
1 
 

Title 

A case of “order insensitivity”? Natural and artificial language processing in a man with primary 

progressive aphasia. 

Vitor C. Zimmerer & Rosemary A. Varley 

University College London 

 

Corresponding author: 

Vitor Zimmerer 

v.zimmerer@ucl.ac.uk 

 

Abstract 

Processing of linear word order (linear configuration) is important for virtually all languages and 

essential to languages such as English which have little functional morphology. Damage to systems 

underpinning configurational processing may specifically affect word-order reliant sentence 

structures. We explore order processing in WR, a man with primary progressive aphasia. In a 

previous report, we showed how WR showed impaired processing of actives, which rely strongly on 

word order, but not passives where functional morphology signals thematic roles. Using the artificial 

grammar learning (AGL) paradigm, we examined WR’s ability to process order in non-verbal, visual 

sequences and compared his profile to that of healthy controls, and aphasic participants with and 

without severe syntactic disorder. Results suggested that WR, like some other patients with severe 

syntactic impairment, was unable to detect linear configurational structure. The data are consistent 

with the notion that disruption of possibly domain-general linearization systems differentially affects 

processing of active and passive sentence structures. Further research is needed to test this account, 

and we suggest hypotheses for future studies. 
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Introduction 

In natural language, words occur one after another in a “linear” fashion, and processing of linear 

constituent order, as one aspect of configuration, is mandatory for successful production and 

comprehension. English, because of its limited inflectional system, relies heavily on linear 

configuration. The lion kills the man and The man kills the lion refer to very different events despite 

having the exact same lexical items. It has been argued that linearization processes are not specific 

to language (Boeckx, Martinez-Alvarez, & Leivada, 2014). The ability to process auditory and visual 

sequences, even when stimuli are meaningless, has been linked to the ability to process language 

under noise conditions (Conway, Bauernschmidt, Huang, & Pisoni, 2010; Conway, Karpicke, & Pisoni, 

2007; Conway & Pisoni, 2008). Furthermore, sequence learning in a serial reaction time task 

correlated with children’s ability to maintain syntactic structure in a priming task (Kidd, 2012). A 

meta-analysis of eight studies, collectively examining 186 people with specific language impairment 

and 203 controls, found that pathological groups were poorer at statistical sequence learning (Lum, 

Conti-Ramsden, Morgan, & Ullman, 2014). 

Impaired linear processing has also been found in acquired syntactic disorders such as aphasia. 

Artificial grammar learning (AGL) experiments have shown that people with impaired sentence 

production and comprehension have difficulties processing regularities in sequence order even 

when stimuli are non-verbal and/or visual. Dominey, Hoen, Blanc and Lelekov-Boissard (2003) tested 

seven aphasic participants and found that their ability to learn simple and complex artificial 

grammars respectively predicted their ability to comprehend simple and complex sentences. 

Christiansen, Kelly, Shillcock, & Greenfield (2010) compared seven aphasic participants with seven 

controls matched for age and non-verbal intelligence and found that the former performed poorer in 

AGL. Zimmerer, Cowell, & Varley (2014) investigated AGL in four people with severe aphasia and 

syntactic disorder, five people with aphasia in absence of syntactic disorder, and ten older controls 

and found learning profiles in patients with syntactic disorder which did not occur in the other 

samples. Together, these studies indicate that differences between syntactically impaired and 

unimpaired participants were not the result of experimental procedures, non-verbal intellectual 

capacity or general effects of brain damage, but were related to the syntactic impairment itself. 

However, reports of AGL performance in relation to processing of specific sentence structures are 

rare. Hoen et al. (2003) explored the effects of a training task involving sequence order manipulation 

on sentence comprehension in six aphasic participants. They reported improvement only for 

sentences which were assumed to involve a similar order transformation. 
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We explore the relationship between general linearization and configurational processing in 

language. In a previous report in Cortex, we described the comprehension ability of WR, a man with 

primary progressive aphasia (PPA) (Zimmerer, Dąbrowska, Romanowski, Blank, & Varley, 2014). He 

displayed a striking and rarely reported syntactic profile: In sentence-picture matching tasks, his 

performance on active transitives (The man pushes the elephant) and truncated actives with an 

auxiliary (The man is pushing) was at chance. His performance on full passives (The elephant is 

pushed by the man) as well as on truncated passives (The man is pushed) was near ceiling. WR had 

severe sentence production problems. His spoken output was markedly impoverished. In rare 

instances of sentence-like output in spontaneous speech he strung together content words 

connected by is a (e.g., Mary is a holiday is a Turkey). In spontaneous writing he produced only a 

small number of sentences, most of which were in the passive voice (e.g., Can it be used for 

treatment?; As research was Vitor created). Naming ability on the PALPA54 subtest (Kay, Lesser, & 

Coltheart, 1992) indicated residual lexical capacity with scores of 59/60 for spoken (with no penalty 

for phonemic paraphasias as long as the target was recognizable) and 59/60 for written naming. 

WR’s comprehension profile showed a dissociation which is the reverse of the predominantly 

reported pattern of good performance on actives and poor performance on passives, and poses a 

substantial challenge to conventional explanations for syntactic disorder (Druks & Marshall, 1995, 

1996). English passives are “harder” with regard to a number of variables (Caplan & Waters, 1999; 

Drai & Grodzinsky, 2006; Druks, 2002; Grodzinsky, 2000; Mauner, Fromkin, & Cornell, 1993) as they 

contain more words, more functional morphemes, have a non-canonical word order and, in some 

theories, involve a transformation from canonical order (or “movement” of constituents) . 

However, functional morphemes in passives contain strong cues for interpretation. The verb phrase 

morphology (be+TNS V+PastP, e.g., is pushed), which in child development first emerges as the state 

passive (e.g., it’s broken), appears to be grounded in stative use and biased towards assigning its 

subject an inactive role (Brooks & Tomasello, 1999; Israel, Johnson, & Brooks, 2001; Riches, 2013). 

On the other hand, the prepositional phrase by + NP (e.g., by the elephant) is a strong cue for 

agency. It is used in passives or agentive nominalizations (e.g., performances by the whole team) in 

an estimated 70% of instances (see Zimmerer, Dąbrowska, Romanowski, Blank, & Varley, 2014, for 

corpus-based results). Zimmerer et al. (2014) demonstrated that WR used both verb and 

prepositional phrase morphology in isolation or together in order to assign agent/patient roles. 

Active sentences, and in particular those used for testing WR’s syntactic comprehension, lack cues of 

this type. Functional morphology, if present, was not reliable as a cue for determining semantic 

roles. For instance, the NP in NP be+TNS V+ing can have many roles such as agent (The man is 
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pushing the elephant), patient (The dress is selling), experiencer (The woman is watching the game) 

or instrument (The computer is enabling her to speak). Interpretation of English actives relies more 

on word order. All active sentences used in testing WR’s comprehension could have been 

interpreted correctly using the common bias that the agent appears first (Ferreira, 2003). 

WR’s profile presented a valuable opportunity to investigate linear order processing and its 

relationship to configurational processing in language, and specifically, the issue of whether the 

difficulties with comprehension of actives may be associated with a more general impairment of 

linear structure processing. We hypothesized that WR would display impaired AGL behavior when 

processing linear configurational information in non-verbal sequences. 

 

Artificial grammar learning and the grammar AnBn 

AGL (Reber, 1967) is a commonly employed paradigm that tests processing of sequence structure. In 

a training phase, participants are exposed to sequences of (nonsense) stimuli. Each sequence is 

unique but all are generated by a common set of rules. In the test phase, new sequences are 

presented. Some are generated by the same grammar, others violate it. The participant accepts or 

rejects each sequence based on its “fit” to the training set. Acceptance/rejection patterns provide 

insight into which structural properties of the artificial grammar were learned spontaneously and 

generalized to the new sequences. AGL tasks engage neural language areas, in particular left inferior 

frontal regions (Bahlmann, Schubotz, & Friederici, 2008; Bahlmann, Schubotz, Mueller, Koester, & 

Friederici, 2009; Petersson, Folia, & Hagoort, 2012; Petersson, Forkstam, & Ingvar, 2004). 

For the current study AGL sequences were generated by the grammar AnBn. In AnBn sequences, a 

number of stimuli classified as A are followed by the same number of stimuli classified as B (e.g., 

AABB, AAABBB, AAAABBBB). AnBn sequences have linear configurational properties: All stimuli of one 

class precede the stimuli of the other class, and the first class is A. AnBn sequences also contain non-

configurational properties: The numbers of stimuli from each class match. There is strong evidence, 

including from self-reports after the experiment, that participants who learn non-configurational 

properties do so by counting and comparing the number of stimuli of each class, and participants 

without syntactic disorder more consistently attend to configurational (order) than non-

configurational (counting) structure (de Vries, Monaghan, Knecht, & Zwitserlood, 2008; Hochmann, 

Azadpour, & Mehler, 2008; Perruchet & Rey, 2005; Zimmerer, Cowell, & Varley, 2011; Zimmerer, 

Cowell, et al., 2014). Some non-impaired individuals learn the configurational structure only, but 
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none learn only non-configurational structures. Performances are similar across auditory and visual 

modalities (Zimmerer, Cowell et al., 2011).1 

Zimmerer, Cowell et al. (2014) investigated AnBn learning in four people with severe aphasia and 

syntactic disorder, five aphasic controls without syntactic disorder, and ten older healthy controls. 

Two syntactically-impaired participants, SA and SO, displayed atypical behavior. They learned the 

non-configurational properties (counting) without learning the configurational properties (order), 

i.e., they rejected sequences like AABBB, but accepted sequences like BBBAAA and AABABB. We 

concluded that they were insensitive to linear configuration in the experiment as the rejection of 

non-configurational violations only requires tracking of the number of item occurrences, but not of 

any structure beyond that. Both SA and SO had large left perisylvian lesions and severely impaired 

processing of both active and passive sentences, and therefore results gave little insight into the 

relationship between linear configurational impairment in AGL and the ability to process specific 

sentence structures. 

Experiment 

Participant 

WR was 62 years old at the time of the experiment. Four years previously, he was diagnosed with 

logopenic PPA (Gorno-Tempini et al., 2011). Non-language cognition was unimpaired during the 

course of the investigation reported here. His Performance IQ (Wechsler, 1999) was 119. Structural 

MR scanning revealed bilateral atrophy to fronto-temporal perisylvian regions (Fig. 1), which was 

greatest in the left superior temporal gyrus. With disease progression, he displayed a decline in 

auditory comprehension. In the third year post-diagnosis and consistent with bilateral temporal lobe 

atrophy, WR was diagnosed with cortical deafness. Although his performance in auditory 

comprehension tasks was at or near chance, written word comprehension was only mildly impaired 

and remained stable over time. Written sentence comprehension and production displayed more 

gradual decline (Table 1), consistent with Thompson et al.’s (2013) observation that some people 

with logopenic PPA become syntactically impaired over time, and an unusual comprehension 

pattern emerged (chance level performance on actives, ceiling performance on passives (Table 2)). 

 

 

 



6 
 

Figure 1. Structural MR images of WR’s brain in coronal and sagittal (left) views, showing fronto-

temporal perisylvian atrophy. 

 

 

Table 1. WR’s performance on written and spoken tests of lexical and grammatical processing in 

years 1, 2 and 3 post-diagnosis (years 2.5, 3.5 and 4.5 post symptom onset). Chance level is 25% for 

word-picture matching tasks and 50% for all other tasks. 

Test Year 1 Year 2 Year 3 

Spoken minimal pairs 80% 73% 65% 

Spoken lexical decision 74% 70% 60% 

Spoken word-picture matching 100% 98% 69% 

Spoken synonym judgments 90% 84% 58% 

Written lexical decision 98% 99% 98% 

Written word-picture matching 100% 100% 100% 

Written synonym judgment 97% 98% 96% 

Spoken sentence-picture matching 98% 93% 65% 

Written sentence-picture matching 81% 78% 52% 

 

 



7 
 

Table 2. Results of three sentence-picture matching tasks reported in Zimmerer, Cowell et al. (2014). 

Tests involved selection from a choice of two pictures. Asterisks denote significant (p<.05) deviations 

from chance performance (50% accuracy). 

Sentence type Example(s) N. of correct responses 

(% accuracy) 

Exp. 1 Reversible active transitives The man pushes the elephant. 18/50 (36%) 

Reversible full passive The man is pushed by the 

elephant. 

47/50 (94%*) 

Exp. 2 Irreversible active transitives 

with spatial by-phrase 

The man by the woman shoots 

the rabbit. 

The man shoots the rabbit by 

the woman. 

1/60 (2%*) 

 

Irreversible transitive actives The man shoots the rabbit. 30/30 (100%*) 

Irreversible full passives The rabbit is shot by the man. 30/30 (100%*) 

Exp. 3 Truncated actives The man is pushing. 17/36 (47%) 

Truncated passives The man is pushed. 31/36 (86%*) 

 

Methods 

We used the same methods as Zimmerer, Cowell et al. (2011, 2014) to allow comparability with 

control and aphasic data reported therein (see online supplement for full Methods description). WR 

was tested in the visual modality, which is consistent with prior AGL research conducted on people 

with aphasia. WR participated in the AGL experiment two months after the reversible sentence 

comprehension test took place. He gave informed consent to participation. Ethical approval was 

granted by the local NHS Research Ethics Committee (08/H1308/32). 

WR was trained on 72 AnBn sequences (e.g., AAABBB). The test phase contained 120 new sequences, 

of which 60 were violations of the target grammar. Violations sequences were either non-

configurational, i.e., they contained an incorrect number of stimuli (e.g., AABBB) or linear 

configurational, i.e., they violated the order in which A and B classes occurred (e.g., BBBAAA) or had 

too many transitions between classes (e.g., ABBABA). Each symbol (A or B) was mapped to a 

nonsense shape. Stimuli of class A were blue and rounded, and stimuli of class B were red and 

angled (Fig. 2). WR was asked to decide whether stimuli fit or did not fit the training set. He made his 

decisions using a computer mouse with a green and a red button. 
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Figure 2. Visual stimuli used in the experiment. Stimuli of class A were blue and rounded. Stimuli of 

class B were red and angled. 
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Results 

At the start of the test phase, WR expressed uncertainty as to what was required. The experiment 

was paused and instructions repeated. As a result, he did not provide responses to the first three 

trials (two violations, one grammatical sequence). After instructions were repeated WR indicated he 

understood the task and responded quickly after each sequence. Ignoring the missed trials, WR 

accepted 96.6% (57/59) of the grammatical sequences. He rejected 50% of violations. However, 

classified by configurational (order) vs. non-configurational (counting) violations, he rejected 17% 

(6/35) of the former and 100% (23/23) of the latter (see online supplement for further details).  

In AGL tasks it is possible that participants respond on the basis of familiarity of single stimuli or 

stimulus combinations, with a bias towards combinations that appeared more frequently. Such 

statistical sensitivity is likely part of configurational processing. To account for such behavior we 

calculated three familiarity variables for each test sequence (Knowlton & Squire, 1994; Redington & 

Chater, 1996): associative chunk strength (the mean frequency in which bigrams and trigrams 

appeared during training), anchor strength (the mean frequency in which initial and final bigrams 

and trigrams appeared at the respective positions during training) and chunk novelty (the number of 

bigrams and trigrams which did not appear during training). We then ran a logistic binary regression 

with acceptance/rejection of each sequence as a binary outcome variable. The predictors were the 

three familiarity variables as well as the categorical variable Sequence Type. A test of the full model 

was statistically significant, indicating that the predictors distinguished between acceptance and 

rejection of sequences, χ²=75.649, p<.001, df=8. Nagelkerke’s R2 of .707 indicated a moderately 

strong relationship between prediction and response grouping. Only Sequence Type made a 

significant contribution to prediction, Wald=32.194, p<.001. Familiarity variables made no significant 

contribution. 

Zimmerer, Cowell et al. (2011, 2014) applied a template analysis to explore the use of different 

acceptance/rejection criteria by participants. The template analysis describes a number of possible 

grammaticality criteria (summarized here as configurational only, non-configurational only, or both 

configurational and non-configurational). For instance, to test whether participants only rejected 

configurational violations, the analysis classifies not only AnBn sequences, but also non-

configurational violations as grammatical, and all other sequences as ungrammatical. For each 

template, a D Score (see also Perruchet & Pacteau, 1990) was calculated by subtracting the 

percentage of grammatical sequences rejected from the percentage of ungrammatical sequences 

rejected. D Scores range from -100 to 100, with 100 representing fully consistent application of 

grammaticality criteria and zero representing chance. In addition, we used binomial tests to see if 
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the proportions of accepted and rejected sequences deviated significantly from chance. We 

compared WR’s scores with previously collected data from four severely aphasic participants with 

syntactic disorder, five aphasic participants without syntactic disorder, ten older and 20 younger 

controls. WR’s D Score for the non-configurational template was 91.5, his score for configurational 

only was -13, and his score for the combined criteria was 46.6. WR, along with two severely aphasic 

participants (SA and SO), were the only participants who consistently rejected non-configurational 

violations and at the same time accepted configurational violations. One other severely aphasic 

participant, JB, showed some sensitivity to linear configuration. 
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Figure 3. Behavioral patterns across all test phase sequence types for healthy speakers aged below 

50 years (mean age 27), healthy speakers aged 50 or older (mean age 62), aphasic participants 

without syntactic impairment, aphasic participants with severe syntactic impairment and WR. Each 

data point represents one participant (chance performances excluded). Categories indicate analysis 

template with highest D Score and suggest each participant’s acceptability criteria. Higher D Scores 

indicate consistent application of decision criteria. Decision criteria: AnBn (configurational and non-

configurational: A number of As is followed by the same number of Bs), (AnBn)+(BnAn) 

(configurational and non-configurational: All items of one class precede all items of the other class, 

equal number of As and Bs), A+B+ (configurational: All As precede the Bs), (A+B+)+(B+A+) 

(configurational: All items of one class precede all items of the other class) and EQUAL (non-

configurational: Equal number of As and Bs). 

 

Discussion 

Impaired sentence processing has been associated with poor or atypical AGL performance.  

However, few studies have attempted to explore which aspects of sequence processing in AGL relate 

to which types of constructions. WR’s very selective comprehension impairment provided a unique 
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opportunity to explore the cognitive mechanisms involved in processing sentences that imposed 

greater loading on constituent-order processing, as is the case with English active sentences. These 

sentences are frequently employed in clinical comprehension tests. WR’s AGL behavior shows a clear 

dissociation between his ability to spontaneously learn linear configurational and non-

configurational information. He was very sensitive to quantitative properties of stimulus sequences 

and reliably rejected quantitative violations, but appeared insensitive to properties of stimulus order 

and consistently accepted order violations. In contrast, participants without syntactic disorder 

(healthy and aphasic) are more sensitive to linear configurational structure. In combination with his 

selective impairment of active sentence comprehension WR’s data are consistent with claims that 

there is a relationship between AGL and sentence processing. His insensitivity to linear order in AGL 

may be related to his difficulties with processing English actives which rely on configuration rather 

than functional morphology. 

One other AGL study has looked at individual aphasic profiles. WR’s AGL behavior to date has only 

been observed in SA and SO, two people with severe syntactic disorder (Fig. 3, Zimmerer, Cowell et 

al., 2014) and large lesions across left perisylvian areas. However, SA and SO displayed chance level 

comprehension across both active and passive sentences. One possibility is that impairments of 

processing functional morphology in addition to failure of general configurational processing might 

be responsible for wholesale sentence processing failure. JB, another severely aphasic participant, 

was able to identify violations of configuration. However, in addition to a grammatical profile 

comparable to SA and SO, JB showed markedly lower lexical capacity (e.g., more impaired in naming 

and auditory/written synonym judgment (see Zimmerer, Cowell, & Varley, 2014, for his full profile). 

It is possible that this severe lexical impairment masked intact configurational processing in natural 

language processing. 

It is not possible to generalize from a few cases to populations, and further investigations are 

needed. However, consistent reports of heterogeneity in agrammatism (Berndt & Caramazza, 1999; 

Caramazza, Capasso, Capitani, & Miceli, 2005; Caramazza, Capitani, Rey, & Berndt, 2001), warrant a 

focus at individual profiles. WR’s profile is consistent with a claim of impaired configurational 

processing, accounting for his difficulty processing active, but not passive, sentences. We suggest the 

following hypotheses for further investigations: 

1. Participants who are insensitive to configuration in AGL will have difficulties (at least) with 

sentences which are word order reliant, at least in comprehension. 
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2. Participants who have no difficulties with processing word order in language (when functional 

morphology is absent) will show a typical profile with regard to linear configurational processing in 

AGL. 

The hypotheses also underline questions which, because of the progressive nature of WR’s 

pathology, could not be addressed in the current report. For instance, our explanations predict 

difficulties with object-clefts as well subject-auxiliary inversions. Similarly, sensitivity to 

ungrammatical word order can be tested in the future via grammaticality judgment tasks, and it 

would be expected that a participant with WR’s profile would fail to recognize such violations. 

However, the relationship between configurational processing in AGL and natural language 

processing may differ from language to language. In languages with a less rigid word order and/or 

more functional morphology, impaired configurational processing may result in less severe linguistic 

impairment. In other languages, such impairment may not affect actives, but other constructions. 

 

1 Early reports suggested that non-configurational properties of AnBn were processed through 

hierarchical phrase embedding (Fitch & Hauser, 2004; Friederici, Bahlmann, Heim, Schubotz, & 

Anwander, 2006). Some variations of AnBn, but not the one used for this experiment, aim to force 

hierarchical phrase processing (Bahlmann et al., 2008, 2009; Lai & Poletiek, 2011). 
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Online supplement 

 

Methods (extended) 

We used the same methods as Zimmerer, Cowell and Varley (2011, 2014) to allow comparability 

with control and aphasic data reported therein (see online supplement for full Methods description). 

WR was tested in the visual modality, which is consistent with prior AGL research conducted on 

people with aphasia. WR participated in the AGL experiment two months after the reversible 

sentence comprehension test took place. WR gave informed consent to participation. Ethical 

approval was granted by the local NHS Research Ethics Committee (08/H1308/32). 

Each symbol (A or B) was mapped to a nonsense shape. Stimuli of class A were blue and rounded, 

and stimuli of class B were red and angled (Fig. 2). For each class there were eight different shapes. 

Stimuli were presented one after another. Stimulus duration was 400 ms. The interstimulus interval 

was 200 ms within a sequence and 4.5s between sequences. Between sequences, a fixation cross 

appeared on the screen. The average trial length was 8 seconds. 

The training phase consisted of 72 AnBn-sequences of three different structures: AABB, AAABBB and 

AAAABBBB. Each structure appeared 24 times. Each sequence had a unique combination of stimuli, 

and each stimulus appeared the same number of times. The test phase consisted of 60 new AnBn-

sequences (grammatical) and 60 violation sequences (ungrammatical) that employed the same 

symbol sets. To enable identification of different response patterns, there were five types of 

violation sequences. Each violation type occurred 12 times. Two violated non-configurational, and 

three violated configurational properties of the grammar: 

- Type 1 (non-configurational) had mismatching numbers of As and Bs. In addition, it had an 

odd total number of stimuli, while grammatical sequences always contain an even number. 

E.g., AABBB. 

- Type 2 (non-configurational) had mismatching numbers of As and Bs but a (legal) even total 

number of stimuli, e.g., AAAABB. 

- Type 3 (configurational) had the reverse class order. They started with the wrong class, 

ended with the wrong class and contained the ungrammatical combination BA, e.g., 

BBBAAA. 

- Type 4 (configurational) started with the wrong class and contained the ungrammatical 

combination BA, e.g., BABAAB. 
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- Type 5 (configurational) ended with the wrong class and contained the ungrammatical 

combination BA, e.g., ABBABA. 

Zimmerer, Cowell et al. (2011, 2014) employed the same randomized sequence order across all 

participants to eliminate order effects across individuals. The only randomization parameter was 

that not more than four consecutive test sequences were all grammatical or all ungrammatical. The 

same order was used for WR. The training and the test phase were each divided into three trial 

blocks of equal length, with a self-timed break between blocks. The entire session took ca. 25 

minutes. 

Decisions in the test phase were made via a computer mouse. The left button was marked with a 

green sticker, the right button with a red sticker. The green button registered acceptance, and the 

red button rejection of a sequence. There was a timeout after 4.5 seconds. Before the training 

phase, WR was instructed to attend to the stimuli on the screen. Instructions were simplified and 

presented in writing (Zimmerer, Cowell et al., 2014). Before the training phase, we asked WR to 

watch the screen. Before the test phase, we presented him instructions on paper in a 26pt font: 

“Now you will see more shapes. Do they follow the pattern of the shapes you just saw? GREEN 

button – YES – same pattern. RED button – NO – different pattern. Decide quickly.” There was a line 

break before each new sentence. The word “green” was printed in green font, the word “red” in red 

font. The experimented provided the instructions orally, supported by gestures (“thumbs up”, 

“thumbs down”). WR signaled that he understood the instructions before proceeding. 

 

Results (extended) 

At the start of the test phase, WR expressed uncertainty as to what was required. The experiment 

was paused and instructions repeated. As a result, he did not provide responses to the first three 

trials (type 1 violation, grammatical sequence, type 5 violation, in that order). After instructions 

were repeated WR indicated he understood the task and responded quickly after each sequence. 

Ignoring the missed trials, WR accepted 96.6% (57/59) of the grammatical sequences. He rejected 

100% (11/11) of the violations of type 1, 100% (12/12) of the violations of type 2, 0% (0/12) of the 

violations of type 3, 8% (1/12) of the violations of type 4 and 45% (5/11) of the violations of type 5. 

Classified by configurational (order) vs. non-configurational (counting) violations, he rejected 17% of 

the former and 100% of the latter. 

In AGL tasks it is possible that participants respond on the basis of familiarity of single stimuli or 

stimulus combinations, with a bias towards combinations that appeared more frequently. Such 
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statistical sensitivity is likely part of configurational processing. To account for such behavior we 

calculated three familiarity variables for each test sequence (Knowlton & Squire, 1994; Redington & 

Chater, 1996): associative chunk strength (the mean frequency in which bigrams and trigrams 

appeared during training), anchor strength (the mean frequency in which initial and final bigrams 

and trigrams appeared at the respective positions during training) and chunk novelty (the number of 

bigrams and trigrams which did not appear during training). We then ran a logistic binary regression 

with acceptance/rejection of each sequence as a binary outcome variable. The predictors were the 

three familiarity variables as well as the categorical variable Sequence Type (six categories: violation 

types 1-5, grammatical). Logistic regressions cannot converge if categories are completely full or 

empty and, as for some cases in Zimmerer, Cowell et al. (2014), we added or subtracted one 

rejection from a category if it was full or empty. As a result, the regression assumed that one 

violation of type 1 and type 2 was accepted, and that one violation of type 3 was rejected. Note that 

this necessary operation results in an underestimation of the effect of sequence type. A test of the 

full model was statistically significant, indicating that the predictors distinguished between 

acceptance and rejection of sequences, χ²=75.649, p<.001, df=8. Nagelkerke’s R2 of .707 indicated a 

moderately strong relationship between prediction and response grouping. Only Sequence Type 

made a significant contribution to prediction, Wald=32.194, p<.001. Familiarity variables made no 

significant contribution. 

Zimmerer, Cowell et al. (2011, 2014) applied a template analysis to explore the use of different 

acceptance/rejection criteria by participants. The template analysis describes a number of possible 

grammaticality criteria (summarized here as configurational only, non-configurational only, or both 

configurational and non-configurational). For instance, to test whether participants only rejected 

configurational violations, the analysis classifies not only AnBn sequences, but also sequences of 

violation types 1 and 2 as grammatical, and all other sequences as ungrammatical. For each 

template, a D Score (see also Perruchet & Pacteau, 1990) was calculated by subtracting the 

percentage of grammatical sequences rejected from the percentage of ungrammatical sequences 

rejected. D Scores range from -100 to 100, with 100 representing fully consistent application of 

grammaticality criteria and zero representing chance. We compared WR’s scores with previously 

collected data from four severely aphasic participants with syntactic disorder, five aphasic 

participants without syntactic disorder, ten older and 20 younger controls. WR, along with two 

severely aphasic participants (SA and SO), were the only to consistently reject non-configurational 

violations but accepted configurational violations. One other severely aphasic participant, JB, 

showed some sensitivity to configuration. 
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