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ABSTRACT 1 

The determination of lacunar-canalicular permeability is essential for understanding local 2 

fluid flow in bone, which may indicate how bone senses changes in the mechanical 3 

environment to regulate mechano-adaptation. The estimates of lacunar-canalicular 4 

permeability found in the literature vary by up to eight orders of magnitude, and age-related 5 

permeability changes have not been measured in non-osteonal mouse bone. The objective of 6 

this study is to use a poroelastic approach based on nanoindentation data to characterize 7 

lacunar-canalicular permeability in murine bone as a function of age. Nine wild type 8 

C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age 9 

group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in 10 

the mid-cortex using two spherical fluid indenter tips (R = 238 μm and 500 μm). Results 11 

suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 12 

7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed 13 

larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. 14 

This age-related difference in the distribution was not seen for indents with the smaller radius 15 

tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, 16 

while larger tip indents were influenced by vascular permeability. Exploring the age-related 17 

changes in permeability of bone measured by nanoindentation will lead to a better 18 

understanding of the role of fluid flow in mechano-transduction. This understanding may 19 

help indicate alterations in bone adaptation and remodelling.20 

21 
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1. INTRODUCTION 22 

It is well known that bone continuously adapts to its mechanical environment. Previous 23 

studies have established that this adaptive response is most likely coordinated by osteocytes, 24 

the mechanosensor cells in bone (Burger et al. 1999, Cowin et al. 1995, Han et al. 2004). 25 

Osteocyte bodies lie in spaces called lacunae in the mineralized bone matrix and they are 26 

connected through small channels termed canaliculi. The mechanical stimulus that drives 27 

osteocytes to respond has not been established yet but evidence suggests that fluid flow might 28 

perform a major role in cellular excitation. The primary loading-induced fluid motion appears 29 

to be through the lacunar-canalicular network, where osteocyte cells sense shear stress due to 30 

interstitial fluid movement (Anderson and Knothe Tate 2008, Fritton and Weinbaum 2009, 31 

Gardinier et al. 2010, Jacobs et al. 2010, Knothe-Tate 2003). Characterizing lacunar-32 

canalicular network permeability is vital to understand the role of fluid flow in the mechano-33 

transduction mechanism of bone (Anderson et al. 2008, Burger et al. 1999, Lemaire et al. 34 

2012, Price et al. 2011). 35 

Experimentally measuring lacunar-canalicular permeability is challenging due to the 36 

heterogeneity of bone and small size of the pores, which is why the first calculations were 37 

mainly theoretical. Theoretical estimates based on Biot’s poroelasticity theory have given 38 

values ranging from 10
-22

 to 10
-19

 m
2
 (Gururaja et al. 2005, Wang et al. 1999, Zhou et al. 39 

2008). Finite element models predicted values of 10
-22

 to 10
-18

 m
2
 (Lemaire et al. 2012, Smit 40 

et al. 2002). Beno et al. (2006) reported values of 10
-23 

- 10
-19

 m
2
 with microstructural models 41 

of lacunar-canalicular porosity based on geometric data. Stress-relaxation measurements of 42 

single osteons measured 10
-25

-10
-24

 m
2
 (Gailani et al. 2009) and compaction of bone gave 43 

values of 10
-23

 m
2
 (Gardinier et al. 2010). Nanoinentation studies measured values between 44 

10
-24

 to 10
-21

 m
2
 for the lacunar-canalicular permeability of equine cortical bone (Galli and 45 

Oyen 2009, Oyen 2008, Oyen et al. 2012). Overall, these estimations of lacunar-canalicular 46 
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permeability range from 10
-25

 to 10
-18

 m
2
. This wide range is mainly a result of the fact that 47 

vascular and lacunar-canalicular network are interconnected (Fig. 1), making it difficult to 48 

separate the contribution of each one to the permeability of bone (Benalla et al. 2012, Jast and 49 

Jasiuk 2013, Knothe Tate et al. 2009). In order to isolate effects of lacunar-canalicular 50 

permeability independent of vascular permeability, we used nanoindentation. 51 

Nanoindentation is a non-destructive way to measure tissue properties of bone and it has 52 

recently been used to measure the permeability of hydrated biological tissues (Galli and Oyen 53 

2009, Oyen 2008, Oyen et al. 2012). Oyen et al. (2012) found that the values of bone 54 

permeability are dependent on the indentation contact size and reported nanoindentation-55 

measured permeability values approximately three orders of magnitude smaller than those 56 

given by microindentation. Results from porosity studies also suggest that the probability of 57 

measuring specific porosity-ranges in a sample is affected by the inherent structure or density 58 

of the interconnected porous network (Jast and Jasiuk 2013, Knothe Tate et al. 2009). 59 

Overall, these findings suggest that different indentation contact sizes might measure 60 

different hierarchies of bone permeability. In order to investigate this further, spherical 61 

indenters of two different radii were used in the current study. 62 

The objective of this research was to characterize lacunar-canalicular permeability in young 63 

and aged B6 murine bone using a poroelastic approach based on nanoindentation data. 64 

Despite the differences between murine and human bone, C57BL/6J (B6) mice are often 65 

utilized to explore aspects of age-related bone loss in humans (Halloran et al. 2002, Jilka 66 

2013). Unlike human bone, murine bone does not have osteons or Harvesian systems, which 67 

is why values of porosity and permeability of human or other animal bone cannot directly be 68 

transferred to murine bone.  Analyzing age-related changes in mouse bone permeability will 69 

provide a better insight into the complex nature of bone permeability and its influence in 70 

mechanotransduction. 71 
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2. METHODS 72 

Sample preparation 73 

Nine C57BL/6 (B6) female mice of 2, 7 and 12 months, which correspond to young, 74 

skeletally mature and old mice respectively, were used for this study. Three right tibiae from 75 

each age-group were cleaned of surrounding soft tissue, dried in air for an hour and 76 

embedded in epoxy resin (EPOTHIN; Buehler, Lake Bluff, IL, USA). The resin and hardener 77 

were mixed and let cool for 15 minutes to increase the viscosity and avoid the infiltration of 78 

the resin into the pores. Tibiae were cut at the mid-diaphysis using a low speed diamond saw 79 

(Isomet, Buehler GmbH, Germany). The distal sections were cut in cubes and polished using 80 

increasing grades of carbide papers (from P800 to P4000). 81 

Nanoindentation 82 

Figure 2 shows the outline of the experimental setup for nanoindentation. Tests were carried 83 

out using a TI700 UBI (Hysitron, MN, USA) nanoindenter in load control. The distal halves 84 

of the tibiae were glued to a metallic container that covered the stage and indents were done 85 

in the longitudinal direction on the tibia mid-diaphyseal cross-sections. Tests were conducted 86 

after submerging the specimens in distilled water for at least 15 minutes to fill the pores with 87 

fluid. Spherical fluid cell indenter tips of two sizes were used: radius of 238 µm and 500 µm. 88 

A trapezoidal loading profile was applied with a rising time of 10 s to a maximum load of 6 89 

mN and a holding time of 30 s. A minimum of ten indents were made on each sample in the 90 

mid-cortex around the circumference of the bone. The indents that fell in pores were 91 

excluded. 92 

Experimental data from all tests was exported as load-displacement-time (P-h-t) for analysis 93 

in MATLAB (The MathWorks, Natick, MA, USA). 94 
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3. ANALYSIS 95 

Poroelastic Analysis 96 

The poroelastic analysis proposed by Oyen (2008) and further developed by Galli and Oyen 97 

(2009) examines spherical indentation creep responses of hydrated biological materials. 98 

During the indentation, the spherical indenter is brought into contact with the surface, pushed 99 

into the fully saturated material and retracted, while the applied load, resulting displacement 100 

and time are recorded. The rapid local deformation from the indenter causes fluid to be forced 101 

out of the material, resulting in pore pressure, which supports part of the applied load. As the 102 

fluid leaves the material, pore pressure decreases, resulting in a time-dependent deformation 103 

response, which is measured by the nanoindenter. The poroelastic framework assumes that 104 

the material has linear isotropic poroelastic behaviour and is fully saturated. Five parameters 105 

are required to characterize a poroelastic response: the shear modulus G [N/m
2
]; the drained 106 

Poisson’s ratio ν; the undrained Poisson’s ratio νu [ν, 0.5]; the Biot effective stress coefficient 107 

α [0, 1]; and the Darcy hydraulic permeability ĸ [m
4
/Ns]. The elastic properties (G and ν) 108 

correspond to the porous medium considered as a homogeneous linear elastic material. The 109 

undrained and drained cases of a fluid-infiltrated porous material represent its limiting 110 

behaviors. The undrained response characterizes the condition where the fluid is trapped in 111 

the porous solid; while the drained response is related to zero pore pressure (or the pressure 112 

corresponding to empty pores). 113 

For an ideal isotropic poroelastic material, the Biot effective stress coefficient α is defined as: 114 

 
[1] 

where K [N/m
2
] is the bulk modulus of the drained material (bone with pores) and KS [N/m

2
] 115 

refers to the bulk modulus of the material of the solid skeleton (bone material). The stress 116 



7 
  

coefficient represents the variation of the fluid volume in a material unit volume due to the 117 

volumetric change of the element when loaded under the drained condition. 118 

Darcy hydraulic permeability ĸ characterizes the flow through the porous elastic skeleton. It 119 

is defined as the ratio of the intrinsic permeability k [m
2
] to the fluid dynamic viscosity µ (for 120 

water µ = 0.001 Pa-s is assumed): 121 

 [2] 

The intrinsic permeability k is related to the porous bone structure only (the connectedness of 122 

the porosity and the size and spatial arrangement of the pores), not the fluid in the pores. This 123 

is the parameter that will be reported in the current study. 124 

Galli and Oyen (2009) proposed and validated an algorithm to identify these constitutive 125 

parameters using a master curve library. The master curves were obtained solving the 126 

poroelastic indentation problem utilizing Finite Element modeling for several materials and 127 

normalizing their time-displacement indentation response. The non-dimensional displacement 128 

h
*
 is defined as: 129 

 
[3] 

where h(t) is the time-dependent displacement of the indenter, h0 is the indentation depth that 130 

corresponds to step-loading conditions, and  is the indentation depth at t = ∞ when the 131 

pore pressure field vanishes. These two values can be computed from the elastic solutions 132 

(Oyen et al. 2011): 133 

 
[4] 
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[5] 

where P(t) represents the indentation load and R is the indenter tip radius. The normalized 134 

time t
*
 is given by: 135 

 

[6] 

 represents the contact radius of the indentation. The diffusivity coefficient c is a 136 

function of the five constitutive parameters: 137 

 
[7] 

Only three constitutive parameters can be identified from spherical indentation data. G, ν, and 138 

ĸ were considered unknown, while the values for α and νu were set to 1 (Oyen 2008) and 0.5 139 

(Galli and Oyen 2009, Oyen et al. 2012) respectively. The indenter tip was considered to be 140 

impermeable. The percentage of loading ramp analyzed ranged between 1-4%. The 141 

poroelastic analysis framework consisted of two optimization steps (Gali and Oyen 2009). 142 

The first one occured in the normalized domain (h
*
-t

*
), where based on initial guesses, the 143 

normalized curves were fitted to the master curves in the database. By normalizing the 144 

response (eq. 3, 6), the noise of the experimental data can have a greater influence. Hence, 145 

the second optimization routine was used to verify that the non-dimensional solution (x
*
) 146 

gave also the best fit in the dimensional domain. The second routine used the solution from 147 

the normalized domain (x
*
) as initial guess to fit the curves in the time-displacement domain 148 

(h-t) and compute a new dimensional solution (x
d
). Both curve fittings were carried out 149 

following the non-linear least-squares optimization routine from MATLAB Optimization 150 

Toolbox
TM

 as described by Galli and Oyen (2009). Convergence was achieved when the 151 
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difference between the parameters identified in each domain was negligible (x
*
~x

d
). The final 152 

solution (x) contained the values of G, ν, and ĸ. 153 

Statistical Analysis 154 

The number of indents per age group ranged between 30 and 55 and therefore, unequal 155 

sample sizes had to be considered for statistical analysis. Hochberger’s GT2 test (post-hoc 156 

test) was utilized to compare the means between the three age groups when Levene’s test 157 

proved homogeneity of variances. If the variances were inhomogeneous, Games-Howell test 158 

was used. In order to compare the means of the same bones when indenting with different 159 

tips, the Wilcoxon signed-rank test was used. The significant level assumed was 0.05. 160 

Statistical analysis was performed using SPSS (v.21, SPSS Inc., Chicago, IL). 161 

4. RESULTS 162 

Elastic properties 163 

The average values and standard deviations of the elastic properties are summarized in Fig. 3. 164 

The shear modulus increased significantly from 2 to 7 months for both indenter tips (p < 165 

0.001) and then decreased again (p < 0.001) in the oldest bones. The 238 μm radius tip 166 

measured larger shear modulus for the three ages, but this was significant only for the 7 167 

month-old bones (p = 0.002). No statistical difference was found in Poisson’s ratios between 168 

the age groups when indenting the bone with the largest tip. The 238 μm measured smaller 169 

Poisson’s ratio values for the youngest bones compared to the 7 and 12 months (p < 0.001). 170 

There were no significant differences between the two tip sizes. 171 

Permeability 172 

Measurements with the small tip revealed that the youngest bones had a larger permeability 173 

value (p < 0.01) than the older ones but no statistical difference was found between the 7 and 174 
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12 month-old bones (Fig. 4). The permeability distribution captured with the two tips is 175 

shown in Fig. 5. For the larger radius indents young bones had a narrower range of 176 

permeability values (10
-24

 to 5×10
-23

 m
2
) while old bones exhibited a broader range (5×10

-25
 177 

to 10
-21

 m
2
). An example of the wide range of permeability values captured with the larger tip 178 

can be observed in Fig. 6, where displacement-time (h-t) curves of two indents on the same 179 

12 month-old bone result in permeability values that vary three orders of magnitude. This 180 

difference in distribution of permeability values was not seen for indents with the smaller tip. 181 

5. DISCUSSION 182 

We used nanoindentation to determine the poroelastic properties of wild type murine tibia as 183 

a function of age. The indentations with the small tip revealed a decrease in the lacunar-184 

canalicular permeability from young to skeletally matured tibiae. The 500 μm tip imposed 185 

larger contact sizes, which captured both lacunar-canalicular and vascular permeability of 186 

bone. 187 

The 238 μm tip showed that lacunar-canalicular permeability decreased from 2 to 7 months 188 

with no significant changes from 7 to 12 months (Fig. 4). In vivo tracer transport experiments 189 

through the lacunar-canalicular network of rat bone showed that transport becomes more 190 

restricted in aged bone due to a more compact mineralized tissue (Knothe Tate et al. 1998). In 191 

human cortical bone, porosity of lacunae decreases slightly in older (Wang and Ni, 2003). 192 

These findings on osteonal bone seem to follow the same trend of a decrease of lacunar-193 

canalicular permeability with age. 194 

The permeability values we measured (5×10
-25

 to 10
-21

 m
2
) are within the range of previous 195 

measurements using other experimental methods. Curve fitting of stress-relaxation of single 196 

osteons gave lacunar-cannalicular permeability values of 10
-25

-10
-24

 m
2
 for bovine femoral 197 

bone (Gailani et al. 2009). This technique cannot be directly employed in murine bone, which 198 
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does not have osteons. Compaction of intact bone by Gardinier et al. (2010) measured values 199 

of 10
-23

 m
2
 for lacunar-canalicular permeability of canine metacarpal in situ. Oyen (2008) 200 

measured permeability of equine bone using spherical nanoindentation assuming 201 

incompressible constituents (α = 1 and νu = 0.5) and found values of 10
-24 

m
2
.  In further 202 

analysis on different equine bone specimens and using the master curve library together with 203 

the poroelastic framework, nanoindentation experiments measured permeability values of 10
-

204 

21
-10

-23
 m

2
 (Galli and Oyen 2009, Oyen et al. 2012). In our study, the majority of indents (60-205 

80%) indicated permeability values between 10
-24

 and 5×10
-24

 m
2
 for both tips for the three 206 

ages evaluated.  207 

Though our permeability values are within the range of other studies, quantitative values 208 

depend on the testing and analysis methods. The epoxy-embedded bones were dry and then 209 

rehydrated before testing, which may have caused changes to the cellular structures inside the 210 

lacunae. Anderson et al. (2008) found that permeability decreased at two orders of magnitude 211 

when the cellular structure was taken into account in a computational model. This model did 212 

not include the effects of lipids and collagen matrix, which decreases permeability a further 213 

three orders of magnitude (Wen et al. 2010). Nevertheless, all the samples in the current 214 

study underwent the same preparation and testing protocol, and therefore, the effects of 215 

freshness are assumed to have affected all the bones in the same manner. The assumptions 216 

made in the analysis also influences the values obtained.  In our poroelastic approach the 217 

values of νu and α were assigned a priori. The undrained bone was considered incompressible 218 

(νu = 0.5), which does not influence the permeability value significantly when compared to νu 219 

< 0.5 (Oyen et al. 2012). The value of α = 1 does not influence the elastic properties but since 220 

the algorithm identifies k/α
2
 from the diffusivity coefficient (eq. 7) the assumed value affects 221 

the quantitative value of permeability. Theoretical studies have estimated values of 0.14 222 

(Cowin 1999) and 0.15 (Smit et al. 2002) for α in osteonal bone and it has been shown that its 223 
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value increases with increasing microporosity or decreasing mineral content (Hellmich and 224 

Ulm 2005). The value α = 1 was chosen in this study because there are no estimates of what it 225 

should be for non-osteonal bone, nor how it changes with age. If α ≠ 1 was used, all the 226 

reported permeability values would differ by a constant value α
2
, and thus the age-related 227 

trends would not be altered. Overall, the measured values give a first experimental estimate 228 

of the lacunar-canalicular permeability of non-osteonal bone. 229 

In order to investigate the influence of the contact size in the measured permeability level, 230 

indents made with the 238 μm and 500 μm radius tip were compared. The larger tip imposed 231 

larger contact sizes and revealed a wider distribution for the 7 and 12 month-old bones, 232 

reaching permeability values as large as 9×10
-22

 m
2
 (Fig. 5). These large values were not 233 

captured when indenting old bone with the small tip. This difference can be explained by 234 

looking at the lacunar and vascular pores of cortical bone (Fig. 7). The indentation contact 235 

radius is defined as a = ; therefore for an average displacement of ~250 nm the 236 

imposed contact diameter was ~ 15 μm for the small tip and ~ 22 μm for the larger tip. The 237 

long radius of elliptical lacunae in murine bone measures 1-10 μm with a spacing of ~ 30 μm 238 

between lacunae; while the diameter of vascular canals is >10 μm with a vascular spacing of 239 

~100 μm (Carriero et al. 2011, Wang et al. 2005, Schneider et al. 2007, Schneider et al. 2010, 240 

Voide et al. 2011). Fig. 7 shows a nano-CT image of a 12 month-old tibia where the long 241 

radius of a lacuna is 7.0 µm and the diameter of a vascular canal is 14.2 µm. This suggests 242 

that with a larger contact area there is a higher likelihood of indenting a hole or part of a hole. 243 

When the indent fell into a pore, the time-displacement curve was either distorted or the 244 

displacement limit was exceeded before making contact with the surface. In both cases, this 245 

data was excluded from the analysis.  246 
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In the current study, the 500 μm tip was able to identify both lacunar-canalicular and vascular 247 

permeability, showing a continuum distribution of permeability over three orders of 248 

magnitude. These differences in permeability are in accordance with the multi-scale 249 

permeability response of equine bone obtained with varying contact sizes: when the contact 250 

diameter increased from 6-14 μm to 18 μm, permeability increased almost two orders of 251 

magnitude; and it increased three orders of magnitude further when the contact radius 252 

reached 200-300 μm (Oyen et al. 2012). In these studies, nanoindentation measured different 253 

levels of permeability in a discrete manner; the transition across length scales was not 254 

explored further. In the current study, the indents with the 500 μm tip captured this transition 255 

and revealed that the permeability distribution was narrower in the youngest bones. This may 256 

be a result of the increasing intracortical and cortical porosity  with advancing age found in 257 

B6 mice femora (Ferguson et al. 2003, Courtland et al. 2013), similar to the increased size of 258 

vascular Harvesian canals seen in human bone (Wang and Ni 2003). 259 

The elastic properties derived from the poroelastic analysis did not show such dependence on 260 

the indentation contact size and their values were in agreement with published data. Shear 261 

modulus increased from young to skeletally mature (2 to 7 months) bone and then decreased 262 

in aged mice (12 months). Previous nanoindentation tests on hydrated bone have reported 263 

shear moduli of 430-500 MPa (Bembey et al. 2006, Oyen 2008, Oyen et. al 2012). Some 264 

studies have measured larger values of shear modulus in dry bone (Bushby et al. 2004, Chang 265 

et al. 2011, Lopez-Franco et al. 2011); however, it has been shown that the shear modulus 266 

measured by nanoindentation decreases almost an order of magnitude when spherical 267 

indentation is used on hydrated bone, in contrast to sharp indentation in dry bone (Rodriguez-268 

Florez et al. 2013). Previous studies have also shown similar age-related changes in elastic 269 

properties of B6 murine bone with different measurement techniques at the whole-bone 270 

(Brodt et al. 1999, Ferguson et al. 2003, Sommerville et al. 2004) and tissue (Raghavan et al. 271 
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2012) level. The drained Poisson’s ratios measured in this study are similar to the values 272 

obtained by Oyen et al. (2012) and close to the ν = 0.3 often assumed for bone.  273 

This study provides an insight into the changes of lacunar-canalicular permeability of bone 274 

with age, as well as a first experimental approximation of lacunar-canalicular permeability of 275 

mouse bone. Our results suggest that nanoindentation with varying contact sizes might 276 

provide the tool to understand the dual-porosity nature of bone. Recent poroelastic finite-277 

elements models of mouse cortical bone mechanotransduction have shown that the load-278 

repetition response is highly influenced by the assumed value for lacunar-canalicular 279 

permeability (Pereira and Shefelbine 2013). The frequency of the load-repetition influences 280 

the adaptation of the bone (Kumar et al. 2012, Robling et al. 2002, Warden and Turner 2004). 281 

Therefore, it is essential to include accurate experimental lacunar-canalicular permeability 282 

values into computational models to explore the influence of fluid flow in bone remodeling 283 

and adaptation. Because fluid flow is likely involved in mechanotransduction of the bone’s 284 

mechanics environment into a cellular mechano-adaptive response, characterizing the 285 

permeability of bone may help indicate alterations in mechanoadaptation. 286 
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CAPTIONS 

Figure 1: Multi-scale porosity of cortical bone of a murine tibia from vascular (red big 

channels) to lacunar-canalicular (yellow dots and small channels) porosity. 

Figure 2: Outline of the experimental setup for nanoindentation. The distal halves of the 

tibiae of three B6 mice of 2, 7 and 12 months were embedded in epoxy resin and tested 

submerged in distilled water. A minimum of ten indents where made on each sample. 

Figure 3: Average and standard deviations of shear modulus (left) and Poisson’s ratio (right) 

of B6 tibiae of 2, 7 and 12 months (p<0.05). 

Figure 4: Intrinsic permeability as a function of age when indenting bone with a 238 μm 

radius tip (p<0.05). 

Figure 5: Intrinsic permeability distribution as a function of age (2, 7 and 12 months) when 

indenting bone with a 238 μm (left) and 500 μm (right) radius tip (p<0.05).  

Figure 6: Displacement-time (h-t) curves corresponding to two indentations on the same 12 

month-old bone using the 500 µm sphere tip. Fitting the high-displacement curves result in 

permeability values in the order of 10
-21

 m
2
, while low-displacement curves give values in the 

order of 10
-24

 m
2
. 

Figure 7: Nano-CT image of a 12 month-old tibia at a resolution of 0.6 µm/pixel. Pores of 

varying sizes relative to the indenter size are shown. The shaded areas correspond to the 

contact areas imposed by the indenter. The 238 µm tip imposed contact radii a ~ 7 µm, 

whereas the 500 µm tip imposed contact radii a ~ 11 µm. 
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