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Abstract

Epidemic phenomena are ubiquitous, ranging from infectious diseases, computer

viruses, to information dissemination. Epidemics have traditionally been studied as

a single spreading process, either in a fully mixed population or on a network. Many

epidemics, however, are hybrid, employing more than one spreading mechanism. For

example, the Internet worm Conficker spreads locally targeting neighbouring comput-

ers in local networks as well as globally by randomly probing any computer on the

Internet.

This thesis aims to investigate fundamental questions, such as whether a mix of

spreading mechanisms gives hybrid epidemics any advantage, and what are the im-

plications for promoting or mitigating such epidemics. We firstly propose a general

and simple framework to model hybrid epidemics. Based on theoretical analysis and

numerical simulations, we show that properties of hybrid epidemics are critically deter-

mined by a hybrid tradeoff, which defines the proportion of resource allocated to local

and global spreading mechanisms. We then study two distinct examples of hybrid epi-

demics: the Internet worm Conficker and the Human Immunodeficiency Virus (HIV)

infection within the human body. Using Internet measurement data, we reveal how

Conficker combines ineffective spreading mechanisms to produce a serious outbreak

on the Internet. We propose a mathematical model that can accurately recapitulate the

entire HIV infection course as observed in clinical trials. Our study provides novel

insights into the two parallel infection channels of HIV, i.e. cell-free spreading and

cell-to-cell spreading, and their joint effect on HIV infection and treatment.

In summary, this thesis has advanced our understanding of hybrid epidemics. It

has provided mathematical frameworks for future analysis. It has demonstrated, with

two successful case studies, that such research can have a significant impact on impor-

tant issues such as cyberspace security and human health.
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Chapter 1

Introduction

1.1 Motivation
Epidemic spreading phenomena are frequently found in the real world, and relevant

studies have important practical values. Hybrid epidemics refer to those epidemics that

employ more than one spreading mechanism. The motivation of this study is to better

understand hybrid epidemics. The study is timely and important as 1) hybrid epidemics

pose a great threat to the internet security and human health; but 2) some fundamental

problems of hybrid epidemics are still not well understood, including whether and when

a mix of spreading mechanisms gives hybrid epidemics any advantage and what are the

implications for promoting or mitigating such epidemics.

1.1.1 Ubiquitous epidemic phenomena

Epidemic spreading phenomena exist in a wide range of domains [1–3]. Well-known

examples include the spread of infectious diseases, the proliferation of computer

viruses, and information propagation. Despite their distinct nature and the environ-

ments in which they spread, all these phenomena can be abstracted as packages of

information (e.g. a virus) spreading through networks (e.g. computer networks) [1, 4].

Studies on the spread of epidemics not only help understand existing spreading

phenomena, but also increasingly provide important insights for designing new sys-

tems to solve practical problems. For example, viral marketing promotes the spread of

advertisements through social networks [5–7], and epidemic routing aims to maintain

and find a path to send information from one device to another [8–10]. While other ex-

amples include epidemic-based replicated database which is a distributed system that
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stores multiple copies of data in a large number of machines [11–13], and epidemic-

based information dissemination [14–16].

There is a long history of research on the spread of epidemics. Various models

have been proposed to analyse the phenomenon [3, 17]. Findings from this stream of

research help us better understand the dynamics involved with the spread of an epi-

demic in the real-world. The results of the studies have important practical values

for controlling epidemics, either for mitigating negative spreading, such as computer

worms, or promoting positive spreading, such as useful information propagation.

1.1.2 Hybrid and critically hybrid epidemics

Various spreading mechanisms have been studied [3,18]. The two most common mech-

anisms are local spreading, where infected nodes only infect a limited subset of target

nodes [19]; and global spreading, where nodes are fully-mixed such that an infected

node can infect any other node [3,20]. For example, local spreading of infectious organ-

isms occurs by physical contact between infected and susceptible hosts. The pattern of

epidemic spread is therefore determined by the pattern of physical interaction between

susceptible and infected individuals. But infections can also spread globally, for exam-

ple via infectious agents that can travel great distances, and then randomly infect any

individual within a large target population.

In reality, many epidemics use hybrid spreading, which involves a combination of

two or more spreading mechanisms. For example the computer worms Conficker [21]

and Code-Red [22] try to infect both computers in a local network (local spreading)

and any randomly chosen computers on the Internet (global spreading).

Most previous studies on hybrid epidemics have focussed on what we call non-

critically hybrid epidemics where a combination of multiple mechanisms is not a nec-

essary condition for an outbreak. In this case, using a fixed total spreading power, a

hybrid epidemic will always be less infectious than an epidemic using only the more

infectious one of the two spreading mechanisms [23, 24]. However, many real world

examples suggest the existence of critically hybrid epidemics where a combination of

spreading mechanisms may be more infectious than using only one mechanism.

We aim to tackle fundamental but hitherto little investigated questions about hy-

brid epidemics: whether a mix of spreading mechanisms gives hybrid epidemics any
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advantage and what are the implications for promoting or mitigating such epidemics.

This will provide insight into designing new and more efficient information dissemina-

tion systems.

1.1.3 Two specific examples of epidemic threats to the Internet and

health

Large-scale epidemics can cause huge amounts of societal and economic damage.

Many hybrid epidemics are especially dangerous. In this thesis we focus on two exam-

ples of such epidemic processes including the computer worm Conficker spreading on

the Internet and HIV infection within human body, both of which are very difficult to

throttle and can last for years and cause enduring damage [21, 25]. There is an urgent

need to understand why these hybrid epidemics can be so infectious and so resistant to

treatments.

A further aim of this thesis is to investigate how hybrid spreading contributes to

an epidemic’s infectiousness and resistance to mitigation strategies. So that, evidence

gleaned from this thesis can be utilised practically to inform future strategies and inter-

ventions that help thwart damaging hybrid epidemics.

1.1.3.1 Computer worm Conficker spread on the Internet

Computer worms are malicious applications that automatically propagate themselves

through computer networks. Conficker is one of the most contagious and “smart” com-

puter worms on record [26]. According to analysis from the computer security com-

pany - Symantec, the worm employs various spreading mechanisms including local,

neighbourhood, and global spreading [26]. Conficker exploded into a full-scale Inter-

net epidemic on 21 November 2008 and has since infected over seven million comput-

ers [21]. It was believed at the time that the worm had infected so many computers that

it could threaten the critical infrastructures of the Internet [27].

To thwart the worm, the Conficker Working Group [27] coordinated an unprece-

dented collaboration that consisted of major organisations in the cybersecurity commu-

nity and beyond, including Microsoft, Internet Corporation for Assigned Names and

Numbers (ICANN), Facebook, Cisco, McAfee, Symantec, F-Secure, and so on. The

working group successfully prevented the worm infected computers from being ex-

ploited for causing damage, but still failed to eliminate the worm [27]. The worm is
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still active on the Internet [28], six years after its outbreak, continuing to threaten the

security of the Internet.

1.1.3.2 HIV infection within human body

Human Immunodeficiency Virus (HIV) attacks the human immune system that protects

the body against diseases. The HIV infection within human body is similar to the spread

of computer worms in that it is a hybrid epidemic. It spreads among T cells through two

distinctive mechanisms: cell-free (global) spreading and cell-to-cell (local) spreading.

Tremendous efforts have been spent over the course of the past three decades to

better understand and treat the virus. Indeed, presently state-of-the-art HIV treatments

can manage and control the virus’s infection, but there is still no permanent cure for the

disease to date [25]. The sheer volume of people infected with the disease globally -

34 million [25] - is a compelling call for further understanding and better treatments of

the disease.

We note that the HIV infection within human body is different from the infectious

disease spreading in a population [1, 29] although they are both studied as epidemics.

1.2 Challenges
To study hybrid epidemics, especially critically hybrid epidemics, we conduct mathe-

matical modelling, numerical simulations, and real data set analysis. There are remark-

able research challenges corresponding to each of the three methods. An additional

complexity of the study is the requirement to understand two real epidemics from two

distinctive disciplines: computer worms and HIV infection.

1.2.1 Mathematical modelling of hybrid epidemics

Mathematical modelling can play an important role in helping understand the dynam-

ics of epidemic spreading [17]. Most existing epidemic models only consider one

spreading mechanism, e.g global spreading in a fully mixed population [30–33] or local

spreading among connected individuals [19, 34]. Hybrid epidemics, however, consist

of multiple spreading mechanisms. The modelling of hybrid epidemics therefore needs

to also address the multiplicative effect of different spreading mechanisms.

Another challenge to modelling is best determining a mathematical model that

captures the major dynamics of hybrid epidemics yet remains simple enough to provide
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analytical insight and make fast predictions. It is possible that more complex mathe-

matical models can capture every detail of a hybrid epidemic. However, a drawback of

such an approach is that they can be overspecified, i.e. requiring so many parameters

that some of them cannot be estimated from measurement data. In addition, mathe-

matical models that are highly detailed can require tremendous computational power to

analyse epidemic dynamics that is often accomplished using intensive calculations or

simulations.

At the same time, a good model does need a certain level of complexity to faith-

fully capture the major dynamics of hybrid epidemics. Overly simplistic models often

require strong assumptions that are violated in reality. A consequence of such models

is that they may fail to show the true dynamics of an epidemic. For example, refer-

ence [23] found that hybrid spreading can never result in a larger scale outbreak than at

least one of the two single-mechanism based cases - either completely local spreading

or completely global spreading - when using the same spreading power. A potential

problem with this finding is that it implicitly assumed a well connected network for

the hybrid epidemic to spread on. In reality, hybrid epidemics can often spread on

many weakly connected network patches, i.e. a metapopulation. We test this explic-

itly, finding that, given the same spreading power, a mixture of spreading mechanisms

can be notably more infectious than using only one mechanism. In order to theoreti-

cally explain and reproduce this finding, we need to propose a new mathematical model

that relies on fewer assumptions and incorporates enough details of hybrid spreading

mechanisms.

1.2.2 Processing large, sparse, and incomplete data

Epidemic spreading data can be very large. For example, the spreading dataset for

computer worm Conficker [35] collected by the network telescope [36] of the Center

for Applied Internet Data Analysis (CAIDA) includes 68 files and has a total size of

164 Giga Bytes (GB), i.e. over 16k times larger than this thesis. It includes 430k

infected nodes located in 92k sub-networks. To efficiently analyse such a large dataset,

we need to fully utilise computing clusters to conduct data analysis in parallel. Chapter

6 analyses this dataset.

Due to practical issues related to measurements, epidemic spreading data often
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includes sparse and incomplete records. HIV measurements, which are analysed in

Chapter 7, for example, often start months after the initial HIV infection in many pa-

tients. Consequently, the initial spreading period of the epidemic is not included in

the data. In addition, the data measurement stops and medical treatments start for a

patient when he/she shows symptoms of disease progression, i.e. the late period of

HIV spreading is also absent. During the period with measurements, the data points

are not only sparse for many patients but also are unevenly distributed temporally for

some patients. These shortcomings in the data present a challenge to the analysis and

data-based model parameter inference in this study.

1.2.3 Large-scale complex epidemic simulations

Simulations are an indispensable part of epidemic spreading research. Numerical sim-

ulations are conducted to validate the results from theoretical modelling and analysis.

The challenge in epidemic spreading simulations is that they can be very computation-

ally intensive and time-consuming, particularly for large-scale epidemics. Worse still,

a simulation with the same set of parameters often needs to be repeated thousands of

times to obtain an averaged result, in order to mitigate the stochastic effects that arise

in each run of a simulation.

When it comes to hybrid epidemics, multiple spreading mechanisms should be

simulated. For example, the computer worm Conficker employs three distinctive

spreading mechanisms: (1) local spreading among computers in a same local area

network, (2) neighbourhood spreading among computers in adjacent area networks,

and (3) global spreading among all computers on the Internet [26]. In addition, net-

works underlying the local spreading of hybrid epidemics can also be more compli-

cated. Most epidemic studies simulate epidemics spreading on one, two, or several

networks [3, 19, 37–40]. The worm, Conficker, however, spreads on more than 92k

local area networks.

The simulation scenario of hybrid epidemics is exceedingly more complex than

traditional single-mechanism-based epidemics. Thus, efficiently simulating how these

particular epidemics spread is a challenging task.
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1.2.4 Interdisciplinary research encompassing computer worms

and HIV infection

This thesis conducts case studies on two real-world epidemics: the computer worm

Conficker [21] spreading on the Internet and HIV infection within the human body

[41]. In order to better understand the two real epidemics, it is essential to develop

mathematical models that can describe and predict their spreading dynamics.

Computer worm Conficker is an epidemic on the Internet. By analysing the pro-

gram of Conficker, the computer security company Symantec reveals that the worm

uses a sophisticated spreading strategy to achieve two objectives: (1) to infect the

maximum number of computers and (2) to simultaneously prevent itself from being

detected on infected computers [26]. However, existing modelling research on Con-

ficker [42, 43] has only considered one spreading mechanism, thus failing to represent

the true spreading dynamics of the worm. The worm’s sophisticated spreading strategy

needs to be understood and properly abstracted in a new mathematical model.

The case of modelling the HIV infection within human body is even more com-

plex. An HIV infection model not only has to describe the viral infection, but also needs

to take into account the effects of the immune system and clinical treatments. There are

complex interactions between the immune system and the virus. The immune system

tries to kill the virus and the virus in return degrades the functionality of the immune

system [44].

Additional difficulties lie in an incomplete understanding of HIV pathogenesis

[25]. Despite three decades of intensive research on the disease, mathematical models

still often stumble over questions related to the quantitative behaviours of the virus

because they have yet to be clinically investigated. For example, there is still limited

understanding of the HIV latent reservoir, which is the principle obstacle related to the

eradication of the disease. As a result, HIV infection models often need to include

some reasonable assumptions and speculation about the behaviour of the virus.

1.3 Contributions
The thesis has contributed to push forward our understanding of hybrid epidemics. In

particular, it has showed and explained the existence of the critically hybrid epidemics,

where limited spreading mechanisms complement each other and can be combined to
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make a highly infectious epidemic. Two real world examples of such epidemics have

been analysed in detail, and the results have important implications for the Internet

security and human health. Here we provide a brief summary of our contributions in

this thesis.

1.3.1 Model and explanation of critically hybrid epidemics

This thesis presents a novel theoretical hybrid epidemic model that incorporates both

local spreading among directly connected individuals (nodes) and global spreading

among all individuals. The model provides a unified approach for analysing hybrid

epidemics in both a single population and a metapopulation consisting of many sub-

populations.

Specifically the model incorporates a hybrid tradeoff that represents the strategy

of allocating fixed spreading power between two spreading mechanisms. The model

enables the interaction and the joint impact of the two spreading mechanisms on epi-

demic dynamics, ranging from a completely local spreading scenario to a completely

global spreading scenario, to be examined systematically.

This hybrid epidemic model also provides the foundation to explain the critically

hybrid epidemic phenomena. And the predictions of the model agree well with stochas-

tic simulation results.

1.3.2 The crucial role of tradeoff between spreading mechanisms

for hybrid spreading optimisation

Results from this thesis demonstrate that it is indeed possible to have a highly conta-

gious epidemic by mixing simple, ineffective spreading mechanisms. The properties of

such epidemics are critically determined by how the fixed spreading power is allocated

to two different spreading mechanisms, and usually there is an optimal allocation (i.e.

tradeoff between two mechanisms) that leads to a maximal outbreak size. We provide a

method to help predict this optimal allocation (tradeoff) base on other known epidemic

parameters.

The study is practically oriented in that it can be utilised for designing new and

more efficient information dissemination systems whose recipients exist in a metapop-

ulation. For example, a large distributed database, which includes numerous data nodes

on the Internet, needs to deliver updates to all of its data nodes. Those data nodes in
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local area networks collectively form a metapopulation for the local spreading, while

being connected globally through the Internet.

1.3.3 Inference of epidemic parameters and dynamics of computer

worm Conficker

Computer worm Conficker is an example of a critically hybrid epidemic. This study

is the first to model and analyse all three of the worm’s spreading mechanisms includ-

ing local, neighbourhood, and global spreading. By applying the proposed Conficker

spread model to the Internet measurement data [35,45] collected by the Center for Ap-

plied Internet Data Analysis (CAIDA), our study inferred the worm’s epidemic param-

eters, including the infection rates of its three different spreading mechanisms, recovery

rate, spreading network structure, etc.

The inferred epidemic parameters demonstrate that the infection rate of Con-

ficker’s global probing is extremely low with less than one successful infection in every

ten million random probes across the Internet. The infection rates of local and neigh-

bourhood probing, however, are around a million times larger than that of global prob-

ing. The worm spends around 90% of its time on global probing, which allows it to

explore the vast expanse of the Internet, although with a very low infection rate. These

inferred results help explain why the worm was able to infect millions of computers

and why it remains active on the Internet years after its detection [28].

1.3.4 State-of-the-art mathematical model for HIV infection within

human body

This thesis presents a novel HIV infection model that can explain the complex progress

of the HIV infection in all its phases and its variable timescale. Such a unified model is

important not only to understand HIV infection dynamics, but also to estimate the long

term effects of therapeutic strategies on HIV progression.

Notably, the model additionally includes explicit terms for the two modes of virus

spread, parameterised from experimental observation. The model output shows excel-

lent agreement to two sets of clinical data from a cohort of HIV infected patients and

from the Short Pulse Anti-Retroviral Therapy at Seroconversion trial [46].
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1.3.5 Novel insight for developing future HIV treatments

We show that the two modes of spread of HIV infection, cell-to-cell spread and cell-free

spread, complement each other and both make important contributions to disease pro-

gression. This research is the first to theoretically demonstrate that cell-to-cell spread

becomes increasingly effective as the infection progresses and thus may present a con-

siderable treatment barrier for eradicating the disease.

Our predictions emphasise the potential benefits of early treatment, and suggest

that drugs with the ability to effectively block cell-to-cell spread may provide signifi-

cant therapeutic benefit in long term management or eradication of HIV infection.

Reviewers of our journal article relevant to this contribution have suggested that

these predictions could provide a major advance in the understanding of HIV dynamics,

if confirmed by future clinical trials.

1.3.6 Other contribution - LeoTask

This study involves intensive computation for theoretical predictions and numerical

simulations. To facilitate such computation, we developed a Java framework for

computation-intensive and time-consuming research tasks. The name of the frame-

work is LeoTask and its source code is freely available at http://github.com/

mleoking/leotask.

LeoTask has a unique combination of features that are expected to be useful to

the broader research community. It automatically and simultaneously executes tasks

on multiple CPU cores of a computing facility. It uses a configuration file to enable

automatic exploration of parameter space and flexible aggregation of results, and there-

fore allows researchers to focus on programming the key logic of a computing task.

It also supports reliable recovery from interruptions, dynamic and cloneable networks

and integration with the plotting software Gnuplot. Appendix C provides more details

about this framework.

1.4 Thesis outline
The rest of this thesis is organised as follows. Chapter 2 begins with a briefly literature

review of research directions on epidemic spreading and provides an overview of the

two most classic epidemic spreading models. Chapter 3 introduces hybrid epidemics

http://github.com/mleoking/leotask
http://github.com/mleoking/leotask
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and critically hybrid epidemics, reviews research directly relevant to the study, and

provides a brief introduction to two real epidemics: the computer worm Conficker

spreading on the Internet and HIV infection spreading within human body.

In Chapter 4, a new mathematical model for hybrid epidemics is proposed and

validated. The model incorporates both local and global spreading mechanisms and

introduces a tradeoff between them. Chapter 5 uses the model to investigate the inter-

action and the joint impact of the two spreading mechanisms on epidemic dynamics,

and demonstrates that it is indeed possible to have a highly contagious epidemic by

mixing simple, ineffective spreading mechanisms.

Chapter 6 analyses the spreading behaviour of a critically hybrid epidemic -

the computer worm Conficker. Epidemic parameters for the worm are initially in-

ferred from measurement data, and then intensive simulations are used to highlight

the complex interactions among Conficker’s three spreading mechanisms. The results

demonstrate that utilising multiple spreading mechanisms plays an important role in

the worm’s huge outbreak and lasting survival.

Chapter 7 presents a novel HIV infection model that can explain the complex

progress of the infection in all its phases and its variable timescale. The model is used in

Chapter 8 to investigate the HIV infection dynamics and estimate the long term effects

of therapeutic strategies on HIV progression. We show that the two modes of spread

of the HIV infection complement each other and both make important contributions to

disease progression. Chapter 8 also provides novel insight into future HIV treatments.

Chapter 4 provides the analytical solutions for the final outbreak size and the

threshold of hybrid epidemics. The case studies in Chapter 6 and Chapter 7 use nu-

merical calculations to investigate the epidemic dynamics. They together provide a

useful combination to the literature.

Chapter 9 discusses the limitations of the study and relevant areas of future re-

search. Finally, Chapter 10 sums up and concludes the thesis.
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Chapter 2

Epidemic spreading

Epidemic spreading phenomena are ubiquitous in the real world. And some of them are

reviewed in [1–3]. Well-known examples include human disease spreading, computer

virus proliferation, and information propagation. Despite the distinct nature and envi-

ronments in which they spread, all these phenomena can be abstracted as packages of

information (e.g. a virus) spreading through networks (e.g. computer networks) [1, 4].

2.1 Research directions in literature
The research directions of the studies on epidemic spreading are introduced in this

section. In additional, a discussion of hybrid epidemic spreading and existing research

that is directly relevant to this study are introduced in Chapter 3 in greater detail.

There is an extensive history of research into the modelling of epidemic spreading.

Recent reviews about epidemic spreading studies can be found in [17, 47]. The multi-

disciplinary approach to studying the problem began with collaborative efforts between

biologists and mathematicians. Their early studies assumed that epidemics spread in a

fully-mixed population whereby an infected person can randomly spread a disease to

any other person [30–33]. We refer to this kind of spreading as global spreading. Later

on, epidemic spreading was studied more from the perspective of statistical physics.

The epidemic is considered to spread in a network where a computer virus or a piece

of information spreads through specifically defined connections between computers or

people [19, 34]. We refer to this kind of spreading as local spreading.

Since the introduction of network based epidemic analysis [19,34], epidemics have

been studied in various networks and populations, including structured households [48–

51], metapopulations that consist of a number of weakly connected subpopulations [52–
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58], clustered networks [59–67], dynamic and temporal networks [68–75], multiplex

networks [39, 40, 76–81], inter-connected networks [37, 38, 82–93], etc.

Human behaviour is also increasingly considered in the modelling and analysis of

epidemic spreading, including awareness of the disease [80,94–100], mobility patterns

[29, 101–103], and so on.

Another important research stream on epidemics has focussed on how to control

and immunise against an epidemic. Various immunisation strategies have been pro-

posed, including the simplest uniform immunisation [104] whereby individuals in a

given population are randomly immunised [30], the more efficient targeted immuni-

sation that selectively immunises those individuals most likely to influence epidemic

spreading [105–117], the more practical acquaintance immunisation that considers a

more realistic scenario whereby there is no global knowledge about the spreading net-

work structure and only local connection information can be used to immunise individ-

uals [109, 118–124], etc. There are also studies about intervention strategies to control

the spread of epidemics [125, 126].

In addition, there is a great deal of interest in using the knowledge obtained from

studying epidemic spreading mechanisms in systems in order to solve real world prob-

lems. Example applications that have taken advantage of knowledge from epidemic

spreading studies include viral marketing that promotes advertisements by spreading

them through social networks [5–7], epidemic routing that aims to find and maintain a

path to send information from one device to another [8–10], epidemic-based replicated

database which is a distributed system that stores multiple copies of data in a large

number of machines [11–13], and epidemic-based information dissemination [14–16].

2.2 Classic epidemic spreading models
There are a number of epidemic spreading models [3, 17]. Here the two most widely

studied classic epidemic models are introduced, including the Susceptible-Infected-

Susceptible (SIS) model and the Susceptible-Infected-Recovered (SIR) model.

2.2.1 Susceptible-Infected-Susceptible model

For the Susceptible-Infected-Susceptible (SIS) model, there are two potential states

for each individual: susceptible and infected. Fig. 2.1 shows the classic SIS epidemic
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Susceptible Infected
β

γ

Susceptible Infected
β γ Recovered

Figure 2.1: The classic Susceptible-Infected-Susceptible (SIS) epidemic model.
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Figure 2.2: A typical time evolution of the SIS model. The parameter values are: infection rate
β = 0.8 and recovery rate γ = 0.2. Initially the fraction of infected nodes are 1%
and the other 99% nodes are susceptible. The results are numerically calculated by
choosing an interval dt = 1.

model: for each unit time, (1) each susceptible individual becomes infected by a neigh-

bouring infected individual with an infection rate of β ; and (2) each infected individual

becomes susceptible again with a recovery rate of γ . A more detailed glossary of terms

used in epidemic modelling can be found in [47, 127].

Let s, and i respectively represent the fraction of susceptible and infected indi-

viduals. In a fully-mixed population where an infected individual can infect any other

individual [3, 20], the differential equations for the SIS model are

ds
dt

= γi−β si

di
dt

= β si− γi
(2.1)

with

s+ i = 1 (2.2)
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And by setting ds/dt = 0 in Eq. (2.1), we can get the stable value of s as γ/β .

Fig. 2.2 illustrates a typical time evolution of the SIS model, showing the fraction

of susceptible and infected individuals as a function of time.

2.2.2 Susceptible-Infected-Recovered model

Susceptible Infected
β

γ

Susceptible Infectedβ γ Recovered

Figure 2.3: The classic Susceptible-Infected-Recovered (SIR) epidemic model.
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Figure 2.4: A typical time evolution of the SIR model. The parameter values are: infection rate
β = 0.8 and recovery rate γ = 0.2. Initially the fraction of infected nodes are 1%
and the other 99% nodes are susceptible. The results are numerically calculated by
choosing an interval dt = 1.

Similarly, for the classic Susceptible-Infected-Recovered (SIR) epidemic model,

as shown in Fig. 2.3, each individual is in one of three states: susceptible, infected, and

recovered. At every time step, (1) each susceptible individual gets infected by a neigh-

bouring infected individual with an infection rate of β ; (2) each infected individual

recovers at a rate γ; and (3) each recovered individual remains in the same state.

Let s, i, and r respectively represent the fraction of susceptible, infected, and recov-

ered individuals. In a fully-mixed population where an infected individual can infect
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any other individual [3, 20], the differential equations for the SIR model are

ds
dt

=−β si

di
dt

= β si− γi

dr
dt

= γi

(2.3)

with

s+ i+ r = 1 (2.4)

Fig. 2.4 illustrates a typical time evolution of the SIR model, showing the fraction

of susceptible, infected, and recovered individuals as a function of time.

Our study focusses on the SIR epidemic spreading model.

2.3 Summary
Epidemic spreading phenomena exist in a wide range of domains [1–3]. Understanding

and modelling the epidemic dynamics can have a significant practical impact on health

care, technology and the economy. This section briefly introduced the research direc-

tions of epidemic spreading, together with two typical epidemic spreading models: the

Susceptible-Infected-Susceptible (SIS) model and the Susceptible-Infected-Recovered

(SIR) model.
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Chapter 3

Hybrid epidemic spreading

Many epidemics are hybrid in the sense that they spread via two or more spreading

mechanisms simultaneously. A hybrid epidemic can use both local spreading and

global spreading mechanisms. The key difference between the two spreading mech-

anisms is that in global spreading, the population is fully mixed, i.e. each individual

contacts any other individual with equal probability, whereas in local spreading, the

epidemic must follow a limited set of connections among individuals, thus the struc-

ture, or topology, of the network plays a role in the spreading process.

There are many real examples. Computer worm Code-red spends 1/8th of its time

probing any computers on the Internet at random (global spreading) and the rest of

the time probing computers located in the local area networks of an infected computer

(local spreading) [22]. HIV infection of cells inside human body is reported to spread

by two parallel routes: cell-free infection through virus particles that are released by

infected cells and by cell-to-cell infection through direct contact between infected and

susceptible cells [128–130].

It is clear that hybrid epidemics are more complex than simple epidemics. Their

behaviour is affected not only by the multiple spreading mechanisms that they use,

but also by the population’s structure on which they spread. Studying hybrid epi-

demics may provide crucial clues for developing a better understanding of many real

epidemics.

3.1 Relevant works
Early relevant studies investigated epidemics spreading in populations whose individ-

uals mix at both local and global levels (“two levels of mixing”) [131]. These early
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studies [131] did not incorporate the structure of the local spreading network, instead

they assumed both local and global spreading are fully-mixed. Since network based

epidemic analysis was introduced [3, 19], considerable effort has been made to under-

stand how the structure of the local or global spreading network affects the dynamics

of hybrid epidemics.

For example, Kiss et al. [23] studied epidemic spreading on a network with an

additional process of “casual contacts”, and provided a deterministic prediction on the

final size of the epidemic outbreak. While Ball et al. [132] studied a similar case and

presented a stochastic analysis on the probability distribution of the outbreak size.

Wang et al. [102] simulated hybrid mobile phone virus spreading, taking into

account the mobility patterns of mobile phone users. A hybrid mobile phone virus

employs both spreading through Multimedia Messages (MMS) and spreading through

short distances communication between adjacent devices through Bluetooth technology

(BT). This work also considered people’s travelling pattern in the simulation. Cheng

et al. [133] and Gao et al. [134] provided a relatively simple [133] and detailed [134]

model for hybrid mobile phone viruses respectively.

Stone et al. [135, 136] studied epidemic spreading on dynamic small-world net-

works, which combines fixed short-range links within an individual’s local neighbour-

hood with time-varying stochastic long-range links outside of that neighbourhood.

Estrada et al. [137] studied the epidemic spreading with both “close” and “casual”

contacts, where the “casual” contacts between two individuals are determined by their

social proximity (e.g. the shortest path distance). These works focussed on analysing

the role of the long-range links and social proximity, respectively, on the dynamics of

epidemic spreading.

Studies on epidemic spreading in clustered random networks [59–67] and net-

works incorporating households [48–51, 138–140], are relevant to the study. In these

studies, epidemic spreading is examined in networks with local structures (clus-

ters/households). However, some of their assumptions are not valid in fragmented

networks. For example, the household assumption is predicated on the idea that lo-

cal structures are like households, i.e. fully connected, which is often not the case in

real world scenarios.

Studies have also been conducted for epidemic spreading on metapopulations [52–
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58]. The term metapopulation was originally defined in biological research as “a lot of

populations” by Levins [141]. The term was then adopted to study epidemic spreading

in a metapopulation that consists of a number of separated subpopulations that are only

connected via the migration of individuals. This group of studies focus on analysing

how the connection structure among subpopulations affects the epidemic spreading in a

metapopulation. This thesis also studies hybrid epidemic spreading in metapopulations,

but our definition of the metapopulation is different (See the Introduction of Chapter

4).

Recent works on two relatively new topics: multiplex networks [39, 40, 76–81]

and inter-connected networks [37, 38, 82–93] are also relevant to this thesis. However,

the focus of these two topics in previous research is different from the studies con-

ducted herein. More specifically, most of the research into epidemics on multiplex

networks and inter-connected networks investigate how dependence between networks

affect spreading dynamics. While the focus of this research is on analysing how the in-

terplay between multiple spreading mechanisms in a hybrid epidemic affects spreading.

In addition, some of the assumptions that underpin the previous works, e.g. networks

are tree-like, are also often violated in real spreading scenarios and so this was avoided

in this current study.

Furthermore, most previous research has focussed on non-critically hybrid epi-

demics, where at least one of the two spreading mechanisms alone can cause an in-

fection outbreak and therefore the combination of two mechanisms is not a necessary

condition for an epidemic outbreak. In this case, given the same spreading power, a

hybrid epidemic using two spreading mechanisms is often less contagious than an epi-

demic using only the more infectious of the two mechanisms. [23, 24].

However, many real examples of hybrid epidemics suggest the existence of criti-

cally hybrid epidemics where, using the same spreading power, a mixture of spreading

mechanisms may be more infectious than using only one mechanism. We study the

critically hybrid epidemics that previous studies have hardly investigated.

3.2 Critically hybrid epidemics
We define critically hybrid epidemics as hybrid epidemics where each of the spreading

mechanisms alone is not able to cause any significant infection while conversely a
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(a) (b) (c)

Figure 3.1: Hybrid epidemics, where two spreading mechanisms A and B are mixed at the ratio
of α to (1−α), where 0 6 α 6 1. (a) Non-critically hybrid epidemic, where at
least one of the two mechanisms can cause an outbreak on its own (i.e. when α = 1
or α = 0). (b) Critically hybrid epidemics, where each mechanism alone cannot
cause any significant infection whereas a combination of them produces an epi-
demic outbreak. There exists an optimal α that produces the maximum outbreak.
(c) Another type of hybrid epidemics, where each mechanism alone can cause a
moderate outbreak while the combination of them leads to the largest outbreak.
Our study focuses on the critically hybrid epidemics illustrated in (b).

combination of the mechanisms can cause an enormous outbreak. In this case, the

combination of different spreading mechanisms is a critical (and necessary) condition

for a large-scale outbreak (see Fig. 3.1).

Critically hybrid epidemics are widely observed in nature and society. This thesis

includes case studies for two critically hybrid epidemics: the computer worm Conficker

spreading on the Internet and HIV infection within the human body.

Computer worms like Conficker [21] and Code-Red [22] employ both local

spreading among computers in local area networks and global spreading to any ran-

dom computers on the Internet. The local spreading has a high infection rate and is

efficient at infecting computers in a local area network [142]. One reason for the high

infection rate among computers in a local area network is that there is a tendency for

similar software to be installed on these computers. Consequently, if the software has

vulnerabilities that can be exploited by a worm, computers with the software inside the

local area network are all vulnerable. However, worms with only local spreading cannot

cause a major outbreak: it can only infect several local area networks. By comparison,

global spreading is inefficient at infecting a computer, but each successful global infec-

tion spreads the worm to a random computer on the Internet. Global spreading creates

colonies for a worm and enables it to spread all over the Internet. While worms that

utilise either local or global spreading alone are not able to cause major infections,
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worms employing both simultaneously can infect millions of computers and last for

years [28]. Our case study on a recent computer worm Conficker in Chapter 6 supports

the above insight.

The HIV virus spreads between T-cells within human body via two routes: (1)

cell-free spreading, where susceptible cells are infected by the virus (released by other

infected cells) in body fluid; and (2) cell-to-cell spreading, where infected cells infect

and transfer the HIV to susceptible cells though direct contacts. The theoretical analysis

herein suggests that if either of the two routes is blocked, the virus might be eliminated

by the human immune system (see Chapter 8). Conversely, the combination of the two

spreading routes makes HIV extremely contagious and difficult to cure.

3.3 Case studies
This thesis conducts case studies on two real world epidemics: (1) the spread of a recent

computer worm Conficker on the Internet; and (2) the spread of the HIV infection

within the human body. This chapter is a brief introduction to the two case studies,

while more specific details are outlined for readers in Chapter 6, Chapter 7 and Chapter

8.

3.3.1 Computer worm Conficker spreading on the Internet

Computer worms are malicious applications that automatically propagate themselves

through computer networks. The first recognised worm was “Morris” [143]. It was a

benign worm created by a Cornell University student to measure the size of the Internet

in 1988. Years later, a number of worms appeared, including Code-red [144, 145]

in 2001, Witty [146] in 2004, and a recent one - Conficker [21, 147] in late 2008.

Most of these later worms carry some destructive functions and consequently pose a

serious threat to the security of the Internet via infecting millions of computers. Among

all types of computer attacks, worms spreading on the Internet have led to the most

rampant and extensive damage (See [148] for a recent survey of computer worms).

Conficker is one of the most contagious computer worms on record. It exploded

on the Internet on 21 November 2008 and infected millions of computers in just a few

days [21]. The worm’s ability to spread to such a large number of computers in such a

short period of time and the fact [28] that it is still alive years after being detected have



44 Chapter 3. Hybrid epidemic spreading

caused serious concern for protecting the security of the Internet.

Various studies [21, 143–147, 149–160] have been conducted on the spread of

many computer worms, including Conficker. Most existing modelling studies assume

that a worm only conducts global spreading, ignoring the localised spreading mech-

anisms. While many of the existing theoretical models can be useful in estimating

the total outbreak size of a worm, they do not accurately reflect the hybrid spreading

mechanisms of a worm.

3.3.2 HIV infection spreading within human body

HIV is a virus that attacks human immune system - the defence mechanism that protects

the body against diseases. Without medical treatment, people infected by HIV can de-

velop Acquired Immune Deficiency Syndrome (AIDS), which is a condition whereby

the immune system is for all intents and purposes - failing. AIDS exposes a patient to

opportunistic infections (caused by viruses, bacteria, parasites, fungi, etc.) and threat-

ens his/her life [161].

Tremendous amounts of time, money and research has been spent over the past

three decades to gain a better understanding of and improve the treatment of the virus.

And while the state-of-the-art HIV treatments can manage and control the virus’s in-

fection, there is still no permanent cure for the disease [25]. This calls for further

collaboration among researchers across different disciplines to help tackle the disease.

Mathematical models provide an important tool for understanding and predicting

the course of natural HIV infection, complementing clinical studies.

Early studies conducted by Ho [162], Wei et al. [163], Perelson [164], and Nowak

et al. [165] used simple mathematical models to fit clinical data to estimate the param-

eters associated with HIV infection. These parameters include virus production and

clearance rates, life-span of infected T cells, etc. An important estimation from [162]

and [164] is that HIV has a short life span but a high reproduction rate. This helps

explain why HIV virus can evolve so quickly that the human immune system fails to

even recognise the threat and respond appropriately.

Perelson et al. [41, 164] proposed a simple and classic model for the spread of

the HIV infection within the human body, which is a modified version of the classic

Susceptible-Infected-Recovered (SIR) epidemic spreading model that was introduced
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in Section 2.2. The model studies how the densities of uninfected T cells (T ), infected

T cells (I) and free virus (V ) change over time. The following differential equation

system [41] describes this model:

dT
dt

= λ −dT T −βV T

dI
dt

= βV T −δ I

dV
dt

= pI− cV

(3.1)

where free viruses are assumed to infect T cells at rate β following a mass action

term βV T . Uninfected T cells are created at a constant rate λ and die at a rate dT

per cell. Infected T cells release free viruses at rate p per cell and die at rate δ per

cell. δ is higher than dT , which reflects the effect of HIV infection on shortening T

cells’ lifespan [41]. Free virus particles are cleared at rate c per virion (virus particle).

This simple classic model can explain the dynamics of the acute infection phase of

HIV [166] and the forming of a steady level of virus load [41].

These early studies illustrated the potential of using mathematical models to un-

derstand and explain the virus’s infection. Results from these studies elicited wide

interests from multiple disciplines and further research about the HIV infection, from

both theoretical and empirical perspectives.

Since then, numerous works have been proposed to model HIV infection [166–

178]. Most studies, however, focus on a specific period of HIV infection, e.g. the

acute infection phase or the chronic stable phase [179]. While existing research was

able to provide some insight into the detailed infection mechanisms, the entire multiple

phase course (See 7 for details) and the progression of HIV infection have still not been

convincingly captured and explained in either modelling or empirical studies [179].

3.4 Summary
Epidemics have traditionally been studied as a single spreading process, either in a fully

mixed population or on a network. Many epidemics, however, are hybrid, employing

more than one spreading mechanism.

For existing works relevant to hybrid epidemics, most have studied non-critically

hybrid epidemics, where at least one of the two spreading mechanisms alone can cause
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an infection outbreak and therefore the mix of two mechanisms is not a necessary con-

dition for an epidemic outbreak.

The focus of this thesis is about critically hybrid epidemics where each of the

spreading mechanisms alone is not able to cause any significant infection whereas a

combination of the mechanisms can cause an epidemic outbreak. In this case, the mix

of different spreading mechanisms is a critical condition for an outbreak (see Fig. 3.1).

The dynamics of critically hybrid epidemics have not been properly investigated so far.

Two real examples of critically hybrid epidemics are the spread of the computer

worm Conficker across the Internet and the HIV infection within the human body. Their

spreading dynamics have not been properly investigated in the existing literature on

epidemics.

For the spread of Conficker, existing research has mostly focussed on its overall

statistical properties, such as the size of outbreak in different countries. Modelling

studies have analysed it as a single-mechanism epidemic. The epidemic parameters,

including infection rates for different spreading mechanisms, were still unknown for

this worm before our study.

Numerous modelling studies have been conducted on the spread of the HIV infec-

tion within the human body [41, 179, 180]. Most of them have focussed on a specific

singular period of the HIV infection [179], and by default have assumed that HIV is a

single-mechanism epidemic, overlooking the realistic possibility that the virus spreads

through direct cell-to-cell contacts. The life course including multiple phases (See

Chapter 7 for details) and the progression of HIV infection have yet to be captured and

explained by either modelling or empirical studies in a satisfactory manner [179].

These two real cases will be studied in this thesis using a hybrid modelling ap-

proach. Our work will show that an appreciation of the epidemics’ hybrid nature is

crucial for a correct understanding of their spreading dynamics and properties.
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Modelling hybrid epidemics

In this chapter we develop a theoretical framework for studying hybrid epidemics that

employ both local spreading and global spreading, both in a single population and in a

metapopulation.

4.1 Introduction
Hybrid epidemics often take place in a metapopulation, consisting of a number of sub-

populations. Each subpopulation is a collection of densely or strongly connected nodes,

whereas nodes from different subpopulations are weakly connected. This is illustrated

in Fig. 4.1, where the model considers two spreading mechanisms: 1) local spreading

where an infected node can infect nodes in its subpopulation and 2) global spreading,

where an infected node can infect all nodes in the metapopulation. Note that our defini-

tion of metapopulation is different from the classical metapopulation defined in ecology

where subpopulations are connected via flows of agents [54, 57].

In the model each subpopulation for local spreading can be either fully-mixed or

a network. Because a fully-mixed subpopulation can also be represented as a fully

connected network, we describe each subpopulation as a network, for mathematical

convenience. At each time step, an infected node has a fixed total spreading power that

must be allocated between the two spreading mechanisms. Let the hybrid tradeoff, α ,

represent the proportion of spreading power spent in local spreading. The proportion

of global spreading power is 1−α . A variable α enables us to investigate the inter-

action and the joint impact of the two spreading mechanisms on epidemic dynamics,

ranging from a completely local spreading scenario (with α = 1) to a completely global

spreading scenario (with α = 0).
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We consider the hybrid epidemic spreading in terms of the Susceptible-Infected-

Recovered (SIR) model [3, 47], where each node is in one of three states: susceptible

(s), infected (i), and recovered (r). At each time step, each infected node spreads both

locally and globally; it infects 1) each directly connected node in the same subpopu-

lation with probability b1 = αβ1 and 2) each susceptible node in the metapopulation

with probability b2 = (1−α)β2. β1 is the local infection probability when all spreading

power is allocated to local spreading (α = 1). And β2 is the global infection probability

when all spreading power is allocated to global spreading (α = 0). Each infected node

recovers at a probability γ , and then remains permanently in the recovered state. A

node can infect other nodes and then recover in the same time step.

Local spreading Global spreading

       Infected        Susceptible: targeted        Susceptible: untargeted

Figure 4.1: Hybrid epidemic spreading in a metapopulation. At each time step, an infected
node has a fixed total spreading power that must be allocated between local spread-
ing and global spreading. The proportion of spreading power spent in local spread-
ing is α and that in global spreading is 1−α . Local spreading occurs between
infected and susceptible nodes that are connected in individual subpopulations;
global spreading happens between an infected node and any susceptible node in
the metapopulation.

4.2 Hybrid spreading in a single-population
Before analysing the hybrid spreading in a metapopulation, we study a relatively simple

case where the epidemic process takes place in a single population. That is, there is only

one population, where local spreading is via direct connections on a network structure

and global spreading can reach any node in the population.
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Here we extend the edge-based compartmental modelling system [181] for the

analysis. The system in [181] was proposed to analyse single-mechanism based epi-

demics for the continuous time case. Here the system is extended to analyse 1) hybrid

epidemics, and 2) for the discrete time case. We calculate the probability that a random

test node u is in each state: susceptible s(t), infected i(t), and recovered r(t).

We denote p(k) as the probability that a node has degree (i.e. number of neigh-

bours) k. The generating function [182] of degree distribution p(k) is defined as

g0(x) = ∑
∞
k=0 p(k)xk. Let pn(k) represent the probability that a random neighbour

of u has k neighbours. We assume the network is uncorrelated: the degree of each

node is independent from degrees of other nodes [3]. In an uncorrelated network

pn(k) = p(k)k/〈k〉, where 〈k〉 is the average degree of the network and 〈k〉= g′0(1) [3].

Let θ(t) be the probability that a random neighbour v has not infected u through

local spreading. Let ϑ(t) be the probability that a random node w has not infected u

through global spreading. Suppose u has k neighbours, the probability that it is suscep-

tible is sk(t) = ϑ(t)n−1θ(t)k where n is the total number of nodes in the population.

Then by averaging sk(t) over all degrees, we have,

s(t) = ϑ(t)n−1
∞

∑
k=0

p(k)θ(t)k = ϑ(t)n−1g0(θ) (4.1)

and

r(t +1) = r(t)+ γi(t) and i(t) = 1− s(t)− r(t)

As shown in Fig. 4.2, the probability θ can be broken into three parts: v is sus-

ceptible at t, φs; v is infected at t but has not infected u through local spreading, φi;

v is recovered at t and has not infected u through local spreading, φr. Neighbour v

cannot be infected by u and itself, then φs = ϑ n−2
∑k pn(k)θ k−1 = ϑ n−2g′0(θ)/g′0(1).

In a time step, neighbour v 1) infects u with probability b1φi through local spreading

and 2) recovers without infecting u through local spreading at probability γ(1−b1)φi,

i.e. after every time step: (1− θ) increases by b1φi and φr increases by γ(1− b1)φi.

The increase of φr here, γ(1− b1)φi, is different from that (rφi) in the original system

in [181]. Because the original system was designed for the continuous time case, and

in the discrete time case in this study, neighbour v can infect u and recover at the same

time step. Given that φr and 1−θ are both approximately 0 in the beginning (t = 0),
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φs φi φr

1−θ

γ(1−b1)φi

b1φi
θ = φs +φi +φr

Figure 4.2: Relations between φ probabilities. For a random test node u, θ is the probability
that u has not been infected by a random neighbour v through local spreading. θ

can be broken into three parts: φs, φi, and φr, which respectively represent the
probability that v has not infected u when v is susceptible, infected, and recovered.
In a time step, neighbour v 1) infects u with probability b1φi through local spreading
and 2) recovers without infecting u through local spreading at probability γ(1−
b1)φi, i.e. after every time step: (1− θ) increases by b1φi and φr increases by
γ(1−b1)φi.

we have φr = γ(1−b1)(1−θ)/b1. Then

φi = θ −φs−φr = θ −ϑ
n−2 g′0(θ)

g′0(1)
− γ(1−b1)

b1
(1−θ) (4.2)

For global spreading, the probability ϑ can also be broken into three parts: w is

susceptible at t, ϕs; w is infected at t but has not infected u through global spread-

ing, ϕi; w is recovered at t but has not infected u through global spreading, ϕr.

Using a similar derivation process, we have ϕs = ϑ n−2
∑k p(k)θ k = ϑ n−2g0(θ) and

ϕr = (1−ϑ)γ(1−b2)/b2, and

ϕi = ϑ −ϕs−ϕr = ϑ −ϑ
n−2g0(θ)−

γ(1−b2)

b2
(1−ϑ) (4.3)

When the epidemic stops spreading, φi = 0 and ϕi = 0. By setting φi = 0 in Eq. (4.2)

we get

ϑ
n−2 =

g′0(1)
g′0(θ)

(θ +
γ(1−b1)

b1
θ − γ(1−b1)

b1
) (4.4)

Substituting Eq. (4.4) and ϕi = 0 into Eq. (4.3), we have

ϑ =w(θ)=
g′0(1)(θ +θγ(1−b1)/b1− γ(1−b1)/b1)g0(θ)/g′0(θ)

1+ γ(1−b2)/b2
+

γ(1−b2)/b2

1+ γ(1−b2)/b2
(4.5)

By setting φi = 0 and substituting Eq. (4.5) in Eq. (4.2) and rearranging Eq. (4.2) we
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have

θ = [
w(θ)n−2g′0(θ)/g′0(1)+ γ(1−b1)/b1

1+ γ(1−b1)/b1
≡ f (θ)] (4.6)

Then θ∞ - stationary value of θ is a fixed point of f (θ). A fixed point of a function is

a value that is mapped to itself by the function. Strogatz’s book [183] provides more

detailed methods to analyse nonlinear dynamics.

4.2.1 Analysis of the threshold condition

The iterative scheme about f (θ) in Eq. (4.6) has a known fixed point of θ = 1 which

represents no epidemic outbreak. We test the stability of this fixed point. By substitut-

ing Eq. (4.2) and Eq. (4.5) into dθ/dt =−b1φi, setting θ = 1+ ε and take the leading

order (Taylor Series), we have dε/dt = εh and

h =
b1A+b2B+b1b2C− γ2

b2 + γ−b2γ
(4.7)

where A = γ2 + g′′0(1)γ/g′0(1)− γ , B = γ2 + nγ − 3γ , and C = −γ2− g′′0(1)γ/g′0(1)−

nγ + 4γ − ng′′0(1)/g′0(1) + 3g′′0(1)/g′0(1) + ng′0(1)− 2g′0(1) + n− 3. Then ε = Ceht

where C is a constant. When h is negative, |ε| gradually decreases and approaches

0 as t increases; while when h is positive, |ε| gradually increases and approaches +∞

with the increase of t. That is the fixed point θ = 1 turns from stable to unstable when

h changes from negative to positive. The threshold condition for an epidemic outbreak

is then h > 0:

h(β1,β2,γ,α, p(k))> 0 (4.8)

This epidemic threshold represents a condition which, when not satisfied, results in an

epidemic that vanishes at an exponentially fast pace [20, 184]. There are two special

cases.

• For completely local spreading (α = 1,b1 = β1,b2 = 0), the threshold reduces

to β1g′′0(1)/[g
′
0(1)(β1 + γ − γβ1)] > 1. Here g′0(1) = 〈k〉 and g′′0(1) = 〈k2〉− 〈k〉

where 〈k〉 is the average degree of the network and 〈k2〉 is the average degree

square of the network [3]. In the end of this section, we show that this thresh-

old agrees with previous threshold results [34] for single-mechanism epidemics

spreading on networks for the discrete time case. For infinite scale-free networks,

we have (〈k2〉− 〈k〉)/〈k〉 → ∞ such that the threshold ‘vanishes’ (i.e. ∞ > 1 is
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always satisfied), in agreement with previous observation [3, 19].

• For completely global spreading (α = 0,b1 = 0,b2 = β2), the threshold reduces to

β2(n−3+γ)/γ > 1, and when n is large it is approximate to β2n/γ > 1. β2n/γ is

the basic reproduction number, R0, for single-mechanism epidemics spreading in

a fully mixed population [20]. R0 is the average number of nodes that an infected

node can infect before it recovers. Thus the threshold is equivalent to R0 > 1, in

agreement with previous work [20].

Here we use Newman’s method [34] to obtain the threshold condition for the local

spreading to verify our results. Firstly we need to calculate the “transmissibility” T

which is the average probability that an epidemic is transmitted between two connected

nodes, of which one is infected and the other is susceptible. According to [34], for the

discrete time case T can be calculated as

T = 1−
∫

∞

0
dβ1

∞

∑
τ=0

p(β1)p(τ)(1−β1)
τ (4.9)

where τ is the time steps that an infected node remains infected, p(τ) and p(β1) re-

spectively are the probability distribution of τ and β1. For the model in this chapter,

β1 is a constant and p(τ) = (1− γ)τ−1γ , in which (1− γ)τ−1 is the probability that an

infected node has not recovered until τ−1 steps after infection, and γ is the probability

that the node recovers at the τth step after infection. Also for the model in this chapter,

each infected node at least remains infected for 1 time step. So that T for our model

can be obtained as

T = 1−
∞

∑
τ=1

(1− γ)τ−1
γ(1−β1)

τ =
β1

β1 + γ− γβ1
(4.10)

According to [34] the epidemic threshold for completely local spreading is

T g′′0(1)/g′0(1) > 1 i.e. β1g′′0(1)/[g
′
0(1)(β1 + γ − γβ1)] > 1. This is the same as the

epidemic threshold for completely local spreading obtained in this section.

Note that treating each edge as having this value of T independently will lead to the

correct epidemic threshold and final size calculation, but there are further discussions

on its correctness in calculating the infection probabilities [185–188].
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4.2.2 Analysis of the final outbreak size

The final outbreak size, r∞, is the fraction of nodes that are recovered when all epidemic

activities cease, i.e. when all nodes are either recovered or susceptible. When t → ∞,

the probability that a node is infected i(t)→ 0. Thus r∞ = 1− s∞ = 1−ϑ n−1
∞ g0(θ∞)

and

r∞ = 1−w(θ∞)
n−1g0(θ∞) (4.11)

where the value of θ∞ can be numerically calculated by conducting the fixed-point

iteration of Eq. (4.6). Eq. (4.11) can be viewed as a function of the hybrid epidemic

parameters and the network degree distribution. To be noted here, for completely global

spreading (α = 0,b1 = 0,b2 = β2), θ∞ cannot be calculated from Eq. (4.6) (because

b1 = 0). In this case, θ∞ = 1, g0(θ∞) = 1, and r∞ = 1−ϑ n−1
∞ where ϑ∞ can be obtained

by setting ϕi = 0, g0(θ) = 1 and solving the Eq. (4.3) in the range 0 < ϑ < 1.

4.2.3 Numerical evaluation

Numerical simulations were performed to verify the above theoretical predictions for

hybrid epidemics in a single population. Two typical topologies for local spreading in

the single-population are considered: (1) A fully connected network that represents a

fully mixed population; and (2) a random network with Poisson degree distribution,

which are generated by the Erdős-Rényi (ER) model [189] with an average degree of

five. Each of the two networks has 1000 nodes.

At the beginning, five randomly selected nodes are infected and all others are

susceptible to infection. At each time step, each infected node infects 1) each directly

connected susceptible node with probability αβ1 and 2) each susceptible node in the

population with probability (1−α)β2. Each infected node recovers with the probability

γ . There are two steps to simulate when an action (infection or recovery) happens with

a probability p: 1) generate a random number x in the range of 0 ≤ x < 1; 2) if x < p

then the action happens otherwise the action does not happen.

We run simulations for different values of α ∈ [0,1]. The global infection prob-

ability is set to β2 = 10−4 and the recovery probability γ = 1 (i.e. an infected node

can only spread the epidemic in one time step). For epidemics on the fully connected

network, the local infection probability is β1 = 6× 10−3. And for epidemics on the

random network the probability is β1 = 0.8. We choose typical values for these param-
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Figure 4.3: Final outbreak size r∞, as a function of the hybrid tradeoff α , for hybrid epidemics
in a single-population in which nodes form a fully connected network (i.e. fully
mixed) or a random network with an average degree of five. The population has
1000 nodes. The global infection probability β2 = 10−4 and recovery probability
γ = 1 are the same for epidemics on these two types of networks. The local in-
fection probability β1 is 6× 10−3 for epidemics on the fully connected network;
and it is 0.8 for epidemics on the random network. Initially five random nodes
are infected. Simulation results are shown as points and theoretical predictions
of Eq. (4.11) are dashed curves. The simulation results are averaged over 1,000
runs and the bars around the points show the associated standard deviation. The
epidemic thresholds predicted by Eq. (4.8) are marked as vertical bars on the hori-
zontal axis.

eters, with an additional consideration to make the results for the two networks clearly

separated in the figure. Fig. 4.3 shows that the size of the predicted final outbreak using

Eq. (4.11) is closely approximated by simulation results. It is also evident that the hy-

brid epidemic is characterised by a phase change, where the threshold is well predicted

by Eq. (4.8).

4.3 Hybrid spreading in a metapopulation

Next the above theoretical results for a single-population are extended upon to analyse

hybrid spreading in a metapopulation that consists of a number of subpopulations. Lo-

cal infection happens only between nodes in the same subpopulation whereas global

infection occurs both within and between subpopulations.
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Figure 4.4: Simulation results of hybrid epidemics in a metapopulation. The three results are:
(i) the final outbreak size as the fraction of recovered nodes r∞ (squares); (ii) the
final outbreak size as the fraction of recovered subpopulations R∞ (circles); (iii)
the population reproduction number, Rp (triangles, right y-axis). Each variable
is plotted as a function of the hybrid tradeoff α . The metapopulation contains 500
subpopulations and each subpopulation is a random network with 100 nodes and an
average degree of five. The local infection probability β1 = 0.8, the global infection
probability β2 = 10−6 and the recovery probability γ = 1. Initially three random
nodes in a subpopulation are infected. Simulation results are shown as points and
each result is averaged over 1,000 runs.

4.3.1 Analysis of spreading at population level

We define a subpopulation as susceptible if it contains only susceptible nodes. A sub-

population is infected if it has at least one infected node. A subpopulation is recovered

if it has at least one recovered node and all other nodes are susceptible. Only global

spreading enables infection between subpopulations, whereas spreading within a sub-

population can occur via both local and global spreading.

The final outbreak size at the population level R∞, is defined as the proportion

of subpopulations that are recovered when the epidemic stops spreading. We define

that a subpopulation A directly infects another subpopulation B if an infected node in

A infects a susceptible node in B. We define the population reproduction number, Rp,

as the average number of other subpopulations that an infected subpopulation directly

infects before it recovers. Note that our definition of Rp is similar to R∗ in [54] but the

definition of a metapopulation in [54] is different. A metapopulation includes many

subpopulations. In order for an epidemic to spread in a metapopulation, an infected
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subpopulation should infect at least one other subpopulation before it recovers, i.e. the

threshold condition of the hybrid epidemic at the population-level is Rp > 1.

Fig. 4.4 shows simulation results of the final outbreak sizes r∞ and R∞ and the

population reproduction number Rp (right y axis) as a function of the hybrid tradeoff

α . Epidemic parameter values are included in the caption of Fig. 4.4. All three results

show a bell shape curve regarding α . The results clearly suggest that the epidemic will

not cause any significant infection if it uses only local spreading (α = 1) or only global

spreading (α = 0). The maximal outbreak at the node level r∗∞ = 0.34 is obtained

around the optimal hybrid tradeoff α∗ = 0.5. That is, if 50% of the infection events

occur via local spreading (and the rest via global spreading), the epidemic will ulti-

mately infect 34% of all nodes in the metapopulation. At the population level, the total

percentage of recovered subpopulations R∞ follows a very similar trend to r∞, and the

maximum epidemic size in terms of subpopulations occurs at the same optimal α∗. The

population reproduction number Rp follows a similar trend to the final outbreak sizes

R∞ and r∞. The threshold Rp > 1 defines the range of α for which the final outbreak

sizes are significantly larger than zero.

It is important to appreciate that although the maximal R∗p is uniquely defined by

the optimal α∗, other Rp can be obtained by two different α values, on either side of

the optimal α∗, potentially representing different epidemic dynamics.

4.3.2 Analysis of the population reproduction number Rp

The population reproduction number Rp is a fundamental characteristic of hybrid epi-

demics in a metapopulation. We consider a metapopulation with N+1 subpopulations,

which are denoted as pi where i = 0,1,2...N. Each subpopulation has n nodes con-

nected to a similar structured local spreading network. p0 is the subpopulation where

the epidemic starts from.

We assume the infection inside the initially infected subpopulation p0 is caused

entirely by infected nodes inside p0. That is, we neglect the effects of global spreading

of other N subpopulations on p0. This is an acceptable assumption when the metapopu-

lation has a larger number of subpopulations. Under these conditions, hybrid spreading

within p0 is the same as spreading in a single-population, which has been analysed in

previous sections. To predict Rp, we first analyse the expected number of nodes outside
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Figure 4.5: Population reproduction number Rp as a function of the hybrid tradeoff α . Epi-
demics spread in a metapopulation that contains 500 subpopulations and each sub-
population is a random network with 100 nodes and an average degree of five. The
local infection probability β1 = 0.8, the global infection probability β2 = 10−6 and
the recovery probability γ = 1. Initially three random nodes in a subpopulation are
infected. Theoretical prediction from Eq. (4.13) is shown as a dashed curve. Simu-
lation results are shown as points (average over 1,000 runs) and bars (one standard
deviation).

p0 that will be infected by p0. We then estimate the number of other subpopulations

that these infected nodes should belong to. Let sN(t) represent the probability that a

random test node in other subpopulations are susceptible at time t. Using the same

parameters defined in the analysis on hybrid epidemics in a single population, we have

sN(t) = ϑ(t)n where n is the number of nodes in p0.

When p0 recovers at time T , the fraction of nodes in other subpopulations that

have been infected by (infected nodes in) p0 (via global spreading) is xN = 1−sN(T ) =

1− ϑ(T )n = 1−w(θT )
n where we have used Eq. (4.5). Then the number of such

infected nodes is

XN = xNnN = (1−w(θT )
n)nN (4.12)

where nN is the total number of nodes in other N subpopulations and θT can be numer-

ically calculated as θ∞ by fixed-point iteration of Eq. (4.6). As the nodes are infected

randomly via the global spreading, the probability that an infected node does not be-

long to a particular subpopulation i is 1− 1/N; and the probability that none of these

infected nodes belongs to the subpopulation i is (1− 1/N)XN . So the probability that
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at least one infected node belongs to the subpopulation i is 1− (1−1/N)XN . Thus the

population reproduction number Rp, which is the number of other subpopulations that

these infected nodes should belong to, is:

Rp = N(1− (1−1/N)XN ) (4.13)

4.3.3 Numerical evaluation

Fig. 4.5 compares the predicted Rp against simulation results as a function of the hybrid

tradeoff α . Rp is characterised by a bell-shaped curve. It peaks at the optimal hybrid

tradeoff α∗ where the population reproduction number achieves its maximal value R∗p.

This optimal point is of particular interest as it represents the optimal trade-off between

the two spreading mechanisms, where the hybrid epidemic is most infectious and there-

fore has the most extensive outbreak.

4.4 Discussion
We assume the hybrid epidemic employs local and global spreading, where local

spreading can only potentially infect nodes inside a subpopulation, and global spread-

ing can potentially infect all nodes in all subpopulations. Our analysis for the pop-

ulation reproduction number does not rely on the tree-like spreading assumption but

instead we assume the global infection probability is very small. These assump-

tions are applicable to spreading of most computer worms, e.g. Conficker [21] and

CodeRed [146] spreading on the Internet, and the spreading of some diseases, e.g. HIV

infection spreading within the human body. This assumption, nevertheless, can be inap-

propriate for the spreading of many other diseases, where there is no global spreading

mechanism that enables an individual to infect all other individuals, e.g. spreading of

flu in a country.

The total spreading power of a node at each time step is assumed to be fixed. The

results of this analysis regarding how the tradeoff between two spreading mechanisms

affects the outbreak of a hybrid epidemic only makes sense under this assumption. And

this assumption is valid for the majority of computer worms.

The model proposed in this chapter does not aim to capture every detail of a par-

ticular real world epidemic. Instead, the model is designed to be simple, so that it can
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be used to theoretically explore the general properties of many hybrid epidemics. By

simplifying the spreading scenario, we can focus on analysing the key and common

properties of hybrid epidemics.

It is also important to understand the particular properties of different epidemics.

In Chapter 6 and Chapter 7, we propose more specific and detailed epidemic models

for two real hybrid epidemics. These case studies provide examples for adopting and

extending the basic hybrid epidemic model in this chapter to analyse more complicated

epidemics.

Specifically, in Chapter 6, we conduct a case study on a real computer worm

- Conficker. Because the computer worm employs three, rather than two spreading

mechanisms, the model proposed in this chapter needs to be extended to include an

additional spreading mechanism. In addition, Chapter 6 also infers the epidemic pa-

rameter values from real epidemic spreading data.

4.5 Summary
In this chapter, a new mathematical model for hybrid epidemic was presented and

validated. The model incorporates two typical spreading mechanisms including local

spreading among directly connected individuals (nodes) and global spreading among

all individuals. Our model can analyse epidemics spreading in a single population or a

metapopulation consisting of numerous weakly connected subpopulations. We analyse

the outbreak of hybrid epidemics on both the individual level and the subpopulation

level. In addition, the epidemic threshold condition for hybrid epidemics was also de-

rived in this chapter. Predictions from the mathematical model are in accordance with

the stochastic simulation results, both in single populations and in metapopulations.

Results from both numerical simulations and theoretical analysis in this chapter

indicated that, in a metapopulation, a mix of local and global spreading mechanisms

can significantly increase the outbreak of a hybrid epidemic than using either spreading

mechanism alone. And in addition, there exists an optimal tradeoff between the two

spreading mechanisms that enables a hybird epidemic to cause the largest outbreak in

a metapopulation. The relation between the largest outbreak and the optimal epidemic

parameters, in particular the tradeoff, is of practical significance and value because

they may provide new clues for controlling hybrid epidemics. The next chapter will
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investigate this in detail, studying how to optimise the spreading of a hybrid epidemic.



Chapter 5

Optimisation of hybrid epidemics

Previous work on hybrid epidemics has focussed on what we refer to as non-critically

hybrid epidemics, where at least one of the spreading mechanisms alone is able to cause

an epidemic outbreak, and a mixture of mechanisms brings no additional advantage.

Results in the previous chapter suggest there could exist an optimal hybrid tradeoff

for hybrid epidemics in a metapopulation. This indicates the existence of a critically

hybrid epidemic, where each individual spreading mechanism alone is unable to cause

any significant spreading whereas the combination of such mechanisms leads to a huge

epidemic outbreak. This is relevant to the design of a complex system [190, 191]. This

chapter takes advantage of the model developed in the previous chapter to analyse how

the hybrid tradeoff between the two spreading mechanisms affects the outbreak of a

hybrid epidemic in greater detail.

5.1 Introduction
Hybrid spreading, the propagation of infectious agents using two or more alternative

mechanisms, is a common feature of many real world epidemics. Widespread epi-

demics (e.g. computer worms) typically spread efficiently via local spreading through

connections within a subpopulation, but also use global spreading to probe more distal

targets typically with much lower effectiveness. In many cases, the amount of resources

(e.g. time, energy or money) that an infectious agent can devote to all modes of prop-

agation is limited. This chapter focusses on the tradeoff, α , between local and global

spreading, and the effect of this tradeoff on the outbreak of an epidemic.

This chapter investigates the relationships between α , the relative weight given to

each spreading mechanism, and the other epidemic properties. These properties include
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epidemic infectivity, subpopulation structure, epidemic threshold, and the population

reproduction number.

We investigate the maximum epidemic outbreak in the context of varying infec-

tivity and recovery probabilities. For a given set of epidemic variables, we calculate

the theoretical prediction of Rp as a function of α using Eq. (4.13), and then obtain

the optimal α∗ and the maximal R∗p. For ease of analysis, we fix the global infection

probability β2 at a small value of 10−6 and then focus on the local infection probability

β1 and the recovery probability γ . The metapopulation used in the calculation is as in

Fig. 4.4.

5.2 Optimal hybrid tradeoff

5.2.1 Numerical results for optimal hybrid tradeoff
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Figure 5.1: Estimated optimal hybrid tradeoff α∗ for hybrid epidemics as a function of lo-
cal infection probability β1 and recovery probability γ . Epidemics spread in a
metapopulation that contains 500 subpopulations and each subpopulation is a ran-
dom network with 100 nodes and an average degree of five. The global infection
probability β2 = 10−6.

Fig. 5.1 shows the optimal hybrid tradeoff α∗ as a function of β1 and γ . For a given

γ , a larger β1 results in a smaller α∗. Intuitively this can be understood as when the

efficiency of local spread increases, less power needs to be devoted to this spreading

mechanism, and more can be allocated to global spreading. On the other hand, for

a given β1, a larger γ results in an increase in α∗. When the recovery probability is

higher, nodes remain infectious for shorter times. In this case, in order to achieve the
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maximum epidemic outbreak, more local infection is favoured, since this will allow an

infected subpopulation to remain infected for longer, and hence increase the probability

of infecting other subpopulations before it recovers.

5.2.2 Method to predict optimal hybrid tradeoff
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Figure 5.2: Estimated optimal hybrid tradeoff α∗ for hybrid epidemics as a function of β1/γ

(local infection probability divided by recovery probability), where the inset is on
log-log scale fitted as ln(α∗) = −0.84− 0.57 · ln(β1/γ). Epidemics spread in a
metapopulation that contains 500 subpopulations and each subpopulation is a ran-
dom network with 100 nodes and an average degree of five. The global infection
probability β2 = 10−6.

A plot of α∗ versus β1/γ is shown in Fig. 5.2. The fitting on the log-log scale in the

inset indicates the two quantities have a power-law relationship, i.e. α∗ is determined

by β1/γ . This means the optimal hybrid tradeoff α∗ can be predicted when β1/γ is

known.

The finding that α∗ is determined by β1/γ is in line with the results in Fig. 5.1.

Because Fig. 5.1 shows that each straight line starting from (β1 = 0,γ = 0) has the same

β1/γ value and the same α∗ value. We also observe that in Fig. 5.2 the power-law

relationship does not hold when β1/γ is close to 0; these outlier points however only

represent extreme cases where there is no epidemic outbreak (β1 is close to 0).
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5.3 Maximal population reproduction number

5.3.1 As a function of local infection probability and recovery

probability

 0  0.2  0.4  0.6  0.8  1

β1

 0

 0.2

 0.4

 0.6

 0.8

 1
ɣ

 0.1

 1

 10

 100

R
p
*

Figure 5.3: Estimated maximal population reproduction number R∗p for hybrid epidemics as a
function of local infection probability β1 and recovery probability γ . Epidemics
spread in a metapopulation that contains 500 subpopulations and each subpopula-
tion is a random network with 100 nodes and an average degree of five. The global
infection probability β2 = 10−6.

Fig. 5.3 shows the maximal R∗p as a function of β1 and γ , where the R∗p is obtained

when the corresponding value of α∗ in Fig. 5.1 is used. R∗p is very sensitive to the

recovery probability γ . As γ approaches zero, the value of R∗p increases dramatically

(note that R∗p uses a log-scale colour-map) regardless of value of β1. This is consis-

tent with the notion that a low recovery probability will favour any type of epidemic

spreading. For a fixed γ , R∗p increases with β1. An increased infection probability of lo-

cal spreading increases the reproductive number, if other parameters are kept constant,

but the effect is much smaller than that of changing the recovery probability, because

global spreading maintains the reproductive number when local spreading falls to lower

values.

5.3.2 As a function of local infection probability and hybrid trade-

off

Fig. 5.4 plots Rp as a function of β1 and α on a log-log scale while fixing γ = 0.1.

For given values of β1, the corresponding optimal α∗ are shown as points. The points
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Figure 5.4: Estimated maximal population reproduction number R∗p for hybrid epidemics as
a function of hybrid tradeoff α and local infection probability β1 with recovery
probability γ = 0.1. The points are the corresponding optimal α∗ for given β1.
Epidemics spread in a metapopulation that contains 500 subpopulations and each
subpopulation is a random network with 100 nodes and an average degree of five.
The global infection probability β2 = 10−6.

always fall in the area of the maximal R∗p for the given β1. Each point represents a local

optimum. The global optimum, the largest possible value of Rp, is in the bottom-right

corner, where the local infection probability is high but the epidemic expends the most

power on global spreading. Infection across subpopulations can only be achieved by

global spreading. Since global spreading has a low infection probability, the epidemic

should spend most of its time (or resources) on global spreading. Considerably less

time is spent on local spreading but its infection probability is high anyway.

Fig. 5.1 shows a clear phase shift between areas where an epidemic occurs (the

coloured area) and areas where it does not (the white area towards the top-left corner).

Accordingly, the corresponding R∗p in Fig. 5.3 in the area where no epidemic occurs is

very small. The boundary between the epidemic and non-epidemic phase is defined by

the line β1/(β1 + γ− γβ1) ≈ 0.2. This is the threshold for completely local spreading

in a single-population: β1/(β1 + γ − γβ1) > g′0(1)/g′′0(1) and g′0(1)/g′′0(1) ≈ 0.2 for

the network topology used. Since the global infection probability β2 is fixed at a small

value, no major spreading will occur either within or between subpopulations below

this threshold.
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5.4 Discussion
A better understanding of hybrid spreading mechanisms also has practical implications

in the sense that it has opened up the opportunity for strategies to protect against the

spread of epidemics. It is clear from both theoretical analysis and numerical simulations

that epidemics can spread with extremely low global infection probabilities (far below

individual recovery probabilities), provided there is efficient local infection. Such con-

ditions are common for cyber epidemics (as computers within infected local networks

tend to be more vulnerable to infection [142]). Protection strategies that target local

networks collectively (for example intensive local vaccination around individual dis-

ease incidents, as was used in the final stages of smallpox eradication [192]) may be a

key element for future strategies to control mixed spreading epidemics.

The above results are of practical relevance when the total amount of time or ca-

pacity that is allocated to spreading is limited by some resource constraint. For ex-

ample, the total probing frequency of Internet worms is often capped at a low rate to

prevent them from being detected by anti-virus software. Furthermore, other epidemic

parameters, such as local or global infection probabilities can be difficult to change

because they are derived from inherent properties of the infectious agent. For example

it would be difficult to increase the global infection probability of an Internet worm.

The tradeoff between different types of spreading therefore becomes a key parameter

in terms of design strategy, which can be manipulated to maximise outbreak size.

5.5 Summary
This chapter demonstrated that it is indeed possible to have a highly contagious epi-

demic by combining ineffective spreading mechanisms. The properties of such epi-

demics are critically determined by the tradeoff at which the different spreading mech-

anisms are mixed, and usually there is an optimal tradeoff that leads to a maximal out-

break size. In addition, we provided the method to predict the optimal tradeoff when

other epidemic parameters (including the infection probabilities, recovery probability,

and the metapopulation structure) are known.

Results in this chapter provide new strategies for maximising beneficial epidemics

(e.g. disseminating information) and estimating the worst outcome of damaging hybrid

epidemics (e.g. computer worms). The results can be utilised in practise to design
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more efficient information dissemination systems through integrating multiple spread-

ing mechanisms and optimising the tradeoff between them.
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Chapter 6

Analysis of the computer worm

Conficker

Conficker is a computer worm that exploded on the Internet in 2008. It is unique in

combining three different spreading strategies: local probing, neighbourhood probing,

and global probing. This chapter proposes a mathematical model that combines these

three modes of spreading to capture the worm’s spreading behaviour. The parame-

ters of the model are inferred directly from network data obtained during the first day

of the Conifcker epidemic. The model is then used to explore how the trade-off be-

tween spreading modes determines the worm’s effectiveness. Our results show that the

Conficker epidemic is an example of a critically hybrid epidemic, in which the differ-

ent modes of spreading in isolation do not lead to successful epidemics. Such hybrid

spreading mechanisms may be used beneficially to provide the most effective strate-

gies for promulgating information across a large population. When used maliciously,

however, they can present a dangerous challenge to current internet security protocols.

6.1 Introduction

Each computer on the Internet is associated with an Internet Protocol (IP) address.

Conficker views the Internet as a meta-population, where computers are located in

subpopulations, i.e. Local Area Networks (LAN), each consisting of computers whose

IP addresses share the same prefix.
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Figure 6.1: Conficker’s three probing strategies: (1) global spreading, where it probes any com-
puter on the Internet at random; (2) local spreading, where it probes computers in
the same local network; (3) neighbourhood spreading, where it probes computers
in ten neighbouring local networks.

6.1.1 Conficker spreading mechanisms

There are several versions of the Conficker worm on the Internet. Here we only study

the first version of the worm whose initial outbreak was captured by the Internet mea-

surement data [35, 45] collected by the Center for Applied Internet Data Analysis

(CAIDA) in 2008.

According to the computer security company Symantec [26], Conficker uses three

spreading mechanisms (see Fig. 6.1):

• Global spreading, where the worm probes computers with random IP addresses

on the Internet;

• Local spreading, where the worm on an infected computer probes computers in

the same Local Area Network (LAN) with the same IP address prefix;

• Neighbourhood spreading, where it probes computers in ten neighbouring LANs

(with smaller consecutive IP address prefixes).

6.1.2 Related works

Porras et al. [193] conducted a detailed analysis on the inner working flow of a single

Conficker worm by reverse engineering the captured Conficker worm sample. This

study also monitored the network activities of a host (computer) infected by the Con-

ficker worm. In addition, Porras et al. provided some potential evidence about the
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origin of the worm.

Both Li et al. [42] and Yao et al. [43] conducted population-level modelling and

analysis of the Conficker worm spreading. Li et al. [42] used a small self collected

dataset and Yao et al. [43] used the Conficker dataset from the Center for Applied In-

ternet Data Analysis (CAIDA) network telescope database [35, 45]. Both studies only

consider global spreading of the worm, ignoring its localised spreading behaviours.

Weaver [194] also conducted population-level modelling and analysis for the third Con-

ficker worm variant - Conficker C that was detected on 20 February 2009.

Shin et al. [21] analysed the distribution of IP addresses infected by the Conficker

worm based on a self collected dataset including 24,912,492 unique victim IP addresses

captured from 1 January 2010 to 8 January 2010. In their work, the distribution of these

victim IP addresses were calculated according to a number of measures including the

countries they were located in, the Internet Service Providers they were using, and so

on. Irwin [195] conducted a similar study based on a different dataset of the Conficker

worm. Its dataset was collected between August 2005 and September 2009, using a

monitoring network located within South Africa. Irwin [195] also provided statistics

about several properties of received attack packets, including their Time to Live (TTL),

size, and operation system. These two works [21, 195] do not model the spreading

dynamics of the Conficker worm.

Most of the previous modelling studies on the Conficker worm spread assume the

worm only conducts global spreading, ignoring the two localised spreading mecha-

nisms: local and neighbourhood spreading. While existing theoretical models might be

useful in estimating the total outbreak size of Conficker, they do not accurately replicate

its spreading mechanisms. Consequently, they are limited in their ability to provide fur-

ther insight and estimation for spreading dynamics of the worm should future variants

of the worm alter the combination of different spreading mechanisms. In addition, the

parameters of Conficker’s hybrid spreading and how they affect the epidemic dynamics

of the worm can help explain why the worm is so contagious but have not been the

focus of previous studies and so they have garnered little attention.
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6.2 Our model of Conficker spreading
Here we use a node to represent an IP address at which a computer (or computers)

connects to the Internet. For convenience, a sub-population (or a LAN) is referred to as

a subnet. A node must be in one of three states: susceptible, infected, and recovered [3].

Initially only a small number of nodes are infected and all others are susceptible. At

each time step, an infected node attempts to spread the worm to susceptible nodes using

one of the three probing strategies:

• Global spreading with probability αg, where the worm probes nodes on the In-

ternet at random with the global infection rate βg ∈ [0,1].

• Local spreading with probability αl , where it probes nodes in the local subnet

with the local infection rate βl ∈ [0,1];

• Neighbourhood spreading with the probability αn, where it probes nodes in ten

neighbouring subnets with the neighbourhood infection rate βn ∈ [0,1];

The mixing probabilities satisfy αg +αl +αn = 1.

An infected node is recovered with recovery rate γ ∈ [0,1]. A recovered node

remains recovered and cannot be infected again. Note that for mathematical analysis,

the mixing probabilities could be incorporated into the infection rates. However, this

study has treated them as separate parameters, considering that an infection rate reflects

inherent properties of a computer worm in the context of a specific target population,

whereas mixing probabilities are settings that can be easily modified in the worm’s

code. The mixing probabilities are used as controlling parameters in the study while

the other parameters are kept the same.

Only nodes that can potentially be infected by Conficker are relevant to the study.

They are referred to as the relevant nodes. A subnet is relevant if it contains at least

one relevant node. Irrelevant nodes include unused IP addresses and those comput-

ers that do not have the vulnerabilities that the worm can exploit. Note that although

the irrelevant nodes and subnets do not participate in the spreading of Conficker, they

will be probed by the worm as the worm does not have a priori knowledge regarding

vulnerable nodes.
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Let n represent the total number of relevant nodes and N the number of relevant

subnets. The average number of relevant nodes in a subnet is nN = n/N. Let N+

represent the average number of relevant subnets in ten neighbouring subnets.

At time t, the total number of susceptible, infected, and recovered nodes at time t

are S(t), I(t), and R(t), respectively. Then the average number of infected nodes in a

subnet is IN(t) = I(t)/N, and the average number of infected nodes in ten neighbouring

subnets is I+(t) = IN(t)N+. Hence on average a susceptible node can be infected via

(1) global probing by I(t) infected nodes in the Internet; (2) local probing by IN(t)

infected nodes in the local subnet; (3) neighbourhood probing by I+(t) infected nodes

in the neighbouring subnets.

The average probabilities that a susceptible node is not infected by the global,

local and neighbourhood probing are respectively:

Pg(t) = (1−αgβg)
I(t)

Pl(t) = (1−αlβl)
IN(t)

Pn(t) = (1−αnβn)
I+(t). (6.1)

The average probability of not being infected by any probing is P(t) = Pg(t)Pl(t)Pn(t).

Thus the discrete evolution of Conficker spreading can be described as:

S(t +1) = S(t)−S(t)[1−P(t)]

I(t +1) = I(t)+S(t)[1−P(t)]− γI(t)

R(t +1) = R(t)+ γI(t) (6.2)

where S(t)[1−P(t)] is the number of new infections at step t.

Compared with the hybrid epidemic model in Chapter 4, the epidemic model here

incorporates an additional spreading mechanism - neighbourhood spreading. We here

do not aim to obtain the analytical solutions for the final outbreak size and the epidemic

threshold of this model. The theoretical predictions in this chapter are all numerically

and iteratively calculated.
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6.3 Inference of model parameters from measurement

data

We infer the parameter values of our Conficker model from the Internet measurement

data [35, 45] collected by the Center for Applied Internet Data Analysis (CAIDA) in

2008. This is the only publicly available dataset that has captured the initial outbreak

process of the worm. The CAIDA Network Telescope project [35,45] monitors Internet

traffic sent to a large set of unusable IP addresses, which account for around 1/256 of

all addresses. No legitimate traffic should be sent to these monitored addresses because

they are not allocated for normal usage [196]. Thus the traffic data captured by this

project provides important insight into various abnormal behaviours on the Internet.

When Conficker spreads on the Internet, its global spreading mechanism sends

out probing packets to randomly generated IP addresses, some of which are unused IP

addresses and therefore are monitored by the Network Telescope project. Conficker’s

probing packets are characterised by the Transmission Control Protocol (TCP) with

destination port number 445. This feature can be used to distinguish Conficker packets

from other packets in the Network Telescope data.

For each record of Conficker’s probing packet, we are interested in two things: (1)

the time when the packet is monitored by the Network Telescope project, and (2) the

packet’s source IP address, which gives the location of a Conficker-infected node. The

destination address is ignored, as it is a randomly-generated, unused IP address.

We make use of the Network Telescope project’s dataset collected on 21 Novem-

ber 2008, the day of the Conficker outbreak on the Internet. Before the outbreak day,

the nearest two days with datasets available are 12 and 19 November 2008. The datasets

on these two days are used to filter out background “noise” that was already occurring

before the outbreak. That is, in the outbreak dataset, packets that were sent from any

source address that had already sent packets to any of the unusable addresses in the two

earlier datasets are discarded in the analysis. The prefix of /24 (i.e. IP address mask

of 255.255.255.0) is used to distinguish different subnets [21]. The analysis utilises a

10-minute window.
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Figure 6.2: Numbers of susceptible nodes S(t), infected nodes I(t) and recovered nodes R(t)
as a function of time t, as inferred from CAIDA’s dataset on 21 November 2008,
the day of Conficker’s outbreak.

6.3.1 Node status at a given time

The status of each node at time t from the CAIDA data is first identified. On the

day of the Conficker outbreak, all relevant nodes are initially susceptible. A node is

assumed to be infected by the worm when it has first been observed to have a Conficker

probing packet coming from it; and the node is recovered when its last probing packet

is observed before the end of the day. Fig. 6.2 shows the number of susceptible, infected

and recovered nodes as observed in a 10-minute window.

6.3.2 New infections by each spreading mechanism

Let dIl(t), dIn(t) and dIg(t) represent the numbers of newly infected nodes through

local, neighbourhood and global spreading, respectively, at time step t. Our analysis on

the data suggests that 84% of new infections occur within already infected subnets or

their neighbourhood subnets, i.e. only 16% of new infections appear outside the reach

of local and neighbourhood probing. This agrees with the understanding that local

and neighbourhood probing are significantly more effective than global probing [21].

And 73% of those new infections within the reach of local and neighbourhood probing

(i.e. 73%×84% of all new infections) occur in already infected subnets. This finding

suggests that local probing is more effective than neighbourhood probing. Based on

the above analysis we can then approximately identify the probing mechanism that is

responsible for a newly infected node by analysing the state of other relevant nodes at

the time when the new infection occurs.
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Figure 6.3: Numbers of nodes newly infected by Conficker via each of the three spreading
mechanisms in 10-minute windows on the day of Conficker’s outbreak, as inferred
from CAIDA’s dataset on 21 November 2008.

• IF there is an infected node already in the same subnet, the new infection is

caused by that infected node via local spreading.

• ELSE IF there is an infected node in the 10 neighbouring subnets, then the new

infection is via neighbourhood spreading.

• OTHERWISE, the newly infected node is infected via global spreading.

Fig. 6.3 shows the results, plotting the number of new infections caused by each spread-

ing mechanism as a function of time.

6.3.3 Epidemic parameters of Conficker

Based on the above results, the average probabilities that a susceptible node at time t

is not infected by the local, neighbourhood and global probing can be calculated as,

respectively:

Pl(t) = 1− dIl(t)
S(t)

,Pn(t) = 1− dIn(t)
S(t)

,Pg(t) = 1−
dIg(t)
S(t)

. (6.3)

IN(t) and I+(t) can also be calculated from the data according to their definitions. We

define the effective infection rate as bl = αlβl , bn = αnβn and bg = αgβg. Then we can

use Eq. (6.1) and Eq. (6.3) to calculate bl bn and bg.

Let λ denote the average total number of probes an infected node conducts during

each time step. The average number of local, neighbourhood and global probes in a

time step are αlλ , αnλ , and αgλ respectively. The number of nodes (relevant and
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irrelevant) probed by the local, neighbourhood and global probing are 256, 10×256 and

230 (it is not 232 due to a bug in the worm’s random number generation algorithm [26]).

We can express the effective infection rates as:

bl = αlλ/256, bn = αnλ/2560, bg = αgλ/230. (6.4)

By solving Eq. (6.4) together with αg +αl +αn = 1, λ , αl , αn and αg are obtained.

Then the infection rates of three spreading mechanisms can be calculated as βl = bl/αl ,

βn = bn/αn, and βg = bg/αg. And the recovery rate can be obtained as γ = dR(t)/I(t),

where dR(t) = R(t +1)−R(t).

6.3.4 Inference results and evaluation

The inferred values of the Conficker model parameters are shown in Table 6.1, includ-

ing the mixing probability α and the infection rate β for the three spreading mecha-

nisms, the recovery rate γ , the recovery time τ = 1/γ which is the average time it takes

for an infected node to recover, and the probing frequency λ . The parameter values are

averaged over time windows between 04:00 and 16:00 when the spreading behaviour

is stable. Computers are online and offline on a daily basis following a diurnal pat-

tern [156]. This factor only has a marginal impact on our results.

Table 6.1: Conficker parameters inferred from data.

Global spreading αg = 89.1% βg = 7.7×10−8

Local spreading αl = 5.3% βl = 0.32
Neighbourhood spreading αn = 5.6% βn = 0.032

Recovery rate γ = 0.064
Recovery time τ = 156 mins

Probing frequency λ = 82.5per 10mins
All parameters are measured in a 10-minute window.

We observe in the data that the worm has infected in total n=430,135 nodes, which

are located in N=92,267 subnets. On average, each subnet has nN=4.7 relevant nodes,

and N+=4.3 of ten neighbouring subnets are relevant.

With these parameter values, our Conficker model (see Eq. (6.2)) can be used to

theoretically predict the worm’s outbreak process. As measured from the data, the

number of nodes in the three statuses are S = 423,899, I = 3,945, and R = 2,291 at

04:00. The prediction begins at 04:00 and uses these numbers as the initial condition.
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Figure 6.4: Outbreak of computer worm Conficker. Points are measured from Network Tele-
scope’s dataset collected on the outbreak day. The curve is a theoretical prediction
from our Conficker model using the inferred parameters.

As shown in Fig. 6.4, our model predictions closely match the measurement data.

The inferred parameters are consistent with expectations. For example, local

spreading has a high infection rate because if a computer is already infected, then other

computers in the same subnet are likely to have a similar computer system and thus

are also likely to be vulnerable to the worm. By comparison, global spreading has an

extremely low infection rate. On average, more than 10 million global probings will

produce only a single new infection. On average an infected node retains its status for

approximately 2.5 hours (156 mins) before it recovers (e.g. switched off or updated

with new anti-virus database). The worm only sends out 8 probing packets per minute.

Such a deliberately low probing rate helps the worm to evade a computer’s or network’s

security systems.

6.4 Dynamics of hybrid spreading

6.4.1 Mixing two spreading mechanisms

Simulations are run using our Conficker model with the parameter values derived from

the previous analysis. The simulation network has 100k subnets. Each subnet contains

five relevant nodes and has 4 relevant adjacent subnets. This topology setting resembles

the spreading network observed in the Conficker data. Initially two random nodes are

infected. The only controlling (variable) parameters are the mixing probabilities of the

spreading mechanisms. Simulation results on mixture of two spreading mechanisms

are shown in Fig. 6.5.
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Figure 6.5: Simulation results for the mix of Conficker’s two spreading mechanisms with dif-
ferent mixing probabilities. (a) Mix of global (αg) and local (1−αg) mechanisms;
(b) Mix of global (αg) and neighbourhood (1-αg) mechanisms; (c) Mix of local
(αl) and neighbourhood (1-αl) mechanisms. In each case, the outbreak size, the
total duration of the spreading, and the speed of spreading are measured. The out-
break results include both the final outbreak size (square) and the outbreak size at
time step 100 (filled circle). Each data point is averaged over 100 simulation runs.
Note the y axes are all logarithmic.

Fig. 6.5a shows that as explained above, global spreading or local spreading alone

cannot cause an outbreak, whereas a mixture at a ratio of 0.8 to 0.2 produces a large

and rapid outbreak. Fig. 6.5b shows that the neighbourhood spreading alone (αg = 0)

can cause a large, but very slow outbreak, whereas the mix of neighbourhood spreading

with just a small amount of global spreading can dramatically accelerate the spreading

process. Fig. 6.5c shows that adding local spreading to neighbourhood spreading slows

down the spreading process considerably. When they are mixed at the ratio of 0.8 to

0.2, the spreading reaches the same final outbreak size but the whole process lasts for

the longest time.

6.4.2 Mixing three spreading mechanisms

Simulation results on mixing three spreading mechanisms are shown in Fig. 6.6.

Fig. 6.6a shows it is not difficult to achieve a large final outbreak size when the three

mechanisms are all present and local spreading or global spreading are not dominant.

Fig. 6.6b shows spreading will last for a longer time if there is less global probing.

Fig. 6.6c shows that the most contagious variation of the worm is a mix of global, local

and neighbourhood spreading at the probabilities of 0.4, 0.2 and 0.4 (see circle on the

plot), which causes the largest final outbreak with the highest spreading speed.
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Figure 6.6: Simulation results when three of Conficker’s spreading mechanisms are mixed at
different probabilities. Spreading properties shown include the final outbreak size,
the survival time and the spreading speed (see colour maps) as functions of the
mixing probabilities of global spreading αg (x axis) and local spreading αl (y axis),
where the mixing probability of neighbourhood spreading is αn = 1−αg−αl .
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6.5 Discussion
In this chapter, the epidemic spreading parameters of the Conficker worm are inferred

from observed data collected during the first few hours of the epidemic. Simulations of

worm spreading, based on these parameters, allow us to reach some important conclu-

sions about the worm’s use of hybrid spreading mechanisms.

6.5.1 Advantage of hybrid spreading mechanism

Conficker’s global probing is extremely ineffective. The infection rate of global probing

is many orders of magnitude smaller than the recovery rate. This means, if Conficker

used only the global probing, it would not have caused any significant infection on the

Internet at all.

Local probing has a remarkably high infection rate, βl = 0.32, which means when

an infected node conducts only local spreading, a susceptible node in the same subnet

has an 1/3 chance of being infected in a step (10-mins). However, local probing is

confined within a subnet. If the worm used only local probing, it would not have

infected any other subnets apart from those containing initially infected nodes.

Neighbourhood probing is constrained to a neighbourhood of ten subnets. It has a

high infection rate because computers in adjacent IP address blocks often belong to the

same organisation with similar computer systems and therefore similar vulnerabilities

that can be exploited by the worm. Since different nodes’ neighbourhoods can partially

overlap with each other, in theory it is possible for the worm to reach any node in the

whole meta-population by using only neighbourhood probing. Such process, however,

would be extraordinarily slow as demonstrated in Fig. 6.5b.

In summary, if Conficker used only a single spreading mechanism, it would have

vanished on the Internet without causing any significant impact.

Thus the enormous outbreak of the worm lies in its ability to do two things. Firstly,

it needs to devote great effort to explore every corner of the Internet to find a new vul-

nerable computer. Every new victim will open a new colony full of similarly vulnerable

computers. Secondly, it needs to make the most out of each new colony.

This is exactly what Conficker does. It allocates most of its time on global probing

with a mixing probability of α = 89%. This to a certain extent compensates for the

ineffectiveness of global probing. Although the worm allocates small amounts of time
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on local and neighbouring probing, their high infection rates allow them to exploit

all possible victims in subnets with efficiency. And all newly infected nodes join the

collective effort to flood the Internet with more global random probes.

In short, the Conficker worm is an example of a critically hybrid epidemic. It has

the ability to cause an enormous outbreak not because it has an advanced ability to

exploit weaknesses of a computer, but because it has a remarkable capacity for discov-

ering all potentially vulnerable computers on the Internet, i.e. it is not the infectivity,

but the hybrid spreading that makes Conficker one of the most infectious worms on

record.

6.5.2 Challenges of critically hybrid epidemics

The analysis of critically hybrid epidemics such as Conficker has important general im-

plications. Firstly, it demonstrates that it is possible to design a high impact epidemic

based on mechanisms, each of relatively low efficiency. Indeed results in Fig. 6.6c sug-

gest that Conficker could have had a larger outbreak with higher speed if it had used

a different set of mixing probabilities, which requires only a few lines of Conficker’s

program code to be changed. Hybrid mechanisms may therefore be ideal for rapid effi-

cient penetration of a network, for example in the context of an advertising campaign or

in order to promulgate important public health or security information. An interesting

example might be the use of media campaigns (global spreading) where the reader or

viewer is specifically requested to pass on a message via Twitter or Facebook to their

“local” group contacts.

Conversely, malicious hybrid epidemics can be extremely difficult to defend

against, and many existing defence strategies may not be effective. For example, im-

munising a selected portion of a local population in order to isolate and hence protect

the vulnerable nodes will not be effective, because vulnerable nodes can still be found

by the worm through random global spreading.

Another possible preventative measure is to reduce the average time it takes for

an infected node to recover, for example to speed up the release of anti-virus software

updates or increase the frequency of security scanning on computers. Our theoretical

predictions (using Eq. (6.2)) in Fig. 6.7 show that the final outbreak size (in terms of

total recovered nodes) does not change significantly when the recovery time is reduced
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Figure 6.7: Predicted numbers of susceptible, infected and recovered nodes at 16:00 on the
outbreak day as a function of the recovery time τ , which is the average time for an
infected node to recover. Conficker’s recovery time is 156 minutes.

from 156 minutes to 140 or 120 minutes. In practice, even achieving such reductions

would represent a remarkably difficult technical challenge. It is clear from the discus-

sion above that epidemics can spread with extremely low global infection rates (far

below individual recovery rates), provided there is efficient local infection. The ex-

tremely efficient spreading achieved once a given subnet or a set of subnets has been

penetrated is therefore obviously a key determinant of the worm’s outbreak [21]. Thus,

defence strategies that focus on security co-operation between nodes with a local net-

work neighbourhood (a “neighbourhood watch” strategy [21]) may be the key to the

prevention of similar outbreaks in the future.

In conclusion, the study uses data collected during the first day of the Conficker

epidemic to parametrise a hybrid model to capture the worm’s spreading behaviour.

The study highlights the importance of mixing different modes of spreading in order to

achieve large, rapid and sustained epidemics, and suggests that the trade-off between

the different modes of spreading will be critical in determining the epidemic outcome.

6.6 Summary
This chapter introduced a mathematical model to describe the spreading behaviour of

a critically hybrid epidemic - computer worm Conficker. The study was based on mea-

surement data provided by the Center for Applied Internet Data Analysis (CAIDA)’s

Network Telescope project [35, 45], which monitors Internet traffic anomalies. Using

the proposed Conficker spreading model, we inferred the worm’s epidemic parameters
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from data.

The theoretical predictions in this chapter closely reproduced the outbreak process

of Conficker. We demonstrated that the worm might be able to spread faster, reach a

larger outbreak size or survive for longer time by just revising the ratios at which the

worm allocated its time on each of the spreading mechanisms (while keeping every-

thing else the same), which can be easily achieved by changing a few lines of code.

This study has both theoretical and practical significance for understanding and

tackling hybrid epidemics: Firstly, it is amongst the first studies to explore a real-life

critically hybrid epidemic, where the epidemic’s parameter values are inferred from

measurement data. Secondly, it highlighted the complex interactions among Con-

ficker’s three spreading mechanisms, and demonstrated how the worm can be more

contagious if it combines its three spreading mechanisms in an optimal way.



Chapter 7

Modelling HIV infection within the

human body

Human Immunodeficiency Virus (HIV) can propagate from infected to susceptible cells

via two mechanisms: cell-free infection following fluid-phase diffusion of virions re-

leased by infected cells and by highly-efficient direct cell-to-cell transmission at cell

contacts. The contribution of this hybrid spreading mechanism, which is also a char-

acteristic of many computer worm outbreaks, to HIV progression in vivo remains un-

known. In this chapter, we introduce a mathematical model of HIV dynamics that

explicitly incorporates hybrid spreading. The model is validated against clinical data

from a cohort of untreated patients.

7.1 Introduction

HIV is a virus that attacks the human immune system - the defence that protects the

body against disease. Without medical treatment, people infected by HIV can develop

Acquired Immune Deficiency Syndrome (AIDS), which is a condition whereby the

immune system fails. AIDS exposes a patient to opportunistic infections (caused by

viruses, bacteria, parasites, fungi, etc.) and threatens his/her life [161].

Tremendous effort has been spent in understanding and treating the virus over the

past three decades. State-of-the-art HIV treatments can manage and control the virus’s

infection, but there is still no permanent cure for the disease [25]. This calls for further

collaboration among the research communities and commitment from civil societies to

tackle the disease.



86 Chapter 7. Modelling HIV infection within the human body

Figure 7.1: Scanning electron micrograph of HIV viruses budding from an infected CD4+ T
cell. Viruses are the dots in the figure. Such viruses travel freely in blood and body
fluid. When they encounter a healthy (susceptible) T cell, they may infect the cell
via the cell-free spreading. Image provided by Dr. Clare Jolly.

7.1.1 HIV spreading mechanisms

HIV primarily infects CD4+ T cells inside the human body. CD4+ T cells are helper

cells that play an important role in the functioning of the immune system. To simplify

the expression, in this thesis, unless otherwise stated, we use “T cells” to refer to CD4+

T cells. The virus is now known to spread between T cells via two parallel routes:

cell-free spread and cell-to-cell spread.

According to the classical model of HIV spread, as shown in Fig. 7.1, the virus

particles bud from an infected T cell, enter the blood/extracellular fluid and then can

infect another T cell following a chance encounter (termed cell-free spread). Because

diffusion of virus particles is much faster than cell migration, and there is extensive

flow of blood and fluid, this mode of spreading can be characterised by a well mixed

epidemic spreading model. In this scenario, the probability of infection for a particular

cell will be proportional to the concentration of extracellular infectious virus.

HIV infection can also transmit through direct cell-to-cell contacts between T

cells. Two pathways of cell-to-cell transmission have been reported. Firstly, as il-
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Figure 7.2: Scanning electron micrograph of a virological synapse between CD4+ T cells.
When a healthy T cell (light-yellow-coloured) forms a synapse with an infected
cell (purple-coloured), HIV can be transmitted directly to the healthy cell via the
cell-to-cell spreading. Image provided by Dr. Clare Jolly.

lustrated in Fig. 7.2, an infected T cell can transmit the virus directly to a target T

cell via a virological synapse [128–130]. Secondly, an antigen presenting cell (APC)

can also transmit HIV to T cells by a process that either involves productive infection

or capture and transfer of virions in trans [128]. Whichever pathway is used, infec-

tion by cell-to-cell transfer is reported to be much more efficient than cell-free virus

spread [197–199]. A number of factors contribute to this increased efficiency, includ-

ing polarised virus budding towards the site of cell-to-cell contact, close apposition

of cells which minimises fluid-phase diffusion of virions, and clustering of HIV en-

try receptors on the target cell to the contact zone [128, 129]. Cell-to-cell spread is

thought to be particularly important in lymphoid tissues where CD4+ T lymphocytes

are densely packed and likely to frequently interact. Indeed, intravital imaging studies

have supported the concept of the HIV virological synapse in vivo [200, 201].

The cell-free spreading resembles the global spreading analysed in previous chap-

ters and the cell-to-cell spreading resembles the local spreading. There is no neigh-

bourhood spreading mechanism in this HIV infection model.
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Figure 7.3: A typical HIV infection course including three phases. CD4+ T cell density (left
y axis) and virus load (right y axis) are two important clinical measurements that
are regularly monitored for HIV infected patients. These two measurements show
different dynamics during different phases of HIV infection. This typical HIV
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HIV infection courses observed in clinical measurements.

7.1.2 Three phases of HIV infection

Despite some variants among different patients, the HIV infection course is found to

follow a general pattern [179]. Fig. 7.3 shows a typical HIV infection course, including

three phases: 1) acute infection characterised by a rapid peak in virus load (3-6 weeks

post-infection) followed by a rapid fall in virus levels, 2) a stable chronic phase of

variable length characterised by low level virus load and slowly declining CD4+ T

cell numbers, and 3) the final stage, Acquired Immune Deficiency Syndrome (AIDS),

characterised by multiple opportunistic infections and a rapid fall in CD4+ T cell count.

The cellular and viral changes that drive each phase of this complex infection

have been the subject of intense debate, in which mathematical models have played an

important role in delineating HIV pathogenesis and informing antiretroviral therapies

[41, 162, 164].

7.1.3 Related works

The relatively recent finding that the HIV infection can also be transmitted via direct

cell-to-cell contacts between T cells [128, 129] has yet to be properly examined and

incorporated into modelling studies [41]. Most HIV infection models still assume the
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virus is only transmitted via cell-free spreading through free viruses in the blood and

body fluid. The models that take cell-to-cell infection into consideration are briefly

introduced in this section.

Sigal et al. [202] used a simple mathematical model and clinical experiments to

establish the connection between multiple infections in cell-to-cell transmission and

the resistance of HIV to medication. Portillo et al. [203] compared the difference be-

tween cell-free and cell-to-cell infections in terms of the genetic diversity of transmitted

viruses. Through both empirical experiments and theoretical modelling, the researchers

concluded that cell-to-cell spread can transmit multiple copies of HIV viruses through

an infection contact. This, as the researchers argued, is one of the mechanisms that

helps HIV maintain genetic diversity. Wodarz et al. [204] used a simplified model,

which assumed cells are located on a regular grid and infected cells can only pass the

infection to its nearest neighbours, to demonstrate that multiple infections (coinfection)

is important for HIV transmission at low virus load levels.

Komarova et al. conducted a series of modelling studies relevant to cell-to-cell

infection [130, 205–207]. In [205], they studied a hypothetical scenario where an in-

fected T cell transmits a fixed number of viruses during its lifetime and it can decide

the number of viruses to be transmit at each cell-to-cell infection contact. In the above

scenario, the authors’ model suggested that transmitting only one virus particle per in-

fection contact maximises the HIV infection. Another two studies [130, 206] analysed

a similar topic, but utilised a set of assumptions that led to a different set of conclu-

sions. These studies concluded that, depending on specific assumptions, the optimised

strategy could be either transmitting only one or an intermediate number of viruses per

cell-to-cell infection. Research in [207] used a simplified HIV infection model to fit

clinical records and concluded that cell-free and cell-to-cell infections nearly equally

contribute to the spread of HIV among T cells.

The rich literature related to the mathematical modelling of HIV infection within

the human body has been reviewed several times recently [41, 179, 180, 208]. Recent

studies incorporate sophisticated models of immune selection [178, 209], as well as

the formation of a latent reservoir of quiescent infected cells [173, 210]. However,

the interplay of cell-to-cell spread and increased CD4+ T cell activation, that is likely

to have profound influences on the progression of the disease has been hitherto little
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studied.

While existing works were able to provide some insight on the detailed infection

mechanisms, the entire course including the three phases and progression of the HIV

infection have still not been satisfyingly described and explained by either modelling

or empirical studies [179].

7.2 Our hybrid HIV infection model
Here we develop a new mathematical model that incorporates the basic principles of

previous host-centric models including a virus-dependent immune response [209], viral

latency and a progressive increase in cell activation [211, 212]. Notably, the model

additionally includes explicit terms for the two modes of virus spread, parametrised

from experimental observation.

An additional feature that is introduced into the model is the role of increased T

cell activation as the HIV infection progresses. It is well established that robust HIV

replication occurs in activated T cells [211,213], while resting (quiescent) cells are not

productively infected by HIV [214], due in part to high levels of the enzyme SAMHD1

(SAM domain and HD domain-containing protein 1) that acts as a viral restriction

factor by metabolising nucleotides required for HIV reverse transcription [215, 216].

The number of activated T cells may therefore limit the number of cells susceptible

to productive HIV infection during the asymptomatic chronic phases of the disease,

when the proportion of activated cells is small [213]. Conversely, there is increasing

evidence that HIV progression is accompanied by widespread immune activation, and

development of a chronic inflammatory process [211, 212].

The model is depicted in Fig. 7.4. We consider four distinct CD4+ T cell states:

activated, uninfected susceptible (S) cells; activated and productively infected (I) cells;

quiescent, uninfected (Q) cells; and quiescent latently (L) infected cells. The total

CD4+ cell density (N) is given by the sum of these four terms. The Quiescent state is

introduced to take into account the clinical finding that quiescent (i.e. resting) T cells

are not productively infected by HIV [214]. Similarly the Latent state is introduced

to incorporate the fact that infected T cells can become latent and establish a latent

reservoir for the virus [170]. These two states are also incorporated in some earlier

modelling studies [173, 179].
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Table 7.1: Variables and parameters of our model

Variables Initial value Unit
Q Density of quiescent CD4+ T cells a Q0 = 708 cells/µl
S Density of susceptible CD4+ T cells a S0 = 17 cells/µl
I Density of infected CD4+ T cells I0 = 0 cells/µl
L Density of latent CD4+ T cells L0 = 0 cells/µl
N Density of all CD4+ T cells N0 = 725 cells/µl
V Density of free HIV virus V0 = 10−6 virions/µl

Parameters Default value Unit Reference
γ Death rate of quiescent and latent cells 0.001 /day [217]
γS Death rate of susceptible cells 0.0625 /day [218]
γI Death rate of infected cells 0.5 /day [217]
b Production rate of new quiescent cells b 0.17 cells/µl/day [219]
rS Resting rate of susceptible cells 0.5 /day
rI Resting rate of infected cells 0.0001 /day
a Cell activation coefficient 0.01 /day
p Cell proliferation coefficient 1 /day [217]

NM Cell threshold density c 800 cells/µl
g Virus release rate from an infected cell 100 virions/cell/day [217]
γV Virus death rate 3 /day [217, 219]
c Cell contact rate d 330 /day [197, 220, 221]
θ Cell synapse rate e 0.56 [129, 197, 220, 222]
β1 Cell-to-cell infection rate f 0.19 [198, 203, 221, 223]
β2 Cell-free infection rate 0.00135 µl/virions/day [217]
D Immune response delay g 30 days [224]
κ Killing coefficient (when t > D) h 1.5 /day

a Q0 and S0 are chosen to maintain a stable density of CD4+ T cells (N0 = 725cell/µl) in the
absence of an infection; b Production from sources including thymus; c Beyond this threshold
CD4+ T cell proliferation stops; d The average number of effective contacts between two CD4+

T cells. Cells contact each other frequently, but only a proportion (20−25%) of these random
contacts are sufficiently stable and “effective” for a synapse to be formed at rate θ ; e The average
probability of forming a virological synapse when two cells have an effective contact; f The
average probability that a susceptible cell is infected when it forms a synapse with an infected
cell; g Between the initial infection and the onset of cellular immune response, including the
period before symptoms begin; h κ = 0 when t < D.
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Figure 7.4: Diagrammatic representation of our hybrid HIV infection model.

7.2.1 Ordinary differential equation system

The model can be described by an Ordinary Differential Equation (ODE) system

(Eq. (7.1)) and is illustrated in Fig. 7.4.

dQ
dt

=−γQ+ rSS−a
NM

N
Q+b

dS
dt

=−γSS− rSS+a
NM

N
Q− cI

S
N

θβ1−SV β2 + p
NM−N

NM
S

dI
dt

=−γII− rII +a
NM

N
L+ cI

S
N

θβ1 +SV β2−κ
I

I +0.1
N

NM
I

dL
dt

=−γL+ rII−a
NM

N
L

dV
dt

=−γVV +gI

(7.1)

The density variables (Q, S, I, L, V) and parameters are defined in Table 7.1. The

densities are measured as numbers of cells or virions in a µl of blood/extracellular

fluid. We set a density variable to zero when it drops to below 10−12/µl, accounting

for the fact that when the density of cells or virions drops to such low level, there is

a high probability that it would die out (density becomes zero). The default value of

parameters, shown in Table 7.1, are taken from the literature or estimated from clinical

and experimentally observed data. The killing coefficient κ is equal to its value in Table
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1 when t ≥ D; otherwise κ = 0 when t < D.

The production rate of new quiescent T cells from sources, such as the thymus,

within the human body is represented by b. Quiescent T cells are activated and be-

come susceptible at a variable activation rate a(NM/N), where a is the activation coef-

ficient and NM is the density of T cells at which proliferation stops. The activation rate

a(NM/N) increases as the total T cell density (N) falls (caused by HIV progression).

The detailed mechanism of how the activation rate increases with the progression of

HIV is still unclear, and may include increased rates of co-infections, danger signals

from dying T cells or homeostatic regulatory loops. This term, a(NM/N), here is an

approximation, which encompasses the combined effects of all these different mecha-

nisms. Quiescent T cells die at a rate of γ .

Susceptible T cells turns into quiescent T cells at a rate r. They proliferate at a

variable rate p(1−N/NM), where p is the proliferation coefficient, N is the total T

cell density, and NM is the T cell density at which proliferation stops. This variable

proliferation rate is a reasonable approximation [217] of the real T cell proliferation

process, based on evidence [162] that T cell proliferation rate is density-dependent and

would slow as the T cell density becomes high. Susceptible T cells die at a rate γS.

T cells and HIV viruses move freely and make contacts with each other randomly.

We define β2 as the infection rate of a susceptible cell being infected by a free virus.

Note that β2 incorporates two probabilities: (1) the probability of a T cell contacting

a HIV virus in a given time; and (2) the probability that an HIV infection takes place

during the contact between them. Thus we expect the total number of new cell-free

infections caused by free HIV viruses to be β2SV .

T cells move randomly and contact each other at a relatively constant rate. Some

of such contacts are “effective” such that they have a chance to form a more stable

contact, called “synapse”. When a synapse is formed between two cells, if one cell is

HIV infected and the other is susceptible, then there is a probability that the infected

cell can infect the susceptible cell. We define c as the average number of effective

contacts a T cell makes with all other T cells in a unit period of time. Biological studies

suggest that this number remains stable in a living person where the total number of T

cells (N) must stay above a certain level [220, 221]. Then cS/N is the average number

of effective contacts that a T cell makes with susceptible T cells. We define θ as the
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average probability that an effective contact becomes a synapse; and β1 as the average

infection rate that an infected T cell infects a susceptible cell while they form a synapse.

Thus we expect each infected T cell to infect c(S/N)θβ1 susceptible cells in a unit

period via cell-to-cell infection; hence the total number of new cell-to-cell infections

caused by all infected T cells are cI(S/N)θβ1.

In reality, cell-to-cell transfer occurs locally involving only the infected cell and

its immediate neighbours. The model abstracts this process by averaging infection over

all cells. In practice, local effects will only distort this average when target cells in the

vicinity of an infected cell become limiting. This limit seems unlikely to be reached

except very late in infection, given that infected cells continue to migrate, albeit at a

slower rate [200], and uninfected target cells continue to migrate into the vicinity of an

infected cell. More complex spatial models will be required, however, to understand

the detailed anatomical distribution of HIV infected cells over time. The amount of

cell-to-cell transfer in the model depends on the number of infected T cells I and the

proportion of susceptible cells S/N at any given time. Since N, the total density of

CD4+ cells, is not held constant, but in fact declines over time, cell-to-cell spread

becomes increasingly effective as HIV progresses.

The model does not explicitly distinguish antigen-presenting cell to T cell

(APC/T) from T cell to T cell (T/T) transmission. APC/T transmission may poten-

tially be most important very early in establishing infection [225], a process that is

not examined in detail in this model. These two types of transmission are in fact both

likely to occur most frequently and efficiently in the microenvironment of an APC/T

cluster, where APC/T interactions lead to T cell activation, and hence favour also T/T

interaction. Furthermore, there are very few quantitative estimates of the parameters

of APC/T interaction in vivo. The incorporation of an additional cell type is therefore

unlikely to have a major effect on the model behaviour, but would add significantly to

model complexity and uncertainty.

The cause of T cell death in HIV infection continues to be controversial, and prob-

ably includes several effects including lysis of infected cells by effector cells such

as CD8 T cells and NK (Natural Killer) cells, apoptosis/pyroptosis and bystander

death [212]. Non-immunological death of infected T cells is represented by a death

rate of γI . And the term κ
I

I+0.1
N

NM
is used to model the death of infected T cells by the
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Figure 7.5: Density of quiescent, susceptible, latent and infected CD4+ T cells, and the density
of free virions as a function of time (in days).

cellular immune response. κ is initially 0 and changes to a higher value in Table 7.1

when the cellular immune response kicks in D (default value: 30) days after the initial

infection. The term I
I+0.1 captures the relationship between the strength of the immune

response and the density of infected CD4+ T cells [209]. The term N/NM captures

immune exhaustion caused by HIV infection. It falls from around 1 before infection

towards 0 as HIV progresses (because NM is a constant and N, the total density of

CD4+ T cells, gradually declines with the progression of HIV).

Infected cells return to a quiescent state, and become latent, at rate rI . Latent cells

die and are activated (i.e. become infected cells) at the same rates as quiescent cells.

Infected T cells release free viruses at rate g. Free viruses die at a rate of γV .

The abortive infection of quiescent cells is not considered in this simplified model,

similarly to most previous modelling studies [41, 164, 206, 207]. HIV immune escape

mutants [226] are not directly modelled in this study but their effects on degrading

cellular immune response are reflected in the immune exhaustion in our model.

7.2.2 Reproduction of the full course of HIV infection

The numerical solutions of each of the variables are shown in Fig. 7.5. Fig. 7.6 shows

the combined CD4+ T cell counts (N) and virus load (V ), which are measured routinely

in the clinic to monitor HIV infection. Notably, the qualitative behaviour of the model
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accurately reflects the three main phases of disease that are observed clinically. The

model reproduces an acute infection phase, where the virus replicates rapidly (reflecting

the absence of any pre-existing adaptive immunity), peaks and then returns to a low

level by approximately five weeks. This metastable level of virus represents the clinical

“set-point”. The virus then remains stable for a prolonged period (note interruption and

change of scale in x axis), during which time T cells decline very slowly. Finally, T

cell numbers start to drop faster, and viral loads rise. The model calculation is stopped

when CD4+ level reaches 200cells/µl.

7.3 London clinical data

7.3.1 Recruitment of HIV infected patients

The London clinical data is collected by P. Pellegrino and I. Williams in the Mortimer

Market Centre for Sexual Health and HIV Research (London, UK), where individuals

acutely-infected with HIV were recruited. Subjects were mostly male Caucasians who

presented with symptoms of acute retroviral illness. Patient viral loads and CD4+ T

cell counts were measured longitudinally at serial time-points following infection using

standard clinical tests. All subjects were offered anti-retroviral treatment at diagnosis.
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The subjects selected for inclusion in the data all chose not to receive anti-retroviral

therapy in acute or early infection, and remained untreated until disease progression,

evidenced by a substantial decline in their circulating CD4+ T cell count occurred.

7.3.2 Criteria of patient selection

There were 39 patients in total in the data from Mortimer Market Centre for Sexual

Health and HIV Research (London, UK). For this study, we focussed the analysis

only on patients with more than ten data points for both HIV load and CD4+ mea-

surements (29 out of the 39 patients). We also excluded from the analysis a further 12

patients who showed no overall decrease in CD4+ count, or no increase in viral load

at later timepoints. The focus of the model described above is to capture the “typi-

cal” characteristics of HIV infection, which include that CD4+ count falls in general,

and viral load increases in general as infection progresses. It is widely accepted that

in some patients (for example the so-called “elite controllers”) viral load remains low

or undetectable and CD4+ count remains unchanged for long periods. The mecha-

nisms responsible for these phenomena are still incompletely understood. The current

model does not attempt to incorporate any such mechanism, and this group of patients

was therefore not included in the study. Further elaboration of the current model to

include additional features of viral control will be informative in helping to under-

stand such patients. The identifiers for the remaining 17 patients are: MM1, MM4,

MM8, MM9, MM12, MM13, MM23, MM24, MM27, MM33, MM39, MM40, MM42,

MM43, MM45, MM57, MM60.

7.4 Model evaluation

7.4.1 Calibrating model parameters for each patient

Most of the parameters of our model, and especially those determining HIV infectivity

via cell-to-cell or cell-free spreading, were obtained from experimental observations

(Table 7.1). It was therefore important to test that the model with this parametriza-

tion accurately fit real clinical datasets. We therefore evaluated our model against a

set of longitudinal T cell count and virus load measurements obtained from a cohort

of HIV-infected individuals who were recruited following clinical presentation with

symptomatic acute HIV infection and followed over time with serial measurement of
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Table 7.2: Model parameters calibrated from a cohort of treatment-naive HIV patients.

Patient Q0 (cells/µl) S0 (cells/µl) NM (cells/µl) κ (day−1) D(days)
MM1 879 21 996 1.753604 30
MM4 684 16 773 1.474027 33
MM8 392 9 439 1.076508 49
MM9 440 10 494 1.349088 61
MM12 542 13 611 1.982885 72
MM13 537 13 605 1.250311 31
MM23 419 10 470 1.150800 51
MM24 547 13 617 1.494605 54
MM27 606 14 684 1.353939 30
MM33 781 18 884 1.623077 33
MM39 553 13 623 1.276949 32
MM40 435 10 488 1.137114 46
MM42 641 15 724 1.801382 57
MM43 582 14 656 2.511129 80
MM45 542 13 611 1.273904 33
MM57 406 9 455 1.207627 58
MM60 587 14 662 1.325221 33

Results are shown for all 17 patients. In the data, time is recorded relative to the first appearance
of symptoms of HIV infection. As the actual initial infection date is unknown, we assumed a
constant “eclipse” phase of 20 days between initial infection and first appearance of symptoms.

plasma viral levels and circulating T cell counts. The subjects selected for inclusion in

this study all chose not to receive antiretroviral treatment in acute or early infection, and

remained untreated until progression towards AIDS, evidenced by a substantial decline

in their circulating CD4+ T cell count.

7.4.2 Model prediction vs. clinical data

We use our model to theoretically reproduce the HIV infection courses in the data.

The values for HIV infectivity were fixed, as derived from the literature or our own

observations (Table 7.1). Values for five parameters (Q0, S0, NM, κ and D) describing

the characteristics of the immune response were chosen for each patient to minimise the

error of the predicted quasi-stable level of T cell counts (Ns) and viral load (Vs), and the

time of progression to AIDS (tA). Of the five parameters, four of them (Q0, S0, NM and

D) can be determined in a relative straightforward manner from the patient data; Q0,

S0, and NM are determined by averaging the density of CD4+ T cells within 100 days

after infection for each patient; D can be determined as the time when the peak of the

virus density appears in the data. We need to infer the κ value. We use a search method

with a target to minimise the error in T cell density (N) between measurement data on
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Figure 7.7: Clinical data (circle and arrow) for all patients under study comparing against
model prediction (diamond) for the time to AIDS (tA), the quasi-steady density of
CD4+ T cells (Ns) and the quasi-steady density of free virions (Vs). An arrow repre-
sents that tA is greater than a particular value (represented by the connected circle)
for a patient as his / her CD4+ count did not reached AIDS level (200cells/µl) in
the data. Full prediction results are shown in Table 7.3.

the last day and the predicted value. Each step of our method improves the accuracy

of prediction. We stop when the κ value is refined to the precision level shown in the

Table 7.2. All other values remained fixed at the default values in Table 7.1.

The predicted progression results are compared against the actual measurements in

Fig. 7.7, Fig. 7.8, and Table 7.3. The predicted Vs and tA for each patient were negatively

correlated (correlation coefficient = −0.46), in agreement with the well-established re-

lationship between these two clinical values. Remarkably, the model can fit all patients

by modifying the five immune-relevant parameters over a narrow range. Furthermore,

the parameter values that gave the best results for the patients (see Table 7.2) are all

very close to those in Table 7.1, which were derived independently from experimental

measurements.

For the five parameters Q0, S0, NM, κ and D, when other parameters are fixed:

1) Q0, S0, and NM determine the initial density of CD4+ T cells; 2) D determines the

time of the transition from the acute phase (phase 1) to the chronic phase (phase 2); 3)

κ determines the time of the transition from the chronic phase (phase 2) to the AIDS

phase (phase 3). κ controls the long term development of the infection towards AIDS.
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Figure 7.8: Prediction (curve) of HIV progression course (N and log10V ) for four typical pa-
tients, where clinical data are shown as dots. The model predictions reproduce the
HIV infection courses in the clinical data. There are several outlier data points for
the virus level. Further investigations are needed for these points.
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Table 7.3: Model prediction of a cohort of treatment-naive HIV patients.

Patient
Ns (cells/µl) log10Vs (virions/µl) tA (days)
Data Model Data Model Data Model

MM1 851 829 1.63 1.45 >3317 3342
MM4 663 646 1.11 1.38 >1567 1612
MM8 367 354 1.36 1.41 846 978
MM9 368 359 1.64 1.64 895 1101
MM12 386 377 1.84 1.86 935 931
MM13 545 510 0.90 1.30 >1151 1162
MM23 381 374 1.68 1.45 1554 1574
MM24 462 453 1.72 1.69 >1093 1152
MM27 610 579 1.15 1.30 1389 1389
MM33 745 729 1.51 1.46 >2051 2061
MM39 558 526 1.08 1.30 1226 1286
MM40 408 400 1.26 1.36 >1550 1572
MM42 508 499 1.78 1.81 >966 1022
MM43 367 347 2.12 1.98 >787 786
MM45 543 521 0.30 1.23 >3068 3217
MM57 352 346 1.52 1.56 >1240 1387
MM60 582 554 0.60 1.36 >1140 1149

NS is the quasi-steady CD4+ T cell density and VS is the quasi-steady density of free virions,
which are average densities between the 100th and 800th days after initial infection. tA is the
time to AIDS, which is defined as the time between initial infection and when the density of
CD4+ T cells falls to 200 cells/µl.

7.5 Discussion

The aim of this study was to develop a model that reduces the enormous biological

complexity of the course of HIV infection to a few well-defined equations but never-

theless retains the main dynamic features of the disease. In particular, the model was

required to predict the evolution of a long lived metastable state of low level viral in-

fection, which ultimately breaks down to uncontrolled viral growth and a precipitous

fall in CD4+ T cells, two hallmarks of AIDS. The model incorporates both an immune

response, which is believed to be a major factor limiting viral expansion by killing of

infected cells, and the formation of long lived latently infected cells, which are believed

to play an important role in limiting the long-term effects of antiviral therapy. The key

distinguishing features of the model are that it explicitly incorporates cell-to-cell spread

of virus as well as classical spread via cell-free virus. The motivation of building such a

model was to investigate the role of these two modes of spread in determining the out-

come of infection, and thus complement the limited in vivo experimental and clinical

data available addressing this question.
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The model parameters were set initially according to published experimental data

obtained from a range of previous studies. This parameterization resulted in a model

that met the criteria outlined above, and reproduced all three main phases of HIV infec-

tion. The robustness of the model was tested by examining its ability to predict a set of

longitudinal clinical data (virus load and CD4+ T cell count) obtained from a cohort of

patients who were followed over extended periods in the absence of any antiviral ther-

apy. As expected, the progression of disease in these patients was highly variable, both

in terms of viral set point and disease progression. Despite its relative simplicity, the

model predicted this independent dataset well, requiring only small, and biologically

realistic changes to a few parameters.

7.6 Summary
This chapter presented a novel HIV infection model that can explain the complex

progress of the infection in all its phases and its variable timescale. Such a unified

model is important not only to understand the HIV infection dynamics, but also to

estimate the long term effects of therapeutic strategies on HIV progression.

Notably, the model additionally includes explicit terms for the two modes of virus

spread, parametrised from experimental observation. The model predictions are con-

sistent with a set of longitudinal data (viral load and CD4+ T cell count) from a cohort

of untreated HIV infected patients.



Chapter 8

Analysis of HIV dynamics and

treatments

Mathematical models provide an important tool for understanding and predicting the

natural course of HIV infection that complements clinical studies. The most appro-

priate therapeutic regimens for HIV therapy continue to be the subject of disagreement

and debate. In addition, many new therapeutic modalities aimed at achieving viral erad-

ication, such as the HDAC inhibitors [227], or therapeutic vaccination [228] are being

proposed. However, testing new treatment regimens is a costly and time consuming

task, and the logistic challenges and expense of running clinical trials to evaluate and

compare treatments remain a major bottleneck to translational advances in HIV ther-

apy. Mathematical models have proved of value in the past, but have suffered from

omitting important biological processes, thus compromising their ability to accurately

recapitulate clinical observations.

8.1 Introduction
Hybrid spreading is in fact a feature of other viral infections [229], but is also shared in

other “epidemic” scenarios such as the spread of computer worms [22, 230], or of mo-

bile phone viruses [102]. The mathematical analysis of hybrid spreading has received

significant previous attention [29, 57, 102, 231]. However, the importance of hybrid

spread to HIV dissemination and disease progression, has not been explored from a

mathematical point of view.

The HIV infection model presented in the Chapter 7 explicitly incorporates cell-

to-cell transmission, and changing rates of cellular activation, two processes that are
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known to be key features of HIV infection. With increased sophistication, our HIV

infection model allows us to theoretical investigate the dynamics of HIV infection pro-

gression including the roles of cell-to-cell spread and cellular activation. This chapter

will also investigate the long term effects of various treatment strategies on HIV infec-

tion using our model.

8.2 Dynamics of HIV infection
Having confirmed that the model gives realistic estimations and predictions of real

clinical data in Chapter 7, we investigated the behaviour of the model in greater detail.

8.2.1 Role of cell-to-cell spread

The role of the two spreading routes was further examined by systematic variation of

the cell-to-cell infection rate, β1, and the cell-free infection rate, β2. The predicted

outcome of infections are shown in Fig. 8.1. When either route is abolished, infection

is blocked completely; T cell level returns to normal and the virus is cleared after the

cellular immune response kicks in. If cell-to-cell spread is removed from the model

(β1 = 0) even a doubling in cell-free infection rate does not result in infection progres-

sion. In contrast, a doubling of the cell-to-cell infection rate increases the set-point of

viral load, and greatly speeds up the progression of infection even in the absence of

cell-free infectivity. Thus the model suggests cell-to-cell spread may be an important

force in allowing the virus to establish an infection in lymphoid tissue [225].

Fig. 8.2 depicts the number of CD4+ T cells newly infected via either cell-to-cell

spread or cell-free spread as the infection progresses. The model predicts that cell-to-

cell transfer becomes increasingly dominant as the total number of CD4+ T cells falls,

the proportion of susceptible cells rises (Fig. 8.2 inset left y axis) and the strength of

immune response falls (because of immune exhaustion, see Fig. 8.2 inset right y axis).

8.2.2 Effect of cellular activation

In the context of the model, the transition from phase 1 (acute) to phase 2 (stable

chronic) is driven by a balance between several processes, including viral spreading

through two parallel modes, and the cellular immune response, i.e. killing of infected

cells as the cytotoxic CD8+ T cell response becomes active. Paradoxically, in the stable

chronic phase, the activation of T cells, which is the hallmark of adaptive immunity and
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Figure 8.1: Two modes of HIV infection. The density of CD4+ T cells as a function of time for
different values of cell-to-cell infection rate β1 and cell-free infection rate β2: (1)
both use their default value, (2) β1 uses its default value and β2 = 0, (3) β1 = 0 and
β2 uses its default value, (4) β1 is twice its default value and β2 = 0, (5) β1 = 0 and
β2 is twice its default value.

is aimed at protecting the host, in fact contributes to the persistence of HIV. The role of

CD4+ T cell activation is explored in Fig. 8.3. In this model, the rate of T cell activation

a(NM/N) increases as the number (N) of T cells falls. In the absence of this feedback

(i.e. when the activation rate is fixed), the HIV infection would not progress to AIDS

after the onset of the cellular immune response. In contrast, if the activation rate is

doubled, then infection progresses significantly faster to AIDS. These results confirm

and extend the findings of DeBoer and Perelson [217], which suggested an increasing

rate of cellular activation was important in the establishment of chronic infection and

progression to AIDS. The results are also consistent with evidence that non-pathogenic

SIV infection in the natural host species results in viral replication in the absence of

chronic immune activation and no AIDS [232].
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8.3 Model prediction based on treatment trial data
The proposed model can help evaluate the long term effects of different treatments on

HIV progression. Once the start time, duration, and effectiveness against two modes of
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HIV spread are known for a treatment, its effects on HIV progression can be evaluated

by the model.

8.3.1 The SPARTAC data

To validate the model’s ability to evaluate HIV treatments, we use it to theoretically

reproduce the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion

(SPARTAC) trial [46]. The SPARTAC trial aims to evaluate how the short-course an-

tiretroviral therapy (ART) delays HIV progression. The patients (366 in total) who

participated in the trial were randomly assigned to three groups: standard care, 12-

week ART treatment, and 48-week ART treatment. For these three groups of patients,

the primary end point tp (defined as when CD4+ count ≤ 350cells/µl or the start of

long-term ART) on average reached 157 weeks (standard care), 184 weeks (12-week

ART), and 222 weeks (48-week ART) after randomisation. Randomisation is the time

when the trial starts.

8.3.2 Calibration of model parameters

We first estimate time points of the SPARTAC trial (randomisation, start of the treat-

ments, and primary end points tp) in terms of days after the initial infection. Accord-

ing to [46], the median interval between seroconversion and randomisation (start of

trial) was 12 weeks. The exact average time of seroconversion for patients in the

SPARTAC trial is not directly available from [46]. We assume it is two weeks af-

ter initial infection, as seroconversion normally happens within a few weeks after

HIV-1 infection. Then the time of randomisation (start of trial) can be estimated as

7(2+12) = 98days after infection. The treatment is estimated to start three days after

randomisation [46], i.e. 98+3 = 101days after infection. And the primary end points

for patients in standard care, 12-week ART, and 48-week ART groups are respectively:

98+ 7× 157 = 1197days, 98+ 7× 184 = 1386days, and 98+ 7× 222 = 1652days

after infection.

We then use the average CD4+ count and virus load of all patients at randomi-

sation, and the primary end point of the patients in standard care group to fit the five

immune-relevant model parameters (Q0, S0, NM, κ and D). These fitted parameters

represent an average patient in the trial.
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8.3.3 Theoretical evaluation of the trial results

We then evaluated the effects of the 12 and 48 week therapies using the model. The

therapy was assumed to be 100% effective against cell-free transmission, but we eval-

uated the model for both 100% and 50% efficiency against cell-to-cell transmission,

since cell-to-cell transmission has been reported as being more resistant to some forms

of therapy [202,233]. Both modalities reproduced the observed effects of therapy well,

and the model results were robust to changes in the efficiency (Table 8.1). The model

therefore not only fits known datasets (standard care group) but also accurately predicts

the effects of new treatment regimes on two independent patient groups (12-week and

48-week).

Table 8.1: Model prediction of the SPARTAC trial

Patient groups: Standard-care 12-week-treatment 48-week-treatment
Nr (cells/µl) Data: 559

Model: 560
Vr (virons/µl) Data: 17 (log10Vr = 1.2)

Model: 12 (log10Vr = 1.1)
tp (days) Data: 1,197 1,386 1,652

Model: 1,197 1,392 | 1,394 1,654 | 1,656
Nr and Vr are the density of CD4+ T cells and free virions at the randomisation (when
patients groups are randomly divided and the trial starts). tp is the time between the
initial infection and the primary end point (when density of CD4+ T cells decreases to
350 cells/µl or the start of long-term ART [46]). The tp estimated from the model is
the time when CD4+ T cells decreases to 350 cells/µl. Section 8.3.2 describes how tp
is inferred from the data [46] in terms of days after infection. The model parameters
calibrated from the trial data (by fitting the average Nr, Vr for all patients and tp for
the standard care group) are Q0 = 566 cells/µl, S0 = 13 cells/µl, NM = 638 cells/µl,
κ = 1.292165 /day and D = 28 days. The trial treatment is assumed to be 100%
effective against cell-free HIV spread. We estimate the tp for 12-week, and 48-week
treatment groups if the treatment is 50% (value in bold font) or 100% (value in normal
font) effective against cell-to-cell spread of HIV.

8.4 Analysis of HIV treatment strategies
This section investigates how a treatment’s starting time and efficiency affect its effect

on HIV infection progression.

8.4.1 Early treatment intervention

We further explored the sensitivity of the model to perturbation as a function of treat-

ment starting time (Fig. 8.4). The “treatment” lasts for 30 days, during which both cell-
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free and cell-to-cell infection are completely blocked. Once “treatment” is finished,

two modes of HIV infection resume. Early treatment in this model (3 days after infec-

tion, i.e. post-exposure prophylaxis) leads to no decline in CD4+ T cell density, and no

chronic infection phase. The same treatment applied when T cell density reaches the

levels (500 CD4+ T cells/µl and 350 CD4+ T cells/µl) at which the World Health Or-

ganization recommends ART initiation [234] is followed by a rapid virus rebound after

the treatment stops, and the disease progresses according to its normal course. Thus, as

HIV progresses it becomes increasingly difficult to control infection in this model.
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Figure 8.4: Impact of treatment starting time on HIV progression. HIV progression for a
30-day “perfect” treatment starting at three different times after the initial infec-
tion: (1) on the 3rd day when the density of all CD4+ T cells is N = 725cells/µl,
(2) when N = 500cells/µl; (3) when N = 350cells/µl. The ‘prefect’ treatment
here means both cell-to-cell infection and the cell-free infection are completely
blocked (i.e. β1 = 0, β2 = 0 and the virus release rate g = 0) for 30 days.

8.4.2 Treatments on both cell-to-cell spread and cell activation

Finally, we looked at the interactions between treatment starting time, activation rate

and efficiency of therapy against cell-to-cell spread (Fig. 8.5). In general, increased ef-

ficiency of therapy and earlier treatment both prolonged time to progression to AIDS.

However, the effects of altered activation depend in a complex way on the context of

the intervention. Blocking activation early is beneficial, since it will reduce the number

of susceptible cells HIV can infect; while blocking activation late, when the latent HIV

reservoir has been established, will prevent latent HIV from being activated and erad-
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icated. Increasing cellular activation, which has been proposed as a means of flushing

out the latent reservoir [227], can be effective in increasing time to AIDS when given

in the context of efficient anti-viral therapy, but can shorten the time if concomitant

anti-viral therapy is incomplete. This is because increasing cellular activation increases

both the number of susceptible cells (activated from quiescent cells) and the number of

infected cells (activated from latent cells) at the same time. Thus if it is used together

with an effective anti-viral therapy, the latent HIV reservoir will be flushed out and

killed by the antiviral drugs. But if the concomitant anti-viral therapy is not efficient

enough to clear the increased number of infected cells, the spread of HIV will speed

up.

8.5 Discussion
A fundamental prediction of the analysis is that, given the known experimentally de-

rived parameters of cell-to-cell and cell-free spreading, the two modes of spread com-

plement each other and both make important contributions to disease progression. In

addition, it is clear that there is a close relationship between the proportion of activated

T cells, cell-to-cell spread and disease progression. Specifically, cell-to-cell spreading

is strong when the percentage of activated, and therefore susceptible cells is high in the

population, since an infected cell is then more likely to encounter an effective target

(a susceptible cell) to infect. When the percentage of susceptible cells is low, infected

cells will mostly encounter quiescent/resting cells that will provide ineffective targets.

These conditions may occur both early and late in HIV infection. The site of infection

itself (for example the vaginal mucosa) may contain a large proportion of activated T

cells some of which may be interacting with APC, particularly if there is a concomitant

sexually transmitted infection. The well-documented association between HIV infec-

tion and other mucosal infections may therefore reflect the key importance of a high

concentration of APC and activated T cells in early transmission of the virus [235].

There is also convincing evidence that gut associated lymphoid tissue is a major site of

viral replication early on in the disease [236,237]. This tissue is characterised by an un-

usually large proportion of T cells capable of supporting HIV replication, presumed to

result from chronic exposure to the gut microbiome. Since cell-to-cell spread is much

more efficient, and under these conditions the number of activated target cells are not
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Figure 8.5: Prediction of the time to AIDS, tA, for different treatment schemes. We consider
30-day treatments starting (a) on the 3rd day and (b) when N = 500cells/µl, re-
spectively. All treatments block cell-free infection completely (β2 = 0 and g = 0).
The treatments also affect cell-to-cell infection (x axis) and/or manipulate the CD4+

T cell activation process (y axis, see Fig. 8.3). The black squares represent treat-
ments that reduced the density of infected cells, latent cells and free virions all
below 10−12 per µl.
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limiting, our model predicts that gut lymphoid tissue would provide an ideal microen-

vironment for rapid propagation of HIV, at least until the majority of target cells are

infected or die. Further development of the basic model, to allow heterogeneity asso-

ciated with different anatomical compartments would allow this prediction to be tested

directly.

The model also predicts a dominant role for cell-to-cell spread in the late phase

of HIV. As in the scenario of an infection early on in the gut lymphoid tissue, our

model predicts that the late stage of the disease will be associated with a large number

of infected cells, combined with a large proportion of activated target cells. A high

number of infected cells is a simple corollary of the very high levels of free virus late in

infection in the absence of treatment. There is also substantial experimental evidence

for increased immune activation in the late phases of HIV [211], and indeed this has

been proposed as an important contribution to pathogenesis. Thus cell-to-cell spread is

likely to become the dominant mode of transmission in the late stages of HIV. This may

be important in light of recent data showing that the different components of current

HAART display variable efficacy against cell-to-cell spread [202, 233].

Interestingly, the hybrid spreading mechanism employed by HIV is reminiscent of

those of some computer worms such as Red Code II and Cornficker [22, 230], which

allocate their resources between probing for susceptible target computers in local area

networks and globally across the Internet. Like HIV, local interactions have a high

chance of success but access only a limited number of targets while global spread

targets a much larger number of targets with a much lower probability of success.

Modelling studies have shown that this hybrid spreading is required to explain the

large outbreak of such worms on the Internet [231]. It is tempting to speculate that

hybrid spreading may contribute to the pathogenicity and dynamics of infection of

other viruses that employ parrallel spreading mechanisms, for example the Hepatitis C

virus [229].

The current model incorporates some simplifying assumptions. Nevertheless, the

model does provide some insight into the effectiveness of therapy at different stages

of disease. Specifically, the model strongly supports the hypothesis that interfering

with viral infection early in HIV progression is likely to have a major impact on the

subsequent progress of the disease. Interfering with viral transmission is predicted



8.6. Summary 113

by our model to be much more effective early in HIV infection. The clinical deci-

sion about when to start therapy remains a matter of debate. Current WHO guide-

lines suggest commencing treatment at CD4+ T cell density of > 350cells/µl and

< 500cells/µl [234]. However, studies exploring much earlier commencements of

treatment, have claimed increased efficacy [46, 238]. For example, the recent “Short

Pulse Anti-Retroviral Therapy at Seroconversion” (SPARTAC) trial, demonstrated a

long term clinical benefit of a limited period of ART soon after seroconversion [46].

Our model accurately predicted the results of the SPARTAC trial providing further sup-

port for the model’s generality and robustness.

Anti-viral therapies that specifically target cell-to-cell spread are not currently

available, but are clearly important therapeutic goals [233]. A number of previous stud-

ies have proposed combining antiviral therapies with therapies that either limit CD4+

T cell activation (thus reducing the number of target susceptible cells) or increased T

cell activation, thus flushing out residual latent cells. These approaches have not pro-

vided clear cut clinical benefits [239,240]. Indeed our model suggests that the outcome

of such manipulation of cellular activation will be critically dependent on the time at

which it is administered, and the efficiency of concomitant antiviral therapy. Targeted

suppression of CD4+ T cell activation, in combination with antiviral therapies may

nevertheless offer a useful approach, if used early on in infection.

8.6 Summary
This chapter showed that the two modes of spread of HIV infection, cell-to-cell spread

and cell-free spread, complement each other and both make important contributions

to disease progression. This work is the first to reasonably predict that cell-to-cell

spread becomes increasingly effective as infection progresses and thus may present a

considerable treatment barrier for eradicating the disease.

The analysis in this chapter provided specific predictions that emerge from the

close links between CD4+ T cell activation and cell-to-cell spread, and their combined

contribution to both early and late phases of HIV infection. These predictions empha-

sise the potential benefits of early or prophylactic treatment with antiretroviral thera-

pies, and suggest that drugs with the ability to effectively block cell-to-cell spread may

provide significant therapeutic benefit in long term management or eradication of HIV
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infection.



Chapter 9

Discussion

This chapter discusses the limitations of our study and suggests future research direc-

tions.

9.1 Limitations

It is important to note that the research presented in this thesis has its limitations. This

is mainly due to two reasons.

Firstly, like many other modelling studies, we need to simplify the real systems

and introduce assumptions to a model in order to reduce the model’s complexity and

conduct mathematical analysis. For example the hybrid epidemic model proposed in

Chapter 4 assumes the local spreading network is uncorrelated. This assumption sig-

nificantly simplifies theoretical derivation but it prevents the model from accurately de-

scribing hybrid epidemics with local spreading on correlated networks (e.g. clustered

networks [65,67]). More sophisticated mathematical models for epidemic spreading in

correlated networks [17, 241] can be adopted to overcome this limitation.

Secondly, there are many issues about the real phenomena that we still do not un-

derstand entirely. This is particularly true for HIV. For example, clinical studies indicate

that the cell activation rate increases with the progression of HIV infection [211, 212],

but the quantitative mechanism of such relation is still unclear. In the HIV infection

model in Chapter 7, we assume that the cell activation rate is linearly related to the

progress of HIV progression. Further clinical investigations on the detailed mecha-

nisms of HIV infection can help clarify the relation and improve the model.
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9.2 Future directions
Many important future studies can be built upon our models and results.

9.2.1 Spreading speed and survival time of hybrid epidemics

Most existing hybrid epidemic spreading studies largely overlook the duration of an

epidemic. They focus on modelling the final outbreak size and how it is affected by

other epidemic parameters. Survival time, nevertheless, is a practical and important

factor in helping to better understand and control many real epidemics. Some computer

worms increase their survival by intentionally reducing their spreading speed to avoid

detection [26]. Survival time can be as important, if not more important than outbreak

size for computer worms because many of them seek to establish a lasting network that

can be controlled and exploited by the worm designer thereafter. The computer worm

Conficker, for example, is still active on the Internet, 6 years after its outbreak [28]. The

HIV infection (spread) within human body also persists for years before it eventually

takes a patient’s life. Consequently, these empirical realities throw light on the practical

importance of systematically modelling and in turn helping understand the epidemic

survival time in the future.

This is especially true for hybrid epidemics where the tradeoff among spreading

mechanisms can be manipulated. Many interesting and useful aspects about how and

why the tradeoff affects a hybrid epidemic’s survival are yet to be investigated. For ex-

ample in Chapter 4 and Chapter 6, we found that, while causing the same final outbreak

size, a hybrid epidemic can either spread quickly and survive for a short temporal pe-

riod, or spread slowly and survive for a considerably longer temporal period. As shown

in Fig. 6.5 and Fig. 4.4, two different tradeoff values can lead to a same outbreak size

of a hybrid epidemic, but with different survival time and spreading speed. This is an

interesting finding that should be further investigated. The simulation results in Chap-

ter 6 about the dynamics of the computer worm Conficker’s spreading have provided

some relevant insight. We aim to further model, explain, and utilise this finding in the

future.

9.2.2 Additional case studies

We have conducted case study on two distinct real hybrid epidemics: the computer

worm Conficker spreading on the Internet and HIV infection within the human body.
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However, these only represent only two of the many real world hybrid epidemics, many

of which require new and specific hybrid epidemic models to incorporate their unique

characteristics.

For example the Hepatitis C Virus (HCV), similar to the Human Immunodefi-

ciency Virus (HIV), also employs both cell-free and cell-to-cell spreading mecha-

nisms [242]. But they have different infection targets. While HIV infects CD4+ T

cells of the human immune system, HCV infects the liver’s tissue cells. Compared

with HIV, HCV also has different interactions with the immune system. So that, even

though HCV shares similar spreading mechanisms with HIV, HIV’s epidemic model

cannot be directly applied to HCV. A new and more specific hybrid epidemic model is

necessary to take into account HCV’s unique characteristics.

Other hybrid epidemic cases include the spreading of mobile phone viruses [102],

Code-Red [22] and many other computer worms [148].

9.2.3 Research on future HIV treatments

Our HIV model provides a strategy to theoretically evaluate the long term effect of

treatment strategies on HIV infection progression. This is typified by our reproduction

and evaluation of the results of the Short Pulse Anti-Retroviral Therapy at Seroconver-

sion (SPARTAC) trial [46] in Chapter 8. Following our analysis on the SPARTAC trial,

we expect researchers to use our model to evaluate more future treatment strategies.

A very important value of our HIV model is that it can help pre-select the most

promising treatment strategies among a potential long list of candidates before con-

ducting a treatment trial. Trials are often expensive and time-consuming. Being able to

filter out unpromising treatment candidates can increase the success rate of treatment

trials, and save time and resources.

9.2.4 Controlling strategies for hybrid epidemics

It is of practical importance to be able to control the spreading of epidemics. On the

one hand, positive epidemics, such as the dissemination of useful information, should

be promoted as they contribute to society. While, on the other hand, negative epi-

demics, such as the spreading of computer worms and viruses on the Internet, should

be mitigated because they have damaging consequences to the society or economy.

Our results in Chapter 5 demonstrated that it is indeed possible to have a highly
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contagious epidemic on a metapopulation by mixing local and global spreading mech-

anisms. And the tradeoff between local and global spreading plays a critical role in

determining a hybrid epidemic’s outbreak size. In the future, more efficient hybrid

spreading systems can be built for positive epidemics, by using our model to optimise

the tradeoff between different spreading mechanisms.

In Chapter 6, we show for the computer worm Conficker, an example of a negative

hybrid epidemic, mixing multiple spreading mechanisms plays an important role in

its enormous outbreak and long lasting survival. Most of the worm’s infections were

caused by localised spreading mechanisms (See Fig. 6.3). A promising direction to

mitigate such epidemics can be community-based protection strategies [21].

9.2.5 Immunisation against hybrid epidemics

As mentioned in Chapter 2, immunisation strategies protect a network against harm-

ful epidemics and they are an important branch of epidemic spreading research. Most

existing immunisation strategies try to fragment an epidemic spreading network into

many separated components [111]. The level of fragmentation of a network is often the

criterion to compare different immunisation strategies. These strategies largely work

for epidemics employing only a local spreading mechanism where infection is trans-

mitted solely through connected individuals on a network. Their effectiveness against

hybrid epidemics, however, is highly questionable. This is because, hybrid epidemics

also employ global spreading that is not constrained by a spreading network. Although

normally with a very low infection rate, global spreading enables an infected individual

to infect any other individuals. That is, even if the local spreading network can be frag-

mented into separate components by existing immunisation strategies, global spreading

can persist and consequently still spread the epidemic between these components.

Therefore, there is a practical need to re-evaluate existing immunisation strategies

against hybrid epidemics. Furthermore, more efficient immunisation strategies specif-

ically targeting hybrid epidemics should be investigated. This thesis does not directly

provide these immunisation strategies, which is an important direction for future re-

search.
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Conclusions

Hybrid epidemics are ubiquitous in nature and society but we still lack understanding

of its important dynamics. Especially the critically hybrid epidemics, where a mix of

different mechanisms is a necessary condition for an epidemic outbreak, have rarely

been explored and explained. The motivation of this research was to improve our un-

derstanding of hybrid epidemics.

Firstly a general framework to model hybrid epidemics was introduced in Chapter

4. Results based on theoretical analysis and numerical simulations in Chapter 5 showed

that properties of hybrid epidemics are critically determined by a hybrid tradeoff. The

hybrid tradeoff defines the proportion of resource allocated to two spreading mecha-

nisms: local spreading among individuals in a community and global spreading among

all individuals in all communities. For an epidemic spreading in a metapopulation with

a small global infection rate, our results indicate that the optimal hybrid tradeoff that

leads to the largest outbreak is determined by β1/γ (local infection probability/recovery

probability).

To investigate hybrid epidemics in real world scenarios, case studies were con-

ducted on two distinct epidemics: the computer worm Conficker spreading on the In-

ternet and the Human Immunodeficiency Virus (HIV) infection within the human body.

Chapter 6 analysed the spreading of the computer worm Conficker in detail, in-

ferring the worm’s epidemic parameters from Internet measurement data. Our sim-

ulations and analysis results revealed that individually each of Conficker’s spreading

mechanisms is not sufficient for spreading, however, the worm successfully produced

one of the most serious outbreaks on the Internet by combining multiple simple and

ineffective spreading mechanisms.
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By collaborating with immunologists, we not only were able to model the spread

of HIV infection within the human body, but also provided novel insight into HIV

pathogenesis and treatment. Chapter 7 proposed a mathematical epidemic model that

incorporates HIV’s two infection mechanisms: cell-free spread and cell-to-cell spread.

The model can accurately recapitulate the entire HIV infection course as observed in

clinical trials. The model was then used in Chapter 8 to investigate HIV infection

dynamics and estimate the long term effect of therapeutic strategies on HIV infection

progression. Our results suggested that the two spreading modes of HIV infection com-

plement each other and both make important contributions to disease progression. In

addition, results in this thesis emphasise the potential benefits of early HIV treatment,

and suggest that drugs with the ability to effectively block cell-to-cell spread may pro-

vide significant therapeutic benefit in the long term management or eradication of the

HIV infection.

In summary, this PhD research has: (1) advanced our understanding of hybrid

epidemics; (2) provided mathematical frameworks for future analysis; and (3) demon-

strated, with two successful case studies, that such research can have a significant im-

pact on important issues such as cyberspace security and human health.

This study laid the foundation for analysing hybrid epidemics, especially critically

hybrid epidemics. Future studies can build upon our models and results to further

advance our understanding of hybrid epidemics in general as well as with specific real

world cases.
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Appendix B

Glossaries

B.1 About computer worms
• Conficker: Conficker is a computer worm which erupted on the Internet in 2008.

• IP addresses: Each computer on the Internet is associated with an Internet Pro-

tocol (IP) address. An IP address represents a computer.

• LAN: Local Area Network (LAN) consisting of computers whose IP addresses

share the same prefix.

• Probing: A computer worm probes IP addresses. If an IP address associated with

a computer susceptible to the worm is probed, the computer will be infected.

• Subnet: A sub network of the Internet. A subnet consists of computers among

which a worm can spread from one infected to all others through local probing.

B.2 About Human Immunodeficiency Virus (HIV)
• HIV: Human Immunodeficiency Virus (HIV) is a virus that attacks human im-

mune system - the defence to protect body against diseases.

• AIDS: Without medical treatment, people infected by HIV can develop Acquired

Immune Deficiency Syndrome (AIDS), which is a condition representing failure

of the immune system.

• Cell-free infection: Virus particles bud from an infected T cell, enter the

blood/extracellular fluid and then can infect another T cell.



124 Appendix B. Glossaries

• Cell-to-cell infection: HIV infection transmits through direct cell-to-cell con-

tacts between T cells.

• Virion: virus particle

• CD4+ T cells: A type of cells that facilitate the function of the immune system.

They are the primary target for HIV infection.

• CD4+ count: The density of CD4+ T cells in a blood sample.

• Viral load: The density of HIV virions in a blood sample.

• Cellular immune response: A response, in which cells of the immune system

kill infected cells, including HIV-infected cells.

• HIV treatment naive: A patient is HIV treatment naive if he/she has never taken

HIV medicine.



Appendix C

LeoTask - a fast, flexible and reliable

framework for computational research

This study involves intensive computation for theoretical predictions and numerical

simulations. To facilitate such computation, we developed a Java framework for

computation-intensive and time-consuming research tasks.

C.1 Introduction
Research tasks, especially in the field of bioinformatics, are increasingly computation-

ally intensive [243]. Computational research (e.g. simulations and data analysis) typ-

ically explores results over a large parameter space and often needs to repeat a task a

sufficiently large number of times to get an average result. Many complex computa-

tional tasks can last for days, or even weeks. As a result, they are prone to artificial

(e.g. a colleague sharing the same computing facility stops your program) or natural

(e.g. power outage) interruptions.

To accelerate computational research, it is imperative to conduct tasks in parallel,

fully utilising the processing power of computing facilities [243]. Presently, computing

facilities typically have multiple cores in their Central Processing Unit (CPU), and

each of the cores can individually conduct a processing task [244, 245]. For example,

the latest desktop computer can have 4 to 8 cores, while a computing sever can have

more than 16 cores.

While there are built-in mechanisms for running simultaneous tasks in all major

programming languages, the level of complexity often makes these built-in mechanisms

difficult to use and time consuming to program with. For example, the built-in parallel
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running mechanism in Java requires choosing for each function of a program whether

it can be executed by multiple tasks simultaneously or by only one task at a time. Such

choices affect not only the speed of a program but also its accuracy, i.e. a poor choice

could result in a slow program and furthermore a program that provides inaccurate

results.

Reliability is a critical but often overlooked feature of many computational pro-

grams and frameworks. A reliable program should be able to recover and continue

running despite interruptions. Considerable effort is often needed to make a program

reliable, especially if the program runs in parallel.

Start

End

Repeated enough times?

Has more steps?

A step of a task

Task initialisation

No

Yes

Yes

No

Before a task   

Before a repeat   

Before a task step   

After a task step   

   After a repeat

After a task   

Figure C.1: Default flow and time points for a task. There are 6 default built-in time points for
result collection: 1) before the start of a task, 2) before starting a repeated run of
a task, 3) before starting a step in a run, 4) after finishing a step in a run, 5) after
finishing a repeated run of a task, and 6) after finishing a task.



C.2. Features 127

C.2 Features
Here we present a framework, LeoTask, to reliably facilitate conducting research tasks

in parallel. It has the following combination of features that will be attractive to mem-

bers of the computational research community:

• Automatic & parallel parameter space exploration

LeoTask uses an intuitive configuration file to specify the value ranges of task

parameters. The framework will figure out all possible combinations of values

for all parameters and then run tasks with different parameter value combinations

in parallel, i.e. LeoTask automatically explores the parameter space. The frame-

work maps and runs all the tasks to all available processing cores of a computing

facility.

• Flexible & configuration-based result aggregation

The configuration file also sets when and how task results are aggregated. As

shown in Fig. C.1, LeoTask has a default task flow with 6 default time points for

specifying when the results are collected. Applications using the framework can

also use different task flows and define additional time points. The framework

supports aggregating results conditioned on a set of parameters. For example, for

a task with parameter x1, x2 and result y. Given the value range of x1 and x2, the

framework can aggregate y conditioned on the value of x1, x2, value pair (x1, x2),

or any mathematical function of x1 and x2.

• Programming model focussing only on the key logic

The framework separates the key logic of a task from other “bookkeeping” parts

of the program, which include parameter setting, result aggregation, result plot-

ting, etc. Users only need to program the key logic and use the configuration file

to set other “bookkeeping” aspects of a task. This facilitates sharing a program

among a community where many end users only need to rerun a program with

different parameter values and different ways to aggregate results. The frame-

work frees those end users from reading the program and they only need to mod-

ify a more intuitive configuration file.

• Reliable & automatic interruption recovery
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LeoTask periodically writes the current state and results of the tasks to checkpoint

files and can then recover and continue running from a checkpoint file when

necessary. To recover from an interruption and still guarantee the completeness

and correctness of results, a program has to track the tasks running in parallel.

The framework handles these technique details automatically.

Considering that Java programs can run directly on all major computing facilities

(with different operating systems), this feature provides not only reliability but

also flexibility for running a program. The following scenario is possible for a

program using LeoTask: a user first started the program on a laptop; after several

hours the user determined that it was running too slow, thus copied the program

and a check point file to a server A and continued running the program there;

after another several hours, the running speed decreased on server A because

other colleagues began to use server A and made it busy, so the user again copied

the program and a check point file from sever A to another unused server B and

finished the remaining part of the program there.

• Dynamic & cloneable networks structures

Network analysis is widely used in research, particularly among bioinformatic

studies [181,246]. For example, there are transcription networks [247], signalling

networks [248], epidemic spreading networks [3], etc. LeoTask provides data

structures to represent a node, a link, a network, and a network set. A network

consists of nodes and links. A network set includes multiple networks and they

can overlap (share nodes) with each other. All structures can be dynamic [249],

supporting adding, deleting, and updating elements. The framework also allows

merging multiple networks.

LeoTask can create copies of a large network system including the states of each

node, link, network, and network set. This enables users to investigate many

common scenarios that were previously time consuming to program. For exam-

ple, a user can simulate epidemic spreading for the first 10 minutes and make five

copies of the current network system (preserving the states of networks, nodes,

and links) to test five different intervention strategies on these five copies in par-

allel so that the initial conditions are random but at the same time exactly the
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same for these different strategies tested.

• Integration with Gnuplot

Gnuplot is a piece of widely-used open-source plotting software. LeoTask can

output aggregated results directly as Gnuplot scripts which can be processed by

Gnuplot to produce publication-quality figures. In addition, LeoTask includes

a unique hybrid programming engine that compiles Gnuplot scripts and enables

users to refer to values of Java objects or call Java functions within Gnuplot

scripts.

C.3 Availability
The source code for LeoTask is freely available under FreeBSD License at https:

//github.com/mleoking/leotask

C.4 Discussion
The LeoTask framework has been used in epidemic spreading simulations [231], large

dataset analysis [230], and HIV model parameter fitting from clinical records.

We believe LeoTask’s combination of features makes it useful for the broader

research community. We also welcome suggestions or direct contributions to improve

LeoTask and make it more widely accessible.

https://github.com/mleoking/leotask
https://github.com/mleoking/leotask
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[4] M. Boguá, R. Pastor-Satorras, and A. Vespignani. Epidemic Spreading in Com-

plex Networks with Degree Correlations. Statistical Mechanics of Complex Net-

works, 625:127–147. Springer Berlin Heidelberg, 2003.

[5] M. R. Subramani and B. Rajagopalan. Knowledge-sharing and Influence in On-

line Social Networks via Viral Marketing. Commun. ACM, 46(12):300–307, Dec

2003.

[6] J. Leskovec, L. A. Adamic, and B. A. Huberman. The Dynamics of Viral Mar-

keting. ACM Trans. Web, 1(1), May 2007.

[7] W. Chen, C. Wang, and Y. Wang. Scalable Influence Maximization for Prevalent

Viral Marketing in Large-scale Social Networks. Proceedings of the 16th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 1029–1038. KDD’10. ACM, 2010.

[8] X. Zhang, G. Neglia, J. Kurose, and D. Towsley. Performance modeling of

epidemic routing. Computer Networks, 51(10):2867–2891, Jul 2007.

[9] Y. Lin, B. Li, and B. Liang. Stochastic analysis of network coding in epidemic

routing. IEEE Journal on Selected Areas in Communications, 26(5):794–808,

Jun 2008.



132 Bibliography

[10] Z. Ren, W. Liu, X. Zhou, J. Fang, and Q. Chen. Summary-Vector-Based Effec-

tive and Fast Immunization for Epidemic-Based Routing in Opportunistic Net-

works. IEEE Communications Letters, 18(7):1183–1186, Jul 2014.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D.

Swinehart, and D. Terry. Epidemic Algorithms for Replicated Database Main-

tenance. Proceedings of the Sixth Annual ACM Symposium on Principles of

Distributed Computing, pages 1–12. PODC ’87. ACM, 1987.

[12] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie. Epidemic in-

formation dissemination in distributed systems. Computer, 37(5):60–67, May

2004.

[13] A.-M. Kermarrec and M. v. Steen. Gossiping in Distributed Systems. SIGOPS

Oper. Syst. Rev., 41(5):2–7, Oct 2007.
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[61] T. Britton, M. Deijfen, A. N. Lagerås, and M. Lindholm. Epidemics on random

graphs with tunable clustering. Journal of Applied Probability, 45(3):743–756,

2008.

[62] J. P. Gleeson and S. Melnik. Analytical results for bond percolation and k-core

sizes on clustered networks. Physical Review E, 80(4):046121, Oct 2009.

[63] J. C. Miller. Spread of infectious disease through clustered populations. Journal

of The Royal Society Interface, 6(41):1121–1134, Mar 2009.

[64] J. C. Miller. Percolation and epidemics in random clustered networks. Physical

Review E, 80(2):020901, Aug 2009.

[65] M. E. J. Newman. Random Graphs with Clustering. Physical Review Letters,

103(5):058701, Jul 2009.

[66] M. J. Tildesley, T. A. House, M. C. Bruhn, R. J. Curry, M. O’Neil, J. L. E.

Allpress, G. Smith, and M. J. Keeling. Impact of spatial clustering on disease

transmission and optimal control. Proceedings of the National Academy of Sci-

ences, 107(3):1041–1046, Jan 2010.

[67] E. Volz, J. Miller, A. Galvani, and L. Meyers. Effects of heterogeneous and

clustered contact patterns on infectious disease dynamics. PLoS Computational

Biology, 7(6):e1002042, 2011.

[68] S. Aral, L. Muchnik, and A. Sundararajan. Distinguishing influence-based con-

tagion from homophily-driven diffusion in dynamic networks. Proceedings of

the National Academy of Sciences, 106(51):21544–21549, Dec 2009.

[69] S. Bansal, J. Read, B. Pourbohloul, and L. A. Meyers. The dynamic nature

of contact networks in infectious disease epidemiology. Journal of Biological

Dynamics, 4(5):478–489, Sep 2010.



138 Bibliography

[70] J. Fernández-Gracia, V. M. Eguı́luz, and M. San Miguel. Update rules and in-

terevent time distributions: Slow ordering versus no ordering in the voter model.

Physical Review E, 84(1):015103, Jul 2011.
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[80] C. Granell, S. Gómez, and A. Arenas. Dynamical Interplay between Aware-

ness and Epidemic Spreading in Multiplex Networks. Physical Review Letters,

111(12):128701, Sep 2013.



Bibliography 139

[81] K.-M. Lee, B. Min, and K.-I. Goh. Towards real-world complexity: an introduc-

tion to multiplex networks. The European Physical Journal B, 88(2):120, Feb

2015.

[82] C. D. Brummitt, R. M. D’Souza, and E. A. Leicht. Suppressing cascades of load

in interdependent networks. Proceedings of the National Academy of Sciences,

109(12):E680–E689, Mar 2012.

[83] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Catastrophic

cascade of failures in interdependent networks. Nature, 464(7291):1025–1028,

Apr 2010.

[84] J. Chen, H. Zhang, Z.-H. Guan, and T. Li. Epidemic spreading on networks

with overlapping community structure. Physica A: Statistical Mechanics and its

Applications, 391(4):1848–1854, Feb 2012.

[85] M. Dickison, S. Havlin, and H. E. Stanley. Epidemics on interconnected net-

works. Physical Review E, 85(6):066109, Jun 2012.

[86] G. Dong, J. Gao, L. Tian, R. Du, and Y. He. Percolation of partially interde-

pendent networks under targeted attack. Physical Review E, 85(1):016112, Jan

2012.

[87] E. A. Leicht and R. M. D’Souza. Percolation on interacting networks.

arXiv:0907.0894, Jul 2009.

[88] W. Li, A. Bashan, S. V. Buldyrev, H. E. Stanley, and S. Havlin. Cascading

Failures in Interdependent Lattice Networks: The Critical Role of the Length of

Dependency Links. Physical Review Letters, 108(22):228702, May 2012.

[89] R. Parshani, S. V. Buldyrev, and S. Havlin. Interdependent Networks: Reducing

the Coupling Strength Leads to a Change from a First to Second Order Percola-

tion Transition. Physical Review Letters, 105(4):048701, Jul 2010.

[90] R. Parshani, S. V. Buldyrev, and S. Havlin. Critical effect of dependency groups

on the function of networks. Proceedings of the National Academy of Sciences,

108(3):1007–1010, Jan 2011.



140 Bibliography

[91] A. Saumell-Mendiola, M. A. Serrano, and M. Boguñá. Epidemic spreading on
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