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ABSTRACT

A set of equations linking the time-spread of a laser altimeter echo-profile, commonly known as

the pulse-width, to the variance of topography within the pulse-footprint are tested by comparing

pulse-width data to surface characteristics measured from high-resolution Digital Terrain Models.

The research is motivated by the advent of high-resolution Digital Terrain Models over Mars, which

enables the calibration of Mars Orbiter Laser Altimeter pulse-widths, and evolves to include lunar

and terrestrial data in an attempt to validate the theory and develop new methods.

Analysis of Mars Orbiter Laser Altimeter pulse-width data reveals mixed results. Over homo-

geneously rough terrain, at kilometre-scales, these pulse-widths show some correlation to surface

characteristics, once poor pulse data has been removed. However, where roughness is highly vari-

able over short baselines, little correlation is observed, which is attributed to a mix of georeferencing

errors and instrument methods.

In a similar study, Lunar Orbiter Laser Altimeter pulse-widths are shown to produce only poor

correlations with surface characteristics over local study sites. Instead, the observed correlations

differ from orbit to orbit, with the majority of those used appearing to contain poor quality pulse-

width data - attributed to the instrument methods - and only 14 % revealing correlations similar, or

better, than observed over Mars.

Finally, an examination of the relationship between footprint-scale surface characteristics and

pulse-width estimates derived from smoothed Ice, Cloud, and land Elevation Satellite echo-profiles

enables different pulse-width thresholds to be tested. Here, pulse-widths measured using a 10 %

Peak Energy threshold are shown to produce greater correlations than those observed using the

Mars Orbiter Laser Altimeter and the Lunar Orbiter Laser Altimeter data, which use a Full Width

Half Maximum threshold.

To conclude, pulse-widths can show strong correlations to surface roughness and slope within

the pulse-footprint. However the assumption that detrended surface roughness can be derived by

applying a slope contribution effect is shown to be unfounded. The principal recommendation is

for future instruments to use a full echo-profile in estimating pulse-width values at a 10 % Peak

Energy threshold, providing both efficient noise removal and a better correlated dataset.
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GLOSSARY

Absolute Slope A measure of surface roughness, defined on Page 78 as

sabs =
1
∆x

{

1
n

n

∑
i=1

|z(xi)− z(xi +∆x)|

}

Aerodynamic Roughness

Length

A parameter used to measure the mean wind speed at the
surface, equivalent to the height at which the log of the wind
speed is 0, and related to the roughness of terrain

Aerographic A coordinate system used to define points on the surface of
Mars

Aeroid The equipotential surface of Mars, derived from MOLA
data

ArcMap Part of the ArcGIS Geographic Information System pro-
cessing suite used to map and process data throughout this
work, versions 10.0 and 10.1 are used in this work

Autocorrelation Length A measure of surface roughness, which explores the corre-
lation of terrain which itself, defined on Page 79 as

C (∆x) =
1
ξ2

[

1
n−1

n

∑
i=1

z(xi)z(xi +∆x)

]

Baseline The scale, i.e. size of the window or profile, across which
surface roughness is measured, can also be defined as the
distance between camera positions
See Symbol List: bc

Beam Divergence The spreading out of the laser beam due to diffraction effects
after it has passed through the aperture, which causes an
increase in the pulse-footprint with distance, and a gaussian
distribution of energy across the footprint

Breakpoint The scale at which the Hurst exponent breaks, and thought
to be an indicator of scale at which competing processes
change

Detrend A process that removes the effect of background slope from
elevation and surface roughness estimates
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Digital Terrain Model Gridded elevation model of terrain, where each point has a
point in x, y, and z. Other forms are digital surface model
and digital elevation model. DTM is used here as this work
focuses on bare terrain, i.e. devoid of vegetation and other
objects on the surface

Effective Slope Deviation A measure of surface roughness, defined on Page 78 as

se f f =
ξ

C
=

1
C

[

1
n−1

n

∑
i=1

(z(xi)− z̄)2

]
1
2

Foehn Winds A dry downslope wind that warms adiabatically as it de-
scends. Unlike katabatic winds, these winds were cool
through adiabatic cooling by orographic lifting, depositing
precipitation on the windward side, and descending as warm
dry air on the lee side

Geary’s C A method of measuring surface roughness, similar to auto-
correlation length, defined on Page 80 as

IC =
n−1
2W

.
∑i ∑ j wi j (zi − z j)

2

∑i (zi − z̄)2

Geographic A coordinate system used to define points on the surface of
Earth

Geographic Information

System

Software used to map and process geographic data

Geoid A surface defining the equipotential surface on Earth, and is
the shape of the surface would take if the Earth was covered
entirely by water

Hurst Exponent A measure of the scaling of terrain when data forms one or
more linear lines-of-best-fit on a variogram, defined below

Inter-Quartile Range A measure of the distribution of a sample, here used as a
measure of surface roughness

Katabatic Winds A downslope wind caused by radiational cooling of air at
a topographic high, increasing in density and falling under
gravitational forces, downslope, warming adiabatically as it
does so.

Laser Altimeter Instrument to derive terrain elevation from laser ranging,
here it is defined as an orbiting lidar instrument
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Lidar An laser ranging instrument, which comes in many forms
and uses. In this work it is defined as a non orbiting laser
ranging instrument. The name is a portmanteau of LIght and
raDAR (http://www.oed.com), also written as LiDAR and
LIDAR, but is often assumed to be an acronym of "Light
Detection and Radar", or "Laser Imaging, Detection and
Ranging".

Mars Dichotomy Describes the sharp difference between the north and south
of Mars. The north appears as low, smooth terrain, whist
the south, in sharp contrast, is higher in elevation and much
rougher.

MATLAB Numerical software produced by Mathworks, and used ex-
tensively to process the numerical data in this work
See Acronym List: MATLAB

Median Differential Slope A method of measuring surface roughness, defined on
Page 79 as

sd =
z∆x

2
− z−∆x

2

∆x
−

z∆x − z−∆x

2∆x

Moran’s I A method of measuring surface roughness, similar to auto-
correlation length, defined on Page 79 as

I =
n

∑i ∑ j wi j

∑i ∑i wi j (zi − z̄)(z j − z̄)

∑i (zi − z̄)2

Parallax The apparent change in position of an object when viewed
at different angles

Planetocentric A coordinate system where latitude is measured as the angle
between the equatorial plane and the vertical point on the
surface, with a line drawn from the surface to the centre of
mass of the body

Planetographic A coordinate system where latitude is measured as the angle
between the equatorial plane and the vertical point on the
surface, with a line drawn perpendicular from the surface to
the equatorial plane of the body

Pulse The pulse of photons output from a laser, with the distri-
bution of photons output as approximately as a Gaussian
distribution

Pulse Broadening Broadening of the original transmitted pulse due to receiver
response time, beam curvature, and terrain effects

Pulse-Footprint The spatial extent of a laser pulse upon the target surface,
usually defined as when the energy drops to 1/e or 1/e2

Pulse-Rate Number of pulses per second from a laser instrument

http://www.oed.com
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Pulse-Width The time-spread of the received backscatter from a laser
altimeter pulse

Range The maximum difference in elevations within a given base-
line

Reference Frame A solution which defines from observational data the spe-
cific numerical location of given points in the reference
system [LRO Project and LGCWG, 2008]

Reference Height A reference surface from which topographic elevation is
measured, often simply defined as a sphere or ellipsoid, or,
more complex, as an equipotential surfaces such as geoid,
selenoid, or aeroid

Reference System A system that includes some definition of a physical en-
vironment, specific terminology, and associated theories
that form an idealised model for defining positions on a
particular body [LRO Project and LGCWG, 2008]

RMS Beam Curvature Effect The Root-Mean-Square of the beam curvature effect

RMS Deviation A measure of surface roughness, defined on Page 77 as

ν(∆x) =

{

1
n

n

∑
i=1

[z(xi)− z(xi +∆x)]2
}

1
2

RMS Height A measurement of surface roughness, defined on Page 77
as

ξ =

[

1
n−1

n

∑
i=1

(z(xi)− z̄)2

]
1
2

RMS of the Terrain within the

Pulse-Footprint

The Root-Mean-Square of the terrain effect on the final
received pulse-width

RMS Received Optical

Pulse-Width

The Root-Mean-Square of the total received optical pulse-
width by a laser altimeter

RMS Receiver Impulse

Response

The Root-Mean-Square of the receiver impulse response

RMS Slope A measure of surface roughness, defined on Page 78 as

srms =
ν(∆x)

∆x
=

1
∆x

{

1
n

n

∑
i=1

[z(xi)− z(xi +∆x)]2
}

1
2

RMS Transmitted

Pulse-Width

The Root-Mean-Square of the transmitted pulse-width

Sastrugi Long wind eroded features that occur on ice sheets that can
be used to infer prevailing wind direction

Selenographic A coordinate system used to define points on the surface of
the Moon
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Selenoid A surface defining the equipotential surface of the Moon

Shapefile A file containing point or polygonal data, containing georef-
erenced data that can be projected along with raster datasets

Signal-to-Noise Ratio A measure of the desired signal to the noise level within a
dataset

Slope The slope of a surface with respect to the horizontal

SOCET SET® Software to produce digital terrain models from both
HiRISE and LROC-NAC stereo-pairs. See Acronym Entry:
SOftCopy Exploitation Toolkit (SOCET SET®)

Stereo-Photogrammetry A method of producing a 3-dimensional model of an object
from two or more overlapping images

Surface Roughness A measure of the vertical exaggerations across a horizontal
plane or profile, at a defined baseline

Topex/Poseidon An Earth reference system defined as an equatorial
radius of 6 378 136.300 000 m, and a polar radius of
6 356 751.600 563 m

World Geodetic System 84 An Earth reference system defined as an equatorial
radius of 6 378 137.000 000 m, and a polar radius of
6 356 752.314 245 m
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GREEK SYMBOLS

α Extinction coefficient

γ Laser beam divergence

ζ The Gouy phase shift

η Lidar optical efficiency

θ Surface slope

θc Planetocentric latitude

θg Planetographic latitude

λ Wavelength

λL Laser wavelength

µ Mean of Gaussian Distribution

ν RMS, or Allen, deviation of elevation

ν0 RMS deviation calculated at unit scale ∆x0

ν Wave frequency

ρ Surface reflectivity

ξ RMS height

ξ0 Unit scale of surface roughness measurement

σ Standard deviation of Gaussian distribution

σb RMS Beam curvature pulse-width

σ f RMS System pulse-width

σr RMS Received pulse-width

σξ RMS Roughness pulse-width

σs RMS Slope pulse-width

σt RMS Terrain pulse-width

σx RMS Transmitted pulse-width

φr Intensity of received pulse

φt Intensity of transmitted pulse

τ Opacity

χ Distance from µ
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ROMAN SYMBOLS

a Equatorial radius

aG Amplitude of Gaussian distribution

A Area of footprint

AD Device constant of laser degradation

AR Area of a laser ranging receiver telescope

b Polar radius

bc Baseline length between camera positions

B Volume backscatter coefficient

c Speed of light

C Autocorrelation length

E Photon energy

E0 Energy transmitted from a laser altimeter

Ea Laser activation energy in eV

Ee f f Lidar system efficiency

f Focal length

G Geometrical form factor

h Planck’s constant

hc Height of camera

hi Height at point i

h j Height at point j

hp Height at point p

∆h Difference in height between point hi and h j

H Hurst exponent

i Imaginary number, where i2 =−1

I Moran’s I

IC Geary’s C

IL Intensity at angle, θ, from nadir

k Boltzman’s constant

kn The wavenumber, as is given by kn = 2π/λ

M Atmospheric transmission

n Number of points
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NB Background radiation noise photon count

NL Number of transmitted photons detected

NS Expected number of photons detected

pi Parallax at point i

p j Parallax at point j

∆p Difference in parallax between pi and p j

PL Laser power

PC Probability that a scattered photon is collected by the re-
ceiver telescope

PS Probability that a transmitted photon is scattered

q0 The minimum spot radius

q The beam spot radius

r Range in elevation points

ra Radial distance from the centre of the beam

rc Radius of curvature

R Distance between laser and target surface

Ra Arithmetic Average

∆R Range bin

Rz The Rayleigh range

sa Absolute slope

sc Curvature

se Effective slope

sd Median differential slope

sr RMS slope

sr0 RMS slope calculated at unit scale ∆x0

SSres Sum of squares of residuals

SStot Total sum of squares

t Time-of-flight for a laser pulse

∆t Time bin

T Absolute temperature in Kelvin

TLight Atmospheric transmittance

TTotal Total atmospheric transmittance

wi j Element of a matrix of spatial weights

W Sum of all wi j

x Horizontal component of point on the surface of an ellipse

x0 Unit scale

∆x Spacing between elevation points

∆x0 Difference in unit scale

Xb Hurst exponent break-point scale

y Vertical component of point on the surface of an ellipse
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z̄ Mean elevation for all z within a window

z(xi) Elevation at point xi

z0 Aerodynamic Roughness Length
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1

INTRODUCTION

1.1 MOTIVATION

A comprehensive understanding of surface roughness and slope across a variety of baselines enables

quantitative comparisons of the relative age, magnitude, and type of geological processes acting

to shape a planetary surface, whilst estimates at small baselines can also be used to help identify

candidate landing and roving sites [Kreslavsky and Head, 1999, 2000; Kreslavsky et al., 2013;

Rosenburg et al., 2011; Smith et al., 2010b]. With this in mind, a science goal of the Mars Orbiter

Laser Altimeter (MOLA) instrument was to characterise the surface at ∼100 m-scales using the

time-spread of the echo-profile, commonly known as the pulse-width, and a set of theoretically

derived equations developed by Gardner [1992], which relate the pulse-width to the variance of

terrain within the pulse-footprint (Figures 1.1a and 1.1b) [Anderson, 2003; Neumann et al., 2003a;

Smith et al., 2001]. The work in this thesis compares these pulse-widths to surface characteristics

from high-resolution Digital Terrain Models (DTMs) to address the fact that the true relationship

between these properties has not been extensively explored [Aharonson et al., 1998; Anderson,

2003; Kim and Muller, 2008; Kim and Park, 2011; Saiger et al., 2007; Smith et al., 2001]. In further

testing of the theory, laser altimeter pulse-width data from the Moon and Earth are explored in an

attempt to validate and develop methods for future laser altimeter instruments [Hussmann et al.,

2013; Schenk et al., 2004; Schutz et al., 2005; Smith et al., 2010a,b; Robinson et al., 2010; Thomas

et al., 2007; Tran et al., 2010].

The equations governing the relationship between the pulse-widths and the surface charac-

teristics - a term used throughout this thesis to refer to surface roughness and slope - within the

pulse-footprint are described in detail in Chapter 2, but the basic principle is that variation of eleva-

tions within the pulse-footprint cause broadening of the echo-profile compared to the transmitted

pulse [Gardner, 1992]. The advantage to using such datasets is that, in addition to providing a

global elevation model, laser altimeter data could be used to quantitatively characterise global

terrain at smaller baselines than can be derived from along-track elevation profiles, albeit with

sometimes large inter-orbit spacing [Aharonson et al., 1998; Garvin et al., 1999; Kreslavsky and

Head, 1999, 2000; Neumann et al., 2003a; Smith et al., 2001]. MOLA operated in an era before
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Figure 1.1a: Map of Mars surface roughness from MOLA pulse-widths using data from Neumann et al. [2003a]. Poor data has been removed from the original
dataset to produce this map, and the original MOLA pulse-footprint baseline was revised from 170 m [Smith et al., 2001] to 75 m [Neumann et al., 2003a]. Grey
terrain depicts regions where there is no data.
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Figure 1.1b: Map of Mars polar surface roughness from MOLA pulse-widths using data from Neumann et al. [2003a]. Poor data has been removed from the
original dataset to produce this map, and the original MOLA pulse-footprint baseline was revised from 170 m [Smith et al., 2001] to 75 m [Neumann et al., 2003a].
Grey terrain depicts regions where there is no data.
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extensive high-resolution DTMs were available over Martian terrain, meaning that calibration with

ground data was not possible [Smith et al., 2001]. The advent of such data from the High Resolution

Imaging Science Experiment (HiRISE), from which DTMs with 1 m pixel−1 post spacing can be

produced, as well an extensive mapping phase for the Mars Science Laboratory (MSL) landing site

selection process, means that pulse-widths can be compared to accurate estimates of surface char-

acteristics at a wide variety of baselines (≥10 m) to determine their responsiveness to underlying

terrain, taking into account the different estimates of pulse-footprints and the distribution of energy

across the pulse-footprint [Aharonson et al., 1998; Garvin et al., 1999; Kim and Muller, 2008, 2009;

Kim and Park, 2011; Kim et al., 2013; Kirk et al., 2008; Kim and Muller, 2009; McEwen et al.,

2007; Neumann et al., 2003a; Shepard et al., 2001; Smith et al., 2001]. The overall aim being to

calibrate a pre-existing, but underused, global dataset for future use, which, in addition to landing

and roving site selection, could further our understanding of Martian climate and climate history by

improving upon current estimates of aerodynamic roughness length for Mars General Circulation

Models (GCMs), and develop our knowledge of Martian geology on global scales, rather than the

smaller Region’s-Of-Interest (ROIs) explored in image data [Golombek et al., 2012a; Heavens

et al., 2008; Kreslavsky and Head, 1999, 2000; Kreslavsky et al., 2013].

More recently, the Lunar Orbiter Laser Altimeter (LOLA) and the Ice, Cloud, and land Elevation

Satellite (ICESat) have recorded echo-pulse information to aid in the identification of candidate

lunar landing sites and further our understanding of the spatial distribution and temporal changes

of surface characteristics of ice sheets, sea-ice, and sea surfaces, respectively [Schutz et al., 2005;

Smith et al., 2010b; Zwally et al., 2002]. Like MOLA, both pulse-width datasets can be calibrated

using high-resolution elevation data, from which surface characteristics at a range of baselines can

be derived for comparison to these pulse-widths [Csatho et al., 2005; Mattson et al., 2012; Tran

et al., 2010]. LOLA employs similar methods to those used by MOLA, but improved co-registration

between pulse-width and DTM datasets provides better conditions for testing of the theory [Mattson

et al., 2012; Smith et al., 2010b; Tran et al., 2010]. ICESat, which failed in 2009, recorded the

full echo-profile within the dataset, which enables new methods of pulse-width estimates using

different thresholds to be developed, with the aim of finding improved correlations between these

data, as well as a range of terrain types and atmospheric conditions to highlight the criteria under

which the theory fails [Csatho et al., 2005; Schutz et al., 2005; Zwally et al., 2002].

A lack of familiarity of these pulse-width datasets, as well as deep interest in the recent influx

of more easily interpretable high-resolution image data from planetary surfaces, could be why these

datasets are often overlooked [Gardner, 1992; Smith et al., 2001]. This original research attempts to

validate the methods of estimating surface characteristics, focussing on surface roughness and slope,

from planetary laser altimeter pulse-widths through comparison with high-resolution DTMs over

extensive areas of Mars, the Moon, and Earth to prove the usefulness of such data. Doing so could

unlock the potential of these global datasets, one of which (ICESat) has a multiyear time-series, and

improve the methods for future laser altimeters to survey the Earth’s ice sheets and barely explored

planetary terrains [Abdalati et al., 2010; Hussmann et al., 2013; Thomas et al., 2007].
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1.2 AIMS AND OBJECTIVES

The universal aim of this research is

• To investigate the relationship between space-borne laser altimeter pulse-widths and surface

characteristics within the pulse-footprint.

The research has the following objectives

• To compare laser altimeter pulse-width data to surface characteristics measured from high-

resolution DTMs over the same area, in effect, calibrating the pulse-width data.

• To use a variety of surface characteristics and identify the best correlations.

• To determine if planetary surface roughness and slope can be derived from space-borne

planetary laser altimeters pulse-widths, as proposed by Gardner [1992], and if so, the

baseline at which these surface characteristics best correlate.

• To determine if detrended surface roughness, i.e. roughness from slope, can be derived from

laser altimeter pulse-width data by applying a simple slope-correction to pulse-width values,

as proposed by Neumann et al. [2003a].

• To develop new methods of estimating pulse-width based on different thresholds, rather than

the Full Width Half Maximum (FWHM) proposed by Gardner [1992] and employed by

MOLA and LOLA, that produce improved correlations between pulse-widths and surface

characteristics.

• To test different pulse selection criteria, based on different atmospheric conditions and terrain

characteristics, to identify where the theory works most effectively or fails.

• To determine the effect of energy distribution across the pulse-footprint by applying a

weighting when calculating the surface characteristics.

The thesis comprises of three individual projects exploring pulse-width data over Mars, the

Moon, and Earth, which are presented in Chapters 3 to 5 respectively. The order of the chapters

coincides with the chronological order in which the projects were established. As a result, additional

aims and objectives are created for individual projects as the investigation evolves, which aim to

address issues raised in the preceding chapter(s).

1.3 OUTLINE OF THESIS

An introduction to the theory used in this thesis is presented in Chapter 2, which is composed of

three topics. The first addresses laser ranging, with an overview of the theoretical components

to laser altimeter pulse-widths, atmospheric effects on pulse-width broadening due to clouds and

scattering, and an explanation of the causes of beam divergence and the resulting energy distribution
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across the pulse-footprint. Section 2.2 introduces the techniques and the relative merits of stereo-

photogrammetry and scanning lidar, both of which are used to produce the high-resolution DTMs

from which surface characteristics are derived in this work; concluding with an introduction to

coordinate systems and reference surfaces. Finally, Section 2.3 presents a synopsis of the surface

characteristics used in this work, including how surface roughness and slope are derived from

elevation data. The scaling nature of terrain is introduced, followed by a discussion on detrending

elevation data and how to produce an effective measure of surface roughness, and the details that

should be reported.

Chapters 3 to 5 contain the individual projects comparing laser altimeter pulse-widths from

MOLA, LOLA, and ICESat to surface characteristics from high-resolution DTM data over Mars,

the Moon, and Earth respectively. Each chapter contains (1) a literature review of relevant surface

roughness and slope research, (2) a description of the instruments and datasets used in the com-

parison, (3) a description of the chapter specific methods, (4) a description of the study sites, (5) a

presentation of the results, (6) a discussion, and (7) concluding remarks from the chapter.

The closing chapter presents the overarching conclusions from the three science chapters,

outlines the originality and contributions the work in this thesis makes to science, and, finally,

proposes ideas for future projects related to laser altimeter pulse-width data, using current and future

datasets, and exploring how laboratory studies could improve our understanding of pulse-surface

interactions over planetary surfaces.
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2

LITERATURE REVIEW

This chapter introduces the background theory and literature used for the work in this

thesis, and is divided into three sections addressing laser ranging, DTMs and surface

characteristics. A specific review of planetary surface roughness and slope, as well

as a description of the laser altimeter and DTM source instruments is provided in the

appropriate science chapter (Chapters 3 to 5).

Section 2.1 outlines (1) the theory of laser ranging and deriving surface characteristics

from the time-spread of the backscatter (laser altimeter pulse-widths), (2) the effects of

atmospheric scattering and clouds on laser altimeter pulses and echo-profiles, and (3)

how energy is distributed across the transmitted pulse-footprint due to beam divergence

effects.

Section 2.2 describes the theory and relative merits concerning the derivation of DTMs

from stereo-photogrammetry, including a brief description of the different families

of stereo-matching algorithms, and scanning lidar, both of which are used to derive

surface characteristics for the calibration of the pulse-width datasets in this work. A

synopsis of the different reference surfaces and a description of the coordinate system

transformation used in Chapter 5 are presented.

Finally, Section 2.3 presents (1) a review of the different methods of estimating 1- and

2-dimensional surface roughness and slope from elevation data, (2) a description of

the scaling nature of terrain, and (3) a discussion of how and why elevation data may

be detrended. The section concludes by outlining how an effective measure of surface

roughness is produced and reported to best enable results to be correctly interpreted

and replicated.
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2.1 LASER ALTIMETRY

2.1.1 INTRODUCTION

Laser ranging uses photon Time-Of-Flight (TOF) measurements to determine the range to a

target surface at scales from millimetres to thousands of kilometres, for a variety of applications

including: manufacturing, the military, and surveying [Bender et al., 1973; Siegman, 1986]. The

basic principles of laser ranging, which is employed by planetary laser altimeters and remote

sensing lidar to produce a 3-dimensional map of underlying terrains, are introduced here [Csatho

et al., 2005; Siegman, 1986; Smith et al., 2001, 2010a,b]. For clarity, in this work, the term

laser altimeter refers to an orbiting laser altimeter instrument used by instruments such as the

Mars Orbiter Laser Altimeter (MOLA), the Lunar Orbiter Laser Altimeter (LOLA), and the Ice,

Cloud, and land Elevation Satellite (ICESat) to make along-track elevation measurements, whilst

lidar refers to the airborne scanning laser altimeters used to make dense elevation models, as

discussed in Section 2.2.3 [Schutz et al., 2005; Smith et al., 2001, 2010a,b]. The following sections

outline: the basic principles of laser ranging, how surface characteristics may be related to surface

characteristics, and the atmospheric and divergence effects that affect the quality and shape of

echo-profiles.

2.1.2 LASER RANGING

One approach to laser ranging is to count the number of wavelengths between an instrument

and a target surface using a continuous laser beam and comparing the transmitted and received

phase shift [Shan and Toth, 2009]. To accurately measure this phase shift, a modulation signal is

superimposed on the transmitted signal: the wavelength of a laser is typically ∼1 mm and therefore

too small for mapping applications [Shan and Toth, 2009]. The wavelength, λ, of the modulation

signal can be changed to find the total number of integer wavelengths within the round-trip-travel-

distance, and a known period, which can be used with the phase shift to determine the range by

R =
knλ+∆λ

2
, [2.1]

where R is the range, kn is the wavenumber, and ∆λ is the wavelength shift.

The most common approach to laser ranging is to use the photon TOF [Shan and Toth, 2009].

This method is employed by the laser altimeters and lidar instruments that produce data used in

this thesis [Csatho et al., 2005; Schutz et al., 2005; Smith et al., 2001, 2010a]. The basic principle

is to measure the TOF, t, for a pulse of photons to make the round-trip from a laser to the target

surface, from which it is reflected, and back again, where it is collected by the receiver telescope

and recorded. Using this approach, the range, R, is determined by

R =
ct

2
, [2.2]

where c is the speed of light. The distance is halved as the TOF measures the round-trip-travel-time
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of a pulse, which is twice the distance between the laser altimeter and the target surface. This

method of laser ranging also enables the profile, or pulse-width of the echo-pulse, to be recorded,

from which the surface characteristics can theoretically be inferred [Gardner, 1992].

The MOLA, LOLA, and ICESat laser altimeters are diode pumped Q-switched Nd:YAG or

Cr:Nd:YAG lasers that operate at 1064 nm wavelength [Schutz, 2001; Smith et al., 2001, 2010b].

The energy, E, per photon is related to frequency, ν, and wavelength by

E = hν =
hc

λ
= 1.86×10−19 J (λ = 1064 nm), [2.3]

where h is Planck’s constant1. Q-switching produces a pulse of photons with a higher peak

power than can be achieved by a continuous wave, whilst Nd:YAG and Cr:Nd:YAG refers to the

lasing mediums, neodymium-doped yttrium aluminium garnet (Nd:Y3Al5O12) and chromium and

neodymium-doped yttrium aluminium garnet (Cr:Nd:Y3Al5O12) respectively [Siegman, 1986]. Ott

et al. [2006] show that laser altimeters have a typical electrical to optical conversion efficiency of

≤3 %, whilst one must also be aware of the relatively low return signal compared to the transmitted

pulse, with many photons scattered by the target surface or, in the case of Mars and Earth, by the

atmosphere. The temporal energy profile of the transmitted pulse is approximately Gaussian, also

known as a normal distribution, whilst the cross-section energy intensity also varies similarly across

the pulse-footprint, as discussed in Section 2.1.5. A more complete description of different laser

types is presented in Siegman [1986].

Employing laser altimeters on non-repeat, near-polar-orbiting spacecraft, like Mars Global

Surveyor (MGS) and Lunar Reconnaissance Orbiter (LRO), enables global Digital Terrain Models

(DTMs) to be generated by accumulating elevation data along orbit tracks (Figure 2.1) [Smith

et al., 1999, 2001, 2010a,b]. High pulse-rates will reduce along-track spacing, but is limited by

the available power and the pulse TOF (1 ms at 300 km orbit), however inter-orbit spacings are

typically much larger, with elevation values typically interpolated to form a continuous data product.

Figure 2.1 shows the planned orbits over a large region of Mars for the MOLA instrument and an

example subset over Eberswalde Crater showing heavily interpolated inter-orbit areas that appear

smooth. Global DTMs, such as this, can be used for geological, geophysical, and atmospheric

circulation studies of planetary bodies, furthering our understanding of surface formation and

evolutionary processes [Smith et al., 1999, 2001, 2010a,b]. Increasing the number of unique orbits

and ensuring a long mission lifetime reduces the average inter-orbit spacing and increases the global

point density for a more accurate global DTM, whilst cross-correlating elevation values at orbit

cross-over locations helps validate and correct data as the mission progresses, safeguarding data

quality and consistency.

Laser altimeters have also been used to produce global DTMs of Mercury and 433 Eros, on

the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission

to Mercury and the Near Earth Asteroid Rendezvous - Shoemaker (NEAR-Shoemaker) mission,

respectively [Cavanaugh et al., 2007; Cheng et al., 1998; Cole et al., 1997; Solomon et al., 2001;

1Planck’s constant, h, is 6.626 069 57×10−34 m2 kg s−1
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Figure 2.1: Schematic (top) and map (bottom) of MOLA track spacing, showing some of the
planned and actual orbit tracks, and resulting elevation data over Eberswalde Crater. Dayside tracks
pass south to north towards the north west, whilst nightside tracks pass north to south towards the
south west, image reproduced from Malin Space Science Systems [No Date.]. As non-repeat laser
altimeter instruments complete more orbits, inter-orbit spacing is reduced. The Eberswalde Crater
regions shows the track spacing with the resulting DTM; inter-orbit regions are interpolated and
appear smooth.
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Zuber et al., 2008]. Although these missions have produced valid range data for their respective

target bodies, data from these missions are not used in this work. In the case of the MESSENGER

mission, high-resolution DTMs (∼1 m) are not available over the surface, meaning that there is

not the extensive high-resolution topographic surface information to which to calibrate the pulse-

widths [Solomon et al., 2001]. For the NEAR-Shoemaker mission, pulse-widths are not available

within the data record [Cheng et al., 1998].

The degradation and ultimate failure of lasers are significant defects of lasers. Lasers are

particularly susceptible to temperature, such that their time-to-failure can be given by Arrhenius’s

equation [Epperlein, 2013]

= ADeEa/kT [2.4]

where AD is the device constant in time, Ea is the activation energy of the device in eV, k is

Boltzman’s constant, and T is the absolute temperature in Kelvin. Other modes of decay and failure

include (1) active region degradation, whereby chemical changes occur in the lasing medium, (2)

electrode degradation; electrostatic discharge, (3) thermal fatigue, (4) diode bar darkening, and (5)

catastrophic optical damage [Epperlein, 2013; Ott et al., 2006]. Laser degradation is inevitable,

but can be mitigated by careful operating procedures, paying particular attention to operating

temperatures, or fitting multiple lasers [Epperlein, 2013; Schutz et al., 2005; Shan and Toth, 2009;

Smith et al., 2010a,b; Zwally et al., 2002].

In addition to elevation data, laser altimeter and lidar can provide information on vegetation

density and structure, as in Fujii and Fukuchi [2005] and Harding and Carabajal [2005], by using

recorded pulse profiles. Forest canopy and ground-returns form distinct features within the profile,

which enable the vertical distribution of vegetation above the ground to be determined [Harding

and Carabajal, 2005]. Furthermore, ground-returns can be used to produce bare-earth terrain

models (i.e. DTMs), from which vegetation volume can be estimated and terrain beneath canopies,

that cannot be penetrated using stereo-photogrammetry, can be explored [Harding and Carabajal,

2005; Lillesand et al., 2008; Shan and Toth, 2009].

2.1.3 DERIVING SURFACE PROPERTIES FROM LASER ALTIMETER PULSE-WIDTHS

Gardner [1992] proposes the received pulse-width, defined as the time-spread of the received echo,

to be related to the transmitted pulse-width, receiver response time, beam curvature effect, and

terrain effects by

σ2
r = σ2

x +σ2
f +σ2

b +σ2
t , [2.5]

where σr is the RMS received optical pulse-width, σx is the RMS transmitted pulse-width, σ f is the

RMS receiver impulse response, σb is the RMS beam curvature effect, and σt is RMS of the terrain

within the pulse-footprint. The theory is used to infer the surface roughness of planetary terrain

from orbiting laser altimeter data, where pulse-footprints are typically metres to tens of metres in

diameter [Aharonson et al., 1998; Garvin et al., 1998; Neumann et al., 2003a, 2009; Schutz et al.,

2005; Smith et al., 2001, 2010b]. Testing the theory by comparing the terrain contribution, σt ,
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Figure 2.2: Schematics of how beam curvature (a) and slope-correction (b) effects to the final
received pulse-width are derived using trigonometry and Equation 2.2, resulting in Equations 2.6 to
2.7. Beam curvature effects are caused by beam divergence as the transmitted pulse moves away
from the aperture. As the pulse-front travels at the same velocity this results in a curved wavefront
in cross-section view (a), meaning that different parts of the pulse-front reach the target surface at
different times as the outer edges of the beam must travel furthest. Slope-correction effects, which
are simplified, also arise from beam divergence effects and assumes the highest point within the
pulse-footprint is at one edge of the pulse-footprint and the lowest point at the other (b). Curvature
and divergence effects are shown heavily exaggerated.
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derived by accounting for the effects of σx, σ f , and σb, to estimates of surface characteristics from

high-resolution DTMs forms the backbone of the work in this thesis [Harding and Carabajal, 2005;

Neumann et al., 2003a; Smith et al., 2001, 2010b].

RMS transmitted pulse-width and RMS receiver impulse response are related to instrument

setup and the performance of the instrument electronics, but RMS beam curvature effect and RMS

of the terrain within the pulse-footprint are governed by instrument optics, pointing angles, and

terrain, such that

σ2
b =

4R2

c2 tan4(γ), [2.6]

σ2
t = σ2

s +σ2
ξ

=
4R2

c2 [tan2(γ) tan2(θ)]+σ2
ξ, [2.7]

where γ is the beam divergence, σs is the effect due to slope, σξ is the effect due to surface

roughness, and θ is the slope of the surface orthogonal to laser pulse direction [Neumann et al.,

2003a]. Figure 2.2 shows how σb and σs, in Equations 2.6 and 2.7, are derived using trigonometry

and Equation 2.2. In addition to the original theory outlined by Gardner [1992], the slope-correction

effect is tested against detrended surface roughness, i.e. roughness from slope, to explore whether

the assumption applied in Neumann et al. [2003a] upholds in real-world situations.

Figure 2.3 shows four schematics depicting the effects that different terrain morphology has on

the received pulse-width. Smooth, gently undulating terrain has a weak effect on pulse broadening

due to the relatively small variations in topography across the pulse-footprint, whilst smooth sloping

terrain, and rough features both have a much greater effect on pulse broadening. Finally, rough,

sloping terrain has the greatest pulse broadening effect as it combines both elements of Equation 2.7.

Using the assumption introduced above, the background slope shown in this final schematic can be

removed, and the resulting detrended surface roughness tested against the roughness contribution

to pulse-width, especially where the slope is consistent across the pulse-footprint.

The RMS received optical pulse-width is best derived from the a full echo-profile of the

received pulse. Failing that, different thresholds of received energy intensity can be employed to

determine the pulse-width and overcome issues with noise detected by the receiver [Abshire et al.,

2000; Neumann, 2001; Smith et al., 2001]. Additionally, the pulse-width timing mechanism must

have sufficient timing resolution to produce accurate estimates of pulse-width that can be used to

determine fine-scale differences in terrain elevations. For example, timing bins of 1 ns are used by

ICESat and MOLA, which result in a theoretical elevation accuracy of 15 cm, using Equation 2.2,

and is thought to be capable of detecting surface roughness as small as 1 m [Schutz et al., 2005;

Smith et al., 2001].

Pulse-width broadening is dominated by the contribution from terrain. Using ICESat as an

example

σr = 150.00 ns,
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Figure 2.3: Schematic depicting the effects of surface roughness and slope within the pulse-footprint
on the received pulse-width. (a) Gently undulating terrain results in a mild broadening of the σr

compared to the transmitted pulse. (b) Smooth sloping terrain and (c) rough terrain result in a wider
broadening, and (d) rough, sloping terrain causes the greatest pulse-width broadening. The pulse
cross-section is shown in grey and the terrain in orange.

σx = 6.00 ns,

σ f = 1.70 ns,

σb = 0.02 ns,

σt = 149.87 ns.

On top of this, the final signal is subject to noise in the form of: (1) photon and speckle noise, (2)

multiplication noise by the detector, (3) detector thermal noise, (4) and quantisation noise [Gardner,

1992]. The result will be natural variation within the return signal, which could result in a less than

perfect correlation with surface characteristics within the pulse-footprint.
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2.1.4 ATMOSPHERIC EFFECTS ON A LASER PULSE

As a laser pulse or beam propagates through an atmosphere it is attenuated as light is scattered by

molecules, aerosols, and clouds. This effect is prevalent on both Mars, which has a thin atmosphere

(0.6 kPa) containing clouds and dust, and Earth, which has a much thicker atmosphere and greater

cloud cover and density (101.3 kPa). Scattering acts to broaden the pulse-width both by shortening

the path-length, as photons are reflected back towards the detector before reaching the target surface,

and increasing the path-length of photons that do reach the target surface, but are affected by single-

and multiple-forward-scattering events (Figure 2.4). Although useful for measuring the cloud

and aerosol distribution within an atmosphere from laser altimeters and lidar pulses, which can

be used in weather forecasting and climate modelling, these effects impact negatively when the

pulse-widths are to be used as an estimate of surface characteristics within the pulse-footprint. If

the magnitude of these effects is known, the pulse-widths can be corrected, otherwise it is best to

remove these pulses from the dataset [Neumann et al., 2003a,b].

Figure 2.5 shows a schematic of pulse-width broadening for a single pass through a column of

the atmosphere with three distinct cloud layers, from Hogan [2006]. The cloud layers are modelled

Laser Light Pulse

Transmitter

Receiver Telescope

Range

Si
gn

al

Receiver Field of View

Figure 2.4: Schematic depicting atmospheric scattering of photons within a laser pulse and the
resulting broadening of the received echo-profile. Photons scattered back towards the receiver have
a shorter path-length than those reflected from the target surface, whilst photons that experience
single- and multiple-forward-scattering have an increased path length, which cause the long-tailed
distribution. Image reproduced from National Oceanic and Atmospheric Administration [No
Date.a].
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as infinitely thin and have an opacity, τ, of 0.69, such that: half the photons at any cloud layer pass

through without being scattered; a quarter are forward-scattered to the next layer; and the remaining

quarter are scattered away from the detector Field Of View (FOV), neglecting the small fraction

that may be backscattered towards the detector. This is because

τ = ln
[

φr

φt

]

[2.8]

∴
φr

φt
= expτ = 2 (τ = 0.69) , [2.9]

where φr and φt are the received and transmitted intensities, respectively. The distributions at the

top of the figure represent the effect on the pulse-profile at the ground. The figure shows single-

and multiple-scattering events to have a significant effect on pulse-width, however, the measurable

effect may be much smaller in real world situations where clouds are not infinitely thin, and

background radiation and detector noise affects the echo-profile. For ICESat, multiple-scattering

can increase photon path-length by tens of centimetres compared to ground-returns, a difference

which is important considering the satellite’s principal science goal is to observe changes in ice

sheet elevation, and sea ice volume and extent [Duda et al., 2001].

Figure 2.5: Schematic representing the proportion of energy in laser pulse passing through a column
of atmosphere unscattered and forward-scattered from three infinitely thin cloud layers that each
have an opacity of 0.69, from Hogan [2006]. The plots represent the resulting energy profile from
unscattered, single-scattered, and multiple-scattered light after one pass through the atmosphere.
Scattering not only acts to broaden the pulse-width, but reduces the intensity of light compared to
the unscattered profile.
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Light extinction refers to those photons that are scattered away from the FOV of the detector

and those absorbed by molecules in the atmosphere. In reality, most of the transmitted pulse

is lost in this way, which reduces the intensity of the return signal. Using Operation 2A of the

ICESat mission, the mean transmitted energy over the study site used in Chapter 5 is 0.07 J, whilst

the equivalent mean received energy is 1.21×10−14 J. This translates to a transmitted pulse of

3.76×1017 photons and a return of 65×103 photons, which will further affect the quality of the

return signal. The lidar equation attempts to relate the total number of received photon counts, NS,

to the total transmitted laser photon counts, NL, by

NS (λ,R) = NL (λL) .PScatter.PCollected.TTotal.Eeff +NB∆t, [2.10]

where PS is the probability of a photon being scattered, PC is the probability of a scattered photon

being collected by the receiver telescope, TTotal is the total transmitted light transmission during

laser pulse propagation, Ee f f is the laser system efficiency, NB is the background noise count, and

∆t is the time bin [Fujii and Fukuchi, 2005].

Each of the components in Equation 2.10 can be generalised by the following set of equations

NL =

[

PL (λL)∆t

hνL

]

, [2.11]

PScatter = [B(λ,λL,R)∆R] , [2.12]

PCollected =

[

A

R2

]

, [2.13]

TTotal = [TLight (λL,R)TLight (λ,R)] , [2.14]

= exp
[

−
(∫ R

0
α(λL,R)dR+

∫ R

0
α(λ,R)dR

)]

, [2.15]

= exp
[

−2
∫ R

0
α
(

λ,R′)dR′
]

→ when λ = λL, [2.16]

EEfficiency = [η(λ,λL)G(R)] . [2.17]

In these equations: PL is the laser power; λL is the laser wavelength; B is the volume backscatter

coefficient; ∆R is the range bin; A is the area of the footprint; TLight is the atmospheric transmittance

at λL or another λ; α is the extinction coefficient; η is the optical efficiency of the system; and G is

the geometric form factor.

This is a general form of the lidar equation, which is used for remote sensing of the lower

atmosphere, and assumes only elastic scattering where there is no change in wavelength of the

light, as in Equation 2.16. Other forms of the lidar equation exist for different lidar types, such as

aerosol, differential absorption, and Raman lidar, which are used for exploring aerosol distributions,

reflectance and gas concentrations, and atmospheric light extinction and water vapour distribution,

respectively [Fujii and Fukuchi, 2005].

In an atmosphere, both elastic and inelastic scattering from atoms, molecules, and particles can

affect photons within a pulse. Rayleigh and Mie scattering are forms of elastic scattering, whereby
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the kinetic energy of a photon and incident molecule, or particle, is conserved. Scattered photon

energy may only change as a result of Doppler effects, caused by the relative velocity of these atoms

and molecules along the photon travel direction. Rayleigh scattering occurs when the scattering

particle is much smaller than the wavelength of the light, which here is ∼1 µm, with atoms typically

on the order of 10−10 m (1 Å). Rayleigh scattering intensity is proportional to λ−4 and therefore

has a strong dependence on the wavelength of incident light, whereby shorter wavelengths are

scattered more readily than longer ones, and the energy scattered isotropically. Mie scattering

however, occurs when a photon encounters a particle of similar size to its wavelength. In this case

the energy is not distributed isotropically, instead it is preferentially forward-scattered, an effect

that is enhanced with increasing particle size. Finally, inelastic scattering of laser pulses refers

to Raman scattering, whereby the total kinetic energy of the photon and scattering particle is not

conserved, here the atomic states of the particle or molecule are changed, and the scattered photon

has a different wavelength to that emitted from the laser.

2.1.5 BEAM DIVERGENCE AND ENERGY DISTRIBUTION

The cross-section of the transmitted pulse increases with distance from the laser aperture, an

effect called beam divergence that is caused by diffraction. Diffraction is the spreading out of

wave-fronts as they pass by an object or through an aperture, and can be described by the Huygens

Principle, which states that every point on a wavefront can be considered a source of secondary

wavelets [Feynman et al., 2006, Lectures: 26 and 30]. These wavelets experience both constructive
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Figure 2.6: Schematic of the diffraction pattern of light passing through a single slit. Regions
of constructive and destructive interference are shown, but only the central peak is considered
significant, whilst the energy within the outer lobes is considered negligible.
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Figure 2.7: Plots of transmitted energy distribution across an example ICESat pulse and energy
profiles across the pulse in the horizontal and vertical axes. Red shows peak energy, and blue shows
the e−2 peak energy, which is chosen as the cutoff threshold for the ICESat pulse-footprint extent,
other instruments may use e−1 [Harding and Carabajal, 2005]. Transects in green and black show
the energy distribution across the pulse, with the energy shown relative to peak energy at the centre
of the pulse.

and destructive interference to form a diffraction pattern on the target surface, as in Figure 2.6. In

single-slit diffraction, which applies to the transmission of laser beams, the interference pattern

appears as a central region of high intensity surrounded by rings, or lobes, of much lower intensity

(Figure 2.6). As laser beam divergence is small, a paraxial approximation can be applied, meaning

the cross-sectional energy distribution can be assumed to be Gaussian and only the 0th order

constructive interference pattern, shown as the central high-intensity region in Figure 2.6, is

assumed to be significant [Siegman, 1986]. It is this 0th order constructive interference pattern that

is given as the pulse-footprint.

The central spot diameter, q, of the beam at a distance, R, from the laser can be calculated from

the beam-waist, q0, Rayleigh range, Rz, and the wavelength of the transmitted light by

q(R) = q0

√

1+
(

R

Rz

)2

. [2.18]
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The beam-waist is defined as the narrowest width of the beam, whilst the Rayleigh range is the

distance required for the beam diameter to double in diameter from the beam-waist [Svelto, 2010,

p 131- 161], and is given as

Rz =
πq2

o

λ
. [2.19]

These equations can be used to calculate the expected pulse-footprint at a particular orbiting height.

The energy distribution across the pulse-footprint due to divergence effects is given by

Era = E0
q0

q(R)
exp

(

−r2
a

q(R2)
− iknR− ikn

r2
a

2rc(z)
+ iζ(z)

)

, [2.20]

where E0 is the transmitter energy, i is the imaginary number (i =
√
−1), ra is the distance from

the centre of the pulse-footprint, rc is the radius of curvature, and ζ is the Gouy phase shift, an

additional contribution that applies only to Gaussian beams [Svelto, 2010, p 131- 161]. In practise,

this causes an effect known as hot-spotting, which describes the concentration of energy (and

therefore photons) towards the centre of the pulse-footprint [Siegman, 1986]. Figure 2.7 shows the

distribution within a typical ICESat pulse-footprint, relative to peak energy found at the centre of

the pulse: the elliptical pulse-footprint is generated by the laser pointing geometry. This energy

distribution pattern suggests the resulting echo-profile will be more representative of the terrain

in the central region of the pulse-footprint, shown in red, than terrain near the edge of the pulse-

footprint. The profile plots to the right and bottom of Figure 2.7 show the energy profile to be

approximately Gaussian along transects shown in the main plot, relative to the peak energy. This

energy distribution can be accounted for when calculating surface characteristics, provided a high

enough DTM resolution, within the pulse-footprint by applying a weighting. More commonly, it

is assumed that only the terrain within the central half of the pulse-footprint contributes to the σr,

where up to 90 % of the energy is thought to be concentrated [Kreslavsky et al., 2013; Smith et al.,

2001, 2010a,b; Neumann et al., 2003a].

2.1.6 REFLECTED ENERGY DISTRIBUTION

The final factor to be aware of regarding laser altimeter elevation and pulse-width measurements is

the distribution of reflected energy from a target surface. Natural terrains are typically considered

Lambertian, or diffuse, surfaces, such that incident energy is reflected almost isotropically from the

surface, whilst wet surfaces cause specular reflection [Acharya and Ray, 2005; Brenner et al., 2011;

Gardner, 1992; Kwok et al., 2006, 2007; Shan and Toth, 2009]. The intensity of light reflected

from Lambertian surfaces, IL, appears approximately similar across a wide range of viewing angles,

following Lambert’s cosine law for an ideal diffuse reflector [Acharya and Ray, 2005, Page: 20]

IL = E0Acos(θ) . [2.21]

Specular surfaces on the other hand, reflect light perfectly at an angle equal, but opposite to the angle

of incidence with respect to nadir (Figure 2.8). In practice, no surfaces are perfectly Lambertian or
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Figure 2.8: Schematic of Lambertian and Specular reflectance from typical terrain and wet surfaces,
respectively. Reflectance from Lambertian surfaces appears at similar intensities for most viewing
angles, whilst specular surfaces perfectly reflect incident light. The Lambertian schematic shows
the relative intensity compared to light reflected at nadir for 22.5°, 45° and 67.5° (from top to
bottom) viewing angles; whilst the grey region in the specular reflectance schematic depicts the
more typical distribution of reflected light due to small roughness features, such as waves, upon a
specular surface. Most surfaces exhibit both of these behaviours, but at different proportions.

specular, instead surfaces exhibit properties of both, with the relative magnitude of each component

dependent on surface composition and roughness [Acharya and Ray, 2005, Page: 20].

A result of these reflection behaviours is that off-nadir viewing angles of laser altimeter and

lidar systems on specular surfaces may result in energy being reflected away from the instrument

FOV. Over Lambertian surfaces a significant proportion of the transmitted energy will be lost

relative to the received energy, even at nadir angles; the advantage being that the received energy

will remain similar over a range of viewing angles [Brenner et al., 2011; Gardner, 1992; Kwok et al.,

2006, 2007; Shan and Toth, 2009]. The received energy of a transmitted pulse over a Lambertian

surface can be approximated to [Shan and Toth, 2009]

ER = ρ
M2AR

2πR2 E0, [2.22]

where ρ is the surface reflectivity, M is the atmospheric transmission, and AR is the area of the

receiver telescope. For an orbiting laser altimeter at 300 km, with a 1 m receiver telescope and a

transmitted pulse energy of 50 mJ, the received energy is ∼2.22×10−14 J, assuming an atmospheric

transmission factor of 0.8 and a surface reflectivity of 0.5, typical for bare-earth terrains, a result

that is similar to the ICESat example above.

In this thesis, most of the study sites are bare-earth terrains, which can be assumed to be

Lambertian surfaces. Only in Chapter 5, where approximately two-thirds of the pulses used are

over icy terrain, could specular reflection cause complications. However, even over icy surfaces,

specular reflection is only considered to occur over very smooth waters, grease ice, and smooth

ice types in open leads in sea ice. The ICESat data used in Chapter 5 are taken over ice sheets

and glacial terrains, which are typically rough and therefore can still be considered as Lambertian

surfaces [Brenner et al., 2011; Gardner, 1992; Kwok et al., 2006, 2007].



2.1. LASER ALTIMETRY 61

2.1.7 MEASURING SURFACE ROUGHNESS IN INDUSTRY USING LASERS

Lasers are also used for measuring fine-scale (0.01 µm to 10 µm) surface roughness of manufactured

surfaces. Here, two techniques are typically applied [Laser Check, 2015; Olympus].

One method uses a small footprint laser moving across a surface, measuring continuously

so that it produces a profile of the surface in much the same way a laser altimeter produces an

elevation profile of a planets surface, as shown in Figure 2.9. This method is an adaption of the

profile method, which typically uses a solid contact with the surface using a stylus, which moves

up and down with the surface as the stylus is dragged across, to produce a profile. From this profile

surface roughness can then be calculated. The advantages to using a laser are that (1) the surface is

not damaged in the process, (2) the profiles can be made in 2-dimensions as well as along single

profiles, and (3) the laser footprint can be made much smaller (0.2 µm) than the tip of the stylus

(2 µm to 10 µm), enabling much finer scale surface roughness to be measured [Olympus].

Another method uses the intensity of laser scatter to determine the roughness of a surface, as

shown in Figure 2.9 [Laser Check, 2015]. Here, a laser pulse is focussed onto the surface, where it

is reflected. Some of this reflected light will be specularly reflected, as discussed above, resulting in

a peak intensity opposite to the angle of incidence. However, much of the light from a rough surface

will be scattered at different angles, as in Lambertian reflection. Software is then used to relate the

intensity of scattered light at different angles to the surface roughness of the material [Laser Check,

2015]. The advantage to this method is that it can be applied at single points across a surface, rather

than having to be calculated using profiles, and that it can be completed very quickly, in fractions

of a second.

In industry, surface roughness is typically calculated using the arithmetic average, Ra, which is

given as

Ra =
1
n

n

∑
i=1

(z(xi)− z̄) , [2.23]

where n is the number of points, z(xi) is the elevation at point xi, and z̄ is the mean profile elevation.

Profile Method: Stylus

Profile Method: Laser

Scatter Method

Scatter

Surface

Laser Beam

Specular

Surface

Surface

Bank of
Detectors

Figure 2.9: Schematic showing two methods of measuring surface roughness in manufacturing.
Left: how surface roughness is calculated along profiles, with the top schematic showing a solid
contact with a stylus and the below, showing non-contact, laser, method [Olympus]. Right: a
schematic of how surface roughness is measured using laser scattering [Laser Check, 2015].
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2.2 DIGITAL TERRAIN MODELS

2.2.1 INTRODUCTION

This section describes the background theory regarding how the DTMs used in this thesis are

produced using stereo-photogrammetry and airborne scanning lidar, and concludes with an intro-

duction to reference surfaces and the coordinate system transformation used in Chapter 5. Like the

preceding section, descriptions of the instruments are found in the appropriate science chapters.

2.2.2 STEREO-PHOTOGRAMMETRY

Stereo-photogrammetry uses two or more overlapping images, taken at different viewing angles, to

produce 3-dimensional models of surfaces or objects within an image-set. It is used here to produce

the DTMs used in Chapters 3 and 4, but can also be used in computer vision, manufacturing, and

surveying.

2.2.2.1 DERIVING HEIGHTS

The underlying principle is to use the apparent change in position, known as the parallax, of

corresponding points in stereo-images to measure the range, with points closer to the camera

positions having a greater parallax. A schematic of how surface elevation is derived from ideal

geometry is shown in Figure 2.10, from which the following equations are derived

h j = hc −
bc f

p j
, [2.24]

=
hc.Pj

bc +Pj
, [2.25]

where hp is the height of the point above the reference surface, hc is the height of the camera above

the reference surface, p j is the parallax at point j, bc is the distance between the cameras, known as

the base, f is the focal length of the cameras, and Pj is the reference surface parallax [Lillesand

et al., 2008]. The parallax is

p j = x1
j + x2

j , [2.26]

where x1
j and x2

j are the position of point j in each image, as shown in Figure 2.10.

More commonly, the relative heights, ∆h, between two points is required, given as [Lillesand

et al., 2008]

∆h = hi −h j,

=
(hc −h j)∆p

p j +∆p
, [2.27]

where hi and h j are the heights at point i and j respectively, p j is the parallax at point j, and ∆p is

the difference between p j and pi, the parallax at point i (Figure 2.10).
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Figure 2.10: Schematic showing how the parallax equations, Equations 2.24 and 2.26, are derived
from similar triangles in stereo-imagery [Lillesand et al., 2008]. Image frames are shown at the top
with the apparent position of point j shown. Heights are measured above a reference surface.

A factor that affects the quality of the resulting height estimates is the base-to-height ratio.

Hasegawa et al. [2000] observe a base-to-height ratio between 0.5 and 1.0 produces good quality

DTMs. To determine elevation accuracy, hacc, this ratio is multiplied by the stereo-matching

accuracy, Macc, such that [Seiz et al., 2007]

hacc =
hcMacc

bc
. [2.28]

Using the characteristics of High Resolution Imaging Science Experiment (HiRISE), described

in Chapter 3, as an example, the resulting DTMs have a height accuracy of ≥0.14 m, assuming:

0.25 m pixel−1 images, Macc of 0.2 pixels, hc of 300 km, and a stereo-angle of 20°, resulting in a

base-to-height ratio of 0.3 to 0.4 [Kirk et al., 2008].

In terrain mapping, these heights are measured relative to a reference height so the resulting

DTMs can be placed in a 3-dimensionally defined position. Further refinements to DTM elevation

values can be made by bundle adjustment, whereby the DTM is rotated and shifted in 3-axes and

3-dimensions to best-fit a lower resolution elevation basemap [Gwinner et al., 2009]. Different

methods can be employed to determine the best-fit, but a common method is to minimises the mean
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difference in elevations [Gwinner et al., 2009; Kim and Muller, 2009].

Finally, orthorectified images are produced using the original images and the DTM. Orthorec-

tification corrects images for camera pointing angles and variations in terrain across the images,

producing an image with consistent horizontal scale [Lillesand et al., 2008]. A consistent scale

across the image means these images create excellent basemaps, to which other data can be

co-registered.

2.2.2.2 MATCHING ALGORITHMS

To produce a continuous dataset, the parallax, which is known as the disparity in computer vision,

is calculated for each set of corresponding points found in stereo-images. These pairs of points are

found by stereo-matching algorithms, which fall into one of three broad groups: feature-, local-, or

global-based matching, depending upon their methods.

Feature matching algorithms attempt to find matching features in image-pairs, such as corners,

edges, points, defined by sharp changes in contrast or colour. The images must be preprocessed

to identify features by applying different operators, such as edge detectors. These features are

then compared to features in the corresponding image to identify common, matching features. The

parallax is found for each point in the matched features and interpolation is applied to estimate

parallax values for regions between matching features. Typically, feature matching is less affected

by image noise than local and global matching processes, described below, which depend on pixel

intensity values [Zhang et al., 2006].

Local matching algorithms, or window-based approaches, attempt to find corresponding points

by matching a small window of pixels in one image to a moving window of pixels in another. As

described in Scharstein and Szeliski [2002], local matching algorithms usually employ three distinct

stages in the production of a disparity map: (1) matching cost computation, (2) cost aggregation,

and (3) disparity computation. In (1), a metric, such as the squared difference of intensity values in

the Sum-of-Squared Differences (SSD) algorithm, is compared in a reference image window to the

moving window. This metric is applied at different disparities, defined by a disparity-range, and

the results are assessed in the aggregation step, which often acts to smooth the aggregation costs,

typically by averaging or summing, over a finite window [Scharstein and Szeliski, 2002]. Finally,

the disparity is computed, for the SSD algorithm, this is the minimal aggregated value for each

pixel in the overlapping image region.

Global matching algorithms attempt to apply a matching cost computation over the entire

image, rather than localised windows, and typically skip the aggregation stage [Scharstein and

Szeliski, 2002]. Here, the aim is to find the minimum cost for the sum of a data and smoothness

function, the latter is used to ensure consistency across the dataset and is often applied by looking

at neighbouring pixel disparities, whilst the data function is similar to that applied in the local

matching techniques [Scharstein and Szeliski, 2002].

Each of these broad methods has advantages and disadvantages compared to the others, such as

accuracy, computational time, and ease of use [Scharstein and Szeliski, 2002]. A full discussion on
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the comparison between different stereo-matching algorithms is beyond the scope of this thesis, but

a comparison is presented in Scharstein and Szeliski [2002]. Instead, the remainder of this section

will focus on the algorithms used in this thesis.

The Context Camera (CTX), HiRISE, and Lunar Reconnaissance Orbiter Camera - Narrow

Angle Camera (LROC-NAC) DTMs used in Chapters 3 and 4 are produced in SOftCopy Exploita-

tion Toolkit (SOCET SET®) and use a combination of edge (feature) matching and local matching

to produce a dense disparity map suitable for a range of terrains [DeVenecia et al., 2007]. This

strategy, termed Next-Generation Automatic Terrain Extraction (NGATE), is a development to the

Adaptive Automatic Terrain Extraction (AATE) local matching algorithm that adaptively changes

window sizes depending on local signal variation [DeVenecia et al., 2007; Zhang and Miller, 1997;

Zhang et al., 2006]. In their work on adaptive window sizing, Okutomi and Kanade [1992] state

two points to consider when using local matching

1. ...the variation of the signal within the window must be large enough, relative to the noise,

that the SSD values exhibit a clear and sharp minimum at the correct disparity.

2. ...the variation of the disparity within the window, which must be small enough that signals

of corresponding positions are duly compared.

A balance must be found between these two considerations, as increasing window sizes typically

increases both the signal variation and the likelihood of points with different disparities being

included within a window. Adaptive window sizing tries to find such a balance and has been shown

to improve the elevation accuracy over difficult to match terrains [Zhang et al., 2006].

In local based matching, discontinuities, such as roofs, are difficult to match as in practise they

are linear features rather than areas. The NGATE strategy accounts for this by applying a feature

based algorithm to the images to identify these features [DeVenecia et al., 2007; Zhang et al., 2006].

An iterative matching approach is applied whereby local matching is applied to regions between

identified features, reducing the need for interpolation, and incorporated in such as a way as to

assist the feature matching algorithms, and vice-versa [DeVenecia et al., 2007; Zhang et al., 2006].

Competing methods, such as those by Kim and Muller [2009], Kim et al. [2013] and others,

have been applied to produce CTX, HiRISE, and High Resolution Stereo Camera (HRSC) DTMs,

but are not used here [Ivanov and Lorre, 2002]. These algorithms apply the Adaptive Least Squares

Correlation (ALSC) matcher from Gruen and Baltsavias [1986], with Ivanov and Lorre [2002] also

employing a preliminary matcher from Zitnick and Kanade [2000] to produce a set of dense seed

points for the ALSC matcher to use with a region-growing strategy starting from highest quality

corresponding points from the preliminary matcher [Otto and Chau, 1989]. Kim and Muller [2009]

and Kim et al. [2013] use iterative local matching, whereby matching is completed at successively

smaller window sizes to produce more refined results that use matching points with the least noise.

Data from larger windows are used as base data, which is used in the event that results from smaller

window sizes produce pixel-to-pixel slopes of 45°.

Finally, the HRSC DTMs, which are used in Chapter 3, use a local matching scheme based on

cross-correlation and least-squares sub-pixel adjustment [Gwinner et al., 2009].
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2.2.2.3 CHALLENGES OF STEREO-PHOTOGRAMMETRY

Greenfeld [1991] presents a useful outline of the problems that can affect stereo-matching quality,

which affect all three stereo-matching groups. The problems relating to the type of terrains used in

this thesis are shown in Table 2.1. To reduce some of these effects in terrain mapping, stereo-images

should be acquired with minimum differences in time or season to minimise variation in atmospheric

and lighting conditions that cause significant changes in image appearance in computer vision.

Other challenges may be unavoidable, such as the geometric and textural problems highlighted in

Table 2.1. Only by employing a more advanced and potentially more computationally expensive

matching algorithm, may these effects be reduced.

Furthermore, high-resolution pushbroom imagers, such as CTX, HiRISE, and LROC-NAC used

in Chapters 3 and 4, often suffer problems associated with camera geometry and methods [Kim

and Muller, 2009; Kirk et al., 2008]. For example, HiRISE images are composed of 20 individual

strips from overlapping Charge Coupled Devices (CCDs) that must be stitched together to form

a single image, whilst jitter, high frequency spacecraft oscillations, causes image distortions that

must be corrected for in preprocessing [Kim and Muller, 2009; Kim et al., 2013; Kirk et al., 2008].

This jitter effect is less pronounced on CTX and LROC-NAC that operate at a lower resolution and

altitude respectively.

Any of the effects in Table 2.1 can impact negatively on matching quality. Poorly matched

regions can appear as pits and spikes due to sharp differences in elevation between neighbouring

pixels, or heavily interpolated terrain where there are few or no matching points. These interpolated

regions rely on neighbouring positive matches from which to estimate elevation, and typically occur

over smooth terrains lacking in features or signal variation. The pits and spikes can be removed

during blunder detection by applying a simple smoothing filter, such as applying a threshold for

the variation within a window or maximum slope between neighbouring pixels, but large expanses

of interpolated terrain should be masked out if reliable terrain information is vital to the study, as

it is here [Kim and Muller, 2009; Kirk et al., 2008]. More sophisticated blunder detection relies

on increasing the redundancies in the matching points. This is applied in the NGATE strategy

by computing the parallax of a pixel using at least two methods, with the more reliable result,

or the result most similar to neighbourhood pixels, being chosen. NGATE also performs back

matching, whereby the reference image and moving window image are swapped, thereby doubling

the matching redundancy [Zhang et al., 2006].

Stereo-matching can be very computationally expensive, which is especially dependent on the

algorithm employed [Scharstein and Szeliski, 2002]. Rather than search for corresponding points

across an entire image, it is often possible to place constraints on the maximum disparities that are

likely to occur through some prior knowledge of camera pointing geometry and scene information,

such as a low resolution DTM over the Region-Of-Interest (ROI) in terrain mapping. For example,

in a 1000 pixel×1000 pixel overlapping stereo region, the number of cost computations for each

point is reduced from ∼106 computations to 100, if it is known that the maximum disparity in the

images, or in that region of the images, is ≤10 pixels.
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Table 2.1: An outline of the relevant problems that can affect stereo-matching quality for images
over bare-earth terrains, from Greenfeld [1991].

Problem Issues

Photometric Resolution due to atmospheric conditions and the camera’s optics quality (espe-
cially in the comer of the image frame). The corresponding images will have
different sharpness (a low pass filtering effect on one image only).

Reflectance such as sparkling of water bodies.

Illumination. Effect of the sun’s angle and strength of illumination due to partial
cloudiness.

Foreshortened effect. Elements smaller than pixel size which change the value of
the sampled gray level.

Digital camera radiometric calibration differences (integration time, gray level
range definition, exposure setting, etc.).

Digital camera noise during image digitization.

Geometric Relief displacement and occluded areas.

Projective deformation.

Scale variation due to changes in the distance between the camera and the recorded
object.

Base to height ratio. The smaller this ratio, the less the effect of geometric
distortions; however, the height determination is weakened and vice versa.

Textural Existence of distinguishable structures. Featureless surfaces such as ice sheets,
sand, and man-made objects such as runways are extremely difficult to match (if
possible at all).

Repetitive texture such as roofs, marked parking lots, ploughed fields, etc.

Hanging surfaces such as multi-level highway intersections.

Ambiguous levels such as tree tops and the ground below them. - Thin objects,
which are one pixel wide, may be represented differently in the pixel grid (stair
case effect).

To further reduce the computation time in stereo-matching, the matching problem can be

reduced to a 1-dimensional search along epipolar lines, as defined in Figure 2.11, produced through

epipolar-rectification, also known as epipolar-resampling. Here, images are projecting into a

common image plane, often the projection plane of one of the images, by rotating an image to

align features, and stretching an image to match pixel sizes. Using the example above, whereby

the elevation constraints reduce the search for each corresponding point to 10 pixels, the potential

number of cost computations reduces from 100 to 10. Two methods are used to find a suitable

epipolarity model: (1) use precise knowledge of camera location and orientation, and a suitable

camera/sensor model, to apply a transform to project the images into a common plane; (2) use

image correspondence [Wang et al., 2011]. For pushbroom cameras, such as the HiRISE and

LROC-NAC, epipolar curves, rather than lines are produced [Kim, 2000].

Erroneous stereo-matches can be identified by studying the distribution of the magnitudes of
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Figure 2.11: A schematic of epipolar rectification of stereo-pairs. Rather than searching for
matching points in the entire image, which can be many millions of pixels, images can be projected
into a common frame such that the search is reduced to a 1-dimensional problem, searching along
the epipolar plane. This plane is defined by lines drawn between the centre of the projections in the
left and right images, OL and OR, and point i.

the matching vectors produced by plotting stereo-images adjacently. Vectors of positive matches

will generally appear similar in direction and path length, whilst negative matches may vary in

direction and path lengths, dependent upon the disparity constraints. Another method is to use

the Root-Mean-Square (RMS)-error from a previous elevation model used as a basemap, setting a

threshold to determine the maximum allowed difference between the new DTM and the basemap,

above which one can safely assume to be an erroneous value [Scharstein and Szeliski, 2002].

Finally, there is a limit to the resolution of the resulting DTMs, which are typically produced

at between 3 to 4 times the resolution of the original images (i.e. original HiRISE images are

0.25 m pixel−1 and resulting DTMs are at 1 m pixel−1). This is related to the size of objects capable
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of being resolved in imagery, which is typically 3 pixels to 4 pixels across [Kirk et al., 2008;

Gwinner et al., 2010; McEwen et al., 2007, 2010].

2.2.3 LIDAR

Like laser altimeters, lidar instruments use photon TOF measurements to determine the range to an

object or surface, as described in Section 2.1.2. This section focusses on the characteristics of air-

borne lidar instruments used in high-resolution terrain mapping, such as the Airborne Topographic

Mapper (ATM), which is used in Chapter 5 [Shan and Toth, 2009].

2.2.3.1 LIDAR SYSTEMS

Airborne lidar systems typically use pulsed Nd:YAG lasers, similarly to laser altimeter systems,

as these produce 1064 nm wavelength light, which is not attenuated by absorption in the atmo-

sphere [Shan and Toth, 2009]. Recording the echo-profile enables the aerosol and vegetation

distribution to be derived, but can also be used in the processing stage to identify the true ground

return for a more accurate range measurement [Fujii and Fukuchi, 2005; Shan and Toth, 2009].

The recording of the full echo-profile is facilitated by the fact that large amounts of data can be

≈300 m

Previous Scan

Swaths Overlap

20 Hz Rotation

5 kHz Pulse Rate

15◦ ≈
500

m

50 ms −1

Figure 2.12: Schematic of ATM data collection, showing the direction of travel, overlapping
swathes, and rotational scanning of the instrument.
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Figure 2.13: Schematic of the different scanning patterns from scanning lidar, modified from Brenner [2006] and Gatziolis and Andersen [2008]. These scanning
methods are designed to increase the spatial coverage of data along each flight path by using oscillating or rotating mirrors.
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stored without the need for transmission, as is the case for planetary laser altimeters. Fine-scale

mapping is conducted at altitudes of 100’s of metres and wider scale mapping at several kilometres,

with DTMs typically produced from parallel or overlapping flight paths [Shan and Toth, 2009]. The

smaller ranging distances allow lidar to operate using smaller pulse energies and receiver telescopes

compared to space-borne systems, whilst also enabling higher pulse-rates due to the reduced photon

TOF (1.67×10−6 s at 500 m as in Figure 2.13), which can produce a denser dataset [Shan and Toth,

2009].

To fully utilise the greater pulse-rates, lidar systems often use scanning techniques to divert

pulses across a swathe, thereby increasing the spatial extent of data retrieved from each flight

path [Fujii and Fukuchi, 2005; Shan and Toth, 2009]. High-speed scanning mechanisms typically

use two mirrors to make rapid changes to the beam direction in 2-dimensions [Shan and Toth,

2009]. Examples of different swathe patterns, such as elliptical, parallel, and seesaw, are presented

in Figure 2.12 and Figure 2.13. With the exception of the parallel swathe pattern, these patterns

produce a dense irregularly spaced point cloud, which can then be converted to raster datasets [Fujii

and Fukuchi, 2005; Gatziolis and Andersen, 2008]. The ATM, used in Chapter 5, employs an

elliptical scanning pattern, which is produced by circular rotation of the laser beam and the forward

motion of the aircraft (Figure 2.12). Swathe width is dependent on instrument altitude and the

scanning angle, but is typically on the order of 100’s of metres for instruments conducting high-

resolution mapping [Csatho et al., 2005; Shan and Toth, 2009]. Flying at lower altitudes, narrowing

the scanning angle, and decreasing the flight speed increases the data density but may increase time

- the first two reduce the swathe width - and cost for collecting data. Lower altitudes also results in

a smaller pulse-footprint (∼1 m), which produces more accurate elevation measurements due to

lower topographic variation within the pulse-footprint [Shan and Toth, 2009].

On-board Global Positioning Systems (GPS), Inertial Measuring Units (IMU), and Inertial

Navigation Systems (INS) ensure centimetre accuracy for geolocation and altitude of the lidar instru-

ment, which results in a highly precise, well geolocated 3-dimension model of the surface [Csatho

et al., 2005]. Using ground based differential GPS systems at the mapping location can further

improve the geolocation and elevation accuracy of the instrument and the resulting DTM [Shan

and Toth, 2009]. Higher timing resolution receivers, compared to orbiting laser altimeters, improve

the accuracy of range measurements. The RMS-error for data from lidar is typically 15 cm using

the ranges described above, which is better than the accuracy derived from orbiting instrument

stereo-pairs [Liu, 2008; Shan and Toth, 2009]. However, poor data is a common occurrence, with

some pulses reporting anomalously high terrain as a result of strong atmospheric backscatter trig-

gering the receiver; these data can be removed during blunder detection using methods described

above, such as a median filter, to the data [Csatho et al., 2005; Liu, 2008; Meng et al., 2010; Shan

and Toth, 2009]. Interpolation methods are then used to fill data gaps and produce a continuous

dataset from the irregular point cloud. Systematic errors are more complex, such as ensuring

consistent elevations across overlapping flight paths and correcting errors that may arise through

bundle adjustment, described above [Csatho et al., 2005].
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2.2.3.2 COMPARING LIDAR AND STEREO-PHOTOGRAMMETRY

A commonly assumed disadvantage to using lidar technology for high-resolution mapping is the

financial cost compared to stereo-photogrammetry [Gatziolis and Andersen, 2008; Shan and Toth,

2009; Thompson and Maune, 2002; Toth and Grejner-Brzezinska, 2000]. In fact, when elevation

post spacings of ≤0.66 m (0.44 m2 pixel−1) are required, lidar becomes a cost-effective method

of deriving elevation data, whilst for spacings ≥1.66 m (2.76 m2 pixel−1), stereo-photogrammetry

offers a cheaper alternative: the cross-over point occurs at some point between and depends on the

surveying region and technology [Thompson and Maune, 2002].

DTM accuracy from lidar is less dependent on the instrument range, whereas the accuracy

is inversely proportional to instrument altitude for stereo-photogrammetry. Instead, lidar DTM

accuracy is more dependent on the instrument timing resolution, instrument setup, and weather

conditions: optically thick cloud and fog causes scattering that may be recorded as a surface. In

general, lidar improves the regularity of data points, reducing the need for interpolation over large

areas. However, aerial stereo-photogrammetry typically produces more data points due to higher

pixel density compared to lidar points, the drawback being that stereo-matched pixels may not be

evenly distributed across a ROI, such as over smooth, featureless terrain [Scharstein and Szeliski,

2002]. For both dataset types, applying smoothing filters across the data can reduce the visual

impact of errors in a dataset [Scharstein and Szeliski, 2002]. In practice this also introduces errors

to pixel values that were otherwise correct [Scharstein and Szeliski, 2002].

Lidar data acquisition times are longer when producing datasets of similar density and extent

due to the smaller swathe widths and, therefore, more flightpaths: lidar and stereo-photogrammetry

typically have similar FOV (∼40°), but lidar must operate at a lower altitude [Leberl et al., 2010;

Baltsavias, 1999]. The advantage of lidar is that only one fly-over is required per swathe and

data can be acquired both day and night. Additionally, lidar can produce accurate bare-earth

terrain models over vegetated terrain as some of the lidar signal penetrates through gaps in a forest

canopy [Toth and Grejner-Brzezinska, 2000].

During quality control, stereo-images can be used to manually identify errors in the DTM and

map breaklines in the terrain, such as ridgelines [Liu, 2008; Thompson and Maune, 2002]. Feature

matching algorithms, as described above, can use sharp changes in contrast to identify the precise

location of such features, which can also be used to co-register the data. Despite recent gains

in breakline detection from lidar point clouds, discussed in Liu [2008], the fact remains that the

precise location of breakline features will be missing in lidar data unless a very high pulse rate is

used [Thompson and Maune, 2002].

Efficiently reducing the enormous volume of data produced during a lidar campaign to a

useable, regularly spaced, and quickly accessible dataset presents another challenge to lidar,

with the original data containing irregularly spaced echo-profiles, with over-sampling in some

areas [Gatziolis and Andersen, 2008; Liu, 2008]. Challenges also apply to the different methods

of poor data removal, especially where it can be difficult to correctly identify ground returns over

vegetated terrains [Csatho et al., 2005; Liu, 2008]. As lidar is a relatively new technology, there are
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fewer standards regarding the production and accuracy reporting of data, leading to the American

Society for Photogrammetry and Remote Sensing (ASPRS) drawing up guidelines to improve

consistency and enable comparison [American Society for Photogrammetry and Remote Sensing

Lidar Committee, 2004a,b; Liu, 2008].

Finally, it is suggested that laboratory calibration of lidar systems must be conducted at a much

higher rate than stereo-imaging systems, every 500 hrs compared to 3 yrs, whilst calibration should

also be completed for each flight campaign [Thompson and Maune, 2002].

2.2.4 REFERENCE SURFACES

Geographic, aerographic, and selenographic refers to the reference frames of Earth, Mars, and the

Moon respectively. These reference frames are defined as a solution for the location of data within

a reference system, which attempts to define the physical environment, and a model for defining

the positions on a planetary body [LRO Project and LGCWG, 2008]. DTM and laser altimeter

elevations are measured relative to a reference surface, shown schematically in Figure 2.14, which

can vary in complexity from a spherical or elliptical model of the planet to an equipotential surface.

The simplest model is a sphere, however, few planetary bodies are this kind, so a more realistic

model is an ellipsoid, defined by three axes, which accounts for the equatorial bulge caused by

rotation of a large rotating body about a central axis. Reference spheres and ellipsoids are used

as a basis for coordinate systems, with longitude measured in degrees from an arbitrary point on

the surface, known as the meridian, and the latitude in degrees from the equator [Snyder, 1987].

For a spherical coordinate system, measuring the latitude is simplified by the fact the equatorial

and polar radii are the same, and thus the system defaults to a planetocentric coordinate system,

whereby latitude is measured from the centre of the body (Figure 2.14). Two options are available

for ellipsoidal bodies: planetocentric or planetographic, the latter is defined as the angle between a

line perpendicular from the surface and the equatorial plane (Figure 2.14) [Snyder, 1987].

Unfortunately, modelling a surface as a sphere or ellipse fails to account for the change in

gravitational potential across a planetary body due to the spin of a planet and changes in density

across a surface (Figure 2.14) [Fowler, 2005; Snyder, 1987]. These effects are accounted for in an

equipotential surface, which correlates to the shape a planetary body would take if it was covered

entirely by water, assuming no changes in water density and no currents, as every point has the

same scalar potential [Fowler, 2005; Snyder, 1987]. On Earth the equipotential surface is known as

the geoid, whilst on the Moon and Mars the surface is known as the selenoid and aeroid respectively.

This surface may show only small deviations from an ellipsoid, such as the geoid which deviates

85 m to −106 m from a commonly used ellipsoid, but is preferred when measuring topography,

particularly when modelling water flow [Fowler, 2005].

The commonly used parameters for Mars, the Moon, and Earth are presented in Table 2.2,

whilst specific coordinate systems and reference surfaces used by data in this work are discussed in

the relevant science chapters in Section 3.5 (Mars), Section 4.5 (the Moon), and Section 5.6 (Earth).
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Figure 2.14: Schematic describing different reference surfaces and latitude measurements, adapted
from Rossi [2008]. θc and θg are the planetocentric (sphere) and planetographic (ellipsoid) latitudes,
respectively. a and b are the equatorial and polar radii of an ellipse, respectively.

Table 2.2: Common planetary mapping parameters for the three planets discussed in this
work [Grayzeck, 2013; Bennett et al., 2011].

Planet Mean Radius (km) Equatorial Radius (km) Polar Radius (km) Standard

Mars 3389.50±0.20 3396.19±0.10 3376.20±0.10 IAU2000

Moon 1737.4±0.1 1737.4±0.1 1737.4±0.1 IAU2000

Earth 6371.0 6378.1370 6356.7523 WGS84

Earth 6371.0 6378.1363 6356.7516 TOPEX
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2.2.5 COORDINATE SYSTEM TRANSFORMATIONS

Geospatial data often needs to be converted from one coordinate system to another. However,

converting between coordinate systems is not an exact process and instead requires mathematical

approximations. This section discusses the conversion between different planetary geographic

coordinate systems used in Chapter 5, based on Haran [2004] and Meeus [1991]. Conversions

between different projection systems is not discussed here, as a thorough description of the most

commonly used projection systems are discussed in Snyder [1987].

To derive the equation to convert between planetocentric, θc, and planetographic latitude, θg,

for heights on the surface of an ellipse, one must first use the equation for an ellipse

1 =
x2

a2 +
y2

b2 , [2.29]

x2 = a2 −
a2

b2 y2, [2.30]

∴ tan(θg) =−
dx

dy
=

y

x

a2

b2 =
a2

b2 tan(θc) , [2.31]

where x and y are points on the surface of an ellipse, and a and b are the equatorial and polar radius,

respectively (Figure 2.14) [Meeus, 1991].

An iterative process using the Newton-Raphson method to find improved approximations of

a function is used to convert ICESat latitude data from the TOPEX/Poseidon reference ellipse to

the World Geodetic System 1984 (WGS 84) ellipse, as in Haran [2004]. This is repeated until

the change in distance on the surface of an ellipse, δ, is small (10−12 m) [Haran, 2004; Ligas and

Banasik, 2011; Meeus, 1991]. From the equations above

θ2 = arctan
(

a2

b2
tan(u2)

)

, [2.32]

u2 = u2,p −δ, [2.33]

δ =
f (u2)

f ′ (u2)
. [2.34]

Here, u2,p is the value of u2 for the previous loop, and

u1 =arctan
(

b1

a1
tan(θ1)

)

, [2.35]

u2 =arctan
(

b2

a2
tan(θ2)

)

. [2.36]

If θ1 is less than or equal to 45°

f (θ1 ≤ 45) =
(

b2
2 −a2

2
)

∗ sin(u2)+a2 ∗ (a1 cos(u1)+h1 cos(θ1))∗ tan(u2)

−b2a1 cos(u1)+h1 cos(θ1) = 0, [2.37]

f ′(θ1 ≤ 45) =
(

b2
2 −a2

2
)

∗ cos(u2)+a2
a1 cos(u1)+h1 cos(θ1)

cos2 (u2)
= 0, [2.38]
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if θ1 is greater than 45°

f (θ1 > 45) =
(

a2
2 −b2

2
)

∗ cos(u2)+b2 ∗
(a1 cos(u1)+h1 cos(θ1))

tan(u2)

−a2 ∗ (a1 cos(u1)+h1 cos(θ1)) = 0, [2.39]

f ′(θ1 > 45) =−
(

(

a2
2 −b2

2
)

∗ sin(u2)+b2 ∗
b1 sin(u1)+h1 sin(θ1)

sin2 (u2)

)

= 0. [2.40]

To find the height above the new ellipsoid, h2, after the new latitude has been found, one can

use the following equations

if θ1 is less than or equal to 45°

h2(θ1 ≤ 45) =
(a1 ∗ cos(u1)+h1 ∗ cos(θ1))−a2 ∗ cos(u2)

cos(θ2)
, [2.41]

if θ1 is greater than 45°

h2(θ1 > 45) =
(b1 ∗ sin(u1)+(h1 ∗ sin(θ1)))−a2 ∗ sin(u2)

sin(θ2)
. [2.42]

However, near the poles and the equator, where

θ2 ≈ θ1, [2.43]

h2(Equator) = h1 +a1 −a2, [2.44]

h2(Pole) = h1 +b1 −b2. [2.45]

Using different methods to convert between coordinate systems produces only small devi-

ations from the results using the method above, as the maximum shift when converting from

TOPEX/POSEIDON ellipsoid to the WGS 84 ellipsoid is <1 m, even at ±45° N, where the max-

imum shift occurs [Ligas and Banasik, 2011; National Snow and Ice Data Center, 2014a]. The

main differences between the different methods of conversion are the number of iterations required

to derive the new latitudes, and the computational time required to do so, neither of which are

issues for this work due to the relatively low number of ICESat data points (∼36 000) to which the

transformation is applied [Ligas and Banasik, 2011].

2.3 ESTIMATING SURFACE ROUGHNESS AND SLOPE

2.3.1 INTRODUCTION

The work in this thesis tests the relationship between laser altimeter pulse-widths and variation

of terrain, described by surface roughness and slope, within the pulse-footprint, as proposed

by Gardner [1982] in Equations 2.5 to 2.7. Surface roughness and slope provide useful methods in

quantitative geology, a field that has been improved by the digitisation of maps, enabling ever more

complex methods to analyse, classify, and compare terrains to further our understanding of the type



2.3. ESTIMATING SURFACE ROUGHNESS AND SLOPE 77

and relative strength of the formation and evolution processes that shape a surface [Wood, 1996].

However, neither slope nor surface roughness have an absolute scientific definition, with methods

depending on the field of study, data source, and personal preference [Shepard et al., 2001]. This

section describes the different methods of measuring surface roughness and slope that are relevant

to the work in this thesis, along with terrain scaling, and methods of detrending data. The section

concludes by outlining the best practices of defining and reporting these terrain variations.

2.3.2 METHODS OF CALCULATING SURFACE ROUGHNESS

In this work, surface roughness is defined as

A measure of the height variations across a horizontal plane or profile, at a defined

baseline.

This definition is adapted from that given in Shepard et al. [2001], adding the the final phrase - at a

defined baseline - to stress the fact that surface roughness is a dynamic value that, typically, varies

depending on the baseline at which it is measured. For correct interpretation and verification of a

result, the baseline should always be reported. Static measures of surface roughness typically appear

when surface roughness is derived from radar or optical scattering models, where the baseline is

fixed, and, unfortunately, this trend continues in other works, where it is possible to measure surface

roughness at a variety of baselines [Shepard et al., 2001].

The different methods of calculating the height variations along 1- (profile) and 2-dimensional

(gridded) elevation datasets are discussed below, using the review by Shepard et al. [2001]. Their

review, along with Kreslavsky et al. [2013], is used here, and in Section 2.3.8, which outlines how

surface roughness should be reported.

2.3.2.1 SURFACE ROUGHNESS FROM ELEVATION ESTIMATES

The most common method of calculating surface roughness is the RMS height [Shepard et al.,

2001], ξ, given as

ξ =

[

1
n−1

n

∑
i=1

(z(xi)− z̄)2

]
1
2

. [2.46]

The RMS deviation, or Allen deviation of elevation, ν, is the RMS difference in elevation

between points separated by ∆x, and is given by

ν(∆x) =

{

1
n

n

∑
i=1

[z(xi)− z(xi +∆x)]2
}

1
2

. [2.47]

Both the RMS height and RMS deviation scale with the size of the baseline at which they are

measured, which is described in Section 2.3.5 below.

The Inter-Quartile-Range (IQR) can also be used to measure the terrain distribution, which is

defined as the difference between the upper and lower quartiles, and may also be referred to as the
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mid-spread of the distribution. Kreslavsky et al. [2013] consider this to be more stable than the

methods presented above, as it is not influenced by anomalously high or low topography.

Finally, the simplest method is to use the range, r, of elevations within a baseline. Typically the

maximum difference in elevation within a baseline is used, but different thresholds can be applied,

such as 10 %, 14 % (e−2), 37 % (e−1), or 90 % values of the maximum range, which will reduce the

effects of anomalously high or low terrain, as discussed above.

2.3.2.2 SURFACE ROUGHNESS FROM SLOPE ESTIMATES

Slope can also be used as a representation of surface roughness, where it is commonly reported in

degrees [Shepard et al., 2001]. This is not to be confused with slope, which measures the slope of

the surface over a baseline. Instead, it is a measure of the distribution of slope across a baseline, or

measures slope from a background slope, as in the case for Equation 2.51.

The RMS slope, sr, of a profile is represented as

srms =
ν(∆x)

∆x
=

1
∆x

{

1
n

n

∑
i=1

[z(xi)− z(xi +∆x)]2
}

1
2

. [2.48]

Like the RMS deviation, the RMS slope is also dependent on the step size, ∆x. This method

can be considered a poor representation of surface roughness, as outlying points within a long-

tailed frequency distribution will bias the RMS slope towards a higher value [Shepard et al.,

2001; Rosenburg et al., 2011]. The RMS slope is ideally used when the distribution is Gaussian,

which, unfortunately, is not the typical distribution of natural terrains [Aharonson et al., 2001]. To

overcome this, the absolute slope value can be used (Equation 2.50).

The effective slope, se, is commonly used in radar-scattering models and is given by

se f f =
ξ

C
=

1
C

[

1
n−1

n

∑
i=1

(z(xi)− z̄)2

]
1
2

, [2.49]

where C is the autocorrelation length, described below. This method can also be referred to as

the RMS slope, and may be considered a poor measure of surface roughness as it depends on two

other measures of surface roughness, RMS height and the autocorrelation length. In this way, two

surfaces that appear very different when using other measures of surface roughness can appear very

similar, if the RMS height and autocorrelation length scale appropriately [Shepard et al., 2001].

The absolute slope along a profile, sa, is given as

sabs =
1
∆x

{

1
n

n

∑
i=1

|z(xi)− z(xi +∆x)|

}

. [2.50]

This value helps in reducing the effect of a few high, or erroneous, values that may distort the data

when viewed using RMS slope alone [Shepard et al., 2001].

The methods described above are susceptible to long-tailed distributions of slope, which will

affect the resulting surface roughness values, but may not be representative of the terrain. Kreslavsky
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and Head [1999, 2000] present data using the median differential slope, sd , given by

sd =
z∆x

2
− z−∆x

2

∆x
−

z∆x − z−∆x

2∆x
, [2.51]

to measure the distribution of slopes from laser altimeter profile data. Here, z∆x
2

and z−∆x
2

are the z

values at half a baseline ahead and behind the cell, and z∆x and z∆x are the z values at one baseline

ahead and behind the cell for which surface roughness is being calculated, respectively. This

method incorporates some detrending of the data, discussed in more detail in Section 2.3.6, by

removing large baseline slopes from the data without enhancing effects from high slope values that

may be present along a profile, or within a window.

Finally, Kreslavsky et al. [2013] develop a method for deriving surface roughness over the lunar

surface using the curvature, sc, of terrain along LOLA profiles, where sc is given as

sc =
z∆x

2
− z−∆x

2

∆x2 . [2.52]

The results are downsampled to 8 pixels degree−1, and the IQR of sc values are found within each

pixel. The surface roughness maps are produced by finding the relative values compared to a typical

value for the lunar highlands. The aim is to produce a stable roughness map that enables intuitive

comparisons of terrain across the lunar surface.

2.3.2.3 AUTOCORRELATION

The autocorrelation length, C, is a measure of how a surface repeats itself across a defined

scale [Shepard et al., 2001], and can be written as

C (∆x) =
1
ξ2

[

1
n−1

n

∑
i=1

z(xi)z(xi +∆x)

]

. [2.53]

The autocorrelation function is normalised covariance between the profile and itself when offset

by a step, ∆x. This means that the autocorrelation is equal to 1 when ∆x is equal to 0, meaning

that a profile, of length n−1, is perfectly correlated with itself [Orosei et al., 2003]. The autocorre-

lation length is defined as the distance required to reduce the normalised correlation value to e−1

(∼37 %) [Shepard et al., 2001]. Large correlation lengths are generally seen in smooth surfaces,

whereas rough surfaces have low correlation lengths [Shepard et al., 2001]. White noise has an

autocorrelation length of 0, whilst a straight line has an autocorrelation length of 1.

For estimating autocorrelation length in 2- and 3-dimensions, Moran’s I can be used as a

measure of spatial autocorrelation, which returns a value between −1 and 1, where again 1 means

perfect correlation, 0 represents a random spatial process, and −1 represents spatial diffusion.

Moran’s I, I, is defined as:

I =
n

∑i ∑ j wi j

∑i ∑i wi j (zi − z̄)(z j − z̄)

∑i (zi − z̄)2 , [2.54]
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where n is the number of spatial units indexed by i and j, and wi j is an element of a matrix of spatial

weights. Moran’s I looks at global autocorrelation, and is therefore less sensitive to local spatial

autocorrelation.

Geary’s C, IC, is better suited for studying local autocorrelation. Rather than ranging from −1

to 1, Geary’s C ranges from 0 to 2, where 0 means perfect dispersion, 0 is no autocorrelation, and 2

is perfectly correlated. It is given as

IC =
n−1
2W

.
∑i ∑ j wi j (zi − z j)

2

∑i (zi − z̄)2 , [2.55]

where W is the sum of all wi j.

2.3.3 METHODS OF CALCULATING SLOPE

Slope has also been used to explore differences in the magnitude and type of geological processes,

and refers to the slope of a surface relative to the horizontal [Rosenburg et al., 2011; Shepard

et al., 2001]. Slope could be included in the definition given for surface roughness above, as it is a

measure of the height variations across a surface, however, unlike surface roughness, it is dependent

on the order of the height elements within a baseline. The different methods used to measure slope

in this thesis are described below.

On a unit scale level along a 1-dimensional profile, slope is measured as the gradient of a line

between neighbouring points. At larger baselines, slope can be measured either by: (1) the gradient

of a line fitted to the two end points within the baseline; (2) fitting a line-of-best-fit to the data

within the baseline; (3) the mean unit-scale slope estimates across a baseline. These methods will

provide very different results, especially if the terrain is not a smooth continuous slope, which will

each be susceptible to different baseline slopes along the profile.

In two dimensions calculating slope can be more difficult. ArcMap calculates slope in two di-

mensions as the maximum rate of change between a cell and its eight neighbours by [Environmental

Systems Research Institute, 2012]

dz

dx
=

(c+2 f + i)− (a+2d +g)

8× pixelsize
, [2.56]

dz

dy
=

(g+2h+ i)− (a+2b+ c)

8× pixelsize
, [2.57]

θ =
180
π

tan−1

⎛

⎝

√

(

dz

dx

)2

+

(

dz

dy

)2
⎞

⎠ . [2.58]

The values for a to i are shown with an example in Figure 2.15. This can be applied to slopes at

different baselines by either resampling the DTM data to the desired baseline before calculating the

slope, or finding the mean slope, calculated at the original DTM resolution, within a baseline. In

preliminary work for Section 3.8, it was shown that these methods produce very similar results.

The resulting slope value using the example DTM values in Figure 2.15 is 75.26°, if the pixel size

is 5 m.
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Figure 2.15: Schematic and exam-
ple DTM patch used to calculate
the slope in ArcMap using Equa-
tions 2.56 to 2.58. These equations
calculate slope for pixel e. If any
pixel values are missing, they are as-
signed the value of e.
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Another method, used particularly with ICESat data in Chapter 5, calculates slope as the

maximum slope of a plane fitted to elevation data extracted from within laser altimeter pulse-

footprints. This method is considered more accurate as it uses all elevation points within a window

and can produce slope estimates at different baselines using the full resolution data, and detrended

surface roughness. The equation to calculate the maximum slope, derived from the equation for a

plane, is given as

z = ax+by+ c, [2.59]

θ =
180
π

tan−1
(
√

a2 +b2
)

. [2.60]

Using this method slope is effectively calculated at a baseline equal to the width of the elevation data

used to produce the plane. The resulting slope value using the example DTM values in Figure 2.15

is 75.62°, assuming the same pixel size as above.

Beyond this, aspect, curvature, and convexity can also provide statistical information about a

surface, but as these values cannot be determined from laser altimeter pulse-widths they are not

discussed here [Wood, 1996, Chapter 4].

2.3.4 TERRESTRIAL EXAMPLES OF ROUGHNESS

To give a context to the expected surface roughness values, Figures 2.16a to 2.16d show schematics

and a table of the mean, maximum, and minimum surface roughness, as measured using RMS

height, for four example terrains observed on Earth. Figure 2.16a shows a smooth (5°) sloping plane,

dotted with few rocks and boulders. Figure 2.16b shows a rough (5°) sloping terrain, modelled on

the terrain used in Shepard et al. [2001], who use an elevation profile along a lava field to explore

how different measures of surface roughness respond to the terrain. Here, the boulders are much

larger and more closely spaced. Figure 2.16c shows a series of linear, equally spaced dunes (5 m),

all of equal height (10 m) and length (65 m). Figure 2.16d shows a schematic of a sea cliff face,

similar to those found on the south coast of the UK. The sea is modelled as a smooth surface, with

a gently (3°) sloping beach, landslide deposit material at the base of a 100 m high cliff, and a gently

sloping cliff top (3°).

The data in the tables beneath each schematic give an indication as to how RMS height responds

to each of the terrains at different baselines. The surface roughness values are produced across 11

different baselines between 2 m to 500 m, which are similar to those used in Chapter 3. Figure 2.16a

produces the lowest mean surface roughness values until the 250 m baseline data, above which
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500 m

5°

2 m
2 m

5 m

5 m

Value 2 m 5 m 7 m 10 m 15 m 25 m 50 m 75 m 100 m 250 m 500 m

Mean 0.11 0.25 0.33 0.42 0.57 0.83 1.43 2.03 2.64 6.37 12.69

Max 2.89 2.29 2.26 2.25 2.20 2.06 2.12 2.47 2.96 6.47 12.69

Min 0.00 0.00 0.19 0.26 0.33 0.57 1.20 1.75 2.36 6.27 12.69

Figure 2.16a: Terrestrial example of roughness over a smooth, sloping plane, dotted with some
rocks and boulders. The table shows the mean, maximum, and minimum roughness values observed
along the profile.

10 m

50 m
20 m

5°

500 m

10
m

20
m

50
m

Value 2 m 5 m 7 m 10 m 15 m 25 m 50 m 75 m 100 m 250 m 500 m

Mean 0.79 2.18 2.90 3.70 4.86 6.19 7.26 7.31 7.58 9.56 14.92

Max 13.50 10.50 10.27 10.15 9.52 9.35 8.26 8.56 8.48 10.20 14.92

Min 0.00 0.00 0.00 0.00 0.00 3.10 5.26 6.69 6.43 8.64 14.92

Figure 2.16b: Terrestrial example of roughness over a rocky plane, with a high density of rocks and
medium and large boulders. This could be analogous to the lava field used in Shepard et al. [2001].
The table shows the mean, maximum, and minimum roughness values observed along the profile.
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500 m

11° 33°
10 m

5 m 51 m 15 m

Wind Direction

Value 2 m 5 m 7 m 10 m 15 m 25 m 50 m 75 m 100 m 250 m 500 m

Mean 0.18 0.40 0.54 0.76 1.10 1.71 2.76 3.07 3.00 3.05 3.01

Max 0.44 0.99 1.35 1.89 2.79 3.79 3.69 3.12 3.21 3.14 3.01

Min 0.00 0.00 0.07 0.25 0.48 0.93 1.98 2.99 2.75 2.95 3.01

Figure 2.16c: Terrestrial example of roughness over a dune field. In this case, the dunes are
consistently spaced, small dunes. The table shows the mean, maximum, and minimum roughness
values observed along the profile.

3°

80°

30°

3°

113 m 113 m 35 m
14 m

225 m

6 m
20 m

80 m

12 m

Sea Beach
Landslide

Cliff

Cliff Top

500 m

Value 2 m 5 m 7 m 10 m 15 m 25 m 50 m 75 m 100 m 250 m 500 m

Mean 0.17 0.38 0.52 0.74 1.12 1.93 4.18 6.73 9.63 37.45 53.38

Max 4.01 8.97 12.25 17.17 25.36 32.56 38.59 42.05 44.39 49.75 53.38

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.80 53.38

Figure 2.16d: Terrestrial example of roughness over a cliff area, with sea, beach, landslide material,
and cliff top. The table shows the mean, maximum, and minimum roughness values observed along
the profile.
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the Figure 2.16c produces the lowest values. This is due to the long baseline sloping terrain in

the former, compared to the short baseline slopes observed in the dunes. The roughest terrain at

baselines of 2 m to 75 m is observed over Figure 2.16b due to the large size and small spacing

between the modelled boulders. Above these baselines the cliff schematic produces the greatest

surface roughness values, which is a result of the much larger variation in topography typically

observed throughout the schematic.

Finally, the peak in surface roughness values can provide an indication as to the size of the

features found in a terrain. For example, Figure 2.16c shows a peak roughness value at 75 m when

using the mean and at 25 m when using the maximum. These values correlate well with the entire

length of individual dunes and the steepest side of the dune respectively. Similarly, the sharp

increase in surface roughness values observed over 10 m to 25 m baselines when looking at the

maximum in Figure 2.16d suggests that the greatest topographic variation, i.e. the cliff face, is

observed at these baselines.

2.3.5 THE HURST EXPONENT AND FRACTAL DIMENSION

Early work by Horton [1945] and Hack [1957] reveals the scale-invariant nature of stream networks.

Since then, this has been extended to topography [Dodds and Rothman, 2000; Grohmann et al.,

2009; Lovejoy and Schertzer, 2007; Orosei et al., 2003; Pelletier, 1997; Turcotte, 1997], crater

counting and crater depth-to-diameter scaling [Hartmann, 1965; Pike, 1974, 1977], and rock-size

frequency distributions [Golombek and Rapp, 1997], and extends to surface roughness and slope

estimates [Shepard et al., 2001]. This ability for terrain to look similar at vastly different scales

allows the properties of terrain at smaller scales to be predicted using the properties at much larger

scales, and vice-versa, and is part of the reason scale bars are included in images [Shepard et al.,

2001].

The Hurst exponent, H, is a scaling parameter that represents the gradient of the line-of-best-fit

between the surface roughness or slope parameter and the baseline length (Figure 2.17) [Shepard

et al., 2001]. H has a values between 0 and 1 for real surfaces, where 1 suggests that the surface is

replicated exactly at all scales and 0 suggests no scaling law applies. It is related to the previously

described roughness parameters as follows

The relationship between the RMS elevation, ξ, changes and the profile length, ∆x, is

ξ(L) = ξ0

(

∆x

∆x0

)H

, [2.61]

where ξ0 is the RMS elevation of the profile computed at unit scale, x0 [Shepard et al., 2001].

The relationship between RMS deviation, ν, and the baseline length is

ν(∆x) = ν0

(

∆x

∆x0

)H

, [2.62]

where ν0 is the ν value at unit scale, ∆x0 [Shepard et al., 2001].
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The RMS slope, sr, is related to the baseline length as

srms (∆x) = srms,0

(

∆x

∆x0

)1−H

, [2.63]

where sr0 is the sr value at unit scale of the data, ∆x0 [Shepard et al., 2001].

The simplest method for calculating the Hurst exponent is using the variogram, a log-log plot of

surface roughness against the baselines [Shepard et al., 2001]. The Hurst exponent is the gradient

of the line-of-best-fit, over an area of the plot where a simple linear relationship may be found.

If all the data fits well onto one linear line-of-best-fit, then the terrain is referred to as fractal

(Figure 2.17.a); if the data fits onto two or more linear lines of best fit then the terrain is referred to

as multi-fractal (Figure 2.17.b). It is not uncommon for there to be more than one Hurst exponent

value within a variogram, as it is not expected that surfaces get infinitely rougher at smaller scales,

nor indefinitely larger at larger scales [Shepard et al., 2001; Orosei et al., 2003]. The baseline at

which a sudden change in gradient occurs is known as the breakpoint, Xb, and has been shown to be

an indicator of surface formation and evolution, not the Hurst exponent value itself [Shepard et al.,

2001; Rosenburg et al., 2011]. The value of Xb indicates the scale at which competing formation

and evolution processes are equal in magnitude, and also indicates the point small scale surface

processes overtake those acting on larger scales. Shepard et al. [2001] note that a variogram can

reveal more complex behaviour, such as that shown in Figure 2.17.c. Here, the plot follows a

polynomial, where the maximum is thought to be related to the periodic behaviour of the surface.

2.3.6 DETRENDING AND ISOTROPY

Removing background trends from elevation data, in a process known as detrending, before surface

roughness and slope are calculated, can help reveal small-scale geological processes [Kreslavsky

and Head, 2000; Kreslavsky et al., 2013; Shepard et al., 2001]. Equation 2.7 suggests that the

detrended surface roughness could be derived from laser altimeter pulse-widths, adding an extra

depth of information to laser altimeter data. To test this, detrended surface roughness from DTM

data is compared to the roughness contribution to pulse-width, using Equation 2.7, in the following

science chapters.

Different methods can be used to detrend data. Shepard et al. [2001] suggest detrending should

be carried out by subtracting a line-of-best-fit from the elevation data at the baseline, such that the

mean of the data is zero. Alternatively, Kreslavsky and Head [1999, 2000] apply Equation 2.51

to remove trends at twice the baseline of interest in their study on MOLA elevation profile data.

This removes the effect of outliers, anomalously high or low terrain, along a profile to prevent them

drastically altering surface roughness and slope estimates at a location.

Detrending is not without possible disadvantages, however. By attempting to highlight fine-scale

roughness, typically 10 % of the profile length, Shepard et al. [2001] suggest that detrending may

remove large scale roughness features that may be important for the interpretation of a particular

terrain. They also note that detrending may introduce a bias to the data, which can change the
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Figure 2.17: Plots showing the scaling nature of surface roughness for fractal and multi-fractal
terrain [Shepard et al., 2001]. (a) Fractal terrain, where RMS deviation plotted against the baseline
on a log-log plot reveals a single linear relationship. (b) Multi-fractal terrain, where RMS deviation
plotted against the baseline on a log-log plot reveals two linear relationships, with a clear change
in gradient of the line-of-best-fit, known as the breakpoint. (c) A more complex, polynomial
relationship between RMS deviation and the baseline on a log-log plot, whereby the maximum
(shown) is thought to be related to periodic behaviour at this wavelength.

breakpoint, as discussed in Section 2.3.5.

Where the data allows, i.e. for 3-dimensional datasets, it is also possible to determine surface

roughness and slope at different azimuths. Doing so can help determine direction dependent surface

formation and evolution processes that may help in historical interpretation of a terrain. This can

be particularly important in determining the direction and relative magnitude of prevailing winds

in dune formation, as well as the formation of glacial and volcanic terrains [Shepard et al., 2001].

Unfortunately, laser altimeter pulse-widths cannot be used in this way, as they do not record the

location of high or low terrain within the pulse-footprint, instead, only revealing a measure of the

distribution of terrain within the pulse-footprint.

2.3.7 EFFECTIVENESS

An effective measure of surface roughness should not only allow geologists to compare terrains, but

must also be intuitive to understand. Measures such as the Power Spectrum, and the Autocorrelation

length may enable quantitative comparison between terrains, but neither are intuitive [Shepard

et al., 2001]. Additionally, the Power Spectra has no simple relationship with other measures of

surface roughness, and often appears noisy on a variogram, making it difficult to calculate any

Hurst exponent or identify breakpoints [Shepard et al., 2001].

Kreslavsky et al. [2013] present maps of dimensionless surface roughness to get around the

fact that the IQR of sc (Equation 2.52) is not intuitive, by setting values relative to typical values

observed over the lunar highlands. In this way, researchers can compare surface roughness across

the lunar surface, with only the prior knowledge that the lunar highlands are rough. This may be

effective for comparing terrains on individual planets, but is unlikely to become a standardised

method for comparing terrains between planets, as it may be difficult to chose a relative unit that

can be applicable to all planetary terrains. Furthermore, the typical value Kreslavsky et al. [2013]
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use for the lunar highlands may change as datasets improve in resolution and accuracy, making

subsequent comparisons between datasets difficult [Wood, 1996, Page 15].

To make comparisons of surface roughness between planets, surface roughness must be mea-

sured using a common, easily transferable set of methods that enable simple comparisons across

a variety of terrains and planets. Although these values will also be affected by changes in DTM

quality, the effect can easily be reported and accounted for in error analysis.

There is also a question of stability, which is touched upon in Section 2.3.2. Kreslavsky et al.

[2013] define a stable measure of surface roughness to be

...if there is a homogeneous geological unit, its roughness calculated over a large data

set and over a small (but representative) subset of the same data should be similar.

This attempts to address the problem of anomalously high or low terrain (or slope) within a profile,

or plane, significantly affecting the reported value of surface roughness, or slope, that is not typical

to the geological unit, which is also addressed in Equation 2.51 from Kreslavsky and Head [1999,

2000]. This is a common occurrence for naturally occurring terrains, which typically have long-

tailed frequency distributions of elevation and slope [Kreslavsky and Head, 1999, 2000; Kreslavsky

et al., 2013; Shepard et al., 2001].

Similarly, stability can extend to producing maps with low noise and high visual sharpness, and

characterising the topography [Kreslavsky et al., 2013]. These features are less applicable to this

work, as the aim here is to calibrate and develop methods for deriving surface roughness and slope

from laser altimeter pulse-widths.

In practise, measures such as RMS height may be more applicable to the work outlined in this

thesis, as estimates of terrain effects from laser altimeter pulse-widths are theoretically related to

the variance within the pulse-footprint.

2.3.8 HOW SHOULD SURFACE ROUGHNESS AND SLOPE BE REPORTED?

In their work exploring the surface roughness of natural terrains, which attempts to set out a

common scientific method to surface roughness studies, Shepard et al. [2001] provide an outline

of how surface roughness should be reported to enable repetition and comparison of results. Of

interest to this study are their suggestions that the baseline must be reported, hence the addition to

the definition of surface roughness in this work, along with inaccuracies in the DTM. Additionally,

any detrending should also be reported in the description of the dataset, including the methods and

the baselines at which the data is detrended. Their suggestion that surface roughness is calculated at

different azimuths is not applicable here, as it is not possible to derive azimuth dependent processes

from laser altimeter pulse-widths.

The surface roughness estimates used in this work are the RMS height, IQR, and range, which

are not only common, but also easily applied in ArcMap, the principal software environment used

for the mapping elements of this work. DTM uncertainty will also be reported as the RMS-error

from ground reference points, which, due to the lack of ground control data for planetary surfaces,

will typically be the altitude derived from the orbiting laser altimeters. This study also works on the
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principle that poor DTM data will be removed or masked out, rather than attempting to interpolate

terrain to a visually realistic, but potentially incorrect alternative. This is because accurate terrain

data is vital to the work, in order to be able to correctly calibrate the laser altimeter data explored in

this thesis.

Finally, one process unique to this work, is deriving surface roughness and slope estimates with

a weight to represent the energy distribution across the pulse-footprint, as described in Section 2.1.5.

This predominantly applies to the work in Chapter 5, where we have access to accurate information

of the location, geometry, and energy distribution, but is also touched upon in Chapter 3. The

methods to apply this correction are described in the relevant science chapters, as the methods vary

depending on data source.
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3

MARS: ASSESSING MOLA

PULSE-WIDTHS

The effective calibration of MOLA pulse-widths provided the original motivation for

the work in this thesis: the aim being to find a consistent relationship across multiple

sites that could be extrapolated to the rest of Mars to produce accurate maps of surface

roughness and slope from laser altimeter pulse-width data. This chapter presents

a background literature review to Mars surface roughness and slope using current

datasets, followed by a description of the instruments and methods used for the work

in this chapter. The results are split into three studies that explore the relationship

between: MOLA pulse-widths and surface roughness using HiRISE DTMs over the

final four MSL candidate landing sites; Slope-Corrected pulse-widths and surface

characteristics over much rougher terrain; the roughness contribution to pulse-width

and detrended surface roughness. The results suggest these pulse-widths are correlated

to surface roughness over sites considered for landing and roving sites, and slope

over very rough terrain. Little correlation is observed where terrain is heterogeneous

over short baselines and with detrended surface roughness, which is attributed to

georeferencing errors and poor pulse-width measurement.
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3.1 INTRODUCTION

The insertion of Mars Global Surveyor (MGS) into orbit around Mars ended a near-20 year hiatus

of successful orbital missions to the planet [Albee et al., 1998]. A science goal of the Mars Orbiter

Laser Altimeter (MOLA), one of five instruments on-board, was to characterise the surface at

∼100 m-scales using laser altimeter pulse-widths [Gardner, 1992; Neumann et al., 2003a; Smith

et al., 2001]. Whilst it has been possible to corroborate the quality of global elevation data by

comparing data at orbital crossover points, it has not possible to make quantitative comparisons

to verify the quality of pulse-width data over regional scales until the advent of high-resolution,

high-quality Digital Terrain Models (DTMs) from subsequent missions [Kirk et al., 2008; Kim and

Muller, 2009; Kim et al., 2013]. Nor is it known the true effect of energy distribution within the

pulse-footprint, which is revised from ∼170 m to ∼75 m in Neumann et al. [2003a] to account for

the concentration of energy within the central half of the pulse-footprint. The work in this chapter

attempts to address these issues by using high-resolution DTMs from the High Resolution Imaging

Science Experiment (HiRISE) and the Context Camera (CTX) to produce accurate estimates of

surface roughness and slope produced at different baselines, to which different versions of the

MOLA pulse-widths are compared and effectively calibrated. The aim is to identify the best

performing MOLA dataset and find a consistent relationship that can be extrapolated to global

coverage to enable accurate and reliable comparisons to be made between different Martian terrains

and with terrestrial analogues, to further our knowledge of surface formation and evolution, and

identify candidate landing and roving sites.

3.2 LITERATURE REVIEW

Recent research on global Martian surface roughness use a range of datasets including (1) MOLA

elevation profiles and pulse-width data [Garvin et al., 1999; Kreslavsky and Head, 1999, 2000;

Neumann et al., 2003a; Smith et al., 2001], (2) radar data from Mars SHAllow RADar sounder

(SHARAD) and Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) [Camp-

bell et al., 2013; Grima et al., 2012; Mouginot et al., 2009; Picardi et al., 2004], and (3) thermal

emission data from Thermal Emission Spectrometer (TES) and THermal EMission Imaging Sys-

tem (THEMIS) [Hébrard et al., 2012; Mushkin and Gillespie, 2006], which, depending on the

instrument, provide estimates of surface roughness at 10 m to 10 km baselines. Local studies have

used both DTMs and high resolution surface imagery to assess the roughness, typically for landing

and roving site selection [Golombek et al., 1997, 1999, 2005, 2009, 2012a,b; Grant et al., 2011b].

These studies typically use high-resolution images, which are not used in global comparisons due

to the relatively low global coverage [Cord et al., 2007; Kim and Muller, 2009; Kim et al., 2013;

McEwen et al., 2010].

Garvin et al. [1999] explore the relationship between pulse-width and surface characteristics,

using data from 18 orbits from early in the mission and applying minor corrections for instrument

effects. They find the Northern Plains to be smoother than any desert on Earth, and conclude that
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pulse-widths represent surface roughness rather than slope over most areas of Mars, mirroring

a result from Shuttle Laser Altimeter (SLA)1 pulse-widths over terrestrial dunes [Garvin et al.,

1998]. Using these findings, the theory proposed by Gardner [1992], and data from the first year’s

mapping, Smith et al. [2001] present a map of the global distribution of surface roughness from

pulse-width data. This map is updated by Neumann et al. [2003a], who remove large amounts of

saturated and cloud hitting pulses from the original Precision Experiment Data Record (PEDR)

dataset, and apply large-scale slope corrections, both along- and across-track, to the pulse-width

values using Equation 2.7 and a 1 km gridded MOLA elevation dataset. The result is shown in

Figures 1.1a and 1.1b in Chapter 1. As part of their study, Neumann et al. [2003a] suggest the

MOLA pulse-footprint is approximately half the original 168 m estimate given in Smith et al.

[2001], owing to hot-spot effects, as discussed in Section 2.1.5. From this, Neumann et al. [2003a]

propose that MOLA pulse-widths provide estimates of surface roughness at 35 m baseline rather

than 100 m, which assumes the original pulse-footprint estimate.

Extensive work on calibrating these pulse-widths has yet to be conducted, but early work

by Anderson [2003] supports the idea that MOLA pulse-width could be used in landing site

selection, and later work by Kim and Muller [2008] and Kim and Park [2011] suggests there could

be a correlation between these pulse-widths and surface roughness at larger scales. Anderson [2003]

find good agreement between pulse-widths and slope using ground data from Mars Exploration

Rover (MER), and geologic features as identified from Mars Orbiter Camera (MOC) images. They

also observe self-affine topography from MOLA pulse-width slope estimates and longer baseline

elevation profiles, suggesting that finer-scale slope can be predicted from MOLA elevation profiles.

Kim and Muller [2008] and Kim and Park [2011] make quantitative comparisons between MOLA

pulse-widths and surface roughness estimates from DTMs across three sites on Mars, using HiRISE

and High Resolution Stereo Camera (HRSC) data. They observe weak correlations, but stress that

this is only an initial result over a small number of test sites, with a best correlation observed at a

50 m baseline when using the HiRISE data.

Kreslavsky and Head [1999, 2000] present maps of surface roughness from MOLA eleva-

tion profiles at 0.6 km, 2.4 km and 19.2 km baselines (Figures A.1 and A.2). They developed

Equation 2.51 to remove the effect of slopes at twice the baseline at which they are studying, to

highlight smaller scale features from the background slope. Both Kreslavsky and Head [1999,

2000] and Smith et al. [2001] show a correlation between surface roughness and geologic features

and terrains, however, the clearest feature in these maps is the Mars dichotomy, with the northern

plains appearing much smoother than the rough southern highlands. Smaller features such as the

dunes around the northern polar cap (210° E, 80° N) also show up as being rough at 0.6 km baseline

in Kreslavsky and Head [1999, 2000], as well at pulse-footprint scales in Neumann et al. [2003a].

The roughest terrain is found around Olympus Mons, an area known as Lycus Sulci (215° E,

30° N) [Kreslavsky and Head, 1999, 2000; Neumann et al., 2003a]. The formation processes of the

terrain are discussed in the Section 3.8, but can be summarised by a series of extensional features

1SLA was a precursor to the MOLA and Ice, Cloud, and land Elevation Satellite (ICESat) missions produced from
MOLA flight-spares
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formed of material that has slipped from Olympus Mons. In the Kreslavsky and Head [1999, 2000]

data, these aspect dependent roughness features could lead to a bias in the results, as this data

effectively uses north-south orientated profiles and could therefore underestimate roughness in the

east-west direction, whereas the surface roughness estimates from pulse-widths are independent of

aspect and do not have such problems. Other notable features are Vallis Marineris (300° E, 0° N)

and the chaos terrains to the east of this canyon system (270° E to 345° E, 0° N), regions of very

rough terrain in both map types.

Surface roughness derived from radar using SHARAD, shown in Figures A.3 and A.4, shows

good agreement with that from MOLA elevation profiles and pulse-widths, whilst Grima et al.

[2012] observe that SHARAD reflectivity correlats well with surface slope [Campbell et al., 2013].

Lycus Sulci, the northern dunes, and Vallis Marineris, appear similarly rough in both this data and

MOLA data.

Finally, Hébrard et al. [2012] present aerodynamic roughness length maps derived from rock

abundance maps (Figures A.5 to A.8). The rock abundance maps are inferred from TES, and

converted to aerodynamic roughness length data using the relationship derived in Marticorena et al.

[2006]. Like Anderson [2003], this data is calibrated using data from Mars landing sites, before

being extended to the rest of Mars.

Other than in geological studies, how have these roughness maps been used? Heavens et al.

[2008] use the Neumann et al. [2003a] and Kreslavsky and Head [1999, 2000] data to derive maps

of aerodynamic roughness length, which are applied in climate models to study the sensitivity

of climate models to surface roughness. More commonly, surface roughness data has been used

to find safe landing and traverse sites for landers [Golombek et al., 1999, 2005, 2012a]. Recent

landing site selection has been able to use high-resolution DTMs to derive maps of local surface

roughness, using techniques described in Section 2.3, but these DTM datasets are yet to achieve

global coverage, calibrating MOLA pulse-widths could provide a useful tool for identifying target

sites [Golombek et al., 1999, 2005, 2012a; Grant et al., 2011b].

3.3 MARS ORBITER LASER ALTIMETER

MOLA was one of five science instruments on-board MGS [Smith et al., 2001]. The primary

goal was to map the topography of the planet at a level suitable for geophysical, geological,

and atmospheric circulation studies, as shown in Figures 3.1a and 3.1b, whilst secondary goals

included improving our knowledge of the 3-dimensional structure of Mars’ atmosphere, local

surface characterisation, surface reflectivity, and seasonal changes in the polar environments [Smith

et al., 2001]. Most of these goals were completed during the mapping phase (1999 to 2001), before

the laser failed after 670×106 pulses [Smith et al., 2001]. This section describes the instrument,

with a schematic and outline of the instrument shown in Figure 3.2 and Table 3.1 respectively. The

background theory of laser ranging is discussed in Section 2.1.

The instrument operated mainly at nadir pointing angles, collecting data directly beneath the

orbit path of MGS; but was occasionally forced to operate at other angles to accommodate for
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Figure 3.1a: Map of Mars topography from MOLA [Smith et al., 2001]. This data is the gridded version of the dataset, with a resolution of 463 m per pixel. Some
areas, particularly around the equator, are heavily interpolated due to the 4 km average inter-orbit spacing at the equator [Smith et al., 2001].



3.3.M
A

R
S

O
R

B
IT

E
R

L
A

S
E

R
A

LT
IM

E
T

E
R

95

90◦

0◦ E

30◦

60◦

120◦

150◦

180◦

210◦

240◦

270◦

300◦

330◦

-8 -4 0 4 8 12

Elevation (km)

90◦

180◦

150◦

120◦

60◦

30◦

0◦ E

330◦

300◦

270◦

240◦

210◦

85◦

90◦ S

80◦

85◦

90◦ N

80◦

Figure 3.1b: Map of Mars polar topography from MOLA [Smith et al., 2001]. This data is the gridded version of the dataset, with a resolution of 463 m per pixel.



96 CHAPTER 3. MARS: ASSESSING MOLA PULSE-WIDTHS

Primary Mirror

Alignment Cube

Secondary Baffle

Secondary Mirror

Primary Shroud

Support Structure

Laser Shield

Laser Output

Thermal Isolation Pad

Mounting Pads

Nd:YAG Laser Assembly
Electronics
Enclosure

Figure 3.2: Schematic of the MOLA instrument that forms part of the MGS science payload,
adapted from Abshire et al. [2000]. Table 3.1 gives an overview of instrument performance.

instruments [Smith et al., 2001]. Figure 2.1 shows some planned orbits (Top), and the actual orbits

with elevation data over Eberswalde Crater (Bottom). For regional and global studies, the MOLA

gridded elevation dataset is particularly useful, however, with a typical inter-orbit spacing at the

equator of 4 km, studying localised areas should include high-resolution elevation datasets, such as

those discussed in Section 3.4, as the interpolated terrain is not reliable [Smith et al., 2001].

The MOLA elevation dataset remains the highest resolution, and most reliably georeferenced,

global elevation dataset available over Mars (Figures 3.1a and 3.1b) [Gwinner et al., 2009; Kirk

et al., 2008; Neumann et al., 2003a]. To make an elevation measurement: a pulse is fired towards

the target surface (Figure 3.3a), which triggered the start of the ranging timing unit. The timing

unit stopped when the echo-profile surpassed a threshold that was controlled, and continuously

adjusted, by on-board software that used the received energy of previous pulses and background

noise to estimate a sensible threshold [Abshire et al., 2000; Smith et al., 2001]. To minimise noise

from backscattered solar photons, a range gate between 20 km to 80 km of the expected elevation

was used, which was reduced to the minimum when terrain was correctly identified in previous

pulses [Smith et al., 2001]. The 2.5 ns timing resolution of the instrument resulted in a theoretical

elevation accuracy of 0.38 m on smooth level surfaces, which in practise was <1 m and ∼10 m over

slopes of 30° [Abshire et al., 2000; Smith et al., 2001]. A combination of this level of elevation

accuracy and a horizontal accuracy of <100 m means that the MOLA elevation dataset is commonly

used as a basemap to which other Mars datasets are co-registered [Gwinner et al., 2009, 2010; Kim

and Muller, 2009; Kim et al., 2013; Kirk et al., 2008; Neumann et al., 2003a].

Stopping the laser ranging unit automatically triggered the start of the pulse-width timer, which
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Table 3.1: Characteristics of the MOLA instrument, from Smith et al. [2001].

Element Parameter Specification

MOLA
Mass 23.8 kg

Power consumption 34.2 W

Transmitter

Laser type diode pumped, Q-switched, Cr:Nd:YAG

Wavelength 1064 nm

Pulse rate 10 Hz

Energy 48 mJ pulse−1

Laser divergence 420 µrad

Pulse length 8 ns

Receiver

Mirror 50 cm parabolic

Detector silicon avalanche photodiode

Field of view 850 µrad

Electronics

Microprocessor 80C86

TIU frequency 99.996 MHz

Filter channel widths 20 ns, 60 ns, 180 ns and 540 ns

Data rate 618 bit s−1 continuous

Resolution

Maximum ranging distance 787 km

Range resolution 37.5 cm

Vertical accuracy 1 m

Surface spot size 168 m (75 m in Neumann et al. [2003a])

Along-track pulse spacing 300 m

Across-track pulse spacing 4 km

Table 3.2: MOLA filter channel characteristics from Smith et al. [2001].

Characteristic 1 2 3 4

Description Smooth Moderate Rough Clouds

Channel Width (ns) 20 60 180 540

Terrain Height Variation 3 9 27 81

Surface Slope (°) 1.0 2.9 8.6 24.2
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Figure 3.3: Schematic of MOLA pulse divergence over terrain (a), an example SLA echo-profile
over terrestrial desert terrain (b), and how different divergence angles determine the scale of
roughness features the pulse-widths respond (c).

stopped when the echo-profile dropped back below the threshold, as shown in Figure 3.3b. Unlike

the Earth-orbiting SLA, which included an on-board signal digitiser, MOLA returned only the

pulse-width and not the echo-profile (Figure 3.3b) [Garvin et al., 1998]. An estimate of the Full

Width Half Maximum (FWHM) pulse-width was calculated from the received energy and the

threshold pulse-width and provided the PEDR dataset.

To increase detection probability, received pulses were amplified and the pulse-width was

matched to one of four filters that best fitted surface or atmospheric properties, as outlined in

Table 3.2. However, the pulse-width channel did not have to match the channel that recorded

the ranging measurement, which used the filter that exceeded the detection threshold and had the

shortest impulse-response width (Equation 2.5) [Smith et al., 2001].

The original MOLA data is stored in PEDR files, and includes the threshold and FWHM pulse-
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Table 3.3: Criteria for excluded pulses during
production of the Slope-Corrected MOLA pulse-
width dataset from the PEDR [Neumann et al.,
2003a].

Criteria Value

Off-Nadir Angle (°) ≤2

Valid Altitude Flag 0

Energy Counts ≤255

Pulse-Width Counts ≤63

width estimates, the latter are used to estimate surface roughness in Smith et al. [2001]. A second

version of the pulse-widths, known as Slope-Corrected pulse-widths, is presented in Neumann et al.

[2003a] and presented in Figures 1.1a and 1.1b. These pulse-widths use a version of the MOLA

gridded elevation dataset to make 1 km along- and across-track slope corrections to the PEDR

pulse-widths to derive estimates of roughness from background slope, as in Equation 2.7. Cloud

hitting pulses, from which Neumann et al. [2003b] present a two-year Martian cloud study, returns

that saturated the receiver, and large off-nadir pulses are also removed to improve dataset quality

(Table 3.3). Of the remaining pulse-widths, Neumann [2011] states that they

... are generally values that are attenuated by some amount of dust and scattering in

the atmosphere, which may introduce forward-scattering dispersion of pulses but that

didn’t seem to matter unless the pulses were very weak (energy down around 10).

As Neumann et al. [2003a] already remove low energy echo-pulses, the effect of forward scattering

is minimised in the Slope-Corrected dataset. Further identification of affected pulses is not possible

as the corresponding atmospheric dust concentrations are not known, but as the atmosphere is

very thin (4 mbar to 6 mbar), this effect is assumed negligible and path extension due to forward

scattering is thought to be a few centimetres [Abshire et al., 2000].

Finally, Smith et al. [2001] assume the PEDR dataset to estimate surface roughness at ∼100 m

baseline, whilst Neumann [2011] assume 90 % of the energy to be concentrated within half the

radius of the original pulse-footprint estimate and therefore reduces the surface roughness baseline

to 35 m. To be able to test these estimates of baselines at which MOLA pulse-widths estimate

surface roughness (Figure 3.3c), the pulse-widths are compared against surface characteristics from

high-resolution DTMs, which are discussed in the following section.

3.4 DIGITAL TERRAIN MODELS

The high-resolution DTMs used in this chapter are derived from stereo-photogrammetry. This

section introduces the cameras and an overview of the resulting datasets. Of the three camera

systems introduced here, only data from HiRISE and CTX are compared to the MOLA pulse-widths;

the HRSC instrument is used during co-registration, which is described in Section 3.6.
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3.4.1 HIGH RESOLUTION IMAGING SCIENCE EXPERIMENT CAMERA

The HiRISE instrument is one of six scientific instruments on-board the Mars Reconnaissance

Orbiter (MRO), which has been operational since 2006 [HiRISE, No Date.; Zurek and Smrekar,

2007; McEwen et al., 2007, 2010]. As of February 2014, over 31 000 images were available,

each capturing the surface at unprecedented resolution (0.25 m pixel−1 to 0.30 m pixel−1), but at the

expense of spatial coverage: typical image size is 5 km to 6 km by 25 km to 30 km [McEwen et al.,

2007, 2010; HiRISE, No Date.; Zurek and Smrekar, 2007]. The low spatial coverage of individual

images means that each image must be of high scientific value, which requires careful planning,

with each image classified into one or more of 18 science themes, and a special emphasis on

candidate landing sites [McEwen et al., 2007, 2010]. To date, these images have enabled scientists

to study (1) seasonal changes such as recurring slope linea [McEwen et al., 2011], (2) bedrock

stratigraphy and mineral deposits [Noe Dobrea et al., 2010; Rice et al., 2011; Thomson et al., 2011],

and (3) the geological characterisation of landing sites and identify potential hazards for landers

and rovers [Grant et al., 2011b; Golombek et al., 2012a].

HiRISE images are produced from 14 separate Charge Coupled Devices (CCDs), with greyscale

images produced using 10 adjacent CCDs and colour images produced over a region occupying the

central two, as shown in Figure 3.4 [McEwen et al., 2007, 2010]. As the viewing angle relative to

MRO is fixed, off-nadir viewing angles for stereo-pairs are produced by spacecraft roll, as shown in

Figure 3.5 [McEwen et al., 2007, 2010]. This means that images must be acquired during different

orbits [McEwen et al., 2007, 2010]. To minimise the differences between images due to seasonal

effects, such as frost deposition, and atmospheric effects, such as dust storms and clouds, stereo-

images are typically taken within 2 months of each other [McEwen et al., 2010, 2011]. The HiRISE

team aim for a 15° difference in viewing angle between stereo-pairs, from which 1 m pixel−1 DTMs

with 0.20 m vertical precision can be produced [Kirk et al., 2008; Kim and Muller, 2009; Kim

et al., 2013; McEwen et al., 2010]. Significant visual differences in images pairs is one reason for

poor stereo-matching in the DTM production process, as discussed in Section 2.2.2.3, so if images

cannot be acquired within this timeframe, the science team wait until the second image can be

acquired at similar sub-solar latitudes and illumination conditions [McEwen et al., 2010].

The aim during the Primary Science Phase (PSP) was to image ∼1 % of the Martian surface

using ∼12 000 images; in practise however, just over 9000 images were acquired, covering ∼0.55 %

of the surface in unique coverage: ∼0.60 % of the surface would have been covered if there was no

repeat coverage for errors, seasonal changes, or stereo [McEwen et al., 2007, 2010]. The decision to

acquire less images was taken to suppress engineering concerns, but resulted in larger images and a

greater volume of data than originally planned [McEwen et al., 2010]. Of the PSP images, ∼21 %

(960 pairs) are one of a stereo-pair [McEwen et al., 2010]. A similar proportion exists today, with

>3600 pairs acquired during the PSP and Extended Science Phases (ESPs), which cover ∼0.24 %

of the surface with unique HiRISE stereo-pairs (3.51×105 km2) Table 3.4 [HiRISE, No Date.].

However, producing high-quality HiRISE DTMs is not an automatic process and requires heavy

processing and human input. As a result, only 170 DTMs are freely available via HiRISE [No



3.4. DIGITAL TERRAIN MODELS 101

24.6 mm
Active length of DCAFPA Substrate

DCA Substrate

CCD Active Area

Blue, Green and NIR

Focus Mechanism

2nd Fold Mirror

1st Fold Mirror

Filters

Focal Plane

Tertiary Mirror
Secondary Mirror

Secondary Mirror Baffle

Primary Mirror

Primary Mirror Baffle

Electronics Box

Optical Bench

Active Length of
Red Array

HiRISE Baffle

Focal Plane Subsystems

14 2048×128 CCDs

Filter
Assembly

Figure 3.4: Schematic of the HiRISE instrument, adapted from Deardorff [No Date.]. Top: image
of the HiRISE baffle. Middle: schematic of the internal structure of the HiRISE instrument. Bottom:
schematic of the electronics and the CCD setup for the red, blue, green, and Near-infrared (NIR)
channels.
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Table 3.4: Characteristics of the MRO spacecraft and the HiRISE and CTX instruments [Malin

et al., 2007; McEwen et al., 2007; Zurek and Smrekar, 2007; Kirk et al., 2008; McEwen et al., 2010;
Kim et al., 2013]. † coverage uses a sinusoidal projection and data from Planetary Data System

[No Date.].

Element Parameter Specification

MRO

Orbit Near Polar 255 km×320 km

Orbit Length (Time) 112 min (∼3 pm)

Ground Speed 3.2 km s−1

Mass ∼1100 kg

HiRISE

Mass 65 kg

Power Consumption 60 W

Resolution 0.25 m pixel−1 to 0.3 m pixel−1

Max Image Size 20 000 pixels×63 780 pixels

Image Size 5 km to 6 km swathe by 25 km to 30 km

CCDs 10 Red, 2 Blue, Green, and NIR

CCD Width 2048 pixels

Max Image Size 3.5 GB in 6 s (28 Gbit)

FOV 1.14°

Mirror 0.5 m

Focal Length 12 m

F-Stop 24

Image Coverage 1.54 % (2.24×106 km2)

Stereo-Angle 15° to 20°

Stereo Coverage 0.24 % (3.51×105 km2)

DTM Resolution 1 m (0.25 m vertical accuracy)

DTM Coverage 0.01 % (1.58×104 km2)

CTX

Power Consumption 5 W idle, 7 W imaging

Resolution 6 m pixel−1 to 7 m pixel−1

CCD Width (Band-Pass) 5064 pixels (500 nm to 700 nm)

Max Image Size 256 MB (2 Gbit)

FOV 5.7°

Image Size ∼30 km×≥40 km

Focal Length 350 mm

F-Stop 3.25

Image Coverage 84.21 % (1.22×108 km2)

Stereo-Angle 15° to 20°

Stereo Coverage 11.79 % (1.71×107 km2)

DTM Resolution 18 m to 20 m



3.4. DIGITAL TERRAIN MODELS 103

S2
S1

20°

δt

HRSC Image Acquisition

HRSC acquires images in stereo using the S1
(1st ) and S2 (∆t later) channels which have a

37.8° angle of separation.

MRO and LROC Image Acquisition

1st Image
acquisition, usually
at nadir

2nd Image acquisition on a
subsequent orbit at an angle of
approximately 20° produced
through spacecraft roll. There
must be significant spatial
overlap with the 1st Image

Figure 3.5: Schematic of stereo-image acquisition by MRO imagers and HRSC. Stereo-images
from the MRO imagers, HiRISE and CTX, are acquired by spacecraft roll (top), whereas HRSC
is a dedicated stereo-imaging instrument that acquires images through forward and backward
viewing angles (bottom). The former results in images taken at during different orbits, and careful
planning is required to minimise image acquisition delay that could otherwise result in atmospheric
and seasonal differences, such as dust storms and frost deposition, that can affect stereo-image
matching.
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Date.], which are typically produced using SOftCopy Exploitation Toolkit (SOCET SET®) and

Integrated Software for Imagers and Spectrometers Version 3 (ISIS3) software, as outlined in Hare

[2010].

To produce high-resolution images and accommodate for MRO’s fast ground speed (3.2 km s−1),

HiRISE uses Time Delay Integration to increase the Signal to Noise Ratio (SNR) by imaging each

area up to 128 times with each CCD, hence the CCD depth of 128 pixels (Figure 3.4) [McEwen

et al., 2007]. The image repeat rate is dependent on the target surface characteristics: bright

surfaces, such as the polar caps, require less imaging, especially in high contrast features such as

spider terrain, which appears as the seasonal frost retreats [Kieffer et al., 2006; McEwen et al.,

2007].

A negative aspect of the HiRISE dataset is its poor georeferencing. From experience, errors in

HiRISE data georeferencing are typically on the scale of 100’s of metres, but can be as large as

several kilometres. As a result, it is important to co-register HiRISE data to other, lower resolution

but correctly georeferenced datasets, especially when used with other data.

3.4.2 CONTEXT CAMERA

MRO’s CTX instrument is designed to produce regional context images for HiRISE and other

instruments on-board [Malin et al., 2007] The 6 m pixel−1 to 7 m pixel−1 was carefully chosen after

reviewing ≤7 m pixel−1 MOC images, which revealed fine-scale geology that was not present in

lower resolution images from previous orbiters [Malin et al., 2007]. A schematic of the instrument

is shown in Figure 3.6, along with images of the instrument with and without the baffle. The

characteristics are outlined in Table 3.4.

By sacrificing very-high-resolution for spatial coverage, the CTX instrument has less emphasis

on fine-scale characterisation of a site, and instead focusses on the wider geological and geomor-

phological context of the surface, as well as meteorological and seasonal events [Malin et al., 2007;

McEwen et al., 2007]. Image width is ∼30 km from a 5.7° FOV compared to HiRISE’s 1.14°,

which lies at the centre of the CTX swathe [Malin et al., 2007; McEwen et al., 2007]. This allows

for a quick characterisation of candidate landing sites as the wide swathe of the instrument means a

20 km wide landing ellipse, such as those for Mars Science Laboratory (MSL), can be contained

within a single image [Malin et al., 2007; Grotzinger et al., 2012]. Image length is determined by

the buffer size, which is 256 MB, once this is full the image is transferred to the spacecraft memory

before being transmitted to Earth [Malin et al., 2007].

Initially, the instrument was allocated 12 % of the data transfer during the PSP, which would

cover 9 % of the Martian surface in unique coverage [Malin et al., 2007]. As of 2010 this had

increased to 50 % of the planet being imaged [Malin Space Science Systems, 2010]. Today, 55 133

images are available via the Planetary Data System (PDS) (February 2014), which cover 84.21 % of

the surface. Importantly for this work, 11.79 % of these images form part of a stereo-pair, defined

as images with at least 50 % overlapping spatial coverage and a difference in viewing angle of

>15°, when using the image footprints from Planetary Data System [No Date.].
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The same spacecraft roll that enables HiRISE to acquire stereo-images is also used for CTX,

with the same plan to use roll angles of 15° or more for accurate DTM production (Figure 3.5).

DTMs can be produced at 18 m pixel−1 to 20 m pixel−1, much lower than the 1 m pixel−1 DTMs

from HiRISE, but much larger (∼20 times) in spatial extent [Kim and Muller, 2009; Kim et al.,

2013]. A similar production chain using ISIS3 and SOCET SET® is typically used to produce

these DTMs, however there is no public repository. Therefore, the CTX DTMs used in this work

are made specifically duefor this project. The methods used to produce DTMs from both HiRISE

and CTX are outlined in Section 3.6.1.

Secondary Mirrored Surface

Primary Mirror

Field Elements

Front Elements

a b

c

Figure 3.6: Images and schematic of the CTX instrument [Malin Space Science Systems, 2010]. (a)
image of CTX with the baffle and (b) without (Right) the baffle. (c) schematic of the instrument
and light path to the detector elements.
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3.4.3 HIGH RESOLUTION STEREO CAMERA

The HRSC instrument, part of the ESA Mars Express (MEX) mission payload, has been operational

since 2004, preceding the imaging instruments discussed above [Albertz et al., 2005]. An image

and schematic of the instrument is shown in Figure 3.7, which shows the forward and backward

viewing angles for the two panchromatic and stereo channels. The characteristics of the instrument

are outlined in Table 3.5.

The pushbroom instrument has nine channels, each having its own CCD, and is designed for

mapping and photogrammetric analysis of the Martian surface [Neukum et al., 2004]. Gwinner et al.

[2010] report that HRSC image coverage was at 79.3 % of the surface in 2010, which has since

increased to 96.51 % for all image resolutions (Table 3.5) [Planetary Data System, No Date.]. The

camera’s larger pixel size, compared to the CTX and HiRISE instruments, means that fine-scale

geology cannot be observed, like it can in the other instruments. Instead, the instrument focusses

the broad regional context and mapping the surface in 3-dimensions, filling in the inter-orbit gaps,

at higher resolution, in the MOLA elevation data [Albertz et al., 2005; Gwinner et al., 2010].

Current processed DTM coverage is at 36.75 % [Planetary Data System, No Date.]. HRSC

Table 3.5: Characteristics of the HRSC instrument [Neukum et al., 2004; Gwinner et al., 2010; Kim

et al., 2013]. † represents coverage using a sinusoidal projection, and shapefiles from Planetary

Data System [No Date.] available in June 2014.

Element Parameter Specification

MEX

Orbit 250 km×10 100 km

Orbit Type Near-Polar

Orbiter Mass 133 kg

HRSC

Mass 65 kg

Power Consumption 45.7 W

Resolution 12 m pixel−1

CCD Width 5184 pixels

DTM Resolution ≥50 m (25 m in Kim et al. [2013])

FOV 11.9° (8.6′′)

Image Swathe ∼60 km

Image Length 25 km to 30 km

CCDs 2 Stereo, 2 Panchromatic, Nadir, Red, Blue,
Green, and NIR

Stereo-Angle 37.8°

Focal Length 175 mm

F-Stop 5.6

Image Coverage† 96.5 % (1.40×108 km2)

DTM Coverage† 40.48 % (5.87×107 km2)
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Figure 3.7: An image and schematic of the HRSC instrument on-board MEX. The viewing angle
of the nadir, panchromatic and stereo channels are shown, as is the configuration of each of
the colour channels. SRC refers to the Super Resolution Channel, which images the surface at
2.3 m pixel−1 [Neukum et al., 2004].
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DTMs are produced in an automatic processing chain, which places special emphasis on co-

registration of the dataset to the global MOLA DTM to within 100 m, to provide data quickly rather

than fine-scale geology [Scholten et al., 2005; Gwinner et al., 2010]. This is a major strength of the

instrument, as despite the poorer image resolution of 12 m pixel−1 compared to CTX (<7 m pixel−1)

and HiRISE (∼0.25 m pixel−1), HRSC is able to provide high-quality datasets that can be used as a

basemap for co-registration of CTX and HiRISE data [Malin et al., 2007; McEwen et al., 2007;

Gwinner et al., 2010]. The DTMs produce data for broader region context and fill the inter-orbit

gaps from MOLA profile data [Gwinner et al., 2010; Smith et al., 2001].

Two of these channels are dedicated stereo-image channels that view the surface at ±18°, and

another pair with viewing angles of ±12.8° [Gwinner et al., 2010]. These channels are used with

nadir channel nadir channel images to produce DTMs at ≥50 m pixel−1 [Gwinner et al., 2010;

Neukum et al., 2004]. [Kim et al., 2013] have been able to produce DTMs at 25 m pixel−1, however,

the quality is shown to be poor in slope maps, which highlight pits and spikes. The setup enables

stereo-images to be acquired near-simultaneously, meaning that surface and atmospheric properties

remain as similar as possible between the two images, whilst also having a fixed viewing angle

between the images, which aids stereo-matching. Stereo-matching uses the approximate locations

of pixels in corresponding quasi-epipolar-rectified images2, known by the fixed camera geometry

and timing, which is then refined to sub-pixel matching using an adaptive least-squares window-

based matching scheme [Scholten et al., 2005]. Matching points are chosen based on how many

times they have been matched across the five channels, which introduces redundancy to improve

stereo-matching quality [Scholten et al., 2005]. Matching errors do occur however, especially over

featureless terrain and sometimes due to compression and downlink artefacts [Scholten et al., 2005].

3.5 MARS COORDINATE SYSTEMS

Different aerographic coordinate systems have been used, slowly evolving as each iteration of a

new Mars coordinate system uses higher accuracy data from subsequent missions [Duxbury et al.,

2002; Seidelmann et al., 2002]. Earlier recommendations to use only planetographic latitudes have

since been scrapped; the commonly used datasets today follow the guidelines from the International

Astronomical Union (IAU)2000, which allows planetocentric latitude [Davies et al., 1980; Duxbury

et al., 2002; Seidelmann et al., 2002]. Table 3.6 outlines the coordinate systems employed by the

data used in this chapter [Bennett et al., 2011].

Most of the datasets used in this work use the IAU2000 coordinate frame and planetocentric

latitudes to define the latitude and longitude. This system is already defined in ArcMap and

therefore easy to implement, reducing the chance of error in coordinate system definitions. The

exception is the HRSC DA4 DTMs, which uses a spherical map projection system for latitude and

longitude definition. As a reference surface, the datasets used in this chapter use the aeroid, an

equipotential surface derived from MOLA data and available in the Mission Experiment Gridded

2The term quasi-epipolar-rectified refers to the fact that this is a pushbroom camera, and therefore does not have
epipolar lines like frame-camera systems.
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Table 3.6: List of Mars instruments and data products and the coordinate systems used [Bennett

et al., 2011; Rossi, 2008]. Table 2.2 outlines the IAU2000 ellipsoidal reference systems. Mars
Digital Image Mosaic (MDIM) 2.1 is used only by Viking. † R=3396.0 km. Note that the HRSC
.DT4 data is not used in this work, but included for completeness.

Instrument Dataset Map System Reference Surface Reference Latitude

HiRISE DTM IAU2000 Aeroid Planetocentric

HRSC DTM (DT4) Spherical† Sphere Planetocentric

HRSC DTM (DA4) Spherical† Aeroid Planetocentric

Viking MDIM2.1 IAU2000 - Planetocentric

MOLA PEDR IAU2000 Aeroid Planetocentric

MOLA MEGDR IAU2000 Aeroid Planetocentric

Data Record (MEGDR) (Table 3.6).

During the data preparation process described below, all data is reprojected into a common

projection reference frame to best display the data for each of the study regions.

3.6 METHODS

The methods used to produce and co-register HiRISE and CTX DTMs, extract MOLA data, and

produce surface roughness and slope maps from the DTMs for the work in Sections 3.7 and 3.8

are outlined below. This is followed by a description of detrending data, which is required in

Section 3.9. Finally, the methods to extract the surface roughness and slope values, and compare

them to the MOLA pulse-widths are described.

3.6.1 HIRISE AND CTX DTM PRODUCTION

The HiRISE DTMs were downloaded from the public archive at HiRISE [No Date.], whilst the

CTX DTMs were produced specifically for this project. Processing of HiRISE stereo-pairs closely

follows the method outlined in Kirk et al. [2008], who discuss the development of the methods that

use a combination of ISIS3 and SOCET SET®; a similar processing chain is employed to produce

CTX DTMs. Both processing chains are outlined below and presented in Figure 3.8; the command

line processes are presented in United States Geological Survey [2009].

Identify images Acquisition of stereo-pairs is carefully built in to the MRO mission plan, as it

requires off-nadir viewing angles that affects other instruments on-board. HiRISE images are

tagged as stereo-pairs and available from HiRISE [No Date.] [McEwen et al., 2007, 2010].

The same tagging information is not available for CTX stereo-pairs, which are identified as

images with significant overlap and ≥15° difference in viewing angle as in Figure 3.5.

Preprocessing ISIS3 is used for the preprocessing of the raw images from HiRISE and PDS

format CTX images. This step includes image format conversion and adding Spacecraft
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Figure 3.8: Flow diagram of the CTX and HiRISE DTM processing chains using ISIS3 and SOCET
SET®, from United States Geological Survey [2009]. Grey boxes are processes that are run within
the PERL (.pl) scripts.
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and Planetary ephemerides, Instrument C-matrix and Event kernels (SPICE) data to add

georeferencing information to the data. Raw HiRISE images are provided in 20 image strips,

two per CCD, which are stitched together and equalised across the 10 CCD image strips that

form a singe image; CTX images require a correction for a striping effect that can occur

across an image [United States Geological Survey, 2009]. Finally, image statistics files and

8 bit .raw images are created, in preparation for SOCET SET® processing. MOLA DTM

data from the Region-Of-Interest (ROI), including a large buffer zone, is extracted from

the global dataset, which is used as a seed to improve matching accuracy and efficiency by

providing constraints on the disparities [Kim and Muller, 2009; Kim et al., 2013; Kirk et al.,

2008].

SOCET SET® Setup In SOCET SET®, a project file is created that provides an indication of

the geolocation and elevation, and the geographic coordinate system to be used by the

project. The image files and MOLA DTM data are imported into this project. Multi-Sensor

Triangulation (MST) is performed on the images, which applies bundle-adjustment to improve

co-registration between the images, and between the images and the ground-truth MOLA

DTM data, by improving estimates of different parameters, such as camera pointing and

position [United States Geological Survey, 2009]. The MST setup file defines limits as to how

much these parameters are allowed to change during bundle-adjustment, with the improved

estimates defined as the minimum sum-of-weighted and squared-errors for the assessment

of the tie-points. These tie-points are found either automatically or manually and should

ideally be evenly spread, in groups of three, across the width and length of the image to

provide the best chance of high-quality stereo-matching. The errors for the tie-points are

then assessed for the image as a whole, and if the Root-Mean-Square (RMS) error for the

combined tie-points is less than 0.6 pixels one can move on to the next step. Otherwise,

tie-points with a large RMS error (>2 pixels) should be removed and the result reassessed in

an iterative process until the total RMS error is less than 0.6 pixels.

DTM production Before making the DTM, the images are epipolar rectified. A seed DTM

is produced using these images and the Next-Generation Automatic Terrain Extraction

(NGATE) process, which uses a combination of feature- and local-based matching, as

described in Section 2.2.2.2 on Page 64. The Adaptive Automatic Terrain Extraction (AATE)

matching strategy is then applied, using the NGATE strategy DTM as a seed, with the

effect of smoothing the initial DTM result for a more reliable DTM product [BAE Systems,

2007; Zhang and Miller, 1997]. In areas where matching is poor, the final DTM may need

editing, which can be completed in SOCET SET® using tools to smooth, fill, and interpolate

surfaces within a polygon. In the CTX DTMs produced for Section 3.8 this is not carried

out, instead, areas of poor matching are masked out. HiRISE DTMs, available from HiRISE

[No Date.] and typically produced by the United States Geological Survey (USGS), may

have been edited to remove small errors, such as pits and spikes. From experience, errors

such as these typically small in area, and, where editing has been applied, the terrain appears
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uncharacteristically smooth in a hillshaded image produced from the DTM. These areas are

also removed for this work.

Othorectified Images Finally, orthorectified images are produced using the original images as

input, and the final DTM from the AATE process to correct image distortion for terrain and

viewing angle effects.

3.6.2 DTM CO-REGISTRATION AND QUALITY CONTROL

To effectively calibrate the MOLA pulse-widths, the DTMs, from which the surface characteristics

estimates are produced, and MOLA data must be co-registered to ensure that the correct data

is being extracted and compared. The methods are outlined below, and the estimated errors are

presented in the following section.

ArcMap An ArcMap project was setup for each study site in each project, using a Sinusoidal

projected coordinate system and the IAU2000 geographic coordinate system [Snyder, 1987].

Co-registration Data for each site were loaded into the relevant ArcMap project and the Add

Control Points tool was used to manually co-register data using a bottom-up, pyramid scheme,

like that described in Kim and Muller [2009]. This scheme uses the lowest resolution dataset

as a basemap, to which successively higher resolution datasets are co-registered. In this case,

the MOLA elevation dataset was used as a basemap, and the HRSC data added, followed by

the CTX or HiRISE data.

Basemap Subsets of the global MOLA DTM (463 m pixel−1), extracted with a large buffer zone

around each site, were used as basemaps to which the HRSC elevation data was compared.

Intermediate Datasets Any HRSC data, DTM files ending in .DA4, and nadir images, ending

in .ND4, over the ROI were downloaded from Planetary Data System [2014a]. The co-

registration of HRSC DTMs to MOLA was verified by comparing elevations at MOLA

PEDR locations, described below. Elevations were also compared using the MOLA PEDR

data. Errors were observed, which are attributed to cloud hitting pulses as the MOLA

elevations lay significantly above the HRSC surface. Once these pulses were removed, the

data revealed good agreement between the elevations, with minor deviations existing due to

the challenges of DTM production from stereo-imagery, such as the pits and spikes discussed

in Chapter 2, and the size of the MOLA pulse-footprint. Two of the sites used in Section 3.8

require the Viking MDIM, which has been co-registered to the MOLA data, due to a lack

of HRSC DTM coverage. To check the quality of Viking image georeferencing, hillshaded

images were produced from the MOLA gridded elevation data, and visual inspections made

to ensure correct coregistration. The Hillshade tool in the Spatial Analyst toolbox produces

an image of the surface assuming only differences in illumination due to surface slope and

aspect. Identifying co-registration errors was challenging due to the differences in resolution,

and the large areas of interpolated terrain in the MOLA data, meaning the resulting hillshaded
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images could look very different in regions far away from the MOLA orbit tracks used to

make the DTM (Figure 2.1).

High-Resolution Data The HRSC nadir images, which cover the same location as the DTM, and

Viking MDIM were then used to co-register the higher resolution CTX and HiRISE images.

For each image, a minimum of 10, evenly distributed, tie-points were used to georeference

the image to the lower resolution data. In Section 3.7, where there are multiple overlapping

HiRISE images, co-registered HiRISE images were used to co-register subsequent images

where they overlapped, always checking with the underlying HRSC images to ensure poor

co-registration did not propagate throughout the HiRISE data. The same transforms used to

co-register the high-resolution images to the lower resolution images were then applied to

the high-resolution DTM data. The high-resolution DTM elevations were then compared to

both the HRSC DTM (where available) and MOLA DTM and PEDR elevations values at

MOLA pulse locations to ensure 3-dimensional accuracy.

Mosaicing Over the MSL sites with overlapping HiRISE DTMs, the DTMs were mosaiced together

to form a single dataset using the Mosaic to New Raster tool in ArcMap 10.1, with the blend

option used to merge DTM heights where they overlapped. This enabled more MOLA points

to be used as MOLA data near the edges of a DTM were excluded if it was within the largest

baseline of surface roughness or slope from the edge (i.e. the largest baseline for the MSL

study is 1200 m, so data within 600 m of the mosaic DTM boundary was removed, otherwise

surface roughness estimates at this baseline would include null values).

3.6.3 GEOREFERENCING AND ELEVATION ERRORS

Comparisons of DTM heights reveal no significant errors, but smaller errors can exist, especially as

height checks are completed only at MOLA PEDR pulse locations: to ensure comparisons include

real MOLA data. Hillshaded images were produced from the DTMs to highlight the errors in the

DTM production process, such as pits and spikes due to incorrect or poor stereo-matching, and

extensive areas of interpolated terrain and poorly blended terrain from mosaicing. Some errors

were observed at the overlapping regions for Section 3.7 and some CTX DTMs contained extensive

regions of interpolated terrain identified by triangular patterns in the hillshaded image, both were

excluded from the study by applying a mask.

Table 3.7 presents the horizontal, and vertical precision and accuracy estimates for the datasets

described above. The horizontal errors for MOLA are based on the estimates of MGS positioning

data and the instrument timing properties, whereas the other horizontal accuracy estimates are

measured relative to the MOLA estimate. Archinal et al. [2003] observe typical horizontal errors

of <1 pixel (250 m), with the largest errors up to 4 pixels (1 km), when comparing measurements

of offsets between the Viking MDIM and the MOLA elevation dataset using over 37 000 control

points. Through co-registration of HRSC DTMs to the MOLA elevation dataset, Gwinner et al.

[2010] show that horizontal offsets can be reduced to <100 m. The CTX and HiRISE estimates are

derived from an estimate of the manual georeferencing processes, described above, compared to
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Table 3.7: Co-registration errors of Mars datasets [Gwinner et al., 2010; Kirk et al., 2001; Neumann

et al., 2003a]. † represents datasets and values that are georeferenced to MOLA. ‡ represents
datasets and values that are georeferenced to HRSC. Viking MDIM dataset is an image mosaic and
therefore has no vertical values. HiRISE and CTX Vertical Accuracy values are standard deviation
values from the MOLA PEDR values, after cloud hitting MOLA pulses are removed.

Dataset Horizontal Accuracy (m) Vertical Precision (m) Vertical Accuracy (m)

MOLA <100 0.38 1

Viking† 250 to 103 - -

HRSC† 56 to 62 12.5 <4

CTX‡ 12.5 to 25 1.32 30.5 to 50.1

HiRISE‡ 12.5 to 25 0.22 12.8

the HRSC imaging data, with expected errors on the order of 1 to 2 HRSC pixels [Gwinner et al.,

2010].

The vertical precision errors presented in Table 3.7 are derived from theoretical estimates using

the timing resolution of the MOLA instrument and Equation 2.28 for the remaining stereo-derived

datasets, based on the pixel size, camera baseline, and instrument altitude [Kim and Muller, 2008;

Kirk et al., 2008].

The vertical accuracy are equal to the standard deviation of differences in elevation between

these datasets and the MOLA PEDR data, for all MOLA pulses over the high-resolution DTM

area. Gwinner et al. [2010] note that this error is <4 m when using HRSC elevation data, after

bundle-adjustment. HiRISE and CTX data both produce much larger errors, which could be due

to the rough terrain used in these studies, which results in large topographic variation within the

MOLA pulse-footprint. The leading edge timing system of MOLA results in the highest elevations

being recorded, whilst the centre of the pulse, the value extracted from the CTX DTM, could be

in an area of lower elevation. When only the smooth terrain of Lycus Sulci 2, as described in

Section 3.8, the standard deviation is reduced to 30.5 m after cloud hitting pulses are removed.

3.6.4 MOLA DATA COLLECTION

The MOLA data is provided from two sources: the original PEDR data (Version L), and the

Slope-Corrected pulse-width dataset provided by G. Neumann in October 2011 [Neumann et al.,

2003a].

MOLA PEDR data was extracted over a large ROI using the pedr2tab program to extract data

from individual data files, available from Planetary Data System [2014d] and Planetary Data

System [2014c] respectively. The PEDR2TAB.PRM preference file determines which data is printed

in the output file; selecting the 5th option means the Sigma_optical pulse-width value is included,

along with the latitude, longitude, and aeroid elevation, amongst others. This pulse-width value

includes corrections for filter characteristics and threshold settings, and is thought to provide an

estimate of the surface characteristics within the pulse-footprint, as given in Equation 2.5.
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The output is printed in a text file, which was mapped in the relevant ArcMap 10.1 project using

the Add XY Data function, selecting the Mars IAU2000 geographic projection system to map the

data. These data were reprojected into the Sinusoidal Projection used in the ArcMap 10.1 project

by exporting the data to a Shapefile and using the Project (Feature) tool. ArcMap has the ability to

project datasets into different projection systems on-the-fly, however this slows data viewing and

can cause issues for data extraction. It is therefore best practise to project data into the projection

system employed by the project before analysis.

A similar method was used to extract the Slope-Corrected pulse-width data, which is provided

in a similar file structure to the PEDR data. A simple bash script was used to search through these

files and extract pulses that lie within the same ROI used for the PEDR data. The Slope-Corrected

data includes only the latitude, longitude, and the Slope-Corrected pulse-width value, which was

mapped in the relevant ArcMap 10.1 project using the methods outlined above.

As described above, only MOLA data within half the largest baseline, 600 m, of the DTM data

boundary were used in this work, to ensure that the same number of pulses were used for each

comparison between pulse-widths and surface characteristics, for each MOLA pulse-width dataset

separately. If this was not applied, part of the pulse-footprint of pulses within half the baseline of

the boundary may contain null-data values. This would introduce some inconsistency and bias in

the surface roughness and slope values across the baselines at these locations, so best practise is to

exclude them.

3.6.5 SURFACE ROUGHNESS AND SLOPE MAP PRODUCTION

The surface roughness and slope values used to calibrate the pulse-width data were extracted from

maps produced at different baselines from the co-registered DTMs and mosaics.

3.6.5.1 SURFACE ROUGHNESS MAPS

Surface roughness maps were produced using RMS height, as shown in Equation 2.46 in Section 2.3,

as the pulse-widths reported in the PEDR and Slope-Corrected datasets are theoretically related to

the RMS total and terrain pulse-width as in Equations 2.5 and 2.7 [Neumann et al., 2003a; Smith

et al., 2001]. The maps of surface roughness distribution in Smith et al. [2001] and Neumann et al.

[2003a], which are shown in Figures 1.1a and 1.1b, are scaled to this measure of surface roughness.

The ArcMap 10.1 Focal Statistics tool, which calculates different statistics within various

window sizes and shapes, was used to produce the roughness maps. Here, the STD (standard

deviation), which applies the same formula as RMS height, option and circular window diameters

ranging from 10 m to 1200 m, equivalent to the baseline, were selected. Section 3.7 explores

baselines from 10 m to 1200 m, whilst in Section 3.8 baselines from 40 m to 600 m are used due

to differences in DTM resolution between HiRISE (1 m pixel−1) and CTX (18 m pixel−1). These

baselines cover both the lower and upper limits of the current pulse-footprint estimates (70 m to

168 m) as well as the 35 m to 100 m surface roughness baselines estimates derived from these

pulse-footprint estimates due to the energy concentration respectively [Neumann et al., 2003a;
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Smith et al., 2001].

By using a circular window the assumption is that the pulse-footprint is circular, which may not

be the case under high tilt angles, hence the removal of pulse-widths taken at ≥2° tilt in Neumann

et al. [2003a]. The exact geometry of the pulse-footprint was not recorded in the PEDR dataset,

however, tilt angles of 20° result in pulse-footprint stretching of 3.6 m along the direction of tilt,

significantly smaller than the georeferencing errors expected across the datasets.

From HiRISE data, the baselines used are: 10 m, 20 m, 35 m, 50 m, 70 m, 100 m, 150 m, 200 m,

300 m, 600 m, 1000 m and 1200 m. For CTX data, the baselines used are: 40 m, 60 m, 75 m, 100 m,

150 m, 200 m, 300 m, 600 m and 1000 m.

3.6.5.2 SLOPE MAPS

Slope maps were produced using the Slope tool in ArcMap 10.1, which defines slope as described

in Section 2.3.3 and Equations 2.56 to 2.58.

As mentioned in Section 2.3.3, there are two methods to produce slope maps at different

baselines. (1) Resample the original DTM data to the required baseline, producing a new DTM.

The Slope tool is applied to the new DTM to produce a slope map at the required baseline. (2)

Produce a slope map from the original DTM and use the Focal Statistics tool to produce slope

maps at each baseline by applying the MEAN option and circular windows of diameter equal to the

desired baseline. Both estimates use Equations 2.56 to 2.58 to produce slope estimates. Background

work for Section 3.8 found that the slope outputs are very similar using theses methods, and as

more work had been completed using (1), this method is used for slope map production throughout

Sections 3.7 and 3.8. The resampling technique used cubic convolution to fit a smooth curve

through the 16 nearest cells, and is generally deemed a better resampling method as it produces a

continuous result and reduces the effect of errors by using more pixels to estimate an interpolated

elevation [Environmental Systems Research Institute, 2001].

3.6.6 DETRENDING AND HOT-SPOTTING

Detrending data is compared to roughness contribution to pulse-width, as described in Equation 2.7,

in Section 3.9. In ArcMap, high-resolution DTM data was extracted from each pulse-footprint

in the Slope-Corrected pulse-width dataset over Eberswalde Crater, Mawrth Vallis, and Aureum

Chaos for each pulse separately. The pulse-footprint was modelled using the Buffer tool, to convert

the point data to a circular polygon with a diameter of 75 m (Figure 3.9). The Shapefile containing

this polygon data was then split into individual pulse-footprint shapefiles, and a simple ArcPy

Python script was written to apply the Extract by Polygon tool to each pulse-footprint, creating a

small DTM for each pulse-footprint. These DTMs were converted to text files by self-sampling to

produce a table of X Y Z values for each cell.

For each pulse-footprint, a plane was fitted in MATLAB using linear regression. The maximum

slope of this plane was found using Equations 2.59 and 2.60. Detrended elevations were found

by removing the plane-of-best fit elevations from the original elevation values. Detrended surface
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Figure 3.9: Maps and plots showing how detrended elevation data is found from extracted DTM
data and a fitted plane. This example is for a pulse-footprint over Eberswalde Crater. A plane is
fitted to extracted elevation data (Bottom Right), which is then subtracted from the elevation data to
reveal detrended elevation (Bottom Left). The slope is found by calculating the maximum slope of a
plane, using Equation 2.60. The detrended roughness is found by calculating the RMS height from
these detrended elevations. To explore the effect of energy distribution across the pulse-footprint, a
Gaussian filter is applied to the detrended elevations, before the RMS height is calculated.

roughness values were found by applying the RMS height (Equation 2.46) to the detrended

elevation values. The aim of fitting the slope is to remove the slope contribution effect described in

Equation 2.7 and Figure 2.2, and not to replicate the surface itself, hence the use of a linear, rather

than polynomial, plane [Wood, 1996].

The pulse-width values were corrected for pulse-footprint-scale slope using Equation 2.7 to find

the roughness contribution, σt , to the total received pulse-width. σξ is plotted against the detrended

surface roughness values, and a linear line-of-best-fit applied to find the relationship and R-squared

value.

To replicate the effect of hot-spotting, which is discussed in Section 2.1.5, a Gaussian filter was

applied to the detrended elevations before the detrended surface roughness is calculated. The full
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equation is given in Equation 2.20, but can be simplified to

f (x,µ,σ) = aGe
(χ−µ)2

2σ2 . [3.1]

Here, aG is the Peak amplitude of the Gaussian distribution, σ is the standard deviation of the

distribution, χ is the distance from the mean, µ, defined at the centre of the pulse-footprint. Different

standard deviations were used to replicate how energy distribution across each MOLA pulse may

have occurred. The effect of applying this filter is to decrease the influence of detrended elevation

values at the edge of the pulse-footprint, and reduces the overall detrended surface roughness value

at a location.

3.6.7 DATA EXTRACTION AND COMPARISON

The surface roughness and slope map values, for each baseline, were extracted at the MOLA PEDR

and Slope-Corrected pulse locations using the Extract Multi-Values to Points tool in ArcMap 10.1.

This stores the values of surface roughness and slope in the Shapefiles produced in Section 3.6.4,

with each baseline and map type3 stored in a separate column. The Shapefiles were exported to text

files for analysis in MATLAB.

Pulse-width values are plotted against surface roughness and slope for each of the baselines,

surface characteristic, and pulse-width dataset separately. A linear line-of-best-fit is derived using

linear regression analysis, and the R-squared value is found and used as a measure of the goodness-

of-fit. Other goodness of fit methods were considered, but as the R-squared is familiar and provides

a good indication as to the influence of a particular variable on a result, it was deemed a useful

method. The resulting fit was also tested for significance using p-value of 0.05, which tests

the distribution of residuals about the line-of-best-fit. These residuals will produce a Gaussian

distribution about the line-of-best-fit, which are then Studentised by dividing by an estimate of the

standard deviation from the line-of-best-fit. The standard Student t-test is performed to check for

significance. This process was conducted in MATLAB using the fitlm tool, available in version

2014a and later.

For each site and surface characteristic, the plot with the highest R-squared value is selected.

This is assumed to give an indication of the baseline at which the pulse-widths respond. The aim

being to find a common baseline across each of the sites for each surface characteristic, which will

validate the dataset and produce a reliable relationship that can be extrapolated to other regions

across Mars.

3surface roughness or slope
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3.7 MOLA PULSE-WIDTHS OVER THE MSL CANDIDATE LANDING

SITES

3.7.1 INTRODUCTION

The starting assumption is that MOLA pulse-widths estimates surface roughness at baselines

applicable for landing and roving site selection [Smith et al., 2001; Neumann et al., 2003a]. This

first project tests this hypothesis by comparing the different MOLA pulse-width datasets to surface

roughness estimates at different baselines from high-resolution HiRISE DTMs, which can estimate

surface roughness at the small baselines required [Kirk et al., 2008]. By doing so, the pulse-width

dataset(s) will effectively be calibrated, enabling (1) the identification of candidate landing and

roving sites for future missions [Grant et al., 2011b; Golombek et al., 2012a], (2) quantitative

comparison of terrains [Kreslavsky and Head, 2000], and (3) a reliable surface roughness map for

atmospheric studies [Heavens et al., 2008]. To find the best quality MOLA pulse-widths, both the

PEDR version L and Slope-Corrected pulse-width dataset, from Neumann et al. [2003a], are used.

Additionally, Kreslavsky [2012] suggests that the Trigger 1 channel, discussed in Section 3.3, is the

most reliable MOLA receiver channel, this dataset was extracted from the PEDR dataset to test this

hypothesis. The work in this section is also presented in Poole et al. [2014b], which presents the

results and conclusions, but not the specific site descriptions.

3.7.2 DESCRIPTION OF THE STUDY SITES

The small spatial extent of individual HiRISE DTMs, which are each up to ∼6 km×30 km, and

the large MOLA inter-orbit spacing, which averages ∼4 km at the equator, means that only regions

with extensive HiRISE stereo coverage can be used, to ensure enough MOLA data is used for a

significant relationship to be derived [McEwen et al., 2007, 2010].

After reviewing the distribution and spatial coverage of the available DTMs, shown in Fig-

ure 3.10, the final four candidate MSL landing sites - from which Gale Crater was selected - were

chosen for this work [Grant et al., 2011b; McEwen et al., 2007; Planetary Data System, No Date.;

HiRISE, No Date.]. These four sites, which are described below, were found to be the only sites

with multiple overlapping or adjacent (<1 km inter-DTM spacing) DTMs or stereo-pairs [McEwen

et al., 2007; Planetary Data System, No Date.; HiRISE, No Date.]. The DTMs were produced as

part of an extensive mapping campaign for the final MSL landing site selection process described

in Grant et al. [2011b]. The identification numbers of the DTMs used for each site are provided in

Table B.1 on Page 326.

3.7.2.1 EBERSWALDE CRATER (24° S, 327° E)

Eberswalde Crater lies within the Erythraeum region, to the north of the much larger Holden

Crater, also one of the final four candidate landing sites, and is discussed below and illustrated in

Figure 3.10.
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Figure 3.11: Schematic of the possible formation processes behind the creation of the interpreted
Eberswalde Crater fan-shaped deposit [Golombek et al., 2012a; Pondrelli et al., 2008; Rice et al.,
2013, 2011; Wood, 2006]. (a) a simple crater forms. (b) fluvial activity transports material into
the crater from the crater walls and beyond, possibly into a lake. The material is deposited as a
fan-shaped material, in several lobes associated with different periods of activity. (c) the fan-shaped
deposit is buried, lithifying the deposit. (d) the lithified deposit is exposed through aeolian erosion.
(e) the lithified deposit is more erosion resistant than the burying material, and is therefore exhumed
on the surface. The fan-shaped deposit at Holden Crater, which extends twice as far into its crater,
appears to be in a less exhumed state than that at Eberswalde Crater, possibly between stages (d)
and (e).



122 CHAPTER 3. MARS: ASSESSING MOLA PULSE-WIDTHS

326.5◦ E 326.6◦ 326.7◦ 326.8◦ 326.9◦ 327.0◦
23.6

◦
S

23.7
◦

23.8
◦

23.9
◦

24.0
◦

24.1
◦

24.2
◦

24.3
◦

326.5◦ E 326.6◦ 326.7◦ 326.8◦ 326.9◦ 327.0◦

23
.6

◦
S

23
.7

◦
23

.8
◦

23
.9

◦
24

.0
◦

24
.1

◦
24

.2
◦

24
.3

◦ E
le

va
tio

n
(m

)

-625

-1590

-1107

-1350

-866

DEM
Boundary

Neumann &
PEDR

Additional
PEDR

Figure 3.12: Map of the Eberswalde Crater study area, with HiRISE DTM coverage shown in
colour and the MOLA pulse locations shown in black and white. The HiRISE DTMs have the
corresponding orthorectified images shown on top, with 50 % transparency to highlight surface
detail. Black MOLA pulse locations are those in the Slope-Corrected dataset from Neumann

et al. [2003a]; black and white together show the original MOLA PEDR data, such that the white
locations show the data that was removed from the PEDR data for the Slope-Corrected dataset.
Background image is from HRSC.
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The primary focus of this site would have been to explore the role of hydrological activity

in surface evolution by studying crater stratigraphy, geomorphology, mineralogy, and possible

evidence for climatic change [Golombek et al., 2012a; Pondrelli et al., 2008; Rice et al., 2013,

2011; Wood, 2006]. Several input channels appear to flow into the crater, the largest of which

terminates in what appears to be a layered, fan-shaped deposit formed during several periods of

activity interpreted from several lobes within the deposit [Rice et al., 2013; Wood, 2006; Pondrelli

et al., 2008; Rice et al., 2011; Golombek et al., 2012a]. Metre-scale boulders strewn across the

crater floor and within the fan-shaped deposit suggest the outflow may have been strong. The

channels may not have been simultaneously active, but Wood [2006] proposes evidence of lacustrine

deposits on the crater floor, which suggests the presence of a lake within the closed system. Clays

detected on the crater floor, which appear particularly abundant at the base of the largest deltaic

system, also suggest that this fluvial activity may have been prolonged, potentially several hundred

thousand years [Golombek et al., 2012a].

Material for these layered deltaic systems appear to have been transported from the west via a

complex valley network [Rice et al., 2013, 2011]. Today, the potential deltaic system sits inverted

on the crater floor, with the possible evolution processes illustrated in Figure 3.11. Rice et al. [2013,

2011] suggests that these deposits were buried sometime after the final fluvial episode. This may

have been followed by lithification, hardening of the deposited material, which was later exhumed

after the more friable burial material was eroded through wind erosion processes. The area covered

by the HiRISE DTMs is shown in Figure 3.12, includes part of this deposit, as well a section of

crater wall material, where the greatest change in topography within the DTM boundary is observed,

and some smaller craters within the crater. Smaller mounds of material, some of which appear to

be shaped by aeolian processes, dot the remaining landscape, which is typically smooth.

3.7.2.2 GALE CRATER (5° S, 138° E)

Gale Crater lies along the Mars dichotomy between the northern plains and the southern highlands

(Figure 3.10). The crater measures approximately 150 km in diameter, and is thought to have

been formed during the late Noachian period [Anderson and Bell, 2010]. The target area for the

rover, which landed in August 2012, was at the base of the northwestern face of the ∼5 km layered

mound that dominates the centre of the crater [Carr and Head, 2010; Golombek et al., 2012a;

Grotzinger et al., 2012]. The peak of this mound is higher than the crater walls that surround it,

with the exposed strata forming the primary science target for MSL in the hope that it provides

a record of past habitable conditions on Mars [Golombek et al., 2012a; Grotzinger et al., 2012;

Milliken et al., 2010]. Lacustrine, fluvial, aeolian, and evaporatic processes are proposed for the

formation of this mound, shown schematically in Figure 3.13, which today is being eroded by

aeolian processes [Anderson and Bell, 2010; Milliken et al., 2010; Thomson et al., 2011; Golombek

et al., 2012a; Grotzinger et al., 2012; Kite et al., 2013].

The upper section of the mound is covered by sediments and characterised by a series of

smooth slopes; lower down, channels and inversions are distributed around the base [Anderson and
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Figure 3.13: Schematic of the possible formation processes behind the creation of the Gale Crater
central mound [Anderson and Bell, 2010; Carr and Head, 2010; Golombek et al., 2012a; Grotzinger

et al., 2012; Kite et al., 2013; Milliken et al., 2010]. (a) a complex crater forms with a central
peak. (b) one scenario, hydrological transport of material into the crater and deposited on the crater
floor, with different layers representing different periods of activity. The material may have been
deposited preferentially in the centre of the mound, or more consistently across the crater floor
before being eroded into the shape it is today. (c) aeolian transport of material from the crater walls
and beyond to the centre of the crater, again building up in layers representing periods of activity.
(d) either method develops a mound that is 5 km high, higher than the surrounding crater walls. (e)
Today, the terrain is being eroded by aeolian processes.



3.7. MOLA PULSE-WIDTHS OVER THE MSL CANDIDATE LANDING SITES 125

137.2◦ E 137.3◦ 137.4◦ 137.5◦ 137.6◦ 137.7◦

137.2◦ E 137.3◦ 137.4◦ 137.5◦ 137.6◦ 137.7◦

4.
3◦

S
4.

4◦
4.

5◦
4.

6◦
4.

6◦
4.

8◦
4.

9◦

4.3
◦

S
4.4

◦
4.5

◦
4.6

◦
4.6

◦
4.8

◦
4.9

◦

E
le

va
tio

n
(m

)

-2269

-4549

-3409

-3979

-2839

DEM
Boundary

Neumann &
PEDR

Additional
PEDR

Figure 3.14: Map of the Gale Crater study area, with HiRISE DTM coverage shown in colour and
the MOLA pulse locations shown in black and white. The HiRISE DTMs have the corresponding
orthorectified images shown on top, with 50 % transparency to highlight surface detail. Black
MOLA pulse locations are those found in the Slope-Corrected dataset from Neumann et al. [2003a];
black and white together show the original MOLA PEDR data, such that the white locations show
the data that was removed from the PEDR data for the Slope-Corrected dataset. Background image
is from HRSC.
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Bell, 2010; Golombek et al., 2012a; Grotzinger et al., 2012]. These channels transport material

to the base of the mound, but also form natural pathways for the rover to reach higher, younger,

strata [Anderson and Bell, 2010; Golombek et al., 2012a; Grotzinger et al., 2012]. The transition

from clay bearing strata near the base of the mound to sulphate bearing rocks further up may record

the change from a relatively wet to dry conditions, although the sulphate bearing rocks may best

preserve any bio-signatures, if present [Golombek et al., 2012a].

Alluvial fans and dunes surround the mound, which also serve as science targets during the

mission traverse [Grotzinger et al., 2014; Silvestro et al., 2013; Yingst et al., 2013] The most

noticeable roughness features over the site come from topographic changes from the crater floor

to the peak of the mound, channels, and the dunes Figure 3.14. The crater floor is typically very

smooth, except for a few small craters.

3.7.2.3 HOLDEN CRATER (26° S, 326° E)

Holden Crater is similar in size to Gale Crater (140 km), but the formation processes are thought

to be more similar to those that shaped Eberswalde Crater (65 km), which lies immediately to the

north (Figure 3.10).

The proposed landing site is located in the southwest section of the crater floor, next to what

appears to be a fan-shaped deposit that would have formed the primary science target if MSL had

landed here [Grant et al., 2011b,a]. The material for this deposit appears to be sourced from Uzboi

Vallis and extends 25 km on to the crater floor. Pondrelli et al. [2005] propose that it may have

formed after a large body of water being held in the Uzboi Vallis breached the crater walls and

flooded into the crater, transporting the crater wall material. Again, the deposit sits inverted on

the surface, with a similar formation chain proposed to that outlined in Figure 3.11, except here

the deposit appears less exposed, or is smaller. Large metre-scale blocks are observed across the

crater support evidence for a catastrophic flooding event, which may have also transported large

clasts, possibly containing rocks of varying ages, that form potential science targets for studying

conditions from the crater walls and beyond [Golombek et al., 2012a].

Like Eberswalde Crater, it is proposed that a crater lake may have been present, and possibly

supported a habitable environment within a closed fluvial-lacustrine system [Golombek et al.,

2012a]. The network of channels within the broader region are thought to have formed due to

precipitation during a wet period, which is proposed to have been followed by a significantly drier

period, where aeolian erosion and depositional processes dominate [Golombek et al., 2012a; Grant

et al., 2011a; Pondrelli et al., 2005]. This drier period may then have been followed by an icy period

where glacial abrasion and plucking eroded a previously formed deltaic system [Pondrelli et al.,

2005]. This is supported by the U-shape profile of Uzboi Vallis, typical of glacial valleys on Earth,

and an apparent frontal moraine that could define the furthest reaches of a glacier [Grant et al.,

2011a; Pondrelli et al., 2005]. Additionally, large aeolian bed-forms appear to be present across

the crater floor, interspersed with very smooth terrain and some smaller craters [Golombek et al.,

2012a]. Topographic variation over this site is more gradual than those discussed above, as the
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Figure 3.15: Map of the Holden Crater study area, with HiRISE DTM coverage shown in colour and
the MOLA pulse locations shown in black and white. The HiRISE DTMs have the corresponding
ortho-rectified images shown on top, with 50 % transparency to highlight surface detail. Black
MOLA pulse locations are those found in the Slope-Corrected dataset from Neumann et al. [2003a];
black and white together show the original MOLA PEDR data, such that the white locations show
the data that was removed from the PEDR data for the Slope-Corrected dataset. Background image
is from HRSC.
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Figure 3.16: Map of the Mawrth Vallis study area, with HiRISE DTM coverage shown in colour and
the MOLA pulse locations shown in black and white. The HiRISE DTMs have the corresponding
ortho-rectified images shown on top, with 50 % transparency to highlight surface detail. Black
MOLA pulse locations are those found in the Slope-Corrected dataset from Neumann et al. [2003a];
black and white together show the original MOLA PEDR data, such that the white locations show
the data that was removed from the PEDR data for the Slope-Corrected dataset. Background image
is from HRSC.
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infills Craters
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hardest deposits exhumed

d

Erosion of surface

Figure 3.17: Schematic of the possible formation and evolution processes behind the formation
of the Mawrth Vallis study site [Michalski et al., 2010; Noe Dobrea et al., 2010]. (a) smooth two
layered terrain between Oyama Crater and Mawrth Vallis. (b) craters, both primary and secondary,
form on the surface. (c) volcanic activity covers the surface and infills craters. (d) erosion of the
surface to the bedrock, leaving behind only the thickest deposits of the volcanic material. (e) the
layered bedrock is more erodible than the volcanic material, and thus erodes quicker, leaving behind
the thickest volcanic deposits exhumed on the surface.
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DTMs do not cover any of the crater walls. This variation is approximately −1 km over 30 km from

west to east, which means that large changes in topography contribute less to the overall roughness

of the terrain over this site (Figure 3.15).

3.7.2.4 MAWRTH VALLIS (22° S, 344° E)

The candidate landing site known as Mawrth Vallis is situated between Oyama crater, to the west,

and Mawrth Vallis itself, to the east (Figure 3.10) [Golombek et al., 2012a]. The site is the most

complex to interpret, but is thought to present an opportunity to study phyllosilicate forming

processes, which are thought to occur early in Mars’ geologic history, and the potential for global

habitability, as the conditions here could have been typical of Mars during the late Noachian

period [Golombek et al., 2012a].

Like Holden Crater, the topography at Mawrth Vallis varies little across the site, approximately

0.7 km from north to south over 25 km (Figure 3.16). Unlike the other candidate landing sites

however, the lack of topography and features mean that it is difficult to determine the evolutionary

history of the site [Michalski et al., 2010]. From studies of the wider region, two distinct finely

layered deposits are inferred; a thin (10’s of metres) thick unit appears to overlay a much thicker

unit (100’s of metres) attributed to hydrothermal processes [Noe Dobrea et al., 2010]. Figure 3.17

shows a schematic of these layered terrains, which are thought to have been modified by impact

crater processes. This appears to have been followed by an outflow of basalts, which covered the

surrounding terrains and infilled the craters and other topographic lows, forming thicker deposits

than the inter-crater terrains. Aeolian erosional processes appear to have eroded through this hard

volcanic layer, over large time-scales, to the more friable material beneath, leaving behind only

the thickest deposits of the hard volcanic material, i.e. the infilled craters, exhumed on the surface

(Figure 3.17) [Noe Dobrea et al., 2010]. These deposits are now surrounded by the more easily

erodible bedrock, which appears much smoother [Noe Dobrea et al., 2010].

Hydrated mineral signals derived from Compact Reconnaissance Imaging Spectrometer for

Mars (CRISM) data provide evidence of past aqueous activity in the region [Noe Dobrea et al.,

2010]. Some of these deposits sit above the layered deposits, which suggests hydrological activity

at some point later in the region’s past [Noe Dobrea et al., 2010]. Unlike the other sites, it is the

diverse chemistry of the site, rather than geomorphological features, that form the basis of any

science targets [Noe Dobrea et al., 2010; Golombek et al., 2012a]. Therefore, the main roughness

features of the site are the small craters, which appear in greater numbers here than the previous sites

due to the age of the terrain, and the features interpreted as exhumed volcanic deposits. Importantly,

both of these features are at much smaller scales than the large kilometre scale features found in the

previously described sites.

3.7.3 RESULTS

Correlations over each of the four sites are explored separately, to investigate whether different

terrains produce different relationships between surface roughness and pulse-widths. For each
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site, 12 plots are produced for each of the three pulse-width datasets, one for each of surface

roughness baseline to which the pulse-widths are compared. Only the best correlating plots are

shown Figures 3.18 to 3.20, with the fit statistics shown in Table 3.8 for easy comparison, the full

results are shown in Table C.1 in Appendix C. All results are tested for statistical significance by

testing against the null-hypothesis (p-value), which finds the probability of achieving the same

result by chance. The significance level of the test was set at 5 % (p-value equal to 0.05), with the

results reported in the table.

The plots show pulse-widths over Eberswalde Crater to be best correlated to surface roughness

estimates from HiRISE DTMs, for each of the MOLA pulse-width datasets. Using the PEDR and

Slope-Corrected pulse-widths, the best correlating baseline is 150 m, whilst Trigger 1 pulse-widths

produced the best correlation at 300 m baseline surface roughness (Table 3.8). Of the different pulse-

width datasets, the Slope-Corrected pulse-widths produces the highest R-squared value, which

suggests the removal of poor pulse-width data by Neumann et al. [2003a] is effective. However,

R-squared values are lower than expected.

Results over Gale Crater do not follow the same pattern. Here, R-squared values are lower

using the Slope-Corrected and Trigger 1 pulse-widths, compared to the PEDR pulse-widths. This is

attributed to the high number of poor data within the PEDR dataset, which, by chance, is plotted in

close proximity to better quality data. This produces a higher R-squared value when the low quality

data is included. Shown in green in the Gale Crater plot in Figure 3.18 are a string of pulses with a

consistent pulse-width value. These occur along a single orbit and are clearly erroneous as they

produce very consistent pulse-width values despite varying surface roughness values, as measured

Table 3.8: Summary of results comparing MOLA pulse-widths to surface roughness over the final
four MSL candidate landing sites, showing the best correlating baseline, R-squared value and
number of pulses. The corresponding plots are shown in Figures 3.18 to 3.20. Where there is a
dashed line for the baseline the R-squared value is considered too low (<0.1) to suggest a reliable
relationship has been found. All correlations have a p-value less than 0.05.

Region

MOLA Dataset Plot Property Eberswalde Gale Holden Mawrth

PEDR

R-squared 0.54 0.46 0.06 0.07

baseline (m) 150 600 - -

Pulses 1410 1569 2031 1185

Trigger 1

R-squared 0.54 0.36 0.46 0.02

baseline (m) 300 200 150 -

Pulses 932 1271 1543 993

Slope-Corrected

R-squared 0.60 0.42 0.47 0.07

baseline (m) 150 300 150 -

Pulses 1157 433 1509 649
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Figure 3.18: Plots showing the best correlating baseline surface roughness and MOLA PEDR
pulse-widths over each of the final four MSL candidate landing sites. The highest R-squared value
is shown on the plot and the baseline at which this value is found is shown along the horizontal axis.
Regions of erroneous results are shown in green boxes on the Gale Crater and Holden Crater plots.

at 600 m baseline surface roughness, and a change in elevation of ∼1 km over ∼15 km producing

relatively high slope values. This should produce high, but varying, pulse-width values according

to the theory outlined in Section 2.1.3. The removal of this data, and other identifiable erroneous

data not clearly visible from visual inspection, has caused a decrease in the observed R-squared

because this data sits near other data in the plot, and has therefore decreased the density of data

near the line-of-best-fit.

Unlike, Eberswalde Crater, the best correlating baselines over Gale Crater vary greatly. The

highest correlation is observed at 600 m surface roughness baseline using the PEDR pulse-widths,

whilst the Trigger 1 and Slope-Corrected datasets observe best correlating baselines at 200 m and

300 m respectively (Table 3.8).

The use of Trigger 1 pulse-widths does not improve R-squared values of fits compared to PEDR

pulse-widths over Eberswalde Crater or Gale Crater. At the former, using Trigger 1 pulse-widths
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Figure 3.19: Plots showing the best correlating baseline surface roughness and MOLA Trigger 1
pulse-widths over each of the final four MSL candidate landing sites. The highest R-squared value
is shown on the plot and the baseline at which this value is found is shown along the horizontal axis.

remove many pulses considered good quality in Neumann et al. [2003a], as shown by there being

less pulses using this dataset than the Slope-Corrected pulse-width dataset in Table 3.8. At Gale

Crater, 1569 pulses occur over the site in the PEDR dataset, 1271 using Trigger 1, and just 433

pulses in the Slope-Corrected dataset. This shows at least 838 pulses in the Trigger 1 data are

considered poor data by Neumann et al. [2003a] (Table 3.8).

Contrarily, Trigger 1 pulse-widths over Holden Crater show a dramatic improvement in correla-

tion - R-squared of 0.46 compared to 0.06 - compared to PEDR pulse-widths; the Slope-Corrected

dataset performs marginally better still (R-squared of 0.47. This appears to be due to the removal

of poor data, such as those highlighted in green in the Holden Crater plot in Figure 3.18. Approxi-

mately 500 fewer pulses occur in the Trigger 1 data over this site, leaving 1543 pulses in the Trigger

1 dataset, just 34 more than in the Slope-Corrected dataset (Table 3.8). The small change in the

number of pulses and R-squared value when using the Slope-Corrected pulse-widths, suggests the

majority of the poor data identified by Neumann et al. [2003a] over Holden Crater was recorded by



134 CHAPTER 3. MARS: ASSESSING MOLA PULSE-WIDTHS

0 5 10 15 20
0

50

100

150

200

250 R2= 0.6

150 m Roughness (m)

C
or
re
ct
ed

P
u
ls
e-
W
id
th

(n
s)

Eberswalde Crater

0 10 20 30
0

50

100

150

200 R2= 0.42

300 m Roughness (m)
C
or
re
ct
ed

P
u
ls
e-
W
id
th

(n
s)

Gale Crater

0 5 10 15
0

20

40

60

80

100

120
R2= 0.47

150 m Roughness (m)

C
or
re
ct
ed

P
u
ls
e-
W
id
th

(n
s)

Holden Crater

0 10 20 30
0

20

40

60

80
R2= 0.072

600 m Roughness (m)

C
or
re
ct
ed

P
u
ls
e-
W
id
th

(n
s)

Mawrth Vallis

Figure 3.20: Plots showing the best correlating baseline surface roughness and MOLA Slope-
Corrected pulse-widths over each of the final four MSL candidate landing sites. The highest
R-squared value is shown on the plot and the baseline at which this value is found is shown along
the horizontal axis.

Channels 2, 3, and 4 (Table 3.2). Furthermore, the removal of the poor data shown in Figure 3.18

compared to Figures 3.19 and 3.20, supports the hypothesis that Trigger 1 channel is the most

reliable channel for Holden Crater. Like Eberswalde Crater, the best correlating plots occur at a

baseline of 150 m, with no baseline selected for the PEDR pulse-width plot because of the poor

correlations.

Mawrth Vallis presents some interesting results because it is the only site where surface rough-

ness appears to have little influence on the MOLA pulse-width values. The same co-registration

and DTM error checking procedures were completerd, as discussed in Section 3.6, but only poor

correlations are observed. With this in mind, why would one site display such different results?

To attempt to answer this question, the statistical and spatial distribution of surface roughness is

investigated in Figures 3.21 to 3.25.

The surface roughness distribution in Figure 3.21 shows the distribution of 150 m baseline
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Figure 3.21: Plots of the surface roughness at 150 m and pulse-widths distribution for each site at
MOLA pulse locations. Red: Eberswalde Crater; Blue: Gale Crater; Black: Holden Crater; Green:
Mawrth Vallis. The 4 m roughness at 150 m threshold is shown as a vertical blue dotted line on plot
(a). Above this threshold, terrain is considered part of a Rough Patch.

surface roughness: this baseline was chosen as two of the three sites where a correlation is observed

using the Slope-Corrected pulse-widths revealed the highest R-squared value at this baseline

(Table 3.8). The pulse-width distribution over Mawrth Vallis is similar to that at Holden Crater.

Likewise, Eberswalde Crater and Gale Crater show similar distributions of surface roughness. In

the pulse-width distribution plot, the distribution at Mawrth Vallis is similar to that at Gale Crater

between 0.25 ns, above which the distribution closer resembles that from Holden Crater. It is clear

from both of the these plots, that the distribution of surface roughness and pulse-width are not the

cause of poor correlation over Mawrth Vallis, nor do these distributions allow us to predict the

observed R-squared values at sites where a correlation is found.

A visual inspection of the Rough Patches identified in Figures 3.22 to 3.25 suggest the spatial

extent of rough terrain may be the cause of poor results over Mawrth Vallis. Rough Patches are

defined as areas of terrain where the 150 m baseline surface roughness is ≥4 m in Figure 3.21. This

baseline is chosen as two of the three sites where a correlation is observed using the Slope-Corrected

pulse-widths. The 4 m threshold is chosen because this is approximately the start of the long tail

in the frequency distributions for each of the sites. The maps show that Eberswalde Crater and

Gale Crater have large expanses of homogenous rough terrain, with other, smaller Rough Patches,

scattered across the remaining areas of DTM coverage. The extent of rough terrain at Holden Crater

is less expansive, with more evenly distributed small to medium sized areas of rough terrain. At

Mawrth Vallis the spatial distribution of Rough Patches is heterogenous, with more small regions of

rough terrain dotted throughout the region. Where there are relatively large regions of rough terrain,

these often appear spotted due to small areas of smooth terrain within the boundary of wider Rough

Patches.
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Figure 3.22: Map of the Rough Patches within the Eberswalde Crater study area, with HiRISE
DTM coverage and HRSC image in the background. The areas in orange are considered rough,
where rough is defined as surface roughness ≥4 m at 150 m baseline.
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Figure 3.23: Map of the Rough Patches within the Gale Crater study area, with HiRISE DTM
coverage and HRSC image in the background. The areas in orange are considered rough, where
rough is defined as surface roughness ≥4 m at 150 m baseline.
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Figure 3.24: Map of the Rough Patches within the Holden Crater study area, with HiRISE DTM
coverage and HRSC image in the background. The areas in orange are considered rough, where
rough is defined as surface roughness ≥4 m at 150 m baseline.
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Figure 3.25: Map of the Rough Patches within the Mawrth Vallis study area, with HiRISE DTM
coverage and HRSC image in the background. The areas in orange are considered rough, where
rough is defined as surface roughness ≥4 m at 150 m baseline.
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3.7.4 DISCUSSION

Geographical Information System (GIS) technology has been used to make a detailed comparison

of laser altimeter pulse-widths and surface roughness estimates, using the RMS height, over areas

with extensive high-resolution DTM coverage. Good correlations are observed at three of the

four sites; little correlation is observed at Mawrth Vallis. The PEDR and Trigger 1 pulse-width

datasets may contain a large number of poor data that show little correlation with the underlying

terrain. The Slope-Corrected pulse-width dataset from Neumann et al. [2003a] produces the largest

R-squared values at two of the sites. At Gale Crater, the PEDR pulse-width dataset produces the

best correlations.

The removal of poor data from the PEDR dataset, such as cloud hitting and saturated receiver

pulses, in the production of the Slope-Corrected dataset increases R-squared values at Eberswalde

Crater and, most noticeably, Holden Crater, where the R-squared value of the linear fit improves

from 0.06 to 0.47. The Holden Crater PEDR plot in Figure 3.18 contains a large collection of data

that is not present in the equivalent Trigger 1 and Slope-Corrected plots in Figures 3.19 and 3.20

respectively. This effect is much smaller at Eberswalde Crater, where the number of pulses removed

is the smallest of all the sites (Table 3.8).

Conversely, Gale Crater reveals poorer correlations between MOLA pulse-widths and surface

roughness using the Slope-Corrected pulse-widths compared to the PEDR pulse-widths. This is

attributed to a large number of poor data contained in the PEDR dataset, which have similar pulse-

width values to the high-quality data. The higher data density around the line-of-best fit, compared

to the Slope-Corrected data, results in a larger R-squared value. This is shown in Figure 3.18, where

pulses such as the string of poor data, highlighted in green, sit close to the line-of-best-fit. These

pulses are produced along a single orbit and could be either cloud hitting or saturated pulses, as they

are not present in the Slope-Corrected dataset. Gale Crater also represents the greatest disparity in

the number of pulses in the PEDR and Slope-Corrected pulse-widths, with approximately two-thirds

of the PEDR data over this region removed in the production the Slope-Corrected dataset. It is

for this reason that the Slope-Corrected dataset is considered more reliable, despite the smaller

R-squared value of the plots shown in Figures 3.18 to 3.20.

It is clear that the generic removal of Trigger 2, 3, and 4 pulse-widths is not an effective method

of identifying high-quality pulse-widths, as it often removes data at larger pulse-widths that may be

good quality. This is shown when comparing the Eberswalde Crater plots in Figures 3.19 and 3.20

by the change in the vertical axis, and the reduced R-squared value when using the Trigger 1 data,

whereby high pulse-width values have been removed compared to the Slope-Corrected dataset.

Additionally, the number of pulses using the Trigger 1 data is smaller than the Slope-Corrected data,

which shows many pulses considered good quality in Neumann et al. [2003a] are removed when

using only the Trigger 1 data. At Eberswalde Crater there is no change in the observed R-squared

value for the Trigger 1 data compared to the PEDR pulse-widths, instead there is a change of

baseline at which the best correlation occurs (Table 3.8).

The principal discussion point are the results from Mawrth Vallis and why no correlation
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is observed at any of the baselines for any of the pulse-width datasets (Figures 3.18 to 3.20).

Figure 3.21 suggests this is not attributed to the statistical distribution of pulse-width or rough

terrain. Instead, it appears to be linked to the spatial distribution of rough terrain. The three regions

discussed above contain Rough Patches that are homogenous in appearance and spatially large

(Figures 3.22 to 3.24); whereas at Mawrth Vallis the Rough Patches are typically small, and where

they are large, appear speckled as the terrain is interspersed with smoother terrain (Figure 3.25).

From this, it is interpreted that MOLA pulse-widths can only successfully determine surface

roughness within the pulse-footprint where terrain is consistently rough or smooth. At Mawrth

Vallis this is not the case, as the small, patchy nature of rough terrain over this region, increases

the possibility of pulse-footprints overlapping both rough and smooth terrain, which could lead

to complex echo-profiles. The simple threshold detection pulse-width timing system employed

by the instrument, and the filtering system that matches pulse-widths to one of four channels:

smooth, moderate, rough, and clouds, as described in Section 3.3, may therefore result in incorrect

pulse-width measurements.

The results here suggest that MOLA pulse-widths cannot be used to reliably determine rough-

ness for landing and roving site selection. The apparent poor sensitivity of MOLA pulse-widths

to surface roughness could be a result of (1) the low intensity of reflected light, (2) atmospheric

scattering along the pulse-path, and (3) scattering from the surface with the large pulse-footprint.

Instead, downsampling of data may be required to produce sensible, interpretable results, but this

will not overcome the issue observed at Mawrth Vallis, where no correlation is observed. Another

issue is the lack of a commonly observed baseline, with a 150 m baseline observed at two sites, and

300 m at Gale Crater. This makes it difficult to extrapolate the results to the other regions of Mars.

Are common baselines observed at Eberswalde Crater and Holden Crater because these sites share

similar morphology, which results in similar results? Because better quality pulse-widths are found

here? Or by chance?

3.8 LANDSLIDES, CHASMATA AND CHAOS

3.8.1 INTRODUCTION

To find better, more consistent, correlations, a project investigating the relationship between MOLA

pulse-widths and surface characteristics over much rougher, homogeneous, terrain, than is used

in Section 3.7, is presented. Rougher terrain is used as it is expected to increase the chance of

pulse-footprints being over consistently rough or smooth terrain, therefore overcoming the issues

interpreted to have occurred at Mawrth Vallis in the previous study. Only the Slope-Corrected

pulse-width data is used, which is shown to be the most reliable dataset, predominantly due to

the effective removal or poor data. The aim is (1) to gain further insights into the strengths and

weaknesses of the MOLA pulse-width data, from which a new map of surface characteristics,

better calibrated to more typical Martian surface properties, might be produced [Smith et al., 2001;

Neumann et al., 2003a], and (2) to validate the method of deriving surface characteristics from laser
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altimeter pulse-widths, which is especially important for future laser altimeter missions.

The study uses CTX DTMs due to the low HiRISE stereo-coverage over sites not considered

for landing and roving site selection [McEwen et al., 2007, 2010]. Enough MOLA pulses lie

within the boundary of a single CTX DTM from which to derive a mathematically significant

relationship with surface characteristics [Malin et al., 2007]. These DTMs were produced at lower

resolution (18 m) compared to HiRISE, but it is now known that MOLA pulse-widths do not

correlate to baselines as small as 35 m, as proposed by Neumann et al. [2003a]. Instead, it appears

they correlate to roughness at much larger baselines (>150 m), which can be reliably derived from

CTX DTMs [Shepard et al., 2001]. In background work, HRSC DTMs were found to be too coarse

over the study regions for reliable estimates of surface roughness to be derived, with only 5 pixels

being within 150 m baseline calculations.

Finally, background work for Section 3.7 revealed poor correlations between MOLA pulse-

widths and slope, and are therefore not reported. Here though, the greater variation in topography

is expected to produce better correlations with slope, as a more significant proportion of σt will be

derived from the slope contribution described in Equation 2.7.

3.8.2 SITE SELECTION AND CTX DTM PRODUCTION

Owing to the lack of a public archive for CTX DTM data, DTMs had to be produced specifically for

this study, using the methods outlined in Section 3.6. This section describes the study site selection

processes and background geomorphology of the selected sites.

To identify candidate sites, the surface roughness map from Neumann et al. [2003a], shown in

Figures 1.1a and 1.1b at the start of this thesis, was used to highlight the roughest terrains on Mars.

These terrains are cross-referenced with the surface roughness map from Kreslavsky and Head

[2000], shown in Figures A.1 and A.2, to ensure the sites are considered rough in both datasets.

The CTX image footprints from Planetary Data System [No Date.] were analysed to identify

stereo-images in the 10 sites identified as rough. Repeat coverage is found over eight of the sites,

five of which are in stereo, defined above. High-quality DTMs were produced at four of these sites,

the locations of which are shown in Figure 3.26, and described below. The image identification

numbers are shown in Table B.2 on Page 327.

3.8.2.1 AUREUM CHAOS (3.5° S, 332.5° E)

Aureum Chaos is an example of chaos terrain, typified by large blocky material interspersed by

smoother, lower elevated terrain (Figure 3.27). This region of chaos terrain is contained within

a complex basin lying to the east of Valles Marineris, and surrounded by other chaos regions,

including Aurorea Chaos, Hydraotes Chaos, and Iani Chaos [Rodriguez et al., 2005]. The formation

of chaos terrains is likely to be very complex and is little understood, but it has been associated

with early Hesperian to early Amazonian outflow activity [Warner et al., 2011]. A possible chain of

formation processes is shown in Figure 3.28, which is adapted from that in Rodriguez et al. [2005].

It appears that rocky material, which was originally part of a flat surface, has collapsed due to
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Figure 3.27: Map of Aureum Chaos study area. CTX coverage is shown in coloured topography,
with Slope-Corrected MOLA pulse locations shown in black. CTX image is overlaid at 50 %
transparency to highlight detail. The background image is from Viking, as there is no HRSC
coverage over this region.
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Figure 3.28: Schematic of the possible formation mechanisms of chaos terrain within Aureum
Chaos [Rodriguez et al., 2005]. (a) complex crater forms with central peak. (b) ice layer forms,
potentially a frozen lake. (c) this ice layer is buried by dust, which forms a solid layer. (d) ice layer
is melted, possibly from beneath. (e) solid layer becomes unstable, and begins crack. (f) solid layer
breaks into blocks, which sink beneath the water layer. (g) water layer now sits on top of the blocks,
and flows out of the crater (h) either by forging an outflow channel, or by natural elevation change.
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removal of underlying material, leaving behind large blocks of hummocky terrain and flat-topped

plateaus [Rodriguez et al., 2005; Warner et al., 2011]. Large outflow channels often appear from

chaos terrains, which suggests that groundwater or ice had a significant role in the production of

these terrains, as does the presence of bright hydrated minerals at some sites [Rodriguez et al.,

2005; Spagnuolo et al., 2011; Warner et al., 2011]. However, as reported in Rodriguez et al. [2005]

and Warner et al. [2011], not all chaos terrains have the same morphology.

Within the ROI at Aureum Chaos, there is hummocky and flat-topped terrain, interspersed

with regions apparently modified by water, with channels and depressions on the order of 1 km,

as shown in Figure 3.27. The existence of bright hydrated minerals in the broader Aureum Chaos

region suggests that water played a part in the long term evolution of the terrain, and not just

in a short intense period of activity during the early formation period [Spagnuolo et al., 2011].

Aureum Chaos also presents evidence of multiple collapse episodes, shown by several overlapping

collapse basins [Rodriguez et al., 2005]. In CTX images, the depressions appear smooth, with little

deposited material. Rough terrain occurs where there are slopes from the hummocks and channels.

3.8.2.2 CANDOR CHASMA (5.5° S, 283.5° E)

Candor Chasma is one of the largest chasma feeding into the Valles Marineris system. There are

competing theories as to how these chasmata may have formed, but the linearity of Valles Marineris

and the surrounding chasmata points to tectonic formation processes, with recent work by Andrews-

Hanna [2012a,b,c] suggesting that these features formed mainly due to vertical subsidence with

some horizontal extension. This is attributed to volcanic loading of Tharsis directly over the

crustal dichotomy, which may then have caused differential subsidence and extension to form the

chasmata [Golabek et al., 2011; Smith et al., 1999]. Crater counts suggest that the Valles Marineris

system formed during the Hesperian, as some canyon floors have an apparent age of 3.5 Ga, and

also suggests no major refreshing events have occurred since this time [Quantin et al., 2004].

The ROI is the boundary of one DTM located in the west of Candor Chasma, within which a

series of roughness features, associated with different geologic processes, are observed Figure 3.29.

These include steep chasma walls with landslide deposits at the base, and fine textured material

across the floor (Figure 3.30) [Murchie et al., 2009]. The landslides in the wide Valles Marineris

system have a wide range of ages, from 3.5 Ga to 50 Ma from crater counts presented in Quantin

et al. [2004]. All have similar features and may have a common repeating triggering mechanism.

In Candor Chasma, the age of these landslides is put at >1.6 Ga [Quantin et al., 2004].

The fine textured streaky material suggests wind erosion of friable material on the floor of the

depression. This friable material is associated with the interior layered deposits that may have

formed in the presence of water sometime before the landslide episodes, but after the formation of

the chasmata [Quantin et al., 2004]. Murchie et al. [2009] suggest these deposits formed as a result

of modification of the dust and sand found on the chasma floor by groundwater upwelling at the

surface, rather than standing water on the surface. A large layered mound dominates the centre of

the chasma, which rises over 2 km from the floor, approximately half the scale of the chasma walls
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Figure 3.29: Map of the Candor Chasma study area. CTX coverage is shown in coloured topography,
with Slope-Corrected MOLA pulse locations shown in black. CTX image is overlaid at 50 %
transparency to highlight detail. Background image is from HRSC.
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Following Conditions
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a

b

c

Figure 3.30: Schematic of possible Candor Chasma and Hebes Chasma formation processes. (a)
dyke intrusion causes faults to develop through to the surface. (b) material is removed and what
remains is a central mound which appears to be layered surrounded by chasma floors and steep
chasma walls. (c) today’s conditions. Over time material is transported from the chasma walls
in the form of landslides, reducing the slope. Dunes also form through aeolian transport of fine
grained material, and material is transported from the central mound.
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Figure 3.31: Map of the Hebes Chasma study area. CTX coverage is shown in coloured topography,
with Slope-Corrected MOLA pulse locations shown in black. CTX image is overlaid at 50 %
transparency to highlight detail. Background image is from HRSC.
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shown in Figure 3.30. The formation mechanism is unknown, but is possibly related to deposition

of wind blown material [Fueten et al., 2014]. Compared to the chasma walls, the slopes of this

mound are significantly shallower, and do not have landslide deposits at the base.

3.8.2.3 HEBES CHASMA (1.0° S, 283.5° E)

Hebes Chasma is an isolated depression north of the main Valles Marineris system and, like

Candor Chasma, it contains a large layered mound in the centre of the depression [Andrews-Hanna,

2012a,b,c]. This mound is 5 km high, approximately the same scale as the chasma walls [Andrews-

Hanna, 2012a,b,c]. The fact that this system appears isolated makes this chasma of special interest,

with several formation mechanisms having been proposed for the evolution of the chasma to its

present day appearance, such as erosion, collapse, and tectonic rifting followed by infilling by

layered deposits as discussed above [Andrews-Hanna, 2012a,b,c; Jackson et al., 2011].

Today, the top of the central mound, known as Hebes Mensa, contains incisions and inverted

channels that may have formed due to groundwater focussing by the pressure exerted by the central

mound [Grindrod and Balme, 2010]. Deposits of this size are not common in other chasmata in

the region as they are more open, and thus have larger erosive and transport properties [Fueten

et al., 2008]. Furthermore, the slopes of the central mound are much steeper than the gently rising,

smaller, mound found at Candor Chasma. Similarly to Candor Chasma, the processes that formed

and modified the terrain have left behind rough terrain in the form of landslide deposits, hummocky

terrain, and channels, all of which are observed in the two DTMs produced over this region. The age

of the landslides based on crater counts has been found to be between >1 Ga to 200 Ma [Quantin

et al., 2004].

3.8.2.4 LYCUS SULCI (28.1° N, 215.5° E)

The majority of the terrain contained within the three DTMs produced over this region is very

similar, differing only in apparent age. The ROI’s lie to the northwest of Olympus Mons, within

two of the aureole lobes that surround the massive shield volcano, in an area known as Lycus

Sulci [McGovern et al., 2004; Griswold et al., 2008]. The three DTMs are labelled as Lycus Sulci 1,

Lycus Sulci 2, and Lycus Sulci 3, which are ordered by chronology of processing, with the resulting

data shown in Figures 3.32 to 3.34 respectively.

The ridged terrain that characterises this region of Mars is unique and appears to be formed by

material sliding from the outer flanks of Olympus Mons. When a shield volcano, such as Olympus

Mons, reaches a certain size, the stresses within it change from compressional to extensional, and if

the volcano lies on mechanically weak layers of sediments or ice, as postulated by Helgason [1999],

then basal escarpments and decollements (detachment zones) may develop, as observed in Lycus

Sulci Figure 3.35. McGovern et al. [2004] show that these lobes are composed of landslide material

derived from the flanks of Olympus Mons and, despite a low slope and fall height, stretch out up to

700 km from the headwalls that now form the basal scarp surrounding the volcano [De Blasio, 2011].

These landslides have been compared to subaqueous volcanoes on Earth, such as those in Hawaii,
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Figure 3.32: Map of the Lycus area 1 study area. CTX coverage is shown in coloured topography,
with Slope-Corrected MOLA pulse locations shown in black. CTX image is overlaid at 50 %
transparency to highlight detail. Background image is mainly HRSC, with region from Viking
shown in colour to highlight HRSC coverage.
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Figure 3.33: Map of the Lycus area 2 study area. CTX coverage is shown in coloured topography,
with Slope-Corrected MOLA pulse locations shown in black. CTX image is overlaid at 50 %
transparency to highlight detail. Background image is mainly HRSC, with region from Viking
shown in colour to highlight HRSC coverage.
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Figure 3.34: Map of the Lycus area 3 study area. CTX coverage is shown in coloured topography,
with Slope-Corrected MOLA pulse locations shown in black. CTX image is overlaid at 50 %
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Figure 3.35: Schematic of possible Lycus Sulci formation mechanisms. (a) Olympus Mons forms
on the Mars dichotomy between the Tharsis and the northern lowlands. (b) Olympus formed on
a layer of ice or sediment, which is not stable over long periods. (c) Northern plains which puts
pressure on the walls surrounding Olympus Mons. The ocean is then lost, removing the pressure on
the walls removed, areas of weakness formed. (d) areas of weakness break away from Olympus
Mons and form Lycus Sulci terrain with extensional features running orthogonal to direction of
travel. Furthest reaches of the landslides are 400 km, and there are several periods of activity, with
the oldest lying beneath newer slips.
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and recent work by De Blasio [2011] shows that the great distance these lobes extended may be a

result of hydroplaning [McGovern et al., 2004]. It is also suggested that Olympus Mons lies on a

layer of clays, formed from sediment eroded from the Tharsis rise and deposited downslope, hence

the preferential mass movement away from Tharsis [McGovern and Morgan, 2009].

Today, the region appears as rough terrain, defined by a series of ridges and furrows running

circumferential to Olympus Mons (Figures 3.32 to 3.34). A groove runs through Lycus Sulci 3,

which, due to its linearity, is attributed to tectonic processes (Figure 3.34). Lycis Sulci 1 and 3

are located in the northwest lobe, which lies superimposed on the western lobe, which is where

the Lycus Sulci 2 DTM is located. Part of the Lycus Sulci 2 DTM lies within the northern plains

beyond the outer edge of the Olympus Mons aureole. This terrain is very smooth, with small craters

(<1 km) and deposits from an outflow channel being of interest from a roughness perspective

(Figure 3.33). Lava flows are present on all the aureole lobes, which has led to the suggestion that

lava flows continued from Olympus Mons even after aureole emplacement, and may explain the

apparent higher infilling of the furrows in the western lobe compared to the material superimposing

it [Griswold et al., 2008].

The greatest variation in topography of ridges and furrows are observed at Lycus Sulci 1 and

Lycus Sulci 3, possibly due to their younger relative age meaning that there is less time for erosion,

but also because Lycus Sulci 2 lies furthest from Olympus Mons. Here, the material has travelled

furthest, and is therefore more likely to have spread evenly across the surface rather than maintain

its ridged structure as it slipped from the its source.

3.8.3 RESULTS

The results are divided into two sections: Regional and Lycus Sulci. The first explores the regions

as a whole, whilst the latter explores how the distribution of roughness features affects the observed

correlations. Again, only the best correlating plots are shown, with the full results are shown in

Tables C.2 and C.3 in Appendix C.

3.8.3.1 REGIONAL RESULTS

In contrast to the MSL candidate landing sites, MOLA Slope-Corrected pulse-widths show good

correlation with both surface roughness and slope, although at very different baselines (Table 3.9).

The best correlating slope plots are shown in Figure 3.36. The best correlating surface roughness

plots appear very similar and are therefore not shown. The R-squared values of the best correlating

plots are similar to those observed in the previous work, once the outlying R-squared values are

removed. Unlike the MSL study, all sites show good correlations between surface characteristics

and pulse-widths, and the best correlating baselines converge to similar lengths for each of the

surface characteristics (Table 3.9).

The observed R-squared values for each regions are ≥0.4, with Lycus Sulci revealing the best

correlations and Hebes Chasma the worst. The Lycus Sulci 2 results are discussed in detail in the

following section, but readers should note that the distribution of surface roughness and slope values
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Table 3.9: The highest R-squared values observed for comparisons made between Slope-Corrected
MOLA pulse-widths and surface characteristics over rough terrain, for each region and the combined
data. Also shown is each of the Lycus Sulci DTMs, with the Lycus Sulci 2 region split into rough
and smooth terrain to highlight effects of a wide distribution of surface roughness. All R-squared
values have a p-value <0.05.

Slope Roughness

Area Pulses R-squared baseline (m) R-squared baseline (m)

All Sites 21 017 0.55 75 0.57 300

Aureum 5690 0.52 75 0.56 300

Candor 2763 0.53 75 0.60 300

Hebes 7079 0.46 100 0.48 300

Lycus 5485 0.68 75 0.70 400

Lycus 1 1739 0.54 75 0.60 400

Lycus 2 2216 0.74 75 0.79 400

- Smooth 1605 0.06 100 0.11 300

- Rough 611 0.47 100 0.56 400

Lycus 3 1530 0.50 75 0.52 400

at this site are very different to other sites, which may be the cause of the larger R-squared values.

Instead, observing the Lycus Sulci 1 and 3 results in Table 3.9 reveals this terrain to produce similar

R-squared values to the other terrains used here, with R-squared values between 0.46 and 0.54. The

results from Aureum Chaos suggest that using the Viking MDIM as a basemap to co-register CTX

data, rather than the higher resolution HRSC nadir images, has not had an impact R-squared values:

using the lower resolution Viking data may result in larger co-registration errors.

The R-squared values for the slope plots shown in Figure 3.36 are between 0.02 and 0.07

smaller than their surface roughness equivalent. These differences are not considered significant as

the baselines for the best correlating slope plots are in-line with the latest estimates of MOLA pulse-

footprint [Neumann et al., 2003a], whilst the best correlations observed using surface roughness

are very large. This suggests that MOLA pulse-widths are actually correlated to slope over rough

terrain, as it seems unlikely that MOLA pulses diverge to 300 m to 400 m, as suggested in Table 3.9.

The consistency in the baselines at which the highest R-squared values are found when the

pulse-widths are compared to both surface roughness and slope suggests that using rougher terrain,

with a wider distribution of roughness, has enabled more reliable relationships to be found. This

consistency means the data can be combined into a single dataset to provide a general picture of

how pulse-widths relate to surface characteristics (Figure 3.36). The best correlating baselines in

the previous study vary significantly, meaning that deriving a general relationship is not appropriate

as only two of the four MSL candidate landing sites share a common baseline, whilst Gale Crater

reveals the best correlation at a much larger baseline and Mawrth Vallis show little correlation at any
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baseline. Here, the combined results reveal a relationship in-line with the regional results, which

suggests that a general relationship that can be applied to more typical, i.e. rougher, Martian terrain

than that considered for landing and roving sites. The relationships between MOLA pulse-widths

and surface characteristics, as derived from linear regression, are

Surface Slope (75 m) = (0.30×MOLA pulse-width (ns))−1.99, [3.2]

Surface Roughness (300 m) = (0.41×MOLA pulse-width (ns))−2.65. [3.3]

The slope relationship is applied in Figure 3.37 to provide an indication of the global distri-

bution of slopes from pulse-width values. The slope values have been resampled using bilinear

interpolation to 0.125 pixel degree−1. This uses the same pulse-width data that is used to produce

the surface roughness map shown in Figures 1.1a and 1.1b, but here it is scaled to 75 m slope by

calibration, rather than by theoretical calibration to surface roughness using Equation 2.7 [Neumann

et al., 2003a].

3.8.3.2 LYCUS SULCI RESULTS

The dichotomy of rough and smooth terrains within the boundary of the Lycus Sulci 2 DTM

presents a unique situation to explore how MOLA pulse-widths compare to surface characteristics

over different terrains, as shown in Figure 3.38. The smooth region is defined as the expansive

smooth terrain in Figure 3.33, whilst the rough terrain is the remaining part confined to the south in

the same figure. Figure 3.39 shows the resulting plots for the rough and smooth terrain.
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Figure 3.38: Map of the rough and smooth regions of the Lycus Sulci 2 DTM with MOLA pulse-
widths overlaid. Pulse-width values are represented by both colour and height, with large red bars
representing large pulse-widths and smaller pulse-widths represented by small blue bars.
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difference between the rough and smooth regions of Olympus 2. The R-squared values are shown
on each of the plots, with the fit being a linear-line-of-best-fit. The baseline at which the highest
R-squared value is found along the horizontal axis.

Figure 3.38 shows an oblique view of the Lycus Sulci 2 DTM, with the general location of

the boundary between the rough and smooth terrains. At the top of this figure, pulse-widths are

generally low, with some larger pulse-width values observed at some of the rough features, such

as small craters, but also due to noise within the data. The pulse-widths over the rough terrain

appear to show good agreement with the individual roughness features, with pulse-widths appearing

greatest at the peaks or steep slopes of the ridged terrain.

The plots suggest that when only a narrow distribution of slope and surface roughness is used,

poor correlations exist. Using a wider distribution of roughness and slope appear to help produce

stronger correlations. When these rough and smooth data are combined however, the observed

R-squared is greater than when the rough terrain is used alone (Table 3.9). This behaviour appears

to be linked to the distribution of surface characteristics used to find a correlation, with a narrow

distribution producing a poorer R-squared fit because of the way R-squared is measured. When

these plots are combined, the high concentration of data over low slopes help improve the R-squared

value compared to when only the data over rough terrain is used.

3.8.4 DISCUSSION

By using rougher, more homogeneous, terrain it appears that a better understanding of the relation-

ship between MOLA pulse-widths and surface characteristics has been achieved. The R-squared

values are similar to those found over the MSL candidate sites used in the previous section, once

the outliers of Mawrth Vallis and the Lycus Sulci 2 DTM areas are removed, as shown in Tables 3.8

and 3.9 on Pages 131 and 156, respectively. The baselines at which the best correlations are

observed converges to 75 m to 100 m using slope and 300 m to 400 m using surface roughness.

However, there is still significant deviation from the line-of-best-fit, such that the resampled data
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presented in Figure 3.37 produces a more interpretable result as to the global distribution of slope.

The focal discussion point is the baselines at which the highest R-squared values are observed

for the two surface characteristics. The consistent baselines found across the sites allows the data to

be combined to derive a more typical relationship between MOLA Slope-Corrected pulse-widths

and surface characteristics, rather than region specific relationships. The combined data shows the

best correlations at 300 m for surface roughness and 75 m for slope. This is interpreted to mean

that MOLAs pulse-widths are correlated to slope over rough terrain, for two reasons: (1) the 75 m

baseline is in-line with the latest estimates of MOLA pulse-footprint after hot-spotting effects are

accounted for [Neumann et al., 2003a]; (2) it seems unlikely that 300 m baseline surface roughness

information is contained within pulse-widths, instead, slopes at ∼75 m may strongly influence

surface roughness estimates at ∼300 m baseline over these terrains. As the slope relationship is not

observed over MSL sites, this suggests that slope cannot be measured from MOLA pulse-widths

over smoother terrains.

Although more consistent baselines are found here and all sites reveal a correlation, the R-

squared values are not much improved due to large variations from the line-of-best-fit. The source

of these variations but could be a result of the pulse-width sampling methods or atmospheric

effects on the pulse [Neumann et al., 2003a; Smith et al., 2001]. These atmospheric effects are

described in Section 2.1.4, with Neumann [2011] adding that many of the pulse-widths within the

Slope-Corrected dataset are subject to scattering by dust, which will affect the pulse-width value.

In practise however, these effects will be small due to the thin atmosphere. The errors are therefore

more likely to be associated with the threshold level detection system employed by the system. In

this case, the pulse-width measurements produced from MOLA are not perfectly proportionate to

the surface characteristics within the pulse-footprint, and depend on other factors that cannot be

isolated from the pulse-width data here.

The results from Lycus Sulci 2 may be explained by how the R-squared value is calculated.

The formula for calculating R-squared in MATLAB is

R2 ≡ 1−
SSres

SStot
= 1−

Σi (yi − fi)
2

Σi (yi − ȳ)2 , [3.4]

where fi is the expected value at yi from the linear fit, SSres is the sum-of-squares residuals, and

SStot is the total sum of squares. The data from the smooth terrain in this DTM has a lower SSres

due to the very narrow distribution of slopes producing a low deviation from the mean pulse-width,

Table 3.10: R-squared fit statistics of the rough and smooth terrains over Lycus Sulci 2.

Fit Statistic Smooth Rough All

SSres 2.8458×104 4.1028×105 4.5946×105

SStot 3.0412×104 7.7846×105 1.7807×106

R-squared 0.0637 0.472 0.742
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SStot . The natural variation in the pulse-width values from a predicted fit is proportionally large

when compared to the pulse-width values, SSres. These two values combine to produces very

low R-squared values (Table 3.10). The data from the rough terrain has a larger SSres value, but

has a significantly wider distribution of slopes and therefore a greater deviation from the mean

pulse-width, as shown in the SStot in Table 3.10. The deviation from the fitted line at higher slope

values due to natural variability will be proportionally smaller when compared to the deviation

from the mean pulse-width value, so long as the deviation from fit increases at a slower rate than

the deviation from the mean pulse-width value.

Pulse-widths over the smooth terrain have a lower variability than data from equivalent slopes

over the rough terrain, probably due to the consistency of the terrain reducing the effect of co-

registration errors. Thus, when the data are combined there is only a small increase in SSres,

compared to that over the rough terrain, but a significant increase is observed in SStot due to the

inclusion of the two very differently distributed pulse-width populations, which results in a higher

R-squared value. This is an example where statistics can suggest a result that is significantly

different to that observed. In practise, the results from the regions as a whole, or from Lycus Sulci 1

and Lycus Sulci 3 are more typical and reliable in terms of how well MOLA pulse-widths compare

to surface characteristics.

There appears to be no correlation between the type of terrain and the observed correlations.

Instead, the R-squared values appear to be dependent on the distribution of the surface roughness

and slope over the terrains (Figure 3.40). The lowest R-squared values are observed at Hebes

Chasma, which is also where the widest distribution of slope is found, with more data over very

rough terrain and less over smooth terrain. At other sites, there is a concentration of data near the

origin of the plots, which, although subject to the some natural variation, has less variation than

pulse-widths over rougher, more sloping, terrain. However, it must be noted that visually, there

does appear to be more variation from the line-of-best fit in the Hebes Chasma plot in Figure 3.36.
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The question is whether a reduction in the R-squared value, from 0.53 over Candor Chasma, which

is visually closest in appearance to the Hebes Chasma DTM, to 0.46 is significant? The answer is

probably not, as Candor Chasma has more smooth, flat, terrain that typically produces pulse-widths

with low variation that helps increase the R-squared value here, as described above.

A discussion point is also raised concerning resolution of the DTMs. The resolutions of the

DTMs discussed above are the sampling resolutions of the DTM, rather than the resolution of the

features that can be identified within the dataset. When exploring the resolution of features that

can be derived from the Global Lunar Digital Terrain Model 100 m topographic model (GLD100),

derived from stereo-photogrammetry, Kreslavsky [2014] suggest the resolution of features that can

be derived from the 100 m pixel−1 dataset is approximately 6 pixels. Craters as small as 200 m in

diameter can be identified, but the slope statistics are more likely representative of the interpolation

algorithm than real statistics, depending on the terrain used. Assuming the same is true here,

features at a minimum scale of ∼108 m can be derived using the 18 m pixel−1 CTX DTMs used

here. However, as the terrain is consistently rough, and areas of poor matching have been removed,

this effect will be minimised, such that slopes at the baselines using two or more pixels (>40 m)

are thought to be reliable. This is further backed up by the best correlating baselines occurring at a

similar baseline to that suggested by Neumann et al. [2003a]. The surface roughness element to

this work is thought to be unaffected, as the baselines observed in the previous section, using much

higher resolution DTMs, are ≥150 m, which should also be able to be resolved using the CTX data,

under the assumptions by Kreslavsky [2014].

The final point is that the Neumann et al. [2003a] dataset has already been corrected for

1 km baseline slopes from the MOLA gridded elevation dataset. This means that a portion of

the Sigma_optical pulse-width value has been removed to highlight roughness and slope from

a longer baseline background slope. One could argue that this slope should be added back to

the pulse-widths, however the slope values at this baseline are typically much smaller (≪10 %

than slope values and therefore have only a minor effect on the final pulse-width value, to the

exponential relationship between surface slope and pulse-width value. At baselines of 1 km, the

MOLA gridded elevation dataset is heavily interpolated, and therefore slopes are defined by the

interpolation algorithm rather than direct measurement, which produces a much smoother dataset.

As a result, the pulse-widths remained as they were given by Neumann [2011], as making such

small changes to the dataset is not thought to improve the observed correlations significantly enough

to produce very reliable estimates of surface characteristics, and may instead introduce another

source of error to the data.

It now appears that MOLA pulse-widths can be used to explore the global distribution of local

slopes at a baseline of 75 m, which adds credence to the suggestion by Neumann et al. [2003a]

that a more realistic estimate of the MOLA pulse-footprint is half that given in Smith et al. [2001].

However, the maximum R-squared values remain small, which suggests that deriving surface

characteristics from pulse-width estimates produces far from perfect results. Instead, MOLA

pulse-width data should only be used to provide an indication of the mean slopes in a larger area to

reduce the effect of the natural variation, such as that given in Figure 3.37.
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3.9 CAN DETRENDED SURFACE ROUGHNESS BE EXTRACTED FROM

MOLA PULSE-WIDTHS?

3.9.1 INTRODUCTION

MOLA pulse-widths show good correlations with pulse-footprint-scale slope over rough terrain.

By applying the slope-correction assumption suggested by Gardner [1992], in Equation 2.7, it

may be possible to separate the contributions from slope and surface roughness. The detrended

roughness contribution to Slope-Corrected MOLA pulse-widths is compared against detrended

surface roughness to test whether this assumption holds true. Furthermore, the effect of the energy

distribution across the pulse-footprint, as discussed in Section 2.1.5, is tested by applying Gaussian

filters with different standard deviations to the detrended elevations during the calculation of

detrended surface roughness.

This study re-examines datasets from Eberswalde Crater and Mawrth Vallis, to explore if

observed R-squared values can be improved, particularly at Mawrth Vallis. CTX data over Aureum

Chaos data is also used, as good correlations are observed against slope at this region, which

suggests a good chance of extracting detrended roughness is over this type of terrain. Unfortunately,

the post spacing in CTX DTMs may inhibit this, as only ∼12 pixels lie within the 75 m MOLA

pulse-footprint, compared to ∼4000 for the HiRISE DTMs. As already discussed in the previous

section, Kreslavsky [2014] suggest that only features ≥108 m can be derived from the CTX DTMs,

thus the 75 m pulse-footprint of the instrument may be too small to be able to derive detrended

surface roughness.

If detrended surface roughness can be extracted from the dataset, or if better correlations

are observed over Mawrth Vallis by removing the effect of pulse-footprint-scale slopes, then

this correction could be applied to other regions of Mars using estimates of pulse-footprint-scale

slopes from HRSC DTMs, which have good coverage at 50 m pixel−1. Detrended roughness from

slope could then be used to reveal potential science, identify candidate landing and roving sites,

and make comparisons of fine-scale geology, as was the original aim of the MOLA pulse-width

dataset [Kreslavsky and Head, 1999, 2000; Smith et al., 2001]. Finally, this form of roughness

could also be the source of the deviations from the line-of-best-fit observed in previous studies, and

could improve results at other sites.

3.9.2 RESULTS

Example extracted pulses are shown in Figure 3.41, whilst Figure 3.42 shows plots of the roughness

contribution to the received pulse-width using Equation 2.7 for each of the three sites are shown in

Figure 3.42. In addition, a plot from Eberswalde Crater where a Gaussian filter has been applied to

explore the effect of energy distribution across the pulse-footprint is also shown.

The plots clearly show little or no correlation between detrended surface roughness and σξ

across all sites. For the data over Mawrth Vallis, this presents no change, but over Eberswalde

Crater and Aureum Chaos this represents a significant reduction in observed R-squared values
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)Pierce point = 332.6208◦ E -3.3274◦ N
PEDR pulse-width = 4.04 ns
Slope = 3.33◦

Slope contribution = 7.03 ns
Roughness contribution = 0 ns
RMS height = 0.10 m

Pierce point = 332.6221◦ E -3.3376◦ N
PEDR pulse-width = 54.58 ns
Slope = 4.66◦

Slope contribution = 9.86 ns
Roughness contribution = 44.72 ns
RMS height = 0.94 m

Pierce point = 341.0990◦ E 24.0213◦ N
PEDR pulse-width = 10.01 ns
Slope = 1.21◦

Slope contribution = 2.56 ns
Roughness contribution = 7.45 ns
RMS height = 0.50 m

Pierce point = 341.1127◦ E 23.9303◦ N
PEDR pulse-width = 5.56 ns
Slope = 2.50◦

Slope contribution = 5.29 ns
Roughness contribution = 0.27 ns
RMS height = 2.17 m

Pierce point = 326.7779◦ E -24.0402◦ N
PEDR pulse-width = 37.72 ns
Slope = 9.50◦

Slope contribution = 20.24 ns
Roughness contribution = 17.48 ns
RMS height = 1.30 m

Pierce point = 326.5002◦ E -23.8804◦ N
PEDR pulse-width = 40.3914 ns
Slope = 14.60◦

Slope contribution = 31.53 ns
Roughness contribution = 8.86 ns
RMS height = 0.42 m

Figure 3.41: Plot examples of planes fitted to data within MOLA pulse-footprints and the resulting
detrended elevation data and fit statistics over Eberswalde Crater, Mawrth Vallis, and Aureum
Chaos. The number of data used to fit the planes over Eberswalde Crater and Mawrth Vallis
are ∼4000, whilst only ∼12 are used over Aureum Chaos. Poor correlations are observed at all
sites, these plots are to show the potential difficulties of some terrains and DTM resolutions. In
Figure 3.42, the roughness contribution is plotted against the RMS height.
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Figure 3.42: Plots of σξ against detrended surface roughness as measured from DTMs over
Eberswalde Crater, Mawrth Vallis, and Aureum Chaos. A Gaussian filter is applied to the RMS
height calculation to account for the energy distribution across the pulse-footprint over Eberswalde
Crater. In this case, the Gaussian distribution has a standard deviation of 20 m: other values were
used, but with no significant change in observed R-squared. The Slope-Corrected pulse-width
values have had the effect of 1 km slopes added, before the 75 m baseline slope effect is removed.

when pulse-widths are compared to surface roughness, down from 0.60 and 0.56 respectively. The

largest R-squared value is observed over Eberswalde Crater, but the low R-squared value suggests

that detrended surface roughness cannot be extracted from the pulse-width dataset. The results

are not improved when a Gaussian filter is applied, hence it was not applied to the other sites.

The standard deviation of the Gaussian applied to this plot is 20 m, others were also tried but no

significant change in the R-squared values is observed.

The plot from Aureum Chaos appears visually different from the equivalent Eberswalde Crater

plot. This could be a result of the CTX DTM resolution being too low and producing poor estimates

of pulse-width, as similar plots were observed in background work when using the HRSC DTMs.

Figure 3.41 shows some specific examples of detrended elevation data and the resulting slope
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corrections. The top plots, from Eberswalde Crater, show moderately good agreement with theory,

whereby roughness contributions to pulse-width are expected over rougher terrain. The middle

plots, from Mawrth Vallis, show poor agreement, but also highlight the potential for georeferencing

errors to have a significant effect on results, which is discussed below. Finally, the bottom plots

show the relatively low number of points from pulses over CTX data, with (f) showing an example

plot where the slope contribution is greater than the pulse-width value.

3.9.3 DISCUSSION

The results suggest that detrended surface roughness cannot be extracted from the MOLA pulse-

width dataset. Additionally, attempting to account for the energy distribution across the pulse-

footprint does not improve the result. The reason for these particularly poor results remains unclear,

but one or more of the following factors are thought to be cause

Poor Pulse-Width Estimates This has already been mentioned previously, but this effect would

be more pronounced here, as the SNR is reduced after the removal of the instrument effects,

which are known, and slope effects, which have been modelled. This could be due to a fault

in the methods employed by the instrument, such as the threshold pulse-width timing system,

or background noise, or the method of applying a slope correction uses an oversimplified

model that does not adequately model real-world behaviour (Equation 2.7) [Neumann et al.,

2003a].

Atmospheric and Dust Effects Forward scattering by dust will cause an increase in path length

of some photons within a pulse, which will increase the pulse-width and make the surface

appear rougher. Small, regional, and even global dust storms are regular events on Mars,

so some pulses will certainly be affected by dust. However, the filter system employed

by MOLA helps identify cloud-hitting and noisy pulses that could be strongly affected by

dust. These pulses are removed by Neumann et al. [2003a] and the path extension due to

atmospheric effects is expected to be on the order of centimetres, too small for MOLA to

resolve Abshire et al. [2000]; Basu et al. [2006]; Leovy [2001].

Co-registration Errors The co-registration errors discussed in Section 3.6.3 are likely to have

a greater effect in this study than previous work over the MSL candidate landing sites and

rough terrain. Despite strenuous efforts to ensure correct geolocation of all the data products

used, some co-registration errors will remain (Table 3.7). This can result in a mismatch in

location of the relative datasets, resulting in incorrect extraction of surface roughness, slope,

and DTM heights from within the pulse-footprint.

This error may not present itself in the previous work because the variation in topography

in and around the general location of a pulse-footprint may remain similar at the baselines

explored here. This may also explain the low variance in pulse-widths values over the very

flat, smooth terrain of Lycus Sulci 2, which will produce similar slope and surface roughness

values across large areas due to its consistency. However, this work explores the deviations
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from slopes specific to that location, meaning that small co-registration errors can result in

very different detrended surface roughness values. This is particularly evident in Figure 3.41d,

where a small change in location (to the left or right) would result in a much steeper slope,

with the ridge being nearer the edge of the pulse region rather than through the middle.

3.10 MARS CHAPTER SUMMARY

The work in this chapter set out to explore the relationship between MOLA pulse-widths and

surface characteristics using GIS technology and high-resolution DTMs.

Comparing different versions of the pulse-width dataset to surface characteristics derived from

HiRISE DTMs over the final four MSL candidate landing sites reveals mixed correlations. Pulse-

width are compared to surface roughness at different baselines to provide an indication to the size

of the pulse-footprint and extent of energy distribution effects. The Slope-Corrected pulse-width

dataset developed by Neumann et al. [2003a] is thought to be the most reliable pulse-width dataset

due to the efficient removal of poor data and the fact that this dataset produces the best correlations

at two of the three sites that reveal good correlations (R-squared ≥0.4). Pulse-widths over Mawrth

Vallis reveal poor correlations when compared to surface roughness, which is attributed to the

spatial distribution of surface roughness, which is highly variable over short baselines and errors in

co-registration and pulse-width estimates. Furthermore, where good correlations are observed, the

baselines vary greatly, from 150 m to 300 m.

Comparing to the Slope-Corrected MOLA pulse-width dataset to surface characteristics over

very rough terrain reveals a consistent relationship that could be extrapolated to other, more typical,

Martian terrains. Similar R-squared values are observed as above, but the pulse-width are found

to be correlated to slope as well as surface roughness. The best correlating slope baseline is 75 m,

whereas for surface roughness this is 300 m. As the latest estimates of the pulse-footprint is thought

to be ∼75 m, this suggests that Slope-Corrected pulse-widths are correlated to pulse-footprint-scale

slope rather than much larger baseline surface roughness.

Comparing the roughness contribution to pulse-width to the detrended surface roughness

derived from DTM data over Eberswalde Crater, Mawrth Vallis, and Aureum Chaos reveals poor

correlations. Attempting to account for the energy distribution across the pulse-footprint does not

improve the result, instead the observed R-squared values decrease. The cause of the much poorer

R-squared values is associated with the natural variation in pulse-width value and co-registration

errors having greater influence. This is attributed to the modelling-out of instrument and slope

effects, and detrended surface roughness estimates changing on very short baselines, respectively.

Alternatively, it may not be possible to derive detrended surface roughness from laser altimeter

pulse-widths.

The overarching conclusion to the work in this chapter is that, on a global level, MOLA pulse-

widths can provide an indication of the pulse-footprint-scale slopes in a local area. Resampling

data to a much lower resolution is required to create sensible, interpretable results, and removes the

effect of the natural variability of the dataset to enable regional comparisons of the distribution of
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slope. The source of this variability is unclear, but could be a result of atmospheric and dust effects

on the pulse, pulse-width timing methods, and co-registration errors.
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THE MOON: ASSESSING LOLA

PULSE-WIDTHS

The primary aims of the LOLA instrument is to produce a high-resolution map of

the lunar surface and measure pulse-widths to determine pulse-footprint-scale slopes

for future lander missions using the theory outlined in Equation 2.7. Comparisons

between laser altimeter pulse-widths and surface characteristics are expected to yield

higher R-squared values than observed previously because the LOLA instrument is

a more recent planetary lidar instrument, and the laser altimeter and DTM datasets

are better co-registered. In total, 19 regions are highlighted as locations where good

correlations could be observed based on results in the previous chapter, generally

defined as consistently rough or sloping terrain. Very poor correlations are observed

using the regional data. However, visual comparisons between LOLA pulse-widths

and surface features suggested that data from individual orbits behaved differently,

with some orbits showing good correlations with these features. Some orbits present

larger R-squared values than those observed using MOLA data, suggesting that surface

characteristics can be derived from laser altimeter pulse-widths, at finer scales than

can be derived from individual laser altimeter pulses. However, less than 14 % of

the orbits showed similar correlations to those observed in the previous work, with

the remaining orbits containing very poor pulse-width data, which is attributed to

instrument setup. This suggests that global estimates of slope and surface roughness

cannot be derived reliably over the lunar surface from pulse-width data, unless there is

some future improvement in the quality of the LOLA pulse-width data.
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4.1 INTRODUCTION

The relationship between Lunar Orbiter Laser Altimeter (LOLA) pulse-widths and surface charac-

teristics over different terrains on the Moon are explored to test whether surface characteristics can

be derived from laser altimeter pulse-widths more reliably than using Mars Orbiter Laser Altimeter

(MOLA) data [Smith et al., 2010a,b; Zuber et al., 2009]. These pulse-widths are compared to

surface roughness and slope estimates derived from high-resolution Digital Terrain Models (DTMs)

(2 m pixel−1) from Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC-NAC)

stereo-pairs [Mattson et al., 2012, 2010; Robinson et al., 2010; Smith et al., 2010a,b; Tran et al.,

2010; Zuber et al., 2009]. The aim is to calibrate the pulse-widths at sites where high-resolution

topographic information is available, to derive a relationship that can be extrapolated to the regions

of the lunar surface that lack high-resolution DTM coverage. This data can then be used to make

quantitative comparisons in geology, to highlight differences in the type and magnitude of surface

formation and evolution processes, and identify candidate landing and roving sites [Crawford et al.,

2012; Fisackerly, 2012; Kreslavsky and Head, 1999, 2000; Neumann et al., 2003a; Rosenburg et al.,

2011; Spudis, 1999].

The overarching hypothesis of this thesis has yet to be proved conclusively using MOLA

pulse-width data, used for the work in the previous chapter. The results in that chapter influence the

site selection process in this chapter, which is described in Section 4.6.2. Where roughness features

within the terrain are small and heterogeneous, very poor correlations are observed; however, where

the terrain is homogeneous and rough, better correlations are observed, albeit with a maximum

R-squared value of ≤0.6. The improved co-registration and georeferencing of the datasets, smaller

pulse-footprint, and the negligible atmospheric effects experienced by a pulse fired at the Moon,

suggest better correlations might be attained using the lunar data [Robinson et al., 2010; Smith

et al., 2010a,b; Zuber et al., 2009].

In addition to producing a calibrated pulse-width dataset that can be used to explore the global

distribution of slopes and surface roughness on the Moon, this work also aims to provide evidence

as to whether this method should be employed on future laser altimeter instruments, such as the

BepiColombo Laser Altimeter (BELA) and the Ganymede Laser Altimeter (GALA) [Hussmann

et al., 2013; Thomas et al., 2007]. This would be particularly important for presently unexplored

terrains, providing fine-scale 3-dimensional information of terrain for which we do not have

high-resolution DTMs.

The following section explores the current literature regarding the global distribution of surface

characteristics, followed by an introduction to the instruments and methods employed.

4.2 LITERATURE REVIEW

The earliest investigations of lunar topographic roughness, such as Briggs [1960] and Hughes

[1960], use radar reflectance data to determine surface roughness. Comparisons between the radar

datasets and slopes at the limb of the Moon, which are derived optically, show good agreement
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where slopes are greater than 3° [Fujinami et al., 1954; Hughes, 1960].

Campbell et al. [2009] also use Earth based radar (12.6 cm and 70 cm) to explore decimetre-

and metre-scale rock abundance over the Marius Hills and Mons Rümker. They infer high rough-

ness values, derived from high Circular Polarisation Ratio (CPR)1 over the Marius Hills at both

wavelengths. They associate this with the original volcanic eruption processes that formed the

domes, which produced blocky material that is covered by only a few metres of lunar regolith. The

surface of Mons Rümker on the other hand, appears to have a typically low rock abundance, instead

being rich in fine-grained material, with the exception of a radar bright region using the 70 cm

wavelength, associated with a thinner mantling cover over rougher terrain [Campbell et al., 2009].

Orbiting radar is used by Spudis et al. [2010] to show that much of the northern polar region

produces CPR values that are typical of the rest of the lunar surface (0.1), with fresh impact craters

showing increased values of up to 1. High CPR values are also observed in the centre of older

craters, which are found to correlate with the modelled permanently shadowed regions and the

potential locations for ice, as identified in data from Lunar Prospector Neutron Spectrometer (LPNS)

and, later, Lunar Exploration Neutron Detector (LEND), which is on-board Lunar Reconnaissance

Orbiter (LRO) [Mitrofanov et al., 2010]. Results from the latter are thought to suggest cometary

impacts and hydrogen implantation from the solar wind as sources for the observed buried hydrogen

deposits near the south pole, as well as other unknown sources [Mitrofanov et al., 2010].

Yokota et al. [2008] use stereo-derived DTMs from Apollo mapping images to explore km

baseline surface roughness of the lunar highlands within 1°×1° cells, across three regions. They

explore RMS deviation, ν, as defined in Equation 2.47, calculated in a north-south azimuth at

baselines of 0.3 km to 3.0 km. They observe fractal terrain, with different Hurst exponents across

each of the regions, but conclude that studying the terrain over larger baselines is required for more

extensive analysis.

The first use of laser altimeter derived lunar roughness is from Clementine lidar data [Smith

et al., 1997]. Here, mean values of surface roughness are produced within 30°×25° cells, where

surface roughness is measured by fitting the local along- and across-track slopes to a covariance

model originally developed to filter topographic data at 10 km to 100 km baselines [Smith et al.,

1997]. Roughness is found to correlate well with both topography and age, with variance over the

lunar maria found to be less than 0.5 km, whereas over the lunar highlands, variance is over 2 km.

Later, Yokota et al. [2014] use SELenological and ENgineering Explorer "KAGUYA" (SELENE)

laser altimeter and stereo-photogrammetry data to derive roughness, defined as median differential

slope, at baselines of 0.15 km to 100 km. They observe roughness over all highland terrains falls

between baselines of 3 km to 30 km, whilst pre-Nectarian surfaces reveal peak roughness at 20 km

to 30 km, which correlate well with crater density. Peak roughness for Nectarian surfaces is shown

to be 6 km to 9 km, which is thought to be caused by secondary impact craters from basin forming

processes.

1The CPR is defined as the the ratio between power reflected in the same sense of circular polarisation as the
transmitted wave and the power reflected in the opposite sense of circular polarisation [Campbell et al., 2009]. The
maximum value on the Moon is ∼2, with strong correlations observed between it and roughness due to scattering at or
beneath a target surface [Campbell et al., 2009].
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Figure 4.1: Plots of scaling behaviours of surface roughness from different terrains on the Moon,
from Rosenburg et al. [2011]. The highlands exhibit fractal and multi-fractal behaviour (left and
centre), whilst the mare exhibit more complex behaviour, with breakpoints occurring at much
smaller baselines (right).

High density laser altimeter data from LOLA has enabled much finer-scale surface roughness

to be derived globally [Kreslavsky et al., 2013; Rosenburg et al., 2011; Smith et al., 2010a,b; Zuber

et al., 2009]. These studies make use of the novel five-spot pulse design of the instrument, discussed

in Section 4.3, and the along-track elevation data, to produce surface roughness estimates at a wide

range of baselines. Rosenburg et al. [2011] produce maps of surface roughness, using the median

differential slope and RMS slope, at 17 m to 2.7 km baselines. They use both the different elevation

measurements within each spot, as well as longer baseline measurements taken from pulses and inter-

pulse spacing. Very different surface roughness properties exist between the nearside lunar mare

and the lunar highlands, but by using the median differential slope, finer differences are revealed

within these two terrain types. Using this tool, Rosenburg et al. [2011] are able to characterise

ejecta around large basins and young craters, and make quantitative comparisons to explore the

relationship between the ages of mare surfaces and surface roughness (Figure 4.1). Over the lunar

highlands, terrain appears fractal, with any breakpoints occurring at ∼1 km (Figure 4.1). The mare

exhibit more complex behaviour however, with terrain appearing to change from fractal-like to

complex behaviours at small baselines, which suggests that understanding surface roughness at

finer baselines could further our understanding of the evolutionary processes (Figure 4.1). Younger

mare surfaces are rough at smaller baselines and become rougher at longer baselines.

Kreslavsky et al. [2013] use LOLA elevation data to explore the global distribution of surface

roughness on the Moon, using the Inter-Quartile-Range (IQR) of profile curvature at baselines

of 115 m to 1.8 km (Figures 4.2a and 4.2b). They observe poor correlations between hectometre

and kilometre baseline surface roughness, attributed to differences in surface processes between

these two scales and the time-scales of modification. Regolith accumulation and modification, as

well as recent (1 Ga to 2 Ga) impact events are associated with hectometre baseline surface rough-

ness, whereas large baseline geological processes influence kilometre baseline surface roughness.

Like Rosenburg et al. [2011], the evolution of surface roughness is explored, with young impact

craters appearing as rough terrain, which decreases with age.

Both Rosenburg et al. [2011] and Kreslavsky et al. [2013] reveal the potential usefulness of
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surface roughness in geological mapping. This is especially true for revealing new impact features,

as well as previously poorly understood contacts between volcanic plain units and their relative

chronology. By measuring surface roughness from pulse-widths, LOLA is able to further reduce

the minimum baseline at which the global distribution of surface roughness can be measured on

the Moon, to lander and rover scales [Neumann et al., 2008; Smith et al., 2010b]. Smith et al.

[2010b] derive surface roughness values between 0.4 m to 1.6 m over 5 m baselines from LOLA

pulse-widths, using Equation 2.7. It is assumed that 50 % of the energy from the laser falls within

the central 2.5 m area within the pulse-footprint, but it is not known how this affects the echo profile:

both Smith et al. [2010b] and Neumann et al. [2008] assume that surface roughness from LOLA

pulse-widths relates to 5 m baseline roughness. The map in Smith et al. [2010b] shows the near-side

to be significantly smoother than the far-side highlands, as well as increased roughness around

impact features such as crater rims, basin rings, central peaks, and ejecta blankets. In a preliminary

study, Neumann et al. [2008] observe good agreement between roughness from pulse-widths and

slopes measured from elevations within the five-spot pulse, when studying along a profile across

Tycho Crater. However, as with the MOLA data, these pulse-widths have not yet been calibrated to

surface characteristics from high-resolution DTMs, which is the aim of the work in this chapter.

The following section discusses the specifics of the LOLA instrument.

In addition to LOLA, there have been a number of successful missions to the Moon that

have included laser altimeter instruments, including Clementine, mentioned above, SELENE, and

the Apollo orbiters [Araki et al., 2009; Neumann, 2001]. The Apollo 15, 16, and 17 missions

each carried laser altimeters to determine the range, however, coverage is relatively low, and

the geolocation accuracy of the dataset is poor (30 km) [Neumann, 2001]. The Clementine lidar

instrument was tasked with producing a global DTM of the Moon [Smith et al., 1997]. Coverage

of the far side of the Moon was greatly improved, however, poor calibration, as well as issues

regarding instrument heating, low Signal to Noise Ratio (SNR), and quantisation effects meant that

only ∼72 000 of the 600 000 pulses produced successful range measurements, and the final result

has since been shown to be vertically offset by 3 km when compared to ground-based radar [Margot

et al., 1999; Neumann, 2001; Smith et al., 1997]. Finally, the Laser Altimeter (LALT) on-board

SELENE began mapping the surface in 2007. The instrument operated at 1 Hz, which results in a

1.6 km along-track pulse spacing [Araki et al., 2009]. Within 4 months the instrument had acquired

over 6×106 pulses over the surface, and produced the highest-resolution global DTM of the Moon,

until the dataset was superseded by the LOLA dataset [Araki et al., 2009; Smith et al., 1997, 2010b].

Unfortunately, these instruments did not record the pulse-width of the echo pulse, meaning that

data from these instruments cannot be used in this work.

4.3 LUNAR ORBITER LASER ALTIMETER

The LRO spacecraft was launched with LOLA on-board in June 2009 and has so far collected data

from over 21 000 orbits, as available from the Planetary Data System [2014b] in August 2014 [Chin

et al., 2007; Planetary Data System, 2014b; Smith et al., 2010a,b; Zuber et al., 2009]. In the first
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year of mapping, the LOLA instrument collected over 2×109 elevation measurements to produce

the highest resolution global topographic map of the Moon to date, which is continuously being

updated today [Smith et al., 2010b]. A schematic of the instrument is shown in Figure 4.3 and the

specific characteristics of the instrument are outlined in Table 4.1. The resulting global DTMs,

derived from over 6.5×109 pulses (2009 to 2013) is shown in Figures 4.4a and 4.4b [Planetary

Data System, 2014e; Ramos-Izquierdo et al., 2009].

Prior to the mission, georeferencing errors of lunar data was on the order of a kilometre, to

several kilometres on the far-side, and inter-pulse spacing of data from previous laser altimeter

instruments was ≥150 m [Araki et al., 2009; Smith et al., 2010a]. LOLA was designed to fulfil the

requirements set out by NASA’s Lunar Exploration Program, which required 30 m along-track spac-

ing, metre-scale ranging, and estimates of both bi-directional slope and surface roughness [Smith

et al., 2010a]. Thus, the primary aims of the instrument are to (1) map the topography of the

Moon at significantly higher resolutions than the previous missions, (2) produce a precise geodetic

framework for current and future mission data to be co-registered, and (3) precisely identify and

characterise candidate landing and roving sites, with the eventual aim to put humans back on the

Moon (Figure 4.5) [Araki et al., 2009; Chin et al., 2007; Smith et al., 2010a,b; Zuber et al., 2009].

The higher resolution elevation is also used in conjunction with gravity data to improve the lunar

gravity field model and better understand the interior structure and geological evolution of the

Moon [Williams et al., 2014; Zuber et al., 2013].

Additionally, the instrument gathers elevation data to identify Permanently Shadowed Regions

(PNRs) near the poles, which could harbour ice deposits: important for both understanding lunar

history, and candidate locations of proposed lunar bases [Chin et al., 2007; Gladstone et al., 2010;

Smith et al., 2010b]. Like MOLA, LOLA also uses a 1064 nm light (Table 4.1) [Smith et al.,

2001, 2010a]. The instrument is designed to detect changes in surface albedo over these PNRs to

determine significant volumes of water ice within the PNRs around the poles [Smith et al., 2010a].

Analysis of LOLA profiles over the South Pole, for slopes <10°, reveals 1064 nm surface albedo

of 0.20 to 0.37 for non-PNRs and 0.25 to 0.42 for PNRs [Lucey et al., 2014]. These differences are

predominantly attributed to frost [Lucey et al., 2014].

The instrument features a novel five-spot pulse design to increase the spatial density of pulses

and derive small baseline slopes and surface roughness using the elevation values from individual

spots within the pulse (Figure 4.5) [Smith et al., 2010a,b]. The five-spot laser pulse is derived from a

single pulse from one of the two on-board lasers, and is split by a diffractive optical element [Smith

et al., 2010b]. Each spot is thought to have a divergence of 100 µm, resulting in a pulse-footprint

diameter of ∼5 m at the surface, with a typical spacecraft altitude of 50 km [Smith et al., 2010b].

The data receiving rate is typically 140 pulses s−1, with the exception of when the instrument

passes the terminus to the night side of the Moon, where only two of the five transmitted spots are

received [Smith et al., 2010b]. This is caused by a fault in instrument design, and is commonly

known as the LOLA anomaly [Smith et al., 2010b]. Subsequent testing using the LOLA engineering

unit revealed that the cooler temperatures on the night side causes contraction of LOLA’s thermal

blanket, which is attached to the laser transmitter [Smith et al., 2010b]. This contraction pulls the
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Table 4.1: The characteristics of LOLA from Chin et al. [2007] and Smith et al. [2010a,b].

Element Parameter Specification

LOLA

Mass 15.3 kg

Power consumption 39.6 W

Mapping Orbit 50 km

Transmitter

Laser type Cr:Nd:YAG, cross-Porro resonator, TEM00,
TEC cooled

Wavelength (1064.3±0.1) nm

Pulse rate 28 Hz

Energy laser 1: 2.7 mJ pulse−1

laser 2: 3.2 mJ pulse−1

Beam Splitting >13 % total beam

Laser divergence (100±10) µrad

Transmitted Pulse width 5 ns to 6 ns

Receiver

Mirror 14 cm parabolic

Detector silicon avalanche photodiode

Field of view (400±20) µrad

Detector Efficiency 40 %

Electronics Timing Resolution >0.5 ns

Resolution

Ranging distance 20 km to 70 km

Range resolution 5 spots, 25 m spacing

Vertical accuracy 10 cm

Surface spot size 5 m

Along-track pulse spacing 18 m

Across-track pulse spacing 1.8 km (as of 2010)

transmitter out of alignment with the receiver and reduces the received data rate to 80 pulses s−1 to

90 pulses s−1 [Smith et al., 2010b]. Example orbits are shown in the top right of Figure 4.5, with

the central two orbits showing only 2 of the 5 spots being returned.

To achieve the sub-50 m level horizontal precision suggested by the Lunar Exploration Program

as a requirement for topographic data useful for landing and roving site selection, LOLA employs

an on-board laser ranging experiment [Smith et al., 2010b; Zuber et al., 2009]. The laser measures

the Time-Of-Flight (TOF) between Earth-based ground stations and LRO to determine the location

of LRO to sub-metre accuracy, which improves the accuracy of the resulting elevation dataset [Smith

et al., 2010b]. Smith et al. [2010b] suggest that LOLA spot geolocation is known to within 10 m so

that the data is useful for local, regional, and global studies (Table 4.1).

Like MOLA, the instrument does not record the full echo-profile, instead recording the start and

stop time of the received pulse when above an automatically set threshold, from which roughness
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Figure 4.5: Schematic of the LOLA orbit spacing and pulse-footprint spacing. Bottom: shows the
spacing between orbits over Mons Gruithuisen Delta. Top: LOLA pulse-footprint location with
individual pulse positioning and spacing within each pulse.

as small as 1 m can be theoretically resolved [Smith et al., 2010b]. This time-spread can be related

to Root-Mean-Square (RMS) roughness within the pulse-footprint, with 50 % of the incident laser

energy focussing on the central 2.5 m region of the spot [Smith et al., 2010b]. At the start of the

mission, apparent changes in surface reflectivity, associated with link margin and sensor alignment,

caused problems with the calibration of the pulse-widths, but this is thought to have been resolved

in later versions of the dataset [Neumann et al., 2008; Smith et al., 2010b].
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4.4 DIGITAL TERRAIN MODELS

The pulse-widths in this work are compared to surface characteristics from a single data source:

LROC-NAC DTMs derived from stereo-photogrammetry [Robinson et al., 2010; Tran et al., 2010].

The instrument and data specifications are described below.

4.4.1 LUNAR RECONNAISSANCE ORBITER CAMERA - NARROW ANGLE CAMERA

The Lunar Reconnaissance Orbiter Camera (LROC) system is also on-board LRO and consists of

two cameras: the Lunar Reconnaissance Orbiter Camera - Wide Angle Camera (LROC-WAC) and

Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC-NAC) [Chin et al., 2007;

Robinson et al., 2010]. The LROC-WAC camera is designed to produce global image coverage

at 100 m pixel−1 and to provide regional context for the much higher resolution LROC-NAC

images [Chin et al., 2007; Robinson et al., 2010]. LROC-NAC aims to address one of the primary

LRO requirements, which is to resolve metre-scale features from images of the surface, surpassing

the detail of earlier datasets, such as those from Apollo, Clementine, and Lunar Orbiter [Robinson

et al., 2010]. The images enable detailed characterisation of sites of scientific interest, such as

candidate landing sites for future manned missions [Chin et al., 2007; Robinson et al., 2010]. From

the 0.5 m pixel−1 images, DTMs with a resolution of 2 m pixel−1 can be produced from stereo-pairs

acquired by spacecraft roll. An overview is provided in Table 4.2 and a schematic of the instrument

is shown in Figure 4.6.

The instrument is a linear pushbroom camera that produces panchromatic images from two

overlapping 5000 pixel Charge Coupled Devices (CCDs) (Figure 4.6 and Table 4.2). LRO operates

at a 50 km mapping orbit, which, due to the 700 mm focal length telescope and a pixel Field Of

View (FOV) of 10 µrad, results in 5 km swath images, with 0.5 m pixel−1 resolution [Chin et al.,

Table 4.2: The key characteristics of the LROC-NAC camera [Robinson et al., 2010].

Parameter LROC-NAC Left LROC-NAC Right

FOV 2.8502° 2.8412°

Pixel FOV 10.0042 µrad 9.9764 µrad

Image Res. 0.5 m pixel−1 0.5 m pixel−1

Max Image Size 2.49 km×26.1 km 2.48 km×26.1 km

F-Stop 3.577 3.590

Focal Length (699.62±0.08) mm (701.57±0.09) mm

Primary Mirror Diameter 198 mm 198 mm

SNR (mare at 70° incidence angle) >42 >42

Peak Power 9.3 W

Average Power 6.4 W

Mass 16.4 kg
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Figure 4.6: Schematic of the LOLA instrument redrawn from [Robinson et al., 2010].

2007; Robinson et al., 2010]. Each CCD has a FOV of 2.85° for a full swath of 5.7°, with a small

overlap of the CCDs (∼135 pixels) due to the left CCD being off-pointed in relation to the right, by

∼2.85° [Chin et al., 2007; Robinson et al., 2010]. The maximum length of full resolution images is

25 km, although the images can be binned to lower resolution to produce images 104 km long [Chin

et al., 2007; Robinson et al., 2010].

To reduce costs, the electronics of the camera are based on the Context Camera (CTX) instru-

ment, described in the previous chapter, with some modification, such as increasing the maximum

pixel rate to 7.5 Mpixel s−1, from 2 Mpixel s−1 [Robinson et al., 2010]. The general design process

also began with CTX, although this had to be scrapped due to the more extreme thermal ranges

experienced by LRO and the need for reduced pixel FOV required for higher resolution [Robinson

et al., 2010].

In addition to the instruments primary objectives, LROC-NAC aims to achieve the following
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objectives [Robinson et al., 2010]

1. Produce high-resolution maps of permanently shadowed regions of the poles

2. Acquire stereo-images of potential landing sites for DTM production

3. Produce high-resolution maps of different geologic units to analyse their physical properties

and the variability of the regolith

4. Repeat high-resolution mapping of Apollo era images to infer the impact rate

The DTMs from LROC-NAC stereo-pairs are produced at a minimum of 2 m pixel−1. Four

of the six research groups producing these products use a combination of Integrated Software for

Imagers and Spectrometers Version 3 (ISIS3) and SOftCopy Exploitation Toolkit (SOCET SET®),

similar to the High Resolution Imaging Science Experiment (HiRISE) processing chain [Kirk et al.,

2008; Tran et al., 2010]. To acquire stereo-pairs, LRO rolls during the acquisition of one of the

two images to create a different viewing angle, with a recommended 12° minimum difference in

viewing angle between the images, but 24° being typical [Tran et al., 2010]. The vertical error in

the DTMs is thought to be <1 m for the higher-resolution images, whilst for 2 m pixel−1 images

the error is thought to be ∼3 m [Tran et al., 2010]. The vertical precision of the DTMs is aided by

the LOLA bore-sight being aligned to LROC-NAC, meaning that imaging and altimetry data is

collected synchronously [Mattson et al., 2010].

4.5 THE MOON’S COORDINATE SYSTEMS

The selenographic coordinate system employed by the LRO data is the International Astronomical

Union (IAU)2000 Moon sphere, using planetocentric latitudes, as shown in Table 4.3 and defined

in Table 2.2 on Page 74 [LRO Project and LGCWG, 2008]. The LOLA elevations are measured

in relation to this reference sphere, which has a radius of 1737.4 km: more precisely, the selenoid

equatorial radius of the Moon is 1738.1 km, and the polar radius is 1737.1 km [LRO Project and

LGCWG, 2008; Smith et al., 2010b]. This reference frame is chosen due to the requirement that

data from this mission must be compatible with data from the earlier Clementine mission [LRO

Project and LGCWG, 2008]. As one of the mission aims is to create a precise geodetic grid, it

is expected that an improved reference frame will be created from the data, which will then be

accepted by the international community sometime after the primary mission phase [LRO Project

and LGCWG, 2008; Seidelmann et al., 2002; Smith et al., 2010b].

Table 4.3: Selenographic coordinate systems used by datasets in this chapter [Bennett et al., 2011].

Instrument Dataset Map System Elevation Reference Latitude Reference

LOLA RDR IAU2000 Sphere Planetocentric

LROC-NAC DTM IAU2000 Sphere Planetocentric
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4.6 METHODS

The methods employed to compare LOLA pulse-widths to surface characteristics, which are

similar to those used in Chapter 3, are outlined below. The section begins by describing the DTM

production process, site selection, and quality control, before moving on to LOLA data collection

and comparison with surface characteristics.

4.6.1 DTM PRODUCTION

The DTMs used in this chapter are all freely available from Planetary Data System [2014b],

which, at the time of the work (February 2013), provided 78 DTMs for download. As discussed

in Section 4.4.1, most of the Research Groups producing LROC-NAC DTMs use a processing

chain that includes ISIS3 and SOCET SET®, which is outlined in Figure 4.7 [Tran et al., 2010].

This chain is similar to that used to produce HiRISE and CTX DTMs, as shown in Figure 3.8,

whereby raw LROC-NAC images are downloaded and processed in ISIS3, before DTM processing

in SOCET SET®. However, different parameters to account for the different camera type.

For each image in the stereo-pair, processing of the LROC-NAC images includes (1) down-

loading the Level 1 processed left and right CCD images, (2) adding Spacecraft and Planetary

ephemerides, Instrument C-matrix and Event kernels (SPICE) data to each image, (3) calibrating

each CCD image; applying a photogrammetric correction to the images to ensure they appear

radiometrically similar, and finally (4) the left and right CCD images are stitched together [Tran

et al., 2010].

Other methods of producing these DTMs include using a combination of Orbital Mapper and

Leica Photogrammetry Suite 9.3 software, as well as in-house systems that have been developed at

NASA Ames Research Center and Deutsches Zentrum für Luft- und Raumfahrt (DLR) (German

Aerospace Center) [Tran et al., 2010].

4.6.2 SITE SELECTION

The results using MOLA data in Chapter 3 suggest that calibrating laser altimeter pulse-widths

over homogeneously rough or sloping terrain increases the probability of a correlation between

laser altimeter pulse-widths and surface characteristics being observed. To identify these sites, each

of the 78 DTMs available via Planetary Data System [2014b] were viewed to ascertain whether the

underlying topography was rough and/or highly variable. DTM and image data, which includes

0.60 and 2 m pixel−1 stereo-pair images, and a 2 m pixel−1 DTM, slope map, hillshaded image, and

colour hillshaded image, were downloaded for the 34 DTMs, spread over 19 regions, that met these

criteria.

For each region where these data are located, an ArcMap 10.1 project was set up and the data

loaded for viewing and quality control, which is described below. This quality control process

forms the final part of the site selection process, with only those sites that contain large regions of

good quality DTM data selected for use.
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Figure 4.7: Flow diagram of the LROC-NAC DTM production process using ISIS3 and SOCET
SET®. The figure is similar to that in Figure 3.8, with minor changes to the ISIS3 processing
changes due to a different camera setup.
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Unlike the work using HiRISE DTMs in Chapter 3, it is not a requirement that sites must have

multiple overlapping or adjacent DTMs. Despite HiRISE and LROC-NAC having very similar

image sizes, a significantly greater number of laser altimeter pulses lie over the LROC-NAC DTMs

because of the greater data density. This increased data density is due to the five-spot design,

greater pulse-rate, and a smaller inter-orbit spacing (1.8 km as of 2010), relative to the MOLA

data characteristics [Smith et al., 2001, 2010b].2 This means that even a single LROC-NAC DTM

contains enough data to derive mathematically significant relationships, thus enabling more sites to

be explored in this work.

4.6.3 DTM QUALITY CONTROL

After loading the data into ArcMap, the DTMs were checked for errors that could result in poor

correlations between LOLA pulse-widths and surface roughness and slope. Hillshaded images

were made from the DTMs and used to identify pits, spikes, and heavily interpolated areas that

are common in areas of poor stereo-matching, as discussed in Section 2.2. The original hillshaded

images were discarded to ensure consistency with the methods applied in Chapter 3 and to ensure

all hillshaded images are produced similarly. As in Section 3.6, areas that appear to be poorly

matched terrain were masked from the study, unless the total amount of poorly matched terrain

covered ≥50 % of the DTM coverage, in which case the DTM was removed from the study. From

the 19 regions that contained one or more DTMs that were considered suitable for the study, 16

were found to have high-quality data that could be used to produce surface roughness and slope

maps for comparison with LOLA pulse-widths. These sites are shown in Figure 4.4a.

For those sites that have multiple overlapping LROC-NAC DTMs, a DTM mosaic was produced.

This enables more pulses to be used, as pulses that lay within half the maximum baseline of the

boundary of the DTM coverage area are removed from the study. Like in Chapter 3, the Mosaic

to New Raster tool in ArcMap 10.1 was used, with the blend option used to merge DTM heights

where they overlapped. A hillshaded image was produced from the mosaic, to highlight potential

errors in the mosaicing process: if there are even slight differences in DTM heights, where the

DTMs overlap, linear triangular features features would be produced that are easily identified.

However, these were typically not observed, perhaps due to the LOLA LROC-NAC alignment

discussed above, resulting in highly accurate co-registration of imaging and laser altimeter data.

Where these errors were observed, the overlap areas are masked out so inconsistent elevation data

did not influence the results.

For each ArcMap project, the projection information used is the same as the LROC-NAC data,

which uses an equirectangular projection with the central meridian at 180°. If only a single DTM

existed over a region, then the projection used by the project is the same as the dataset; if there is a

mosaic, then the mosaic is made using a projection employed by one of the original DTMs, which

is then used by the project. This does not influence the results, as reprojection errors are well below

2Comparing the number of MOLA and LOLA pulses over a 6 km×25 km DTM at the equator: MOLA could
have 167 pulses, assuming all pulses could be used from 2 orbit tracks overlapping the DTM area; LOLA could have
7500 pulses, assuming all pulses could be used from 3 orbit tracks overlapping the DTM area.
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the resolution of the DTM, as discussed in Section 2.2.5, but increases the speed of viewing data,

as ArcMap 10.1 does not have to reproject data on the fly.

4.6.4 LOLA DATA COLLECTION

The LOLA data were downloaded from the Planetary Data System [2014b] using the LOLA RDR

QUERY tool, which enables the user to select data within a user defined Region-Of-Interest (ROI).

Pulses within each of the 16 ROIs, including a generous buffer zone, were downloaded in CSV

and Shapefile format, and imported into the relevant ArcMap 10.1 project file. This was completed

in February 2013 using Release Number 12 of the LOLA data. Comma-separated values (CSV)

files are available in three formats: Frame Per Row, where data from all five spots in each pulse

are contained within a single row; Point Per Row, where data from only one spot is contained

within a row; and elevation data only. The Frame Per Row CSV files were used, which contain:

pulse time, longitude, latitude, Moon’s radius at that location, pulse-width, transmitted energy,

noise, threshold, gain, and other parameters, for each spot. Each spot was mapped by importing the

CSV file into ArcMap, using the Add XY Data function and using the IAU2000 Moon sphere as a

geographic coordinate system (Table 2.2), as the locations are provided in latitude and longitude.

The LOLA data were then reprojected by exporting the data to a Shapefile, which was then used as

an input data source for the Project (Feature) tool to produce a new Shapefile projected into the

Projected coordinate system used by the project. Spots within 30 m of the boundary of the DTM,

or mosaic, were excluded from the study using a mask produced from the DTM boundary. The

maximum baseline used is 60 m, therefore, surface roughness and slope estimates closer than 30 m

to the boundary would not have a full search-window of data from which to calculate these surface

characteristics at the largest baseline. If these pulses were to remain, null-values within the search

window would be filled with the elevation value of the centre pixel, for which the surface roughness

or slope is calculated, which would introduce a bias to the results. Pulse-width are not corrected

using Equation 2.5, as all the factors in this equation, except for the contribution from the terrain

within the pulse-footprint (σt), are expected to be very similar for all pulse-footprints, therefore the

only factor expected to change is the terrain contribution.

4.6.5 GEOREFERENCING AND ELEVATION ERRORS

As LOLA and LROC-NAC data are acquired simultaneously, there is not thought to be a measurable

difference between the co-registration of the two datasets. A visual inspection of the LROC-

WAC GLD100 dataset, comparing it to elevation and image data from LOLA and LROC-NAC

respectively, found offsets in surface features in image data and the profile of craters from off-nadir

LOLA viewing angles, as shown in Figure 4.8 [Scholten et al., 2012]. Figure 4.8a and b show the

apparent location of pulse-footprints over sloping and flat terrain from nadir and off-nadir pointing

orbits. In nadir-pointing orbits, the slope of terrain is irrelevant in the location of pulses, whilst

for off-nadir orbits, pulse location shifts towards the spacecraft for rising terrain compared to flat

terrain and away from the spacecraft for low terrain. Using this, one can check the georeferencing
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Figure 4.8: Schematic showing the co-registration checking procedure for LOLA data to LROC-
NAC images. (a) shows the apparent position of pulses due to rising, flat, and low terrains from
nadir and off-nadir viewing angles. Rising terrain results in a shift towards the spacecraft location
in nadir view, compared to flat terrain, in off-nadir viewing angles. Lowering of terrain results
in a shift away from the spacecraft compared to flat terrain. In nadir view, there is no shift in the
apparent position of the pulses in an orbit. (b) shows how (a) appears in nadir view, with numbers
corresponding to different features around a crater. (c) and (d) shows real LOLA data over an area
in Mons Gruithuisen Delta using LROC-NAC and LROC-WAC respectively. The former shows
good correlation in the shift of pulse locations as the orbit passes over a crater, shifting towards the
spacecraft as the terrain rises in elevation (1) - flat terrain - to (2) - crater rim - , and (3) - crater floor
- to (4) - crater rim. The pulse location shifts away from the spacecraft when the terrain decreases
in elevation from the crater rim (2) to the crater floor (3). In (d), the orbit is offset with the crater
features shown in the Global Lunar Digital Terrain Model 100 m topographic model (GLD100)
LROC-WAC global mosaic, with the crater appearing different due to different lighting conditions.
The black circle in (c) and (d), defines the crater from LROC-NAC data, whilst the orange circle in
(d) defines the crater from the GLD100 LROC-WAC data.
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of orbits to LROC-NAC data as an off-nadir orbit passes over a crater, as shown in Figure 4.8c and

d. In Figure 4.8c, the deviations in the off-nadir orbit correlate well with these effects on pulse

location, with the pulse locations shifting towards the spacecraft (right) from positions (1) and

(2) as the orbit passes from flat terrain to the crater rim, as expected. This also occurs between

positions (3) and (4) as the orbit passes from the crater floor to the crater rim. Whereas the position

of the pulses shifts away from the spacecraft (left) when terrain decreases in elevation, as the orbit

passes from the crater rim to the crater floor, as occurs between position (2) to (3). In Figure 4.8d

the orbit is offset in relation to the underlying LROC-WAC GLD100 image, which appears different

due to different lighting conditions. This difference may occur due to the bundle adjustment of

imaging data to produce the GLD100 global mosaic, as of February 2013, and may not be present

in the original LROC-WAC images.

The LROC-NAC DTM elevations are compared to those within the LOLA dataset for each

of the pulses over Mons Gruithuisen Delta, a site that is described in Section 4.8. The observed

correlation between LOLA and LROC-NAC DTM elevations is found to be very strong, with an

R-squared value of 0.998. This strong correlation, and the fact that the laser altimeter and LROC-

NAC image data are acquired simultaneously, suggests that these datasets are better co-registered

than the Mars data used in the previous chapter.

4.6.6 SURFACE ROUGHNESS AND SLOPE MAP PRODUCTION

Like the previous chapter, laser altimeter pulse-widths are compared to surface roughness and

slope values derived from maps derived from high-resolution topography data. The maps were

produced using the same methods as in Chapter 3, the only difference being the baselines used

here are much smaller due to the smaller pulse-footprint of LOLA, compared to MOLA. An upper

baseline of 60 m was used in both map types, which was chosen as surface roughness and slope

at baselines equal or larger than this can be derived from the elevation data alone. Therefore

if pulse-widths corresponded to surface characteristics at these scales, it would provide surface

roughness information at scales that can already be derived from elevation data [Smith et al., 2010b].

4.6.6.1 SURFACE ROUGHNESS MAPS

Surface roughness maps were produced using the Focal Statistics tool, with the STD option and a

circular window, with the radius equal to half the baseline of study. This effectively calculates the

RMS height, as in Equation 2.46 in Section 2.3, within a circular pulse-footprint. The minimum

baseline calculated was 6 m: any smaller there would be too few DTM pixels from which to

calculate surface roughness. However, it must be noted that noise within the elevation values at

smaller baselines will have a greater effect due to the small number of elevation values from which

RMS height is calculated [Shepard et al., 2001].

Some orbits are taken at high tilt angles, especially when LROC-NAC is acquiring stereo pairs,

which may cause distortion of the pulse-footprint. The pointing-angles are recorded in the data, and

therefore these pulses can be removed if they appear to produce poor results, however, due to the
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relatively low orbiting altitude of LRO compared to Mars Global Surveyor (MGS), and therefore

the much smaller pulse-footprint, this effect is expected to be much smaller.

4.6.6.2 SLOPE MAPS

Slope maps were produced using the Slope tool in ArcMap, which defines slope using Equa-

tions 2.56 to 2.58. Like Chapter 3, the Slope tool was applied to resampled elevation data, where

the resampling resolution is equal to the baseline required. The baselines used here range from

2 m pixel−1 to 60 m pixel−1. Again, noise within the elevation dataset will have a greater influence

at smaller baselines. However, the removal of areas of poor elevation data will help reduce this

effect. It is important to attempt to explore the correlation between LOLA pulse-widths and slope

at these smaller baselines because the MOLA study showed those pulse-widths to be correlated to

pulse-footprint-scale slopes, and Smith et al. [2010b] suggest that the hot-spotting effect within

the pulse-footprint may result in the central 2.5 m diameter area of the pulse-footprint having the

greatest influence on pulse-width.

Depending upon the best correlating baselines observed for slope, detrended roughness may be

explored. However, if this baseline is close to the expected pulse-footprint (5 m), then detrended

roughness will not be explored, as the surface roughness estimates at baselines close to the resolution

of the elevation dataset may be unreliable, as shown in Section 3.9 [Shepard et al., 2001].

4.6.7 DATA EXTRACTION AND COMPARISON

For each of the 16 regions, surface roughness and slope values were extracted from the maps for

each baseline at the location of each spot within the LOLA pulse using the Extract Multi-Values to

Points tool in ArcMap 10.1. This tool exports the map values to new columns within the projected

Shapefile produced in Section 4.6.4, which were then exported to a text file for processing in

MATLAB. The pulse-widths are then plotted against each baseline for each of the two surface

characteristics, with the best baseline for each characteristic chosen on the basis of having the

greatest R-squared value when a linear line-of-best-fit is applied using a linear regression fit in the

fit tool in MATLAB. To test the significance of the fit, the fit is tested against the null-hypothesis to

ensure a meaningful result.

Although not exact, this may provide an indication of the feature size and type that LOLA

pulse-widths respond to, thus calibrating the pulse-width values to underlying terrain. The aim is to

find commonly occurring baselines, like in Section 3.8, which can be used to validate the method

of deriving surface characteristics from pulse-widths, and calibrate the LOLA pulse-width dataset.
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4.7 REGIONAL RESULTS

4.7.1 INTRODUCTION

A starting assumptions is that LOLA pulse-widths behave similarly to MOLA, in that separate

regions may behave differently depending on a number of factors, including the size, spatial

distribution, and variation of terrain within a ROI. Therefore, each of the 16 regions, shown in

Figure 4.4a, are explored individually to identify sites where the best correlations could be observed

when the pulse-widths are compared to both surface roughness and slope. Ideally, all sites would

produce strong correlations at similar baselines and relationships with the surface characteristics.

These relationships could then be extrapolated to other regions of the Moon that have LOLA

coverage, but not high-resolution DTM coverage, to identify candidate landing and roving sites,

and differences in surface ages and formation processes, in addition to further development of

the surface roughness and slope maps presented in Kreslavsky et al. [2013] and Rosenburg et al.

[2011].

4.7.2 RESULTS

In practise, all the regional results show very poor correlations, similar to those observed over

Mawrth Vallis (R-squared <0.1). The regional results for LOLA comparisons to both surface

roughness and slope for pulses taken over the Mons Gruithuisen Delta ROI are shown in Figure 4.9

and Table 4.4. Furthermore, removal of data greater than 3 standard deviations from the mean does

little to improve the results, increasing the R-squared values by only ≤0.02. The remaining plots

are not shown, as they all appear similar to that from Mons Gruithuisen Delta, or worse. It is clear

that the correlations are much poorer than expected, and are not better than the MOLAs results.

The results in Table 4.4 show LOLA pulse-widths over the Impactmelt1 DTM produce the best
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Figure 4.9: Plots of regional results comparing LOLA pulse-widths to surface roughness and slope
over Mons Gruithuisen Delta. All other regions in this study showed similar, or poorer, correlations.
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Table 4.4: The best R-squared values observed over each of sites used in the LOLA study. These
are the best correlations observed for both slope and surface roughness.

Area R-squared Surface Characteristic Baseline (m)

Bhabhaplain 0.016 Surface Roughness 60

Feoktistov 0.029 Slope 50

Fresh1 0.099 Slope 50

Gruithuise 0.135 Slope 50

Highestpoint 0.041 Surface Roughness 30

Hortensius 0.070 Slope 30

Impactmelt1 0.234 Surface Roughness 60

Lichtenber 0.050 Slope 30

Linnecrater 0.070 Slope 50

Marius 0.063 Surface Roughness 60

Mooref 0.148 Surface Roughness 60

Mringii 0.041 Slope 50

Planckfloor 0.021 Surface Roughness 60

Rumkerdome 0.025 Slope 60

Sparim 0.073 Surface Roughness 50

Virtanen 0.020 Surface Roughness 50

correlations, however, with an R-squared of 0.234, the correlation is much weaker than the sites

where a correlation is observed over Mars. The baselines at which the best correlations are observed

are also much greater than the expected pulse-footprint (∼10×) and are equivalent to the best

correlations being observed at 0.75 km to 1.7 km using MOLA data. However, as the correlations

are typically very poor, this result, although mathematically significant, is not thought to produce

an accurate picture of the relationship between LOLA pulse-widths and surface characteristics.

A visual inspection of the LOLA pulse-width values, mapped by location and pulse-width values

for individual spots within each pulse, reveals very different behaviour, as shown in Figure 4.10.

Instead of being split by region, like the MOLA results, correlations appear to be dependent on

data from individual orbits, with some orbits revealing changes in pulse-width values that appear

to correlate spatially with underlying surface features, whilst many orbits do not. Figure 4.10

shows a selection of different behaviours observed when the LOLA pulse-widths are mapped like

this. Many orbits appear to contain pulse-widths that are constant along large sections of an orbit,

such as those shown in Figure 4.10a and c, whilst some others have pulse-widths of certain spots

within the pulse that appear similar, as in Figure 4.10b. Finally, Figure 4.10d appears to show an

example of one orbit that contains pulse-widths that change with underlying topography. Here, the

pulse-widths in the highlighted orbit appear to increase as the orbit passes over the crater walls,

which is expected due to the increase in slope (Equation 2.7), whilst the pulse-widths are smooth,

flatter terrain are smaller.
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Figure 4.10: Maps of the different behaviours observed using LOLA pulse-widths from individual
orbits over Mons Gruithuisen Delta. a) Four orbits that appear not to change with the underlying
terrain, each having their own behaviour, with the three left orbits appearing to have small pulse-
width values over the entire orbits. The right orbit (3878) shows each spot within this section of
the orbit containing the same pulse-width value in each pulse. b) Orbit 8745 contains pulse-width
values that change, but do not appear to change with the underlying terrain. c) Shows an example of
an orbit that appears to contains only high pulse-width values along an entire orbit. d) An orbit that
does appear to change with underlying terrain, with increasing pulse-widths as the orbit passes over
a crater, where the slope increases causing increasing pulse-width values (Section 2.1.3), before
decreasing again when the spots are over smoother terrain.
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4.7.3 DISCUSSION

It is clear that on a regional basis, LOLA pulse-widths do not show strong correlations with surface

characteristics. As a result, the relationships derived here cannot be extrapolated to other regions of

the Moon to identify candidate landing sites or surface age. The observed correlations are much

poorer than typically observed using MOLA data, as used in the previous chapter, and the baselines

at which the best correlations are observed can already be reliably derived from the elevation data

from individual spots within each pulse. There are no obvious differences in the factors that may

affect the observed correlations, such as transmitted pulse-width or energy, and gain, etc. as setting

different tolerances for these parameters does not improve the observed R-squared values. This is

also true for the off-nadir pointing angles, which is also shown not to affect the results.

These poor results may be caused by the saturation or surface reflectance effects that plagued

the mission in its early stages, or the LOLA anomaly may cause additional problems in pulse-width

estimation that have not been detected previously [Neumann et al., 2008; Smith et al., 2010b].

Another possibility is that the combination of smaller pulse-footprint and larger DTM pixel size,

compared to HiRISE, inhibits strong relationships being found, with noise within the DTM datasets

having more of an effect at baselines close to the original resolution of the DTM. Unfortunately,

extensive regions of higher-resolution DTM data (<2 m pixel−1) do not exist and are limited to

small areas around current landing sites, which are not used due to the low number of LOLA data

that exist within the DTM boundaries.

Figure 4.10 appears to show that individual orbits may behave differently, however. This avenue

is explored further in the following section, which compares pulse-widths from individual orbits

to both surface roughness and slope. The hope is that individual orbits show stronger correlations

than are observed here. Ideally, data from only a few orbits causes the poor correlations observed

in regional data, and that these poor orbits can be identified and removed for better regional results.

Additionally, the cause of these poor orbits, which produce good elevation estimates, could be

identified and any extrapolation from the calibrated areas could exclude these orbits for a more

reliable map roughness and/or slope from pulse-width data.

4.8 ORBIT RESULTS: WITH A CASE STUDY ON MONS GRUITHUISEN

DELTA

4.8.1 INTRODUCTION

Exploring the relationship between LOLA pulse-widths and surface characteristics on an orbit-

by-orbit basis, as suggested by Figure 4.10, may yield improved R-squared values compared to

the regional results shown in Figure 4.9 and Table 4.4. Data from individual orbits are explored

from each of the sites explored in the previous section, with a case study highlighting the effects on

orbits over Mons Gruithuisen Delta, which exhibits behaviours that are observed throughout other

regions used in this work (Figure 4.4a).
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The same data used above are used here, with the orbit number provided in the original LOLA

CSV file used to identify data in individual orbits. The primary aim of the work is to identify how

each orbit performs, with the hope that only a small number of orbits cause the poor regional results

and that poor orbits share common patterns in telemetry data, such as excessive noise and gain,

or pulses acquired at a particular time in the mission. These poor orbits can then be identified

and removed, and only pulse-width data from higher-quality orbits is used to extrapolate surface

roughness estimates to other regions of the Moon where high-resolution DTM coverage does not

exist.

Failing this, the aim of the work is to distinguish whether surface characteristics can be derived

in a small number of orbits, ideally with better correlations than those observed using MOLA

pulse-width data. This will help demonstrate that extracting surface characteristics from laser

altimeter pulse-widths is viable in determining global surface roughness and slope estimates from

laser altimeter pulse-width data, and a useful implementation for future missions such as BELA,

on-board BepiColombo, and GALA, on-board the JUpiter ICy moons Explorer (JUICE) [Hussmann

et al., 2013; Thomas et al., 2007].

The following section provides a description of the Mons Gruithuisen Delta region, followed

by an overview of the results from all orbits and the best correlating orbits from all sites, as well as

an overview of specific orbit results over Mons Gruithuisen Delta. Finally, a discussion on the orbit

results, concentrating on those from the case study site.

4.8.2 DESCRIPTION OF MONS GRUITHUISEN DELTA

Mons Gruithuisen Delta is a lunar dome located at 39.6° W 36.2° N, as shown in Figure 4.11. It is

one of three lunar domes found around the Gruithuisen Crater (Delta, Gamma, and Northwest), and

all of which are classified as nonmare volcanic domes. The nomenclature derives from the nearby

Gruithuisen crater. Lunar domes appear similar to the low relief shield volcanoes found on Earth

and are typically thought to be produced through the eruption of low viscosity lava from a central

magma chamber over relatively long time-periods [Lena et al., 2013]. These volcanic processes

have both terrestrial and Martian analogues, such as the shield volcanoes in Iceland and Olympus

Mons respectively [Lena et al., 2013]. Figure 4.12 shows a schematic of these extrusive processes.

Lunar domes may also be formed intrusively, whereby the magma never reaches the surface, but

instead penetrates rock layers and, under high pressures, forces the rock above, upwards [Lena

et al., 2013].

The majority of lunar domes are of very low relief. However, the lunar domes in the Gruithuisen

region are of much higher relief, suggesting that they have a very different composition, in particular

a high Si and low FeO and TiO2 content [Lena et al., 2013; Wilson and Head, 2003]. Wilson and

Head [2003] suggest the Gruithuisen domes are an unusual mixture of mare and highland terrain,

formed by magma significantly more viscous than mare basalts about 3.70 Ga to 3.85 Ga, with a

very slow rise speed of ∼7×10−5 m s−1 and effusion rates of 6 m3 s−1 to 50 m3 s−1. This is also

shown by the very different spectral signatures, which are also known as red spots [Glotch et al.,
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Figure 4.11: Map of the Mons Gruithuisen Delta study site. DTM coverage is shown in colour,
which represents elevation of the surface. LOLA locations are shown in black. The background
image is from the LROC-WAC global image mosaic.
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Figure 4.12: Schematic of the possible Mons Gruithuisen Delta formation processes [Lena et al.,
2013]. Most lunar domes are thought to be similar to shield volcanoes on Earth, with high viscosity
lava forming low relief slopes. The extrusive formation processes take place over long periods
of time, with thin layers, which spreads out, slowly stacking up to form a volcanic edifice. The
Gruithuisen domes, as well some of the surrounding domes, are thought to be produced from lower
viscosity lava with a high Si content, hence have a steeper volcanic edifice, but the overall processes
remain the same.

2010]. The formation period is thought to be on the scale of decades, formed from narrow, long

dikes (50 m by 15 km), on a flat surface.

The dome itself is approximately 20 km wide and 30 km long, with a topographic rise of 2 km

above the surrounding terrain and a mean slope of 8.5° (Figure 4.11) [Lena et al., 2013; Wilson

and Head, 2003]. The ROI for this study covers only the western most part of the dome, which

features a large variations in topography, and heavily cratered terrain. This results in a wide range

of surface roughness and slope values to compare to the LOLA pulse-widths over the terrain.

4.8.3 RESULTS

The results are split into three subsections for analysis: all orbits, the best correlating orbits, and

select orbits over Mons Gruithuisen Delta.

4.8.3.1 ALL ORBITS

Plots showing the distribution of R-squared values for fits applied to data from individual orbits,

and baselines at which these best correlations are observed, for both slope and surface roughness,

are shown in Figure 4.13. Only the plots with a p-value of <0.05 when the fit is tested against the

null-hypothesis are shown, which typically removes orbits with very few data. The full results are

presented in Tables C.4 and C.5 in Appendix C.

From the R-squared distribution plots it is clear that pulse-width data in most orbits show very

poor correlations when compared to both surface roughness and slope. Approximately 95 % of

the orbits reveal R-squared values of less than 0.4 for both surface characteristics: a threshold

chosen as the low limit of when a correlation is observed for individual sites in Chapter 3. Similar

distributions are observed for both surface roughness and slope.

One orbit shows very high R-squared values, 1.000 for slope and 0.992 for surface roughness.



202 CHAPTER 4. THE MOON: ASSESSING LOLA PULSE-WIDTHS

0 0.2 0.4 0.6 0.8 1
0

50

100

150

R2

F
re
q
u
en

cy

Slope R2

0 0.2 0.4 0.6 0.8 1
0

50

100

150

R2

F
re
q
u
en

cy

Roughness R2

0 20 40 60
0

0.5

1

Baseline (m)

R
2
fo
r
ea
ch

O
rb
it

Slope Baselines and R2

0 20 40 60
0

50

100

B
as
el
in
e
F
re
q
u
en

cy

0 20 40 60
0

0.5

1

Baseline (m)

R
2
fo
r
ea
ch

O
rb
it

Roughness Baselines and R2

0 20 40 60
0

100

200

B
as
el
in
e
F
re
q
u
en

cy

Figure 4.13: Plots of the correlations observed for individual LOLA orbit over all 16 regional
sites, using only results that have p-value <0.05 when tested against the null hypothesis. Top plots
show the R-squared values of the plots comparing LOLA pulse-widths to slope (left) and surface
roughness (right). Bottom plots show the highest R-squared values against the baseline at which
these values are found, while the right axis shows a histogram of the frequency of these baselines.

The results for this orbit are considered significant when tested against the null hypothesis, however

only 3 data points are used in this calculation, which could suggest this orbit is not representative

of other orbits.

The distribution of best correlating baselines show different distributions for slope and surface

roughness. Here, the best correlations typically occur at much smaller baselines for slope than those

observed using surface roughness, which mirrors the results over the rough terrain using MOLA

pulse-widths, as shown in Section 3.8. However, there is little correlation observed when comparing

the best correlating slope baselines to the best correlating baselines for surface roughness. This is

in contrast to the MOLA results over very rough terrain (Section 3.8), where the best correlations

for slope occurred at between 75 m to 100 m, and for surface roughness at 300 m to 400 m.

The results show that the primary aim of this section of work, to identify poor orbits that could

be removed from the main dataset to produce better correlated for regional results, is not feasible

due to the high proportion of poor data. Instead, a small number of select, well correlating, orbits

will be explored in the following section, to determine whether these orbits share a common fit

gradient and best correlation baseline.
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4.8.3.2 SELECT ORBITS

To explore whether the second aim of the project can be achieved, to determine whether some

orbits show strong correlations that could support the hypothesis that surface characteristics can be

derived from laser altimeter pulse-widths, this section explores the better correlating plots.

Figure 4.14 shows data from orbits that have a best correlating plot with an R-squared >0.4,

chosen because this is the typical R-squared values for sites that showed a correlation using MOLA

pulse-width data. From the 329 orbits that are considered significant, only 45 orbits have an

R-squared greater than this limit. Of these 45 orbits, only 4 showed R-squared values better than

those observed previously (>0.60).

These plots show that, even for better correlating plots, there is no convergence to a common

baseline for either slope or surface roughness, which instead appear evenly distributed across the

baselines. This shows that even if the best correlating plots could be identified from telemetry data,

the data is too inconsistent for surface characteristics derived from the pulse-widths in these orbits
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Figure 4.14: Plots of the best correlating individual LOLA orbit results from the 16 regional sites,
with an R-squared value >0.4. Top plots show the gradient of the line-of-best-fit compared to the
baseline at which the best correlating plot is found. Bottom plots compare the R-squared values to
the baseline at which these values are found, while the right axis shows a histogram of the frequency
at which these baselines occur.
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to be extrapolated to the rest of the lunar surface.

The gradients of the lines-of-best fits are expected to be different due to the different best

correlating baselines resulting in different estimates of the surface characteristic. To compare the

gradients, one needs to compare the gradients for each baseline separately. Doing this shows that

there is great variation in the line-of-best fits, showing that the data is inconsistent across different

terrains, which further suggests that fine-scale roughness and slope of the lunar surface cannot be

reliably derived from the LOLA pulse-widths.

The following section explores the results over Mons Gruithuisen Delta, which contains some

of the highest R-squared values, as well as those that represent typical relationships with surface

characteristics.

4.8.3.3 MONS GRUITHUISEN DELTA RESULTS

A selection of the slope results over Mons Gruithuisen Delta are shown in Figure 4.14 and Table 4.5.

Figure 4.16 shows the orbits mapped by colour representing the highest R-squared value, when the

pulse-widths in that orbit are plotted against slopes of different baselines.

Data from Orbit 3182 produce one of the best correlating plots of all the ROIs, superseded by

only one orbit, which contains significantly fewer points. Originally, through visual analysis in

Figure 4.10, this orbit appeared to contain only consistently high pulse-widths that showed poor

correlations with underlying terrain. However, the observed R-squared values using this orbit are

better than any site using MOLA pulse-widths in Chapter 3, suggesting that surface characteristics

can be derived from laser altimeter pulse-widths. The smallest pulse-width values are ∼20 ns, rather

than 0 ns, as they have not been corrected for the other contributors to pulse-width, as defined in

Section 2.1.3. The best correlation occurs at 4 m baseline slopes, which is in-line with the estimates

of pulse-footprint, whilst for surface roughness the best correlations occur at a baseline of 60 m.

All other plots in Figure 4.15 and Table 4.5 also exhibit the best correlations at 4 m slope

baseline, whilst the surface roughness baselines occur at 50 m to 60 m. The pulse-widths follow a

Table 4.5: Surface roughness and slope baselines and R-squared values for the six best correlating
orbits using LOLA data over Mons Gruithuisen Delta, as well as all the data points.

Slope Roughness

Orbits Pulses R-squared Baseline (m) R-squared Baseline (m)

All Orbits 71 290 0.14 4 0.13 60

1444 964 0.37 4 0.37 60

3182 2452 0.71 4 0.73 50

3531 2351 0.04 4 0.05 50

3879 2423 0.11 4 0.10 60

4921 963 0.57 4 0.58 60

5789 2450 0.24 4 0.26 50
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Figure 4.15: Plots comparing LOLA pulse-widths from a selection of orbits to slope over Mons
Gruithuisen Delta. The baseline at which these plots are found is shown in the horizontal axis and
the R-squared value is shown in the top left of each plot. Red points represent data that is excluded
from the line-of-best-fit calculation, as they occur at more than 3σ away.
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Figure 4.16: Map of the Mons Gruithuisen Delta site showing the individual orbit’s R-squared
value by colour. Better R-squared values are observed in the east of the image, where there is a
greater variation of topography (Figure 4.11), however, calibration over this type of terrain does not
always result in strong R-squared values. The image within the DTM boundary are the original
LROC-NAC images, mosaicked together. The background image is the LROC-WAC global image
mosaic.
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Figure 4.17: Map of the Mons Gruithuisen Delta site showing areas of large topographic variation.
The points lying within the boundary of the lunar dome and the large craters in the region are shown.
The image within the DTM boundary are the original LROC-NAC images, mosaicked together.
The background image is the LROC-WAC global image mosaic.
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Table 4.6: R-squared values for the comparisons of 4 m baseline slope and LOLA pulse-widths
over the lunar dome and the crater areas of the Mons Gruithuisen Delta site, shown in Figure 4.17.
This is to test whether the correlations are improved when only data over the rougher terrain of the
site is used. The original R-squared values of comparisons of data from the entire orbit are also
shown as a reference.

Lunar Dome Large Craters

Orbit R-squared Original
R-squared

Orbit R-squared Original
R-squared

All Orbits 0.07 0.14 All Orbits 0.15 0.14

1444 0.16 0.23 1097 0.02 0.23

1966 0.05 0.16 1271 0.19 0.16

2487 0.24 0.30 1444 0.14 0.30

2661 0.16 0.24 1966 0.04 0.24

3182 0.56 0.64 3182 0.21 0.64

3183 0.08 0.11 3183 0.04 0.11

3530 0.09 0.32 3530 0.09 0.32

3531 0.15 0.03 3531 0.00 0.02

3704 0.01 0.02 3704 0.13 0.04

4921 0.24 0.28 3878 0.22 0.28

5789 0.15 0.21 4226 0.01 0.21

5790 0.10 0.15 4921 0.24 0.15

5964 0.11 0.17 5269 0.04 0.17

6312 0.26 0.09 6312 0.06 0.09

7528 0.13 0.18 6833 0.07 0.18

8050 0.42 0.47 7528 0.06 0.47

8223 0.00 0.00 8050 0.06 0.00

8745 0.08 0.01 8223 0.01 0.01

8746 0.00 0.03 8745 0.03 0.03

9440 0.06 0.10 8746 0.01 0.10

9960 0.13 0.19 10 135 0.04 0.19

10 135 0.04 0.08 10 830 0.00 0.08

11 179 0.00 0.05

similar pattern to the MOLA pulse-widths over rough terrain, whereby pulse-widths are correlated

to slope and small baselines and surface roughness at larger ones. However, surface roughness at

the baselines observed in Table 4.5 are likely to be better derived from the elevation of the spots

within the pulse. Furthermore, this pattern is not observed in other regions of the Moon.

Importantly, the gradients of the lines-of-best-fit in Figure 4.15 are also very different. Direct

comparisons can be made as all plots are produced using the same baseline, but the lack of common



4.8. ORBIT RESULTS: WITH A CASE STUDY ON MONS GRUITHUISEN DELTA 209

gradient suggests that pulse-widths behave very differently on an orbit-to-orbit basis, with no

observable pattern with time or the LOLA anomaly.

Correlations using data from two of the orbits, Orbit 1444 and 4921, show a significant

improvement in R-squared values when data greater than 3 standard deviations from the original

line-of-best fit are removed. Doing so for the latter orbit produces one of the best correlating plots

of the study, in-line with R-squared values from Chapter 3. Other orbits presented poorer R-squared

values, which are typical of the orbits not presented here. Removing data from more than 3 standard

deviations from the line-of-best-fit for other orbits does not improve the results, which continue to

show little or no correlation with underlying terrain.

Figure 4.16 shows the R-squared values of the orbits over Mons Gruithuisen Delta. There

appears to be some correlation with the R-squared values of the orbits and the underlying terrain.

Better correlations are observed on the eastern side of the map, where the greatest variations are

observed (Figure 4.11). This may be similar to the effects observed in Section 3.8, supporting

the idea that areas of greater topographic variation are required to calibrate the pulse-width data.

However, using rougher or more sloping terrain does not automatically result in high R-squared

values, as many of the orbits reveal R-squared values less than 0.4, and two orbits not over the

roughest terrain have R-squared values greater than this.

To further explore the idea of greater topographic variation yielding improved results, LOLA

pulse-widths over only the lunar dome and the larger craters within the boundary of the LROC-NAC

DTM mosaic are compared to slope at 4 m. The rough terrain is shown in Figure 4.17, whilst

the results are presented in Table 4.6. The craters within the boundary are relatively fresh simple

craters, meaning they are bowl shaped depressions within the surface, without a distinct crater floor,

meaning further classification is not possible.

The results reveal that correlations are not improved over when only the regions of greatest

topographic variation are used, as shown in Table 4.6. For the results over the lunar dome, only

Orbits 3531 and 6312 showed some improvement in the observed R-squared values, whereas Orbits

1271, 3704, 4921, and 8050 showed some improvement for the data over the larger craters in

the area. However, using only data over rougher terrain does not improve the results as a whole

and should not be considered further because (1) the improved R-squared values remain poor, (2)

the number of improved results are low, and (3), perhaps most importantly, most of the orbits

experience a (sometimes large) decrease in R-squared values, such as Orbit 3182, 3530, and 7528.

4.8.4 DISCUSSION

By focussing on pulse-widths in individual orbits, it is clear that some LOLA pulse-widths can

reveal strong correlations when compared to surface characteristics, including fine-scale slopes.

However, the majority of orbits appear to contain poor pulse-width data that shows little or no

correlation with the underlying terrain. Over Mons Gruithuisen Delta, LOLA pulse-widths correlate

to small scale baselines slopes, comparable to current pulse-footprint estimates, and a much larger

baseline for surface roughness, similarly to MOLA over rough terrain, which suggests that LOLA
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pulse-widths are actually correlated to pulse-footprint-scale slope. This pattern is not observed

elsewhere however, with other orbits revealing . Detrended surface roughness cannot be compared

to these pulse-widths, as the resolution of the LROC-NAC DTMs is too large for accurate estimates

of surface roughness to be derived at pulse-footprint-scales.

An orbit that was assumed to contain poor pulse-width data, Orbit 3182, as it appeared to

contain only high pulse-width values, actually reveals one of the best correlations. The changes to

pulse-width values in this orbit are not observed in Figure 4.10 due to the colour look-up table used

to display the pulse-widths, however, not all orbits that appeared to contain only high pulse-width

values reveal strong correlations.

There is a noticeable difference in the spatial distribution of observed correlations, as shown in

Figure 4.16. Here, orbits on the eastern edge of the Mons Gruithuisen Delta site appear to produce

better correlations than those to the west. This is to be expected, as the eastern edge of the study

site also exhibits the greatest range in topography, confirming the idea proposed in Chapter 3 that

better correlations can be produced over the roughest terrains. However, not all orbits over the

rougher terrain show strong correlations, as many of the orbits still contain poor pulse-width data,

shown by the fact that most orbits in this region produce R-squared values typically around 0.35,

poorer than those observed using MOLA. This is also shown when only the data over the lunar

dome and the craters are used, with most orbits experiencing a decrease in the observed correlations.

Instead, using rougher terrain merely improves the probability of a good correlation being observed

when the pulse-width data is high quality. Finally, the LOLA anomaly and off nadir pointing angles

do not affect the observed R-squared values, with the latter shown by the fact that Orbit 3182, an

off-nadir pointing orbit, produces one of the best correlations.

The reason for the poor results is unclear, as there are no atmospheric effects that may cause

errors in the pulse-width measurement. Co-registration errors are also not thought to be the cause, as

the LOLA and LROC-NAC data appear to be well co-registered, and some orbits reveal very strong

correlations. The potential errors may arise in the measurement method itself and the threshold

detection system employed by LOLA.

Overall, the high R-squared values of orbits such as Orbit 3182 suggests that laser altimeter

pulse-widths can be used as a strong indication of slope within the pulse-footprint of the spot.

However, data in the other orbits also suggest that not all LOLA pulse-widths cannot be used to

determine fine-scale slopes over the Moon.

4.9 THE MOON CHAPTER SUMMARY

Using LOLA pulse-widths can produce better correlations than those in Chapter 3, however, the

dataset contains many pulse-widths that show little or no correlation with surface roughness or

slope of the underlying terrain. This shows that laser altimeter pulse-widths can be used to derive

surface characteristics from with the pulse-footprint, however, some improvement in methods,

either instrument or processing, is required to attain consistent results.

This work has shown that the type of terrain used to calibrate the pulse-widths is important,
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with rougher terrains typically producing higher, but not always strong, R-squared values. This is

similar to the effect observed and discussed in Section 3.8.

By using an instrument that records the full echo-profile it may be discovered why results are

poor over Mars and the Moon, and develop new methods to produce improved correlations between

laser altimeter pulse-widths and surface characteristics. This is explored in the following chapter

using data from one of two Earth-orbiting satellites, the Ice, Cloud, and land Elevation Satellite

(ICESat) and the Shuttle Laser Altimeter (SLA).
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5

EARTH: ASSESSING ICESAT

PULSE-WIDTHS

The relationship between ICESat pulse-widths and surface characteristics derived from

high-resolution lidar DTMs over the McMurdo Dry Valleys, Antarctica, is investigated,

influenced by the findings in the previous two science chapters. The aim is to find

improved correlations between laser altimeter pulse-widths and surface characteristics

compared to the results in the previous chapters by developing and testing new methods

made possible by the availability of full echo waveforms, as well as the methods

employed by MOLA and LOLA.

ICESat data has two advantages over the previously used pulse-width datasets: (1) it

is from an Earth-orbiting satellite and therefore both the pulses and DTMs are more

precisely georeferenced due to GPS and INS, and (2) the resulting dataset contains the

full echo-profile for each pulse, enabling different pulse-width thresholds to be tested

and compared to surface roughness and slope estimates.

The results show that surface roughness and slope can be derived more reliably from

laser altimeter pulse-widths when the pulse-width is calculated using the 10 % or

20 % Peak Energy threshold. When the FWHM is used, correlations are similar to

those observed over Eberswalde Crater using MOLA pulse-widths, which use similar

methods. Detrended surface roughness cannot be derived from pulse-width data here,

despite the better co-registration, more accurate estimates of pulse-width from the full

echo-profiles, and more metadata on the removal of pulses affected by atmospheric

effects.

The principal recommendation for future laser altimeters is to use the full echo-profile at

some stage of processing in order to achieve better correlations with surface roughness

and slope.
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5.1 INTRODUCTION

Ice, Cloud, and land Elevation Satellite (ICESat) full echo-profiles are used to compare laser altime-

ter pulse-widths to surface characteristics over the McMurdo Dry Valleys, Antarctica. Different

pulse-width thresholds can be applied from these echo-profiles, which enables the testing of current

and new methods to find improved, and more consistent, correlations between pulse-widths and

surface characteristics compared to the results in previous chapters. Improved georeferencing of the

laser altimeter data and the Digital Terrain Model (DTM) data, from which surface characteristics

are derived, should improve the chances of finding a positive result, whilst comprehensive metadata

provides more information regarding the atmospheric conditions when the pulse was fired, which

enables different conditions to be tested and a means of effective pulse selection. To relate to

Chapters 3 and 4, the work includes a study on bare-earth terrains. The additional availability of icy

terrains also enables testing of relationships that could be useful for missions to the icy moons of

the giant gas planets. Finally, a series of recommendations are produced for future missions to best

collect fine-scale surface characteristics within the pulse-footprint.

The following section summarises current literature on Earth surface roughness and slope

studies, as well as a selection of works exploring ICESat data that are relevant to the work outlined

in this thesis. Section 5.3 provides an overview of the laser altimeter instrument selection process

and a description of the ICESat instrument, and is followed by the study site selection process

and lidar instrument and data overview. A description of Earth’s coordinate systems is provided,

which is relevant to this work as ICESat data needs to be converted between geographic coordinate

systems. The methods are described in Section 5.7, followed by the results and a case study

exploring the relationship between pulse-widths and surface characteristics over terrain that is

highly variable over short baselines. The chapter concludes with a discussion and summary of

results.

5.2 LITERATURE REVIEW

Atmosphere-ocean interactions can be determined from the sea-surface roughness, which is to

determine the net momentum flux from the air to the oceans [Drennan et al., 2010]. Another form

of roughness is aerodynamic roughness length, z0, which explores the effect of surface roughness

elements on the wind speed profile and is an important parameter in modelling land-atmosphere

interactions, such as the transfer of heat and momentum [Bonan et al., 2002; Borak et al., 2005;

Sellers et al., 1986]. This is not a measure of roughness itself, but is defined as the height above

the zero-plane displacement height at which the logarithmic wind speed is equal to 0, and can

be used to apply corrections to wind speed estimates [World Meteorological Organization, 2010,

Part 1. Chapter 5; Part 2, Chapter 11]. A detailed understanding of wind profiles over a 1 yr

period is typically required before accurate estimates of aerodynamic roughness length can be

derived. However, Marticorena et al. [2006] reveal a relationship between this parameter and

surface roughness over deserts, which can be used with radar data to derive aerodynamic roughness
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length quickly over large areas of desert, a technique that has also been applied in Hébrard et al.

[2012] over Mars.

Unlike, the previous chapters, global terrestrial surface roughness studies are not relevant to

this work due to the high surface water coverage (71 %) and land vegetation coverage [National

Oceanic and Atmospheric Administration, No Date.b]. Instead, roughness studies are conducted on

more local and regional scales.

A common focus of roughness studies is that of vegetation roughness, which is used to

determine the water flow through river systems, as vegetation impedes the flow of water through

a system [Augustijn et al., 2008; Hwang et al., 2013]. Accurate river models need to take the

vegetation roughness along the banks into account when predicting the effects of river restoration

projects, or when predicting extreme flooding events [Vetter et al., 2011].

Soil surface roughness, which is closely linked to vegetation roughness, is also explored as can

help determining erosion and run-off rates [Jester and Hancock, 2011; Zheng et al., 2013]. In the

High Arctic, Synthetic Aperture Radar (SAR) is used to discover soil moisture content by modelling

out estimates of surface roughness, enabling energy and greenhouse gas fluxes, and nutrient cycling

to be deciphered over climatically important, yet poorly accessed, regions of Earth [Collingwood

et al., 2014; Kornelsen and Coulibaly, 2013]. However, the baselines of interest are on the order

of centimetres rather than the metre-scale baselines that are of interest to this study [Zheng et al.,

2013].

Gupta et al. [2012] show how sea-ice roughness, which is important when trying to determine

energy balance, momentum exchange, and floe size distribution, can be used to categorise sea-ice

within the marginal sea-ice zone, whilst Zwally et al. [2002] also suggest that sea-ice roughness can

be an indicator of the ice’s history. Light absorption at the surface is strongly affected by sea-ice

roughness: ice is predominantly forward scattering at the particle level and backward scattering

when the surface is rough [Nolin et al., 2002; Pfeffer and Bretherton, 1987; Remy and Parouty,

2009; van der Veen et al., 2009]. Understanding this property of ice is important in the correct

interpretation of satellite imagery over icy terrains [Nolin et al., 2002; Pfeffer and Bretherton,

1987; Remy and Parouty, 2009; van der Veen et al., 2009]. Surface roughness is shown to affect

the bidirectional reflectance by Warren et al. [1998] in their study of sastrugi (ridges of hard

snow shaped by the wind) on ice-sheets, which can be used to infer the direction of prevailing

and katabatic winds, and seasonal changes in wind strength and direction [Remy and Parouty,

2009]. These sastrugi can cause a reduction in snow albedo, which affects the energy balance of

an ice-sheet and sea-ice, similarly to the dune-like features that appear to form through blowing

snow over long periods [Remy and Parouty, 2009; van der Veen et al., 2009]. Finally, geology and

thermal conditions of glacial beds may be revealed by small-scale undulations at the top of the

glacier [Bell et al., 1998; van der Veen et al., 2009].

Comparatively few surface roughness studies have been conducted over desert terrains, with

come studies using these terrains to calibrate SAR data [Charlton and White, 2006]. Sud and Smith

[1985] show in their simulations that surface roughness may play a part in the rainfall over deserts.

Here, the surface roughness is reduced during desertification due to the reduction of vegetation
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and subsequent soil erosion -in a process comparable to increasing the albedo of an area-, which

in turn causes a reduction in rainfall and further desertification. Garvin et al. [1998] use Shuttle

Laser Altimeter (SLA) pulse-widths estimates over desert terrains to estimate the vertical roughness

using Equation 2.5, finding that the roughness over the Saharan and Arabian deserts are similar to

estimates of the Venusion Plains and the Northern Plains of Mars. However, these estimates have

not been tested against surface characteristics from DTMs.

Shi et al. [2013] present the only published work investigating the relationship between ICESat

pulse-widths and surface characteristics over non-vegetated terrains. This study uses roughness

measured from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) Global

Digital Elevation Model (GDEM) of glaciers in the Nyainqêntangla range, Tibet, to understand

the energy exchange between the atmosphere and glacier surfaces, concluding that ICESat pulse-

widths are a suitable means from which to gain valuable surface information. They also observe

better correlations when comparing pulse-widths and slope, compared to pulse-widths and surface

roughness, as in Chapters 3 and 4 of this thesis. A drawback of the study is that it uses low

resolution DTM data (30 m pixel−1), which results in less precise estimates of surface roughness, as

only 7 pixels to 9 pixels lie within the pulse-footprint, as well as potential errors in the slope values

due to common errors from stereo-photogrammetry.

More commonly, ICESat echo-profiles are used to infer vegetation structure, such as Harding

and Carabajal [2005] and Lefsky et al. [2005]. Over vegetated terrain, the profile has two prominent

peaks: the first provides an estimate of the forest canopy height, and the second is a ground return.

This can be used to provide an estimate of the biomass content of an area over flat terrain, defined

as slopes of <10° [Hilbert and Schmullius, 2012]. For larger slopes, the effect of pulse-width

broadening due to slope effects, as in Equation 2.7, cause a blurring of the canopy and ground

returns, making it more difficult to decipher canopy height reliably [Hilbert and Schmullius, 2012].

5.3 LASER INSTRUMENT SELECTION AND DESCRIPTION

Two Earth orbiting laser altimeter instruments provide the full echo-profile for each pulse: ICESat

and SLA [Garvin et al., 1998; Schutz et al., 2005]. This section outlines the process of deciding

which of these instruments should be used and a description of the chosen instrument, ICESat.

5.3.1 INSTRUMENT SELECTION

The instrument selection process focussed primarily on dataset coverage, and partly coincides with

the site selection process, as bare-earth terrains with high-resolution DTM coverage are required to

produce estimates of surface characteristics, to which the pulse-widths are compared (Figure 5.1).

The minimum requirements were extensive, high-resolution DTM coverage over non-vegetated

terrains that is freely available for this work.

The profiles of both ICESat and SLA are compared to explore which instrument provides the

best coverage over bare-earth terrains. Figure 5.1 shows the coverage of the SLA data, which

operated for 82 hrs on-board Space Shuttle Endeavour [Garvin et al., 1998]. The dataset has very
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low coverage, with relatively few passes over bare-earth terrains, such as the Sahara, Australia,

and the deserts of the United States of America (USA) [OpenTopography, 2014; United States

Geological Survey, 2014]. Furthermore, the dataset had a low pulse-rate that results in inter-footprint

spacings of ≥600 m [Garvin et al., 1998]. Within the latitudinal extents of SLA, freely-available

high-resolution DTMs with significant coverage exists only over the USA, produced from lidar

mapping campaigns [OpenTopography, 2014; United States Geological Survey, 2014]. The benefit

of using this instrument rather than ICESat is that it is a very similar model to that employed by

Mars Orbiter Laser Altimeter (MOLA), and may therefore exhibit similar behaviours that enable us

to determine how the Mars results presented in Chapter 3 could be improved. On the other hand,

this instrument is based on much older technology, with only a 5 ns timing resolution, and the data

has large georeferencing errors of 100 m to 200 m, such that it may not provide the best conditions

to derive new methods.

ICESat data has much greater spatial coverage, with a greater number of orbits that extend very

close to the poles, despite orbiting on a 91 day fixed polar-orbit. This extends the range of sites that

can be used in this work. A global map of the orbits is not shown due to the high density of orbits

covering the underlying land coverage. The aims of ICESat require high precision geolocation of

data, helped by the advent of Global Positioning Systems (GPS) and improved positioning methods,

which are all discussed in the following section. Furthermore, the greater timing resolution results

in more accurate estimates of pulse-width, and additional metadata is available to explore the role

of energy distribution across the pulse-footprint on correlation between laser altimeter pulse-widths

and surface characteristics [Schutz et al., 2005].

To conclude, the ICESat instrument is used in this chapter as the provides significantly more

pulses and better quality metadata to enable more accurate comparisons of pulse-widths and surface

characteristics over terrestrial terrains. Atmospheric effects will play a significant role in pulse

selection, therefore a higher density of pulses, more information as to the conditions in which

these pulses were fired, and improved geolocation of the data, enable a better understanding of the

relationship between pulse-widths and surface characteristic to be developed.

5.3.2 ICE, CLOUD, AND LAND ELEVATION SATELLITE

The primary aim of the ICESat mission was to determine seasonal and annual changes in the

ice-sheet volume to enable the effect on global sea-level to be assessed [Schutz et al., 2005; Zwally

et al., 2002]. One objective of the instrument, which was operational between 2003 and 2009,

was to use laser altimetry to determine changes in ice-sheet elevation of <2 cm yr−1 over areas of

100 km×100 km regions over ≥3 yrs [Schutz et al., 2005; Zwally et al., 2002]. The Geoscience

Laser Altimeter System (GLAS) instrument was the only science instrument on-board ICESat1,

whilst a series of engineering instruments ensure high geolocation and elevation accuracy of

the resulting data. A schematic of the satellite is shown in Figure 5.2 and an overview of the

characteristics is provided in Table 5.1.

1The terms GLAS and ICESat are interchangeable, as ICESat is a single science instrument mission, but the
instrument is usually referred to as ICESat
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Table 5.1: The characteristics of ICESat, which carries the GLAS instrument, from Schutz et al.

[2005] and Zwally et al. [2002].

Element Parameter Specification

ICESat

Mass 330 kg

Power consumption 310 W

Mapping Orbit 600 km

Orbit Inclination 94°

Orbit Length 91 day with 33 day sub-cycle

Maximum Roll ±5°

Transmitter

Laser type
(3) Nd:YAG, diode pumped,

Q-switched

Wavelength 1064 nm

Pulse Rate 40 Hz

Energy 75 mJ pulse−1

Laser Divergence 110 µrad

Pulse Length 4 ns to 6 ns

Pulse Time-of-Flight 4 µm

Receiver

Mirror 1 m

Detector Silicon Avalanche Photodiode

Field of view 500 µrad

Detector Efficiency 60 %

Electronics Timing Resolution 1 ns

Resolution

Vertical accuracy <10 cm

Pulse Footprint 60 m to 70 m

Pulse Spacing 172 m

The mission used a 94° inclination orbit to achieve global coverage, especially over the world’s

ice-sheets and, in particular, areas of change over West Antarctica [Schutz et al., 2005]. To

determine seasonal and annual changes, a 91 day repeat orbit track was used with 1354 individual

orbits [Schutz et al., 2005; Zwally et al., 2002]. The mission repeated these reference tracks to within

±1 km, performing manoeuvres regularly to overcome orbit decay to ensure a spacecraft altitude of

600 km [Schutz et al., 2005]. To ensure the mission met the minimum lifetime requirement of 3 yrs,

three lasers were fitted on the instrument. The lasers were designed to operate alternately, with pulse

paths directed by mirrors so that path geometry remained similar [Zwally et al., 2002]. The typical

satellite pitch was 0.3° from nadir to mitigate the damage from specular reflection, as described in

Section 2.1. Other off-nadir pointing was enabled by spacecraft roll (±5°) to produce measurements

of surfaces away from the reference tracks (≤50 km) and account for orbit drift [Schutz et al., 2005].
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Near the poles however, the instrument pointed only at nadir to ensure repeat measurements to

within ±100 m of the reference track [Schutz et al., 2005].

To meet the geolocation and elevation requirements of the mission, the satellite carried two

star-trackers, two GPS systems, a laser retroreflector array, and an altitude control system [Sirota

et al., 2005]. These systems enabled an instrument position vector and a range vector, accurate to

within 1.5′′ pointing accuracy, to be derived for each pulse, from which a series of georeferenced

elevation values referenced to the Topex/Poseidon reference ellipsoid were produced [Schutz et al.,

2005; Sirota et al., 2005]. These measurements also enabled highly accurate slewing for tracking

of targets and reduction of pointing jitter [Schutz et al., 2005]. All the instruments on-board

were rigidly mounted to maintain relative pointing geometry of the instruments throughout the

mission [Schutz et al., 2005; Sirota et al., 2005].

The higher pulse-rate of the instrument, compared to MOLA, results in a small inter-footprint

spacing (∼170 m), but the pulse-footprint size is similar (Table 5.1) [Schutz et al., 2005; Smith et al.,

2001]. The data density around the poles is higher due to the near-polar orbit of the instrument.

ICESat, unlike the laser altimeters used in the previous chapters, recorded the full echo-profile

of the return energy [Schutz et al., 2005]. Profile sampling began just before pulse transmission,

at a sampling resolution at 1 ns (1 GHz), and ended after 4 ms (Table 5.1) [Schutz et al., 2005].

The search for the expected ground return used a 1°×1° DTM, in effect, searching for the end

of the profile before working backwards, such that the sample time is negative [Schutz et al.,

2005]. For pulses over land, 544 samples were extracted and provided in the Level 1A dataset,

whilst 200 samples were provided over sea-ice and water due to the lower relief within the pulse-

footprint [Schutz et al., 2005]. These relate to potential elevation variations capable of being

detected within the pulse-footprint of 81.6 m and 30 m, respectively, when using Equation 2.2.2

To accurately determine the vertical distribution of clouds and aerosols, part of the 1064 nm

pulse produced from the Nd:YAG lasers was converted to 532 nm using a doubler crystal [Schutz

et al., 2005]. The profile from the shorter wavelength pulse was also used to correct range

determination estimates from the original 1064 nm pulse and determine the optical thickness

and extinction within the atmosphere [Spinhirne et al., 2005]. This not only improves the range

determination estimates, but also provides the means to be able to highlight pulses that were affected

by atmospheric effects, either through backscatter from cloud and aerosol layers, or by broadening

of the pulse-width, as discussed in Section 2.1.

In total, 15 different datasets, across 3 Levels of processing are available from ICESat. The

raw science and engineering data was downlinked at Level 0, and processed into Level 1A data,

across four datasets, as shown in Table 5.2. These Level 1A and Level 1B, which contain the

engineering corrections, are combined to produce the Level 2 products. The work presented here

uses Version 33 of the datasets, whilst at the time of writing, Version 34 is in the process of being

released for each of the laser campaigns [National Snow and Ice Data Center, 2014b]. Table 5.2

2Over land, where 544 samples are taken, this relates to a maximum pulse-width of 544 ns. When this time is applied
in Equation 2.2 to determine the distance light can travel in this time is 81.6 m. Similarly over the sea-ice and water,
where 200 samples are taken, the maximum distance is 30.0 m.
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Table 5.2: The different Hierarchical Data Format (HDF) 5 datasets available from ICESat data,
with the typical file size, the number of orbits per file, and the number of files produced per
day [National Snow and Ice Data Center, 2014b].

Product Level Description File Size (MB) Orbits/File Files/Day

GLAH01 L1A Global Altimetry Data 9 1/4 56

GLAH02 L1A Global Atmosphere Data 671 2 7

GLAH03 L1A Global Engineering Data 19 2 7

GLAH04 L1A Global Laser Pointing Data 2 to 386 2 4

GLAH05 L1B Global Waveform-based
Range Corrections Data

25 1/4 56

GLAH06 L1B Global Elevation Data 7 1/4 56

GLAH07 L1B Global Elevation Data 827 2 7

GLAH08 L2 Global Planetary Boundary
Layer and Elevated Aerosol
Layer Heights

7 14 1

GLAH09 L2 Global Cloud Heights for
Multi-layer Clouds

82 14 1

GLAH10 L2 Global Aerosol Vertical Struc-
ture Data

289 14 1

GLAH11 L2 Global Thin Cloud and
Aerosol Optical Depths Data

13 14 1

GLAH12 L2 Antarctic and Greenland Ice
Sheet Altimetry Data

104 14 1

GLAH13 L2 Sea Ice Altimetry Data 107 14 1

GLAH14 L2 Global Land Surface Altime-
try Data

209 14 1

GLAH15 L2 Ocean Altimetry Data 279 14 1

shows the number of orbits per file, and the number of file produced per day for each dataset.

Although a dataset sub-setter is available via National Snow and Ice Data Center [2014b], for larger

regions, it is best to download and extract data from the original files. Fortunately, the reference

orbits are available via National Snow and Ice Data Center [2014d], which contain the latitude

and longitude for pulses within each orbit. From this data, the relevant orbit(s), and file(s), over

the Region-Of-Interest (ROI) were identified and downloaded via the File Transfer Protocol (FTP)

site [National Snow and Ice Data Center, No Date.].

In this work, the HDF5 formatted data is used, which can be read into MATLAB for process-

ing [National Snow and Ice Data Center, 2014b]. Of interest to this study are the (1) Geoscience

Laser Altimeter HDF5 format data (GLAH)01 dataset, which contains the original echo-profile,

(2) GLAH04, which contains the Laser Profile Array (LPA) data, (3) GLAH05, which contains an

estimate of the Root-Mean-Square (RMS) pulse-width from a profile fitted to the original received

pulse, and (4) GLAH14, which contains precise pulse-footprint location, elevation, orientation, and
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Figure 5.3: Plot of the ICESat transmitted energy per pulse, using only those pulses used in this
study, as a function of time and Operational Period. Colours represent the different Operational
Periods shown in the legend on the right, where the number representing the laser number, and the
letters representing the Operational Period for that laser. Laser 1 is not shown as data from this
laser is not used in this work.

dimensions, as well data flags, such as those that highlight potential cloud layers and scattering,

from pulses collected over land (Table 5.2) [National Snow and Ice Data Center, 2014b].

The LPA data provides an image of the far-field pattern of the laser pulse energy. It is collected

at 1 Hz and used to determine the shape and orientation of the pulse-footprint, which is determined

at the region greater than e−2 (13.5 %) the peak energy at the centre of the pulse-footprint [Brenner

et al., 2011]. The image is 20 pixels×20 pixels and each pixel images 16.5 µrad (∼10 m pixel−1

at an altitude of 600 km), and can be used to investigate the role of energy distribution across the

pulse-footprint in determining surface characteristics within the pulse-footprint [Brenner et al.,

2011].

Each laser was expected to last for over 1×109 pulses, however, Laser 1 failed after a little

over a month due to manufacturing defects. These defects were thought to be present in the two

remaining lasers, leading the mission team to reduce the operational period to a single 33 day
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sub-cycle, three times per year, and reducing instrument capacity to 27 % to ensure the mission

completed its minimum lifetime requirement [Abshire et al., 2005; Kichak, 2003; Schutz et al.,

2005]. Although Laser 2 fired more than three times the number of pulses emitted by Laser 1,

417.5×106 pulses compared to 126.8×106 pulses, it too saw significant decline in energy output

after a short period, which is associated with the frequency doubler and trace levels of out-gassing;

subsequently, Laser 3 was operated at a lower temperature (13 ◦C to 16 ◦C), which extended the

laser lifetime to 11 operational periods (Figure 5.3) [Abshire et al., 2005].

5.4 DIGITAL TERRAIN MODELS

This section describes the process behind the selection of the McMurdo Dry Valleys, Antarctica, as

the study site, and the a description of the Airborne Topographic Mapper (ATM), which produced

the high-resolution DTMs over the region [Csatho et al., 2005].

5.4.1 SITE SELECTION

The basemap in Figure 5.1 shows the global land coverage by type from European Space Agency’s

(ESA) GlobCover project [Arino et al., 2007; Bontemps et al., 2011; ESA, 2011]. Of interest to this

study, is the 22.83 % of the land surface that is sparsely (<15 %) vegetated and bare-earth, which

have spatial coverages of 8.80 % and 14.03 % respectively [Arino et al., 2007; Bontemps et al.,

2011; ESA, 2011]. Additionally, 1.81 % of the surface is covered permanently by snow and ice,

free from man-made objects and vegetation. These areas can be used in this work provided the

conditions at the site remain stable over relatively long time periods, i.e. low snow fall and slow

ice-velocities, and high-resolution DTM coverage was produced at a similar time to pulse-width

data acquisition [Bontemps et al., 2011]. A stable site is a fundamental requirement, as it enables

the full time-series of ICESat data to be used, increasing the number of pulses that can be used and

therefore increasing the probability of a statistically significant relationship to be derived between

pulse-widths and surface characteristics. Finally, the study site must be an extensive region of

terrain surveyed at high-resolution (1 m pixel−1 to 5 m pixel−1), with freely available data, and lie

along multiple ICESat flight paths to increase the number of pulses.

Initial searches focussed on DTMs available over the USA, due to the extensive regions of desert

and the high-resolution mapping, with data available from Planetary Data System [2014b], Open-

Topography [2014], and United States Geological Survey [2014]. However, the spatial extent

of the highest resolution data is too small, or the data was not ideally positioned for multiple

flight paths over the site, further affected by ICESat running at 27 % capacity, which meant that

no data was acquired for many of the 1354 orbits [Abshire et al., 2005]. Data at 0.1′′ to 0.33′′

resolution available from United States Geological Survey [2014] is extensive, but appears noisy

over bare-earth terrain and is therefore not used.

As part of the ICESat calibration, the McMurdo Dry Valleys, Antarctica, were surveyed at

high-resolution by NASA’s ATM, with the data available from United States Geological Survey

[2013] [Csatho et al., 2005; Schenk et al., 2004]. In total, 20 DTMs were produced, which are
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shown in Figure 5.4. There are several advantages to using this data. First, the data was used for

ICESat calibration and therefore produced to high standard, meaning that elevation and geolocation

errors have been minimised with GPS data. Secondly, the site is situated close to the south pole,

and therefore has a higher density of orbits compared to mid-latitude bare-earth sites due to the 94°

ICESat orbit inclination. Finally, and possible most importantly, the local microclimate, described

in Section 5.5, keeps the surface very stable and free from ice, snow, and vegetation, which enables

the results from this study to remain relevant to other sites used in this thesis.

The McMurdo Dry Valleys site and dataset fits the requirements outlined at the beginning of

this section. The following section discusses the ATM instrument and the resulting datasets in more

detail. A characterisation of the McMurdo Dry Valleys is discussed in Section 5.5.

5.4.2 AIRBORNE TOPOGRAPHIC MAPPER

The ATM instrument is a scanning lidar developed by NASA to collect high-resolution topographic

data over regions of scientific interest [Csatho et al., 2005]. The instrument operation is shown

schematically in Figure 2.12 on Page 69, and the characteristics are outlined in Table 5.3 [Csatho

et al., 2005].

The ATM is designed to measure topography, and changes in topography, over featureless

icy terrains [Manizade, 2012]. A problem with attempting to map these terrain types is how to

accurately steer the aircraft over a precisely defined flight path, so that the flight paths overlap and

repeat flight paths can be flown for accurate changes in topography to be determined. In response,

the Course-Deviation Indicator (CDI) system was developed [Manizade, 2012]. This system can

guide the aircraft along straight flight paths over 100 km long, which are technically great circles

across the Earth’s surface [Manizade, 2012]. In cases where an Instrument Landing System (ILS)

is available, this system can be used to steer the aircraft along the desired flight path.

For mapping smaller, winding flight paths, such as those required for glacier mapping, a

secondary system known as Soxmap was developed [Manizade, 2012]. This system is also useful

for filling geographical areas with parallel swathes, but only provides a visual interface of current

and previous flight paths for the pilot, rather than the ability to control the aircraft itself. These

systems can be used indepentently or in tandem to produce a visual navigation system for pilots

to fly to a predefined flight path that produces high-quality datasets, and have become known as

the Global Positioning Flight Management System (GPFMS). The typical cross-track error in the

flight paths, when compared to post processing using differential GPS, is ±50 m, but this does

not affect the positioning and elevation values of the resulting dataset, which instead uses all the

available positioning data from GPS, differential GPS, and Inertial Navigation Systems (INS) to

determine the location of each pulse [Manizade, 2012]. Finally, software developed at NASA,

removes outlying elevation data and stitches overlapping flight paths together, ensuring that heights

in overlapping areas of flight paths match through bundle block adjustment [Csatho et al., 2005;

Krabill et al., 2002].

The ATM collected data from ∼1×109 pulses over the McMurdo Dry Valleys during a two
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Figure 5.4: Map of ATM DTM over the McMurdo Dry Valleys, Antarctica [Csatho et al., 2005].The
region highlighted in black is an area known as the Labyrinth, which is described below, and used
specifically in Section 5.9. A Landsat image mosaic is shown in the background. The projection
system is South Pole polar stereographic projection, with the South Pole towards the top.
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Table 5.3: The characteristics of the ATM instrument.

Element Parameter Specification

Lidar

Laser Diode pumped Nd:YAG

Wavelength 1064 nm

Off-nadir Angle 15°

Scanning Rotation Rate 20 Hz

Laser Pulse Rate 5 kHz

Footprint 1 m

Laser Data Density 0.37 m−2

Flight

Altitude ∼500 m

Speed ∼50 m s−1

Aircraft DC-8, twin-otters (DHC-6), C-130’s and P-3

week period in the Antarctic summer of 2001 and 2002, producing 20 DTMs over 18 regions,

and covering almost 4600 km2 [Csatho et al., 2005; Schenk et al., 2004; United States Geological

Survey, 2013]. DTMs over Odell Glacier, Radian, Denton Hills, Mount Discovery, and White

Island (Figure 5.4), are available at 4 m pixel−1, with the remaining available at 2 m pixel−1 [Schenk

et al., 2004]. The DTMs are produced in reference to the World Geodetic System 1984 (WGS 84)

ellipsoid, projected using the Lambert Conformal Conic, described in Snyder [1987], and available

in Tagged Image File (.tif) format [Schenk et al., 2004].

A secondary data processing phase was conducted by Ohio State University to improve elevation

and geolocation accuracy, and remove outlying points [Csatho et al., 2005]. A median filter, which

can be fine-tuned for efficient noise removal, was applied to remove the outlying points within

localised regions, with the total number of removed pulses per DTM numbering between 104 to

105 points, from a total of 106 pulses (∼1 %). Systematic errors, such as overlapping profiles, were

corrected for by minimising the elevation differences between adjacent data points. The result is an

irregular point cloud that was converted to a regular grid by interpolation using an adaptive process

that automatically selected a suitable interpolation method, such as planar or higher order surfaces,

based on local terrain points. Additionally, the vertical accuracy of the DTMs was compared to

GPS data from geodetic GPS receivers, which provide a very accurate measurement of geolocation

and elevation, (0.01 m to 0.20 m accuracy) [Schenk et al., 2004]. The interpolated grid points are

found to have an RMS error of 0.2 m [Csatho et al., 2005]. The DTM also went through a visual

inspection to remove metre-scale errors from the datasets [Csatho et al., 2005].

Today, the ATM is predominantly used for operation IceBridge, which attempts to determine

changes in ice-sheet mass balances and sea-ice extents over the Arctic and Antarctic, until ICESat

2 is launched, but it has also been used for coastal and ocean wave height studies [Abdalati et al.,

2010; Manizade, 2012; Yi et al., 2015].
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5.5 CHARACTERISTICS OF THE MCMURDO DRY VALLEYS

The McMurdo Dry Valleys are a series of ice-free valleys running for ∼50 km from the Trans

Antarctic Mountains towards the coast in the Victoria Land region of Antarctica. Together they

form the largest permanently snow-free region on the continent (∼4800 km2), enabled by two

conditions: (1) the Trans Antarctic Mountains block ice from the East Antarctic Ice Sheet and

moisture in the atmosphere from entering the valley systems, and (2) strong katabatic winds flow

down the valleys from the mountains, warming as they descend, and resulting in sublimation of ice

and snow from the surface [Doran, 2002; Campbell et al., 1998; McMurdo Dry Valleys Long Term

Ecological Research, 2013a; Prentice et al., 1998].

The valleys were formed by glacial processes, shown schematically in Figure 5.5, when the

extent of the ice in the region was much greater. Prentice et al. [1998] propose three distinct periods

of glaciation (in decreasing age): High, Intermediate, and Low. During the High and Intermediate

phases, at least some of the ice is thought to have come from local mountain glaciers, with some

contribution potentially from the East Antarctic Ice Sheet, whereas the main ice contribution during

the Low phase is thought to be the East Antarctic Ice Sheet. Dating from the floor of Wright Valley

suggests these phases occurred before (9.0±1.5) Ma, with the High phase occurring possibly

∼34 Ma, which is thought to be a period of significant glaciation around Antarctica [Prentice et al.,

1998]. The climate during each of these phases is thought to be significantly warmer and wetter than

today, as the erosional features appear to be formed by wet-based glaciers3, fast flowing glaciers

(m a−1 to m day−1) that cause significant erosion of bedrock and transport significant volumes of

material [Prentice et al., 1998]. This has left wide, characteristically U-shaped valleys that have not

been further modified by glaciation, and dotted with boulders deposited from retreating glaciers

and glacial till, unsorted glacial material that has been mixed and deposited in moraines.

The proposed wet-based glaciers appear to have been replaced with cold-based glaciers4 found

at much higher elevations, which, unlike wet-based glaciers, have little or no movement and

therefore were assumed to not transport significant amounts of material [Prentice et al., 1998]. In a

more recent study, Hambrey and Fitzsimons [2010] show that the cold-based glaciers found in the

McMurdo Dry Valleys today, do transport sand and gravel, accumulating debris through folding

and thrusting at the basal layers, and aeolian deposition upon the ice surface [Benn and Evans,

2010]. However, they also note that the time-scale is much slower and that the resulting landforms,

such as terminal moraines, appear stable on thousand-year time-scales.

Today, several tongue shaped glaciers flow between passes in the mountains into the McMurdo

Dry Valleys, such as the Commonwealth Glacier that flows into Taylor Valley, but the extremely

3A wet-based glacier is where the base of the ice layer in a glacier exceeds the melting point due to pressure from
above, which allows the glacier to slide more freely, called basal-sliding [Benn and Evans, 2010]. Typically, this enables
more entrapment of material and glacial plucking through freeze-thaw actions creating cracks in the bedrock. This
embedded material then causes abrasion as it is transported by the glacier, scouring the bedrock.

4The glacier basal layer of a cold-based glacier does not exceed melting point, and therefore there is little or no
basal-sliding. As a result, there is little or no abrasion compared to cold-based glaciers, but material can become
entrapped from the substrate, where upon it can be eroded through internal forces [Benn and Evans, 2010; Hambrey and

Fitzsimons, 2010].
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Figure 5.5: Schematic of fluvial and glacial valley morphologies. Top shows a typical fluvial cut
valley, whilst middle and bottom show a glacial valley, with a characteristic U-shape. Material is
cut from the bedrock through plucking and abrasion and transported down stream by the flow of
ice. When the glacier recedes due to changing environmental conditions, the transported material is
deposited on the valley floor, and the terminal moraine shows the maximum extent of the glacier.
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arid air causes rapid sublimation of any ice that breaks away [Doran, 2002; Fountain et al., 2009;

Prentice et al., 1998]. The low temperatures (−18 ◦C), low humidity, and limited precipitation

(<100 mm water-equivalent), caused by a rain-shadow effect from the Trans Antarctic Mountains,

make this a hyper-arid cold polar desert [Fountain et al., 2009; Marchant and Head, 2007]. The

primary source of water in the valleys is from glacial summer meltwater, which is generally low in

volume, from ice and snow deposits higher up the valley walls [Doran, 2002; Doran et al., 2010;

Marchant and Head, 2007].

Downslope winds are funnelled by the valley system towards the coast, with speeds typically

up to 38 m s−1 [Doran, 2002]. Two downslope winds are observed, particularly during the winter

months [Speirs et al., 2010, 2012]. Katabatic winds are most common, and form as air at high

elevations cools by radiating heat, thus causing it to become denser and flow downslope under

gravity. Another downslope wind observed in the McMurdo Dry Valleys are polar foehn winds,

which are different as they originate at low elevations on the windward side of a topographic high.

The air cools adiabatically by orographic lifting, i.e. being forced up a topographic slope, and

deposits precipitation on the windward side of the mountain. Thus, when the wind passes over

the topographic high and descends, it is much drier. In both cases, the descending air warms

adiabatically and increases the air temperatures on the valley floors. Speirs et al. [2010] observe

changes of >40 ◦C by foehn winds, which warm more than it cooled due to a lower moisture

content relative to the windward side [Speirs et al., 2010].

Precipitation on the valley floors is effectively doubled as the winds transport snow from higher

up the valley, however, they also act to erode and sublimate any snow deposited on the valley floors,

keeping the overall snow cover low Fountain et al. [2009]. These winds also shape the terrains by

picking up grains of sand and dirt and effectively sandblasting the large boulders and rocks strewn

across the valley floors into interesting shapes [Doran et al., 2010]. Such features are known as

ventifacts and can be used to indicate paleo-wind direction, with the ridges and groves lying parallel

to the prevailing wind direction.

The combination of these conditions makes this region a Mars analogue site. Of particular

interest is the potential for life in these extreme environments, with endolithic photosynthetic

bacteria found in the interior of rocks, which is relatively moist, and anaerobic bacteria living in the

ice of Taylor Glacier, living off iron and sulphur [Doran et al., 1994, 2010; Prentice et al., 1998].

Planetary scientists are also exploring the analogues for surface processes, such as the recurring

slope lineae and swiss cheese terrain, which occur in the mid-latitudes and polar caps of Mars

respectively [Doran et al., 2010; Levy, 2012; MacClune, 2003; Marchant and Head, 2007].

The permanently dry conditions and ancient, slowly evolving landscape that is free of vegetation,

make this region an ideal calibration site, enabling pulses from the entire ICESat time-series to be

used. The DTMs over the site mainly cover the valley floors, with Hut, Odell, Radian, and White

being the only significantly ice covered regions. The snow and ice covered peaks of the mountains

and valley walls are also not covered, such that the DTMs cover the areas of least change. The

wealth of ICESat data over the site mean that different atmospheric conditions can be tested, which

should indicate the best conditions to successfully derive surface characteristics.
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5.6 EARTH’S COORDINATE SYSTEMS

Two Earth reference systems are employed in the data used in this chapter, Topex/Poseidon and

WGS 84, which are described in Table 2.2. The Topex/Poseidon system is used by ICESat, whilst

the WGS 84 system is used by the McMurdo Dry Valley DTMs [Schenk et al., 2004; Schutz, 2001].

Unlike the Martian datasets used in Chapter 3, the reference surfaces in both datasets are in relation

to reference ellipsoids, rather than an equipotential surface, which for Earth is referred to as the

geoid. This makes it easier to convert elevations between different coordinate systems, as different

coordinate systems may employ different models of the geoid.

To ensure correct co-registration of data, the ICESat data is converted to the WGS 84 reference

system using the equations set out in Section 2.2.5 in software from Haran [2004] that was converted

to MATLAB format [Ligas and Banasik, 2011; Meeus, 1991]. The decision to convert the ICESat

data, rather than the DTM data, was taken because the WGS 84 system is typically more common,

and it is simpler to convert point data than the large raster datasets from ATM.

5.7 METHODS

The methods employed in this chapter, which are very different to those applied in previous chapters

due to the precise knowledge of pulse-footprint location and availability of the full echo-profile, are

outlined here.

5.7.1 DTM PROCESSING AND QUALITY CONTROL

The DTMs, which are available from United States Geological Survey [2013], were loaded into a

single ArcMap 10.2 project for viewing and processing. To maximise the extent of data that can be

used, they were mosaiced together to form a single, large, DTM, using the Mosaic to New Raster

Tool. The resolution of the new DTM, which is shown in Figure 5.6, is 2 m pixel−1 ×2 m pixel−1

and projected using the south polar stereographic coordinate system to better view the data. For a

pulse to be used in the study, the entire pulse-footprint must lie within the boundary of the DTM

data, by mosaicing the DTMs pulse-footprints that lie on the boundary of two or more DTMs can

now be used.

A hillshaded image was produced from the mosaiced DTM to identify ROIs of poor quality

elevation data. Rather than the pits and spikes observed as a result of poor stereo-matching, lidar

may produce spikes of data due to atmospheric backscatter triggering the receiver before the

ground-return. Two layers of processing had already been applied to the data to identify poor

echo-returns, which explains why no areas of poor data were identified here. However, during the

DTM detrending finer-scale errors, ≤10 cm inconsistencies in neighbouring DTM post heights,

were identified in some areas. Errors at these scales are not thought to affect the results from

non-detrended surface roughness comparisons.
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Figure 5.6: Map of ATM mosaiced DTM elevation over the McMurdo Dry Valleys, Antarctica. The
individual zones are shown in Figure 5.4. A Landsat image mosaic is shown in the background.
The projection system is South Pole polar stereographic projection, with the South Pole towards
the top.
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5.7.2 ICESAT DATA COLLECTION

To identify the orbits that may contain data over the McMurdo Dry Valleys, all ICESat reference

ground-track orbits, available from National Snow and Ice Data Center [2014c], that appeared

to contain one or more data points over a large ROI, defined approximately as the map coverage

area in Figure 5.4 (and subsequent maps of the area), were identified. All GLAH01, GLAH04,

GLAH05, and GLAH14 files that contain data from the identified orbits, using laser 2 and 3, were

downloaded from the ICESat FTP site at National Snow and Ice Data Center [No Date.].

To identify the relevant data, pulses within each GLAH14 file were mapped in MATLAB

to identify whether they fell within the boundary of a mask, produced from the mosaiced DTM

extent minus a 70 m buffer. This mask was produced using the Con Tool in the Spatial Analyst >

Conditional Toolbox to produce a logical raster of 0’s and 1’s, where 1 was a raster value and 0

was a no-data pixel. The Raster to Polygon Tool in the Conversion Tools Toolbox was then applied

to produce a polygon where there is a raster value to produce a mask of the raster area. The Buffer

tool was then used to produce a 70 m buffer either side of a line at the circumference of the raster.

This buffer area was then removed from the polygon of the raster coverage using the Erase tool, to

produce the final mask to select ICESat pulses. A 70 m buffer was used to ensure that all the pulses

that lay within the boundary had pulse-footprints that lay entirely in the boundary of the DTM.

The GLAH14 files were used to identify pulses because they represent the highest level of

processing, and were therefore better geolocated than the Level 1 data. These files also show

metadata regarding quality of a pulse, aiding the pulse selection process. The pulse record and

pulse numbers that fall within the mask were recorded. All the data for the identified pulses were

extracted from the GLAH01, GLAH04, GLAH05, and GLAH14 and saved to a single MATLAB

structure file, preserving the precision and file structure in the original HDF5 file, and enabling

faster processing in MATLAB.

In total, 49 orbits contain data over the larger ROI, from which 624 GLAH14 files, 4254

GLAH04 files, and 34 199 GLAH01 and GLAH05 files are available. From these files, over 36 000

pulses were found to lie within the mask and have a valid return, which are mapped in Figure 5.7.

Most of the data for each pulse, i.e. the received signal, elevation, location, and many warning flags,

are available at the same timing resolution as the pulse-rate, meaning that pulse selection process

can be completed at full resolution. However, some data is recorded at 1 Hz. As a result, the ICESat

record number is recorded at 1 Hz, and the pulse number within each record is logged at 40 Hz, and

therefore falls between 1 to 40.

5.7.3 CO-REGISTRATION

The altitude control system, GPS, and star-trackers on-board ICESat enable the geolocation of

each pulse to be known to within a few metres [Schutz, 2001; Zwally et al., 2002]. This is

significantly better than MOLA and Lunar Orbiter Laser Altimeter (LOLA) data used in the previous

chapters [Smith et al., 2001, 2010b]. The geolocation was further improved by co-registering the

data to the high-resolution DTM data, as noted by Harding and Carabajal [2005].
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Figure 5.7: Map of ICESat laser pulse locations within the mask. A Landsat image mosaic is shown
in the background.



23
6

C
H

A
P

T
E

R
5.

E
A

R
T

H
:

A
S

S
E

S
S

IN
G

IC
E

S
A

T
P

U
L

S
E

-W
ID

T
H

S

Distribution of Shift Direction

100
200

0◦

180◦
150◦

120◦

90◦

60◦

30◦

210◦

240◦

270◦

300◦

330◦

Freq.

Bearing

(a)

0 5 10 15

2

4

6

8

10

12

14

16

18

0

Fr
eq

ue
nc

y
(h

un
dr

ed
)

Distribution of Shift Distance

Shift (m)

(b)

-1 -0.5 0 0.5 1

1

2

3

4

5

6

7

8

9

0

10

Elevation Change (m)

Difference in Elevation

Fr
eq

ue
nc

y
(t

ho
us

an
d)

(c)

Figure 5.8: Plots showing the ICESat pulse location shift bearing, magnitude, and elevation, shown in Figures 5.9a to 5.9c. The shift magnitude continues up to
117 m, however, as only 86 pulses have a shift of >20 m, the plot focuses on shifts of less than 15 m. The difference in elevation is calculated by subtracting the
new elevation from the original elevation, after the correction the difference in ellipsoid in the original GLAH14 and WGS 84. Only pulses over Mount Erebus
showed a decrease in elevation.
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Figure 5.9a: Map of the shift direction from the original ICESat pulse-footprint location after
co-registration. The ICESat elevation data is shifted to fit the DTM data. A Landsat mosaic is
shown in the background.
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Figure 5.9b: Map of shift magnitude from the original ICESat pulse-footprint location after co-
registration. The ICESat elevation data is shifted to fit the DTM data. The maximum shift was
117 m, but only 86 pulses had shifts greater than 20 m, hence the plot focussing on shifts ≤15 m. A
Landsat mosaic is shown in the background.
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Figure 5.9c: Map of elevation change from the original ICESat pulse-footprint location after
co-registration. The ICESat elevation data is shifted to fit the DTM data. The difference was found
by subtracting the new elevation from the original elevation given in the GLAH14 product, once
this data has been corrected for the difference in the Topex/Poseidon ellipsoid to the WGS 84
elipsoid. A Landsat mosaic is shown in the background.
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Table 5.4: Fit statistics between ICESat and ATM DTMs before and after co-registration. The
mean, median and mode relate to elevations extracted from within the ICESat pulse-footprints. †
shows the deviation from the line-of-best-fit. ‡ shows the statistics of the line-of-best-fit.

Original Shifted

Statistic Mean Median Mode Centre Mean Median Mode Centre

Mean Dev† 1.12 1.14 4.64 1.24 1.08 1.10 4.66 1.20

Max Dev† 10.75 10.48 37.17 11.33 9.60 9.49 37.17 10.61

R2‡ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RMSE‡ 1.49 1.50 4.76 1.65 1.43 1.44 4.77 1.59

To improve the co-registration between the datasets, the ICESat data was shifted to fit the

mosaiced DTM data, which is shown by Schenk et al. [2004] to be accurately geolocated when

compared to GPS data. Harding and Carabajal [2005] observe shifts of up to 45 m are required to

improve the correlations between the observed echo-profile and modelled echo-profiles derived

from high-resolution DTMs. Surface matching software developed by Lin et al. [2010], and restored

for more recent versions of MATLAB, was used to perform co-registration. Co-registration was

performed for ICESat data over each of the original DTMs individually due to the size of the

mosaiced DTM (>15 GB). The WGS 84 ICESat elevations are used as the ICESat elevation, and

only pulses that record elevations less than the maximum elevation in the high-resolution DTMs

are used in the co-registration process. This removes cloud hitting pulses that affect the quality of

co-registration by producing unrealistically large shifts of several kilometres.

The co-registration algorithm uses least-squares surface matching based on a seven parameter

coordinate transformation, using three rotations, three translations, and a scaling factor [Lin et al.,

2010; Mills et al., 2003]. The software was originally developed for matching Mars DTMs, but

can be applied to any elevation data and determines the new elevation values using Delaunay

triangulation rather than using the elevation of the nearest DTM pixel [Lin et al., 2010]. The process

works iteratively. The mean absolute vertical distance is calculated at the end of each iteration,

which is used to provide estimates for values of the next rotation and translation matrixes and

scaling value. Differences between the two surfaces are minimised until a convergence criterion or

the maximum number of iterations, set at 200, is reached [Lin et al., 2010].

Most sites require the maximum 200 iterations, however, most iterations produce only small

shifts of a few centimetres, and the final few iterations produce shifts at much smaller values.

Further iterations would therefore not produce better results, as the pixel size of the high-resolution

mosaiced DTM is 2 m×2 m, meaning that further refinements are very unlikely to change specific

pixels included in any calculation.

The shift bearing, distance, and change in elevation of the ICESat data is shown in Figure 5.8,

and mapped in Figures 5.9a to 5.9c. The statistics comparing ATM and the original and newly

co-registered ICESat data is shown in Table 5.4. The shift bearings in Figure 5.8a appear evenly

distributed, with the exception of the peak at ∼240°. The majority of the shift magnitudes, shown
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in Figures 5.8b and 5.9b, are ≤5 m, less than that observed in Harding and Carabajal [2005].

The observed changes in elevation, calculated by subtracting the new elevation from the original

WGS 84 elevations, are typically between 0 m to 1 m, similar to those reported in Schenk et al.

[2004] using GPS (Figures 5.8c and 5.9c). Only the Mount Erebus data reveals negative elevation

changes, which are also in-line with some of the GPS comparisons in Schenk et al. [2004], but not

included in their assessment due to a lack of GPS metadata, in particular the reference ellipsoid

to which the GPS data is referenced. The shifts reported here suggest the elevations in the Mount

Erebus DTM are too low, however, the absolute difference is similar to those reported to the other

DTMs. Furthermore, differences such as this may occur more readily over areas that are both

rugged and spatially small. Finally, the potential errors in elevation are not expected to influence

the pulse-width discussed in this thesis as they are relatively small, and represent only a few bins of

ICESat data.

5.7.4 TERRAIN TYPE

To ensure that only pulses over land are used in the analysis, pulses over the sea are removed

using a mask. Likewise, a mask was applied to identify ICESat data over permanently bare-earth

terrain, as part of the project set out to explore the relationship between ICESat pulse-widths and

bare-terrain, which is applicable to the work in Chapters 3 and 4. In this case, a value of 1 was

applied to pulses where this is true, and 0 where this is false. These values are then used in the

pulse selection process, which is described in Section 5.7.9, to identify data over bare-earth (1) and

ice (0). The initial masks are available from McMurdo Dry Valleys Long Term Ecological Research

[2013b], and were modified to ensure co-registration with the Landsat mosaic. The resulting masks

are shown in Figure 5.10. The ICESat data were also tagged with the area name, so comparisons

between ICESat pulse-widths can be made for each DTM individually, to explore which terrains

(i.e. wide valleys, steep terrain, volcanic terrain) perform best.

The ice conditions in and around the McMurdo Dry Valleys, as reported in Pritchard et al.

[2009] and Rignot et al. [2011b], suggest that data over icy terrains can be used. In Figure 5.11, the

icy terrains show little lateral movement, whilst Figure 5.12 shows comparatively little change in

elevation over the ROI. Faster ice velocities and ice changes would imply that the terrain would

have changed significantly during the lifetime of the ICESat mission and, therefore, comparisons

between pulse-widths and surface characteristics would not be comparing the same terrain. The

results from the icy terrains may provide important results for laser altimeters operating over the

icy moons within the Solar System, such as the upcoming Ganymede Laser Altimeter (GALA)

planned for the JUpiter ICy moons Explorer (JUICE) mission, to discover more about fine-scale

surface characteristics and potential landing sites [Hussmann et al., 2013]. However, two things

to consider when using data over icy terrains are: (1) the spectral signature of ice may result in

surface characteristics not being extracted from laser altimeter pulse-widths, and (2) changes in

morphology due to aeolian processes may mean the terrain changes significantly.

Finally, another terrain type, highlighted in Figure 5.4 is used to provide insights into the
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Figure 5.10: Map of the area covered by rock, sea, and ice within the ICESat study area of the
McMurdo Dry Valleys. Rock and sea coverage is adapted from data at McMurdo Dry Valleys Long

Term Ecological Research [2013b]. A Landsat mosaic is shown in the background.
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Figure 5.11: Map of ice velocity magnitude around the McMurdo Dry Valleys as reported in Rignot

et al. [2011b], and the data available from Rignot et al. [2011a]. The sea mask, as shown in
Figure 5.10 is applied to highlight only the ice on land and ice shelves.
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The McMurdo Dry Valleys

Figure 5.12: Map of elevation changes over Antarctica and Greenland [Pritchard et al., 2009]. The
black box represents the ROI around the McMurdo Dry Valleys.

relationship between laser altimeter pulse-widths and surface characteristics over highly variable

terrain. The region is known as the Labyrinth and is described in detail in Section 5.9.

5.7.5 FITTING OF THE WAVEFORMS

By providing the full echo-profile, ICESat enables pulse-widths at different thresholds to be

calculated. However, to do this, one must have reasonable estimates of the peak energy, and start

and end points of the pulse return, whilst reducing the effect of noise.

One method is to apply a median filter to smooth the echo-profile. However, difficulties arise in

defining a suitable window size applicable to all echoes, and identifying the start and end points of

the echo-profile, as noise within the profile may cause variations in the signal before the true pulse

return, which could be above the threshold used to measure the pulse-width.

The method used here is to fit the echo-profile with Gaussian distributions to form a smoothed

fit. In the standard MATLAB fit tool, up to eight Gaussian distributions can be fitted to a signal,

which sum together to form a smoothed profile, as shown in Figure 5.13. The benefits to using

this method are (1) a smoothing of the effect of noise within the profile, (2) it produces a flat

profile section before and after the ground echo-profile, and (3) it produces smoother increases and

decreases in the profile, enabling the threshold crossing point to be easily identified.

Figure 5.13 shows the R-squared of the Gaussian profiles when they are compared to the original

echo-profiles. Increasing the number of Gaussians to model the echo-profile improves the observed
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Figure 5.13: Plots comparing the different number of Gaussians required to accurately fit an
example echo-profile. Final profile is shown in red, and the individual Gaussians shown in green. A
minimum of two Gaussians are required in this example to produce a reasonable fit. Eight will be
used throughout this work, as this provides the best fit, as many echo-profiles are more complex
than that shown here. The Time is negative as ICESat searches for the end of the profile, given as
0 ns, and provides the preceding 544 samples.
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Figure 5.14: Plot comparing the mean R-squared of the fit and the number of Gaussians used for
the fit for all data within the boundary of the ATM mosaiced DTM and for rock only data described
in Table 5.6. Blue represents all the data within the boundary of the ATM DTMs, which includes
cloud and ice data. Red represents the rock only data with the cloudy data removed. Upper and
lower standard deviations are shown in the dotted lines of the same colour for each of the plots.

correlations. Figure 5.14 shows the mean R-squared values of comparisons between the original

and modelled profiles for all echo-profiles used in the study. It also shows comparisons using only

the pulses acquired over bare-earth terrains, with cloud-hitting pulses removed. Both show that

increasing the number of Gaussians not only increases the mean R-squared values, but decreases

the standard deviation of the R-squared values, such that 83 % of the fits have an R-squared of

≥0.98 using the latter criteria. Increasing the number of Gaussians beyond MATLAB’s maximum

of eight would increase the R-squared values, however, each additional Gaussian would provide

less of an improvement than the previous one. One must also remember that the aim of modelling

the returns with Gaussians is not to reproduce the original profiles, but to smooth out noise. There

will come a point where additional Gaussians start to repeat noise patterns within the profiles, rather

than reducing its effects. In conclusion, eight Gaussians are deemed a suitable number in order to

provide an accurate, smoothed profile for pulse-width estimates, and is significantly better than is

available from MOLA and LOLA (Figure 5.14).
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The comparison of original and smoothed profiles is also a method of identifying poor data.

Data that is affected by cloud, or is strongly affected by noise produces poorer R-squared values

than echo-profiles that provide a clean ground return. A threshold for the minimum R-squared

value can be used to identify poor data, which is described in Section 5.7.9.

5.7.6 CALCULATING PULSE-WIDTHS

Pulse-widths were calculated from the modelled eight Gaussian fitted profiles at different thresholds,

which are: Full Width Half Maximum (FWHM), Standard Deviation, and 5 %, 10 %, and 20 % Peak

Energy. Examples of the different thresholds are shown in Figure 5.15, using the same echo-profile

shown in Figure 5.13. Lower thresholds are not used as it becomes difficult to distinguish between

noise remaining in the profile, such as possible multiple scattering effects causing broadening of

the profile, and the true ground return. This broadening effect results in some profiles appearing to

have very wide pulse-widths (∼500 ns), however a visual inspection of the profile often appeared

much narrower.

The start and stop point of the pulse-width are calculated as the first and last point in time that

the smoothed profile is above the desired threshold. Another option would be to interpolate between

the values immediately above and below the threshold to find a more accurate time at which the

threshold is crossed. However, as the pulse-widths are on the order of 100’s of nanoseconds,

interpolation would only change the pulse-width values by <1 %.

An estimate of the pulse-width is provided in the GLAH05 datasets for each pulse. These

estimates are produced using the methods in Brenner et al. [2011]. The original signal is smoothed

using increasingly wide Gaussian filters, starting at a 4 ns standard deviation, until a received signal

is found; if a signal is not found then this is recorded in the no signal flag. The start and end of the

pulse is defined as the first and last region of the return signal that are greater than the noise signal

plus the standard deviation of the noise, after which the peaks of the smoothed profile are identified.

Gaussians are then fitted to these peaks, with the smallest Gaussians removed or combined with

neighbours, as are the Gaussians that are closer together than the limit defined in the accompanying

ANC07 dataset. A standard fit uses two Gaussians, whilst an alternate, more complex, fit uses

six. The standard deviation of the combined Gaussian is then used as the RMS received optical

pulse-width pulse-width in the GLAH05 datasets [Brenner et al., 2011].

Comparisons between the different measures of pulse-width developed here and the GLAH05

pulse-widths are shown in Figure 5.16. These plots show the standard deviation pulse-width to

produce the most similar pulse-widths to those in the GLAH05 dataset, which is expected as they

are produced by similar means. The 10 % and 20 % peak plots show the best correlations, whilst

the FWHM show the poorest. The FWHM pulse-widths appear to be typically twice the size of

those in the GLAH05 dataset, whereas the 10 % and 20 % are 3 to 5 times larger. By using a wide

variety of thresholds the aim is to identify best practise for future laser altimeter instruments, as

well as explore whether the observed correlations using MOLA and LOLA pulse-widths are limited

by using the FWHM as an estimate of pulse-width.
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Figure 5.15: Plot examples of the pulse-width calculated at different thresholds. The dotted line is
the mean pulse-width within the threshold, which is defined as the area in yellow. The time values
pass from −544 ns to 0 ns as 0 ns represents the time the recording of the return pulse is stopped.
Blue shows the original echo-profile. ICESat Record: 120 717 966, Pulse: 19.
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Figure 5.16: Plots comparing pulse-widths given in GLAH05 to those calculated using different
thresholds. Threshold is shown in the vertical axis. Linear-line-of-best fit is shown with standard
deviation.

Detrended pulse-widths were calculated using the different pulse-width thresholds, and by

applying the slope correction that is described in Equation 2.7. The beam divergence angle is

110 µrad, and the transmitted pulse-width is given as 6 ns, as there is only a very small variation

of 4 ns to 6 ns. The impulse response time is unknown, but is assumed to remain constant for all

pulses, and is therefore not required.

5.7.7 DATA EXTRACTION

DTM data was extracted from within each pulse-footprint boundary, which totalled over 36 000

pulses. This was completed for both the shifted and non-shifted data described in Section 5.7.3.

These data were saved and assigned to the ICESat data file in MATLAB, so that all data was

available and easily accessible.

Contained within the ICESat GLAH14 dataset is the mean major-axis of each set of 40 pulse-

footprints (d_tpmajoraxis_avg) and the eccentricity (d_tpeccentricity_avg), from which the mean

minor-axis was calculated. These data are derived from the LPA image, which are available at 1 Hz,



250 CHAPTER 5. EARTH: ASSESSING ICESAT PULSE-WIDTHS

−100 −50 0 50 100
−100

−50

0

50

100

X (m)

Y
(m

)

Transmitted pulse energy distribution

−40 −20 0 20 40

−40

−20

0

20

40

X (m)
Y
(m

)

DTM Elevation

−40 −20 0 20 40

−40

−20

0

20

40

X (m)

Y
(m

)

Detrended Elevation

−40 −20 0 20 40

−40

−20

0

20

40

X (m)

Y
(m

)

Gaussian Detrended Elevation

Figure 5.17: Plots showing the process of extracting pulse-footprint DTM data and finding detrended
elevations, with and without the energy distribution. The pulse-footprint is defined as an elliptical
area where the energy is greater than or equal to e−2 relative to the peak energy. The DTM elevation
plot has a range of 9.85 m. The detrended elevations have a range of 2.42 m, produced by removing
a plane-of-best-fit, and the bottom right plot shows the detrended elevations accounting for the
energy distribution, with a range of 1.44 m. In all plots, blue represents low energy/elevation, and
red high energy/elevations. This example uses the same pulse as presented in Figure 5.15, Record:
120 717 966, Pulse: 19.

shown in Figure 5.17. The pulse-footprint is defined as the elliptical area where the transmitted

energy is equal or greater than e−2 relative to the peak energy at the centre of the pulse-footprint.

The d_beamAzimuth value, also within the GLAH14 dataset but available at 40 Hz, provides an

estimate of the azimuth, eastwards from north, from which the pulse is travelling, relative to an

observer standing within the pulse-footprint. Another angle, d_beamCoelv, provides the angle

between the horizon and the pulse, such that a vector can be calculated of the pulse flight path. Here,

only the d_beamAzimuth value was used, which also provides an estimate for the orientation of the

pulse-footprint: the major axis of the pulse-footprint will also align with the observer azimuth.

In MATLAB, a text file was made that contains the pulse-footprint: centroid latitude, centroid
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longitude, major-axis, minor-axis, eccentricity, and orientation. This text file was then used with the

Table To Ellipse tool in ArcMap 10.2 to produce a shapefile of ellipses for all the pulse-footprints

over the McMurdo Dry Valleys. This shapefile was then split into individual shapefiles for each

pulse-footprint and converted from a line polygon defining the edge of the pulse-footprint to a filled

polygon that represents a mask of the pulse-footprint. A basic Python 2.7 script, used in the ArcMap

environment, was then used to apply the Extract By Mask tool to each pulse-footprint shapefile. This

tool extracts the DTM values within the area defined by the shapefile, which were then exported to

individual text files for each pulse, and read and saved to the dataset file in MATLAB, as shown in

Figure 5.17.

5.7.8 SURFACE ROUGHNESS AND SLOPE CALCULATION

The extracted DTM values, rather than maps of surface roughness and slope produced at different

baselines, were used to calculate surface characteristics. The RMS height (Equation 2.46), range,

and the Inter-Quartile-Range (IQR) were calculated from the extracted elevation heights directly.

Slope was calculated as the maximum slope of a linear plane fitted to the extracted DTM values, as

in Figure 3.9. The 3-dimensional data was plotted and a linear-plane-of-best-fit, of the form given

in Equation 2.59, was fitted to data. From this equation, Equation 2.60 was derived and used to

calculate the maximum slope of the plane. Detrended surface roughness was calculated for the

RMS height, IQR, and range, from the detrended heights, which were calculated as the original

elevations minus the height of a fitted plane. These forms of roughness represent the roughness

from the background slope.

As the energy distribution of the transmitted energy is known for each set of pulse records, a new

slope can also be derived by applying an energy weight to the fitting of the plane, using the energy

at each point in the pulse-footprint as the weight. The energy at each point was calculated using

cubic interpolation from the lower resolution energy distribution image, as shown in Figure 5.17.

The different roughness values can also be calculated whilst accounting for this energy distribution,

for the original and detrended roughness values. Where the energy distribution was accounted for

by the weighting, the roughness type is tagged with Gaussian, which was used as a approximation

for how the energy is distributed across the pulse-footprint.

RMS height, range, IQR, slope, and their detrended equivalents, are plotted against each

of the methods of pulse-width estimation to attempt to identify which, and how well, planetary

surface characteristics can best be estimated from orbiting laser altimeter pulse-widths. This

study also verifies and assesses the quality of the methods employed by previous studies, which

use only a crude estimate of the FWHM pulse-width, and suggests improved methods for future

instruments [Neumann et al., 2003a; Smith et al., 2001, 2010b].

5.7.9 PULSE SELECTION

The wealth of metadata within the ICESat datasets enable the identification of pulses affected by

atmospheric effects to be identified and removed. Of particular importance are the atm_char_flag
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Table 5.5: Values assigned to three atmospheric condition flags within the GLAH14 ICESat data
product [Palm et al., 2011]. These flags are used in the pulse selection process, as shown in
Table 5.6. * refers to the likely presence of clouds not found using the cloud search algorithm,
instead highlighted by the integrated signal parameter (i_FRir_intsig), and the cloud top height
(i_Frir_cldtop) is set to 10 km.

Value FRir_qa_flg atm_char_flag cld1_mswf_flg

0 Possible Clear <0.010

1 High Cloud Low Optical Depth 0.010 to 0.030

2 High Cloud High Optical Depth 0.030 to 0.060

3 Mid Cloud Low Optical Depth 0.060 to 0.100

4 Mid Cloud High Optical Depth 0.100 to 0.150

5 Low Cloud Low Optical Depth 0.150 to 0.225

6 Low Cloud High Optical Depth 0.225 to 0.300

7 Blowing Snow Low Optical Depth 0.300 to 0.400

8 Blowing Snow High Optical Depth 0.400 to 0.500

9 Not Tested 0.500 to 0.670

10 Insufficient 0.670 to 0.900

11 0.900 to 1.200

12 Likely 1.200 to 1.600

13 i_FRir_intsig* 1.600 to 2.000

14 Low Clouds >2.000

15 No Clouds Invalid

Table 5.6: The typical number of pulses removed as a result of different factors, and the number of
pulses remaining within the data assuming removal in order from top to bottom. The superscript
number signifies the level of pulse-width removal the criteria are used for, with all criteria used
in the previous level also applied. Each level can be applied to the three different terrain types,
bare-earth (bare), all land (land), and ice only (ice), with the results shown in Tables 5.7a to 5.7c.

Criteria Value Pulses Pulses Remaining

Total Pulses - 36 231 36 231

Invalid GLAH05 Pulse-Width 1 10308 10 36 228

Excessive Shift1 ≥20 m 147 36 082

Poor Elevation Match1 ≥20 m 1907 34 330

Poor Profile Fit (R-squared)1 ≤0.95 6284 29 879

Terrain
Bare Land Ice

7952 28 796 16 440

FRir_qa_flg Flag1 0 to 14 17 219 4201 13 326 9125

atm_char_flag Flag2 1 to 11 19 114 2673 7270 4597

cld1_mswf_flg Flag3 1 to 15 33 302 204 577 373
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Figure 5.18: Plots showing a poorly fitted echo-profile, an echo-profile that is too wide, and a plot
comparing ICESat and ATM DTM elevations. The top plot shows a low energy return pulse (peak
energy ∼0.08 V compared to ∼0.50 V in the middle plot). The low signal to noise ratio results in a
poor profile fit. The middle plot shows a return signal that is too wide, with the left side of the plot
not showing the start of the echo-profile. In the bottom plot, the red line is the line-of-best-fit, using
the blue data, where the FRir_qa_flg, atm_char_flag, and the cld1_mswf_flg data are removed, and
black shows these removed data.
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(1 Hz), cld1_mswf_flg (1 Hz), and FRir_qa_flg (40 Hz) data flags provided in the GLAH14 dataset,

which are presented in Table 5.5.

The FRir_qa_flg is used to indicate the presence of clouds, detected using cloud search

algorithms [Palm et al., 2011]. The cloud search algorithms are described in Palm et al. [2011]

(Section 3.3.2), the basic function is to search for clouds within windows of 250 m to 20 km above

the surface using ever-finer time-averaged profiles, depending upon detection. Dense clouds have

an optical depth greater than 2, which completely blocks the transmitted pulse, whilst thinner clouds

cause forward scattering, which causes distortions to the echo-profile [Brenner et al., 2011]. The

FRir_qa_flg flag is given a value of 0 to 12 to indicate the presence of clouds identified using the

cloud search algorithms, with higher numbers representing a stronger signal, a value of 13 or 14 to

indicate clouds detected by other parameters, with the latter indicating low clouds (<150 m), and

15 if no clouds are detected.

The atm_char_flag is used to indicate optical depth of the atmosphere. A value of 0 indicates

clear conditions and other values ranging from 1 to 9 used to indicate combinations of high (>5 km),

medium (2 km to 5 km), and low (<2 km) cloud heights and blowing snow or fog, with different

optical depths, such that 1 indicates high cloud with a low optical depth, and 2 indicates high cloud

with a high optical depth. A value of 10 is given for insufficient data.

The final flag used here, cld1_mswf_flg flag, indicates scattering of the pulse, as shown in

Table 5.5. This flag uses the 532 nm data to derive the optical depth of the atmosphere at 1 Hz, and

is given a value of between 0 and 15. Optically thick cloud typically produces an invalid flag due to

extinction of the signal. Unlike the previous flags, this data is available only at 1 Hz, so the same

flag value is given to all pulse within each record (group of 40 pulses).

Table 5.6 highlights the different criteria, and the threshold values, applied during pulse

selection. The final three criteria, which are the atmospheric flags discussed above, apply ever

stricter limits on the atmospheric conditions allowed, shown by the increasing number of pulses

affected. Forward scattering affects almost 92 % of pulses, whilst only 53 % and 48 % are affected

by clouds and blowing snow, as highlighted in the atm_char_flag and FRir_qa_flg flags respectively.

The final column in Table 5.6 explores the number of pulses remaining after each of the criteria

are applied. This highlights the number of pulses remaining after each criteria is applied and the

degree of overlap between the criteria. The split at the terrain row shows the number of pulses

remaining over only bare-earth terrains, all terrains, and only icy terrains, with the results shown

in Tables 5.7a to 5.7c. These three sets of pulses were used to explore the relationships between

pulse-widths and surface characteristics over natural terrestrial planetary terrains, such as those

explored in Chapters 3 and 4, and those over all land surfaces, including ice, which could be

applicable to planetary laser altimeter instruments operating over icy moons.

Figure 5.18 shows an example of a poorly fitted echo-profile and another of a pulse that is

too wide. The first example is likely to result from atmospheric effects, due to the low Signal to

Noise Ratio (SNR). The latter suggest poor identification of the pulse end, meaning the start of the

echo-profile is not within the 544 ns time-frame. The bottom plot shows a comparison of the ATM

and ICESat elevations. The black data represents data that is removed using the atmospheric flags
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described above.

5.8 RESULTS

This section presents the results, comparing surface characteristics to the estimates of pulse-width

derived from the echo-profile.

5.8.1 COMPARING PULSE-WIDTHS TO SURFACE ROUGHNESS AND SLOPE

Example plots comparing ICESat pulse-widths using the 10 % Peak Energy threshold to the four

measures of surface roughness are shown in Figure 5.19. These plots use the Level 1 pulse criteria

over bare-earth, as defined in Table 5.6. The R-squared of these plots, and other measures of

pulse-width, compared to each of the surface characteristics are shown in Tables 5.7a to 5.7c, using

bare-earth, all land, and icy surfaces respectively. The pulse-widths are plotted against surface

characteristics with and without the weighting for the energy distribution across the pulse-footprint.

The cell colour in the tables represents the R-squared to enable easy comparison between R-squared

values within each table, with red representing poor R-squared values (0.35) and green representing

high R-squared values (0.85). All results are considered statistically significant to a p-value ≪0.05

when tested using the Student T-test.

The R-squared values in Table 5.7a show the 10 % Peak Energy threshold to perform consis-

tently amongst the best indicator for each of the surface characteristics studied, for each of the three

criteria for pulse selection. R-squared values between 0.71 and 0.78 are observed for most measures.

Of the different measures, each of the measures of RMS height, inter-quartile range, and slope

produce broadly similar R-squared values with some variation dependent on the criteria for pulse

selection. The range produces poorer results, particularly using the strictest criteria, Level 3. Using

Level 3 criteria, it is noticeable that accounting for the energy distribution across the pulse-footprint

improves the correlations when comparing pulse-widths to RMS height and inter-quartile range

estimates. These results are mirrored in the 20 % Peak Energy pulse-width estimates, albeit with

marginally lower R-squared values.

The largest changes in observed R-squared values across the different criteria are observed using

the 5 % thresholds. For this measure of pulse-width, some of the poorest correlations are observed

when using the Level 1 criteria, whilst when using Level 2 and 3 criteria, these pulse-widths perform

similarly to the 10 % and 20 % thresholds.

The FWHM pulse-width is consistently the worst performing indicator of surface characteristics,

with R-squared values between 0.46 and 0.66, and decreasing R-squared values with tighter controls

on pulse selection when comparing the same surface characteristics across the different criteria.

Finally, the pulse-width estimates within the GLAH05 datasets, derived from the standard deviation

of the combined Gaussians fitted to the echo-profile, typically show better correlations compared to

FWHM estimates, but consistently poorer correlations compared to the 10 % threshold estimates,

especially using the strictest criteria.
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Figure 5.19: Plots comparing FWHM pulse-width values to different surface characteristics derived
from within the pulse-footprint. The plot uses the Level 1 criteria defined in Table 5.6, over
bare-earth terrain. The surface characteristic is shown in the horizontal axis. Red shows the linear
line of best fit, and the R-squared of the fit is shown on each plot.

Table 5.7b shows the R-squared values of comparisons between the different ICESat pulse-

widths to the surface characteristics, for each of the different pulse selection criteria, over all terrains

within the McMurdo Dry Valleys study area. Using all terrain surfaces, rather than just bare-earth

terrain, results in approximately three times more pulses than are shown in Table 5.7a. Across

the three criteria, the 10 % Peak Energy pulse-width threshold measurement typically performs

the best, with the 20 % Peak Energy threshold again performing very similarly. The R-squared

values when using these two estimates of pulse-width are improved compared to their equivalents

in Table 5.7a, with a maximum observed R-squared of 0.81. Using the Level 3 criteria, decreases

in R-squared values are generally observed compared to the previous table for the RMS height and

inter-quartile range measures of surface roughness.

The next best performing estimate of pulse-width is that given in the GLAH05 dataset, which

produces R-squared values between 0.02 and 0.06 lower using the Level 1 and 2 criteria. Like the
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Table 5.7a: Bare-Earth terrains: R-squared value of a linear fit between different ICESat pulse-widths and surface roughness and slope properties over bare-earth
terrain in the McMurdo Dry Valleys, Antarctica, as measured from the ATM DTMs elevation as in Figure 5.19, with the three different criteria for which pulses are
removed. The three main columns refer to the pulse removal criteria defined in Table 5.6, and the number of pulses remaining are shown in parentheses in each
header.

Level 1 Criteria (4201) Level 2 Criteria (2673) Level 3 Criteria (204)

Measure of Surface Roughness G
L

A
H

05
†

FW
H

M
‡

5
%

Pe
ak

‡

10
%

Pe
ak

‡

20
%

Pe
ak

‡

G
L

A
H
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†
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H

M
‡

5
%

Pe
ak

‡

10
%

Pe
ak

‡
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%
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ak

‡

G
L

A
H

05
†

FW
H

M
‡

5
%

Pe
ak

‡

10
%

Pe
ak

‡

20
%

Pe
ak

‡

RMS height 0.68 0.63 0.61 0.73 0.72 0.70 0.63 0.73 0.75 0.74 0.58 0.55 0.65 0.66 0.63

RMS height Gaussian 0.71 0.66 0.64 0.76 0.76 0.73 0.66 0.77 0.78 0.77 0.63 0.60 0.70 0.72 0.69

IQR 0.67 0.64 0.60 0.72 0.73 0.69 0.65 0.72 0.75 0.75 0.58 0.59 0.65 0.66 0.65

IQR Gaussian 0.67 0.64 0.61 0.73 0.73 0.70 0.66 0.75 0.76 0.76 0.67 0.65 0.74 0.77 0.77

Range 0.68 0.61 0.61 0.72 0.72 0.69 0.61 0.73 0.74 0.72 0.56 0.50 0.63 0.63 0.59

Range Gaussia 0.67 0.61 0.60 0.71 0.70 0.69 0.61 0.72 0.73 0.71 0.49 0.46 0.56 0.55 0.51

Slope 0.69 0.66 0.64 0.75 0.75 0.66 0.64 0.72 0.73 0.72 0.73 0.63 0.79 0.78 0.75

Slope Gaussian 0.69 0.66 0.64 0.75 0.75 0.66 0.64 0.72 0.73 0.72 0.72 0.63 0.78 0.78 0.74
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Table 5.7b: All Terrains: R-squared value of a linear fit between different ICESat pulse-widths and surface roughness and slope properties over all terrain in the
McMurdo Dry Valleys, Antarctica, as measured from the ATM DTMs elevation as in Figure 5.19, with the three different criteria for which pulses are removed.
The three main columns refer to the pulse removal criteria defined in Table 5.6, and the number of pulses remaining are shown in parentheses in each header.

Level 1 Criteria (13 327) Level 2 Criteria (7271) Level 3 Criteria (578)

Measure of Surface Roughness G
L

A
H

05
†
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M
‡

5
%

Pe
ak

‡
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%

Pe
ak

‡
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%

Pe
ak

‡
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%
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ak

‡
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%
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‡
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%
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M
‡

5
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‡
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%
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ak

‡
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%
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‡

RMS height 0.73 0.69 0.61 0.77 0.77 0.74 0.68 0.73 0.79 0.78 0.55 0.55 0.54 0.64 0.63

RMS height Gaussian 0.75 0.71 0.63 0.79 0.79 0.76 0.70 0.76 0.81 0.80 0.53 0.54 0.53 0.63 0.63

IQR 0.72 0.69 0.60 0.76 0.77 0.73 0.69 0.73 0.78 0.78 0.54 0.56 0.53 0.64 0.64

IQR Gaussian 0.72 0.69 0.61 0.76 0.77 0.74 0.70 0.75 0.79 0.79 0.52 0.54 0.52 0.63 0.64

Range 0.73 0.68 0.61 0.77 0.77 0.74 0.68 0.73 0.79 0.77 0.57 0.55 0.55 0.65 0.64

Range Gaussian 0.72 0.66 0.60 0.75 0.75 0.72 0.66 0.71 0.76 0.75 0.45 0.46 0.45 0.53 0.53

Slope 0.75 0.72 0.64 0.80 0.80 0.73 0.70 0.74 0.79 0.78 0.73 0.66 0.67 0.79 0.77

Slope Gaussian 0.75 0.72 0.64 0.80 0.80 0.73 0.70 0.74 0.79 0.78 0.73 0.66 0.67 0.79 0.77
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Table 5.7c: Icy terrains: R-squared value of a linear fit between different ICESat pulse-widths and surface roughness and slope properties over icy terrain in the
McMurdo Dry Valleys, Antarctica, as measured from the ATM DTMs elevation as in Figure 5.19, with the three different criteria for which pulses are removed.
The three main columns refer to the pulse removal criteria defined in Table 5.6, and the number of pulses remaining are shown in parentheses in each header.

Level 1 Criteria (9126) Level 2 Criteria (4598) Level 3 Criteria (374)

Measure of Surface Roughness G
L

A
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M
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5
%
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ak
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%
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ak

‡
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%
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%
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%
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%
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G
L
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†
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H

M
‡

5
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‡
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%
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ak

‡

20
%
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ak

‡

RMS height 0.70 0.65 0.53 0.74 0.75 0.70 0.64 0.65 0.75 0.74 0.48 0.49 0.42 0.60 0.60

RMS height Gaussian 0.71 0.67 0.54 0.75 0.76 0.71 0.65 0.67 0.76 0.75 0.45 0.47 0.41 0.58 0.58

IQR 0.69 0.65 0.52 0.73 0.74 0.69 0.64 0.65 0.74 0.74 0.47 0.49 0.41 0.59 0.59

IQR Gaussian 0.68 0.65 0.52 0.72 0.74 0.69 0.65 0.66 0.75 0.75 0.42 0.45 0.39 0.56 0.57

Range 0.70 0.66 0.53 0.74 0.75 0.71 0.65 0.66 0.75 0.74 0.51 0.51 0.44 0.63 0.63

Range Gaussian 0.67 0.61 0.50 0.69 0.70 0.67 0.60 0.62 0.71 0.70 0.39 0.42 0.36 0.51 0.52

Slope 0.72 0.69 0.56 0.77 0.77 0.72 0.68 0.68 0.78 0.77 0.65 0.61 0.52 0.74 0.73

Slope Gaussian 0.72 0.69 0.56 0.77 0.77 0.72 0.68 0.68 0.78 0.76 0.66 0.61 0.52 0.75 0.73
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Table 5.7d: High fit: R-squared value of a linear fit between different ICESat pulse-widths and surface roughness and slope properties over all terrain in the
McMurdo Dry Valleys, Antarctica, as measured from the ATM DTMs elevation as in Figure 5.19, with the three different criteria for which pulses are removed, and
stricter profile fitting criteria (R-squared 0.99). The three main columns refer to the pulse removal criteria defined in Table 5.6, and the number of pulses remaining
are shown in parentheses in each header. The R-squared value for the profile fit, as shown in Table 5.6, is increased from 0.95 to 0.99.

Level 1 Criteria (10 895) Level 2 Criteria (6190) Level 3 Criteria (475)

Measure of Surface Roughness G
L

A
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M
‡

5
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ak

‡
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%

Pe
ak

‡
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%
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%
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%
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%
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RMS height 0.72 0.65 0.75 0.76 0.74 0.73 0.65 0.77 0.77 0.75 0.72 0.62 0.73 0.73 0.72

RMS height Gaussian 0.75 0.68 0.78 0.78 0.77 0.76 0.68 0.80 0.80 0.78 0.77 0.67 0.78 0.78 0.77

IQR 0.71 0.65 0.74 0.75 0.74 0.72 0.65 0.76 0.76 0.75 0.72 0.65 0.74 0.74 0.73

IQR Gaussian 0.73 0.68 0.76 0.77 0.76 0.74 0.68 0.79 0.78 0.77 0.80 0.72 0.81 0.83 0.83

Range 0.72 0.65 0.75 0.75 0.74 0.73 0.65 0.76 0.76 0.74 0.70 0.59 0.72 0.71 0.69

Range Gaussian 0.71 0.63 0.73 0.73 0.71 0.72 0.62 0.74 0.74 0.71 0.64 0.56 0.65 0.65 0.63

Slope 0.73 0.68 0.78 0.77 0.76 0.72 0.67 0.78 0.77 0.75 0.75 0.65 0.75 0.76 0.75

Slope Gaussian 0.73 0.68 0.77 0.77 0.76 0.71 0.67 0.77 0.77 0.75 0.74 0.65 0.75 0.75 0.74
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10 % and 20 % pulse-widths, using the strictest criteria results in a decrease of R-squared values

compared to the equivalents in the previous table.

The 5 % Peak Energy threshold pulse-widths show very little change when using the Level 1

and 2 criteria compared to the R-squared values in Table 5.7a. These pulse-widths produce the

poorest results using the first set of criteria and perform similarly to the GLAH05 pulse-widths

in the second criteria. However, the R-squared values using the strictest criteria are significantly

lower compared to the previous table (0.08 to 0.22) and together with the FWHM pulse-widths,

which also produce mixed results, produce the poorest correlations using these criteria. Similar to

the 10 % Peak Energy, 20 % Peak Energy, and GLAH05 pulse-widths, R-squared values for the

FWHM pulse-widths are improved compared to bare-earth results using the first two criteria and

decreased using the strictest criteria, and by similar magnitudes.

The final terrain type explored is the icy terrains, shown in Table 5.7c. Approximately two-

thirds of the total pulses used in Table 5.7b are over icy surfaces, as shown in Figure 5.10. Like the

previous two tables, the 10 % and 20 % Peak Energy pulse-widths show the best correlations, the

latter with marginally higher values using Level 1 criteria, and marginally poorer correlations in the

Level 2 criteria. The R-squared values themselves lie approximately between their equivalent in the

previous two tables using these criteria levels. However, using the Level 3 criteria, R-squared values

are further reduced compared to Table 5.7b. The behaviour is also reflected in the three remaining

measures of pulse-width, where R-squared values lie between the equivalent comparisons in the

previous tables using the first two criteria, and poorer estimates in the final criteria.

The 10 % Peak Energy threshold estimate of pulse-width consistently produces the best R-

squared values, closely followed by the 20 % Peak Energy threshold estimates. The worst perform-

ing estimates are the FWHM and the 5 % Peak Energy threshold estimates of pulse-width. Between

these are the pulse-widths given in the GLAH05 dataset, which always outperform the FWHM

estimates, and are only outperformed by the 5 % measures when using the Level 2 and 3 criteria

over bare-earth terrains. With these findings in mind, the remainder of these results will focus on

the 10 % and 20 % Peak Energy thresholds of pulse-width estimate.

Like the results in the previous two chapters, slope produces strong correlations between 10 %

and 20 % Peak Energy threshold pulse-widths with R-squared values consistently greater than

0.7 across all terrains and criteria thresholds. Accounting for the energy distribution across the

pulse-footprint in calculating slope has very little effect on the resulting correlations, unlike some

of the surface roughness estimates, where it can have a significant effect. The poorest correlations

are observed using the range estimates with the energy distribution weight applied. Without this

weighting, the range estimates produce similar R-squared values to those produced using other

estimates of surface roughness. The best correlations, when using surface roughness estimates, are

typically observed using RMS height, occasionally eclipsed by IQR. Both of these estimates show

slight improvements in correlations when accounting for the energy distribution, except when using

the Level 3 criteria in Table 5.7b and Table 5.7c, using all terrains and icy terrains respectively.

With the exception of the strictest criteria level, using all the terrains over the McMurdo Dry

Valleys produces the best correlations. Here, R-squared values are consistently close to 0.8, the
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Table 5.8: The coefficients for a linear line-of-best-fit for comparisons between surface characteris-
tics and 10 % Peak Energy estimate of pulse-width using Level 1 criteria. The equation is in the
form Pulse-Width (ns) = (a×Surface Characteristic (m))+b.

Bare-Earth Terrains All Terrains Icy Terrains

Roughness a b a b a c

RMS height (m) 15.38 34.29 18.55 26.56 21.53 23.40

RMS height Gaussian (m) 28.89 32.13 33.98 25.70 39.04 22.93

IQR (m) 9.40 35.61 11.49 27.15 13.44 23.76

IQR Gaussian (m) 26.08 35.33 31.55 27.30 36.45 24.19

Range (m) 3.90 32.71 4.62 25.71 5.29 22.83

Range Gaussian (m) 11.02 32.28 12.84 25.56 14.32 23.09

Slope (°) 4.22 33.43 4.98 25.84 5.53 23.27

Slope Gaussian (°) 4.21 33.49 4.97 25.87 5.52 23.29

highest observed across the three science chapters in this thesis, when using the 10 % and 20 % Peak

Energy threshold pulse-width estimates. This is followed by the icy terrains, with the exception of

the Level 3 criteria, where the poorest correlations are observed. The bare-earth terrains, on the

other hand, produce the best correlations when using the Level 3 criteria level.

When using the 10 % and 20 % Peak Energy pulse-widths, the Level 1 and 2 criteria pulse

selection produce the best correlations over each of the three terrain types individually. With the

exception of slope estimates, R-squared values using the Level 3 criteria are consistently lower, in

some cases by over 0.2.

Finally, Table 5.7d explores the effect of imposing stricter criteria on the profile fit. The

comparisons in this table use echo-profile fits that have an R-squared value of 0.99, using all

terrains. The primary effect is to increase the observed R-squared values for the 5 % Peak Energy

threshold pulse-widths, particularly in the Level 1 and 3 criteria levels, compared to Table 5.7b.

These pulse-widths perform similarly to the 10 % and 20 % Peak Energy pulse-widths, which

experience lower R-squared values compared to the previous tables. Unlike the previous tables,

Level 3 R-squared values are similar to those observed in the Level 1 and 2 criteria. Using these

pulse-widths, accounting for the energy distribution across the pulse-footprint appears to produce

better correlations when using the RMS height and IQR.

The variation in R-squared values for each of the different pulse-widths estimates, across each

of the three criteria in Table 5.7d is typically smaller than those observed in previous tables, with

only the comparisons between the different pulse-widths and range showing lower R-squared values

in the Level 3 pulse-width criteria. This is in contrast to the previous tables where, as mentioned,

the R-squared values in the Level 3 criteria are typically much lower for all surface characteristics

than their equivalents using lower criteria thresholds.

Finally, the coefficients for the line-of-best-fit comparing surface characters and 10 % Peak

Energy threshold pulse-width estimates are shown in Table 5.8. The 10 % threshold is used as it
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typically provides the highest R-squared values, as well as performing consistently well. It is clear

that there are subtle variations in the coefficients for the line-of-best-fit, which could be a result of

surface reflectance.

5.8.2 HOW DO DIFFERENT ZONES COMPARE?

By mapping the R-squared values for each area individually it is possible to determine whether

there are significant differences in the observed R-squared values across the different DTMs used in

this work, similar to the previous studies in Chapters 3 and 4. This helps identify the strengths and

weaknesses of the method, but may be subject to the same problems with the distribution of slope

and surface roughness that affected the results over Lycus Sulci, in Section 3.8. The results are

presented in Table 5.9 and Figure 5.20, and compare RMS height to 10 % Peak Energy threshold

pulse-widths, selected using criteria Level 1 over the three terrain types, as defined in Table 5.6.

These results show significant variation in R-squared values across the zones, from 0.37 to 0.86

Table 5.9: Fit statistics between ICESat 10 % Peak Energy pulse-widths and ATM DTMs surface
roughness and slope for each zone, as in Figure 5.20.

Bare-Earth All Ice Maximum

DTM ξ θ ξ θ ξ θ ξ (m) θ (°)

Odell - - 0.37 0.36 0.37 0.36 0.92 2.78

Barwick 0.48 0.70 0.68 0.80 0.85 0.84 4.87 17.58

Vicotria 0.85 0.79 0.84 0.80 0.83 0.84 9.07 25.21

Doorly 0.81 0.81 0.84 0.84 0.83 0.83 11.95 31.80

McKelvey 0.84 0.73 0.83 0.72 0.79 0.68 6.34 26.77

Bull 0.86 0.86 0.86 0.86 0.83 0.85 3.81 14.82

Wright 0.74 0.66 0.81 0.77 0.80 0.78 10.34 35.75

Beacon 0.76 0.74 0.76 0.73 0.73 0.70 10.71 35.73

Arena - - - - - - - -

Taylor 0.82 0.83 0.80 0.81 0.70 0.70 13.75 40.31

Radian 0.70 0.55 0.72 0.73 0.72 0.73 8.73 25.28

Denton 0.71 0.75 0.77 0.80 0.77 0.81 10.47 29.91

Discovery 0.69 0.65 0.72 0.67 0.74 0.68 9.53 34.00

Morning 0.71 0.77 0.71 0.73 0.70 0.70 11.87 31.67

Royds - - - - - - - -

Erebus 0.53 0.48 0.56 0.46 0.57 0.38 9.62 30.64

Hut Point - - 0.56 0.63 0.56 0.63 28.64 50.92

White 0.53 0.73 0.68 0.71 0.68 0.70 10.82 33.35
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Figure 5.20: Map of R-squared value for each area, when comparing 10 % Peak Energy pulse-widths
and slope. Data is presented in Table 5.9. A Landsat mosaic is shown in the background.
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over Odell and Bull respectively. Arena and Royds contain no data for any of the terrain types5,

whilst Odell and Hut Point only contain data over ice, meaning that the All column and the Ice

column contain the same number of pulses and the same R-squared values.

R-squared values over Odell are the poorest of all the sites, followed by those from Erebus

(Table 5.9 and Figure 5.20). Odell has a much smaller range in surface roughness and slope values

than any of the other sites, 0.92 m and 2.78°, which could cause the poor results, as discussed in

Section 3.8 (Table 5.9). Other than Odell, there does not appear to be a correlation between the

distribution of surface characteristics and the observed R-squared values, suggesting that there is

a lower limit of distribution of surface roughness or slope, above which the R-squared value is

dependent on other properties. The poor results over Erebus are not explained by the distribution

of surface roughness or slope, and instead could be a result of poor co-registration of the datasets.

Both Erebus, Hut Point, and Erebus are also the smallest DTMs used in the work, so the results

could also be a result of the size of the region studied. The low number of data over Erebus, 42

to 51 for bare-earth and icy terrains respectively, means that removing data over this region for

Tables 5.7a to 5.7d will have very little impact of the observed R-squared values, and is therefore

not carried out.

Figure 5.20 shows that the major valleys and areas of greatest topographic variation to be where

the best correlations are found, when the 10 % Peak Energy threshold pulse-widths are compared

to slope. Flatter terrains, such as the terrains in the left of Figure 5.20 and Odell in the lower right,

typically produce lower R-squared values.

5.8.3 HOW DO DIFFERENT OPERATIONAL PERIODS COMPARE?

By comparing data across the different Operational Periods, which are described in Section 5.3.2,

the data may reveal whether there is a change in the observed correlations with changes in energy

output for each laser and for different periods individually, as shown in Figure 5.3 on Page 224.

This could highlight whether low energy outputs or significant changes in energy outputs affects

the observed correlations.

The results, which are shown in Table 5.10, show Laser 3 produces the best correlations, with

the poorest correlations observed during Operational Period 2B. However, there is no correlation

between the mean transmitted energy, or the energy change during an Operational Period, and

the observed R-squared value of the fit. There are also significant changes in the gradient of the

line-of-best fit between these operational periods, although there is a string of consistent gradients

for Operational Periods 3E to 3H, with 3C and 3D also showing similar gradients.

5.8.4 FINDING DETRENDED ROUGHNESS FROM PULSE-WIDTHS

The results in Section 5.8.1 show the strongest correlations observed in this thesis, especially

those observed using slope. ICESat data may therefore present the best opportunity to explore the

5Here, most data is removed to effects from clouds, leaving too few data points for a significant relationship to be
found.
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Table 5.10: Fit statistics between ICESat and ATM DTMs surface roughness for each Operational
Period. The letters in the Operational Periods correspond to the 33 day sub-cycle.

Op. Period Num. Points R-squared Gradient Mean Energy (J) Energy Change (J)

2A 981 0.69 25.40 0.070 0.045

2B 348 0.57 24.18 0.042 0.026

2C 326 0.62 15.15 0.017 0.014

3A 740 0.85 21.32 0.064 0.019

3B 684 0.89 18.57 0.060 0.025

3C 393 0.91 26.46 0.045 0.013

3D 828 0.90 24.36 0.040 0.012

3E 150 0.89 32.63 0.027 0.013

3F 1562 0.85 29.11 0.023 0.008

3G 1448 0.84 29.51 0.021 0.010

3H 862 0.83 29.27 0.017 0.008

3I 320 0.86 35.28 0.016 0.009

relationship between the roughness contribution to pulse-widths and detrended surface roughness,

as presented in Equation 2.7. As well the different measures of pulse-width derived from the echo-

profiles, improved georeferencing and co-registration of datasets is thought to limit the effect of

errors that may have hampered previous results, whilst the large pulse-footprint and high-resolution

data enable accurate estimates of detrended surface roughness to be derived.

Different estimates of pulse-width are compared to slope in Figure 5.21, which also shows the

predicted pulse-width due to slope and instrument effects in green, derived using Equation 2.7.

According to this equation, the difference between the measured pulse-width and the theoretical

pulse-width is a result of detrended surface roughness, i.e. roughness from the background slope.

It is clear from these plots that only the 10 % and 20 % Peak Energy pulse-width thresholds, and

therefore the 5 % threshold, which are even wider, produce pulse-width estimates greater than the

predicted pulse-width using all except roughness.

In Table 5.11, the detrended surface roughness contribution to the pulse-widths are compared to

detrended surface roughness, for each of the three selection criteria. The observed R-squared values

show that very poor correlations are observed between the roughness contribution to pulse-widths,

as outlined in Equation 2.7, and detrended surface roughness, with the best correlations observed

using Level 2 GLAH05 and detrended Range (0.18). Typically, however, the R-squared values

range from 0.10 to 0.15 for all pulse-width estimates except for FWHM pulse-widths, which are

poorer when using the Level 1 and Level 2 selection criteria.

5.9 REPLICATING THE MAWRTH VALLIS RESULTS
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Table 5.11: Detrended Roughness: R-squared value of a linear fit between different ICESat pulse-widths and detrended surface roughness, as measured from the
ATM DTMs elevation as in Figure 5.19, with different criteria for which pulses are removed due to atmospheric effects. The three main columns refer to the pulse
removal criteria defined in Table 5.6, and the number of pulses remaining are shown in parentheses in each header.
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RMS height detrended (m) 0.12 0.08 0.13 0.14 0.14 0.16 0.06 0.12 0.12 0.12 0.11 0.13 0.08 0.12 0.10

RMS height detrended Gaussian (m) 0.11 0.08 0.14 0.14 0.14 0.15 0.06 0.13 0.12 0.12 0.10 0.13 0.10 0.13 0.11

IQR detrended (m) 0.11 0.08 0.13 0.14 0.14 0.16 0.06 0.12 0.12 0.12 0.11 0.16 0.07 0.10 0.09

IQR detrended Gaussian (m) 0.11 0.07 0.13 0.14 0.14 0.15 0.06 0.13 0.13 0.12 0.12 0.16 0.12 0.15 0.13

Range detrended (m) 0.13 0.09 0.14 0.15 0.15 0.18 0.06 0.13 0.13 0.13 0.07 0.11 0.10 0.13 0.10

Range detrended Gaussian (m) 0.10 0.08 0.15 0.15 0.15 0.15 0.07 0.15 0.14 0.13 0.01 0.10 0.11 0.12 0.08
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Figure 5.21: Plots comparing the different pulse-width thresholds to slope, and the theoretical slope
contribution in Equation 2.7. Slope is compared to: GLAH05, FWHM, 10 % Peak Energy, and
20 % Peak Energy pulse-widths. Green are theoretically estimated pulse-width using all but the
roughness contribution to pulse-width in Equation 2.7, and blue shows the estimated pulse-widths.

5.9.1 INTRODUCTION

One area of Wright Valley, known as the Labyrinth, shown in Figure 5.22, appears closest in

appearance to Mawrth Vallis, an area of Mars that presented very poor results in Chapter 3. The

roughness of both terrains appears heterogeneous and highly variable over short baselines. Pulse-

widths from the Labyrinth terrain, which is highlighted in Figure 5.4, are selected and compared

to the different measures of surface roughness and slope in an attempt to discover whether the

results observed over the Martian site are replicated. If poor correlations are observed again here,

this would suggest that surface roughness over these types of terrains cannot be derived from laser

altimeter pulse-widths, however, if the opposite is true, this would suggest that the problem lies

with the poor georeferencing and pulse-width estimation methods employed by MOLA.

The terrain covers an area approximately 50 km×20 km, where a network of bedrock channels,

some of which have a positive gradient, emerge from the margin of Wright Upper Glacier, part of

the East Antarctic Ice Sheet [Lewis et al., 2006]. Channel formation is ascribed to fast-flowing
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Figure 5.22: Maps of the Labyrinth terrain (top) and its roughness characteristics (bottom). ICESat
pulse locations are shown in orange, and the roughness characteristics are shown in white to black
(0 m to 12 m for 70 m baseline RMS height. A Landsat mosaic is shown in the background, slope
map in bottom image is produced using the slope tool in ArcMap 10.1 and the ATM DTM at the
original DTM resolution of 2 m pixel−1.
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subglacial meltwater, sourced from episodic drainage of subglacial lakes, with positive downstream

elevation changes allowed as water is forced through a closed channel system between the bedrock

and the glacier [Lewis et al., 2006]. Channel modification is thought to occur by hydraulic plucking

and abrasion from bed-load and suspended load [Lewis et al., 2006]. The criss-crossing nature of

the channels results in a series of peaks and troughs that is a terrestrial analogue for the spatial

distribution of roughness observed at Mawrth Vallis. The roughness elements are typically larger

than those observed at Mawrth Vallis, up to 600 m wide and 250 m deep, but smaller, and less

homogeneous, than those observed at any of the other Mars sites [Lewis et al., 2006].

Each of the different measures of pulse-width are compared to the original and energy weighted

measures of surface roughness and slope used in the previous section. The pulse selection uses only

the Level 1 criteria described above, with an echo-profile fit R-squared of 0.95, and only pulses

over the bare-earth terrain used, as shown in Figure 5.22.

5.9.2 RESULTS

Once pulses affected by atmospheric effects have been removed, 145 useable pulses are found over

the terrain. The results are presented in Table 5.12, for each of the different pulse-width and surface

characteristic measures.

There are three points of interest raised from the results presented. The first is the results

comparing the pulse-widths to slope are typically much poorer than those compared to the different

measures of surface roughness. In Tables 5.7a to 5.7d, R-squared values are typically similar to

those using the RMS height, whereas over the Labyrinth terrain, the R-squared values over slope are

between 0.14 and 0.26 smaller for four of the five measures of pulse-width. This suggests that, like

the Mars study, only consistent slopes can be used to calibrate pulse-width data, as some areas may

have low slope but high roughness due to the spatial distribution terrain across the pulse-footprint.

Another point is that the GLAH05 pulse-widths consistently produces the largest R-squared

values, which is not observed previously. The 10 % Peak Energy threshold produces the next best

correlations, followed by 5 % and 20 % Peak Energy thresholds.

Finally, and possibly most importantly, FWHM pulse-widths show significantly poorer R-

squared values than observed using other estimates of pulse-width. For the different estimates of

surface roughness, the R-squared values are approximately 0.4 lower than the highest R-squared

values using the GLAH05 values, but can be up to 0.51 smaller; slope results are also smaller,

but with a smaller difference due to the consistently poor results when comparing to this surface

characteristic. The differences between the R-squared values using the FWHM pulse-widths and

the best performing pulse-width are much larger than observed previously using Level 1 and 2

criteria in Tables 5.7a to 5.7d. The pulse-widths derived by MOLA are also estimates of the FWHM

profile, derived from the total energy received and the pulse-width at an automatically derived

threshold setting. In this case, R-squared values are between 0.4 to 0.6 lower over Mawrth Vallis

than the other sites, however, this results in R-squared values over the Mawrth Vallis terrain of <0.1,

compared to <0.4 using a similar pulse-width estimate over the Labyrinth terrain. There could be
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a link between this pulse-width estimate and measuring surface characteristics over this type of

highly variable terrain. Better correlations may observed over the Labyrinth terrain because the

data is better co-registered, more accurate estimates of FWHM pulse-widths can be derived from

the full echo-profile, and there are greater variations in topography observed over the Labyrinth

terrain than Mawrth Vallis, which has been shown previously to result in larger R-squared values.

Due to the low number of original data over the Labyrinth, 305 pulses, Level 3 criteria could

not be applied. Using Level 2 criteria, smaller R-squared values are observed (∼0.2 smaller) for all

pulse-width estimates except for FWHM, where smaller reductions of ∼0.07 are observed.

5.10 DISCUSSION

By using full echo-profile data to derive pulse-widths, high-quality high-resolution DTM data, and

well georeferenced and co-registered datasets, the work in this chapter shows surface characteristics

can be derived from orbiting laser altimeter pulse-widths.

The best correlating pulse-widths are the 10 % and 20 % Peak Energy thresholds, rather than

the FWHM estimates, which are used by laser altimeters over Mars and the Moon. The upper

limit of R-squared values of 0.66 using bare-earth terrains over the McMurdo Dry Valleys could

suggest that FWHM pulse-widths do not correlate well with surface characteristics, in contrast to

the concept outlined in Equation 2.5. The R-squared value correlates well with that observed at

Eberswalde Crater in Table 3.8 on Page 131, where the R-squared value is found to be 0.60. A

slightly larger R-squared value could be observed here because of improved georeferencing and

more accurate estimates of pulse-width from the full echo-profile.

R-squared values increase when using the icy terrains, as shown in Table 5.7c, as well as when

using All terrains, as shown in Table 5.7c. The FWHM pulse-width estimates produce an R-squared

Table 5.12: R-squared values of a linear fit of different estimates of pulse-width compared to
different estimates of surface roughness and slope over the Labyrinth terrain. The terrain is similar
in appearance to Mawrth Vallis, whereby there is high variation in roughness over short baselines,
and is used to attempt to find the causes of the poor data over the Martian terrain. In total, 145 pulses
are used here, using the Level 1 criteria defined in Table 5.6.

Surface Characteristic GLAH05† FWHM‡ 5 % Peak‡ 10 % Peak‡ 20 % Peak‡

RMS height 0.73 0.29 0.71 0.65 0.56

RMS height Gaussian 0.80 0.32 0.79 0.74 0.63

Range 0.70 0.40 0.69 0.68 0.61

Range Gaussian 0.75 0.33 0.76 0.72 0.63

IQR 0.70 0.19 0.70 0.61 0.49

IQR Gaussian 0.74 0.30 0.72 0.67 0.55

Slope 0.48 0.39 0.54 0.58 0.51

Slope Gaussian 0.47 0.41 0.54 0.59 0.53
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value of 0.70 under these conditions, which is in-line with some individual orbit results presented in

Chapter 4. This suggests that using highly reflective surfaces can produce higher R-squared values.

However, it still performs consistently poorer than the other pulse-width estimates explored here,

which approach R-squared values of 0.8.

Lower threshold pulse-widths derived from the full echo-profile appear to produce better R-

squared values. Using a percentage threshold rather than an absolute value helps reduce the effect

of low signal returns. Using the 8-Gaussian fit to the profile also appears to remove the effects of

background signal noise, producing a smooth line from which pulse-width estimates can be derived.

Increasing the number of Gaussian fits beyond this is unlikely to improve the quality of the fit with

the original data, as in Figure 5.14.

The best correlations are observed when the pulse-widths are compared to slope and RMS

height, however, the difference between the R-squared values using these measures and IQR and

range are small, typically less than 0.05. When comparing 10 % and 20 % Peak Energy pulse-

widths to slope and RMS height, R-squared values can be ≥0.8, significantly better than observed

using MOLA and LOLA pulse-widths. Furthermore, the R-squared values are consistently high

and do not vary with the transmitted energy. Accounting for the energy distribution across the

pulse-footprint improves R-squared values by up to 0.04, which could be significant, however,

typical improvements are 0.01, and no improvements are observed when slope was measured in this

way. The slight improvement in R-squared values suggests the energy distribution has a measurable

difference in the resulting estimate of surface roughness, but it is difficult to convert this into an

interpretable dataset when laser altimeter pulse-widths are used to map surface roughness. One

method is to find the relationship between the measure of surface roughness and the measure

accounting for the energy distribution across the pulse-footprint, however, this may introduce

another source of uncertainty and variation within the data. Using RMS height as an example, the

linear relationship between the RMS height and RMS height Gaussian (as in Tables 5.7a to 5.7d)

over bare-earth terrains is

RMS Height = (1.81×RMS Height Gaussian)−0.03, [5.1]

which has an R-squared of 0.97. From such an example, it may be possible to determine the

roughness at the baseline of the pulse-footprint, removing the effect of the energy weighting applied.

One must assume that a similar relationship exists on other planetary bodies however.

The best pulse selection criteria appears to be Level 1 and 2. Level 3 R-squared values are

consistently much poorer. There are small differences between the Level 1 and 2 criteria R-squared

values, but there is no consistent pattern across the different terrains or surface characteristic used.

As the differences in R-squared values between equivalent pulse-width and surface characteristic

measures are <0.03 for these selection criteria, it is not thought significant which one is best.

Instead, using Level 1 criteria is preferred as it offers more pulse data.

Increasing the profile fit limit to an R-squared of 0.99 has little effect on the observed R-squared

values for all except the 5 % Peak Energy pulse-width estimates and the Level 3 criteria correlations.
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R-squared values for the 5 % Peak Energy pulse-width estimates increase to match that of the 10 %

and 20 % Peak Energy pulse-widths, whilst the Level 3 criteria R-squared values are in-line with

Level 1 and 2 criteria R-squared values in the case of the latter. Imposing a stricter lower limit for

the profile fit will remove pulses that contain more noise or natural variation within the signal. This

is particularly important for the lowest threshold limits, which may be triggered by noise, hence the

improvement in R-squared values for the 5 % thresholds.

The very slow ice velocities observed in the ROI means that pulse-widths can be compared to

estimates of surface characteristics from all terrains. The initial assessment explored only bare-earth

terrains, as this is closely linked to the work completed in the previous science chapters. The largest

R-squared values are observed using data from all terrains, followed by the icy terrain data, and,

finally, the bare-earth data. The higher R-squared values observed using icy terrains rather than

bare-earth terrains could be a result of the difference in reflectance of these surfaces: the icy terrains,

which are bright and, unlike alpine glaciers, are not debris covered, have a mean reflectance of 0.54,

whereas the bare-earth terrains have a mean reflectance of 0.38. Higher relative received energy

pulses are likely to improve the quality of the pulse-width measurement, as this typically increases

the Peak Energy and the respective thresholds used for pulse-width estimation here, however it is

unclear why this does not translate to the transmitted energy.

Like the work in previous chapters, the distribution of surface roughness and slope affects

the quality of the calibration, as observed over Odell Glacier in Table 5.9 and Figure 5.20. Poor

R-squared values are also observed over Erebus, but this may be a result of poor co-registration of

the DTM rather than the distribution of surface characteristics within the pulse-footprint, as shown

by the large shift in elevation in this DTM. There is a loose correlation between the types of terrains

producing the best correlations: the large valleys, with large distributions of surface roughness and

slope appear to produce the best correlations, whilst flatter terrains, such as Hut Point, White Island,

and Radian Glacier appear to show lower correlations.

Table 5.11 suggests that detrended surface roughness cannot be derived from pulse-width data

using the assumption described in Neumann et al. [2003a] and outlined in Equation 2.7. This

assumption appears to be over-simplified and not suitable for real-world applications. In reality,

the distribution of topography across a pulse-footprint may result in a low slope value, but a high

surface roughness value, which may have the same surface roughness value as highly sloping

smooth terrain. Using only highly sloping terrains, as defined from the DTM data, decreases the

R-squared values so that no correlation, rather than weak correlation, is observed.

Finally, the Labyrinth terrain offers the opportunity to determine whether the results at Mawrth

Vallis will always occur, or if they are a result of the MOLA instrument setup and co-registration

errors. The results suggest that, where the distribution of surface roughness and slope is highly

variable over short baselines comparable to the pulse-footprint, as observed at Mawrth Vallis and

the Labyrinth terrain, using the FWHM as a measure of pulse-width will result in poor correlations

when compared to surface characteristics. Over the non-Labyrinth bare-earth terrains, the R-squared

value when comparing the FWHM and 10 % Peak Energy pulse-widths is 0.84, whereas over the

Labyrinth the R-squared value is 0.54. This suggests that the profile of the pulses over the Labyrinth
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is typically very different to those over other bare-earth terrains. The mean profile of echo-profiles

over these terrains appear very similar to each other, but there could be a clue in that there is a

wider distribution of pulse-widths for FWHM relative to 10 % Peak Energy pulse-widths. The

R-squared values observed using the FWHM pulse-width estimates over the Labyrinth terrain

may be better than those observed over Mawrth Vallis due to (1) improved georeferencing and

co-registration of datasets, (2) more accurate estimates of the FWHM pulse-width, and (3) slightly

larger roughness features at the Earth analogue site, which results in a slightly wider distribution of

surface characteristics and therefore a greater chance of better correlations being observed.

5.11 EARTH CHAPTER SUMMARY

The results using ICESat full echo-profiles show that surface characteristics can be derived from

orbiting laser altimeter pulse-widths. However, the method of estimating the pulse-widths affects

the resulting correlations with surface characteristics, with the 10 % Peak Energy pulse-widths

performing best, closely followed by 20 % Peak Energy thresholds.

Like in previous chapters, very strong correlations are observed when these pulse-widths

are compared to slope, with RMS height also performing very well. Range and IQR are more

inconsistent, but strong correlations can be observed using some combinations.

Using pulses over an area known as the Labyrinth, the work shows that poor correlations are

observed over Mawrth Vallis in Chapter 3 due to the method of estimating pulse-width. FWHM

pulse-widths, which are predicted by MOLA using an automatic threshold detection system and the

total received energy, performed significantly poorer than other estimates of pulse-width, whilst

comparisons with the different pulse-widths and slope also performed consistently poorly. FWHM

pulse-widths perform consistently poorer than other measures throughout the work, however, they

performed especially poorly under these conditions, leading to the suggestion that highly variable

surface roughness and slope over baselines comparable to that of the pulse-footprint may result in

an echo-profile that is very different in appearance to other bare-earth terrains, and one where the

FWHM does not correlate with surface characteristics. This could be a result of the distribution of

elevations within the pulse-footprint resulting in a laser altimeter echo-profile that is very different

in shape at the higher intensity returns, where the FWHM pulse-width will be effective, compared

to the lower intensity returns as the intensity rises and falls, where lower threshold pulse-width

estimates are effective.

The hypothesis put forward by Gardner [1992] that detrended surface roughness can be derived

from the pulse-width by a simple model of the effects of slope on pulse-widths is shown not to

work efficiently here, with R-squared values <0.2. This suggests that Equation 2.7 over-simplifies

the effect of slope on pulse-width values.
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6

CONCLUDING REMARKS AND FUTURE

WORK

This chapter summarises: the concluding remarks from the three science chapters; the

principal recommendations for future laser altimeter instruments; the contributions the

work in this thesis has made to science; suggestions for future work.

The principal conclusion is that surface characteristics can be derived from the pulse-

width of orbiting laser altimeter instruments.

The principal recommendations for future planetary laser altimeter instruments are

outlined, using the lessons learnt from the work in this thesis. The primary recommen-

dation is to use the full echo-profile to calculate laser altimeter pulse-widths at 10 %

Peak Energy thresholds.

The contributions made to science are outlined, along with a list of current and future

peer-reviewed journal and conference papers to come from the work presented in this

thesis.

Finally, the chapter outlines potential for future work related to the work outlined in

this thesis, including current and future datasets, and laboratory work.
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6.1 THESIS OVERVIEW

The work in this thesis set out to explore the relationship between planetary laser altimeter pulse-

widths and surface characteristics within the pulse-footprint, testing the hypothesis put forward by

Gardner [1992], in Equation 2.5 on Page 50, by comparing surface roughness and slope estimates

from high-resolution Digital Terrain Models (DTMs) to pulse-width data collected over Mars, the

Moon, and Earth. The research is motivated by the fact that global maps of surface roughness

produced in Neumann et al. [2003a] and Smith et al. [2001] from Mars Orbiter Laser Altimeter

(MOLA) pulse-widths use a theoretical relationship that had not been calibrated over extensive

areas, with previous results not showing conclusive proof of a useful relationship [Gardner, 1992;

Kim and Muller, 2008; Kim and Park, 2011; Saiger et al., 2007]. Furthermore, the research set out

to explore whether detrended surface roughness can be derived from the pulse-widths, using a basic

assumption of the effects of slope on the total received pulse-width, as proposed by Neumann et al.

[2003a].

6.1.1 MARS

Data from MOLA is compared to surface roughness and slope estimates from High Resolution

Imaging Science Experiment (HiRISE) and Context Camera (CTX) DTMs, at 1 m pixel−1 and

18 m pixel−1 respectively.

A Slope-Corrected version of the MOLA pulse-width dataset provides the highest correlations,

which removes erroneous data and makes 1 km slope corrections. The highest correlations are

observed over Eberswalde Crater, where roughness features are large and homogeneous. Where

roughness is heterogeneous and small, poor correlations are observed. Over very rough terrain,

pulse-widths appear correlated to pulse-footprint-scale slopes. Finally, it appears that detrended

surface roughness cannot be derived from the dataset.

The poor correlations generally observed are thought to be due to poor estimates of pulse-width,

which are derived from the estimates of the pulse-width above an automatically set threshold

and the total energy received. However, the work in Chapter 5, which uses full echo-profiles in

Ice, Cloud, and land Elevation Satellite (ICESat) data, therefore enabling different pulse-width

thresholds to be tested, shows that Full Width Half Maximum (FWHM) pulse-widths perform

poorer than other, lower threshold estimates, when compared to surface characteristics. Poor

co-registration of datasets, due to large differences in resolution between datasets, is also likely to

play a part, particularly over Mawrth Vallis, and for detrended pulse-widths, which are likely to be

more susceptible to co-registration errors.

6.1.2 THE MOON

Data from Lunar Orbiter Laser Altimeter (LOLA) are compared to surface characteristics of

underlying terrain derived from high-resolution, 2 m pixel−1, DTMs from Lunar Reconnaissance

Orbiter Camera - Narrow Angle Camera (LROC-NAC) over 16 regions across the lunar surface. It
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was expected that by using a combination of a more recent laser altimeter instrument and better

co-registered datasets, that greater correlations would be observed.

Instead, poor correlations are observed over the individual regions, whilst a visual inspection

suggests that pulse-width data in individual orbits behaves differently. Many orbits reveal little

or no correlation with underlying surface features and only 45 of the 329 orbits with significant

results reveal R-squared values greater than or equal to the sites showing some correlation over

Mars (R-squared >0.4). However, some orbits reveal very strong correlations when pulse-widths

are compared to slope, leading to the suggestion that surface characteristics can be reliably derived

from laser altimeter pulse-widths, assuming high data quality. Like the Mars study, rougher,

topographically variable terrain typically produces better correlations.

6.1.3 EARTH

To explore whether better correlations can be found when comparing surface characteristics to laser

altimeter pulse-widths, full echo-profiles from ICESat are compared to high-resolution DTMs over

the McMurdo Dry Valleys, Antarctica, derived from the Airborne Topographic Mapper (ATM). The

terrain covers both bare-earth and icy terrains, which links with the work carried out in previous

chapters and provides data relevant to future laser altimeter instruments, such as the Ganymede

Laser Altimeter (GALA) [Hussmann et al., 2013]. The data are well co-registered and using full

echo-profiles enables different pulse-width thresholds to be tested to find larger R-squared values.

Finally, an area known as the Labyrinth also provides an opportunity to repeat the Mawrth Vallis

study, as this terrain appears morphologically similar in the spatial distribution of roughness and

slope.

The results show surface roughness and slope can be derived more reliably by using different

thresholds for measuring pulse-widths. Using a 10 % Peak Energy threshold produces the best

correlations between laser altimeter pulse-widths and surface characteristics. The pulse-widths

are also selected based on three criteria, defined by different atmospheric conditions relating to

when the pulses were fired: cloud (Level 1), fog and blowing snow conditions (Level 2), and

forward-scattering (Level 3). The best R-squared values are observed using Level 1 and 2 criteria.

Level 3 selection criteria performs poorer, except when tighter controls on fitting the echo-profile

are employed, which could be a result of pulses less affected by background noise being used.

Better correlations are observed using the icy terrains than the bare-earth terrains, possibly due to

higher reflectance from icy surfaces resulting in a more accurate echo-profile.

When using the FWHM pulse-width threshold, as used by MOLA, over the Labyrinth terrain,

poor results are again observed. Using different thresholds produces much better correlations,

leading to the suggestion that surface roughness over heterogeneous terrain cannot be derived using

FWHM pulse-widths. Interestingly, R-squared values using slope also produces poor correlations

for all pulse-width estimates, which could suggest that only regions of consistent slope can be

interpreted and that surface roughness estimates using other measures are more reliable or consistent.

Again, detrended surface roughness is compared to the surface roughness contribution to the
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received pulse-width, as defined in Equation 2.7, to explore whether the assumption by Neumann

et al. [2003a] holds true. This is shown not to be the case and suggests that the results found over

Mars in a similar study are not solely a result of poor georeferencing, but are more likely because

Equation 2.7 over-simplifies the effects of roughness on the received pulse-width.

6.1.4 OVERALL

The work has shown that surface roughness and slope can be derived from laser altimeter pulse-

widths. However, the FWHM method proposed by Gardner [1992], and employed by MOLA

and LOLA, has been shown to perform poorly even under ideal conditions. Instead, surface

characteristics are best derived from pulse-widths measured at the 10 % (preferred) or 20 % Peak

Energy threshold crossing. These pulse-widths perform consistently well when ICESat data is

used and cloud hitting pulses are removed, with R-squared values ∼0.8, whilst imposing stricter

atmospheric criteria on pulse selection does not improve correlations significantly, and reduces data

coverage. Where roughness and slope are heterogeneous at baselines similar to the pulse-footprint,

pulse-widths are better correlated to RMS height, rather than slope.

Finally, it appears that: (1) photon and speckle noise, (2) multiplication noise by the detector,

(3) detector thermal noise, (4) and quantisation noise, as predicted by Gardner [1992], introduce

some natural variation within the observed echo, which reduces the correlations between these

pulse-widths and underlying surface characteristics.

6.2 RECOMMENDATIONS FOR FUTURE INSTRUMENTS

The principal recommendations for future laser altimeter instruments are

• Record the full echo-profile at high-resolution (≤1 ns), to enable more accurate estimates of

pulse-width to be derived.

• Smooth the received echo efficiently to remove the effects of background noise in the received

echo-profile, from which the pulse-width is derived. Here, the smoothing technique used

fits up to eight Gaussians to the received echo to produce a smooth profile, from which the

location of the threshold cross can be identified.

• Use 10 %, or 20 %, Peak Energy threshold, rather than the FWHM proposed by Gardner

[1992], as an estimate of the pulse-widths as these are shown to correlate consistently well

with surface roughness over all terrain types. These pulse-widths also correlate to slope

estimates, except where terrain is heterogeneous at baselines similar to the pulse-footprint.

The following are not necessary in producing a good pulse-width dataset, but are preferred in

producing extra information that can benefit data quality

• The full echo-profile does not have to be permanently recorded in the dataset, but it can

provide another means to identify poor data and explore different thresholds.
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• Recording and accounting for the energy distribution across the pulse-footprint does improve

the observed correlations with underlying terrain, which can be reliably translated to rough-

ness without this energy effect, as shown in Equation 5.1. However, the improvement is not

considered significant and is only recommended if instrument setup and data transmission,

storage, and processing rates allow.

• If a high-resolution stereo-imaging instrument is also part of the spacecraft payload, using

a similar set up as LOLA, in that the bore-sight for the laser altimeter was in-line with the

imaging instrument view, benefited the instrument in being able to produce accurate DTMs

that can be used to calibrate the pulse-width data.

6.3 CONTRIBUTIONS TO SCIENCE

The work in this thesis benefits past and current datasets, which have culminated in a set of

recommendations for future instruments, outlined above. Furthermore, work from this thesis has

been presented in peer-reviewed journals and at major conferences.

6.3.1 THESIS CONTRIBUTIONS

• The testing of different pulse-width thresholds has lead to the identification of a more suitable

pulse-width threshold to be used to infer surface characteristics within the pulse-footprint.

Surface characteristics over bare-earth terrains on Earth are best derived from laser altimeter

pulse-widths measured from the 10 % Peak Energy threshold. This result is expected to be

extrapolated to planetary terrains, as pulses affected by atmospheric effects are removed

in the study, as described below. The FWHM method of estimating pulse-widths, which

is used by MOLA and LOLA, is revealed to produce the poorest correlations with surface

characteristics when compared to the Standard Deviation of Gaussians, and 5 %, 10 % and

20 % Peak Energy thresholds [Smith et al., 2001, 2010b]. However, to accurately measure

pulse-widths using the recommended threshold, the full echo-profile must be recorded and

processed for effective background noise removal.

• The method used to measure surface characteristics does not significantly impact upon the

observed correlations between laser altimeter pulse-widths and surface characteristics, which

varies very little, however RMS height performs consistently well. A maximum R-squared

value of 0.81 is observed in Chapter 5, although typical values are >0.72. Using the Range

as a measure of surface roughness tends to produce poorer correlations, especially when

the strictest criteria for pulse selection are applied. The results can be further improved

by applying a weighting to the surface roughness calculation to reduce the impact of the

energy distribution across the laser altimeter pulse-footprint, however, as the R-squared value

typically improve by only 0.01 to 0.02, this step is not a requirement for future instruments.

• Topographic variation can also be compared to slope within the pulse-footprints, which,
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when compared to laser altimeter pulse-widths over consistently rough or smooth terrain,

are shown to produce some of the highest correlations, with a maximum R-squared 0f 0.8

observed inChapter 5. Unlike above, applying a weighting to reduce the effects of transmitted

energy across the laser altimeter pulse-footprints does not improve the results.

• It is found that applying the strictest criteria in pulse selection, which remove pulses affected

by atmospheric effects, is not required to produce the best correlations, instead, removing

only cloud hitting pulses is required.

• Deriving surface characteristics from laser altimeter pulse-widths is found to work best over

high-reflectance surfaces, which is associated with the higher energy return in the echo-profile

and the higher Signal to Noise Ratio (SNR).

• Over terrain with short baseline slopes and roughness features, estimates of slope show poor

correlations with all pulse-width estimates, as do correlations between pulse-width using the

FWHM method and all measures of surface characteristics used here. For this reason, the

relationship between RMS height and 10 % Peak Energy pulse-widths is thought to be most

consistent across all bare-earth terrains.

• Detrended roughness cannot be derived from the pulse-width data using the assumption made

in Equation 2.7, which is thought to be over-simplifying the effects of detrended roughness

on the echo-profile.

• Finally, when combined together, the contributions of this thesis help aid the development of

future laser altimeter instruments, which will help improve data quality for future missions

and lead to a greater understanding of terrains that have so far not been fully explored with

high-resolution mapping, such as the BepiColombo Laser Altimeter (BELA) and GALA

instruments.

6.3.2 JOURNAL PAPERS

The following paper has been produced from the work outlined above

W. Poole, J.-P. Muller, S. Gupta, and P. M. Grindrod. Calibrating Mars Orbiter Laser Altimeter

pulse widths at Mars Science Laboratory candidate landing sites. Planetary and Space Science,

99:118–127, September 2014b. doi:10.1016/j.pss.2014.05.012

6.3.3 CONFERENCE PROCEEDINGS

The work presented here has been presented at the following conferences

W. D. Poole, J.-P. Muller, and S. Gupta. On the Calibration of MOLA Pulse-Width Surface

Roughness Estimates Using High-Resolution DTMs. In 43rd Lunar and Planetary Science

Conference, Houston, Tx, March 2012b. URL: http://www.lpi.usra.edu/meetings/lpsc2012/pdf/

1854.pdf

http://dx.doi.org/10.1016/j.pss.2014.05.012
http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1854.pdf
http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1854.pdf
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W. D. Poole, J.-P. Muller, and S. Gupta. On the calibration of Mars Orbiter Laser Altimeter surface

roughness estimates using high-resolution DTMs . In European Geosciences Union General

Assembly, 2012a. URL: http://meetingorganizer.copernicus.org/EGU2012/EGU2012-4305.pdf

W. D. Poole, J.-P. Muller, and S. Gupta. Mars Orbiter Laser Altimetry Pulse-Widths an Indicator

of Surface Roughness at Gale Crater [EPSC2012-554-1]. In European Planetary Science

Congress, Vienna, Austria, 2012c. URL: http://meetingorganizer.copernicus.org/EPSC2012/

EPSC2012-554-1.pdf

W. D. Poole, J.-P. Muller, and S. Gupta. How Reliable are Surface Roughness Estimates from

Planetary Laser Altimeter Pulse-Widths? An Assessment Using MOLA and LOLA Pulse-Width

Data. In 44th Lunar and Planetary Science Conference, Houston, USA, March 2013a. URL:

http://www.lpi.usra.edu/meetings/lpsc2013/pdf/1511.pdf

W. D. Poole and J.-P. Muller. On an assessment of surface roughness estimates from lunar laser

altimetry pulse-widths for the Moon from LOLA using LROC narrow-angle stereo DTMs.

In European Geosciences Union General Assembly, Vienna, Austria, April 2013. URL: http:

//meetingorganizer.copernicus.org/EGU2013/EGU2013-12757.pdf

W. D. Poole, J.-P. Muller, S. Gupta, and P. M. Grindrod. Surface roughness from MOLA backscatter

pulse-widths. In European Planetary Science Congress, London, UK, September 2013b. URL:

http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-321.pdf

W. D. Poole, J.-P. Muller, and P. M. Grindrod. Footprint Scale Surface Roughness from ICESat

Pulse-Widths: Lessons Learnt for Future Planetary Laser Altimeters. In 45th Lunar and Planetary

Science Conference, Houston, Tx, March 2014a. URL: http://www.hou.usra.edu/meetings/

lpsc2014/pdf/1150.pdf

6.4 FUTURE WORK

The primary conclusion from the work presented in this thesis is that planetary surface characteristics

within the pulse-footprint of an orbiting laser altimeter can be derived from an estimate of the

pulse-width of the echo-profile. This opens the door to future research using these data, to maximise

the quality and volume of data that can be harvested from this datasource.

6.4.1 CURRENT DATASETS

Chapter 3 suggests that little more can be derived from the MOLA pulse-width dataset, however,

the LOLA dataset may yet prove to be a valuable resource. Some orbits show strong correlations

between the pulse-width and pulse-footprint-scale slopes, which fulfils one of the science goals

of the instrument: aiding the identification of candidate landing and roving sites [Smith et al.,

2010a,b]. Future work using this dataset will have to focus on either recalibrating the poor-quality

pulse-width data observed in many orbits, or producing a method to identify high-quality orbits, as

LROC-NAC data coverage is too low to be able to calibrate each orbit. Assuming either of these are

http://meetingorganizer.copernicus.org/EGU2012/EGU2012-4305.pdf
http://meetingorganizer.copernicus.org/EPSC2012/EPSC2012-554-1.pdf
http://meetingorganizer.copernicus.org/EPSC2012/EPSC2012-554-1.pdf
http://www.lpi.usra.edu/meetings/lpsc2013/pdf/1511.pdf
http://meetingorganizer.copernicus.org/EGU2013/EGU2013-12757.pdf
http://meetingorganizer.copernicus.org/EGU2013/EGU2013-12757.pdf
http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-321.pdf
http://www.hou.usra.edu/meetings/lpsc2014/pdf/1150.pdf
http://www.hou.usra.edu/meetings/lpsc2014/pdf/1150.pdf
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completed, the result could either be a global map of pulse-footprint-scale slopes over the Moon,

or, if there is a low proportion of high-quality orbits, a map of pulse-footprint-scale slopes over the

poles only, where the concentration of orbits is high. As the target landing sites for future lunar

missions are the lunar poles, this latter option would still provide a useful dataset. If a global map

of fine-scale slopes could be derived, this would provide data at a significantly smaller baseline than

used previously, which could reveal further information on surface dating, and the processes that

helped in the formation and evolution of the surface, similar to the work presented in Kreslavsky

et al. [2013] and Rosenburg et al. [2011].

ICESat echo-profile data has been used to determine the distribution of vegetation, however this

work has shown that these profiles can also be used to determine surface roughness and slope within

the pulse-footprint over bare-earth and icy terrains [Harding and Carabajal, 2005]. Estimates of

slope assuming no surface roughness, and surface roughness assuming no slope, were provided in

the datasets until they were removed after a report identified that these may be unreliable [Brenner

et al., 2011]. The work here shows that using 10 % Peak Energy threshold, rather than the standard

deviation of fitted Gaussians, provides a better estimate of these surface characteristics within the

pulse-footprint. Recalculating the surface roughness and slope over bare-earth terrains using this

new measure of pulse-width will produce a useful dataset that could be used to explore seasonal

and annual changes in ice sheet, glacier, and sea ice roughness, which could lead to a better

understanding of the energy balance in a climatically sensitive environment.

The current Mercury Laser Altimeter (MLA) mission provides data on the pulse-width as a

result of terrain within the pulse-footprint, in a similar approach as MOLA and LOLA [Cavanaugh

et al., 2007; Zuber et al., 2008, 2012]. Using this dataset, new information could be revealed about

fine-scale surface features, especially in permanently shadowed regions. However, high-resolution

DTMs are not yet available, meaning that calibration is not possible. Estimates could be produced

using the relationships derived in this work.

6.4.2 FUTURE MISSIONS

Planned planetary laser altimeter instruments include GALA and BELA, visiting Ganymede and

Mercury respectively.

BELA will form part of the Mercury Planetary Orbiter (MPO) payload, which is the ESA

component to the BepiColombo mission to Mercury and expected to launch in July 2016 and

arrive in 2024 [ESA, 2014a]. The pulse-footprint is expected to be 20 m to 50 m, with a 2 ns timing

resolution enabling surface roughness and slope estimates from pulse-width estimates [Universität

Bern, No Date.]. Importantly, BELA can record the full echo-profile, enabling methods like those

developed in this thesis to be applied, for a more accurate estimate of the surface characteristics

within the pulse-footprint [Universität Bern, No Date.]. This is particularly important, given the

high noise levels over the day-side of Mercury [Universität Bern, No Date.]. Data from BELA

could also be compared and cross-calibrated to that from MLA for greater coverage and quality.

GALA also plans to explore surface roughness and slope, over Ganymede, however this
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instrument is still in the early stages of development, with the launch not due until 2022 and arrival

at Jupiter in 2030 [ESA, 2014b; Hussmann et al., 2013].

6.4.3 SINGLE PHOTON DETECTION

The future of laser altimetry and 3-d terrain mapping may lie in the use of single-photon counting

lidar systems. An advantage of these systems is that the detection levels are sensitive enough

to detect just a single photon within a reflected pulse to record a positive ground return [Vacek

et al., 2011, 2015]. This results in less power required for the transmitted pulse, which makes the

system smaller and more efficient, and the possibility to split the transmitted beam into a series

of spots, which can be arranged in an array so that the lidar becomes a 3-d imager, such as the

Sigma Space photon counting system [Degnan et al., 2008]. Flying altitudes for lidar systems can

then be increased, whilst post-spacing of the resulting datasets remains the same, with datasets

of 8 points m−2 to 12 points m−2 achieved at flying altitudes of over 7 km, and scanning methods.

Furthermore, ground returns can also be recorded in dense fog, vegetated terrains, and water in a

single pulse due to the single photon sensitivity [Degnan et al., 2008; Gwenzi and Lefsky, 2014].

Finally, Degnan et al. [2008] report that this technology can be successfully scaled to orbital

distances to map planetary surfaces, which could produce datasets on the few metre scales with a

single laser altimeter using a few Watts of power.

The disadvantage of this system is that it does not produce a waveform, meaning that the surface

roughness from pulse-width cannot be applied. However, the higher data density capabilities of the

system may result in surface roughness being calculated between data points, similar to the 5-spot

LOLA pulse design described in Chapter 4.

One such instrument that will put this technology into action is the ICESat-2 mission, as the

new mission objectives are to include the determination of vegetation height [Herzfeld et al., 2014;

Moussavi et al., 2014]. The transmitted pulse will have an energy of 25 µJ to 100 µJ, 6 beams

across three tracks that are separated by 3.3 km, and a pulse-rate of 10 kHz to produce a much

denser elevation dataset [Moussavi et al., 2014]. The multi-beam approach and the photon counting

system will produce a point-cloud of elevation measurements, which should prove better at the

determination of canopy height within the pulse-footprint [Gwenzi and Lefsky, 2014; Herzfeld et al.,

2014; Moussavi et al., 2014]. A challenge is to then extract the forest canopy height, which can

appear fuzzy in the point-cloud, as the number of expected return photons can range from 0 to 10

over vegetated areas due to the low reflectivity of soil and vegetation [Moussavi et al., 2014].

6.4.4 LABORATORY AND FIELD WORK

All laser altimeters are calibrated before flight to ensure correct alignment and transmitted power

is as expected, however, a further step could also could be to replicate the returns over different

terrain types and morphologies. This could explore the effects of surface reflectance, moisture,

materials, and morphology on the resulting pulse-width. Clearly, the pulse-width in laboratory or

small-scale field testing will be much smaller, so terrain features need to be scaled accordingly,
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and the timing resolution of the instrument will need to be significantly greater to measure small

differences in elevation (∼1 mm). A range of conditions could be replicated to change the amount

of received energy either through greater target surface distances or atmospheric conditions.
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This appendix contains additional maps which are relevant to the work presented in

this thesis.
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Figure A.1: Mars surface roughness map adapted from Kreslavsky and Head [2000] using MOLA profile data. The red, green and blue channels represent surface
roughness at 0.6 km, 2.4 km and 19.2 km. Higher intensity represents rougher regions, and bright areas represent regions which are rough on all baselines.
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Figure A.2: Mars polar surface roughness map adapted from Kreslavsky and Head [2000] using MOLA profile data. The red, green and blue channels represent
surface roughness at 0.6 km, 2.4 km and 19.2 km. Higher intensity represents rougher regions, and bright areas represent regions which are rough on all baselines.



31
8

A
P

P
E

N
D

IX
A

.M
A

P
S

0◦ E 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦ 360◦
90◦ N

60◦

30◦

0◦

30◦

60◦

90◦ S

90◦ N

60◦

30◦

0◦

30◦

60◦

90◦ S
0◦ E 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦ 360◦

-35 -30 -25 -20 -15 -10 -5

Surface Reflectivity (dB)

Figure A.3: Mars SHAllow RADar sounder (SHARAD) reflectance at 20 MHz map adapted from Grima et al. [2012]
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Figure A.4: SHARAD polar reflectance at 20 MHz map adapted from Grima et al. [2012]
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Figure A.5: Mars rock abundance derived from Thermal Emission Spectrometer (TES) data, adapted from Hébrard et al. [2012].
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Figure A.6: Mars polar rock abundance derived from TES data, adapted from Hébrard et al. [2012].
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Figure A.7: Mars aerodynamic roughness length map derived from rock abundance using TES data as in Figure A.5, adapted from Hébrard et al. [2012].
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Figure A.8: Mars polar aerodynamic roughness length map derived from rock abundance using TES data as in Figure A.5, adapted from Hébrard et al. [2012].
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B

DATA SOURCES

This appendix contains information regarding the source of the data used in this thesis

for each of the projects presented in Chapters 3 to 5.
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Table B.1: The identification numbers for the HiRISE images used in Section 3.7.

Region DTM Number

Eberswalde Crater DTEEC_011265_1560_011331_1560_U01

DTEEC_010052_1560_010553_1560_U01

DTEEC_016065_1560_016210_1560_U01

DTEEC_019190_1560_019335_1560_U01

DTEEC_019757_1560_020034_1560_U01

DTEEC_020324_1555_020390_1555_U01

Gale Crater DTEEC_009505_1755_009571_1755_U01

DTEEC_010573_1755_010639_1755_U01

DTEEC_009650_1755_009716_1755_U01

DTEEC_009149_1750_009294_1750_U01

DTEEC_011417_1755_011562_1755_U01

DTEEC_018854_1755_018920_1755_U01

Holden Crater DTEEC_008272_1560_010474_1560_U01

DTEEC_007191_1535_007903_1535_U01

DTEEC_015999_1535_016276_1535_U01

DTEEC_002088_1530_002154_1530_U01

DTEEC_019612_1535_019678_1535_U01

DTEEC_019823_1530_019889_1530_U01

DTEEC_019045_1530_019322_1530_U01

Mawrth Vallis DTEEC_002074_2025_002140_2025_U01

DTEEC_005964_2045_011884_2045_U01

DTEEC_010816_2040_010882_2040_U01

DTEEC_008469_2040_008825_2040_U01

DTEEC_006887_2050_007823_2050_U01

DTEEC_006676_2045_007612_2045_U01

DTEEC_015985_2040_016262_2040_U01

Table B.1 presents a list of the DTMs used in Section 3.7. The list of stereo-pairs used for

Section 3.8 is shown in Table B.2.
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Table B.2: The identification numbers for the CTX images used in Section 3.8.

Region Image 1 Image 2

Aureum Chaos G15_023963_1764_XN_03S027W G15_024029_1764_XN_03S027W

Candor Chasma P02_001707_1744_XN_05S076W P05_002841_1744_XI_05S076W

Hebes Chasma B18_016818_1790_XN_01S077W P12_005808_1790_XI_01S077W

P01_001509_1791_XN_00S075W P08_003975_1790_XI_01S075W

Lycus Sulci G17_025009_2041_XN_24N147W P06_003371_2041_XN_24N147W

G17_024851_2068_XI_26N149W G19_025774_2068_XI_26N149W

B11_013827_2083_XI_28N144W P08_004228_2083_XN_28N144W
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C

EXTENDED RESULTS

This appendix contains the extended results tables for each of the projects presented in

Chapters 3 and 4.
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Table C.1: R-squared values when surface roughness is compared to Slope-Corrected pulse-width values over the candidate Mars Science Laboratory (MSL)
landing sites used in Section 3.7.

Baseline (m)

Area Data Source 2 10 20 35 50 70 100 150 200 300 600 1000

Eberswalde Crater PEDR 0.27 0.35 0.38 0.44 0.47 0.51 0.54 0.52 0.49 0.39 0.29 0.15

Trigger 1 0.18 0.27 0.30 0.38 0.43 0.49 0.53 0.53 0.54 0.48 0.37 0.21

Corrected 0.30 0.37 0.40 0.49 0.54 0.58 0.60 0.58 0.53 0.40 0.31 0.17

Gale Crater PEDR 0.16 0.23 0.27 0.32 0.35 0.38 0.41 0.43 0.45 0.46 0.43 0.39

Trigger 1 0.17 0.22 0.26 0.30 0.18 0.34 0.35 0.36 0.21 0.35 0.34 0.34

Corrected 0.20 0.24 0.27 0.28 0.30 0.32 0.35 0.38 0.42 0.42 0.36 0.29

Holden Crater PEDR 0.03 0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.06 0.05 0.05

Trigger 1 0.18 0.26 0.33 0.36 0.39 0.42 0.46 0.45 0.38 0.27 0.22 0.11

Corrected 0.22 0.30 0.36 0.40 0.43 0.47 0.47 0.46 0.38 0.26 0.20 0.07

Mawrth Vallis PEDR 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.007 0.07 0.04

Trigger 1 0.00 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

Corrected 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.07 0.07 0.05
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Table C.2: R-squared values when surface roughness is compared to Slope-Corrected pulse-width
values over the Rough Terrain study sites used in Section 3.8.2.

Surface Roughness Baseline (m)

Area 40 60 75 100 150 200 300 600 1000

Aureum Chaos 0.54 0.56 0.41 0.52 0.53 0.56 0.45 0.54 0.37

Candor Chasma 0.47 0.38 0.45 0.58 0.59 0.60 0.56 0.54 0.53

Hebes Chasma 0.36 0.28 0.33 0.44 0.46 0.48 0.47 0.47 0.47

Lycus Sulci 0.23 0.44 0.48 0.55 0.63 0.62 0.70 0.65 0.58

Table C.3: R-squared values when slope is compared to Slope-Corrected pulse-width values over
the Rough Terrain study sites used in Section 3.8.2.

Slope Baseline (m)

Area 20 40 60 75 100 150 200 300 600 1000

Aureum Chaos 0.44 0.48 0.41 0.52 0.52 0.51 0.44 0.45 0.36 0.34

Candor Chasma 0.42 0.40 0.43 0.53 0.51 0.51 0.48 0.44 0.39 0.35

Hebes Chasma 0.37 0.32 0.33 0.45 0.46 0.45 0.44 0.40 0.40 0.39

Lycus Sulci 0.26 0.55 0.52 0.68 0.63 0.62 0.62 0.54 0.53 0.44
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Table C.4: R-squared values when surface roughness is compared to LOLA pulse-width values over the Gruithuisen Mons Delta study site used in Section 4.8, with
data separated by orbit.

Baseline (m)

Orbit 4 6 8 10 12 15 18 20 25 30 40 50 60

928 0 0 0 0 0 0.02 0 0.04 0.01 0.02 0.01 0.01 0

1097 0.09 0.09 0.09 0.1 0.09 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.09

1271 0.15 0.16 0.15 0.17 0.16 0.12 0.18 0.08 0.13 0.1 0.14 0.12 0.15

1444 0.25 0.26 0.23 0.27 0.25 0.17 0.27 0.15 0.2 0.18 0.23 0.2 0.24

1618 0 0 0 0 0 0 0 0 0 0 0 0 0

1792 0.05 0.05 0.06 0.06 0.06 0.04 0.06 0.04 0.05 0.04 0.05 0.05 0.05

1966 0.17 0.18 0.19 0.19 0.2 0.11 0.2 0.13 0.13 0.15 0.15 0.16 0.16

2487 0.33 0.34 0.36 0.36 0.38 0.24 0.37 0.25 0.27 0.29 0.3 0.32 0.32

2661 0.26 0.27 0.28 0.29 0.29 0.19 0.3 0.19 0.22 0.22 0.23 0.25 0.25

3009 0 0 0 0 0 0 0 0 0 0 0 0 0

3182 0.68 0.68 0.72 0.7 0.73 0.56 0.72 0.65 0.62 0.68 0.65 0.7 0.66

3183 0.12 0.12 0.1 0.12 0.1 0.09 0.12 0.08 0.1 0.09 0.11 0.1 0.11

Continued
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Baseline (m)

Orbit 4 6 8 10 12 15 18 20 25 30 40 50 60

3530 0.35 0.35 0.4 0.37 0.41 0.24 0.38 0.31 0.28 0.35 0.31 0.37 0.33

3531 0.04 0.04 0.05 0.04 0.05 0.02 0.04 0.04 0.03 0.05 0.03 0.05 0.03

3704 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

3878 0.04 0.05 0.05 0.05 0.06 0.02 0.05 0.04 0.03 0.04 0.04 0.04 0.04

3879 0.09 0.09 0.09 0.1 0.1 0.08 0.1 0.07 0.08 0.07 0.09 0.08 0.09

4052 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

4226 0.28 0.28 0.29 0.29 0.3 0.26 0.3 0.24 0.27 0.26 0.27 0.27 0.28

4921 0.54 0.55 0.55 0.57 0.56 0.41 0.58 0.48 0.47 0.51 0.51 0.54 0.53

5095 0.06 0.06 0.06 0.07 0.07 0.05 0.08 0.04 0.05 0.04 0.06 0.05 0.06

5269 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.03 0.05 0.03 0.05 0.04 0.05

5442 0 0 0 0 0 0 0 0 0 0 0 0 0

5443 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02

5789 0.22 0.23 0.25 0.24 0.26 0.17 0.24 0.17 0.19 0.19 0.21 0.21 0.21

5790 0.16 0.17 0.14 0.18 0.16 0.11 0.18 0.09 0.13 0.1 0.15 0.11 0.15

5964 0.17 0.18 0.17 0.2 0.19 0.11 0.21 0.09 0.13 0.11 0.15 0.13 0.16

Continued
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Baseline (m)

Orbit 4 6 8 10 12 15 18 20 25 30 40 50 60

6312 0.1 0.1 0.13 0.11 0.13 0.06 0.11 0.08 0.07 0.1 0.08 0.11 0.09

6833 0 0 0 0 0 0 0 0 0 0 0 0 0

7528 0.19 0.19 0.21 0.19 0.2 0.13 0.2 0.2 0.15 0.21 0.17 0.21 0.18

8050 0.5 0.51 0.53 0.53 0.54 0.38 0.54 0.45 0.44 0.48 0.47 0.5 0.49

8223 0 0 0 0 0 0 0 0 0 0 0 0 0

8745 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01

8746 0.03 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04

8918 0.02 0.01 0.01 0 0.01 0.01 0 0.06 0.01 0.03 0.03 0.01 0.03

9093 0 0 0 0 0.01 0 0.01 0 0 0 0 0 0

9440 0.12 0.12 0.13 0.13 0.14 0.06 0.13 0.09 0.08 0.1 0.1 0.11 0.11

9613 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02

9788 0.03 0.03 0.04 0.04 0.05 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.03

9960 0.22 0.23 0.23 0.24 0.25 0.13 0.25 0.11 0.16 0.15 0.19 0.18 0.2

10135 0.08 0.09 0.08 0.09 0.08 0.07 0.08 0.06 0.08 0.07 0.08 0.07 0.08

10830 0.01 0.01 0.01 0.01 0.01 0 0.01 0 0 0 0 0 0

Continued
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Baseline (m)

Orbit 4 6 8 10 12 15 18 20 25 30 40 50 60

11179 0.06 0.06 0.09 0.07 0.09 0.03 0.08 0.04 0.04 0.06 0.05 0.06 0.05

11352 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table C.5: R-squared values when slope is compared to LOLA pulse-width values over the Gruithuisen Mons Delta study site used in Section 4.8, with data
separated by orbit.

Baseline (m)

Orbit 4 6 8 10 12 15 18 20 25 30 40 50 60

928 0 0 0 0 0 0 0 0 0.01 0 0 0.02 0 0

1097 0.07 0.09 0.09 0.08 0.09 0.08 0.08 0.08 0.08 0.09 0.08 0.09 0.09 0.09

1271 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.15 0.13 0.15 0.15

1444 0.28 0.24 0.25 0.26 0.26 0.26 0.27 0.27 0.27 0.25 0.28 0.18 0.22 0.23

1618 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1792 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.05

1966 0.18 0.16 0.17 0.18 0.18 0.19 0.19 0.18 0.19 0.18 0.19 0.11 0.14 0.16

2487 0.37 0.32 0.32 0.33 0.34 0.35 0.35 0.36 0.36 0.35 0.36 0.25 0.28 0.3

2661 0.31 0.25 0.25 0.26 0.27 0.28 0.29 0.29 0.29 0.27 0.3 0.2 0.22 0.24

3009 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3182 0.71 0.66 0.66 0.67 0.67 0.68 0.69 0.69 0.69 0.68 0.7 0.58 0.62 0.64

3183 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.12 0.12 0.11 0.12 0.09 0.11 0.11
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Baseline (m)

Orbit 4 6 8 10 12 15 18 20 25 30 40 50 60

3530 0.41 0.34 0.35 0.35 0.36 0.36 0.36 0.37 0.37 0.36 0.38 0.26 0.3 0.32

3531 0.06 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.02 0.03 0.03

3704 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

3878 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.04

3879 0.11 0.08 0.09 0.09 0.1 0.1 0.1 0.1 0.11 0.1 0.11 0.08 0.08 0.08

4052 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01

4226 0.27 0.26 0.27 0.27 0.27 0.28 0.28 0.28 0.28 0.27 0.27 0.26 0.26 0.26

4921 0.55 0.51 0.52 0.53 0.53 0.54 0.54 0.55 0.55 0.54 0.56 0.42 0.47 0.5

5095 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

5269 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05

5442 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5443 0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02

5789 0.25 0.21 0.22 0.22 0.22 0.22 0.23 0.23 0.24 0.22 0.24 0.18 0.19 0.21

5790 0.18 0.16 0.16 0.17 0.17 0.18 0.18 0.18 0.18 0.17 0.18 0.12 0.14 0.15

5964 0.2 0.18 0.17 0.19 0.19 0.19 0.2 0.21 0.21 0.19 0.21 0.12 0.15 0.17
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Baseline (m)

Orbit 4 6 8 10 12 15 18 20 25 30 40 50 60

6312 0.09 0.1 0.11 0.1 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.06 0.07 0.09

6833 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0

7528 0.19 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.17 0.18

8050 0.53 0.49 0.5 0.51 0.51 0.51 0.52 0.52 0.53 0.51 0.53 0.41 0.46 0.47

8223 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8745 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01

8746 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03

8918 0.26 0 0 0 0 0.04 0 0 0.03 0 0.01 0.01 0.01 0

9093 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9440 0.09 0.1 0.11 0.12 0.12 0.12 0.12 0.12 0.11 0.12 0.11 0.07 0.08 0.1

9613 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02

9788 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.03 0.03

9960 0.25 0.2 0.21 0.22 0.22 0.23 0.23 0.24 0.24 0.22 0.25 0.15 0.17 0.19

10135 0.07 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

10830 0 0 0.01 0 0.01 0.01 0.01 0.01 0 0.01 0 0 0 0

Continued
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Baseline (m)

Orbit 4 6 8 10 12 15 18 20 25 30 40 50 60

11179 0.08 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.07 0.08 0.03 0.04 0.05

11352 0 0 0 0 0 0 0 0 0 0 0 0 0 0


