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Abstract

The contribution of this body of work is in developing new methods for modelling inter-

actions in modern financial markets and understanding the origins of pervasive features

of trading data. The advent of electronic trading and the improvement in trading tech-

nology has brought about vast changes in individual trading behaviours, and thus in

the overall dynamics of trading interactions. The increased sophistication of market

venues has led to the diminishing of the role of specialists in making markets, a more

direct interaction between trading parties and the emergence of the Limit Order Book

(LOB) as the pre-eminent trading system. However, this has also been accompanied by

an increased fluctuation in the liquidity available for immediate execution, as market

makers try to balance the provision of liquidity against the probability of an adverse

price move, with liquidity traders being increasingly aware of this and searching for

the optimal placement strategy to reduce execution costs.

The varying intra-day liquidity levels in the LOB are one of the main issues exam-

ined here. The thesis proposes a new measure for the resilience of liquidity, based on

the duration of intra-day liquidity droughts. The flexible survival regression framework

employed can accommodate any liquidity measure and any threshold liquidity level of

choice to model these durations, and relate them to covariates summarising the state of

the LOB. Of these covariates, the frequency of the droughts and the value of the liquid-

ity measure are found to have substantial power in explaining the variation in the new

resilience metric. We have shown that the model also has substantial predictive power

for the duration of these liquidity droughts, and could thus be of use in estimating the

time between subsequent tranches of a large order in an optimal execution setting.

A number of recent studies have uncovered a commonality in liquidity that ex-

tends across markets and across countries. We outline the implications of using the

PCA regression approaches that have been employed in recent studies through syn-

thetic examples, and demonstrate that using such an approach for the study of Euro-
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pean stocks can mislead regarding the level of liquidity commonality. We also propose

a method via which to measure commonality in liquidity resilience, using an extension

of the resilience metric identified earlier. This involves the first use of functional data

analysis in this setting, as a way of summarising resilience data, as well as measuring

commonality via functional principal components analysis regression.

Trading interactions are considered using a form of agent-based modelling in the

LOB, where the activity is assumed to arise from the interaction of liquidity providers,

liquidity demanders and noise traders. The highly detailed nature of the model entails

that one can quantify the dependence between order arrival rates at different prices, as

well as market orders and cancellations. In this context, we demonstrate the value of

indirect inference and simulation-based estimation methods (multi-objective optimisa-

tion in particular) for models for which direct estimation through maximum likelihood

is difficult (for example, when the likelihood cannot be obtained in closed form). Be-

sides being a novel contribution to the area of agent-based modelling, we demonstrate

how the model can be used in a regulation setting, to quantify the effect of the intro-

duction of new financial regulation.
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Chapter 1

Introduction

“Why are you always in such a hurry, Mr. Lipwig?”

“Because people don’t like change. But make the change happen fast enough

and you go from one type of normal to another.”
— Terry Pratchett, Making money

The modern economics literature has established a strong, positive relationship between

the development of financial systems and economic growth1. Financial markets arise in order to

encourage the dissemination of information, and facilitate transactions by reducing transaction

costs. In particular, the development of financial intermediaries who are better at ameliorating

these frictions has been found to be causally related to the level of economic growth [Levine

et al., 2000].

Markets enable specialisation, and aid in the allocation of resources to sectors of the econ-

omy where the social return is greatest [Greenwood and Smith, 1997]. Financial assets traded

in markets become less risky, as markets allow investors to enter and exit positions swiftly and

inexpensively, when they wish to alter their portfolios [Arestis et al., 2001]. Reducing the cost

of mobilising investments is thus one of the primary benefits of a well-functioning financial

system.

More recent work suggests that the finance-growth relationship that held until the late 80s

is indeed waning [Rousseau and Wachtel, 2011]. The relationship appears also to be non-linear:

while the first steps in the development of a financial system go hand in hand with growth, fur-

ther financial development becomes detrimental to the economy [Cecchetti et al., 2012]. There

have also traditionally been doubts about the causality of the relationship between financial

1There is a substantial literature that studies the relationship between financial market development

and economic growth, starting more than 40 years ago with the work of Goldsmith [1969], McKinnon

[1973] and more recently, with the analytical models of Levine [1997], Greenwood and Smith [1997].
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sector development and the overall growth in the economy [Robinson, 1953], and results in

developing economies support the view that finance follows enterprise [Ang and McKibbin,

2007].

Financial markets have experienced a number of crises in recent years, some of which can

be attributed to the excessive deepening of the financial sector [Rousseau and Wachtel, 2011].

For the duration of crises, such as the 1997 East Asian crisis, or the more recent financial

crisis of 2007-2009, the ability of investors to build or liquidate their positions without much

effect on the market was diminished [Laeven and Valencia, 2010]. That liquidity co-moves

with the market was already known, but recent work has also uncovered the bi-directionality of

the relationship [Brunnermeier and Pedersen, 2009]. In this context, ‘dry-ups’ in liquidity have

also been found to be a contributing factor in the amplification of small shocks into full-blown

financial crises [Brunnermeier, 2008].

1.1 Electronic trading and the Limit Order Book
Financial markets were traditionally physical meetingplaces for buyers and sellers to interact

and exchange financial assets. Stock market trading has been ongoing for more than 400 years,

with the Dutch East India Company stock trading on the Amsterdam Capital Market since the

early 17th century [Gelderblom and Jonker, 2004]. Even prior to this, there was known to be

trading in governmental debt products in Venice, arising from an active money market, and

becoming key to the development of the city as a financial centre [Mueller and Lane, 1997].

Perhaps the most iconic figure of physical marketplaces is the floor or ‘pit’ trading at the

Chicago Board of Trade, where brokers wearing colourful suits signalled their trading intentions

using a series of hand signals. While CME Group still maintains the pit (at a significant cost to

them2) this is largely for historical reasons, as the vast majority of trading has moved to elec-

tronic exchanges. Of the exchanges that were predominantly floor-based in the past, the London

Stock Exchange transitioned first, moving their trading from the floor to being performed by

computer and telephone in dealing rooms in 19863, and other exchanges soon followed.

Electronic trading has now been introduced in the leading financial exchanges of more

than 100 countries, and Jain [2005] documents this shift over the last 40 years. The relevant

trading technology was first developed by the U.S. brokerage firm Instinet as early as 1969.

2http://www.bloomberg.com/news/2013-11-06/cme-spends-30-million-a-

year-on-open-outcry-trading.html
3http://www.londonstockexchange.com/about-the-exchange/company-

overview/our-history/our-history.htm

http://www.bloomberg.com/news/2013-11-06/cme-spends-30-million-a-year-on-open-outcry-trading.html
http://www.bloomberg.com/news/2013-11-06/cme-spends-30-million-a-year-on-open-outcry-trading.html
http://www.londonstockexchange.com/about-the-exchange/company-overview/our-history/our-history.htm
http://www.londonstockexchange.com/about-the-exchange/company-overview/our-history/our-history.htm
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The Toronto Stock Exchange was the first leading exchange to introduce electronic trading in

1977, and the vast majority of venues are now either fully electronic, or combine electronic

and floor trading. The automation of trading has been shown to be associated with several

positive changes in financial markets and the economy, such as a reduction in the cost of equity,

(a phenomenon that is more prevalent in developing markets), an increase the availability of

liquidity and a positive price reaction following the switch.

The ever-increasing share of electronic trading has brought about a vast increase in order

flow, while financial regulations (e.g. the ‘Regulation National Market System’ (Reg NMS) in

the U.S., and the ‘Markets in Financial Instruments Directive’ (MiFID) in Europe), designed to

foster competition amongst trading exchanges, have resulted in a proliferation of trading venues

for equity markets. While both developments have undoubtedly had a positive effect on some

aspects of equity trading, they have also made it more difficult for regulators to assess certain

characteristics of markets, because of the speed and volume of transactions [Cont, 2011].

A development that has arguably contributed to the complexity of stock price and vol-

ume dynamics is the emergence of the Limit Order Book (LOB) as the pre-eminent trading

mechanism. The LOB is the central matching mechanism used in the majority of equity trading

venues today [Roşu, 2009]. It collects all the buying and selling interest in a particular stock and

presents an aggregation of these orders to every market participant. Every order to buy (called a

bid) or to sell (called an ask) has a specified size and a maximum or minimum execution price,

respectively, and the LOB orders these by price first, then by time of submission. Limit orders

that are not executed immediately enter the LOB and aggressive orders (called market orders)

execute against these resting orders (orders in the queue).

Glosten and Milgrom [1985] suggests that limit orders are submitted at different levels,

in order for market participants to protect themselves from adverse selection, that is, execution

of their order against a trader with superior information. Modelling the short-term dynamics of

the LOB is important for a number of reasons, including optimal execution of orders [Bertsimas

and Lo, 1998, Almgren and Chriss, 2001, Avellaneda and Stoikov, 2008, Obizhaeva and Wang,

2013, Alfonsi et al., 2010], and quantifying market impact [Hautsch and Huang, 2012]. As such,

there have been a number of empirical studies investigating determinants of certain aspects of

the LOB, like the bid-ask spread [Chung et al., 1999], and market depth [Ahn et al., 2001].

1.2 Market liquidity
Features such as the bid-ask spread, market depth, volume, and others are typically studied

under the umbrella term of ‘market liquidity’, a concept which measures the relative ease with
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which one can take up or liquidate a position in the market, without much effect on market

dynamics. In general, one would favour markets where one is able to enter or exit positions

swiftly, and without incurring large costs. Liquidity is considered a desirable characteristic of

financial markets, as in liquid markets we generally expect to observe fewer abrupt changes, or

‘jumps’, in terms of either the security price or the volume available for that security. While

there is no universally agreed measure to uniquely capture the concept of what is market liq-

uidity, proposed measures should reflect aspects like immediacy of execution (that is, there is

trading interest throughout the trading day), tightness (or the ability to buy or sell at roughly the

same price) and depth (the ability to enter the position at some size) [Von Wyss, 2004].

It is important to make the distinction between market liquidity and funding liquidity,

with the latter being related to the ease of obtaining funding for trading. Although the two are

interrelated [Brunnermeier and Pedersen, 2009], this thesis will focus on local LOB dynamics,

for which market liquidity is a central concept.

Market liquidity is important for different stakeholders, including the firms whose assets

are being traded, liquidity providers, asset managers, exchanges and regulators. For example,

for firms looking to raise capital through an IPO, projected market liquidity is a factor in both

the associated costs, as well as the pricing of the stock itself [Butler et al., 2005, Ellul and

Pagano, 2006]. This is because many investors will be more reluctant to hold a position that

will be difficult or expensive to liquidate swiftly.

Regulators also have an interest in liquidity fluctuations and reducing trading frictions, as

part of their obligation to ensure orderly markets. Several trading rules have been introduced

by the SEC in an attempt to improve liquidity levels, for example the Order Handling Rule, the

Limit Order Display Rule4 and others. These were largely beneficial, reducing bid-ask spreads

substantially, but had the unintended consequence of reducing depth in lower volume stocks

[Goldstein and A Kavajecz, 2000].

There has long been a distinction between market participants who supply and consume

liquidity. Market makers supply ‘immediacy’, that is, they are willing to bear the risk of keeping

a position until the final buyer or seller arrives to take that position [Grossman and Miller,

1988]. A large portion of their liquidity provision activity is against asset managers, who want

to execute (buy or sell) a large trading volume for one or more assets, and who do not have

a choice regarding the assets they invest in and little choice on the timing of when they can

invest. Such investors have a strong vested interest to seek out markets that have a high level

4The text for both these rules can be found at https://www.sec.gov/rules/other/34-

38156.txt.

https://www.sec.gov/rules/other/34-38156.txt
https://www.sec.gov/rules/other/34-38156.txt
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of liquidity. That is, they care about liquidity, insofar as it affects their return on investment, as

illiquid securities cost more to buy and can be sold for less [Foucault et al., 2013].

Liquidity is therefore important for risk and execution purposes, and this is true particu-

larly in modern LOBs, where market participants have adapted their trading behaviour, in order

to improve their execution. On the New York Stock Exchange (NYSE), for example, the av-

erage order size is one-eighth of that of fifteen years ago, in terms of number of shares, and

one-third in dollar value [Chlistalla et al., 2011]. This indicates the partitioning of large orders

into multiple smaller orders and traders taking advantage of the replenishing of liquidity. It also

shows that a good understanding of the intra-day dynamics of liquidity is necessary for market

participants. This ‘hidden’ liquidity constitutes one of the axes of this thesis, and the duration

of time required for such liquidity to become visible in the LOB is studied in detail.

1.3 High-frequency trading effects and regulation
In the rapidly evolving environment described above, in which face-to-face interactions have

been phased out in favour of electronic trading, there has been a vast increase in the speed of

transactions. The majority of the activity occurs in the millisecond environment now, a few

orders of magnitude faster than humans can process information. The fast response time to

LOB activity is termed ‘low latency’ [Hasbrouck and Saar, 2013], while the volume of activity

performed on the such timescales is usually referred to as ‘high-frequency trading’.

In this setting, many of the more traditional models and tools that express the probability of

events based on some historical distribution have proved unable to explain certain phenomena,

like the May 6, 2010 ‘Flash Crash’. On this day major indices and futures products in the US

dropped by more than 6% between 2:41 and 2:45 p.m., having already dropped by 4% in the

preceding 5 hours. Prices then recovered with the same speed and intensity, almost reaching the

day’s opening prices within 15 minutes [Kirilenko et al., 2014]. It is estimated that for a brief

period during this day, US markets had lost more than $1 trillion of their value [Easley et al.,

2011]. The SEC/CFTC joint advisory committee investigation that followed [Securities et al.,

2010] suggested that there was no fundamental reason for a rapid drop of such magnitude, in

the sense that it was not caused by specific economic news.

The events that transpired on that day highlighted a number of important points: Firstly,

that even in the presence of all the relevant data, it is not straightforward to pinpoint the initial

cause of such large scale, and sudden, price movements and liquidity droughts, as evident by

the disagreements between the SEC/CFTC report and those of other industry participants5.

5http://www.nanex.net/FlashCrashFinal/FlashCrashSummary.html
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Secondly, while the ‘tipping point’ may not be known, endogenous dynamics (feedback loops)

certainly contribute to such phenomena. Thirdly, models of short term dynamics based on

historical distributions (used, for example in Value At Risk models) may be ill equipped to

handle such sudden intra-day volatility[Bookstaber, 2012].

One of the factors identified in the SEC report as contributing to this incident was the ac-

tivity of ‘high frequency traders’ (HFT), who typically enter and exit positions very frequently.

Their aim is not to profit from the appreciation or the depreciation of an asset over some period,

but rather to benefit from temporary price discrepancies between markets, or from providing

liquidity in a single market. In their latter role, they are similar to market makers, but unlike

them, they do not have quoting obligations.

Some of the regulation that has been introduced or proposed in recent years, like the finan-

cial transaction tax, or minimum resting times for limit orders, is intended to curtail the growth

of HFT. Unfortunately, this new regulation has often brought about unintended consequences:

Colliard and Hoffmann [2013] describes the introduction of the financial transaction tax in Ital-

ian equity markets. This was designed to curtail high frequency trading, but has instead led to

a sharp drop in turnover for this asset class, making it more difficult (or costly) for investors to

enter and exit positions. There is therefore a pressing need to understand the processes that lead

to such a reduction in liquidity, which originate either from endogenous dynamics in the LOB

or from the introduction of financial regulation, as in the recent Italian case.

The second axis of this thesis is in modelling trading interactions in the LOB, in the hope

that such a model can eventually be used as a ‘dry-run’ to test the effects of particular forms of

trading activity, or the effect of the introduction of new regulation. Our interest is specifically in

the behaviour of both stock prices and the volumes available for trading in the LOB over short

horizons.

1.4 Thesis contributions

1.4.1 Processing high-frequency trading activity and developing an

efficient LOB implementation

This thesis revolves around the modelling of trading interactions and features of the LOB, and

thus obtaining an appropriate dataset to analyse and compare results against was an important

consideration. Fortunately, we were able to obtain a very detailed dataset from the Chi-X venue,

which contained all the trades and trading interest in around 1300 European assets for a period

of 4 months in 2012. This dataset is uniquely suited to the type of empirical analysis performed
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in this thesis, as it enabled us to evaluate whether certain results hold across countries and

across industries. In addition, while it is not a primary exchange, it commands more than

a quarter of the trading activity in the 3 most active European markets (UK, Germany and

France). Therefore, insofar as the trading activity on the primary exchanges is similar to that on

large secondary exchanges, the results we present here should hold for the primary European

equity exchanges also.

The dataset consisted of a total of 82 event logs, one for each trading day in the four month

period. Each of these was between 2 and 3GB in size (for a total of over 200GB of data), and

contained information about tens of millions of events pertaining to the 1300 assets traded on

Chi-X. The first challenge was to divide these logs into individual files detailing the trading

activity for every individual asset. The purpose of this was two-fold: Firstly, in order to make

the dataset more manageable, and secondly, because the models we are developing in this thesis

are predominantly focused on a single asset at a time.

Following that, we developed an efficient LOB implementation, as the software used at

Chi-X to replay daily activity is not made available externally. This entailed creating a matching

engine (a virtual order book), that could read in every limit order arrival, execution and cancel-

lation, recreating the state of the order book at each event timestamp. In this way, one is able to

view the LOB at a transaction-by-transaction level (event time) and can also obtain information

that is not otherwise available using the raw data (number/volume of orders at each level of the

order book, the age of orders in the order book, the value of certain liquidity measures which

require detailed LOB data etc).

Even though packages for visualising and retrieving data from an LOB exist in statistical

software (e.g. in the statistical programming language R, package orderbook6 by Kane et al.

[2011]), these are limited, in that they are not able to capture the required details of every in-

dividual order that are used in the models developed in this thesis. In addition,the choice of

programming language to create the limit order book matching engine had to be sufficiently

rich and flexible to allow for high-throughput processing of massive chunks of data. In general,

standard languages such as R and Matlab were unsuitable for such large scale tasks. For ex-

ample, an R implementation of a complex data structure is bound to be to slow and plagued by

memory management and RAM problems with such massive files, and is thus not particularly

suited to processing daily activity of hundreds of thousands of transactions per day and per

asset efficiently. This meant that an object-oriented language was required, and we provide in

6The package is available at http://cran.r-project.org/web/packages/

orderbook/index.html

http://cran.r-project.org/web/packages/orderbook/index.html
http://cran.r-project.org/web/packages/orderbook/index.html
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Chapter 2 a more detailed description of the implementation.

1.4.2 Modelling the resilience of LOB liquidity

We mentioned liquidity as an important notion in financial markets, and indeed for some in-

vestors it is a primary concern in deciding the markets and assets they would like to operate

in. The traditional, static notion of liquidity, which has been the focus of several recent studies,

is based on instantaneous snapshots of market variables. As such, they are perhaps less useful

in indicating the timeframe in which a market should recover from a liquidity shock, coming

perhaps from either a single, large order or from a series of smaller orders that remove orders

resting on the LOB. This aspect has been termed ‘resilience’ [Kyle, 1985], and there have been

a number of attempts to pin down the concept.

Some definitions have related resilience to price evolution, in the sense of indicating a

swift return to some former level of the price of the asset [Kyle, 1985, Obizhaeva and Wang,

2013], or the difficulty in affecting a permanent change in the price [Harris, 2002]. Another

interpretation of resilience is related to order replenishment, which would indicate the return

of volume to the LOB after a shock [Garbade and Garbade, 1982], or the tightening of the

spread [Foucault et al., 2005]. Despite the fact that this aspect of liquidity was introduced more

than 30 years ago, there have been relatively few studies that have quantified resilience with a

metric, and even fewer to propose a quantitative model for it, with the exception of Foucault

et al. [2005] and Large [2007].

In this thesis, we focus on the second interpretation of liquidity resilience, as an indicator

of order replenishment, as this is important for a number of stakeholders, including brokerage

houses, that aim to minimise trading costs, and regulators, who aim to ensure orderly markets

through exchange rules and management. Our first contribution is to propose a new definition

for liquidity resilience, which captures the time required for liquidity to return to the LOB after

a shock. The metric measures the duration of intra-day liquidity dry-ups, or droughts, relative to

any threshold level of liquidity and for a user-specified liquidity measure. This makes it more

general than previous metrics, which were tied to a particular liquidity measure or threshold

level (e.g. Foucault et al. [2005]). It should therefore prove to be more useful to the stakeholders

mentioned above, who would be interested in the fluctuation of liquidity at different timescales

or different levels of interest.

Our modelling approach uses survival analysis to measure the duration of these droughts.

In this context, we assess the explanatory power of survival time regression models for capturing

these features of liquidity intra-daily, and we relate these durations to a number of instantaneous
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and lagged covariates obtained from the LOB. This is achieved through the development of a

survival time model, similar in structure to that used previously by Lo et al. [2002], and we

present an analysis of the lifecycle of droughts in liquidity during the trading day.

We investigate the suitability of these models and determine the relevant covariates to

include for various assets and under different market conditions. We also evaluate the predictive

power of the models for the resilience of two different liquidity measures and interpret the

structural features of the optimal models for each. We explore a very large number of model

structures, across datasets for different companies and over an extended period of four months

of detailed LOB data, in order to evaluate the relative importance of each LOB variable in the

approach. We find that, in agreement with what one would expect, a larger difference of the

liquidity from a threshold level would be associated with a longer deviation from that level. On

the other hand, a larger frequency of such deviations from a liquidity threshold level would be

associated with a swifter return to that level.

An obvious use for the liquidity resilience metric and the associated survival regression

framework would be in improving one’s estimates of expected execution times. Execution al-

gorithms typically place orders when there is sufficient liquidity in the LOB, and this approach

can produce the conditional mean of the period until that level of liquidity is achieved. Because

of the flexibility of this approach, it can accommodate any liquidity measure and any liquid-

ity level as a threshold. As such, it can be incorporated into a number of different execution

algorithms, which use different liquidity measures as the basis for their decision making.

The resuls suggest that the resilience metric and associated model can have positive im-

plications for market quality. Liquidity droughts have been identified as amplifying factors for

market shocks, both when liquidity is considered over longer periods of time [Brunnermeier,

2008], and for intra-day periods [Easley et al., 2011]. In the latter case, this can be understood

as liquidity providers not wanting to risk building positions which will be difficult or costly to

unwind. Understanding that the duration of a liquidity drought is directly related to the state of

the LOB can help inform liquidity providers that may be considering leaving the market. The

continued presence of liquidity providers in the LOB will limit the extent of intra-day shocks,

as the liquidity droughts which are central to most such shocks will be better understood and

forecast.

Alternatively, in the case of a regulator or exchange, the state of the LOB can be infor-

mative about the expected intra-day liquidity drought durations. For stressed states, in which

the LOB is expected to diverge from what are considered to be acceptable levels of liquidity

for an extended period of time, a regulator could consider imposing quoting rules to liquidity
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providers, or the exchange could provide incentives for them to improve the market.

1.4.3 Quantifying the commonality in liquidity and resilience

Recent studies involving different assets for data from both primary and secondary exchanges

have shown that for a number of different liquidity measures, one may observe a high degree

of commonality in liquidity. For equities, the observed commonality is significant at both the

market and the industry level [Chordia et al., 2000, Huberman and Halka, 2001], while Brock-

man et al. [2009] also provide evidence of this, in both developed and emerging markets. The

degree of commonality found across multiple different exchanges led the latter to comment that

‘firm-level liquidity cannot be understood in isolation’. Liquidity co-movement has been found

to be prevalent particularly during equity market breaks and debt market crises [Hasbrouck and

Seppi, 2001].

Our first contribution in the liquidity commonality literature is to show that, at least in

the equity space, the assumption that one can capture all features of liquidity commonality via

a PCA regression approach, which is by far the most common way to quantify commonality,

will not always be appropriate. In particular, using only second order moments will not capture

heavy tailed features observed in the empirical distribution of the liquidity for certain assets.

The outcome of using only PCA methods, which are based on second moments, is that the

analysis is then driven by the most illiquid assets, which act as outliers in the cross-sectional

dataset. We perform ICA (Independent Component Analysis), which incorporates higher order

information, verifying that these assets correspond to the maximally non-Gaussian components.

In addition to the considerations regarding the appropriateness of the statistical assump-

tions for an analysis of commonality, one should note that existing liquidity commonality ap-

proaches only reflect the aspects of liquidity measure chosen. In the case of the spread, this

would be the tightness, and in the case of the XLM, it would also reflect the depth. However,

since such measures cannot quantify liquidity resilience, the associated commonality analysis

will not reflect this aspect of liquidity either. We extend the analysis to determine if the liquidity

commonality observed is also present when one incorporates notions of resilience.

The resilience metric proposed previously was indicative about the time one would expect

to wait, for a particular liquidity measure to reach a user-defined threshold. In order to obtain a

more complete picture about resilience, one could then calculate the expected time for liquidity

to return to a number of different liquidity thresholds after a shock, where these thresholds

could represent every possible value that a particular liquidity measure (e.g. the spread) can

take during the day. Taken together, these expected durations would then form a curve, or a
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resilience profile, indicating the expected duration of fluctuations from any threshold.

These profiles are informative about the level of LOB liquidity replenishment for each

asset, therefore a commonality analysis can identify clusters of assets for which we would

expect a swift return to high liquidity levels. Using these profiles as building blocks, we advance

the literature on liquidity commonality by quantifying commonality in liquidity resilience for

two common liquidity measures, namely, the inside spread and the XLM.

A notable contribution here was the first use of functional data analysis (FDA) in a finan-

cial LOB setting, in order to reduce the dimensionality of the liquidity resilience data and enable

the comparison of functional data forms (the liquidity resilience profiles above). In particular,

in an analogy with the use of PCA to extract market factors of daily liquidity, we use func-

tional PCA, to obtain market factors contributing to the variation in daily liquidity resilience.

Commonality can then be obtained as the explanatory power of these market factors for the

resilience of each asset.

Our results suggest that these market factors for liquidity resilience can explain between

10% and 40% of the time required for the spread to return to a low threshold level after a shock.

We interpret this figure as the degree of commonality in liquidity resilience for European stocks,

and attribute it to market making activity in the LOB. One would expect that market makers use

similar algorithms in replenishing LOB liquidity for different stocks, which would then manifest

in common resilience behaviour in these stocks.

However, we also note that that the FPCA market factors are less explanatory about liquid-

ity resilience at higher threshold levels, or for different liquidity measures, such as the XLM.

Deviations from higher thresholds would indicate more extreme intra-day shocks. We have

therefore suggested that the lower explanatory power of market factors at these levels may

again be due to market makers, who are now less inclined to post liquidity in the LOB after

these shocks. This is in order to avoid excess exposure in a market where it will be costly to

unwind a position.

Contrasting these results with the liquidity commonality findings, we find that temporal

commonality in the liquidity measures does not necessarily entail commonality in liquidity

resilience. We would argue that this has positive implications for market quality, as it indicates

that slow liquidity replenishment in certain assets is not necessarily contagious for the market.

1.4.4 Modelling trading activity in the LOB

While liquidity and resilience are certainly two important aspects affecting daily trading activity,

they are only summaries of the complex stochastic process that is the LOB. There are several
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other aspects of the LOB which are of interest to stakeholders, including the variation in the

intensity of the trading activity, as well as the inter-dependence between limit order submission

and cancellation activity at different levels. Variables that are central to LOB dynamics include

the timing of arrival of orders, the placement and size of orders, as well as the shape of the LOB

[Chakraborti et al., 2011]. Understanding these aspects can help inform trading decisions, but

is also key to regulators considering interventions to help improve the quality of a particular

market.

There have been two major approaches for modelling key features of the LOB, which can

be broadly separated according to whether they consider the activity of the participants at the

centre of the process. In the first approach, agent-based modelling (ABM) frameworks typically

characterise the trading population in the LOB through a simple set of agent attributes that

defines their trading behaviour. In models found in the economics literature, agents are assumed

to act strategically, by maximising utility functions in order to determine their course of action,

see for example [Parlour and Seppi, 2008, Roşu, 2009, Foucault et al., 2005]. However, many

macro aspects of the LOB can also be obtained through even simpler agent characterisations,

see for example Chen et al. [2012] for a discussion regarding the common characteristics of

financial markets that can be explained through agent-based models of varying complexity.

ABM has now also gained acceptance beyond the academic community, as Bookstaber [2012]

has described it as a method that the US Office of Financial Research intends to use to improve

their understanding of potential vulnerabilities in the financial markets.

The second approach abstracts away the market participant from the modelling process.

Instead a stochastic modelling approach is taken, where the complex trading dynamics are dis-

tilled into a set of statistical assumptions. These models can capture key empirical properties of

the processes comprising the LOB stochastic structure [Cont et al., 2010, Huang and Kercheval,

2012]. They also give rise to LOB simulation frameworks which feature these same properties,

see for instance Daniels et al. [2003].

The final contribution of this thesis is a new form of LOB model, which keeps aspects

of both agent-based modelling frameworks as well as the stochastic models approaches. The

aim is to be able to capture key features of the observed LOB process (specifically related to

the price and volume processes), but to also be able to interpret such features with regard to

the agent behaviours the model characterises. The distinction between the activity of different

agents is based on the liquidity motivations of the market participants. We develop two such

types of agents in this framework, market makers (liquidity providers), and liquidity demanders,

which are intended to encompass a stylised model for algorithmic traders, noise traders, trend
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followers and other types of speculators. The model expresses abstractions of these traders’

trading behaviours in a stochastic model framework, which is significantly more detailed than

typical simple agent models.

In the past, there was some skepticism about ABMs, due in part to the ‘perceived lack of

robustness’ [Windrum et al., 2007], as well as the lack of rigour in the calibration of the agent

and model parameters. A novel development of this thesis is a rigorous and efficient statistical

estimation procedure for the agent model parameters based on a combination of indirect infer-

ence, a simulation based likelihood procedure and multi-objective optimization. We calibrate

our representative agent stochastic model to real high frequency data from Level 2 limit order

book data from Chi-X. We show how such a procedure can be used to estimate the model such

that the resulting simulations approximate real data in more than one aspect, in our case the

behaviour of the intra-day price and volume processes.

One practical benefit of the agent-based modelling approach we develop is that under this

model, one is able to estimate the effect of a regulatory intervention, as long as we can model the

impact of a particular intervention on the order flow of the agent. For instance, it was recently

shown that even the availability of information about trading interest in the LOB (pre-trade

transparency) on its own is enough to affect trading behaviours [Boehmer et al., 2005, Bortoli

et al., 2006], both in the size of the orders and the frequency of cancellations, while the effects

on the market itself include reduced liquidity and increased volatility [Madhavan et al., 2005].

Under the agent stochastic model framework we are able to evaluate the effect of a ‘quote-

to-trade ratio’ imposition, which has been discussed in the context of limiting high-frequency

trading in the LOB. The empirical predictions of the model suggest that the imposition of such

a ratio is, ceteris paribus, sufficient to limit extreme intra-day volatility in the price process.

1.5 Outline of thesis structure
Chapter 2 provides an overview of the operation of the LOB, the pre-eminent trading mech-

anism in modern stock markets and the matching mechanism of the exchange whose data we

use in the empirical studies presented in this thesis. We also provide an overview of the LOB

dataset used and then discuss how one can manipulate the text files containing the entire trading

activity for a single day, in order to extract the data related to a single asset. We explain how

this can be used to rebuild the entire LOB, and specify the data structures one can use to obtain

an efficient implementation of the LOB. Finally, we provide some summary statistics regarding

LOB activity.

Chapter 3 contains a review of the literature related to the work presented here. We discuss
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some of the fundamental aspects of liquidity, and explain why it is an important concept for a

number of stakeholders. We then list some of the most common measures of liquidity, according

to the aspect of liquidity they reflect. We also provide some examples of the intra-day and long

term variation of these measures when applied to this data and attribute the variation to market

making activity and information asymmetry.

This is followed by a summary of empirical analyses of liquidity, starting with a discus-

sion of liquidity commonality across markets and across regions, for different equity classes.

Empirical studies for markets featuring different trading mechanisms have found that this can

lead to different liquidity levels, and regulatory decisions and exchange rules and enhancements

have also been shown to have an impact on liquidity.

The second part of the literature review is focused on financial market simulation mod-

els. The focus is particularly on financial ABMs, and the section starts with a short historical

overview of the development of ABM, as well as a short overview of the different areas of ap-

plication. This is then followed with the rationale of using ABM as an approach for economic

and financial modelling, before a description of some of the most important economic ABM

models. The financial ABM literature is then covered in depth, and we start with defining the

axes along which we compare the models covered. It is not straightforward to compare ABMs,

as they generally vary greatly, both in the level of abstraction of the trading mechanism, and in

their goals.

We consider firstly the types of agent strategies used in models, and considering both

simple, zero-intelligence formulations and more realistic strategies based on actual market be-

haviours. Then we discuss the mechanism for price determination used in each model, which

separates models in which the price is determined endogenously and exogenously. Finally, we

describe the use cases for such models, mainly in replicating real market features and in policy

testing.

Chapter 4 introduces a new metric for the resilience of liquidity in the LOB. This is con-

trasted with existing definitions of resilience and we argue that the additional flexibility of the

new metric makes it applicable to a wider range of situations. A quantitative framework to

model the variation in the metric is also introduced, which is based on a survival regression ap-

proach. This approach can then encapsulate the effect of the state of the LOB on the resilience

metric.

We identify the most important LOB covariates through extensive model selection over

all variable combinations and over an extended period of time, so as to identify the variables

that were found to be both significant and increase explanatory power. These covariates then
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form the basis of models used for prediction. We also show how one can use obtain conditional

quantile levels of the resilience metric, as a method to evaluate potential extreme levels.

In Chapter 5, we first review previous approaches on liquidity commonality and establish

the disadvantages of using PCA regression as a method to extract common factors and quan-

tify commonality. Empirical analysis of an equity dataset clearly demonstrates that such an

approach will be driven by the most illiquid assets, and thus the commonality results will not be

conclusive. We then show how one can address these issues with an Independent Component

Analysis approach, which incorporates higher order information.

This is followed by a description of a model to quantify the commonality in the resilience

of liquidity. We first introduce the financial data analysis framework to be utilised, and explain

how it will be applied to the functional profiles of liquidity resilience. We summarise the varia-

tion in the daily market factors of resilience (extracted through functional principal components

analysis) over time and utilise these in a functional regression setting. The explanatory power of

these market factors over time for different assets is then interpreted as the level of commonality

in liquidity resilience in the equity space.

In Chapter 6, we present an LOB simulation framework, where the distinction in agent

trading activity is based upon their liquidity motivations. We first explain how this description

is more appropriate for a modern financial market compared to previous approaches that had

broadly divided activity into that originating from traders motivated by price fundamentals or

from recent price activity. We then present a detailed stochastic model framework which has

the flexibility to incorporate time-varying limit order, market order and cancellation intensities

for the different levels of the LOB, as well as the heterogeneity in order sizes.

We also present a simulation-based approach to estimate this model, which is a com-

bination of an indirect inference approach with multi-objective optimisation. We estimate a

number of different versions of the model, starting with a basic model, where we make a series

of assumptions, and then progressively relaxing those assumptions, in order to evaluate which

elements of the model contribute most to capturing the required price and volume dynamics.

Finally, we evaluate the effect of imposing increasingly restrictive quote-to-trade ratios on daily

LOB activity.

Chapter 7 concludes, summarises the contributions of this thesis and sets out an agenda

for future work.



Chapter 2

LOB construction and descriptive

statistics

A challenge in financial econometrics is to summarise and study statistical features, or char-

acteristics, of large-scale datasets, derived from unevenly-spaced observations at an ultra high-

frequency arrival rate. The data structure outlining the buying and selling interest in an asset

is known as the Limit Order Book (LOB). Market participants are typically allowed to place

two types of orders on the venue: Limit orders, where they specify a price over which they are

unwilling to buy (or a price under which they are unwilling to sell), and market orders, which

are executed at the best available price. Market orders are executed immediately, provided there

are orders of the same size on the opposite side of the book. Limit orders are only executed if

there is trading interest in the order book at, or below (above), the specified limit price. If there

is no such interest, the order is entered into the limit order book, where orders are displayed by

price, then time priority.

The LOB mechanism is the most common method used in major stock exchanges to match

the buying and selling interest in stocks [Jain, 2003]. As such, there have been a number of stud-

ies of order book flow [Ranaldo, 2004, Kavajecz, 1999, Biais et al., 1995], as well as attempts

to model this flow using analytical models Roşu [2009], Cont et al. [2010], Cont and De Larrard

[2013]. More recent studies of the order book focus mainly on the increasing representation of

high frequency trading firms in the market [Hasbrouck and Saar, 2013], or the impact that their

order flow has on market quality [Brogaard, 2010].

Figure 2.1 shows an example snapshot of the order book for a particular stock, as traded

on the Chi-X exchange, at a particular instance of time. A market order to buy 200 shares would

result in 3 trades: 70 shares at 2702, another 100 shares at 2702 and the remaining 30 at 2704.

A limit order to sell 300 shares at 2705, on the other hand, would not be executed immediately,
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Figure 2.1: An example of the state of the Chi-X order book. The left hand side of the

book is the buying interest, while the right hand side is the selling interest. The highest

bid (order to buy) is for 100 shares at 2700 cents, while there are two lowest offers (orders

to sell) for 70 and 100 shares at 2702. Orders are prioritised by price, then time.

as the highest order to buy is only at 2700 cents. It would instead enter the limit order book

on the right hand side, second in priority at 2705 cents after the order for 120 shares which is

already in the book.
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Figure 2.2: The variation in the total trading activity (including limit order submissions,

executions and cancellations) in the LOBs of the stocks in the CAC 40, per day, for all

trading days in January 2012.
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2.1 Dataset and available order types
The data is provided by Chi-X, which (prior to its merger with BATS) was a pan-European

multilateral trading facility (MTF). While it is not a primary exchange, it commands a large

market share of the trading volumes for the assets traded on it. Indicatively, for the week starting

the 2nd of January 2012, it had 25.5% of the CAC40 trading volume, 26.9% for the stocks on

the DAX index and 33.4% of the FTSE1001. We note that Chi-X has not operated circuit

breakers (temporary trading halts following sudden market moves) during the trading sample,

which makes Chi-X data particularly clean for the purposes of our study given the number of

complex circuit-breaker mechanisms operated by other exchanges (see, e.g. Brugler and Linton

[2014] for a study of the efficacy of circuit-breakers on the London Stock Exchange).

The dataset consisted of over 1300 assets across a diverse range of sectors (e.g. financial,

construction and telecommunications). The exchange has both a visible and a hidden order

book and orders are routed to each book according to the type and size of the order: Limit

orders, pegged orders and part of each iceberg order (explained below) are displayed in the

visible book; orders meeting MiFID large in scale requirements are routed to the visible book,

but remain non-displayed; orders in the hidden order book are executed at the mid-price. Chi-X

operates a dark pool called Chi-Delta, which accounted for around 1% of trading volume for

CAC40 stocks2. This data is not considered here.

Our dataset contains information about the visible book, which supports the submission

of the following order types:

1. Limit order, with a specified price and size.

2. Market peg, which matches the best opposite price (e.g., the lowest sell price if it is a

buy order). It can be priced, such that it does not move above (below) a particular limit.

3. Mid peg, which pegs to the price between the best available bid and offer.

4. Primary peg, which pegs to the best price on the same side.

5. Iceberg order, similar to a limit order, but only a portion of it is displayed.

These orders can have an attached maximum time in force, after which they are cancelled

automatically:

1http://www.liquidmetrix.com/LiquidMetrix/Battlemap
2http://www.tagaudit.com/mydocuments/market_indicators_december_

2011.pdf

http://www.liquidmetrix.com/LiquidMetrix/Battlemap
http://www.tagaudit.com/mydocuments/market_indicators_december_2011.pdf
http://www.tagaudit.com/mydocuments/market_indicators_december_2011.pdf
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• Day orders, which are valid for the day.

• Good till -, which are valid until a particular time.

• Execute and eliminate, which has a specified size and (possibly) a limit price. The portion

of the order that is not traded immediately gets cancelled.

• Fill or kill, which is similar to the above, but either trades immediately in its entirety or

gets cancelled.

The orders remaining on the LOB at the end of the day, regardless of the type or time

in force option selected above, get automatically cancelled. This means that one only needs a

single day’s data in order to recreate the state of the LOB for that day.

It should be noted that our dataset only has information about limit order submissions,

executions or cancellations, from which one would not be able to infer the order type or time

in force. That is, a limit order submission may be the result of a mid peg, primary peg, iceberg

order or limit order, while an execution may be the result of a market peg or limit order. A

cancellation may be automatic (as a result of the fill or kill or execute and eliminate options),

or as a result of a manual cancellation request. It may also be the result of a modification of the

price of an order, which is represented in the data as a cancellation and resubmission with the

same order ID. For the most part, we do not attempt to infer this information here, but rather

propose models with fewer event types (limit orders, market orders and cancellations) in order

to match the outcome of the interaction between these more complicated order types.

For more information about these order types, Prix et al. [2007] provide a breakdown of

LOB activity on Xetra by order type and time in force, as well as the probability of every event

sequence (from submission to full/partial cancellation, or to full/partial cancellation).

2.2 Manipulating ‘flat’ order files to obtain useful LOB

data
The dataset consisted of the event logs from 82 trading days between the 2nd of January and

the 27th of April 2012. These logs are in text format and the entire trading activity (limit

orders, executions and cancellations) for every asset traded on Chi-X is included in a single file

every day (these are termed ‘flat’ files, as they do not convey information about the structure

of the LOB). The dataset therefore required some pre-processing, as these files typically range

between 2 and 3 GB in size, and contain more than 50 million events (limit order additions,

executions or cancellations).
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In order to construct the LOB for a single asset on a particular day, it is then prudent

(and faster) to separate out the events pertaining to that asset, before doing the matching. This

presents some difficulties, as we will see in the data snapshot below that lines representing

executions or cancellations omit details such as the stock symbol and whether the order being

executed or cancelled is an order to buy or to sell.

A large initial undertaking was therefore to run through the entire dataset every day and

separate out the orders for each asset in individual files. This was done in Python, which has the

advantage of providing regular expression matching, and makes such an operation faster. The

difficulty encountered above, where information from certain types of events was omitted, was

overcome by using a machine with 32GB memory capacity and was able to keep every order in

memory, so that subsequent cancellations and executions could identify which asset a particular

event relates to.

The result of this process was a collection of more than 100,000 files containing the activ-

ity of all 1300 assets for every one of the 82 trading days. Along with the LOB implementation

described in Chapter 2.3, we could now reconstruct the LOB and extract summary statistics for

any asset and any day in the period under consideration very quickly.

The following is a snapshot from the dataset for the trading activity of German stock

Siemens AG:

S28813122A 6539S 97SIEd 748700Y

S28813124X 6539 97

S28813129X 4610 97

S28813129A 4610B 97SIEd 747200Y

S28813130A 6973S 97SIEd 748600Y

S28813145X 6973 97

S28813147A 6982S 97SIEd 748600Y

S28813374A 7068S 76SIEd 748000Y

S28813374X 6982 97

S28813961A 7457S 316SIEd 747300Y

S28813962X 4610 97

S28813976E 7457 316 175

S28813977A 7467B 962SIEd 745200Y

S28814001A 7484B 97SIEd 747200Y

S28814437X 7068 76

S28815231X 7467 962
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The 8 digits after the starting character ‘S’ represent the timestamp in milliseconds after

midnight, London time. The first timestamp (28813122) then corresponds to 08:00:13.122. The

last symbol in the first column is ‘A’, ‘X’ or ‘E’, representing an order addition, cancellation or

execution respectively. The order types described above are thus all translated to limit orders

by the matching engine, and market peg orders for example would then execute against these

resting limit orders.

Order additions: In the second column we have the order ID, followed by ‘B’ for a

limit order to buy, or ‘S’ for a limit order to sell. In the third column we have the number of

shares and the stock symbol, and in the last column we have the limit price for the order (in

one-hundredths of a cent) and a ‘Y’ to indicate the end of the line.

Order cancellations: In the second column we have the ID of the order being cancelled,

and we have to look back to the original order to understand whether this is a cancellation of a

buy or a sell order. In the third column, we have the number of shares being cancelled from the

order, as Chi-X allows for partial cancellations.

Order executions: In the second column we have the ID of the order being executed, and

we have to look back to the original order to understand whether this is an execution of a buy or

a sell order. In the third column, we have the number of shares being traded from the order, and

we may have a partial execution of a resting limit order, with the rest of the order remaining in

the LOB. The final column is the trade ID, which is distinct from the order ID.

The Chi-X LOB data is undoubtedly a very valuable resource for studying intra-day LOB

dynamics, but we should note that there are some potential issues with the data: For events

within the same millisecond, the exchange does not guarantee that the ordering is correct. Iden-

tifying timing discrepancies can only be done in the case when a group of events breaks the

price/time priority of the LOB, and even then, it is a manual process to construct the correct

ordering.

In practice, having constructed the LOB for more than 100 stocks over a 4 month period,

the number of events with obviously incorrect ordering (i.e. which broke price/time priority)

were very few, as we observed such an event for every few days of data. In order to determine

the effect of these timing issues on the evolution of the LOB, we observed the state of the LOB

in the period immediately after these events. The effect was mainly on the size of executed or

cancelled orders, and it generally dissipated after a few events, and in any case did not last for

more than a few seconds. As such, we do not believe this data quality issue will have more than

a minimal effect on the results presented here.
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2.3 Building the LOB
The software used at Chi-X to reconstruct the LOB, in order to consider daily activity is not

made available externally. For this reason, one of our first tasks was to create a matching engine

(a virtual order book), that could read in every limit order arrival, execution and cancellation,

recreating the state of the order book at each millisecond timestamp. In this way, one is able to

view the LOB at a transaction-by-transaction level (event time) and can also obtain information

that is not otherwise available using the raw data (number/volume of orders at each level of

the order book, the age of orders in the order book, the value of certain liquidity measures that

require detailed LOB data etc).

Constructing the LOB for an asset, in order to extract variables of interest and calculate

descriptive statistics is a non-trivial task. Even though packages for visualising and retrieving

data from an LOB exist in statistical software (e.g. in R Kane et al. [2011]), these are limited, in

that they are not able to capture the required details of every individual order that are used in the

models developed in this thesis. In addition, an R implementation of a complex data structure

is bound to be slower, and thus not particularly suited to processing daily activity of hundreds

of thousands of transactions for a single asset efficiently.

I therefore use the object-oriented programming language JAVA to construct the LOB, due

to its library of data structures that can be leveraged to ensure an efficient implementation. My

implementation is based on a number of base classes, as follows:

Order: Every limit order is represented as a class and contains the following information:

Buy or sell order indicator, limit price, order size and order ID.

Limit: We use a class to represent the queue of limit orders at a particular level of the

LOB. Every instance of the Limit class has an associated limit price and a double-ended queue

of limit orders. This means that an order in the queue can be accessed in O(N) time, where

N is the number of orders at a particular level of the LOB. We do not generally observe large

numbers of orders at any given level, therefore a more efficient data structure is not necessary.

OrderBook: The OrderBook is the class which processes every event (incoming limit

order, execution or cancellation) read from the flat order file. At a high level, when a limit

order arrives, the OrderBook instance checks to see whether there is already trading interest at

that price (that is, an instance of the Limit class at that limit price, with at least one order in

the queue). If it exists, an Order object containing the relevant information for that order is

appended at the end of the queue. If it does not, an instance of the Limit class is created and the

Order object becomes the sole object in the queue.

Of course, we will have limit orders at different limit prices and thus many different queues
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of Order objects - these are instances of the Limit class. We will therefore need a data struc-

ture to hold these instances. For both the buy and sell side, we use the TreeMap class, where

individual Limit queues are the objects mapped. The class is useful for this purpose because

it is efficient in storing key (limit price)/value(Limit object) pairs in sorted order, and allows

for fast retrieval of the objects (due to having both Tree and Map structures). The time com-

plexity for adding, retrieving or removing elements from a TreeMap structure is O(log(N)),

where N is the number of elements in the data structure. This compares favourably with the

O(N) time complexity for the same operations in a list structure. We thus have a considerable

reduction in time spent for building the LOB using the structures above, compared to a naive

implementation.

2.4 Descriptive statistics
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Figure 2.3: The variation in the hourly limit order submission rate for all trading days

between January and April 2012 for Credit Agricole SA.

We considered data in the visible order book which contained the size (in shares), times-

tamp and individual ID of every limit order entered into the order book, along with the cancel-

lations and executions of those orders, partial or in full. Using this dataset we can recreate the

order book for any of the assets (stocks, ETFs and IDRs) traded on the venue on a particular

day.

Electronic LOBs for liquid stocks are characterised by very high volumes of trading ac-

tivity. Figure 2.2 shows the total activity in the LOB for the stocks in the main CAC40 index,
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liquid French stocks per day, for all trading days in January 2012. In these figures, we include

the number of order submissions, cancellations and executions, but at least some proportion of

these would have been generated automatically, due to the submission of certain order types,

such as the pegged orders described above. We observe that there are stocks for which trading

activity is in excess of 1 million orders per day, for example BNP Paribas SA (stock symbol

BNPp) and Total SA (stock symbol FPp). We find greater variation in the activity in some

stocks - banking stocks BNP Paribas SA (BNPp) and Credit Agricole SA (ACAp) - than others,

for example utility company GDF Suez SA (GSZp) and construction company Vinci SA (DGp).

We should note that while the continuous trading hours on Chi-X (08:00 to 16:30 London

time) are not necessarily the same as those in the national exchanges where the assets trade, for

some (like the French stocks Figure 2.2) the opening hours coincide. Hence, we do not have

any additional considerations that would result from the sudden submission or withdrawal of

liquidity from another exchange.
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Figure 2.4: The trading activity for the CAC40 stocks on the 5th of March 2012, divided

into limit order submissions, executions and cancellations.

The trading activity throughout the day is far from homogeneous - in European markets,

there is a pronounced drop in activity close to mid-day, followed by a rise until the end of the

day. The higher activity in the morning and afternoon has been documented in the past by

Biais et al. [1995]. They also provide interpretations for this phenomenon, for example banks

executing orders received before the market opens in the morning, or unwinding open positions

in the afternoon. In Figure 2.3 we show the limit order submission activity per hour for the 4
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month period in our dataset for Credit Agricole. We see that the submission rates are relatively

stable for most of the morning, and then dip close to mid-day. The activity increases again after

mid-day (when US markets open also) and continues to rise until the end of the trading day.

It is a feature of modern financial markets that trading activity is characterised by a rela-

tively low proportion of trades, compared to the number of limit order submissions and cancel-

lations. There are a number of factors contributing to this, for example the activities of market

makers, who need to price their bids and offers appropriately, so as to avoid the risk of adverse

selection [Glosten and Milgrom, 1985]. Some proprietary trading algorithms may also produce

a large number of cancellations, due in part to ‘chasing’ the current market price for the asset, or

seeking ‘latent’ liquidity (i.e. that is available, but not displayed) [Hasbrouck and Saar, 2009].

We note that unlike the London Stock Exchange3, Chi-X does not charge a high usage

surcharge or impose a quote-to-trade ratio. Participants therefore have few, if any, constraints

restricting the behaviours above. In the subset of stocks we investigated, we found that execu-

tions (partial or full) typically account for between 1 and 5% of daily trading activity. Figure

2.4 splits the trading activity on a particular day into limit order submissions, executions and

cancellations, from which it is clear that executions form only a small proportion of total trading

activity.

3http://www.londonstockexchange.com/products-and-services/trading-

services/pricespolicies/trading-services-price-list-effective-2-july-2012.pdf
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Figure 2.5: The variation in the volume (in numbers of shares) resting in the bid (left)

and ask(right) side of the LOB throughout the day for stocks Peugeot (upper), Credit Agri-

cole (middle) and Sanofi (lower). Volumes are extracted every 10 seconds throughout the

period April-June 2012 and these ‘heatmaps’ aggregate information in 10 minute inter-

vals. We find that volumes are low at the very start of the day, they increase rapidly and

remain approximately constant for the rest of the day.



Chapter 3

LOB and liquidity related work

3.1 Importance of liquidity
We start with a brief, high-level definition of the two types of liquidity: funding and market

liquidity. Funding liquidity is related to the ease of obtaining funding for trading, while market

liquidity is related to the ease with which an asset can be traded. As such, they have different

characteristics, and are usually measured at different timescales. However, Brunnermeier and

Pedersen [2009] showed that there is an interrelation between funding and market liquidity, and

changing margin and capital requirements are evident in the liquidity of financial assets. Jensen

and Moorman [2010] confirm a link between monetary conditions and inter-temporal variation

in liquidity.

Funding and market liquidity are central to macro and micro-economic structures respec-

tively [Brunnermeier, 2008, Chordia et al., 2001]. For example, in macro-structure, liquid cap-

ital markets are essential for the efficiency of capital allocation, which results in low costs of

capital for issuers, whilst at the micro-level, the liquidity of the market affects the interest in

large numbers of trading interests. Hence, liquidity can ensure, on the micro-level, that investors

can carry out their transactions at any time, allowing for a wide array of market participant be-

haviours. In this thesis we concentrate on trading interactions in the LOB, and we will thus

focus on market liquidity.

Market liquidity is considered a desirable characteristic of financial markets, as in liquid

markets we generally expect to observe fewer abrupt changes, or ‘jumps’, in terms of either the

security price or the volume available for that security. In such markets, participants can both

build positions in these securities, and liquidate them, without incurring substantial execution

costs. For some investors, liquidity is the most important decision-making criterion in selecting

the markets and assets they would like to invest in, and is a central concept that quantifies the

quality of particular securities markets. We will now detail the reasons why liquidity is an
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important concept for different stakeholders, including the firms whose assets are being traded,

liquidity providers, asset managers, exchanges and regulators.

3.1.1 Firms and cost of capital
The relation between market liquidity and the cost of capital for a firm is examined by Butler

et al. [2005]. They relate the flotation costs (in particular, the investment banking fees of the

underwriting syndicate assisting a firm in raising capital) to stock market liquidity and find an

inverse relationship between them. This is explained through the risks assumed by the under-

writing syndicate (inventory and adverse selection risks), as it would be more difficult to place

an equity issue in an illiquid market.

Market liquidity may also be a consideration in the pricing of the initial public offering

(IPO) itself. In order to entice investors who are uncertain regarding a security’s value, IPOs

are often underpriced (see, e.g. Ellul and Pagano [2006] and references within). The model of

Ellul and Pagano [2006] suggests that if post-IPO market liquidity is expected to be lower, the

IPO itself should be underpriced further. This is in order to compensate investors for the trading

costs that they expect to incur as part of liquidating their holdings. The model predictions are

supported by an empirical study of the pricing of British IPOs.

Amihud and Mendelson [2008] suggest that firms can reduce their cost of capital by in-

creasing the liquidity of their stocks or bonds, through a number of methods. Firstly, they can

substitute dividends for stock repurchases. Then, the firm can consider moving away from

highly leveraged capital structures, which are associated with lower market liquidity. Finally,

increasing the investor base with smaller, less informed investors can improve liquidity by re-

ducing the extent of asymmetric information in trading.

3.1.2 Liquidity providers
The majority of early studies and models for liquidity relate to quote-driven (dealer) markets,

where specialists post bid and ask prices for the securities they are trading. In such a market,

the existence of the bid-ask spread is suggested to arise from asymmetric information and the

risk of adverse selection (i.e. execution of one’s order against a trader with superior informa-

tion) by Glosten and Milgrom [1985]. In this model, asymmetric information may arise due

to the propagation of insider information, which leaves traders making markets with an uncer-

tainty about whether they are trading with a counterparty with superior information. Specialists

recoup the losses incurred from trading with better informed counterparties by trading with

(presumably less-informed) liquidity-seeking traders. The width of the bid-ask spread by the

specialist therefore becomes one of the factors that affects their profitability. An example of the
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adverse selection component in a liquidity measure will be presented in Section 3.2.2.1.

Market makers supply ‘immediacy’, that is, they are willing to bear the risk of keeping a

position until the final buyer or seller arrives to take that position [Grossman and Miller, 1988].

In a market with a single market maker, the bid-ask spread would depend on the market maker’s

inventory [Amihud and Mendelson, 1980]. Market makers have limits to the risk they may

assume (and thus the inventory they may hold) and Hendershott and Seasholes [2007] suggest

that they are willing to accommodate traders as long as they can then unwind their positions in

the future at favourable prices.

In a pure LOB, liquidity would not be dependent on a limited number of specialists, as any

trader can post limit orders, and the state of the LOB results from the aggregation of the trading

interest in the market (i.e. previously entered, but not executed, limit orders to buy or sell).

In a relatively liquid LOB, one would expect that multiple market makers would be operating

simultaneously for every asset, and therefore the market would not be severely affected by the

departure of a single operator.

3.1.3 Asset managers

Asset managers routinely take the role of liquidity demanders, who want to execute (buy or

sell) a large trading volume for one or more assets. They care about liquidity, insofar as it

affects their return on investment, as illiquid securities cost more to buy and can be sold for less

[Foucault et al., 2013]. Many asset managers do not have a choice regarding the assets they

invest in, if they are running passive strategies, such as those associated with index-tracking

funds. Rather, their goal is to ensure best execution, by achieving the minimum expected cost

for their trades over a particular trading period. This has given rise to wide and varied literature

in optimal execution/liquidation.

One of the first papers to address the issue was by Bertsimas and Lo [1998], who showed

how one could obtain the optimal division of a block into several tranches, using stochastic

dynamic programming. Almgren and Chriss [1999] incorporated risk considerations in their

framework for executions, which they argued were necessary to produce different strategies,

depending on the level of liquidity in the market.

There are various aspects of liquidity which come into play for optimal execution.

Obizhaeva and Wang [2013] suggest that ‘it is the dynamic properties of supply/demand such

as its time evolution after trades [...] that are central to the cost of trading and the design of

optimal strategy’. Liquidity is consumed by a trade, and the degree and speed with which it is

replenished has an impact on the execution strategy. This dynamic aspect of liquidity will be
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modelled in Chapter 4.

3.1.4 Exchanges
Recent regulation has opened up the competition for the trading of financial instruments across

different venues. In Europe, the relevant regulation is the MiFID1, while the US equivalent

is Reg NMS2, and both were implemented in 2007. This has led to fragmentation, a situation

where a number of trading venues compete for order flow and a trader may experience increased

‘search’ costs as a result. For a market maker, for example, these search costs may include ad-

ditional hardware located at every venue, in order to ensure the swift updating of quotes. For

an institutional investor, these include ‘smart routing’ equipment, in order to ensure that market

orders are routed to the venue offering the best prices for execution. Fragmentation is particu-

larly prevalent in the equities markets, as the incumbent exchanges lost their monopolies, but it

has not necessarily harmed market quality [O’Hara and Ye, 2011]. A measure of fragmentation

in equities markets is provided by Fidessa, through their Fragementation Index3.

Because of this fragmentation, exchanges have had to find ways to differentiate themselves

from the competition, and constant, high-quality provision of liquidity is seen as an important

way to attract custom. The NYSE website4 suggests that ‘today’s NYSE is designed to max-

imize liquidity’, with ‘expert Designated Market Makers (DMMs) adding over 300 million

shares of liquidity daily’ along with Supplemental Liquidity Providers and Floor Brokers with

algorithmic trading tools, to create more liquidity. The London Stock Exchange5, on the other

hand, lists the market makers active on the exchange, who provide ‘continuous pricing and a

high quality pool of liquidity’.

The cost of liquidity provision has various components, including adverse selection, order

1MiFID, available at http://ec.europa.eu/internal_market/securities/isd/

mifid/index_en.htm introduced Multilateral Trading Facilities (MTFs), increasing competition

between venues by offering the opportunity for pan-European trading through ‘passporting’ services

across borders. However, it also led to an increase in fragmentation and dark pool trading, according to

ESMA (http://www.esma.europa.eu/system/files/09_355.PDF).
2Regulation NMS, available at http://www.sec.gov/rules/final/34-51808.pdf, set

out a number of rules designed to foster competition and fairness between exchanges. These included the

Order Protection Rule, which aimed to ensure that investors receive best execution amongst immediately

available quotes and the Access Rule, which aimed to improve linkage between NMS trading centres in

order to promote fair and non-discriminatory access to quotations.
3http://fragmentation.fidessa.com/
4http://www.nyse.com/equities/nyseequities/1166830723427.html
5http://www.londonstockexchange.com/traders-and-brokers/security-

types/etfs/market-makers/market-makers.htm

http://ec.europa.eu/internal_market/securities/isd/mifid/index_en.htm
http://ec.europa.eu/internal_market/securities/isd/mifid/index_en.htm
http://www.esma.europa.eu/system/files/09_355.PDF
http://www.sec.gov/rules/final/34-51808.pdf
http://fragmentation.fidessa.com/
http://www.nyse.com/equities/nyseequities/1166830723427.html
http://www.londonstockexchange.com/traders-and-brokers/security-types/etfs/market-makers/market-makers.htm
http://www.londonstockexchange.com/traders-and-brokers/security-types/etfs/market-makers/market-makers.htm
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processing and inventory holding costs, some of which are reflected in the liquidity measures

summarised in Section 3.2.2. An exchange that wants to attract liquidity providers has to un-

derstand whether any of these components dominate the others and direct their efforts towards

reducing these costs. This may be through a change in trading system, if the aim is to re-

duce order processing costs, or improvements in disclosure, if adverse selection costs dominate

[Foucault et al., 2013].

3.1.5 Regulators

Regulators, such as the US SEC, aim to ‘protect investors, maintain fair, orderly, and efficient

markets, and facilitate capital formation’6. It can be argued that liquidity is an intrinsic part of

an orderly market, and as such, regulators have often enacted legislation in order to improve

liquidity. As an example, following the introduction of the Common Cents Stock Pricing Act

of 19977, the SEC either introduced or changed a number of trading rules in the NASDAQ,

which included the Order Handling Rule as an amendment to the Quote Rule, the Limit Order

Display Rule and others8. As a result of this, bid-ask spreads on the NASDAQ were reduced

significantly.

Regulators focus interest in market liquidity additionally because of their third aim men-

tioned above, facilitating capital formation. We have identified a link between liquidity and the

cost of capital identified above, and this was more than evident during the 2008 crisis. Foucault

et al. [2013] describes the liquidity dry-up during this period, as well as the associated reduction

in security issuance.

Market liquidity is therefore an important element that characterises the quality of finan-

cial markets, and its fluctuations have serious repercussions for a number of stakeholders. In

the rest of this section, we will thus focus on describing the most important aspects of liquidity,

listing common measures and summarising some of the most important empirical studies in the

literature.

6http://www.sec.gov/about/whatwedo.shtml
7The Common Cents Stock Pricing Act of 1997, introduced to the U.S. Congress on 13/03/1997,

‘amends the Securities Exchange Act of 1934 to instruct the Securities and Exchange Commission to

require quotations in dollars and cents (decimals) for equity securities transactions and prescribe an im-

plementation schedule’ (https://www.congress.gov/bill/105th-congress/house-

bill/1053). A summary of the bill can be found at the same location.
8The text for both these rules can be found at https://www.sec.gov/rules/other/34-

38156.txt

http://www.sec.gov/about/whatwedo.shtml
https://www.congress.gov/bill/105th-congress/house-bill/1053
https://www.congress.gov/bill/105th-congress/house-bill/1053
https://www.sec.gov/rules/other/34-38156.txt
https://www.sec.gov/rules/other/34-38156.txt
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3.2 LOB liquidity
The notion of LOB liquidity is considered a fundamental concept in high frequency financial

modelling, but it has proven very difficult to capture via a single definitive measure. Common

liquidity proxies reflect one or more of the following aspects [Von Wyss, 2004]:

1. Trading Time/Immediacy: The ability to execute a transaction immediately at the pre-

vailing price. In its report, the IMF [Sarr and Lybek, 2002] calls this dimension ‘imme-

diacy’, defining it as ‘the speed with which orders can be executed, and, in this context,

also settled, and thus reflects, amongst others, the efficiency of the trading, clearing and

settlement systems’.

2. Tightness: The ability to buy and sell an asset at about the same price at the same

time. This is commonly thought of as the bid-ask spread, although there are also other

proxies to tightness that are used in the industry. The width of the bid-ask spread can be

considered as part of the transaction cost, as it has to be crossed in order to enter and exit

a position, when immediate order execution is required.

3. Depth: The ability to buy or sell a certain amount of an asset without (much) influence

on the quoted price. The depth aspect relates firstly to whether immediate execution of a

large order is possible, and secondly, whether it can be carried out at or close to the best

bid or offer.

At the most basic level, one could consider the concept of liquidity to be the ability to

convert shares into cash, and vice versa, at the lowest transaction costs. In Harris et al. [1991],

a perfectly liquid market is defined to be one in which any amount of a given security can be

instantaneously converted to cash and back into securities at no cost. Of course, in practice, this

is unrealistic, and so the more realistic definition one may consider is that a liquid market is one

in which the costs associated with the conversion are small.

These costs can be divided into explicit costs, which are the fixed costs associated with

trading, and implicit costs, due to fluctuations in trading interest. Explicit costs could include

brokerage fees, exchange trading fees (for example, many LOBs feature the maker-taker fee

structure where aggressive traders pay a fee and liquidity providers receive refunds for making

markets) and settlement/clearing fees. These fees are unavoidable, and even though they have

been dropping steadily over the past few years [Foucault et al., 2013], we will not consider them

in detail here.

Implicit costs, on the other hand, measure the difference between the ideal price one could

obtain in the perfectly liquid market of Harris et al. [1991] and the market one operates in.
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When market liquidity is high, one can buy or sell large volumes of an asset at a price close to

the ideal price. As trading interest tends to vary throughout time, however, so do these implicit

costs.

3.2.1 Fluctuation of liquidity
The fluctuation of market liquidity has been suggested to originate from the adverse selection

problem faced by market makers more than four decades ago [Bagehot, 1971]. Since then, a

rich literature has developed in single-asset liquidity, examining both the properties of liquidity

measures in and of themselves, but also the effects of liquidity on asset pricing. As examples

of the latter, we mention Amihud and Mendelson [1986], who model the effects of the spread

on asset returns and find evidence of a ‘liquidity premium’, with assets with higher spreads

commanding higher returns. Amihud [2002] confirm that a return-illiquidity relationship exists

over time, but Constantinides [1986] finds less of an impact in multi-period models.

Since these earlier studies, access to massive high-frequency limit order data has allowed

for significantly larger studies on liquidity across markets to be undertaken. This is a topical

aspect of big data analysis in financial econometrics, and efforts to improve the understanding

of liquidity evolution and co-evolution in the asset cross-section have recently been a focal issue

of studies in equities, [Hasbrouck and Seppi, 2001, Karolyi et al., 2012, Riordan et al., 2013,

Sklavos et al., 2013], commodities and futures [Frino et al., 2014, Marshall et al., 2013] and

foreign exchange and bond markets [Holden et al., 2015].

3.2.2 Liquidity measures
Amihud [2002] suggests that liquidity is an elusive concept, one which cannot be captured

with a single liquidity measure. As such, a number of theoretical aspects have been proposed,

which capture different dimensions of liquidity. Certain aspects of liquidity have their basis in

financial theory, and have been the subject of several studies.

The first is price impact and is is conceptually related to the price formation model of

Kyle [1985]. It reflects the extent to which the price of an asset changes in response to a given

order flow. Brennan and Subrahmanyam [1996] propose to measure price impact through the

coefficient of signed order flow in the regression of price changes. Amihud [2002] obtains a

low-frequency proxy as the ratio of average absolute returns to trading volume.

In an illiquid asset, part of the price impact is temporary [Mancini et al., 2013], and one

may also consider the aspect of the reversal of the price following this temporary price impact.

This is studied, e.g. in Stambaugh [2003]) and occurs following trading pressure that leads to

excessive appreciation (depreciation) of an asset. It can then be considered as the subsequent
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Figure 3.1: A possible state of the LOB and the inside spread.

reversal to the fundamental value [Campbell et al., 1993].

Even though such aspects of liquidity are driven by theoretical models, the measures above

are not observed in real time and as such, are infrequently utilised in a trading environment. In-

stead, the availability of LOB data enables the provision of a richer representation of the trading

interest for a particular asset and also, the quantification of ex-ante committed liquidity. To this

end, one can identify the dimensions of trading cost, quantity and time as being relevant to

practitioners [Holden et al., 2015].

Vayanos and Wang [2013] describes liquidity measures that do not fall under the category

of theoretically-driven measures as being heuristic. However, they offer the advantage of being

able to be evaluated in a very short period of time, and even through snapshots of the LOB.

In addition, these are the measures that are most often reported by financial exchanges, which

indicates their utility from a practitioner’s point of view.

3.2.2.1 The cost dimension

The simplest measures of liquidity include variants of the popular family of spreads between

levels of the bid and ask on the order book. The bid-ask spread, or the difference between the

highest bid and lowest offered price in the LOB, represents the cost that an investor must incur

in order to be guaranteed immediate execution, i.e. by crossing the spread with a market order.

Figure 3.1 shows a possible state of the LOB, where volumes are aggregated per price level, and

indicates the inside spread as the difference between the highest bid price P b,1t and the lowest
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ask price P a,1t

St = P a,1t − P b,1t (3.1)

Further members of this family consider levels of the order book beyond the best bid or

ask. For the n-th best price point (i.e. the n-th highest price level for the bid and n-th lowest

price level for the ask for which there is volume resting in the LOB) we have

Snt = P a,nt − P b,nt

and we see in Figure 3.2 an example of how these spreads vary throughout the day for a selection

of liquid European stocks.

The proportion of cancelled orders in the LOB (exhibited in Figure 2.4) shows that the

instantaneous state of the LOB is not necessarily a good indicator of liquidity, as much of the

volume posted on it will not be executed. It is easy to see the limitations of the bid-ask spread

as a liquidity measure in this rapidly changing LOB. It is therefore necessary for us to consider

this aspect of the LOB in any liquidity and liquidity resilience measure we propose.

Variants of the spread are discussed in detail by Goyenko et al. [2009], Holden et al. [2015]

and include the simple percentage spread and log quoted spread

Sperct =
P a,1t − P b,1t

Pmidt

(3.2)

Slogt = ln(P a,1)− ln(P b,1t ) (3.3)

where Pmidt =
Pa,1t +P b,1t

2 . The percentage effective spread accounts also for trades that can

happen inside and outside the best bid or offer9, and this is updated after every trade

Sefft = 2
∣∣∣ln(Pk)− ln(Pmidt )

∣∣∣ (3.4)

where Pk is the price of the last trade at or before time t. It can be broken down into two

components:

9Trading at prices other than the best bid or offer may occur when one buys or sells assets through

a broker-dealer firm, rather than an exchange. Additionally, a market order submitted to the LOB may

consume all the volume available at the best price and therefore ‘walk up’ or ‘walk down’ the book

in search for additional volume. In this case, the execution price of the order can be considered as an

average of the prices at which the order traded, weighted by the amounts traded at each price.

A trader submitting a market order may find their order executed against ‘hidden’ liquidity, for exam-

ple an iceberg order, for which the trade price may fall within the bid-ask spread.
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• The realised spread, which accounts for the temporary component of the effective spread

Srealt = 2γk(ln(Pk)− ln(Pmidt+∆t))

where

γk =


1, if the liquidity demander submitted a buy order for the k-th trade

−1, otherwise

and ∆t is a suitable time interval, typically 5 minutes [Goyenko et al., 2009].

• A price impact component, which accounts for the permanent component of the effective

spread. This can be considered as the adverse selection component, as it measures the

adverse change in the mid price for the liquidity provider.

Simpt = 2γk(ln(Pmidt+∆t)− ln(Pmidt ))
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Figure 3.2: The variation in the spreads between the first 5 levels of the bid and

ask for stocks Credit Agricole (left) and Sanofi (right). One can clearly see that the

two stocks have different ticksizes (minimum possible changes in price), equal to 0.1

cents for Credit Agricole and 0.5 cents for Sanofi. The spreads measured here are

S1
t = P a,1

t − P b,1
t , . . . , S5

t = P a,5
t − P b,5

t . The spike at 15:00 corresponds to the time of

an economic announcement in the US on that day (10 am ET).

3.2.2.2 The quantity dimension

The quantity dimension is related to depth, or ‘the size of an order flow innovation required to

change prices a given amount’ [Kyle, 1985]. If V a,i is the vector of sizes for the orders resting

in the i-th level of the LOB and 1 is a vector of 1s then TV a,i = 1T · V a,i corresponds to the

total volume (in number of shares) of orders at that level of the ask side of the book. Thus, in

order to shift the mid price Pmidt upwards, one requires a market buy order of at least TV a,1
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in size, while to shift the mid price downwards, a market sell order of at least TV b,1 in size is

required.

We can then can obtain 4 related depth measures [Von Wyss, 2004], the simple and log

depth, the cumulative depth and dollar depth:

Ds
t = TV a,1 + TV b,1,

Dlog
t = ln(TV a,1) + ln(TV b,1),

Ddollar
t =

TV a,1P a,1t + TV b,1P b,1t
2

,

Dcum
t =

n∑
i=1

TV a,i +
n∑
i=1

TV b,i.

3.2.2.3 Time dimension

The time dimension of liquidity is difficult to capture from the ex-ante committed volume, as

it reflects the dynamic view of liquidity. As such, aspects of it can be modelled by the number

of transactions per time unit, the number of orders submitted per time unit and the partial, or

complete fill rates for orders submitted to the LOB [Von Wyss, 2004]. This dimension is related

to resilience, or the speed of liquidity replenishment, which is considered in detail in Chapter 4.

3.2.2.4 Mixed measures

One recognises the need to extend the family of liquidity measures to consider the market im-

pact and opportunity costs of trading when defining liquidity, especially from a large investor’s

perspective. To achieve this, the volume of resting orders in the LOB must be taken into con-

sideration in the liquidity measure. Along these lines, Irvine et al. [2000] investigate properties

of a particular class of measures of liquidity known generically as ‘Cost of Round Trip Trade’

(CRT) measures, where the round trip here refers to buying and immediately selling a certain

amount of an asset. Such measures have the property that they summarise the structure of the

LOB instantaneously for a given order size through a process of aggregation of key features of

the LOB. By construction, they are intended to capture the ex-ante committed liquidity imme-

diately available in the market.

The Xetra Liquidity Measure (XLM), proposed by Deutsche Boerse AG [Gomber and

Schweickert, 2002], falls under the umbrella of CRT measures. Empirical studies using the

XLM have compared liquidity costs across assets and also attempted to define and quantify
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liquidity risk [Gomber et al., 2004, Ernst et al., 2012].

XLMt(R) =

∑k
i=1 TV

a,i
t (P a,it − Pmidt ) + (R−

∑k
i=1 TV

a,i
t )(P a,k+1

t − Pmidt )

R

+

∑j
i=1 TV

b,i
t (Pmidt − P b,it ) + (R−

∑j
i=1 TV

b,i
t )(Pmidt − P b,j+1

t )

R

(3.5)

with

k = max

(
m ∈ N;

m∑
i=1

TV a,i
t (P a,it − Pmidt ) ≤ R

)

j = max

(
n ∈ N;

n∑
i=1

TV b,i
t (Pmidt − P b,it ) ≤ R

)
.

This therefore returns the cost of a round trip weighted by the volume at each price, and a

typical size is R =e 25,000.

In the rest of this thesis, the empirical analysis focuses mainly on the inside spread (as the

most commonly used liquidity measure) and the XLM (as the liquidity measure which captures

most of the aspects of liquidity described above, in a single measure).

3.2.2.5 Liquidity approximations

It should be noted that in many studies, liquidity measures are obtained by approximation,

due to the great expense required to obtain LOB data. An approximation for the spread, for

example, can be obtained via the method of Roll [1984], using the first-order serial covariance

of price changes. Where liquidity measures require a detailed breakdown of order volumes per

LOB level, but limit order volume data is aggregated at different price levels, one could use the

approach of Christensen et al. [2013] in order to uncover the most likely disaggregation into

individual orders. In addition, in measuring commonality, it is also common to obtain lower

frequency proxies for liquidity (Amihud [2002], Stambaugh [2003]), in order to reduce the data

to a manageable size.

Goyenko et al. [2009] demonstrates the superiority of high-frequency liquidity bench-

marks, compared to low-frequency proxies, while Mancini et al. [2013] argues for the use of

good quality data as a necessity for measuring the determinants of liquidity. In this thesis, we

use a millisecond-timestamped dataset to obtain liquidity data over a four month period, and

through the reconstruction of the LOB, we do not need to rely on approximations of liquid-

ity measures. This gives us the advantage of being able to obtain very accurate estimates of

liquidity, and draw clear conclusions regarding aspects of liquidity.
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3.3 Empirical analysis of liquidity

3.3.1 Temporal variation in liquidity
In the financial literature, early models focusing on quote-driven (dealer) markets had attributed

the variation of liquidity on inventory holding costs [Amihud and Mendelson, 1980] and the

risk of adverse selection [Easley and O’Hara, 1987], while Huang and Stoll [1997] also find

a large order processing component. Affleck-Graves et al. [1994] then found differences in

the breakdown of the spread into these components in quote and order-driven markets. Study-

ing timeseries of variations in the bid-ask spread, Chordia et al. [2000] found that (long-term)

liquidity is influenced by factors such as interest rates, market volatility and seasonal effects.

3.3.1.1 Intra-day variation

The intra-day variation of liquidity in markets has not been found to be consistent across mar-

kets. For example, while Chan et al. [1995] found a declining intra-day spread for NASDAQ

securities (an L-shaped pattern), Wood et al. [1985] and Abhyankar et al. [1997] found a U-

shape pattern (with larger spreads at the beginning and at the end of the day), for the NYSE

and LSE respectively. Brockman and Chung [1999] found an inverted U-shaped pattern for the

depth, which mirrors the U-shaped spread pattern (in that the peak of the depth and the trough

of the spread both correspond to higher levels of liquidity).
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Figure 3.3: A heatmap of the intra-day value of the spread for Credit Agricole (left) and

Sanofi (right) throughout the 4 month period.

In our Chi-X equity data, we identified an L-shaped pattern for both the spread and XLM

liquidity measures, and we showed in Figure 3.2 an example of the spread of Credit Agricole

and Sanofi on a particular trading day. We also show that this is consistent throughout time,

with the heatmap in Figure 3.3. There are different reasons why the aforementioned L-shaped

and U-shaped intra-day patterns may exist [Brockman and Chung, 1999].
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The L-shaped pattern may arise to the existence of adverse selection, where a liquidity

level would then reflect the level of asymmetric information in the market. Daily opening

follows a period of non-trading, in which private information has accumulated (for example,

when a trader has access to a report suggesting that earnings will be substantially different to

what the market expects), but has not yet had time to be reflected in asset prices.

The U-shaped pattern can arise due to demand inelasticity and inventory management

considerations, particularly close to the end of the day. Certain market participants need to

trade to avoid being left with overnight positions. Liquidity suppliers can then exploit this

demand with wider spreads.

3.3.1.2 Long-term liquidity variation

The theoretical model of Brunnermeier and Pedersen [2009] suggests that there should be a

bi-directional relationship between market and funding liquidity. That is, the extent to which

liquidity providers can provide market liquidity depends on the ease with which they can fund

their positions. On the other hand, deteriorating market conditions can affect their funding,

through destabilising margin requirements.

Empirical evidence of the significance of financing constraints as an impediment to high

levels of liquidity is provided by Comerton-Forde et al. [2010]. The inventory positions of

specialists on the NYSE are analysed over 11 years, alongside firm-level spreads. The authors

find that these spreads widen after periods of poor performance, and this is consistent with

specialists being more hesitant to take on inventory as their leverage ratios would already be

stressed.

3.3.2 Commonality in liquidity
The majority of the literature discusses single asset liquidity and thus only captures individ-

ual variation in liquidity dynamics. Recently, however, there has been a burgeoning interest

in studying the cross-sectional variation in liquidity in a number of assets over a period of

time. One of the earliest studies to consider the co-movement of liquidity was in the work of

Chordia et al. [2000]. This was achieved through a simple parametric model setting, by regress-

ing liquidity changes for each asset against market or industry liquidity changes. The authors

identified asset specific and aggregate market trading levels as being amongst the determinants

of individual asset liquidity. Liquidity co-movement was assumed to result from the risk of

maintaining inventory in the presence of institutional funds with correlated trading patterns.

Since this study, a number of asset specific and liquidity measure specific studies have

been developed to quantify commonality. Hasbrouck and Seppi [2001] adopted a distinct frame-
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work, using a combination of principal components analysis (PCA) and canonical correlation

analysis to study the commonality in liquidity measures for the Dow 30. This uncovered the

most important across-asset common factors in the price discovery/liquidity provision process

in equity markets. They found that both returns and order flows are characterised by common

factors. The liquidity measures they considered included variants of the spread, depth and the

ex-ante trading cost. They found that commonality in order flows can account for roughly two

thirds of the commonality in returns, but the common factors in the liquidity proxies above are

relatively low. We provide an introduction to the dimensionality reduction techniques used in

this study and discuss the implications for using PCA regression in the context of measuring

commonality in Section 5.

Adding to the findings of Chordia et al. [2000], the study of Domowitz et al. [2005] also

demonstrated that liquidity commonality in the Australian Stock Exchange may be induced by

the co-movement in supply and demand, which materialises in the LOB as the cross-sectional

correlation in order types (market and limit orders). The economic justification for this order

type co-movement stems from traders’ efforts to minimise execution costs, by submitting limit

orders in an illiquid market, and market orders in a liquid one. They then demonstrated a linkage

between liquidity commonality and return co-movement, which they argued is a key component

of portfolio selection. Interestingly, they also argued that in contrast to liquidity commonality,

return commonality is less affected by the correlation of order types, but is more related to the

co-movement of aspects of the order flow, and specifically, order direction and size.

Due to the recent developments in big data analytics and the increasing availability of data,

the processing of massive, multi-asset, multiple-day high frequency LOB datasets has become

more tenable. Consequently, there has been an increasing interest in extending the smaller

studies discussed above to encompass multiple days, assets and exchanges. Brockman et al.

[2009] extend the model of Chordia et al. [2000] and consider 47 markets (exchanges) in 38

countries. In addition to the exchange-level commonality identified by Chordia et al. [2000],

they find a global component in bid-ask spreads and depths, as well as regional components.

Similarly, an analysis of a dataset of more than 4000 firms over almost 20 years by Kora-

jczyk and Sadka [2008] found that approximately 50% of the time-series variation in firm-level

quoted and effective spreads can be explained by the first 3 principal components. More re-

cently, Karolyi et al. [2012] considered daily equity data for 21,328 stocks in 40 developed

and emerging countries between 1995 and 2004. They are able to demonstrate commonality in

returns, liquidity and turnover and they explain this commonality through features of both the

supply and demand sides of the market. On the supply side, they considered factors relating to
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funding liquidity of financial intermediaries and on the demand side, factors related to investor

protections, investor sentiment and trading behaviour of institutions.

In the FX space, utilising a dataset considering 40 FX rate liquidities over an extended

period of 20 years, Karnaukh et al. [2013] found that commonality can explain an average of

36% of the variation in liquidity. However, this is higher in currencies in developed countries,

as well as in times of market distress. The computational constraints of undertaking analysis

across such an extended period of time are handled by extracting individual FX rate liquidity

through PCA across low frequency liquidity proxies . The authors find that co-movements of

FX rate liquidities are strong for at least the last 20 years, and, certainly, significantly stronger

that in the equities asset class.

Understanding liquidity commonality is crucial for the success of strategies like the carry

trade. For 9 currency pairs, Mancini et al. [2013] document strong contemporaneous comove-

ments across exchange rate liquidities, and extract common information across 5 different liq-

uidity measures. In common with the work presented in this thesis, they are able to utilise a

high quality dataset and thus do not rely on approximating measures of liquidity to perform

their analysis. They use both averaging (used previously by Chordia et al. [2000] and Stam-

baugh [2003]) and PCA (used by Hasbrouck and Seppi [2001] and Korajczyk and Sadka [2008])

to extract market-wide liquidity. They test for commonality by regressing individual liquidity

measures against the first component for every exchange rate, and find that this explains be-

tween 70% and 90% of the variation in liquidity.

While liquidity may co-move across assets, the absolute level of liquidity for each asset

will vary, and this will depend on a range of factors which may be different across asset classes.

Stoll [1978] found that higher spreads were observed in more volatile stocks, while one can

expect narrower spreads in larger stocks (in terms of market capitalisation) - see Vayanos and

Wang [2013] and references within. In the bond markets, Chen et al. [2007] observed higher

spreads for corporate bonds with lower rating or higher maturity.

3.3.3 Impact of trading mechanisms

Some markets (such as NYSE and NASDAQ) now operate a ‘hybrid’ system, which combines

both the characteristics of quote and order driven markets. While such markets are predom-

inantly order driven now, specialist market makers also feature, and are required to offer liq-

uidity, if no one else will do so [Harris, 2002]. In return for assuming the obligation to offer

liquidity, these specialists may be granted certain advantages, such as the ability to sell ‘short’

an asset without borrowing it (i.e. ‘naked’ short selling).
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With regard to liquidity, there is evidence [Jain, 2003] that liquidity in hybrid systems

is higher that in pure LOBs (order driven markets) or dealer systems (quote driven markets),

because there are two sources of liquidity. The author reaches an even stronger conclusion

that ‘institutional features of an exchange are the major determinants of liquidity in its listed

stocks’, where these features include tick size choices, the presence of a designated market

maker, automatic trade execution system, and order-flow centralization. In analysing the options

markets, Mayhew [2002] found that the trading of assets on different exchanges results in a

decrease in quoted spreads.

3.3.4 Impact of regulatory and exchange decisions on liquidity

With regard to individual exchange enhancements, Riordan and Storkenmaier [2012] document

the effects of the reduction of system latency (or the amount of time required for a trader to

submit an order and receive confirmation) on liquidity. Reduction in latency generally results

from the offering of co-location services by the exchange, or improved market infrastructure.

For the Deutsche Boerse, they found that technological upgrades, which were responsible for

reducing latency from 50ms to 10ms, led to a decrease in quoted and effective spreads, although

this was predominantly in small- and medium-sized stocks.

In recent years, high-frequency trading has begun to dominate trading activity across as-

set classes. HFTs were part of approximately 73% of equity market transactions, according to

Hendershott et al. [2011]. The effect on the quality of equity markets is still unclear: Hender-

shott et al. [2011] find that HFT causally improve liquidity, while Zhang [2010] found that HFT

activity increases volatility and also has a negative impact on the price discovery process. A

comprehensive review of the effects of HFT on liquidity, and market quality more generally,

can be found in Chakrabarty et al. [2013].

Both individual market regulators and supra-national organisations have been engaging in

discussions in order to curtail high-frequency trading, producing recommendations and sets of

guidelines. For the European, US and Australian markets, Chesini and Giaretta [2014] sum-

marise the proposed regulation. Measures include imposing market making obligations (i.e.

reguiring HFTs to make two-sided markets throughout the day), a minimum period in force for

limit orders, in order to reduce excessive activity through limit order submissions and immedi-

ate cancellations, and order-to-trade ratios. The efficacy of the latter, which aims to improve the

percentage of limit orders that are executed, will be evaluated in a simulation setting in Section

6.

One of the first developments that arguably had an impact on the activity of HFTs (par-
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ticularly small and medium-sized HFTs) was the unfiltered (or naked) access ban by the SEC

in 201010. Chakrabarty et al. [2013] showed that the ban resulted in a drop in both quoting

and trading activity, but liquidity actually improved. However, they also note that this was

accompanied by a negative effect on short-term price discovery.

Another regulation that was considered for European markets was the Financial Transac-

tion Tax (FTT). France11 and Italy [Colliard and Hoffmann, 2013] enacted FTT regulation in

2012 and 2013 respectively. In the French case, this includes both a 0.2% tax on purchasing

securities, as well as a tax on orders cancelled in the context of high-frequency trading. As a

result of the regulation, France lost a significant share of European equity turnover, 23 percent

in 2011 to an estimated 12.85 percent in 2013. In Italy, equity turnover of e 101 bn in 2012

halved to e 50 bn in 201312. Therefore, as a result of acting before a broader consensus about

HFT activity in the EU was achieved, liquidity in France and Italy was reduced significantly.

3.4 Financial market simulation models
We have seen that liquidity is an important consideration for market participants, and in the

last part of this thesis, we will focus on explicitly modelling the connection between liquidity

and aggregate market activity. This will take the form of an agent-based model of the LOB, in

which agents act according to their liquidity motivations. In this section, we provide a review

of the related agent-based modelling literature.

Research regarding the simulation of financial markets using agents can be traced back

30 years ago to the work of Cohen et al. [1983], who proposed a model for a stock exchange.

They evaluated the impact of various stabilising policies on price, volatility and liquidity. They

also introduced the concept of heterogeneous trading agents and an architecture for the limit

order book, ideas which have been replicated in many forms since. More recently, a variety

of approaches have been suggested, each drawing from a wide and varied literature, including

Finance, Economics, Mathematics, Statistics and Physics. As a result, the area of financial

simulation modelling has now grown to a size where it is impossible to consider every single

10The SEC ‘ban’ was essentially a rule to ‘require brokers and dealers to have risk controls in place

before providing their customers with access to the market’, see for details http://www.sec.gov/

news/press/2010/2010-210.htm.
11The relevant regulation for the French FTT case can be found in Article 235 ter ZD, relating

to the French tax code, at http://www.legifrance.gouv.fr/affichCodeArticle.do?

cidTexte=LEGITEXT000006069577.
12http://www.thetradenews.com/news/Asset_Classes/Equities/Liquidity_

dries_up_in_FTT_countries_-_report.aspx

http://www.sec.gov/news/press/2010/2010-210.htm
http://www.sec.gov/news/press/2010/2010-210.htm
http://www.legifrance.gouv.fr/affichCodeArticle.do? cidTexte=LEGITEXT000006069577
http://www.legifrance.gouv.fr/affichCodeArticle.do? cidTexte=LEGITEXT000006069577
http://www.thetradenews.com/news/Asset_Classes/Equities/Liquidity_dries_up_in_FTT_countries_-_report.aspx
http://www.thetradenews.com/news/Asset_Classes/Equities/Liquidity_dries_up_in_FTT_countries_-_report.aspx
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model. We can only hope to summarise some of the key contributions over the past three

decades and provide a taxonomy of some of the more important models.

3.4.1 Agent design

The variety of approaches to financial market ABM is apparent from the design of agent be-

haviours. Descriptions of what constitutes typical agent activity in such models vary greatly,

from simple, mechanistic agents operating under very simple rules through to adaptive agents,

who change their strategy depending on market conditions and the recent profitability of each

behaviour. As in many types of simulation models, there is a tension between model parsi-

mony and expressiveness, or the ability to capture more complex dynamics. This is reflected

in the two most frequently studied agent designs, i.e. variants of ‘Zero-Intelligence’ agents and

chartist and fundamentalist agents. We outline the typical behaviour of both types of agents in

the following.

3.4.1.1 Zero-intelligence traders

The simplest ABMs consist of a single, unsophisticated type of agent who essentially submits

orders randomly, possibly subject to (very few) constraints, like budget considerations. An

early example by Gode and Sunder [1993] showed that it was possible to achieve high allocative

efficiency in a market (defined as the total profit actually earned by all the traders divided by

the maximum total profit that could have been earned by all the traders, and used as a measure

of the performance of the economy), using agents that submitted bids and offers with prices

uniformly distributed within an interval. They argued that a minimum amount of discipline

imposed by the market is sufficient for this, and that learning or intelligence are not necessary.

The results of Gode and Sunder [1993] are critiqued by Cliff et al. [1997], who suggest

that the tendency of a market that consists of such zero intelligence (ZI) traders towards an

equilibrium price is a result of the design of the market itself, rather than the traders. They

extend the minimal ZI definition with a simple adaptive mechanism, whereby traders can adjust

their profit margin according to the current price of the asset and whether they have traded

their allocation for the period. They show that the results obtained using these enhanced zero-

intelligence plus (ZIP) traders are closer to those observed in markets consisting of human

experimental traders. Variants of ZI and ZIP strategies have subsequently been employed, either

on their own or as part of a more diverse trading population, in the models of Tesauro and

Bredin [2002], Niu et al. [2008] and, specifically in the financial ABM literature, by LiCalzi

and Pellizzari [2003].
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3.4.1.2 Chartist and fundamentalist traders

By far the most frequently studied variant of ABM consists of two types of agents, usually

denoted ‘chartists’ and ‘fundamentalists’. The earliest mention of the two terms is by Zeeman

[1974], referring to conversations with Sharon Hintze, while an early model by Beja and Gold-

man [1980] also uses similar terminology to differentiate between trend followers and value

investors. The strategies of such agents are generalisations of real trading strategies employed

in a number of different markets.

Taylor and Allen [1992], surveying a number of London-based dealers, refer to funda-

mentalist traders as deriving their views from an economic analysis of the traded asset. Being

a chartist dealer, on the other hand, involved ‘providing forecasts or trading advice on the basis

of largely visual inspection of past prices, without regard to any underlying economic or funda-

mental analysis’. In the context of an ABM, a fundamentalist trading strategy would result in a

target price, and the agent would buy(sell) if the asset was undervalued(overvalued). Common

chartist behaviours, on the other hand, include making decisions based on the price of the asset

compared to its moving average in a particular period, or assuming that a short move in a certain

direction will continue in the near future (a momentum strategy).

A simple formulation of the one-period forecasting functions of a fundamentalist

(Ef,t
[
Pt+1|P ft , Pt

]
) and chartist (Ec,t [Pt+1|Pt, Pt−1]) trader at time t is given by Chen et al.

[2012]:

Ef,t
[
Pt+1|P ft , Pt

]
= Pt + af

(
P ft − Pt

)
, 0 ≤ af ≤ 1 (3.6)

Ec,t [Pt+1|Pt, Pt−1] = Pt + ac (Pt − Pt−1) , 0 ≤ ac ≤ 1 (3.7)

The fundamentalist’s view is that the fair value of the asset is P ft , and the price of will move in

that direction with ‘speed’ af . A chartist’s expectation simply extrapolates the last trend by ac in

the same direction. The stabilising and destabilising forces associated with the fundamentalist

and chartist respectively are then clear in this formulation. If the coefficient ac was instead

negative, this would correspond to a contrarian, rather than a trend following strategy, which

induces different dynamics in the asset price.

Turning now to the evolution of the fundamentalist’s view of fair value of the asset, there

have been a number of approaches in different models. For example, Farmer and Joshi [2002]

and Westerhoff and Reitz [2003] use a simple random walk:

P ft+1 = P ft + ηt

with {ηt} a sequence of i.i.d. normal innovations. The value could also be obtained from the
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application of an economic valuation model, such as (in the case of a company’s stock price)

estimating future dividends and discounting them to obtain the present value.

3.4.2 Market structure

We should mention briefly the main financial market structures available, which dictate the

form of interaction between buyers and sellers. This should be considered carefully because

different modelling approaches are appropriate for different market structures. Markets for

financial securities generally fall under one of three types, namely quote driven, order driven

and hybrid markets.

Quote driven (dealer) markets use specialists (dealers) to provide 2-way prices, i.e.

prices at which one is able to buy or sell. These markets therefore do not display the trad-

ing interest of other participants besides the dealers and generally do not consolidate the quotes

of these dealers. Traders in quote driven markets can only trade directly with dealers, who are

not obliged to quote continuously in most cases. Quote driven markets are also known as price

driven markets, and NASDAQ had started out using this exchange mechanism. This mechanism

is now usually used in less liquid markets.

Order driven (Limit Order Book) markets display all limit orders from (potential) buy-

ers and sellers. They are more transparent than quote driven markets, as market participants

generally have access to more information about the level of buying and selling demand. In

contrast with participants in quote driven markets, participants in order driven markets can

trade directly with each other through the central matching mechanism. We have reviewed the

operation of the Limit Order Book in Chapter 2 and will investigate continuous LOBs here (i.e.

where the matching is continuous throughout the day), but there are also discrete equivalents of

this structure where auctions are held periodically throughout the day.

Hybrid systems combine aspects of both mechanisms above, operating as LOBs, but also

employing designated market makers, or dealers, for the less liquid stocks. The majority of

exchanges operate either as a pure LOB, or as a hybrid system which features an LOB. In-

dicatively, the Helsinki, Hong Kong, Shenzhen, Swiss, Tokyo, Toronto, and Vancouver Stock

Exchanges, together with Euronext and the Australian Securities Exchange operate as pure

LOBs, while the New York Stock Exchange, NASDAQ, and the London Stock Exchange op-

erate a hybrid LOB system [Gould et al., 2013]. The dataset considered here is from Chi-X, a

secondary exchange that operates as a pure LOB also, but we will review models pertaining to

both order and quote driven market structures in this section.
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3.4.2.1 Quote driven market models

The models discussed here, which some authors refer to as Heterogeneous Agent Models

(HAMs), are analytical in nature and simplified necessarily, in order to ensure tractability. One

of the earliest models by Zeeman [1974] distinguished between two different types of market

participants, chartists and fundamentalists. It does not model individual agent behaviour, but

rather the result of the aggregate behaviours of the two heterogeneous groups, and thus can be

considered as a predecessor to the more detailed models that were proposed later. It proposes

a dynamical system linking the proportion of chartist and fundamentalists in the market to the

rate of change of the level of the Dow-Jones index. Borrowing ideas from catastrophe theory,

Zeeman envisioned a cusp catastrophe model, where fundamentalist and chartist proportions

become controls for the state variable corresponding to the rate of change of the index.

As the various models that have been proposed differ greatly in their setup, we will focus

mainly on the price determination mechanisms in the following discussion. Day and Huang

[1990] include a market participant that is closer to the specialist(dealer) on the New York Stock

Exchange. In this model, the dealer announces the market price of the asset at various times

during the day and executes the orders of the other two types of investors (which have similar

characteristics to the chartist and fundamentalist traders described above) at that price. Changes

in the price of the asset result from the dealer reacting to the imbalance between demand and

supply, as excess demand (or supply) results in a reduction (or increase) in the market maker’s

inventory.

The dealer is assumed to follow the simple price adjustment process

Pt+1 = Pt + cD(Pt) (3.8)

where D(Pt) :=
∑

iDi(Pt) is the demand (or supply, if it’s negative) for the asset at the an-

nounced price Pt. This is a sum of the demands of all traders, generically denoted byDi(Pt) for

the i-th trader, and a concrete example for this demand function is given in Equation 3.9. Sim-

ilar demand-driven price adjustment functions are found in the models of Lux [1995], Farmer

and Joshi [2002] and Westerhoff and Reitz [2003], amongst others.

Some models make the assumption that the price will move such that the demand for the

asset will equal the supply. This may be because it is set externally (for example, by a dealer), or

because it converges to a market clearing price because of the actions of market participants. For

example, Arthur et al. [1996] assume, in contrast to the model of Day and Huang [1990], that

agents do not explicitly determine their own demand, but rather pass their demand parameters

to their dealer, who determines a price such that total demand
∑

iDi(Pt) equals the number of
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shares issued. For the i-th agent the demand is:

Di(Pt) ∝ Ei,t[Pt+1 +DIVt+1]− Pt(1 + r) (3.9)

where r is the return on a risk-free asset, and the dividend process {DIVt} is assumed to follow

an AR(1) process.

The price clearing mechanism used by Raberto et al. [2001] and Mannaro et al. [2008], on

the other hand, is based on the intersection of the demand-supply curve. If the tuple (vbi , p
b
i), i =

1 . . . B indicates the price and volume of the i-th buy order during a single timestep t of the

model, while (vaj , p
a
j ), j = 1 . . . A indicates the price and volume of the j-th sell order, the

demand curve f and supply curve g at time t+ 1 will be

ft+1(p) =
∑
i|pbi≥p

vbi ,

gt+1(p) =
∑
j|paj≤p

vaj .

The former indicates the total volume demanded at a price greater or equal to p, while the

latter indicates the total volume supplied at a price less than or equal to p.

In a more complex example of a quote-driven agent-based model, Brock and Hommes

[1998] develop a present discounted value asset pricing model with evolutionary dynamics,

which they term Adaptive Belief Systems (ABS). They consider a model in which there are two

available assets, a risky asset (a stock) and a risk-free asset, of which the latter is assumed to

be available in infinite supply (and thus the traders’ demand for it will not affect its price). The

wealth equation for the i-th trader is

Wi,t+1 = (1 + r)Wi,t + (Pt+1 +DIVt+1 − (1 + r)Pt)zi,t

where zi,t are the shares purchased at time t. The model assumes heterogeneous traders with

common risk aversion a and beliefs about the return variance σ2, and thus the variance of

wealth for a trader Vi,t [Wi,t+1] will be z2
i,t times this quantity. Each one-period mean variance-

optimising investor of type i solves

arg max
z

(
Ei,t [Wi,t+1]− a

2
Vi,t [Wi,t+1]

)
in order to determine their number of shares zi,t, which gives

zi,t =
Ei,t [Pt+1 +DIVt+1 − (1 + r)Pt]

aσ2

and from this one can obtain the equilibrium pricing equation, according to the number of

investor types, see details in Brock and Hommes [1998].
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3.4.2.2 Order-driven market models

Order-driven market models usually model the trading interactions in the LOB, and allow for a

more realistic description of the intra-day trading process. These models simulate the behaviour

of individual market participants, usually based on the behaviour of various classes of real

traders. The price of the traded financial asset is then determined from the limit and market

orders submitted by these traders. Depending on the model, the instantaneous price is either

considered to be the mid-point between the highest bid price and lowest ask price, or the last

traded price.

Cohen et al. [1983] were the first to simulate the limit order book in this way, using a

FORTRAN computer program. They implemented the price/time priority rules present in many

exchanges, as well as the ability of market orders to ‘walk up the book’, i.e. execute against

multiple limit orders. Later models, like those of Maslov [2000], Chiarella and Iori [2002] and

LiCalzi and Pellizzari [2003] used the same market mechanism in their models with varying

degrees of abstraction regarding trader behaviour and the lifetime of orders. For example,

Maslov [2000] found that even a model with a minimal set of rules governing agent behaviour

is sufficient to recreate realistic LOB features, such as fat tails in the distribution of returns. The

agents in this model are again not considered explicitly, but instead a single trader is assumed

to visit the market at each time step, placing a buy or sell order with equal probability. Since

the model does not consider order inter-arrival times or the possibility of cancelled orders, it

cannot, however, give rise to realistic simulations of intra-day LOB activity.

The model proposed by Chiarella and Iori [2002] assumes that agent behaviours have

varying degrees of the chartist and fundamentalist influences introduced in Equations 3.6 and

3.7, which manifest in different expectations of short-term market returns Rt,t+1 = Pt+1−Pt
Pt

Ei,t
[
Rt,t+1|P ft , Pt−Li:t

]
= gi1

P ft − Pt
Pt

+ gi2
1

Li

Li∑
j=1

Pt−j − Pt−j−1

Pt−j−1
(3.10)

where gi1 ∼ N(0, σ1)Igi1>0 (where Igi1>0 denotes the indicator function) and gi2 ∼ N(0, σ2).

The model does not provide a systematic study of the parameters, but rather an ad-hoc eval-

uation of the effect of average order lifetime on LOB liquidity and volatility. The model was

further extended by Chiarella et al. [2009] and included different time horizon considerations

for the different types of agent predictors. In deciding the amount of the asset they would like

to hold, agents here are assumed to maximise a constant absolute risk aversion utility function

U(Wi,t, ai) = 1− e−aiWi,t (3.11)

where ai is a risk aversion coefficient for the i-th agent, and Wi,t is his/her wealth at time t,
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as before. The possibility of different risk aversion coefficients shows precisely the ability of

ABMs to model heterogeneity in a market, compared to representative agent methods found in

the macroeconomics literature.

Several extensions have been proposed in recent years, in order to model specific features

of the LOB that had been abstracted away in earlier models. For example, in order to capture the

dependence in event activity, Toke [2011] uses a class of point processes, known as the Hawkes

processes, in a simple agent-based model. Calculating the empirical distribution of times be-

tween successive orders, he finds that limit orders that follow market orders are more common.

This can be interpreted as a sign of the market reacting, and replenishing liquidity, but not nec-

essarily on the same side as the market order. A zero intelligence model is proposed, where

agents submit limit orders and market orders according to Poisson processes, and cancellation

times also follow a Poisson process. However, the introduction of dependence between event

activity in a Hawkes processes model is shown to perform better than homogeneous Poisson

processes, in producing a realistic shape for the distribution of the inside spread.

While the majority of ABMs model the trading of a single risky asset (like a stock, possibly

along with a ‘risk-free’ asset), Consiglio et al. [2005] introduce a multiple asset framework.

They impose a minimal set of rules governing agents’ behaviour, namely budget constraints

and a (exogenously assigned) target allocation of their wealth across the different assets. There

are also considerations regarding the placement of their orders over time. They show that even

with agent homogeneity, they are able to capture some of the statistical properties and temporal

patterns of real markets. We will review some of these statistical properties in the following

section.

3.4.3 Model aims

3.4.3.1 Replication of persistent features of financial markets

Many financial market ABMs aim to demonstrate the proximity of the model to real financial

markets by reproducing certain statistical properties commonly found in financial data. These

are most commonly related to the time series of an asset’s returns, but can also include system-

atic observations about traded volume, volatility and liquidity. There is a large body of work

describing stylised facts, and the main properties have been surveyed by Cont [2001] and Rus-

sell et al. [2010], for different data frequencies. Chen et al. [2012] identifies 30 such stylised

facts, some of which are only present in either high or low frequency data. The main categories

of these stylised facts pertain to properties of returns (absence of autocorrelations, fat tails in

the returns distribution), trading duration (clustering of durations), transaction size (power law
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in trade sizes) and the bid-ask spread (correlation with price moves). Of these, 12 have been

replicated in ABMs, and in the 50 models surveyed the most common stylised facts are (in

order):

• Fat tails in the distribution of price returns (Rt). More formally, the returns have a power-

law tail with

F (|Rt| > x) ∼ x−α,

and an exponent of 2-4 (see, e.g. Lux and Sornette [2002] and references within).

• Volatility clustering, or persistent volatility. This is the phenomenon where ‘large

changes tend to be followed by large changes, of either sign, and small changes tend

to be followed by small changes’ Mandelbrot [1997]. Formally

corr(|Rt|, |Rt+τ |) > 0,

for a range of different values of τ , see e.g. Cont [2007].

• Absence of autocorrelations in returns in general. In short time intervals (less than 20

minutes) such autocorrelations may be present, however, due to microstructure effects.

Cont [2001] suggests that ‘albeit qualitative, these stylized facts are so constraining that

it is not easy to exhibit even an (ad hoc) stochastic process which possesses the same set of

properties and one has to go to great lengths to reproduce them with a model’. ABMs therefore

try to reproduce a selection of these and demonstrate empirical validity of the model by relating

the presence of these features to the parameters of the model. For example, Arthur et al. [1996]

explained the appearance of price bubbles and crashes, fatter tails in the returns distribution and

a larger trading volume to a single parameter, the frequency of exploration of the strategy space

by the agents. Regarding the appearance of characteristics of financial prices that resemble par-

ticular scaling laws, Lux and Marchesi [1999] note that explaining this as an emergent property

of the interaction of a number of agents would run contrary to the ‘efficient market hypothesis’.

However, observing this in their ABM, they are able explain it through the dynamic (switching)

aspect of the agents’ opinions.

A thorough study of the origin of the various stylised facts in financial market ABMs can

be found in Chen et al. [2012]. The paper lists both the general category under which each

model falls, as well as the particular parameters identified as explaining the presence of one or

more stylised facts. For example, the family of ABMs deriving from the ant recruitment process
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developed by Kirman [1993]13 is generally able to explain the absence of autocorrelations and

fat tails in the price returns, as well as volatility clustering, through the parameter controlling

the tendency of agents to switch strategy.

3.4.3.2 Policy testing

The nature of agent-based models means that they could be useful in ‘providing a testbed for the

study of policy questions targeting the medium and long run by basing the analysis on economic

mechanisms that may unfold as a response to a policy intervention’ [Dawid and Neugart, 2011].

There are a multitude of works in this area also, and the general approach is to:

1. Build an ABM model using some agents representative of the real trading population.

2. Calibrate the model and show that it can produce some of the stylised facts of fi-

nancial markets, so that one can be confident that the simulated time series of re-

turns/volume/volatility will have similar dynamics to real financial data.

3. Introduce the proposed regulatory mechanism, or exchange rule, and quantify the impact

with respect to certain variables of interest - this usually includes measures volatility or

liquidity.

An early application of ABM for policy testing was developed by Darley and Outkin

[2007], where they tried to predict the impact of decimalisation (moving from trading 1/8ths

and 1/16ths of a dollar to cents) on the NASDAQ. A number of different methods were used to

model individual investor strategies, including complex reinforcement learning methods. The

model predicted an increase in the inside spread as a result of the intervention, a prediction

which subsequently came to pass.

Another proposed policy intervention that has received the ABM treatment in the recent

past is that of a financial transaction tax. This is also termed a ‘Tobin tax’, after the economist

that had originally suggested it as a way of curbing fluctuations in foreign exchange rates [To-

bin, 1978]. The imposition of a small transaction tax in chartist and fundamentalist model by

Westerhoff [2003] results in a decrease in volatility, while larger taxes were found to increase

it. Part of the reason is because agents observe the effect of the transaction tax on the return of

a strategy, and since large taxes (naturally) harm profitability, they choose not to trade. Similar

results were obtained by Ehrenstein et al. [2005].

13The model by Kirman [1993] is a precursor to the chartist-fundamentalist agent design, and is pre-

sented in detail in Section 3.4.4.1. Papers deriving from this include that by Alfarano et al. [2005] and

Gilli and Winker [2003]).
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In both these models, however, agents are assumed to disregard the effect of the transaction

tax prior to trading, and only respond (by changing their trading behaviour) to experiencing a

change in their profitability. Mannaro et al. [2008] take a different approach, incorporating

the tax into the traders’ expectations. In contrast with the models above, they find that traded

volumes decrease and price volatility increases as one increases the transaction tax.

In a novel extension, they also assumed the existence of two different markets, only one of

which imposes a transaction tax. The traders then evaluate an attractor function to select which

of the two markets they would like to operate in during the next period. Again, they find that

the taxed market exhibits much greater volatility than the untaxed one.

Pellizzari and Westerhoff [2009] find that the impact of transaction taxes depends on the

market system used in the model and therefore the predictions of the models above could all

be correct, depending on the setting. They investigate the impact of transaction taxes for dif-

ferent market systems, namely a continuous double auction and a central dealership (examples

of quote and order-driven market systems, respectively). They find that in an order-driven mar-

ket, a transaction tax decreases trading but does not stabilise the market, as it simultaneously

decreases liquidity, therefore every execution has a bigger effect. In a quote-driven market, a

transaction tax does have the power to stabilise the market, but this is based on the assumption

that the dealer has infinite (or at least abundant) liquidity.

As there have been various types of financial taxes suggested recently, Lengnick and

Wohltmann [2013] use a hybrid of an economic model and a financial ABM to study the impact

of both a Financial Activities Tax and a Financial Transaction Tax (FTT). With the dual ob-

jective of optimising revenues and stabilising the economy, their model suggests that the latter

would be the better option, subject to certain constraints about the level of the tax.

Besides helping estimate the impact of transaction taxes, Westerhoff [2008] suggested that

ABMs could be utilised to carry out experiments of other proposed regulatory mechanisms.

This work uses modifications of a single model to investigate the effect of central bank inter-

ventions, in trying to control certain currency fluctuations, and trading halts, in trying to curb

excess volatility. The simplicity of the model, however, limits the generalisation of the results.

We present an example of an exchange intervention in a more realistic LOB setting in Section

6.4.

3.4.4 Methods for estimating ABM parameters

Early agent-based models were based on simple rules of interaction, and tried to explain macro

behaviours through these rules. The models were not, however, generally estimated using rigor-
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ous statistical methods, nor was there a systematic study of the effect of parameter changes on

the results. This limited their use as explanatory tools [Janssen and Ostrom, 2006]. The increase

in sophistication of these models in recent years, along with the availability of relevant data, has

called for more rigorous approaches for estimation and calibration, and we review the most im-

portant methods in this section, along with examples of models which employ these methods.

We note that the ABM presented in this thesis (in Chapter 6) is calibrated via simulation-based

estimation, but we provide here a brief discussion and examples of direct estimation approaches

also.

3.4.4.1 Direct estimation

Direct estimation is used in simpler models, when it is possible to derive an analytical expres-

sion containing all model parameters. Then, in the case of a regression model, for example,

the model could be estimated by ordinary least squares, or by maximum likelihood estimation

(MLE)

L(θ̂|X1:n) = sup
θ
L(θ|X1:n) (3.12)

if a likelihood function

L(θ|X1:n) =
n∏
i=1

f(Xi;θ) (3.13)

can be derived. Alternative direct estimation methods include moment matching, quantile

matching and loss function minimisation, although these are not considered here.

As examples of models estimated directly, it would be worthwhile to discuss the family of

models deriving from the ant recruitment process developed by Kirman [1993], which has been

very influential in the ABM literature. The model tried to explain the puzzling behaviour of

ants in selecting either of two food sources, where there was invariably an 80/20 split between

the two. Kirman [1993] proposed that the state of the system (the number k of a total of N ants

at the first food source) would evolve according to the following simple Markov Chain:

k →


k + 1,with p1 = (1− k

N )(ε+ (1− δ) k
N−1)

k − 1,with p2 = k
N (ε+ (1− δ)N−kN−1 )

(3.14)

where ε is the probability of an independent change in behaviour, while 1 − δ is the

contagion effect. For different values of these parameters, the model was able to reproduce

either fluctuations around an equal split between the two sources, or ‘herding’, at one or the

other.

In relating the recruitment effect of ants to financial markets, Kirman [1993] drew a par-

allel with trading agents that mimic other successful traders. In particular, he imagined the
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trading population switching between a set of predefined strategies, according to the success of

each group. The contagion effects of the Kirman ant model were formalised in a financial mar-

kets setting in a number of models, including by Lux [1995, 1997], Lux and Marchesi [1999],

Alfarano et al. [2005, 2008], and Alfarano and Milakovic [2009].

In particular, Alfarano et al. [2005] employed this herding mechanism in a model with fun-

damentalist traders (similar to the type described previously in this chapter) and noise traders.

Through the transition probabilities between the two groups, which are similar to those in Equa-

tion 3.14, and using the reversibility of a Markov chain and the principle of conservation of

probability, they obtain the so-called Master equation for pk(t), which denotes the probability

of k agents (of a total trading population N ) being of the first of the two types:

∆pk(t)

∆t
= Σk′(pk′(t)π(k′ → k))− (pk(t)π(k → k′)). (3.15)

This leads to a model for the proportion n
N of traders of the first type that can be mod-

elled akin to a stochastic volatility model, where the parameters are interpreted in terms of

the propensity of each type of trader to switch. The simple structure of the model enables the

derivation of the unconditional distribution of returns, which is fit to commodities and stock

market return data, in order to estimate the behavioural parameters.

3.4.4.2 Indirect/simulation-based estimation

Indirect estimation of ABM parameters is used when an analytical expression for the theoretical

model (for example, for the likelihood) is difficult or impossible to write down in closed form.

However, in many cases the model can be specified in a generative fashion. That is, the proposed

model is assumed to be able to generate/simulate a dataset comparable in form to the original

dataset, given a certain set of parameters. The model is then not fit to the real data directly, but

rather the optimisation aims to find the parameter vector that minimises some distance measure

between a summary statistic of the real and simulated data, as illustrated in Figure 3.4. While

the real data-generating process may be different, it is still desirable for the output of the model

to resemble the observed data.

If we consider k summary statistics then two k-dimensional vectors f, g can represent

the statistics calculated using the real and simulated data respectively. There are a number of

possible metrics that could be used to quantify the difference between them:

1. The Lp-norm distance, or Minkowski distance of order p, defined as:

(
k∑
i=1

|fi − gi|p
) 1

p
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.

Figure 3.4: A flowchart of the indirect estimation procedure. The estimated parame-

ters are returned once the distance between summary statistics computed on the real and

simulated data is less than a tolerance e

where the most common distances are the L1-norm, L2-norm or L∞-norm:

k∑
i=1

|fi − gi|,

(
k∑
i=1

|fi − gi|2
) 1

2

,

lim
p→∞

(
k∑
i=1

|fi − gi|p
) 1

p

= max(|f1 − g1|, |f2 − g2|, . . . , |fk − gk|).

2. The Canberra distance, which is a weighted version of the L1-norm:

k∑
i=1

|fi − gi|
|fi|+ |gi|

.

It is obvious then, that this can only range between 0 and 1.

3. If the statistics are not of a comparable size, then a different weighting may be appropri-

ate, leading to the Mahalanobis distance:

1

I
(f − g)′W (f − g),

where W is a weighting matrix that takes into account the relative sizes. In addition, it

may be chosen so that it has particular properties (for example, minimising the asymp-

totic covariance of the estimator).
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As an example of a model estimated using a simulation-based approach, we revisit the

Gilli and Winker [2003] version of the Kirman ant model, where the returns expectations of

the two types of traders are as in Equation 3.6 and 3.7. The price determination process com-

bines the two expectations and the perceived share of fundamentalist and chartist traders in the

market:

Em,t
[
∆Pt+1|P ft , Pmidt−1 , P

mid
t

]
= ωtv(P ft − Pmidt ) + (1− ωt)(Pmidt − Pmidt−1 ).

where the perceived weight (since agents have a noisy signal) of fundamentalists, ωt, is calcu-

lated as the probability ωt = Pr(q̃t > 1
2), qt is the actual proportion of fundamentalists and

q̃t ∼ N(qt, σ
2
q ) and v is a correction term. The weight of chartists is then 1 − ωt. In every

iteration of the simulation, the number of chartists and fundamentalists evolves according to

Equation 3.14 and the price is computed from the market’s expectation above, with the addition

of some exogenous noise term.

The estimation proceeds by calculating the empirical kurtosis of the real and simulated

price returns (kemp, k̃abm respectively) as a measure of the fat-tailedness, as well as the coeffi-

cient α of the ARCH(1) model

σ2
t = ω + αε2t−1, (3.16)

fit to the real and simulated log returns αemp and α̃abm respectively. Then for a model parameter

vector θ, the stochastic approximation to the objective function measures the distance between

these summary statistics

f̃(θ) = |k̃abm − kemp|+ λ|α̃abm − αemp|. (3.17)

The optimisation algorithm used to minimise this distance is the Nelder-Mead simplex

algorithm with a threshold accepting heuristic. A weakness with such an approach, however,

is the ad hoc selection of the weighting factor λ based on the magnitudes of the two compo-

nents. In Chapter 6, we will introduce an optimisation method that considers the components

separately, so that such a weighting factor is not necessary.

In a follow-up paper, Winker et al. [2007] proposed the use of the method of simulated mo-

ments (MSM) for the calibration of this model. The MSM was proposed by McFadden [1989]

and Pakes and Pollard [1989]. In the simplest case, we compare a single summary statistic

calculated on, e.g., the mid-price in the real timeseries yt, to the same statistic calculated on the

simulated timeseries yst (θ). The MSM estimator is the parameter vector θ̂ which minimises the

distance between them. For example, for the first moment estimator, we have:

θ̂ = arg min
θ

[
1

T

T∑
t=1

yi −
1

T

T∑
t=1

ysi (θ)]2
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3.4.4.3 Indirect inference

Indirect inference is a generalisation of the simulated method of moments. This method is

again used when an economic model is intractable, but can be used to generate simulated data.

Indirect inference employs an additional, auxiliary model, that does not necessarily describe

the agent interactions accurately. The process entails that at each estimation step, we have a

candidate parameter vector for the economic model, from which we generate a set of data. The

auxiliary model is then fit to both the real data and the data simulated from the main economic

model. A measure of the difference between the parameter vectors is then obtained, then the

parameters of the economic model are iteratively adjusted, until the difference is below some

threshold. We will describe this estimation method in detail in Chapter 6, as it is central to the

estimation of the agent-based model proposed in this thesis.



Chapter 4

Liquidity and resilience of the LOB

In Chapter 3, we saw that a wide variety of liquidity measures have been proposed, reflecting as-

pects such as immediacy, tightness and depth. While these aspects are important in determining

the cost of immediate execution of a very large order, such orders are becoming increasingly less

common, as brokerage houses and large fundamentals traders aim to reduce execution costs. On

the NYSE, the average order size is one-eighth of that of fifteen years ago, in terms of number

of shares, and one-third in dollar value [Chlistalla et al., 2011], which indicates the partitioning

of large orders into multiple smaller orders and traders taking advantage of liquidity replenish-

ment. There is therefore a ‘resilience’ aspect to liquidity, which has been largely overlooked in

the literature.

In this chapter, we define a new notion for liquidity resilience, captured through the con-

cept of threshold exceedance durations (TEDs), that is, the durations of intra-day liquidity

shocks. We exhibit the diurnal patterns of TED observations throughout the trading day and

the effect of major economic announcements on the frequency of such events. We explain and

forecast the level of the TED through a number of covariates summarising the state of the LOB,

and this is achieved through the development of a survival time model, similar in structure to

that used by Lo et al. [2002]. We show how the TED can accommodate different liquidity

thresholds of interest, such that shocks can be defined as deviations from competitive levels of

liquidity, or from more extreme levels. In our empirical analysis we show that the explanatory

power of our model is slightly higher when considering the spread as the liquidity measure of

choice, rather than the XLM (the Xetra Liquidity Measure, defined in Section 3.2.2), but both

produce satisfactory results.

Our notion of liquidity resilience therefore extends the standard notion of resilience in two

key dimensions, first by explicitly relating it to certain liquidity levels of interest, and secondly,

by modelling and forecasting the time required for a market to recover following a liquidity
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shock. We show that the state of the LOB is an important determinant of the level of liquidity

resilience, while previous work by Kyle [1985] and Foucault et al. [2005] only considered

exogenous factors to be relevant (informational asymmetries and waiting costs, respectively).

4.1 Modelling intra-day liquidity resilience
To start with, we should distinguish between the notion of liquidity, as a quality of a market that

allows for relatively large orders to be placed without much effect on the market’s dynamics,

and resilience, as a quality of the market that allows for the dynamics to recover after a large

order in a short period of time. Dong et al. [2007] note that resilience has received much

less attention compared to other aspects of liquidity, citing the extensive research in depth and

tightness. This may be because several frequently employed measures of depth and tightness

can be readily computed from static views, or ‘snapshots’ of the LOB, as we have seen in our

description of such measures in Section 3.2.2, whereas resilience is related to the change in

the state of the LOB over time, and thus more difficult to capture. However, the embedding of

simple notions of resilience into recent theoretical models of optimal execution [Alfonsi et al.,

2010, Obizhaeva and Wang, 2013] means that resilience now needs to be considered in its own

right, in order to pin down the concept and carry out empirical LOB analysis.

In the seminal paper of Kyle [1985], resilience is defined as “the speed with which prices

recover from a random, uninformative shock”. This is similar to the interpretation of Obizhaeva

and Wang [2013], who suggest that in a resilient market is there is a swift convergence of the

price of an asset to a new steady state, after a market order. Garbade and Garbade [1982]

describes a resilient market as one in which “new orders pour in promptly in response to a tem-

porary order imbalance”, whereas Harris [2002] suggests that in such a market, “uninformed

traders cannot change prices substantially”. These interpretations of resilient markets differ

somewhat, in that the former is related to order replenishment, while the latter concerns price

evolution. Like liquidity itself, liquidity resilience does not have a universally accepted defini-

tion, but is only loosely understood as being related to the return to some former level of prices

[Kyle, 1985], volumes [Garbade and Garbade, 1982] or a particular liquidity measure [Foucault

et al., 2005].

One recent attempt to define and model resilience is given in the model of Foucault et al.

[2005]. They analyse the determinants of liquidity resilience, which they define as the number

of orders required for the spread to recover to a competitive level. They identify different liq-

uidity resilience regimes for the LOB, i.e. regimes in which the spread returns to a competitive

level after only a few orders (strong resilience) or after many orders (weak resilience). The
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model relates these regimes to the proportion of patient and impatient traders (traders that pre-

dominantly submit limit or market orders, respectively). Specifically, they find that resilience

increases with the proportion of patient traders, while resilience is reduced by a reduction in the

tick size.

Several authors have also studied resilience empirically [Large, 2007, Gomber et al.,

2011]. The resilience model of Large [2007] uses a parametric model which views limit orders,

market orders and cancellations on either side of the LOB as a mutually-exciting ten-variate

Hawkes point process. This formalises resilience in terms of the change in intensity of particu-

lar event types (e.g. limit order submissions on the bid side) after an instance of large trade is

observed in the LOB. Gomber et al. [2011] define resilience as the change in the XLM in the

period following large transactions. They find that the liquidity measure generally returns to

close to its pre-trade level within 2-3 minutes of the large transaction.

While these previous attempts to capture liquidity resilience have exhibited the importance

of the concept, they have generally tied the definitions to particular measures of liquidity, like

the inside spread [Foucault et al., 2005], or the volume at the top of the LOB [Large, 2007].

The next section introduces a more general definition of resilience as the duration of deviations

from a particular liquidity threshold level. Different liquidity measures and threshold levels

of liquidity are appropriate for different applications (for example, an algorithmic execution

setting would have different ‘trigger’ level to a setting where liquidity is monitored for systemic

risk purposes). Our definition can accommodate any liquidity measure and threshold level of

interest.

Compared to the papers above, which have developed theoretical models based on unob-

served variables such as the relative proportions of patient and impatient traders in the LOB,

our use of a regression model with covariates coming from the structure of the LOB enables

us to assess the contribution of each covariate to the explanatory power of the model. It also

gives us the ability to model different scenarios that had not previously occurred in the dataset,

by modifying the covariate values. Finally, we can assess the predictive power of our model,

and explain how such a forecasting model could then be readily incorporated into an execution

model.

4.2 Defining liquidity resilience
The liquidity resilience notion introduced here is based on the idea of the threshold exceedance

duration:

Definition 4.2.1. The threshold exceedance duration (TED) is the length of time between the
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point at which a liquidity measure, Mt, deviates from a threshold liquidity level, c, (in the

direction of less liquidity), and the point at which it returns to at least that level again. The

starting time and length of the TED are denoted by Ti and τi respectively, where i refers to the

ith exceedance. Formally:

τi := inf {τ : MTi+τ ≤ c, τ > 0} (4.1)

Ti := inf {t : Mt > c, t > Ti−1 + τi−1} (4.2)
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Figure 4.1: An example of the duration of exceedances over a liquidity threshold. Here,

the spread is chosen as the liquidity measure, and the liquidity threshold c is chosen to be

5 cents.

To understand how such exceedance events are generated, in the case of the inside spread

as the liquidity measure of interest, the initial deviation would have come either from a market

order or from cancellations at the top of the book that had removed one or more levels of the

bid or ask. The subsequent return to the threshold level would result from limit orders arriving

inside the spread.

A resilient LOB would then be one in which TED durations are generally low, indicating

that the market returns to a particular level of liquidity quickly after a shock. Thus, our main

interest is in the length, rather than the frequency of exceedances. The reason is that in our

view, the LOB is resilient when such exceedance events are short in duration, rather than when

such exceedance events are rare, because their frequency pertains more to market depth and the

amount of new information hitting the market, rather than to the resilience of the book and the

quality of liquidity provision.
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The definition here is quite flexible, since it is agnostic to the liquidity measure used and

one could potentially use any of the measures discussed in Chapter 3.2.2. In the case of the

XLM liquidity measure, for example, such a resilience proxy would provide information on the

time to replenishment of the LOB volume and relative price structure, after an impact from a

market order or cancellation, across multiple levels of the LOB.

There is also flexibility in the choice of the liquidity threshold, for example as a quantile of

some historical distribution of the liquidity measure. We intentionally do not specify a threshold

in the definition, as the recovery of a liquidity measure to, e.g. its median values may be

important to a brokerage house or a large fundamentals trader executing a large order, while a

regulator may be more interested in the duration of more infrequent events, where the spread

reaches very high quantile levels of the empirical distribution.

4.2.1 Examples of TED liquidity resilience measures

We can now extract the TED observation random variables for two example liquidity measures.

We will utilise these to illustrate the survival regression framework we develop. These liquidity

measures are the inside spread and the XLM, which were defined in Equations 3.1(p. 55) and

3.5(p. 58), respectively.

In terms of the aspects of liquidity delineated in Section 3.2, the inside spread reflects the

tightness aspect, while the XLM, as a Cost of Round Trip (CRT) measure, is also descriptive

of the depth of volume at each level of the LOB. Whereas R is fixed in the definition of the

measure on the Xetra exchange1, we allowed it to vary, so that the measure was still defined

when there is insufficient volume in the LOB. We set R = min(25000,
∑

i TV
a,i
t ,

∑
i TV

b,i
t ),

i.e. the minimum of 25000 of the local currency (EUR) and the volume available on either side

of the LOB.

The TED observation random variable for the two liquidity measures is then defined as in

Equation 4.1. The only difference being that the threshold c for the spread is in cents, whereas

for the XLM it is in basis points, to be in the same units as the liquidity measure.

4.3 Features of the LOB data and TED observations
We use the 82 day trading sample (January 2nd to April 27, 2012) from the Chi-X equity

dataset described in Chapter 2.1. This contains all limit order submissions, executions and

cancellations in the visible order book for all stocks in the CAC40. Both limit order submissions

1http://xetra.com/xetra/dispatch/en/xetraLiquids/navigation/xetra/

300_trading_clearing/100_trading_platforms/100_xetra/600_xlm

http://xetra.com/xetra/dispatch/en/xetraLiquids/navigation/xetra/300_trading_clearing/100_trading_platforms/100_xetra/600_xlm
http://xetra.com/xetra/dispatch/en/xetraLiquids/navigation/xetra/300_trading_clearing/100_trading_platforms/100_xetra/600_xlm
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and executions in our dataset may be the result of pegged, limit or iceberg orders, however, the

data only indicates the resulting submission of the limit order. In addition, a cancellation may be

automatic (as a result of a time in force option), or as a result of a manual cancellation request,

but this is not indicated in the data. We do not attempt to infer this information here, and in any

case we have sufficient information to rebuild the LOB without it.

The TED observations considered are those occurring between 08:01 and 16:29 London

time daily, to avoid market opening and closing effects. We also note that while the continuous

trading hours on Chi-X are not necessarily the same as those in the national exchanges where

the assets trade, for these French stocks the opening hours coincide. Hence, we do not have

any additional considerations that would result from the sudden submission or withdrawal of

liquidity from the primary exchange.

For both the descriptive statistics and the results, we select two stocks with which to

perform further experiments, namely Credit Agricole (stock symbol ACAp) and Sanofi (stock

symbol SANp). These stocks were chosen as being representative of stocks with low and high

share prices, respectively, in order to examine any differences in the liquidity resilience be-

haviour of stocks due to share price. In addition, we provide an overview of the explanatory

performance across all CAC40 stocks.

4.3.1 Intra-day variation in liquidity resilience

There are clear diurnal patterns in the frequency of the TED observations over our sample

period. An exceedance is more likely to occur close to the start of the day, and we note a second

concentration of exceedances around 13:30 London time, or 08:30 ET. While the concentration

of observations in the morning may be due to well documented market open effects (see, e.g.

Biais et al. [1995]), this does not explain the very distinct mid-day clustering. We postulate that

this may be due to the release of a number of economic reports in the US (indicatively, weekly

jobless claims, retail sales, core PPI, housing starts and non-farm payrolls are all released at this

time, but on different dates), and empirical findings substantiate this.

In Figure 4.2, we focus on days with economic releases at 08:30 ET, in order to show

the difference in TED occurrences from days with no announcements. It is clear then that the

13:30 clustering of TED observations can be attributed to these announcements. It is also very

likely that a number of announcements scheduled for release at 10:00 ET are responsible for the

second clustering of TEDs at 15:00 London time. While the announcement event has a clear

effect on the frequency of TEDs around the time of publication, we have not found these events

to have an effect on the daily model fits, and we will thus not consider this further.
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Figure 4.2: The duration of time during all the trading days in our dataset that the inside

spread M of Credit Agricole (stock symbol ACAp) is above the 9th decile threshold.

Time is on the x-axis starting at 8:01 am in the morning and ending at 16:29. Each day

corresponds to one row on the y-axis. Rows are coloured blue if there is a US economic

announcement at 13:30 London time (08:30 ET), and blue otherwise.

Liquidity droughts are generally longer and there is significantly more variation in their

durations in the first two hours, compared to the rest of the day. In addition, the distribution

of the durations on a log scale, for the examples we considered, tends to be symmetric. For

periods where there are far fewer observations (such as mid morning and mid afternoon) we see

a more skewed relationship in the log duration. Figures 4.3 and 4.14 show how this relationship

varies throughout the day.

We next illustrate the number of TED observations one might expect every day, as we alter
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Figure 4.3: The duration of TED observations above the median (top) and 9th decile

(bottom) spread value throughout the trading day for stock Credit Agricole for the liquidity

measureM representing the inside spread. The boxplots show the 25th to 75th percentile

range of the duration of these exceedances over the 4 month period. The black dots are

beyond the whisker, which itself is 1.5 times the interquartile range from the upper or

lower hinge.

the liquidity threshold. For the two liquidity thresholds corresponding to the 5th and 9th decile

of the spread for every day, we show in Table 4.3(p. 118) the mean and minimum number of

TED observations over the 82-day period. We note that for several assets, there are thousands

of such observations, which is to be expected, as the daily activity is generally in the hundreds

of thousands of events (limit orders, market orders and cancellations).

4.3.2 Data considerations and assumptions

We note that the granularity of the millisecond timestamped transactions in our dataset is such

that we often have TED observations of value 0 (i.e. the liquidity returns to the threshold level

in less than 1 ms). As this would cause problems with the estimation of our model, we set the
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values of these observations to 0.1 ms, which is reasonable, as it corresponds approximately to

the smallest round-trip time for messages to the exchange.

4.4 Liquidity resilience model formulation
In this section we will detail the statistical framework we adopt to model the TED random

variables as a function of interpretable covariates (factors or transforms) derived from the LOB

structure. Formally, we develop a survival regression framework that allows us to study the

resilience of any chosen liquidity measure as a function of the LOB structure. To the best of our

knowledge, there have been no previous studies that have adopted such a survival modelling

framework to study resilience or liquidity dynamics. In fact, there have been relatively few

previous studies incorporating a survival modelling regression framework into the study of fea-

tures of the LOB [Chakrabarty et al., 2006, Lo et al., 2002], compared to the number of papers

discussing the attributes of S.D.E., time-series and Markov chain-based models.

4.4.1 Survival analysis introduction

Survival analysis is a branch of statistics encompassing techniques to analyse positive-valued

random variables, typically the lifetimes of mechanical components, or the time to response to a

particular drug [Miller Jr, 2011]. Survival models can typically be incorporated into a regression

framework, and we can thus explain some of the variation in the variable of interest through

explanatory covariates. Harrell [2001] considers a wide range of regression modelling strategies

in the context of survival analysis. The unique advantage of survival analysis, compared to the

larger class of regression models, is that it can incorporate censored observations, which occur

when one cannot obtain the true value of an observation because the terminating event (e.g.

failure, response, death) has not occurred inside the observation window, and we will explain

how such observations are treated separately in survival models in Section 4.4.2.

In the context of the LOB, survival regression frameworks have mainly been employed

to explain the variation in the lifetimes of limit orders. Al-Suhaibani and Kryzanowski [2000]

used such a framework for the Saudi Stock Market, assuming a Weibull distribution for the

time to execution of limit orders, and considering cancelled or expired orders as censored. In

the regression framework, they considered covariates related to aggressiveness and order size

for the incoming limit order, as well as LOB covariates including the inside spread and total

shares with higher priority in the LOB, order imbalance and the proportion of market orders.

The inside spread was found to be related to an increase in the average limit order lifetime under

the model, whereas increased order aggressiveness was naturally found to decrease the average
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time to execution. A similar formulation was used by Cho and Nelling [2000] for the New York

Stock Exchange.

Lo et al. [2002] used a more general formulation with a Generalised Gamma Distribution,

but as limit order book data was not available, covariates are either approximations of the LOB

state, or slower moving averages. Similar results to those of Al-Suhaibani and Kryzanowski

[2000] are obtained regarding the effect of order aggressiveness in decreasing order lifetimes,

but execution times were not found to be sensitive to the size of the limit order.

While in these studies, for which the datasets considered are in the late 1990s, the censored

observations generally accounted for less than half of all observations, the changing nature

of financial markets means that the vast majority of order traffic are now order cancellations.

Thus, defining cancellations as censored observations in a survival model may no longer be

appropriate, as it will affect the estimation of the model.

4.4.2 Survival model specification
Under the main assumption of survival modelling, the survival function that denotes the prob-

ability that the i-th threshold exceedance of the threshold c will have a duration that is beyond

any positive time τ is given by:

S(τ) = 1− F (τ ;β) = Pr (τi ≥ τ) (4.3)

where F (τ ;β) denotes the distribution function for the assumed probability model for the ran-

dom survival times, andβ is a vector of coefficients in the regression model, which parameterise

the survival distribution.

If all observations are i.i.d and uncensored (i.e. the event of interest always happened

within the observation window), we could simply estimate the model via standard maximum

likelihood estimation, where for a given parameter vector β, the likelihood function is

L(β|τ1 . . . τn) = f(τ1 . . . τn|β) =
n∏
i=1

f(τi|β) (4.4)

However, for a given fixed threshold c, once the i-th exceedance at time Ti occurs, there

is no guarantee that the liquidity process would ever return back through this threshold within

the trading day. We do, however, assume that given enough time, the event of interest would

eventually occur i.e. the liquidity process is mean reverting. Without this assumption, the

density we specified for the survival times, which models the distributions of the durations,

would be improper, as it would not normalise to unity on its support. We would then have to

calculate the density conditioning on the event actually occurring.
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Let each unit τi have a potential maximum observation time TD−Ti, i.e. the time remain-

ing until the end of the observation period TD. For a censored observation, we only know that

the lifetime τi exceeds the maximum observation time TD−Ti, as censoring is non-informative

(that is, the time of censoring is independent of the time of failure). The contribution to the

likelihood of this event is then

Li = S(TD − Ti) (4.5)

If we assume for these observations that Ti is independent of Td − Ti, we can then obtain

the likelihood function as follows:

L =
∏n
i=1 Li =

∏
U f(τi)

∏
C S(Td − Ti)

where U and C are the sets of uncensored and censored observations, respectively.

4.4.3 Classes of survival models
The two most commonly used classes of survival models are the proportional hazards models

and the accelerated failure time (AFT) models, for which a brief introduction is presented here,

see Bradburn et al. [2003], Kalbfleisch and Prentice [2011] for a thorough discussion of both.

4.4.3.1 Cox proportional hazards models

With a Cox Proportional hazards model, a central concept is the hazard function

h(τ) := lim
δτ→0

Pr (τ ≤ τi < τ + δτ)

=
f(τ)

1− F (τ)

where h(τ) can be interpreted as the instantaneous rate of occurrence of the event of interest,

given it has not occurred already. Integrating h(τ) to obtain the cumulative hazard H(τ)

H(τ) =

∫ τ

0
h(t)dt = − ln(1− F (t))|τ0

= − ln(1− F (τ))

= − ln(S(τ))

and thus the survival function becomes

S(τ) = e−H(τ) (4.6)
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One of the simplest possible survival models is for an exponentially distributed survival

time, which can be obtained by the specification of a constant hazard function h(τ) = h. The

respective survival function is therefore

S(τ) = e−hτ (4.7)

In a proportional hazards model, the covariates affect the duration through the hazard

function. For a given vector of covariates xi and coefficients β, the hazard function is

h(τ |xi) = h0(τ)ex
′
iβ (4.8)

where h0(τ) is a baseline hazard, which can take any form. One can see that changes in the

covariates have a multiplicative effect on this baseline risk. In this case, the hazard ratio for

two different individuals i, j with covariate vectors xi,xj is

h(τ |xi)
h(τ |xj)

= e(x′i−x′j)β (4.9)

which is useful for comparing the hazard functions of individuals in different groups, e.g. a

placebo and treatment group in a medical study.

4.4.3.2 Accelerated Failure Time model

‘Accelerated Failure Time’ (AFT) models make the assumption that for two populations, the

following holds for the respective survival functions S1(τ) and S2(τ)

S1(τ) = S2(κτ) (4.10)

where κ is a constant. Thus the rate of ‘aging’ of the first population is κ times the rate of aging

of the second population. The same relationship holds between the mean ‘failure’ times

µ2 =

∫ ∞
t=0

tf2(t)dt

= t (−S2(t)) |∞t=0 +

∫ ∞
t=0

S2(t)dt

= − lim
t→∞

tS2(t) +

∫ ∞
t=0

S2(t)dt

=

∫ ∞
t=0

S2(t)dt

= κ

∫ ∞
t=0

S2(κu)du

= κ

∫ ∞
t=0

S1(u)du

= κµ1
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For the failure times, since we are modelling positive random variables, we can consider

a log-linear formulation, incorporating model covariates as follows

ln(τi) = x′iβ + εi (4.11)

where εi is a random error term. According to the distribution one chooses for τ , there is a

corresponding distribution for εi, and vice-versa. A number of corresponding distribution pairs

are listed in Table 4.1.

Distribution of εi Distribution of τ

Normal Lognormal

Logistic Log-logistic

Log-gamma Gamma

1 param extreme value Exponential

2 param extreme value Weibull

Table 4.1: Possible Accelerated Failure Time lifetime and associated error distributions.

From Equation 4.11 one can obtain the model for the failure time τi by exponentiating

τi = τ0,i exp
{
x′iβ

}
(4.12)

where τ0,i = exp {εi}. One can see that in an AFT model, the model covariates affect the

duration by shifting the baseline distribution of τ , rather than the hazard function, as in the Cox

proportional hazards model. A unit change in, say, x(k)
i to x(k)

i + 1 will have a multiplicative

effect of eβk on the failure time. The sign of the coefficient for a given covariate indicates the

direction of the partial effect of this variable on the conditional probability that the duration of

the deviation will exceed a time t.

We use the AFT approach in this chapter, as AFT models have a number of relevant

advantages [Lambert et al., 2004]:

• The log-linear formulation of such models emphasizes that the roles of the regression

parameters and dispersion parameters are clearly separated.

• The regression parameters in an AFT model are also robust towards neglected covariates.

For the second point, Hougaard [1999] examines the implications of not including all

relevant covariates (for example, due to lack of knowledge). In the case of the log-linear AFT

formulation, omitting covariates increases the variance of the error and its distribution may
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fall outside the parametric family considered, but the regression part remains the same (and

therefore, the model coefficients for the known covariates are unchanged). In contrast, in a

proportional hazards case with constant hazard, such as the one considered earlier, omitting

covariates leads to a distribution with a decreasing hazard.

4.4.4 AFT model estimation

The majority of the results presented in this section will be for lognormally distributed and

Weibull-distributed exceedance times. These are both special cases of the log Generalised

Gamma distribution, for which details are given in Appendix A. For the lognormal regression

we assume for the error term εi
iid∼ LN(µ, σ) in Equation 4.11.

Each of the covariates in x is a transform from the LOB for which the liquidity measure

is observed, and all covariates are described in Section 4.4.5. We note that we also considered

models with interactions between the covariates, but interaction terms were not found to be

significant in the majority of our models.

In the log-normal case, the observation random variables have the following distribution

function and survival function:

f(t|xi) =
1

t
√

2πσ2
exp

[
−(ln(t)− x′iβ)2

2σ2

]
S(t|xi) = 1− F (t|xi) =

1

2
− 1

2
erf
(

ln(t)− x′iβ√
2σ2

)

Define u =
ln(t)−x′iβ√

2σ2
. Then the log likelihood is:

l(β, σ) = lnL(β, σ)

= Σi∈U ln(f(τi)) + Σk∈C ln(S(τk))

= Σi∈U

[
− ln(τi

√
(2π(σ)2)− u2

i

]
+ Σk∈C ln

(
1

2
− 1

2
erf(uk)

)

The partial derivatives with respect to βj and σ are:

∂l

∂βj
= Σi∈U

[
2ui ·

xi,j√
2(σ)2

]
+ Σk∈C

 1√
π

exp(−u2
k)

xk,j√
2(σ)2

1
2 −

1
2erf(uk)


∂l

∂σ
= Σi∈U

[
−1 + 2u2

i

σ

]
+ Σk∈C

[
−

1√
π

exp(−u2
k)(

uk
σ )

1
2 −

1
2erf(uk)

]

The parameters can be estimated via MLE, with a Newton gradient descent method, using

standard optimisation packages.
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4.4.5 Model LOB Covariates
We consider the following categorisations of covariates in our nested model structures that are

explored via a model search procedure. In evaluating these covariates for the construction of the

regression design matrix, we consider the times of evaluation to match the times of the observed

exceedance events above the specified threshold level, t = Ti. In the following, a ‘level’ of the

LOB is defined as one in which there is at least 1 resting limit order. Thus the first 5 levels of the

bid are the 5 levels closest to the quote mid-point, where there is available volume for trading.

The covariates chosen pertain to the state of the limit-order book of a given stock. These are:

• The total number of sell limit orders in the first 5 levels of the LOB at time t, obtained

according to x(1)
t =

∑5
i=1

∣∣∣V a,i
t

∣∣∣ (where |·| is the number of orders at a particular level),

and is denoted ask hereafter,

• The total number of buy limit orders in the first 5 levels of the LOB at time t, obtained

according to x(2)
t =

∑5
i=1

∣∣∣V b,i
t

∣∣∣, denoted bid,

• The total sell volume (in 1000s of shares) in the first 5 levels of the LOB at time t,

obtained according to x(3)
t =

∑5
i=1

TV a,it
1000 , denoted askV olume,

• The total buy volume (in 1000s of shares) in the first 5 levels of the LOB at time t,

obtained according to x(4)
t =

∑5
i=1

TV b,it
1000 , denoted bidV olume,

• The number of sell limit orders x(5)
t in the LOB that had received price or size revi-

sions(and were thus cancelled and resubmitted with the same order ID), denoted by

askModified,

• The number of buy limit orders x(6)
t in the LOB that had received price or size revisions,

denoted by bidModified,

• The average age (in minutes) x(7)
t of sell limit orders in the first 5 levels at time t, denoted

by bidAge.

• The average age (in minutes) x(8)
t of buy limit orders in the first 5 levels at time t, denoted

by askAge.

• The instantaneous value of the spread at the point at which the i-th exceedance occurs,

which is given by x(9)
t = P a,1t − P b,1t and denoted as spreads.

• For the nine previously defined covariates, we also include exponentially weighted

lagged versions. For example, in the case of the x(s)
t covariate, the respective lagged co-
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variate value is then given by
∑d

n=1w
nx

(s)
t−n∆ where for a time t, we consider w = 0.5

is the weighting factor, d = 5 is the number of lagged values we consider and ∆ = 1s is

the interval between the lagged values. These covariates are hereafter denoted with the

‘l’ prefix.

• The number x(10)
t of previous TED observations in the interval [t − δ, t], with δ = 60s,

denoted by prevexceed.

• The time (in minutes) since the last exceedance, x(11)
t , denoted by timelast.

• The average of the last 5 log TEDs, x(12)
t , denoted by prevTEDavg.

• The activity in the entire CAC40 index (in 1000s of limit orders, cancellations, execu-

tions) in the previous second x(13)
t , denoted by indact.

• A dummy variable indicating if the exceedance occurred as a result of a market order to

buy, x(14)
t , denoted by mobuy.

• A dummy variable indicating if the exceedance occurred as a result of a market order to

sell, x(15)
t , denoted by mosell.

Altogether we then have 24 covariates, 15 instantaneous and 9 lagged.

4.5 Results and Discussion
Let us now analyse our resilience metric defined with respect to the inside spread as the liquidity

measureM. We could assume that liquidity resilience was stationary over our 82-day sample

period, in which case we could fit our model to the entire dataset. We demonstrate that this

would not be a good assumption as the model fits produce varying coefficient values throughout

the period, in Figures 4.4 and 4.15. Instead, we only assume that liquidity resilience is locally

stationary (intra-day), and we fit the model to the dataset for every asset daily.

For the empirical evaluation of the explanatory power of our model regarding the variation

in the TED observations, we adopt the AFT model formulation described in Section 4.4.2.

We selected 2 example models that are special cases of the Generalised Gamma distribution

(g.g.d.) family: The Lognormal model, for which we present the majority of our results, and

the Weibull model in Section 4.5.5, to exhibit situations in which it may provide a better fit. We

noted in Table 4.1 that under a log transform, the former gives a linear regression with additive

Gaussian errors, while the latter gives us a linear regression with errors that have an extreme

value distribution. We note that because of the censoring mechanism we used, we only had very
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Figure 4.4: Coefficients of the value of the spreads, at the time of exceedance for every

fitted daily model for stock Credit Agricole. The top graph is obtained using thresholds

corresponding to the median spread, while the bottom graph uses thresholds corresponding

to the 9th decile spread.

few censored observations. These were found to only have a minimal effect on the estimated

coefficients and thus censoring was ignored to simplify estimation.
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4.5.1 Explanatory power
In this section we assess the extent to which instantaneous and lagged variables in the LOB can

explain the variation in our TED metric, and therefore become part of meaningful models to

describe LOB liquidity resilience. We demonstrate that with a careful selection of the covari-

ates, we can obtain substantial explanatory power for our liquidity resilience measure, which is

consistently good over time, in different market conditions, and for a range of different assets.

We fit the lognormal regression model, in which all covariates explained in Section 4.4.5

are considered (together) each day, for the entire 4-month period of our dataset, for each asset

in the CAC40. As there were very few censored observations, their effect is minimal, and

thus these were generally ignored to simplify the estimation of the model. We evaluate the

explanatory power of this model in terms of the proportion of the variation in the TED metric

that can be explained by it, with the adjusted coefficient of determination (adjusted R2), which

we briefly explain here.

The coefficient of determination is

R2 =
SSe
SSt

which corresponds to the total variation explained by the regression model, where SSe and SSt

are, respectively, the explained sum of squares and the total sum of squares. When introducing

additional explanatory variables, we would always expect theR2 value to increase. The adjusted

R2 is often used in its place, as it penalises larger models:

R2
adj = 1− (1−R2)

N − 1

N − k − 1

We find that our model has substantial explanatory power, and we show in Figure 4.5 that

the adjusted R2 results obtained from fitting the model every day for the two stocks for which

we are presenting detailed results. For the four month period these R2 values are above 15% on

many days, with scores above 20% on some days also.

Figure 4.6 shows the adjusted R2 values obtained from fitting the full model, using as

a threshold either the median or the 9th decile spread, obtained every day. We find that for

many of the stocks, the median adjusted R2 value is over 10%. For some stocks we find even

more remarkable adjusted R2 values of over 20%. We also note that for many assets, the

explanatory power differs between the two threshold levels. This is an indication that resilience

may exhibit different behaviours, when defined with respect to different liquidity thresholds,

and we introduce the concept of the Liquidity Resilience Profile in Chapter 5 to obtain resilience

results across multiple thresholds.
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Figure 4.5: The adjusted R2 values over time for stocks Credit Agricole (ACAp) and

Sanofi (SANp).
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Figure 4.6: Boxplots of the adjusted R2 value obtained from fitting the full survival

model separately for each day in our dataset for both the threshold corresponding to the

5th decile of the spread (the median - red) and the 9th decile threshold (blue).

4.5.2 Model selection
In statistical modelling, one of the most prominent issues is finding the best regression equation,

which entails choosing a subset of covariates that optimises some selection criterion [Gatu and

Kontoghiorghes, 2006]. Including additional covariates always increases the explanatory power
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of a model, but may result in overfitting, so a common approach used for model selection is to

penalise the least squares or log likelihood scores, such that they take into account model size.

This favours more parsimonious models and examples of criteria are Mallows’Cp, and Akaike’s

Information Criterion. The explanatory performance of our models was assessed in terms of the

adjusted coefficient of determination (adjusted R2), as above.

In Figures 4.5 and 4.6 we obtained results for the full model fit, but we should be able

to improve on this result also, by selecting the subset that maximises the adjusted R2. This,

however, poses a computational problem. In a regression model with p covariates that can

be included in a model, we have 2p − 1 possible models to choose from. As p increases,

an exhaustive search of the entire space of possible models would thus be exponential in p.

Although strategies to improve the efficiency of this search have been discussed, e.g. in Gatu

and Kontoghiorghes [2006], for a large value of p, an exhaustive search through all possible

models is prohibitive in terms of computational power.

In order to search through the model space, we thus employ a modification of the leaps

package in R [Lumley, 2004], which uses an efficient version of the branch-and-bound algo-

rithm first described in Furnival and Wilson [1974]. The algorithm can offer vast performance

improvements, by eliminating large sections of the search space. It is guaranteed to terminate,

yielding the subset that maximises our selection criterion.

A brief description of the general algorithm is as follows: For a given set of models in

a partitioned model space, the algorithm proceeds by calculating upper and lower bounds for

the selection criterion, for a supermodel and submodel of that set, respectively. If, during the

search process, another model has been identified that has a higher selection criterion score

than the upper bound, the given set can then safely be ignored, as it cannot give rise to a better

performing model. Otherwise, the set is partitioned further. This process and partitioning is

repeated until we have a singleton model, which is then evaluated.

In our case, for every model subspace Mi, i = 1 . . . p, where the Mi model subspace is

the set of all possible models containing i covariates. For example, the full model contains all

covariates and is the only model in its subspace, while the smallest model subspace is comprised

of models that contain the intercept and any one of the possible covariates. Intermediate model

subspaces are comprised of models with all combinations i = 2 . . . p − 1, where p = n + m

is the total number of covariates, n contemporaneous plus m lagged covariates. There are

thus C
(
p
i

)
= p!

i!(p−i)! models in total in each subspace - we are searching for the model that

maximises the adjusted R2 criterion.

Our modification to the leaps package is in the presentation of the results, so that it distin-
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guishes between covariates that are selected to be part of the model (‘Present’), and covariates

that are significant in particular models (‘Significant’), in Figure 4.7. In this way, we can iden-

tify which covariates are consistently present as we move across subspaces. This is interesting

because it gives us a relative measure of the contribution of that covariate across different as-

sumptions of parsimony for the model. Particularly for higher model subspaces, some of the

covariates in each subset model are not significant, and we distinguish between the covariates

that are significant or not, at a 5% level of significance.

To illustrate our findings we first present results for a given day of data for Credit Agri-

cole in Figure 4.7 and for Sanofi in Figure 4.16, where for all model subspaces, we perform

a branch-and-bound search, ranking the models in each subspace based on their adjusted R2

score. We thus obtain the best combination of covariates, for each subspace and for each day

of data. We can then identify the covariates that are consistently present as we move between

model subspaces. This is interesting because it gives us a relative measure of the contribu-

tion of that covariate across different assumptions of parsimony for the model. Particularly for

higher dimensional model subspaces, some of the covariates in each subset model are not sig-

nificant, and we distinguish between the covariates that are significant or not, at the 5% level of

significance.

The best models for each model subspace are ranked by the adjusted R2 value, with the

vertical lines in the graph representing covariates that are consistently part of the best model

for every subspace. We observe that for both assets, the average (logarithm of the) TED over

the past 5 exceedances (prevTEDavg), the instantaneous value of the spread (spreads) and the

number of previous exceedances (prevexceed) are covariates that are generally selected to be

part of the best fitting model across most model subspaces. This is true for durations of ex-

ceedances both over the median and the 9th decile spread threshold. Other covariates are also

found to contribute to the explanatory power of the model, but either for selected assets or for

selected liquidity thresholds. In practice, we also observe very small differences in the explana-

tory power of the best model for a number of subspaces (i.e. they only differ at most in the third

decimal point of the score).

To get an indication of the time stability of these model structures (and identify covariates

that are consistently selected in the model), we illustrate the relative frequency with which

parameters appear in the best models of every subset. That is, for each model subspace, we

count the number of times each covariate forms part of the model with the highest adjusted-

R2 value over the four month period. Figure 4.8 indicates that the covariates identified earlier

as being important in explaining the variation in the TED for a single day (prevTEDavg and
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Figure 4.7: The adjustedR2 values for the best models from each model subspace (where

each subspaceMi contains all models with i = 1 . . . 24 covariates) for a single trading day

(the 17th of January 2012) for stock Credit Agricole, where the median spread (above) or

the 9th decile (below) are used as the threshold. A dark shaded square indicates that a

covariate has been included in the model and is statistically significant at the 5% level,

with light squares not statistically significant. For instance, row M3 corresponds to a

specification with the following covariates: intercept, lbid, prevTEDavg and spreads.

The models are ranked by the best adjusted R2 value, and we see that in this case, the best

scoring model is obtained using a subset of 15 covariates, of which only 10 are found to

be significant at the 5% level.
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spreads) are also consistent features in models across time. However, prevexceed does not form

part of the best model very frequently, except in higher model subspaces, possibly because it is

less informative in the presence of the aforementioned covariates.

Besides the frequency of the presence of each covariate in the best fitting model of a given

subspace, we also evaluate individual covariate significance over time via a partial t-test at the

5% level in Figure 4.9. At higher model subspaces, we find that several covariates are found to

be statistically significant (i.e. reject a null hypothesis for a partial t-test) less frequently.

This is what one may expect, when covariates become less significant in the presence of

other correlated covariates, i.e. collinearity in the factors of the LOB covariates takes effect.

4.5.3 Interpretation of covariates

Since we have obtained model fits for every model subspace, and for every day in our dataset,

we can investigate the inter-day variation of the coefficients, as well as their magnitude and

sign over time. In Figure 4.10 and Figure 4.19 we summarise these results for the best fitting

model on each day. The plot demonstrates the following features: 1) the frequency with which

each covariate appears in the best model over the four month period, 2) the variation in each

coefficient for the days in which the respective covariate appeared in the model and 3) the

coefficient sign, and thus its interpretation with regards to how it influences the resilience mean

and quantile function surfaces, for a unit change in the value of the covariate.

In this analysis, we recall that under an AFT framework, the sign of the coefficient for a

given covariate indicates the direction of the partial effect of this variable, on the conditional

probability that the resilience, as measured by the exceedance duration for a given threshold,

will exceed a time t. Therefore we can interpret positive coefficient values as influencing the

liquidity resilience of the LOB by slowing the return to a desirable level, whilst negative co-

efficients tend to result in a rapid return to the considered liquidity level, indicating higher

resilience marginally, with respect to that covariate.

The prevTEDavg covariate, which is an average of the last 5 log TED observations, and

generally has a positive coefficient, is thus associated with a slower return to the threshold

liquidity level. Thus, our model indicates that the expected TED over a particular threshold will

be larger, when the duration of similar exceedances in the near past has been longer. We also

find that the instantaneous spread covariate (i.e. the value of the spread at the moment when it

first exceeds the threshold) appears frequently in the best model and has a positive coefficient

(and would also increase the expected TED). This results matches our intuition, as the wider

the spread just after an event at time Ti+, the longer we would expect the spread exceedance to
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Figure 4.8: Heatmap of the relative frequency with which parameters appear in the best

daily models of every subspace (frequency in terms of the number of daily models over

the 82 day period) for the Credit Agricole dataset using the daily median (left) or the 9th

decile (right) of the spread as the threshold value. So for instance, the element in row

10 and column lask indicates the relative frequency (in terms of the fraction of days over

the 82 day period) by which the covariate lask has appeared in the best model with 10

covariates amongst all models with 10 covariates.
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Figure 4.9: Heatmap of the relative frequency with which the parameters are found to be

significant at the 5% level (frequency in terms of the number of daily models over the 82

day period) for the Credit Agricole dataset, using the median and 9th decile thresholds.

last, on average.

The askModified and bidModified coefficients (which measure the number of orders in

the LOB that have had price or size revisions in the first 5 levels of the LOB, retaining the

same order ID) have median coefficient values which are also positive. These orders can be

interpreted as fleeting liquidity, as some LOB orders are modified a number of times before
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they execute (either because of some strategy or because they are pegged to some price level),

or they are cancelled altogether.

Of particular interest are the mobuy and mosell covariates, i.e. dummy variables indicating

whether the exceedance resulted from a buy or sell market order respectively (if both are zero,

then the exceedance was a result of a cancellation). For stock Credit Agricole, the coefficients

are generally found to be positive, indicating that exceedances from market orders are associated

with an increase in the expected TED, compared to cancellations. For stock Sanofi, on the other

hand, the opposite effect is found. This may be due to different market making strategies being

active in the aforementioned stocks.

4.5.4 Forecasting liquidity resilience
The TED survival regression framework lends itself naturally to out of sample forecasting. This

would be a practical use in many areas, for example the optimal execution/liquidation of large

orders on an exchange, in order to lower execution costs. For a specified volume and a specified

partitioning of that volume into trading blocks, the model could help us determine the average

time it would take for liquidity to recover after the immediate execution of each trade, for any

state of the LOB. Alternatively, the model could help us determine the optimal size of the

trading blocks, so that the time required for liquidity to recover is below some desired value,

for a given LOB state. In this regard, it could also provide a means of determining ‘optimal’

LOB states in which to initiate execution, such that liquidity resilience is high under the model.

In our illustrative examples we focus on the first use case for the model, i.e. we forecast

the average time for liquidity to recover to a certain threshold value post execution. For this,

we estimate the model at both hourly and daily intervals time and use the estimated model

parameters and the latest covariates to forecast the next TED.

E
[
ln(τi+1)|xTi+1 ,βTh

]
= x′Ti+1

βTh
, Th ≤ Ti+1. (4.13)

We show the results in Table 4.2, for both intraday, and one–day–ahead analysis. As way

of comparison, we also compute the power of a naı̈ve forecasting approach, which predicts that

the next TED will be equal to the previous one. We evaluate forecast accuracy by the mean

square prediction error (MSPE) and standard deviation of the prediction error, with one set the

results for each time period and asset. Table 4.2 shows the aggregate results, averaged across

all time periods and assets.

For intra-day forecasting, we quantify the predictive power of our model over hourly in-

tervals. In particular, for every hour starting from 10:00, we estimate the best model on all
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Figure 4.10: Coefficients of the best daily models (in terms of the adjusted R2 values)

for Credit Agricole for median threshold spread exceedances (left) and 9th decile spread

exceedances (right). The width of every boxplot is proportional to the number of times

that the covariate appears in the best model over the four month period. The hinges of the

boxes correspond to the 25th and 75th percentiles, and whiskers extend to 1.5 times the

interquartile range.

previous data that day and calculate the mean square prediction error (MSPE) of the model on

the next hour. We also evaluate the predictive power of our models for 1 day ahead forecasting.

We note that the forecasting power of the model is substantially higher than the naı̈ve

approach for every hourly interval, and the standard deviations of the errors are lower. We find
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that the forecasting power generally improves later in the day, and this is something one would

expect, as the model later is estimated with more data. While the forecasting power improves

for the naı̈ve approach also, it remains much lower than that of the model. Similarly, the one

day ahead forecasting with the model performs much better than the naı̈ve forecast.

forecast time Model Naı̈ve

horizon MSPE sd MSPE sd

one day ahead 21.1 4.2 26.9 5.2

hour by hour 10:00 19.6 4.3 28.6 5.3

11:00 18.7 4.2 29.3 5.4

12:00 18.5 4.2 29.3 5.4

13:00 19.8 4.3 28.1 5.3

14:00 16.2 3.9 25.5 5.0

15:00 14.7 3.7 23.8 4.8

16:00 13.1 3.4 21.6 4.6

The mean square hourly prediction error (MSPE) and standard deviation of the prediction error for the
best daily model, as well as a naı̈ve approach predicting the previous TED value, averaged across all
days and all assets. Each line indicates the MSPE for a single hour, starting from 10:00–11:00, where

the model is estimated from all daily data up to the start of each period.

Table 4.2: Forecast accuracy

4.5.5 Liquidity drought extremes

A second application of this model that we present here is as a regulatory tool for the monitoring

of liquidity. One would expect that regulatory bodies are interested in ensuring uninterrupted

liquidity, as it is an integral part of a fair and orderly market. However, they would probably

focus on the extreme liquidity levels that occur, and the durations of these extreme events.

For this application, instead of the conditional mean response of the observation variable,

we now consider conditional quantiles of the response. That is, if a TED event occurs in a

(stationary) LOB regime, given covariates x, we can make a prediction about the 90th quantile

of the response: This is the duration of time such that there is a 90% probability under the model

that liquidity will return to the threshold level in this period.

To complete the analysis we plot the change in the conditional quantile level of the TED,

as covariate prevTEDavg is allowed to vary. The TED is defined as before, using the spread
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as the liquidity measure and the median of the empirical distribution as the threshold. The

conditional quantile function for a given quantile level u in the Lognormal case is given by

Q (u;xt) = F−1(τi;xt, u)

= exp

(
β0 +

p∑
s=1

x
(s)
t βs + σΦ−1(u)

)

We obtain the conditional quantile levels for the Lognormal distribution in Figure 4.11 and

the Weibull distribution in Figure 4.12. The conditional quantile function in the Generalised

Gamma case is given in Appendix A.
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Figure 4.11: 25th (lower line), 50th (center) and 75th (upper) conditional quantile levels

of the TED for different values of the prevTEDavg covariate for Credit Agricole on a

single day. These are obtained using the quantile function of the Lognormal distribution.

The dots are the realised value of the TED observations.

Such an analysis would be useful in understanding how extreme levels of particular covari-

ates affect quantile levels of the TED. We can therefore understand how the different quantile

surfaces for the TED behave for these extreme values of the spread and above. This enables

regulators to identify which are the most important covariates associated with an increase in

extreme periods of illiquidity (that is, where the liquidity measure remains above the threshold
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Figure 4.12: 25th (lower line), 50th (center) and 75th (upper) conditional quantile levels

of the TED for different values of the prevTEDavg covariate for Credit Agricole on a

single day. These are obtained using the quantile function of the Weibull distribution. The

dots are the realised value of the TED observations.

for extended period of time). In addition, to the extent that a covariate taking extreme values is

considered a scenario in which the LOB is stressed, a regulator can make inferences about the

duration of relative illiquidity under such stressed conditions.

In non-stressed conditions, that is, where covariates take what would be considered to

be ‘normal’ values, regulators may be interested in the range of probable values of the TED.

Obtaining high quantile levels of the TED under the model could then help them identify situa-

tions which fall outside this range, which may be due to a change in the LOB regime or due to

a particular event that will require their intervention.

Finally, one can use the model to help inform proposed regulation regarding interactions

in the LOB, such as transaction taxes, minimum resting times or trade to quote ratios. To the

extent that such regulation has an impact on particular covariates in the LOB, one can estimate

the indirect effect it has on liquidity resilience, and therefore the ability of institutional investors

and mutual funds to place orders without incurring a large execution cost.
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4.5.6 Results for the XLM liquidity measure
In this section, we have thus far presented the results for the explanatory power of our model for

the TED observations, when using the spread as the liquidity measure of choice. However, the

framework we have proposed can incorporate any liquidity measure, and we have performed a

limited set of experiments using the XLM, in order to briefly evaluate the performance of the

model when using other measures. We chose to construct the XLM using a volumeR=e25.000,

as this is the standard volume used on the Xetra exchange. We again selected the thresholds

as the median and 9th decile of the empirical distribution of observations of the XLM on every

day.

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

A
C

A
p

A
C

p

A
Ip

A
LO

p

A
LU

p

B
N

P
p

B
N

p

C
A

P
p

C
A

p

Symbol

A
dj

us
te

d 
r−

sq
ua

re
d 

va
lu

e

Figure 4.13: Boxplots of the adjusted R2 value obtained from fitting the full survival

model separately for each day in our dataset for both the threshold corresponding to the

5th decile of the XLM (the median - red) and the 9th decile threshold (blue), for a subset

of assets in the CAC40.

With regard to the explanatory power of the model, Figure 4.13 shows that it is slightly

lower than for the equivalent models using the spread as the liquidity measure in the TED defi-

nition. This is not unexpected, as the XLM is a much more informative liquidity measure, and
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combines both spread and volume information at each level. We still find significant explana-

tory power of over 15% for some assets.

4.6 Discussion
We have defined formally the notion of liquidity resilience in terms of the duration of the devia-

tion of a liquidity measure from a threshold level. We have demonstrated how a suitably defined

survival regression framework can capture this notion, through consideration of the LOB struc-

ture at the start of this deviation. We have shown that such a model can be both interpretable

and have good explanatory power in capturing resilience for different liquidity measures and

threshold levels. In terms of its forecasting power for the duration of liquidity droughts, the

model is also shown to be superior to naı̈ve approaches, both in intra-day and in one day ahead

prediction.

When we considered the inside spread as the liquidity measure in our model, we found that

several covariates were both consistently selected in the estimation of the best fitting models in

a range of model subspaces and were statistically significant at a level of 5%. They included

instantaneous and lagged values of the spread, the average of previous TED observations, the

number of previous threshold exceedance observations in the previous second, and the origin

of the exceedance (cancellation or market order). While these covariates were chosen by our

model selection process to be part of the best fitting daily models most frequently, we found

that the covariate coefficients generally varied over our 82 day trading sample. This illustrates

that liquidity (and liquidity resilience) is not stationary inter-daily.

A possible application area for our model would be in the field of optimal order execution.

Gomber et al. [2011] have found that, for the submission of large orders, the timing is dependent

on the liquidity level. Our model could thus help in estimating the time for a particular liquidity

measure to reach the level required for an order submission. The model could also be helpful

from a regulation perspective, in estimating how long extreme periods of illiquidity in the LOB

are likely to last, by calculating (high) conditional quantile levels under the model, and we have

presented an example of such an approach in this chapter.

In the next section we will introduce liquidity resilience profiles, which summarise the

resilience behaviour across thresholds, given assumptions regarding market conditions. This

allows for the comparison of resilience across assets in normal and stressed LOB scenarios and

could inform a brokerage firm about the potential risk of trading an asset in certain conditions.
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4.7 Additional figures and tables
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Figure 4.14: The duration of TED observations above the median (top) and 9th decile

(bottom) spread value throughout the trading day for stock Sanofi for the illiquidity mea-

sureM representing the inside spread.
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Figure 4.15: Coefficients of the prevTEDavg covariate, for every fitted daily model for

stock Credit Agricole. The top graph is obtained using thresholds corresponding to the

median spread, while the bottom graph uses thresholds corresponding to the 9th decile

spread.
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Figure 4.16: The adjusted R2 values for models of using the best subsets of covariates

(of size 1 to 24, in this case) for a single trading day (the 17th of January 2012) for stock

Sanofi in the lognormal specification and the median spread (top) or the 9th decile (bottom)

as the threshold.
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Figure 4.17: Heatmap of the relative frequency with which parameters appear in the best

daily models of every subspace (frequency in terms of the number of daily models over

the 82 day period) for the Sanofi dataset, using the daily median (top) or the 9th decile

(bottom) of the spread as the threshold value.



4.7. Additional figures and tables 116

(I
nt

er
ce

pt
)

as
k

as
kA

ge
as

kM
od

ifi
ed

as
kV

ol
um

e
bi

d
bi

dA
ge

bi
dM

od
ifi

ed
bi

dV
ol

um
e

la
sk

la
sk

A
ge

la
sk

M
od

ifi
ed

la
sk

V
ol

um
e

lb
id

lb
id

A
ge

lb
id

M
od

ifi
ed

lb
id

V
ol

um
e

ls
pr

ea
ds

m
ob

uy
m

os
el

l
pr

ev
T

E
D

av
g

pr
ev

ex
ce

ed
sp

re
ad

s
tim

el
as

t
in

da
ct

24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0 20 40 60 80

Value

Color Key

(I
nt

er
ce

pt
)

as
k

as
kA

ge
as

kM
od

ifi
ed

as
kV

ol
um

e
bi

d
bi

dA
ge

bi
dM

od
ifi

ed
bi

dV
ol

um
e

la
sk

la
sk

A
ge

la
sk

M
od

ifi
ed

la
sk

V
ol

um
e

lb
id

lb
id

A
ge

lb
id

M
od

ifi
ed

lb
id

V
ol

um
e

ls
pr

ea
ds

m
ob

uy
m

os
el

l
pr

ev
T

E
D

av
g

pr
ev

ex
ce

ed
sp

re
ad

s
tim

el
as

t
in

da
ct

24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0 20 40 60 80

Value

Color Key

Figure 4.18: Heatmap of the relative frequency with which the parameters are found to

be significant at the 5% level (frequency in terms of the number of daily models over the

82 day period) for the Sanofi dataset, using the median and 9th decile thresholds.
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Figure 4.19: Coefficients of the best models of any size (in terms of the adjusted R2

values) for Sanofi for median threshold spread exceedances (top) and 9th decile spread

exceedances (bottom).
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* Mean #TEDs * Min #TEDs

5th decile 9th decile 5th decile 9th decile

ACAp 5465 1963 1125 327

ACp 1702 535 846 210

AIp 3115 1213 131 50

ALOp 2642 1097 621 259

ALUp 1165 678 341 91

BNPp 11279 3331 3917 809

BNp 2786 729 665 124

CAPp 2098 627 431 270

CAp 1946 578 792 158

CSp 4027 1250 1167 157

DGp 2685 889 1275 267

EADp 1853 572 542 190

EDFp 1163 327 383 122

EIp 1214 424 276 47

ENp 1848 489 805 136

FPp 6086 1716 2123 426

FTEp 2167 282 352 63

GLEp 6279 2238 1189 531

GSZp 2387 575 589 92

KNp 1337 572 180 74

LGp 2895 935 589 318

MCp 1323 431 208 95

MLp 2673 952 1364 320

MTa 3802 530 1703 127

ORp 2600 1009 1201 346

PPp 563 165 250 19

PUBp 2923 679 1115 218

RIp 1751 664 838 208

RNOp 3106 1402 967 370

SANp 2325 678 756 132

SEVp 814 276 293 50

SGOp 2844 1039 1407 415

STMp 2007 818 561 178

SUp 6321 1837 2178 218

TECp 2252 868 935 316

UGp 2836 835 345 137

ULp 796 222 300 48

VIEp 1697 622 605 206

VIVp 1951 605 369 60

VKp 2251 702 963 158

Table 4.3: The mean and minimum number of TED observations for each CAC40 stock

in the 82-day period under consideration in this study.



Chapter 5

Liquidity and resilience commonality

In this chapter, we first revisit the literature in liquidity commonality, which quantifies com-

monality through the explanatory power of the principal components of liquidity measures in a

regression. We show that at least in the equity space, the assumption that one can capture all

the features of liquidity commonality via a PCA regression approach will not always be appro-

priate. The outcome of using PCA methods, which are based on second moments, is that the

analysis is driven by the most illiquid assets, which act as outliers in the cross-sectional dataset.

We therefore utilise ICA (Independent Component Analysis) methods, which address this issue

by incorporating higher order information, in order to first determine the assets which exhibit

these heavy tailed features.

We then propose a model to quantify the commonality in the resilience of liquidity, an

aspect which is not reflected in previous commonality approaches. Using the liquidity definition

in the previous chapter, we construct a curve of the expected TEDs as a function of the threshold,

which we will term the Liquidity Resilience Profile (LRP). Since LRPs are informative about

the level of LOB liquidity replenishment for each asset, a commonality analysis can identify

clusters of assets for which we would expect a swift return to a high liquidity levels after a

shock.

The market factors contributing to the variation in daily liquidity resilience for 82 Euro-

pean stocks are then obtained through a functional principal component analysis (FPCA) of the

LRP curves. We demonstrate that there is a consistency in the shape of the first three functional

principal components (FPCs) over time and then regress the LRPs for individual assets against

these FPCs, interpreting their explanatory power as a measure of commonality in the liquidity

resilience profile of the given asset with the market factors. For the equities dataset under con-

sideration, we found that the first 3 FPCs could explain between 10 and 40% of the variation in

liquidity resilience at low liquidity thresholds. However, at more extreme liquidity exceedance
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thresholds, the commonality between individual asset liquidity resilience profile behaviour and

market factors diminishes significantly, and individual asset factors take effect.

5.1 Introduction to component analysis and dimension-

ality reduction
In the empirical analysis of multivariate data, there are various statistical procedures used to

analyse the different variables, often with the purpose of compressing the data, by finding a set

of variables which account for most of the information in the original variables. These new vari-

ables are usually a combination of the original variables, and are chosen so as to satisfy certain

properties, which are different for every technique. This section introduces two well-known

dimensionality reduction techniques, Principal Components Analysis (PCA) and Independent

Components Analysis (ICA).

In this context, let us first introduce the concept of Singular Value Decomposition (SVD).

Definition 5.1.1. The singular value decomposition (SVD) of an N × p matrix X is a factori-

sation

X = UΣV T (5.1)

where U is an N × N orthogonal matrix, Σ is an N × p diagonal matrix, V T is a p × p

orthogonal matrix.

There is an intimate relationship between SVD and eigendecomposition, or spectral de-

composition, which is used in PCA.

5.1.1 Principal Components Analysis
PCA was introduced by Pearson [1901], and independently by Hotelling [1933] in the more

familiar approach in which it is presented here. The goal is to find linear combinations of the

existing variables which are i) uncorrelated and ii) have maximal variance, and we will make

this precise in the following. LetZ ∈ RN×p be the original data matrix from which we subtract

the column mean from every element to obtainX

X =


x11 . . . x1p

x21 x2p

. . . . . . . . .

xN1 . . . xNp

 (5.2)
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where the rows of the matrix are the N observations of xi = [xi1, . . . , xip] and the columns

x(j) = [x1j , . . . , xNj ]
′ are the variables, or ‘features’ of the data, which PCA will try to project

onto a different basis. In the transformed data

Y = XW (5.3)

V(y(1)) is maximised under the constraint
∣∣∣∣w(1)

∣∣∣∣ = 1, and for each j > 1, V(y(j)) is max-

imised under the constraint
∣∣∣∣w(j)

∣∣∣∣ = 1 and the additional constraint Cov(y(i),y(j)) = 0, i =

1, . . . , j − 1.

Let us denote by SX = 1
p−1X

TX the covariance matrix of X . The problem above can

be restated as obtaining W , such that the covariance matrix of Y is a diagonal matrix. In this

case one can use eigendecomposition, or spectral decomposition, using the following theorem:

Theorem 5.1.2. Spectral theorem. Any real square symmetric matrix Z can be decomposed as

Z = UDUT (5.4)

where U is a matrix whose columns are the eigenvectors of Z and D is a diagonal matrix

whose entries are the eigenvalues of Z.

SX is a square positive semi-definite symmetric matrix. By the spectral theorem, it can

be decomposed as

SX = UDUT (5.5)

whereD is a diagonal matrix whose entries are the eigenvalues λ1, . . . , λp of SX . These eigen-

values are non-negative, since SX is positive semi-definite. U is a matrix of the corresponding

eigenvectors u1, . . . ,up and thus

SXui = λiui, i = 1, . . . , p (5.6)

The trace tr(SX) is equal to the sum of the variances, and this is also equal to the sum of

the eigenvalues
∑
λi. Then the eigenvector ui corresponding to λi will explain a proportion

λi
tr(SX)

of the variationX .

Let us assume that the eigenvalues are arranged so that λ1 > λ2 > . . . > λp, and thus the

highest variation in the data will be in direction u1. We can see that if we select W = U , i.e.
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the matrix of eigenvectors of XTX in Equation 5.3, then this makes the covariance matrix of

Y diagonal:

SY =
1

p− 1
Y TY

=
1

p− 1
(XW )TXW

=
1

p− 1
W TXTXW

= W TSXW

= W TWDW TW

= D.

These eigenvectors are called the principal components of X . In practice, the principal

components can be computed using SVD. Letting

X = UΣV T (5.7)

we can obtain the covariance as

SX =
XTX

p− 1

=
(UΣV T )T (UΣV T )

p− 1

=
V ΣTΣV T

p− 1

=
V Σ2V T

p− 1

and because SX is symmetric,

SX = V DV T . (5.8)

Comparing this to the eigendecomposition, we find the correspondance that the eigenvec-

tors of SX are the same as V . In addition, the eigenvalues of SX can be obtained from the

singular values σi = Σi,i, i = 1, . . . , p as λi =
σ2
i

p−1 .

The outcome of the PCA procedure is a number of these eigenvectors and the transforma-

tion of the data Y . Since the objective of PCA is to reduce the dimensionality of the data, one

would usually select a subset of these eigenvectors {u1, . . . ,uk} such that the proportion of

variation explained
k∑
i=1

λ1

tr(SX)
> v

where typical values of v are 0.8, 0.9 etc.
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5.1.2 Independent Components Analysis
The objective of ICA is to find a linear transformation of the observed data into a set of com-

ponents which are independent from each other. It was originally introduced for the purpose

of blind source separation, i.e. identifying the (independent) unknown signals from a number

of mixed signals, without knowledge regarding the mixing coefficients. It differs from other

methods in that it searches for nongaussian components [Hyvärinen et al., 2004].

Let X ∈ RN×p, constructed from vector observations x be our data matrix as above.

Then we can formulate the problem by assuming that x is generated according to

x = Ay (5.9)

where y is a vector whose components are assumed mutually independent, and in this ex-

position we will also assume they are identically distributed for simplicity. Then ICA aims

to find the matrix A, or more precisely, its inverse A−1 [Hyvarinen, 1999]. This assumed

data-generating model is well-defined if the components yi are non-gaussian [Hyvärinen et al.,

2004]. The original components could then be obtained as

y = A−1x (5.10)

In practice, because we do not know A, we need to find an appropriate estimator. Let u be a

combination of the original components

u = bTx = bTAy = qTy (5.11)

If b is one of the rows ofA−1, then u would be equal to one of the independent components yi,

and all elements of q would be equal to 0, with a single 1.

With this formulation we observe that u is a linear combination of independent (and identi-

cally distributed) components y1, . . . , yp. Because of the Central Limit Theorem this combina-

tion usually becomes ‘more Gaussian’ than the yi and least Gaussian, when it equals one of the

independent components yi. The goal of ICA can then be stated as maximising nongaussianity,

and we will refer to measures of nongaussianity in the following.

5.1.3 ICA procedure
Practically, ICA attempts to find components that are statistically ‘as independent from each

other as possible’ [Hyvarinen, 1999], which can be achieved by minimising the mutual infor-

mation of the transformed components, and we present such as procedure here. As before, we

assume that the each column Xi has mean zero, and we additionally assume that it has been
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‘whitened’, so that its variance is 1. We describe a simple whitening process here, starting with

the previous decomposition of the covariance matrix

S = UDUT (5.12)

to obtain the orthogonal matrix of eigenvectors U and the diagonal matrix of eigenvalues U .

Using a linear whitening operator V

V = UD−
1
2UT (5.13)

one can obtain the whitened data

z = V x. (5.14)

ICA is not the same as whitening, however, as uncorrelatedness is a weaker condition

than independence. Whitening can only give the ICs up to an orthogonal transformation (p.160,

Hyvärinen et al. [2004]). It is usually performed as a pre-processing step in ICA, however, as it

reduces the complexity of the problem as one only needs to estimate an orthogonal mixing with

fewer degrees of freedom.

We stated in Section 5.1.2 that the original components are assumed nongaussian. This is

indeed a requirement for ICA, as uncorrelated (perhaps as a result of whitening) jointly gaussian

variables are independent, and therefore would not contain any information about the mixing

matrixA. Nongaussianity therefore becomes an objective in estimating the ICA model.

For this purpose, we first introduce the notion of differential entropy H [Comon, 1994,

Hyvarinen, 1999] of a random vector u

H(u) = −
∫
f(u) log(f(u))du. (5.15)

Amongst variables of equal variance, gaussian variables have the largest differential entropy

[Hyvärinen et al., 2004]. We therefore introduce the negentropy J , as a measure of nongaus-

sianity [Comon, 1994]

J(u) = H(v)−H(u) (5.16)

where v is a Gaussian random vector with the same covariance vector as u. Negentropy is

non-negative and only becomes 0 when u is Gaussian.

J(u) can be approximated by [Hyvarinen, 1999]

J(ui) = c [E {G(ui)} − E {G(v)}]2 (5.17)
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where there are a number of options for the ‘contrast function’ G(·), such as

G1(u) =
1

a1
log cosh(a1u), (5.18)

G2(u) = − exp

(
−u

2

2

)
. (5.19)

For a chosen contrast function G, JG(·) can be considered as the objective function in the

optimisation, i.e. for the first component ui = bTx we have

max
p∑
i=1

JG(bi) wrt bi, i = 1, . . . , p (5.20)

s.t. E
{

(bTj x)(bTk x)
}

= δjk. (5.21)

As formulated above, we can now approach this with a number of optimisation algorithms,

and Hyvärinen et al. [2004] (p.185) provides an example with both the gradient descent method

and the FastICA algorithm used in this chapter.

5.1.4 ICA component selection
In contrast to PCA, in ICA one cannot calculate the variances of individual components. Be-

cause in the assumed model in Equation 5.9 bothA and y are unknowns, a multiplier in one of

the columns of A could be cancelled by dividing the corresponding element of y by the same

amount. There is therefore no equivalent way as in PCA to select a subset of the components

which explain the majority in the variation.

When the problem is not one of blind source separation, where one aims to identify the

original sources, but rather one of dimensionality reduction (as is the case in this chapter), one

can aim to find ‘interesting’ projections of the multidimensional data. In the case of ICA, these

projections are precisely those which maximise the negentropy approximations above. In this

case, ICA is very closely related to another technique called projection pursuit, see Girolami

and Fyfe [1996].

5.1.5 Implications of using PCA and ICA for data coming from

different distributions
We will now demonstrate the effect of performing PCA and ICA and datasets that are generated

so that they best demonstrate the difference between the two techniques. In Figure 5.1 we

show heatmaps of data coming from a combination of Gaussian distributions and Student t

distributions. For both we have generated 10000 points and for the Gaussian case we have for

the original sources
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s(1) ∼ N (10, 5)

s(2) ∼ N (5, 1)

and for the observed data

z(1) = 0.5s(1) + 0.5s(2)

z(2) = 0.2s(1) + 0.8s(2)

For the Student t case

s(1) ∼ St(3)

s(2) ∼ St(3)

and for the observed data

z(1) = 0.1s(1) + 0.9s(2)

z(2) = 0.8s(1) + 0.2s(2)
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Figure 5.1: A heatmap of a 2-dimensional dataset, coming from linear combinations of

Gaussian data (left) and Student’s t distribution (right).

In Figure 5.2 we observe the effect of performing PCA and ICA on the Gaussian data.

We note that PCA uncovers the directions of maximal variance, which do not necessarily cor-

respond to the original sources. ICA cannot calculate variances of individual components, and
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Figure 5.2: (Top): The Gaussian data in Figure 5.1, and the direction of maximal vari-

ance found by PCA (left) and the direction of maximal non-Gaussianity found by ICA

(right). (Bottom) The corresponding transformed data. Note that PCA uncovers the direc-

tions of maximal variance, and thus the range of the x-axis in the left figure is different

from the right.

thus only has the effect of whitening the data. We observe that ICA cannot be used for the

purpose of separating Gaussian components.

In Figure 5.3 we observe the effect of performing PCA and ICA on the Student t data.

PCA searches for directions of maximal variance that are orthogonal to each other, while ICA

searches for the directions of maximum non-Gaussianity, and can thus uncover the original

components. ICA is therefore much more effective than PCA at separating out the non-Gaussian

components.
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Figure 5.3: The Student t data in Figure 5.1 with the directions uncovered by PCA (left)

and ICA(right), and the corresponding transformed data (bottom).

5.1.6 PCA and ICA regression

While PCA and ICA can be useful as standalone statistical techniques, they are also used in con-

juction with other techniques. For example, PCA has been used extensively for regression anal-

ysis, particularly when data is multicollinear [Jolliffe, 2005]. The existence of multicollinearity

in a set of data will have adverse effects for multiple linear regression, namely making the re-

gression estimators unstable. Multicollinearity can exist due to very high correlation between

two or more variables, but Mansfield and Helms [1982] provide examples to show that it may

exist even when this is not the case.

The following description of PCA regression, will be based on the exposition of Jolliffe
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[2005] (p. 167). Let us consider the standard regression model

y = Xβ + ε (5.22)

We can rewrite Xβ as XWW Tβ, as W is an orthogonal matrix. Therefore we can

rewrite Equation 5.22 as

y = Y γ + ε (5.23)

since Y = XW , and where we denote γ = W Tβ.

Estimating γ using least squares, one can then obtain β as

β̂ = Wγ̂ (5.24)

PCA identifies the directions of maximal variance, and thus one can select a subset of

the transformed variables which account for the majority of the variance in the data. We can

therefore use those in the reduced regression model

y = Ymγm + εm (5.25)

whereYm is the subset of the original variables of highest variance. Jolliffe [2005] explains how

multicollinearities appear as PCs with very small variances, and thus very small corresponding

eigenvalues in the covariance matrix.

PCA can help overcome multicollinearity issues by identifying such PCs to be omitted

from the regression. However, there are also some caveats, as the process also introduces some

bias, and for a further discussion regarding selecting components in PCA regression [Jolliffe,

2005]. In addition, since the variables in the regression have been transformed, it may now not

be as straightforward to interpret the results.

5.2 Liquidity commonality in a secondary market (Chi-

X): PCA, ICA and regression
Examples of the PCA regression approach outlined in Section 5.1.6 for the purposes of quan-

tifying liquidity commonality have already been described in Chapter 3.3.2 (p. 60), and we

revisit this approach for a selection of 82 of the most liquid stocks on Chi-X, from 3 countries

(UK, France and Germany) and 10 different industries. We provide further information regard-

ing these stocks in Tables 5.1 and 5.2. In order to perform such an analysis, one has to ensure
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that the liquidity measurements for all assets are at regular intervals throughout the trading day.

Since the LOB for each asset is an event-driven stochastic process, we need to sample the pro-

cess to obtain evenly-spaced observations of liquidity, in order to perform a PCA analysis. We

thus perform a pre-processing step, first constructing the LOB for each asset and then sampling

to obtain liquidity measurements aligned at 1 second intervals. We thus obtain measurements

of the spread and XLM every second, for all 82 assets, throughout the 4 month period under

consideration.

We then perform PCA on the liquidity data every day, and regress the liquidity of individ-

ual assets against the first 3 PCs (which we consider to be the market factors). This is similar

to the analysis undertaken, e.g. in Mancini et al. [2013] and other studies discussed in Section

3.3.2, and allows us to investigate temporal commonality in liquidity throughout a day. Per-

forming a daily regression (rather than a regression over the entire period as in Mancini et al.

[2013]) enables us to assess the fit over time and identify features that would otherwise be lost

through time averaging and smoothing the signal.

Figures 5.4 and 5.5 show the R2 scores of the regression for every asset on a randomly

selected day, where the assets are broken down by country and by sector respectively. For most

assets for both the spread and the XLM, the R2 score is around 25%, although we notice that

there are particular assets (e.g. NEXp, WCHd) which have very high R2 scores.

Similar results are observed consistently throughout the 4 month period. A summary of

the explanatory power of the PCA regression for every asset over time is provided in Figure

5.7. The high R2 scores for certain assets imply that the first few ‘market’ PCs for the liquidity

measures, which are obtained from the cross-section of all assets on a given day, essentially

mirror the liquidity of these few particular assets. That is, the PCA and resulting commonality

analysis is driven by those assets. This is a feature we would like to understand, as it has not

been discussed previously in the literature.

To further investigate this feature, in Figure 5.6 we present a plot of the spread and XLM

on a randomly selected day for one of the assets with high R2 (Nexans SA, stock symbol

NEXp) and contrast it with the same liquidity measures for a second randomly selected stock

with low PCA regression coefficient of determination (Barlcays - stock symbol BARCl). When

contrasting these liquidity profiles, we note the very distinct spikes for NEXp, in both liquid-

ity measures, indicating a heavy tailed distribution for these liquidity measures for this asset.

Heavy tailed features of liquidity were also observed in the other assets which had exceptionally

high R2 values in the PCA regression.

If one performs the standard PCA approach to extract market factors affecting liquidity,
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Figure 5.4: TheR2 values obtained from regressing individual asset liquidity against the

first three PCs obtained across assets for the spread(top) and XLM(bottom), where assets

are grouped by country. The labels indicate the Chi-X symbol of every asset.
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Figure 5.5: TheR2 values obtained from regressing individual asset liquidity against the

first three PCs obtained across assets for the spread(top) and XLM(bottom), where assets

are grouped by sector.

one would see that due to some relatively illiquid periods in the day for certain assets, these

assets will dominate the PCA decomposition. This would therefore give a misleading picture of

the market contribution to liquidity. If the PCs were then used in a regression, one would then

expect that the explanatory power of the PCs for the assets which did not feature such illiquidity

spikes would be fairly low, as is the case here.

Removing the two assets which regularly appear to drive the commonality does not solve
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the issue, as other assets which contain heavy tailed features then become more prominent.

In general, we find a large number of assets whose liquidity measures, to varying degrees,

are heavy tailed. We note that these features were not reported in the work of Mancini et al.

[2013], although liquidity in the foreign exchange markets which they investigate is generally

much higher than in the equity markets, and therefore such heavy tails may not feature in the

distributions of the liquidity measures they consider. Heavy tailed distributions in LOB depth

are not specific to equities, however, as they have been identified and studied in Richards et al.

[2012] also.

In light of these results, we would suggest that the explanatory power of PCs extracted

through liquidity data with heavy tailed features may instead be interpreted as the degree of

illiquidity commonality. This is because the leading PCs do not accurately reflect market liq-

uidity, but rather the liquidity of the most illiquid assets. Our analysis reveals that the liquidity

for most assets is poorly explained by these illiquid assets, and that there may therefore be,

perhaps indirectly, a commonality in the liquidity of the remaining assets. However, this re-

mains to still be studied. This is a different explanatory mechanism for the observed liquidity

commonality features in the asset cross-section, compared to those discussed in Chordia et al.

[2000], Domowitz et al. [2005] and Hasbrouck and Seppi [2001].

One important aspect of our analysis is in considering the appropriateness of the statistical

techniques for large-scale datasets before routine application, see discussion on such matters in

the PCA context in Candès et al. [2011]. We also suggest that the summary statistic or measure

one selects for the datasets, in this case the liquidity measure, should be chosen appropriately

so as to satisfy the assumptions of the statistical analysis being performed to assess common-

ality. Based on these findings we argue that it would be pertinent to therefore either consider

alternative liquidity measures that don’t demonstrate these statistical heavy tailed features so

that PCA regressions may still be applied accurately, or to modify the approach adopted for the

PCA to account for heavy tailed data, such as via the techniques discussed in Chen et al. [2009].

Alternatively, particularly for these large-scale high-frequency LOB liquidity measure datasets

exhibiting marginal heavy tailed features, one could utilise Independent Component Analysis

(ICA), in order to identify the assets which account for most of the non-Gaussian structure.

5.2.1 Independent Component Analysis

In this section we perform a commonality study of liquidity based on higher order moments.

When liquidity measures in the asset cross-section are either heavy tailed, non-linear in the

relationship with a market driving factor, or non-stationary, then one may resort to other forms
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Figure 5.6: The daily evolution of the spread (left) and XLM (right) Nexans SA (symbol

NEXp, top) and Barclays (symbol BARCl, bottom) on the 15th of February 2012

of decomposition, such as ICA, see discussion in Section 5.1.4.



5.2. Liquidity commonality in a secondary market (Chi-X): PCA, ICA and regression135

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0
AALl

ACAp
AIp

AKEp
ALOp
ALVd

ANTOl
ARLd

AVl
AZNl

BARCl
BASd

BAYNd
BAl

BLTl
BMWd
BNPp
BSYl

CBKd
CONd

CSp
DAId

DBKd
DGp

EADp
ENRCl

ENp
FGRp

FRp
G1Ad
GBFd
GKNl
GLEp
GSKl

HNR1d
HOTd

HSBAl
IMIl

ISYSl
ITVl

KAZl
KCOd
LEOd

LGENl
LINd
LMIl
LRp

LXSd
MANd

MGGTl
MLp

MMBp
MRKd
MTXd

MTa
MUV2d

NDAd
NEXp

PAH3d
PRUl

PSONl
PUBp

RIOl
RNOp
RRSl

RRl
SAFp
SANp
SDFd
SHPl

SLl
STANl

SUp
SZGd

TFIp
UGp
VEDl
VKp

WCHd
WEIRl
WPPl
XTAl

S
y
m

b
o

l

Adjusted r−squared value 0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

AALl
ACAp

AIp
AKEp
ALOp
ALVd

ANTOl
ARLd

AVl
AZNl

BARCl
BASd

BAYNd
BAl

BLTl
BMWd
BNPp
BSYl

CBKd
CONd

CSp
DAId

DBKd
DGp

EADp
ENRCl

ENp
FGRp

FRp
G1Ad
GBFd
GKNl
GLEp
GSKl

HNR1d
HOTd

HSBAl
IMIl

ISYSl
ITVl

KAZl
KCOd
LEOd

LGENl
LINd
LMIl
LRp

LXSd
MANd

MGGTl
MLp

MMBp
MRKd
MTXd

MTa
MUV2d

NDAd
NEXp

PAH3d
PRUl

PSONl
PUBp

RIOl
RNOp
RRSl

RRl
SAFp
SANp
SDFd
SHPl

SLl
STANl

SUp
SZGd

TFIp
UGp
VEDl
VKp

WCHd
WEIRl
WPPl
XTAl

S
y
m

b
o

l

Adjusted r−squared value

Fi
gu

re
5.

7:
(S

ub
pl

ot
1)

:
A

su
m

m
ar

y
of

th
e
R

2
va

lu
es

fr
om

th
e

PC
A

re
gr

es
si

on
us

in
g

th
e

le
ad

in
g

3
PC

s
ac

ro
ss

as
se

ts
fo

r
th

e
sp

re
ad

.
T

he
se

bo
xp

lo
ts

ar
e

ob
ta

in
ed

as
fo

llo
w

s:
Fo

r
ev

er
y

da
y

in
ou

r
da

ta
se

t,
w

e
pe

rf
or

m
PC

A
on

th
e

sp
re

ad
da

ta
fo

r
al

l
as

se
ts

(s
am

pl
ed

at
1

se
co

nd
in

te
rv

al
s)

an
d

ex
tr

ac
t

th
e

fir
st

3

PC
s.

Fo
r

ev
er

y
as

se
t,

w
e

th
en

re
gr

es
s

th
e

in
tr

a-
da

y
sp

re
ad

ag
ai

ns
tt

he
se

PC
s

(w
hi

ch
w

e
co

ns
id

er
to

be
th

e
m

ar
ke

tf
ac

to
rs

),
an

d
ob

ta
in

th
e
R

2
co

ef
fic

ie
nt

of

de
te

rm
in

at
io

n.
R

ep
ea

tin
g

th
is

pr
oc

es
s

fo
re

ve
ry

da
y

in
ou

rd
at

as
et

,w
e

ha
ve

a
se

ri
es

of
R

2
,w

hi
ch

w
e

su
m

m
ar

is
e

w
ith

bo
xp

lo
ts

fo
re

ac
h

as
se

t.

(S
ub

pl
ot

2)
:T

he
R

2
va

lu
es

ob
ta

in
ed

fr
om

re
gr

es
si

ng
in

di
vi

du
al

as
se

tl
iq

ui
di

ty
ag

ai
ns

tt
he

fir
st

th
re

e
IC

s
ob

ta
in

ed
ac

ro
ss

as
se

ts
fo

rt
he

sp
re

ad
.



5.3. Liquidity resilience for high frequency data 136

ICA methods, in contrast to the correlation-based transformations obtained in PCA for the

market liquidity factors, not only de-correlate the liquidity measures in the asset cross-section

each day, but also reduce higher-order statistical dependencies. Whereas PCA minimises the

covariance of the data, ICA minimises higher-order statistics such as the fourth-order cumulant

(or kurtosis), thus minimising the mutual information of the output. Specifically, PCA yields

orthogonal vectors of high energy content in terms of the variance of the signals, whereas ICA

identifies independent components for non-Gaussian signals.

After regressing each asset’s liquidity against the three ICA components maximising non-

Gaussianity, every day, we again obtained strong evidence to suggest that the assets dominating

the PCA analysis due to Gaussianity violations, such as Nexans SA, also correspond to those

that were very well explained in a linear projection by the ICA components. The coefficients

of determination for the daily regressions for the other assets in the analysis are displayed in

boxplots in Subplot 2 of Figure 5.7.

For the assets which are determined to coincide with the independent components from

the ICA analysis, we have seen that these will dominate the PCA decomposition. We therefore

suggest that ICA can be used as a preliminary step to identify whether these non-Gaussian

features exist, and consequently, whether a PCA approach would be appropriate.

5.3 Liquidity resilience for high frequency data
In addition to the considerations regarding the appropriateness of the statistical assumptions

for an analysis of commonality, we note that existing liquidity commonality approaches only

reflect the aspects of liquidity measure chosen. In the case of the spread, this would be the

tightness, and in the case of the XLM, it would also reflect the depth. However, since such

measures cannot quantify liquidity resilience (which can be understood as the speed of liquidity

replenishment), the associated commonality analysis will not reflect this aspect of liquidity

either. Here, we extend the analysis to determine if the liquidity commonality observed is also

present when one incorporates notions of resilience.

In Chapter 4, we introduced the Threshold Exceedance Duration (TED) and explained

how one can use a parametric survival regression model to model the variation in the TEDs

over time, where the duration variable of interest is denoted by τ . Using this formulation, one

can obtain model based estimates of the expected (log) duration of an exceedance over a chosen

threshold j of the liquidity measure, i.e. E[ln(τ [j])|β̂,x] given covariates x that are based on

the LOB structure. They are a subset of those considered in the previous chapter, which were

found to be more explanatory for the variation of the TED. They are as follows:
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• The total number of asks in the first 5 levels of the LOB at time t, obtained according to

x
(1)
t =

∑5
i=1

∣∣∣V a,i
t

∣∣∣ (where |·| is the number of orders at a particular level)

• The total number of bids in the first 5 levels of the LOB at time t, obtained according to

x
(2)
t =

∑5
i=1

∣∣∣V b,i
t

∣∣∣
• The total ask volume in the first 5 levels of the LOB at time t, obtained according to

x
(3)
t =

∑5
i=1 TV

a,i
t

• The total bid volume in the first 5 levels of the LOB at time t, obtained according to

x
(4)
t =

∑5
i=1 TV

b,i
t

• The instantaneous value of the liquidity measure (spread or XLM) at the point at which

the i-th exceedance occurs

• The number x(6)
t of previous TED observations in the interval [t− δ, t], with δ = 1s

• The time since the last exceedance, x(7)
t

• The average of the last 5 log TEDs, x(8)
t

• A dummy variable indicating if the exceedance occurred as a result of a market order to

buy, x(9)
t

• A dummy variable indicating if the exceedance occurred as a result of a market order to

sell, x(10)
t

5.3.1 Summarising resilience behaviour
Once E[ln(τ [j])|β̂,x] is obtained for a large range of liquidity thresholds we can combine these

to obtain the Liquidity Resilience Profile (LRP). The LRP is a summary of the expected re-

silience behaviour of an asset across different liquidity thresholds:

Definition 5.3.1. The daily Liquidity Resilience Profile is a curve of the expected TEDs as a

function of the liquidity threshold, given the state of the LOB, as quantified by the covariates

characterising the LOB for the given asset.

To facilitate comparison between the liquidity resilience behaviour of assets at different

threshold levels, we present results for the logarithm of the expected TED, i.e. we calculate

E[ln(τ [j])|β̂[j],x[j]], where the j are threshold levels j = 1, . . . , 9 corresponding to deciles

of the empirical spread or XLM distribution. We can then identify the commonality in the
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Figure 5.8: Liquidity resilience profile for Credit Agricole in the normal LOB regime, in

which covariates take their median values. The x-axis represents the decile threshold used

in the TED definition, and the curve is obtained by considering thresholds corresponding to

deciles of the empirical distribution of the liquidity measure - in this case, the spread(left)

and XLM(right).

expected TED over the median spread, or the 9th decile of the XLM, for example. We explain

how the smooth functional representation is obtained in the following section.

We should note here that we will diverge somewhat from previous analyses, which only

quantified the temporal commonality between the liquidity of individual assets. The temporal

component of liquidity resilience commonality is captured through the similarity in the expected

daily exceedance times over a threshold (measured through the TED metric). However, as we

have obtained a representation of the expected exceedance time as a function of the level of the

threshold, we can also quantify this commonality at different thresholds.

The functional representation enables us to then establish whether such commonality in

liquidity resilience behaviour exists at any or all levels of the liquidity measure. The part of

the curve corresponding to low thresholds of the spread or XLM indicates the expected time to

return to a high level of liquidity, which would interest a brokerage house trying to minimise

execution costs. The part of the curve corresponding to high thresholds, on the other hand,

indicates the expected duration of periods with very low liquidity, which could be considered

by a regulator as part of their efforts to ensure uninterrupted liquidity in financial markets.

We note that it would also be possible to extract such a functional form for the LRP

directly, by performing the regression across all thresholds at once. However, it is more compu-

tationally efficient to do so in stages, by first fitting the survival regression model per threshold

and then estimating the best fitting curve across the conditional expected TEDs using functional

data analysis.
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5.4 Functional data analysis characterisations of mas-

sive LOB data sets

In the analysis of financial data, one often has to deal with the issue of the high dimensionality of

the data sets under consideration. We argue that there are significant advantages in summarising

such high dimensional massive data sets under a functional characterisation. Functional data

analysis (FDA) is a statistical approach that can be used to reduce the dimensionality of the

problem, like a PCA analysis, but it allows one to capture additional features and perform

analysis that are not possible in standard PCA approaches in the Euclidean space.

FDA has several advantages compared to multivariate analysis [Coffey et al., 2011]. It

can achieve a parsimonious representation of an entire series of measurements from a single

source, as a single functional entity, rather than a set of discrete values. It can also account

for the ordering of the data (time-based or otherwise) through smoothing, as it is unlikely that

adjacent values will vary by a large amount [Ramsay, 2006]. In addition, compared to multi-

variate analysis, it does not require that concurrent measurements are taken from every source

of information. For these reasons, FDA would be highly appropriate for the analysis of un-

evenly spaced and high dimensional financial data. Detailed accounts of each aspect of FDA

are provided in the text of Ramsay [2006].

Once a functional representation is obtained, one can explore functional equivalents of

analyses performed in the multivariate space. For example, one can perform functional principal

components analysis (FPCA) to extract the leading eigenfunctions characterising the functional

dataset. Canonical correlation analysis can also be applied in the functional space, in order to

investigate the modes of variability in two sets of functions that are most associated with one

another. There are different ways in which one can build a functional linear model, with either

a functional dependent variable, a set of functional covariates, or both [Ramsay, 2006]. We

use the concurrent model in this chapter, involving a form of functions on functions regression,

where we assume that the response is only affected by the dependent variables at the same point

of the domain of the functions.

In the next section we detail how one can use FDA to obtain functional representations

of LRPs, and FPCA to extract the dominant modes of variation every day for the asset cross-

section. In addition, we will build a concurrent functional multiple regression model to quantify

the explanatory power of the functional principal components (FPCs) for the LRPs of individual

assets.
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5.5 Functional data summaries: smoothed functional

representations for LRPs
Functional data analysis is the study of functional data, where the domain of the function is

usually time, but could be frequency, space, or in our case, thresholds of a liquidity measure.

It differs from multivariate analysis methods such as time series modelling in its imposition of

smoothness constraints:

y = x(u) + ε (5.26)

where the x(u) is considered to be a smooth functional data observed at certain points u =

(u1, . . . , un), in the presence of noise, to get observations y = (y1, . . . , yn). FDA then enables

us to describe the variation in functional data, obtain derivatives and cluster curves according

to their similarity.

In this chapter our interest is in the expected liquidity resilience behaviour of every asset

for different thresholds. In this context, the dependent yj is E[ln(τ [j])|β̂[j],x[j]], where the j

are threshold levels j = 1, . . . , 9, defined as deciles of the empirical distribution of the liquidity

measure. We will first explain how to obtain a smoothed representation x(u) of the liquidity

resilience profile of every asset, and then determine whether the dominant modes of variation

over the different assets can be explanatory for the resilience of individual assets over the long

term.

5.5.1 Defining a basis system for functional data representation
The first challenge is obtaining a functional data representation of discrete (and possibly noisy)

observations of the daily LRPs for each asset. We can represent the LRP function x(u) on a

given day, for a given asset, using a basis expansion method, where a linear combination of

the K basis functions φk(u) (with coefficients ck) can approximate a smooth function for a

sufficiently large K:

x(u) =

K∑
k=1

φk(u)ck. (5.27)

If we then have N functions then

xi(u) = cTi φ(u), i = 1 . . . N.

Common examples of bases used in FDA include Fourier bases, which are useful when data is

periodic, and spline bases, of which several may be considered (B-splines, M-splines, I-splines

etc.). Splines are piecewise polynomials, taking values in sub-intervals of the observation range.

They are defined by:
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• the range [u0, uL] in which they take values;

• the order m of the spline, which is one higher than the highest degree polynomial;

• break points and knots, or the points which divide the observation range. Over a par-

ticular subinterval, the order of the polynomial is fixed. There can be several knots at a

particular break point, if more than one basis function takes values in an adjacent subin-

terval.

We choose a B-spline basis here, and B-splines are defined recursively from lower order B-

splines as follows:

Bi,0(u) =


1 if ui ≤ u < ui+1

0 elsewhere.

Bi,j+1(u) = αi,j+1(u)Bi,j(u) + [1− αi,j+1] (u)Bi+1,j(u)

with
∑

iBi,j(u) = 1 and

αi,j(u) =


u−ui

ui+j−ui if ui+j 6= ui

0 otherwise.
(5.28)

The spline function S(u) is then defined as

S(u) =

m+L−1∑
k=1

ckBk,m(u). (5.29)

This formulation means that a basis function is positive over at most m subintervals (this

is called the compact support property), making estimation efficient. In our application, we

obtain the LRP curve as a functional representation of the daily expected conditional log TED

at each threshold. We achieve this via a cubic B-spline basis (i.e. the order m = 4). There is a

continuity and smoothness restriction that adjacent polynomials (and first two derivatives) are

constrained to be equal at the knots. In the range of observation thresholds [u0, uL] we consider

L− 1 interior knots, the interior knot sequence is generically denoted by u = (u1, . . . , uL−1).

This produces a total of m+L− 1 basis functions for the function representation we adopt for

the LRP of each asset each day.

We thus have to select the number of breakpoints (i.e. the value of L) and the number of

basis functions K to use in the B-spline basis, although selecting a value for one will determine

the other. As our curves are constructed over 9 thresholds of the liquidity measure, we select

L = 4 in order to obtain a parsimonious representation of the LRP.
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5.5.1.1 Estimation of functional representations of LRPs

We perform linear regression on the basis functions to obtain the coefficient vector c, i.e. by

minimising the sum of squared errors

SSE =
n∑
j=1

(yj −
K∑
k=1

ckφk(uj))
2 = (y − Φc)′(y − Φc) (5.30)

where Φ is an N by K matrix containing φj(tk). The OLS estimate is

ĉ = (ΦTΦ)−1ΦTy (5.31)

and the vector of fitted values is

ŷ = Φĉ = Φ(ΦTΦ)−1ΦTy (5.32)

from which we can see that Φ(ΦTΦ)−1ΦT acts as a simple linear smoother. This approximation

is only appropriate if we assume i.i.d errors, but this is not often the case with functional data.

In order to enforce smoothness, we can add a roughness penalty to the least squares criterion

PENSSEλ = (y − Φc)′(y − Φc) + λJ(x) (5.33)

where λ is a tuning parameter and J(x) measures roughness, for example through the curvature

J2(x) =
∫
u[D2x(u)]2du, or, more generally, using any linear differential operator J(x) =∫

u

∑
k=1m αkD

k[(x(u))]du. The D operator is used to denote derivatives, such that D0x(u) =

x(u) and Dmx(u) = dmx(u)
du .

We impose the J2 roughness penalty in the estimation, as in areas where the function is

highly variable, the square of the second derivative will be large. A theorem from De Boor

[2001] shows that when choosing J2(x) =
∫
u[D2x(u)]2du, a cubic spline with knots at points

uj minimises PENSSEλ. Spline smoothing with the roughness penalty above is still a linear

operation, where the smoother is now (ΦTΦ + λR)−1ΦT , where

R =

∫
D2φ′(u)D2φ(u)du (5.34)

see Ramsay [2006] for a derivation. This is usually computed by numerical integration.

The last point is choosing the smoothing parameter λ, and a widely used approach is

the generalised cross-validation (GCV) method proposed by Craven and Wahba [1978]. One

can use the generalised cross-validation measure, whereby minimisation of the criterion is a

method to select λ. For each asset, on every day, we calculate the GCV value on a fine grid, and

present in Figure 5.9 in the histogram of the values of λ corresponding to the lowest GCV. We

find that these values concentrate at very low levels and very high levels. However, empirical
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Figure 5.9: The optimal λ value calculated by the GCV procedure for every LRP fit (i.e.

for every asset on every day).

analysis shows that using a large smoothing parameter (close to 1) leads to oversmoothing,

and we lose some of the interesting features in the data. For this reason, we choose to use

the same parameter λ = 0.02 for every asset, on every day. We summarise the result of this

data preparation in Figure 5.10 for the LRPs for all assets for both the spread and the XLM,

obtained using the B-spline basis and roughness penalisation method described above. There is

variation in the LRPs of individual assets over time, and this justifies our choice of investigating

liquidity resilience (and its commonality) daily first. The darker shaded area shows that there

is a clustering of LRPs across assets and across time, and this is a first visual confirmation of

commonality in liquidity resilience over the different (relative) liquidity measure thresholds.

Now that we have estimated smoothed representations of the daily LRPs for every asset, we

will treat them as the observed data that we will analyse to quantify any commonality.

5.6 Functional principal components analysis
We now evaluate the market factors characterising the asset cross-section functional LRP pro-

files each day. In functional principal components analysis (FPCA), we seek the dominant

modes of variation over a set of curves. As an example of PCA in the multivariate space, Has-

brouck and Seppi [2001] and Korajczyk and Sadka [2008] characterise market-wide liquidity as

the first principal component of individual FX rates. We focus on the functional equivalent, but

want to characterise the resilience of liquidity, rather than liquidity itself. We then determine
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Figure 5.10: Projected LRPs of all 82 assets, for the entire 81 day period, onto a single

grid for the spread (top) and XLM (bottom).

the extent to which these can be explanatory for individual asset resilience over time.

Specifically, given smoothed functional data {xi(u)}i∈1:I , we are searching for the weight

functions ξ, such that the corresponding scores

fi =

∫
ξ(u)xi(u)du (5.35)
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Figure 5.11: The first three functional PCs extracted from the LRP data every day, pro-

jected onto the same axes for the spread (left) and XLM (right)

have the largest possible variation. That is, weight function ξ1 should maximise∑
i

[∫
ξ(u)xi(u)du

]2

(5.36)

subject to the constraint
∫
ξ(u)2du = 1. In this context, ξ1 will be the most important functional

component of the market-wide liquidity resilience profile and will correspond to the dominant

model of functional variation. It will be represented by a linear combination of basis functions,

just as individual LRPs.

Consider the mean and covariance functions for the functional LRPs denoted by µ(u) =
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E [xi(u)] and v(u,w)

v(u,w) =
1

N − 1

N∑
i=1

xi(u)xi(w) (5.37)

and the covariance operator V

V ξ =

∫
v(·, u)ξ(u)du (5.38)

This operator has orthonormal eigenfunctions ξ1, . . . , ξK , with eigenvalues ρ1 ≥ ρ2 ≥ . . . ≥

ρK , satisfying V ξk = ρkξk
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Figure 5.12: Scores for the first two PCs for every asset for the spread(top) and

XLM(bottom), for single-day equity data.

In Figure 5.11 we project the first three leading market liquidity resilience factors from the
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FPCA from every daily dataset onto the same axes, in order to understand whether the dominant

modes of variation vary over time. In the vein of the liquidity commonality literature, we will

call these the market factors of resilience. We note that the first FPC is fairly constant over

time, and is greater at higher threshold levels for the spread. This indicates that the market

component of resilience is important for explaining deviations from more extreme levels of the

spread. Once we consider a liquidity measure which takes depth into account, however, such as

the XLM, the opposite seems to apply: we observe that the contribution of the first FPC from

the daily XLM liquidity resilience profiles tends to decrease at higher thresholds.

There are two distinct modes for the second FPC, which become almost identical, if one is

flipped across the x-axis, and this is the case for both the spread and the XLM. We find that for

some assets, multiplying the second PC by the score for that asset almost eliminates the second

mode of variation and thus the effect of the second PC becomes relatively constant over time.

5.7 Functional principal component regression for

LRPs
Recall that Mancini et al. [2013] regress individual exchange rate liquidity against the principal

component obtained over all rates, and interpret the R2 coefficient of determination for every

asset as the degree of commonality. For our study of liquidity resilience commonality we per-

form a similar regression idea except we extend this in our case to the functional space setting.

The functional principal components obtained every day that characterize the market liquidity

resilience factors will now be used as functional covariates, in order to explain the variation in

LRPs for individual assets inter-daily.

A linear regression model relating a functional response to a collection of functional co-

variates at the same points is called a concurrent model and is given as follows:

xi,t(u) = β0(u) +

q∑
j=1

βj(u)ξj,t(u) + εi,t(u) (5.39)

where t is the day index, β0 is the intercept function, and the βj are coefficient functions of the

covariate functions ξj i.e. the market functional PCs. β0 could also be considered as being the

product with a constant function whose value is always one. Let the t by q matrix Z contain the

covariate functions ξj,t. In matrix notation, the concurrent functional linear model is given by

x(u) = Z(u)β(u) + ε(u) (5.40)
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and the fitting criterion (if we also include a roughness penalty J(βj)) becomes

LMSSE(β) =

∫
r(u)′r(u)du+

q∑
j=1

λj

∫
J(βj(u))du (5.41)

where r(u) = x(u) − Z(u)β(u). For the estimation method utilised see details in Ramsay

[2006].
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Figure 5.13: The R2 functions obtained from regressing individual asset Liquidity Re-

silience Profiles against the first two PCs obtained from the daily LRP curves using the

spread (top) and XLM(bottom) for stocks Nexans SA and Credit Agricole.

The entire functional PCA regression procedure is summarised in the following steps:

1. We first obtain functional representations of the LRP for every asset on every day.

2. We then extract the first 3 components from the LRPs every day, which will serve as our

covariates.

3. We set up a basis for the coefficient functions β0, β1, β2, β3.

4. Finally, we take LRPs for a single asset over time (this will be the dependent variable)

and run the regression.

Here β0 will have a constant basis, while for β1, β2, β3 we set up a cubic spline basis as before,

but with 5 basis functions. We imposed the same J2 roughness penalisation as before, in order
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to avoid possible overfitting. We can assess the quality of the fit for asset i using theR2 function

SSreg(u) =
∑
t

[x̂i,t(u)− µt(u)]2

SSres(u) =
∑
t

[x̂i,t(u)− xi,t(u)]2

R2(u) =
SSreg(u)

SSreg(u) + SSres(u)

We should note that in our results we omit the intercept function β0, as it did not increase

the explanatory power of the regression. We present the R2 function for two assets , where we

can now observe the explanatory power of the regression at different threshold levels. That is

at threshold level u, R2(u) denotes the proportion of variation in the LRP of an individual asset

at threshold u that is explained by the first 3 components obtained from the FPCA analysis,

again at level u. The R2 varies as we alter u, and this is consistent across assets, as we can

see in Figure 5.13. The advantage of this representation is that we can identify the ranges of u

liquidity thresholds for which the principal components are more or less explanatory over time.

We note that in the case of the spread, the PCs are explanatory about the initial part of the

curve, that is, where we consider deviations from relatively low spreads. Just as market fac-

tors (principal components) extracted from the spreads of individual assets can explain around

25%of the variation in the absolute level of the spread for these assets (as we had noted in Fig-

ure 5.7), PCs extracted from the LRPs can explain between 10 and 40% of the variation in the

expected duration of spread deviations, at least at lower spreads. Once we consider deviations

from higher spreads, the explanatory power of market factors drops sharply.

This indicates that there are additional factors that become important at higher liquidity

levels, which are specific for each asset. A possible explanation for this would be a difference in

the efficiency of market making between assets. As there are varying requirements for market

making for assets in different jurisdictions, it is possible that in certain assets, market makers

can stop operating in more illiquid LOB regimes, to avoid building any position that would then

be costly to unwind. This would mean that for those assets, the expected duration of deviations

above greater levels of the spread would be higher, as there would be fewer market participants

willing to replenish the market after a shock.

In the case of the XLM, we find that the commonality in liquidity resilience - which

we again measure through the explanatory power of the market factors, extracted through the

functional PCA - is markedly lower than the corresponding temporal commonality of the XLM

across assets. A possible reason for the lower adjusted R2 levels for the XLM compared to

the respective figures for the spread is that while market makers may act similarly in trying to
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Figure 5.14: The R2 functions obtained from regressing individual asset Liquidity Re-

silience Profiles against the first three PCs obtained from the daily LRP curves for the

spread(top) and XLM(bottom).

tighten the spread after a shock, they are less inclined to post large volumes in the LOB for

certain assets, in order to avoid excess exposure in a market where it will be costly to unwind a

position.
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5.8 Discussion
We have reviewed the performance of the standard approach for measuring liquidity commonal-

ity through principal components regression, on a massive dataset from a pan-European equity

venue. We have shown that the assumption that one can capture the most important features

of liquidity commonality, through methods which are based on second moments, will not al-

ways be appropriate. We therefore perform ICA (Independent Component Analysis), which

addresses this issue by incorporating higher order information, to assess commonality in liquid-

ity.

The standard approach to liquidity commonality fails to capture commonality in the re-

silience of liquidity, or the speed of replenishment of the LOB. We addressed this by proposing

an approach to quantify the commonality in liquidity resilience (as characterised by 4) by first

obtaining a functional representation of resilience and then measuring the explanatory power of

market factors extracted from the asset cross-section. We have shown that functional data anal-

ysis can be very valuable for characterising features of massive datasets, such as those extracted

from high-frequency LOB data, as it can vastly reduce the dimensionality of the data and make

comparisons between assets possible.

Our results suggest that market factors for liquidity resilience (as captured by functional

principal components analysis) can explain between 10 and 40% of the time required for the

spread to return to a low threshold level after a shock. The same market factors are found to

be much less explanatory if we consider higher threshold levels of the spread. Once we also

consider a liquidity measure that takes depth into account, such as the XLM, the explanatory

power diminishes significantly.

We have interpreted these results through the prism of market making activity in the LOB.

While market makers may act similarly in trying to tighten the spread after a shock, they are

less inclined to post large volumes in the LOB for certain assets, in order to avoid excess ex-

posure. We also identified the possible absence of quoting obligations for certain assets to be a

contributing factor to explaining these outcomes.

Contrasting these results with our liquidity commonality findings, we find that temporal

commonality in the liquidity measures does not necessarily entail commonality in liquidity

resilience. We would argue that this has positive implications for market quality, as it indicates

that slow liquidity replenishment in certain assets is not necessarily contagious for the market.

Future studies will further explore the economic ramifications of these findings in detail.
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Country Name Symbol Sector

1 FRANCE EADS (PAR) EADp Aerospace / Defense

2 FRANCE SAFRAN SAFp Aerospace / Defense

3 FRANCE VALEO FRp Automobiles / Auto Parts

4 FRANCE MICHELIN MLp Automobiles / Auto Parts

5 FRANCE RENAULT RNOp Automobiles / Auto Parts

6 FRANCE PEUGEOT UGp Automobiles / Auto Parts

7 FRANCE CREDIT AGRICOLE ACAp Banking Services

8 FRANCE BNP PARIBAS BNPp Banking Services

9 FRANCE SOCIETE GENERALE GLEp Banking Services

10 FRANCE SANOFI SANp Biotechnology / Pharmaceuticals

11 FRANCE AIR LIQUIDE AIp Chemicals

12 FRANCE ARKEMA AKEp Chemicals

13 FRANCE VINCI (EX SGE) DGp Construction / Engineering / Materials als

14 FRANCE BOUYGUES ENp Construction / Engineering / Materials als

15 FRANCE EIFFAGE FGRp Construction / Engineering / Materials als

16 FRANCE AXA CSp Insurance

17 FRANCE ALSTOM ALOp Machinery / Equipment / Components

18 FRANCE LEGRAND LRp Machinery / Equipment / Components

19 FRANCE NEXANS NEXp Machinery / Equipment / Components

20 FRANCE SCHNEIDER ELECTRIC SUp Machinery / Equipment / Components

21 FRANCE LAGARDERE GROUPE MMBp Media / Publishing

22 FRANCE PUBLICIS GROUPE PUBp Media / Publishing

23 FRANCE TF1 (TV.FSE.1) TFIp Media / Publishing

24 FRANCE ARCELORMITTAL MTa Metal / Mining

25 FRANCE VALLOUREC VKp Metal / Mining

26 GERMANY MTU AERO ENGINES HLDG. MTXd Aerospace / Defense

27 GERMANY BMW BMWd Automobiles / Auto Parts

28 GERMANY CONTINENTAL CONd Automobiles / Auto Parts

29 GERMANY DAIMLER DAId Automobiles / Auto Parts

30 GERMANY PORSCHE AML.HLDG.PREF. PAH3d Automobiles / Auto Parts

31 GERMANY AAREAL BANK ARLd Banking Services

32 GERMANY COMMERZBANK CBKd Banking Services

33 GERMANY DEUTSCHE BANK DBKd Banking Services

34 GERMANY BAYER BAYNd Biotechnology / Pharmaceuticals

35 GERMANY MERCK KGAA MRKd Biotechnology / Pharmaceuticals

36 GERMANY BASF BASd Chemicals

37 GERMANY LINDE LINd Chemicals

38 GERMANY LANXESS LXSd Chemicals

39 GERMANY K + S SDFd Chemicals

40 GERMANY WACKER CHEMIE WCHd Chemicals

41 GERMANY GEA GROUP G1Ad Construction / Engineering / Materials als

42 GERMANY BILFINGER BERGER GBFd Construction / Engineering / Materials als

Table 5.1: Country and sector information about the first 42 of the 82 assets used in this

study. Continued in Table 5.2.
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Country Name Symbol Sector

43 GERMANY HOCHTIEF HOTd Construction / Engineering / Materials als

44 GERMANY ALLIANZ ALVd Insurance

45 GERMANY HANNOVER RUCK. HNR1d Insurance

46 GERMANY MUENCHENER RUCK. MUV2d Insurance

47 GERMANY LEONI LEOd Machinery / Equipment / Components

48 GERMANY MAN MANd Machinery / Equipment / Components

49 GERMANY KLOECKNER & CO KCOd Metal / Mining

50 GERMANY AURUBIS NDAd Metal / Mining

51 GERMANY SALZGITTER SZGd Metal / Mining

52 UK BAE SYSTEMS BAl Aerospace / Defense

53 UK MEGGITT MGGTl Aerospace / Defense

54 UK ROLLS-ROYCE HOLDINGS RRl Aerospace / Defense

55 UK GKN GKNl Automobiles / Auto Parts

56 UK BARCLAYS BARCl Banking Services

57 UK HSBC HDG. HSBAl Banking Services

58 UK STANDARD CHARTERED STANl Banking Services

59 UK ASTRAZENECA AZNl Biotechnology / Pharmaceuticals

60 UK GLAXOSMITHKLINE GSKl Biotechnology / Pharmaceuticals

61 UK SHIRE SHPl Biotechnology / Pharmaceuticals

62 UK AVIVA AVl Insurance

63 UK LEGAL & GENERAL LGENl Insurance

64 UK PRUDENTIAL PRUl Insurance

65 UK STANDARD LIFE SLl Insurance

66 UK IMI IMIl Machinery / Equipment / Components

67 UK INVENSYS ISYSl Machinery / Equipment / Components

68 UK WEIR GROUP WEIRl Machinery / Equipment / Components

69 UK BRITISH SKY BCAST.GROUP BSYl Media / Publishing

70 UK ITV ITVl Media / Publishing

71 UK PEARSON PSONl Media / Publishing

72 UK WPP WPPl Media / Publishing

73 UK ANGLO AMERICAN AALl Metal / Mining

74 UK ANTOFAGASTA ANTOl Metal / Mining

75 UK BHP BILLITON BLTl Metal / Mining

76 UK EURASIAN NATRES.CORP. ENRCl Metal / Mining

77 UK KAZAKHMYS KAZl Metal / Mining

78 UK LONMIN LMIl Metal / Mining

79 UK RIO TINTO RIOl Metal / Mining

80 UK RANDGOLD RESOURCES RRSl Metal / Mining

81 UK VEDANTA RESOURCES VEDl Metal / Mining

82 UK XSTRATA XTAl Metal / Mining

Table 5.2: Country and sector information about the remaining assets used in this study.



Chapter 6

Liquidity motivated agent-based

model of the LOB

In the previous 2 chapters we offered both a theoretical contribution to the understanding of

a particular aspect of LOB liquidity, namely resilience, as well as an empirical analysis of

liquidity and resilience commonality in the equity markets. LOB liquidity is a very important

determinant of market quality, and its intra-day variation plays a large part in defining the overall

trading strategies of market participants. In this chapter we try to capture the central role of

liquidity in the LOB by considering daily activity as part of a new form of agent-based model

based on heterogeneous trading agents, whose motivations are liquidity-driven.

We develop two types of agents in our framework, liquidity providers (market makers),

and liquidity demanders, who encompass a stylised representation of algorithmic traders, noise

traders, trend followers and other types of speculators. These agents are abstractions of real

market participants and their attributes, but they are expressed in a stochastic model frame-

work, which characterises these behaviours in more detail than typical simple agent models.

This places our model part way between a traditional agent-based model and a pure stochastic

LOB model. The model can be of practical use, as it is readily interpreted with regard to the

agent model dynamics, it can be easily estimated from data and it reproduces many important

empirical properties of LOB dynamics.

We develop an efficient way to perform statistical calibration and estimation of the agent

model parameters based on a combination of Indirect Inference (a simulation based likelihood

procedure) and multi-objective optimisation. We calibrate our agent-based stochastic model

to real high frequency data from 5 level market depth limit order book data from Chi-X. We

then demonstrate how such an agent-based model is a valuable framework for testing exchange

regulations, for brokerage decisions and other trading based scenarios.
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6.1 New perspective: Stochastic agent-based models

for the LOB
In this section we present the formal mathematical specification for each component of our

stochastic agent-based model. This includes the stochastic models for limit order placements

and cancellations by a liquidity provider agent and the stochastic models for market order place-

ments by liquidity demanding representative agents. The stochastic ABM framework can model

the non-linear dependence in intra-day LOB activity, where the dependence is considered both

between different types of events (e.g. limit and market orders), but also the same type of events,

but at different levels (e.g. cancellations at level 2 and level 5 of the ask side of the LOB). We

make extensive use of the flexible multivariate skew-t distribution, which is unique in enabling

the modelling of heavy tails, tail dependence, skew and clustering of volatility [Demarta and

McNeil, 2005, Fung and Seneta, 2010].

6.1.1 Limit Order Book simulation framework
We consider the intra-day LOB activity in fixed intervals of time . . . , [t − 1, t), [t, t + 1), . . ..

For every interval [t, t + 1), we allow the total number of levels on the bid or ask sides of the

LOB to be dynamically adjusted as the simulation evolves. These LOB levels are defined with

respect to two reference prices, equal to P b,1t−1 and P a,1t−1, i.e. the price of the highest bid and

lowest ask price at the start of the interval. We consider these reference prices to be constant

throughout the interval [t − 1, t) and thus, the levels on the bid side of the book are defined at

integer number of ticks away from P a,1t−1, while the levels on the ask side of the book are defined

at at integer number of ticks away from P b,1t−1.

This does not mean that we expect the best bid and ask prices to remain constant, just

that we model the activity (i.e. limit order arrivals, cancellations and executions) according to

the distance in ticks from these reference prices during this period. We note that it is of course

possible that the volume at the best bid price is consumed during the interval, and that limit

orders to sell are posted at this price, which would be considered at 0 ticks away from the refer-

ence price. To allow for this possibility, we actively model the activity at −ld + 1, . . . , 0, . . . , lp

ticks away from each reference price. Here, the p subscript will refer to passive orders, i.e.

orders which would not lead to immediate execution, if the reference prices remained constant.

d refers to direct, or aggressive orders, where it is again understood that they are aggressive

with respect to the reference prices at the start of the period. Therefore, we actively model the

activity at a total lt = lp + ld levels on the bid and ask, as indicated in Figure 6.1.

We assume that activity that occurs further away is uncorrelated with the activity close
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Figure 6.1: The actively modelled levels of the LOB in the agent-based model presented

in this paper. There are a total of lt levels on each side, where lp are passive levels and ld

are direct, or aggressive levels (i.e. would lead to immediate execution). The levels of the

ask are considered around the best bid price at the start of each interval, and likewise the

levels of the bid side are considered around the best ask side at the start of each interval.

In this figure, as in our model, we have lp = 5 and ld = 3.

to the top of the book (as is evident in Figure 6.2), and therefore unlikely to have much of

an impact on price evolution and the properties of the volume process. Therefore, the volume

resting outside the actively modelled LOB levels (−ld + 1, . . . , 0, . . . , lp) on the bid and ask is

assumed to remain unchanged until the agent interactions brings those levels inside the band of

actively modelled levels.

To present the details of the simulation framework, including the stochastic model com-

ponents for each agent, i.e. liquidity providers and liquidity demanders, we first define the

following notation:

1. V a
t = (V a,−ld+1

t , . . . , V
a,lp
t ) - the random vector for the number of orders resting at each

level on the ask side at time t at the actively modelled levels of the LOB at time t

2. NLO,a
t = (NLO,a,−ld+1

t , . . . , N
LO,a,lp
t ) - the random vector for the number of limit

orders entering the limit order book on the ask side at each level in the interval [t− 1, t)

3. NC,a
t = (NC,a,1

t , . . . , NC,a,lt
t ) - the random vector for the number of limit orders can-

celled on the ask side in the interval [t− 1, t)
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4. NMO,a
t - the random variable for the number of market orders submitted by liquidity

demanders in the interval [t− 1, t)

l9

l8

l7

l6

l5

l4

l3

l2

l1

l0

l−1

l−2

Correlation
coefficient

(0,0.25]

(0.25,0.5]

(0.5,0.75]

Figure 6.2: Correlation in the LOB limit order submission intensities on the bid side of

the LOB in 10 second intervals, with the levels defined with respect to the best ask price.

l1 to l9 denote passive levels (i.e. priced above the reference price) and l0 to l−2 denote

aggressive or direct levels (priced at or below the reference price, for immediate execution

if the reference price had remained constant). The data set considered here is the daily

LOB activity for stock BNP Paribas on 17/01/2012.

We consider the processes for limit orders and market orders, as well as cancellations to be

linked to the behaviour of real market participants in the LOB. In the following, we model the

aggregation of the activity of 2 classes of liquidity motivated agents, namely liquidity providers

and liquidity demanders. As we model LOB activity in discrete time intervals, we process the

aggregate activity at the end of each time interval in the following order:

1. Limit order arrivals - passive - by the liquidity provider agent.

2. Limit order arrivals - aggressive or direct - by the liquidity provider agent.

3. Cancellations by the liquidity provider agent.

4. Market orders by the liquidity demander agent.
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The rationale for this ordering is that the vast majority of limit order submissions and can-

cellations is typically accounted for by the activity of high-frequency traders, and many resting

orders are cancelled before slower traders can execute against them. In addition, such an order-

ing allows us to condition on the state of the LOB, so that we do not have more cancellations at

a particular level than the orders resting at that level. We do not see this as a limitation, as the

time interval we consider can be made as small as desired for a given simulation.

6.1.2 Stochastic agent representation: liquidity providers and de-

manders
We assume liquidity providers are responsible for all market-making behaviour (i.e. limit order

submissions and cancellations on both the bid and ask side of the LOB). After liquidity is posted

to the LOB, liquidity seeking market participants, such as mutual funds using some execution

algorithm, can take advantage of the resting volume with market orders. For market makers,

achieving a balance between volume executed on the bid and the ask side can be profitable;

however, there is also the risk of adverse selection, i.e. trading against a trader with superior

information, which may lead to losses if, e.g. a trader posts multiple market orders that consume

the volume on several levels of the LOB. The risk of adverse selection as a result of asymmetric

information is one of the basic tenets of market microstructure theory [O’hara, 1995]. To reduce

this risk, market makers cancel and resubmit orders at different prices and/or different sizes.

Definition 6.1.1 (Limit order submission process for the liquidity provider agent). Con-

sider the limit order submission process of the liquidity provider agent to include both passive

and aggressive limit orders on the bid and ask sides of the book, assumed to have the following

stochastic model structure:

1. Let the multivariate path-space random matrixNLO,k
1:T ∈ Nlt×T+ be constructed from ran-

dom vectors for the numbers of limit order placements NLO,k
1:T =

(
NLO,k

1 ,NLO,k
2 , . . . ,

NLO,k
T

)
. Furthermore, assume these random vectors for the number of orders at each

level at time t are each conditionally dependent on a latent stochastic process for the in-

tensity at which the limit orders arrive, given by the random matrix ΛLO,k
1:T ∈ Rlt×T+

and on the path-space by ΛLO,k
1:T =

(
ΛLO,k

1 ,ΛLO,k
2 , . . . ,ΛLO,k

T

)
. In the following,

k ∈ {a, b} indicates the respective process on the ask and bid side.

2. Assume the conditional independence property for the random vectors[
NLO,k
s |ΛLO,k

s

]
⊥⊥
[
NLO,k
t |ΛLO,k

t

]
, ∀s 6= t, s, t ∈ {1, 2, . . . , T} . (6.1)
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3. For each time interval [t − 1, t) from the start of trading on the day, let the random

vector for the number of new limit orders placed in each actively modelled level of the

limit order book, i.e. the price points corresponding to ticks (−ld + 1, . . . , 0, 1, . . . , lp),

as depicted in Figure 6.1, be denoted by NLO,k
t = (NLO,k,−ld+1

t , . . . , N
LO,k,lp
t ), and

assume that these random vectors satisfy the conditional independence property[
NLO,k,s
t |ΛLO,k,st

]
⊥⊥
[
NLO,k,q
t |ΛLO,k,qt

]
, ∀s 6= q, s, q ∈ {−ld + 1, . . . , 0, 1, . . . , lp} .

4. Assume the random vector NLO,k
t ∈ Nlt+ is distributed according to a multivariate gen-

eralized Cox process with conditional distributionNLO,k
t ∼ GCP

(
λLO,kt

)
given by

Pr
(
NLO,k,−ld+1
t = n1, . . . , N

LO,k,lp
t = nlt

∣∣∣ΛLO,k
t = λLO,kt

)
=

lp∏
s=−ld+1

(
λLO,k,st

)ns
ns!

exp
[
−λLO,k,st

]
(6.2)

5. Assume the independence property for random vectors of latent intensities uncondition-

ally according to

ΛLO,k
s ⊥⊥ ΛLO,k

t , ∀s 6= t, s, t ∈ {1, 2, . . . , T} . (6.3)

6. Assume that the intensity random vector ΛLO,k
t ∈ Rlt+ is obtained through an element-

wise transformation of the random vector ΓLO,kt ∈ Rlt , where for each element we have

the mapping

ΛLO,k,st = µLO,k,s0 F
(

ΓLO,k,st

)
(6.4)

where we have s ∈ {−ld + 1, . . . , lp}, baseline intensity parameters
{
µLO,k,s0

}
∈ R+

and a strictly monotonic mapping F : R 7→ [0, 1].

7. Assume the random vector ΓLO,kt ∈ R is distributed according to a multivariate skew-t

distribution ΓLO,kt ∼ MSt(mk,βk, νk,Σk) with location parameter vector mk ∈ Rlt ,

skewness parameter vector βk ∈ Rlt , degrees of freedom parameter νk ∈ N+ and lt× lt

covariance matrix Σk. Hence, ΓLO,kt has density function

f
ΓLO,kt

(
γt;m

k,βk, νk,Σk
)

=

cK νk+lt
2

(√
(νk +Q(γt,mk)) [βk]

T
[Σk]

−1
βk
)

exp (γt −mk)
T [

Σk
]−1

βk

(√
(νk +Q(γt,mk)) [βk]

T
[Σk]

−1
βk
)− νk+lt

2 (
1 + Q(γt,mk)

νk

) νk+lt
2

(6.5)
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where Kv(z) is a modified Bessel function of the second kind given by

Kv(z) =
1

2

∫ ∞
0

yv−1e−
z
2

(y+y−1)dy (6.6)

and c is a normalisation constant. We also define the function Q(·, ·) as follows:

Q(γt,m
k) = (γt −mk)T

[
Σk
]−1

(γt −mk) (6.7)

This model also admits skew-t marginals and a skew-t copula, see Smith et al. [2012] for

details. Importantly, this stochastic model admits the following scale mixture represen-

tation,

ΓLO,kt
d
= mk + βkW +

√
WZ (6.8)

with Inverse-Gamma random variable W ∼ IGa
(
νk

2 ,
νk

2

)
and independent Gaussian

random vector Z ∼ N
(
0,Σk

)
.

8. Assume that for every element NLO,k,s
t of order counts from the random vector NLO,k

t ,

there is a corresponding random vector OLO,k,s
t ∈ NN

LO,k,s
t

+ of order sizes. We as-

sume that the element OLO,k,si,t , i ∈
{

1, . . . , NLO,k,s
t

}
is distributed as OLO,k,si,t ∼ H(·).

Furthermore, we assume that order sizes are unconditionally independent OLO,k,si,t ⊥⊥

OLO,k,si′,t for i 6= i′, s 6= s′ and t 6= t′.

We now define the second component of the liquidity provider agents, namely the cancel-

lation process. The cancellation process has the same stochastic process model specification

as the limit order submission process above, including a skew-t dependence structure between

the stochastic intensities at each LOB level on the bid and ask. We therefore only specify the

differences unique to the cancellation process relative to the order placement model definition

in the below specification, to avoid repitition.

Definition 6.1.2 (Limit order cancellation process for liquidity provider agent). Consider

the limit order cancellation process of the liquidity provider agent to have an identically spec-

ified stochastic model structure as the limit order submissions. The exception to this pertains

to the assumption that the number of cancelled orders in each interval at each level is right-

truncated at the total number of orders at that level.

1. As for submissions, we assume for cancellations a multivariate path-space random ma-

trixNC,k
1:T ∈ Nlt×T+ constructed from random vectors for the number of cancelled orders

given by NC,k
1:T =

(
NC,k

1 ,NC,k
2 , . . . ,NC,k

T

)
. Furthermore, assume for these random

vectors for the number of cancelled orders at each of the lt levels, the latent stochastic
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process for the intensity is given by the random matrix ΛC,k
1:T ∈ Rlt×T+ and given on the

path-space by ΛC,k
1:T =

(
ΛC,k

1 ,ΛC,k
2 , . . . ,ΛC,k

T

)
.

2. Assume that for the random vector Ṽ k
t for the volume resting in the LOB after the

placement of limit orders we have Ṽ k
t = V k

t−1 + NLO,k
t , and that the random vec-

tor NC,k
t ∈ Nlt+ is distributed according to a truncated multivariate generalized Cox

process with conditional distribution NC,k
t |Ṽ k

t = v ∼ GCP
(
λC,kt

)
I(NC,k

t < v) (with

v = (v−ld+1, . . . , vlp)) given by

Pr
(
NC,k,−ld+1
t = n−ld+1, . . . , N

C,k,lp
t = nlp

∣∣∣ΛC,k
t = λC,kt , Ṽ k

t = v
)

=

lp∏
s=−ld+1

(λC,k,st )ns

ns!∑vs
j=0

(λC,k,st )j

j!

. (6.9)

3. Assume that for the cancellation count NC,k,s
t , the orders with highest priority are can-

celled from level s (which are also the oldest orders in their respective queue). Assume

also that cancellations always remove an order in full, i.e. there are no partial cancella-

tions.

We complete the specification of the representative agents by considering the specification

of the liquidity demander agent.

Definition 6.1.3 (Market order submission process for liquidity demander agent). Consider

a representative agent for the liquidity providers to be composed of a market order component,

which has the following stochastic structure:

1. Assume a path-space random vector NMO,k
1:T ∈ N1×T

+ for the number of market

orders constructed from the random variables for the number of market orders in

each interval NMO,k
1:T =

(
NMO,k

1 , NMO,k
2 , . . . , NMO,k

T

)
. Furthermore, assume that

for these random variables the latent stochastic process for the intensity is given

by random variable ΛMO,k
1:T ∈ Rlt×T+ , and given on the path-space by ΛMO,k

1:T =(
ΛMO,k

1 ,ΛMO,k
2 , . . . ,ΛMO,k

T

)
.

2. Assume the conditional independence property for the random variables[
NMO,k
s |ΛMO,k

s

]
⊥⊥
[
NMO,k
t |ΛMO,k

t

]
, ∀s 6= t, s, t ∈ {1, 2, . . . , T} . (6.10)

3. Assume that for the random variable R̃kt for the volume resting on the opposite side

of the LOB after the placement of limit orders and cancellations we have R̃kt =
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Σ
lp
s=1

[
Ṽ k′,s
t−∆t −N

C,k′,s
t

]
, where k′ = a if k = b, and vice-versa, and that the random

variable NMO,k
t ∈ N+ is distributed according to a truncated generalized Cox process

with conditional distribution NMO,k
t |R̃kt = r ∼ GCP

(
λMO,k
t

)
I(NMO,k

t < r) given by

Pr
(
NMO,k
t = n

∣∣∣ΛMO,k
t = λMO,k

t , R̃kt = r
)

=

(λMO,k
t )n

n!∑r
j=0

(λMO,k
t )j

j!

. (6.11)

4. Assume the independence property for random vectors of latent intensities uncondition-

ally according to

ΛMO,k
s ⊥⊥ ΛMO,k

t , ∀s 6= t, s, t ∈ {1, 2, . . . , T} . (6.12)

5. Assume that for each intensity random variable ΛMO,k
t ∈ R+ there is a corresponding

transformed intensity variable ΓMO,k
t ∈ R and the relationship for each element is given

by the mapping

ΛMO,k
t = µMO,k

0 F
(

ΓMO,k
t

)
(6.13)

for some baseline intensity parameter µMO,k
0 ∈ R+ and strictly monotonic mapping

F : R 7→ [0, 1].

6. Assume that the random variables ΓMO,k
t ∈ R, characterizing the intensity before trans-

formation of the Generalized Cox-Process, are distributed in interval [t−1, t) according

to a univariate skew-t distribution ΓMO,k
t ∼ St(mMO,k

t , βMO,k, νMO,k, σMO,k).

7. Assume that for every element NMO,k
t of market order counts, there is a correspond-

ing random vector OMO,k,s
t ∈ NN

MO,k
t

+ of order sizes. We assume that the element

OMO,k
i,t , i ∈

{
1, . . . , NMO,k

t

}
is distributed according to OMO,k

i,t ∼ H(·). Assume also

that market order sizes are unconditionally independent OMO,k
i,t ⊥⊥ OMO,k

i′,t for i 6= i′ or

t 6= t′.

We denote the LOB state for the real dataset at time t on a given day by the random

vector Lt, and this corresponds to the prices and volumes at each level of the bid and ask.

Utilising the stochastic agent-based model specification described above, and given a parameter

vector θ, which will generically represent all parameters of the liquidity providing and liquidity

demanding agent types, one can then also generate simulations of intra-day LOB activity and

arrive at the synthetic state L∗t (θ). The state of the simulated LOB at time t is obtained from

the state at time t− 1 and a set of stochastic components, denoted generically byXt, which are

obtained from a single stochastic realisation of the following components of the agent-based

models:
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• Limit order submission intensities ΛLO,b
t , ΛLO,a

t , order numbers NLO,b
t , NLO,a

t , and

order sizes OLO,a,s
i,t ,OLO,b,s

j,t , where s = −ld + 1 . . . lp, i = 1 . . . NLO,a,s
t , j =

1 . . . NLO,b,s
t .

• Limit order cancellation intensities ΛC,b
t , ΛC,a

t and numbers of cancellations NC,b
t ,

NC,a
t .

• Market order intensities ΛMO,b
t , ΛMO,a

t , numbers of market ordersNMO,b
t ,NMO,a

t and

market order sizesOMO,a
i,t ,OMO,b

j,t , i = 1 . . . NMO,a
t , j = 1 . . . NMO,b

t .

These stochastic features are combined with the previous state of the LOB,L∗t−1 (θ), to produce

the new state L∗t (θ) for a given set of parameters θ, given by

L∗t (θ) = G(L∗t−1 (θ) ,Xt). (6.14)

G(·) is a transformation that maps the previous state of the LOB and the activity generated

in the current step into a new step, much the same way as the matching engine updates the

LOB after every event. As we model the activity in discrete intervals, however, the LOB is

only updated at the end of every interval, and the incoming events (limit orders, market orders

and cancellations) are processed in the order specified in Section 6.1.1. Conditional then on a

realization of these parameters θ, the trading activity in the LOB can be simulated according to

the procedure described in Algorithm 1.

6.2 Simulation based likelihood calibration
A common attribute of all agent-based modelling frameworks is that they are able to gener-

ate realisations of the stochastic process they represent, in our case the LOB process. That is,

given a set of specifications for the parameters of the agents, the simulation of the agent model

is trivial and efficient. However, it is also commonly the case that there is either no direct

tractable (to evaluate pointwise) likelihood model or the likelihood model is complex and com-

putationally costly to evaluate. In these cases, traditional parameter estimation methods based

on likelihood inference are not directly applicable, when calibrating such models to observed

LOB data. There are, however, a range of methods, which have yet to be utilised widely in

the agent-based modelling literature, that allow one to still perform calibration of models, i.e.

parameter estimation, for models specified in a simulation based format.

The structure of our model ensures that we can capture features such as the non-linear

dependencies between the activity at different LOB levels. This activity includes limit order

submissions that can be passive or aggressive, cancellations and market orders, and can arise
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1: procedure SIMULATE(θ, T )

2: for t = 1 . . . T do

3: . Simulate Liquidity Provider Limit Orders Bid/Ask.

4: for k = a, b do

5: . Simulate dependent stochastic intensities for limit order submissions.

6: Sample ΓLO,k
t = γLO,k

t ∼MSt(mk,βk, νk,Σk) via Equation 6.8.

7: Apply transformation λLO,k
t = µk

0F (γLO,k
t ) in Equation 6.4.

8: . Simulate dependent limit order counts at each level bid/ask.

9: SampleNLO,k
t = nLO,k

t ∼ GCP
(
λLO,k
t

)
via Equation 6.2.

10: . Simulate limit order sizes.

11: for s = −ld + 1, . . . lp, i = 1 . . . NLO,k,s
t do

12: OLO,k,s
i,t ∼ H(·)

13: . Simulate Liquidity Provider Cancelled Limit Orders Bid/Ask.

14: for k = a, b do

15: . Evaluate total volumes at each level bid and ask.

16: Ṽ LO,k
t = V LO,k

t−1 +NLO,k
t = ṽLO,k

t

17: . Simulate dependent stochastic intensity for bid and ask cancellation counts.

18: Sample ΓC,k
t = γC,k

t ∼MSt(mC,k,βC,k, νC,k,ΣC,k) via Equation 6.8.

19: Apply transformation λC,k
t = µC,k

0 F (γC,k
t ) in Equation 6.4.

20: . Simulate dependent limit order cancellation counts at each level of the bid/ask.

21: SampleNC,k
t = nC,k

t ∼ GCP
(
λC,k
t

)
I(NC,k

t < ṽLO,k
t ) via Equation 6.9.

22: . Simulate Liquidity Demander Market Orders.

23: for k = a, b do

24: . Evaluate the current resting volumes on each level of the bid/ask.

25: R̃LO,k
t = Σ

lp
s=1

[
Ṽ LO,k′,s
t −NC,k′,s

t

]
= r̃LO,k

t

26: . Simulate stochastic intensities for market order submissions.

27: Sample γMO,k ∼ St(mMO,k
t , βMO,k, νMO,k, σMO,k) from skew-t distribution.

28: Evaluate transformation λMO,k
t = µMO,k

0 F (γMO,k
t ) in Equation 6.13.

29: . Simulate market order counts.

30: Sample NMO,k
t |r̃LO,k

t ∼ GCP
(
λMO,k
t

)
I(NMO,k

t < r̃LO,k
t ) via Equation 6.11.

31: . Simulate market order sizes.

32: for i = 1 . . . NMO,k
t do

33: OMO,k
i,t ∼ H(·)

34: Lt ←G(Lt−1,N
LO,a
t ,NLO,b

t ,NC,a
t ,NC,b

t , NMO,a
t , NMO,a

t ,OLO,a
t ,OLO,b

t ,OMO,a
t ,OMO,b

t )
return L = {L1, . . . , LT }

Algorithm 1: Stochastic agent-based LOB simulation
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from two different classes of agents. Given this complexity, obtaining the distributional form

of the likelihood will be impossible.

6.2.1 Background on Indirect Inference

There is a substantial body of academic work related to simulation-based likelihood inference,

and we focus on the subclass known as Indirect Inference, introduced by Smith [1990, 1993]

and Gourieroux et al. [1993] and covered extensively in Gouriéroux et al. [2010], Gallant and

Tauchen [1996] and the book length coverage in Gourieroux and Monfort [1997]. At its most

fundamental level, Indirect Inference is a technique for parameter estimation in simulation

based stochastic models. These are models for which one cannot evaluate the density for the

data generating model, but for which one can generate data given a set of parameters. One can

then compare the simulated data with the observed data, and obtain a measure of fitness for a

set of parameters based on this comparison.

To achieve this via Indirect Inference, one introduces a new model, called the ‘auxiliary

model’, which is mis-specified and typically not even generative, but can generally be estimated

easily via for instance maximum likelihood estimation. This auxiliary model has its own pa-

rameter vector β, with point estimator β̂. These parameters of the auxiliary model describe

aspects of the distributions of the observations. The idea of Indirect Inference is then to simply

try to match aspects of the estimated auxiliary model parameters on the observed data y, given

by β̂(y), and the estimated auxiliary model parameters on the simulated data y∗(θ), which is

obtained through simulation using parameters of the actual model θ, given by β̂(y∗(θ)).

One sees that Indirect Inference only requires that the model one wants to estimate can

be simulated, and proceeds by fitting a simpler auxiliary model to both the simulated and the

real data. Estimates of the model parameters are then obtained by minimising the difference

between the parameter vectors of the auxiliary model fit to the simulated data and the real data.

When considering the choice of an auxiliary model, the simplest form one may consider

involves a comparison formed between a single summary statistic calculated on the real ob-

served data, say y and also on the simulated synthetic data y∗. Alternatively, one may consider

methods that consider the use of a vector of summary auxiliary parameters, such as in Winker

et al. [2007] who consider minimization of a weighted L2 quadratic error function between the

real data vector of estimated moments and the synthetic simulated data equivalents. Others who

have adopted such methods include McFadden [1989] and Pakes and Pollard [1989] who each

proposed a modification of the method of moments estimator, called the Method of Simulated

Moments (MSM). Alternative simulation-based estimation techniques include the simulated
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maximum likelihood (SML) and the method of simulated scores (MSS). Such techniques have

been used in the estimation of a number of economic models, for example dynamic stochastic

general equilibrium (DSGE) models Ruge-Murcia [2007] and Markov models of asset pricing

Duffie and Singleton [1993].

In this section, the auxiliary models we consider are based on aspects of the LOB stochas-

tic process that we analyze. The key features we consider include the variation in the price and

the volume resting in the LOB. In particular, we would like to capture the clustering of volatility

in intra-day log returns and the dynamic behaviour of total volume in the first n levels of the

LOB.

In detail, the sequence for obtaining the Indirect Inference estimator is as follows:

1. Take the observed sequence of LOB states L1:T and transform them to auxiliary model

data set y = T (L1:T ).

2. Using observed auxiliary model data y, estimate auxiliary model parameters β̂ (y).

3. Initialize parameter vector of stochastic agent LOB model, in our case liquidity provider

and liquidity demander agent models parameters θ(0). Then simulate a synthetic realiza-

tion of the LOB model L∗1:T

(
θ(0)

)
from the stochastic agent model.

4. Take the synthetic sequence of LOB states L∗1:T

(
θ(0)

)
and transform them to auxiliary

model data set y∗(θ(0)) = T
(
L∗1:T

(
θ(0)

))
.

5. Using synthetic auxiliary model data y∗(θ(0)), estimate auxiliary model parameters

β̂0

(
y∗(θ(0))

)
.

6. Estimate Mahalanobis distance or Euclidean distances between auxiliary parameter vec-

tors D
(
β̂ (y) , β̂0(y∗(θ(0)))

)
7. Set optimal parameter vector θ̂opt = θ(0) with distanceDmin = D

(
β̂ (y) , β̂0(y∗(θ(0)))

)
.

8. Repeat steps 3 to 7 with proposed parameter vector θ(j) until convergence or for J total

iterations, with step (vii) applied conditionally on the event

Dmin > D
(
β̂ (y) , β̂j

(
y∗
(
θ(j)

)))
Several theoretical properties are known about the estimators obtained from such a data

generative procedure, see discussions in Smith [2008] and Genton and Ronchetti [2003]. Under

certain assumptions it can be shown that the Indirect Inference procedure produces a point
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estimator of the model parameters which is both consistent and asymptotically Normal under

fairly unrestrictive regularity conditions (Gourieroux and Monfort [1997]):

1. The likelihood, which we maximise, in order to estimate the auxiliary model parameters

β, tends asymptotically to a non-stochastic limit.

2. This limit is continuous in the simulation model parameters θ.

3. The so-called binding function linking the parameters of the auxiliary model to the pa-

rameters of the actual model we are trying to estimate is one-to-one and its derivative

with respect to the auxiliary model parameters is of full column rank.

In addition, Indirect Inference can be shown to be asymptotically efficient when the model is

correctly specified for the observed data.

6.2.2 Multi-objective Indirect Inference for simulation-based

model calibration
To perform estimation of our model, we develop a novel extension of simulation-based estima-

tion procedures which combines two key ideas: simulation-based likelihood inference based

on Indirect Inference, and multi-objective optimisation methods, typically utilised in genetic

search algorithms. We denote the resulting class of estimation methods as Multi-objective-II.

The proposed Multi-objective-II estimation framework, unlike standard indirect inference, is

designed to allow one to utilise multiple auxiliary models, each capturing different features of

the LOB stochastic process. In this sense, this is a multi-objective extension of standard In-

direct Inference procedures, which will naturally allow us to explore relevant features of the

target stochastic process given by the LOB.

To proceed with the specification of the multi-objective-II estimation methodology, in

addition to the LOB simulation framework described in Section 6.1, we need to specify

• The auxiliary model(s), each parameterised by a set of parameter vectors, generically de-

noted by β, which are determined according to the features of the observed data stochas-

tic process we would like to approximate with our model.

• The objective function quantifying the difference in the auxiliary model(s) parameters

fit to the real data (for which we will use the shorthand β̂ to represent β̂ (y)) and the

auxiliary model(s) parameter fits to the synthetically generated data (where we will use

the shorthand β̂∗(θ) for β̂(y∗(θ))
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• The search method that will explore the parameter space of the stochastic agent-based

model when performing simulation based optimization for model calibration.

6.2.2.1 The auxiliary models

The auxiliary model(s), sometimes known as the estimating function(s), serve to capture aspects

of the real data that we want reflected in our simulation, i.e. they do not necessarily have

to correspond closely to the data generating process, but each should capture some relevant

features that will inform estimation of the stochastic simulation model parameters. In standard

Indirect Inference methods, there is only one auxiliary model utilised, which usually comes

from a relatively simple class of models, for guidelines relating to selection see Heggland and

Frigessi [2004].

In our framework, for a given candidate parameter vector θ we generate M realisations

of trajectories of the LOB process, i.e.
{
L∗,mt (θ)

}
t>0,m∈{1,2,...,M}, from the stochastic agent-

based LOB model. Then for each auxiliary model, parameterised by some vector, generically

denoted by β, we utilise the simulated data to obtain estimates of the auxiliary model parame-

ters, for instance via a maximum likelihood framework:

β̂∗ (θ) = arg max
β

M∑
m=1

T∑
i=1

log(f(T (Lmt (θ))|T (L∗,mt−1(θ));β)). (6.15)

In principle, one can adopt as many auxiliary models as is deemed desirable for a partic-

ular application. However, several authors have explored the effect of the number of objective

functions K on the estimation performance under a multi-objective optimization framework.

For instance, Purshouse and Fleming [2003] and Hughes [2005] suggest that Pareto-ranking

based methods, such as the one used in this paper, scale poorly with the number of objectives.

Köppen et al. [2005] explains that an increase in the number of objectives may have a detrimen-

tal effect on the optimisation because the probability of dominance in a Pareto optimality based

multi-objective framework will go to zero. A second issue with having a large number of objec-

tives is the difficulty in comparing the results qualitatively, since in a task with K objectives, a

set of solutions lies in a K − 1 hyperspace. Based on this guidance, we focus on capturing two

core features of LOB stochastic process, related to the evolution of the price and the properties

of the volume resting near the top of the book.

Auxiliary Model 1 - Price features: If we denote the mid-price as Pmidt =
Pa,1t +P b,1t

2 then the

log return is defined as

Rt = ln
Pmidt

Pmidt−∆t
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Figure 6.3: One-minute log returns for stock BNP Paribas on a typical day.

where ∆t is a suitable interval, in our case 1 minute. The timeseries of log returns for a typical

day for an illustrative stock GDF Suez is presented in Figure 6.3.

This illustrative timeseries displays typical features of mid price dynamics, such as het-

eroskedasticity. The presence of ARCH effects was formally confirmed by an ARCH-LM test.

Hence, the volatility σt =
√
V ar(Rt|Rt−1, . . .) is not constant, and can be captured with a

generalised autoregressive conditionally heteroskedastic model, or GARCH(p,q) model, where

with Rt = σtηt and ηt ∼ N(0, 1), we have for the squared volatility

σ2
t = a0 + a1R

2
t−1 + . . .+ apR

2
t−p + b1σ

2
t−1 + . . .+ bqσ

2
t−q

where ai ≥ 0, bj ≥ 0 for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. For simplicity of the

auxiliary model we utilise a GARCH(1,1) model for this aspect of the data, parameterized by

β1 = (a0, a1, b1).

Auxiliary Model 2 - Volume features: In Figure 6.4 we demonstrate an example of the volume

on the bid and ask side for a typical day for stock GDF Suez. We fit an ARIMA model to this

data, in order to capture the time series structure of the LOB volumes. We will err on the side

of parsimony during model identification, as we would like to obtain an auxiliary model with

few parameters in our Indirect Inference procedure.

We first remove observed linear trends present in the LOB volume timeseries throughout

the day by taking first differences, see Figure 6.4. The resulting sample ACF and PACF is

given in Figure 6.4 and it indicates that an MA(1) model is appropriate. Hence, we fit an

ARIMA(0,1,1) model to the volume data.

6.2.2.2 Combining multi-objective optimisation and Indirect Inference

Thus far, for a given set of parameters in our stochastic LOB agent model, we have simulated

the order book process. This simulated data was then utilised to construct a framework in which
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Figure 6.4: Top row subplots: Total sell volume resting in the LOB in the first 5 ticks

away from the best bid (left), total buy volume resting in the first 5 ticks away from the best

ask (right) for stock GDF Suez on a typical day. Middle Row Subplots: First differences

of figures above. Bottom Row Subplots: Sample ACF and PACF.
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we obtained multiple fitted parameter vectors, one for each auxiliary model considered. We now

need to consider how to judge the suitability of the model parameter vector in capturing the true

observed LOB stochastic process dynamics.

In standard Indirect Inference based frameworks, one would concatenate all the auxiliary

model output parameter vector estimates into a single vector of auxiliary model parameters, in

order to produce a single distance measure or discrepancy between the simulated data and actual

data. This concatenation induces a loss in information, as for instance some auxiliary parameter

model discrepancies may be on different scales to others. Therefore, if a naı̈ve concatenation

is applied, this often results in domination of a select few criteria, rather than considering each

component in its own right.

We overcome this issue through the introduction of a multi-objective optimization frame-

work. Such methods naturally adapt the simulation-based estimation to allow for competing

criteria when assessing the suitability of the stochastic agent LOB model parameters via a col-

lection of auxiliary model fits. The multi-objective optimisation method thus enables us to

consider multiple distance measures, of discrepancy scores, as separate objective functions.

In this framework, the fitness, or suitability, of a parameter vector θ for the stochastic

agent LOB model is measured by simulating from the generative model and quantifying the

difference between each auxiliary model’s parameters. Each auxiliary model is fit to both the

tranformation of the observed data to obtain (β̂k) and to the transformation of the simulated

LOB data (β̂∗k (θ)), for which a discrepancy score is calculated by measuring the distance be-

tween the two. The most commonly utilised distance measures are based on some form of

weighted or unweighted norm, such as the Lp-norm, or Minkowski distance of order p, of

which the L∞-norm, the L1-norm and the L2-norm are frequently used in practice. We adopted

the L2-norm to measure discrepancies for both the price and volume-based auxiliary models

we considered, given for the k-th auxiliary model by

Dk(θ) = D
(
β̂k, β̂

∗
k (θ)

)
=

qk∑
i=1

([
β̂k

]
i
−
[
β̂∗k (θ)

]
i

)2
. (6.16)

for each qk-dimensional auxiliary model, k = 1, . . . ,K.

6.2.2.3 Multi-objective optimisation and the role of Pareto optimality

When our search is for an optimal parameter vector θ that should satisfy multiple objective

functions, in a vector D(θ) := [D1(θ), . . . ,DK(θ)] to be minimised, there are many cases

where there will not be a global minimum with respect to each individual objective. In this

case, one can consider as an alternative to the single optimal value produced by an optimisation

method, the notion of Pareto optimality, in reference to the Pareto efficient frontier. Informally,
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this is the search for solutions such that there is no solution in the search space that can unilat-

erally improve a single criterion (objective function) without worsening another criterion, and

this is formally defined in Definition 6.2.1 for the case of our estimation framework.

Definition 6.2.1 (Pareto Optimal Dominance of Parameter Solutions). Consider the set of K

auxiliary models producing parameter vectors {βk}k∈{1,2,...,K}, each based on an underlying

parameter vector θ ∈ Ω, that produce, for selected objective functions, the values D(θ) :=

[D1(θ), . . . ,DK(θ)]. Then the selection of θ ∈ Ω is called Pareto-optimal or (non-dominated)

with respect to the set of solutions in the feasible region Ω, if

@θ̃ ∈ Ω s.t D(θ̃) ≺ D(θ), (6.17)

where we say thatD(θ) dominatesD(θ̃), denoted byD(θ) ≺ D(θ̃), if

Dk(θ) ≤ Dk(θ̃) ∀k ∈ {1, 2, . . . ,K} and ∃k s.t. Dk(θ) < Dk(θ̃). (6.18)

From this, we can then state the overall objective, incorporating allK auxiliary models and

a common selection of L2-norm objective functions for the parameter vector θ of the stochastic

agent-based model as follows

θ̂ = arg min
θ∈Ω
{D1(θ), . . . ,DK(θ)}

= arg min
θ∈Ω

{
D
(
β̂1, β̂

∗
1 (θ)

)
, . . . ,D

(
β̂K , β̂

∗
K (θ)

)}
= arg min

θ∈Ω

{
q1∑
i=1

([
β̂1

]
i
−
[
β̂∗1 (θ)

]
i

)2
, . . . ,

qK∑
i=1

([
β̂K

]
i
−
[
β̂∗K (θ)

]
i

)2
}

subject to θ1L ≤ θ1 ≤ θ1U , ..., θnL ≤ θn ≤ θnU

(6.19)

where it is understood that this is a joint minimisation of the objective functions and that com-

paring two parameter vectors θ1,θ2 is in terms of their relative domination, as per Equation

6.18. Here [θiL , θiU ], for all i, denote the boundaries of the feasible region Ω.

To complete the specification of the multi-objective Indirect Inference simulation based

estimation framework we propose, we require a method to search the constrained parameter

space Ω for feasible and Pareto optimal solutions. A variety of stochastic search methods are

available for use in this context, see discussion in Coello et al. [2007].

We propose the use of an evolutionary genetic search method for this purpose, known in

the literature as Multi-Objective Evolutionary Algorithms (MOEAs). We develop a version of

such a stochastic search framework which combines the widely utilised NSGA-II genetic search

algorithm by Deb et al. [2002], which is a Pareto-ranking based method, with an additional mu-

tation kernel we designed specifically for a covariance matrix mutation operator, based on the
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framework developed in Peters et al. [2012]. This additional mutation component is combined

with the framework of NSGA-II, to ensure that the proposed covariance matrices in the stochas-

tic agent LOB model, which are proposed at each step of the search, remain positive definite

and symmetric. Details of this genetic search algorithm are provided below.

6.2.3 Adaptive genetic evolutionary search for multi-objective op-

timisation

A search strategy is also required to explore the parameter space in seeking Pareto optimal sets

of parameters for the agents, i.e. liquidity provider and liquidity demander parameter vectors

in the stochastic LOB model. In this regard, one may consider a multi-objective evolutionary

algorithm (MOEA) framework. Such approaches have been the focus of extensive study over

the past 15 years (see, e.g. Zhou et al. [2011], Eiben and Smith [2003], and references within)

and would be particularly applicable to the problem at hand. There are several reasons for their

popularity: they are inherently parallel, they feature operators to combine and mutate candidate

solutions to rapidly arrive at improved solutions and are able to capture multiple Pareto-optimal

solutions during the optimisation [Zitzler et al., 2000], which can be spread out across the

Pareto front. In addition, there has been recent advances to better understand the relationship

between such optimisation search frameworks and stochastic genetic search methods, see for

instance discussions in Emmerich et al. [2013]. In this paper, we explore the utilisation of

adaptive mutation kernels in the simulation based Multi-objective-II framework to efficiently

explore the parameter space, where our approach merges traditional genetic search algorithms

with adaptive Markov kernels utilised in adaptive MCMC methods, such as those studied in

Haario et al. [2006], Roberts and Rosenthal [2009] and Andrieu et al. [2006].

The MOEA used in this paper is based on the NSGA-II (Non-dominated Sorting Genetic

Algorithm II), developed by Deb et al. [2002]. This is an elitist MOEA, and in every iteration,

combines the best parent solutions with the best offspring to produce a new family of candi-

date solutions. It produces a diverse Pareto-optimal front (i.e. the solutions are well-spread out

across the front, due to the algorithm’s use of a crowding distance operator) with low computa-

tional requirements (O(mN2) computational complexity, where m is the number of objectives,

and N is the population size).

The algorithm is perhaps the most popular MOEA and is frequently used as a performance

benchmark for other algorithms [Coello et al., 2007]. It has been used in various applications,

including the generation expansion planning problem in power systems [Kannan et al., 2009]

and for balancing objectives in groundwater monitoring designs [Reed and Minsker, 2004].
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In addition, it has been been further developed in a Bayesian setting, in order to solve dis-

crete multi-objective decomposable problems (see, e.g. Khan [2003], Laumanns and Ocenasek

[2002], Khan et al. [2002]). Within this algorithm, we extend the features by also incorporating

an adaptive global and local mutation kernel for a subset of the stochastic agent-based LOB

model parameters θ. We first present an overview of the optimisation algorithm structure:

1. First, a family, or population, of N candidate solutions is initialised randomly from the

feasible region.

2. For each solution, the objective functions are calculated and a rank is obtained reflecting

Pareto dominance. That is, solutions are sorted into fronts, with the first front consisting

of solutions that are not dominated by any other solutions, the second consisting of solu-

tions that are only dominated by a single solution, and so on. Solutions are also assigned

a crowding distance value, indicating the Euclidean distance from other solutions on the

same front.

3. From this family of solutions, the crowding comparison operator is applied, and chooses

the best solutions according to their rank, and in the case of ties, according to the crowd-

ing distance value.

4. Then, one or more evolutionary operators (detailed in the following section) are applied

to evolve the selected set of solutions.

5. The new solutions are combined with the current family of solutions and the process is

repeated from the second step, for a set number of iterations.

The algorithm outputs the non-dominated set of solutions with the highest ranking. We

provide details about the operators used in multi-objective Indirect Inference procedure in the

following section.

6.2.4 Algorithm settings and evolutionary operators
Details of a large number of evolutionary operators used in MOEAs can be found in Coello et al.

[2007]. In NSGA-II, one has to first select the size of the population of candidate solutions for

every iteration of the algorithm, in addition to the number of iterations (called generations in

the MOEA nomenclature). In our optimisation, we use a population size of N = 40 parameter

sets, and run the optimisation for a total of 40 generations.

We referred to a number of operators used to evolve and choose amongst the set of solu-

tions, and we provide further information here about their function:
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• Selection operator: From the second iteration of the algorithm onwards, there will be

2N sets of candidate solutions in step 3. The best N solutions are chosen based on a)

dominance and b) crowding distance, or the distance of the solution from its neighbours.

If the number of solutions on the first front is less than N , they are all selected, and the

remainder are taken from further fronts. In the case where one must select fewer solutions

than the number of solutions on a particular front, the solutions with the highest crowding

distance value are chosen.

• Crossover operator: The Simulated Binary Crossover (SBX) operator is used. From

two candidate solutions θ1, θ2, two new solutions θ′1, θ
′
2 are formed, where the k-th ele-

ments are as follows:

θ′1,k =
1

2
[(1− β̄)θ1,k + (1 + β̄)θ2,k] (6.20)

θ′2,k =
1

2
[(1 + β̄)θ1,k + (1− β̄)θ2,k]. (6.21)

Here, β̄ is a random sample from a distribution with density

β̄ =


(αu)

1
ηc+1 if u ≤ 1

α

( 1
2−αu)

1
ηc+1 otherwise

where u ∼ U(0, 1) and α = 2− β−(ηc+1), with

β = 1 +
2

θ2,k − θ1,k
min [(θ1,k − θkL) , (θkU − θ2,k)] . (6.22)

The new solutions are guaranteed then to remain within the solution bounds [θkL , θkU ].

We use the crossover operator with probability pc = 0.7 and a distribution index ηc = 5.

• Mutation operator: The polynomial mutation operator is used. The mutation operator

perturbs elements of the solution, according to the distance from the boundaries.

θ′k = θk + δ̄(θkU − θkL)

where we have for δ̄

δ̄ =


[
2γ + (1− 2γ)(1− δ)ηm+1

] 1
ηm+1 − 1 if γ < 0.5

1−
[
2(1− γ) + 2(γ − 0.5)(1− δ)ηm+1

] 1
ηm+1 if γ ≥ 0.5

with

δ = min [(θk − θkL) , (θkU − θk)] .

Here, γ ∼ U(0, 1) and the distribution index ηm = 10. The polynomial mutation opera-

tor is used with probability 0.2.
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Covariance matrix mutation and sampling: The NSGA-II algorithm discussed above is only

able to produce binary, integer, or real encodings for the output solution vectors. However,

the stochastic process for the limit order submission activity by liquidity providers requires

the specification of a positive definite and symmetric covariance matrix for the generation of

intensities from a multivariate skew-t distribution. We cannot naively extend the evolutionary

operators above (crossover and mutation) to produce new sets of covariance matrix candidate

solutions as this would not guarantee the positive definiteness and symmetry constraints of the

covariance matrix are preserved. We thus propose an extension to the MOEA, effectively an-

other operator that will generate candidate solutions for the covariance matrices, such that every

new generation remains in the manifold of positive definite matrices. This operator will gen-

erate new candidate covariance matrices once the evolutionary operators discussed previously

have been applied.

To ensure that the optimisation algorithm searches the space of feasible solutions effi-

ciently and does not get stuck in a suboptimal region of the space of possible solutions, our

covariance matrix sampling operator has two components to undertake exloration and exploita-

tion type moves. The mutation kernel is comprised of a mixture of Inverse Wishart distributions

with different parameters, as per the proposal of Peters et al. [2012], one mixture component to

provide global search (exploration) and a second mixture component to provide local searches

(exploitation). The density of the Inverse Wishart distribution is

f(X; Ψ, p) =
|Ψ|

v
2

2
pd
2

Γd( p
2

)
|X|−

p+d+1
2

e
− 1

2 tr(ΨX−1)

where X,Ψ ∈ Rdxd and positive definite, and Γd is the d-variate gamma function. For the

efficiency of the covariance mutation, we carry out an adaptive learning strategy for the specifi-

cation of the local mixture component. In this case, the algorithm will explore the local region

with high probability, but make potentially larger moves with smaller probability.

We now describe one complete covariance mutation step. In the n-th generation of the

MOEA, we generate {Σn,i} , i = 1 . . . N from a mixture distribution q(Σn,i) defined as follows:

q(Σn,i) = (1− w1)IW(Ψn, p1) + w1IW(Ψ, p2)

where p1, p2 are degrees of freedom parameters with p2 < p1, and where w1 is small so that

sampling from the second distribution happens infrequently. Here Ψ denotes an uninformative

positive definite matrix, with the effect that sampling from the second distribution leads to

moves away from the local region being explored. Ψn is also a positive definite matrix, fitted

based on moment matching to the sample mean of the successfully proposed candidate solutions
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in the previous stage of the Multi-Objective optimisation as follows:

Ψn =
1∑n
t=1w

t

n∑
t=1

wt
1∑N

i=1
1
rt,i

N∑
i=1

1

rt,i
Σ̃t,i

where rt,i is the non-domination rank of the i-th solution in the t-th generation, and wt with

w < 1 is an exponential weighting factor.

6.3 Stochastic agent LOB model assessment and cali-

bration to real LOB data
We have provided a description of the stochastic agent-based LOB model we have developed for

modelling trading interactions and their dependency. In addition, we have developed a method

for the calibration of model parameters to observed LOB data. In this section, we illustrate the

results of this calibration on real data, through a sequence of studies which aim to practically

assess the importance of each component of the stochastic agent LOB model specification. To

achieve this, we make a number of model simplifications and progressively relax these simpli-

fying assumptions, in order to provide an understanding of the role each feature of our proposed

model plays in the simulation framework. The reference model is the basic framework against

which we compare the more detailed versions of the model, as detailed below.

6.3.1 Reference LOB model
In the stochastic agent-based LOB model, the liquidity provider agent has limit order sub-

mission and cancellation components which each require the specification of four independent

lt-dimensional multivariate skew-t distributions for the bid and ask sides, with lp = 5 ‘passive’

levels and ld = 3 ‘direct’, or aggressive levels for a total of lt = 8 actively modelled levels for

each side of the book. For each of these stochastic model components we require the estimation

of the parameters: m ∈ Rd, the location for the mean intensity vector; γ ∈ Rd, the skewness

of the stochastic intensity vector; ν ∈ R+ which directly influences the heavy-tailedness of

the stochastic intensity vector and Σ ∈ Rd×d the covariance matrix of the stochastic intensity

vector for order arrivals. We consider aggregate activity in 10 second intervals, and for the 8.5

hour trading days for the asset under consideration here, we have T = 3060 intervals in the day.

The basic reference model is characterised by the following model assumptions:

• We assume that the associated limit order submission distributions for the bid and ask

have common parameter value settings. In addition, market order submission distribu-

tions for the bid and ask are also assumed to have common parameter value settings. This
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Figure 6.5: For stock BNP Paribas, the intensity of the volume process on either side,

where the shading of each bin indicates the average number of shares available at those

prices in that period. The plot on the bottom shows the evolution of the spread throughout

the trading day.
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is reasonably consistent with empirical observations for a large number of assets when

observing the submission activity on either side of the LOB throughout the trading day.

• Since the vast majority of orders get cancelled prior to execution, we consider the pa-

rameters of the distribution of cancellations to also match the distribution of limit order

placements.

• We also set m = 0 and consider the skewness vector, γ, to take a common value in all

levels of the bid and ask such that γ = γ01, where 1 is a vector of ones.

• The monotonic mapping F (·), transforming the random variables ΓLO,k,s,ΓC,k,s,ΓMO,k

into intensity random variables ΛLO,k,s,ΛC,k,s,ΛMO,k is set as the CDF of the standard

Normal. This transformation is necessary in order to ensure that intensities are positive,

and to bound the event counts.

• For the baseline intensities of limit order activity at each level, we assume that they

will be the same for the ‘passive’ limit orders on both sides, i.e. µLO,a,10 = . . . =

µ
LO,a,lp
0 = µLO,b,10 = . . . = µ

LO,b,lp
0 = µLO,p0 , while ‘aggressive’ limit orders will have

a different limit order intensity, i.e. µLO,a,00 = . . . = µLO,a,−ld+1
0 = µLO,b,00 = . . . =

λb,−ld+1
0 = µLO,d0 . Market order baseline intensities are also equal on either side, i.e.

µMO,a
0 = µMO,b

0 = µMO
0 . The cancellation baseline activity will be the same as the

submission baseline activity.

• Finally, we assume constant order sizes, i.e. OLO,k,si,t = c = OMO,k
j,t for all i ∈{

1, . . . , NLO,k,s
t

}
, j ∈

{
1, . . . , NMO,k

t

}
, k ∈ {a, b}, s ∈ {−ld + 1, . . . , lp} and

t ∈ {1, . . . , T}.

Hence, the basic reference model has the following parameter vector
{
µLO,p0 , µLO,d0 , µMO

0 , γ0,

ν, σMO
}

, as well as the covariance matrix Σ to be estimated.

The cancellations are modelled by a dynamically evolving volume process, i.e. the Cox

process is truncated to the available number of orders at each level, as specified in the model by

NC,k,s
t |

{
∼
V
LO,k,s

t = v

}
∼ Po(λC,k,st )I(NC,k,s

t < v) where we denote by V LO,k,s
t−1 the volume

at levelLi at the start of the [t−1, t) interval and
∼
V
LO,k,s

t is the volume available after the arrival

of the limit orders at time t, but before the cancellations and executions. One can simulate from

the model, in order to obtain the state of the LOB at time t, L∗t , and thus the available volume

v, so that one can then draw from a truncated Poisson distribution with a truncation limit of v.

Before we begin the study of the stochastic agent-based LOB model and its calibration and

simulation behaviour, we first show for a representative trading day, the evolution of the spread,



6.3. Stochastic agent LOB model assessment and calibration to real LOB data 180

as well as the intensity of the volume process around the top of the book, for one of the most

liquid stocks in the CAC40, namely BNP Paribas, in Figure 6.5. This provides an illustration

of the LOB dynamics we should aim to recover with the model once accurately calibrated. We

estimate the model on the data from this day, as an illustration of the calibration procedure.

6.3.2 Reference model: Calibration
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Figure 6.6: Objective function values for the parameter vectors produced by the multi-

objective II method. These are grouped by non-domination rank, with a rank of 1 indi-

cating non-dominated vectors, a rank of 2 indicating vectors dominated only by a single

other vector and so on. Note that the points in each group form a Pareto front, a feature of

the optimisation.

We present in Table 6.1 the results of the estimation using the multi-objective II approach

proposed in this paper. There are 8 non-dominated solutions spread out accross the Pareto

optimal front, each of which also has an associated covariance matrix, which has not been

included here due to space considerations, instead we provide the trace as a summary. In the

table, we also present a further 4 solutions with a non-domination rank of 2, i.e. parameter

vectors which were dominated in both objective functions by only one other parameter vector.

We present the non-domination rank, as well as the objective function values of the entire final

parameter population in Figure 6.6. We note that in terms of the 2 objective function values

associated with these parameter vectors, these are spread out across the Pareto front.

We assess the fit by a qualitative comparison of the simulations produced with the es-

timated parameters. In Figure 6.7 we present, for the first 2 Pareto optimal solutions of the
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parameter vectors in Table 6.1, summaries of the price process for repeated simulations, as well

as an example of the LOB evolution throughout the day. We see that the two Pareto optimal

solution parameter vectors produce a broad variety of different price trajectories over repeated

simulations. In particular, some points on the Pareto front of solutions for this basic reference

model produce a time series of simulated prices which replicates a trading day with relatively

volatile trade activity, whilst other points on the Pareto front favour more constrained trading

simulated price activities. To understand how this may occur, we note that this is likely to be

due to the relatively high baseline rate of market orders compared to baseline limit order rates

in the first set of Pareto optimal solutions, compared to the second.

µLO,p0 µLO,d0 µMO
0 γ0 ν0 σMO

0 Tr(Σ)

1 30.84 8.16 4.75 -0.18 33.70 1.78 7.11

2 31.16 5.13 4.41 9.96 28.07 9.95 4.60

3 31.16 5.13 4.41 9.96 21.74 9.95 5.52

4 29.82 5.24 4.45 -0.52 20.57 4.70 4.26

5 46.87 7.42 4.77 0.64 28.34 8.81 6.82

6 22.05 8.18 8.13 -1.68 24.65 1.83 5.70

7 19.83 5.41 0.68 -0.28 28.85 2.15 5.25

8 12.95 3.12 2.93 2.35 35.25 3.58 6.01

9 30.84 8.16 4.75 -0.18 33.70 1.78 5.14

10 31.16 5.13 4.41 9.96 28.07 9.95 5.20

11 31.16 5.13 4.41 9.96 21.74 9.95 7.30

12 29.82 5.24 4.45 -0.52 20.57 4.70 4.32

Table 6.1: Non-dominated solutions after 40 iterations, with a population size of 40.

In Section 6.3.4, we provide further calibration results for the reference model, for multiple

assets, over an extended period of 15 trading days. Summarising these results, we show that

within the set of solutions produced by our estimation procedure, there is very commonly a

subset which produce simulations which are similar to real trading observations in terms of

their price and volume behaviour.
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6.3.3 Relaxing assumptions of the reference stochastic agent LOB

model
The baseline model results are encouraging, however we still need to determine what influence

the simplifying statistical model assumptions made in the reference model specification have

on the calibration performance. This will now be assessed by progressively relaxing the as-

sumptions. Our criterion for improvement relative to the reference model will be a reduction in

the values of the objective functions of the solutions on the Pareto optimal front. We will only

suggest that particular features should be relaxed if we observe such an improvement.

6.3.3.1 Incorporating an order size distribution

In our basic reference model, we assumed that orders sizes are constant, i.e. all limit order

submissions, cancellations and executions were from an equal number of shares. This is similar

to the model of Cont et al. [2010], which assumed that all orders are of unit size, which they set

to correspond to the average size of limit orders observed for the asset. Abstracting away the

order size aspect is an approximation one can make in order to simplify the model. However,

such a simplifying assumption is not likely to be supported by the data, as we illustrate in

Figure 6.8. Clearly, one observes that there is a range of distribution shapes for the order sizes

of different assets.

It is clear that the distribution of order sizes will be affected by features such as minimum

order sizes on an exchange (in number of shares, lots, or weight, depending on what is being

traded). We observe empirically that for a range of equities traded in a number of countries,

the distribution of order sizes has clear peaks at round figures - see Figure 6.8 for evidence of

clustering order volumes at multiples of 100 shares, for example. This seems to be independent

of the level at which they are submitted, whether it is a buy or a sell order, as well as the intensity

of the order submissions in that period.

Therefore, we present a case study where we relax the assumption of a fixed order size,

by considering instead a stochastic model where we assume that the order size is drawn from a

mixture of distributions. In this case, we assume that both the limit and market order sizes are

obtained by sampling from the following Gamma mixture

OLO,k,si,t ∼ wGamma(κ1, θ1) + (1− w)Gamma(κ2, θ2),∀i, t, k, s (6.23)

where

Gamma(O;κ, θ) =
1

Γ(κ, θκ)
Oκ−1 exp

[
−O
θ

]
; O ∈ R+, (6.24)

with positive shape parameters κ1, κ2 and positive scale parameters θ1, θ2. We set κ1 = 1, κ2 =
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Figure 6.8: Histograms of order sizes for 2 CAC40 stocks - ACAp(left) and BNPp (right)

2 as we observed there was a mode present in the empirical distributions of order sizes, and we

estimated the scale parameters for each mixture component to place the mode in the appropriate

locations. Hence, we additionally estimate the parameters θ1, θ2 and the mixture weight w.

We run the stochastic optimization framework using the same settings (a parameter popu-

lation of 40 candidate solutions and an evolution over 40 generations) and calibrate the relaxed

reference model with the stochastic model for the order sizes to the same data set used in the

reference model fit, i.e. the LOB data for BNP Paribas over an entire day. We obtain a Pareto

optimal front which again contained multiple parameter vector solutions which were spread out

over the Pareto front, indicating a successful exploratory search by the genetic search frame-

work. Importantly, as shown in Figure 6.9 we observe the realized objective function values

for the relaxed reference model, which we observe are clear improvements on the objectives

achieved by the comparison basic reference model case in which the order sizes were fixed.

Figure 6.14 shows the intensity of the volume process and the evolution of the spread

for a simulated trading day for 2 of these parameter vectors selected from the Pareto optimal

front. Similarly to the reference model, the price and volume trajectories are still quite flexible

between the different feasible, Pareto optimal solutions obtained for this calibration.

6.3.3.2 Introducing asymmetry and skewness to Limit Order intensity

by depth

In the reference model, we assumed that the skewness parameter vector γ for the multivariate

skew-t distribution assumed for the number of limit orders and cancellations at each level of the

LOB were fixed to a common skew. This parsimonious choice was encoded in the model by the

reference model assumption γLO,a = γLO,b = γ = γ01 and γMO = γ0, i.e. there was only
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Figure 6.9: Objective function values for the parameter vectors produced by the multi-

objective II method, in the case where we assume that order sizes are drawn from a mixture

of Gamma distributions.

one skewness parameter which was common to all levels on both the bid and ask. The effect of

this assumption on the price and volume dynamics in the reference model is now assessed by

relaxing this feature and performing calibration of a relaxed version of the reference model to

the same day of data from BNP Paribas.

We now allow γLO,a = γLO,b = γ = { γLO,−ld+1, . . . , γLO,lp } = γC,a = γC,b, in

order to gain additional flexibility in modelling the skewness in the multivariate counts for limit

order and cancellation data. We also allow γMO,a = γMO,b = γMO
0 to enable the skewness of

the market order data to be modelled separately. This will entail estimating an additional ld+ lp

parameters. Again, we assess whether the Pareto optimal solutions improve in minimizing the

objective functions under this relaxation of the constraints in the reference model assumptions.

Table 6.2 shows that in none of the parameter vectors produced by the multi-objective II

estimation method are the elements of the skewness vector close to being equal to one another,

which indicates that the use of the skew vectors with different skew at each level of the LOB

for the bid and ask, in the Multivariate Skew-t distribution, is appropriate for the calibration to

real data. As expected, incorporating these features improves the model power and suitability,

measured by the objective function values achieved by the solutions in the Pareto optimal front,

for the simulated stochastic agent LOB model realizations, when compared to the reference

model.
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µLO,p0 µLO,d0 µMO
0 γMO

0 ν0 σMO
0 γLO,−2

0 γLO,−1
0 γLO,00 γLO,10 γLO,20 γLO,30 γLO,40 γLO,50 Tr(Σ)

1 39.35 4.00 0.54 -7.36 46.24 7.89 4.32 -7.30 1.89 -4.49 -7.86 4.51 4.78 -6.72 7.97

2 38.48 3.98 5.81 -1.35 8.63 8.21 7.41 4.35 7.47 -6.86 -2.29 1.16 4.74 -5.77 5.82

3 39.54 3.39 0.54 -6.46 46.24 7.89 4.32 -7.30 3.13 -4.49 -7.86 2.67 4.78 -6.72 6.41

4 11.33 2.56 2.53 6.90 3.14 1.98 -3.32 -3.55 -8.42 -3.32 -5.53 -4.10 -4.58 4.40 5.53

5 37.61 3.98 1.16 -1.35 2.59 8.21 4.40 -7.50 -6.64 -7.61 -7.56 1.20 4.78 -5.11 7.41

6 18.25 4.00 1.05 -2.34 2.52 8.21 -0.05 -8.93 -3.35 -7.37 -7.43 3.67 2.81 -2.61 5.67

7 13.40 5.97 6.14 -1.25 22.02 8.69 6.11 -1.65 -6.36 -8.16 -2.75 3.34 8.76 6.81 6.42

8 39.35 4.00 0.71 -6.44 5.67 2.25 -3.25 -7.34 1.89 -4.47 -7.86 4.51 4.78 -7.18 4.42

Table 6.2: Non-dominated solutions for the model where the elements of the skewness

vector are allowed to vary.

6.3.4 Further results

In the previous part of this section we presented results for both the calibration of the reference

model and models where we relaxed certain assumptions. This calibration was performed using

the data from a single asset (BNP Paribas) over one day, in order to be able to present detailed

results regarding objective function values, LOB evolution over individual simulations using

individual solutions on the Pareto front, as well as summaries of repeated simulations. In this

section, we repeat the calibration of the reference model for 5 assets (BNP Paribas, Credit Agri-

cole, Total SA, Technip SA and Sanofi) every trading day between 01/02/2012 and 21/02/2012.

The stocks were chosen from the French CAC40 stocks, and are therefore amongst the most

liquid stocks in the country. Specifically, we chose assets that are representative of different

industries (banking, energy and pharmaceutical) and have different ticksizes (minimum price

increments) and market capitalisations, as these are some of the main factors that affect daily

trading activity.

We summarise the results as follows: We first calibrate the reference model for each day

and each asset individually, from which we obtain a set of J solutions (i.e. non-dominated

solutions on the Pareto front) every time. For each solution (parameter vector θ̂j , j ∈ 1 . . . J),

we simulate the LOB model N=50 times and fit the auxiliary models to the simulated data to

obtain N auxiliary model parameter vectors βi,j,∗1 and βi,j,∗2 , i ∈ 1 . . . N . The former are the

ARIMA model parameters fit to the volume process on the bid and ask side, and the latter are

the GARCH model parameters fit to the log returns.

We can then construct the empirical distribution for each parameter in these vectors, and

determine the 95% confidence interval. From this, we can determine whether the parameter

coefficients of the auxiliary model fit to the real data lie within this range, for each asset on the

Pareto front. In Figures 6.11 and 6.12, we show for each day, each asset and each auxiliary
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Figure 6.10: Objective function values for the parameter vectors produced by the multi-

objective II method, in the case where we relax the assumption that the elements of the

skewness vector in the Multivariate Skew-t distribution are equal.

model parameter, the proportion of solutions on the Pareto front for which the coefficients of

the auxiliary model fit to the real data lie within the 95% confidence interval of the coefficients

of the auxiliary model fit to the simulated data.

We note that the proportion varies over time, as one would expect, as not all solutions on

the Pareto front will give rise to LOB dynamics that closely reflect those observed in real data.

However, we note that this proportion is generally more than 25% for most parameters and most

days. Thus, within the set of solutions produced by our estimation procedure, there is a subset

which produce simulations which are similar to real trading observations in terms of their price

and volume behaviour, which are the summaries of the LOB which our auxiliary models related

to.

6.4 Regulatory interventions via the stochastic agent-

based LOB model
In contrast to Westerhoff [2003], in our model the agents’ strategy is not dependent on prof-

itability. This is because of the division of our trading agents according to their liquidity con-

siderations: Traders often consume liquidity due to considerations other than profit, such as

rebalancing the weights of their holdings in a fund. They cannot simply choose to become liq-

uidity providers because of the superior profitability of these agents, for a number of reasons.
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Figure 6.11: The proportion of solutions on the Pareto front for which the coefficients

of the auxiliary model fit to the real data lie within the 95% confidence interval of the

coefficients of the auxiliary model fit to the simulated data, for each trading day between

01/02/2012 and 21/02/2012 for 2 stocks. (Left): BNP Paribas. (Right): Credit Agricole.
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Figure 6.12: The proportion of solutions on the Pareto front for which the coefficients

of the auxiliary model fit to the real data lie within the 95% confidence interval of the

coefficients of the auxiliary model fit to the simulated data, for each trading day between

01/02/2012 and 21/02/2012 for 3 stocks. (Left) Total SA. (Right) Technip SA. (Bottom):

Sanofi.
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These include the investment in technology required to be able to carry out such a strategy in the

millisecond environment, the inventory they will be required to hold, and, possibly, regulatory

or exchange obligations they will have to adhere to.

Our model simulates the activity of a stock on a single LOB, on a single day. The introduc-

tion of MiFID has increased competition and allowed for the trading of stocks in pan-European

multilateral trading facilities (MTFs). The trading on one venue will undoubtedly affect the

trading interest in another, through the activity of cross-market arbitragers. In addition, there is

the possibility that regulation can be imposed on one market, but not another, which will have

implications for the efficacy of the regulation itself. Both Mannaro et al. [2008] and Wester-

hoff and Dieci [2006] have considered this in the context of an ABM, but with simpler models

than the one considered here, which do not take into account the liquidity considerations of the

agents.

6.4.1 Quote-to-trade ratio

The intervention we will consider here, as an example of the type of experiment that can be

performed using our model, is the imposition of a quote-to-trade ratio. This ratio is already

considered in certain exchanges, such as the LSE, which allows for 500 quotes per trade. Further

quotes are allowed in the case of the LSE, but are subject to a 5 pence surcharge for every order1.

In our model, we have made the assumption that the baseline limit order submission (or quote)

intensity at every level λLO,a,i0 is equal to the baseline cancellation intensity λC,a,i0 . That is,

potentially all orders submitted in an interval can be cancelled prior to execution.

Given the setup of our model, it is more convenient to enforce a stochastic limitation for

excessive trading, rather than a hard limit of (say) 100 limit orders to 1 market order. For a

quote-to-trade ratio q = 100
1 , we impose the limit by specifying that for the cancellation activity

λC,a,it = (1 − 1
q )λLO,a,it . This is an approach also taken by Aı̈t-Sahalia and Saglam [2013],

who, rather than enforcing a strict minimum resting time of 500 milliseconds, instead subject

every order to a random minimum resting time that is exponentially distributed, but with the

same mean.

We evaluate the outcome of such an intervention in our simulated LOB for 3 different

quote-to-trade ratios, i.e. q ∈
{

500
1 , 100

1 , 20
1

}
. Figure 6.13 shows the effect of the regulation on

individual realisations of daily activity, as well as the price process in repeated realisations. We

1http://www.londonstockexchange.com/products-and-services/trading-

services/pricespolicies/tradingservicespricelisteffective2december2013.

pdf

http://www.londonstockexchange.com/products-and-services/trading-services/pricespolicies/tradingservicespricelisteffective2december2013.pdf
http://www.londonstockexchange.com/products-and-services/trading-services/pricespolicies/tradingservicespricelisteffective2december2013.pdf
http://www.londonstockexchange.com/products-and-services/trading-services/pricespolicies/tradingservicespricelisteffective2december2013.pdf
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have chosen one of the parameter vectors from the estimation of the basic model which gener-

ally showed excessive volatility. We note that, in our model, increasing q (and thus, reducing

the relative number of cancellations) has the effect of constraining the mid-price process, and

thus, curbing excess volatility.

While one cannot draw definite conclusions about the effect of such an intervention

through an ABM simulation, it is a step a regulator may consider, particularly when comparing

different approaches. For example, even in the implementation of a quote-to-trade ratio, the

regulator may have a number of choices, for example, regarding the period over which they

consider the ratio. We argue that our model can be informative for such considerations, and,

given its flexibility, can give rise to a large number of computational experiments.

6.5 Discussion
We have presented a new form of agent-based model, in order to capture features of the com-

plex stochastic process that is the Limit Order Book. The agent types we considered are rep-

resentative of the classes of market participants in modern financial markets: In electronic

LOBs, traders can be broadly separated according to their liquidity requirements, into liquid-

ity providers and liquidity demanders. This is certainly more representative of the motivation

for trading activity, compared to the chartist and fundamentalist models considered in the past

(e.g. Frankel and Froot [1988], Kirman [1993], De Grauwe [1994], Farmer and Joshi [2002],

Westerhoff and Reitz [2003], Manzan and Westerhoff [2007]).

We have not modelled the behaviour of individual agents, but rather the activity resulting

from the entire class of agents. This has enabled us to directly model the dependence in event

(limit order submission, cancellation and market order) activity between the different levels of

the LOB, which would not have been possible by considering simpler formulations for indi-

vidual agent strategies. We have employed a flexible Multivariate Skew-t model for the event

intensities, which is unique for its ability to capture asymmetric and heterogeneous dependence,

and its scalability in high dimensions. This has resulted in a very general formulation of the

ABM, which also enables one to model the heterogeneity in order sizes.

Unsurprisingly, for such a model, it is difficult to write down the likelihood for estima-

tion purposes, and a further contribution of this paper is a new simulation-based estimation

approach. We termed this the Multi-Objective Indirect Inference estimation method, and in

common with related approaches, our method only requires that the model is simulable and will

produce parameter estimates, such that the simulated data approximates the real data in certain

aspects. In our extension to the standard Indirect Inference approach, however, we considered
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Figure 6.13: Simulations of the basic model, with the addition of a ‘quote-to-trade ratio’

regulatory intervention. The mid-price process and daily LOB volumes with a quote-to-

trade ratio of q = 500
1 (top), 100

1 and 20
1 (bottom).
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auxiliary models relating to both the price and the volume process, and treated the estimation

problem as a multi-objective problem.

Even with the simulation-based estimation method, the general formulation of the model

requires the estimation of a very large number of parameters, and we therefore estimate a series

of models of increasing complexity. We have shown that even the basic version, which assumes

fixed order sizes and no heterogeneity in the skewness of the distribution, is still able to generate

realistic simulations of simulated data. However, certain parameter vectors produce daily price

dynamics that are more extreme than those observed in reality. Relaxing these assumptions

generally leads to an improvement in the model estimates, in terms of their ability to produce

simulations that closely reflect the price and volume dynamics observed in real data.

Our objective was to produce a realistic simulator of daily LOB activity, with the aim

of utilising it to test the potential effects of regulatory interventions. We therefore evaluated

the effect of implementing a quote-to-trade ratio, where we enforced a stochastic limitation on

the number of cancellations, relative to the submitted limit orders. We found that altering the

basic model to enforce regulation that limits the rate of cancelled to submitted orders to either

99.8% (similarly to the LSE) or 99%, had little effect on the price process. However, once we

limited this percentage 95%, we observed a more constrained price process, where the excessive

volatility observed for particular parameter vectors was reduced.
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Chapter 7

Conclusion

It is well known that a vital ingredient of success is not knowing that what

you’re attempting can’t be done.
— Terry Pratchett, Equal rites

7.1 Summary and contributions
The research work presented in this thesis constitutes an important contribution towards mod-

elling various features of the Limit Order Book, the pre-eminent trading mechanism in modern

financial markets. The thesis is practically relevant, as the empirical analysis improved immea-

surably due to the availability of a vast, and very recent equities dataset from Chi-X, a European

multilateral trading facility. The challenges inherent in leveraging such a dataset for academic

research were the first hurdle, as the tools required to recreate the LOB from event logs were not

available at the start of this thesis, or were not sufficiently detailed to capture the LOB aspects

of interest. A set of tools was therefore created, and we have provided a guideline regarding the

various software design options that have resulted in an efficient implementation.

7.1.1 Liquidity resilience
The first contribution of this thesis is a theoretical one, and is in response to the incomplete

picture provided about liquidity by current definitions. In particular, while aspects such as the

depth of the LOB or the tightness of the spread have been the subject of both theoretical and

empirical studies over more than 50 years, the aspect of resilience has been rather neglected.

In the electronic LOB, the availability of direct, high speed access to exchanges has enabled

traders to partition large orders for staggered execution throughout the trading day, in order to

reduce the costs of immediate trading. In this environment, the rate of order replenishment after

a liquidity shock, which is closely related to the aspect of liquidity resilience, is central to the

success of such algorithms.
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The thesis established a new definition for liquidity resilience, so that it is informative to

a variety of stakeholders. For the first time, this aspect of liquidity was formally defined for

any choice of liquidity measure, as well as any choice of threshold, over which one would be

interested in liquidity fluctuations. The ‘Threshold Exceedance Duration’, or TED, captures the

time required for liquidity to return to the LOB after a shock and, as such, is related to the rate

of volume replenishment.

The variation in this quantity was found to be related to the state of the LOB during the

day. Through a survival time regression framework, we were able to relate these short intra-day

liquidity droughts to LOB covariates, such as the spread, the volume on either side of the LOB,

as well as various indicators of local activity. Due to the large number of possible covariates,

as well as their changing importance in explaining the TED, the model was fit to the data every

day. Through an extensive model selection procedure, considering a large number of model

structures, and for a large number of liquid stocks, we were able to identify the covariates

which were more likely to be explanatory in the regression. The empirical analysis suggested

that, ceteris paribus, the LOB generally took longer to recover from larger deviations from a

threshold of liquidity. On the other hand, frequent fluctuations were associated with a swifter

return to the same threshold level.

The analysis presented regarding the effect of the LOB covariates enables the identification

of ‘regimes’ of the LOB, in which liquidity resilience is high (low) and thus the duration of

TEDs is short (long). In this way, the model could help determine the optimal size of the

trading blocks, so that the time required for liquidity to recover is below some desired value,

for a given LOB state. We have shown that the model has substantial predictive power for the

duration of intra-day LOB droughts, when compared to naı̈ve approaches, and the incorporation

of the approach into an optimal execution framework will thus be a natural extension for the

future.

7.1.2 Liquidity and resilience commonality

In recent years there has been a burgeoning interest measuring liquidity commonality, and it has

been shown to be prevalent in the equities asset class, across industries and across countries.

This can arise due to the presence of funds with correlated trading patterns, and is prevalent

particularly during equity market breaks and debt market crises. This therefore creates a risk

for market maker holding inventory in such assets.

The thesis furthered the state of the art in this area by showing that existing approaches,

which employ Principal Components Analysis (PCA) regression to quantify commonality, are
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not always appropriate. Firstly, through synthetic examples, it was shown that PCA is not

particularly effective at separating out non-Gaussian components, compared to, for example,

the ICA (Independent Components Analysis) method. Secondly, using liquidity data extracted

from real trading data for 82 assets from 3 countries, we showed that the principal factors track

the most illiquid assets, which act as outliers in the original dataset.

We also proposed a method to capture commonality in the new liquidity resilience metric

introduced in this thesis. The initial step was to extend the metric from a single threshold

to a series of thresholds, so that one obtains a ‘liquidity resilience profile’, which indicates

the expected duration of an exceedance above any threshold. As with the original liquidity

resilience study, this analysis was performed for two liquidity measures, the insider spread and

the Xetra Liquidity Measure (XLM), a cost-of-round-trip type measure. The task was then to

quantify the commonality in these curves across stocks, as a measure of liquidity resilience

commonality.

An empirical contribution of this thesis is the use of functional data analysis (FDA) in

this setting for the first time. This enabled a reduction in the dimensionality of the liquidity

resilience data, as well as a comparison of functional data forms. Once these liquidity resilience

profiles were converted to functional forms, we were able to use functional PCA, in order

obtain the market factors contributing to liquidity resilience. Analogously to the PCA regression

approach, we then quantified the explanatory power of these market factors for the resilience of

each asset. The results suggest that these market factors are more explanatory about deviations

from low thresholds, and for relatively simple liquidity measures, such as the inside spread.

7.1.3 Stochastic agent-based LOB modelling

The LOB is a complicated, multivariate, event-driven stochastic process, resulting from the

combination of buy and sell orders in a multi-level queueing framework. Its dynamics are both

of interest in the trading community, but also an active area of research, and recent academic

contributions include efforts to explain statistical properties of stock prices, the shape of the

LOB, and models of optimal execution. The final chapter of this thesis therefore aimed to

capture pervasive features of the LOB and explore the utility of simulation models as testbeds

for financial regulation.

We have presented a new form of simulation model for the limit order book, in which the

distinction between the agent types was based on their liquidity motivations. Contrary to pre-

vious approaches, our approach modelled the aggregate trading activity of the two agent types

(liquidity providers and liquidity demanders), rather than individual strategies. The model also
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stands out because of its flexibility, as the trading behaviours are expressed in a stochastic model

framework that is significantly more detailed than that typically observed in ABM studies. The

unique advantage of this model is its ability to capture the dependence in limit order, market or-

der and cancellation activity at different LOB levels, while still being interpretable with regard

to agent motivations.

For the estimation of the model, a new method was proposed, which combined a

simulation-based likelihood procedure called indirect inference with multi-objective optimisa-

tion. In this way, we were able to calibrate the model so that the resulting simulations exhibited

price and volume dynamics approximating those observed in the real data. More complex ver-

sions of the model were also estimated, allowing for, e.g., heterogeneity in order sizes, and were

found to bring simulated dynamics closer to those observed in real data.

The objective of this approach was to create a realistic simulator of daily LOB activity,

so that one could determine the effect that a regulatory intervention would have. In the final

part of this contribution, we showed how one could impose a ‘quote-to-trade ratio’, one of the

recently discussed interventions aimed towards curbing excessive trading activity and excessive

numbers of cancellations in particular. In the context of the model, such an intervention was

found to be useful in reducing intra-day volatility and limiting the probability of extreme price

moves.

7.2 Future research directions
The research presented in this thesis lies at the intersection of Computer Science, Statistics

and Finance and has benefited greatly from collaborations with people in these fields. We

anticipate that future work will continue to bring together aspects from different research areas,

for financial applications predominantly. In this section, we will set out the research agenda for

the near future, using the work presented here as a starting point.

Firstly, the natural extension of the liquidity resilience model would be in an optimal exe-

cution setting. In modern financial markets, traders wishing to buy or sell a large amount of an

asset would typically do so in stages, in order to take advantage of order replenishment, thereby

incurring smaller costs in the process. Recent models of optimal execution (e.g. Obizhaeva and

Wang [2013], Alfonsi et al. [2010]) have considered the effect of liquidity resilience on the total

cost of execution, but typically consider resilience to be constant or have a simple parametric

form. The expected resilience of LOB liquidity was shown to be related to the state of the

LOB in this thesis. Given how central the rate of order replenishment is to optimal execution,

incorporating the heterogeneity of intra-day liquidity resilience into such an optimal execution
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model would most certainly be an important contribution.

Secondly, the liquidity commonality study was performed over assets trading on a sin-

gle venue. The proliferation of trading venues in the last few years, however, as a result of

regulation aiming at increasing competition, means that considering only single-venue trading

activity will only give an incomplete picture about asset liquidity. Large algorithmic traders

now employ smart order routing algorithms, which divert trading volume to exchanges based

on a variety of different factors. These algorithms are very likely to create commonality in

liquidity, as well as liquidity resilience, in different venues. Once a sufficiently rich dataset is

obtained, quantifying this commonality would be a relatively straightforward extension to the

work presented here.

Finally, the agent-based model developed here allows for a large array of experimental

studies, including estimating the effects of regulatory interventions. The thesis outlined a brief

case study of the effect of introducing a quote-to-trade ratio, but there are various other inter-

ventions considered, including minimum resting times, transaction taxes, and switching to call

auction mechanisms after a shock, the effects of which are still unclear. Exploring the possible

effects of these interventions on the dynamics of the ABM simulations would thus be informa-

tive to a regulator trying to identify whether the interventions will achieve their objectives.



Appendix A

Generalised Gamma distribution for

TED random variables

For a more flexible distributional form for the TED random variables, we propose a three pa-

rameter distributional family, namely the Generalised Gamma distribution (hereafter g.g.d.).

We assume that the TED random variables are conditionally independent, given the LOB co-

variates:

τTED
i

i.i.d∼ F (τ ; k, a, b) =
γ
(
k,
(
τ
a

)b)
Γ (k)

(A.1)

with the incomplete gamma function defined as:

γ(x, y) =

∫ y

0
τx−1e−τdt (A.2)

The g.g.d. family includes as sub-families several popular parametric survival models: the

exponential model (b = k = 1), the Weibull distribution (with k = 1), the Gamma distribution

(with b = 1) and the Lognormal model as a limiting case (as k →∞).

The resulting density for the generalised gamma distribution is analytic and given by

fτ (τ ; k, a, b) =
b

Γ(k)

τ bk−1

abk
exp

(
−
(τ
a

)b)
(A.3)

with parameter ranges k > 0, a > 0 and b > 0 and a support of τ ∈ (0,∞). We note that for

this class of model one can write the survival function explicitly in closed form.

We now wish to relate this statistical model assumption to a set of explanatory variables

(covariates) from lagged values of the LOB. To achieve this, it will be beneficial to work on

the log scale with ln(τ), i.e. with the log-generalized gamma distribution (hereafter l.g.g.d.), as

this parameterisation improves identifiability and estimation of parameters. Discussions on this

point are provided in significant detail in Lawless [1980].
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Under the AFT framework, the regression structure we adopt for the l.g.g.d. model in-

volves constant and nonstochastic terms k and b as well as the following loglinear form for the

time-varying location coefficient a(xt):

a(xt, zt) = exp

(
β0 +

p∑
s=1

x
(s)
t βs

)
. (A.4)

with p covariates xt =
{
x

(s)
t

}p
s=1

measured instantaneously at the point of exceedance t = Ti.

Each of the covariates is a transform from the LOB for which the liquidity measure is observed,

and all covariates are described in Section 4.4.5. We note that we also considered models with

interactions between the covariates, but interaction terms were not found to be significant in the

majority of our models.

Under this AFT model with this location regression structure, we observe that the condi-

tional mean of the survival times is also related directly to this linear structure where for the

i-th exceedance of the threshold, we have

E
[
τTED
i |xTi

]
= a(xTi)

(
1

k

) 1
b Γ
(
k + 1

b

)
Γ (k)

(A.5)

see details in Lo et al. [2002].

In addition, the conditional quantile function for a given quantile level u, is obtained

through the transformation of the analytic closed-form quantile function of a Gamma random

variable, denoted by G−1, with shape u and scale k, which gives the conditional expression

Q (u;xt) = F−1(τi;xt, u)

= exp

(
β0 +

p∑
s=1

x
(s)
t βs

)[(
1

k

)
G−1 (u;u, k)

] 1
b
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Nina Karnaukh, Angelo Ranaldo, and Paul Söderlind. Understanding fx liquidity. University

of St. Gallen, School of Finance Research Paper, (2013/15), 2013.

G Andrew Karolyi, Kuan-Hui Lee, and Mathijs A Van Dijk. Understanding commonality in

liquidity around the world. Journal of Financial Economics, 105(1):82–112, 2012.

Kenneth A Kavajecz. A specialist’s quoted depth and the limit order book. The Journal of

Finance, 54(2):747–771, 1999.

Nazan Khan. Bayesian optimization algorithms for multiobjective and hierarchically difficult

problems. PhD thesis, University of Illinois at Urbana-Champaign Urbana, IL, 2003.

Nazan Khan, Nazan Khan, David E Goldberg, David E Goldberg, Martin Pelikan, and Martin

Pelikan. Multi-objective bayesian optimization algorithm. In Proceedings of the Genetic and

Evolutionary Computation Conference, 2002.

Andrei A Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun. The flash crash: The

impact of high frequency trading on an electronic market. 2014.

Alan Kirman. Ants, rationality, and recruitment. The Quarterly Journal of Economics, 108(1):

137–156, 1993.
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