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Abstract

Dividing limited time between work and leisure is a common, everyday choice.

Given the option, humans and other animals elect to distribute their time be-

tween work and leisure, rather than choosing all of one and none of the other.

Traditional accounts of the allocation of time have characterised behaviour on

a macroscopic timescale, reporting and studying average times spent in work or

leisure. We develop a novel, normative, microscopic framework in which subjects

approximately maximise their expected returns by making momentary commit-

ments to one or other activity. This generic theoretical framework is applied to

the work-leisure tradeoff. We determine the microscopic utility of leisure – an

animal’s innate preference irrespective of all other rewards and costs. We re-

port our analyses of data from our collaboration with experimentalists who use

brain stimulation reward (electrically stimulating reward circuits in the brain) –

a powerful reward that does not satiate unlike food, and is not secondary, unlike

money, on rat subjects. We show that in all subjects, this utility of leisure is non-

linear. Subjects either prefer long leisure bouts all at one go, or many short ones,

but are not indifferent to the division of leisure durations. We also develop new

normative, microscopic models of how fatigue and satiation may impact decision-

making, and make predictions about their effect on the temporal distribution of

choices.

We then derive macroscopic utilities from microscopic ones and show how macro-

scopic facets such as imperfect substitutability can arise. We show that by inte-

grating our microscopic choices we can build macroscopic characterisations that

are not only equivalent to, but richer than those afforded by previous macro-

scopic characterisations. We therefore build a superset of traditional macroscopic

quantifications. Our normative, microscopic approach sheds new light on the na-

ture of temporally relevant behaviour and may provide a powerful framework for

understanding the psychological processes and neural computations underlying

real-time cost-benefit decision-making.
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curves (ICs) are contours of equal utility. A subject is indifferent between

combinations of these goods along an IC, but combinations on an IC with

greater utility are preferred. Black line shows the budget constraint: to-
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2.2 Response patterns on free-operant schedules of reinforcement.

Cumulative number of responses (y axis) over time (x axis) were marked

by a moving pen. The slope of each trace represents the rate of re-

sponding. Pen displacements that are large represent rewards. Note the

constant response rates on variable interval and ratio schedules, and, in

contrast, the scalloping response pattern in fixed interval schedules, and

the post-reinforcement pauses on fixed ratio schedules. FR = fixed ratio;

VR = variable ratio; FI = fixed interval; VI = variable interval. . . . . . 55

2.3 Cumulative handling time (CHT) task. Grey bars denote work

(depressing a lever), white gaps show leisure. The subject must accumu-

late work up to an experimenter defined total period of time called the

price (P ) in order to obtain a single reward (black dot) of subjective re-

ward intensity RI. The trial duration is 25×price (plus 2s each time the

price is attained, during which the lever is retracted so it cannot work;

not shown). The reward intensity and price are held fixed within a trial. 56

2.4 Matching Law. A) The relationship between response rate and rein-

forcement rate on a Variable Interval schedule, is hyperbolic. This can

be seen as an instantiation of Herrnstein’s Matching Law for one instru-

mental response. Adapted from Herrnstein (1970). B) Experimentally

observed Matching Law behaviour : the proportion of pecks on key A is

roughly equal to the proportion of rewards obtained on this key. Adapted

from Herrnstein (1961). Note that rates in these cases are measured as

overall number of responses in a session McSweeney et al. (1983), not

correcting for time involved in e.g. consuming rewards. . . . . . . . . . 58
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2.5 Two (curve-shift) and three-dimensional (mountain model)

macroscopic approaches to characterising behaviour. The 2-

dimensional curve shift procedure characterises time allocation to work-

ing as a function of reward strength only, whereas the 3-dimensional

mountain model characterises it as a function of both reward strength

and the cost (effort or time) of procuring it. Shifts distinguishable in

the 3-dimensional mountain model (left column) are ambiguous in the 2-

dimensional curve-shift characterisation (right column). The little green

figure facing the reward-strength axis perceives the world in 2-dimensions.

It cannot see the cost axis. It only sees the 3D structure as a 2D silhou-

ette. Panels b,d,f show the left outlines of the silhouettes perceived by

the little green figure. In panel f, the dashed blue outline of the moun-

tain shifted along the cost axis (panel e) is superimposed on the solid

pink outline of mountain shifted along the reward-strength axis (panel

c). Note that although the pink and blue mountains have been shifted in

orthogonal directions and their displacements are readily distinguished

in the 3D representations on the left, their 2D outlines (panel f) are vir-

tually identical and could not be distinguished in any real experiment.

Adapted from Hernandez et al. (2010). The curve-shift procedure can-

not distinguish effects downstream of the reward (e.g. due to costs) from

those concerning the reward only, whereas the mountain model can. . . 61
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2.6 Mountain model. The mountain model expressed in terms of objective

reward strength, here the frequency of stimulation of BSR trains. A) In

the initial stages of processing, an intensity-growth function transforms

the aggregate spike rate induced by the stimulation train in the directly

stimulated neurons into a subjective reward-intensity. Following rescal-

ing, the peak reward intensity is transferred to memory. The payoff from

working RW (here called UB) is computed by taking expected value of

the reward-intensity stored in memory (by multiplying the probability

that a reward will be delivered when the experimenter-defined work re-

quirement has been fulfilled, in case reward delivery is probabilistic) and

scaling it by the effort cost and price (here called ’opportunity cost’ by

Trujillo-Pisanty et al. (2011)). Time allocation: the proportion of time

allocated to working for the reward is matched to the ratio of the payoff

from work RW and the payoff RL from leisure (here called UE). PL (here

called PE) is defined as the price at which, for a maximum subjective re-

ward intensity, the subject allocates half the time to work, and half to

leisure. B) Increasing the value of Fhm (due to a manipulation that af-

fects the reward), the frequency at which subjective reward intensity is

half-maximal, i.e, the location parameter of the intensity-growth func-

tion, shifts the 3-dimensional mountain rightward along the frequency

axis of the 3D space. C) Reducing the value of the PL parameter shifts

the mountain leftwards along the price axis. Note that this could be due

to the maximal reward intensity being rescaled downwards, a reduction

in the probability of reward delivery, increased effort costs, or increased

benefits of leisure. These are effects downstream of the processing of the

reward. While the mountain model can tease apart the stage of neural

processing at which a manipulation plays a role, it cannot distinguish

between these different computations. Adapted from Hernandez et al.

(2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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3.1 Task and key features of the data. A) Cumulative handling time

(CHT) task. Grey bars denote work (depressing a lever), white gaps

show leisure. The subject must accumulate work up to a total period of

time called the price (P ) in order to obtain a single reward (black dot) of

subjective reward intensity RI. The trial duration is 25× price (plus 2s

each time the price is attained, during which the lever is retracted so it

cannot work; not shown). The reward intensity and price are held fixed

within a trial. B) Molar time allocation (TA) functions of a typical sub-

ject as a function of reward intensity and price. Red/grey curves: effect

of reward intensity, for a fixed short price; blue/dark grey curves: effect

of price, for a fixed high reward intensity; green/light grey curves: joint

effect on time allocation of reward intensity and price. C) A molecular

analysis may reveal different microstructures of working and engaging in

leisure. The three rows show three different hypothetical trials. All three

microstructures have the same molar TA, but are clearly distinguish-

able. D) Molecular ethogram showing the detailed temporal topography

of working and engaging in leisure for the subject in B). Upper, middle

and lower panels show low, medium and high payoffs, respectively, for a

fixed, short price. Following previous reports using rat subjects, releases

shorter than 1 second are considered part of the previous work bout

(since subjects remain at the lever during this period). Graphically, this

makes some work bouts appear longer than others. The subject mostly

pre-commits to working continuously for the entire price duration. When

the payoff is high, the subject works almost continuously for the entire

trial, engaging in very short leisure bouts inbetween work bouts. When

the payoff is low, the subject engages in a long leisure bout after re-

ceiving a reward. This leisure bout is potentially longer than the trial,

whence it would be censored. The part of a trial before the reward and

price are certainly known is coloured pink/dark grey and not considered

further. Data collected by Yannick-Andre Breton and Rebecca Solomon

and initially reported in Breton et al. (2009a). . . . . . . . . . . . . . . 74
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3.2 Experimental procedure: triads of trials Subjects face triads of

trials: ’leading’, then ’test’, then ’trailing’. Throughout a trial, the re-

ward intensity and price are all held fixed; each trial lasts T = 25 times

the price, plus a fixed, extra time (2s) on each occasion that the price

is attained, during which the lever is retracted so that subjects cannot

work. This enables the subject to harvest 25 rewards if it works for the

entire trial duration. The leading trial involves maximal reward intensity

and the shortest (1s) price; the trailing trial involves minimal reward in-

tensity and the shortest (1s) price. Each trial is separated by a 10s cue

during which house-lights are switched on, clearly indicating that a trial

has ended and a new trial shall begin. The leading and trailing trials

were provided so that subjects could calibrate and adequately evaluate

the reward and price on test trials. Engaging in leisure on trailing trials

also ensured that the subjects would not be fatigued on test trials. . . . 75
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3.3 Model and leisure functions. A) The infinite horizon micro semi-

Markov decision process (SMDP). States are characterised by whether

they are pre- or post-reward. Subjects choose not only whether to work

or to engage in leisure, but also for how long to do so. Pre-reward states

are further defined by the amount of work time w that the subject has so

far invested. At a pre-reward state state [pre,w], the subject can choose

to work (W ) for a duration τW or engage in leisure (L) for a duration τL.

Working for τW transitions the subject to a subsequent pre-reward state

[pre,w+ τW ] if w+ τW < P , and to the post-reward state if w+ τW ≥ P .

Engaging in leisure for τL transitions the subject to the same state. For

working, only transitions to the post-reward state are rewarded, with

reward intensity RI. Engaging in leisure for τL has a benefit CL(τL).

In the post-reward state, the subject is assumed already to have been

at leisure for a time τPav, which reflects Pavlovian conditioning to the

lever. By choosing to engage in instrumental leisure for a duration τL,

it gains a microscopic benefit-of-leisure CL(τPav + τL) and then returns

to state [pre,0] at the start of the cycle whence the process repeats. B)

Upper panel: canonical microscopic benefit-of-leisure functions CL(·);
lower panel: the net microscopic benefit-of-leisure per unit time spent in

leisure. For simplicity we considered linear CL(·) (blue/dark grey), whose

net benefit per unit time is constant, sigmoidal CL(·) (red/grey), which

is initially supra-linear but eventually saturates and so has a unimodal

net benefit per unit time; and a weighted sum of these two (green/light

grey). See Eq.(3.1) for details. C) Time τPav is the Pavlovian component

of leisure, reflecting conditioning to the lever. It is decreasing with reward

intensity (here, inversely) and increasing with price (here sigmoidally),

so that it decreases with payoff. . . . . . . . . . . . . . . . . . . . . . 77

3.4 Effect of stochasticity. We use a linear microscopic benefit-of-leisure

function (α = 1) to demonstrate the effect of stochasticity on: upper

panels, mean instrumental leisure, post-reward; middle panels, expected

reward rate; lower panels, time allocation as a function of A) reward

intensity and B) price. Solid and dashed black lines denote stochastic

(β = 1) and deterministic, optimal (β → ∞) choices, respectively. Grey

dash-dotted line in middle panels are ρπ = KL. Time allocations are

step functions under a deterministic, optimal policy but smooth under a

stochastic one. Price P = 4s in A, while reward intensity RI = 4.96 in B). 83
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3.5 Q-values and policies for a high payoff. A) Upper and lower panels

show Q-values and policies for engaging in instrumental leisure for time

τL, respectively, in the post-reward state for three canonical CL(·). In

upper panels, solid bold curves show Q-values; coloured/grey dashed and

dash-dotted lines show CL(·) and the opportunity cost of time, respec-

tively. Black dashed line is the linear component from the effective prior

probability density for leisure time −λτL. Note the different y-axis scales.

B;D) Q-values and C;E) policies for (B;C) engaging in leisure for time τL

and (D;E) working for time τW in a pre-reward state [pre,w]. Light to

dark colours shows increasing w, i.e., subject is furthest away from the

price for light, and nearest to it for dark. F) Probability of engaging in

leisure for net time τL + τPav in the post-reward state for sigmoid CL(·)
(α = 0). This is the same as the lower right panel in A) but shifted by

τPav. Reward intensity, RI = 4.96, price P = 4s. . . . . . . . . . . . . 84

3.6 Micro SMDP model with stochastic, approximately opti-

mal choices accounts for key features of the molecular data.

Ethogram data from left: experiment and right: micro SMDP model.

Upper, middle and lower panels show low, medium and high payoffs,

respectively. Pink/dark grey bars show work bouts before the subject

knows what the reward and price are. These are excluded from all anal-

yses, and so do not appear on the model plot. . . . . . . . . . . . . . . 86

3.7 Q-values and policies for a low payoff. Panel positions as in Fig.

3.5. Reward intensity, RI = 0.04, price P = 4s. Policies in panel C

expressed in 10−22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.8 Q-values and policies for a medium payoff. Panel positions as in

Fig. 3.5. Reward intensity, RI = 1.76, price P = 4s. . . . . . . . . . . . 90



LIST OF FIGURES 23

3.9 Macroscopic characterisations of behaviour. A) Effect of reward

intensity for a short price (P = 4s). Upper and lower left panels: re-

ward rate ρπ and time allocation TA, respectively. Blue/dark grey and

red/grey curves are for linear (α = 1) and sigmoid (α = 0) CL(·) re-

spectively; error bars are standard deviations. Centre and right panels:

Q-values and policies for engaging in instrumental leisure for time τL

in the post-reward state for linear (centre) and sigmoid (right) CL(·).
Black dashed line in upper panel shows CL(·); dashed and solid bold

coloured/grey curves show the opportunity cost of time and Q-values,

respectively. Light blue to dark red denotes increasing reward intensity.

B) Effect of price for a high reward intensity (RI = 4.96). Panel po-

sitions as in A). Note that the abscissa in the upper left panel is on a

linear scale to demonstrate the hyperbolic relationship between reward

rate and price. Light blue to dark red in the centre and right panels

denotes lengthening price. C) Left: probability of engaging in leisure for

net time τL + τPav in the post-reward state, and right: ethograms for

two long prices (dashed cyan: P = 30.1s and solid magenta: P = 21.4s).

Reward intensity is fixed at RI = 4.96. As the price is increased, re-

ward rate asymptotes (B, upper left panel) and hence the mode of this

probability distribution does not increase by much. The trial duration,

proportional to the price does increase. Therefore more of the probability

mass (grey shaded area) is included in each trial. Samples drawn from

this distribution for the lower price get censored more often. For a longer

price, the subject is more often observed to resume working after a long

leisure bout. The effect is an increase in observed time allocation. . . . 91

4.1 Indifference curves (ICs) of the labor supply theory model in

Eq.(4.1). Left: Returns from work exceed those from leisure (RI >

KL P ) and right: vice versa (RI < KL P ). Solid black lines show

the budget constraint (BC): trial duration T is constant. Open circles

show optimal combination of rewards and leisure for which macroscopic

utility is maximised subject to BC. Dashed black lines denote the path

through theoretically predicted optimal leisure and reward combinations

as T is increased. A) perfect substitutability between rewards (work) and

leisure (s = 1). Optimal combination is when the subject works all the

time and claims all rewards if RI > KLP , and engage in leisure all the

time otherwise. B) imperfect substitutability (e.g. s = 0.25). Optimal

combination comprises non-zero amounts of work and leisure. . . . . . 106
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4.2 Time allocation from labour supply theory. TA as a function of the

relative returns from work and leisure predicted by labor supply theory

model in Eq. (4.1). Black and blue curves show the cases of perfect

(s = 1) and imperfect substitutability (s < 1), respectively. . . . . . . . 107

4.3 Micro SMDP model, microscopic utilities of leisure and poli-

cies. A) The infinite horizon Micro semi-Markov decision process (Micro-

SMDP). States are characterised by whether they are pre- or post-reward.

Subjects choose not only whether to work or to engage in leisure, but

also for how long to do so. For simplicity, we assume that a subject pre-

commits to working for the entire price duration when it works. Then

it receives a reward of reward intensity RI and transitions to the post-

reward state. In the post-reward state, by choosing to engage in leisure

for a duration τL, it gains a microscopic benefit of leisure CL(τL) and

then returns to pre-reward state; this cycle repeats. B) Left: canonical

microscopic utility of leisure functions CL(·), right: the marginal micro-

scopic utility of leisure. For simplicity we considered linear CL(·) (blue);

whose marginal utility is constant and concave (here logarithmic) CL(·)
(red) whose marginal utility is always decreasing. C) Q-values and poli-

cies for engaging in leisure for low, medium and high payoffs. In upper

panels, dashed, dotted and solid curves show: CL(·), AFR and Q-values,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4 Microscopic choices yield macroscopic partial allocation even

with independent marginal utilities. To compare directly with labor

supply theory, we derive macroscopic utility functions consistent with our

assumed microscopic utiities. Curves show indifference curves of the de-

rived macroscopic utility function. Cool colours show order of increasing

macroscopic utility. Solid black lines show different budget constraints

T = ω + l as T is changed. Dashed black line denotes the path through

theoretically predicted optimal leisure and work combinations as T is in-

creased. A), B) Stochastic, approximately optimal microscopic choices

with linear CL(·) yields partial allocation (A) high and B) medium pay-

offs are shown). Inverse temperature β = 1. C) Deterministic, optimal

microscopic choices with linear CL(·) yield all-or-none allocation–work all

the time if RI > KLP . Inverse temperature β → ∞. CL(τL) = 0.7τL,

Reward intensity, RI = 9 in A), RI = 4.3 in B) and C), price P = 4s in

A-C. D) Deterministic, optimal choices with non-linear CL(·) also yields

partial allocation. CL(τL) = 0.7 log(τL), β → ∞, RI = 2.46 and price

P = 4s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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4.5 Mountain model. 3-dimensional relationship; right panel: contours of

equal time allocation, as a function of reward intensity and price pre-

dicted by the mountain model using the generalised matching law. Red

lines in right panel show PL: the price at which TA = 0.5 for a maximal

reward intensity (red dot in left panel). a = 2.65, PL = 11.4s. The TA

contours smoothly increase with reward intensity and smoothly decrease

with price. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Mountain model parameters. Left 3-dimensional relationship; right

panel: contours of equal time allocation, as a function of reward intensity

and price predicted by the mountain model using the generalised match-

ing law. Red lines in right panels show PL: the price at which TA = 0.5

for a maximal reward intensity (red dot in left panels). A) For a small

PL = 2.85s, while overmatching a = 2.65 > 1 as in the main text and B)

undermatching a = 0.66 < 1 while PL = 11.4s as in the main text. . . . 118

4.7 Macroscopic time allocation derived from normative, micro-

scopic choices yields a superset of the mountain model. Left

panels: 3-dimensional relationships between TA, reward intensity and

price, right panel: contours of equal TA, predicted by the micro SMDP

model for A) linear, B) concave CL(·). The 3-dimensional relationship

and smooth contours for a linear CL(·) derive the mountain model in

Fig.4.3. Note that an extra, higher set of reward intensities was nec-

essary to achieve the full range of time allocation for linear CL(·). The

fact that contours change direction at longer prices for a non-linear CL(·)
rather than decrease monotonically reflects that TA may no longer de-

crease and even increase as the price is increased further. . . . . . . . . 119
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4.8 Time allocation may not decrease with price for a non-linear

microscopic utility of leisure. A) Upper panel: Reward rate (ρπ)

and lower panel: time allocation (TA) for a concave microscopic utility

of leisure as a function of price. A small and a high reward intensity

are shown. Reward rate decreases hyperbolically with price, eventually

asymptoting. B) Leisure duration distribution as a function of price for

a fixed high reward intensity (RI = 6). At very long prices, as the

price is increased further (eg. from 30s to 50s), the mode of the leisure

duration distribution does not change by much although the mean does.

C) Ethograms for two long prices. As price is increased, the work bouts

(proportional to the price) do increase. Leisure bouts, drawn from the

mode, do not change by much. Consequently, TA no longer decreases

but may even increase with price (A, lower panel). This is despite the

trial duration being normalised to a multiple (here 25) of the price. It

is the lack of significant change in the majority of leisure durations that

is critical. We normalised by the trial duration of 25 × price, instead of

simply normalizing by the price, to emphasise that TA is a macroscopic

quantitity and to be consistent with the procedure in the example data

Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 Fatigue as a low pass-filtered variable ν of the recent history

of work and leisure. Fatigue accumulates as the subject works and

dissipates as it engages in leisure, exponentially in both cases. . . . . . 131
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5.2 A) Prospective fatigue model mechanics. From top to bottom: (i)

ν′ = νt+τa = za [1 − (1 − α)τa ] + (1 − α)τa ν, where za=1 if a = W

and 0 if a = L; long leisure resets fatigue. Blue to red curves show

increasing initial fatigue levels (ν). (ii) the value of pre-reward (forced

work) state V π([pre, ν′]) to which the subject transitions to as a con-

sequence of taking leisure for duration τL: V π([pre, ν′]) = RI − ρπP −
KFW

ν′ + V π(post, ν′′]). This is dominated by the −KFW
ν′ term. (iii)

the linear utility of leisure KLτL (solid line) and the opportunity cost

of time −ρπτL (dashed line) are added (bold line) and then (iv) added

with the value of the pre-reward state to yield the Q-value of leisure for

duration τL starting from fatigue state ν. (v) Finally, the Q-value is sent

through the softmax to yield the policy π(τL|[post, ν]). Note that in the

absence of fatigue (ν = 0) this is an exponential distribution; whereas it

is a gamma distribution with a longer mode for greater initial fatigue. B)

The mean leisure duration increases with fatigue. C) Ethograms show

runs as a fatigue builds up with each work bout and is alleviated by

longer leisure bouts. RI = 3, P = 4s,KFW
= 3. . . . . . . . . . . . . . 133

5.3 A) Effect of Price and cost of working on leisure durations. Mean leisure

duration increases with price owing to the reduced opportunity cost of

time. But longer leisure is is desired the more fatigued the subject is.

Upper right panel: Note how the surface is shifted up at high fatigue

levels. Short leisure would lead to the subject having to work in a highly

fatigued state; which is exacerbated if the cost of working is amplified. B)

Ethograms showing runs for lesser KFW
= 3 (left) and greater KFW

= 5

(right) costs of working whilst fatigued. Leisure breaks between runs of

working are longer if the cost of working is greater. Price increases from

top to bottom: 4s, 14s, 18s and 30s; note the different scales on the x-axis

as price is increased. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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5.4 Retrospective fatigue A) mechanics, from top to bottom: (i) linear

momentary microscopic utility of leisure, but increases with fatigue. This

represents a microscopic utility function with a constant microscopic

marginal utility
∂CL(ν′(τL|ν),·)

∂dτL
= KLF

(ν′(τL|ν)), but which increases

with the level of fatigue. (ii) the integrated microscopic utility of leisure

CL(ν, τL) for a bout of duration τL, starting from a fatigue level ν is a

sum of a Gamma and linear function. This integrates over the momentary

microscopic utility of leisure taking into account that fatigue decreases

while the subject is engaging in leisure. It is a concave function which

increases with the initial level of fatigue. Dashed black line shows the

opportunity cost of time. (iii) Q-value of leisure for duration τL starting

from fatigue state ν linear in the absence of fatigue (ν = 0), but is a

bump whose peak increases with initial level of fatigue. (iv) Finally, the

Q-value is sent through the softmax to yield the policy π(τL|[post, ν]).

Note that in the absence of fatigue (ν = 0) this is an exponential distri-

bution; whereas it is a gamma distribution with a longer mode for greater

initial fatigue. B) Ethograms show runs as fatigue builds up with each

work bout and is alleviated by longer leisure bouts. Price increases from

top to bottom: 4s, 8s, 18s and 30s; note the different scales on the x-axis

as price is increased. The leisure bouts in between runs are longer for

longer prices, since the subject is more fatigued. RI = 3,KFW
= 3. . . . 137
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5.5 Backward bending labour supply curve A) For some macroscopic

utility functions (here displayed as a function of income and cumula-

tive leisure time), income uncompensated wage rate increases lead to the

amount of work decreasing rather than increasing with wage rate. Upper

panel: As the wage rate increases, the budget constraint rotates from

OA to OB to OC reflecting the opportunity to earn greater income for

the same amount of labour supplied. The point of tangency between an

indifference curve (coloured curves) and the budget constraint yields the

optimal combination of income and leisure. As the budget constraint ro-

tates from OA to OB, the optimal cumulative leisure duration decreases.

However, as the wage rate is increased further, the budget constraint

rotates from OB to OC. The new optimal cumulative leisure time in-

creases. Lower panel: when labour supplied (cumulative work time, i.e.

the opposite of the axis in panel A, abscissa) is plotted against the wage

rate (ordinate), we obtain a forward and then backward bending labour

supply curve. B) The backward bending segment of the curve (e.g. due

to the wage rate increasing and the budget constraint rotating from OB

to OC) in panel A can be decomposed into two effects. First, the substi-

tution effect, which would be due to an imaginary income compensated

wage increase. The budget constraint would then shift from OB to O’B’,

leaving the subject the opportunity to consume the same income-leisure

combination (Xo). However, this imaginary budget constraint is tangent

to an indifference curve with a greater utility. The optimal allocation is

to allocate less time to leisure, and work more (Xs). The substitution

effect thus always leads to an increase in labour supply as wage rate in-

creases. Second, the income effect. The increased wage rate enables the

subject to gain more income. The budget constraint is shifted upward

from O’B’ in parallel, to OC. The new budget constraint OC is tangent

to an indifference curve for which the optimal combination of income and

leisure (Xi) involves the cumulative leisure time increasing compared to

the original level (Xo). Thus, when the income effect (shift from Xo to

Xi) dominates the substitution effect (magnitude of the shift fromXo to

Xs) the subject should work less more rather than more. Note that the

subject still consumes more income as result of the wage rate increase.

This greater income enables the subject to purchase more leisure, and

work less. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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5.6 Prospective satiation A) The dynamic satiation variable ψ(t) jumps,

proportional to the reward intensity (RI), each time a reward is received,

and decays exponentially with the duration of a bout in its absence.The

greater the reward intensity, the faster the subject becomes satiated.

Consequently, the subject will prospectively engage in longer leisure so

that it is less satiated when it receives a reward and can enjoy it more.

The leisure bouts required to reduce satiation therefore become longer

as reward intensity increases. B) Backward bending labour supply curve

derived from microscopic prospective satiation. The dependent variable:

labour supplied is plotted on the abscissa while the independent variable:

reward intensity, is on the ordinate. When the temporal pattern in A)

is averaged over trials, the macroscopic time allocation, and hence the

labour supplied decreases as the reward intensity increases, yielding the

backward bending labour supply curve. For much lower reward intensi-

ties (eg. RI = 2 shown in the blue trace) the subject does not satiate, as

satiation builds up very slowly and is continually reduced by long leisure

bouts. For reward intensities in this range, the subject therefore works

more to receive more rewards without fully satiating. The macroscopic

labour supply curve obtained from averaging across these cases is forward

bending. Taken together, this yields a forward and then backward bend-

ing labour supply curve. Microscopic marginal utility of leisure KL = 0.1,

Price= 4s, inverse time-constants for satiation decaying (α− = 0.99) in

the absence of rewards and its jumping at the time of rewards (α+ = 0.05).145
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5.7 Retrospective satiation A) The microscopic utility of leisure CL(ψ, τL)

is sigmoidal, whose maximum and shift increase with the level of satia-

tion (see Eq.(5.7)). Here we assume that, above a threshold level RImin,

satiation is simply proportional to reward intensity RI; the maximum of

the utility function increases quadratically and the shift logarithmically

with RI. Below the threshold RImin the utility of leisure has a fixed

maximum at RImin (black curve). B) The optimal leisure duration for

the greedy policy τ∗L (bottom panel) is the sum of log [σ(·)/(1− σ(·))]
(top panel) and log(RI) (centre panel, see Eq.(5.7)), where σ(·) is the

logistic function. Thus, the optimal leisure duration increases with RI.

RImin = 5,CLshift = 25. C) When leisure bouts are generated accord-

ingly, and the temporal structure is averaged across, we obtain a back-

ward bending labour supply curve (the labour supplied is normalised and

here shown in terms of time allocation). The forward bending part of

this curve occurs when satiation is below a threshold level and the utility

of leisure does not vary with satiation. Then the subject works more as

reward intensity increases. D) Using a stochastic, softmax policy rather

than a deterministic, greedy one makes the curve smoother. Insets show

microscopic ethograms, which are averaged across to yield points on the

macroscopic curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1 Reward Intensity and Price pseudo sweeps and Time Alloca-

tion for subject F9. Upper panel: Reward Intensity and prices were

generated from one of 9 pseudo sweeps through parameter space. For

the 7 RI ’sweeps’, the price is fixed while the RI is increased. These

prices were 0.125s, 0.25s,0.5s,1s,2s,4s and 8s (red ray shows a price of 4s

and rays with cool colours showing increasing prices for the others). The

price ’sweep’ (blue ray) involves the RI remaining fixed at its highest

value while the price is decreased. Finally, the radial ’sweep’ (green ray)

involves both RI increasing and price decreasing. Lower panel: Time

allocation: proportion of the trial duration allocated to working. Note

that time allocation increases rather than decreasing with price at the

highest price of the price ’sweep’. . . . . . . . . . . . . . . . . . . . . . 159
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6.2 Ethograms for subject F9. Price= 4s RI sweep, Price sweep and

Radial sweep. Payoff increases from top to bottom. Coloured bars show

work, white spaces show leisure and black dots show reward delivery.

Red (left column), blue (middle column) and green (right column) show

Price=4s RI ’sweep’, price ’sweep’ and radial ’sweep’, respectively (see

Fig. 6.1, upper panel). Trial duration is 25 × price. Leisure bouts that

do not immediately follow after a reward and which are shorter than

1 second are considered part of the previous work bout (since subjects

remain at the lever during this period). Graphically, this makes some

work bouts appear longer than others. Work bouts during the sampling

phase when the subject does not know the reward intensity and price

with certainty are coloured yellow and data up to the end of the last of

such work bouts are excluded from subsequent analyses. . . . . . . . . . 161

6.3 Ethograms for subject F9. RI sweeps for sub-second prices.

Payoff increases from top to bottom. Coloured bars show work, white

spaces show leisure and black dots show reward delivery. Light cyan to

blue colours show RI sweeps with Price=0.125 (left column) , 0.25s (mid-

dle column) and 0.5s (right column) , respectively (see Fig. 6.1, upper

panel). Trial duration is 25s to enable sufficient data to be collected.

The rare leisure bouts that do not immediately follow after a reward

and which are shorter than 1 second are considered part of the previous

work bout (since subjects remain at the lever during this period). Only

the three lowest, one medium and the highest payoffs are shown. Other

conventions same as in Fig. 6.2. . . . . . . . . . . . . . . . . . . . . . 162

6.4 Ethograms for subject F9. RI sweeps for Price=1s, 2s and

8s. Payoff increases from top to bottom. Coloured bars show work,

white spaces show leisure and black dots show reward delivery. Purple to

magenta colours show RI sweeps with Price=1s (left column), 2s (middle

column) and 8s (right column), respectively (see Fig. 6.1, upper panel).

Only the three lowest, one medium and the highest payoffs are shown.

Other conventions same as in Fig. 6.2. . . . . . . . . . . . . . . . . . 163

6.5 The microscopic utility of leisure for subject F9. Upper and lower

panels show the best fit microscopic utility of leisure CL(·) and the corre-

sponding microscopic marginal utility of leisure, respectively. Blue, cyan,

red and green curves denote linear, concave (logarithmic), sigmoid and

initially supra-linear but eventually sub-linear CL(·), respectively. The

best fit supra-linear to sub-linear CL(·) for this subject is, in fact, the

sigmoid (α = 0). Hence, the red and green curves are superimposed. . . 168
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6.6 Model fits to PRPs on price ’sweep’ for subject (F9). Price

decreases (payoff increases) from top to bottom panels, as denoted in the

labels. Only the lowest three and highest two payoffs are shown since the

difference in model fits are clearest on these. A) PRP distributions. Left

to right: Experiment, distribution predicted by best fit sigmoid and linear

microscopic utilities of leisure. For experiment panels, coloured bars show

censored data. PRP durations are at least as long as the duration on the

x-axis. For model fits, numbers at the top give the negative log-likelihood

(nLL) for that RI,P combination. Dashed lines show 25 × Price. The

x-axis for the models is the same as that for the data. For very short

prices, the 25 × Price line is not shown to allow for comparison with the

data. Note that the axes scales change from condition to condition, but

they are changed in pairs for the sake of comparison B) Ethograms. Left

to right: Experiment and ethograms predicted by best fit sigmoid and

linear microscopic utilities of leisure. Note that since we assume subjects

work continuously for the entire price duration, an assumption that is

not valid at very long prices, the work bouts predicted by our models

cannot be expected to correspond closely to those in the experimental

data. Only the leisure bouts should be compared between model and

experiment. According to our full model in Chapter 3, pre-reward leisure

bouts on long prices should have similar distributions as PRPs, so the

PRPs predicted by our model should be considered to reflect those. . . . 169

6.7 Model fits to PRPs on a RI ’sweep’, Price= 8s for subject (F9).

RI increases from top to bottom panels, as denoted in the labels on the

left. Left to right: Experiment, distribution predicted by best fit sigmoid,

linear, and concave microscopic utilities of leisure. For experiment panels,

coloured bars show censored data. PRP durations are at least as long

as the duration on the x-axis. For model fits, numbers at the top give

the negative log-likelihood (nLL) for that RI,P combination. Dashed

lines show 25 × Price. Note that the axes scales change from condition

to condition, but they are changed in pairs for the sake of comparison.

Note the different x-axis scales for experimental data. . . . . . . . . . . 171
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6.8 The microscopic utility of leisure between subjects. Each column

shows a different subject. Upper and middle panels show the best fit

microscopic utility of leisure CL(·) and the corresponding microscopic

marginal utility of leisure, respectively. Blue, cyan, red and green curves

denote linear, concave, sigmoid and initially supra-linear but eventually

sub-linear CL(·), respectively. Lower panels show BIC scores (expressed

in 104) for each best fit CL(·); lower BIC scores reflect better fits. The

lowest BIC score, corresponding to the model with the CL(·) that fits the

PRPs the best is highlighted in gold. . . . . . . . . . . . . . . . . . . 173

6.9 Censoring impedes precision of fits. 1000 trials per RI, P condition

of data were generated the sigmoid CL(·) shown by the black curve.

Upper panel: For trial durations of 25 × price as in the experiment

a large proportion of leisure bouts are censored by the end of the trial.

These data were then fit by our model, coloured curves show best fit C∗L(·)
obtained by starting the negative log-likelihood minimisation procedure

from different points, red to blue cool colours show decreasing negative

log-likelihood (see legend for the negative log-likelihood; note how small

the differences are). The recovered CL
∗(·) has the correct shift CLshift

,

but underestimates the maximum CLmax (and overestimates the slope

KL). Lower panel: When trial durations were extended to 5000s (or

500s for prices less than 1s), the majority of leisure bouts were observed

and not censored. The best fit best fit C∗L(·) (coloured dashed curve)

recovered the true generating parameters, irrespective of the starting

point of negative log-likelihood miminisation. . . . . . . . . . . . . . . 176

6.10 Improved fits for uncensored data. Generated price ’sweep’. Price

decreases (payoff increases) from top to bottom panels, as denoted in the

labels on the left. 1000 trials per RI, P condition were generated with

trial duration of 5000s. Left: generated data PRP distribution, middle:

true PRP distribution, right: PRP distribution from best fit sigmoid.

For left panel, coloured bars show censored data. PRP durations are at

least as long as the duration on the x-axis. Note the small proportion

of censored data. For model fits, numbers at the top give the negative

log-likelihood (nLL) for that RI,P combination. Dashed lines show 25 ×
Price. Note that the axes scales change from condition to condition, but

they are changed in pairs for the sake of comparison. . . . . . . . . . . 177
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6.11 Model fits to all data, shown for price ’sweep’ for subject (F9).

Price decreases (payoff increases) from top to bottom panels, as denoted

in the labels. Only the lowest three and highest two payoffs are shown

since the difference in model fits are clearest on these. A) PRP distri-

butions. Left to right: Experiment, distribution predicted by best fit

sigmoid and linear microscopic utilities of leisure. For experiment pan-

els, coloured bars show censored data. PRP durations are at least as long

as the duration on the x-axis. For model fits, numbers at the top give

the negative log-likelihood (nLL) for that RI,P combination. Dashed

lines show 25 × Price. The x-axis for the models is the same as that

for the data. For very short prices, the 25 × Price line is not shown to

allow for comparison with the data. Note that the axes scales change

from condition to condition, but they are changed in pairs for the sake

of comparison B) Ethograms. Left to right: Experiment and ethograms

predicted by best fit sigmoid and linear microscopic utilities of leisure. . 178

6.12 Model fits to all data, shown on a RI ’sweep’, Price= 8s for

subject (F9). RI increases from top to bottom panels, as denoted in

the labels on the left. Only the lowest three payoffs are shown since the

difference in model fits are clearest on these. Left to right: Experiment,

distribution predicted by best fit sigmoid, linear, and concave microscopic

utilities of leisure. For experiment panels, coloured bars show censored

data. PRP durations are at least as long as the duration on the x-axis.

For model fits, numbers at the top give the negative log-likelihood (nLL)

for that RI,P combination. Dashed lines show 25 × Price. Note the

different x-axis scales for experimental data. . . . . . . . . . . . . . . 179

6.13 PRPs on medium prices may not be i.i.d Sequence of PRPs shown

on a RI ’sweep’, Price= 8s for subject (F9). y-axis: PRP duration, x-

axis: PRP number in the trial; only uncensored PRPs are shown. Each

column corresponds to a different RI condition, with each row represent-

ing a different trial. RI increases from left to right, with only the highest

5 RI shown here. Black line shows the median of uncensored PRPs on

that trial. Data are preprocessed to exclude the initial sampling period

when the subject does not know the reward intensity and price. Axes

are coloured light pink if the post-bootstrap runs test was significantly

positive at alpha level of 0.05 (there were runs in on that trial), light yel-

low when the LjungBox Autocorrelation test was successful (there was

significant autocorrelation in the PRPs on that trial) at the appropri-

ately Bonferronni corrected alpha level, and gold when both tests were
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6.14 PRPs may increase through a trial for medium prices. Mean

PRPs for the first, second and final thirds of a trial shown on a RI ’sweep’,

Price= 8s for subject F9. y-axis: PRP duration. Only uncensored PRPs

are accounted for. Each column corresponds to a different RI condition,

with each row representing a different trial. RI increases from left to

right, with only the highest 6 RI shown here. Error bars show standard

deviations, normalised by the number of data points for each third. Data

are not preprocessed to exclude the initial sampling period when the

subject does not know the reward intensity and price. . . . . . . . . . . 182

6.15 PRPs may increase through a trial for medium prices but not
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Chapter 1

Introduction

What to do, when to do it and how long to do it for are fundamental questions

for behaviour. Different options across these dimensions of choice yield different

costs and benefits. A human or non-human animal deciding across these dimen-

sions thus faces a rich, complex, optimisation problem. For example, consider

an individual deciding how to divide limited time between working and enjoying

leisure. Work leads to monetary renumeration, but reduces the time available

for enjoying the fruits of leisure. For example, take the case of a person waiting

at a bus stop, deciding how much longer to wait for a bus: if she waits further,

then she may be able to board the bus that takes her conveniently and inexpen-

sively to her destination, although she could also no longer persist and simply

take the more expensive tube. Equally, an individual lifting weights at a gym,

deciding whether to do a another repetition must contrast the long-run benefits

of this against the fatigue or effort it costs. Finally, an animal foraging in the

wild, choosing whether to stay in the current patch or leave and forage in another

must compare the gains of staying against the costs of leaving.

Most research investigating temporal choices made by humans and other animals

have focused on molar or macroscopic characterisations of behaviour Baum (2002,

2001, 2004, 1995); Baum and Rachlin (1969); Baum (1976) capturing the average

times allocated to pursuing a particular activity compared to those spent on

another. These provide a coarse, holistic description of behaviour. Molecular or

microscopic analyses characterise the detailed temporal topography of choice, i.e.,

the fine-scale structure of allocation Ferster and Skinner (1957); Gilbert (1958);

Shull et al. (2001); Williams et al. (2009b,a,c), that is lost in molar averages.

These offer greater insight into the cost-benefit computations underlying real-time

decision-making. In this thesis, we shall characterise behaviour at this microscopic
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level of detail.

The question of how to allocate time between different activities, each associated

with its own benefits and costs, has been studied by economists Frank (2005);

Kagel et al. (1995); Battalio et al. (1981); Camerer et al. (1997); Green et al.

(1987), behavioural psychologists Skinner (1938, 1981); Herrnstein (1961, 1974);

Baum and Rachlin (1969); Baum (1974, 1981); Green and Rachlin (1991); Mc-

Dowell (1986); Dallery et al. (2000); McDowell (2005), ethologists Haccou and

Meelis (1992) and more recently, neuroscientists Conover and Shizgal (2005); Ar-

vanitogiannis and Shizgal (2008); Breton et al. (2009b); Hernandez et al. (2010);

Trujillo-Pisanty et al. (2011); Hernandez et al. (2012); Niv et al. (2007). When

attempting to solve a problem such as this we may use the following approach

Marr (1982). We may first ask what the problem is, or equivalently, what is the

goal for a human or other animal trying to solve this problem. A theory that

addresses the question at this level is termed a computational one, since it seeks

to explain what computation is being attempted. Next we may ask how, using

what algorithms, does an animal simplify and solve the problem. Such an account

is algorithmic. Finally, we may proceed to the implementational level and ask

how the problem, the algorithm and solution are implemented in the biological

substrate of the brain.

To start at the bottom, at the implementational level, the neuromodulator

dopamine has been closely implicated as playing a critical role in biasing ac-

tion selection towards more beneficial choices. The phasic (short bursts) release

of midbrain dopamine neurons have been shown to compute or carry a reward

prediction error signal Montague et al. (1996); Schultz et al. (1997); Hollerman

et al. (2000); Waelti et al. (2001); McClure et al. (2003); Bayer and Glimcher

(2005); Cohen et al. (2012): the difference between the reward received and that

expected. This can then be provided to downstream basal ganglia structures to

learn the values of stimuli associated with rewards, or update the propensities

of executing different actions. The role of tonic (baseline levels) of dopamine

in less well understood. This has been proposed to modulate the magnitude of

a reward, or signal the rate of receiving rewards Niv et al. (2007); Cools et al.

(2011); Dayan (2012) and determine vigour, or carry the costs of physically effort-

ful choices Salamone and Correa (2002). These hypotheses are indistinguishable

when behaviour is characterised at a macroscopic level. We shall provide a novel,

microscopic framework in this thesis that may help distinguish these.

Algorithmic explanations of choice behaviour have been both macroscopic and

microscopic. A macroscopic algorithm, popular in behavioural psychology posits

that subjects match their relative times allocated to different choices to the rela-
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tive payoffs (scalar combinations of reward rates) associated with them Herrnstein

(1961, 1974); Baum (1974); McDowell (1986, 2005). This, however, largely does

not (attempt to) explain why experimental subjects exhibit matching behaviour.

From a computational perspective, matching behaviour is suboptimal—a rational

subject should devote all its time to the most beneficial action; rather than dis-

tribute its time among other alternatives by matching. Alternatively, microscopic

algorithmic descriptions, such as continuous time Markov chain (CTMC) models,

are popular in the field of ethology Haccou and Meelis (1992). These characterise

the entire sequence of observed behaviour using a small set of parametric distri-

butions; with the parameters governing the summary statistics of the durations

for which activities occur. They also lack a normative basis.

These algorithmic models are descriptive, characterising what the animal does,

rather than being normative: positing why it may do so. The microeconomic the-

ory of labour supply Frank (2005) provides a computational, macroscopic frame-

work of studying the allocation of time, particularly focussing on the problem

of dividing limited time between work and leisure. An individual is assumed to

maximise its utility, the subjective worth it earns, by trading off work and leisure,

subject to the constraints of limited time. Microscopic computational accounts

have been afforded by the theoretical frameworks of reinforcement learning Sut-

ton and Barto (1998); Puterman (2005). Subjects are posited to maximise their

expected returns–the net summed utilities–by maximising benefits accrued and

minimising costs incurred. While the flavour of reinforcement learning popularly

used in neuroscience considers choices at discrete time points, characterising fine-

scale temporal behaviour requires considering choices made more continuously in

time. In this thesis, we extensively apply the reinforcement learning framework of

average reward semi-Markov decision processes Puterman (2005). In this frame-

work, subjects choose all three of what to do, when and how long for, attempting

to maximise the average rate of rewards. While this framework was previously

used to provide a normative account of response vigour–how fast to perform ac-

tions Niv et al. (2007); Cools et al. (2011); Dayan (2012), in this thesis, we extend

it to the case of how long to persist with an action.

We shall thus develop a novel, normative, microscopic approach to characterising

behaviour. This seeks to characterise all the choices that an individual makes,

but from the perspective of it attempting to maximise its returns. We shall exer-

cise our generic theoretical framework on collaborative experiments investigating

free-operant choice. Subjects are largely free to choose which actions to take,

when to take them and how to persist with them. Free-operant behaviour is thus

the purest expression of choice, minimally encumbered by the experimenter’s



Organisation of the thesis 42

manipulations. While the normative, microscopic approach is a generic theo-

retical framework applicable to choices between durations of different activities,

throughout the thesis we shall use a simplified instantiation: dividing limited

time between non-effortful work and leisure. We shall use behavioural data from

experiments in rodents who perform experimenter determined activities in ex-

change for brain stimulation rewards (BSR): direct electrical stimulation of the

reward circuits in the brain Olds and Milner (1954). BSR is a potent, powerful

reward and neither satiates (unlike gustatory rewards) nor is a secondary rein-

forcer (unlike money). This enables the collection of reliable and psychophysically

stable–hence repeatedly reproducible data over many months.

1.1 Organisation of the thesis

Since the generic problem of what to do, when to do it and how long to do it for

is complicated, throughout this thesis we shall focus on a simplified yet common

everyday choice: dividing limited time between work and leisure. In Chapter 2,

we shall review the relevant literature on macroscopic and microscopic character-

isations of behaviour, both computational and algorithmic, and the schedules of

reinforcement used to study them. We shall emphasise those particularly inves-

tigating the allocation of time between work and leisure: labour supply theory

and generalized matching. We shall further contribute two technical reviews: the

literature on BSR and that on average reward reinforcement learning.

We shall introduce our novel, normative microscopic theoretical framework in

Chapter 3, exercising it to qualitatively capture the key microscopic features of

data from rodent experiments choosing between working and engaging in leisure.

We shall show that the functional form of the microscopic utility of leisure plays

a critical role in capturing the microscopic choice data. The microscopic util-

ity of leisure quantities an individual’s innate preference for durations of leisure,

irrespective of all other rewards and costs. We shall integrate our microscopic

choices in Chapter 4 to not only derive traditional macroscopic characterisations

prevalent in both economics and behavioural psychology, but also build a super-

set of them. We shall show that the assumptions of the traditional macroscopic

theories are unnecessary or insufficient when behaviour is characterised from a

normative, microscopic perspective. For instance, we shall propose that consid-

ering leisure to be beneficial on its own accord, and not because of the recent

history of working/rewards received can be used to construct results consistent

with those from labour supply theory.
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We shall extend our framework in Chapter 5 to the case where leisure can indeed

be beneficial because of the recent history of working, e.g. due to fatigue, or

rewards e.g. due to satiation. We shall use the latter to explore a curious case

where subjects work less when rewards are greater, rather than more. We shall

devote Chapter 6 to empirically and quantitatively determining the microscopic

utility of leisure, using experimental data from rodent subjects in which other

confounding factors, such as satiation, fatigue and effort costs were controlled

for.

Finally, in Chapter 7 we detail the contributions of the thesis. We also list several

exciting yet plausible general directions for future research.

A list of symbols and their meanings is provided in Table 1.1
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Symbol Meaning

1/λ mean of exponential effective prior probability density for leisure

time

a matching coefficient

AFR average foregone reward (also known as the opportunity cost of

time)

α ∈ [0, 1] weight on linear component of microscopic benefit-of-leisure

BC budget constraint

β ∈ [0,∞) inverse temperature or degree of stochasticity-determinism pa-

rameter

CHT Cumulative Handling Time (schedule)

CL(·) microscopic utility of leisure

CLmax maximum of sigmoidal microscopic utility of leisure

CLshift shift of sigmoidal microscopic utility of leisure

δ(·) delta/indicator function

Eπ expected value with respect to policy π

f frequency of pulses in a BSR electrical stimulation train

Fhm frequency at which RI is half its maximal worth

FR Fixed Ratio (schedule)

FI Fixed Interval (schedule)

g slope of the logistic reward growth function

H(π) entropy

IC indifference curve

KL marginal utility of linear microscopic utility of leisure

L leisure

l cumulative amount of time spent in leisure

macroscopic coarse, holistic analyses reporting averages over long times

microscopic fine-scale characterisations of temporal behaviour, but consider-

ing commitments to durations of time

miniscopic average behaviour over time-windows

µa(τa) effective prior probability density of choosing duration τa

nanoscopic finest-scale characterisations of temporal behaviour, choices made

at every moment in time

N total number of rewards accrued

ν dynamic fatigue variable

P Price
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PL price at which TA = 0.5, for a maximum subjective reward in-

tensity RImax

PRP post-reinforcement pause

π([a, τa] | ~s) policy or choice rule: probability of choosing action a, for dura-

tion τa from state ~s

Pavshift shift parameter of the sigmoidal Pavlovian leisure function

post post-reward

pre pre-reward

ψ dynamic satiation variable

Q(~s, [a, τa]) expected return or (differential) Q-value of taking action a, for

duration τa from state ~s

ρ reward rate

ρ τa average foregone reward (opportunity cost of time) for taking

action a for duration τa

RI (subjective) Reward Intensity

RImax maximum (subjective) Reward Intensity

RW = RI
P payoff or wage rate

s degree of substitutability between rewards (or work) and leisure

~s state

σ(·) logistic function

SMDP semi-Markov decision process

T trial duration

TA Time Allocation

τL duration of instrumental leisure

τPav duration of Pavlovian leisure

τW duration of work

ω cumulative amount of time spent in work

W work

w ∈ [0, P ) amount of work time so far executed out of the price

V (~s) expected return or value of state ~s

VI Variable Interval (schedule)

U macroscopic utility

Table 1.1: Table of symbols/glossary



Chapter 2

Literature Review

2.1 Introduction

One common everyday decision is between working (performing an employer-

defined task) and engaging in leisure (activities pursued for oneself). Working

leads to external rewards such as food and money; whereas leisure is supposed

to be intrinsically beneficial (otherwise one would not want to engage in it).

Since these activities are usually mutually exclusive, subjects must decide how

to allocate time to each. Note that work need not be physically or cognitively

demanding, but consumes time; equally leisure need not be limited to rest, and

may present physical and/or mental demands.

The division of time between work and leisure has been extensively studied in

both humans and other animals, both in the laboratory and in real-life field

studies. Most of these studies have characterised behaviour at the macroscopic

timescale, investigating average rates of responding and proportions of time allo-

cated. There has also been some amount of research characterising microscopic

choices. Theories have approached the work-leisure tradeoff from computational

and algorithmic perspectives. In this Chapter, we shall review the literature on

these approaches. We shall also contribute two brief, technical literature reviews

that are necessary for the rest of the thesis: on brain stimulation reward and

average reward semi-Markov decision processes.
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2.2 Microeconomics: Labour supply theory

The prominent theory of how individuals should divide their time between work

(labour) and leisure is the macroscopic labour supply theory. This has been

largely applied to studies in humans, but also to animals tested in the labora-

tory. Macroscopic, but microeconomic labour supply theorists Frank (2005) have

approached the question of dividing time between work and leisure at a computa-

tional level, formulating what problem an agent is solving. They have adopted a

normative perspective, formulating what a rational agent should do. The optimal

allocation of time between work and leisure is of critical economic importance,

not only from the perspective of the subject making the choice but also from

that of the employer or firm. The latter must set wages, i.e. the rewards of

working and work requirements, appropriately so as to maximise profit from pro-

duction. Typically, the longer a subject works, the more labour it supplies, and

so the greater the employer or firms production. The microeconomic theory of

labour supply Frank (2005), which we review here, studies the problem from the

subject’s perspective.

In labour supply theory Frank (2005), subjects are assumed to maximize their

macroscopic utility by trading off two goods (i) income from working against

(ii) leisure. Work, though not necessarily effortful or cognitively demanding, is

considered a bad, since it consumes time that a subject could instead invest in

leisure. In economic nomenclature, work incurs an opportunity cost when leisure

is more valuable.

Let m be the total income that a subject accumulates over a large time-period

(e.g. a day in the case of a person), and l be the cumulative amount of time

spent in leisure. A macroscopic utility function U(l,m) is defined, which increases

with both income and leisure, since more of a good is always better than less.

Fig.2.1A shows the indifference curves (IC)–contours of equal utility. A subject

is indifferent between combinations of these goods along an IC, but combinations

on an IC with greater utility are preferred. Preferences are thus transitive. The

slope of an IC, negative of which is called the marginal rate of substitution, shows

how willing a subject is to substitute one good with the other, depending on how

much of each it has already consumed. We shall discuss substitutability in greater

detail in Chapter 4. ICs are typically convex and negatively sloped, subjects

must tradeoff consuming an extra unit of one good with reducing some units of

the other.

The total time T in which income and leisure can be consumed is fixed (e.g. a

day in the case of a person, or an experimental trial or session in the case of an
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Figure 2.1: Labour supply theory. A) A macroscopic utility function
U(l,m) is defined over a combination of two goods: the total income that
a subject accumulates, and the cumulative amount of time spent in leisure.
The utility function increases with both income and leisure. Indifference
curves (ICs) are contours of equal utility. A subject is indifferent between
combinations of these goods along an IC, but combinations on an IC with
greater utility are preferred. Black line shows the budget constraint: total
duration T is fixed. The optimal combination of income and leisure time is
obtained by maximising the utility function subject to the budget constraint,
i.e., when the budget constraint is tangent to an IC. Graphic adapted from
Kool and Botvinick (2012). B) A wage rate change that is not compensated
by any free, prior income can be decomposed into two effects. For example,
suppose the wage rate is decreased, so that the budget constraint pivots from
OA to OB. The first effect is the substitution effect, which would be due to an
imaginary income compensated wage decrease. The free, prior income OO’
is provided as compensation for the reduced income possible due to the wage
rate decrease. The budget constraint would then shift from OA to O’B’,
leaving the subject the opportunity to consume the same income-leisure
combination (Xo). However, this imaginary budget constraint is tangent
to an indifference curve with a greater utility. The optimal allocation is to
allocate more time to leisure, and work more (Xs), i.e. substitute leisure
for work. Second, the income effect. The decreased wage rate enables the
subject to gain less income. The budget constraint is shifted downward
from O’B’ in parallel, to OB. The new budget constraint OB is tangent
to an indifference curve for which the optimal combination of income and
leisure (Xi) involves the cumulative leisure time decreasing compared to the
imaginary level (Xs) but increasing compared to the original level (Xo). As
a consequence of the wage rate decrease, subjects thus work less and engage
in leisure more.
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animal subject). This enforces a budget constraint, here expressed in terms of

the goods income and leisure (Eq.(2.1), but see Eq. (4.17) when it is expressed

in terms of time),

m = RW ω = RW (T − l) (2.1)

where RW is the wage rate (the employer or experimenter determined reward per

unit time spent working) and ω = T − l is the cumulative amount of time spent

working.

Subjects must maximise their macroscopic utilities subject to this budget con-

straint. The optimal combination of leisure and income is

(l∗,m∗) = argmax(l,m)[U(l,m)− λ (T − (m/RW + l))] (2.2)

where λ is a Lagrange multiplier to enforce the budget constraint. This is equiva-

lent to the shadow price or marginal utility of wealth i.e., the extra (macroscopic)

utility arising from relaxing the total budget T , (i.e. taking an extra unit of total

time for work and/or leisure).

The optimal combination of goods is that at which the budget constraint is tan-

gent to an IC or is at a boundary (Fig.2.1)

Now, as discussed above, macroscopic utilities with respect to both income ( ∂U∂m)

and leisure (∂U∂l ) are positive. Then, since macroscopic utility is constant on an

indifference curve, the total derivative with respect to a good (say leisure) is zero:

dU

dl
=

∂U

∂l
+
∂U

∂m

dm

dl
= 0

⇒ dm

dl
= −∂U

∂l
/
∂U

∂m
< 0 (2.3)

This shows that indifference curves have negative slopes (dmdl < 0).

The optimum (l∗,m∗) associated with the budget constraint occurs when

∂U

∂m
− λ 1

RW
= 0

∂U

∂l
− λ = 0

⇒ −dm
dl

=
∂U

∂l
/
∂U

∂m
= RW (2.4)
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At the optimum, negative of the slope of the IC, i.e. the marginal rate of substi-

tution, is equal to the wage rate RW .

2.2.1 Substitution and income effects: effects of wage rate

changes

Studies on the effect of wage rate changes on labour supply come in one of two

varieties: those providing a free, prior income to compensate for the change in

total income attainable, and those that do not (for an extensive review see Kagel

et al. (1995)). A wage rate change that is not compensated by any accompanying

income can be decomposed into two effects (Fig.2.1B). The first effect can be

considered as an income-compensated wage change that would allow the subject

to maintain the same level of income and leisure (with the budget constraint

passing through the same income-leisure combination). Although the subject has

the opportunity to maintain the same income-leisure combination, the effect of an

income compensated wage change is that the budget constraint is now tangent

to a different indifference curve with greater utility. Since combinations with

greater utility are preferred to those with less, the subject will now substitute

more income for leisure (by working more) if the wage rate increases and vice

versa. This is called the substitution effect. How much income is substituted for

leisure depends on the substitutability between the goods — reflecting a subject’s

willingness to substitute income for leisure based on how much of each it has

already consumed.

The second effect reflects the greater (less) income available owing to the increased

(decreased) wage rate. The budget constraint shifts upwards (downwards) in

parallel due to the wage rate increase (decrease). The optimal income-leisure

combination due to the wage rate change occurs when this final budget constraint

is tangent to an IC. As long as the substitution effect dominates the income effect,

subjects will always work more if a wage rate is increased. We shall discuss the

scenario when this is not true in Chapter 5.

2.2.2 Random utility theory

Maximising utility, as above implies deterministic choices. Behavioural data, on

the other hand, is inherently variable. This mismatch between theory and data

can be alleviated using random utility theory McFadden (1984), by adding unob-

servable noise to the representation of utility and then choosing the consumption
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bundle with the greatest utility 1

Ū(ω|T ) = U(ω|T ) + η(ω|T ). (2.5)

The noise η(ω|T ) is commonly assumed to be Gumbel distributed (i.e. drawn

from an extreme value distribution of type I). Then the probability of choosing

the optimal consumption bundle is

Pr(ω|T ) = Pr

(
Ū(ω|T ) = max

ω′∈[0,T ]
Ū(ω′|T )

)
=

exp [U(ω|T )]∫ T
0 dω′ exp[U(ω′|T )]

(2.6)

which is a softmax–rather than a max–function of the macroscopic utilities Mc-

Fadden (1984); Dagsvik et al. (2012). Choices are consequently stochastic, rather

than deterministic. The softmax function, which we shall use throughout the

thesis, is ubiquitous in reinforcement learning as well.

2.3 Miniscopic labour supply theory

A dynamic extension to the static labour supply theory discussed above, is to

consider labour supply in time-windows. For example, this can be used to study

how interest rates and wage changes affect the supply of labour over the course

of a day or even a lifetime Blundell and Macurdy (1999). Considering allocations

within time-windows yields a finer characterisation than that from the macro-

scopic static labour supply theory; but still does not provide a characterisation

of the detailed temporal structure of choice. It is thus neither macroscopic nor

microscopic. We therefore term this sort of characterisation miniscopic.

A utility function over an entire lifetime

Û = fu(U0(l0,m0), . . . , Ut(lt,mt), Ut+1(lt+1,mt+1), . . . , Utend(ltend ,mtend)))

can be defined, which includes the utilities Ut(lt,mt) in each time-period

0, . . . , tend, where fu(·) is some function and tend is the final time-period. The util-

ity function is usually considered to be separable, and more specifically, linearly

separable in time, i.e. fu(·) is a discounted linear sum of utilities

1We express the macroscopic utility function in terms of total work time ω, since the total
leisure time chosen, l = T − ω, can be computed by subtracting the total work time from the
total time T .
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Û =

tend∑
t=0

γt Ut(lt,mt) (2.7)

where γ ∈ (0, 1] is a discount factor reflecting the subject’s rate of time preference.

γ = 1 implies future utilities are not discounted at all.

This utility is maximised subject to a dynamic budget constraint,

Y0 +

tend∑
t=0

[RWt(T − lt)] =

tend∑
t=0

mt (2.8)

where Y0 is some initial wealth, lt,mt and RWt are the cumulative leisure times,

incomes and wage rates in time-period t. Maximising the lifetime utility subject

to this dynamic budget constraint can be done using dynamic programming, by

first solving for the optimal income-leisure combination l∗tend ,m
∗
tend

in the final

time-period subject to the final budget constraint. This is then used to solve for

the optimal combination in the previous time-period, which is then used for the

preceding time-period, and so on. In essence, this recurses static labour supply

models in time-windows. The allocations between income and leisure are still av-

erages for each time-window. Dynamic labour supply is useful for characterising

average times spent working in each individual hour over the course of a day, or

years over the course of a lifetime. It cannot still account for the fine-scale tem-

poral topography, or the microstructure of work and leisure choices. For these we

would need to turn to microscopic theories of behaviour. Testing these on animal,

rather than human subjects, and in the laboratory with appropriate schedules of

reinforcement, rather than in field studies, enables a cleaner understanding of the

processes underlying temporally relevant behaviour, with extraneous confounding

factors under closer control.

2.4 Schedules of Reinforcement

Free-operant behaviour, in which animals (typically rats, mice or pigeons) are free

(with few restrictions) to choose all three of what to do, when to do it and for how

long/fast to do it, i.e., actions and their durations/vigour, is minimally encum-

bered by experimenter manipulation. Actions usually involve pressing a lever,

pulling a chain, pecking a key etc in order to acquire some reinforcement (such as

food or water for a hungry or thirsty animal). These experimenter defined actions

or tasks performed by an animal in order to receive rewards are defined as work

(W ); with all other activities that an animal performs (e.g. grooming, resting,
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exploring), presumably for their intrinsic benefits, defined to constitute leisure

(L). Animals adjust their behaviour according to the experimenter determined

schedule of reinforcement Ferster and Skinner (1957). Compared to reinforce-

ment schedules where choices are made at discrete time points Sutton and Barto

(1998), animals largely set the pace of the task. Free operant behaviour is thus a

comparatively pure expression of choice.

2.4.1 Free-Operant schedules

The schedules of reinforcement commonly used are ratio and interval schedules

Baum (1993); Domjan (2003). Interval schedules stipulate that the first response

after an unsignalled predetermined interval has elapsed is reinforced. The dura-

tion of the interval can be fixed (fixed interval (FI) schedule of e.g. 15 seconds

is denoted FI15) or randomly drawn from a distribution. If the interval duration

distribution is exponential, then it is traditionally called a random interval (RI)

schedule; for all other distributions it is called a variable interval (VI) schedule.

Intervals are timed from the previous reinforcement, except for the first interval

which is timed from the start of an experimental session. In ratio reinforcement

schedules, reinforcement is only provided after a predefined number of responses–

which can either be fixed (fixed ratio–FR schedules) or randomly drawn from a

distribution (variable ratio–VR schedules; random ratio of RR schedules when

drawn from a Geometric distribution).

Since animals adjust their behaviour to the schedule of reinforcement, ratio and

interval schedules lead to different relationships between the animal’s rate of

responses and the rate of reinforcement. In ratio schedules response rates are

linearly related to reinforcement rates. By contrast, on interval schedules, re-

sponses before the termination of the interval is are not reinforced, and the rate

of reinforcement is further curtailed by the interval duration. Consequently there

is a nonlinear saturating relationship between responses and reinforcements. In

general, response rates are slower for longer intervals or larger ratios Herrnstein

(1970); Barrett and Stanley (1980); Mazur (1983); Baum (1993); Killeen (1995);

Foster et al. (1997), and faster for reinforcers with higher magnitude or quality

Bradshaw et al. (1979, 1981a,b).

Behaviour on fixed interval schedules, provides evidence that animals attempt

to keep track of time during the interval. Although this is susceptible to timing

errors (which scale with the duration of the interval, Gibbon (1977); Gallistel and

Gibbon (2000), animals attempt to respond only towards the end of the interval.

There is a characteristic pause in responding, called the post-reinforcement pause
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(PRP) after a reward is obtained. The PRP does not solely reflect time involved

in consuming rewards; its duration scales with the mean duration of the interval.

The analysis of PRPs shall play a central role in the characterisation of behaviour,

and the novel approaches and theories that we develop in explaining them in this

thesis. When the above microscopic pattern of behaviour is averaged across

animals and intervals, the macroscopic response rates show a scalloping pattern.

Response rates are low after the PRP, and accelerate to a higher rate as the end

of the interval approaches (see Fig. 2.2).

Responding on fixed ratio schedules is quite regular, except for a paradoxical

PRP observed on high ratio schedules Felton and Lyon (1966). It is probable

that animals confuse the long inter-reinforcer intervals, which are a side effect of

the high ratio requirements, with an interval schedule. This can be deduced from

the fact that this PRP is similar in duration to those on interval schedules which

are ’yoked’, i.e. matched in their interval lengths to the inter-reinforcer intervals

on ratio schedules.

2.4.2 Cumulative Handling Time schedule

One disadvantage of conventional schedules of reinforcement such as interval or

ratio schedules is that they control either the (average) minimum inter-reward

interval or the (average) amount of work required to earn a reward, respectively,

but not both. To overcome this Breton et al. (2009b) developed the cumula-

tive handling time (CHT) schedule (Fig. 2.3), which controls both, making it a

generalisation of conventional schedules. Subjects choose between working–the

facile task of holding down a light lever, and engaging in leisure, i.e., resting,

grooming, exploring etc (Figure 2.3). A reward is given after the subject has

accumulated work for an experimenter-defined total time-period called the price

(P ). Throughout a task trial, the objective strength of the reward and price are

held fixed. The total time a subject could work per trial is fixed at some propor-

tion of the price. For example the trial duration could be 25 times the price (plus

extra time for ’consuming’ rewards during which the trial clock remains frozen),

enabling at most 25 rewards to be harvested. A behaviourally observed work or

leisure bout is defined as a temporally continuous act of working or engaging in

leisure, respectively. Of course, contiguous short work or leisure bouts are exter-

nally indistinguishable from one long bout. Subjects are free to distribute leisure

bouts in between individual work bouts. We shall characterise behaviour on the

CHT task in detail in Chapters 3 and 6, and use it as an example labour task in

Chapters 4 and 5.
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Figure 2.2: Response patterns on free-operant schedules of rein-
forcement. Cumulative number of responses (y axis) over time (x axis)
were marked by a moving pen. The slope of each trace represents the rate
of responding. Pen displacements that are large represent rewards. Note
the constant response rates on variable interval and ratio schedules, and, in
contrast, the scalloping response pattern in fixed interval schedules, and the
post-reinforcement pauses on fixed ratio schedules. FR = fixed ratio; VR =
variable ratio; FI = fixed interval; VI = variable interval.
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Trial Duration 

= possible # of rewards x Price 

Price (P) Price (P) 
+ 

Reward Reward 

Figure 2.3: Cumulative handling time (CHT) task. Grey bars
denote work (depressing a lever), white gaps show leisure. The subject must
accumulate work up to an experimenter defined total period of time called
the price (P ) in order to obtain a single reward (black dot) of subjective
reward intensity RI. The trial duration is 25× price (plus 2s each time the
price is attained, during which the lever is retracted so it cannot work; not
shown). The reward intensity and price are held fixed within a trial.

.

2.4.3 Sweeps and random world

Most experiments collect data by sweeping, i.e. systematically increasing or de-

creasing from one trial to another, one of the experimenter controlled variables

(e.g. food size or rate of reinforcement) while holding the others fixed. How-

ever, this could lead to behaviour on a given trial becoming contingent on the

procedure of the sweep.

For example, Breton et al. (2009b) conducted an experiment in which rats worked

on a VI schedule to receive brain stimulation rewards, while the reward strength

or mean duration of the work requirement was swept from trial to trial. The

proportion of time allocated to working was greater when the reward strength

was swept holding the mean work requirement of the VI schedule fixed at a long

duration, than at the predicted point of equivalence when the work requirement

was swept. Breton et al. (2009b) concluded that the absence of repeated exposure

to the different possible mean durations of the work-requirement led to a reduced

evaluability of the work-requirement. Furthermore, such sweeps had the potential

of inducing anchoring effects: the reward strength or duration on one trial would

be compared against, i.e., anchored to, that on the previous trial. To avoid such

anchoring effects, Breton et al. (2009b) subsequently used a random world ex-

perimental design, in which the reward strength and work-requirement durations

were presented on a trial in random order rather than in sweeps. In order to
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ensure that subjects could evaluate the reward strength and work-requirement

on a given ’test’ trials, these trials were sandwiched in between trials with the

highest stimulation at the shortest work-requirement (called ’leading’ trials) and

trials with the lowest stimulation at the shortest work-requirement (called ’trail-

ing’ trials). We shall describe these procedures in greater detail in Chapters 3

and 6.

2.5 Macroscopic theories of behaviour

Having reviewed different schedules or reinforcement, we now address how be-

haviour on them is characterised and understood, starting with traditional macro-

scopic characterisations.

2.5.1 Matching Law

The most famous macroscopic characterisation of behaviour in behavioural psy-

chology comes from the observation that when two response options are concur-

rently available (e.g. left and right levers, or keys A and B), subjects match

the ratio of their rates of responding on the two options to the ratio of their

experienced reward rates. For example, when one lever is reinforced on a RI15

schedule, while the other is on a RI30 schedule, rats will press the latter lever

roughly twice as fast as they will on the former. This macroscopic relationship

between the ratio of response rates to the ratio of experience reward rates was

studied and formalised by Herrnstein Herrnstein (1961, 1970) as the ’Matching

Law’. This was later generalised to allow over or under-matching Baum (1974)

Response Rate1

Reponse Rate2

=

(
Reinforcement Rate1

Reinforcement Rate2

)a
⇒ Reponse Rate1

Reponse Rate1 + Reponse Rate2

=
Reinforcement Rate1

a

Reinforcement Rate1
a + Reinforcement Rate2

a

(2.9)

where a is the matching coefficient; a < 1 reflects under-matching, a > 1 reflects

over-matching; a = 1 yields the original matching law. An alternative form of

this generalised matching law considers the relative proportions of times allocated

to responding
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T1

T2
=

(
Reinforcement Rate1

Reinforcement Rate2

)a
⇒ T1

T1 + T2
=

Reinforcement Rate1
a

Reinforcement Rate1
a + Reinforcement Rate2

a (2.10)
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Figure 2.4: Matching Law. A) The relationship between response rate
and reinforcement rate on a Variable Interval schedule, is hyperbolic. This
can be seen as an instantiation of Herrnstein’s Matching Law for one in-
strumental response. Adapted from Herrnstein (1970). B) Experimentally
observed Matching Law behaviour : the proportion of pecks on key A is
roughly equal to the proportion of rewards obtained on this key. Adapted
from Herrnstein (1961). Note that rates in these cases are measured as over-
all number of responses in a session McSweeney et al. (1983), not correcting
for time involved in e.g. consuming rewards.

When only one experimenter determined instrumental response is available (e.g.

a box with only one lever), the rate of responding (Response RateW ) is compared

to the (somewhat poorly defined, and largely not considered further) ’rate’ of re-

sponding (Response RateL) for all other activities, which are denoted as leisure.

If a reward rate from these intrinsically beneficial alternate activities is defined

(Reward RateL) and a fixed total rate of responding for all activities is assumed

(Response Ratetotal = Response RateW + Response RateL), then the rate of re-

sponding is related to the rate of reinforcement (Reinforcement RateW ) via the

matching law

Response RateW =
Response Ratetotal · Reinforcement RateW

a

Reinforcement RateW
a + Reinforcement RateL

a (2.11)

This gives a hyperbolic relationship between the rate of responding and the rate

of reinforcement (Fig. 2.4A), which was verified experimentally Herrnstein (1970)

(Fig. 2.4B). However the matching law is in practice not universally true (e.g.
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Wearden and Burgess (1982); Dallery and Soto (2004); Soto et al. (2005, 2006).

For example, whether or not response rates match reinforcement rates on concur-

rent interval schedules is sensitive Pliskoff and Fetterman (1981); Baum (1982);

Boelens and Kop (1983) to whether or not a penalty for switching from between

options (a change-over delay; COD; Herrnstein (1961, 1970) exists. In the ab-

sence of some penalty, whether implicitly due to the need to travel between two

distant levers Baum (1982), or explicitly owing to a certain number of actions

or a minimal amount of time to pass before the schedule on the switched-to op-

tion resumes Shull and Pliskoff (1967); Sugrue et al. (2004), animals often simply

alternate rapidly between the two options Herrnstein (1961, 1970).

As we had mentioned in Chapter 1, the matching law is algorithmic, it describes

what animals do under these schedules of reinforcement. It does not explain

why animals ought to match. Matching is clearly suboptimal, since a normative

subject should try to maximise returns, responding exclusively on the option with

a greater reinforcement rate, rather than match response rates to reinforcement

rates 2.

2.5.2 Curve shift procedure

The subjective worth or utility of a reward may be due to its properties across

more than one dimension. For rewards like food pellets this could be the size,

calorific value or number of food pellets. As the study of motivated behaviour

gained popularity, the macroscopic paradigm used to characterise behaviour was

the curve-shift method Miliaressis et al. (1986) (Fig. 2.5, right column). By

assessing the response rates at various objective reward strengths, varying one

dimension while holding others fixed, a pharmacological or lesion manipulation

that changes responding overall can be disentangled from one that alters the

animals motivation to gain rewarding stimulation. The parameter at which per-

formance is half-maximal, called M50 provides a summary of the effect of this

parameter on motivated behaviour. For instance, cocaine has been found to re-

duce the reward strength for half-maximal performance without altering a rat’s

maximum response rate Hernandez et al. (2008). It can be deduced that cocaine

boosts the animals pursuit of non-maximal rewards for a given programmed rate

of reinforcement.

The curve-shift method is inadequate in the sense that it cannot distinguish ef-

fects on motivation owing to influences that do not concern the reward from those

2There exist plenty of attempts to understand matching from a normative perspective, which
we shall not review here.
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that do. For instance, introducing effort costs (by adding weights to the manip-

ulandum) should not change the utility of a food pellet, or a train of pulses in

the case of brain stimulation reward. But since an animal is less motivated to

work when there are greater effort costs, a higher reward parameter (e.g. greater

number of pellets) must be used to compensate this and achieve the same thresh-

old level of responding. For example, Fouriezos et al. (1990) used the curve shift

procedure to asses response rates as a function of reward strength, while intro-

ducing effort costs. Increasing the weight on the lever from 0 to 45g reduced

the rate of responding at the highest reward strength, but the reward strength

necessary for maintaining half-maximal performance had to be increased as com-

pensation for the added weight. The curve-shift procedure cannot distinguish

effects downstream of the reward from those concerning the reward only.

2.5.3 Mountain Model

In order to overcome the inadequacies of the curve-shift procedure and disentangle

at what the stage of neural processing manipulations may act, Arvanitogiannis

and Shizgal (2008) developed a 3-dimensional approach (Fig. 2.5, left column)

to characterising behaviour. It characterises macroscopic time allocation as a

function the reward objective strength of the reward and the costs of procuring

it.

The subjective worth of the reward, called the reward intensity (RI), is a micro-

scopic utility. The transformation from objective strength to subjective reward

intensity has been previously determined Gallistel and Leon (1991); Simmons

and Gallistel (1994); Hamilton et al. (1985); Mark and Gallistel (1993); Leon and

Gallistel (1992); Sonnenschein et al. (2003)

This is combined in scalar fashion (as in matching law accounts Baum and Rachlin

(1969); Killeen (1972)) with the time lost in attaining a reward (P ) ; and potential

effort costs associated with it (ε) to define a payoff from working

RW =
RI

P · (1 + ε)
(2.12)

the +1 in the denominator prevents payoffs from blowing off to infinity when

effort costs are negligible. A payoff from alternative activities, or leisure, can be

similarly defined RL = RImax
(1+ε)PL

, in relation to that from working. Here, PL is

defined as the price at which, for a maximum subjective reward intensity RImax,

the subject allocates half the time to work, and half to leisure. The relative times

allocated to working for the reward and leisure are matched to the ratio of their
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Figure 2.5: Two (curve-shift) and three-dimensional (mountain
model) macroscopic approaches to characterising behaviour. The
2-dimensional curve shift procedure characterises time allocation to working
as a function of reward strength only, whereas the 3-dimensional mountain
model characterises it as a function of both reward strength and the cost
(effort or time) of procuring it. Shifts distinguishable in the 3-dimensional
mountain model (left column) are ambiguous in the 2-dimensional curve-
shift characterisation (right column). The little green figure facing the
reward-strength axis perceives the world in 2-dimensions. It cannot see
the cost axis. It only sees the 3D structure as a 2D silhouette. Panels
b,d,f show the left outlines of the silhouettes perceived by the little green
figure. In panel f, the dashed blue outline of the mountain shifted along
the cost axis (panel e) is superimposed on the solid pink outline of moun-
tain shifted along the reward-strength axis (panel c). Note that although
the pink and blue mountains have been shifted in orthogonal directions and
their displacements are readily distinguished in the 3D representations on
the left, their 2D outlines (panel f) are virtually identical and could not
be distinguished in any real experiment. Adapted from Hernandez et al.
(2010). The curve-shift procedure cannot distinguish effects downstream
of the reward (e.g. due to costs) from those concerning the reward only,
whereas the mountain model can.
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respective payoffs. This makes the proportion of time allocated to working, or

simply, time allocation (TA)

TA = TAmin +

[
(TAmax − TAmin)

RW
a

RW
a +RL

a

]
= TAmin +

[
(TAmax − TAmin)

RIa

RIa + ( PPL )
a

]
(2.13)

where a is the parameter controlling the degree of matching (compare with

Eq.(2.10)). TAmin and TAmax are additional parameters accounting for when

the subject works even at high/ long work requirements and when it works less

than all of the time at high reward intensities.

Eq. (2.13) defines a 3-dimensional relationship between the subjective reward

intensity, work requirement and time allocation. This 3-dimensional relationship

is called the Mountain Model. This macroscopic, algorithmic model provided a

good fit to data on VI Arvanitogiannis and Shizgal (2008) and CHT schedules

Hernandez et al. (2010); Trujillo-Pisanty et al. (2011); Hernandez et al. (2012);

Breton (2013), which manipulated the frequency and the work requirement in-

dependently from trial to trial while holding both fixed within a trial. We shall

revisit this 3-dimensional approach in Chapter 4.

2.6 Microscopic theories of behaviour

While molecular, particularly nanoscopic, characterisations of behaviour were

first proposed early on in behavioural psychology Ferster and Skinner (1957);

Gilbert (1958); Shull et al. (2001), they soon lost popularity to the molar ap-

proach. However, molecular, particularly microscopic approaches have been more

recently used, for example to characterise the post-reinforcement pause durations

of spontaneously hyperactive rats and their relationship to the reinforcement rate

in VI schedules Williams et al. (2009a,b,c).

2.6.1 Continuous time Markov chains

A class of models that does make predictions at microscopic as well as macroscopic

levels involves the continuous time Markov chains (CTMCs) popular in ethology
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Figure 2.6: Mountain model. The mountain model expressed in terms of
objective reward strength, here the frequency of stimulation of BSR trains.
A) In the initial stages of processing, an intensity-growth function trans-
forms the aggregate spike rate induced by the stimulation train in the
directly stimulated neurons into a subjective reward-intensity. Following
rescaling, the peak reward intensity is transferred to memory. The payoff
from working RW (here called UB) is computed by taking expected value of
the reward-intensity stored in memory (by multiplying the probability that
a reward will be delivered when the experimenter-defined work requirement
has been fulfilled, in case reward delivery is probabilistic) and scaling it by
the effort cost and price (here called ’opportunity cost’ by Trujillo-Pisanty
et al. (2011)). Time allocation: the proportion of time allocated to working
for the reward is matched to the ratio of the payoff from work RW and the
payoff RL from leisure (here called UE). PL (here called PE) is defined as
the price at which, for a maximum subjective reward intensity, the subject
allocates half the time to work, and half to leisure. B) Increasing the value of
Fhm (due to a manipulation that affects the reward), the frequency at which
subjective reward intensity is half-maximal, i.e, the location parameter of
the intensity-growth function, shifts the 3-dimensional mountain rightward
along the frequency axis of the 3D space. C) Reducing the value of the PL
parameter shifts the mountain leftwards along the price axis. Note that this
could be due to the maximal reward intensity being rescaled downwards,
a reduction in the probability of reward delivery, increased effort costs, or
increased benefits of leisure. These are effects downstream of the process-
ing of the reward. While the mountain model can tease apart the stage of
neural processing at which a manipulation plays a role, it cannot distin-
guish between these different computations. Adapted from Hernandez et al.
(2010).
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Haccou and Meelis (1992). In these models, the entire stream of observed be-

haviour (every activity and its durations) can be summarized by a small set of

parametric distributions, and the effect of experimental variables like reinforce-

ment rate can be assessed with respect to how those parameters change. For

example, suppose an animal’s activities comprise pressing a lever, grooming and

resting. Then a CTMC models how long the animal spends in a particular activity

and when it switches to the next one. The probability of switching to one activity

is dependent only the previous activity, and independent of the history of past

activities, thus obeying the Markov property. The switching between one activity

(say activity A) to another (activity B) is characterised by a transition rate pa-

rameters (λA→B). In the simplest case, this transition rate is independent of the

duration for which the first activity has been performed. If this holds for switches

between all activities, then the durations for which an activity is performed are

exponentially distributed, with a mean given by the inverse of the transition rate

(1/λA→B). However, the probability of switching from one activity to the next

may depend on the duration of the first activity, but be independent of the his-

tory of past activities and their durations. The stream of observed behaviour is

then characterised by a semi-Markov chain.

CTMCs have been used to characterise the behaviour of a variety of species,

e.g. the mother-infant interaction of rhesus monkeys Dienske and Metz (1977),

the mating behaviour of barbs Putters et al. (1984) as well as the behaviour

of mosquitoes Peterson (1980) and juncos Wiley and Hartnett (1980). It has

been used by our collaborators to provide a microscopic characterisation of work

and leisure choices Breton (2013). CTMC and semi-Markov chain models are

descriptive, characterising what the animal does, rather than being normative:

positing why it does so. We refer the interested reader to Breton (2013) for

further reviews about CTMCs and focus on normative perspectives, which shall

be the flavour of theories we shall expand upon in this thesis.

2.6.2 Semi Markov Decision Process models of vigour

A normative, microscopic approach to what to do, when and how fast to do it

(rather than how long for) was first put forward by Niv et al. (2007). They for-

mulated this as an average-reward semi-Markov Decision Process (SMDP; which

we shall review below) model of appetitive vigour in ratio and interval schedules.

In this model, a subject jointly chooses both actions and how fast to do them

(e.g., how fast to press a lever) depending on how much of the work requirement

it has already fulfilled (e.g. the number of lever presses already made). In an
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average-reward setting, a normative subject attempts to maximise reward rate.

This can be achieved by responding faster and enabling oneself greater opportu-

nities to gain rewards. However, faster responses incur a vigour cost, which was

assumed to be directly proportional to the vigour of responses. Subjects must

thus tradeoff this vigour cost of responding quickly against the opportunities lost

by responding slowly.

Given this objective, the optimal latency of actions turns out to be inversely re-

lated to the square root of the reward rate and increases with the square root of

the cost of vigour. This microscopic latency between actions was then averaged

over time-windows (e.g. number of lever presses in 5 mins) to yield a response

rate–a macroscopic quantity. The macroscopic hyperbolic relationship between

response rate and reinforcement rate in Section 2.5.1 was derived from this nor-

mative, microscopic relationship between response latency and reward rate. Niv

et al. (2007) further proposed that the reward rate was computed or carried by

the level of tonic dopamine, a question we return to in Chapter 7. They showed

that, in a particular experimental setup Salamone and Correa (2002), although

the macroscopic response rates may not increase with reinforcement rate (osten-

sibly due to the increased time spent consuming more rewards), the microscopic

latency between responses could decrease–suggesting the power of the normative,

microscopic approach over macroscopic ones.

Niv et al. (2007)’s model of appetitive vigour was extended to the VI schedule and

to the aversive domain by Dayan (2012), particularly suggesting that serotonin

may signal a negative reward rate Cools et al. (2011). In this thesis, we extend

these ideas first proposed by Niv et al. (2007) to a generic, normative microscopic

approach in the context of what to do, when to do it and how to do it long for.

2.7 Average-reward semi-Markov decision processes

We now briefly review the reinforcement learning framework of infinite-horizon

(unichain) Semi-Markov Decision Process (SMDP) Puterman (2005). Unlike fi-

nite episodic tasks, which terminate, these infinitely cycle between states. A state

~s contains all the information necessary for making a decision. The subject’s next

state in the future ~s′ depends on its current state ~s, the action a, and the duration

τa of that action, but is independent of all other states, actions and durations in

the past. We may further assume that subjects jointly choose both the actions

and their durations, as in Niv et al. (2007); Cools et al. (2011); Dayan (2012) 3.

3We could have simply assumed that subjects choose actions only, and subjects have no con-
trol over their durations; they persist for some duration, following which the subject transitions
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A choice rule or policy π([a, τa]|~s) specifies the subject’s probability of taking

action a for time τa in state ~s. Under a given policy, we can define the expected

reward rate, or the average reward per unit time

ρπ = lim
T→∞

Eπ
[∑T−1

t̄=0 rt̄([at′ , τat′ ])− ct̄([at′ , τat′ ])
]

T
(2.14)

where rt′ and ct′ denote the benefits and costs at time points t′. Note that the

expected reward rate is independent of the starting state for such unchain, ergodic

chains.

The expected return or Q-value of taking action a, for duration τa from state ~s

is

Qπ(~s, [a, τa]) = Eπ

[ ∞∑
t̄=0

(rt̄([at′ , τat′ ])− ct̄([at′ , τat′ ])− ρ
πτat′ ) |~st = ~s, at = a, τat = τa

]
= r̂(~s, [a, τa])− ĉ(~s, [a, τa])− ρπτa + V π(~s′)

= r̂(~s, [a, τa])− ĉ(~s, [a, τa])− ρπτa +
∑
a′

∫
τa′

π([a′, τa′ ]|~s′) Qπ(~s′, [a′, τa′ ]) dτa′

(2.15)

where V π(~s) =
∑

a

∫
τa
π([a, τa]|~s) Qπ(~s, [a, τa]) is the value of state ~s, averaged

across all actions and their times. The Q values in this formulation are approxi-

mately equivalent to those obtained using shallow, explicit exponential discount-

ing over an infinite horizon Puterman (2005); Daw and Touretzky (2002).

In RL, ρπ is considered as the opportunity cost per unit time under policy π. It

provides a point of comparison in terms of how lucrative the policy is on average.

Adjusting the expected return by the reward rate means that the subject pays

an automatic opportunity cost of time ρπτa for taking action a for time τa Niv

et al. (2007); Dayan (2012); Cools et al. (2011). That is, in an environment with

a positive reward rate, actions which take longer cause the subject to forego the

opportunity to gain more benefits by performing other actions in that time. The

higher the reward rate, the greater the amount of benefits lost due to sloth and

therefore, greater the opportunity cost of time. This would be weighed against

the benefits of the action. By contrast, in economics, the opportunity cost is

defined instead in terms of just the next best action, a quantity that is not very

meaningful in our microscopic context.

to another state. However, since this thesis considers how long to perform an action as an
integral part of a choice, we consider joint choices over different actions and their durations.
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Furthermore, by (approximately) maximising the Q-value, the subject also (ap-

proximately) maximises its reward rate (although in general, the converse may

not be true).

While simultaneously solving Eqs. (2.14) and (2.15) for the reward rate and the

Q-values, we have more unknowns than equations. As conventional, we therefore

set the value of a state to 0, and solve for the Q values relative to this baseline.

The Q values we consider are therefore differential and not the actual ones. We

drop differential denotations and simply refer to them as Q-values.

The optimal choice, according to the deterministic greedy policy π∗([a, τa] | ~s),
is the action-duration that maximises the Q-value from that state. Throughout

the thesis, we shall use a stochastic, approximately-optimal policy over action-

duration pairs [a, τa] (see Eq.(3.6) in Chapter 3). Subjects will be more likely to

choose the action-duration with a greatest Q-value, but have a non-zero proba-

bility of choosing a suboptimal action-duration.

Since the policies depend on Q-values, which themselves recursively depend on

the policies, except in the case of the optimal policy, we cannot solve for them

in closed form. We use policy iteration to find them Sutton and Barto (1998);

Puterman (2005). Starting from an initial guess, each iteration involves updating

the policy while holding the Q-values fixed, and then updating the Q-values while

holding the policy fixed, until they are self-consistent, i.e. policy iteration has

converged. Since, to our knowledge, policy iteration for stochastic policies has

not been proved to converge to a unique policy, we execute the algorithm from

different starting points. All policies reported in this thesis are the only dynamic

equilibria of policy iteration (irrespective of the starting point, they converge to

the same equilibrium). An alternative would be to compute optimal Q-values (for

which policy iteration provably converges to a unique equilibrium Singh (1993))

and then make stochastic choices based on them; however, this would result in

policies that are inconstant with their Q-values.

2.8 Brain Stimulation Reward

We close our literature review by briefly discussing brain stimulation reward. In

general, a reward is a stimulus that attracts a subject towards it, or motivates

it to attain it. Brain stimulation reward (BSR), directly electrically stimulating

the ”reward neural circuitry”, has historically been one of the best exemplars for

studying motivation behaviour. The subject works, even to the point of exhaus-

tion, in order to continue receiving trains of electrical pulses. This phenomenon



Brain Stimulation Reward 68

of brain stimulation reward was discovered by Olds and Milner (1954). They ob-

served that rats would very rapidly return to a location that had been paired with

the delivery of electrical stimulation to the septal area. Their seminal discovery

paved the way for the study of the neurophysiology of motivation and the neural

circuits underlying reinforcements and rewards.

2.8.1 Psychology

If our goal is to understand the pure effects of reward on behaviour, BSR is one of

the best candidates. In addition to affording the precise control mentioned above,

BSR is a potent reward: the rat seeks out the stimulation and eagerly anticipates

its availability, resisting interruption of its contact with the lever. Importantly,

BSR is a ’pure’ reward, which, unlike gustatory (food and drink) rewards, does

not satiate Olds (1958); Olds and Olds (1958). It is also not a secondary reinforcer

such as money in human experiments–money primary rewards maybe exchanged

for money, but money itself cannot be directly consumed. This enables the col-

lection of psychophysically stable data over many months. Finally, BSR has been

shown to compete with Conover and Shizgal (1994b), summate with Conover

and Shizgal (1994a); Conover et al. (1994); Conover and Shizgal (1994b), and

substitute for Green and Rachlin (1991), gustatory rewards, demonstrating that

these two at least partly share a common currency.

2.8.2 Neurobiology

The most prominently studied part of the neural circuit underlying BSR is the

medial forebrain bundle (MFB). It is a large tract of axon fibres going ventrally

from the olfactory tubercle to the tegmental mesencephalon. Axons from neu-

rons with cell bodies in a variety of areas are sent through the MFB in both

ascending and descending directions Nieuwenhuys et al. (1982); Veening et al.

(1982). The rewarding effect of the BSR is likely due to the activation of a subset

of this large, heterogeneous bundle of axons that maybe stimulated by the elec-

trode. It may depend on the stimulation site, for example, whether it is septal

or hypothalamic. Response rates were lower for septal stimulation than posterior

hypothalamic stimulation. However, the current required to produce a threshold

level of responding was also lower for septal stimulation. A stronger stimula-

tion current was required to drive performance to the same level for posterior

hypothalamic stimulation Hodos and Valenstein (1962).

The rewarding effect was initially hypothesised to be due to the direct activa-
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tion of ascending dopamine neurons Wise (1982). However, the physiological

properties of the stimulated MFB neurons involved in the behaviourally charac-

terised rewarding effect are incompatible with that of dopamine neurons. These

directly activated neurons have (i) short absolute refractory periods Yeomans and

Davis (1975); Yeomans (1979); (ii) they are fine and myelinated and have much

faster conduction velocities Shizgal et al. (1980); Bielajew and Shizgal (1982); and

(iii) at least a subset of these directly activated neurons project in the anterior-

posterior direction Bielajew and Shizgal (1986), i.e. descend rather than ascend.

Although there is evidence that ventral vegmental area (VTA) dopamine neurons

are eventually activated by owing the stimulation of the MFB Hernandez et al.

(2006), this effect is presumably indirect. The rewarding effect of BSR is unlikely

to due to the direct activation of dopamine neurons, although this is currently

under experimental investigation by our collaborators.

Further, it is also unlikely that the electrical stimulation associated with BSR

is directly related to the phasic firing of DA neurons Montague et al. (1996).

Phasic DA is known to compute or carry a temporal difference (TD) reward

prediction error–the difference between the expected and experienced returns

Schultz et al. (1997). This TD error can then be used to updated the values

(or expected returns) associated with a particular action or response. However,

if the stimulation were to be directly associated with this TD error, then over

the course of such trial and error learning, the values of all actions would grow

unboundedly to infinity or, under appropriate assumptions, saturate. A subject

choosing actions based on these values would not be able to distinguish between

actions which lead to large rewards from those that lead to small ones, treating

them all as maximal rewards. Empirical findings have shown, however, that rats

will respond less to lower stimulation strengths Hodos and Valenstein (1962).

These further lend support to the claim that BSR is a reward and not a reward

prediction error.

The subjective rewarding effect of BSR can be precisely controlled by manipulat-

ing objective properties of the stimulation trains. The spread of the activation is

determined by the current and pulse duration, the firing rate induced in the acti-

vated neurons is controlled by the frequency of pulses, and the activation period

is set by the train duration.

When a train of BSR pulses at a given frequency is harvested by the rat, the

cathodal pulses lead to a change in activity of the axon bundles and local so-

mata around the electrode tip. This induces a series of action potentials (spikes)

in, among other neurons, the directly stimulated MFB neurons underlying the

rewarding effect of BSR. These spikes are integrated over space and time down-
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stream of the directly stimulated neurons, rendering the injected train of pulses

into an aggregate rate code. The rat’s behaviour reveals that a small number of

fibres (owing to a low stimulation current) firing at a high rate (owing to high

frequency stimulation) yields a reward of equal magnitude to a larger number of

fibres (owing to a high stimulation current) firing at a low rate (low frequency

stimulation). BSR exhibits a property called duration-neglect Shizgal and Math-

ews (1977); Sonnenschein et al. (2003), the duration of the stimulation train is

neglected and only the peak activation produced is identified by a downstream

peak-detector and committed as a memory engram Gallistel et al. (1974).

If the stimulation current is held constant, the frequency of pulses (f) determines

the objective strength of the brain stimulation reward. This has to be transformed

to a subjective worth. The transformation from objective strength to subjective

reward intensity has been previously determined Gallistel and Leon (1991); Sim-

mons and Gallistel (1994); Hamilton et al. (1985); Mark and Gallistel (1993);

Leon and Gallistel (1992); Sonnenschein et al. (2003) as power-function–which

can be approximated by a logistic

RI = RImax
1

1 + (Fhm/f)g
(2.16)

where RImax is the maximal reward intensity: further increases in frequency do

not significantly increase the subjective reward intensity. Fhm is the frequency at

which RI is half its maximal worth, g is a parameter controlling the slope of the

logistic reward growth function.

when BSR is used as a reward, we may define the BSR mountain model

TA = TAmin +

[
(TAmax − TAmin)

RIa

RIa + ( PPL )
a

]

= TAmin +

[
(TAmax − TAmin)

( 1
1+(Fhm/f)g )a

( 1
1+(Fhm/f)g )a + ( PPL )a

]
(2.17)

where TAmin and TAmax are additional parameters accounting for when the rat

works even at long work requirements and when it works less than all of the time

at high frequencies. The latter may be due to time involved in ’consuming’ the

stimulation. We shall revisit this in Chapters 3 and 6.

This model provided a good fit to data on VI Arvanitogiannis and Shizgal (2008)

and CHT schedules Hernandez et al. (2010); Trujillo-Pisanty et al. (2011); Her-

nandez et al. (2012); Breton (2013) , which manipulated the frequency and the

work requirement independently from trial to trial while holding both fixed within



Brain Stimulation Reward 71

a trial.

2.8.3 Pharmacological manipulations

Given the ability to control both the neurobiology and psychophysics of BSR, it

became essential, very early on in the study of BSR, to be able to appropriately

and adequately characterise its effect on behaviour. A systematic study of the

parameters and circuitry underlying the rewarding effect of BSR and its impact on

behaviour was undertaken Gallistel et al. (1974); Edmonds et al. (1974); Edmonds

and Gallistel (1974), and assessed through the impact of lesions Murray and

Shizgal (1991); Waraczynski (2006) and pharmacological manipulations Franklin

(1978); Hernandez et al. (2008). Here, we focus on recent ones germane to this

thesis, specifically those using the mountain model in Section 2.5.3.

Macroscopic analyses, using the mountain model and BSR rewards, from phar-

macological and drugs of addiction studies were used to determine at what stage

of neural processing dopamine acts to affect motivated behaviour. These have

revealed that an increase in the tonic release of the dopamine shifts the 3-

dimensional relationships towards longer prices Hernandez et al. (2010); Trujillo-

Pisanty et al. (2011); Hernandez et al. (2012). This would be the case if tonic

dopamine increased the maximal reward intensity RImax; longer prices would be

required to compensate this increase. For example, the parameter PL, the price

at which time allocation is half-maximal, for a maximal reward intensity, was

shifted towards longer durations by dopamine agonists: cocaine Hernandez et al.

(2010) and GBR Hernandez et al. (2012) and towards shorter durations by the

dopamine antagonist pimozide Trujillo-Pisanty et al. (2011). The parameter fre-

quency at which reward intensity is half-maximal, Fhm remained unchanged as

a result of these drug manipulations. This suggested that tonic dopamine does

not change the sensitivity of the reward growth function–further lending support

that the rewarding effect of BSR is not due to the direct stimulation of dopamine

neurons. Tonic dopamine acts later in the stage of processing.



Chapter 3

The normative, microscopic

approach with applications to

the CHT task

3.1 Introduction

Here, we build an approximately normative, reinforcement-learning account of

the labour-leisure tradeoff, in which microscopic choices approximately maximize

net benefit. Our central intent is to understand the qualitative structure of the

molecular behaviour of subjects, providing an account that can generalise to many

experimental paradigms. We introduce a novel, generic, normative microscopic

framework. We describe an example CHT task and experiment in rodents and

use our model to qualitatively characterise key microscopic features of the data

from those experiments. In Chapter 6, we use our model to quantitatively fit

actual behaviour.

3.2 Task and Experiment

In Chapter 2, we briefly described the CHT task Breton et al. (2009b); Hernandez

et al. (2010) in which subjects choose between working–the facile task of holding

down a light lever, and engaging in leisure, i.e., resting, grooming, exploring etc

(Fig. 3.1A). A brain stimulation reward (BSR; Olds and Milner (1954)) is given

after the subject has accumulated work for an experimenter-defined total time-

period called the price (P ). BSR does not suffer satiation and allows precise,
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psychophysically stable data to be collected over many months. We show data

initially reported in Breton et al. (2009a) (and subsequently in Breton (2013);

Solomon et al.).

The objective strength of the BSR is the frequency of electrical stimulation pulses

applied to the medial forebrain bundle. As discussed in Chapter 2, this is assumed

to have a subjective worth, or microscopic utility called the reward intensity (RI,

in arbitrary units). The ratio of the reward intensity to the price is called the

payoff. Leisure is assumed to have an intrinsic subjective worth, which remains

to be quantified. Throughout a task trial, the objective strength of the reward

and price are held fixed. The total time a subject could work per trial is 25 times

the price (plus extra time for ’consuming’ rewards), enabling at most 25 rewards

to be harvested. A behaviourally observed work or leisure bout is defined as

a temporally continuous act of working or engaging in leisure, respectively. Of

course, contiguous short work or leisure bouts are externally indistinguishable

from one long bout. Subjects are free to distribute leisure bouts in between

individual work bouts.

Subjects face triads of trials: ’leading’, ’test’, then ’trailing’ (Fig. 3.2). Leading

and trailing trials involve maximal and minimal reward intensities respectively,

and the shortest price (we use the qualifiers ”short”, ”long”, etc. to emphasise

that the price is an experimenter determined time-period). We analyze the sand-

wiched test trials, which span a range of prices and reward intensities. Leading

and trailing trials allow calibration, so subjects can stably assess RI and P on

test trials. Subjects tend to be at leisure on trailing trials, limiting physical fa-

tigue. Subjects repeatedly experience each test reward intensity and price over

many months, and so can readily appreciate them after minimal experience on a

given trial without uncertainty, as evidenced by statistically stable performance.

3.3 Molar and molecular analyses of data

The key molar statistic is the Time Allocation TA, namely the proportion of the

available time for working in a test trial that the subject spends pressing the

lever. Fig. 3.1B shows example TAs for a typical subject. TA increases with

the reward intensity and decreases with the price (as predicted by the Mountain

model discussed in Chapter 2). Conversely, a molecular analysis, shown in the

ethograms in (Fig. 3.1C, D), assesses the detailed temporal topography of choice,

recording when, and for how long, each act of work or leisure occurred (after the

first acquisition of the reward in the trial, i.e., after the ‘pink/dark grey’ lever
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Figure 3.1: Task and key features of the data. A) Cumulative
handling time (CHT) task. Grey bars denote work (depressing a lever),
white gaps show leisure. The subject must accumulate work up to a total
period of time called the price (P ) in order to obtain a single reward (black
dot) of subjective reward intensity RI. The trial duration is 25×price (plus
2s each time the price is attained, during which the lever is retracted so
it cannot work; not shown). The reward intensity and price are held fixed
within a trial. B) Molar time allocation (TA) functions of a typical subject
as a function of reward intensity and price. Red/grey curves: effect of reward
intensity, for a fixed short price; blue/dark grey curves: effect of price, for
a fixed high reward intensity; green/light grey curves: joint effect on time
allocation of reward intensity and price. C) A molecular analysis may reveal
different microstructures of working and engaging in leisure. The three rows
show three different hypothetical trials. All three microstructures have the
same molar TA, but are clearly distinguishable. D) Molecular ethogram
showing the detailed temporal topography of working and engaging in leisure
for the subject in B). Upper, middle and lower panels show low, medium
and high payoffs, respectively, for a fixed, short price. Following previous
reports using rat subjects, releases shorter than 1 second are considered part
of the previous work bout (since subjects remain at the lever during this
period). Graphically, this makes some work bouts appear longer than others.
The subject mostly pre-commits to working continuously for the entire price
duration. When the payoff is high, the subject works almost continuously
for the entire trial, engaging in very short leisure bouts inbetween work
bouts. When the payoff is low, the subject engages in a long leisure bout
after receiving a reward. This leisure bout is potentially longer than the
trial, whence it would be censored. The part of a trial before the reward
and price are certainly known is coloured pink/dark grey and not considered
further. Data collected by Yannick-Andre Breton and Rebecca Solomon and
initially reported in Breton et al. (2009a).
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T=25x1s, RImax 
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T=25 x Price, RItest  

TrailingTrial 

T=25x1s, RImin 

10 s 

cue 
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Figure 3.2: Experimental procedure: triads of trials Subjects face
triads of trials: ’leading’, then ’test’, then ’trailing’. Throughout a trial, the
reward intensity and price are all held fixed; each trial lasts T = 25 times
the price, plus a fixed, extra time (2s) on each occasion that the price is
attained, during which the lever is retracted so that subjects cannot work.
This enables the subject to harvest 25 rewards if it works for the entire
trial duration. The leading trial involves maximal reward intensity and the
shortest (1s) price; the trailing trial involves minimal reward intensity and
the shortest (1s) price. Each trial is separated by a 10s cue during which
house-lights are switched on, clearly indicating that a trial has ended and
a new trial shall begin. The leading and trailing trials were provided so
that subjects could calibrate and adequately evaluate the reward and price
on test trials. Engaging in leisure on trailing trials also ensured that the
subjects would not be fatigued on test trials.

presses in Fig. 3.1D). The TA can be derived from the molecular ethogram data,

but not vice-versa, since many different molecular patterns (Fig. 3.1C) share a

single TA.

Qualitative characteristics of the molecular structure of the data (Fig. 3.1D)

include: (i) at high payoffs, subjects work almost continuously, engaging in little

leisure inbetween work bouts; (ii) at low payoffs, they engage in leisure all at

once, in long bouts after working, rather than distributing the same amount of

leisure time into multiple short leisure bouts; (iii) subjects work continuously for

the entire price duration, as long as the price is not very long (as shown by an

analysis conducted by Yannick-Andre Breton, Breton (2013)); (iv) the duration

of leisure bouts is variable.

3.4 Micro Semi Markov Decision Process Model

We consider whether key features of the data in Fig. 3.1D might arise from the

subject’s making stochastic optimal control choices, i.e., ones that at least ap-

proximately maximise the expected return arising from all benefits and costs over

entire trials. As discussed in Chapter 2, following Niv et al. (2007), we formu-

late this computational problem using the reinforcement learning framework of

infinite horizon (Semi) Markov Decision Processes ((S)MDPs) Sutton and Barto

(1998); Puterman (2005) (Fig. 3.3A). Subjects not only choose which action a to

take, i.e. to work (W ) or engage in leisure (L), but also the duration of the action

(τa). They pay an automatic opportunity cost of time: performing an action over
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a longer period denies the subject the opportunity to take other actions during

that period, and thus extirpates any potential benefit from those actions.

Since trials are substantially extended, we assume the subjects do not worry

about the time the trial ends, and instead make choices that would (approxi-

mately) maximize their average summed microscopic utility per unit time Niv

et al. (2007). Nevertheless, for comparison with the data, we still terminate each

trial at 25× price, so actions can be censored by the end of the trial, preventing

their completion. In the Discussion section we consider an alternate, Markov

rather than semi-Markov, variant which, instead of committing to durations,

makes choices between work and leisure at every moment-in-time. The infinite

horizon, average-reward formulation is preferred over an episodic version because

(a) the subjects in the experimental data that we model work till the end of

trials as if they do not worry when the trial ends, i.e., where the horizon occurs

(Fig. 3.1D); (b) the choice rules/policies (and hence, predicted behaviour) in our

formulation are equivalent to those from a finite horizon version as long as the

subject is not close to the horizon; (c) assuming a discount factor as in most RL

work would introduce an extra free parameter in our model. In any case, this

formulation is equivalent to that using shallow, explicit exponential discounting

over an infinite horizon Puterman (2005); Daw and Touretzky (2002). Further,

(d) as mentioned in Chapter 2, in RL, the reward-rate is considered as the op-

portunity cost per unit time under a policy. It provides a point of comparison in

terms of how lucrative the policy is on average. The higher the reward rate, the

greater the amount of potential benefits from alternate actions lost by persist-

ing longer with a particular action and therefore, greater the opportunity cost of

time. This would be weighed against the benefits of the action. By contrast, in

economics, the opportunity cost is defined instead in terms of just the next best

option. But when dividing time between labour and leisure, the next best option

is not necessarily to work rather than engage in leisure (or vice-versa), but a dif-

ferent duration of leisure. The worth of this duration (and also whether or not to

switch to the alternate action) is quantified by weighing the benefits of choosing

it against its opportunity cost of time. Finally (e), following Niv et al. (2007), the

neural representation of the average reward-rate term can be investigated using

our formulation.

We discuss components of our microscopic SMDP model in turn: utility, state

space, transitions and policy.
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Figure 3.3: Model and leisure functions. A) The infinite horizon
micro semi-Markov decision process (SMDP). States are characterised by
whether they are pre- or post-reward. Subjects choose not only whether to
work or to engage in leisure, but also for how long to do so. Pre-reward states
are further defined by the amount of work time w that the subject has so far
invested. At a pre-reward state state [pre,w], the subject can choose to work
(W ) for a duration τW or engage in leisure (L) for a duration τL. Working
for τW transitions the subject to a subsequent pre-reward state [pre,w+τW ]
if w + τW < P , and to the post-reward state if w + τW ≥ P . Engaging in
leisure for τL transitions the subject to the same state. For working, only
transitions to the post-reward state are rewarded, with reward intensity
RI. Engaging in leisure for τL has a benefit CL(τL). In the post-reward
state, the subject is assumed already to have been at leisure for a time τPav,
which reflects Pavlovian conditioning to the lever. By choosing to engage
in instrumental leisure for a duration τL, it gains a microscopic benefit-of-
leisure CL(τPav+τL) and then returns to state [pre,0] at the start of the cycle
whence the process repeats. B) Upper panel: canonical microscopic benefit-
of-leisure functions CL(·); lower panel: the net microscopic benefit-of-leisure
per unit time spent in leisure. For simplicity we considered linear CL(·)
(blue/dark grey), whose net benefit per unit time is constant, sigmoidal
CL(·) (red/grey), which is initially supra-linear but eventually saturates
and so has a unimodal net benefit per unit time; and a weighted sum of
these two (green/light grey). See Eq.(3.1) for details. C) Time τPav is the
Pavlovian component of leisure, reflecting conditioning to the lever. It is
decreasing with reward intensity (here, inversely) and increasing with price
(here sigmoidally), so that it decreases with payoff.
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3.4.1 Utility

The utility of the reward is RI. We assume that pressing the lever requires such

minimal force that it does not incur any direct effort cost. We assume leisure

to be intrinsically beneficial according to a function CL(τ) of its duration (but

formally independent of any other rewards or costs). The simplest such function

is linear CL(τ) = KLτ (Fig. 3.3B, upper panel blue/dark grey line), which would

imply that the net utility of several short leisure bouts would be the same as a

single bout of equal total length (Fig. 3.3B, lower panel, blue/dark grey line).

Alternatively, CL(·) could be supra-linear (Fig. 3.3B, upper panel, red/grey

curve). For this function, a single long leisure bout would be preferred to an

equivalent time spent in several short bouts (Fig. 3.3B, lower panel, red/grey

curve). If CL(·) saturates, the marginal utility or benefit of leisure per unit time
dCL(τ)
dτ will peak at an optimal bout duration. We represent this class of func-

tions with a sigmoid, although many other non-linearities are possible. Finally,

to encompass both extremes, we consider a weighted sum of linear and sigmoid

CL(·), with the same maximal slope (Fig. 3.3B, green/light grey curve. Linear

CL(·) has weight α = 1, Eq. (3.1)).

CL(τ) = α KL τ + (1− α)
CLmax

1 + exp
[
− 4 KL

CLmax
(τ − CLshift)

] (3.1)

where CLmax and CLshift are the maximum and shift of the sigmoidal component

and α ∈ [0, 1] is the weight on the linear component (see Fig. 3.3B).

Evidence from related tasks Guitart-Masip et al. (2011); Shidara et al. (1998)

suggests that the leisure time will be subject to Pavlovian as well as instru-

mental influences Breland and Breland (1961); Dayan et al. (2006); Takikawa

et al. (2002). Subjects exhibit high error rates and slow reaction times for tri-

als with high net payoffs, even when this is only detrimental. We formalise this

with a leisure time as a sum of a mandatory Pavlovian contribution τPav (in

addition to the extra time for ’consuming’ rewards), and an instrumental con-

tribution τL, chosen, in the light of τPav, to optimize the expected return. The

Pavlovian component comprises a mandatory pause, which is curtailed by the

subject’s reengagement (conditioned-response) with the reward (unconditioned-

stimulus)-predicting lever (conditioned-stimulus). As we shall discuss, we postu-

late a Pavlovian component to account for the detrimental leisure bouts at high

payoffs. We assume τPav = fPav (RI, P ) decreases with payoff – i.e., increases

with price and decreases with reward intensity (Fig. 3.3C). The net microscopic

benefit-of-leisure is then CL(τL + τPav) over a bout of total length τL + τPav.
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3.4.2 State space

The state ~s ∈ S in the model contains all the information required to make a

decision. This comprises a binary component (‘pre’ or ’post’), reporting whether

or not the subject has just received a reward; and a real-valued component,

indicating if not, how much work w ∈ [0, P ) out of the price P has been performed.

Alternatively, P − w is how far the subject is from the price.

3.4.3 Transitions

At state [pre, w], the subject can choose to work (W ) for a duration τW or engage

in leisure (L) for a duration τL. If it chooses the latter, it enjoys a benefit-of-

leisure CL(τL) for time τL, after which it returns to the same state. If the subject

chooses to work up to a time that is less than the price, (i.e. w + τW < P ), then

its next state is ~s′ = [pre, w+ τW ]. However, if w+ τW ≥ P , the subject gains the

work reward RI and transitions to the post reward state ~s′ = [post], consuming

time P − w. Although subjects can choose work durations τW that go beyond

the price, they cannot physically work for longer than this time, since the lever

is retracted as the reward is delivered.

In the post-reward state ~s = [post], the subject can add instrumental leisure

for time τL to the mandatory Pavlovian leisure τPav discussed above. It receives

utility CL(τL+τPav) over time τL+τPav, and then transitions to state ~s′ = [pre, 0].

The cycle then repeats.

In all cases, the subject’s next state in the future ~s′ depends on its current state

~s, the action a, and the duration τa, but is independent of all other states, actions

and durations in the past, making the model an SMDP. The model is molecular, as

it generates the topography of lever depressing and releasing. It is microscopic as

it commits to particular durations of performing actions. We therefore refer to it

as a micro SMDP. In the Discussion section we consider an alternate, nanoscopic

variant which makes choices at a finer timescale.

3.4.4 Policy evaluation

A (stochastic) policy π determines the probability of each choice of action and

duration. It is assumed to be evaluated according to the average reward rate

(see Eq. (3.8)).In the SMDP, the state cycles between ’pre’ and ’post’ reward.

The average reward rate is the ratio of the expected total microscopic utility

accumulated during a cycle to the expected total time that a cycle takes. The
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expected total microscopic utility comprises RI from the reward and the expected

microscopic utilities of leisure (in the post and pre-reward states); the expected

total time includes the price P and the expected duration engaged in leisure.

Thus, the average reward rate is (see also Eq. (3.8))

ρπ =

RI + Eπ([L,τL]|post) [CL(τPav + τL)] +

∫ P

0
dw Pr(w|hw) EπwL

 ∑
nL|[pre,w]

CL(τL)


P + Eπ([L,τL]|post)[τL] + τPav +

∫ P

0
dw Pr(w|hw) EπwL

 ∑
nL|[pre,w]

τL


(3.2)

Here, π([L, τL]|post) and πwL are the probabilities of engaging in instrumental

leisure L for time τL in the post-reward and pre-reward state [pre, w], respectively;

Eπ is the expectation over those probabilities. Pr(w|hw) is the probability that

the subject shall be in pre-reward state [pre, w] given the history hw = {w′, τ ′W }
of pre-reward states previously visited in the cycle and work durations chosen in

those states, and nL|[pre,w] is the (random) number of times the subject engages

in leisure in this state ([pre, w]). As we shall discuss below, the third terms in

both the numerator and denominator of Eq.(3.2) are dominated by the first two

terms, so that we may neglect them. It is then possible, in some cases, to solve

for ρπ in closed form. Otherwise, we solve for it using policy iteration (see 3.7.1)

without directly using Eq.(3.2).

For state ~s = post, the action a = [L, τL] of engaging in leisure for time τL

has differential value Qπ(post, [L, τL]) (see Eq. (3.9))that includes three terms:

(i) the microscopic utility of the leisure, CL(τL + τPav); (ii) opportunity cost

−ρπ(τL+τPav) for the leisure time (the rate of which is determined by the overall

average reward rate); and (iii) the long-run value V π([pre, 0]) of the next state.

The value of state ~s is defined as

V π(~s) =
∑
a

∫
τa

π([a, τa]|~s) Qπ(~s, [a, τa])

averaging over the actions and durations that the policy π specifies at state ~s.

Thus

Qπ(post, [L, τL]) = CL(τL + τPav)− ρπ(τL + τPav) +V π([pre, 0]) (3.3)
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Note the clear distinction between the immediate microscopic benefit-of-leisure

CL(τL + τPav) and the net benefit of leisure, given by the overall Q value.

The value Qπ([pre, w], [L, τL]) of engaging in leisure for τL in the pre-reward state

has the same form, but without the contribution of τPav, and with a different

subsequent state

Qπ([pre, w], [L, τL]) = CL(τL)− ρπτL +V π([pre, w]) (3.4)

Finally, the value Qπ([pre, w], [W, τW ]) of working for time τW in the pre-reward

state has two components, depending on whether or not the accumulated work

time w + τW is still less than the price (defined using a delta/indicator function

as δ(w + τW < P )).

Qπ([pre, w], [W, τW ]) = δ(w + τW < P )[−ρπτW +V π([pre, w + τW ])]

+ δ(w + τW ≥ P )[RI − ρπ(P − w)+V π(post)] (3.5)

3.4.5 Policy

We assume the subject’s policy π is stochastic, based on a softmax of the (dif-

ferential) value of each choice, i.e., favouring actions and durations with greater

expected returns. Random behavioural lapses make extremely long leisure or

work bouts unlikely; we therefore consider a probability density µa(τa) of choos-

ing duration τa (potentially depending on the action a), which is combined with

the softmax like prior and likelihood (see Subsection 3.7.1). We consider an al-

ternative in the Discussion. For leisure bouts, we assume µL(τL) = λ exp(−λτL)

is exponential with mean 1/λ = 10P . The prior µW (τW ) for work bouts plays

little role, provided its mean is not too short. This makes

π([a, τa] |~s) =
exp [β Qπ(~s, [a, τa])] µa(τa)∑

a′
∫
τa′

exp [β Qπ(~s, [a′, τa′ ])] µa′(τa′) dτa′
(3.6)

Subjects will be more likely to choose the action with a greatest Q-value, but have

a non-zero probability of choosing a suboptimal action. The inverse-temperature

parameter β ∈ [0,∞) controls the degree of stochasticity in choices. Choices

are completely random if β = 0, whereas β → ∞ signifies optimal choices. We

use policy iteration Sutton and Barto (1998); Puterman (2005) in order to com-

pute policies that are self-consistent with their Q-values: these are the dynamic

equilibria of policy iteration (see Subsection 3.7.1). An alternative would be to
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compute optimal Q-values and then make stochastic choices based on them; how-

ever, this would lead to policies that are inconsistent with their Q-values. We

shall show that stochastic, approximately-optimal self-consistent choices lead to

pre-commitment to working continuously for the entire price duration.

3.5 Micro SMDP policies

We first use the micro SMDP to study the issue of stochasticity, then consider the

three main regimes of behaviour evident in the data in Fig. 3.1D: when payoffs are

high (subjects work almost all the time), low (subjects never work) and medium

(when they divide their time). Finally, we discuss the molar consequences of the

molecular choices made by the SMDP. All throughout, RI, P are adopted from

experimental data, while the parameters governing the benefit-of-leisure are the

free parameters of interest.

3.5.1 Stochasticity

To illustrate the issues for the stochasticity of choice, we consider the case of a

linear CL(τL + τPav) = KL(τL + τPav), and make two further simplifications: the

subject does not engage in leisure in the pre-reward state (thus working for the

whole price); and λ = 0, licensing arbitrarily long leisure durations. Then the

Q-value of leisure is linear in τL, so the leisure duration distribution is exponential

(see Subsection 3.7.2). The expected reward rate and mean leisure duration can

be derived analytically (see Subsection 3.7.3).

As long as RI −KLP > 1
β

ρπ =
β(RI +KLτPav)− 1

β(P + τPav)

E[τL|post] =
P + τPav

β(RI −KLP )− 1
(3.7)

Otherwise, if RI −KLP < 1
β , then ρπ → KL (middle panels in Fig. 3.4) and the

subject would choose to engage in leisure for the entire trial as E[τL|post] → ∞
(upper panels in Fig. 3.4) .

Deterministically optimal behaviour requires β → ∞. In that case, provided

RI > KLP , the subject would not engage in leisure at all (E[τL|post] = 0),

but would work the entire trial (interspersed by only Pavlovian leisure τPav)



Micro SMDP policies 83

with optimal reward rate ρ∗ = (RI+KLτPav)
(P+τPav) (Fig. 3.4, upper and middle panels,

respectively, dashed black lines). However, if RI < KLP , then it would engage in

leisure for the entire trial. Thus time allocation functions would be step-functions

of the reward intensity and price, as shown by the dashed black lines in the lower

panels of Fig. 3.4.

Of course, as is amply apparent in Fig. 3.1D, actual behaviour shows substantial

variability, motivating stochastic choices, with β <∞. Since all the other quanti-

ties can be scaled, we set β = 1 without loss of generality. This leads to smoothly

changing time allocation functions, expected leisure durations and reward rates,

as shown by the solid lines in Fig. 3.4. We now return to the general case (λ 6= 0,

and leisure is possible in the pre-reward state).
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Figure 3.4: Effect of stochasticity. We use a linear microscopic benefit-
of-leisure function (α = 1) to demonstrate the effect of stochasticity on: up-
per panels, mean instrumental leisure, post-reward; middle panels, expected
reward rate; lower panels, time allocation as a function of A) reward inten-
sity and B) price. Solid and dashed black lines denote stochastic (β = 1) and
deterministic, optimal (β →∞) choices, respectively. Grey dash-dotted line
in middle panels are ρπ = KL. Time allocations are step functions under
a deterministic, optimal policy but smooth under a stochastic one. Price
P = 4s in A, while reward intensity RI = 4.96 in B).

3.5.2 High payoffs

The payoff is high when the reward intensity is high, or the price is short, or

both. Subjects work as much as possible, making the reward rate in Eq. (3.2)
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Figure 3.5: Q-values and policies for a high payoff. A) Upper
and lower panels show Q-values and policies for engaging in instrumental
leisure for time τL, respectively, in the post-reward state for three canonical
CL(·). In upper panels, solid bold curves show Q-values; coloured/grey
dashed and dash-dotted lines show CL(·) and the opportunity cost of time,
respectively. Black dashed line is the linear component from the effective
prior probability density for leisure time −λτL. Note the different y-axis
scales. B;D) Q-values and C;E) policies for (B;C) engaging in leisure for
time τL and (D;E) working for time τW in a pre-reward state [pre,w]. Light
to dark colours shows increasing w, i.e., subject is furthest away from the
price for light, and nearest to it for dark. F) Probability of engaging in
leisure for net time τL + τPav in the post-reward state for sigmoid CL(·)
(α = 0). This is the same as the lower right panel in A) but shifted by τPav.
Reward intensity, RI = 4.96, price P = 4s.
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ρπ ≈ (RI+CL(τPav))
(P+τPav

). Since τPav is small for high payoffs, ρπ ≈ RI
P is just the payoff

of the trial. The opportunity cost of leisure time ρπ(τL+ τPav) is then linear with

a very steep slope (dash-dotted line in Fig. 3.5 A, upper panels; shown here as

a negative, i.e. as a cost), which dominates CL(τL + τPav) (dashed line in Fig.

3.5A upper panel), irrespective of which form it follows. The Q-value of engaging

in leisure in the post-reward state then becomes the linear opportunity cost of

leisure time, i.e. Qπ(post, [L, τL])→ −ρπ(τL + τPav) (solid bold line in Fig. 3.5A,

upper panels).

From Eq.(3.6), the probability density of engaging in instrumental leisure for time

τL is π([L, τL] |post) ∝ exp [−(βρπ + λ)τL]. This is an exponential distribution

with very short mean 1
βρπ+λ (Fig. 3.5A, lower panels). The net post-reward

leisure bout, consisting of both Pavlovian and instrumental components has the

same distribution, only shifted by τPav, i.e., a lagged exponential distribution

with mean τPav + 1
βρπ+λ (Fig. 3.5F).

The probability of choosing to engage in leisure in a pre-reward state (i.e., af-

ter the potential resumption of working) is correspondingly also extremely small.

Further, the steep opportunity cost of not working would make the distribution

of any pre-reward leisure duration also be approximately a very short mean expo-

nential (but not lagged by τPav, Fig. 3.5B,C). Therefore when choosing to work,

the duration of the work bout chosen (τW ) barely matters (as revealed by the

identical Q-values and policies for different work bout durations in Fig. 3.5D,E).

That is, irrespective of whether the subject performs numerous short work bouts

or pre-commits to working the whole price, it enjoys the same expected return.

To the experimenter, the subject appears to work without interruption for the

entire price. In sum, for high payoffs, the subject works almost continuously, with

very short, lagged-exponentially distributed leisure bouts at the end of each work

bout (Fig. 3.6, lowest panel). This accounts well for key feature (i) of the data.

3.5.3 Low payoffs

At the other extreme, after discovering that the payoff is very low, subjects barely

work (Fig. 3.1D; top panel). Temporarily ignoring leisure consumed in the pre-

reward state, the reward rate in Eq. (3.2) becomes

ρπ ≈
Eπ([L,τL]|post) [CL(τPav + τL)]

P + Eπ([L,τL]|post)[τL] + τPav

shown by the dash-dotted line in Fig. 3.7 A (upper panels), and is comparatively

small. The opportunity cost of time grows so slowly that the Q-value of leisure
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Figure 3.6: Micro SMDP model with stochastic, approximately
optimal choices accounts for key features of the molecular data.
Ethogram data from left: experiment and right: micro SMDP model. Up-
per, middle and lower panels show low, medium and high payoffs, respec-
tively. Pink/dark grey bars show work bouts before the subject knows what
the reward and price are. These are excluded from all analyses, and so do
not appear on the model plot.
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is dominated by the microscopic benefit-of-leisure CL(τL + τPav) (dashed curves

in Fig. 3.7A, upper panels).

We showed that for linear CL(·), the Q-value is linear and the leisure duration

distribution is exponential (shown again in Fig. 3.7A, left panel). For initially

supra-linear CL(·), the Q-value becomes a bump (solid bold curve in Fig. 3.7A

upper panel, centre and right). The probability of choosing to engage in instru-

mental leisure for time τL is then the exponential of this bump, which yields

a unimodal, gamma-like distribution (Fig. 3.7A lower panel, centre and right).

Thus for a low payoff, a subject would opt to consume leisure all at one go, if

from the mode of this distribution. This accounts for key feature (ii) of the data.

The net duration of leisure in the post-reward state τL + τPav is then almost the

same unimodal gamma-like distribution (Fig. 3.7F). If the Pavlovian component

is increased, the instrumental component π(τL|post) will decrease leaving identi-

cal the distribution of their sum Pr(τL + τPav|post) (compare Fig. 3.7 A, lower

right panel).

The location of the mode of the net leisure bout duration distribution (Fig. 3.7F)

is crucial. For shorter prices associated with low net payoffs, this mode lies much

beyond the trial duration T = 25P . Hence, a leisure bout drawn from this

distribution would almost always exceed the trial duration, and so be censored,

i.e. terminated by the end of the trial. Our model successfully predicts the

molecular data in this condition (Fig. 3.6, upper panel). We discuss our model’s

predictions for long prices later (see Section 3.5.6).

The main effect of changing from partially linear to saturating CL(·) is to decrease

both the mean and the standard deviation of leisure bouts. The tail of the

distribution (Fig. 3.7A, centre versus right panel) is shortened, since the Q-values

of longer leisure bouts ultimately fail to grow.

Engaging in leisure in post- and pre-reward states are closely related. Thus, if

the payoff is too low then the subject will also choose to engage in long leisure

bouts in the pre-reward states (Fig. 3.7 B,C). Correspondingly, the subject will

be less likely to commit to longer work times and lose the benefits of leisure

(Fig. 3.7D,E). If behaviour is too deterministic, then the behavioural cycle from

pre- to post-reward can fail to complete (leading to non-ergoditicty). This is not

apparent in the behavioural data, so we do not consider it further.
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Figure 3.7: Q-values and policies for a low payoff. Panel positions
as in Fig. 3.5. Reward intensity, RI = 0.04, price P = 4s. Policies in panel
C expressed in 10−22.
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3.5.4 Medium payoffs

The opportunity costs of time for intermediate payoffs are also intermediate. Thus

the Q-value of leisure (solid bold curves in Fig. 3.8A, upper panels) depends

delicately on the balance between the benefit-of-leisure and the opportunity cost

(dashed and dashed-dotted lines in Fig. 3.8A, upper panels, respectively). For the

sigmoidal CL(·), the combination of supra- and sub-linearity leads to a bimodal

distribution for leisure bouts that is a weighted sum of an exponential and a

gamma-like distributions (Fig. 3.8A, lower centre and right panels; F).

Bouts drawn from the exponential component will be short. However, the mode

of the gamma-like distribution lies beyond the trial duration (Fig. 3.8F), as in

the low payoff case when the price is not long (Fig. 3.7F). Bouts drawn from

this will thus be censored. Altogether, this predicts a pattern of several work

bouts interrupted by short leisure bouts, followed by a long, censored leisure

bout (Fig. 3.6A, middle panel). Occasionally, a long, but uncensored, duration

can be drawn from the distribution in Fig. 3.8F. The subject would then engage

in a long, uncensored leisure bout before returning to work. Our model thus also

accounts well for the details of the molecular data on medium payoffs, including

variable leisure bouts (key feature (iv)).

3.5.5 Pre-commitment to working continuously for the entire

price duration

The micro SMDP model accounts for feature (iii) of the data, that subjects

generally work continuously for the entire price duration. That is, subjects could

choose to pre-commit by working for the entire price P , or divide P into multiple

contiguous work bouts. In the latter case, even if Q-value of working is greater

than that of engaging in leisure, the stochasticity of choice implies that subjects

would have some chance of engaging in leisure instead, i.e., the pessimal choice

(Fig. 3.8B,C). Pre-committing to working continuously for the entire price avoids

this corruption (Fig. 3.8D,E). In Fig. 3.8E, for any given state [pre, w] the

probability of choosing longer work bouts τW increases, until the price is reached.

Corruption does not occur for a deterministic, optimal policy, so pre-commitment

is unnecessary. This case is then similar to that for a high payoff (Fig. 3.5D,E).
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Figure 3.8: Q-values and policies for a medium payoff. Panel
positions as in Fig. 3.5. Reward intensity, RI = 1.76, price P = 4s.
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Figure 3.9: Macroscopic characterisations of behaviour. A) Ef-
fect of reward intensity for a short price (P = 4s). Upper and lower left
panels: reward rate ρπ and time allocation TA, respectively. Blue/dark
grey and red/grey curves are for linear (α = 1) and sigmoid (α = 0) CL(·)
respectively; error bars are standard deviations. Centre and right panels:
Q-values and policies for engaging in instrumental leisure for time τL in
the post-reward state for linear (centre) and sigmoid (right) CL(·). Black
dashed line in upper panel shows CL(·); dashed and solid bold coloured/grey
curves show the opportunity cost of time and Q-values, respectively. Light
blue to dark red denotes increasing reward intensity. B) Effect of price for
a high reward intensity (RI = 4.96). Panel positions as in A). Note that
the abscissa in the upper left panel is on a linear scale to demonstrate the
hyperbolic relationship between reward rate and price. Light blue to dark
red in the centre and right panels denotes lengthening price. C) Left: prob-
ability of engaging in leisure for net time τL+ τPav in the post-reward state,
and right: ethograms for two long prices (dashed cyan: P = 30.1s and solid
magenta: P = 21.4s). Reward intensity is fixed at RI = 4.96. As the
price is increased, reward rate asymptotes (B, upper left panel) and hence
the mode of this probability distribution does not increase by much. The
trial duration, proportional to the price does increase. Therefore more of
the probability mass (grey shaded area) is included in each trial. Samples
drawn from this distribution for the lower price get censored more often. For
a longer price, the subject is more often observed to resume working after
a long leisure bout. The effect is an increase in observed time allocation.
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3.5.6 Molar behaviour from the micro SMDP

If the micro SMDP model accounts for the molecular data, integrating its output

should account for the molar characterizations of behaviour that were the target

of most previous modelling. Consider first the case of a fixed short price P = 4s,

across different reward intensities (Fig. 3.9A). After an initial region in which

different CL(·) affect the outcome, the reward rate ρπ in Eq. (3.2) increases lin-

early with the reward intensity (Fig. 3.9A, upper left panel). Consequently, the

opportunity cost of time increases linearly too. If CL(·) is linear, the resultant

linear Q-value of leisure in the post-reward state, and hence, the mean of the

exponential leisure bout duration distribution decreases (Fig. 3.9A, upper and

lower centre panels, respectively). If CL(·) is sigmoidal, the bump corresponding

to the Q-value of leisure shifts leftwards to smaller leisure durations (Fig. 3.9A,

upper right panel). Both the mode and the relative weight of the gamma-like dis-

tribution decrease as the reward intensity increases (Fig.3.9A, upper right panel).

Thus, as the model smoothly transitions from low through medium to high re-

ward intensities, time allocation increases smoothly from zero to one (Fig. 3.9A,

lower left panel).

The converse holds if the price is lengthened while holding the reward intensity

fixed at a high value, making the time allocation decrease smoothly (Fig. 3.9B,

lower panel). The reward rate ρπ in Eq. (3.2) decreases hyperbolically, eventually

reaching an asymptote (at a level depending on CL(·), Fig. 3.9B, upper left

panel). For long prices, the mode of the unimodal distribution does not increase

by much as the price becomes longer. However, by design of the experiment, the

trial duration increases with the price. When the trial is much shorter than this

mode, most long leisure bouts are censored and time allocation is near zero. As

the trial duration approaches the mode, long leisure bouts are less likely to get

censored (Fig. 3.9C, left panel).

We therefore make the counterintuitive prediction that as the price becomes

longer, subjects will eventually be observed to resume working after a long leisure

bout. Thus with longer prices, proportionally more work bouts will be observed

(Fig. 3.9C, right panel). Consequently, time allocation would be observed to not

decrease, and even increase with the price (see the foot of the red/grey curve in

Fig. 3.9B lower left panel). Such behaviour would be observed for eventually

sub-linear benefits-of-leisure. An increase in time allocation at long prices is not

possible for linear CL(·) (blue/dark grey curve in Fig. 3.9B lower left panel). As

the price becomes longer, so does the mean of the resultant exponential leisure

bout duration distribution (Fig. 3.9B centre panels) and long leisure bouts will
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still be censored.

In general, for the same reward intensity and price, less time is spent working for

linear than saturating CL(·) (compare the blue/dark grey and red/grey curves

Fig. 3.9A and B, lower left panels), since linear CL(·) is associated with longer

leisure bouts. Thus, larger payoffs are necessary to capture the entire range of

time allocation. The effect of different CL(·) on the reward rate at low payoffs is

more subtle (compare blue/dark grey and red/grey curves in Fig. 3.9A and B,

upper left panels panels). This depends on the ratio of the expected microscopic

benefit-of-leisure (Eπ([L,τL]|post) [CL(τPav + τL)]) and the expected leisure duration

(Eπ([L,τL]|post)[τL] + τPav) in the reward rate equation, Eq. (3.2). This is constant

(= KL) for a linear CL(·). The latter term can be much greater for a saturating

CL(·), leading to a lower reward rate.

Fig. 3.9 shows that the Pavlovian component of leisure τPav will mainly be evident

at shorter prices. At high reward intensities, instrumental leisure is negligible and

leisure is mainly Pavlovian. That time allocation for real subjects saturates at 1,

implies that τPav decreases with payoff, as argued.

3.6 Discussion

Real time decision-making involves choices about when and for how long to exe-

cute actions as well as well as which to perform. We studied a simplified version of

this problem, considering a paradigmatic case with economic, psychological, etho-

logical and biological consequences, namely working for explicit external rewards

versus engaging in leisure for its own implicit benefit. We offered a normative, mi-

croscopic framework accounting for subjects’ temporal choices, showing the rich

collection of effects associated with the way that the subjective benefit-of-leisure

grows with its duration.

Our microscopic formulation involved an infinite horizon Semi-Markov Decision

Process (SMDP) with three key characteristics: approximate optimization of the

reward rate, stochastic choices as a function of the values of the options concerned,

and an assumption that, a priori, temporal choices would never be infinitely

extended (owing to either lapses or the greater uncertainty that accompanies the

timing of longer intervals Gibbon (1977)). The metrics associated with this last

assumption had little effect on the output of the model. We may have alternately

assumed that arbitrarily long durations could be chosen as frequently as short

ones, but more noisily executed; we imputed all such noise to the choice rule for

simplicity.
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We exercised our model by examining a psychophysical paradigm called the cu-

mulative handling time (CHT) schedule involving brain stimulation reward. The

CHT controls both the (average) minimum inter-reward interval and the amount

of work required to earn a reward. More common schedules of reinforcement such

as Fixed Ratio, or Variable Interval control one but not the other. This makes

the CHT particularly useful for studying the choice of how long to either work or

engage in leisure. Nevertheless, it would be straightforward to adapt our model

to treat waiting schedules such as Miyazaki et al. (2011, 2012); Fletcher (1995);

Jolly et al. (1999); Ho et al. (1998); Bizot et al. (1988, 1999) or to add other

facets. For instance, effort costs would lead to shorter work bouts rather than

the pre-commitment to working for the duration of the price observed in the data.

Costs of waiting through a delay would also lead subjects to quit waiting earlier

than later. Other tasks with other work requirements could also be fitted into the

model by changing the state and transition structure of the Markov chain. The

main issue the CHT task poses for the model is that it is separated into episodic

trials of different types making infinite horizon optimization an approximation.

However, the approximation is likely benign, since the relevant trials are extended

(each lasts 25 times the price), and the main effect is that work and leisure bouts

can sometimes be censored at the ends of trials.

It is straightforward to account for subjects’ behaviour in the CHT when payoffs

are high (i.e., when the rewards are big and the price is short and the subjects

work almost all the time) or low (vice-versa, when the subjects barely work at

all). The medium payoff case involves a mixture of working and leisure, and is

more challenging. Since the behaviour of the model is driven by relative utilities,

the key quantity controlling the allocation of time is the microscopic benefit-

of-leisure function. This qualitatively fits the medium payoff case when it is

sigmoidal. Then, the predicted leisure duration distribution is a mixture of an

exponential and a gamma-like component, with the weight on the longer, gamma-

like component decreasing with payoff.

The microscopic benefit-of-leisure function reflects a subject’s innate preference

for the duration of leisure when only considering leisure. It is independent of the

effects of all other rewards and costs. It is not the same as the Q-value of leisure,

which is payoff dependent since it includes the opportunity cost of time (see Eq.

(3.3)). For intuition about the consequences of different functions, consider the

case of choosing between taking a long holiday all at one go, or taking multiple

short holidays of the same net duration. Given a linear microscopic benefit-of-

leisure function, these would be equally preferred; however, sigmoidal functions

(or other functions with initially supra-linear forms) would prefer the former. A
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possible alternate form for the benefit-of-leisure could involve only its maximum

utility or the utility at the end of a bout Diener et al. (2001); however, the

systematic temporal distribution of leisure in the data suggests it is its duration

which is important.

Stochasticity in choices had a further unexpected effect in tending to make sub-

jects pre-commit to a single long work bout rather than dividing work up into

multiple short bouts following on from each other. The more bouts the subject

used for a single overall work duration, the more likely stochasticity would lead

to a choice in favour of leisure, and thus the lower the overall reward rate. Pre-

commitment to a single long duration avoids this. Our model therefore provides a

novel reason for pre-commitment to executing a choice to completion: the avoid-

ance of corruption due to stochasticity. If there was also a cost to making a deci-

sion – either from the effort expended, or from starting and stopping the action

at the beginning and ends of bouts, then this effect would be further enhanced.

Such switch costs would mainly influence pre-commitment during working rather

than the duration of leisure, since there is exactly one behavioural switch in the

latter no matter how long it lasts.

Even at very high payoffs, subjects are observed still to engage in short leisure

bouts after receiving a reward – the so-called post-reinforcement pause (PRP).

This is apparently not instrumentally appropriate, and so we consider PRPs to

be Pavlovian. The PRP may consist of an obligatory initial component, which

is curtailed by the subject’s Pavlovian response to the lever. This obligatory

component could be due to the enjoyment or ”consumption” of the reward. The

task was set up so that instrumental rather than Pavlovian components of leisure

dominate, so for simplicity we assumed the latter to be a payoff-dependent con-

stant (rather than being a random variable). We can only model PRPs rather

crudely, given the paucity of independent data to fit – but our main conclusions

are only very weakly sensitive to changes.

By integrating molecular choices we derived molar quantities. A standard molar

psychological account assumes that subjects match their time allocation between

work and leisure to the ratio of their payoffs as in a form of the generalized

matching law Herrnstein (1961, 1974); Baum (1974); McDowell (1986, 2005), see

Eq.(2.10) in Chapter 2. This has been used to yield a 3-dimensional relationship

known as a mountain (see Eq.(2.13)), which directly relates time allocation to

objective reward strength and price Arvanitogiannis and Shizgal (2008); Hernan-

dez et al. (2010). However, the algorithmic mountain models depend on a rather

simple assignment of utility to leisure that does not have the parametric flexibil-

ity to encompass the issues on which our molecular model has focused. Those
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issues can nevertheless have molar signatures, as we shall extensively discuss in

Chapter 4. For instance, if the microscopic benefit-of-leisure is sigmoidal, then as

the price becomes very long, extended leisure bouts are less likely to get censored

and so, the subject would then be observed to resume working before the end of

the trial. Integrating this, at long prices, time allocation would be observed not to

decrease, and even increase with the price, a prediction not made by any existing

macroscopic model. Whereas animals have been previously shown to consistently

work more when work-requirements are greater (eg. ostensibly owing to sunk

costs Kacelnik and Marsh (2002)), the apparent anomaly discussed here only oc-

curs at very long prices, and is unexpected from a macroscopic perspective. Our

microscopic model predicts how this anomaly can be resolved. Experimentally

testing whether this prediction holds true would shed light on the types of non-

linear microscopic benefit-of-leisure functions and their parameters actually used

by subjects. We shall report results from experimental tests in Chapter 6.

Another standard molar (but computational) approach comes from the microe-

conomic theory of labour supply Frank (2005), discussed in Chapter 2. Subjects

are assumed to maximize their macroscopic utility over combinations of work and

leisure, Conover and Shizgal (2005); Battalio et al. (1981); Green et al. (1987).

If work and leisure were imperfect substitutes, so leisure is more valuable given

that a certain amount of work has been performed, and/or vice-versa, then per-

fect maximizers would choose some of each. Such macroscopic utilities do not

distinguish whether leisure is more beneficial because of recent work e.g. owing to

fatigue. We propose a microscopic benefit-of-leisure, which is independent of the

recent history of work. We use stochasticity to capture the substantial variability

evident at a molecular scale and thus also molar time allocation. We shall expand

upon this in Chapter 4.

As we shall discuss in Chapter 5, behavioural economists have investigated real-

life time allocation Battalio et al. (1981); Green et al. (1987); Kagel et al. (1995),

including making predictions which seemingly contradict those made by labour

supply theory accounts Camerer et al. (1997). For instance, Camerer et al. (1997)

found that New York City taxi drivers gave up working for the day once they

attained a target income, even when customers were in abundance (see Chapter

5). Contrary to this finding, in the experimental data we model, subjects work

nearly continuously when the payoff is high rather than giving up early. Income-

targeting could be used when the income earned from work can be saved and

then spent on essential commodities and leisure activities Dupas and Robinson

(2013). Once sufficient quantities of the latter can be guaranteed, there is no

need to earn further income from work. In the experimental data we model a
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reward like BSR cannot be saved for future expenditures, a possible reason why

we do not see income-targeting effects.

One class of models that does make predictions at molecular as well as molar

levels involves the continuous time Markov chains popular in ethology Haccou and

Meelis (1992). In these models, the entire stream of observed behaviour (work

and leisure bouts) can be summarized by a small set of parametric distributions,

and the effect of variables like payoff can be assessed with respect to how those

parameters change. These models are descriptive, characterising what the animal

does, rather than being normative: positing why it does so.

Our micro-SMDP model has three revealing variants. One is a nanoscopic MDP,

for which choices are made at the finest possible temporal granularity rather

than having determinable durations (so a long work bout would turn into a long

sequence of ’work-work-work. . . ’ choices). This model has a straightforward for-

mal relationship to the micro-SMDP model Sutton et al. (1999). The distinction

between these formulations cannot be made behaviourally, but may be possible

in terms of their neural implementations. The second, minor alteration, restricts

transitions to those between work and leisure, precluding the above long sequences

of choices. The third variant is to allow a wider choice of actions, notably a ‘quit’,

which would force the subject to remain at leisure until the end of the trial. This

is simpler, and can offer a normative account of behaviour for high and low pay-

offs. However, in various cases, subjects resume working after long leisure bouts,

whereas this should formally not be possible following quitting.

Considered more generally, quitting can be seen as an extreme example of cor-

relation between successive leisure durations – and it is certainly possible that

quantitative analyses of the data will reveal subtler dependencies. One source of

these could be fatigue (or varying levels of attention or engagement). The CHT

procedure (with trailing trials enabling sufficient rest) was optimised to provide

stable behavioural performance over long periods. However, fatigue together with

the effect of payoff might explain aspects of the microstructure of the data, es-

pecially on medium payoff trials, as we shall show in Chapter 6. Fatigue would

lead to runs of work bouts interspersed with short leisure bouts, followed by a

long leisure bout to reset or diminish the degree of fatigue. Note, however, that

fatigue would make the benefit of leisure depend on the recent history of work.

We modelled epochs in a trial after the reward intensity and price are known for

sure. The subjects repeatedly experience the reward intensity and price condi-

tions during training over many months, and so would be able to appreciate them

after minimal experience on a given trial. However, before this minimal experi-
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ence, subjects face partial observability, and have to decide whether to explore

(by depressing the lever to find out about the benefits of working) or exploit the

option of leisure (albeit in ignorance of the price). This leads to a form of optimal

stopping problem. However, the experimental regime is chosen broadly so that

subjects almost always explore to get at least one sample of the reward and the

price (the pink/dark grey shaded bouts in Fig. 3.1D).

Finally, having raised computational and algorithmic issues, we should consider

aspects of the neural implementation of the microscopic behaviour. The neuro-

modulator dopamine is of particular interest. Previous macroscopic analyses from

pharmacological and drugs of addiction studies have revealed that an increase in

the tonic release of the neuromodulator dopamine shifts the 3-dimensional re-

lationships towards longer prices Hernandez et al. (2010); Trujillo-Pisanty et al.

(2011); Hernandez et al. (2012), as if, for instance, dopamine multiplies the inten-

sity of the reward. Equally, models of instrumental vigour have posited that tonic

dopamine signals the average reward rate, thus realizing the opportunity cost of

time Niv et al. (2007); Cools et al. (2011); Dayan (2012). This would reduce the

propensity to be at leisure. It has also suggested to affect Pavlovian conditioning

Berridge (2007); Lyon and Robbins (1975) to the reward-delivering lever. Except

at very high payoffs, in our model this by itself would have minimal effect, since

instrumental leisure durations would be adjusted accordingly. Finally, it has been

suggested as being involved in overcoming the cost of effort Salamone and Correa

(2002), a factor that could readily be incorporated into the model.
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3.7 Appendix

3.7.1 Supplemental Methods

We formulate our model as a infinite-horizon (unichain) Semi-Markov Decision

Process (SMDP) Puterman (2005). For convenience, we repeat some of the mate-

rial mentioned in Chapter 2. A state ~s contains all the information necessary for

making a decision. The subject’s next state in the future ~s′ depends on its current

state ~s, the action a, and the duration τa of that action, but is independent of

all other states, actions and durations in the past. We further assume subjects

jointly choose both the actions and their durations, as in Niv et al. (2007); Cools

et al. (2011); Dayan (2012).

A choice rule or policy π([a, τa]|~s) specifies the subject’s probability of taking

action a for time τa in state ~s. Under a given policy, we can define the expected

reward rate, or the average reward per unit time

ρπ = lim
T→∞

Eπ
[∑T−1

t̄=0 rt̄([at′ , τat′ ])− ct̄([at′ , τat′ ])
]

T
(3.8)

where rt′ and ct′ denote the benefits and costs at time points t′. Note that the

expected reward rate is independent of the starting state.

Normatively, a subject should try to (approximately) maximise its expected re-

turn. The expected return or Q-value of taking action a, for duration τa from

state ~s is

Qπ(~s, [a, τa]) = Eπ

[ ∞∑
t̄=0

(rt̄([at′ , τat′ ])− ct̄([at′ , τat′ ])− ρ
πτat′ ) |st = s, at = a, τat = τa

]
= r̂(~s, [a, τa])− ĉ(~s, [a, τa])− ρπτa + V π(~s′)

= r̂(~s, [a, τa])− ĉ(~s, [a, τa])− ρπτa +
∑
a′

∫
τa′

π([a′, τa′ ]|~s′) Qπ(~s′, [a′, τa′ ]) dτa′(3.9)

where V π(~s) =
∑

a

∫
τa
π([a, τa]|~s) Qπ(~s, [a, τa]) is the value of state ~s, averaged

across all actions and their times. The subject pays an automatic opportunity

cost of time ρπτa for taking action a for time τa Niv et al. (2007); Dayan (2012);

Cools et al. (2011). The Q values in this formulation are approximately equivalent

to those obtained using shallow, explicit exponential discounting over an infinite

horizon Puterman (2005); Daw and Touretzky (2002).
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While simultaneously solving Eqs. (3.8) and (3.9) for the reward rate and the

Q-values, we have more unknowns than equations. As conventional, we therefore

set the value of a state to 0, and solve for the Q values relative to this baseline.

The Q values reported here are therefore differential and not the actual ones. We

drop differential denotations and simply refer to them as Q-values.

We used a stochastic, approximately-optimal softmax policy over action-duration

pairs [a, τa] (see Eq.(3.6)). Subjects will be more likely to choose the action-

duration with a greatest Q-value, but have a non-zero probability of choosing a

suboptimal action-duration. Since arbitrarily long durations should be less likely

to be chosen, this was combined with a prior probability density µa(τa) of choosing

duration τa to yield the net policy π that generates choices. The reward rate ρπ

depends on the policy, and vice-versa (Eqs. (3.4)-(3.6)). Excluding this prior

would a priori permit infinitely long leisure durations τL to be chosen with the

same probability as short ones; these long leisure durations would significantly

reduce the reward rate. On the other hand, all work durations τW that attain

the price (τW ≥ P − w) would have an identical effect. Since the policy is over

all action-durations ([a, τa]), irrespective of whether they are of work and leisure,

arbitrarily long leisure durations would have a greater effect on the reward rate

than work durations. Including a prior that makes longer leisure durations less

likely to be chosen normalizes the contributions of durations of work and leisure

to the reward rate, affording both an equal role. We therefore employed an

exponential prior for leisure µL(τL); the exponential prior for work durations

µW (τW ) did not matter as long its mean was not so short that it made attaining

of the price much unlikely.

Since the policies depend on Q-values, which themselves recursively depend on

the policies, except in the case of the optimal policy, we cannot solve for them

in closed form. We use policy iteration to find them Sutton and Barto (1998);

Puterman (2005). Starting from an initial guess, each iteration involves updating

the policy while holding the Q-values fixed, and then updating the Q-values while

holding the policy fixed, until they are self-consistent, i.e. policy iteration has

converged. Since, to our knowledge, policy iteration for stochastic policies has

not been proved to converge to a unique policy, we executed the algorithm from

different starting points. All policies reported in the main text are the only

dynamic equilibria of policy iteration (irrespective of the starting point, they

converged to the same equilibrium). An alternative would be to compute optimal

Q-values (for which policy iteration provably converges to a unique equilibrium

Singh (1993)) and then make stochastic choices based on them; however, this

would result in policies that are inconstant with their Q-values.
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3.7.2 Linear benefit-of-leisure yields exponential instrumental

leisure duration distributions

If CL(τL + τPav) is linear in duration τL, then, according to Eq. (3.4), the total

Q-value of engaging in instrumental leisure in the post-reward state is also linear,

Qπ(post, [L, τL]) = (KL − ρπ)(τL + τPav) + V π([pre, 0]). Then, according to the

softmax policy, the probability of choosing to engage in instrumental leisure for

time τL in the post-reward state is proportional to the exponential of the Q-value

(minus the λτL contributed by the effective prior probability density, see Eq.

(3.6)). This probability is π([L, τL] |post) ∝ exp [−{β(ρπ −KL) + λ}τL], which is

an exponential distribution with mean E[τL|post] = 1
β(ρπ−KL)+λ . Thus, for linear

CL(·), instrumental leisure bout durations are always exponentially distributed

with a mean which depends on the reward rate. The greater the reward rate, the

shorter is the mean leisure bout.

When CL(τL+ τPav) is nonlinear, it is typically not possible to derive the optimal

policy analytically. We therefore report numerical results.

3.7.3 Derivation of Eq. (3.7)

We derive the result in Eq.(3.7). We consider a linear CL(τL + τPav) = KL(τL +

τPav), and make two further simplifications: (i) the subject does not engage in

leisure in the pre-reward state (and so works for the whole price when it works);

and (ii) a priori, arbitrarily long leisure durations are possible (λ = 0). Then the

reward rate in Eq. (3.2) becomes

ρπ =
RI +KL{ E[τL|post] + τPav}

P + E[τL|post] + τPav
(3.10)

As discussed in the Results section, the probability of engaging in instrumen-

tal leisure in the post-reward state is π([L, τL] |post) = exp [−{β(ρπ −KL)}τL],

which is an exponential distribution with mean

E[τL|post] =
1

β(ρπ −KL)
(3.11)

Re-arranging terms of this equation,

ρπ =
1

β E[τL|post]
+KL (3.12)

Equating Eqs. (3.10) and (3.12) and solving for the mean instrumental leisure
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duration E[τL|post], we derive

E[τL|post] =
P + τPav

β(RI −KLP )− 1
(3.13)

which is the second line of Eq.(3.7). This is the mean instrumental leisure duration

as long as RI −KLP > 1/β, and E[τL|post] → ∞ otherwise. When the former

condition holds, we may substitute Eq. (3.13) into Eq. (3.10) and solve for ρπ

ρπ =
(RI −KLP ) [β(RI +KLτPav)− 1]

(RI −KLP ) β(P + τPav)

=
β(RI +KLτPav)− 1

β(P + τPav)
(3.14)

which is the first line of Eq. (3.7).



Chapter 4

Some work and some play:

macroscopic and microscopic

approaches to the

labour-leisure tradeoff

4.1 Introduction

We introduced the labour-leisure tradeoff in Chapter 2. When suitably free, hu-

mans and other animals are observed to divide their limited time between work,

i.e., performing employer-defined tasks remunerated by rewards such as money

or food, and leisure, i.e., activities pursued for themselves that appear to con-

fer intrinsic benefit. The division of time provides insights into these quantities

and their interaction, and has been addressed by both microeconomics and be-

havioural psychology.

4.1.1 Task and Experiment

We consider the Cumulative Handling Time (CHT) task discussed in Chapter 2

and 3 as an example labour task (Fig. 2.3).

As we mentioned in Chapter 3, in an SMDP account, reward and leisure are

both assumed to enjoy a subjective worth. We call these microscopic utilities

to distinguish them from the macroscopic utilities used by traditional theories.

The microscopic utility of the former is called the (subjective) reward intensity
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(RI, in arbitrary units); the ratio of this to the price is called the payoff (or

in economic nomenclature, wage rate) RW = RI
P . For simplicity, we consider

the objective price, recognising that its subjective value may differ. We explore

different functional forms for the presumed microscopic utility of leisure.

4.1.2 Macroscopic and microscopic analyses

The key macroscopic statistic is the Time Allocation (TA): the proportion of

trial time that the subject spends working Baum and Rachlin (1969). Fig.3.1B

shows example TAs for a typical subject. As expected, the TA increases with

reward intensity and decreases with price. A microscopic analysis, as shown by

ethograms in (Fig.3.1C), considers the detailed temporal topography of choice,

recording when and for how long each act of work or leisure occurred. Note

that at intermediate payoffs, when partial allocation is most noticeable, subjects

consume almost all leisure immediately after getting a reward, and then work

continuously for each entire price Breton (2013).

4.2 Traditional macroscopic accounts

4.2.1 Microeconomics: Labor supply theory

We reviewed labour supply theory in Chapter 2. Here we briefly delineate it once

again, but specifically focus on the issue of substitutability between work and

leisure.

In labour supply theory Frank (2005), subjects are assumed to maximize their

macroscopic utility by trading (i) income from working (worth RI per reward),

against (ii) leisure (worth, in the simplest case, a marginal utility of KL per unit

time). Let N be the total number of rewards that a subject accumulates, and l

be the cumulative amount of time spent in leisure. A commonly assumed form of

macroscopic utility function is Arrow et al. (1961); Conover and Shizgal (2005).

U(l, N) = (KL l
s +RI N s)1/s (4.1)

where s ∈ (−∞, 1] is a dimensionless number representing the degree of sub-

stitutability, the willingness to replace rewards (or work) with leisure. Fig.4.1

shows the indifference curves (IC)–contours of equal utility. A subject is indif-

ferent between combinations of these goods along an IC, but combinations on

an IC with greater utility are preferred. The slope of an IC shows how willing
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a subject is to substitute one good with the other, depending on how much of

each it has already consumed. Given a fixed total trial time (a budget constraint;

BC Eq.(4.17)), subjects must maximise their macroscopic utilities; this occurs for

the combination of goods at which the BC is tangent to an IC or is at a boundary.

Work and leisure are perfect substitutes (s = 1 in Eq. (4.1)) for subjects who

are willing to substitute work for leisure at the same rate, irrespective of the

amount of either already consumed. The ICs become (negatively sloped) straight

lines. The optimum allocation is then at the boundary with all work (if returns

from work exceed those from leisure, i.e. RI > KL P ) or all leisure (otherwise).

This would make TA a step-function of the relative returns from work and leisure

(black curves in Fig.4.1A), an outcome that is not observed empirically.

However, if work and leisure are imperfect substitutes (−∞ < s < 1 in Eq. (4.1)),

then leisure is preferred more if the subject has worked more, and vice versa even

for deterministic subjects. The slope of the IC decreases as additional amounts

of leisure are consumed. The optimal combination includes both rewards (work)

and leisure, making TA a smooth function of the relative returns from work and

leisure (blue curves in Fig.4.2, Eq.(4.18)), as is observed empirically.

Of critical psychological importance is the relationship between the macroscopic

marginal utility of leisure (∂U∂l ) and the amount of work so far done. For imper-

fect substitutability associated with the utility function of Eq.(4.1), the former

depends on the latter. By contrast, we show in both deterministic and stochastic

settings that this is not necessary to achieve partial allocation. The possibilities

of non-determinism, which is experimentally ubiquitous, can be treated in vari-

ous ways, including traditional random utility models McFadden (1984); Dagsvik

et al. (2012) discussed in Chapter 2.

4.3 Normative microscopic approach: Micro SMDP

model

Labor supply theory averages over the temporal topography shown in Fig.3.1C).

By contrast, we follow Niv et al. (2007); Dayan (2012); Niyogi et al. (2013) in

formulating a so-called micro Semi-Markov Decision Process (SMDP) Sutton and

Barto (1998); Puterman (2005) (Fig. 4.3A) with actions, states, and utilities, for

which policies (i.e., the stochastic choices of actions at states) are quantified by

the average reward per unit time accrued over the long run. We formulated

the general normative, microscopic theoretical framework in Chapter 3. Here we

delineate a simplified model pertinent to the partial allocation problem.
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Figure 4.1: Indifference curves (ICs) of the labor supply theory
model in Eq.(4.1). Left: Returns from work exceed those from leisure
(RI > KL P ) and right: vice versa (RI < KL P ). Solid black lines show
the budget constraint (BC): trial duration T is constant. Open circles show
optimal combination of rewards and leisure for which macroscopic utility
is maximised subject to BC. Dashed black lines denote the path through
theoretically predicted optimal leisure and reward combinations as T is in-
creased. A) perfect substitutability between rewards (work) and leisure
(s = 1). Optimal combination is when the subject works all the time and
claims all rewards if RI > KLP , and engage in leisure all the time other-
wise. B) imperfect substitutability (e.g. s = 0.25). Optimal combination
comprises non-zero amounts of work and leisure.
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Figure 4.2: Time allocation from labour supply theory. TA as a
function of the relative returns from work and leisure predicted by labor
supply theory model in Eq. (4.1). Black and blue curves show the cases of
perfect (s = 1) and imperfect substitutability (s < 1), respectively.

Actions and States: subjects choose what action (a) to do, and for how long (τa).

The longer the duration, the more the forgone opportunity to collect rewards for

other actions they could instead have been doing during that time. We simplify

the task to s = post- and s = pre-reward states. In the former, the subject

consumes leisure (a=L) for a freely chosen duration τL; then the state becomes

pre-reward. If s= pre, the subject works (a=W ) for the entire price τW = P ,

collects a reward and transitions to the post-reward state. The cycle then repeats.

Though simply assumed here, working for the entire price is evident in the data

(Fig.3.1D)) and can arise from optimisation in the face of stochasticity as we

showed in Chapter 3.

Utilities: The microscopic utility of the external reward is the subjective reward

intensity RI. The microscopic utility of leisure CL(·) is innate and assumed to

depend on its duration, but not any other reward or cost, or the amount of work

performed. Based on findings in the case of discrete choices Caplin and Dean

(2008); Rutledge et al. (2010); Hart et al. (2014), we expect aspects of these

utilities to be discernable through neuroscience experiments; one of our main

intents is to construct a framework in which such inferences are precise.

Critically, the assumptions of our microscopic utility function are different from

that of the macroscopic utility function, from labor supply theory, in Eq.(4.1),

which assumes that when work and leisure are imperfect substitutes, the macro-
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scopic marginal utility of leisure (∂U∂l ) depends on the amount of work performed

or the number of rewards received. In particular, we leave to later work consid-

erations of fatigue or satiation, both of which can couple the microscopic utilities

for working and engaging in leisure. Note, however, that this dependence is for

the macroscopic utility function in Eq.(4.1); other macroscopic utility functions

exist in labor supply that do not necessitate this interaction. In general, labor

supply theory is concerned with the dependence in the marginal rate of substitu-

tion when work and leisure are imperfect substitutes, rather than the macroscopic

marginal utilities themselves.

The simplest form for CL(τ) = KLτ is linear (Fig. 4.3B, left panel blue line).

This makes the total microscopic utility of several short leisure bouts the same as

that of a single bout of equal total length (Fig.4.3B, right panel, blue line), and

so, just by itself, implies indifference to the division of the duration of a leisure

bout. Alternatively, although we had not considered this in Chapter 3, CL(τ)

could be concave (e.g., logarithmic, as in Fig. 4.3B, left panel, red curve). The

marginal microscopic utility of leisure would then always decrease as more leisure

is consumed (Fig. 4.3B, right panel, red curve). Subjects should then prefer

several short leisure bouts to one long leisure bout. Other non-linear forms are

also possible (sigmoidal, quasi concave, see Chapter 3).

As we described in Chapter 3, in an average reward SMDP model, a subject’s

policy (choice-rule) π is evaluated according to the average reward rate, which

can be shown to be the ratio of the expected total microscopic utility accumulated

during a cycle to the expected total time a cycle takes,

ρπ =
RI + Eπ [CL(τL)]

P + Eπ[τL]
, (4.2)

Eπ denotes the expected value under the distribution of leisure durations π(τL)

in the post reward-state. The reward-rate increases mostly linearly with reward

intensity and decreases mostly hyperbolically with price (Fig.4.8A).

The terminology in reinforcement learning (RL) Niv et al. (2007); Puter-

man (2005); Daw and Touretzky (2002) and optimal foraging Charnov (1976);

Stephens and Krebs (1986) concerning the average reward rate differs from that

in economics. As we mentioned in Chapter 2, in RL, ρπ is considered as the

opportunity cost per unit time under policy π. It provides a point of comparison

in terms of how lucrative the policy is on average. Committing to performing an

action for duration τ implies forgoing a mean total reward of ρπτ . This would

be weighed against the benefits of the action. By contrast, in economics, the op-

portunity cost is defined instead in terms of just the next best action, a quantity
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Figure 4.3: Micro SMDP model, microscopic utilities of leisure
and policies. A) The infinite horizon Micro semi-Markov decision process
(Micro-SMDP). States are characterised by whether they are pre- or post-
reward. Subjects choose not only whether to work or to engage in leisure,
but also for how long to do so. For simplicity, we assume that a subject
pre-commits to working for the entire price duration when it works. Then
it receives a reward of reward intensity RI and transitions to the post-
reward state. In the post-reward state, by choosing to engage in leisure for a
duration τL, it gains a microscopic benefit of leisure CL(τL) and then returns
to pre-reward state; this cycle repeats. B) Left: canonical microscopic utility
of leisure functions CL(·), right: the marginal microscopic utility of leisure.
For simplicity we considered linear CL(·) (blue); whose marginal utility is
constant and concave (here logarithmic) CL(·) (red) whose marginal utility
is always decreasing. C) Q-values and policies for engaging in leisure for
low, medium and high payoffs. In upper panels, dashed, dotted and solid
curves show: CL(·), AFR and Q-values, respectively.
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that is not very meaningful in our microscopic context. To avoid confusion, in

this Chapter, we refer to ρπτ as the average foregone reward (AFR) over period

τ .

The (differential) Q-value (see Eq.(2.15))is defined as the expected return of tak-

ing action a for time τa from state s, including the immediate microscopic utility,

the AFR and the differential value of the next state to which the subject tran-

sitions. For engaging in leisure for duration τL in the post-reward state (using

simplified notation 1), this is

Qπ(τL) = CL(τL)− ρπτL + V π(pre) (4.3)

which makes clear the distinction between the immediate, innate microscopic

utility of leisure CL(τL) and the net excess return from leisure Qπ(τL) . The

Q-value of working in the pre-reward state can be similarly computed. The Q-

value of working in the pre-reward state then comprises: (i) the reward of reward

intensity RI, (ii) an AFR ρπP , and (iii) the value of the post-reward state

Qπ(pre, [W,P ]) = RI − ρπP + V π(post). (4.4)

Finally, we assume that the Q-values generate a policy/ choice rule for choosing

leisure duration τL based on a stochastic softmax

π(τL) =
exp [β Qπ(τL)]∫

τL′∈Γ exp [β Qπ(τL′)] dτL′
(4.5)

where Γ is a suitable range of possible leisure durations. Durations with greater

Q-values will be more likely to be chosen. The inverse-temperature parameter

β ∈ [0,∞) controls the degree of stochasticity in choices: β → ∞ signifies de-

terministic, optimal choices, while β = 0 leads to complete uniformity. Here we

ignore the prior over durations µ(τL) mentioned in Chapter 3.

4.3.1 Model policies

As discussed in Chapter 3, we can distinguish various policy regimes. If the

payoff is high, then so is the reward rate; thus the AFR ρπτL tends to dominate

the benefit of leisure CL(τL) in Eq.(4.3), no matter what form the latter takes

1Since we define leisure to be possible in the post-state only, we simplify notation by dropping
the ”post” and [L, τL] denotations in π([L, τL]|post) and Q(post, [L, τL]), and simply use π(τL)
and Q(τL).
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(Fig. 4.3C, right panels). The probability of duration τL implied by the soft-

max policy (Eq.(4.5)) is then the exponential of a nearly linear function with a

steep slope – therefore, an exponential distribution with a short mean (see Sec.

4.7.2). Thus, the subject would work almost continuously, with very short, yet

stochastic, exponentially distributed leisure bouts in between work bouts.

At the other extreme, when the payoff is low, the reward rate is small. Conse-

quently, the AFR has a very shallow slope (Fig. 4.3C, left panels). The Q-value

of leisure then becomes dominated by the microscopic utility of leisure CL(·). For

a linear CL(·), the Q-value is still linear, but with a very shallow slope, and the

resulting exponential distribution has a long mean (Fig. 4.3C, left panel, blue

curves). For an eventually sub-linear CL(·), the Q-value becomes a unimodal

bump. The exponential of this bump yields a unimodal gamma(-like) distribu-

tion. If CL(·) is concave and its marginal microscopic utility does not decrease

slowly, the exponential of this bump yields a unimodal gamma(-like) leisure dura-

tion distribution with a long tail (Fig. 4.3C, left panels, red curves). The leisure

durations are actually gamma distributed for logarithmic CL(·) (see Sec 4.7.3).

The leisure durations for some other eventually sub-linear CL(·) (e.g. sigmoidal)

are discussed in Chapter 3.

For intermediate payoffs, the AFR has a slope that is neither too steep nor too

shallow (Fig. 4.3C, middle panels). The Q-value of leisure depends delicately on

the balance between the microscopic utility of leisure and this intermediate AFR.

4.4 Partial allocation with independent marginal util-

ities

4.4.1 Softmax policy is equivalent to maximising expected re-

turns subject to an entropy gain

Although we use it largely for convenience, the softmax policy can be rationalised

as being approximately normative. Suppose we wish to find a stochastic policy

π(τL) for which the expected returns Eπ[Q(τL)] is maximised. Stochasticity arises

optimally if it is awarded a utility. The natural way to quantify this utility is via

the entropy H(π) = −Eπ[log(π(τL))], making the problem one of finding
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π∗(τL) = argmaxπ

[
Eπ[Q(τL)] +

1

β
H(π)

]
= argmaxπ

∫
τL

dτLπ(τL)

[
Q(τL)− 1

β
log(π(τL))

]
(4.6)

where 1/β is a temperature parameter that trades off value for entropy. The

optimum can be found by computing functional derivatives with respect to π and

solving

δ

δπ

∫
τL

dτLπ(τL)

[
Q(τL)− 1

β
log(π(τL))

]
= 0

⇒ π∗(τL) ∝ exp [βQ(τL)] (4.7)

yielding the softmax policy. Thus, making (possibly stochastic) choices according

to a softmax policy is equivalent to maximising expected returns subject to an

entropy gain.

4.4.2 Macroscopic utility derived from microscopic utility

To compare our account with that of labor supply theory, we construct a macro-

scopic utility function that is consistent with the microscopic choices on average.

Consider the case that the subject works for time ω, thus completing ω/P reward

and leisure cycles (we allow these to be fractional for simplicity), and is at leisure

for time l. We seek to derive a macroscopic utility function U(l, ω) from a mi-

croscopic utility function U(l, ω) = maxπ|l,ω [U(l, ω, π)], such that the ultimately

microscopic choices of durations, and the ultimately macroscopic time allocations

are all consistent with the micro-SMDP that we have derived. Here, the notation

π|l, ω indicates that microscopic choices of leisure duration per cycle have to be

consistent with the macroscopic time devoted to leisure on average, i.e., that

ω

P
Eπ [τL] = l (4.8)

Consider the microscopic utility

U(l, ω, π) =
ω

P

(
RI + Eπ[CL(τL)] +

1

β
H(π)

)
+

1

β
g(l, ω). (4.9)
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which includes the utilities of the ω/P rewards, the benefits of leisure and the

entropy, and a function 1
β g(l, ω), which we will choose to enforce the average

reward forgone. Enforcing Eq. (4.8) via a Lagrange multiplier ω
P ξ, we get

U(l, ω, π, ξ) =
ω

P

(
RI + Eπ[CL(τL)] +

1

β
H(π) + ξ

(
l
P

ω
− Eπ[τL]

))
+

1

β
g(l, ω).

(4.10)

If we optimise this utility with respect to the policy π, we get

0 =
δ

δπ

∫
τL

dτLπ(τL)

[
CL(τL)− ξτL −

1

β
log(π(τL))

]
⇒ π∗(τL) ∝ exp [β(CL(τL)− ξτL)] (4.11)

where the Lagrange multiplier ξ is chosen to satisfy Eq. (4.8). At this optimum,

ξ = ρ∗ = RI+Eπ∗ [CL(τL)]
P+Eπ∗ [τL] . That is the Lagrange multiplier or, in economic terms,

the ”shadow price” (marginal utility of relaxing the constraint in Eq. (4.8)) is the

average reward rate ρ∗. The constructed utility function in Eq. (4.10) is evaluated

at this optimum, and can now be written in terms of macroscopic quantities l

and ω only as

U(l, ω) =
ω

P

(
RI + Eπ∗ [CL(τL)] +

1

β
H(π∗)

)
+

1

β
g(l, ω) (4.12)

4.4.3 Stochastic microscopic choices

Linear CL(τL) = KLτL is equivalent to the perfect substitutability case of Eq.

(4.1) with s = 1, for which deterministic choices exclude partial allocation.

However, the derived macroscopic utility in Eq. (4.12) becomes

U(l, ω) =
ω

P
RI + KL l +

ω

β P
[log(lP/ω) + 1] +

1

β
g(l, ω) (4.13)

Its ICs have negative slopes, which, for stochastic choices (β 6→ ∞), are not

constant. These changes in slope generate partial time allocations (Fig.4.4A,B),

when a budget constraint (BC; solid black lines) is tangent to an IC. Including an

appropriate g(·, ·) (Eq.(4.27)), at the optimum, Eπ[τL] = l∗P/ω∗ = P
β(RI−KLP )−1

as long asRI−KLP ≥ 1
β , and∞ otherwise (Eqs.(4.22),(4.23)). Thus stochasticity

replaces substitutability in generating partial allocation.

For β → ∞, optimal microscopic choices are purely deterministic. The derived
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Figure 4.4: Microscopic choices yield macroscopic partial alloca-
tion even with independent marginal utilities. To compare directly
with labor supply theory, we derive macroscopic utility functions consistent
with our assumed microscopic utiities. Curves show indifference curves of
the derived macroscopic utility function. Cool colours show order of increas-
ing macroscopic utility. Solid black lines show different budget constraints
T = ω + l as T is changed. Dashed black line denotes the path through
theoretically predicted optimal leisure and work combinations as T is in-
creased. A), B) Stochastic, approximately optimal microscopic choices with
linear CL(·) yields partial allocation (A) high and B) medium payoffs are
shown). Inverse temperature β = 1. C) Deterministic, optimal microscopic
choices with linear CL(·) yield all-or-none allocation–work all the time if
RI > KLP . Inverse temperature β → ∞. CL(τL) = 0.7τL, Reward in-
tensity, RI = 9 in A), RI = 4.3 in B) and C), price P = 4s in A-C.
D) Deterministic, optimal choices with non-linear CL(·) also yields partial
allocation. CL(τL) = 0.7 log(τL), β →∞, RI = 2.46 and price P = 4s.
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utility function in Eq.(4.13) becomes

U(l, ω) =
ω

P
RI + KL l (4.14)

which directly corresponds to the utility function of labor supply theory in

Eq.(4.1) with s = 1 and would lead to total allocation to work or leisure de-

pending on whether work or leisure is more beneficial, i.e. the sign of RI −KLP

(Fig. 4.4C; compare with Fig. 4.1, upper- panels).

4.4.4 Deterministic, optimal microscopic choices

As is the case for standard labor supply theory, the assumption of stochasticity

is not necessary to achieve partial allocation if the microscopic utility of leisure

is a suitably non-linear function of its duration, e.g., the concave CL(τL) = (k −
1) log(τL), for k > 1 (Fig. 4.3B, red) 2. Importantly, for both standard labor

supply and our microscopic framework , the microscopic marginal utility of leisure

need not depend on the amount of work done. For a deterministic policy (β →∞),

the derived macroscopic utility function (see Eq.(4.29)) is

U(l, ω) =
ω

P
[RI + (k − 1) log (l P/ω) ] (4.15)

for which the slopes of the (macroscopic) ICs depend on the amount of work

and leisure consumed (Fig. 4.4D) and generate partial allocation as optimal

solutions. Thus, neither stochasticity nor an interaction between work and the

marginal utility of leisure is necessary for partial allocation.

4.4.5 Generalized Matching Law: Mountain Model

As reviewed in Chapter 2, an alternate macroscopic characterisation of behaviour

that yields smooth time allocation curves, hypothesises that subjects match (ac-

cording to the generalised matching law, Eq. (2.10) Baum (1974); Herrnstein

(1961)) their time allocation between work and leisure to the ratio of their pay-

offs Herrnstein (1961), RW and RL = RImax
PL

, respectively Baum and Rachlin

2Choosing concave CL(·) as a logarithmic function is for convenience; it would further be
straightforward to take CL(τL) = (k − 1) log(τL + 1) so that the microscopic utility is defined
over all τL ≥ 0.
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(1969); Killeen (1972)

ω

l
=

(
RW
RL

)a
⇒ ω

ω + l
= TA =

RW
a

RW
a +RL

a =
RIa

RIa + ( PPL )
a . (4.16)

Here, PL is defined as the price at which, for a maximum subjective reward

intensity RImax, the subject allocates half the time to work, and half to leisure

(see red lines in Figs.4.5 and 4.6A).

This establishes a 3-dimensional relationship between TA, subjective reward in-

tensity and price (Fig.4.5, left panel) that is analogous to the mountain model

Hernandez et al. (2010); Arvanitogiannis and Shizgal (2008)) (see Eq. (2.13) in

Chapter 2), which plots this relationship in terms of the objective reward strength.

TA is smooth, and increases and decreases monotonically with reward inten-

sity and price, respectively, as evident in the contours in Fig. 4.5 (right panel).

Stochastic macroscopic allocation, by virtue of generalised matching, therefore

account for partial time allocation. The matching coefficient a determines how

TA increases as a function of the payoff from work – rapidly for over-matching

(a > 1), and slowly for under-matching ((a < 1), Fig. 4.6B, respectively).

4.5 The microscopic mountain

By integrating the microscopic choices from our model, we can compare it with

macroscopic descriptions such as the mountain model. In Chapter 3, we noted

how censoring could lead to time allocation at very long prices increasing rather

than decreasing with price. Here we study a more generic case, ignoring arte-

facts owing to issues such as censoring, and attempt to build a superset of the

mountain model. We saw that linear CL(·) generates partial allocation with

stochasticity. It therefore generates smooth (non-step function) macroscopic time

allocation curves as a function of both reward intensity and price. Consequently,

3-dimensional relationships can be derived that are qualitatively similar to those

specified by the mountain model (when expressed in terms of subjective reward

intensity, compare Fig. 4.7A with Fig. 4.5).

However, when CL(·) is non-linear, more complicated structures arise. If the

price is increased while holding the reward intensity fixed, the reward rate ρπ

(Eq. (4.2)) decreases hyperbolically and eventually asymptotes (Fig.4.8A). Con-

sequently, unlike the mean, the mode of the gamma-like distribution does not

substantially increase with the price (see Figs.4.3C and 4.8B). Since the mode
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Figure 4.5: Mountain model. 3-dimensional relationship; right panel:
contours of equal time allocation, as a function of reward intensity and price
predicted by the mountain model using the generalised matching law. Red
lines in right panel show PL: the price at which TA = 0.5 for a maximal
reward intensity (red dot in left panel). a = 2.65, PL = 11.4s. The TA
contours smoothly increase with reward intensity and smoothly decrease
with price.



The microscopic mountain 118

A

B

0
5

10100

101

102

0

0.5

1

RIPrice (s)

TA R
I

Price (s)

 

 

100 101 102

2

4

6

8

10

TA

0 0.25 0.5 0.75 1

Figure 4.6: Mountain model parameters. Left 3-dimensional rela-
tionship; right panel: contours of equal time allocation, as a function of
reward intensity and price predicted by the mountain model using the gen-
eralised matching law. Red lines in right panels show PL: the price at which
TA = 0.5 for a maximal reward intensity (red dot in left panels). A) For a
small PL = 2.85s, while overmatching a = 2.65 > 1 as in the main text and
B) undermatching a = 0.66 < 1 while PL = 11.4s as in the main text.
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determines the duration of the majority of leisure bouts, these do not increase

substantially. If the subject continues to work for the entire price duration

(Fig.4.8C), then, surprisingly from the macroscopic perspective of the general-

ized matching model, the total work time and thus the TA will increase, rather

than decrease with the price (Figs.4.7B and 4.8A, lower panel). This prediction

is readily amenable to experimental test.

Since for linear CL(·), leisure durations are governed by substantially changing

means and not modes, TAs are in general smaller than for strictly concave CL(·),
implying that higher payoffs are necessary to capture the entire TA range.

A

B

Figure 4.7: Macroscopic time allocation derived from normative,
microscopic choices yields a superset of the mountain model. Left
panels: 3-dimensional relationships between TA, reward intensity and price,
right panel: contours of equal TA, predicted by the micro SMDP model for
A) linear, B) concave CL(·). The 3-dimensional relationship and smooth
contours for a linear CL(·) derive the mountain model in Fig.4.3. Note
that an extra, higher set of reward intensities was necessary to achieve
the full range of time allocation for linear CL(·). The fact that contours
change direction at longer prices for a non-linear CL(·) rather than decrease
monotonically reflects that TA may no longer decrease and even increase as
the price is increased further.
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Figure 4.8: Time allocation may not decrease with price for a non-
linear microscopic utility of leisure. A) Upper panel: Reward rate (ρπ)
and lower panel: time allocation (TA) for a concave microscopic utility of
leisure as a function of price. A small and a high reward intensity are shown.
Reward rate decreases hyperbolically with price, eventually asymptoting. B)
Leisure duration distribution as a function of price for a fixed high reward
intensity (RI = 6). At very long prices, as the price is increased further
(eg. from 30s to 50s), the mode of the leisure duration distribution does not
change by much although the mean does. C) Ethograms for two long prices.
As price is increased, the work bouts (proportional to the price) do increase.
Leisure bouts, drawn from the mode, do not change by much. Consequently,
TA no longer decreases but may even increase with price (A, lower panel).
This is despite the trial duration being normalised to a multiple (here 25)
of the price. It is the lack of significant change in the majority of leisure
durations that is critical. We normalised by the trial duration of 25 ×
price, instead of simply normalizing by the price, to emphasise that TA is
a macroscopic quantitity and to be consistent with the procedure in the
example data Figure 3.1.



Discussion 121

4.6 Discussion

We studied the problem of partial time allocation – when reward intensities and

prices are not extreme, both animals and humans divide their time between work

and leisure. Traditional theories such as the microeconomic theory of labor sup-

ply, or accounts from behavioral psychology based on the generalised matching

law, have characterised behavior at a macroscopic level, studying average times

spent in work or leisure. While labor supply approaches have studied choices

within periods of time, these have been limited to maximising utility within these

time windows Blundell and Macurdy (1999); Kool and Botvinick (2012)–and thus,

still average times within these windows. We proposed a normative, microscopic

approach using the reinforcement learning framework of Semi-Markov Decision

Processes. By integrating the microscopic choices of our model over time, we

were able to account for the nature of macroscopic partial allocation.

We showed how assumptions about microscopic and macroscopic quantities re-

late. In labor supply theory, the marginal utility of leisure may (although not

necessarily) depend on the amount of work (or rewards) consumed, and (unlike

in the behavioral data) choices are classically deterministic. We considered a

stochastic policy of the same form as emerges for standard random utility mod-

els, but directed at microscopic, rather than macroscopic, choices. In our case,

stochasticity is reflected in the macroscopic utility function via an entropy term,

and generates partial allocation even when the marginal microscopic utility of

leisure is independent of work.

If the microscropic utility of leisure is linear, then the optimal allocation of time

is consistent with the mountain-like products of generalized matching. How-

ever, we showed that for certain non-linearities, the time allocated to working

can increase rather than decrease as the price increases, yielding complicated 3-

dimensional relationships and non-monotonic contours that elude the mountain

model. Whereas animals have been previously shown to consistently work more

when work-requirements are greater (e.g. ostensibly owing to sunk costs Kacelnik

and Marsh (2002)), the apparent anomaly discussed here only occurs at longer

prices and is due to the form of the microscopic utility of leisure. This is an

obvious candidate for empirical investigation, which we describe in Chapter 6.

Non-linear benefit of leisure functions can also lead to partial allocation for deter-

ministic choices. This applies even for functions that differ from those common in

labor supply theory in virtue of satisfying independence between the microscopic

utilities of working and being at leisure. Of course, the marginal microscopic

utility of leisure might depend on work or rewards – for instance due to fatigue
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or satiation. However, carefully eliminating such dependencies (by, e.g., allowing

subjects sufficient rest inbetween trials, and using non-satiating rewards like BSR)

may provide an avenue to quantify aspects of the microscopic utility of leisure

empirically. This should help reveal why and how subjects partially allocate their

time. It would then be natural to extend the study to considerations of effort,

fatigue and cognitive computational costs Salamone and Correa (2002); Meyniel

et al. (2013); Kool and Botvinick (2012); Botvinick et al. (2009); Kurniawan

et al. (2013) (eg. from holding down weighted levers or performing cognitively

demanding tasks) and the effects of manipulating motivational state Hernandez

et al. (2010); Trujillo-Pisanty et al. (2011); Hernandez et al. (2012).
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4.7 Appendix

4.7.1 Macroscopic time allocation from labor supply theory

If we consider the rewards to be continuous (instead of quantised: delivered

exactly when the price is attained) or if we consider expected times spent in work

or leisure only, we can construct a budget constraint (BC): the total amount of

work ω and leisure l is the trial duration T

ω + l = N P + l = T (4.17)

where P and N are the price and number of rewards earned, respectively. Note

that this budget constraint is linear in N and l.

In general, given that we maximise macroscopic utility (according to the function

in Eq.(4.1)) subject to a BC, we can derive the time allocation

TA =
( RIKL )−

1
s−1

( RIKL )−
1
s−1 + P

s
1−s

(4.18)

which increases with RI and (for s ≥ 0) decreases with price (Fig.4.2).

4.7.2 Linear microscopic utility of leisure yields exponentially

distributed leisure durations

We repeat the derivation in Chapter 3 (but in a simplified setting, without τPav).

Suppose the microscopic utility of leisure is linear, CL(τL) = KLτL. Then the

Q-value of engaging in leisure in the post-reward state is also linear, Qπ(τL) =

(KL − ρπ)τL + V π(pre). According to the softmax policy, the probability of

choosing to engage in leisure for time τL in the post-reward state is proportional to

the exponential of the Q-value. This probability is π(τL) ∝ exp [−β(ρπ −KL)τL],

which is an exponential distribution with mean E[τL] = 1
β(ρπ−KL) . Thus, for linear

CL(·), leisure bout durations are always exponentially distributed with a mean

which depends on the reward rate. The greater the reward rate, the shorter is

the mean leisure bout.
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4.7.3 Logarithmic microscopic utility of leisure yields gamma dis-

tributed leisure durations

For a logarithmic microscopic utility a leisure CL(τL) = (k − 1) log(τL); the

Q-value of engaging in leisure in the post-reward state is a unimodal bump.

The leisure duration distribution is the exponential of this bump: π(τL) =
1

Γ(1/βρπ)τ
β(k−1)
L exp(−βρπτL). This is a gamma distribution with shape parameter

k̄ = β(k − 1) + 1 and scale parameter 1
βρπ . The mode of this gamma distribu-

tion is k−1
ρπ . Thus, if the reward rate does not change substantially, neither does

this mode. For the special case, of k = 1, the gamma distribution becomes an

exponential distribution.

4.7.4 Reward rate and mean leisure duration for a linear micro-

scopic utility of leisure

We repeat the derivation in Chapter 3 (but in a simplified setting, without τPav).

For a linear CL(·), the reward rate and mean leisure duration can be analytically,

self-consistently derived. The reward rate in Eq.(4.2) is simply,

ρπ =
RI +KLE[τL]

P + E[τL]
(4.19)

As discussed above, leisure durations in the post-reward state are exponentially

distributed with mean

E[τL] =
1

β(ρπ −KL)
(4.20)

Re-arranging terms of this equation,

ρπ =
1

β E[τL]
+KL (4.21)

Equating Eqs. (4.19) and (4.21) and solving for the mean leisure duration

E[τL|post], we derive

E[τL] =
P

β(RI −KLP )− 1
(4.22)

This is the mean leisure duration as long as RI −KLP > 1/β, and E[τL] → ∞
otherwise. When the former condition holds, we may substitute Eq. (4.22) into
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Eq. (4.19) and solve for ρπ

ρπ =
(RI −KLP ) (βRI − 1)

(RI −KLP ) βP

=
βRI − 1

βP
(4.23)

4.7.5 Macroscopic utility derived from linear and non-linear mi-

croscopic utilities

The point of the utility function in Eq. (4.12) is to lead to choices whose macro-

scopic characterization is the same as those of the micro-SMDP. In particular,

this means that if we maximize U(l, ω) subject to a budget constraint l + ω = T

for some total duration T , then we will recover what we know to be true of the

optimum l∗P/ω∗ = Eπ[τL|post] = P
β(RI−KLP )−1 (Eq.(4.22)). Given the form of

the optimal microscopic policy associated with Eqs. (4.3) and (4.5), we also re-

quire that the Lagrange multiplier ξ associated with Eq. (4.11) should take on

the value ρ∗ = RI+Eπ∗ [CL(τL)]
P+Eπ∗ [τL] .

As required for macroscopic utility functions considered in economics, macro-

scopic utilities with respect to both work (or rewards) (∂U∂ω ) and leisure (∂U∂l ) are

positive. Then, since macroscopic utility is constant on an indifference curve, the

total derivative with respect to a good (say leisure) is zero:

dU

dl
=

∂U

∂l
+
∂U

∂ω

dω

dl
= 0

⇒ dω

dl
= −∂U

∂l
/
∂U

∂ω
< 0 (4.24)

This shows that indifference curves have negative slopes (dωdl < 0).

The optimum (l∗, ω∗) associated with the budget constraint occurs when

dω

dl
|(l∗,ω∗) =

d(T − (ω + l))

dl
|(l∗,ω∗) = −1

⇒ ∂U

∂l
|(l∗,ω∗) =

∂U

∂ω
|(l∗,ω∗) (4.25)

Consider the case of a linear microscopic utility of leisure, CL(τL) = KLτL. In

this case, the optimum π∗ of Eq.(4.11) is exponential, implying that π∗(τL)|l, ω =
ω
lP exp

[
− ω
lP τL

]
whose entropy H(π∗) = log(lP/ω)+1. Consequently, the derived

macroscopic utility function in Eq.(4.12) becomes
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U(l, ω) =
ω

P
RI + KL l +

ω

β P
[log(lP/ω) + 1] +

1

β
g(l, ω) (4.26)

If we define

g(l, ω) =
1

P
[ l(log(l)− 1) + ω(log(ω)− 1)− ω(log(P ) + 1) ] =

ω + l

P
[log(l)− 1]− ω

P
H(π∗)

(4.27)

Then it turns out that the optimum has just the correct properties in terms of

choice. We merely claim that this a possible g(·, ·) – it need not be unique.

If, instead, the microscopic utility of leisure is logarithmic: CL(τL) = (k −
1) log(τL), then, as in the case for linear CL(·), we can derive Eπ[CL(τL)] and

H(π) analytically in closed form for policies associated with Eq.(4.11).

Eπ[CL(τL)] = (k − 1)Eπ[log(τL)] = (k − 1)[ψ(k̄) + log(Eπ[τL])− log(k̄)]

H(π) = log(Eπ[τL])− log(k̄) + k̄ + (1− k̄)ψ(k̄) + log(Γ(k̄)) (4.28)

Here Γ(·) and ψ(·) represent the gamma and digamma functions, respectively and

k̄ = β(k− 1) + 1 as above. It is easy to see that for the special case of k = 1, i.e.

when the gamma distribution becomes an exponential distribution, k̄ becomes

simply 1. In that case, H(π) = log(Eπ[τL])+1 as above, since all other quantities

in Eq.(4.28) vanish. Further, if we considered a general microscopic utility which

was a sum of logarithmic and linear components, ĈL(τL) = (k−1) log(τL)+KLτL,

then we could treat the linear version as a special case by simply setting k = 1.

Using the quantities in Eq.(4.28), we may derive a macroscopic utility from a

microscopic logarithmic utility

U(l, ω) =
ω

P

(
RI + (k − 1) Eπ∗ [log(τL)] +

1

β
H(π∗)

)
+

1

β
g(l, ω)

=
ω

P

(
RI + (k − 1)

[
ψ(k̄) + log (Eπ∗ [τL])− log(k̄)

])
+

1

β

[ω
P
H(π∗) + g(l, ω)

]
=
ω

P

(
RI + (k − 1)

[
ψ(k̄) + log (l P/ω)− log(k̄)

])
+

1

β

[ω
P
H(π∗) + g(l, ω)

]
(4.29)
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then, if

g(l, ω) =
1

P
[ l(log(l)− 1) + ω(log(l)− 1)) ]− ω

P
H(τL) =

ω + l

P
[log(l)− 1]− ω

P
H(π∗)

(4.30)

then one can show that not only does maximising the derived macroscopic util-

ity in Eq.(4.29) subject to a BC yield the appropriate mean leisure duration:

Eπ[τL|post] = l∗P/ω∗ when CL(·) is logarithmic, but also reduces to the de-

rived macroscopic utility for a linear CL(·) (when k = 1, see Eqs.(4.26) and

(4.27)). Furthermore, as required for self-consistency, the Lagrange multiplier ξ

that leads to the policy π∗(τL) ∝ exp(β(CL(τL) − ξτL)) is the ”shadow price”

ξ = ρ∗ = RI+Eπ∗ [CL(τL)]
P+Eπ∗ [τL] , which is the average reward rate. If we had enforced

the full budget constraint via a Lagrange multiplier, the same average reward

rate would have been the shadow price for this too, i.e., the extra (macroscopic)

utility arising from relaxing the total budget T , (i.e. taking an extra second total

time for work and/or leisure).



Chapter 5

Fatigue and Satiation:

implications for the

labour-leisure tradeoff

5.1 Introduction

What to do and how long to do it for at any given moment may depend on what

has been done recently. In the case of deciding whether to work or engage in

leisure, the choice may depend on the recent history of work and rest, or rewards

earned. For example, a labourer may rest because she is fatigued from working;

an animal may stop lever pressing for food pellets and rest because it is satiated

and no longer hungry. In this chapter, we seek to extend the normative, micro-

scopic approach to the labour-leisure tradeoff by taking into account how such

recent history of choices and outcomes can affect current decisions, and their im-

plications for the characterisation of behaviour. In Chapter 4 we showed a novel

prediction, that an apparent interaction between the macroscopic marginal util-

ities of work and leisure could arise even when there was no interaction between

their microscopic marginal utilities. That is, work and leisure may appear to be

imperfect substitutes macroscopically, when in reality leisure is beneficial of its

own accord, and not because of the recent history of working. We now explore

the case when in fact there is a functional interaction between the microscopic

marginal utilities of work and leisure.

We specifically focus on two predominant phenomena that could underlie such

an interaction between the microscopic marginal utilities: fatigue and satiation.

Physical fatigue arises from performing a physical task repeatedly or for too long,
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with little rest in between. The physical task may not be effortful or cognitively

demanding. For example, consider someone lifting a light weight at the gym,

repeating this exercise many times in quick succession. She shall be physically

fatigued towards the last few repetitions, and desire rest so that she can recu-

perate. The lightness of the weight makes lifting it once not physically effortful,

it is the many repetitions that make it fatiguing. Furthermore, this barely in-

volves much cognitive effort, the computational complexity of keeping track of

the number of repetitions so far pales in comparison to that of, e.g. a chess

player planning her next move. Most work on the effect of fatigue on decision-

making studies cognitive fatigue. Decision-making is computationally expensive,

and making too many decisions, especially computationally complex ones, leads

to mental fatigue. This led to an influential account called ego-depletion in which

voluntary cognitive effort declines after performing several bouts of forced cogni-

tively demanding tasks Baumeister (2002); Baumeister and Bratslavsky (1998);

Vohs and Baumeister (2008).

However, these studies do not explore the effect of fatigue on the temporal to-

pography of choice. Whereas algorithmic explanations of the effect of physical

effort on the microstructure of choices have been proposed Meyniel et al. (2013),

here we put forward a normative theory of how physical fatigue affects the mi-

crostructure of work and leisure choices. This could be due to fatigue making

working more costly or leisure more beneficial. In the latter case, leisure is bene-

ficial because of the recent history of working–there is an interaction between the

marginal microscopic utilities of work and leisure.

We consider satiation–or the diminishing marginal utility of a reward, as it is

known in economics, as a dual of fatigue. In a counterintuitive set of findings,

humans and animal subjects, tested in the laboratory and studied in real-life sit-

uations were observed to work less when wage-rates are increased, rather than

more Hanoch (1965); Bigelow and Liebson (1972); Meisch and Thompson (1973,

1974a,b); Barofsky and Hurwitz (1968); Collier and Jennings (1969); Battalio

et al. (1981); Green et al. (1987); Camerer et al. (1997). A macroscopic explana-

tion of this posits that subjects work till they attain a particular target income,

and quit working when it is attained. Since attaining such target income is easier

when the wage-rate is greater, subjects work less. Similarly, in behavioural psy-

chology experiments, response rates have been observed to have a bitonic shape,

increasing at the beginning of an experimental session and decreasing thereafter

owing to satiation Fischer and Fantino (1968); McSweeney et al. (1991); Mc-

Sweeney and Roll (1993); McSweeney and Johnson (1994); Killeen (1995). The

decrease in response rates was faster for the higher reinforcer rates McSweeney
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(1992), durations and sizes Bizo et al. (1998), suggesting subjects satiate faster

for greater reward values.

We seek to build a normative, microscopic framework for decision-making as a

subject satiates from consuming rewards. This could be either due to rewards be-

coming less rewarding or leisure becoming more beneficial with satiation. Similar

to fatigue, the latter case implies an interaction between the marginal utilities

of leisure and rewards consumed. We shall derive the above counterintuitive

macroscopic phenomenon from our microscopic theory.

We approach these issues from two perspectives according to which decisions may

be made: prospectively or retrospectively. For example, an individual deciding

whether and how long to rest on a Sunday before a long week decides prospec-

tively, e.g. taking into account how fatigued she shall be during the week. On the

other hand, an individual deciding whether and how long to rest on a Saturday

after a long week is deciding retrospectively, e.g. taking into account the extra

benefit of leisure when already fatigued. We consider each of these underlying

factors in turn.

5.2 Fatigue

We consider a simple mechanism in which fatigue accumulates as the subject

works and dissipates as it engages in leisure. We represent this as a fatigue

variable ν(t), which low-pass filters the recent history of work and leisure (Fig.

5.1). This yields an exponential kernel of past work and leisure durations and the

fatigue variable ν ′ at the end of a bout of duration τa is linearly related to that

at the start of the bout ν

ν ′ = ν(t+ τa) = za [1− (1− α)τa ] + (1− α)τa ν (5.1)

where za=1 if the subject works (a = W ) and 0 if it engages in leisure (a = L).

The rate of filtering α ∈ [0, 1] represents the inverse of the time-constant with

which fatigue dissipates or builds up: a small α signifies a slow time-constant. ν =

0 represents no fatigue while ν = 1 signifies maximum fatigue. We shall consider

the same CHT task and action space as before. We once again assume that

the subject works the entire price and then engages in leisure, and characterise

steady-state behaviour using the recurrent micro-SMDP discussed in Chapter 4.

This maintains the pre and post-reward state space of that model, except that it is

augmented with the fatigue variable ν. We do not separately model a possible set
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of transient states wherein fatigue accumulates and, and focus only on behaviour

as the subject transitions between recurrent states. We explore two cases of how

fatigue can affect microscopic work and leisure choices, either by making working

more costly when fatigued, or leisure more beneficial. We can consider a cost

of working whilst fatigued CFW (ν) or a utility of leisure that depends on fatigue

CL(ν, τL).
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Figure 5.1: Fatigue as a low pass-filtered variable ν of the recent
history of work and leisure. Fatigue accumulates as the subject works
and dissipates as it engages in leisure, exponentially in both cases.

The Q-values of working and engaging in leisure then become

Qπ([pre, ν], [W,P ]) = RI − ρπP − CFW (ν) + V π(post, ν ′)

Qπ([post, ν], [L, τL]) = CL(ν, τL)− ρπτL + V π(pre, ν ′) (5.2)

which depend on the value V π(·, ν ′) of the fatigue state that the subject transi-

tions to: more fatigued after working and less fatigued after engaging in leisure

(see Eq.(5.1)).

As we shall show, the two cases of work being costly or leisure being more benefi-

cial when fatigued make similar predictions about the microscopic (and thus also

macroscopic) structure of work and leisure choices. They may be potentially dis-

tinguished by considering experiments in which choices are made prospectively:

taking into account how fatigued one will be in the future, or retrospectively: be-

cause one is already fatigued. We call these prospective and retrospective fatigue,
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respectively.

5.2.1 Prospective fatigue: cost of working whilst fatigued

Suppose one is considering whether and how long to rest on a Sunday before

a long week. If working is costly when fatigued, then one should take plenty

of rest on a Sunday, prospectively taking into account how fatigued one will be

otherwise. To demonstrate this using the CHT paradigm, suppose further that

the subject is forced to work for the entire price each time it works. We had

previously assumed that subjects choose to work for the entire price duration,

but in this case, the employer enforces this. For simplicity, we assume a cost

of working that is independent of the duration of a work bout and increases

linearly with fatigue CFW (ν) = KF ν. While considering a cost of working that

depends on the duration of the work bout is perhaps more natural, this could

be due to effort costs. Our simplifying assumption avoids such a confound and

attempts to isolate the cost of working whilst fatigued. Further, we assume a

linear microscopic utility of leisure CL(τL) = KLτL, independent of how fatigued

the subject is.

We explain the algorithmic mechanics underlying our model of prospective fa-

tigue: the Q-value of leisure in the post-reward state depends on the value

of the pre-reward (forced work) state V π([pre, ν ′]) to which the subject tran-

sitions to as a consequence of engaging leisure for duration τL: V π([pre, ν ′]) =

RI−ρπP −KFW ν
′+V π([post, ν ′′), where ν ′′ is the post-reward fatigue state that

the subject further transitions to. Which pre-reward fatigue state ν ′ a leisure

bout transitions the subject into depends exponentially on the current state of

fatigue ν through (1− α)τLν (Fig. 5.2A(i) and see Eq. (5.1)). If the initial state

is non-fatigued (ν = 0), then further leisure cannot further reduce it (ν ′ = 0).

Otherwise, it decays exponentially from the initial fatigue state.

For a sufficiently large KFW , the value V π([pre, ν ′]) is dominated by the cost of

working whilst fatigued: −KFW ν
′. This is just the negative of the above exponen-

tial decay (multiplied by a constant KFW ) and shifted by a fatigue independent

term RI − ρπP (Fig. 5.2A(ii))

The difference between the linear utility of leisure KLτL (solid line in Fig.

5.2A(iii)) and the, also linear, opportunity cost of time −ρπτL (dashed line),

yields the bold line, as in Chapter 3. This is then added to the value of the

pre-reward fatigue state that the leisure bout takes the subject into V π([pre, ν ′])

to yield the Q-value of leisure as a function of initial fatigue (Fig. 5.2 A(iv)). As
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Figure 5.2: A) Prospective fatigue model mechanics. From top to bottom:
(i) ν′ = νt+τa = za [1 − (1 − α)τa ] + (1 − α)τa ν, where za=1 if a = W and
0 if a = L; long leisure resets fatigue. Blue to red curves show increasing
initial fatigue levels (ν). (ii) the value of pre-reward (forced work) state
V π([pre, ν′]) to which the subject transitions to as a consequence of taking
leisure for duration τL: V π([pre, ν′]) = RI − ρπP −KFW

ν′ + V π(post, ν′′]).
This is dominated by the −KFW

ν′ term. (iii) the linear utility of leisure
KLτL (solid line) and the opportunity cost of time −ρπτL (dashed line)
are added (bold line) and then (iv) added with the value of the pre-reward
state to yield the Q-value of leisure for duration τL starting from fatigue
state ν. (v) Finally, the Q-value is sent through the softmax to yield the
policy π(τL|[post, ν]). Note that in the absence of fatigue (ν = 0) this is an
exponential distribution; whereas it is a gamma distribution with a longer
mode for greater initial fatigue. B) The mean leisure duration increases with
fatigue. C) Ethograms show runs as a fatigue builds up with each work bout
and is alleviated by longer leisure bouts. RI = 3, P = 4s,KFW

= 3.



Fatigue 134

discussed previously, the Q-value of leisure in the absence of fatigue (ν = 0) is

linearly related to its duration. For initially fatigued states (ν > 0), the Q value

is a unimodal bump, with the peak of the bump increasing with fatigue.

When the Q-value is sent through the soft-max to yield the policy π(τL|[post, ν]),

we achieve the usual exponential distribution in the absence of fatigue (ν = 0).

However, when the subject is already fatigued (ν > 0), the leisure duration

distribution is gamma-like, with its mode and tail increasing with the degree of

initial fatigue (Fig. 5.2 A(v)). Consequently, the mean leisure duration increases

as a function of initial fatigue (Fig. 5.2 B). Ethograms generated according to

this policy yield a temporal pattern of runs of work bouts interspersed by short

leisure bouts as fatigue accumulates, followed by a longer leisure bout to alleviate

fatigue (Fig. 5.2C).

As the price is increased, the opportunity cost of time decreases, and consequently

so does the mean leisure duration (Fig. 5.3A). Long leisure is particularly de-

sirable for high initial fatigue levels, since being forced to work longer would

otherwise exacerbate fatigue even more. This is particularly deleterious if the

cost of working whilst fatigued is high (compare left and right panels in Fig.

5.3A). The microstructure of work and leisure clearly shows how leisure breaks

in between runs of working become longer as the cost of working whilst fatigued

is amplified (compare left and right panels in Fig. 5.3B).

5.2.2 Retrospective fatigue: benefit of resting whilst tired

The more intuitive case of fatigue is retrospective. Suppose one is deciding

whether and how long to rest on a Saturday after a long, tiring week. In this

case the utility of leisure is greater if one is more fatigued. The microscopic util-

ity of leisure CL(ν, τL) depends on the fatigue level and duration of leisure τL,

but fatigue dynamically decreases from ν to ν ′ as the subject engages in leisure.

CL(ν, τL) thus represents the microscopic utility of leisure, integrating over its

microscopic marginal utility ∂CL
∂dτL

.

CL(ν, τL) =

∫ τL

0
dτL

∂CL (ν ′(τL|ν), ·)
∂dτL

(5.3)

For simplicity, let us assume a constant momentary marginal utility of leisure
∂CL(ν′(τL|ν),·)

∂dτL
= KLF (ν ′(τL|ν)), but which increases with the level of fatigue. This

corresponds to a constant slope of the momentary microscopic utility of leisure

as a function of its duration, but with the slope that is larger if the subject
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Figure 5.3: A) Effect of Price and cost of working on leisure durations.
Mean leisure duration increases with price owing to the reduced opportunity
cost of time. But longer leisure is is desired the more fatigued the subject is.
Upper right panel: Note how the surface is shifted up at high fatigue levels.
Short leisure would lead to the subject having to work in a highly fatigued
state; which is exacerbated if the cost of working is amplified. B) Ethograms
showing runs for lesser KFW

= 3 (left) and greater KFW
= 5 (right) costs of

working whilst fatigued. Leisure breaks between runs of working are longer
if the cost of working is greater. Price increases from top to bottom: 4s,
14s, 18s and 30s; note the different scales on the x-axis as price is increased.
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is more fatigued (Fig. 5.4A (i)). To maintain simplicity, let this microscopic

marginal utility be a linearly increasing function of fatigue KLf (ν) = KL · [ν+ 1].

We use the +1 so that there is some marginal utility of leisure KL even when

there is no fatigue (ν = 0). Then KLf (ν ′(τL|ν) + 1) = KL · [(ν ′(τL|ν)) + 1] =

KL · [(1−α)τLν) + 1]. In effect, this slope is decreasing as the duration of leisure

increases. We can therefore derive the integrated microscopic utility of leisure as

function of initial fatigue and duration of leisure

CL(ν, τL) =

∫ τL

0
dτL

∂CL (ν ′(τL|ν), ·)
∂dτL

=

∫ τL

0
dτL KL[(1− α)τν) + 1]

= KLν

[
(1− α)τL − 1

log(1− α)

]
+KLτL (5.4)

which is the sum of a Gamma and a linear function (Fig. 5.4A (ii)). Thus, we

have derived a concave microscopic utility of leisure, which increases with the

level of fatigue, eventually becoming a linear function for very long leisure bouts.

This expresses in microscopic terms a combination of two commonly championed

properties of a utility of leisure function in economics (i) being concave i.e., with

decreasing marginal utility, and (ii) being interactive, i.e, leisure is beneficial

because of the recent history of work i.e.. the marginal utility of leisure depends

on work (here due to fatigue).

The Q-value of leisure given an initial level of fatigue ν, is simply the difference

between this microscopic utility and the opportunity cost of time (Fig. 5.4A (iii)).

As before, the Q-value is linear in the absence of fatigue (ν = 0). For non-zero

levels of fatigue, it is a unimodal bump, whose peak increases with fatigue. The

policy derived from sending the Q-value through a soft-max is exponential in the

absence of fatigue, and gamma-like in its presence, with the mode of the gamma

distribution increasing with the level of fatigue (Fig. 5.4A (iv)). Leisure durations

drawn according to this policy lead to a pattern of runs of work bouts followed by

a long leisure bout that reduces fatigue (Fig. 5.4B). These runs are particularly

evident at longer prices (compare top to bottom panels of Fig. 5.4B depicting the

effect of the price increasing). We thus note that the microscopic behaviour owing

to retrospective fatigue is similar to that in the prospective case. Teasing apart

which type of decision-making underlies such behaviour could require careful

experimental designs which control for one while testing the other.
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Figure 5.4: Retrospective fatigue A) mechanics, from top to bottom:
(i) linear momentary microscopic utility of leisure, but increases with fa-
tigue. This represents a microscopic utility function with a constant micro-

scopic marginal utility
∂CL(ν′(τL|ν),·)

∂dτL
= KLF

(ν′(τL|ν)), but which increases
with the level of fatigue. (ii) the integrated microscopic utility of leisure
CL(ν, τL) for a bout of duration τL, starting from a fatigue level ν is a sum
of a Gamma and linear function. This integrates over the momentary mi-
croscopic utility of leisure taking into account that fatigue decreases while
the subject is engaging in leisure. It is a concave function which increases
with the initial level of fatigue. Dashed black line shows the opportunity
cost of time. (iii) Q-value of leisure for duration τL starting from fatigue
state ν linear in the absence of fatigue (ν = 0), but is a bump whose peak in-
creases with initial level of fatigue. (iv) Finally, the Q-value is sent through
the softmax to yield the policy π(τL|[post, ν]). Note that in the absence of
fatigue (ν = 0) this is an exponential distribution; whereas it is a gamma
distribution with a longer mode for greater initial fatigue. B) Ethograms
show runs as fatigue builds up with each work bout and is alleviated by
longer leisure bouts. Price increases from top to bottom: 4s, 8s, 18s and
30s; note the different scales on the x-axis as price is increased. The leisure
bouts in between runs are longer for longer prices, since the subject is more
fatigued. RI = 3,KFW

= 3.
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5.3 The backward bending labour supply curve

We shall develop a dynamic theory of satiation, as a dual to that of fatigue

delineated above, and use it to build a normative, microscopic account for a

counterintuitive phenomenon from economics and behavioural economics.

The macroscopic and microscopic theories considered in Chapters 2, 3 and 4, as

well as the normative, microscopic theory of fatigue developed above, all predict

that subjects shall work more if the payoff (wage-rate) is higher. We now address

a counterintuitive observation in both humans and animals: subjects sometimes

work less and engage in more leisure when wage-rates are increased. We shall

explain this counterintuitive phenomenon by developing a normative, microscopic

theory of satiation. We start, however, by reviewing the relevant literature on

this phenomenon.

5.3.1 Predictions from labour supply theory

For the macroscopic utility functions considered so far, labour supply predicts

that subjects work more as the wage rate increases (as reward intensity increases

and/or price decreases). An interesting, normative prediction from macroscopic

labour supply theory is that wage rate increases that are not income-compensated

(as in the cases we have considered) may result in the subject working less and

not more (Fig. 5.5A, upper panel). As noted in Chapter 2, and shown in Fig.

5.5B an income uncompensated wage rate change can be decomposed into (i)

an income compensated wage increase that would allow the subject to maintain

the same level of income consumption and leisure (with the budget constraint

line passing through the same income-leisure combination), and (ii) income effect

owing to the increased wage (with the budget constraint being shifted upwards).

Despite having the opportunity to maintain the same income-leisure combination,

the effect of an income compensated wage increase is that the budget constraint is

now tangent to a different indifference curve with greater utility. At this optimum,

the subject substitutes more work for leisure (substitution effect). It is thus clear

that income compensated wage changes will only result in the substitution effect.

However, as the wage-rate is increased in the absence of any compensation, the

substitution effect may be dominated by the income effect. The budget constraint

is tangent to an indifference curve at which the subject engages in more leisure,

and works less. In other words, the subject can purchase more leisure due its

increased income and therefore works less. When the amount of work performed

/ labour supplied (abscissa) is plotted against the wage rate (ordinate) we obtain
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a backward bending labour supply curve (Fig. 5.5A, lower panel). The subject

works less as the wage rate is increased. We plot the dependent variable: labour

supplied, on the abscissa as is conventional in economics when plotting the supply

of a good. The forward bending part of the labour supply curve arises from the

usual case where substitution effects dominate income effects: subjects substitute

more work for leisure as the wage rate is increased.

It is important to note that not all macroscopic utility functions can produce this

backward bending labour supply curve. For example, the constant elasticity of

substitution utility functions that we have discussed in Chapter 4 only allow for-

ward, but not backward bending labour supply curves. The conditions necessary

to produce the backward bending labour supply curve from using labour supply

theory in are described in Hanoch (1965).

5.3.2 Behavioural laboratory experiments

Evidence for the backward bending labour supply curve comes from laboratory

studies in both humans and animals working on ratio schedules to gain a variety

of different rewards. This includes humans and rats pressing levers to gain access

to alcohol Bigelow and Liebson (1972); Meisch and Thompson (1973, 1974a,b),

rats depressing levers to receive food pellets Barofsky and Hurwitz (1968) and

sucrose solutions Collier and Jennings (1969), and pigeons pecking a response key

to gain access to food Battalio et al. (1981); Green et al. (1987). These all display

the forward and then backward bends of the labour supply curve.

5.3.3 Behavioural economics

Behavioural economists have investigated the backward bending labour supply

curve in field studies. While less controlled than laboratory experiments, they

provide a real-life measure of labour supply in humans from which causes under-

lying the curve maybe gleaned.

5.3.3.1 Taxi drivers

One of the most prominent studies is that of New York City taxi drivers, con-

ducted by Camerer et al. (1997). They used the trip sheets of drivers in the late

1980s and early 1990s, which logged details of each fare. They computed daily

wage rate (RW ) as the total daily income (m) divided by the total daily hours

ω. They obtained a significantly negative correlation when they regressed the
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Figure 5.5: Backward bending labour supply curve A) For some
macroscopic utility functions (here displayed as a function of income and
cumulative leisure time), income uncompensated wage rate increases lead to
the amount of work decreasing rather than increasing with wage rate. Up-
per panel: As the wage rate increases, the budget constraint rotates from
OA to OB to OC reflecting the opportunity to earn greater income for the
same amount of labour supplied. The point of tangency between an indif-
ference curve (coloured curves) and the budget constraint yields the optimal
combination of income and leisure. As the budget constraint rotates from
OA to OB, the optimal cumulative leisure duration decreases. However, as
the wage rate is increased further, the budget constraint rotates from OB to
OC. The new optimal cumulative leisure time increases. Lower panel: when
labour supplied (cumulative work time, i.e. the opposite of the axis in panel
A, abscissa) is plotted against the wage rate (ordinate), we obtain a forward
and then backward bending labour supply curve. B) The backward bending
segment of the curve (e.g. due to the wage rate increasing and the budget
constraint rotating from OB to OC) in panel A can be decomposed into
two effects. First, the substitution effect, which would be due to an imagi-
nary income compensated wage increase. The budget constraint would then
shift from OB to O’B’, leaving the subject the opportunity to consume the
same income-leisure combination (Xo). However, this imaginary budget
constraint is tangent to an indifference curve with a greater utility. The
optimal allocation is to allocate less time to leisure, and work more (Xs).
The substitution effect thus always leads to an increase in labour supply as
wage rate increases. Second, the income effect. The increased wage rate
enables the subject to gain more income. The budget constraint is shifted
upward from O’B’ in parallel, to OC. The new budget constraint OC is tan-
gent to an indifference curve for which the optimal combination of income
and leisure (Xi) involves the cumulative leisure time increasing compared
to the original level (Xo). Thus, when the income effect (shift from Xo to
Xi) dominates the substitution effect (magnitude of the shift fromXo to Xs)
the subject should work less more rather than more. Note that the subject
still consumes more income as result of the wage rate increase. This greater
income enables the subject to purchase more leisure, and work less.
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logarithm of total daily hours worked against the logarithm of the daily wage

rate.

log(ω) = η log(RW ) + Z + ε = −η log(ω) + η log(m) + Z + ε (5.5)

where Z represents other, fixed effects terms, ε is Gaussian distributed noise.

This indicates that hours worked decreases for a percentage increase in wage rate.

They concluded that New York City taxi drivers show a backward bending labour

supply curve. They also found that wage rates were positively autocorrelated

between hours within a day–and hence stable within a day, but not correlated

across days. Taking these together, they propose that New York City taxi drivers

have a daily income target in mind and quit once this is achieved. This was

also suggested by several drivers and just more than half of the fleet managers

surveyed by them. Camerer et al. (1997) proposed that taxi drivers are loss-averse

to daily incomes below the target. This finding of negative correlations between

log daily hours worked and log daily wage rate was replicated by Chou (2002) in

taxi drivers in Singapore.

When Camerer et al. (1997) sorted drivers according to experience, by classifying

those with license plate numbers less than the median as experienced, they noted

that, except in one dataset, experienced drivers had a positive correlation between

log daily hours worked and log daily wage rate. Inexperienced drivers consistently

showed a negative correlation. By this they suggested that inexperienced drivers

may be using income targeting and quitting once that target is attained, while

experienced drivers work longer on the more profitable, high wage-rate days.

The negative correlations were obtained by regressing macroscopic quantities:

the daily total hours worked against the daily wage rate. As noted by Camerer

et al. (1997) themselves, and subsequently by Farber (2005), calculating daily

wage rates by using the total daily hours worked can potentially exaggerate the

negativity of this regression coefficient. log hours worked is both the dependent

variable and the main independent variable (with a negative coefficient) in Eq.

(5.5). Any measurement error in the hours worked would inflate the negativity

of this coefficient.

Farber (2005) analysed his own dataset of New York City taxi drivers, as well

as that of Camerer et al. (1997), using a miniscopic approach. He computed the

probability that drivers would quit after a trip as a function of the cumulative

number of hours worked so far and the income earned so far during the shift,

and found that this was more significantly related to the former than the latter.
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When the data were further partitioned according to experience of the drivers,

a significant positive correlation was obtained for cumulative hours worked so

far, while there was no significant positive, and sometimes actually negative,

correlations with the income earned so far for both experienced and inexperienced

drivers. While the dataset of Farber (2005) showed macroscopic negative wage

elasticities, just as in Camerer et al. (1997); Chou (2002) , the strong relationship

between the probability of quitting for the day with cumulative hours worked led

to the conclusion that drivers prefer to work either a fixed set of hours or until they

are tired. It must be noted however, that unlike Camerer et al. (1997), Farber

(2005)’s data showed no autocorrelation in wage rates within a day–indicating

that the fluctuating wage rates could be a reason why strong effects of income

earned are not observed.

5.3.3.2 Bicycle messengers

The analyses of taxi drivers were purely correlational, and the conclusions drawn

were susceptible to the type of analysis performed. Specifically, they did not

partition their data between high and low wage rate days. Fehr and Goette

(2007) studied the labour supply of bicycle messengers, performing the causal

manipulation of increasing their commission rates were increased for a month,

and then resetting them to normal. They found that messengers worked more in

the high commission rate month, but did so by working less per day and more

days in that month. They concluded from this that messengers had a daily income

target in mind, and quit earlier when that target was achieved.

The cleanest evidence of the effects of wage rate increase on the time course

of labour supply comes from the miniscopic analyses of Goette and Huffman

(2006). They investigated the revenues earned per hour of bicycle messengers

whose commission rate was increased compared to those employed by another firm

for whom commission rates remained the same. Firstly, they showed the temporal

profile of revenues earned. Messengers increased work from the beginning of

the day, followed by a reduction around lunch time and a subsequent increase

and decay. Secondly, they found that there was no increase in net daily labour

supply due to the increased commission rate. Thirdly, messengers in the firm

with the increased commission rate worked more and quit earlier in the day.

The increased labour earlier in the day was compensated by the reduced labour

later on, leaving net daily labour supply unaffected. Goette and Huffman (2006)

propose that messengers have a daily income target in mind, and the utility of a

reward increases until the target is attained, after which it drops discontinuously,
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and sharply. Finally, messengers showed evidence of increasing their income per

hour as they gained experience over many months on the job. However, they

increased their work early in the day and reduced that later on. This is contrary

to the claim of Camerer et al. (1997), who concluded that experienced taxi drivers

work more throughout the day when the wage rate is higher.

While these studies of bicycle messengers lend further support to the income tar-

geting hypotheses, they remain miniscopic– reporting revenues or labour supplied

per hour. They do not investigate the duration of leisure breaks, and temporal

topography of work and leisure. The idea that utility of rewards drops sharply as

soon as a target is attained is not verified by the data which shows a more gradual

reduction in labour supply. Further the idea of having an income target in mind

seems somewhat ad-hoc. We now develop a normative, microscopic approach to

understanding the backward bending labour supply curve proposing satiation as

an underlying factor.

5.4 Satiation

Whereas fatigue affects either the cost of working or the utility of leisure ow-

ing to the recent history of work, satiation reduces the utility of a reward or

increases the utility of leisure (consider the greater utility of rest after a sump-

tuous lunch) owing to the recent history of rewards. We derive a macroscopic

backward bending labour supply curve by formulating a normative model of mi-

croscopic satiation. Similar to fatigue the two cases of satiation, namely, reducing

the utility of a reward or increasing the utility of leisure, can be distinguished by

considering decisions being made prospectively or retrospectively. We consider

satiation to be the dual of fatigue, and define a dynamically changing satiation

variable ψ(t) ∈ [0, 1], which decays when there is no reward, but jumps each

time a reward is received (Fig.5.6A). Let rewards be received at times {ti}. The

satiation variable at the next, (infinitesimally small) time-step t+ dt is given by

ψ(t+ dt) =

{
ψ(t) + (1− ψ(t))α+RI t = ti

α−ψ(t) otherwise

We express ψ(t + dt) at a discrete time-step, to show the jump after a reward

is received clearly; in the limit of infinitesimally small time-steps, ψ(t) is a con-

tinuous variable. The satiation variable increases with the utility of reward RI.

The (1 − ψ(t)) term ensures that the satiation variable saturates at 1. For the
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purposes of flexibility, we consider different time-constants for the decay of sati-

ation (1/α−) in the absence of rewards, and the jump at the time of a reward

(1/α+). The satiation variable decays exponentially from an initial level ψ after

a bout of duration τa to ψ′ = ατa− ψ in the absence of a reward. For a work bout

of duration τW = P , this is αP−ψ. If we assume that rewards are received only

when the price is attained, and that if a subject works, it works continuously

for the entire price, then starting from ψ, the satiation variable after receiving

a reward is: ψ′ = αP−ψ + (1 − αP−ψ)α+RI. We use the same recurrent SMDP

as for the case of fatigue, except that the fatigue variable ν is replaced by the

satiation variable ψ. While our assumptions below are arbitrary, we use them for

simplicity to show the effects of dynamic satiation on decision-making.

5.4.1 Prospective satiation / satiation reduces the net utility of

a reward

Consider the case of someone assuming whether to have a light tea in order to

enjoy a sumptuous dinner. A filling tea would make one less hungry and more

satiated, reducing the utility of the food at dinner. We term this prospective

satiation. Let us assume that the only effect of satiation is to reduce the utility

of a reward, leaving the microscopic utility of leisure unchanged. For extreme

simplicity, we suggest that the utility of the reward is reduced to (1 − ψ)RI.

Then the Q values of working and engaging in leisure are

Qπ([pre, ψ], [W,P ]) = (1− ψ)RI − ρπP + V π([post, ψ′])

Qπ([post, ψ], [L, τL]) = CL(τL)− ρπτL + V π([pre, ψ′]) (5.6)

As before, for the prospective case, we assume a linear microscopic utility

CL(τL) = KLτL.

The mechanics of how the Q-values and policies are rendered for prospective

satiation are very similar to those for prospective fatigue. When choices are

generated according to the softmax policy, we once again obtain runs of working

and gaining rewards followed by a long leisure bout to reduce satiation. Since

satiation increases with reward intensity, the Q value of working and gaining a

reward decreases. Consequently, a subject will engage in longer leisure so that

the prospects of working and gaining a reward are greater. The greater the

reward intensity, the faster and more frequently the subject becomes satiated.

The leisure bouts required to reduce satiation therefore become longer as reward
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intensity increases. As a result, when we average over these temporal patterns,

time allocation, and hence the labour supplied, decreases as reward intensity

increases. We thus derive the backward bending labour supply curve from a

normative microscopic approach using prospective satiation (Fig. 5.6). For much

lower reward intensities, the subject does not satiate, as satiation builds up very

slowly and is continually alleviated by leisure bouts. For reward intensities in

this range, the subject therefore works more to receive more rewards without

satiating. The macroscopic labour supply curve obtained from averaging across

these cases is forward bending. Taken together, we provide a novel, normative,

microscopic explanation to the entire forward and then backward bending labour

supply curve.
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Figure 5.6: Prospective satiation A) The dynamic satiation variable
ψ(t) jumps, proportional to the reward intensity (RI), each time a reward
is received, and decays exponentially with the duration of a bout in its
absence.The greater the reward intensity, the faster the subject becomes sa-
tiated. Consequently, the subject will prospectively engage in longer leisure
so that it is less satiated when it receives a reward and can enjoy it more.
The leisure bouts required to reduce satiation therefore become longer as re-
ward intensity increases. B) Backward bending labour supply curve derived
from microscopic prospective satiation. The dependent variable: labour
supplied is plotted on the abscissa while the independent variable: reward
intensity, is on the ordinate. When the temporal pattern in A) is averaged
over trials, the macroscopic time allocation, and hence the labour supplied
decreases as the reward intensity increases, yielding the backward bending
labour supply curve. For much lower reward intensities (eg. RI = 2 shown
in the blue trace) the subject does not satiate, as satiation builds up very
slowly and is continually reduced by long leisure bouts. For reward intensi-
ties in this range, the subject therefore works more to receive more rewards
without fully satiating. The macroscopic labour supply curve obtained from
averaging across these cases is forward bending. Taken together, this yields
a forward and then backward bending labour supply curve. Microscopic
marginal utility of leisure KL = 0.1, Price= 4s, inverse time-constants for
satiation decaying (α− = 0.99) in the absence of rewards and its jumping
at the time of rewards (α+ = 0.05).
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5.4.2 Retrospective satiation / satiation increases the utility of

leisure

As noted, a standard microeconomic explanation for the backward bending labour

supply curve is that leisure is more beneficial when one is richer. We follow the

same principle, but cast in a microscopic version.

We define a microscopic utility of leisure function that increases with the current

level of satiation and the duration of leisure: CL(ψ, τL). We seek to show that

at least one such utility function exists that leads to a backward bending labour

supply curve. Note that this function may not be unique. Since the degree of sa-

tiation increases with the reward intensity, for ease of exposition only, let us break

with the previous conventions and set ψ = RI. In Chapter 3 we had introduced a

sigmoidal microscopic utility of leisure function, whose microscopic marginal util-

ity increases and then decreases. Now consider the satiation dependent sigmoidal

utility function

CL(RI, τL) =

{
RImin σ(τL − CLshift) RI ≤ RImin
g(RI) σ(τL − h(RI)) RI > RImin

where σ(x) = 1
1+exp(−x) is the logistic function. RImin is a threshold level before

which satiation is assumed to be negligible, CLshift is the shift in the logistic

function, and g(·) and h(·) are increasing functions of satiation, which we shall

specify such that labour supply curve bends backwards (Fig. 5.7A). g(·) and h(·)
are chosen such that the microscopic utility of leisure consistently increases with

satiation for all durations of leisure τL. That is, the utility of a duration of leisure

τL will be greater when the subject is more satiated than when it is less. Here, we

choose g(RI) = RI2 and h(RI) = log(RI), although other functional forms may

also suffice. For the deterministic, greedy policy we can show (see Section 5.6.1)

that the optimal leisure duration τ∗L increases with h(RI) as long as RI > RImin

(Fig. 5.7B, bottom panel)

τ∗L = ζ(RI) + h(RI) = ζ(RI) + h(RI) (5.7)

where ζ(RI) is the logit function, i.e, the inverse of the logistic function. It is

negligible compared to h(RI). Consequently, as long as h(RI) is an increasing

function, the optimal leisure duration increases with reward intensity.

When microscopic choices are generated according to this optimal leisure du-

ration, and averaged across time, macroscopic labour supplied decreases with
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Figure 5.7: Retrospective satiation A) The microscopic utility of leisure
CL(ψ, τL) is sigmoidal, whose maximum and shift increase with the level of
satiation (see Eq.(5.7)). Here we assume that, above a threshold levelRImin,
satiation is simply proportional to reward intensity RI; the maximum of the
utility function increases quadratically and the shift logarithmically withRI.
Below the threshold RImin the utility of leisure has a fixed maximum at
RImin (black curve). B) The optimal leisure duration for the greedy policy
τ∗L (bottom panel) is the sum of log [σ(·)/(1− σ(·))] (top panel) and log(RI)
(centre panel, see Eq.(5.7)), where σ(·) is the logistic function. Thus, the
optimal leisure duration increases with RI. RImin = 5,CLshift = 25. C)
When leisure bouts are generated accordingly, and the temporal structure
is averaged across, we obtain a backward bending labour supply curve (the
labour supplied is normalised and here shown in terms of time allocation).
The forward bending part of this curve occurs when satiation is below a
threshold level and the utility of leisure does not vary with satiation. Then
the subject works more as reward intensity increases. D) Using a stochastic,
softmax policy rather than a deterministic, greedy one makes the curve
smoother. Insets show microscopic ethograms, which are averaged across to
yield points on the macroscopic curve.
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the reward intensity, producing the backward bending labour supply curve (Fig.

5.7C). If h(RI) = log(RI), then the optimal leisure duration τ∗L increases slowly

(logarithmically) as reward intensity is increased. If we had used polynomial

functions for h(RI), which would make the the optimal leisure duration increase

faster with reward intensity, although they would have made the microscopic

utility of leisure functions inconsistent, as mentioned above.

When satiation is below its threshold level RI < RImin and hence can be ne-

glected, then we should see labour supply increasing with reward intensity. As as

the reward intensity increases, so does the reward rate ρ. The Q-value of leisure

is increasingly dominated by the opportunity cost of time −ρτL and leisure du-

rations consequently become shorter. As discussed in Chapters 3 and 4, con-

sequently, macroscopic labour supply increases with reward intensity, producing

the forward bending part of the labour supply curve.

We do not claim that the sigmoidal utility in Eq.(5.7) this is the only microscopic

utility of leisure function that can achieve this, but an example of one that does.

The forward and backward bending parts of the curve are smoother if we use a

stochastic, e.g. softmax, policy (Fig. 5.7D) rather than the deterministic greedy

one to generate microscopic choices and average over them.

5.5 Discussion

Although choices about which actions to take and how long to persist with them

for may depend on the benefits and costs associated with those dimensions of

choice, they may also depend on the recent history of actions and rewards. We

explored the case where the choice of whether to work or engage in leisure de-

pended on the recent history of work and leisure and/or reward received, based on

the phenomena of physical fatigue and satiation as underling causes. We repre-

sented fatigue as a dynamic variable that increases whilst working and decreases

during leisure. While we used a low-pass filtered fatigue variable for simplicity,

other representations would have been possible. Most research on how fatigue

affects decision-making has focussed on cognitive fatigue. An influential account

called ego-depletion in which voluntary cognitive effort declines after performing

several bouts of forced cognitively demanding tasks Baumeister (2002); Baumeis-

ter and Bratslavsky (1998). This decline has been found to be correlated with

a depletion of blood glucose Baumeister et al. (2007); Gailliot and Baumeister

(2007), although this has been called into question Kurzban (2010). The effect

of cognitive fatigue on the labour-leisure tradeoff has been recently studied by
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Kool and Botvinick (2012), who showed that human subjects substitute from the

less demanding to the more demanding task in accordance with predictions from

labour supply theory. A recent study, focussing on how cognitive effort affects

the labour leisure tradeoff showed that human subjects would switch from a less

cognitively demanding to a more demanding task when they received an income-

compensated wage-rate increase for performing the more demanding task, in the

form of more M&M candies, in line with the predictions from labour supply the-

ory Kool and Botvinick (2012). However, it remains to seen whether performing

a less cognitively demanding task is actually leisure or just less demanding work.

Here we developed a novel, normative microscopic theory of physical fatigue.

We attempted to tease apart two ways in which fatigue may affect cost-benefit

decisions: by making working more costly when fatigued or leisure more bene-

ficial. Both led to a microscopic behavioural prediction of runs of work bouts

interspersed by short leisure bouts as fatigue accumulated, and was alleviated

by a long leisure bout. This would lead to autocorrelation between consecutive

leisure bouts, making them non independent and identically distributed. This is

an important behavioural prediction which can be tested for when microscopic

work and leisure data are analysed. The two cases of fatigue that we assumed

can be further distinguished by appropriate experiments designed to tease them

apart. The cost of working whilst fatigued can be explored by forcing subjects to

work for an employer determined period, and asking them to choose how long to

rest prospectively, taking into account how fatigued they will be when the start

working otherwise. If the period of work is long, and the costs of working whilst

fatigue are high, then we predict that subjects should prospectively engage in

long leisure. Such prospective fatigue is akin to the common problem of choosing

how long to rest on a Sunday before a long week.

The more intuitive case of fatigue is when it makes leisure more beneficial. That

is, leisure is more beneficial because of fatigue. This is akin to the case of choos-

ing how long to rest on a Saturday after a long week. This case implies that the

marginal utility of leisure is dependent on that of the recent history of working

(manifested as fatigue), contrary to the assumptions in Chapter 3. By starting

from a very simple, linear momentary microscopic utility of leisure, which in-

creased with fatigue, we derived an integrated microscopic utility of leisure which

was concave in its duration, but whose utility was greater if the subject was more

fatigued. We thereby derived, rather than assumed two properties of utility of

leisure functions popular among economists: a decreasing marginal utility, favour-

ing many short leisure bouts over one long one, and an interaction between the

marginal utilities of work and leisure. The former implies that a preference for
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many short leisure bouts arise from actual indifference, but owing to fatigue. The

second implies that work and leisure are microscopically imperfect substitutes as

well.

We then explored the curious case predicted by labour supply economics that time

allocated to working can decrease rather than increase as wage-rates are increased

without adjusting for the increased income possible. This can happen when in-

come effects dominate substitution effects. This is akin to the common notion

that the subject can purchase more leisure with the increased income, and thus

spends more time engaging in leisure. Consequently, the labour supply curve is

backward bending. Both laboratory experiments and behavioural economic stud-

ies have showed evidence for this backward bending curve. Camerer et al. (1997)

studied this in New York City taxi drivers, proposing an algorithmic mechanism

that drivers have an income target in mind and quit when it is reached. Since

the target is more quickly attained on high wage-rate days (eg. when the subway

is on strike), drivers work less on those days. They posited that having a daily

target in mind assists the driver in two self-control problems. Firstly, it pro-

vides a simple heuristic of when to quit for the day, reducing the computational

complexity of calculating when sufficient work has been done based on the wage

rate. Secondly, drivers could intertemporally substitute labour: working more

on a high wage-rate day (eg. a day where the underground/subway is on strike)

and saving that earned income for low wage-rate days. However, as Camerer

et al. (1997) claim, driving around New York City with $250-300 would tempt

the driver into spending that income immediately. Income targeting thus acts as

a precommitment device preventing drivers from spending their daily income on

temptations.

Camerer et al. (1997)’s findings involved purely correlating macroscopic quanti-

ties: daily hours worked and daily wage rate. Their claims of income targeting

were contradicted by Farber (2005)’s who studied the probability of quitting in a

given hour, based on how long the driver had driven and how much income s/he

had earned so far. Farber (2005) found that the probability of quitting depended

more on the cumulative hours worked so far. While these studies were purely

correlational, Fehr and Goette (2007) and Goette and Huffman (2006) conducted

more causal experiments in bicycle messengers, whose commission rates were in-

creased compared to a control group. Goette and Huffman (2006) provided the

cleanest evidence of income targeting. Their miniscopic analysis showed that

messengers who received a higher commission rate worked more and quit early

in the day; and the subsequently reduced labour compensated for this—keeping

daily labour supply unaffected.
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Animal experiments from behavioural psychology have shown that miniscopic

response rates show a bitonic profile, increasing at the beginning of an experi-

mental session and decreasing thereafter. The decrease in response rates were

faster for the higher reinforcer rates McSweeney (1992), durations and sizes Bizo

et al. (1998). This is similar to the finding of Goette and Huffman (2006) in

bicycle messengers. The reduction in response rates in animal experiments were

attributed to satiation Fischer and Fantino (1968); McSweeney et al. (1991); Mc-

Sweeney and Roll (1993); McSweeney and Johnson (1994); Killeen (1995)), and

were teased apart from habituation (see McSweeney and Murphy (2000) for a

review). The findings suggested that subjects satiate faster for greater reward

utilities (owing to size, frequency or duration of the reward).

Whether macroscopic or miniscopic, these studies still investigate average times

and response rates, and ignore the crucial durations of leisure in between work

bouts. We developed a normative microscopic theory of dynamic satiation to

derive the macroscopic backward bending labour supply curve. We once again

studied two cases: satiation reducing the net utility of a reward (e.g. a hungry

animal will work more than a satiated one, Dinsmoor (1952)) or making leisure

more beneficial. As for the case of fatigue, these can be distinguished by consider-

ing prospective and retrospective decisions. By considering satiation to increase

when rewards are received, we noted how subjects would be more quickly sati-

ated when reward intensities were larger. This would need to be alleviated by

long leisure bouts. Consequently, when averaged macroscopically, we obtained a

backward bending labour supply curve from normative, microscopic principles.

The case of leisure being more beneficial due to satiation implies an interaction

between the marginal utilities of leisure and rewards, as assumed in labour supply

theory (leisure is more beneficial because one is richer). This is the macroscopic

assumption underlying the backward bending labour supply curve. We showed

that a microscopic utility function, whose utility increases with the duration of

leisure and degree of satiation, that can generate the backward bend of the curve.

We proved that as satiation increases with reward intensity, so does the optimal

leisure duration—consequently reducing the amount of labour supplied. Although

we used a logistic utility function, it is quite possible that other functions exist.

We thus provided a novel, normative and microscopic reason underlying the

macroscopic backward bending labour supply curve–owing to microscopic sati-

ation. The income targeting assumptions of Camerer et al. (1997) are somewhat

ad-hoc. A question becomes, what constitutes the income target. This could be

used when the income earned from work can be saved and then spent on essential

commodities and leisure activities Dupas and Robinson (2013). Once sufficient
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quantities of the latter can be guaranteed, there is no need to earn further income

from work. Income-targeting is an extreme case of our normative, microscopic

formulation of satiation, one for which the net utility of a reward or marginal

utility of leisure drops to zero as soon as the income target is reached, rather

than merely decaying with leisure.

An alternative is to consider income-targeting as the solution to an optimal stop-

ping problem. Suppose subjects do not save their earned daily income for future

days. Then since there is little point working so long that there is no time left in

the day to spend the earned income on leisure, subjects will quit working when

the utility of leisure for the remaining time exceeds the marginal utility of in-

come. Although this is a viable alternative, its dynamics are not as detailed as

the case of satiation we have considered. Finally, much like Niv et al. (2007), we

could consider a subject considering choosing its labour according to the average

reward rate in the environment. In an environment where high reward rates (e.g.

due to subway strikes) are rare, subjects should normatively work more and give

up early on days with a high reward rate, compared to usual days in which the

reward rate is low. Such a model would be highly rich, but complicated; we leave

it for future consideration.

Finally, we can use our normative, microscopic theories to explore the neural un-

derpinnings of cost-benefit decision-making under fatigue and satiation. Previous

laboratory and field experiments with animals and humans have studied cost-

benefit decisions involving physical effort costs, employing higher ratio schedules

of reinforcement (higher number of lever presses), heavier weights of levers, higher

metabolic requirements, longer travelling distance during foraging, higher barrier

climbing and greater hand force investments Collier and Levitsky (1968); Collier

et al. (1975); Kanarek and Collier (1973); Floresco et al. (2008a); Stevens et al.

(2005); Prévost et al. (2010); Salamone et al. (1994); Salamone and Correa (2002);

Salamone et al. (2007); Rudebeck et al. (2006); Croxson et al. (2009); Walton et al.

(2002, 2003, 2005, 2006, 2007, 2009); Phillips et al. (2007); Kennerley et al. (2006,

2009); Hosokawa et al. (2013); Gan et al. (2010); Wanat et al. (2010); Floresco

and Ghods-Sharifi (2007); Floresco et al. (2008b); Ghods-Sharifi and Floresco

(2010); Kurniawan et al. (2010, 2013). The neuromodulator dopamine, along

with the striatum and anterior cingulate cortex (ACC) have been implicated in

such decisions.

Depletions of dopamine shift preference away from higher rewards when tasks

require climbing a barrier to attain them, without affecting preference when such

energetic costs are minimal Salamone et al. (1994); Salamone and Correa (2002);

Salamone et al. (2007). There are distinctions within the ventral striatum, with
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a stronger effect of dopamine depletions on effort-based decision-making at the

core than shell subregion of the nucleus accumbens Ghods-Sharifi and Floresco

(2010). However, measuring sub-second phasic dopamine release onto the core of

the accumbens showed correlations with rewards but not anticipated effort costs

Gan et al. (2010); Wanat et al. (2010).

Human fMRI studies have showed that activity in the dorsal striatum is cor-

related with the anticipated effort of an action Croxson et al. (2009). Further,

higher dorsolateral striatal activity (especially in the putamen) is observed when

choosing low compared to high effort options in a physical effort task Kurniawan

et al. (2010), and higher ventral striatal activity during a low cognitive demand

block compared to a high cognitive demand block in a mental effort task Botvinick

et al. (2009).

Lesion studies in rodents performing T-maze tasks consistently show impairments

in effort-based decision-making following ACC lesions. Similar to dopamine de-

pletions, ACC lesions lead to in a shift in preference away from the high reward

arm when a barrier is required to be climbed to attain it Walton et al. (2002,

2003, 2009); Rudebeck et al. (2006). This shift in preference was not due to

immobility as normal preference is restored when both arms require equal effort

Floresco and Ghods-Sharifi (2007); Walton et al. (2002, 2003, 2009). Further,

monkeys with ACC lesions were impaired in choosing appropriate responses that

required the integration across past contingencies between actions and rewards

Kennerley et al. (2006). Monkey single-cell recordings Kennerley et al. (2009);

Hosokawa et al. (2013) and human imaging experiments with passive action val-

uation Croxson et al. (2009); Prévost et al. (2010); Kurniawan et al. (2013) or

mental loads Botvinick et al. (2009) have also revealed increased ACC activity

with increasing anticipated effort.

While the neural basis of physical and cognitive effort costs have been examined,

they have been confounded with possible effects of fatigue Meyniel et al. (2013).

Whilst we considered a simple cost of working whilst fatigued, it is possible that

this could interact with effort (see Meyniel et al. (2014)), and a neural signature of

these has been found in the insula Meyniel et al. (2013). The two make different

predictions behaviourally: effort costs would lead to shorter work bouts whilst

working whereas fatigue would lead to runs of long work bouts interspersed by

short leisure breaks. Studying their interaction and neural basis could be useful

both for basic neuroscience and for sports medicine. Additionally, our predictions

for prospective fatigue can be readily extended to investigations of anticipated

effort costs. Similarly, the neural basis of satiation and its effect on decision-

making can be studied by comparing the effects of satiating (eg. food, water)



Appendix 154

rewards against non-satiating (eg. BSR) ones.

5.6 Appendix

5.6.1 Optimal duration of leisure increases with reward intensity

Consider the microscopic utility function in Eq. (5.7), which depends both on the

duration of leisure τL and initial level of satiation ψ. The Q-value of engaging in

leisure is

Qπ([post, ψ], [L, τL]) = CL(ψ, τL)− ρπτL + V π([pre, ψ′]) (5.8)

Since we are considering retrospective satiation, and assuming that satiation only

affects the utility of leisure but not that of rewards, we may neglect the value

of the (less-satiated) pre-reward state the subject transitions to V π([pre, ψ′]).

Further, since the degree of satiation increases with the reward intensity, for ease

of exposition only, let us assume ψ = RI. We wish to find the optimal duration

of leisure τ∗L.

As we assumed in Eq. (5.7), as long as satiation is above a threshold level

(RI > RImin), the microscopic utility of leisure CL(RI, τL) = g(RI) σ(τL −
h(RI)), where σ(·) is the logistic function. We need only solve for σ(·); with

τ∗L = σ−1(·) + h(RI) = log [(σ(·)/(1− σ(·))] + h(RI) as in Eq. (5.7).

For the optimal duration of leisure (under the greedy policy π∗), the marginal

utility of leisure is approximately equal to the reward rate

∂Q ([post, RI], [L, τL])

∂τL
= 0

∂CL(RI, τL)

∂τL
− ρ u 0 (5.9)

which, for the utility function we considered implies

g(RI) σ(·) (1− σ(·)) = ρ

=
RI + CL(RI, τL)

P + τL

=
RI + g(RI) σ(·)

P + ζ(RI) + h(RI)
(5.10)
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where ζ(RI) = σ−1(·) is a negligible term at higher reward intensities. Simplifying

Eq. (5.10), σ(·) is the solution of a quadratic equation, with two roots (which we

may denote σ+(·) and σ−(·). As long as the roots exist, and the solution τ∗L ≥ 0,

we can conclude that τ∗L = log [(σ(·)/(1− σ(·))] + h(RI), which is dominated by

h(RI). Since h(RI) is an increasing function of reward intensity, and satiation

increases with reward intensity, the optimal duration of leisure τ∗L increases with

reward intensity.



Chapter 6

The microscopic utility of

leisure

6.1 Introduction

In previous chapters, we had developed a normative, microscopic theory–of how

a subject chooses to work or engage in leisure. Central to this theory was the

microscopic utility of leisure function, which reflected the subject’s innate pref-

erence for durations of leisure, irrespective of all other rewards and costs. While

much research has been devoted to quantifying the subjective value of external

rewards, the intrinsic utility of leisure is yet to be quantitatively and empirically

studied. This is the intent of this Chapter.

Since we are interested in isolating a subject’s preference for leisure, independent

of satiation, we study data collected from rat subjects working for brain stimula-

tion reward, which is widely believed not to satiate. Effort costs were controlled

by requiring that the rats depress a very light lever. Finally, fatigue was con-

trolled for by allowing the subjects to rest in between trials. We quantitatively

fit a utility function for leisure to an entire dataset of microscopic behaviour across

different experimenter determined conditions, and thereby infer which functional

form best accounts for the observed experimental data.

6.2 Experiment

We analyse the data collected by Rebecca Solomon from 6 rat subjects. We in-

troduced some of the experimental details in Chapter 3; for completeness, we
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reiterate them here and additionally mention those specific to this dataset. Sub-

jects worked for BSR rewards by depressing a very light lever on a CHT task.

BSR rewards of a certain reward intensity (RI, which we somewhat arbitrarily

assume to be between 0 and 5; restricting it between 0 and 1 could lead to numer-

ical problems, while if the maximum is too large then reward rates would be too

high to allow our distributions to be fit) were provided when the experimenter

determined price was attained. The lever was then retracted and reintroduced

following a 2s delay during which the trial time-clock was frozen. These 2s delays

were not counted within the trial duration. Trial duration was 25 × price for

prices longer than or equal to 1s, and 25s for prices shorter than 1s. The latter

was used to ensure there was sufficient data on such short prices. Leisure bouts

that did not immediately follow after a reward and which were shorter than 1

second are considered to be part of the previous work bout (since subjects remain

at the lever during this period). Graphically, this makes some work bouts appear

longer than others. Data were recorded at a precision of 0.1s.

In the random world environment, subjects faced triads of trials: ’leading’, ’test’,

then ’trailing’. Leading and trailing trials involved maximal and minimal stimu-

lation frequencies (reward intensities) respectively, and a 1s price. Each trial was

separated by a 10s cue during which house-lights are switched on. We analyse

the sandwiched test trials, which span a range of prices and reward intensities.

Leading and trailing trials allow calibration, so subjects can stably assess RI and

price on test trials. Subjects tend to be at leisure on trailing trials, limiting phys-

ical fatigue. Subjects repeatedly experience each test reward intensity and price

over many months, and so can readily appreciate them after minimal experience

on a given trial without uncertainty. However, on a given test trial, subjects are

not initially aware of the RI and price, and must actively infer them by working

early on in the trial. We call this period a sampling period, and preprocess the

data to exclude data in this period.

On a given test trial, the RI and price were generated from one of 9 pseudo sweeps

through parameter space (we shall henceforth refer to them as ’sweeps’). These

are pesudosweeps since the RI and price are actually not swept from trial to trial,

but randomly sampled from the relevant parts of the parameter space. There

are 7 RI ’sweeps’ in which the price is fixed while the RI is increased. These

prices were 0.125s, 0.25s,0.5s,1s,2s,4s and 8s (red ray in Fig.6.1, upper panel for

a price of 4s and rays with cool colours corresponding to increasing prices for

the others). The price ’sweep’ (blue ray in Fig.6.1, upper panel) involves the

RI remaining fixed at its highest value while the price is decreased. Finally, the

radial ’sweep’ (green ray in Fig.6.1, upper panel) involves both RI increasing and
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price decreasing.

6.2.1 Preprocessing data

We preprocessed the data, ignoring work and leisure bouts on a trial when the

subject is sampling: trying actively to infer the reward intensity and price; we

only consider the subjects’ choices when they know the reward intensity and price

with certainty. Work bouts during the sampling phase are coloured yellow and

data up to the end of the last of such work bouts are excluded from subsequent

analyses. We shall see that this only discards very little data.

6.2.2 Macroscopic Time Allocation

As shown in Fig. 6.1, macroscopic time allocation increases with reward intensity

and largely decreases with price for all ’sweeps’. A new prediction we had made

in Chapter 3 is that time allocation would be observed not to decrease, and

even increase with the price, a prediction not made by any existing macroscopic

model. Whereas animals have been previously shown to consistently work more

when work-requirements are greater (eg. ostensibly owing to sunk costs Kacelnik

and Marsh (2002)), the apparent anomaly we discussed only occurred at very

long prices, and was unexpected from a macroscopic perspective, but revealing

from a microscopic perspective. We tested whether this is experimentally true.

For a fixed, high reward intensity, time allocation is indeed observed to increase

rather than decrease with price at the highest prices (see the price ’sweep’: blue

curve in Fig. 6.1, lower panel).

6.2.3 Ethograms

Figs. 6.2, 6.3 and 6.4 depict ethograms of subject F9, revealing the microstructure

of choices. As mentioned in Chapter 3, the microscopic characteristics of the data

include: (i) at high payoffs, subjects work almost continuously, engaging in little

leisure inbetween work bouts; (ii) at low payoffs, they engage in leisure all at

once, in long bouts after working, rather than distributing the same amount of

leisure time into multiple short leisure bouts; (iii) subjects work continuously

for the entire price duration, as long as the price is not very long (compare the

short e.g. Price= 2.8s with the longest prices: Price=57.5s,34.7s on the price

’sweep’ shown in blue in Fig.6.2 ); (iv) the duration of leisure bouts is variable.

At the very long prices (e.g. Price=57.5s, 34.7s–arranged in order of payoff–on
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Figure 6.1: Reward Intensity and Price pseudo sweeps and Time
Allocation for subject F9. Upper panel: Reward Intensity and prices
were generated from one of 9 pseudo sweeps through parameter space. For
the 7 RI ’sweeps’, the price is fixed while the RI is increased. These prices
were 0.125s, 0.25s,0.5s,1s,2s,4s and 8s (red ray shows a price of 4s and rays
with cool colours showing increasing prices for the others). The price ’sweep’
(blue ray) involves the RI remaining fixed at its highest value while the price
is decreased. Finally, the radial ’sweep’ (green ray) involves both RI increas-
ing and price decreasing. Lower panel: Time allocation: proportion of the
trial duration allocated to working. Note that time allocation increases
rather than decreasing with price at the highest price of the price ’sweep’.
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the price ’sweep’ shown in blue, or Price= 13.7s for the lowest payoff in the radial

’sweep’ shown in green), subjects engage in a long leisure bout before resuming

working. Integrating and averaging these across time leads to the macroscopic

time allocation not decreasing, but increasing as price is increased (Fig.6.1, lower

panel). Subjects work more on trials with very short prices even when the reward

intensity is low (compare Prices of 0.125s and 0.25s or 1s in Figs. 6.3 and 6.4 with

that of 4s in Fig.6.2). Finally, on medium payoffs, subjects display a pattern of

working with short leisure bouts interspersed in between work bouts, followed by

a long leisure bout and a resumption of this pattern, unless this leisure bout is

censored by the end of the trial (this pattern is clearer for medium e.g. 8s prices,

Fig.6.4).

6.3 Procedures for fitting microscopic data

We wish to recover the microscopic utility of leisure function CL(τL), which is

innate to an individual subject, and is assumed to be dependent only on the

duration of leisure and independent of all other rewards and costs. In Chapter

3 we showed how, given a CL(·), the leisure duration distribution changes as the

reward intensity and price are manipulated. We therefore fit one CL(·) for each

subject across all reward intensity and price conditions.

6.3.1 Microscopic utility of leisure

We are interested in characterising an animal’s preference for leisure, and quan-

tifying it relative to its utility of reward (RI). While there is an infinite number

of functional forms for the utility of leisure that we could have considered, the

canonical forms we considered in Chapters 3 and 4: linear, concave (we use a

logarithmic function for simplicity, since as we showed in Chapter 4, it leads to

gamma distributed leisure durations) and sigmoid make starkly different predic-

tions about a subject’s preference for leisure durations. We therefore assumed

that these would suffice for inferring subject’s preferences. For each subject we

tested which of these fit the data best. The linear and concave utilities each

have only one parameter: the (maximal) slope KL, whereas the sigmoid has two

more: CLmax and CLshift are the maximal utility and shift, i.e. a total of three

parameters.

Since a sigmoid implies a constrained maximum at which the utility of leisure

saturates, we also used a weighted combination of a linear and sigmoid function
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Figure 6.2: Ethograms for subject F9. Price= 4s RI sweep, Price
sweep and Radial sweep. Payoff increases from top to bottom. Coloured
bars show work, white spaces show leisure and black dots show reward
delivery. Red (left column), blue (middle column) and green (right column)
show Price=4s RI ’sweep’, price ’sweep’ and radial ’sweep’, respectively (see
Fig. 6.1, upper panel). Trial duration is 25 × price. Leisure bouts that do
not immediately follow after a reward and which are shorter than 1 second
are considered part of the previous work bout (since subjects remain at the
lever during this period). Graphically, this makes some work bouts appear
longer than others. Work bouts during the sampling phase when the subject
does not know the reward intensity and price with certainty are coloured
yellow and data up to the end of the last of such work bouts are excluded
from subsequent analyses.
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Figure 6.3: Ethograms for subject F9. RI sweeps for sub-second
prices. Payoff increases from top to bottom. Coloured bars show work,
white spaces show leisure and black dots show reward delivery. Light cyan to
blue colours show RI sweeps with Price=0.125 (left column) , 0.25s (middle
column) and 0.5s (right column) , respectively (see Fig. 6.1, upper panel).
Trial duration is 25s to enable sufficient data to be collected. The rare
leisure bouts that do not immediately follow after a reward and which are
shorter than 1 second are considered part of the previous work bout (since
subjects remain at the lever during this period). Only the three lowest, one
medium and the highest payoffs are shown. Other conventions same as in
Fig. 6.2.
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Figure 6.4: Ethograms for subject F9. RI sweeps for Price=1s, 2s
and 8s. Payoff increases from top to bottom. Coloured bars show work,
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to represent the class of initially supra-linear but eventually sub-linear utility

functions.

CL(τ) = α KL τ + (1− α)
CLmax

1 + exp
[
− 4 KL

CLmax
(τ − CLshift)

] (6.1)

α ∈ [0, 1] is the weight on the linear component (see Fig. 3.3B). This extra pa-

rameter (the weight α) enables greater flexibility of fitting the data. We penalise

this extra flexibility afforded by more complex models by reporting BIC scores.

6.3.2 Pavlovian component of leisure τPav

In Chapter 3 we had assumed a deterministic Pavlovian component of leisure

τPav = fPav (RI, P ), which decreases with payoff – i.e., increases with price

and decreases with reward intensity (Figure 3.3C). However, when fitting (un-

censored) data this implies a constraint on τPav such that the PRP is at least

as long as the Pavlovian component. This is specifically detrimental for high

reward intensity and medium length prices, since τPav has to be curtailed to

values as low as 0.1. A more reasonable assumption is a probabilistic τPav ∼
Pr (τPav|fPav(RI, P )). We could then convolve Pr(PRP ) = Pr(τL + τPav) =

π(L, τL|~s = post) ∗ Pr (τPav|fPav(RI, P )) , allowing us to easily fit arbitrarily

small PRPs any given model of τPav . We wish to minimise the number of addi-

tional free-parameters for τPav. If we assume τPav to be exponentially distributed

(a one parameter distribution) with mean fPav(RI, P ), and if instrumental leisure

is exponentially distributed as well (as is true for high payoffs, or in general, the

exponential part of the bimodal distribution) then the convolved PRP distribu-

tion is gamma distributed (or its left mode is gamma distributed). Under the

assumption that Pavlovian leisure is dominated by instrumental leisure at low

payoffs, we bound τPav at a maximum of 10s. For simplicity we assume fPav to

be a sigmoidal function of the inverse payoff P
RI . We fix the slope of this function

at a gentle 0.25 allowing τPav to cover the entire range from 0s to 10s for the pay-

offs used experimentally. This leaves us with only one free parameter, the shift:

Pavshift to fit. Larger values of Pavshift imply shorter mean Pavlovian compo-

nents of leisure. While our assumptions are slightly arbitrary in the absence of

independent data, they can be justified as above, and leave one free parameter

to be fit.
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6.3.3 Policies

As in Chapter we assume a soft-max choice rule over Q-values to generate the

data. Since quantities constituting the Q-values can be scaled, we set the inverse-

temperature parameter β to 1 the soft-max policy without loss of generality.

6.3.4 Likelihoods

For each subject, suppose we have D combinations of (RI, P ) conditions tested

by the experimenter, each comprising Kd iid trials each. For brevity of notation,

let us denote yd = {RId, Pd} as a condition. Also suppose that on each trial kd,

we observe a sequence of Nkd PRPs ({PRP}ikd ) and pre-reward work and leisure

bouts ({τW , τL}~s=[pre,w]ikd
), where ikd = 1, . . . Nkd is each individual bout and

~s = [pre, w] is a pre-reward state with the subject having worked for a cumulative

time w ∈ [0, P ) of the price.

For an individual subject, the likelihood of observing the microscopic sequence

of work and leisure bouts, across the entire dataset is, given a set of model

parameters ~θ

l(~θ) =

D∏
d=1

Kd∏
kd

Pr

([
{PRP}ikd , {τW , τL}~s=[pre,w]ikd

]Nkd
ikd=1

| yd, ~θ
)

(6.2)

The normative, microscopic model in Chapter 3 assumes, in the absence of fatigue

or satiation, all PRPs and pre-reward work and leisure bouts are independent.

We shall test whether this assumption is valid in Section 6.6. We can therefore

re-write this likelihood in terms of the distributions of PRPs: Pr(τL + τPav), and

pre-reward work π(τW | w) and leisure durations π(τL | w).

l(~θ) =

D∏
d=1

Kd∏
kd

Nkd∏
ikd

Pr
(
{PRP}ikd |yd,

~θ
)
·π
(
{τW | w}ikd ; yd, ~θ

)
·π
(
{τL | w}ikd ; yd, ~θ

)
(6.3)

6.3.5 Censoring

Since trials end at 25×price, some bouts are censored, i.e. curtailed by the end of

the trial. Furthermore, work bouts intended to be longer can be curtailed by the

price being attained and the lever retracted. Since the duration of such a censored
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bout can be anything that is longer than the observed duration when it was

curtailed, we use the cumulative distribution function rather than the probability

distribution function for these bouts. Specifically, a likelihood comprising both

uncensored and censored durations is

l(~θ) =

D∏
d=1

Kd∏
kd

Nkd∏
ikd

Pr(Xikd
= xunc,ikd ) ·

(
1− Pr(Xikd

≤ xcens,ikd )
)

(6.4)

where Xikd
is a random variable, xunc,ikd and xcens,ikd are the observed durations

for uncensored and censored bouts.

6.4 PRP fits using 2-state microSMDP

As shown in Fig. 6.2, and Chapter 3 subjects work continuously for the entire

price duration, as long as the price is not very long. Leisure bouts are therefore

mostly post-reward. Similar to Chapters 4 and 5 we thus start from the initial

assumption that subjects work continuously for the entire price duration. We

then use the simplified, 2-state micro-SMDP to model PRPs only. The likelihood

in Eq. (6.3) reduces to

l(~θ) =

D∏
d=1

Kd∏
kd

Nkd∏
ikd

Pr
(
PRPikd |yd,

~θ
)

(6.5)

τL was discretized into 1s time-steps up to a total of 2000s. We did not use a

prior probability density for durations as for the full micro-SMDP model laid

out in Chapter 3. In the full model, since the policy is over all action-durations

([a, τa]), irrespective of whether they are of work and leisure, arbitrarily long

leisure durations would have a greater effect on the reward rate than work dura-

tions. Including a prior that makes longer leisure durations less likely to be chosen

normalises the contributions of durations of work and leisure to the reward rate,

affording both an equal role. However, in the case of our simplified 2-state SMDP,

the subject chooses to work pre-reward and engage in leisure post-reward, keep-

ing these choices separate. The reward rate in our 2-state SMDP without any

priors for durations was similar to that for the full micro-SMDP model with an

exponential prior for leisure durations, indicating that our simplification would

not adversely affect our results.

It must be noted that when we fit the data, we are in fact fitting a normative,
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average-reward micro SMDP model, including recursively solving for for policies

and reward-rates, as discussed in Chapter 2 and 3.

6.4.1 Best fit parameters

For the subject F9 discussed above the best fit supra-linear to sub-linear utility

function was a sigmoid (α = 0, see Fig. 6.5 upper panel, green and red curves

are superimposed). The extra weight parameter α did not improve the fit to

the data. The sigmoid had a maximum CLmax = 48.2, a shift CLshift = 144.7s

and a slope KL = 0.24s−1. Note that the scaling of the sigmoid is relative to

that of the reward intensities (which are assumed to be between 0 and 5). The

shift at 144.7s indicates the duration at which the microscopic marginal utility

was maximum (Fig.6.5 lower panel). This indicates that, according to the best

fit sigmoidal utility to the given data, the subject preferred to engage in a long

(optimally 144.7s) leisure bout, all at one go.

The best fit linear microscopic utility has a shallow slope (KL = 0.01s−1, see blue

line in Fig. 6.5 lower panel), while a concave utility has a moderate maximal

slope (KL = 0.41s−1, see cyan curve, lower panel). The shift of the sigmoidal

function representing the mean Pavlovian component of leisure was larger when

CL(·) was linear (Pavshift = 3.70s) or concave (Pavshift = 3.55s), than when it

was sigmoidal (Pavshift = 2.83s). This implies the mean Pavlovian component

of post-reward leisure is shorter for the best-fit linear and concave CL(·) than

sigmoidal ones.

6.4.2 Predicted distributions and ethograms

We illustrate how our model quantitatively fits the data using the price ’sweep’

(Fig. 6.6). These are trials in which the reward intensity is fixed at a high level.

Payoff is therefore determined by the price. We begin by comparing the sigmoid

and the linear microscopic utilities.

Our model predicts the data at high payoffs well, irrespective of the utility of

leisure function CL(·). The data are roughly gamma distributed with very short

means. Since at high payoffs, the opportunity cost of time dominates the micro-

scopic utility of leisure, the predicted leisure duration distributions will be the

same, irrespective of the choice of utility function. The revealing difference in fits

occurs at long prices, when the payoff is low but trials (proportional to 25 × price)

are sufficiently long to observe long, uncensored leisure bouts. Note, however that

since we assume that subjects work continuously for the entire price duration, an
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Figure 6.5: The microscopic utility of leisure for subject F9. Upper
and lower panels show the best fit microscopic utility of leisure CL(·) and
the corresponding microscopic marginal utility of leisure, respectively. Blue,
cyan, red and green curves denote linear, concave (logarithmic), sigmoid and
initially supra-linear but eventually sub-linear CL(·), respectively. The best
fit supra-linear to sub-linear CL(·) for this subject is, in fact, the sigmoid
(α = 0). Hence, the red and green curves are superimposed.

assumption that is not valid at very long prices, the work bouts predicted by

our models cannot be expected to correspond to those in the experimental data.

This will lead to more (and longer) work bouts being displayed on the ethograms

generated from our models than observed experimentally. To put it another way,

that we assume work bouts that exactly equal the price makes the leisure bouts

in the ethograms generated from the best-fit sigmoid CL(·) appear less stochastic

than in the data. Thus, for the longer prices, only the leisure bouts should be

compared between experiment and models. The full model in Chapter 3 predicts

that pre-reward leisure bouts on low payoffs should have similar distributions to

PRPs. Thus, for comparison purposes, at long prices, the PRPs predicted by our

model should be considered to reflect pre-reward leisure bouts. Note, however

that we in fact did not fit these pre-reward leisure bouts. We shall fit the entire

dataset, including pre-reward leisure in Section 6.5.

At longer prices (see the highlighted upper panels, arranged in order of payoff:

Price= 57.5s and 34.7s conditions) the sigmoidal CL(·) fits the data better than

the linear one. This is particularly evident in the lower negative log-likelihood for

the sigmoid CL(·) than the linear for the Price= 34.7s condition; the same is not

reflected for the Price= 57.5s condition because, as discussed above, we include

only PRPs, and exclude the majority of leisure bouts, which, for this condition,

occur pre-reward.
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Figure 6.6: Model fits to PRPs on price ’sweep’ for subject (F9).
Price decreases (payoff increases) from top to bottom panels, as denoted in
the labels. Only the lowest three and highest two payoffs are shown since
the difference in model fits are clearest on these. A) PRP distributions.
Left to right: Experiment, distribution predicted by best fit sigmoid and
linear microscopic utilities of leisure. For experiment panels, coloured bars
show censored data. PRP durations are at least as long as the duration
on the x-axis. For model fits, numbers at the top give the negative log-
likelihood (nLL) for that RI,P combination. Dashed lines show 25 × Price.
The x-axis for the models is the same as that for the data. For very short
prices, the 25 × Price line is not shown to allow for comparison with the
data. Note that the axes scales change from condition to condition, but
they are changed in pairs for the sake of comparison B) Ethograms. Left to
right: Experiment and ethograms predicted by best fit sigmoid and linear
microscopic utilities of leisure. Note that since we assume subjects work
continuously for the entire price duration, an assumption that is not valid at
very long prices, the work bouts predicted by our models cannot be expected
to correspond closely to those in the experimental data. Only the leisure
bouts should be compared between model and experiment. According to
our full model in Chapter 3, pre-reward leisure bouts on long prices should
have similar distributions as PRPs, so the PRPs predicted by our model
should be considered to reflect those.
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For the sigmoidal microscopic utility of leisure, the microscopic marginal utility

increases and then decreases after attaining a maximum–subjects prefer to engage

in a long leisure bout, all at one go. The linear CL(·) cannot accommodate this,

and when data are fit using this function, the best fit linear CL(·) predicts that

subjects will engage in much shorter leisure bouts than observed in the experiment

at these long prices.

The poorer fit of linear CL(·) owes to the fact that if leisure durations across RI, P

conditions are inherently generated from a bimodal distribution, comprising a

mixture of gamma distributions, then attempting to fit such data with a unimodal

exponential or gamma distribution will be impaired. A unimodal distribution

would fit either the short or long modes, but not both. Since across conditions,

the majority of the uncensored leisure bouts observed are shorter, a unimodal

distribution would be biased towards shorter modes than longer ones. Thus,

the predicted leisure bouts at long prices would be shorter than those observed

experimentally. We shall return to the question of how much the precision our

data fits could be impeded by censoring in Section 6.5.1.

It is clearer to see that PRPs are inherently generated from a mixture of two

gamma distributions when we analyse the data for RI ’sweeps’. These collect

the conditions for a fixed price, with the reward intensity increasing between

conditions. This is clearest for a RI ’sweep’ with a longer Price= 8s (Fig. 6.7; see

also Fig. 6.16 for comparing with the ’RI ’sweep’ with the Price= 4s). Despite

the fact that trials end at 200s, causing a large proportion of PRPs at low RIs

to be censored, we can see that the PRPs are bimodally distributed, with the

mixture weight on the shorter mode increasing with payoff. By analysing the

top three panels of Figs. 6.7, it is clear why, despite the proportion of censoring,

the sigmoidal CL(·) fits the bimodal data much better than the linear or concave

CL(·). The latter attempt to fit the long PRPs by having a long-tail. This is

further verified by analysing the radial ’sweep’ which compares across conditions

in which both RI and price differ (Fig. 6.7). These afford us the opportunity to

analyse and fit the PRP distributions at low RIs, except that prices are also long

enough to somewhat reduce censoring.

The larger shift in the Pavlovian component for the linear CL(·) mentioned above,

implying shorter mean Pavlovian components of post-reward leisure, affords

greater flexibility in fitting longer leisure distributions. The shorter Pavlovian

components attempt to capture the shorter mode of the bimodally distributed

leisure durations, while the shallow slope of the linear CL(·) attempts to fit the

longer leisure bouts with a long-tailed exponential. However, as noted above,

provided there is a significant proportion of long, uncensored leisure bouts gen-



PRP fits using 2-state microSMDP 171

0 100 200
0

5

10

R
I=

0.
63

07
7

0 100 200
0

5

10

R
I=

1.
08

45

0 100 200
0

20

40

R
I=

1.
68

79

0 100 200
0

50
100

R
I=

2.
58

07

0 100 200
0

100
200

R
I=

3.
33

56

0 100 200
0

50

R
I=

3.
95

86

0 100 200
0

100
200

R
I=

4.
39

85

0 100 200
0

50
100

R
I=

4.
66

08

0 100 200
0

50
100

R
I=

4.
82

13

0 500
0

0.02

0.04
nLL=92.279

0 500
0

0.02

0.04
nLL=85.399

0 500
0

0.02

0.04
nLL=216.92

0 100 200
0

0.1

0.2
nLL=655.97

0 100 200
0

0.1

0.2
nLL=727.32

0 100 200
0

0.1

0.2
nLL=670.24

0 100 200
0

0.1

0.2
nLL=667.21

0 100 200
0

0.1

0.2
nLL=344.35

0 100 200
0

0.1

0.2
nLL=357.55

0 500
0

0.005
nLL=114.89

0 500
0

0.005
nLL=108.52

0 500
0

0.02

0.04
nLL=294.27

0 100 200
0

0.1

0.2
nLL=617.21

0 100 200
0

0.1

0.2
nLL=713

0 100 200
0

0.1

0.2
nLL=649.41

0 100 200
0

0.1

0.2
nLL=655.14

0 100 200
0

0.1

0.2
nLL=353.28

0 100 200
0

0.1

0.2
nLL=372.47

0 500
0

0.02

0.04
nLL=118.1

0 500
0

0.02

0.04
nLL=147.09

0 500
0

0.02

0.04
nLL=410.12

0 100 200
0

0.1

0.2
nLL=699.48

0 100 200
0

0.1

0.2
nLL=747.42

0 100 200
0

0.1

0.2
nLL=675.11

0 100 200
0

0.1

0.2
nLL=672.7

0 100 200
0

0.1

0.2
nLL=349.26

0 100 200
0

0.1

0.2
nLL=364.2

Experiment Sigmoid Linear Concave

PRP (s) PRP (s) PRP (s) PRP (s)

Figure 6.7: Model fits to PRPs on a RI ’sweep’, Price= 8s for
subject (F9). RI increases from top to bottom panels, as denoted in
the labels on the left. Left to right: Experiment, distribution predicted
by best fit sigmoid, linear, and concave microscopic utilities of leisure. For
experiment panels, coloured bars show censored data. PRP durations are at
least as long as the duration on the x-axis. For model fits, numbers at the top
give the negative log-likelihood (nLL) for that RI,P combination. Dashed
lines show 25 × Price. Note that the axes scales change from condition to
condition, but they are changed in pairs for the sake of comparison. Note
the different x-axis scales for experimental data.
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erated from the long mode of a bimodal distribution, a long-tailed exponential

will, literally and figuratively, fall short of fitting them.

6.4.3 Model comparisons

That the sigmoid was the best fit, amongst the four models we considered, to

these inherently bimodally distributed data was confirmed by analysing the BIC

scores of the model with each CL(·) (Fig.6.8 lower left panel). When integrated

across all 81 RI, P conditions for this subject, the PRPs were best fit (lowest

BIC score) by the sigmoidal CL(·) (BIC = 23, 709, see gold bar in Fig.6.8 lower

left panel). The concave CL(·) (BIC = 24, 212 fits better than the linear one

(BIC = 28, 161). The best fit supra-linear but eventually sub-linear CL(·) is

the sigmoidal but its extra weight parameter (α) leads to a larger BIC score

(BIC = 23, 714).

6.4.4 Between subject model comparisons

When we compare across subjects (Fig 6.8), we notice that quantitatively the pure

sigmoidal is the best fit for subject F9 only. For subjects F3 and F12, despite the

best fit supra-linear-sub-linear functions having a maximal microscopic marginal

utility at long durations, the PRP data are slightly better fit by concave utility

functions with moderate to steep slopes (KL = 0.52 for F3 and 0.25 for F12). For

the other three subjects (F16, F17 and F18), the supra-linear-sub-linear function

is the best fit, with the weight on the linear component exceeding that on the

sigmoid. For subjects F17 and F18 especially, the extra parameter enables a

very shallow sloped sigmoid, which implies a broad, slowly increasing and slowly

decreasing marginal utility curve. The PRPs for these subjects have a broader,

more unimodal distribution than for the tighter, bimodally distributed PRPs of

F9. Consequently, they are better fit by the weighted combination of a linear and

sigmoid. However, the linear CL(·) is the worst fit for every subject, implying

that subjects are not indifferent to the division of leisure durations.

6.5 Fitting all data using full micro-SMDP

Fitting PRPs only requires some amount of data to be discarded. For instance,

the long, uncensored instrumental leisure bouts observed at long prices are re-

vealing aspects of the data which need to be accounted for. Similarly, short
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Figure 6.8: The microscopic utility of leisure between subjects.
Each column shows a different subject. Upper and middle panels show the
best fit microscopic utility of leisure CL(·) and the corresponding micro-
scopic marginal utility of leisure, respectively. Blue, cyan, red and green
curves denote linear, concave, sigmoid and initially supra-linear but eventu-
ally sub-linear CL(·), respectively. Lower panels show BIC scores (expressed
in 104) for each best fit CL(·); lower BIC scores reflect better fits. The low-
est BIC score, corresponding to the model with the CL(·) that fits the PRPs
the best is highlighted in gold.

instrumental leisure bouts which occur pre-reward could favour a different mi-

croscopic utility of leisure function. We now fit the entire dataset, comprising all

work and leisure choices and their durations for each individual subject.

We use the same full micro-SMDP that we introduced in Chapter 3, except for

a minor alteration that restricts transitions to those between work and leisure,

precluding a long sequence of e.g. ’work-work-work . . . ’ choices. More cru-

cially, in the model considered in Chapter 3, at low payoffs, if behaviour is too

deterministic subjects shall repeatedly choose to engage in long leisure bouts

(’leisure-leisure-leisure . . . ’ choices) and remain in the same pre-reward state.

The behavioural cycle from pre- to post-reward can then fail to complete (lead-

ing to non-ergodicity). Further, while a set of consecutive leisure bouts is sensible

when the subject is indifferent to the duration of leisure, a set of consecutive long

leisure bouts is less meaningful when choosing according to e.g. a sigmoidal util-

ity of leisure. We prevent the above problems by restricting transitions to those

between work and leisure.

We choose a finer discretisation of 0.5s time-steps for τL and a discretisation of

1s time-steps for chosen work durations τW . Since subjects usually pre-commit

to working continuously for the entire price duration, this discretisation should

not adversely affect our results. As in the model in Chapter 3, we employed an

exponential prior for leisure µL(τL) = λ exp(−λτL) with mean 1/λ = 10P ; the
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exponential prior for work durations µW (τW ) did not matter as long its mean

was not so short that it made attaining of the price much unlikely. The reward

rate in our new full micro-SMDP, which restricts transitions to those between

work and leisure, was similar to that for the full micro-SMDP model in Chapter

3, suggesting that the results of fitting the data with either would be similar.

We fit the data by maximising the log of the likelihood given in Eq.(6.3) of

observing the entire dataset of microscopic choices.

6.5.1 Censoring impedes precision of fits

A problem that we face in fitting the experimental data we possess is that several

of the long durations are censored by the end of trials (which are 25 × price).

Another possibility is that we have too little data. These may impair our ability

to estimate precisely the underlying parameters of our models. To investigate

whether it is the amount of data or censoring which may lead to lower precision

in our estimates, we generated artificial data from a sigmoidal microscopic utility

(black curve in Fig. 6.9, upper and lower panels. We used 1000 trials per RI, P

condition (compared to the 9 to 20 trials in the experiment), providing us with

plenty of data to fit. As in the experiment, these trials were terminated at 25

× price. When we fit this dataset, irrespective of the starting point of negative

log-likelihood minimisation, the recovered best fit CL(·) has its shift CLshift in

the appropriate place, but its maximum CLmax is underestimated and slope KL

is overestimated (see coloured curves in Fig. 6.9, upper panel). That the shift

is recovered accurately implies that the model accurately predicts the mode of

the underlying distribution, although the true mixture weights of the generated

bimodal distribution may be less accurately estimated.

To investigate whether removing censoring could alleviate this underestimation,

we generated 1000 trials per RI, P condition with trial durations set to a long,

5000s (or 500s for prices that were less than 1s). This led to most data being

observed and not censored (Fig. 6.10, left panels). By fitting all this data, we

were able to recover the true generating parameters (Fig.6.9, lower panel). This

is clearly reflected in the near identical distributions predicted by the true and

recovered parameters (Fig.6.10 middle and right panels, respectively).

We have thus established censoring to be a key issue, which may impede our

ability to fit the data precisely. In general, longer durations are more likely to

be censored than short ones. If we generate data as in the experiment, even if

we generate large quantities of it, we are still left with the problem that longer
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durations, which come from the right mode of the bimodal get censored. If those

critical durations were not censored, then we would be extremely confident about

the maximum (CLmax) and slope (KL) parameters. However, in the presence

of censoring, we shall still be able to accurately estimate the long mode of the

bimodal distribution.

Since a larger CLmax leads to a larger reward rate (hence a greater opportunity

cost of time), predicted distributions have larger mixture weights on the short-

tailed exponential than the long-mode gamma component, making it costlier in

terms of negative log-likelihood to fit long leisure bouts. To further emphasise

this, suppose we only fit data from medium and high payoffs with a sigmoid

CL(·). These could be better fit by a linear CL(·). But to fit that range with a

sigmoid CL(·), the CLmax would have to be low enough such that reward rate is

small and the policies are roughly exponential with medium-long means. Thus,

when we have limited data or the long mode is systematically censored, the

relative costliness in negative log-likelihood of having larger reward rates biases

CLmaxto be underestimated. The slope KL is overestimated to compensate this

underestimation.

6.5.2 Predicted distributions and ethograms for experimental

data

Compared to when we fit only PRPs, when we fit all the experimental data,

including the long, uncensored pre-reward leisure bouts, we can see even more

clearly that our model with a sigmoidal CL(·) quantitatively captures the tempo-

ral topography of choice better than a linear CL(·) (Fig. 6.11). When we analyse

the price ’sweep’, at the longer prices (see Price= 57.5s and 34.7s, 20.9s condi-

tions) our sigmoidal CL(·) predicts that the subject shall engage in a long leisure

bout before resuming work. These predicted long instrumental leisure bouts oc-

cur pre-reward for the Prices= 57.5s and 34.7s, as in the data. The set of extra

work bouts seen in the ethograms predicted by our model, compared to that in

the experimental trials is due to the fact that we start our simulated trials from

the post-reward state, with a long PRP, followed by the first work bout. For

our simulated ethograms to appear exactly as that in the experiment, we should

shift the start our simulated trials to coincide with the last work bout when the

subject does not know the reward and the price. We have not done so because

we did not model the sampling period.

That our model with a sigmoid CL(·) fits the data better is even more clearly seen

when we analyse the low payoffs of the RI ’sweep’ for a price of 8s (Fig. 6.12).
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Figure 6.9: Censoring impedes precision of fits. 1000 trials per RI, P
condition of data were generated the sigmoid CL(·) shown by the black
curve. Upper panel: For trial durations of 25 × price as in the experiment a
large proportion of leisure bouts are censored by the end of the trial. These
data were then fit by our model, coloured curves show best fit C∗L(·) obtained
by starting the negative log-likelihood minimisation procedure from different
points, red to blue cool colours show decreasing negative log-likelihood (see
legend for the negative log-likelihood; note how small the differences are).
The recovered CL

∗(·) has the correct shift CLshift
, but underestimates the

maximum CLmax (and overestimates the slope KL). Lower panel: When
trial durations were extended to 5000s (or 500s for prices less than 1s), the
majority of leisure bouts were observed and not censored. The best fit best
fit C∗L(·) (coloured dashed curve) recovered the true generating parameters,
irrespective of the starting point of negative log-likelihood miminisation.
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Figure 6.10: Improved fits for uncensored data. Generated price
’sweep’. Price decreases (payoff increases) from top to bottom panels, as
denoted in the labels on the left. 1000 trials per RI, P condition were gen-
erated with trial duration of 5000s. Left: generated data PRP distribution,
middle: true PRP distribution, right: PRP distribution from best fit sig-
moid. For left panel, coloured bars show censored data. PRP durations are
at least as long as the duration on the x-axis. Note the small proportion
of censored data. For model fits, numbers at the top give the negative log-
likelihood (nLL) for that RI,P combination. Dashed lines show 25 × Price.
Note that the axes scales change from condition to condition, but they are
changed in pairs for the sake of comparison.
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Figure 6.11: Model fits to all data, shown for price ’sweep’ for
subject (F9). Price decreases (payoff increases) from top to bottom panels,
as denoted in the labels. Only the lowest three and highest two payoffs are
shown since the difference in model fits are clearest on these. A) PRP
distributions. Left to right: Experiment, distribution predicted by best fit
sigmoid and linear microscopic utilities of leisure. For experiment panels,
coloured bars show censored data. PRP durations are at least as long as the
duration on the x-axis. For model fits, numbers at the top give the negative
log-likelihood (nLL) for that RI,P combination. Dashed lines show 25 ×
Price. The x-axis for the models is the same as that for the data. For very
short prices, the 25 × Price line is not shown to allow for comparison with
the data. Note that the axes scales change from condition to condition, but
they are changed in pairs for the sake of comparison B) Ethograms. Left to
right: Experiment and ethograms predicted by best fit sigmoid and linear
microscopic utilities of leisure.



PRPs on medium prices may not be independent and identically distributed 179

As discussed above, the linear CL(·) is unable to fit such bimodally distributed

data.
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Figure 6.12: Model fits to all data, shown on a RI ’sweep’, Price=
8s for subject (F9). RI increases from top to bottom panels, as denoted
in the labels on the left. Only the lowest three payoffs are shown since the
difference in model fits are clearest on these. Left to right: Experiment,
distribution predicted by best fit sigmoid, linear, and concave microscopic
utilities of leisure. For experiment panels, coloured bars show censored data.
PRP durations are at least as long as the duration on the x-axis. For model
fits, numbers at the top give the negative log-likelihood (nLL) for that RI,P
combination. Dashed lines show 25 × Price. Note the different x-axis scales
for experimental data.

6.6 PRPs on medium prices may not be independent

and identically distributed

In the above sections, we attempted to determine quantitatively subjects’ micro-

scopic utilities of leisure, reflecting their innate preference for leisure independent

of fatigue, satiation, and all other rewards and costs. We assumed the data

were independent and identically distributed (i.i.d), as predicted by our model.

However, if fatigue or satiation play a role, then these data shall no longer be

i.i.d. Specifically, if working leads to physical fatigue, then we should expect

runs of work bouts interspersed by short PRPs, followed by a long PRP. We

therefore tested whether PRPs in our data were non-i.i.d. We performed two

non-parametric frequentist statistical tests. (i) the Ljung-Box Q test for non-

zero autocorrelations was performed on each trial. This is a portmanteau test
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of overall autocorrelation/randomness. We report Bonferronni corrected results.

(ii) Wald-Wolfowitz Runs Test was used to test for runs in each PRP time-series,

with binary values: greater than or less than median of uncensored PRPs. Since

this is a weak test when there are few data points per trial, as in our case, we

bootstrapped PRPs and then re-ran the test.

Fig. 6.13 shows sequences of PRPs, on trials belonging to a RI ’sweep’ with a

medium price of 8s. Each column corresponds to a different RI condition, with

each row representing a different trial. The axes on these are coloured light pink

if the post-bootstrap runs test came out significantly positive (there were runs in

the data) at an alpha level of 0.05, light yellow when the LjungBox Autocorrela-

tion test was successful (there was significant autocorrelation in the data) at the

appropriately Bonferronni corrected alpha level, and gold when both tests were

successful. On trials on which PRPs were significantly non-i.i.d. according to the

tests (e.g. the fourth panel from the top for the RI = 4.6608 condition), subjects

engaged in a set of longer PRPs after a string of short PRPs. Importantly, these

long PRPs did not happen at random parts of the trial, thus making the case

against them being i.i.d draws.

To summarise these, we split the sequence of all PRPs (without pre-processing

them to exclude the sampling period) on each trial into 3 parts and computed

the mean PRP for that part of that trial (Fig. 6.14). Further summarising

this summary analysis, we collapsed the first third, second third, last third PRPs

(red, green and blue histograms in Fig. 6.15A) across all trials (per RI condition).

These show that the first third of a trial has short PRPs. These partly reflect the

sampling period when the subject does not know the reward and price. We may

henceforth exclude them from consideration. As the trial goes on, PRPs become

longer, PRPs on the final third of the trial are longer than those on the second.

Taken together, these tests suggest that fatigue may play a role on these trials

when the price is medium (8s). However, fatigue alone does not explain these re-

sults; any effect of fatigue is in addition to that of payoff, since PRPs are shorter

for higher payoffs. Furthermore, these effects are not observed on shorter (e.g.

1s) prices (PRPs on different parts of a trial are similarly distributed Fig.6.15B),

suggesting that physical fatigue may play a role only at longer prices. However,

overall, these accounted for around 10% of the trials, even at long prices, sug-

gesting that fatigue is less likely to be a major underlying explanation of these

data.
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Figure 6.13: PRPs on medium prices may not be i.i.d Sequence of
PRPs shown on a RI ’sweep’, Price= 8s for subject (F9). y-axis: PRP du-
ration, x-axis: PRP number in the trial; only uncensored PRPs are shown.
Each column corresponds to a different RI condition, with each row rep-
resenting a different trial. RI increases from left to right, with only the
highest 5 RI shown here. Black line shows the median of uncensored PRPs
on that trial. Data are preprocessed to exclude the initial sampling period
when the subject does not know the reward intensity and price. Axes are
coloured light pink if the post-bootstrap runs test was significantly positive
at alpha level of 0.05 (there were runs in on that trial), light yellow when
the LjungBox Autocorrelation test was successful (there was significant au-
tocorrelation in the PRPs on that trial) at the appropriately Bonferronni
corrected alpha level, and gold when both tests were successful.
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Figure 6.15: PRPs may increase through a trial for medium prices
but not short prices. PRP duration histograms for the first (red), sec-
ond (green) and final (blue) thirds of a trial are collapsed across trials and
shown on a RI ’sweep’ for subject F9. x-axis: PRP duration. Only un-
censored PRPs are accounted for. Each column corresponds to a different
RI condition. RI increases from left to right, with only the highest 6 RI
shown here. A) Medium price of 8s. B) Short price of 1s. Data are not
preprocessed to exclude the initial sampling period when the subject does
not know the reward intensity and price.
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6.7 Summary

The microscopic utility of leisure CL(τL) quantifies a subject’s innate preference

for a duration of leisure, independent of all other rewards and costs, fatigue or

satiation. Here we empirically determined the utility of leisure in rat subjects

by quantitatively fitting their microstructure of choices. We first noted that at

long prices, time allocation indeed increases rather than decreasing with price.

Our analysis of the temporal structure of behaviour revealed that at long prices,

subjects engaged in a long leisure bout before resuming work. By integrating and

averaging this across time, we could explain the experimental observation that

time allocation may increase rather than decrease with price at long prices.

The resumption to work after a long leisure bout is predicted by our normative,

microscopic model with an initially supra-linear but eventually sub-linear CL(·),
e.g. a sigmoid. To test whether subject’s preferences for leisure could be quanti-

fied by such a utility we fit one such utility function CL(·) across the entire dataset

of experimenter determined RI and price conditions. As discussed in Chapters

3 and 4, the difference between the innate microscopic utility of of leisure and

the opportunity cost of time determines the leisure duration distribution. Since

the opportunity cost of time is largely determined by the payoff (i.e., RI/P ), for

a given CL(·) the subject’s leisure duration distribution changes as the payoff is

manipulated by the experimenter.

While there is an infinite space of possible microscopic utility of leisure functions

to test, we chose those that had few parameters, and made starkly different qual-

itative predictions about the preference for durations of leisure. We therefore

chose the canonical CL(·) from Chapters 3 and 4: namely the linear (indifferent

in preference), concave (which prefers many short leisure bouts to one long bout)

and sigmoid (which prefers one long leisure bout to many short ones). We fur-

ther considered a weighted combination of a linear and a sigmoid to represent the

generic class of initially supra-linear but eventually sub-linear CL(·). This func-

tional form is also a more mathematically continuous version of the quasi-concave

functions popular in economics.

An alternative approach to the one we pursued would be to descriptively fit

leisure durations first with standard parametric distributions Breton (2013) and

then invert the generative process to infer utility functions. We had originally per-

formed such preliminary analyses (not shown here), which suggested that PRPs

were most likely to be generated from bimodal gamma distributions. However,

in general, inverting the process to infer utility functions could lead to arbitrarily

complex utility functions with many parameters. Interpreting what these would
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predict about preferences, from a normative perspective, would be cumbersome.

Instead, we approach the data from an approximately normative perspective,

fitting micro-SMDP models, including self-consistent policies and reward-rates.

Our full micro-SMDP model has the further advantage of also being able to pro-

vide a normative perspective on the duration of work bouts and not just leisure

bouts. It should be noted, however, that according to our micro SMDP models,

exponential and gamma distributed leisure durations are consistent with subjects

having linear and logarithmic CL(·), under a softmax policy over leisure dura-

tions. In these cases, going from descriptive analyses to normative perspectives

or vice versa yields the same result.

Since, for short prices, subjects pre-commit to working continuously for the entire

price duration, leisure bouts are mostly PRPs. As in Chapters 4 and 5 we first

assumed that subjects work continuously for the entire price duration and use the

simplified, 2-state micro-SMDP to model PRPs only. We found that for a subject

of interest (F9), the sigmoidal CL(·) fit the data much better than a linear CL(·).
Specifically, the best fit linear CL(·) predicted PRPs that were much shorter

than those experimentally observed. A linear or concave CL(·) predicts unimodal

distributions. However, if the PRPs are generated from a bimodal distribution

consisting of a mixture of gamma distributions with short and long modes, then

attempting to fit such bimodal distributions with a unimodal will be extremely

disadvantaged. Since a larger proportion of PRPs are observed to be short, while

long PRPs are censored, a unimodal fit would be biased towards the shorter

mode. That is, predicted leisure durations will be much shorter. Our model with

a sigmoidal CL(·) predicts and accurately captures such bimodally distributed

data, with the mixture weight on the shorter mode increasing as payoff increases.

We can conclude that this subject innately prefers long leisure bouts, all at one

go, rather than many short ones for the same total duration. For this subject we

found that the best fit initially-supra-linear but eventually sub-linear CL(·) was

intact a sigmoid, with its extra parameter not affording a better fit.

For two other subjects, the concave was the best fit, although only slightly better

than the sigmoidal. This could either reflect that these subjects innately prefer

many short leisure bouts over one long bout for the same total duration, or be

due to the fact that a large proportion of PRPs are censored. In future work, we

shall analyse the data further to understand which is more likely. For three others

the supra-linear-sub-linear CL(·) function was the best fit, with the weight on the

linear component exceeding that on the sigmoid. The best fit CL(·) functions for

these subjects had shallow slopes, implying a slowly increasing and decreasing

marginal utility. This may be due to the fact the PRPs for these subjects had a
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broader distribution with larger variance. However, the linear CL(·) was the worst

fit for every subject. We therefore conclude that rat subjects are not indifferent

in preference to the duration of leisure.

The simplification that subjects work continuously for the entire price duration

and leisure bouts are PRPs is invalid at long prices. For very long prices, subjects

engage in long leisure bouts pre-reward before resuming work. Ignoring such data

could have slightly impaired the quality of our model fits. We therefore fit the full

micro-SMDP model developed in Chapter 3, with a very minor alteration, to all

the microscopic work and leisure choices in the dataset, for each individual rat.

For subject F9, we were able to better capture the temporal topography of choice;

our model with a sigmoidal CL(·) predicted these long, pre-reward instrumental

leisure bouts after which a subject resumed working. As before, the linear CL(·)
fell short of accounting for bimodally distributed leisure durations. In future

work, we shall fit all the data with this full micro-SMDP model, for concave and

other CL(·) as well, and for other subjects. It is possible that accounting for the

crucial pre-reward data could lead to different best-fit utility functions for the

other subjects, than those reported here while fitting only PRPs.

The large proportion of long, censored, leisure bouts is a key issue that may

impede our ability to determine precisely a subject’s utility of leisure. Despite

having a wealth of data, since longer durations are more likely to be censored

than short ones, we are able to more precisely fit the shorter mode than the

longer mode, biasing our inferred utility of leisure functions. Specifically, for a

sigmoidal utility, we may still be able to determine where the mode lies, but

be less confident about the maximum utility or the slope of the function, which

may be underestimated and overestimated, respectively. Collecting data with

longer trial durations, e.g. 50 × the price, could provide more observed and less

censored long leisure bouts; however, such long trials would mean longer running

experiments and be less practicable from the perspective of the experimentalist.

In attempting to determine a subject’s innate preference for leisure, irrespective

of all else, we assumed that PRPs were independent and identically distributed.

This may not be the case in presence of fatigue or satiation, which introduce runs

of work bouts interspersed by short PRPs, followed by a long PRP that reduces

fatigue/satiation. Apriori, physical fatigue is less likely to play an important

role in generating this data due to the meticulous experimental design. Subjects

were well rested on trailing trials, limiting physical fatigue. Satiation is also

unlikely to play a major role since non-satiating BSR rewards were used. Further,

subjects were observed to work continuously throughout a trial, with very little

leisure, even for the very highest reward intensities, contrary to what would be
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the case if satiation was present. However, to test whether fatigue or satiation

empirically still played a role, we conducted statistical tests of independence.

Statistical tests of the data showed that for some trials on medium prices, PRPs

were not independent and identically distributed as we had assumed. Specifically,

there were runs in the PRP sequences on some trials. Whether the long leisure

durations on these trials manifest a sigmoidal microscopic utility of leisure or are

caused by fatigue is an interesting question. It must be noted that fatigue alone

does not explain these results; any effect of fatigue is in addition to that of payoff

since PRPs are shorter for higher payoffs. Since even for longer prices, only around

10% of the trials were found to have non-independent PRPs, it is empirically

unlikely that fatigue plays a major role in these data. We must note, however,

that statistical tests may only reject the null hypothesis of independence; when

a test of runs or autocorrelation comes out negative, it does not automatically

imply that the PRPs are independent, just that it cannot be concluded that they

are non-independent. In the next phase of our programme, we shall quantitatively

fit our normative, microscopic models of fatigue and satiation to these data in

order to infer which of the set of models, with or without fatigue best accounts

for the data we observe.

6.8 Additional data figures

Here we include additional data figures. We show relevant figures with all the

RI,P conditions and display fewer conditions in the main-text.
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subject (F9). RI increases from top to bottom panels, as denoted in
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Figure 6.17: Model fits to PRPs on a radial ’sweep’ for subject
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sake of comparison. Note the different x-axis scales for experimental data.
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Contributions and future work

This thesis makes six main contributions. The most important is a novel ap-

proach to characterising temporally relevant behaviour. Most previous research

investigating temporal choices used macroscopic characterisations of behaviour

Baum (2002, 2001, 2004, 1995); Baum and Rachlin (1969); Baum (1976), report-

ing average times and response rates. Following Niv et al. (2007), we characterise

behaviour from a microscopic perspective, studying the detailed temporal topog-

raphy of choice Ferster and Skinner (1957); Gilbert (1958); Shull et al. (2001);

Williams et al. (2009b,a,c). Previous research using microscopic approaches Hac-

cou and Meelis (1992); Breton (2013) have been descriptive, characterising what

the animal does, rather than being normative: positing why it might do so. In

this thesis, we developed a novel, normative, microscopic approach to character-

ising behaviour. This characterises all the choices that an individual makes over

time, but from the perspective of its attempting to maximise its returns.

Secondly, we put forward a generic theoretical framework for studying the un-

derlying computations, algorithmic mechanisms and neural implementations of

real-time cost-benefit decision-making. By situating our framework within the

broader theoretical framework of, and by employing the techniques from rein-

forcement learning, we ensured our formulations were theoretically sound and

with relatively few ad-hoc assumptions. For instance, the linear opportunity cost

of time (represented as the product of reward rate and time) critical to our models

in Chapters 3-6 is not a simplifying assumption, but an automatic consequence of

formulating our problems as average-reward semi-Markov decision processes (see

Chapter 2). The formulation as a semi-Markov decision process was sensible since

we proposed that subjects chose both actions and their durations simultaneously

in order to approximately maximise their returns.



191

While we largely focussed at the computational level in this thesis, our framework

provides a foundation for studying critical algorithmic and psychological processes

and neural computations at appropriate timescales. Real-time or quasi-real-time

recording methods in routine use in neuroscience such as electrophysiology, large-

scale imaging, or fast-scan cyclic voltammetry allow us to correlate the activity

of neural populations or concentrations of neuromodulators with the execution of

behaviours. Likewise, fast causal manipulations via such methods as optogenetics

allow the circuits governing these behaviours to be probed in a highly selective

manner. There is an evident mismatch between the microscopic timescale over

which these methods operate and the macroscopic timescales over which (a) be-

haviour has often been characterised; and (b) the quantities such as costs and

benefits which underpin the pertinence of the behaviour have been defined. Our

normative microscopic account may therefore provide an illuminating framework

within which to build explanations that span multiple levels.

We applied our framework to the question of how to allocate limited time be-

tween work and leisure when both are attractive. The third contribution of this

thesis is to provide a novel, normative, microscopic theory of this division. In

order to explain the partial allocation of time between work and leisure, previous

macroscopic research from labour supply theory had assumed an interaction be-

tween the marginal utilities of work and leisure–as if leisure is beneficial because

of the recent history of work. We showed (see Chapter 4) that this assumption

is not necessary when choices are microscopic and stochastic. We proposed that

leisure is beneficial on its own accord and studied different functional forms which

would reflect starkly different preferences for the duration of leisure. Similarly, ac-

counts from behavioural psychology had proposed the need for stochasticity. We

showed that, for certain microscopic utilities, deterministic choices were sufficient

for achieving partial allocation. We showed that by integrating our microscopic

choices we could build macroscopic characterisations that were not only equiva-

lent to, but richer than those afforded by previous macroscopic characterisations.

We therefore built a superset of traditional macroscopic quantifications.

Fourthly, we formulated normative, dynamic models of fatigue and satiation

(Chapter 5). These extended our framework to the case where leisure was benefi-

cial because of the recent history of work (in the case of fatigue) or rewards (in the

case of satiation). We used the latter to generate a novel, normative microscopic

cause for the backward bending labour supply curve that had been predicted or

assumed by microeconomists and studied by behavioural economists and psy-

chologists. Our models of fatigue and satiation provide new testable behavioural

predictions at the microscopic level, which could be verified by future experi-
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mental research. In particular, we proposed two perspectives according to which

decision-making could occur in the presence of fatigue or satiation: prospectively

and retrospectively. Since both of these make similar behavioural predictions, we

emphasised the need for careful experimental design, to avoid confounding one

with the other, when attempting to understand which is playing a greater role.

Fifthly, we provided a microscopic characterisation of how rodent subjects dis-

tribute their work and leisure bouts. Along with Breton (2013), we showed that

leisure bouts were bimodally distributed, with the mixture weight on the short

mode increasing with payoff.

Finally, we provided, to our knowledge, the first empirical and quantitative study

of the microscopic utility of leisure (Chapter 6)– and how it is related to those of

rewards. We inferred this from rodent subjects, where we could control possible

confounds such as fatigue, satiation and effort costs.

There are many possible directions for future work. The most imperative would

be to fit the entire dataset with the full micro SMDP model. In fitting only PRPs

with our simplified 2-state model we had discarded some amount of, possibly

crucial, data. We also only considered two microscopic utility forms when we

fitted the entire dataset in Chapter 6. It would be interesting to see how and why

different subjects differed in their preference for durations of leisure when all the

data are accounted for, and more utility functions are considered. We should also

test these models against alternatives, such as the models of fatigue and satiation

that we proposed.

We could then consider aspects of the neural implementation of the microscopic

behaviour. Previous macroscopic analyses from pharmacological and drugs of ad-

diction studies have revealed that an increase in the tonic release of the dopamine

shifts the mountain towards longer prices Hernandez et al. (2010); Trujillo-Pisanty

et al. (2011); Hernandez et al. (2012), as if, for instance, dopamine multiplies the

intensity of the reward. Equally, models of instrumental vigour have posited that

tonic dopamine computes or carries the average reward rate. This would realize

the opportunity cost of time Niv et al. (2007); Cools et al. (2011); Dayan (2012).

Finally, it has been suggested as being involved in overcoming the cost of effort

Salamone and Correa (2002). However, the macroscopic mountain model cannot

distinguish whether the effect of tonic dopamine is to make a reward more re-

warding or a cost less costly or directly change increase the reward rate-they all

yield the same time allocation. This further shows the limitation of macroscopic

approaches to characterising behaviour in neuroscience, and suggests that micro-

scopic approaches like ours, with their greater predictive power, are possibly more
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key to unpicking these cost-benefit computations. By analysing the microscopic

data under dopamine agonists (or antagonists) when compared to control con-

ditions, from the above pharmacological and drug studies, we could understand

the computations performed or signals carried by tonic dopamine.

Our normative microscopic framework can be applied to a variety of tasks, which

we did not consider in this thesis. For example, we could provide a novel method

of studying the neural circuits and neuromodulation underlying effort costs Sala-

mone and Correa (2002) and investigate whether these are different from those

underlying fatigue. Similarly, we could attempt to provide an account of the com-

putations performed by the neuromodulator serotonin in waiting through delays

Miyazaki et al. (2011, 2012); Fletcher (1995); Jolly et al. (1999); Ho et al. (1998);

Bizot et al. (1988, 1999).

Throughout the thesis, we modelled epochs in a trial after the reward intensity

and price were known for sure. However, before subjects gain a minimal experi-

ence of the reward intensity and price on a trial, they face partial observability.

They have to decide whether to explore (by depressing the lever to find out about

the benefits of working) or exploit the option of leisure (albeit in ignorance of or

greater uncertainty about the price). This leads to a form of optimal stopping

problem. A particularly interesting case may arise when rewards are delivered

probabilistically (according to a Bernoulli process, Breton (2013)). Given that

the subject is extensively trained over many months and knows that the reward

intensity and probability of reward delivery are fixed on a trial, it could explore

till it inferred these more precisely. Subjects would have to infer whether a se-

quence of unrewarded work bouts is due to the reward intensity for the trial

being low or because these were merely due to probabilistic reward (un)delivery.

If the probability of reward delivery is high, then subjects may mistake a few

unrewarded work bouts as evidence for the payoff on that trial being low. They

would then unwittingly quit working on that trial after those few work bouts.

This would be especially pernicious on high payoff trials since subjects would

lose the opportunity to harvest lucrative rewards. Similarly, if the probability of

reward delivery is low, then subjects should explore longer, even on high payoff

trials. Our preliminary analyses (not shown here) revealed that rodent subjects

are indeed capable of such sophisticated active inference. Macroscopic charac-

terisations either simply ignore this exploration, and thus discard a significantly

large proportion of data, or average across these. In either case, they mischar-

acterise highly informative data about the decision-making and inference process

that the rat undergoes. Since our normative, microscopic approach, by definition

attempts to decipher what an animal is trying to achieve in real-time, we would
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be able to account for the above behaviour. A crucial question then becomes

what cost an animal would pay (temporally, eg. by manipulating the price, or in

terms of effort or punishment) in order to gain an extra piece of information by

working.

We previously mentioned that the experiments reported in this thesis are con-

ducted in a sequence of triads–leading, test and trailing. The leading and trailing

trials have the highest and lowest reward intensities, respectively. Preliminary

analysis of data reveal that at the end of training, subjects rest for the entire du-

ration of trailing trials (not shown here, but see Breton (2013)). That is, they do

not even sample the lever once to infer the reward intensity and price parameters.

Further analyses revealed that there are post-priming pauses (PPPs) that occur

at the very beginning of each trial when the subject receives a priming train of

stimulation to ’remind’ or ‘reset’ the behaviour. In the case of the trailing trial,

these PPPs last the entire trial. The PPPs are shortest for the leading trials

and in-between for test trials. Except in the case of the trailing trial, PPPs are

instrumentally deleterious. The subject should not waste any time engaging in

leisure and should immediately attempt to receive at least one reward by working,

so that it can infer the reward intensity and price parameters. Like a component

of the PRP, PPPs also scale with expected payoff. We therefore consider PPPs

to be Pavlovian. The PPPs reflect that the rat subjects know the random world

triad structure of high-random-low payoff trials, despite the often long durations

of test trials. This shows that the rat subjects are capable of possessing highly

sophisticated representations about the structure of their world. When the PPPs

were analysed over the entire training period, they were observed to start from the

same duration for all three trial types. Over the course of training, the subjects

learned the structure of the world. We aim to analyse this data further ourselves,

and build a normative model of how a rodent builds such a sophisticated repre-

sentation. For this we shall use an infinite hidden Markov model Beal (2002): a

hidden Markov model whose number of hidden can states grow with the amount

of data till they converge to the appropriate number of states. Thus, for this ex-

periment, we should expect the number of states to grow from 1 to 3. A subject

which has such a model of the world makes predictions of the payoff on the next

trial based on the payoff experienced on the current one. Contrary to a model

in which the subject simply counts trials, this could lead to confusion when, for

instance, the payoff on the test trial is low. The subject could confuse this for a

trailing trial and work on the subsequent trailing trial. It will be interesting to

see how well our model predicts the data and how sophisticated a model of the

world a rat can possess.
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In conclusion, we are ordered with a wealth of data whose full psychological and

neural implications can only be extracted by means of an account that provides

a normative underpinning for its rich, real-time, details.
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