 5.5, and containing the same 

power as the corresponding region of the STA FFT plot.  

 

Figure 5.5: Phaseshift ADE FFT analysis result 
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Figure 5.6: 4D Technology Surface Texture Analyser FFT result 
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Figure 5.7: Spatial frequency performance comparison between ADE Phaseshift and 4D Technology devices. 



227 
 

Therefore, the optical transfer function (OTF) of the ADE system optics also 

contributes to the system cut-off frequency. The FFT analysis performed here also 

reveals the tendency of both systems to low-pass filter spatial frequencies, causing 

their under reporting in data statistics. The metrologist must therefore be aware of 

device performance limitations, especially when comparing data taken with 

different instruments.  

The characteristics presented in Figure 5.7 cannot be considered absolute OFT 

characterisations for the systems compared. The data presented contains not only 

the instrument characteristic but also the local spatial frequency content of the 

SUT. Figure 5.7, therefore, serves only as a direct comparison of the two 

instruments tested, as all data were obtained from the same SUT, which exhibits 

uniform texture. Full characterisation would require the use of a periodic artefact. 

This analysis demonstrates why the two devices produce differing numerical results 

when measuring the same surface. The STA -3dB point occurs at 0.3270 µm-1 while 

that of the ADE at 0.0660 µm-1.  

5.1.3.2 Surface Replication 

As well as comparing the STA against existing optical techniques, work was also 

carried out to explore the viability of surface replication for texture 

characterisation. As mentioned in Section 1.3.2, though surface replication has 

proven a viable technique for texture characterisation, there is little published 

material applying the technique to smooth surfaces (< ~100 nm Sa) similar to those 

required by the ESO E-ELT. In order to make a more thorough comparison, a small 

Zerodur sample was pitch polished to provide a texture similar to that of a 
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completed E-ELT prototype segment produced at OpTIC. Two separate replication 

techniques were then applied to assess their effectiveness. The ADE Phaseshift 

device was used during this test to provide a demonstration of how replication 

might be used as an alternative to the STA. Without the use of replication, the ADE 

device alone cannot measure E-ELT segments due to the physical configuration of 

the instrument. Figure 5.8 is a direct measurement of the sample SUT using the ADE 

device, to serve as a control sample for the replicated results. A result of 0.64 nm Sa 

was obtained over an area of 1.38 mm x 1.02 mm with tilt, power, astigmatism and 

coma removed. Such a result is representative of measured surface texture of an E-

ELT segment.  

 

Figure 5.8: Direct measurement of Zerodur sample using ADE Phaseshift 

Figure 5.9 shows an image of a result obtained by measuring a sample replicated 

from the surface of the Zerodur sample SUT. A polymer replication medium (similar 

to dental polymer) was deposited and, while still workable, a rigid substrate was 
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pressed against the side of the polymer not in contact with the SUT. The substrate 

forces the polymer into good contact with surface detail, as well as providing 

rigidity to the polymer when the sample is removed for testing. The polymer 

sample took 3 hours to cure and was subsequently removed to the ADE for testing. 

The result in Figure 5.9 provides a result of Sa 40.20 nm (compared with 0.64 nm by 

direct measurement) when measured over the same area as the previous result 

with the same terms removed. The red regions in the image represent data loss. 

The discrete black regions in the image are likely to be air bubbles trapped between 

the polymer and the SUT. These artefacts contribute significantly to the numerical 

result, making discerning the underlying texture difficult. Compared with the result 

shown in Figure 5.8, there is significant loss in high spatial frequency content and it 

is unlikely that the polymer could provide a suitable replication for smooth surface 

characterisation.  

 

Figure 5.9: Polymer replication measurement using ADE Phaseshift 
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The second replication medium used in this trial was a UV curing compound. The 

compound was deposited onto the SUT and a wire used to draw a fine layer across 

the surface, providing a well-controlled layer. A transparent plastic backing is 

applied as a substrate to the UV compound, while still workable, and pressure 

applied with a roller to force the compound into the microstructure of the SUT and 

provide good adhesion between the compound and substrate. The compound is 

then exposed to UV light, through the substrate, for several minutes in order to 

cure. The UV cured compound was measured using the ADE Phaseshift and 

produced a result of 0.80 nm Sa over 1.38 mm x 1.02 mm with tilt, power, 

astigmatism and coma removed. Again, there is some evidence of loss of high 

spatial frequencies between direct and replicated measurement, however, the 

comparison is more favourable than that with the polymer replication.  

 

Figure 5.10: UV cure replication measurement using ADE Phaseshift 



231 
 

Although there is some evidence to suggest that characterisation of surface texture 

through replication is viable on smooth surfaces, the SUT used in this test had a 

small magnitude, random texture imparted by a pitch tool. In order to assess the 

linearity of the process, a known structured surface should be replicated and 

measured to display the accuracy of the replication. The test carried out here, 

therefore, does not prove conclusively that the material can produce a 

representative replication of a smooth surface, only that it has potential. It was also 

found that the UV compound samples lacked rigidity once removed from the 

original sample, causing them to distort. Such distortions affected the stability of 

measurement, requiring a low averaging level to minimise acquisition duration. This 

was mitigated during testing by bonding the plastic substrate of the UV compound 

to rigid cardboard.  

In summary, this section has presented an initial test assessment of the use of 

replication, combined with a lab based instrument, as an alternate to STA for the in-

situ measurement of large surfaces. Two materials, an air curing polymer and a UV 

curing compound have been applied to a smooth Zerodur sample and subsequently 

measured using the ADE Phaseshift device. It has been demonstrated that the UV 

curing compound exhibits a texture of comparable magnitude, although omitting 

the high spatial frequency features. However, this analysis does not take into 

account that the replication process requires manual handling of the original 

sample. In the case of large, 1.45 m diameter E-ELT segments, accessing the central 

region of the surface may still prove challenging and risky. Furthermore, even an 
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accurate replication technique will introduce extra error into the measurement 

process, which cannot easily be separated from that of the SUT. 

5.1.4 Conclusion 

This section has studied the performance of the 4D Technology STA device when 

used automatically on the IRP1200 machine in order to assess the performance of 

the instrument itself and the Metrology Control Suite detailed in the thesis. The 

automatic testing carried out here did not make use of the tilted spigot 

arrangement, designed to remove the effects of the machine [0,0,1] condition. A 3 

m ROC SUT was therefore chosen, requiring that only a single, central 

measurement location be skipped. It was observed that the system is capable of 

carrying out measurement automatically and obtaining data which compared well 

both with that obtained manually and in the metrology lab. Further assessment of 

automatic system performance is made in Section 5.3.  

Further analysis was also carried out of the STA and Phaseshift ADE devices to 

understand why the devices produce differing results when measuring the same 

calibration artefact. By analysing the spatial frequencies contained in measurement 

data, it was observed that the factors dictating system performance are more 

complex than originally considered. The system OFT contributes heavily to the 

overall instrument transfer function, especially in the case of the ADE. Selection of 

measurement device may become critical for projects where observed wavelength 

approaches the spatial frequency of the SUT texture. In such cases, measurement 

device attenuation, which causes texture at high spatial frequencies could indirectly 

lead to reduced optical performance.  
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This section has also presented a brief overview of surface replication as an 

alternative to on-machine metrology using the STA. A sample with texture similar to 

that of an E-ELT segment was replicated using two different materials and 

measured using the ADE device. While it was found that the UV cured sample may 

have the potential to be suitable for E-ELT measurement, the techniques used 

require manual working in proximity to the SUT, and likely contribute error to the 

measurement process. Also, due to the flexible nature of the thin UV cure 

compound layer, the technique tends to contribute to the low spatial frequency 

content of the texture measurement. This form cannot be discerned from that of 

the SUT and increases retrace error in subsequent optical measurement.  

Following the development of the Metrology Control Suite, the STA is considered a 

suitable device for projects such as the ESO E-ELT due to the high level of 

automation and ease of obtaining good quality data. However, full automatic 

measurement of ESO segments does require an IRP machine with an H-axis 

configured with an encoder, to allow the use of the tilted spigot. The STA also has 

the ability to characterise texture of higher spatial frequency than the other 

techniques observed here and so is likely to be suitable for characterisation of 

optics designed to image at shorter wavelengths.  

5.2 Metrology Station 

The Metrology Station system was designed to allow the measurement of optical 

components which could not be measured in a full-aperture regime, for example 

large ROC convex and large diameter plano parts. The system can also measure 

optics which are too large to be accommodated by other commercial stitching 
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systems, such as the QED SSI. Though the Metrology Station table cannot support 

an ESO E-ELT segment for measurement, the techniques and software developed 

can be applied to hardware capable of supporting these components, such as the 

OpTIC testing tower. To demonstrate the combined performance of the Metrology 

Station and the software developed by the author, this section compares 

measurements performed with the Metrology Station and state-of-the-art systems, 

which produce comparable performance. As the Metrology Station was developed 

as a customer project, these measurements were used to pass-off the machine 

against the specification agreed with the customer.  

Although this section focuses on the quality of the output data, the work presented 

in this thesis is also concerned with the automation of metrology. Therefore, an 

assessment of the automatic capabilities of the system is presented in Section 5.3.  

5.2.1 Application of Automatic Sub-Aperture Stitching Interferometry 

When developing a customer system, it is common practice to perform a pass-off 

trial before shipping, and repeat this trial with the system installed at the customer 

site. The pass-off trial is a series of measurements designed to confirm system 

performance against that indicated in the product specification. In the case of the 

Metrology Station, the tests are also designed to evaluate the performance of 

Metrology Control Suite in terms of correctly calculating a valid metrology plan, 

applying machine kinematic calculations, and controlling system elements in order 

to position the surface and acquire data. With the data acquired, the Stitching 

Toolkit, developed by Dr Christopher King, accepts the measurement data along 

with the sub-aperture configuration file and must stitch the data into a 
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representative synthetic full-aperture surface map. In order for the software to be 

able to perform the outlined tasks, the system hardware itself must also function 

properly, as any assembly error can cause both poor control and stitched 

measurement results. 

This section presents sample results of the pass-off tests and discusses factors 

limiting system performance. Table 5.2 provides a summary of the specification for 

measurement pass-off of the Metrology Station and the results obtained from the 

tests discussed in the following sections. The system performance was tested for 

both plano and spherical surfaces, as high precision measurement of each presents 

unique challenges. The Metrology station was passed off successfully, surpassing 

the specification in all areas. 

Table 5.2: Summary of Metrology Station pass-off specification and achieved results 

Pass-off Test Specification Result Achieved 

Plano Repeatability 2 nm 0.57 nm 

Accuracy λ/20 λ/37 

Spherical Repeatability 3 nm 1.45 nm 

Accuracy λ/20 λ/33 

 

5.2.1.1 Spherical Pass-Off Measurement 

The cavity length of the full-aperture spherical test is defined by the ROC of the SUT 

and that of the reference optic. Tests of long ROC surfaces can therefore become 

impractical and suffer from poor SNR. Full-aperture measurement of large convex 

surfaces is generally limited by the interferometer aperture size. By using the 

Metrology Station, cavity length can often be chosen through selection of 

transmission sphere and so measurement can become more tolerant of air currents 

and vibration. Convex surfaces also become as simple as concave to measure. 
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The spherical pass-off tests were carried out on a 465 mm ROC convex surface of 

300 mm diameter. This surface was affixed into an aluminium ring which was in 

turn secured to the Metrology Station rotary table by three peripheral clamps, as 

shown in Figure 5.11.  

 

Figure 5.11: 465 mm ROC convex sphere used for Metrology Station pass-off testing 

For measurement, it was decided that an f1.5 transmission sphere would be used to 

provide a sub-aperture of 86.11 mm. The surface design was generated using 

Surface Designer and loaded into Metrology Designer. The transmission optic 

specification parameters were entered into the optics database and a plan 

generated, as shown in Figure 5.12. Each red point on the figure represents the 

interferometer FOV centre at a test location and the blue circle shows the size of 
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the sub-aperture. It was found that the outer ring of sub-apertures was too far over 

the part edge and so the plan was manually adjusted using the sub-aperture angles 

editor menu. 

 

Figure 5.12: Measurement plan used for Metrology Station pass-off at customer site. SUT: 300 mm, 465 mm 
ROC Convex 

Figure 5.13 is a screen shot of the sub-aperture angles editor menu and shows the 

resultant sub-aperture ring configuration following plan optimisation. In the case of 

spherical measurements, only the elevation angle and number of sub-apertures 

column may be edited. The Y-axis offset is the calculated offset required to move 

the SUT between concentric rings.  
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Figure 5.13: Sub-aperture angles editor configuration for pass-off test of Metrology Station 

With the measurement plan designed, an OMM file was generated and saved. This 

allows the plan to be repeated at a later date but may also be used to modify the 

plan further.  

The OMM file was loaded into Metrology Controller, displaying the plan for 

confirmation. The setup procedures outlined in Section 4.3 were carried out to 

clock and align the surface to the interferometer optical axis. The machine co-

ordinate system was also set to zero to define the optical centre of the first sub-

aperture as the machine origin. With the setup tasks complete, the machine was 

commanded to execute the measurement plan.  

The system performed the measurement start up tasks, where tilt and focus 

sensitivities are measured at the position at which the operator has manually 

aligned the surface. This ensures that the sensitivity measurements are carried out 



239 
 

in an area of the SUT of known acceptable optical quality, maximising their 

accuracy. The Metrology Station then began the task of moving to, aligning with 

and measuring each of the 41 sub-apertures in the measurement plan. In order to 

provide repeatability data, the system was requested to repeat the overall 

measurement process 6 times. In between each measurement set, the system is 

not required to recalculate tilt and focus sensitivities as the previously calculated 

results are retained until the conclusion of measurement. The laboratory in which 

the measurement was carried out is able to regulate air temperature to 

approximately 0.1 °C.  

It was found that the measurement of the 41 locations planned in the pass-off test 

took around 4 hours to complete, averaging 256 acquisitions per sub-aperture. 

With each acquisition recorded to take ~0.9 seconds to complete, this results in a 

total measurement acquisition time of 2 hours 37 minutes. However, during 

alignment, the system makes measurements by averaging 4 acquisitions in order to 

perform Zernike analysis to determine alignment. It was found that each 

measurement location requires, on average, two correction moves and therefore 3 

alignment measurements. This gives a total acquisition time of ~2 hours 45 

minutes. The Metrology Station therefore spends nearly 70% of the measurement 

period acquiring data. The rest of the time is spent moving between measurement 

locations and performing alignment corrections. 

Following measurement acquisition, the data was saved and the machine co-

ordinates at which measurement was acquired recorded in the sub-aperture 

configuration file. This file was then loaded into the Stitching Toolkit to describe the 
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configuration in which to reassemble the sub-aperture into the final synthetic 

dataset. Figure 5.14 shows the resultant stitched data set for the Metrology Station 

spherical pass-off measurement.  

 

Figure 5.14: Stitched result of Metrology Station pass-off test (image by C.W. King) 

When compared with a circular interferometer aperture, the synthetic dataset is 

immediately obvious due to the petal like patterning around the dataset periphery. 

When compared with the SUT design in Figure 5.12, some truncation was expected 

due to the sub-apertures overhanging the SUT edge. However, the surface diameter 

of the design underestimated the SUT, resulting in no such effect being visible. This 

approach of underestimation of the SUT diameter was deliberately used as a 
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method of avoiding sub-aperture edge overhang. At the left and right edges, two 

markers are visible to aid in orientation of the surface in the interferometer FOV. 

These also provide a key to allow the data and subsequent polishing tool path to be 

matched to the surface when setting up corrective polishing. The Stitching Toolkit 

also automatically estimates and subtracts the reference surface error from each 

sub-aperture, prior to stitching. The example shown in Figure 5.14 has a PVr of 95.7 

nm and is representative of the 6 stitched measurements obtained during the 

spherical pass-off measurement.  

Table 5.3 summarises the difference statistics between the computed mean and 

each of the six stitched results. The measurement repeatability has been computed 

as shown in Equation 5.1 and shows that the system falls within the repeatability 

specification of 3 nm RMS, given in Table 5.2 .  

Table 5.3: Measurement statistics for the delta between the six repeat measurements and the computed 
mean 

Delta PV 
(nm) 

PVr 
(nm) 

RMS 
(nm) 

1 19.4 7.2 1.2 

2 12.9 6.5 0.9 

3 15.1 7.1 1.3 

4 20.0 6.9 1.3 

5 18.7 7.1 1.12 

6 21.7 8.4 1.2 

    

Mean 17.97 7.19 1.17 

Sigma 3.30 0.65 0.14 

    

Repeatability 24.57 8.48 1.45 

 

Equation 5.1: Measurement repeatability 

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑥̅ +  2𝜎 
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An example dataset showing the delta between a stitched measurement and the 

computed mean dataset is shown in Figure 5.15. This dataset clearly demonstrates 

the propagation of the discontinuities caused by the orientation markers into the 

dataset. Although, the sub-aperture regions are clearly visible as a patterning across 

the surface, the magnitudes of these steps are numerically insignificant and barely 

visible on the lateral profiles shown.  

 

Figure 5.15: Example delta between stitched measurement and mean result for Metrology Station pass-off 
(image by C.W. King) 

Following the spherical pass-off tests the Metrology Station was found to have met 

specification in terms of measurement repeatability. The system provides the 
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opportunity to perform metrology on spherical surfaces which cannot currently be 

accommodates on existing full-aperture measurement systems. In the case of the 

465 mm ROC convex surface, the customer was unable to measure the SUT 

interferometrically, and so unable to complete polishing without the Metrology 

Station. 

5.2.1.2 Plano Pass-Off Measurement 

Measurement of large plano surfaces can be difficult due requiring either a large 

beam expander or the arrangement of a Ritchey Common Test (both requiring large 

optics). Sub-aperture stitching allows the use of standard interferometer 

configurations but requires known positioning of the SUT in order to achieve an 

acceptable stitched result. The Metrology Station therefore offers a simple and 

automatic method of measuring large plano surfaces without requiring other large 

surfaces. 

The measurement process outlined in Section 5.2.1.1 was repeated for a plano 

surface. This section will outline the results of this test as well as the Metrology 

Station system performance during this trial. The measurement was performed on 

a 150 mm diameter transmission flat. As the Fizcam 3000 aperture supports up to 

164 mm transmission optics, the aperture was stopped down to 100 mm to 

simulate the use of a 100 mm transmission optic, as agreed in the pass-off 

requirements. Figure 5.16 shows the measurement plan used for the plano pass-off 

test.  
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Figure 5.16: Metrology Station plano pass-off measurement plan 

The sub-apertures were arranged in a single ring, with an offset of 30 mm from the 

central sub-aperture. Measurement setup tasks were carried out as per the 

spherical pass-off test, with the exception that no pivot distance measurement is 

required as the rotary table is not required to tilt during operation. The 

measurement was configured to repeat 4 times to provide sufficient data to make a 

study of measurement repeatability.  

It was found that measurement duration scaled well with the number of sub-

apertures, when excluding the tilt sensitivity measurement steps as these are of 
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constant duration. The plano measurement took around 2 hours to complete with a 

measurement acquisition level of 256 and alignment level of 4. Both spherical and 

plano measurement scripts largely perform the same tasks, the main difference 

being that different axes are used to align the part for measurement. Test duration 

should therefore be directly proportional with number of sub-apertures measured 

and acquisition level.  

Following measurement, the Stitching Toolkit was used to compute synthetic 

datasets. A representative example of the results is shown in Figure 5.17. SUT 

orientation markers are visible at the top and bottom edges of the part, which have 

caused the noise visible in the Y-axis slice visible to the right of the image. This 

measurement has a PVr of 10.3 nm and RMS of 1.27 nm. The colour map used for 

the surface has been stretched to reveal surface detail.  
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Figure 5.17: Plano pass-off measurement stitched result (image by C.W. King) 

Table 5.4 shows a summary of the results obtained by taking a difference between 

the stitched result of each plano pass-off measurement and the computed mean. 

The value given for the system repeatability has been obtained using Equation 5.1. 

The plano repeatability was found to be 0.57 nm RMS, well within the 2 nm RMS 

given in the system specification.  
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Table 5.4: Metrology Station plano pass-off measurement delta results 

Delta PV PVr RMS 

1 17.0 2.3 0.38 

2 7.9 2.3 0.44 

3 9.2 2.5 0.46 

4 11.6 2.2 0.52 

    

Mean 11.42 2.33 0.45 

Sigma 4.03 0.15 0.06 

    

Repeatability  19.47 2.63 0.57 
 

Further to making an assessment of measurement repeatability, tests were carried 

out to establish the accuracy of measurement data. The plano SUT was measured 

using a 300 mm Zygo system located at the customer laboratory. The two 

measurements were registered using the orientation markers and subtracted. A 

difference of 4.43 nm PVr (λ/37) with reference errors estimated and subtracted 

was found, within the accuracy required in the specification. This measurement also 

serves to provide a comparison of the performance of stitching metrology against 

full-aperture, showing that there is little difference between the two techniques, as 

applied. It is also difficult to tell which measurement is correct. The next section 

provides a comparison between sub-aperture and full-aperture measurement of 

spherical surfaces and the reference estimation technique of Stitching Toolkit.  

5.2.2 Comparison of sub-aperture and full-aperture metrology 

In order to assess the accuracy of the Metrology Station when performing sub-

aperture measurement acquisition, a comparison full-aperture and sub-aperture 

stitching measurement was made. In order to provide an assessment of the 

reference surface estimation performed in Stitching Toolkit, the full-aperture 

measurement was performed using a 3-sphere test [95] [96]. These measurements 
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were carried out on an 87.07 mm ROC convex Taylor Hobson calibration surface of 

90 mm diameter. In order to accommodate the surface in the full-aperture test 

with available transmission optics, only the central 54 mm of the surface could be 

measured. Figure 5.18 shows the configuration for both the sub-aperture (left) and 

full-aperture 3-sphere (right) tests.   

 

Figure 5.18: Schematic of test setup for comparison between stitched and full-aperture measurement (image 
by C.W. King) 

The transmission optics used for both tests were also different, with the stitching 

measurement using an f3.3 and the 3-sphere test using an f1.5. The measurement 

plan for the stitching measurement is shown in Figure 5.19. Although the sub-

apertures appear to overlap the edge of the SUT, the design represents only the 

target region of the central 54 mm region of the SUT.  
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Figure 5.19: 3-sphere test measurement plan 

The control application was configured to repeat measurement acquisition three 

times, providing sufficient data to compute repeatability statistics. Figure 5.20 

shows the result of the 3-sphere measurement, giving a PVr of 67.3 nm and RMS of 

11.3 nm. Figure 5.21 shows the averaged result of the three stitched measurement 

datasets and has a PVr of 68.9 nm and RMS of 11.6 nm. In both images, SUT 

orientation markers are visible at the top and bottom edge of the datasets as 

triangular regions of missing data.  

 

 



250 
 

 

Figure 5.20: 3-sphere measurement result (image by C.W. King) 

 

 

Figure 5.21: Stitched measurement result (image by C.W. King) 
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Figure 5.22 shows a resultant image of the subtraction of the 3-sphere and stitched 

measurement. The circular regions of concentric rings at the left and right of the 

image are diffraction rings caused by dust particles contained within the f1.5 

transmission optics. Though clearly visible to the eye, they contribute little to the 

numerical result. The difference dataset has a PVr of 18.0 nm and RMS of 2.97 nm.  

 

Figure 5.22: Difference between 3-sphere and stitched results (image by C.W. King) 

The comparison measurement presented was carried out prior to shipment of the 

Metrology Station to the customer. As such, data acquisition of the stitching 

measurement data was carried out on the machine shop floor at the Zeeko facility 
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in Coalville, Leicestershire. The working volume temperature of the Metrology 

Station was observed to vary by around 3 °C during a 24-hour period as shown in 

Figure 5.23. It is expected that the results produced in this comparison could be 

improved upon in more stable conditions.  

 

Figure 5.23: Metrology Station working volume temperature variation during stitching measurement for full-
aperture and stitching comparison 

Despite the instability of the atmospheric conditions, the stitching results provided 

a repeatability of PVr 7 nm and RMS 1.2 nm with good reference surface agreement 

between the two techniques, and within specification. This result demonstrates the 

reduced cavity lengths obtainable through sub-aperture stitching allow precision 

measurement in the presence of atmospheric instability.  

5.2.3 Conclusion 

This section has provided example data acquired using the Metrology Station in 

automatic measurement mode, which demonstrates the repeatability and accuracy 

of the system in stable laboratory conditions for both plano and spherical surfaces. 

Data allowing comparison between full-aperture and sub-aperture measurement 
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has also been presented, which serves to validate the sub-aperture positioning 

accuracy and ability of the control system to correctly align the device, minimising 

system retrace errors.  

All of the sub-aperture data presented here has been obtained automatically, with 

user intervention only during the setup phases. Much of the time the system was 

left unattended during measurement, as this allowed for maximum atmospheric 

stability in the measurement volume. It was generally observed from the system 

error logs that errors did occur, most commonly interferometer timeouts, however 

these were correctly handled and measurement continued.  

Many of the errors which continue to affect and limit system performance are the 

result of the interferometer Python interface. During long measurement cycles, it is 

observed that the 4D Technologies web service tends to occupy an increasing 

amount of system memory, causing all system operations to slow. This condition is 

only resolved by restarting 4Sight. The correct selection of measurement mask in 

4Sight and metrology plan, i.e. such that little sub-aperture area overhangs the part 

edge can mitigate this affect. However, this can limit measurement design 

flexibility.  

5.3 Automatic Operation 

This chapter presented data which validates the combined performance of 

metrology devices and CNC positioning systems. These systems have been operated 

using the Metrology Control Suite, developed by the author. Although the driving 

force is the desire to obtain good quality data, it is appropriate that an assessment 

be made of system automation. Feedback from such examination can then drive 
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improvement in future versions of software. This section discusses the limitations 

of the on-machine metrology systems developed and suggests how these may be 

overcome.  

As well as the principal motivation of reducing the risk of damage associated with 

the manual handling, automation of on-machine metrology can potentially reduce 

the overall measurement time. Figure 5.24 shows an overview of the process chain 

of the corrective polishing regime applied to the prototype ESO E-ELT segments. 

Toolpath calculation and polishing times are dependent upon residual surface error 

and so cannot be reduced by metrology. For the E-ELT prototypes, metrology is 

performed in-situ and so measurement setup times would remain constant with 

the use of automation. However, for other projects, SUT transport time would be 

eliminated as well as part clocking which would present a time saving of potentially 

several hours per process cycle. Metrology of E-ELT segments current varies 

between 8 and 36 hours, as better SNR is required as the segment nears 

specification which requires increased averaging. However, the adoption sub-

aperture measurement techniques demonstrated in this thesis would allow a 

reduction in cavity length and so in improved SNR. Combined with automatic 

alignment, it is expected that automatic on-machine measurement of an E-ELT 

segment using a sub-aperture device would take approximately 8 hours to 

complete, based on testing duration of Metrology Station discussed earlier.   
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Figure 5.24: Time constraints associated with current ESO segment processing steps 

5.3.1 Measurement Duration 

One of the motivations of measurement automation is the potential for reduction 

in measurement duration. As mentioned earlier, the systems presented spend 

around 70% of the measurement duration acquiring data frames from the 

interferometer. The remaining time is spent either moving to new measurement 

location for performing alignment corrections. This section provides examples of 

how automatic metrology speed may be increased. 

5.3.1.1 Measurement Acquisition 

Measurement acquisition is composed partly of exposure, allowing light to enter 

the optical system and fall upon the CCD, and processing. Processing involves 

reading the data from the CCD and performing phase unwrapping to provide a 

surface map and the computation of statistics. With the current interferometer 

software, the processing period dominates measurement acquisition and cannot be 

adjusted as it requires the execution of functions over which the author has no 

control. The speed of execution of the phase unwrapping algorithms is also 

dependent upon surface quality. Discontinuities in the surface or edge overhang 
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can cause phase unwrapping errors, making it more difficult for the algorithm to 

solve. Processing time can be minimised through proper design of measurement 

plan by minimising edge overhang and the number of locations measured. A further 

option would be to split the interferometer video signal, and process images 

separately to provide tilt analysis using a 2-dimensional Fast Fourier Transform for 

alignment correction. However, this would not reduce the measurement acquisition 

period as unwrapping would still be required.  

Similarly, the exposure duration period required to capture sufficient light is 

dependent upon both the interferometer light output and the surface reflectivity. 

As it is possible that the SUT is mid-process at the time of measurement, good 

surface reflectivity is beyond the control of the metrologist. An option for reducing 

exposure time is to increase the light output of the interferometer. The Fizcam 

3000 installed on the Metrology Station uses a 2 mW Helium-Neon laser and during 

pass-off testing an exposure of around 0.18 seconds was used. Even if this unit 

were upgraded to a longer cavity 35 mW unit, requiring significant redesign of the 

system, this would reduce exposure to a minimum of 0.01 seconds, assuming a 

linear relationship between laser output power and exposure time. Overall this 

improvement would provide a 19% reduction in acquisition period. However such 

an improvement would be highly dependent upon surface reflectivity and thus, 

finish quality.  

5.3.1.2 Device and SUT Positioning 

The second major activity which dictates the duration of the overall measurement 

process is moving the SUT or device, either for alignment correction or between 
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measurement locations. For both the STA and Metrology Station, the maximum 

system feed rate is limited to 250 mm per second. This is done primarily to protect 

the interferometer from accelerations which could cause miss-alignment of the 

internal optics. In order to safely increase feed rate and reduce movement 

duration, either the interferometer design must be hardened against these 

increased accelerations or the system must be redesigned so that the 

interferometer does not move at all.  

Either of these options would require a significant redesign. However, in the case of 

high-volume production, such work would be justified by the requirement to 

reduce measurement time as far as possible. Given that the instruments selected 

for use are third party systems, redevelopment of the interferometer for faster 

automatic operation may be unfeasible. Any redesign must also maintain 

manufacturing performance and so a trade-off must be made.  

5.3.1.3 Setup Procedures 

A further task which contributes to the measurement duration is the execution of 

setup procedures. Metrology Station is the most affected of the two systems 

presented, with setup usually taking up to an hour prior to execution of 

measurement. Such tasks must be performed properly for the measurement 

system to operate properly and safely in automatic mode. Poor performance of 

these procedures can greatly increase the measurement duration, if the system can 

operate at all. 

In order to reduce the duration of setup procedures for the Metrology Station, 

further elements would need to be motorised. This would allow the system to 
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automatically clock the part to the interferometer optical axis without operator 

intervention. The measurement of the pivot distance may remain problematic, as 

prior to the co-ordinate system being zeroed, the system does not have knowledge 

of the part location. Automation of this procedure will require development work 

to ensure that the system does pose a risk to the part, possibly using proximity 

detection. 

There are some clear opportunities for reducing measurement time of the 

automated systems presented, in particular the Metrology Station. However, these 

require further investigation and development of both hardware and software and 

were not possible in the scope of this thesis. It is expected that as automated on-

machine metrology becomes more prevalent in the manufacturing environment, 

there will be significant commercial drive to reduce operating times and increase 

throughput of such systems.  

5.3.2 User Interface 

Both the STA and Metrology Station provide utilise a common interface with 

Metrology Control Suite, which is designed to provide operator familiarity, even 

when using the application with a new metrology device.  

However, when operating the system with a 4D Technologies interferometer, 

operators have commented that having to perform setup tasks in both the 4Sight 

software interface and the Metrology Control Suite GUI can be confusing. Due to 

the only interferometer interface available being the web service, which must be 

run from the 4Sight application, this cannot currently be avoided. It is possible that 

another interferometer manufacturer could provide an alternative interferometer 



259 
 

control method, allowing a single system interface. However, the 4D Technology 

systems are well suited to the on-machine environment due to the simultaneous 

phase acquisition allowing reduced vibration sensitivity. Other devices may require 

greater mechanical stability in order to produce comparable performance.  

5.3.3 Software Requirements Compliance 

Table 5.5 provides a summary of the compliance of the Metrology Control Suite application 

against the requirements specified in 2.6. The application developed is found to be fully 

compliant with the requirements discussed, however improvements can be made. For 

example, the pause and cancel features suffer some delay, as discussed in Section 4.5.1. 

This is found to be acceptable, given that safety critical inputs such as emergency stop are 

implemented in hardware. Removal of this delay would improve user experience when 

operating the interface which can influence confidence in effectiveness of the automation. 
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Table 5.5: Metrology Control Suite software compliance matrix 

Metrology Designer 

 Allow specification of the surface to be tested 

 Allow specification of device and optical setup to be used for 

testing 

 Allow simple design of metrology plan which will provide useful 

data 

 Provide customisation of plan for more demanding measurements 

 Prevent generation of a metrology plan which will cause damage 

to the machine, SUT, or present danger to personnel 

 Allow the plan to be saved for future use or modification 

Metrology Controller 

 Allow the measurement plan to be loaded and reviewed 

 Interface with machine controller(s) 

 Query system axis positions 

 Dynamically generate g-code and upload to the controller 

 Execute and delete g-code files from control system 

 Display measurement progress and system status clearly to the 

user 

 Prevent the system making movements which could damage the 

machine, SUT or pose a danger to the operator 

 Control the measurement device to make automatic 

measurement acquisitions and save the data to file 

 Ensure acquired data is useful for either correction or SUT 

measurement 

 Analyse device alignment and compute correction moves 

 Summarise measurement information to allow operator to 

interpret progress 

 Allow user to pause or cancel the measurement process 

 Record any system errors to allow remote debugging 
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5.3.4 Conclusion 

This section has reviewed the automatic operation of Metrology Control Suite with 

the aim of improving the system, primarily with regards to reducing measurement 

duration. Discussion has been taken as to how this may be achieved and the 

practical implications of such improvements.  

Any improvement of such a system will require significant work as a change in any 

aspect of the integrated hardware has an effect on further system elements. No key 

part of the system hardware can be considered in isolation. Furthermore, the use of 

third party hardware, such as 4D Technology interferometers limits the extent of 

control over the device. The development of such systems in-house, while 

attractive, is a major undertaking in itself and will ultimately require further 

development of other aspects of the measurement system. The easiest way to 

dramatically reduce measurement duration is to both minimise the number of 

measurement locations and, in the case of sub-aperture metrology, minimise sub-

aperture overlap. To date, most sub-aperture stitching measurements have been 

carried out using high overlap levels, with 30% overlap considered the minimum. 

However, to establish the trade-off between data quality and measurement speed, 

a further study must be carried out.   

Measurement speed can be increased in the short term through better 

development of algorithms such as the fringe detection, and the application of this 

algorithm to the characterisation of tilt alignment. However, the expected 

reduction from this is expected < 5%.   
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5.4 Overall Conclusion 

This chapter has presented measurement results obtained with the Surface Texture 

Analyser and Metrology Station systems. Both systems were tested using the 

Metrology Control Suite application to provide automatic measurement. The data 

presented demonstrates the viability of on-machine metrology and the suitability 

for integration into the manufacturing environment. Where possible, data has also 

been provided to compare performance between the on-machine systems and 

state-of-the-art metrology. It can be seen the systems developed as part of this 

thesis provide comparable measurement performance with existing systems. 

Should future projects demand measurement devices other than those presented 

in this thesis, the modular architecture of Metrology Control Suite would allow the 

integration of future hardware with minimal development work. Although sub-

aperture measurement systems such as the QED SSI are in use, the control 

architecture presented in this thesis is capable of supporting on-machine metrology 

with various instruments and is therefore more versatile. 

Automatic operation of the systems developed has also been assessed. Automatic 

on-machine metrology provides not only the potential benefits of saving time 

through not having the remove the SUT from the machine but also that of allowing 

unattended metrology in the same way that polishing does not require operator 

intervention during the process. This also reduces the risk of damage to the optic 

through handling and ensures good quality data, allowing measurement to be 

automatically reacquired if quality is insufficient. 
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Observations of how system automation may be further improved have also been 

given, focusing on increasing system measurement speed. The main limiting 

element in the systems presented is considered to be the control interface with the 

interferometer and the speed at which the device can acquire data. 
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6 Conclusions and Further Work 

This thesis has demonstrated that many of the current limitations associated with 

state-of-the-art metrology may be overcome by carrying out measurement in-situ. 

Techniques such as sub-aperture stitching interferometry have been combined with 

commercial vibration insensitive interferometers to allow on-machine metrology. 

The application of metrology to the polishing machine also allows the automation 

of measurement device positioning and alignment, using the existing CNC axes. The 

author’s Metrology Control Suite allows the design and execution of a 

measurement plan, for automatic on-machine metrology of both form and texture.  

The introduction to this thesis presented a review of the techniques used for the 

production of optical surfaces, and how CNC has become fundamental to these 

processes. A review has also been provided of state-of-the-art methods of surface 

characterisation used to provide feedback during the manufacturing process, and 

certification afterwards. High precision optical manufacturing is an iterative 

process, cycling between polishing and measurement. The accuracy of polishing is 

affected by that of measurement, and so limitations in the performance of 

metrology will affect the ability to control surfaces, and therefore the optical 

performance of surface produced. Finally, the limiting factors of current metrology 

were discussed as well as how automation of metrology may provide a solution. 

Metrology of large surfaces is hampered either by the logistical issues of moving 

heavy components to the metrology facility or by the poor stability associated with 

large test cavities. However, new techniques such as stitching interferometry and 
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devices such as the STA provide an opportunity to integrate metrology into the 

manufacturing environment, while improving performance.  

Chapter 2 went on to give an overview of the manufacturing systems used to 

provide actuation of the metrology device, such as the IRP machine in metrology 

mode. Metrology instruments viable for integration with CNC machine have been 

reviewed in order to establish the potential limitations of performing metrology in, 

what can be, a hostile environment. The devices selected for development were 

reviewed in detail and some initial experimental data presented to verify feasibility. 

While some difficulties were found during initial testing, it was decided that these 

could be overcome and that automated metrology was viable. Having reviewed the 

hardware in detail, an outline was made of additional technology was required in 

order to realise automated metrology. Software was identified as the largest deficit 

of the initial system and so a software specification was provided, which would 

form the basis for the development of Metrology Control Suite. 

Chapter 3 detailed the development of the Metrology Control Suite planning 

application. Metrology Designer allows an operator to plan metrology to be 

performed. This application allows the specification of the surface under test, a 

measurement device, and a test optic, and their use to create a measurement plan. 

The design of measurements for various instruments is allowed for, with the 

addition of extra planning modules, thus minimising development time for future 

automatic metrology devices. The planning modules are selected using a series of 

configuration files.  
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The development of the Metrology Controller module, which allows the execution 

of metrology plans was discussed in Chapter 4. Metrology Controller is distinct from 

all software used during polishing as, instead of executing a polishing program 

generated prior to commencing the process, the application itself generates the G-

code program automatically. These automatically generated programs are based 

upon either the measurement plan or feedback obtained from the measurement 

device. This process of using feedback to perform automatic alignment correction 

of an on-machine measurement device is a novel step for texture interferometry. 

The use of feedback also allows precise alignment of devices using a CNC system 

intended for manufacturing, while in an environment which is unstable compared 

with the metrology laboratory. Metrology Controller interfaces directly with the 

CNC system to upload and execute G-code programs without input from the 

operator. The development work presented in both Chapter 3 and Chapter 4 was 

discussed in the context of the two systems selected for development, the Surface 

Texture Analyser and the Metrology Station.  

Having developed the Metrology Control Suite, a series of tests were carried out to 

validate the capabilities of the example systems. Chapter 5 presented and discussed 

this data, and made comparison between the new systems and state-of-the-art 

metrology devices. The presented systems were demonstrated to provide 

measurement performance comparable with devices sited in the metrology 

laboratory. The capability to measure components not accommodated by current 

systems, such as large plano and convex parts on the Metrology Station was also 

shown. Much of the data was obtained automatically, with the system measuring 
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overnight. Such capability to obtain measurements automatically allows data to be 

acquired in far greater quantity and of improved statistical quality.  

The demonstrated systems consist of off-the-shelf interferometers which have 

been successfully integrated with CNC machines and the software applications 

presented here. The modular architecture of Metrology Control Suite provides 

scope for retrofitting into existing hardware, such as the OpTIC Glyndwr testing 

tower for the ESO E-ELT project, as well as new systems currently under 

development. Indeed, if a consortium are to progress to full scale fabrication of the 

segments required for the E-ELT, such automation will form a fundamental part of 

the process chain. It seems that, given the observed rise in automation of various 

forms, work such as this will become increasingly relevant in the future, both in 

support of the Science Base and industrial manufacturing.   

This project has served as an initial step in the direction of automating on-machine 

metrology of precision optical components in the manufacturing environment. The 

next section will outline some of the projects to which the work presented here is 

already being applied. 

6.1 Future Work  

This section will outline the future work to improve the functionality and 

performance of the Metrology Control Suite. Some of the longer term projects into 

which this work will feed are also presented.  

6.1.1 Metrology Control Suite 

The Metrology Control Suite is currently being supplied as part of commercial Zeeko 

systems which feature automatic metrology. A secondary aim of developing the 
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architecture was to allow a separation between the low level functions 

communicating with the control system and the instrument developer. This allows 

the instrument developer to concentrate upon maximising instrument 

performance, while not becoming concerned with ensuring the performance of the 

underlying CNC system. At the time of writing, Metrology Control Suite is capable of 

supporting only three separate machine controllers simultaneously. This limitation 

will be removed in the near future, to ensure that the software is scalable to 

support more complicated system designs.  

Though the systems presented offers time saving in metrology compared with 

manual measurement and transportation of the SUT, it is expected that further 

gains can be made. The current limitation arises because the control application 

requires processed measurement data in order to compute alignment corrections, 

and interferometers supplied by 4D Technology acquire around 1 frame per second. 

However, it has been shown that the Hough transform may be applied to detect 

interferometric fringes in the interferometer FOV. It is planned that further 

investigation be carried out into the viability of counting these fringes and thus 

calculating the required correction without performing data analysis in 4Sight. This 

would require the generalisation of the Hough functions applied here. The function 

used currently only detects lines, as the STA field of view is small and fringes do not 

typically appear curved. However, large FOV devices (such as the Fizcam 3000) are 

likely to encounter curved fringes and so circle detection will also be required. 

Furthermore, error handling will be needed for situations where unusual form is 

encountered and fringe shape becomes unpredictable.  
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An initial aim of this work was to develop on-machine sub-aperture stitching 

metrology, using the OMSI device. During the feasibility study, this device proved to 

be unstable and so the OMSI project was re-directed, using the Metrology Station 

as a test bed for sub-aperture stitching systems. While the base of the commercial 

implementation was identical to that of an IRP 600 machine, this constitutes a 

standalone metrology system and so is not strictly on-machine metrology. 

However, Metrology Control Suite is now being applied to a project involving 

placing a test tower over an IRP machine, as shown in Figure 6.1. This system allows 

on-machine sub-aperture stitching metrology, and so will exhibit improved 

versatility compared with full-aperture measurement. It is expected that there will 

be some variation in measurement repeatability due to the increased height of the 

test tower and larger metrology loop. However, software and control performance 

is expected to remain unchanged.  
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Figure 6.1: IRP600XL combined with metrology testing tower 

6.1.2 Automatic Measurement of Aspheric Surfaces 

Although the work presented supports the automatic form measurement of both 

plano and spherical surfaces, aspheres are not supported. In order for the systems 

developed to allow sub-aperture measurement on surfaces such as the E-ELT 

prototype segments, support for aspheric surfaces must be included in Metrology 

Control Suite. Potential methods of adding support for aspheres are discussed in 

Section 6.1.2.1 and Section 6.1.2.2.   

6.1.2.1 Non-Null Testing 

When carrying out sub-aperture measurement on mild aspheres, it is possible to 

carry out non-null testing provided that interferometric fringes are not aliased and 



271 
 

the residual retrace error is tolerable. Due to the varying local ROC, it cannot be 

assumed that the local surface normal vector will offer the best null, unlike 

spherical and plano measurement. In the non-null testing regime the system should 

minimise the number of fringes in the interferometer FOV, which may require some 

residual tilt and power to remain. Therefore, the automatic alignment procedures 

developed for plano and spherical measurement cannot be used. In order to 

compute the best null position ray tracing software, such as Zemax, could be used. 

Maintaining a simple software interface would require that Metrology Controller 

handle all interfacing and operation of the ray tracing application in the background 

(Dynamic Data Exchange), allowing the operator to interact only with Metrology 

Designer. 

It is expected that a ray tracing model of each sub-aperture would be produced 

automatically and examined to determine a set of target Zernike terms which 

would offer the best null. The automatic alignment routine would then use these 

Zernike terms as a target for the alignment process. 

6.1.2.2 Wavefront Correction 

When null testing an aspheric optic it is normal to use some type of wavefront 

correction, such as a CGH. A CGH is typically custom made optical element and only 

suitable for a single aspherical prescription. When performing sub-aperture testing 

using a CGH, typically only rotationally symmetrical optics may be accommodated 

by a single CGH. Sub-aperture measurement of optics such as the ESO E-ELT 

prototypes would not be carried out this way as segments are typically off-axis 

apsheres and so off no rotational symmetry. In order to allow a maximise system 

flexibility, it is desirable to use wavefront correction which may be reconfigured for 
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each sub-aperture, based upon a ray tracing model, as discussed in Section 6.1.2.1. 

Instead of computing the best orientation along which to address the surface, the 

ray tracing application would compute the required wavefront correction to allow 

null testing at each sub-aperture location. Upon arriving at each sub-aperture the 

wavefront corrector would be reconfigured with the predicted correction and the 

alignment correction system can operate in a manner similar to that of spherical 

testing but including minimisation of astigma and coma Zernike terms arising due to 

aspherical mismatch. 

An example variable wavefront correction device is the liquid crystal display (LCD) 

spatial light modulator [97]. Such a device could be fitted to the front of the Fizeau 

interferometer, to allow wavefront correction without the modification of other 

elements in the measurement system. Reflective spatial light modulators can also 

be used as a reference generator in a Twyman-Green based interferometer, 

however, the Fizeau is preferred due to the benefits of common path error 

cancellation. 

For surface texture measurement, requiring only discrete point spaced across the 

surface, no such limitation exists. At the scale of the device FOV, residual error due 

to aspheric mismatch with the objective wavefront is expected to be negligible, 

although some adjustment of nulling algorithm may be required for steeper parts.  

This chapter has drawn together the main developments presented in this thesis. 

Two example automated metrology systems have been proven, but these are a 

precursor to what is likely to be many more, which will be developed using, and 

amalgamated into, the Metrology Control Suite. The aim of this work is to provide 
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improved quality measurement data more quickly, in order to further develop our 

control of precision surfaces. Development of the Metrology Control Suite eases the 

practical problems of measurement by allowing a generalised approach to be 

applied to a range of surfaces. This removes the requirement for specialist 

configurations which are suitable for only a single, or limited number of projects. By 

demonstrating that automatic on-machine metrology is viable for demanding 

projects such as the ESO E-ELT, it is evident that the work presented has the 

potential to revolutionise the field of optical manufacturing. 

 



274 
 

7 List of publications 

7.1 Papers 

Bibby, M.; King, C.W., “Development of an On-Machine 3D Texture Analyser”, Proc. 

ICAM2012, Jiaoxi, Taiwan, March 2012. 

Bibby, M.; King, C.W., “Development of an On-Machine 3D Texture Analyser”, 

Advanced Materials Research, Vol. 579, p. 338-347, Trans Tech Publications, 2012. 

King, C.; Bibby, M., 2013. Development of a metrology workstation for full-aperture 

and sub-aperture stitching measurements, JSPE, International symposium on 

application of precision engineering to support the next generation astronomical 

telescopes, Proc. JSPE March 2013. 

Walker, D.D.; Beaucamp, A.; Bibby, M.; Fox-Leonard, T.; Gray, C.; King, C.; Rees, P.; 

Yu, G., “Interactions Between Manufacture and Measurement of Off-Axis 

Aspheres”, Proc. ASPE/ASPEN Summer Topical Meeting: Manufacture and 

Metrology of Freeform and Off-axis Aspheric Surfaces, p 72-77, 2014. 

7.2 ESO Certification Documents 

Bibby, M.; Rees, P., “Procedure – Measurement of Microroughness”, ESO 

document number: E-PRO-OPT-300-0318/10042-10318, Issue 3, October 2013. 

Rees, P.; Bibby, M., “Test Report – Segment SPN04 Microroughness Results”, ESO 

document number: E-TRE-OPT-300-0119/10042-10119, Issue 1, October 2013. 

Rees, P.; Bibby, M., “Test Report – SPN01 Microroughness Results”, ESO document 

number: E-TRP-OPT-300-0126/10042-10126, Issue 1, June 2014. 

 



275 
 

8 Bibliography 

 

[1]  Oxford English Dictionary, “Surface, n,” Oxford University Press, Oxford , 2014. 

[2]  C. Narbeth, “The Cowry Shell as Money,” Molusc World, 22 May 2013.  

[3]  N. H. Jones, “The Origins of Hypodermic Medication,” Scientific American, Vols. 224, , 

no. 1, pp. 96-102, 1970.  

[4]  S. A. Layard, in Discoveries in the ruins of Nineveh and Babylon; with travels in 

Armenia, Kurdistan and the desert: being the result of a second expedition 

undertaken for the Trustees of the British Museum, New York, G.P. Putnam and Co., 

1853, pp. 197-198. 

[5]  G. Sines and Y. A. Sakellarakis, “Lenses in Antiquity,” American Journal of 

Archaeology, vol. 91, no. 2, pp. 191-196, 1987.  

[6]  J. M. Enoch, “First Known Lens Originating in Egypt About 4600 Years Ago,” 

Documenta Ophthalmologica, vol. 99, no. 3, pp. 303-314, 1999.  

[7]  H. C. King, The History of the Telescope pp.30-33, Mineola, New York: Courier Dover 

Publications, 1955.  

[8]  A. Edited by Van Helden, S. Dupre, R. Van Gent and H. Zuidervaart, The Origins of the 

Telescope, Amsterdam: Amsterdam University Press, 2010.  

[9]  A. Boccaletti, “Direct Imaging of Extrasolar Planets: Overview of Ground and Space 

Programs,” in eprint arXiv:0910.4339, Ithaca, New York, 2009.  

[10]  European Southern Observatory, “E-ELT Publications and Documentation,” European 

Southern Observatory, 2010. [Online]. Available: 

http://www.eso.org/sci/facilities/eelt/docs/e-elt_constrproposal.pdf. [Accessed 29 

July 2014]. 

[11]  T. De Zeeuw, R. Tamai and J. Liske, “Constructing the E-ELT,” The Messenger, pp. 3-6, 

December 2014.  

[12]  B. Burke, J. Gregory, M. Cooper, A. Loomis, D. Young, T. Lind, P. D. P. Doherty, D. 

Landers and C. J., “CCD Imager Development for Astronomy,” Lincoln Labratory 

Journal, vol. 16, no. 2, pp. 392-412, 2007.  

[13]  A. Greve and M. Bremer, “Radiative Heat Transfer,” in Thermal Design and Thermal 

Behaviour of Radio Telescopes and their Enclosures, London, UK, Springer , 2010, pp. 



276 
 

141-143. 

[14]  R. A. Paquin, in Handbook of Optomechanical Engineering, Boca Raton, CRC Press, 

1996, p. Chapter 3. 

[15]  Newport, “Optical Materials,” Newport, [Online]. Available: 

http://www.newport.com/Optical-Materials/144943/1033/content.aspx. [Accessed 

30 July 2014]. 

[16]  A. J. Leistner, E. G. Thwaite, F. Lesha and J. M. Bennett, “Polishing Study using Teflon 

and Pitch Laps to Produce Flat and Supersmooth Surfaces,” Applied Optics, vol. 31, 

no. 10, pp. 1472-1482, 1992.  

[17]  F. W. Preston, “The Theory and Design of Plate Glass Polishing Machines,” Journal of 

the Society of Glass Technology, vol. XI, no. V11, pp. 214-257, 1927.  

[18]  M. J. Cumbo, D. Fairhurst, S. D. Jacobs and B. E. Puchebner, “Slurry Particle Size 

Evolution During the Polishing of Optical Glass,” Applied Optics, vol. 34, no. 19, pp. 

3743-3755, 1995.  

[19]  R. Williamson, “Overarm spindle machine,” in Field Guide to Optical Fabrication, 

Bellingham, WA, SPIE, 2011, p. 43. 

[20]  D. Brooks and A. Gee, “Manufacture of Large Optics: Materials and Processes,” in 

Proc. of the 23rd Meeting of the ASPE and the 12th ICPE, 2008.  

[21]  D. Brooks, “PhD Thesis Chapter: The Reconstruction of the Birr Telescope,” in The 

Production of Metal Mirrors for Use in Astronomy, London, University College 

London, 2001, pp. 88-149. 

[22]  W. Pease, “An Automatic Machine Tool,” Scientific American, vol. 187, no. 3, pp. 10-

23, 1952.  

[23]  S. C. West, H. M. Martin, R. S. Nagel, D. W. B., T. J. Trebisky, S. T. DeRigne and B. B. 

Hille, “Practical Design and Performance of the Stressed-lap Polishing Tool,” Applied 

Optics, vol. 33, no. 34, pp. 8094-8100, 1994.  

[24]  L. Haitao, Z. Zhige, W. Fan, F. Bin and W. Yongjian, “Study on Active Lap Tool 

Influence Function in Grinding 1.8 m Primary Mirror,” Applied Optics, vol. 52, no. 31, 

pp. 7504-7511, 2013.  

[25]  B. E. Gillman and D. Jacobs, “Bound-abrasive Polishers for Optical Glass,” Applied 

Optics, vol. 37, no. 16, pp. 3498-3505, 1998.  

[26]  R. Williamson, “Designing Aspheres for Manufacturability,” in Field Guide to Optical 

Fabrication, Bellingham, WA, SPIE, 2011, p. 12. 



277 
 

[27]  S. Bambrick, M. Bechtold and A. Farnung, “Process Control With Sub-Aperture 

Polishing,” Optics and Photonics News, pp. 12-13, July 2009.  

[28]  International Standards Organisation, ISO6983: Numerical control of machines - 

program format and definition of address words - Part 1.Data format for positioning, 

line motion and contouring control system, 2009.  

[29]  S. D. Jacobs, “International Innovations in Optical Finishing,” Proc of the SPIE: Current 

Developments in Lens Design and Optical Engineering, vol. 264, p. 

doi:10.1117/12.557274, 2004.  

[30]  S. Bambrick, M. Bechtold, S. DeFisher and D. Mohring, “Ogive and Free-Form 

Polishing with Ultraform Finishing,” in Proc. of the SPIE - International Society of 

Optical Engineering, Orlando, FL, USA, 2011.  

[31]  S. Jacobs, W. Kordonski, I. Prokhorov, D. Golini, G. Gorodkin and T. Strafford, 

“Deterministic Magnetorheological Rinishing”. New York, US Patent EP0858381B1, 11 

October 1996. 

[32]  J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos and S. D. 

Jacobs, “Removal Rate Model for Magnetorheological Finishing of Glass,” Applied 

Optics, vol. 46, no. 32, pp. 7927-7941, 2007.  

[33]  C. Miao, J. C. Lambropoulos and S. D. Jacobs, “Process Parameter Effects on Material 

Removal in Magnetorheological Finishing of Borosilicate Glass,” Applied Optics, vol. 

49, no. 10, pp. 1951-1963, 2010.  

[34]  A. Swat, M. Cayrel and P. Dierickx, “E-ELT Programme: E-SPE-ESO-300-0150 Issue 4,” 

ESO, Garching bei München, Germany, 2009. 

[35]  M. Schinhaerl, C. Vogt, A. Geiss, R. S. P. Stamp, L. Smith, G. Smith and R. Rascher, 

“Forces Acting Between Polishing Tool and Workpiece Surface In Magnetorheological 

Finishing,” Proc. of the SPIE: Current Developments in Lens Desing and Optical 

Engineering, vol. IX, p. doi:10.1117/12.794196, 2008.  

[36]  M. Tricard, P. R. Dumas, D. Golini and J. T. Mooney, “SOI Wafer Polishing with 

Magnetorehological Finishing (MRF),” in 2003 IEEE International SOI Conference, 

Newport Beach, California, 2003.  

[37]  D. Golini, W. I. Kordonski, P. Dumas and S. J. Hogan, “Magnetorheological Finishing 

(MRF) in Commercial Precision Optics Manufacturing,” Proceedings of the SPIE: 

Optical Manufacturing and Testing III, vol. 3782, no. 80, p. doi: 10.1117/12.369174, 

1999.  

[38]  D. Golini, M. Demarco, W. Kordonski and J. Druning, “MRF Polishes Calcium Fluoride 

to High Quality,” Laser Focus World, vol. 37, no. 7, 2001.  



278 
 

[39]  D. D. Walker, G. Yu, H. Li, W. Messelink, R. Evans and A. Beaucamp, “Edges in CNC 

Polishing: From Mirror-Segments Towards Semiconductors, Paper 1: Edges on 

Processing the Global Surface,” Optics Express, vol. 20, no. 18, pp. 19787-19798, 

2012.  

[40]  D. D. Walker, R. Freeman, G. McCavana, R. Morton, D. Riley, J. Simms, D. Brooks, E. 

Kim and A. King, “Zeeko/UCL Process for Polishing Large Lenes and Prisms,” 

Proceedings of the SPIE: Large Lenses and Prisms, vol. 4411, no. 106, p. 

doi:10.1117/12.454877, 2002.  

[41]  A. Beaucamp, R. Freeman, R. Morton and D. D. Walker, “Metrology Software Support 

for Free-form Optics Manufacturing,” in Proceedings of JSPE, Chubu, 2007.  

[42]  G. Yu and D. D. L. H. Walker, “Research on Fabrication of Mirror Segments for E-ELT,” 

in Proc. of the SPIE - 6th International Symposium on Advanced Optical 

Manufacturing and Testing Technologies, Xiamen, China, 2012.  

[43]  D. walker, A. Daldwin, R. Evans, R. Freeman, S. Hamidi, P. T. X. Shore, S. Wei, C. 

Williams and G. Yu, “A Quantitative Comparison of Three Grolishing Techniques for 

the Precessions Process,” Proceedings of the SPIE - The International Society for 

Optical Engineering, vol. 6671, no. 1, pp. 1-9, 2007.  

[44]  R. Youngworth, B. Gallagher and B. Stamper, “An Overview of Power Spectral Density 

(PSD) calculations,” Proc. of the SPIE - Optical Manufacturing and Testing, vol. VI, p. 

doi: 10.1117/12.618478, 2005.  

[45]  H. Karow, “Interferometric Testing in a Precision Optics Shop: A Review of Testplate 

Testing,” Proc. of the SPIE: Interferometry, vol. 56, p. doi: 10.1117/12.957837, 1979.  

[46]  D. Malacara, “Newton Interferometer,” in Optical Shop Testing, 3rd ed, Hoboken, 

New Jersy, Wiley & Sons, 2007, pp. 1-4. 

[47]  P. Hariharan, “CCD image capture,” in Basics of Interferometry, 2nd Edition, Sydney, 

Australia, Elsevier, 2007, pp. 51-53. 

[48]  W. Hao-ming and T. Xing, “Vibration Errors in Phase-Shifting Interferometer,” in Proc. 

of the SPIE International Conference on Optical Instruments and Technology: 

Optoelectronic Measurement Technology and Systems, 2009.  

[49]  M. Yamauchi, “Measurement of Air Turbulence for On-Machine Interferometry,” 

Applied Optics, vol. 42, no. 34, pp. 6869-6876, 2003.  

[50]  D. M. Sykora, “Instantaneous Measurement Fizeau Interferometer With High Spatial 

Resolution,” SPIE Optical Manufacturing and Testing, vol. 8126, no. IX, 2001.  

[51]  C. Zhao and J. Burge, “Optical Testing with Computer Generated HologramsL 



279 
 

Comprehensive Error Analysis,” Proc of the SPIEL Optical Manufacturing and Testing, 

vol. X, p. doi: 10.1117/12.2024742, 2013.  

[52]  C. Kreischer, “Retrace Error: Interferometry's Dark Little Secret,” in SPIE - The 

International Society for Optical Engineering, Rochester, NY, USA, 2013.  

[53]  D. Malacara, “Common-Path interferometers,” in Optical Shop Testing, 2nd Ed, Wiley 

& Sons Inc, 2007, p. 97. 

[54]  S. O'Donohue, P. Murphy, J. Fleig and G. Devries, “Stitching Interferometry for 

Flexible Asphere Metrology,” in Proc. of the 21st Annual ASPE Meeting, Monterey, 

CA, 2006.  

[55]  B. Catanzaro, J. Thomas and E. Cohen, “Comparison of Full-Aperture Interferometry 

to Sub-Aperture Stitched Interferometry for a Large Diameter Fast Mirror,” in 

Optonechanical Design and Engineering, San Diego, CA, USA, 2001.  

[56]  M. Tricard, A. Kulawiec, M. Bauer, G. DeVries, J. Fleig, G. Forbes, D. Miladinovich and 

P. Murphy, “Subaperture Stitching Interferometry of High-Departure Aspheres by 

Incorporating a Variable Optical Null,” CIRP Annals - Manufacturing Technology, vol. 

59, no. 1, pp. 547-550, 2010.  

[57]  S. Zeng, Y. Dai and S. Chen, “Subaperture Stitching Interferometer for Large Optics,” 

in Proc. of the SPIE 4th International Symposium on AOMATT: Large Mirrors and 

Telescopes, Chengdu, China, 2009.  

[58]  T. Hagino, Y. Yokoyama, Y. Kuriyama and H. Haitjema, “Sphericity Measurement 

Using Stitching Interferometry,” Key Engineering Materials, vol. 883, pp. 523-524, 

2012.  

[59]  C. King, G. Davies, J. Mitchell, P. Mitchell, A. Rees and D. Walker, “Fusing Data From 

Multiple Interferometers for the Measurement of Off-Axis Aspheres,” in ASPE ASPEN: 

Manufacture and Metrology of Freeform and Off-Axis Aspheric Surfaces, Kohala 

Coast, HI, USA, 2014.  

[60]  C. King and M. Bibby, “Development of a Metrology Workstation for Full-Aperture 

and Sub-aperture Stitching Measurements,” in 2nd CIRP Conference of Surface 

Integrity, Nottingham, UK, 2014.  

[61]  Agilent, “Accuracy and Repeatability,” in Agilent Laser and Optics User Manual: 5th 

Ed., Santa Clara, CA, Agilent Technologies Inc., 2007, pp. 168-179. 

[62]  J. E. Harvey and A. K. Thompson, “Scattering effects from residual optical fabrication 

errors,” in International conference on optical fabrication and testing, Tokyo, 1995.  

[63]  R. J. Noll, “Effect of Mid- and High -Spatial Frequencies on Optical Performance,” 



280 
 

Optical Engineering, vol. 18, no. 2, pp. 137-42, 1979.  

[64]  M. C. WeissKopf, “Chandra x-ray optics,” Optical Engineering, p. DOI: 

10.1117/1.OE.51.1.011013, 2012.  

[65]  D. Vernani, G. Borghi and e. al, “Performance of supersmooth x-ray mandrels for new 

hard x-ray missions,” in Optics for EUV, X-ray and gamma-ray astronomy IV, San 

Diego, 2009.  

[66]  R. Leach, L. Brown, X. Jiang, M. Conroy and D. Mauger, “Introduction,” in A National 

Measurement Good Practice Guide No. 108: Guide for the Measurement of Smooth 

Surface Topography using Coherence Scanning Interferometry, Middlesex, National 

Physical Laboratory, 2008, pp. 2-9. 

[67]  D. Malacara, “Lyot Test,” in Optical Shop Testing, 3rd Ed., Hoboken, NY, Wiley and 

Sons, 2007, pp. 305-306. 

[68]  R. Parks, “In Situ Surface-roughness Measuring Topographer,” SPIE Newsroom, p. 

DOI: 10.1117/2.1231102.003555, 28 March 2011.  

[69]  B. Kinbrough, N. Brock and J. Millerd, “Dynamic Surface Roughness Profiler,” Optical 

Manufacturing and Testing IX, vol. 8126, p. DOI: 10.1117/12.893557, 2011.  

[70]  Y. C. Liu, C. Y. Ling, A. A. Malcom and Z. G. Dong, “Accuracy of replication for non-

destructive surface measurement,” in Singapore International NDT Conference & 

Exhibition , Marina Bay, Singapore, 2011.  

[71]  D. Walker, H. Yang and D. Brooks, “Interferometry Applied to Testing Large Optics,” in 

Applied Optics and Optoelctronics , Brighton, UK, 1998.  

[72]  D. Walker and R. Bingham, “Unspecified,” in Proceedings of the International 

Workshop on Mirror Substrate Alternatives, Grasse, France, 1995.  

[73]  D. Brooks, “Chapter 5: Parabolising,” in The Production of Metal Mirrors for use In 

Astronomy (PhD Thesis), London, University College London, 2001, p. 138. 

[74]  T. Wang, H. Cheng, Y. Feng, Z. Dong and H. Tam, “Correction of Remounting Errors by 

Masking Reference Points in Small Footprint Polishing Process,” Applied Optics, vol. 

52, no. 33, pp. 7851-7858, 2013.  

[75]  4D Technology, “4D Technology Nanocam Product Page,” 4D Technology, [Online]. 

Available: http://www.4dtechnology.com/products/NanoCamSq.php. [Accessed 16 

November 2014]. 

[76]  P. Rees and M. Bibby, “Test Report - Segment SPN04 Microroughness Results,” OpTIC 

Glyndwr, St Asaph, 2013. 



281 
 

[77]  C. W. King, “Integrated On-Machine Metrology Systems,” in JSPE International 

Symposium: Autumn Meeting, Tokyo, 2010.  

[78]  Zeeko, “Zeeko product webpages,” 2000. [Online]. Available: 

http://www.zeeko.co.uk/site/tiki-

index.php?page=IRP+Machine+Brochures&no_bl=y. [Accessed 28 June 2014]. 

[79]  B. Kimbrough, N. Brock and J. Millerd, “Dynamic Surface Roughness Profiler,” in Proc. 

SPIE International Society for Optical Engineering, San Diego, CA, USA, 2011.  

[80]  Discussion with Neal Brock, 4D Tehcnology, 2013. 

[81]  M. Bibby and C. W. King, “Development of an On-Machine 3D Texture Analyser,” 

Advanced Materials Research, vol. 579, pp. 338-347, 2012.  

[82]  4D Technology, “4D Technology FizCam3000 Product Page,” 4D Technology, [Online]. 

Available: http://www.4dtechnology.com/products/fizcam3000.php. [Accessed 16 

November 2014]. 

[83]  B. Kimbrough, E. Frey and J. Millerd, “Instantaneous Phase-Shifting Fizeau 

Interferometer Utilizing a Synchronous Frequency Shift Mechanism,” in Proc SPIE The 

Internatioal Society for Optical Engineering: Interferometry XIV: Techniques and 

Analysis, San Diego, CA, USA, 2008.  

[84]  QED, “QED SSI-A Product Specification Sheet,” QED, Rochester, NY, USA, 2011. 

[85]  O. Boubaker, “The inverted pendulum: A fundamentel benchmark in control theory 

and robotics,” in 2012 International Conference onEducation and e-Learning 

Innovations, Sousse, Tunisia, 2012.  

[86]  R. Henselmans, L. Cacace, G. Kramer, P. Rosielle and M. Steinbuch, “The NANOMEFOS 

Non-Contact Measurement Machine for Freeform Optics,” Precision Engineering, vol. 

35, no. 4, pp. 607-624, 2011.  

[87]  Mathworks, “Matlab Support Page: Data Types,” Mathworks, 2014. [Online]. 

Available: http://uk.mathworks.com/help/matlab/data-types_data-

types.html?nocookie=true. [Accessed 22 November 2014]. 

[88]  J. Snyman, “Line Search Descent Methods for Unconstrained Minimization,” in 

Practical Mathematical Optimization, Springer US, 2005, pp. 34-35. 

[89]  NIST, “National Institute of Standards of Technology: Computer Security Division 

Computer Security Resource Center,” July 2001. [Online]. Available: 

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. [Accessed 26 November 

2014]. 



282 
 

[90]  IEEE, “IEEE 802.3 Ethernet Working Group,” IEEE, 7 November 2014. [Online]. 

Available: http://www.ieee802.org/3/. [Accessed 26 November 2014]. 

[91]  V. Mahajan, “Zernike Polynomials and Wavefront Fitting,” in Optical Shop Testing, 3rd 

ed., New York, USA, Wiley, 2007, pp. 498-521. 

[92]  D. Greenhill and G. Jones, “Analysis of Interferometric Images Using the Hough 

Transform,” Electronic Letters, vol. 32, no. 3, pp. 199-201, 1996.  

[93]  D. Walker and R. Freeman, “TSB Project 101550 - Developing and Integrated System 

to Enable a Robot to Speak With a Zeeko Machine to Automate Currently Manual 

Operations,” Zeeko Ltd, Coalville, Leicestershire, UK, 2013. 

[94]  R. Parasuraman and V. Riley, “Humans and Automation: Use, Misuse, Disuse, Abuse,” 

Human Factors, vol. 39, no. 2, pp. 230-253, 1997.  

[95]  K. Creath and J. Wyant, “Absolute Measurement of Spherical Surfaces,” Proceedings 

of the SPIE - THe International Society for Optical Engineering, vol. 1332, no. 1, pp. 2-

7, 1990.  

[96]  B. Truax, “Absolute Interferometric Testing of Spherical Surfaces,” Proceedings of the 

SPIE - The International Society for Optical Engineering, vol. 1400, pp. 61-68, 1991.  

[97]  M. Cashmore, “Phd Thesis: Interferometric Metrology Using Reprogrammable Binary 

Holograms,” Durham University, Durham, UK, 2013. 

[98]  C. H. Eyraud, “European Association for Astronomy Education,” Institut National de 

Recherche Pedagogique, 2009. [Online]. Available: http://www.eaae-

astronomy.org/WG3-SS/WorkShops/pdf/ws2_2009.pdf. [Accessed 29 27 2014]. 

[99]  H. H. Karow, Fabrication Methods for Precision Optics, New York: Wiley-Blackwell, 

2004.  

[100]  General Electric, GE-225 Programming Reference Manual, Phoenix, Arizona: General 

Electric Company, 1966.  

[101]  J. Burge, Z. Chunyu and M. Dubin, “Measurement of Aspheric Mirror Segments Using 

Fizeau Interferometry with CGH Correction,” Proc. of the SPIE - Optical Engineering, 

vol. 7739, pp. 773902-773917, 2010.  

[102]  The Economist Newspaper Limited, “The Onrushing Wave,” The Economist, p. 

Briefing, 18 January 2014.  

[103]  S. L. (Editor), “Crofton - Cropthorne,” in A Topographical Dictionary of England, 

London, Institute of Historical Research, 1848, pp. 729-733. 



283 
 

[104]  W. Farrer and J. Brownbill, “Townships: Middleton,” in A History of the County of 

Lancaster: Volume 5, British History Online, 1911, pp. 161-169. 

[105]  T. Hult, “Presentation of a New High Speed Paper Tape Reader,” BIT Numerical 

Mathematics, vol. 3, no. 2, pp. 93-96, 1963.  

[106]  C. Harley and N. Crafts, “Cotton Textiles and Industrial Output Growth During the 

Industrial Revolution,” The Economic History Review, vol. 48, no. 1, pp. 134-144, 

1995.  

[107]  Economic History Society, “Economic History Society,” 1987. [Online]. Available: 

http://www.ehs.org.uk/dotAsset/15457c19-e7bd-4045-a056-30a3efac2d47.pdf. 

[Accessed 19 November 2014]. 

[108]  J. Postel, “Internet Engineering Task Force: User Datagram Protocol,” IETF, 28 August 

1980. [Online]. Available: http://tools.ietf.org/html/rfc768. [Accessed 26 November 

2014]. 

[109]  E. J. Evans, “PVr - A Robust Amplitude Parameter for Optical Surface Specification,” 

Optical Engineering, vol. 48, no. 4, p. DOI: 10.1117/1.3119307, 2009.  

 

 

 

  



284 
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9.1 Metrology Control Suite User Manual 
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1 Introduction 
The Zeeko Metrology Control Suite is designed to allow measurement design and execution 

using one of the range of Zeeko metrology products. The software allows the user to define a 

surface and use this to generate a measurement plan. The plan can either be saved for later 

execution (.OMM or On Machine Metrology file) or used immediately.  

Metrology Control Suite has been developed to allow simplified measurement, which much of 

the process being automatic. Once the initial set-up procedures are complete, the system can 

carry out measurement without further user input. 
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2 Installation 
The following steps demonstrate the installation or upgrade of Zeeko Metrology Control Suite. 

 

1. Ensure that no previous versions of Zeeko Metrology Control Suite are installed on the 

system.  

 

2. Select ‘Zeeko Metrology Control suite Setup.exe’ on the disc provided. This will install 

Zeeko Metrology Control Suite, Metrology Designer and Zeeko Axis Position Display. 

Note the selected installation path, e.g. C:\Program Files (x86)\Zeeko\ 

  

3. Select ‘Config Setup.exe’. This will install the metrology system configuration files 

required for operation. This must be installed to the same path as that used for step 2 

and within the program directory, e.g. C:\Program Files 

(x86)\Zeeko\Metrology_Control_Suite 

 

4. Double click ‘Zeeko Metrology Control Suite’ icon on the desktop. If not already set 

up, the user will be prompted to install the Zeeko software license key. Contact Zeeko 

with the hardware key provided in the pop up box.  

 

5. Once a license has been obtained, select browse to locate the key and select to install. 

This completes installation and will activate the application for use.  
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3 Metrology Control Suite Module Overview 
Metrology Control Suite consists of the following main modules; 

 

 Metrology Control interface. This is the main software window through which the 

user controls the measurement system. Useful information regarding progress is 

displayed to the user. 

 

 Measurement Designer. The measurement design module allows a measurement 

plan to be developed using a surface design (Zeeko .design file) and a test optic 

specification. 

 

 Surface Designer. This module allows the test surface parameters to be defined 

and saved for future use. This the same module included in other Zeeko 

applications such as TPG and Metrology Toolkit.  
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4 Metrology Control Interface 
During measurement, metrology is controlled from the graphical user interface (GUI) of the 

Metrology Controller (Figure 2). Additional windows which may be displayed depending upon 

user selection are also shown below.  

 

 

Figure 2: Metrology Control main window. 
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Figure 3: Metrology Planner. 

 

 

Figure 4: Ignore sub-aperture menu. 
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Figure 5: User configuration menu. 
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5 Main Toolbar Icon Functions 
Most of the control functions are available via the main software GUI (Figure 2) however sub-

menus and system set up procedures are accessible from the main toolbar. The functionality 

of these buttons is outlined below.  

 

Table 6: Main GUI toolbar functions. 

Icon Function Description 

 
Start Metrology Designer 

Opens Metrology Designer to allow 
the user to design a metrology plan 
(OMM) or edit an existing one. 

 

Edit ignored sub-apertures 
Opens a window to allow user to edit 
sub-apertures which will be 
measured. 

 

Open an On-Machine Measurement 
(OMM) file 

Allows the user to select an OMM 
file for loading. 

 
Start pivDist calculation assistant 

Begins the pivDist calculation 
procedure.  

 
Open user configuration menu 

Opens a window to allow the user to 
edit the system configuration. 

 
Start the part alignment assistant 

Begins the semi-automatic part 
alignment procedure. 

 
Start the Axis Position Display 

Starts the Axis Position Display 
module. 

 

5.1 Start Metrology Planner 
Selection of the start Metrology Planner toolbar button will activate the planner module in a 

new window, as shown in Figure 3. Metrology Planner is covered in detail in chapter 8. 

 

5.2 Edit ignored sub-apertures 
When a measurement plan is loaded, the ignore sub-aperture menu will be displayed in a new 

window. Each available sub-aperture is displayed with an associated check box. Un-checking a 

box will ignore this sub-aperture during measurement. Select the ‘Accept’ button to modify 

the measurement plan with this selection. 

Loading a measurement plan will clear any selections in this menu. Changes made do not 

modify the OMM file in any way. The user must select sub-apertures to ignore every time the 

OMM file is loaded. 
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5.3 Open user configuration menu 
A new window is opened, displaying the user configuration menu (Figure 5). From this menu 

the user can adjust system behaviour. The function of each parameter is outlined below.  

5.3.1 N(avg) 

Number of acquisitions to average during a sub-aperture measurement. 

5.3.2 Measurement smart averaging 

Sets minimum number of valid pixels across measurements to be averaged in order for pixel 

to be considered valid (see 4D 4Sight manual). This allows a certain amount of data dropout 

while still returning data for analysis. This parameter must be less than n(avg) to be valid. The 

user will receive a warning if the entered value is invalid. 

5.3.3 Measurement attempt limit 

If poor quality data is acquired during measurement, the acquisition may be repeated. This 

parameter is the maximum number of attempts before the measurement location is skipped. 

Skipped measurements are noted in the measurement log file and measurement report.  

5.3.4 Measurement sets 

Parameter specifies the number of times to repeat the measurement plan. No user input is 

required between repetitions. 

5.3.5 Alignment test averaging 

Specifies the number of acquisitions to average when determining the interferometer/part 

alignment. If an inappropriate value is chosen here, alignment may not converge. Proper 

value selection depends upon surface finish and environmental conditions. If in doubt, the 

user should manually perform several acquisitions to determine an averaging value at which 

Zernike terms 2, 3 and 4 may be reliably determined. 

5.3.6 Alignment test smart averaging 

As for 5.3.2 but used during alignment testing. This value must be smaller than the alignment 

test averaging level.  

5.3.7 CGH asphere test  

When testing a rotationally symmetrical aspherical surface using a computer generated 

hologram (CGH), the user is required to make initial alignment. Selection of this option will 

turn off auto-alignment during the measurement process, ensuring the surface/CGH 

alignment stays constant. This option also enables the ‘Available pixels’ parameter. 

5.3.8 Delay measurement start 

Selection of this option allows the user to specify a delay time upon commencement of the 

measurement process (HH:MM from pressing execute). When the ‘Execute’ button is pressed 

to begin measurement a window is displayed (Figure 6), giving the user the option to enter 

the required time delay.  
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Selecting ‘OK’ begins the delay counter (Figure 7) and ‘cancel’ will abort the measurement 

start. This option allows the user to schedule measurement outside working hours, when the 

laboratory environment may be more stable.  

 

 

Figure 6: Measurement delay entry window. 

 

 

Figure 7: Measurement delay counter. 

 

5.3.9 User specified alignment sensitivity 

When this option is disabled (default) the measurement system will perform an automatic 

calculation to establish the sensitivity of the current reference/test optic configuration to tilt 

and power for both coarse and fine correction regimes. 

When this parameter is enabled, the fine tilt/power sensitivity calculation is skipped and the 

user is required to enter these parameters in the two entries below (Fine X/Y sensitivity and 

Fine power residual) in waves/radius error. It is recommended that the user make a series of 

measurements manually, moving one axis at a time to establish the correct values for these 

entries. 
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 Where possible, it is recommended that automatic sensitivity calculation mode 

be used. Miscalculation of alignment/power sensitivities can result in non-

convergence. 

5.3.10 Fine X/Y sensitivity 

Fine sensitivity of current test/reference optical set up to tilt, specified in waves/radius. This 

entry is only enabled when ‘User specified alignment sensitivity’ is active (See 5.3.9). 

5.3.11 Fine power sensitivity 

Fine sensitivity of current test/reference optical set up to power, specified in waves/radius. 

This entry is only enabled when ‘User specified alignment sensitivity’ is active (See 5.3.9). 

5.3.12 Alignment feed rate  

This is the maximum rate at which any part of the system may move during an alignment 

procedure, specified in mm/sec. Alignment moves typically involve movement of the 

measurement device and so it is desirable to limit federate and therefore accelerations to 

which the device is subjected.  

5.3.13 Target tilt RSS 

This entry is the maximum allowable level of tilt error allowed for the system to consider the 

surface under test (SUT) well aligned enough for measurement. This figure is the root sum 

squared result of Zernike terms 2 and 3 and expressed in waves/radius tilt error; 

𝑇𝑅𝑠𝑠 = √𝑍2
2 + 𝑍3

2 

If the analysed Zernike terms of an alignment measurement are less than the entered value, 

surface alignment will be deemed sufficient for measurement. 

5.3.14 Target power residual  

This entry is the maximum allowable level of power error allowed for the system to consider 

the surface under test (SUT) sufficiently nulled for measurement. Target power is expressed in 

waves of defocus. During measurement of a plano surface power is not tested. 

5.3.15 Start sub-ap 

The user may specify the first sub-aperture the system should address during measurement. 

Measurement will proceed from the specified location numerically, ignoring all measurements 

before that specified. 

5.3.16 Modulation threshold 

Interference modulation is computed during the alignment process as an indicator of data 

quality and allows the system to decide when to switch between coarse and fine alignment. 

By specifying a modulation value, the user can adjust the point at which the system will 

change alignment mode (see 4D 4Sight manual). 
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An average modulation value greater than that entered must be achieved for the system to 

switch to fine alignment. This value is set by determining the minimum value at which the 

interferometer will return reliable tilt and power information. 

5.3.17 Valid pixel threshold 

Following the acquisition of measurement data the number of valid pixels is queried to 

evaluate measurement quality. If the number of valid pixels in the data set is less than the 

total available pixels multiplied by the valid pixel threshold factor, the measurement is 

discarded. The measurement is repeated until the measurement attempt limit (5.3.3) is 

reached. 

 If part of the measurement field of view overlaps the SUT edge, the resulting 

missing data may cause false valid pixel result. The user must either avoid 

overhanging measurement locations or reduce the valid pixel threshold. 

5.3.18 Available pixels 

When running measurement of an aspherical surface (5.3.8) the user must manually specify 

the number of available pixels. This entry is then used in the valid pixel threshold test for 

measurement quality. 

5.3.19 Measurement file output directory 

This entry contains the output location for data and log files generated during measurement. 

The user may select ‘browse’ to locate a suitable directory. The software must have 

read/write permissions for this location in order to save data and logs.  

At the commencement of measurement a time stamped folder is created for the current 

measurement. The user will also note the following files; 

 Measurement data – numbered files containing measurement data (e.g. 1.h5) 

 

 Measurement report – a text file containing a summary of measurement results and 

data quality. 

 

 Measurement log – a text file containing a log of all events carried out during 

measurement.  

5.4 Start pivDist calculation assistant 
This button forms part of the machine setup procedure prior to starting measurement and 

enables the user to calculate the offset between the machine T-axis and the SUT CoC. This is 

required to allow multiple ring measurements to be made on spherical surfaces. 

5.5 Start part alignment assistant 
 Activates the Metrology Control Suite semi-automatic SUT clocking procedure.  
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5.6 Start Axis Position Display  
The Axis Position Display module allows the operator to view the position of all of the system 

axes in both absolute and machine co-ordinates.  

 

 

Figure 8: Axis Position Display GUI 

The axis position display lists each axis with associated absolute and machine values. 

 When running Axis Position Display module from within the Zeeko 

Metrology Control Suite, program execution is paused. This operation mode 

is designed for checking position during the set up procedures. For 

continuous operation, Axis Position Display should be executed separately.  

When running the Axis Position Display from executable, the application will require system 

configuration information in order to connect to the system and provide position information. 

This may be provided by selecting the load button from the toolbar and selecting either a 

system configuration file or a compatible OMM file for the system to be queried.   
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6 CNC Operations Panel 
The panel labelled ‘CNC Operations’ allows the user to manage the connection between Zeeko 

Metrology Control Suite and the measurement system. This panel (Figure 9) is located in the 

upper left corner of the main Metrology Control GUI.  

 

 

Figure 9: CNC Operations panel. 

The functions of the buttons are outlined below; 

 Home – Move system to the home parking position. The feed rate of this move is 

fixed and defined in machine configuration.  

 

 Load – Move system to the part loading position. The federate of this move is fixed 

and defined in machine configuration. 

 

 Reset axes – As part of the set up procedure for measurement, the user must define 

the part centre. The ‘Reset axes’ button clears this offset.  

 

 Zero axes - As part of the set up procedure for measurement, the user must define 

the part centre as [0,0,0]. The ‘Zero axes’ button defines the current machine location 

as the origin.  

 

 Connect/Disconnect – This instructs the control software to establish or close a 

connection to the metrology system. When connecting, the system also performs a 

check to ensure communication is functioning normally.  

 

 Rotary axes panel 

 

o The dropdown box shows the selected rotary axis controlled by the four 

relative move buttons. Axes such as rotary tables will be displayed here and 

are defined by their axis names.  
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o The four buttons to the left allow the user to instruct a relative move of either 

-180, -90, +90 or +180. The feed rate for this move is entered in the ‘Max feed 

rate’ entry on the ‘Current measurement’ panel. 

 



 

300 
 

7 Current Measurement Panel 
The ‘Current User Settings’ panel allows the user to control and view progress of metrology.  

This panel (Figure 10) is located on the lower left side of the main Metrology Control GUI. 

Many of the elements in this panel simply provide user feedback on metrology and are not 

editable. 

 

 

Figure 10: Current User Settings panel. 

The function of each element in the above panel is described below; 

 Current set – non-editable indicator of which set or repetition of the measurement 

plan is currently being processed. 

 

 Max feed rate – this is the maximum feed rate any axis may travel at when moving 

between measurement positions. The measurement device is not typically moved 

during non-alignment moves so the feed rate may be higher than that indicated in 

5.3.12. This value is limited by the CNC controller internal hardware limit. 

 

 PivDist – This value describes the vertical offset between the table horizontal rotation 

axis and the SUT CoC. This entry is required in order to allow the measurement 

system to make multiple ring measurements on a non-plano surface. This value may 

be calculated with the aid of the pivDist calculation assistant (5.4).  
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 Measurement panel: 

o Execute – Instructs the measurement system to begin metrology of the 

specified plan. Following selection of the execute button, there is a short start 

up procedure which requires user input.  

o Cancel – Instructs the measurement system to abort metrology. All data 

already collected is retained and the system will not make further 

movements.  

 

o Pause/Resume – Toggles the machine between running and paused moves. 

Pause move halts the machine where it is and holds the current measurement 

plan. On resumption, the system will continue with measurement.  

 

 The cancel and pause buttons are not to be used as a replacement for 

emergency stop (EMG) under any circumstances.  

 When these items are used, the system will complete the last internal task 

before responding. There may be a small delay before the system responds. 

 

 Current sub-aperture Panel 

 

o Current sub-ap – Displays the current measurement sub-aperture being 

addressed. This value corresponds to the plot label numbers on the right hand 

plot window. The current surface area under test is circled in red.  

 

o Attempt – Shows the current attempt value for this measurement location. If 

measurements continually require more than one attempt to obtain valid 

data, this may indicate a measurement set-up or environmental problem. 

 

 

o Tx/Ty Value – These displays show the tilt-X and tilt-Y values respectively in 

waves/radius.  

o Tilt error RSS – This shows the root sum squared value of tilt-X and tilt-Y (see 

5.3.13). 

 

o Power value – Indicates the residual power term in waves. Both the tilt error 

RSS and power residual must be less than those specified in the user 

configuration menu for the system to commence measurement of the current 

sub-aperture. 
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8 Measurement Designer application 
The Measurement Designer application allows the user to develop a measurement plan based 

upon a Zeeko part design file and knowledge of the test optic to be used. Measurement 

Designer is started by selecting the icon on the main toolbar on the Metrology Control Suite 

GUI and opens into the main window. 

 

 

Figure 11: Measurement Designer main GUI 

8.1 Main toolbar functions 
Most of the features of Measurement Designer are accessed through the GUI main toolbar. 

These are outlined below. 
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Table 7: Measurement Designer main GUI toolbar. 

Icon Function Description 

 
Edit optics database 

Opens the optics database editor to 
allow the user to 
add/remove/modify optics which 
can be used to design 
measurements. 

 
Open sub-aperture angles editor 

Opens a window to allow user to 
manually edit sub-aperture 
placement to allow plan 
optimisation. 

 
Open surface designer 

Opens surface designer. This allows 
the user to generate a surface design 
file. 

 
Pass measurement plan back 

Allows the user to pass the 
metrology plan back to Metrology 
Control program without saving. 

 
Zoom in plot window 

Selecting zoom and clicking on the 
plot window will zoom in on current 
image. 

 
Zoom out plot window 

Selecting zoom and clicking on the 
plot window will zoom out on 
current image. 

 
Rotate plot window 

Selecting this mode, the user can 
click and hold the left mouse button 
while moving to rotate the surface 
plot.  

 
Pan plot window 

Selecting this mode, the user can 
click and hold the left mouse button 
while moving to pan the surface plot. 

  

8.1.1 Edit optics database 

In order for a metrology plan to be developed, the application must have knowledge of optic 

parameters. The optics database allows the user to store optics for future use. The optics 

database editor allows the user to view the database contents, add, edit and remove optics as 

required. The database editor GUI is shown in Figure 12. 
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Figure 12: Optics database editor. 

Available Optical Setups list – The available setups list shows all optics currently available in 

the database. Selecting any of the optics listed will highlight it and populate the parameters 

panel (to the right) with the associated information.  

 

New Optic – This button will add a new entry to the optics database. This will be shown as 

‘new optic’ in the list. This should be selected to begin editing. 

Remove – This will delete the selected item from the list. 

Close – This will close the optics database editor and return to Metrology Designer. 

Optic parameters panel –  

Optic title – This is a description of the optic. This must contain at least one character 

and may be made up of alphanumeric characters and symbols such as underscore (_), 

dash (-) and period (.).   

Optic function – The user should select whether the optic is intended for plano or 

spherical measurement.  

Working distance/f# - For spherical surfaces, the user should enter the reference optic 

F#. For plano surfaces this entry is unused but it is suggested that the user enter a 

working distance as a reference.  

D0 – This is the reference surface diameter. 

R1 – Reference surface radius of curvature (RoC), used in calculation of sub-aperture 

size at the test surface. 
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R2 – Effective RoC of the objective front face, taking into account the optics mounting 

chassis. This is used to check the offset between the reference objective front face 

and the test optic to ensure there is sufficient clearance to allow testing. Should there 

be insufficient space between the two optics during planning a warning will be 

displayed.  

 

 

Figure 13: Insufficient reference/test optic clearance. 

8.1.2 Sub-aperture angles editor 

Following the initial measurement design, it is often the case that the user will wish to modify 

the measurement plan. This may be done using the sub-aperture angles editor (Figure 14).  

 

Figure 14: Sub-aperture angles editor. 

When the sub-aperture angles editor is opened, the user will note that each ring of sub-

apertures is represented by a row in the list. Each column from left to right is explained 

below; 

Ring Number – This refers to the sub-apertures in groups of rings numbered from centre to 

SUT edge.  
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Elevation – This indicates the angular elevation change in degrees from the centre ring to that 

of interest. If a spherical surface design is loaded, this entry may be edited in order to allow 

the ring position to be changed.  

Sub-apertures – This is the number of sub-apertures on any given ring. This value may be 

edited to change the number of measurement points on a ring. Sub-apertures are placed at 

360/n degrees. 

Y-axis offset – This is the amount of lateral offset between the rings for the first sub-aperture 

in each ring. When designing measurement using a plano surface, this value may be changed 

to adjust the spacing between sub-aperture rings. For spherical testing, this value is fixed.  

Active – This allows the user to toggle the ring on and off. This can be used should the user 

wish to avoid certain areas of the surface or look solely at the centre or edge.  

Apply – The apply button will recalculate the measurement design using the updated 

parameters. The sub-aperture angles editor will be reopened following calculation.  

Cancel – The changes will be abandoned and the editor window will be closed, returning to 

the Metrology Designer main GUI.  

Add ring – An extra row will be added to the list table. The user may edit this row to provide 

an extra ring.  

8.1.3 Open Surface Designer   

This button opens the Zeeko Surface Designer application, which allows the user to create a 

surface design file. Please see separate Zeeko documentation for operation of this module.  

8.1.4 Pass measurement plan back 

When a measurement design is generated, the ‘pass back’ button is enabled. This allows the 

plan to be passed back to the Metrology Control application without saving and reopening. It 

should be noted that using this button will close Metrology Designer without saving the plan. 

Should the plan be required again, the save button on the plan generation panel should be 

used.  

8.2 Device selection panel 
The device selection panel allows the user to select the device to be used to carry out 

measurement and chose an appropriate optic from the database.  
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Figure 15: Device selection panel. 

Device selection - The upper dropdown list provides all available measurement devices. When 

a device is selected the associated configuration is loaded and compatible optics from the 

optics database are listed into the lower list menu.  

 

Optic selection – Depending upon the surface and device type selected, the optics database is 

filtered and only appropriate optics for the set up are displayed for selection. Selection of an 

optic loads the configuration ready for planning.  

8.3 SUT parameters 
The SUT parameters panel is non-user editable and serves to provide confirmation of the 

surface upon which measurement is being planned. This panel is shown in detail in Figure 16. 

 

 

Figure 16: SUT parameters panel. 

The elements of the SUT parameters panel are outlined below; 

 SUT diameter – the minimum diameter circle, concentric with the SUT, which can 

enclose the SUT at the widest extents, expressed in millimetres.  

 SUT RoC – The base radius of curvature to which the surface conforms, expressed 

in millimetres. 

 K – Conic constant of the SUT.  



 

308 
 

 SUT R# - Effectively the F# number of the SUT. This is displayed to give the user an 

indication of when stitching measurements are required with a given reference 

optic. 

 Use linear correction – When measuring on an IRP machine, linear correction 

allows a plane to be fitted to the SUT to correct for any mounting error. A window 

is opened to allow the user to select a non-linear file. This feature is disabled 

when not applicable. 

 Form confirmation – This text box confirms the form of the current design and 

therefore the design mode under which the application is operating. Valid values 

are ‘sphere’ and ‘plano’ 

8.4 Measurement parameters 
The measurement parameters panel (Figure 17) allows the user to configure initial 

measurement planning.  

 

 

Figure 17: Measurement parameters panel. 

 Measurement point configuration – The dropdown list at the top of the panel allows 

the user to select the measurement point organisation. Spherical surfaces only 

feature concentric rings at present. Plano surfaces can accommodate a square raster 

layout.  

 

 Sub-aperture overlap – The user may enter a required overlap value (0.01-0.99) for 

the planner to use. Should the value entered result in a plan which does not cover the 

whole surface; the overlap value is increased until a viable solution is found. The entry 

is then updated for reference.  

 

 

 Coverage check boxes – The three lower check boxes allow the user to specify regions 

of the surface to ignore. This allows inspection of just the edge or centre using the 

entered rules. Selection of ‘edge’ or ‘centre’ will display further entries, allowing the 

user to enter exclusion distances from the part centre in millimetres.  
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8.5 Plan generation panel  
Following creation of a valid measurement design the user can return the plan back to the 

Metrology Control application via the toolbar button. However, if the plan will be required 

again in the future the user may save it via the plan generation panel.  

 

 

Figure 18: Plan generation panel. 

 Configuration selection – The upper dropdown menu allows selection of the 

measurement system configuration. This is the description of the equipment which 

makes up the measurement system (e.g. IRP machine, 5-axis stage, rotary table, etc).  

 

 Metrology plan report – The print button displays a window containing a diagram of 

the metrology plan along with information about the SUT. 

 

 

 OMM save button – This allows the user to save the plan as an OMM file for future 

use. Metrology Designer also allows OMM files to be reopened for modification.  

 

 Generate G-code – Metrology planner also supports part fiducial and grid placement 

for interferometer characterisation (IRP machine only). This requires generation of a 

g-code file.   

 

8.6 Planning control 
The planning control section (Figure 19) of the Metrology Designer GUI allows the initiation of 

planning as well as the discarding of any results. This is also where the user may access the 

load OMM/design file button. 

 

Figure 19: Planning control panel. 
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 Open – The left button opens a window which allows the user to select either and 

OMM plan file or a surface design file for loading. 

 

 Begin planning – The green check button starts the planner based upon the 

parameters set in the rest of the GUI.  

 

 

 Discard results – The red cross button will discard any results and reset the plot 

window to contain only the surface design.   

8.7 Plot window 
The plot window displays the surface design, along with any planned measurement points. 

The plot window in Metrology Designer is different to that of the Metrology Control 

application in that it may be rotated, zoomed and panned using the main toolbar functions. 

The slider to the bottom of the window also allows the adjustment of the surface 

translucence. This allows greater visibility of measurement points when rotating the surface. 

 

Figure 20: Metrology Design plot window. 

All plot window axes are displayed in millimetres. 
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9 Operating Procedures 
 

Many of the setup operations of Metrology Suite require user intervention to ensure safe and 

correct execution of measurement. This section details how these procedures are to be 

carried out and add further detail to the user prompts displayed.  

 

9.1 Start-up 
Each time any auto-execution task is started, the automatic sub-aperture measurement 

system will perform the tasks described below, which require some user intervention. Auto-

execution tasks which complete this procedure are listed below and are required each time 

one of these operations is requested. 

 Auto-clocking assistant. 

 Auto-clocking while using the pivDist assistant.  

 Execution of automatic measurement. 

This procedure is as follows; 

1. Alignment screen – The system will remove the test and reference return spots from 

the alignment screen by activating a solenoid located at the rear of the 

interferometer. This will produce two audible sounds spaced around 2 seconds apart. 

 

2. Alignment screen reference only – A user prompt will be displayed as shown in Figure 

21. 

 

 

Figure 21: Reference spot only user prompt. 

The operator should obscure the SUT from the interferometer with a non-reflective 

material (e.g. paper). This should be held between the reference optic and the SUT at 

an angle to minimise any stray reflection to return into the interferometer. This should 
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cause only the reference return to be visible on the alignment screen. With the beam 

blocked the user should press the ‘OK’ button and wait for the next prompt to be 

displayed before removing the block. Selection of the ‘Cancel Execution’ button aborts 

operation.  

 

3. Check mask – Following the acquisition of the alignment screen images, a second user 

prompt screen is displayed as shown in Figure 22. 

 

 

Figure 22: Check 4Sight mask prompt. 

The operator may remove the beam block used for the previous step. The 4Sight 

detector mask should be set to the appropriate size so as to be slightly smaller than the 

interferometer field of view. This ensures that the interferometer does not suffer from 

data discontinuities at the edge of the pupil. Once the detector mask is appropriately 

set, the user should select ‘OK’. Selection of the ‘Cancel Execution’ button aborts 

operation. 

 See 4Sight user manual for guidelines on setting the detector mask. 

 

4. Webservice and HMOP – The third user prompt instructs the operator to start the 

4Sight webservice and set the HMOP switch into the off position. 
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Figure 23: Webservice and HMOP prompt. 

The operator should start the 4Sight webservice and confirm that it is running. The 

HMOP switch should be set into the off position (See OMSI Metrology Station 

Operation Manual). The operator may then select the ‘OK’ button. Selection of the 

‘Cancel Execution’ button aborts operation.  

The system should now proceed with the requested operation.  

 

9.2 Auto-clocking assistant 
In order to maximise the speed and accuracy of measurement it is desirable to minimise the 

amount of alignment corrections required at each measurement location. This may be 

achieved by ensuring the optical centre of the SUT and measurement device are coaxial.  

The auto-clocking assistant is a user aid which allows this process to be carried out with 

minimal user interaction. The auto-clocking assistant is started by selecting the ‘alignment 

assistant’ button located on the GUI main toolbar (Table 6: Main GUI toolbar functions..  

 

 Auto-clocking is only intended for spherical measurement set up. Selection 

of the auto-clocking feature with a non-supported OMM file will result in a 

warning message and the operation being aborted. 

 

1. Before selecting the auto-clocking button from the main GUI toolbar, the operator 

should centre the rotary table lateral adjustment screws to provide maximum 

adjustment during clocking. Also ensure that the tilt screws are secure.  
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Figure 24: Rotary table screws. 

 

2. Auto-clocking initiates with the Start-up procedure (9.1).  

 

3. The system will enter auto-alignment. If this is the first procedure to be run since the 

OMM file has been loaded, this procedure may take several minutes to complete.  

 

4. Following auto-alignment, the machine table will rotate by 180°. The system will then 

check part alignment. If required, a screen will be displayed containing the reference 

and SUT return spots along with a suggested position (green cross) for the SUT return 

spot (Figure 25). The operator should open the machine door and use the table lateral 

translation screws to align the SUT return to the indicated position. 
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Figure 25: Auto-clocking alignment screen. 

When the SUT return and the suggested position indicator are adequately aligned, the 

user should left-click the alignment screen. The image will be closed.  

 Following the alignment of the SUT return and the suggested position, the 

operator is not required to close the machine guard. For best results, it is 

advised that the guard is left open for the remainder of this procedure. 

Should the SUT be seriously misaligned and the return spot is lost from the alignment 

screen during the 180° rotation, the system will make a series of rotations while 

attempting to continue the procedure. If the system cannot find a solution which allows 

the continuation of the auto-clock procedure, a user prompt (Figure 26) is displayed and 

operation is cancelled. In this case, the user should manually improve SUT clocking and 

restart the procedure. 

  

 

Figure 26: Auto-clock set up failure. 
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5. Following realignment, the system will enter auto-alignment.  

 

6. Steps 3 – 4 are repeated as required until the SUT and interferometer optical axes are 

sufficiently coaxial for measurement. A user prompt is then displayed to indicate the 

procedure has completed (Figure 27). 

 

 

 

Figure 27: Auto-clock completed user prompt. 

 

9.3 pivDist calculation assistant 
When measuring spherical surfaces using multiple rings, the Metrology Station must rotate 

the T-axis in order to place the relevant ring in the correct orientation for measurement by 

the interferometer. This rotation requires a correction of the W and Z axes to ensure the SUT 

is located within the interferometer FOV (Figure 28). 

 

When using a previously calculated pivDist value the number is placed in the pivDist entry on 

the Metrology Control Suite main GUI (chapter 7). The pivDist procedure may then be 

skipped.  
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Figure 28: pivDist correction during multiple ring measurement. 

In order to make accurate correction moves the distance between the T-axis pivot and the 

part centre of curvature must be found. The pivDist calculation assistant allows this 

calculation to be carried out during measurement set up. The pivDist calculation assistant is 

started by selecting the button located on the main GUI toolbar (Table 6).  

1. The user should ensure that the rotary axis is placed at the machine zero position, 

with one translation screw parallel to the Y-axis of the machine chassis. The table-top 

must also be horizontal. i.e. V=0, A=0, B=0, and the table-top must be clocked to be 

perpendicular to the U-axis. 

 

2. Table cat’s eye – A user prompt is displayed instructing the operator to place the 

interferometer cat’s eye at the rotary table surface.  
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Figure 29: Table cat's eye. 

The user should switch the HMOP into manual mode and manually move the system 

to place the interferometer focal point at the rotary table. This can be verified by 

observing the fringes using 4Sight. When at the cat’s eye position, the operator 

should observe a null or tilt fringes only. These tilt fringes indicate the reference 

surface alignment and not the table alignment. The operator should seek to remove 

any power from the fringes to ensure proper positioning at cat’s eye. 

 

With the interferometer positioned at cat’s eye the operator should select the ‘OK’ 

button to complete this step. Selection of ‘Cancel Execution’ will abort the process.  

 

3. Auto-clocking – Although step 0 of this procedure may be performed with the part 

secured to the machine, it is not required. For large parts, it may be impossible to 

position the cat’s eye at the machine table with the SUT in place. Therefore, auto-

clocking has been incorporated into the pivDist procedure. A user prompt will be 

displayed as shown in Figure 30. 
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Figure 30: pivDist auto-clock user prompt. 

The user may select ‘OK’ to enter the pivDist procedure as detailed in 9.2. If the 

operator does not require auto-clocking, ‘Cancel Execution’ should be selected. In this 

case the procedure will be continued with only this step being skipped. A further user 

prompt will be displayed to confirm this.  

 

 

Figure 31: Auto-clock skip prompt. 

4. Position confocal – Following either skipping or completing auto-clocking a user 

prompt will be displayed to request the interferometer be positioned confocal with 

the SUT. 
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Figure 32: Request confocal positioning prompt. 

The user should place the HMOP switch on and select the manual mode. The 

interferometer should be positioned with the T-axis level and nulled (both tilt and 

power) at the centre sub-aperture position. When the system is nulled, the operator 

may select ‘OK’ to move to the next step. Selection of ‘Cancel Execution’ will abort the 

procedure.  

 

5. Part vertex cat’s eye – A user prompt is displayed to request that the user place the 

interferometer cat’s eye at the part vertex.  

 

Figure 33: Part vertex cat's eye prompt. 

Following step 4, the operator should only need to move the Z-axis. The move should 

be the same size and sign as the part radius of curvature (-ve for concave, +ve for 

convex). When at cat’s eye, the operator should seek to null only power from the 

interferogram. The residual tilt represents reference surface misalignment and does 

not require adjustment.  
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With the part cat’s eye positioned correctly, the operator should select the ‘OK’ 

button. Selection of ‘Cancel Execution’ will abort the procedure.  

 

6. pivDist calculation – Following positioning the interferometer at the three positions, 

the system has enough information to calculate the pivDist value. This is done 

automatically and a user prompt is displayed to confirm the process was successful.  

 

 

Figure 34: pivDist calculation complete prompt. 

The user should select the ‘OK’ button to complete the process. This will update the 

pivDist entry on the current measurement panel (Chapter 7) with the calculated 

value.  

 It is possible for the pivDist value to be negative when measuring long RoC 

convex parts. 

7. Following pivDist calculation, the operator should lower the Z-axis back to the 

confocal position and re-null the interferometer. The ‘Zero axes’ button on the CNC 

Operations panel should be selected (Chapter 6). This will zero the machine axes 

ready for measurement.  

 

The pivDist value may be retained for future use without carrying out the above 

procedure. However, the test set up must be the same including SUT, part support and 

securing. It is advised that when a part is removed and replaced the assistant be used to 

ensure the value entered is accurate. 
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9.4 Measurement initiation 
In order to initiate measurement, the user must have a valid OMM file loaded and have 

completed any required setup procedures (auto-clocking and pivDist calculation for spherical 

surfaces).  

 

1. The user should place the system at the measurement location 1 in the plan. The 

interferometer should nulled at this position.  

 

2. Zero the system axes by selecting the ‘Zero axes’ button on the CNC operations panel. 

 

3. Select the ‘Execute’ button from the Measurement panel. The system will now carry 

out the start-up procedure (9.1). 

 

4. The system will now enter auto-alignment. This process may take several minutes to 

complete. Following alignment sensitivity calculation, the system will enter 

measurement.  
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10 Example Workflow of Metrology Control Suite 
Having covered the functions of the Metrology Control Suite and the associated sub-modules 

we can examine the overall procedure of using a metrology system. 

 

1) Either load an OMM file directly or generate one using Metrology Designer (Chapter 

11). The user will note the ‘connect’ button is enabled on the ‘CNC operations’ panel 

when a valid measurement design is loaded. 

 

2) Select the ‘connect’ button to establish communications. 

 

3) Fit the same reference optic as specified during the design of the OMM file. 

 

4) For spherical surfaces, perform the pivDist calculation procedure (9.3). For plano 

place the part on the rotary table.  

 

5) For spherical surfaces, perform the auto-clocking procedure (9.2), if required (if not 

already done). For plano designs, manually centre the surface using traditional 

clocking techniques. 

 

6) Check user configuration and make any required changes. 

 

7) Part should now be optically clocked and pivDist value acquired (spherical only). 

Place measurement device confocal with centre of optical surface. 

 

8) Select ‘zero axes’ button in ‘CNC operations’ panel.  

 

9) Set maximum feed rate entry as required.  

 

10) Select any sub-apertures to be ignored in the ‘Ignore sub-apertures’ menu on the 

main toolbar.  

 

11) Follow the measurement initiation procedure (9.4). 
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11 Example workflow of measurement design 
 

1) Load a surface design file by selecting the ‘open’ button (8.6). 

 

2) Confirm surface specification against that shown in SUT parameters panel (8.3). 

 

3) Select device to be used for plan generation from the ‘device selection’ panel (8.2). 

 

4) Select optic from dropdown menu. 

 

5) Set overlap value to required level in the ‘measurement parameters’ panel (8.4). Any 

value that is too low will be modified to minimum acceptable value by optimiser. 

 

6) Select begin planning button on planning control panel (8.6).  

 

7) Select sub-aperture angles editor to modify ring spacing as required (8.1.2).  

 

8) Confirm correct configuration file for measurement system is selected in plan 

generation panel (8.5). 

 

9) Either save plan to OMM file or pass data back to Metrology Control GUI via the main 

toolbar. 

 

10) Close Metrology Designer. 
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12 Troubleshooting 
Occasionally during operation the user may encounter error messages or note that the system 

does not perform as expected. This section aims to provide an explanation of these messages 

to aid issue resolution. 

 During unexpected operation the user must focus on machine operation and 

SUT safety. When attempting to troubleshoot the user should pause or 

cancel operation prior problem solving. 

 

 If in any doubt about machine performance during unexpected operation the 

user should operate the emergency stop button. Do not allow continued 

improper operation. 

12.1 Coarse alignment spot oscillation/loss 
If the coarse alignment spot is observed to oscillate or leave the spot screen during sensitivity 

calculation, the user should immediately stop the measurement process by selecting the 

‘Cancel’ button.  

 

This condition can occur due to improper performance of item 2 of the start-up procedure 

(9.1). It is recommended that the operator selects the ‘Cancel’ button to abort the 

measurement procedure. Measurement may be restarted without further action while ensure 

proper execution of the start-up procedure. 

 

12.2 System unable to null at measurement location 
The system fine alignment error displays may be observed to either oscillate around the null 

position or remain near static but not fall below the threshold error level.  

 

This may occur due to either the operator selecting an error threshold below the 

measurement/actuation noise level or the fine alignment sensitivity calculation being 

inaccurate. In either case the measurement must be aborted by selecting the ‘Cancel’ button 

on the CNC operations panel. The operator should complete the following procedure; 

1. The user is advised to restart measurement while observing the Axis Position Display 

(separately executed).  
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2. If the null issue recurs, observe if the axis positions are changing.  

3. If the positions do not change over several updates of the error values on the current 

measurement panel, the user should restart measurement using higher tolerance 

values for the axis which could not be sufficiently nulled.  

4. If the axis values are changing but the system does not null, the user should check the 

set up of the 4Sight software and interferometer. In particular: 

 Manually make a measurement and select the ‘Terms Removed’ item in the 

‘Processing Options’ pane on the right hand side of the measurement screen. 

Select ‘None’ in the Aberration Removal menu and select ‘Copy to Future’.  

 

 Ensure the detector mask is set appropriately for the measurement to be 

undertaken.  

 

 Ensure that the measurement locations do not over hang the edge of the SUT 

by more than ~5% of the interferometer field of view. When nearing the SUT 

edge it is advised that the user increase the number of measurement 

locations and minimised edge overhang to ensure system reliability. 

 

12.3 Measurement locations skipped/ large slope error in data 
The user may observe, in the measurement report, that measurement locations have been 

skipped with multiple attempts or have a large error (usually slope) on the resultant data.  

 

Skipping of measurement locations indicates a significant amount of pixels have returned 

poor modulation during testing. This can be due to poor surface finish resulting in the 

scattering of the testing beam, dirt or scratches on the surface or measurement locations 

overhanging the SUT edge.  

 

 The user should check the detector masking to ensure a single mask is defined which 

covers the area up to a few pixels from the interferometer field of view edge.  

 

 Ensure that the SUT is clean and clear of any debris. 

 

 

 Ensure that the measurement locations do not over hang the edge of the SUT by 

more than ~5% of the interferometer field of view. When nearing the SUT edge it is 

advised that the user increase the number of measurement locations and minimised 

edge overhang to ensure system reliability. 

 

 The user can reduce the valid pixel threshold (5.3.17) to require less valid data to give 

a good measurement result. However, this will increase the likelihood of poor 

measurements no being repeated. If measurement is set up as advised, a 

measurement threshold of ~90% should be suitable. 
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12.4 Incorrect mode error  
The system will not operate or has ceased operation and is displaying an error dialog box. 

 

 

Figure 35: Controller mode error message 

This error is caused by the system being in the incorrect operation mode for automatic 

operation. Before selecting ‘OK’ to close this message, the user should ensure that the system 

in placed in the automatic mode. (See OMSI Metrology Station Operation Manual) 
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9.2 Metrology Control Suite Debug Mode Application Note 
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Zeeko Metrology Control Suite   

System Debugging Mode Application Note  

1 INTRODUCTION  
 

Zeeko Metrology Control Suite includes a debugging mode to enable internal system 

messages to be printed and viewed by the operator. Debugging mode allows to analysis 

of system operation and diagnosis potential errors. This application note describes how 

to place the system into debug mode and what to do with any output data.   

2 STARTING DEBUGGING MODE  
 

Metrology Control Suite can be placed in debugging mode as follows;  

1. To enable debugging mode to print messages, Metrology Control Suite should 

be started from a command prompt. To start a command prompt in MS 

Windows, click the ‘Start’ button and type ‘cmd’ into the search box, as shown 

in Figure 1. Select cmd.exe from the list to start the command prompt. An 

example window is shown in Figure 2.   

  

  

Figure 1: Start a command prompt  
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Figure 2: Command prompt window  

2. With the command prompt window open, the user should navigate to the 

Metrology Control Suite executable folder using the window. Tip: The quickest way 

to do this is to use the Windows explorer window to locate the target directory. 

Click on the navigation bar at the top of the window and copy the folder location.  

  

 
Figure 3: Windows explorer navigation bar  

In the command prompt window, enter ‘cd’ followed by a space. Then paste the 

copied folder location and press enter. This will change the current directory into 

the Metrology Control Suite path. This can be confirmed by typing ‘dir’ followed by 

the enter key. A file listing should be produced which matches that in Windows 

explorer, as shown in Figure 4.   
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Figure 4: Directory listing  

To start Metrology Control Suite, the user must enter ‘”Metrology Control 

Suite.exe”’, including the inner quotation marks. With Metrology Control Suite 

loaded, the operator should load or create an OMM file in the normal way.   

  

3. When a valid OMM file is loaded, the user can enter debugging mode by selecting 

the blank button on the main graphical user interface (GUI) toolbar. This is 

indicated by the red box in Figure 5. A password entry box will be displayed to the 

user. Please enter the password provided by Zeeko personnel.   

 
Figure 5: Debug mode toolbar button  
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4. Correct entry of the password will place the system into debug mode. This will be 

indicated by the command prompt window, shown in Figure 6. This window should 

remain open in order to view all debug mode messages.   

 

 Figure 6: Successful password entry    

3 USING DEBUG MODE  
 

With debug mode enabled, all operation data will be reported on the command prompt 

window. The system operator can monitor performance and observe any errors which 

occur. While using this mode, the system will perform normally and all features remain 

available.   

Should the system halt for any reason, the text within the command prompt window 

should be copied into a document and emailed to Zeeko personnel for analysis. This 

may be done by clicking the icon at the top left corner of the command prompt window 

and selecting ‘select all’ followed by ‘copy’, as shown in Figure 7.   
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9.3 STA Tilted Spigot Assembly 
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