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Abstract
Cybercriminals misuse accounts on online services (e.g.,
webmails and online social networks) to perform ma-
licious activity, such as spreading malicious content or
stealing sensitive information. In this paper, we show
that accounts that are accessed by botnets are a popular
choice by cybercriminals. Since botnets are composed
of a finite number of infected computers, we observe that
cybercriminals tend to have their bots connect to multiple
online accounts to perform malicious activity.

We present EVILCOHORT, a system that detects on-
line accounts that are accessed by a common set of in-
fected machines. EVILCOHORT only needs the mapping
between an online account and an IP address to operate,
and can therefore detect malicious accounts on any on-
line service (webmail services, online social networks,
storage services) regardless of the type of malicious ac-
tivity that these accounts perform. Unlike previous work,
our system can identify malicious accounts that are con-
trolled by botnets but do not post any malicious content
(e.g., spam) on the service. We evaluated EVILCOHORT
on multiple online services of different types (a webmail
service and four online social networks), and show that
it accurately identifies malicious accounts.

1 Introduction

Online services, such as online social networks (OSNs),
webmail, and blogs, are frequently abused by cyber-
criminals. For example, miscreants create fake ac-
counts on popular OSNs or webmail providers and then
use these accounts to spread malicious content, such
as links pointing to spam pages, malware, or phishing
scams [27, 31, 40]. A large fraction of the malicious
activity that occurs on online services is driven by bot-
nets, networks of compromised computers acting under
the control of the same cybercriminal [9].

Leveraging existing services to spread malicious con-
tent provides three advantages to the attacker. First, it is

easy to reach many victims, since popular online services
have many millions of users that are well connected. In
traditional email spam operations miscreants have to har-
vest a large number of victim email addresses (on the
web or from infected hosts) before they can start sending
spam. On online services such as OSNs, on the other
hand, cybercriminals can easily find and contact their
victims or leverage existing friends of compromised ac-
counts [15]. In some cases, such as blog and forum spam,
cybercriminals do not even have to collect a list of vic-
tims, because their malicious content will be shown to
anybody who is visiting the web page on which the spam
comment is posted [21,31]. A second advantage of using
online services to spread malicious content is that while
users have become aware of the threats associated with
email, they are not as familiar with scams and spam that
spreads through other communication channels (such as
social networks) [5, 18, 27]. The third advantage is that
while online services have good defenses against threats
coming from the outside (e.g., emails coming from dif-
ferent domains), they have a much harder time detecting
misuse that originates from accounts within the service
itself (e.g., emails sent by accounts on the service to other
accounts on the same one) [28].

To carry out malicious campaigns via online services,
attackers need two resources: online accounts and con-
nection points. Almost all online services require users
to sign up and create accounts before they can access
the functionality that these services offer. Accounts al-
low online services to associate data with users (such
as emails, posts, pictures, etc.), and they also serve as a
convenient way to regulate and restrict access. Connec-
tion points are the means through which attackers access
online accounts. They are the devices (hosts) that run
the client software (e.g., web browsers or dedicated mo-
bile applications) that allow the miscreants to connect to
online services. Often, connection points are malware-
infected machines (bots) that serve as a convenient way
for the attacker to log into the targeted service and issue
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the necessary commands to send spam or harvest per-
sonal information of legitimate users. However, mali-
cious connection points do not need to be bots. They can
also be compromised servers, or even the personal device
of a cybercriminal.

In this paper, we propose EVILCOHORT, a novel ap-
proach that detects accounts on online services that are
controlled by cybercriminals. Our approach is based on
the analysis of the interactions between attackers and an
online service. More precisely, we look at the interplay
between accounts, connection points, and actions. That
is, we observe which account carries out what action, and
which connection point is responsible for triggering it.

The intuition behind our approach is that cybercrim-
inals use online services differently than regular users.
Cybercriminals need to make money, and this often re-
quires operations at a large scale. Thus, when such oper-
ations are carried out, they involve many accounts, con-
nection points, and actions. Moreover, accounts and con-
nection points are related in interesting ways that can
be leveraged for detection. A key reason for these in-
teresting relationships is the fact that attackers use bots
(as connection points) to access the online accounts that
participate in an orchestrated campaign. By linking ac-
counts and the connection points that are used to ac-
cess these accounts, we see that malicious communities
emerge, and these communities can be detected.

EVILCOHORT works by identifying communities
(sets) of online accounts that are all accessed from a
number of shared connection points (we use IP addresses
to identify these connection points). That is, we observe
a number of IP addresses and accounts, and each account
is accessed by a non-trivial portion of these IP addresses.
Typically, these IP addresses correspond to bot-infected
machines, and they are used to log into the accounts that
are under the control of the attacker. To identify com-
munities, we consume a log of interaction events that the
online service records. An interaction event can be any
action that a user performs in relation to an account on
an online service, such as logging in, sending an email,
or making a friend request. Each event also contains the
account that is involved, as well as the IP address that
sends the request. Our results show that the overwhelm-
ing majority of accounts that are identified by our com-
munity detection approach are actually malicious, and
that therefore the detection by EVILCOHORT is reliable
enough on its own. As an additional step to better under-
stand the detected communities and help us assess po-
tential false positives we present techniques to analyze
the characteristics of accounts within a community and
identify typical behaviors that are indicative of malicious
activity. Such characteristics include suspicious activity
frequencies over time, synchronized activity of the ac-
counts in the community, and the distribution of the types

of browsers used by the infected machines to connect to
the online accounts.

One key advantage of our approach is that it is generic,
as it does not rely on service-specific information. This is
different from previous research, which typically lever-
ages service-specific information to perform detection.
For example, BOTGRAPH [39] looks at accounts that
are accessed by multiple IP addresses, similarly to our
approach, but relies on heuristics based on the email-
sending behavior of such accounts to limit false posi-
tives. This fact not only makes deployment more prob-
lematic, but also limits the applicability of the system to
accounts that are misused to send spam. Contrast this
with our broad definition of interaction events that is sat-
isfied by a large variety of data that naturally accumulates
at online service providers, and makes our approach ap-
plicable to any online service that requires users to cre-
ate an account to interact with it. We demonstrate this by
leveraging our approach to detect spammers on a web-
mail service, as well as to identify malicious accounts on
multiple OSNs.

An additional advantage of our approach is that it can
be applied to different types of actions. These actions
can include account generation and login operations. In
these cases, it might be possible to detect malicious ac-
counts before they distribute any malicious content, as an
early warning system. Also, it can help to identify abuses
where no malicious content is distributed at all. An ex-
ample of this are botnets that use social networks as part
of their command-and-control (C&C) infrastructure [26],
or botnets that crawl the online profiles of users harvest-
ing personal information [17]. To show the versatility of
our approach, we apply it to two different types of inter-
action events: on the webmail service we look at events
that correspond to the sending of emails, while on the
OSNs an interaction event is recorded when a user logs
into her account. Over a period of five months, EVILCO-
HORT detected more than one million online accounts as
malicious on the analyzed services. In summary, this pa-
per makes the following contributions:

• We show that a significant amount of malicious ac-
tivity is carried out by accounts that form commu-
nities (when looking at the connection points that
access them). We also find that these accounts tend
to remain active for extended periods of time on a
large webmail provider.

• We present EVILCOHORT, a novel approach to de-
tect malicious communities (and hence, accounts
controlled by cybercriminals) on online services.
This approach works by detecting accounts that are
accessed by a common, shared set of IP addresses.

• We evaluated EVILCOHORT on datasets of different
types of interactions collected on five different on-
line services. Over a period of five months, EVIL-
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COHORT detected more than one million accounts
used to perform malicious activities. We show that
EVILCOHORT is effective in detecting malicious
communities regardless of the type of accounts an-
alyzed, making it a valuable tool to protect a variety
of online services.

2 Motivation: Analysis of Malicious Activ-
ity on a Webmail Service

We want to understand the way in which cybercrimi-
nals abuse accounts on online services, to identify weak
points that we could leverage for detection. To this end,
we observed the email-sending activity on a large web-
mail service. Our dataset was composed of the emails
generated by 21,387,006 distinct online accounts over
a period of one day. In total, this dataset contained
72,471,992 emails. We call the dataset containing in-
formation about this email-sending activity T. For each
email-sending event, the dataset T contains the IP ad-
dress that accessed the account, the user ID of the ac-
count that sent the email, and a timestamp. In addi-
tion, each email-sending event contains information on
whether the email was considered as spam by the web-
mail provider or not. Note that the dataset T only con-
tains information about sent emails, and provides no in-
sights on the number of times an account is accessed
without sending any email (e.g., to check the account’s
inbox).
Two Types of Malicious Accounts. We analyzed the
accounts that sent spam in the dataset T. We identify
two types of malicious accounts:

1. Accounts that are used in isolation. Each account is
accessed by a single IP address, which could be the
attacker’s computer or a single infected machine.

2. Accounts that are accessed by multiple IP ad-
dresses. The same account is accessed by multiple
infected computers.

We looked at how many malicious accounts of each
type are active on the webmail service. For this analysis
we considered an account as malicious if the account sent
at least 10 emails during the day under consideration, and
the majority of these emails were flagged as spam by the
webmail provider. We selected this threshold because we
needed a set of “labeled” accounts that sent spam on the
webmail provider. Picking accounts whose majority of
emails was flagged as spam by the email provider gives
us confidence that this dataset does not contain false pos-
itives. Note that this preliminary analysis was purely
qualitative, and it was used to give us an idea on the be-
havior of malicious accounts on a webmail service. We
call this set of labeled accounts L. In total, L is com-
posed of 66,509 malicious accounts that were accessed
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Figure 1: Average time (in days) before a spamming ac-
count was suspended in L, given the number of IP ad-
dresses accessing that account.

by a single IP address, and 103,918 malicious accounts
that were accessed by two or more.
Accounts Shared by Many IP Addresses Are More
Dangerous. We then investigated the effectiveness of
the two identified types of spam accounts in sending
emails, and their ability to evade detection by the web-
mail provider. With detection, we mean triggering a
mechanism on the webmail provider that leads to the ac-
count being suspended. Figure 1 shows the average time
(in days) that it took for a malicious account in L to be
suspended after it sent the first spam email, given the
number of IP addresses that accessed that account. As
it can be seen, accounts that are used in isolation have a
shorter lifespan than the ones that are used by multiple
IP addresses: accounts that are only accessed by a single
IP address are typically detected and suspended within a
day, while ones that are accessed by many different IPs
can survive for as long as a week.

We then studied the difference in the activity of the
two types of accounts with regards to the number of spam
emails sent. Figure 2 shows that accounts that are used
in isolation are less effective for cybercriminals, as they
send a smaller number of emails per day before being
shut down. Alternatively, attackers can have each of their
infected computers send a small number of emails and
stay under the radar. Figure 3 shows that IP addresses
accessing accounts used in isolation send 19 emails per
day on average before being blocked, while having mul-
tiple computers accessing the same account allows cy-
bercriminals to have each IP address send a lower num-
ber of emails, as low as one email per IP address in some
cases. The longevity of the accounts that are accessed
by more than one IP address suggests that the webmail
service lacks effective countermeasures to prevent abuse
of the service by such accounts. We acknowledge that
this could be due to shortcomings in the countermeasures
deployed by this particular webmail service, but it still
shows us that accounts that are accessed by a multitude
of infected computers are a problem for online services.
Detecting Malicious Accounts Shared by Many IP
Addresses. Can we use the fact that malicious accounts
tend to be accessed by many IP addresses to flag these
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Figure 2: Average number of spam emails sent per day
per account accessed by a certain number of IP addresses.
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Figure 3: Average number of spam emails sent per day
per IP address that accessed a certain account.

accounts as malicious? Unfortunately, the number of IP
addresses that accessed an account is not a strong enough
indicator and basing a detection system only on this ele-
ment would generate a number of false positives that is
too high for most practical purposes. For example, con-
sidering as malicious accounts that were accessed by two
or more IP addresses in T would cause 77% of the to-
tal detections to be false positives (i.e., accounts that did
not send any spam email). This makes sense, because
many users access their webmail account from different
devices, such as a mobile phone and a desktop computer.
Even looking at accounts accessed by a higher number
of IP addresses does not solve the false positive problem:
looking at accounts that were accessed by ten or more
distinct IP addresses in T 32% would be labeled mali-
cious incorrectly (i.e., false positives); by increasing the
number of required IP addresses false positives decrease,
but they remain well above the level considered accept-
able in a production environment.

To overcome the false positive problem, we leverage
another property of cybercriminal operations that use on-
line services: cybercriminals can only count on a lim-
ited number of infected machines (bots) [26], as well
as a limited number of accounts on the online service.
Because of this limitation, and to make their operations
more resilient to takedowns, cybercriminals have multi-
ple bots connect to the same set of accounts over time.
We can think of a set of accounts that are accessed by the
same set of bots as a community. In the following, we
present EVILCOHORT, a system that detects communi-
ties of accounts that are accessed by a common set of IP
addresses. We show that, by looking at these communi-
ties of accounts, we can detect most of the malicious ac-
counts that are accessed by multiple IP addresses, while
generating a false positive rate that is orders of magni-
tude lower than just looking at accounts in isolation. In
Appendix 5.2, we compare the two methods in detail,
and show that EVILCOHORT outperforms the method
that looks at individual accounts only.

3 EVILCOHORT: Overview

EVILCOHORT operates on inputs in the form of account
interaction events. Users create their own accounts and
connect to online services to perform a number of ac-
tions. Depending on the service, these actions range from
sending messages to the user’s friends and colleagues, to
performing friend requests, to browsing pictures, to up-
dating the user’s profile. Accounts allow the online ser-
vice to attribute any activity performed to a specific user,
in a more precise way than source IP addresses do. For
instance, it is possible to correctly attribute the activity
of a certain user regardless of the place she is connect-
ing from (her home computer, her office, or her mobile
phone). We define a user interaction with an online ser-
vice as a tuple

A =< H,U, T >,

where H is the host that the user is connecting from
(identified by an IP address), U is her user ID on the
online service, and T is a timestamp.
Approach Overview. EVILCOHORT works in three
phases. First, it collects interaction events from the mon-
itored online service, and builds a bipartite graph where
one set of vertices is the online accounts observed and
the other set of vertices is the list of IP addresses that ac-
cessed them. Then, it computes the weighted one-mode
projection of the bipartite graph onto the account vertex
set. The result of this phase is a graph, which we call
projected graph representation, in which the vertices are
the accounts and the edge labels (i.e., weights) indicate
how many shared IP addresses connected to each pair
of accounts. As a third phase, EVILCOHORT performs
clustering on the projected graph representation to find
communities of online accounts that were accessed by a
common set of IP addresses. A last, optional step con-
sists of analyzing the discovered communities, to charac-
terize them and possibly identify security relevant activ-
ity, such as campaigns. In the remainder of this section,
we provide more details about the three steps involved in
identifying communities.
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3.1 Data Collection
In the first phase, EVILCOHORT collects interaction
events on an online service for a given observation period
(a day in our current implementation). Based on these in-
teraction events, EVILCOHORT builds a bipartite graph
where the first set of vertices A are the online accounts
that generated the events, while the second set of vertices
I are the IP addresses that accessed these accounts. An
account vertex has an edge to an IP address vertex if that
account was accessed by that IP address. We call this
bipartite graph GA.

3.2 Building the Projected Graph Repre-
sentation

We expect that cybercriminals instruct their bots to con-
nect to multiple accounts under their control. As dis-
cussed in Section 2, this is because they have control of
a limited number of bots and want to optimize the effec-
tiveness of their malicious operation. For this reason, we
represent the relation between online accounts and IP ad-
dresses as a weighted graph. To this end, we perform the
weighted one-mode projection of the bipartite graph GA

onto the account vertex set A. More precisely, we define
the projected graph representation of the set of accounts
A as

R =< V,E >,

where each element in the set of vertices V is one of the
accounts in A, and the set of edges E is weighted as fol-
lows: for each pair of accounts u1, u2 ∈ V, the edge
connecting them has a weight equal to the number of IP
addresses that u1 and u2 share, based on the bipartite
graph GA. If the accounts u1 and u2 do not share any IP
address, there is no edge between them.

As we showed in Section 2, many legitimate accounts
are accessed by more than one IP address. To focus on
detecting communities of accounts that share a higher
number of IP addresses, we filter the bipartite graph GA

on the in-degree of the accounts in A. More precisely,
we introduce a threshold s, and consider as inputs for
the projection only those accounts that have a degree
higher than s, which means that they were accessed by
more than s IP addresses during the observation period.
Since the number of IP addresses that legitimate accounts
share is low, communities of accounts sharing many IP
addresses are suspicious. We investigate the possible
choices for the threshold s in Section 5.1. By increasing
the value of s we can reduce false positive considerably,
but we also reduce the number of accounts that EVIL-
COHORT can detect as malicious. The graph R is then
passed to the next phase of our approach, which finds
communities of online accounts that are accessed by a
common set of IP addresses.

3.3 Finding Communities
After obtaining the projected graph representation R, we
identify communities of accounts. To this end, we use
the “Louvain Method” [6]. This clustering method lever-
ages an iterative algorithm based on modularity opti-
mization, and is particularly well-suited to operate on
sparse graphs, as most graphs obtained from “real life”
situations are [12]. In their paper, Blondel et al. [6]
show that their method outperforms several community-
detection algorithms that are based on heuristics.

The Louvain method operates in two steps, which are
iteratively repeated until convergence is reached. At the
beginning, each vertex in R is assigned to its own com-
munity of size one. Each iteration of the algorithm pro-
ceeds as follows:

1. For each account u1 in U, we consider each of its
neighbors u2, and we calculate a gain value g that
represents the effect of removing u1 from its com-
munity and adding it to u2’s community. We ex-
plain how we calculate g later in this section. If
any of the gain values g is positive, we move u1 to
the community of the account that yields the highest
gain.

2. We rebuild the graph R, whose nodes are now
the communities built during the previous step.
Each edge between two communities c1 and c2 is
weighted with the number of IP addresses that are
shared between the two communities.

The algorithm repeats these two steps until convergence.
Blondel et al. [6] describe how the gain value g is calcu-
lated in detail. In a nutshell, the gain obtained by moving
an account i to a community C is

gin = [
∑

in +ki,in
2m − (

∑
tot +ki
2m )2] − [

∑
in

2m − (
∑

tot
2m )2 − (

ki
2m )2],

where
∑

in is the sum of the weights of the edges be-
tween the accounts in C,

∑
tot is the sum of the weights

of the edges incident to the accounts in C, ki is the sum
of the weights of the edges incident to i, ki,in is the sum
of the weights of the edges that connect i to the accounts
in C, and m is the number of edges in R. Blondel et
al. show how a similar weight is calculated for the gain
obtained by removing an account i from its community
(gout) [6]. If the sum of the two gains g = gin + gout is
positive, the account i gets added to the community C.

3.4 Optional Step: Characterizing Com-
munities

As an optional step, after the detection of (mali-
cious) communities, we propose a number of techniques
that extract interesting properties of these communities.
These properties allow the operator of EVILCOHORT
to easily characterize security-relevant behaviors of the
communities. As we will see later, these properties



568  24th USENIX Security Symposium	 USENIX Association

can be useful to both assess false positives and iden-
tify whether the accounts in a community are fake (i.e.,
Sybils) or compromised accounts that are accessed both
by cybercriminals and by their legitimate owners. To
gain insight into the behavior of accounts associated with
communities these properties can incorporate auxiliary
sources of information that are not strictly part of the
collected account interaction events (e.g., web-browser
user agents).
User agent correlation. Regular users of online services
likely connect to their accounts from a limited set of de-
vices corresponding to a largely consistent set of con-
nection points. During the course of a day, a typical user
would access, for example, her account from home using
her personal browser, then from work using the browser
mandated by company policy, and finally from her phone
using her mobile client. In other words, we expect to
have a one-to-one relation between the connection points
and the client programs (agents) that run on these ma-
chines and are used to perform the activity. When on-
line services are accessed via the web, the client used
to perform the activity can be identified by the HTTP
user agent field. Proprietary clients often have similar at-
tributes that can be used for this purpose. On iOS, for
example, the system-provided HTTP library uses the ap-
plication’s name and version as the user agent string.

For malicious communities, the activity is no longer
generated by humans operating a browser. Instead,
the activity is frequently generated by autonomous pro-
grams, such as bots, or programs used to administer mul-
tiple accounts at once. These programs can be designed
to use either hard-coded user agent strings, or, as we ob-
served in recent malware, slight variations of legitimate
user agent strings. Presumably, this is a technique aimed
at evading detection mechanisms. However, these prac-
tices significantly change the distribution of user agent
strings and their corresponding connection points.

To measure the correlation between connection points
and user agents within a community c, we compute the
following ratio:

log(c) = log

(
number of user agents

number of IP addresses

)
(1)

For a typical benign user, the correlation is very strong
because there is a one-to-one relationship between con-
nection point and user agent: That is, each connection
point is associated with a different user agent, and as a
result log(c) tends towards 0. For malicious communi-
ties, where the relationship becomes one-to-n, negative
values will be observed in case of hard-coded user agent
strings, and positive values in case of permutations of the
user agent strings. Note that we exclude from the com-
putation user agent strings coming from mobile phones
or tablets because these mobile devices can be connected

to any network, meaning that no correlation can be ex-
pected in this case.

Event-based time series. This property captures ac-
count interaction events in a community over time. Time
series represent the frequency of events per time period.
As we will show in Section 6, the time series repre-
sentations fundamentally differ for legitimate accounts
and those in malicious communities. Time series for le-
gitimate users commonly contain daily activity patterns
depending on the night and day cycle. Furthermore,
weekly patterns can often be identified too. Automated
malicious activity, however, commonly results in either
highly regular activity (e.g., botnets using the online ser-
vice as their command and control service), or irregular
bursts (e.g., during the execution of a spam campaign).

IP address and account usage. This analysis, similarly
to the previous one, relies on timing analysis. The main
difference is that events are no longer aggregated for the
entire community but, instead, individual IP addresses
and accounts are represented separately over time.

The IP addresses usage graph is generated in the fol-
lowing way: Time is represented on the x-axis, and each
unique IP address is represented by a separate entry on
the y-axis of the graph. Events are then plotted as points
in the graph using this set of coordinates. The account
usage graph is generated in a similar way, with unique
accounts instead of IPs on the y-axis. We will show
an example for IP address and account usage graphs in
Section 6. Similar to the above time series represen-
tation, malicious communities show a high degree of
synchronization, which is not present for communities
formed by legitimate users. This observation has been
confirmed by independent research that has been recently
published [7]. Using this type of representation, any sus-
picious alignment in the events recorded for different IP
addresses or different accounts can easily be identified.

Automated post-processing. In our current implemen-
tation we exclusively use the analysis of community
properties to infer interesting characteristics of identi-
fied communities. Our analysis indicates that communi-
ties formed by malicious accounts exhibit vastly different
characteristics than those formed by legitimate accounts,
as we show in Section 6. Thus, the techniques described
in this section could also be used to automatically distin-
guish malicious from legitimate communities. Similar to
Jacob et al. [17], detection could be implemented based
on automated classifiers working on statistical features
characterizing the shape of a time series or plot. While
such an automated post-processing approach would be a
potential avenue for reducing the false positives of EVIL-
COHORT even further, our current false positives are al-
ready well within the range where a deployment would
benefit an online service. An implementation of this
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automated post-processing step is, thus, left for future
work.

4 Description of the Datasets

In Section 2, we analyzed T, a labeled dataset of email-
sending events on an webmail provider. Since EVILCO-
HORT only takes into account the mapping between IP
address and online account of an event, however, it can
operate on any online service that allows users to create
accounts. Such services include web-based email ser-
vices, online social networks, blogs, forums, and many
others. In addition, EVILCOHORT can operate on ac-
tivities of different type, such as login events, message
postings, message shares, etc. To show the versatility of
our approach, we evaluated it on multiple datasets of ac-
tivities on five different online services. The first dataset
is composed of email sending events logged by a large
webmail service, with similar characteristics to T. The
second dataset is composed of login events recorded on
four different online social networks. In the following,
we describe these datasets in more detail.

4.1 Webmail Activity Dataset
Our first dataset is composed of email-sending events
logged by a large webmail provider. Every time an email
is sent, an activity is logged. We call this dataset D1.
Note that the email-sending events in this dataset are gen-
erated by accounts on the webmail service, which send
emails to other email addresses.

The dataset D1 contains the events logged over a five-
month period by the webmail provider for a subset of
the accounts that were active on the service during that
period. In total, this dataset contains 1.2 billion email-
sending events, generated by an average of 25 million
accounts per day. This data was collected according to
the webmail provider’s terms of service, and was only ac-
cessed on their premises by a company’s employee. Be-
yond the above-discussed information, no further email
related information was accessible to our research team
(i.e., no content, no recipients). In addition to the activity
events, the webmail provider logged whether the email
was flagged as spam by their anti-spam systems. The
dataset T presented in Section 2 is a subset of D1. We
used T to study in-depth the properties of legitimate and
malicious accounts on a webmail service (see Section 2).
As we explained in Section 2, T is a dataset containing
email events observed on a large webmail provider over
a period of one day, while L contains the accounts in
T that are heavy senders of spam (meaning that they sent
10 or more emails during the day of observation, and that
a majority of these emails was detected as spam by the
defenses in place at the webmail provider).

It is worth noting that L does not contain all the ac-
counts that sent spam in T. Such ground truth does not
exist, because if a perfect detection system existed we
would not need new approaches such as EVILCOHORT.
Instead, L contains a set of “vetted” spam accounts that
were detected by the webmail provider, and using this
dataset as a reference allows us to get a good idea of
how well EVILCOHORT works in detecting previously-
unseen malicious accounts on online services.

4.2 Online Social Network Login Dataset

Online Social Network OSN1 OSN2 OSN3 OSN4

Login events 14,077,316 311,144 83,128 42,655
Unique Accounts 6,491,452 16,056 25,090 21,066
Unique IPs 6,263,419 17,915 11,736 4,725
Avg. daily events 2,067,486 51,832 11,897 6,601
Account singletons 74.6% 40.0% 51.7% 72.2%

Table 1: Statistics of activity events of the dataset D2.

Our second dataset is composed of login events col-
lected from four different OSNs, spanning a period of
8 days. We call this dataset D2. We obtained the
dataset D2 from a security company. For each activity
event, the dataset contained additional information such
as the user agent of the web browser performing the login
and the HTTP headers of the response. Sensitive infor-
mation such as the user IDs and the IP addresses was
anonymized. Note that this does not affect our commu-
nity detection algorithm at all.

Statistics on the number of login events for each social
network can be found in Table 1. These statistics reflect
the size and activity observed on these networks, rang-
ing from tens of thousands up to 14 million login events.
One interesting observation is the high percentage of ac-
count singletons on a daily basis, i.e., the percentage of
users connecting at most once a day. On a weekly ba-
sis, the percentage tends to drop but remain surprisingly
high. These users are probably legitimate users that are
not very active on the social network.

5 Evaluation

In this section, we analyze how EVILCOHORT performs
in the real world. We first study the effectiveness of
our approach by using the dataset T and its subset L
of labeled malicious accounts. We then select a suit-
able threshold s that allows us to have a small number of
false positives. Finally, we run EVILCOHORT on multi-
ple real-world datasets, and we analyze the communities
of malicious accounts that we detected.
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Value of s # of accounts # of communities Known accounts in L Additional detections over L FP communities FP accounts
(% of tot. accounts in L) (% of add. detections over L) (% of tot. communities) (% of tot. accounts)

2 135,602 3,133 94,874 (58%) 40,728 (23.8%) 1,327 (42%) 12,350 (9.1%)
5 77,910 1,291 51,868 (30.4%) 26,042 (15.2%) 580 (44.9%) 2,337 (3%)
10 25,490 116 16,626 (9.7%) 8,864 (5.2%) 48 (41.3%) 433 (1.7%)
65 1,331 6 1,247 (0.7%) 84 (0.04%) 0 0

Table 2: Summary of the results reported by EVILCOHORT for different values of the threshold s.

5.1 In-degree Threshold Selection
As with every detection system, EVILCOHORT has to
make a trade-off between false negatives and false pos-
itives. As we mentioned in Section 3.2, we can adjust
the value of the minimum in-degree for account vertices
that we use to generate the one-mode projection graph R
to influence the quality of EVILCOHORT’s results. We
call this threshold s. In particular, increasing the value
of s decreases the number of false positives of our sys-
tem, but also reduces the number of accounts that can be
detected. That is, any account that is accessed by less
than s IP addresses during an observation period is ex-
cluded from evaluation for community membership, and
thus cannot be detected as malicious by EVILCOHORT.

In this section we run EVILCOHORT on the datasets T
and L and analyze the quality of its results. The goal is to
identify a suitable value of s for running EVILCOHORT
in the wild. Recall that L is the set of accounts that were
classified as malicious as explained in Section 2. In the
absence of complete ground-truth, we use L as a partial
ground-truth to help us assess how well EVILCOHORT
operates.

The first element that we use to evaluate the effective-
ness of EVILCOHORT is the fraction of accounts in L
that our system is able to detect. Ideally, we want EVIL-
COHORT to detect a large fraction of our labeled mali-
cious accounts. Unfortunately, as discussed above, in-
creasing the value of s decreases the number of accounts
that EVILCOHORT can possibly detect. The percentage
of malicious accounts in L detected by EVILCOHORT
provides us with an estimate of the false negatives that
EVILCOHORT would report if it was run in the wild.

As a second element of effectiveness, we look at the
set of accounts that EVILCOHORT detects as malicious
in T, but that were missed by the anti-spam systems de-
ployed by the webmail provider. These are malicious
accounts not in L. We refer to this number as additional
detections. This value gives us an estimate on the over-
all effectiveness of EVILCOHORT. Ideally, we want this
number to be high, so that if EVILCOHORT were to be
deployed in conjunction with the defenses that are al-
ready in place on the online service, it would increase
the number of malicious accounts that can be detected
and blocked.

The third element that we consider is the confidence
that the communities detected by EVILCOHORT are in-

deed malicious. To this end, we look at the fraction of ac-
counts in L that are present in each detected community.
We consider a community as malicious (i.e., a true pos-
itive) if at least 10% of the accounts belonging to it are
part of our labeled dataset of malicious accounts. Other-
wise, we consider it as a false positive of EVILCOHORT.
We empirically found that this 10% fraction of vetted
bad accounts gives us a good confidence that the com-
munities are indeed malicious. Recall that L is a dataset
composed of “repeated offenders.” In other words it con-
tains accounts that have a consistent history of sending
spam, therefore having a small fraction of accounts from
this set in a community is a strong indicator of the entire
community being malicious. As we show in Section 5.3,
if we relax the method that we use to assess true posi-
tives (for example we consider an account as malicious
if it sent a single email flagged as spam by the webmail
provider) then the majority of the accounts in commu-
nities detected by EVILCOHORT are confirmed as mali-
cious. In Section 6 we show that by observing additional
properties of the communities detected by EVILCOHORT
we are able to confirm almost the totality of them as ma-
licious.

Table 2 provides a summary of the results that we ob-
tained when running EVILCOHORT on T, based on dif-
ferent values of the threshold s. As one can see, the frac-
tion of accounts in L that our system detects decreases
quickly as we increase s. With a threshold of 2, EVIL-
COHORT only detects 58% of the labeled accounts.With
a threshold of 10 the fraction of accounts in L that are
covered is only 10%. Once we reach higher thresholds,
the fraction of detected accounts that are part of L be-
comes very small. The additional detections performed
by EVILCOHORT over the webmail provider’s detection
system also decrease as we increase s. With a thresh-
old of 2 we detect 23% malicious accounts that existing
approaches miss. A threshold of 10 still ensures 5.5%
additional detections over the dataset L. False positives
decrease rapidly as we increase s as well. Setting s to 2
results in 9% false positives. A threshold of 10 reduces
false positives to 1.7%. By setting s to 65, EVILCOHORT
does not mistakenly flag any legitimate account as mali-
cious. Unfortunately, the number of detections at this
threshold is quite low.

Given the results reported in this section, we decided
to use 10 as a value of s for our experiments. At this
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threshold false positives are low (1.7%), but the system
is still able to significantly improve the detections per-
formed by the existing countermeasures deployed by the
webmail provider, and detects 116 communities.

It is interesting to notice that although the number
of accounts misclassified by EVILCOHORT is generally
low, percentages are higher when looking at communi-
ties: with a threshold of 10, for example, 40% of the
detected communities are considered to be false positive
accounts. Interestingly, however, the size of true positive
and false positive communities varies consistently: false
positive communities are composed of 9 accounts on av-
erage, while malicious ones are composed of 370 or more
accounts. An explanation for this is that small commu-
nities could be a side effect of computers behind a NAT
which constantly change their IP address through DHCP.
As previous research showed, some ISPs change the IP
address of their customers very often [26]. The small size
of such communities, however, shows that filtering on
the number of accounts in a community could be an ef-
fective filter to further reduce false positives. We did not
include a threshold on the size of a community in EVIL-
COHORT because we wanted to keep the system general.
However, in a production setting an additional threshold
on the community size could be a straight-forward way
to reduce false positives even further. In addition, Sec-
tion 6 illustrates that false positive communities expose
distinct behavioral characteristics. These characteristics
can be leveraged to further reduce false positives.

5.2 Comparison between EVILCOHORT
and the Single Account Method.

As we discussed in Section 2, EVILCOHORT outper-
forms detection approaches that look at single accounts
accessed by a high number of IP addresses by orders of
magnitude. At a threshold of 10, where EVILCOHORT
reports a false positive rate of 1.7%, the single-account
method has a false positive rate of 32%. Even by dra-
matically increasing the threshold, the number of false
positives of the single-account method remains high. At
a threshold of 65, at which EVILCOHORT reports no
wrong detections, the single-account method has a false
positive rate of 1.2%. Even at a threshold of 100, the
single-account method has a small number of false posi-
tives.

The last question to answer is whether accounts that
are accessed by a high number of IP addresses do form
communities, in other words whether EVILCOHORT is
able to detect most malicious accounts that were ac-
cessed by a number of IP addresses s. To answer this
question, we looked at single accounts accessed by a
number of IP addresses n (from one to 100), and labeled
them as malicious or benign in the same way we labelled
the communities in the previous experiment. We then

proceeded as follows: for each value of n, we considered
the single-account method to have perfect recall (i.e., no
false negatives). We then looked at how many of the ac-
counts detected by this method would have formed com-
munities, and therefore be detected by EVILCOHORT.
The fraction of malicious accounts that form commu-
nities is generally very high. With a threshold of 10,
EVILCOHORT detected 93% of the malicious accounts
detected by the single-account method. With a threshold
of 20 this fraction becomes 95%, while with a thresh-
old of 50 it becomes 98%. We conclude that the vast
majority of accounts accessed by a high number of IP
addresses form communities, and that therefore EVIL-
COHORT is a suitable alternative to the single-account
method for what concerns false negatives, and it reduces
false positives by orders of magnitude compared to the
single account method.

5.3 Detection in the Wild
We applied EVILCOHORT to the datasets D1 and D2. In
the following, we show that EVILCOHORT is able to de-
tect a large number of malicious online service accounts,
regardless of the type of online service that it is run on.
Detection on the webmail activity dataset. The dataset
D1 is composed of email-sending activities logged on
a large webmail provider. Over a period of 5 months,
EVILCOHORT detected M = 1,217,830 accounts as ma-
licious. In total, these accounts were part of 17,803 ma-
licious communities.

We first wanted to understand the number of false pos-
itives generated by EVILCOHORT in the wild. We tried
to answer this question from two vantage points. First,
we performed the same false positive analysis explained
in Section 5.1. That is, we considered an account to be
vetted as malicious if the majority of the emails sent by
it during the day of observation were detected as spam
by the webmail operator. We then considered a commu-
nity as a false positive by EVILCOHORT if less than 10%
of the accounts in the community belonged to our set of
vetted malicious accounts. In total, we found 23,269 ac-
counts to be potential false positives (1.9% of the total
accounts in M). This is in line with the validation results
from Section 5.1, in which we reported 1.7% false posi-
tives by using the same threshold. As a second method of
assessment, we manually analyzed 100 randomly picked
communities among the ones detected by EVILCOHORT.
For each of these communities we could identify signs of
automated activity and possible maliciousness. For ex-
ample, the user IDs of the accounts used by some com-
munities had been clearly automatically generated: in
one case, all the accounts belonging to the community
were composed of two dictionary words concatenated
with a four-digit number. In another case, all the user IDs
were 20-letter random alphanumeric characters. In an-



572  24th USENIX Security Symposium	 USENIX Association

Day 1 2 3 4 5 6 7 8
OSN1 24 30 6 4 4 4 5 2
OSN2 1 0 0 0 0 0 0 0
OSN3 0 0 0 0 1 1 1 0
OSN4 0 0 0 0 0 0 0 0

Table 3: Number of malicious communities detected per
day by EVILCOHORT on the dataset D2.

other case, the accounts belonging to a community were
accounts with a long history of legitimate activity, which
suddenly started being accessed by a large, common set
of IP addresses. We highly suspect that this community
of accounts was composed of legitimate accounts that
had been compromised by cybercriminals.

We then wanted to evaluate the false negatives re-
ported by EVILCOHORT. 94.6% of the vetted malicious
accounts used in the false positive analysis at the oper-
ating threshold formed communities, and were therefore
detected by EVILCOHORT. The false negatives would
therefore account for 5.4% of the total accounts in M.
This shows that malicious accounts accessed by a large
number of IP addresses are typically accessed by botnets,
and confirms the usefulness of our approach.

We then looked at how many accounts detected by
EVILCOHORT sent at least one email that was flagged as
spam by the webmail provider during the day in which
EVILCOHORT detected them. In total, 715,671 accounts
fall in this category (i.e., 59% of M). This also shows
that relaxing our ground truth assumptions and look-
ing at accounts that sent a single spam email as mali-
cious instead of a vetted dataset results in having the
majority of the accounts detected by EVILCOHORT con-
firmed by the defenses already in place at the webmail
provider. Conversely, EVILCOHORT proves to be able to
grow the set of malicious accounts detected by the web-
mail provider consistently, since it detected 502,159 ad-
ditional accounts as malicious (41% of the total).

On average, our prototype implementation of EVIL-
COHORT processes one day of data in about ten minutes
using a COTS server with 16GB of RAM.
Detection on the social network login dataset. The
dataset D2 is composed of login events from online social
networks. In the following, we applied EVILCOHORT
to this second dataset to demonstrate the viability of the
approach for different types of services. We used the
same threshold as selected in Section 5.1 on this dataset
too. Unfortunately, no labeled dataset was available for
these experiments. To confirm that the accounts belong-
ing to the identified communities were indeed malicious,
we performed a post-processing analysis. We discuss the
results of these experiments in Section 6.

Over eight days, EVILCOHORT was able to detect
a total of 83 communities, which represents a total of
111,647 unique accounts. The number of detected com-

Social Network OSN1 OSN2 OSN3 OSN4

Accounts (Avg) 3,662 2 2 0
Accounts (Med) 13 2 2 0
Accounts (Max) 66,764 2 2 0
IPs (Avg) 2,381 14 10 0
IPs (Med) 19 14 10 0
IPs (Max) 3,9884 14 10 0

Table 4: Size of the malicious communities detected by
EVILCOHORT on the dataset D2. Numbers (Average,
Median and Maximum) are expressed per community.

munities and the size of these communities evolve daily,
as one can see in Table 3 and Table 4. Unsurprisingly,
our numbers heavily depend on the size of the social net-
work. OSN1 is by far the largest network; consequently,
this is where we observed the highest number of commu-
nities, as well as the largest communities. Interestingly,
we observe an important drop in the number of commu-
nities on the third day. This might indicate that accounts
were taken down by the network. The remaining com-
munities tend to be of smaller size. In OSN2 and OSN3,
we only detect isolated communities of very small size:
two accounts accessed by ten different IP addresses. The
activity for OSN4 was too little to detect any interesting
community with the selected threshold.

To understand the evolution of the detected communi-
ties, we studied their similarity over time. A community
remains stable over time if it is found similar to a com-
munity detected the day before. We qualitatively con-
sider two communities as similar if they share more than
50% of their accounts. In OSN1, one of the largest com-
munities, with more than 66,000 accounts, was stable
over five days, with a similarity ranging between 53%
to 85%. Two communities of smaller size, with about
10,000 accounts each, were found stable over the two
first days but they disappeared on the third day as pre-
viously observed. The community detected in OSN3 is
only made up of two accounts and it is stable over three
days before being brought down.

6 Application of Post-processing Tech-
niques

As we mentioned in Section 2, EVILCOHORT was mo-
tivated by observations performed on a webmail service.
Given the generality of our approach, however, we can
apply it to any online service that makes use of accounts.
For this reason, we tested EVILCOHORT on the OSN
dataset D2. The question remains on how well EVILCO-
HORT works on such a different dataset. Unfortunately,
the dataset D2 came without ground truth. For this rea-
son, we used the techniques described in Section 3.4 to
assess the maliciousness of the detected communities.
In a nutshell, we analyze the communities detected by
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Figure 4: Correlation between user agents and IPs: legit-
imate accounts (left) and malicious accounts (right).

EVILCOHORT on the dataset D2, and consider them as
true positives if the accounts belonging to it show pat-
terns that are indicative of automated activity or of bot-
net use. These techniques are not part of EVILCOHORT’s
core detection, but as we will show they are helpful in as-
sessing how well our approach performs.

The results show that most communities of accounts
detected by EVILCOHORT show very different charac-
teristics than legitimate accounts, and are, therefore,
very likely malicious. Specifically, of the 83 malicious
communities detected by EVILCOHORT on D2 only 5
showed characteristics that are similar to regular ac-
counts and are therefore possibly false positives. In par-
ticular, we observed a very large community of 5,727 ac-
counts, and four smaller ones of 7, 3, 3, and 2 accounts
respectively. Given the size of the largest community, we
wanted to understand whether it was really a false posi-
tive. Looking at its characteristics, we observed a mix of
IP address accessing a single account and a large popu-
lation of IP addresses accessing many different accounts,
which makes us believe that such accounts might have
been compromised and being accessed by both their le-
gitimate owners and the hijackers. As such, this commu-
nity is not a false positive, as it was actually accessed by
a botnet. We provide further evidence that this is the case
in the following sections. The other communities, on the
other hand, are very likely to be false positives by EVIL-
COHORT, because they show a consistent human like be-
havior. Given their small size (15 accounts in total, out of
111,647 total detected accounts), however, we can con-
clude that the false positives generated by EVILCOHORT
on the dataset D2 are minimal. In the following, we de-
scribe our analysis in detail.
User-agent correlation. Information about user agents
was only available for OSN1 and OSN2 in D2. Conse-
quently, we excluded OSN3 and OSN4 from this analy-
sis. We also excluded all the account singletons, because
the notion of ratio then becomes meaningless.

Based on the description in Section 3.4, we plot the
correlation between user agents and IP addresses in Fig-
ure 4. The left distribution is generated for legitimate ac-
counts that do not form communities, whereas the right

distribution corresponds to accounts in identified mali-
cious communities. The distribution for malicious com-
munities is shifted and no longer aligned on the origin.
For legitimate accounts, the average of log(c) was 0.08,
which is close to zero, as expected (with a standard de-
viation of 0.43). For malicious communities, the average
shifts to -0.85 with a standard deviation of 1.24.

For the accounts in two of the potential false posi-
tive communities described before, the correlation index
log(c) was very close to zero, making them very similar
to what is expected for regular accounts. For the remain-
ing potential false positive communities this metric did
not reveal any anomalous behavior.
Event-based time series. Time series become only sig-
nificant if the amount of data is sufficiently large to make
a measure statistically meaningful. For this reason, we
only computed the event-based time series (introduced
in Section 3.4) for OSN1. Unfortunately, the volume of
login events observed for OSN2, OSN3 and OSN4 made
this approach impractical for these networks.

The assumption behind the time series analysis is that
part of the events observed in malicious communities are
the result of automation. This results in a distinct shape
of activity from communities of legitimate users where
events are triggered by humans [17]. To verify this as-
sumption, we plotted the time series associated with the
activity of the biggest malicious communities detected in
OSN1. The experiments show that the time series gen-
erated for malicious communities differ fundamentally
in shape from regular user activity, even when users are
grouped behind a NAT.

Concrete examples are plotted in Figure 5 The left
time series represents the activity of all users from OSN1

over 8 days. The reader can clearly see the daily pat-
terns in the activity. The middle time series represents
the activity generated by the largest community detected
in OSN1. As can be seen, there are fundamental dif-
ferences: disappearance of the daily patterns and higher
stability on the long term. The right time series is repre-
sentative of most of the time series obtained for smaller
communities of OSN1: the volume of events remains
low but one can clearly observe regular bursts of activity.
This bursty shape is also observed for the potential false
positive community of 5,727 accounts mentioned previ-
ously, which supports our assumption that this commu-
nity might be composed of compromised accounts that
alternate legitimate and malicious activity. The smaller
false positive communities, on the other hand, show di-
urnal patterns similar to the ones observed for legitimate
accounts, which support the conclusions that these com-
munities are false positives.
IP addresses and account usage. An alternative rep-
resentation of account activity over time is to plot the
usage graphs for IP addresses and accounts as detailed



574  24th USENIX Security Symposium	 USENIX Association

Figure 5: Time series plotting login event over time: legitimate accounts behind a NAT (left plot) and malicious
communities (center and right plots).

in Section 3.4. For malicious communities, the usage
graphs will exhibit suspicious patterns, indicating syn-
chronization across accounts and IP addresses. For ref-
erence, Figure 6 presents the usage graphs for the users
behind a NAT. IP address usage is not really relevant for
a single IP address, but one can clearly see the daily in-
terruptions over night, as well as the randomness of the
events during day time. If we look at malicious commu-
nities as plotted in Figure 8, one can see the suspicious
vertical patterns appearing. Looking at the IP addresses
usage graphs, IP addresses are active in synchronized
groups. Previous research already observed that mali-
cious accounts are often used in a synchronized fash-
ion by cybercriminals, and leveraged this property for
detection [7]. This gives us additional confidence that
the detection performed by EVILCOHORT on the dataset
D2 identifies accounts that are indeed malicious. This
anomalous synchronization can be observed for all de-
tected communities of OSN1, OSN2, and OSN3 with the
exception of the five potential false positive communities
previously mentioned, for which the usage resembles the
one of legitimate accounts.

If we look at the large false positive community, how-
ever, one can see in Figure 7 that the usage graphs are
overall similar to the behavior shown by regular users be-
hind a NAT. However, looking more closely, one can ob-
serve multiple darker vertical patterns in the graphs. The
mix of legitimate and malicious activities makes us even
more confident that such community is indeed composed
of compromised accounts accessed by a botnet, and is
therefore a true positive detected by EVILCOHORT.

7 Discussion

We showed that EVILCOHORT can be applied to a va-
riety of online services and to any type of activity on
these services. This versatility, together with the fact that
it complements detections by state-of-the-art systems,
makes EVILCOHORT a useful tool in the fight against

malicious activity on online services. We hope that, in
the future, other researchers will be able to apply the
techniques presented in this paper to other online ser-
vices and types of activity.

As any detection system, EVILCOHORT has some lim-
itations. The main limitation of EVILCOHORT, as we al-
ready mentioned, is that it can only detect malicious ac-
counts that are accessed by communities of IP addresses.
As we showed in Section 2, however, such accounts are
more dangerous than the ones that are accessed by sin-
gle IP addresses, and existing countermeasures are able
to shut down this second type of accounts much quicker.

Another shortcoming is that EVILCOHORT relies on a
threshold to limit the number of false positives. An on-
line service that decided to use our approach would have
to select a value of s that suits their needs. In this paper
we showed that the number of false positives decreases
rapidly as we increase s. Applied to our dataset, con-
sisting of millions of events every day, this observation
allowed us to reduce false positives to practically zero.
Operators can easily tune the value of s by performing
sensitivity analysis similar to what we did in Section 5.1.

A last shortcoming is that the accounts used by cy-
bercriminals are not necessarily fake accounts, but could
be legitimate accounts that have been compromised. In
our current implementation, EVILCOHORT cannot dis-
tinguish between the two types of accounts. Dealing
with compromised accounts is more difficult, because
the online service cannot just suspend them, but has to
go through expensive password-reset operations. As we
showed in Section 6, it is possible detect whether the de-
tected accounts are fake or compromised by using the
postprocessing techniques. A human operator could then
decide how to deal with the malicious accounts, depend-
ing on their nature.

As with any detection system, a cybercriminal who
is aware of EVILCOHORT could attempt to evade it. A
straightforward way of doing this would be to have each
of the online accounts under his control accessed by a
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Figure 6: Activity of legitimate users behind a NAT: IP address usage (left) and account usage (right).

Figure 7: Activity of false positive community: IP address usage (left) and account usage (right). The fact that syn-
chronized activity is interleaved to regular user activity makes us believe that this community is made of compromised
accounts.

Figure 8: Activity of malicious communities: IP address usage (left) and accounts usage (right).
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single IP address. Although this would evade detection
by our system, it would make the cybercriminal opera-
tion less robust: every time the online service detects and
shuts down an account as malicious one of the bots in
the botnet becomes useless, while conversely every time
a bot is taken offline there is an account on the online
service that is not used any more. For this reason EVIL-
COHORT can be evaded, but by doing so a cybercriminal
makes his operation less efficient and profitable.

Since EVILCOHORT can work on any type of activ-
ity events, including login events, it has the potential of
detecting an account as malicious and blocking it before
it performs any malicious activity. In our current imple-
mentation, the system works in batches, on time intervals
of one day. In the future, we plan to extend it to handle
a stream of data, and operate in real time. This way, the
system could continuously build communities, and flag
an account as malicious as soon as it joins a community.

A source of false alarms for EVILCOHORT could be
users who access a service via an IP anonymization ser-
vice such as Tor. In this case, the set of exit nodes would
appear as a community. To mitigate these false positives,
we could use the post-processing techniques that we de-
scribed in Section 3.4. Also, Tor-related communities
can be easily identified by comparing the set of IP ad-
dresses to the known list of Tor exit nodes. As future
work, we plan to explore different tradeoffs between the
number of IP addresses accessing a community and the
characteristics of such communities.

8 Related Work

A wealth of research has been conducted on detecting
malicious activity on online services. Previous work falls
into three categories: content analysis, detection of mali-
cious hosts, and detection of malicious accounts.
Content analysis. A corpus of work focuses on detect-
ing malicious content that is shared on online services.
Multiple papers dealt with detecting email content that
is typical of spam by using machine learning [10, 25].
Other works check whether the URLs posted on an on-
line service are malicious [29,34]. Pitsillidis et al. devel-
oped a system that extracts templates from spam [22].

Content analysis systems are effective in detecting
and blocking malicious content posted on online ser-
vices. However, they suffer from two major limitations.
The first limitation is that such techniques are typically
resource-intensive, and this limits their applicability on
busy online services [28]. The second limitation is that
such systems can make a detection only when the mali-
cious party tries to posts their content. On the other hand,
EVILCOHORT can detect an account (or an IP address) as
malicious even if the account does not post any content
on the online service.

Detection of malicious hosts (bots). Online services can
check in real time if an IP address is known to be a bot
by querying DNS blacklists [1]. DNS blacklists are heav-
ily used in anti-spam systems for emails because, unlike
content analysis systems, they are lightweight. How-
ever, previous research showed that DNS blacklists have
a very high number of false negatives [23]. To improve
the coverage offered by DNS blacklists, several methods
have been proposed. Sinha et al. [24] propose to deter-
mine the reputation of an IP address on a global scale,
instead of doing it on a local (provider-scale) one. Hao
et al. presented SNARE, a system that establishes the
reputation of an IP address based on a number of behav-
ioral features (such as the geographical distance between
the sender and the recipient) [16].
Detection of malicious accounts. To perform malicious
activity on online services, miscreants have to get access
to accounts on such services. To this end, they can pay
workers to create account for them [33], purchase mass-
created fake accounts [30], or buy credentials to compro-
mised accounts on such services [26]. Given the mag-
nitude of the problem, numerous approaches have been
proposed to detect accounts that perform malicious ac-
tivities on online services.

A number of systems analyze the characteristics of ac-
counts on online services, looking for indicators that are
typical of mass-created fake accounts (such as the num-
ber of people that an account follows) [3, 14, 19, 27, 36,
38]. Yu et al. [37] proposed a system to detect fake social
network accounts; the system looks at the network struc-
ture, and flags accounts that are not well-connected with
their peers in the network as possibly malicious. Ben-
evenuto et al. presented a system to detect accounts that
leverage the Youtube service to spread malicious con-
tent [4]. Gao et al. [13] developed a system that clusters
messages posted on social networks, looking for large-
scale spam campaigns. Other approaches look at how
messages propagate on social networks, looking for mes-
sages that spread anomalously, such as worms [8, 35].
Wang et al. [32] proposed a technique to detect mali-
cious accounts on social networks, based on the sequence
of clicks that the people (or the programs) controlling
such accounts perform. Jacob et al. [17] presented PUB-
CRAWL, a system that detects accounts that are used
to crawl online services. Egele et al. [11] developed
COMPA, a system that learns they typical behavior of
social network accounts, and considers any change in be-
havior as the sign of a possible compromise. Cao et al.
presented SynchroTrap [7], a system that detects mali-
cious activity by grouping together social network ac-
counts that performed similar actions during the same
period of time. EVILCOHORT improves over Synchro-
Trap, because accounts do not have to act synchronously
to be detected.
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Although systems that detect malicious accounts are
useful to detect and block malicious activity on online
services, they typically rely on a single threat model, and
can only detect malicious accounts that operate following
that threat model. Conversely, EVILCOHORT leverages
the observation that cybercriminals use a set of (compro-
mised) IP addresses and a set of online accounts. For this
reason, EVILCOHORT can detect online accounts con-
trolled by cybercriminals, regardless of the purpose for
which these accounts are used.
Studying communities of interest. A large corpus of re-
search has been conducted over the years to study com-
munities of interest in networks [2, 20]. Such commu-
nities are collections of hosts that share the same goal.
Studying communities of interest is useful to model the
typical behavior of related hosts, and detect anomalies in
their behavior that can be indicative of malicious activity.
The communities that we study in this paper are different
in nature, because they are composed of online accounts
instead of hosts and are consistently used for malicious
purposes by miscreants.

The closest work to EVILCOHORT is BOT-
GRAPH [39]. Similar to EVILCOHORT, this system
looks at accounts that are accessed by a common set of
IP addresses. However, BOTGRAPH relies on heuristics
that are dependent on the email-sending habits of
accounts to perform detection, and therefore limit its
applicability to the spam-fighting domain. Conversely,
EVILCOHORT is principled, and can be applied on any
online service without pre-existing domain knowledge.
In addition, the fact that EVILCOHORT can be applied
on activity other than email-sending events (for example
login events) allows us to detect malicious activity other
than sending malicious content ( e.g., online accounts
used as a C&C channel). Another difference is that
BOTGRAPH calculates its threshold over a 30-day
period, and therefore is not suited to perform detection
on freshly-created accounts. In this paper, on the
other hand, we showed that EVILCOHORT can work in
one-day batches, and detect as malicious accounts that
were created during that same day.

9 Conclusions

We presented EVILCOHORT, a system that detects ma-
licious accounts on online services by identifying com-
munities of accounts that are accessed by a common set
of computers. Our results show that the vast majority of
the accounts that form such communities are used for
malicious purposes. In the rare cases in which legiti-
mate communities of accounts form, we show that such
communities present characteristics that are very differ-
ent than the ones of malicious communities. These dif-
ferences can be used to perform more accurate detection.

We ran EVILCOHORT on two real-world datasets, and
detected more than one million malicious accounts.
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