
 1 

 

 

Investigating patterns of T cell differentiation in 

the blood and skin of patients with melanoma 

 

 

 

Submitted by Judith Seidel 

 

 

 

 

April 2015 

 

For the degree of Doctor of Philosophy 

Department of Infection and Immunity 

University College London 

 



 2 

 

 

 

 

 

 

 

 

I, Judith Seidel confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that 

this has been indicated in the thesis. 

 

Signed: 



 3 

Abstract 

Melanoma progression occurs despite evidence of melanoma-specific T cell 

activation. Chronic or repeated antigen stimulation can cause dysregulated T 

cell differentiation through upregulation of inhibitory receptors (immune 

exhaustion) or end-stage differentiation (immune senescence). This thesis 

therefore investigated the hypothesis that blood and skin derived T cells of 

melanoma patients are driven towards immune exhaustion and senescence. An 

increase in senescent CD8+ TEMRA cells was detected in the blood of old 

melanoma patients. These cells had high cytotoxic but low proliferative 

potential. Whilst it could not be determined whether they were melanoma 

specific, the TEMRA expansions occurred independently from persistent viral 

infections such as CMV, and their function could be boosted through p38 

signalling blockade. Skin resident T cells of melanoma patients showed no 

increase in T cell differentiation but instead upregulation of exhaustion markers 

PD-1 and CTLA-4. Granzyme B and perforin, essential for granule mediated cell 

killing, remained low in these cells, suggesting insufficient cytotoxic function. 

Skin derived T cells from healthy individuals also expressed high levels of PD-1 

and low levels of cytotoxic granule components. Exposure to IL-2, IL-15 and 

CD3/CD28 boosted perforin and granzyme expression in healthy skin cells. 

Conversely, PD-1 signalling blockade during CD3 stimulation increased 

granzyme B expression. In summary, melanoma associated immune 

dysfunctions were of a different nature in blood and skin T cells. 

Immunotherapies designed to boost immune function in patients might therefore 

have different efficacies in both organs. 
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1 Introduction 

Melanoma is a cancer that arises from melanocytes. Although it can be easily 

cured in the early stages of disease through surgical removal, advanced 

disseminated melanoma often resists conventional therapies such as 

chemotherapy, resulting in high mortality. Despite being derived from self, 

melanoma can be recognized by the adaptive arm of the immune system and 

may lead to spontaneous regression (Quaglino et al. 2010). Unfortunately, in 

most melanoma patients tumour specific immune responses occur in the 

absence of disease amelioration, raising interest in identifying and 

understanding the role of T cell differentiation in the blood and skin of the 

patients affected.  

 T cell activation and effector functions 1.1

T cells constitute the cellular arm of the adaptive immune system that allows 

identification and killing of infected or malignant cells. The T cell receptor (TCR) 

recognizes antigen in form of a peptide presented on a major histocompability 

complex (MHC) molecule. The majority of cells in the body express MHC class 

I. MHC class II is expressed only by a few cell types which can act as antigen 

presenting cells that have specific immunological functions. CD4+ T cells 

recognize antigen presented on MHC class II, and can differentiate into helper 

cells (TH1, Th2, Th17, Th22, follicular helper T cells) that can mediate 

downstream activation of an array of immune cells or regulatory T cells (Tregs) 

that suppress immune processes (Nakayamada et al. 2012). CD8+ T cells 

recognize antigen presented on the MHC class I molecules and are able to 

differentiate into cytotoxic effector cells that can recognize and kill infected or 

malignant target cells. 

 T cell development 1.1.1

T cells arise from multipotent hematopoietic stem cells in the bone marrow, 

which migrate from the blood into the thymus where they proliferate, generating 

a large population of immature thymocytes. Thymocytes undergo gene 

rearrangement of the TCR, generating T cells of potentially any reactivity. 

Therefore, cells that cannot recognize the MHC molecule or are auto-reactive 
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must be removed: During positive selection, cells that are able to bind to 

MHC:self peptide presented by thymic stromal cells receive a signal to survive 

whilst cells that are not die by neglect. Depending on whether a cell recognizes 

MHC class I or class II, it will commit to the CD8 or CD4 lineage at this point. 

Thymocytes that survive positive selection migrate to the thymic medulla where 

they interact with the local MHC molecules. If they bind too strongly (i.e. are 

reactive to self), they will undergo apoptosis and die. This process is known as 

negative selection. Whilst the majority of thymocytes die during these selection 

processes, the cells that do survive emigrate from the thymus and mature into 

naïve cells once entering the blood stream. Thymic T cell selection and 

maturation therefore enable production of cells with intermediate reactivity, that 

are able to recognize MHC molecules and are potentially reactive against any 

pathogen or tumour antigen, without being reactive to self (Zippelius et al. 

2002). 

 T cell activation 1.1.2

Naïve T cells circulate between peripheral lymphoid organs and sample 

MHC:peptide complexes presented on the surface of dendritic cells until finding 

their cognate antigen. Activation of naive CD4+ and CD8+ T cells is similar and 

can be divided into four phases: 1) activation 2) clonal expansion 3) contraction 

and 4) memory. However, activation of the innate arm of the immune system is 

a pre-requisite to trigger T cell activation. This includes professional antigen 

presenting cells, in particular dendritic cells. 

 Activation of dendritic cells 1.1.2.1

Dendritic cells are a diverse population of cells that can differ in lineage, 

phenotype, function and anatomical location. Dendritic cells sample antigen in 

peripheral tissues, which they then carry back to lymphoid organs to present to 

the T cells (Banchereau and Steinman 1998). In order to successfully activate T 

cells, immature dendritic cells themselves must become activated. This occurs 

through sensing of danger signals during antigen uptake, such as recognition of 

pathogen-associated molecular patterns (PAMPs) through conserved pattern 

recognition receptors (PRRs), including toll-like receptors (TLRs) and NOD-like 

receptors (NLRs). Inflammatory cytokines such as Interleukin (IL)-1, GM-CSF 

and tumour necrosis factor (TNF)-α may also promote dendritic cell maturation 
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(Banchereau and Steinman 1998). These signals lead to dendritic cell migration 

by upregulation of lymph node homing receptors as well as maturation. 

Maturation involves increased antigen processing and upregulation of surface 

molecules involved in antigen presentation, including MHC, and of costimulatory 

molecules CD80 (B7.1) and CD86 (B7.2). Inhibitory signals such as IL-10 can 

block dendritic cell maturation (Buelens et al. 1997). Once migrated to the T cell 

areas of a lymphoid organ such as the lymph node, dendritic cells further 

release chemokines to attract T cells to sample their antigen. Only mature 

dendritic cells can mediate T cell activation, whilst immature dendritic cells 

promote immune tolerance. 

 Migration of naïve T cells into the lymph nodes 1.1.2.2

Naïve T cells circulate between the blood and the T cell areas of the secondary 

lymphoid organs in order to sample antigen presented by the local dendritic 

cells and maximize the possibility of meeting their respective antigen. Migration 

of the naïve T cells in this manner is facilitated by their expression of lymph 

node homing receptors. This includes CD62L, which binds GlyCAM-1 

expressed on high endothelial venules and CCR7, a chemokine receptor that 

binds CCL19 and CCL21 produced by fibroblastic reticular cells and antigen 

presenting cells in the lymph node (Denton et al. 2014). 

 T cell activation 1.1.2.3

As they migrate through the cortical region of the lymph node, naïve T cells bind 

transiently to each antigen presenting cell they encounter with the help of 

adhesion molecules such as lymphocyte function-associated antigen 1 (LFA-1). 

When finally meeting its cognate antigen on the surface of a mature antigen 

presenting cell, the naïve T cells will become activated, divide and mature. It is 

essential that the naïve T cell obtains the appropriate signals for this to occur. 

These signals are commonly known as signal 1, 2 and 3.  

Signal 1 involves the initial antigen-specific ligation of the TCR with the 

peptide:MHC complex on the surface of the antigen presenting cell. This 

interaction is highly specific and has a short half-life and therefore needs to be 

stabilized by co-receptors. This includes the CD3 complex that stabilizes the 

TCR on the cell surface and contains immunoreceptor tyrosine-based activation 

motif (ITAM) motifs that participate in the signal transduction. TCR binding to 
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MHC is also strengthened by the co-receptors CD4 or CD8, which bind 

conserved regions on MHC class II and class I respectively. CD4 and CD8 also 

recruit lymphocyte-specific protein tyrosine kinase (Lck) on their cytoplasmic tail 

into proximity of the CD3 complex. There, Lck can phosphorylate the CD3 ITAM 

motifs. This allows recruitment of zeta-chain-associated protein kinase (ZAP)-70 

and further downstream signalling events, eventually leading to induction of 

transcription factors, including nuclear factor of activated T-cells (NFAT), 

activator protein 1 (AP-1) and nuclear factor κB (NFκB), that promote IL-2 gene 

expression and cell growth (Smith-Garvin et al. 2009). 

Signal 2 involves costimulatory receptors and ensures the survival of the 

activated T cell. The receptors involved generally belong either to the CD28 

receptor family or the TNF receptor families and include CD28, CD27, CD40L, 

4.1-BB and OX-40. The roles and functions of CD27 and CD28 will be 

discussed in detail in section 1.2. Costimulatory signals are important for 

proliferation, survival and differentiation. TCR activation in the absence of 

costimulation, in particular CD28, leads to low IL-2 production and to apoptosis 

or a hyporesponsive state known as clonal anergy (Powell et al. 1998). 

Signalling through inhibitory molecules such as programmed cell death 1 (PD-1) 

and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can counterbalance 

costimulation during T cell activation. 

Signal 3 is mediated by cytokines produced by both, the antigen presenting cell 

as well as the stimulated T cell. IL-2 is the most important of these cytokines 

and IL-2 receptor signalling in the activated T cell allows cell cycle progression 

and differentiation. IL-2 is secreted by the activated T cell and acts in an 

autocrine fashion. Cells stimulated in the absence of IL-2 are therefore not able 

to proliferate and undergo cell death. Other cytokines can be produced by 

antigen presenting cells which may induce a variety of differentiation programs 

(depending on the specific combination of cytokines) in the stimulated T cells, 

determining CD4+ T cell commitment to the various T helper lineages including 

Th1, Th2, Th17, Th22 and Treg (Boyman and Sprent 2012). 

 Effector cell expansion and contraction 1.1.3

The association between an activated T cell with the antigen presenting cell can 

last several days during which the T cell proliferates and the daughter cells also 
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bind to the dendritic cell. After 4-5 days of proliferation, naïve T cells therefore 

expand and differentiate into cells with specialized helper or cytotoxic functions. 

These short-lived effector cells then leave the secondary lymphoid organs to 

migrate to the sites of infection. These cells no longer require costimulation 

upon activation and express high levels of LFA-1 and very late antigen (VLA)-4, 

allowing binding to stressed endothelial cells in order to enter inflamed tissues. 

Experiments in mice have shown that recently activated or reactivated CD8+ 

effector cells have the ability to enter most peripheral tissues, including those 

that are uninfected (Masopust et al. 2004). Following this initial expansion 

phase and disease resolution, the T cells enter the contraction phase, during 

which 90-95% of the cells die by apoptosis (Strasser and Pellegrini 2004). The 

remaining cells adopt a memory phenotype and persist in the circulation and 

tissues. 

 T cell effector functions 1.1.4

Cytotoxic T cells are antigen specific killers which can induce apoptosis in their 

target cells. T cell mediated target cell killing can be mediated in a receptor- or a 

cytotoxic granule-dependent manner. 

 Cytotoxic granules 1.1.4.1

Cytotoxic T cells readily carry pre-formed cytotoxic granule components in order 

to kill target cells quickly upon recognition through MHC-TCR ligation. Cytotoxic 

granules are formed from lysosomes and are surrounded by a lipid bilayer (de 

Saint Basile et al. 2010). They contain perforin, granzymes and granulysin, 

which are kept in an inactive state through a low pH (Ménager et al. 2007). 

Upon release, perforin polymerizes and creates pores in the target cell 

membrane, enabling entry of other cytotoxic molecules into the cytoplasm of 

target cells (Browne et al. 1999; Pipkin et al. 2010). Perforin is thought to be 

essential for granzyme mediated killing, as perforin deficient mice have a 

severe defect in immune responses against the majority of viruses and are 

susceptible to spontaneous and chemically induced tumours (Kägi et al. 1994; 

Lowin et al. 1994; Broek et al. 1996). Similarly, polymorphisms in the perforin 

gene have been associated with melanoma development at young age (Trapani 

et al. 2013).  
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Granzymes are a family of serine proteases that has five members in humans: 

Granzyme A, B, H, K and M. The various granzymes are all thought to be 

involved in inducing apoptosis in the target cells by different mechanisms, but 

have redundant functions in immunity as mice lacking individual granzymes do 

not generally show more severe disease outcomes (Cullen et al. 2010). The 

role granzymes play in tumour rejection is therefore not well defined, as mice 

lacking these molecules did not have impaired immune responses to various 

transplanted tumours compared to wild type mice (Smyth et al., 2003).  

Granzymes A and B are the most widely expressed and are also the most 

studied granzymes. Upon release into the target cell cytosol, granzyme B 

cleaves and activates caspase 3, which in turn activates a caspase proteolytic 

cascade that leads to the inactivation of ICAD (inhibitor of CAD), thereby 

releasing caspase-activated deoxyribonulcease (CAD), which finally degrades 

the target DNA. Granzyme B and caspase 3 also both cleave BID, triggering 

disruption of the outer mitochondrial membrane and the release of inner 

membrane proteins such as pro-apoptotic cytochrome c (Alimonti et al. 2001). 

Granzymes can also be released into the extracellular space and can be 

expressed in the absence of perforin in a number of cell types including B cells 

and mast cells, suggesting additional roles of these proteins to killing. Indeed, 

granzymes can directly induce inflammation, by acting as a chemoattractant to 

other immune cells and by promoting the release of inflammatory cytokines. 

Granzymes can also cleave inflammatory cytokines such as IL-1b and IL-18 into 

more inflammatory forms (Boivin et al. 2009; Hiebert and Granville 2012). 

Eomesodermin (eomes) and T-box expressed in T cells (T-bet) are known 

transcription factors involved in promoting a cytotoxic phenotype in T cells. 

Ectopic expression of eomes or Tbet were shown to induce perforin and 

granzyme B expression in Th2 cells that do not normally express these proteins 

(Pearce et al. 2003). Extracellular signals that promote de novo perforin and 

granzyme expression include TCR ligation and exposure to high levels of IL-2 

and IL-15 (Janas et al. 2005; Salcedo et al. 1993; Leger-Ravet et al. 1994; 

Gamero et al. 1995). Conversely transforming growth factor (TGF)-β was shown 

to inhibit perforin and granzyme B expression in mice in vivo and in human T 

cell in vitro (Thomas and Massagué 2005; van Houdt et al. 2009) 
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Degranulation can be induced by TCR crosslinking and subsequent release of 

effector molecules must be tightly regulated in order to avoid bystander cell 

death. Indeed, cytotoxic granule mediated killing is highly focussed and involves 

the formation of an immunological synapse that encompasses integrins to 

stabilize T cell:target cell binding. The cytotoxic granules, anchored to 

microtubules, migrate towards the synapse and are released onto the target cell 

in a highly polarized manner (de Saint Basile et al. 2010).  

 Death receptor mediated killing 1.1.4.2

Other mechanisms exist that can induce target cell death but are granule 

exocytosis independent. Fas/FasL mediated killing for example involves ligation 

of effector cell FasL (CD95L) with Fas (CD95) on the target cell, leading to 

trimerization of the latter and the induction of caspase-dependent intracellular 

cell death pathways (Villa-Morales and Fernández-Piqueras 2012). Fas/FasL 

mediated induction of cell death is thought to be primarily involved in immune 

regulation, rather than tumour cell killing, as Fas deficiency in mice and humans 

leads to lymphoproliferative disorders and immunopathology (Griffith et al. 

1995; Le Deist et al. 1996). However, FasL-mediated signalling can also induce 

T- and NK-cell induced tumour rejection in certain settings (Villa-Morales and 

Fernández-Piqueras 2012; Morales-Kastresana et al. 2013; Eberle et al. 2003; 

Liu et al. 2005). 

TNF-related apoptosis-inducing ligand (TRAIL) is an alternative pathway of 

receptor mediated cell death. TRAIL can be excreted or membrane bound and 

induces trimerization of its receptors TRAILR-1 or -2 upon ligation, initiating a 

caspase-8 dependent signalling cascade that will induce apoptosis in the target 

cell. Like FasL, TRAIL mediated killing is involved in both, regulation of immune 

cells as well as tumour cell killing (Thomas and Hersey 1998; Dimberg et al. 

2013). 

 Receptors controlling T cell behaviour 1.2

T cell activation is a complex process and its outcome depends on a balance of 

positive and negative signals. The function of each stimulatory and inhibitory 

molecule is strongly related to the timing and context of its ligation. Therefore, 

expression of each of these receptors and/or its ligand is tightly regulated and 
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dependent on the activation and differentiation status of the cell. The following 

section will examine in more detail the features of the costimulatory molecules 

CD27, CD28 and CD45 and the inhibitory receptors PD-1 and CTLA-4. 

 CD28  1.2.1

CD28 can act as costimulatory molecule upon binding its ligands CD80 (B7.1) 

and CD86 (B7.2) on the surface of antigen presenting cells. CD28 ligation 

during concomitant TCR stimulation recruits phosphatidylinositol-4,5-

bisphosphate 3-kinase (PI3K) to the TCR complex. PI3K converts the 

phosphoplid PIP2 to PIP3, allowing recruitment of phospholipase C (PLC)γ to 

the plasma membrane, which converts PIP2 into diacylglycerol (DAG) and IP3. 

DAG in turn initiates downstream NFκB signalling, whilst IP3 induces 

downstream calcium release and subsequent NFAT pathway activation. PIP3 

also allows recruitment of Akt (Rudd et al. 2009). 

CD28 signalling therefore decreases the threshold for TCR activation, induces 

entry into the G1 phase of the cells cycle and promotes survival via upregulation 

of Bcl-xL (Boise et al. 1995). Further, CD28 signalling promotes IL-2 production 

(at both protein and mRNA level) and causes upregulation of the high affinity IL-

2 receptor CD25 (Powell et al. 1998). CD28 knock-out mice showed a reduction 

in certain T cell functions such as induction of B cell class switching but were 

able to generate cytotoxic T cells (Shahinian et al. 1993). 

CD28 can be detected on naïve cells and certain memory T cells, but is lost 

with differentiation. Indeed, long term stimulation with allogeneic cells or IL-2 

causes CD28 downregulation in vitro (Effros et al. 1994; Borthwick et al. 2000). 

The frequency of CD28 expressing cells declines with age in humans (Effros et 

al. 1994; Boucher et al. 1998). 

 CD27 1.2.2

CD27 belongs to the TNFR superfamily and acts as a costimulatory molecule to 

enhance T cell function upon binding to its unique ligand CD70 during TCR 

activation. Ligation induces CD27 trimerization, engaging TNFR-associated 

factor 2 (TRAF2) and TRAF5 to its cytoplasmic tail and inducing downstream 

NFκB and c-Jun-N-terminal kinase (JNK)-signaling cascades. CD27 signalling 

therefore promotes survival and enhances proliferation, thereby leading to 

increased effector functions such as cytotoxicity and promoting memory 
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formation (Duttagupta et al., 2009). CD27 deficient mice develop similarly to 

wild-type mice, but show a reduction in cell numbers during primary and recall 

responses (Hendriks et al. 2000). Conversely, mice overexpressing CD70 show 

increased effector functions against certain pathogens but also display B cell 

depletion due to high levels of T cell derived interferon (IFN)-γ, leading to the 

animals becoming immunocompromised (Arens et al. 2004). 

CD27 is expressed by naïve and early-differentiated memory T cells and is 

further upregulated upon CD3-mediated stimulation (Hintzen et al. 1993). 

However, after prolonged activation in vitro and in vivo, CD27 expression is 

gradually reduced and eventually lost irreversibly. CD70 expression is highly 

regulated and normally only occurs transiently in T cells, B cells, NK cells and 

dendritic cells upon activation (Nolte et al. 2009). 

Constitutive signalling through CD27 during CD70 overexpression in T cells has 

also been shown to lead to an exhaustion-like phenotype in CD8+ but not CD4+ 

T cells, by causing reduced IL-2 and TNFα production and increased 

expression of PD-1, IL-10 and B lymphocyte-induced maturation protein-1 

(Blimp-1) (van Gisbergen et al. 2009). CD27 signalling in the tumour setting can 

be both beneficial and detrimental to anti-tumour immune responses, depending 

on the context. Studies involving injection of tumour cell lines into mice have 

shown that CD27 signalling can mediate anti-tumour immunity by promoting 

effector T cell function (Arens et al. 2004; Roberts et al. 2010). However, CD27 

signalling in mice with solid transplanted tumours was shown to be detrimental 

to the host by promoting Treg development and therefore immunosuppression 

(Claus et al. 2012). CD27 signalling therefore has a variety of outcomes, which 

may depend on the context and duration of CD70 ligation. 

 CD45  1.2.3

CD45 (lymphocyte common antigen) is a transmembrane receptor that is 

expressed on all haematopoietic cells and contains a protein tyrosine 

phosphatase on its cytoplasmic tail. The ligand for CD45 has not been identified 

to date. A number of CD45 isoforms exist that are generated through alternative 

splicing and differ in the length of their extracellular domain. On T cells, high 

molecular weight CD45RA was originally attributed to naïve T cells, whereas 

low molecular weight CD45RO was associated with antigen experienced cells 
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(Akbar et al. 1988). Subsequently, a population of antigen experienced and 

highly differentiated cells that do re-express CD45RA on their surface has also 

been identified (Hamann et al. 1997). However, the exact role of CD45 isotypes 

in T cell differentiation has not yet been established. 

CD45 modulates early T cell signalling during antigen stimulation by removing 

an inhibitory phosphate group from the Src-family kinase Lck. Activated Lck in 

turn may phosphorylate the ITAMs on the CD3 complex, enabling further 

recruitment of components involved in CD3 signalling (Hermiston et al. 2003). 

Being the smallest CD45 isoform, CD45RO more readily associates with the T 

cell receptor and enables signal transduction than CD45RA. T cell development 

is heavily impaired in CD45 deficient mice (Byth et al. 1996). 

 PD-1 1.2.4

Programmed death-1 (PD-1; CD279) is an inhibitory cell surface receptor 

homologous to CD28. It is comprised of an extracellular Immunoglobulin-like 

domain and two tyrosine-based signalling motifs in the intracellular tail 

(Sheppard et al. 2004). Engagement of PD-1 to its ligands inhibits T-cell 

activation and induces peripheral tolerance.  

The majority of T cells in the circulation do not express PD-1, but can be 

induced to do so upon TCR-mediated activation or exposure to cytokines such 

as IL-2, IL-7, IL-15, IL-21 and TGF-β (Agata et al. 1996; Kinter et al. 2008). 

Some T cell populations constitutively express PD-1, such as follicular helper T 

cells (Sage et al. 2013). 

PDL-1 (B7-H1; CD274) and PDL-2 (B7-DC; CD273) are the ligands to PD-1 and 

are differentially expressed on a variety of cells in the circulation: PD-L1 is 

constitutively expressed by a number of haematopoietic cells including T cells 

and antigen presenting cells and is expressed in various lymphoid and non-

lymphoid tissues (Freeman et al. 2000; Brown et al. 2003; Peña-Cruz et al. 

2010; Bankey et al. 2010).  PDL-2 expression is thought to be restricted to 

dendritic cells and macrophages (Freeman et al. 2006).  IFNγ in particular 

causes PDL-1 and PDL-2 upregulation in various cell types (Brown et al. 2003). 

The tyrosine residues in the cytoplasmic tail of PD-1 mark the presence of an 

immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor 

tyrosine-based switch motif (ITSM) motif (Chemnitz et al. 2004). Upon PD-1 
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engagement with its ligands, the tyrosine residues in the cytoplasmic tail are 

phosphorylated, recruiting Src homology 2-domain-containing tyrosine 

phosphatase 2 (SHP-2) and SHP-1 (Chemnitz et al. 2004). SHP-1 and SHP-2 

in turn lead to the dephosphorylation of TCR proximal signalling components, 

thereby inhibiting certain TCR/CD28-mediated signals (Parry et al. 2005; 

Patsoukis et al. 2012). Because PD-1 transduces a signal when engaged in 

combination with T cell receptor (TCR) ligation only, the extent of PD-1 

mediated inhibition is dependent on the strength of the stimulation and will have 

the greatest impact under conditions of relatively weak stimulation (Freeman et 

al. 2000; Latchman et al. 2001; Brown et al. 2003).  

Both CD28 and IL-2 promote T cell proliferation and cell cycle progression, 

survival and cytokine expression and PD-1 exerts its effects directly by inhibiting 

early activation events induced by CD28 or indirectly through undermining 

production of IL-2 (Carter et al. 2002). Therefore, PD-1 signalling undermines 

TCR-signalling mediated upregulation of cytokines such as IL-2, IFNγ and 

TNFα, cell cycle progression, upregulation of the survival gene Bcl-xL and leads 

to a reduced expression of transcription factors involved in effector functions 

such as Tbet and Eomes (Chemnitz et al. 2004; Patsoukis et al. 2012; Nurieva 

et al. 2006).  

Originally discovered on murine T cell hybridoma and thought to be involved in 

cell death (Ishida et al. 1992), it is now  clear that the major function of PD-1 

involves inhibitory signalling and immune regulation. This is supported by direct 

and indirect evidence in mice deficient in PD-1 displaying a breakdown in 

peripheral tolerance and exacerbated features of autoimmunity (Nishimura et al. 

1999; Salama et al. 2003) and humans where genetic polymorphisms in the 

PD-1 locus have been linked to various autoimmune diseases (Nielsen et al. 

2003; Velázquez-Cruz et al. 2007).  

PD-1 mediated signalling is not only important in mediating tolerance to self, but 

also in preventing exacerbated immune responses. During acute infection PD-1 

is upregulated on activated T cells, but is not necessarily associated with 

impaired immune responses to the pathogen (Erickson et al. 2012; Phares et al. 

2010). PD-1 is also constitutively upregulated by T cells through chronic antigen 

exposure during persistent disease. This mechanism may prevent further 

immunopathology during chronic antigen stimulation, but may also cause 
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immune dysfunction, and lead the T cells to adopt a state known as exhaustion 

(Speiser et al. 2014). This may occur in chronic viral infections as well as 

cancer. T cell exhaustion will be discussed in more detail in section 1.4.4. 

PD-1 ligation may also suppress T cell responses to cancer. The inhibitory 

receptor can be upregulated on tumour infiltrating lymphocytes as well as 

tumour specific T cells in the circulation (Ahmadzadeh et al. 2009; Baitsch et al. 

2011; Chapon et al. 2011).  Expression of PD-1 in these cells was associated 

with decreased T cell function in humans and mice (Saito et al. 2013; Curran et 

al. 2010). PDL-1 can be expressed on tumour cells and correlated with poor 

prognosis in certain cancers, but not melanoma metastases (Hamanishi et al. 

2007; Inman et al. 2007; Ahmadzadeh et al. 2009; Gadiot et al. 2011).  

 CTLA-4 (CD152)  1.2.5

CTLA-4 is a B7/CD28 family member that inhibits T cell function. Like CD28, 

CTLA-4 binds CD80 and CD86, but does so with higher affinity (Rudd et al. 

2009). CTLA-4 is commonly expressed by Tregs and can be induced in other T 

cell subsets upon activation (Chan et al. 2014). In resting cells CTLA-4 is 

located in intracellular vesicles. Upon activation, it is transiently expressed in 

the immunological synapse before being rapidly endocytosed (Leung et al. 

1995). 

CTLA-4 can regulate T cells intrinsically or in a bystander-cell mediated fashion 

through a number of mechanisms (Wing et al. 2008). CTLA-4 is in direct 

competition with CD28 for their common ligands CD80 and CD86. Because 

CTLA-4 binds these with greater affinity, CD28 signalling is reduced in the 

presence of the inhibitory receptor. CTLA-4 has also been shown to oppose 

CD28 signalling by removing CD80 and CD86 (including their cytoplasmic 

domain) from the antigen presenting cell via trans-endocytosis (Qureshi et al. 

2011). The cytoplasmic tail of CTLA-4 does not contain a classic ITIM motif, but 

can recruit the phosphatases SHP-2 and PP2A (Marengère et al. 1996; Chuang 

et al. 2000), which may interfere with TCR signalling, although the exact 

mechanism for this remains to be elucidated (Parry et al. 2005).CTLA-4 

therefore works by opposing CD28 and TCR-mediated signalling during 

activation, leading to reduced expression of IL-2 and cell cycle arrest.  
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CTLA-4 signalling increases the activation threshold during T cell activation, 

thereby reducing the pathogenicity of effector T cells. CTLA-4 therefore plays a 

crucial role in immunological tolerance. This has been highlighted in mice 

lacking CTLA-4 globally or selectively in the FoxP3+ Treg compartment, which 

develop a lymphoproliferative disorder and die at young age (Waterhouse et al. 

1995; Wing et al. 2008). Similarly, polymorphisms within the CTLA-4 gene have 

been associated with autoimmune diseases in humans (Gough et al. 2005). 

CTLA-4 signalling has also been implicated with reduced immune responses 

during disease in infection and tumour settings. This was particularly noted in 

the context of immune exhaustion, discussed in more detail in section 1.4.4.. 

 T Cell Memory 1.3

The generation of immunological memory is the hallmark of the adaptive 

immune response. Memory cells are more sensitive to antigen and are 

generally found in higher frequencies than their naïve precursors, allowing more 

rapid proliferation and effector functions upon antigen re-encounter. Memory T 

cells are not a uniform population of cells but are generally thought to come in 

three distinct classes: central memory (TCM), effector memory (TEM) and effector 

memory cells that re-express CD45RA (TEMRA), which can be distinguished by 

their homing, proliferative and functional properties (See Fig Table 1-1, Sallusto 

et al. 1999; Faint et al. 2001). This is true for both, CD4+ and CD8+ T cells. 

 Markers used to identify subpopulations  1.3.1

Various markers and combinations of markers have been used in literature to 

define memory T cell subsets and there is currently no consensus on which is 

the most appropriate (Appay et al. 2008).  The markers most commonly used 

for this purpose are CD45RA in combination with CD62L, CCR7 or CD27, 

although there is generally high consistency in the expression patterns of these 

markers in the subsets, meaning differently defined populations using these 

markers are comparable (Sallusto et al. 1999; Appay et al. 2008). 

In this work, the combination of CD45RA and CD27 was used to define naïve, 

TCM, TEM and TEMRA subsets, as CD27 expression was found to generate more 

discrete populations than CCR7 or CD62L and less likely to be re-expressed. 

Using these markers is also in accordance with previous work published by our 



 37 

group and others (Hamann et al. 1997; Di Mitri et al. 2011; Henson et al. 2014).  

It should be noted that the identification of memory differentiation 

subpopulations based on surface receptor expression applies to resting cells 

only, as markers can be altered upon T cell activation. TEM cells for example 

have been shown to upregulate the TCM marker CD62L after stimulation, 

although it should be noted that these cells did not display equal proliferative 

functions compared to cells that expressed CD62L prior to stimulation (Sallusto 

et al., 2004). 

Other marker combinations used to identify T cells of various differentiation 

stages are coexpression of CD27 and CD28 with double expressing cells being 

the least differentiated and double negative cells being the most differentiated 

(Henson et al. 2009). Alternatively, loss of CD28 or expression of CD57 or 

KLRG1 by themselves have been used to identify highly differentiated cells 

(Brenchley et al. 2003; Voehringer et al. 2002; Speiser et al. 1999). 

Research in identification and characterization of T cell subsets has largely 

been based on blood derived T cells. Whether the TCM/TEM/TEMRA dogma can be 

applied to tissue resident T cells remains to be established. 
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  Naïve TCM TEM TEMRA 

Receptors 

associated 

with homing 

CCR7 + + - - 
CD62L + + - - 
CLA - + + - 
CCR4 - + + - 
CXCR1 - - +/- + 

Stimulatory 

and Inhibitory 

coreceptors 

CD27 + + +/- - 
CD28 + + +/- - 
CD45RA + - - + 
CD45RO - + + - 
PD-1 - +/- +/- - 
KLRG1 

 
- - + + 

Cytokines 

and cytotoxic 
effector 

molecules 

IL-2 - +++ ++ + 
TNFα - + +++ +++ 
IFNγ - + +++ +++ 
Granzyme B - + ++ +++ 
Perforin - + ++ +++ 

Senescence 

and 
differentiation 

associated 

features 

Telomere 
length +++ ++ + ++ 
Proliferative 
capacity +++ +++ ++ + 
γH2AX - - +/- + 
CD57 - - +/- + 

Table 1-1: Phenotypic properties of T cell subsets 
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 Central memory T cells (TCM) 1.3.2

TCM are named after their homing pattern and express distinct surface receptors 

which cannot be found on effector memory cells (TEM). This includes CD62L (L-

selectin) and CCR7, which are necessary for migration to the T cell areas of 

secondary lymphoid organs, such as the lymph nodes or mucosal lymphoid 

organs (e.g. tonsils) (Sallusto et al. 1999). TCM express high levels of the 

costimulatory molecules CD27 and CD28, which bind ligands generally found 

on mature dendritic cells. Upon activation, TCM express high levels of CD40L, 

which can in turn stimulate dendritic cells, B cells and macrophages and provide 

CD8+ T cell help (Sallusto et al. 1999). 

Activated TCM have little or no immediate effector functions and do not produce 

many cytokines apart from IL-2. However, they are able to proliferate 

extensively and produce effector cytokines much later as they lose CCR7 and 

differentiate into effector cells that produce large amounts of IFN-γ or IL-4 (de 

Jong et al. 1992; Sallusto et al. 1999). TCM are therefore considered by some 

researchers to have memory stem-cell like attributes such as high proliferative 

capacity and high IL-2 production that can provide long term memory and 

contribute to the TEM cell pool that mediates effector functions (Lanzavecchia 

and Sallusto 2005). 

 Effector memory T cells (TEM) 1.3.3

TEM have lost the expression of lymphoid homing receptors such as CCR7 and 

may instead express homing receptors that facilitate migration to nonlymphoid 

tissues, particularly during inflammation. This includes high expression of 

integrins such as LFA-1 and inflammatory chemokine receptors including 

CCR1, CCR3, CCR5 and CXCR3, as well as the tissue homing receptors 

cutaneous leukocyte antigen (CLA) and CD103 (Sallusto et al. 1999; Willinger 

et al. 2005). 

TEM have a low activation threshold to CD3 stimulation and express low levels 

of the costimulatory receptors CD27 and CD28. At potential sites of 

inflammation, TEM can produce IFN-γ, TNFα, IL-4 and IL-5 within hours of TCR 

restimulation and readily release prestored effector molecules such as perforin 

and granzyme A, B and H (Sallusto et al. 1999; Willinger et al. 2005). TEM can 

also express high levels of TRAIL and FasL, involved in perforin independent 
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killing (Willinger et al. 2005). Consistent with expression of these molecules, 

TEM express high levels of the transcription factors involved in effector T cell 

functions, such as T-bet and eomes (McLane et al. 2013). Compared to TCM, 

TEM have decreased proliferative function but markedly increased effector 

capacities, allowing them to mediate immediate immune protection upon 

challenge (Sallusto et al. 1999). 

 Effector memory T cells re-expressing CD45RA (TEMRA) 1.3.4

A third class of memory cells have a greatly reduced proliferative potential 

compared to the other subsets and accumulates with age (Koch et al. 2008). 

Similarly to the TEM, these cells express particularly large amounts of effector 

cytokines, cytotoxic granule components and receptors that allow migration to 

inflammatory sites, whilst lacking the costimulatory molecules CD27 and CD28 

(Hamann et al. 1997; Faint et al. 2001; Willinger et al. 2005). These cells are 

known as TEMRA, as they can be distinguished from TEM through the expression 

of CD45RA, a marker normally found on naïve T cells only (Faint et al. 2001).  

TEMRA are thought to be the most differentiated of all T cell subpopulations, as 

they have the highest levels of DNA damage associated marker γH2AX and 

lowest levels of telomerase activity, although it should be noted that their 

telomeres are longer than in TEM (Di Mitri et al. 2011). TEMRA also express the 

highest levels of the senescence associated receptors CD57 and KLRG1 (Di 

Mitri et al. 2011; Libri et al. 2011). The senescent nature of TEMRA cells will be 

discussed in more detail later (section 1.4.1). TEMRA cells also express high 

levels of inhibitory receptors commonly associated with NK cells, such as CD94, 

NKG2A, CD158a and NKB-1 ( Baars et al. 2000). 

TEMRA are though to be the most differentiated of all the memory subsets and 

whilst they have very low proliferative function, their effector-like nature allows 

them to rapidly kill target cells upon challenge. 

 Lineage relationship and differentiation of T cell subsets 1.3.5

Transfer models in mice have shown that a single naïve T cell is multipotent 

and can give rise to any memory subset (Stemberger et al. 2007; Gerlach et al. 

2010). It is generally accepted that TCM are the least differentiated out of all the 

memory T cell subsets, whilst TEMRA have reached an end stage (Di Mitri et al. 

2011; Willinger et al. 2005). However, the exact generation and lineage 
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relationships between these cells are still a matter of debate. Certain models 

propose a linear differentiation from naïveà TCMà TEMàTEMRA, determined by 

repetitive stimulation or signal strength. Alternatively, asymmetric division may 

generate TCM, TEM or TEMRA independently from each other (Chang et al. 2007; 

Kaech and Cui 2012). 

 Antigen specificity of T cell subsets 1.3.6

Cells specific against various pathogens and of different clonotypes can be 

preferentially driven towards certain memory phenotypes rather than others and 

this can vary with anatomical location of the cells and period of exposure to the 

pathogen. Influenza specific T cells for example preferably adopt a TCM-like 

phenotype (CD62Lhi) (Kedzierska et al. 2006). In Epstein-Barr virus (EBV) 

positive individuals, CD8+ T cells specific against latent antigens show a TCM-

like CD45RO+CD28+ phenotype, whilst T cells against lytic epitopes were 

heterogenous but contained TEMRA-like (CD45RA+CD28-) cells (Hislop et al. 

2002). Cytomegalovirus (CMV) specific cells typically are skewed towards a TEM 

or TEMRA phenotype (Griffiths et al. 2013). Indeed, the TCR repertoires of 

circulating human CD8+ TCM and TEM are largely distinct (Baron et al. 2003). 

 Maintenance of memory 1.3.7

All T cell memory subsets are stable T cell populations that can persist in the 

absence of antigen for a lifetime. Maintenance of memory T cells in the absence 

of antigen stimulation is a dynamic process during which the cells proliferate 

and die. Radioactive isotope labelled CD4+ T cells were followed up in human 

volunteers in vivo and displayed an estimated doubling time of 1 year for naïve 

T cells, 48 days for TCM and 15 days in TEM cells (Macallan et al. 2004). 

Simultaneously, TEM also displayed the highest disappearance rates, 

suggesting that homeostasis is maintained through occasional cell death as well 

as proliferation of the surviving cells (Macallan et al. 2004).  

Long-term persistence of the memory cells is dependent on homeostatic 

proliferation driven by common γ-chain cytokines such as IL-7 and IL-15, which 

also promote survival (Sprent et al. 2008). Indeed, TEMRA are thought to be 

predominantly generated by cytokine exposure rather than by antigen-

dependent stimulation (Geginat, Lanzavecchia, and Sallusto 2003). Excess 

cells (generated during homeostatic proliferation or during expansion following 
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antigenic stimulation) undergo apoptosis due to cytokine deprivation or 

programmed cell death (Jameson 2002; Prlic and Bevan 2008). These cells 

display “eat-me” signals and are cleared by phagocytic cells such as 

macrophages or immature dendritic cells in an anti-inflammatory manner (W. 

Chen et al. 2001; Savill et al. 2002). 

 Tissue resident T cells 1.3.8

Various studies in the past have analysed cells in peripheral tissues and 

classified them into the three classic subsets described above based on the 

detection of CD45RA and CCR7 (Clark, Chong, Mirchandani, Brinster, et al. 

2006; Sathaliyawala et al. 2013). However, it has become apparent that T cells 

in the skin, blood, lung and many other peripheral organs do in fact comprise an 

additional independent memory subset, as the cells differ in phenotypes and 

functions from their circulating counterparts. These cells are therefore now 

termed tissue-resident memory cells, or TRM (Jiang et al. 2012; Purwar et al. 

2011; Zhang and Bevan 2013). 

TRM are thought to act as immune sentinels in the peripheral tissues, as they 

are able to not only kill target cells but also secrete proinflammatory cytokines 

and chemokines to attract other immune cells. Indeed, TRM have been shown to 

confer increased protection upon pathogen re-encounter and their efficacy has 

been directly linked to the numbers of pathogen-specific cells before re-infection 

(Liang et al. 1994). The nature of TRM with a focus on skin resident TRM will be 

discussed in more detail in section 1.5.3. 

 CD4+ FoxP3+ Tregs 1.3.9

Forkhead box p3 (Foxp3) positive regulatory T cells (Tregs) are a suppressive 

subpopulation of CD4+ T cells that control immune responses to self and foreign 

antigen. They can be induced in the thymus (natural Tregs) as well as in the 

periphery (induced Tregs) and are characterized by expression of the high 

affinity IL-2 receptor CD25 in absence of the IL-7 receptor CD127 (Sakaguchi et 

al. 2008). Further, circulating FoxP3 Tregs express CD27 and are heterogenous 

for CD45, placing these cells either into the naïve or the TCM compartments 

(Booth et al. 2010; Shen et al. 2011). Tregs can be detected in both, the 

circulation and peripheral organs where they ensure immune tolerance and 

control excessive immune reactions (Akbar et al. 2007; Fulton et al. 2010). 
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Tregs regulate immune responses in a number of ways. This includes 

production of anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, IL-2 

depletion and inhibitory receptor mediated inhibition (e.g. via CTLA-4 and PD-1) 

(Tang et al. 2004; Wang et al. 2009). Through these mechanisms, Tregs can 

inhibit T cell effector functions directly or indirectly by modulating accessory 

cells such as dendritic cells (Sakaguchi et al. 2009). 

 T cell dysfunction: Exhaustion and Senescence 1.4

Disease and disease free episodes dictate expansion and resting phases in 

memory T cells. However, under conditions of prolonged antigen stimulation, for 

example during persistent or chronic viral infections, T cell populations can be 

driven into dysfunctional states, such as T cell senescence or exhaustion. 

Whilst the terms are often being used interchangeably, senescence and 

exhaustion are in fact two distinct processes characterized by different 

phenotypic markers and different underlying molecular pathways (Akbar and 

Henson 2011). Senescence is generally associated with persistent reactivating 

infections, whilst exhaustion is associated with chronic antigen exposure as a 

result of failure of disease containment. 

 T cell senescence 1.4.1

Senescence was first described in fibroblast cultures, where, after 50 passages, 

cells underwent growth arrest but were resistant to cell death (Effros and 

Walford 1984). This state, termed replicative senescence, is characterized by 

irreversible loss of proliferative capacity and has since been described in T 

cells. Senescence in memory T cells is associated with end-stage 

differentiation, lack of proliferative capacity and evidence of DNA damage but 

preservation of certain effector functions ( Akbar and Henson 2011; Baars et al. 

2000). Senescence occurs when telomere loss due to excessive cell division 

and general DNA damage (which can be induced by reactive oxygen species, 

ionizing radiation and other mechanisms) induce DNA damage responses, 

triggering intracellular signalling cascades involving p53 and p38 that lead to 

growth arrest and loss of telomerase activity (Plunkett et al. 2005; Iwasa et al. 

2003).  
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Senescent T cells are characterized by a loss of their CD27 and CD28 

costimulatory molecules, increased expression of the DNA damage associated 

marker γH2AX and upregulation of NK-cell associated inhibitory makers KLRG1 

and CD57 (Henson et al. 2009; Di Mitri et al. 2011). The TEMRA memory subset 

bears the hallmarks of cellular senescence, by showing low proliferative 

capacity and telomerase activity upon activation but high levels of γH2AX, 

reactive oxygen species and CD57 and KLRG1 expression (Di Mitri et al. 2011; 

Henson et al. 2014). 

Cells with a senescence associated phenotype accumulate as a result of 

repeated exposure stimulation and with age (Griffiths et al. 2013; 

Derhovanessian et al. 2011; Koch et al. 2008). The accumulation of senescent 

cells is most commonly associated with cytomegalovirus (CMV) infection in 

healthy individuals (Ouyang et al. 2004; Kuijpers et al. 2003). After infections, 

this herpes virus establishes latency in a variety of cell types and persists for life 

in the immunocompetent host (Gandhi and Khanna 2004). Progressive long 

term antigen exposure during reactivation can lead to progressive T cell 

differentiation and large oligoclonal expansions of senescent and dysfunctional 

cells (Lachmann et al. 2012; Ouyang et al. 2004).  

Pathogen specific cells may also have senescent features in other viral 

diseases such as Epstein-Barr virus (EBV), human immunodeficiency virus 

(HIV), and hepatitis C (Hoare et al. 2013; Mojumdar et al. 2011). Senescent 

cells were also increased in individuals with autoimmune conditions, such as 

rheumatoid arthritis (Michel et al. 2007). Repeated T cell stimulation during 

these conditions may lead to senescent cells accumulating in large oligoclonal 

expansions (Di Mitri et al. 2011).  

Whilst they show low proliferative capacity and lack of IL-2 production, most 

senescent cells are functional and express high levels of effector cytokines such 

as IFNγ and TNFα, as well as granzyme B and perforin, indicating high 

cytotoxic potential (Akbar and Henson 2011; Lachmann et al. 2012; Henson et 

al. 2014). Indeed, the fact that CMV is generally only reactivated during 

immunosuppression suggests that these cells are able to mediate effective 

immune surveillance (Gandhi and Khanna 2004). However, early stages of 

senescence can precede eventual loss of functionality, as some studies 
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suggest reduced in vitro cytokine production of CMV specific cells derived from 

old individuals compared to young donors (Ouyang et al. 2004). 

The accumulation of large oligoclonal populations of senescent cells has been 

associated with detrimental effects in overall immune function and health in a 

number of studies. Studies in mice showed that large clonal expansions caused 

by herpes simplex virus (HSV)-1 caused reduced anti-viral function in old but 

not young mice (Messaoudi et al. 2004). Similarly, old rhesus monkeys showed 

reduced responsiveness to vaccinia virus in vivo and this was associated with a 

reduced naïve T cell pool due to persistent clonal expansions (Čičin-Šain et al. 

2010). In humans, CMV infection and large oligoclonal T cell expansions have 

been associated with reduced responsiveness to EBV and increased mortality 

in old individuals (Khan et al. 2004; Wikby et al. 2005). In a different study, 

increased mortality in old individuals was associated with low overall telomere 

length of leukocytes, but not with CMV status (Deelen et al. 2014). Conversely, 

a number of studies exist that fail to show a negative impact of high T cell 

senescence in old animals (Cicin-Sain et al. 2011). 

It has been demonstrated that T cell senescence can be manipulated, as 

inhibition of KLRG1 ligation rescued proliferation but not telomerase activity 

whilst p38 inhibition allowed the restoration of both in highly differentiated T 

cells in vitro (Henson et al. 2009; Di Mitri et al. 2011, 20)  

 Senescence associated markers 1.4.2

CD57 (beta-1,3-glucuronyltransferase 1 or NK-1) is a surface glycoprotein that 

binds L- and P-selectin and a fragment of laminin. On T cells, CD57 expression 

has been shown to inversely correlate with telomere length and physical and 

emotional stress can increase CD57+ cells in peripheral blood of humans 

(Brenchley et al. 2003). Although its expression is associated with low 

proliferative function and end stage differentiation in T cells, the exact role of 

CD57 in T cell senescence is unknown.  

Killer cell lectin-like receptor subfamily G, member 1 (KLRG1) is a 

transmembrane receptor belonging to the C-type lectin-like superfamily and 

contains an ITIM in its intracellular domain. Its ligands are E- (Epithelial), N- 

(neural) and R-(retinal) cadherin which comprise a family of transmembrane 

glycoproteins that mediate cell-to-cell adhesion. KLRG1 is upregulated on T 
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cells during infection and can be found on highly differentiated resting memory 

cells, including TEM and TEMRA. KLRG1 expression on T cells is often associated 

with low proliferative function and high levels of differentiation. However, rather 

than just being a marker, KLRG1 signalling (through recruitment of SHIP-1 and 

SHP-2 to its ITIM motif) has been shown to actively contribute to decreased 

proliferation in CD8+CD28−CD27− T cells (Henson et al. 2009). 

 Telomere length as marker of replicative history 1.4.3

Telomeres are non-coding DNA regions at the end of chromosomes that consist 

of hexanucleotide (TTAGGG) repeats. During chromosomal replication upon 

cell division, a portion (typically 50-200 bases) of the terminal DNA sequence is 

lost in each telomere. This leads to proliferation induced telomere erosion and 

ultimately results in DNA damage responses that induce cell cycle arrest or 

apoptosis (Boer and Noest 1998). Telomere length can therefore be used as an 

indicator of proliferative history and differentiation stage of a cell subset. Indeed, 

within the T cell subsets, telomeres are longest in the naïve subset, shorter in 

the TCM subset and shortest in the TEM subset, suggesting a stepwise 

differentiation along the telomere loss in these subsets (Sallusto et al. 1999). 

TEMRA have longer telomeres than TEM, suggesting that TEMRA might not 

originate from TEM direclty (Di Mitri et al. 2011; Plunkett et al. 2005). 

 T cell Exhaustion 1.4.4

Exhaustion in T cells occurs during conditions of high antigenic load, when 

upregulation of inhibitory receptors causes signalling that leads to growth arrest, 

decreased cytotoxic capacity and decreased cytokine production (Akbar and 

Henson 2011). Exhaustion occurs in a hierarchical manner with a loss in IL-2 

and proliferation preceding reduced killing capacity, TNFα production and finally 

an inability to produce IFNγ, leading to functional impairment and deletion in 

some cases (Wherry et al. 2003).  

Exhaustion is mediated by inhibitory receptors which are usually associated 

with maintenance of self-tolerance and prevention of autoimmunity such as PD-

1, CTLA-4, T-cell immunoglobulin and mucin domain 3 (TIM-3) and lymphocyte-

activation gene 3 (LAG-3) (Sharpe et al. 2007; Blackburn et al. 2009). Blocking 

experiments targeting receptors associated with exhaustion such as PD-1 and 

CTLA-4 or PD-1 and LAG-3 have been shown to increase proliferation and 
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functionality in T cells in a non-redundant manner (Blackburn et al. 2009; Parry 

et al. 2005). 

Exhaustion has been shown to occur during chronic viral infections when the 

host fails to contain the pathogen. Such infections can be caused by LCMV in 

mice (Wherry et al. 2003) and HIV and Hepatitis B virus in humans (Wherry et 

al. 2003). Cells displaying exhaustion markers are mostly found within TEM and 

TCM cells that are of intermediate stages of differentiation (Akbar and Henson 

2011; Henson et al. 2012). The chronic antigenic stimulation occurring during 

these infections drives upregulation of the exhaustion associated inhibitory 

receptors but also results in downregulation of IL-7 and IL-15 receptor 

components, making them insensitive to the homeostatic cytokines IL-7 and IL-

15. Indeed, exhausted cells cannot be maintained in the absence of antigen in 

mouse models and are thought to be arrested in an intermediate stage of 

differentiation (Wherry et al. 2004). 

The inhibitory receptors involved in immune exhaustion, such as PD-1 and 

CTLA-4, play independent roles in immune tolerance. Expression of individual 

inhibitory markers is indeed not necessarily a sign of immune exhaustion 

(Erickson et al. 2012). Exhaustion can also be seen as a physiological 

mechanism designed to limit immunopathology during persistent infection 

(Speiser et al. 2014). However, exhaustion mechanisms are also hijacked by 

viruses and tumour cells, which use exhaustion pathways to avoid immune 

recognition and clearance (Baitsch et al. 2011; Day et al. 2006).  

 The skin as an immunological organ 1.5

 
Despite being the site of melanoma induction, the skin is often neglected by 

studies assessing melanoma-associated immune responses. Indeed, the skin is 

not only the largest organ in the body but is also the home of a variety of 

immune cells, including high numbers of resident lymphocytes (Clark et al. 

2006). 

 Anatomy of the Skin 1.5.1

The skin is a highly complex organ that, exposed to the environment, fulfils a 

variety of functions such as physical sensing, temperature control, barrier 
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function and immunity. The skin consists of several layers, whereby the 

epidermis is exposed to the environment and shields the underlying dermis, 

under which in turn there is a layer of subcutaneous fat. The skin is interspersed 

by a number of structures, including hair follicles, sweat glands (in humans but 

not mice), sebaceous glands, nerves, blood vessels and lymphatics. A variety of 

immune cells reside in the skin, including T cells, NK cells, mast cells, various 

dendritic cell subsets, innate lymphoid cells, αβ and γδ T cells, NKT cells and 

macrophages. Structural cells such as keratinocytes and fibroblasts may also 

actively be involved in immune responses (see Fig. 1-1; Bos et al. 1987; Nestle 

et al. 2009). 

 

Fig. 1-1: Anatomy and immune cells of the skin 

Schematic diagram showing the anatomic layers of the skin (epidermis and dermis, separated 
by the stratum basale) and the various cells involved in immune responses in the skin. DC= 
dendritic cell, pDC= plasmatycoid dendritic cell. 
Adapted from (Nestle et al. 2009) 
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 Methods of studying immune cells in skin 1.5.2

Whilst most research on immune processes heavily relies on blood derived 

immune cells, much less is known about tissue resident T cells. This is not only 

due to the fact that obtaining blood samples from a human donor is generally 

much less invasive than taking biopsies, but also to the fact that it is much more 

easy to isolate and manipulate cells from the blood than from solid organs.  

Much research on skin immunity has therefore relied on imaging techniques 

that allow visualization of markers in situ using immunhistological techniques. 

However, immunofluorescence techniques are limited by the amount of 

detectors available (generally up to 4 colours) and interest is therefore high in 

using isolation techniques that allow multicolour flow cytometry in order to study 

more markers. 

A number of techniques have been devised in order to obtain single cell 

suspensions from skin samples, which will be discussed in more detail in the 

material and methods and results sections. In general, these techniques rely on 

initial mechanical disruption followed by release of the cells from the skin matrix 

using EDTA or collagenase digestion (Clark et al. 2006). Alternatively, skin cells 

can also be recovered after emigration from skin explants in culture, although 

this entails extended periods of time between sampling and cell recovery and 

might therefore artificially select for and affect results obtained (Richters et al. 

1995; Clark et al. 2006). 

Because of the limitations of working with human skin, many studies have 

investigated skin T cells in animal models, leading to important observations. 

However, it should be noted that the mouse skin immune system is distinct from 

the human one in many respects, particularly as the dominant T cell population 

in mice are γδ T cells, whilst in humans αβ T cell prevail (Heath and Carbone 

2013).  

 Skin resident T cells 1.5.3

The adult skin contains vast numbers of T cells and an emerging number of 

studies on their functions and phenotypes have yielded fascinating insights into 

the nature of these cells in humans and mice. Indeed, whilst skin resident T 

cells were initially thought to largely resemble the TEM subset in the blood, 

recent studies in mice confirmed that skin resident T cells recognize different 
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targets and are transcriptionally distinct from their circulating counterparts 

(Mackay et al. 2013). T cells enter the skin during inflammation. After disease 

resolution, antigen specific T cells preferentially accumulate at the site of former 

infection, although they will also populate the entire skin (Jiang et al. 2012). 

However, parabiosis experiments have shown that skin resident memory T cells 

are not exchanged between animals sharing a common circulatory system 

(Jiang et al. 2012). Interestingly, skin CD4+ T cells seem to be more mobile than 

their CD8+ counterpart (Gebhardt et al. 2011). 

Skin derived T cells are largely memory cells, as conventional naïve T cells are 

not thought to migrate into the peripheral organs until after activation in the 

lymph nodes. The majority of T cells in resting skin do not express the lymphoid 

homing markers CCR7 and CD62L and are CD45RO+, which is why they were 

originally postulated to be TEM cells (Clark, Chong, Mirchandani, Brinster, et al. 

2006). In humans skin derived T cells almost exclusively express the skin 

homing markers CLA, CCR4 as well as high levels of CCR6 and CCR8 (Clark, 

Chong, Mirchandani, Brinster, et al. 2006). Skin resident CD4+ T cells produce a 

variety of cytokines and are thought to be polarized towards a Th1 rather than a 

Th2 phenotype, although Th17 and Th22 have also been detected in the skin in 

various disease settings (Clark, Chong, Mirchandani, Brinster, et al. 2006; 

Segura et al. 2013; Fujita 2013).  

Skin resident T cells can become activated, proliferate and carry out local 

immune responses. The importance of skin resident T cells in absence of T cell 

recruitment from the blood has been highlighted by an elegant study, which 

involved transfer of symptomless skin from psoriasis patients onto 

immunodeficient mice. This resulted in psoriasis-like inflammation in the skin 

transplant, which was caused by reactivation of skin resident T cells (Boyman et 

al. 2004). Cell transfer studies in mice have shown that skin derived T cells 

provided superior immune protection compared to TCM upon localized vaccinia 

virus skin infection (Jiang et al. 2012). In humans, CD8+ T cells were shown to 

infiltrate herpes simplex virus (HSV) infected genital skin and proliferate and 

display perforin expression during reactivation, confirming the role of skin 

resident CD8+ T cells in immune surveillance in humans (Zhu et al. 2007; Zhu et 

al. 2013). Final evidence of the protective role of skin resident memory T cells 

comes from leukemic cutaneous T cell lymphoma patients who remain free from 
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skin infections despite being treated with alemtuzumab, a CD52-specific 

monoclonal antibody that depletes circulating T cells (Clark et al. 2012). 

Resident T cells can therefore protect the skin in the absence of T cell 

recruitment from the blood. 

 Homing and tissue retention of skin T cells 1.5.4

Whilst conventional T cells are abundant in adult human skin, they are virtually 

absent in the skin of neonates (Watanabe et al. 2015). T cells enter the skin 

during inflammation, where they eventually disappear or convert to a memory 

phenotype (Mackay et al. 2013). This occurs not only at the site of antigenic 

challenge, as T cells that have been activated in the draining lymph nodes also 

access and colonize uninvolved skin. Upon disease resolution, T cell trafficking 

to and from the skin ceases. The majority of T cells resident in healthy skin are 

therefore non-migratory, with only a fraction of cells immigrating into and 

emigrating from the skin during steady state conditions (Clark et al. 2012; Jiang 

et al. 2012). Interestingly, CD8+ T cells are generally found to be static and 

resident in the epidermis, whilst CD4+ T cells (and CD4+ FoxP3+ Tregs in 

particular) are more likely to localize to the dermis and traffic between the skin 

and circulation (Yawalkar et al. 2000; Tomura et al. 2010; Gebhardt et al. 2011; 

Watanabe et al. 2015). 

T cells are able to home to different anatomical locations by bearing a variety of 

receptors that recognize various vascular addressins. For cells that home to the 

lymph nodes, this includes CD62L and CCR7. Conversely CLA, CCR4, CCR8 

and CCR10 are thought to enable T cell homing into the skin. Expression of 

these receptors is thought to be imprinted during activation and can be 

influenced by the microenvironment of the local draining lymph node through 

local dendritic and stromal cells (Masopust and Schenkel 2013). T cell migration 

into healthy skin is low but enhanced during inflammation, thanks to 

upregulation of adhesion molecules such as VCAM-1 on the vascular 

endothelium and local expression of chemokines, such as CCL17 and CCL22 

(both binding CCR4) and CCL27 (binding CCR10) (Mackay et al. 1992; McCully 

and Moser 2011). 

CD69 and CD103 have been identified as markers for T cells resident in the 

skin and other peripheral tissues (Sathaliyawala et al. 2013). CD103 allows 
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binding to E-cadherin on epithelial cells and can be induced in skin infiltrating T 

cells through exposure with TGFβ (Mackay et al. 2013). The ligand for CD69 

has not been identified, but CD69 is thought to mediate tissue retention by 

preventing surface expression of sphingosine 1-phosphate (S1P) receptor, 

which signals migration towards S1P in the blood (Lamana et al. 2011). Local 

cells, including keratinocytes and Langerhans cells, provide IL-15 to support 

TRM development and survival (Mackay et al. 2013). 

 Regulatory FoxP3+ Tregs in the skin 1.5.5

FoxP3+ CD4+ Tregs limit immune responses against self and foreign antigen. 

The majority Tregs in human blood express the skin homing receptors CLA and 

CCR4 and mice in which the Treg compartment is selectively deficient in either 

receptor develop severe autoimmune skin inflammation, testifying of the 

important role Tregs play in cutaneous immune regulation (Hirahara et al. 2006; 

Sather et al. 2007; Dudda et al. 2008). Indeed, Tregs are more abundant in the 

skin compared to the blood in both mice and humans and are recruited and 

proliferate further in the tissue during inflammation caused by antigenic 

challenge, autoimmune reactions or UVB-exposure (Vukmanovic-Stejic et al. 

2013; Sanchez Rodriguez et al. 2014; Yamazaki et al. 2014). Interestingly, skin 

derived Tregs are highly mobile and show increased trafficking into the draining 

lymph nodes during inflammation (Tomura et al. 2010).  FoxP3 Tregs are 

therefore abundant in healthy and diseased skin and crucial in preventing local 

immunopathology (Dudda et al. 2008). 

 Innate immune cells in the skin 1.5.6

Other cells present in the skin might modulate local immune responses. A 

variety of dendritic cell types occupy the healthy skin, including Langerhans 

cells and various dermal dendritic cells. These cells may have both, 

proinflammatory and immunomodulatory functions depending on the context in 

which they encounter antigen and may promote Treg formation or T cell 

activation (Seneschal et al. 2012; Bennett and Chakraverty 2012). Stromal cells 

such as keratinocytes or fibroblasts may also contribute to local immune 

responses (Barker et al. 1991; Rappl et al. 2001).  
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 Melanoma  1.6

 Melanoma: biology and epidemiology 1.6.1

 Melanoma development 1.6.1.1

Healthy melanocytes normally reside in the basal layer of the epidermis with 

their main function being protection against UV radiation by increasing 

production of the melanin pigments. In healthy tissue, melanocytes are evenly 

distributed within the basal layer of the epidermis. Melanocytes may undergo 

mutations in genes regulating growth and cell adhesion, leading them to escape 

the control from surrounding keratinocytes. Subsequent proliferation can lead to 

a benign naevus (i.e. a common mole), and some melanocytes become 

morphologically atypical. When uncontrolled proliferation continues, radial 

growth phase and vertical growth phase melanoma might occur. Dissemination 

into other organs is the hallmark of the metastatic stage. 

Melanoma incidence is associated with specific risk groups correlating with 

genetic background (i.e. in fair skinned populations, family history), behaviour 

(i.e. sun exposure and sunbed use), immunosuppression (e.g. treatment with 

methotrexate) and age and has been increasing worldwide more than any other 

cancer (Cancer Research UK 2010). Melanoma is especially prevalent among 

the elderly, who also suffer the greatest morbidity and mortality from this 

condition. However, this is thought to be at least in part due to diagnosis and 

treatment being delayed in the older age groups (Tsai et al. 2010). 

Melanoma disease can be divided into four stages, with stage I and II patients 

having localized tumour, whilst stage III and IV patients display metastases in 

the draining lymph nodes and beyond (see Table 1-2). The fatal outcome of 

melanoma is generally caused by metastases in distant organs, such as the 

brain or the lung. 
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Stage I II III IV 

Disease Local to 

epidermis 

Invasion of 

dermis 

Lymph node 

metastases 

present 

Metastases in 

peripheral 

tissues 

5-year  

Survival 

88-95% 43-79% 20-73% 5-22% 

Table 1-2: Staging in cutaneous melanoma 

Adapted from Cancer Research UK, 2012 
 
Several features are independently linked with disease outcome. These include 

tumour stage as mentioned above, as well as sentinel lymph node status, 

Breslow thickness, melanoma mitotic rate, presence of ulceration and the 

location of the primary tumour (Teixeira et al. 2013). Positive prognostic factors 

include presence of infiltrating lymphocytes (van Houdt et al. 2008). Poor 

prognosis has been associated with lack of MHC class I expression on tumour 

cells and presence of infiltrating neutrophils and plasmatycoid dendritic cells 

(Jensen et al. 2012; van Houdt et al. 2009) 

 Melanoma immunogenicity 1.6.2

Melanoma is a highly immunogenic tumour and direct and indirect evidence 

exist highlighting the importance of naturally occurring immune responses 

against the malignant cells. Despite the pessimistic outlook of advanced 

disease, spontaneous complete and partial tumour regressions do occur. This is 

often associated with vitiligo, where autoimmune destruction of healthy 

melanocytes is indicative of active tumour-specific immune responses 

(Quaglino et al. 2010). Melanoma can develop during immunosuppression, 

which has been reported in rheumatoid arthritis patients receiving methotrexate 

(Buchbinder et al. 2008) and in transplant patients receiving organs donated by 

melanoma survivors thought to be disease free (Laing et al. 2006). Further 

evidence for the importance of immune responses in controlling melanoma 

disease includes the widely accepted correlation between the presence of 

tumour infiltrating lymphocytes and improved disease outcome, the detectable 

presence of tumour specific T cells and antibodies, and finally the vast array of 

active and passive immune evasion strategies displayed by the cancer, 
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including downregulation of genes coding for immunodominant proteins in the 

tumour (Aisner et al. 2005; McGovern 1975; Kaur et al. 2008; Jäger et al. 1996). 

Although being derived from self, tumour cells often display antigens that are 

either distinct or overexpressed compared to the surrounding tissue and can 

therefore be targeted by the adaptive immune system. In many melanoma 

patients, a number of these tumour associated antigens (TAA) have been 

identified. These include proteins such as Melan-A (also known as MART-1), 

tyrosinase and gp100 which are also expressed in healthy melanocytes (Jäger 

et al. 1996). A different class of antigens overexpressed in melanoma cells are 

proteins which are not commonly found in healthy tissue but restricted to 

immunoprivileged germline cells. These antigens include NY-ESO-1, normally 

found in the testis (Velazquez et al. 2007). Melanoma cells may also acquire 

unique cancer antigens through genetic mutation (Robbins et al. 2013). 

The discovery of immunodominant TAA epitopes has highly facilitated the 

identification and characterization of melanoma-specific T cells via the 

generation of fluorochrome-conjugated peptide containing MHC multimers 

(Maeurer et al. 2002). Whist the underlying genetic mechanisms of melanoma 

progression are different among patients, the same is true for anti-melanoma 

immune responses, which translates into a vast array of contradicting 

publications on T cell phenotypes in melanoma patients. It is generally agreed 

upon that detectable melanoma specific T cell populations are more likely to 

arise in patients with advanced disease only, as the disruptive nature of the 

cancer in the later disease stages is required to break tolerance and trigger an 

adaptive immune response (Dunbar et al. 2000; van Oijen et al. 2004).  

It should be noted that Melan-A specific CD8+ T cells, which are probably the 

most widely studied tumour specific T cells, can also be found at low but 

detectable frequencies of around 0.1-0.01% in healthy individuals where they 

are generally found to have a naïve-like (CD45RA+CD27+) phenotype (Pittet et 

al. 1999). Melanoma-specific CD4+ T cells identified via fluorochrome 

conjugated MHC class II multimers have also been described but are not 

commonly used due to their low avidity nature that poses technical difficulties in 

using them in experiments reliably (Bioley et al. 2006).  
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 Melanoma Immune evasion 1.6.3

Like any tumour, melanomas are the result of accumulated mutations in 

autologous cells leading to uncontrolled growth and proliferation, which do not 

only entail withdrawal of intra- and intercellular regulation mechanisms but also 

escape from immune regulation. Much research has been devoted to identifying 

tumour escape mechanisms such as secretion of immunosuppressive cytokines 

(e.g. IL-10 and TGFβ), increased frequencies of suppressive cells (e.g. Tregs, 

M2 macrophages or myeloid suppressor cells) upregulation of inhibitory 

receptors (e.g. PDL-1) or downregulation of HLA, target antigen, integrins and 

costimulatory molecule expression (Zitvogel, Tesniere, and Kroemer 2006).  

Tregs are also known to play an important role in tumour immune responses. 

CD4+ Tregs are increased in the circulation of some melanoma patients 

compared to healthy controls and enriched in primary melanoma and 

melanoma-infiltrated lymph nodes and metastases (Ascierto et al. 2010; Viguier 

et al. 2004). Tregs may contribute to a lack in T cell functionality in the tumour 

microenvironment (Read et al. 2000; Jacobs et al. 2012). Depletion of Tregs 

during treatment of melanoma has shown better outcome in mouse models as 

well as human trials (Sutmuller et al. 2001; Mahnke et al. 2007). 

 The melanoma microenvironment 1.6.4

The melanoma microenvironment is both, inflammatory and immunuppressive. 

Inflammatory mediators such as CCL-2, CCL-3, TNFα, IL-1β, IL-4 and IL-6 were 

shown to be increased in the tumour environment and can support tumour 

development by providing growth signals and angiogenesis (Umansky and 

Sevko 2012). This inflammatory environment leads to the accumulation of 

suppressive cell types such as myeloid derived suppressor cells, CD4+ FoxP3 

Tregs and M2 macrophages (Meyer et al. 2011). These, or the melanoma cells, 

secrete immunosuppressive factors such as VEGF, IL-10 and TGFβ leading to 

local immunosuppression. Dendritic cells in the tumour environment may have 

also regulatory/tolerogenic phenotypes or may be depleted locally (Molenkamp 

et al. 2005).  

Cytotoxic T cells attracted to the tumour may not only be impaired by these 

local inhibitory factors but may also be simply denied access to the tumour 

microenvironment through lack of adhesion molecules, therefore accumulating 
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in the areas surrounding the tumour (Mempel and Bauer 2009). However, 

ectopic lymphoid structures may also form in melanoma lesions, attracting and 

potentially activating effector T cells on site (Messina et al. 2012; van Baren and 

Coulie 2013; Ladányi et al. 2014). 

 T cell senescence and exhaustion in melanoma 1.6.5

Since melanoma is highly immunogenic this malignancy, like persistent viral 

infections, may cause decreased T cell proliferation and functionality associated 

with chronic antigen exposure. This phenomenon is debated, as melanoma-

specific T cells were found to be dysfunctional in some studies but not others 

(Mortarini et al. 2003). Some evidence further suggests that within the same 

person different clonotypes of melanoma specific CD8+ T cells may be 

differentiated to different degrees. Similarly, melanoma specific T cells may 

adopt different phenotypic and functional properties in the melanoma lesion 

compared to the blood (Zippelius et al. 2004). 

Evidence for T cell senescence in melanoma patients includes published data 

by two different groups who found that tyrosinase but not Melan-A specific CD8+ 

T cells had a TEMRA-like phenotype and low responsiveness to peptide pulsed 

target cells or PMA/ionomycin stimulation in vitro (Lee et al. 1999; Maczek et al. 

2005). Increased frequencies of CD8+ TEMRA-like cells bearing NK cell markers 

have also been reported in melanoma patients compared to healthy age 

matched controls (Casado et al. 2005).  

Evidence for inhibitory receptor upregulation and immune exhaustion in the 

context of melanoma has been shown in both mice and humans. Tumour 

infiltrating lymphocytes expressed high levels of PD-1 and TIM-3 and failed to 

proliferate and produce cytokines upon stimulation (Sakuishi et al. 2010). 

Similarly, melanoma specific NY-ESO-1 (but not Melan-A) specific cells 

coexpressed TIM-3 and PD-1 in humans and blocking both receptors showed 

increased function (Fourcade et al. 2010). In a different study, dual blockade of 

PD-1 and CLTA-4 was shown to increase melanoma rejection in murine models 

(Curran et al. 2010). 

Encouraging clinical trials involving Ipilimumab, an anti-CTLA-4 blocking 

antibody, in advanced stage patients (Hodi et al. 2010; Cranmer and Hersh 

2007; Gyorki et al. 2013) and anti-PD-1 trials (Brahmer et al. 2012; Brahmer et 
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al. 2010; Mkrtichyan et al. 2011) indicate the role of exhaustion-associated 

receptors in melanoma. However, whilst some patients do respond to anti-PD-1 

and anti-CTLA-4 treatments, the effect is not always permanent and mortalities 

remain high, as highlighted in the survival curve of patients treated with anti-

CTLA-4 shown in Fig. 1-2 (Prieto et al. 2012; Robert et al. 2011).  

The need for improved immunotherapies for advanced stage patients therefore 

remains as important as ever and whilst most focus is concentrated on PD-1, 

CTLA-4 and other exhaustion-associated inhibitory receptor blockades to 

improve immune function, melanoma patients may also benefit from alternative 

interventions (Fourcade et al. 2010). Inhibition of p38 MAP kinase signalling for 

example has been shown to rescue proliferation and telomerase activity in 

highly differentiated and senescent T cells which are known to accumulate with 

age (Koch et al. 2008; Di Mitri et al. 2011; Akbar and Henson 2011). Such a 

treatment might therefore be especially beneficial to old patients, who 

additionally suffer from age-related immune defects but are generally 

underrepresented in melanoma related investigations and trials (Castle 2000; 

Hegde et al. 2010).  

Another consideration in studying melanoma related immune defects and 

treatment efficacy is that there seems to be an imbalance between the function 

and phenotypes of melanoma associated T cells in the circulation and those 

infiltrating the tumour (Appay et al. 2006). When studying T cells in melanoma 

patients, one must therefore also consider T cells resident in the skin, as this is 

the site of tumour induction. 

 
Fig. 1-2: Survival in patients with metastatic melanoma treated with dacarbazine alone or 
in conjunction with the anti-CTLA-4 blocking antibody Ipilimumab.  

Adapted from (Robert et al. 2011) 
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 Aims 1.7

The aim of this project was to characterize and define global and melanoma-

specific T cell differentiation in patients with melanoma with the ultimate goal to 

identify means to reverse potential defects and to improve current melanoma 

therapies. 

The objectives were as follows: 

• Assess global and melanoma specific T cell differentiation in melanoma 

patients as compared to healthy controls 

• Place particular emphasis on the older age groups which are the most 

affected by the disease 

• Investigate T cell differentiation in uninvolved skin and sites of tumour 

invasion in the melanoma patients and compare it when possible to 

healthy controls 

• Investigate the potential benefits of targeting receptors and intracellular 

pathways associated with senescence and exhaustion in T cells derived 

from melanoma patients   
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2 Material & Methods 

 Recruitment, Ethics and Exclusion Criteria 2.1

 Healthy donors 2.1.1

Blood and blister samples were collected from consented healthy individuals 

from within UCL and the local community in accordance with the ethical 

committee of the Royal Free Hospital and University College London. Skin from 

healthy individuals was obtained from previously consented donors undergoing 

plastic surgery at the Guy’s and St. Thomas’ or Royal Free hospitals and 

approved by the Institutional Review Board of Guy’s Hospital or the ethical 

committee of the Royal Free Hospital and University College London 

respectively. Skin samples from healthy donors were typically derived from 

breast or abdomen of individuals that underwent cosmetic or risk reducing (due 

to genetic predisposition to breast cancer) surgery. Individuals suffering from 

acute or chronic illness, with a history of cancer or on medication were excluded 

from this study. 

 Melanoma Patients 2.1.2

Consented cutaneous melanoma patients from Guys’ and St Thomas Hospital 

provided fresh blood and skin samples. Blood was obtained from patients 

during their follow up visits. Skin was obtained in the form of several punch 

biopsies taken from local wide excisions extracted after positive melanoma 

diagnosis. Lymph node and primary tumour samples were obtained when there 

was excess tissue not needed for histological grading. Patients suffering from 

co-morbidities or on medication (including drugs for melanoma treatment) were 

excluded from this study. Frozen primary melanoma specimens were obtained 

from Professor Jim Kruger at the Rockefeller University, New York. 

 Sample preparation 2.2

 PBMC isolation 2.2.1

Whole blood from melanoma patients and healthy controls was collected in 9ml 

EDTA or heparin tubes. Blood was mixed with an equal volume of Hanks 
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Balanced Salt Solution (HBSS) (Sigma-Aldrich, Gillingham, UK) and layered 

carefully onto 15ml Ficoll-Paque PLUS (GE Healthcare, Little Chalfont, UK) in a 

50ml Falcon tube to a total maximum volume of 50ml. The tubes were 

centrifuged at 2000 rpm for 20 minutes with the lowest brake setting. The 

resulting peripheral blood mononuclear cell (PBMC) layer between diluted 

serum and Ficoll was aspirated manually using a pasteurette and transferred 

into a new 50ml tube, in which it was washed twice in HBSS for 10 minutes, first 

at 1800rpm and subsequently at 1200rpm. Finally, the cells were resuspended 

in complete medium (RPMI 1640 complemented with 10% fetal bovine serum 

(FBS), 1% penicillin/streptomycin and 1% L-Glutamine; all purchased from 

Sigma-Aldrich) and either frozen, kept in the fridge overnight or used 

immediately for further experiments. 

 Isolation of cells from whole skin specimen 2.2.2

 Enzymatic extraction of skin lymphocytes 2.2.2.1

T cell extraction from the skin was performed using an enzymatic digestion 

protocol adapted from a method described by Haniffa and colleagues (Haniffa 

et al. 2009): Skin biopsies underwent removal of subcutaneous fat, followed by 

several washes in phosphate buffered saline (PBS). Skin was then cut into ~1-

2mm2 pieces in order to facilitate digestion. Pieces of skin were incubated in a 

48-well plate overnight in complete medium with 0.8mg/ml of Collagenase IV 

(Life Technologies, Paisley, UK) with varying percentages of FBS (see results 

section). The following day, skin and supernatant were transferred to a 100µm 

cell strainer. Mechanical action with a syringe plunger and washes with PBS 

allowed transfer of cells through the mesh. The flow through was centrifuged 

and cells were resuspended in complete medium.  Further experiments were 

performed on the same day.  

 Devices for semi-automatic mechanical skin dissociation 2.2.2.2

Two benchtop devices for mechanical disaggregation of skin were tested. The 

Medimachine (BD Biosciences, Oxford, UK) and GentleMACS (Miltenyi Biotec, 

Bisley, UK) both rely on disposable sterile plastic tubes, which contain either a 

stainless steel or plastic blades respectively.  Tissue sample and PBS are 

added into the tubes and inserted into the machines that power the rotation of 

the blades at high speed. This process only lasts minutes but was found to be 
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inadequate for full skin disaggregation for obtaining tissue resident cells into 

suspension (see results section 4.3.1.1). 

 Isolation of cells from suction blisters 2.2.3

Applying negative pressure on a section of live skin over time leads to the 

physical separation of the epidermis from the dermis, creating a fluid-filled 

blister (Kiistala 1968). Immune cells accumulate in this fluid over time, making 

suction blisters an ideal tool to generate viable skin derived cells for research 

purposes. During this study, suction blisters were induced as previously 

described (See Fig. 2-1)(Akbar et al. 2013): A suction chamber with a round 

opening of 12.5mm in diameter (Medical Engineering, Royal Free Hospital, UK) 

was applied to the normal skin on the forearm of healthy volunteers, and kept 

under constant negative pressure of 25-40 kPa. Negative pressure in the 

chamber was provided from a clinical suction pump (VP25, Eschmann, Lancing, 

UK) connected via sterile disposable tubing and was maintained until a fully 

formed blister had been raised in the induration area of the chamber. This took 

typically 2-4 hours. The blister was then protected overnight through the 

assembly of a rigid adhesive dressing composed of a universal tube lid (Sterilin, 

Fisher Scientific UK Ltd, Loughborough, UK), Comfeel plus ulcer dressing 

(Coloplast, Peterborough, UK), Micropore tape (3M healthcare, Loughborough, 

UK) and Tubigrip bandaging (Seton Healthcare Group plc, Oldham, UK). The 

following day, blister fluid was aspirated using a 2ml syringe, collected in a 

1.5ml Eppendorf tube and centrifuged at 650g (3000rpm) for 4 minutes. Blister 

fluid was removed gently and the cell pellet resuspended in 500µl complete 

medium for cell counting. 
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Fig. 2-1: Outline of the method for suction blister induction and collection of blister fluid 

(1) A blister was induced by negative pressure through a suction chamber placed onto healthy 
skin. 
(2) Representation of a fully formed suction blister 
(3) Protective dressing was applied to the area of the suction blister 
(4) The following day, blister fluid was aspirated using a syringe 
Pictures were adapted from (Akbar et al. 2013) 
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 Freezing and thawing of cells 2.2.4

When experiments could not be performed on the same or following day after 

extraction, cells were carefully resuspended in FBS with 10% DMSO at a 

concentration of 4-12 million cells/ml and aliquoted in 1ml volumes into cryovials 

(Nunc, Cramlington, UK). They were immediately placed into a “Mr Frosty” 

container (Nalgene/Thermo Fisher, Rochester, NY, USA) for gradual freezing at 

-80°C before being transferred into liquid nitrogen the following day for long-

term storage. In order to recover frozen PBMCs, the cryovials were incubated at 

37°C until most of the sample was thawed. Contents were swiftly transferred 

into pre-warmed complete medium and centrifuged, then resuspended in 

complete medium and finally counted using a haemocytometer before being 

used for further experiments. Freezing or storage in the fridge overnight of the 

PBMCs is routinely used in our lab and has not been found to significantly 

impair T cell cytokine production. 

 Viable cell counts 2.2.5

Cells were resuspended in a known volume of which 10µl were transferred to 

an equal volume of 0.4% trypan blue (Sigma-Aldrich). The cell:trypan blue 

suspension was applied to a Neubauer chamber (Weber Scientific International, 

Sussex, UK) mounted with a coverslip. Cells in the central chamber of both 

sides were counted, not including the dead cells that stained blue. The average 

of both counts were multiplied by the dilution factor of 2 and by 10 000, resulting 

in the estimated amount of cells per ml. If the counts of the two chambers 

differed considerably, this process was repeated to ensure an accurate 

enumeration. 

 Isolation of CD8+ T cell subsets from PBMCs 2.2.6

In order to obtain purified CD8+ T cell subset populations, CD8+ T cells were 

isolated from total PBMCs using magnetic bead isolation, followed by FACS-

based cells sorting: 

 Magnetic cell isolation 2.2.6.1

Magnetic cell isolation was performed using MACS columns (Miltenyi Biotec). 

The technique involves cell populations binding antibody-coated super-

paramagnetic beads that are biodegradable and do not influence cell function. 
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Cells are applied to a separation column placed into a magnetic field in which 

labelled cells are retained, whilst unlabelled cells pass through. Labelled cells 

can be collected after removal of the column from the magnetic field. CD8+ T 

cells were isolated by positive selection using CD8 microbeads, following the 

manufacturer’s instructions: PBMCs were washed in cold MACS buffer (PBS, 

0.5% Bovine Serum Albumin [BSA], 2mM EDTA) at 1200 rpm and labelled with 

anti-CD8 microbeads. The cells were incubated for 15 minutes at 4°C, before 

being washed again and resuspended in MACS buffer. The cells were then 

transferred to a pre-rinsed MACS column inserted into a magnetic holder. 

Columns were rinsed three times with cold MACS buffer in order to remove the 

CD8 negative fraction. Then, the column was removed from the magnetic field 

and MACS buffer was applied in order to remove the CD8 positive cells. 

 FACS based sorting 2.2.6.2

Some experiments required further sorting of CD27/CD45RA subsets. 

Magnetically purified CD8+ T cells were stained with antibodies against CD8, 

CD27 and CD45RA for 30 minutes at 4°C in PBS with 1%BSA. Cells were 

subsequently washed in MACS buffer to avoid cell clumping, resuspended in 

MACS buffer and passed through a 35 µm nylon mesh into a new FACS tube 

(BD Biosciences). Cells were sorted into the four CD27/CD45RA subsets using 

a FACS Aria device (BD Biosciences) and collected in sterile tubes containing 

50% FBS in RPMI. As soon as possible, cells were then centrifuged and 

resuspended at 2x106 cells/ml in complete medium. 

 Purification of immune cells from digested skin 2.2.7

Purification using FACS sorting of immune cells from the skin was necessary for 

certain functional assays. For this purpose, skin cells extracted through the 

collagenase digestion method were stained with live/dead UV, CD3-FITC and a 

cocktail of APC-conjugated antibodies against CD11c, CD209, HLA-DR and 

CD34 for 30 minutes at 4°C, washed and resuspended in MACS buffer and 

filtered through a 35 µm nylon mesh. Samples were sorted into FITC positive T 

cells and APC positive antigen presenting cells that were used in a 1:1 ratio in 

subsequent functional assays. 



 66 

 Functional assays 2.3

 Cell culture conditions 2.3.1

Cells were cultured in complete medium at 37°C in a humidified 5% CO2 

incubator unless otherwise stated.  

 Screening for CMV, EBV and VZV responders 2.3.2

Viral lysate stimulation as mean to identify carriers of the persistent virus CMV 

is routinely used in our laboratory as it has been found to reliably identify 

seropositive individuals (Fletcher et al. 2005). Fresh or thawed cells were 

incubated overnight in complete medium with CMV lysate (1:10). The CMV 

lysate was prepared in house as described by Fletcher and colleagues (Fletcher 

et al. 2005): Human embryonic lung fibroblasts were infected with Towne strain 

CMV for 5 days, after which cells were lysed by repeated freeze-thawing. For 

each batch prepared, titration was performed to determine the optimal 

concentration for cytokine production in PBMCs of CMV positive donors. 

Screening for Epstein-Barr Virus (EBV; 1:200) and Varicella-Zoster virus (VZV; 

1:25) was performed using commercially available viral antigen (both from 

Virusys, Taneytown, USA). The superantigen Staphylococcal Enterotoxin B 

(SEB; 1ng/ml; Sigma-Aldrich) was used as a positive control and no stimulant 

was added as a negative control in separate wells.  

Stimulated cells were incubated overnight at 37°C. Brefeldin A (5µg/ml, Sigma-

Aldrich) was added 2 hours after the start of incubation. Brefeldin A is a fungal 

metabolite that inhibits transport of vesicles from the Golgi apparatus to the 

endoplasmic reticulum, thereby inhibiting secretion and leading to intracellular 

accumulation of cytokines, facilitating their detection using flow cytometry. 

The following day, cells were harvested and IL-2 and IFNγ levels were 

measured via intracellular flow cytometry as detailed below. Participants were 

considered to be CMV, EBV or VZV positive if above background production of 

cytokines was at least 0.01% of the total CD4+ T cells. 

 Polyclonal T cell activation 2.3.3

Certain proteins of interest, such as markers of cytotoxicity, are only 

upregulated upon T cell activation. In order to detect their presence, or measure 
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proliferation, cells were stimulated polyclonally via incubation with immobilized 

anti-CD3 antibodies (0.5 µg/ml, clone: OKT3). If sorted cell subsets were 

stimulated with anti-CD3, 40Gy irradiated autologous APCs were added in 

equal numbers as a source of costimulation. 

 IL-15 stimulation assay 2.3.4

FACS sorted T cell subsets were incubated with 10ng/ml of rhIL-15 (R&D 

systems, Abingdon, UK) for up to 14 days. The complete medium used included 

HyClone (GE Healthcare) instead of RPMI. Half of the medium was replaced 

with fresh medium complemented with IL-15 every 3 to 4 days. Surface marker 

expression was measured by flow cytometry before incubation and at day 14. 

 P38 signalling blockade 2.3.5

Cells were incubated for one hour prior to stimulation with 500nM of the p38 

inhibitor BIRB 796 (Selleck chemicals) or 0.1% DMSO as control. For cytokine 

detection following p38 blockade, cells were stimulated overnight in the 

presence of brefeldin A, added after 2 hours of stimulation, and harvested the 

following day for intracellular flow cytometry. For measurement of proliferation, 

cells were harvested 3 days after stimulation and stained intracellularly for Ki67. 

 PD-1 ligand blockade 2.3.6

In order to block PD-1 signalling, cells were incubated with functional grade 

purified anti-PDL-1 and anti-PDL-2 antibodies (specified in Table 2-1) or the 

isotype control antibody, for two hours before being stimulated with 0.05µg/ml 

immobilized anti-CD3. Cells were stimulated for 3 days before being harvested 

and analysed for intracellular granzyme B, perforin and Ki67 levels. 

Target Clone isotype Stock Working 

concentration 

Manufacturer 

PDL-1 MIH1 Mouse IgG1, kappa 1mg/ml 10µg/ml eBioscience 

PDL-2 MIH18 Mouse IgG1, kappa 1mg/ml 10µg/ml eBioscience 

irrelevant P3.6.2.8.1 Mouse IgG1, kappa 1mg/ml 20µg/ml eBioscience 

 Table 2-1: Antibodies and isotype controls used for PD-1 signalling blockade 
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 Measurement of cytotoxic degranulation via detection of surface 2.3.7

CD107a 

Pre-formed cytotoxic granules can be found in the cytoplasm of cytotoxic T 

cells. The granules are surrounded by a lipid bilayer and contain the cytotoxic 

effector molecules as well as lysosomal membrane proteins such CD107a 

(LAMP-1). Upon stimulation, degranulation occurs, releasing not only effector 

molecules but also exposing CD107a to the cell surface, thus making 

extracellular CD107a detection an ideal method for detection of cytotoxic 

degranulation. 

CD107a based detection of degranulation required pre-incubation of PBMCs 

with the CD107a antibody (1:10, CD107a-APC, H4A3, BD Biosciences) before 

adding the cells to anti-CD3-coated plates. After 2 hours at 37°C, brefeldin A 

was added to allow simultaneous cytokine detection and monensin was added 

to prevent anti-CD107a antibody degradation. Cells were further incubated 

overnight and harvested the following day to be stained for flow cytometry. 

Anti-CD107a antibody uptake was measured in all samples and flow cytometry 

gates were set according to unstimulated cells, allowing quantification and 

characterization of cells having undergone degranulation. 

 Perforin and granzyme expression in response to cytokine 2.3.8

exposure 

PBMCs or cells derived from collagenase digested skin were incubated for four 

days in the presence of no stimulant, 10ng/ml TNFα (PeproTech, London, UK), 

5ng/ml IL-2 (PeproTech, London, UK), 10ng/ml IL-15 (R&D systems) or anti-

CD3/CD28 coated beads (Dynabeads; Life Technologies). After this period, 

cells were harvested and stained for granzyme B, perforin and the appropriate 

extracellular antibodies as described below. 

 Flow Cytometry 2.4

Flow cytometry allows measurement of various properties of individual cells in 

suspension as they pass a laser. Size, granularity and fluorescence of the cells 

can be measured through various filters and detectors. Cells can be stained 

extracellularly and intracellularly with fluorescent dyes or fluorochrome-
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conjugated antibodies, allowing measurements of various phenotypic and 

functional properties of cell populations. 

 Surface staining  2.4.1

Cells were centrifuged and washed in PBS. Fluorochrome-conjugated 

extracellular antibodies were added together with a UV live/dead stain 

(Invitrogen, Life technologies) at the appropriate concentration (see Table 2-2) 

and allowed to bind for 15 minutes at room temperature or 30 minutes at 4 ̊C. 

After staining, cells were resuspended in PBSA (PBS, 1% bovine serum 

albumin, 0.01% sodium azide), spun down at 1800 rpm and fixed in 2% 

paraformaldehyde, unless further intracellular staining was needed.  

If a biotin-labelled antibody was used, cells were incubated with streptavidin-

Cy3 for 15 minutes at room temperature and washed again in PBSA before 

fixation. 

 Cytoplasmic staining 2.4.2

For detection of cytoplasmic proteins such as cytokines, perforin and granzyme 

B, cells first underwent surface staining as described above. However, before 

fixation, cells were treated using Fix & Perm Cell Permeabilization Kit reagents 

(An Der Grub, Buckingham, UK): cells were initially incubated for 20 minutes at 

room temperature with the fixation reagent A, followed by a wash with PBSA 

and 20 minutes incubation with the permeabilization reagent B together with the 

intracellular antibodies. After that, cells were washed in PBSA and resuspended 

in 2% paraformaldehyde until acquisition. 

 Nuclear staining 2.4.3

Nuclear antigens such as ki67 and FoxP3 were detected using the appropriate 

antibodies (listed in Table 2-2) using the intranulcear Miltenyi FoxP3 Staining 

Buffer Set according to the manufactures instructions (Miltenyi): First, cells 

underwent surface staining as described above. Then, cells were resuspended 

in the fix/perm solution (reagents A and B, diluted 1 to 3) for 30 minutes at 4°C, 

washed in cold perm buffer (stock diluted 1:10 in distilled water) twice, before 

being resuspended with the antibodies specific to Ki67 or FoxP3 for 30 minutes 

at 4°C.  Finally, cells were washed in the perm buffer and resuspended in 2% 

paraformaldehyde. 



 70 

 Phosphoflow staining 2.4.4

Cells were stained extracellularly at room temperature as described above, 

washed in 1%FBS in PBS and fixed with pre-warmed cytofix buffer (BD 

Biosciences) for 30 minutes at 37°C. Cells were centrifuged and permeabilized 

with ice-cold Perm Buffer III (BD Biosciences) for 30 minutes on ice. Cells were 

subsequently washed twice with BD stain buffer and resuspended with the anti-

phophorypated p38 (pp38) antibody and incubated for 30 minutes at room 

temperature. Finally, cells were washed in stain buffer and resuspended in stain 

buffer in order to be acquired on the flow cytometer.  

 Target Clone Fluorochrome Working 
Dilution 

Manu-
facturer 

E
xt

ra
ce

llu
la

r t
ar

ge
ts

 

CD4  RPA-T4 APC-H7,  
BrilliantViolet421 

1:20 BD 

SK3 PE-Cy7 1:10 BD 
CD8  SK1 PerCP  1:5 BD 

RPA-T8 Biotin 1:20 BD 
CD27  0323 APC  1:10 eBioscience 

M-T271 FITC ,PE, V500 1:10 BD 
L128 AlexaFluor786 1:20 BD 

CD25  M-A251 PE-Cy7 1:20 BD 
CD28  CD28.2 PE  BD 
CD45RA HI100 PE-Cy7 1:20 BD 

MEM-56 APC 1:10 Invitrogen 
HI100 BV605 1:50 BD 

CD127  HIL-7R-M21 AlexaFluor647 1:10 BD 
CD69 FN50 FITC 1:10 BD 
PD-1  EH12.2H7 PE-Cy7 1:20 Bioloegend 
CD3 UCHT1 ECD 1:50 Beckman 

Coulter 
SK7 FITC 1:10 FITC 

KLRG1 13F12 PE 1:100 (A kind gift 
from H.P. 
Pircher). 

C
yt

op
la

sm
ic

 
ta

rg
et

s 

IL-2  MQ1-17H12 FITC 1:10 BD 
IFNγ  B27 V450 1:100 BD 
TNFα MAb11 APC 1:10 BD 
CTLA-4  BNI3 APC 1:10 BD 
Perforin  δG9 FITC 1:10 BD 
Granzyme B  GB11 AlexaFluor700 1:25 BD 

N
uc

le
ar

 
Ta

rg
et

s 

Ki67 MOPC-21 FITC or PE 1:10 BD 

FoxP3 PCH101 PE 1:10 BD 

P
ho

sp
ho

-
Ta

rg
et

s 

p-p38 
(pT180/pY182) 

36 PE 1:20 BD 

Table 2-2: Antibodies used for flow cytometry 
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 CFSE staining 2.4.5

5- (and 6-) carboxyfluorescein succinimidyl ester (CFSE) stably incorporates 

into cells by covalently binding to intracellular molecules. It is used as a 

florescent dye to stain whole cell preparations and monitor proliferation through 

halving of florescence intensity with each cell division. For this purpose, cells 

were washed in PBS to remove any free protein in the solution. Cells were then 

resuspended in warm PBS with 0.5µM CFSE (Molecular Probes, Paisley, UK) 

and incubated at 37°C for 10 minutes. FBS was added to a final concentration 

of 10% and cells were placed on ice to stop the reaction. Cells were washed 

twice in complete medium and stimulated for 4 days before being harvested, 

stained and analysed via flow cytometry. CFSE labelled cells were protected 

from light at all times in order to prevent photo bleaching. 

 Detection of Melanoma specific T cells 2.4.6

Only HLA-A2 positive donors were used for MHC multimer screens. They were 

identified by extracellular staining using an anti-HLA-A2.1 antibody (clone 

BB7.2, AbD Serotec, Kidlington, UK).  Initial experiments involved using an 

unconjugated Melan-A pentamer (loaded with ELAGIGILTV, Proimmune, 

Oxford, UK), but due to low rates of staining, the higher avidity dextramer 

system (Immudex, Sheffield, UK) was used. After optimisation, the following 

protocol was adopted: cells were stained in complete medium with peptide 

loaded MHC dextramers for 12 minutes at 37°C, followed by two washes with 

PBS with 10% FBS.  Subsequent extra- and intracellular stains were performed 

on ice. Dextramers were loaded with a peptide derived from Melan-A 

(ELAGIGILTV) or NY-ESO-1 (SLLMWITQV) conjugated with PE or APC 

respectively.  A PE or APC conjugated HLA-A2 Dextramer loaded with an 

irrelevant peptide was used as negative control.  

 Measuring telomere length using Flow-FISH 2.4.7

Flow cytometric detection of fluorescence in situ hybridization (flow-FISH) 

allows quantification of telomeric repeats using flow cytometry. The technique 

involves annealing fluorescently labeled nucleic acid probes with the 

complimentary telomeric DNA within fixed cells. The fluorescent signal can be 

measured via flow cytometry and signal strength correlates with telomere 

length. The technique can be used together with other flow cytometric staining 
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procedures in order to link telomere length with phenotypic and functional 

properties at a single cell level. 

2x106 PBMCs were stained in FACS tubes with antibodies conjugated to 

fluorochromes that can withstand the heat and chemical treatment used during 

this protocol (CD3- FITC, CD4- BV421, CD8-Biotin+Strept-Cy3, CD27-AF786 

and CD45RA-BV605), as well as a live/dead stain, using the extracellular FACS 

staining method described in section 2.4.1. 

Cells were then fixed in 1mM BS3 (Thermo Scientific) for 30 minutes at 4°C, 

which was then quenched using 50mM Tris pH7.2 for 20 minutes, before being 

washed in PBS. 

Fixed cells were washed using hybridization buffer (70% formamide, 20mM Tris 

HCl, 1%BSA, 150mM NaCl) and resuspended in exactly 300µl hybridization 

solution to be spit into three separate tubes. An equal volume of 1.5ug/ml Cy5 

conjugated telomeric (CCCTAA) peptide nucleic acid probe (PNA Bio, Daejon, 

South Korea) was added to each tube and cells were transferred to a 82°C 

water bath for 10 minutes before being snap cooled in an ice water bath. 

Samples were then left to rest in the dark at room temperature for 60 minutes, 

washed twice in post-hybridization buffer (70% Formamide, 10mM Tris HCl, 

0.25% Tween20, 1.5mM NaCl and 22.5% H2O) and finally washed twice in 

PBSA before being acquired on the flow cytometer. 

During acquisition, voltages for the Cy5 detection channel were adjusted to the 

fluorescence of QuantumCy5 Molecules of Equivalent Soluble Fluorochrome 

beads (Bangs Laboratories, Fishers, Indianapolis, USA): The standard curve 

which allows the conversion of fluorescence intensity of the samples into the 

telomere length in kilo base pairs (kbp) was previously generated by members 

of our group using telomere lengths from PBMC samples of varying telomere 

length that were measured by both Flow-FISH and telomeric restriction 

fragment analysis (Riddell et al. 2014). 

 Flow Cytometers 2.4.8

Samples were acquired on LSRII or Fortessa (both from BD Biosciences, San 

Jose, CA, USA) flow cytometry machines. Both machines were equipped with 

blue (488nm), red (640nm) and yellow/green (561nm) and violet (405nm) 

lasers. The LSRII had an additional ultraviolet (355nm) laser. Up to 11 different 
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fluorochromes were detected simultaneously. Data was acquired using Diva 

software (BD Biosciences). Control samples stained with a single colour were 

used for compensation to account for emission overlap between different 

fluorochromes. 

 Analysis of flow cytometry data 2.4.9

Flow cytometry data were analysed using FlowJo (Tree Star Inc., Asland, USA). 

Lymphocytes were identified by forward/side scatter profiles and dead cells 

staining positive for the live/dead stain marker were excluded. Fluorescence 

minus one (FMO) control samples, containing all but one colour, were used to 

define positive populations and confirm the quality of the stain. Antibodies were 

titrated for optimal concentrations before routine use. 

 Histology 2.5

 Sample preparation and cutting 2.5.1

5mm punch biopsies from young and old healthy donors were embedded with 

the epidermis facing up in OCT compound (VWR, Lutterworth, UK) on a cork 

disk and snap frozen in isopentane (Sigma-Aldrich) precooled in liquid nitrogen. 

Frozen skin samples were stored at -80°C until being cut into 6µm sections and 

mounted on poly-L-lysine coated glass slides (Sigma-Aldrich). Poly-L-lysine 

provides increased adhesion of biomaterial compared to uncoated glass. 

Cutting was performed using a Leica Biosystems CM1950 cryostat. Two sections 

were mounted on each slide and left overnight at room temperature overnight to 

air dry, before being fixed in acetone for 10 minutes, and then for 10 minutes in 

99% Ethanol. Sections were then air-dried for 10 minutes, wrapped in cling-film 

and stored at -80°C. 

Primary melanoma sections from old patients were prepared by Professor 

James Krueger’s laboratory at Rockefeller University. After cutting, these 

samples were dried but not fixed before being frozen. Instead, sections needed 

to be fixed in acetone for 5 minutes after thawing and before staining. 

 Immunohistochemistry 2.5.2

An indirect streptavidin-biotin immunoenzymatic antigen detection system was 

used to detect and quantify PDL-1 and PDL-2 expressing cells in frozen skin 
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sections. The technique involves using a primary antibody specific to the 

antigen of interest followed by a secondary detection antibody specific to the 

conserved FC portion of the primary antibody. The secondary antibody is 

biotinylated and will in turn bind an avidin-biotinylated peroxidase H complex 

that will catalyse 3-amino-9-ethylcarbazole (AEC) into a brown coloured product, 

thus staining the area that bound the primary antibody. Detection was performed 

using Mouse Vectastain Elite ABC kit: PK-602 (Vector laboratories, Burlingame, 

USA). 

Skin sections from healthy individuals and primary melanoma patients were 

brought to room temperature and fixed if necessary, before being circled using 

a water repellent Dakopen (Dako, Stockport, UK) in order to contain any liquid 

applied to the sections. Samples were then washed twice for 5 minutes in a 

PBS water bath. Excess PBS was removed by gentle tapping and 10% horse 

serum in PBS was applied for 20 minutes to prevent unspecific antibody 

binding. Excess blocking solution was removed and the primary antibody was 

added in 1% horse serum in PBS in the optimised dilution as listed for each 

antibody in Table 2-3 and incubated overnight at 4°C in a humidified chamber. 

The following day, slides were washed twice in PBS and incubated for 30 

minutes with the biotinylated horse anti-mouse secondary antibody in 1% horse 

serum, followed by two washes in PBS. Slides were then incubated for 10 

minutes in 0.3% H2O2 in ddH2O in order to block endogenous peroxidase 

activity, followed by 2 washes in PBS. Excess PBS was removed and freshly 

prepared Vectastain ABC solution (1:100 of both solution A, containing the 

avidin, and solution B, containing the biotinylated peroxidase, in PBS) was 

applied for 30 minutes onto the sections, before being washed twice in PBS. 

The Vectastain AEC solution (0.25ml of 40mM AEC in N,N-dimethyl formamide 

was diluted in 4.75 0.1M Acetic acid and then activated with 2.5µl H2O2) was 

applied to each section. Resulting colour change was monitored and slides 

were washed when the desired intensity developed. Sections were left to dry at 

room temperature and mounted with a coverslip.  
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Target Clone (Animal) Dilution Company Secondary antibody 

[dilution] 

PDL-1 MIH1 (mouse) 1:50 eBioscience Horse anti-mouse [1:200] 

PDL-2 MIH18 (mouse) 1:200 eBioscience 

Table 2-3: Antibodies used for immunohistochemistry 

 Double Immunofluorescence  2.5.3

Double labelled indirect immunofluorescence involves several primary 

unconjugated antibodies being used for the simultaneous detection of several 

antigenic targets in frozen skin sections. Fluorochrome conjugated secondary 

antibodies raised against the FC portions of the primary antibodies are then 

used to amplify the signal and emit light of various colours that can be 

individually detected by fluorescent microscopy. This technique generally 

requires the primary antibodies to be raised in different animals to ensure 

differently coloured secondary antibodies bind their respective target only. As 

this was not possible for the simultaneous detection of CD8 with perforin, an 

additional step needed to be added to the protocol. This was possible because 

the anti-CD8 antibody was directly conjugated to FITC, which could be detected 

by a separate secondary antibody to the one previously used to detect perforin. 

Frozen skin sections mounted on glass slides were brought to room 

temperature before being circled using a water repellent Dakopen (Dako). 

Slides were washed twice for 5 minutes in a container with PBS. PBS was 

removed by gentle tapping and 10% goat serum in PBS was applied for 30 

minutes at room temperature in order to minimize unspecific antibody binding. 

Slides were again washed twice in PBS, which was removed before applying 

the primary antibodies (see Table 2-4) in 1% serum. Slides were incubated 

overnight at 4°C in a humidified chamber. The following day, unbound antibody 

was tapped off, followed by two washes with PBS in the dark. Then, the 

fluorochrome-conjugated secondary antibodies (see Table 2-4) was applied and 

incubated in the dark for 30 minutes at room temperature, before being washed 

off by two washes with PBS. Finally, sections were dried at room temperature in 

the dark before being mounted with coverslips and mounting reagent ProLong 

Antifade Gold (Invitrogen), which contains the nuclei staining DAPI. 
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As mentioned, staining for perforin and CD8 required an additional step during 

the staining procedure as the two antibodies were raised in the same species of 

animal. For this, only perforin but not CD8 was incubated during the first day. 

Instead, staining on day 1 used anti-perforin antibody only. The appropriate 

secondary antibody was applied on the second day, followed by two washes 

and 30 minutes blocking with 10% mouse serum in PBS. After blocking, the 

anti-CD8-FITC antibody was applied overnight, followed by two washes and 

addition of anti-FITC antibody for 30 minutes on the third day. Unbound 

antibody was washed off in two washes and slides were washed and mounted 

as described above.   

Control slides were incubated with secondary antibodies only to ensure no 

unspecific staining occurred. Collagen fibres gave green autofluorescence, 

which could not be removed. 

Table 2-4: Antibodies used in immunofluorescence 

 Microscopy and image processing 2.5.4

 Immmunofluorescence 2.5.4.1

Immunofluorescent images were acquired for each antibody combination on the 

same day, using the appropriate filters of a Zeiss Axioplan 2I microscope. 

Images were taken with an emphasis on areas showing staining for CD8+ T 

cells (in green). Images were overlaid and analysed using ImageJ software and 

colour threshold were adjusted for the whole image in order to reduce 

unspecific background fluorescence equally in all samples from the same batch. 

Target Conjugate Clone  

(Animal) 

Dilution Company Detection antibody 

(all from Invitrogen) 

CD8 FITC SK1 

(mouse) 

1:50 BD Goat-anti-FITC 

[1:250], 

AlexaFluor488 

Perforin none  δG9   

(mouse) 

1:50 BD Goat-anti mouse 

[1:250], 

AlexaFluor468 

Granzyme 

B 

none polyclonal 

(rabbit) 

1:200 Abcam Goat-anti-rabbit 

[1:25], AlexaFluor546 
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 Immunohisotchemistry 2.5.4.2

Skin sections stained by immunohistochemistry were acquired using a light 

microscope (Nikon Eclipse E600). Images generated were analysed using 

ImageJ software, allowing manual counting of positive staining cells per surface 

area. 

 Statistical Analysis 2.6

Graphs were drawn and statistical analysis was performed using GraphPad 

Prism version 5 (GraphPad Software, San Diego, USA).  Non-parametric data 

were identified using the D'Agostino and Pearson omnibus normality test. 

Statistical tests used included the Student’s T-test or paired T-test when data 

followed a Gaussian distribution and the Whitney-Mann test or Wilcoxon test for 

non-parametric data. Correlations were calculated using Pearson correlation 

coefficient or Spearman correlation for non-parametric data. Lines of best fit 

were generated using linear regression. Fisher’s exact test was used to 

compare prevalence of CMV between melanoma patients and healthy controls. 

If more than two groups were compared simultaneously, one-way ANOVA (for 

parametric data) or the Friedman test (for non-parametric data) were applied, 

followed by Holm-Sidak or Dunn’s multiple comparison tests respectively for 

paired comparisons. 

Differences were considered significant when p<0.05. 
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3 Investigating global and specific T cell 
differentiation in the circulation of patients with 
melanoma 

 Chapter Introduction 3.1

Melanoma is a highly immunogenic tumour, but despite the reported presence 

of melanoma specific T cells in patients with advanced stage, disease 

progression occurs (Jäger et al. 1996). Some persistent diseases are known to 

cause increased T cell differentiation and drive T cell dysfunction via chronic 

antigen exposure, especially with age (Ouyang et al. 2004). By virtue of its 

antigenicity and simultaneous lack of disease resolution, melanoma may 

therefore drive T cell differentiation in the patients affected. 

T cell differentiation or senescence can be measured in a number of ways. The 

cell surface markers CD45RA and CD27 are often used to distinguish the less 

differentiated naïve (CD45RA+CD27+) and central memory (TCM; CD45RA-

CD27+) from the more differentiated effector memory (TEM; CD45RA-CD27-) and 

the end-stage differentiated and senescent effector memory T cells re-

expressing CD45RA (TEMRA; CD45RA+CD27-) (Hamann et al. 1997; Sallusto et 

al. 1999). Surface CD57 and KLRG1 expression are also associated with highly 

differentiated cells (Brenchley et al. 2003; Henson and Akbar 2009). Expression 

of inhibitory markers such as PD-1 and CTLA-4 on the other hand is not usually 

associated with senescence, but instead with exhaustion which affects less 

differentiated cells (Libri et al. 2011; Akbar and Henson 2011). Despite showing 

low proliferative capacity, highly differentiated T cells often display high effector 

potential such as inflammatory cytokine production upon challenge or 

expression of cytotoxic granule components (Akbar and Henson 2011). 

Known pathogens that drive T cell differentiation include Epstein-Barr virus 

(EBV) and human immunodeficiency virus (HIV) and most prominently 

Cytomegalovirus (CMV), which has been associated with a global increase in T 

cell differentiation in healthy appearing individuals (Ouyang et al. 2004; Fletcher 

et al. 2005; Lachmann et al. 2012). CMV induced global CD4+ and CD8+ T cell 
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differentiation is particularly apparent among the old, which is most likely due to 

the lifelong exposure to the virus (Koch et al. 2008). 

Previous studies have reported an increase in highly differentiated T cells in a 

number of non-melanoma tumours such as myeloma and renal cell carcinoma 

(Sze et al. 2001; Characiejus et al. 2002). In the context of melanoma, no highly 

differentiated cells could be detected amongst T cells infiltrating the primary 

melanoma or tumour invaded lymph nodes (Mortarini et al. 2003; Anichini et al. 

2010). Conversely, reports do exist confirming the presence of melanoma-

specific T cells with a TEMRA phenotype in the blood of patients with metastatic 

disease (Maczek et al. 2005). It should be noted that most studies have 

focussed on patients of intermediate age groups with the old cohorts (which 

present with the highest mortality) generally being underrepresented.  

This first results chapter therefore investigates whether increased T cell 

differentiation occurs in old melanoma patients compared to healthy controls by 

measuring the differentiation patterns in circulating CD4+ and CD8+ T cells 

using relative expression of CD45RA/CD27 and other differentiation associated 

markers. 

 Aims and objectives 3.2

The aim of this chapter was to characterize and define global and melanoma-

specific differentiation patterns in the blood T cells of patients with melanoma. 
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 Results 3.3

 Global CD4+ T cell differentiation in the circulation of melanoma 3.3.1

patients compared to healthy controls  

Melanoma patients and healthy volunteers were assessed for their CD4+ and 

CD8+ T cell differentiation patterns based on the cells surface expression of  

CD45RA and CD27 using flow cytometry (Representative gating strategy shown 

in Fig. 3-1). Cells that are CD45RA+CD27+ are considered to be naïve, 

CD45RA-CD27+ cells are central memory cells (TCM), CD45RA-CD27- cells are 

effector memory cells (TEM) and finally cells which are CD45RA+CD27- are 

termed effector memory cells re-expressing CD45RA (TEMRA). TEMRA cells are 

considered to be the most differentiated (Di Mitri et al. 2011; Henson et al. 

2014). 

 

Fig. 3-1: Representative FACS plots showing gating of live CD4+ and CD8+ T cell subsets 
based on their CD27 and CD45RA surface expression in PBMCs derived from a healthy 
individual. 

The T cell differentiation compartments are: CD45RA+CD27+ = naïve cells, CD45RA-CD27+ = 
central memory cells (TCM), CD45RA-CD27- = effector memory cells (TEM), CD45RA+CD27- = 
CD45RA re-expressing effector memory cells (TEMRA). 
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 Differentiation patterns of circulating CD4+ T cells are altered in 3.3.1.1

melanoma patients 

The distribution of the CD45RA/CD27 subsets within the CD4+ T cell 

compartment was stratified by age in both healthy individuals and melanoma 

patients (representative staining and cumulative data are shown in Fig. 3-2A,B).  

In both healthy and melanoma groups, the percentage of naïve cells decreased 

with age (p=0.0193 and p<0.0001 respectively) and the amount of TEM 

increased (p=0.0115 and p=0.0050), although these trends were more 

pronounced among the melanoma patients. Further, the melanoma patients 

(but not the healthy controls) displayed a significant increase of TCM with age 

(p=0.029). Direct comparison of CD4+ T cell subset distributions between 

melanoma patients and healthy controls showed no difference in the younger 

age group (aged 35 or less), whilst a significant increase in TCM could be 

confirmed among old (aged 60 and above) melanoma patients compared to the 

age matched healthy controls (p=0.0393; Fig. 3-2C). No increase of highly 

differentiated cells was therefore found in the CD4+ T cell compartment of 

patients with melanoma. 
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Fig. 3-2: Blood CD4+ T cell subset distribution with age in melanoma patients and healthy 
controls 

A: Representative FACS plots showing CD4+ T cell CD45RA/CD27 expression patterns in 
young and old melanoma patients and healthy controls. The schematic diagram on the right 
shows the names given to the subpopulations in each gate. 
B: Frequencies of each of the CD45RA/CD27 subsets within total CD4+ T cells are correlated 
against age in melanoma patients (n=113) and healthy controls (n=59). Lines of best fit were 
generated by linear regression and the correlation (r-value) and significance were assessed by 
Pearson and Spearman rank. 
C: Direct comparison of percentages of the CD4+ T cell subsets between young melanoma 
patients (n=11) and young healthy controls (18) and between old melanoma patients (n=67) and 
old healthy controls (n=33).  Populations were compared using the unpaired T-test or the Mann-
Whitney test. Horizontal lines depict mean values with standard deviation for all graphs. 
*=p<0.05; **=p<0.01; ***=p<0.001; ****p>0.0001 
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 CMV infection is associated with altered CD4+ T cell differentiation 3.3.1.2

in old melanoma patients  

CMV infection is known to heavily influence global T cell differentiation patterns 

of carriers, especially with advanced age (Chidrawar et al. 2009; 

Derhovanessian et al. 2011). It was therefore of interest to determine whether 

CMV played a role in the T cell differentiation patterns observed among the 

melanoma patients and healthy controls. Analyses were made in the old (60 

years and above) age group only, as no differences were found in global CD4+ 

T cell differentiation between young patients and controls. Old participants were 

identified as CMV responders and non-responders via CD4+ T cell cytokine 

production (measured by intracellular flow cytometry, Fig. 3-3A) following 

overnight incubation with viral lysate. Results obtained by this method have 

been shown to correlate with screening through serological testing by our group 

previously (Fletcher et al. 2005). The frequency of CMV responders and the 

magnitude of the in vitro response to the lysate (Fig. 3-3B) were not found to 

differ significantly between old patients and controls (64% and 58% CMV 

responders respectively; p= 0.5040).  

Melanoma patients were further subdivided according to their disease stage 

with stages I-II being local disease and III-IV disseminated. No stage IV patients 

were available for this analysis. Amongst the melanoma patients, only 26% 

stage I melanoma patients were found to be CMV+, whilst 72% and 62% of 

stage II and III were positive respectively. It should be noted that although we 

attempted to compare age matched groups in this work, old melanoma patients 

belonging to different disease stages were not age matched: Stage I 

participants were on average younger that stage II and stage III patients (mean 

ages= 69.7, 74.0 and 72.6 respectively). Any differences detected between 

patients of different stages might therefore be solely due to discrepancies in 

age. 
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Fig. 3-3: Identification of CMV infected individuals among old (aged 60 or above) patients 
and controls 

A: Representative FACS plot showing identification of CMV positive individuals through 
detection of IFNγ+ or IL-2+ CD4+ T cells following overnight stimulation of PBMCs with CMV 
lysate.  
B: Percentages of CMV positive and negative donors amongst old melanoma patients (n=64) 
and healthy controls (n=29) 
C: Frequency of CD4+ T cells producing cytokines in response to CMV lysate among old CMV 
positive melanoma patients (n=37) and healthy controls (n=19). Horizontal lines depict mean 
values with standard deviation. 
C:  Percentages of CMV positive and negative donors amongst stage I (n=15), II (n=22) and III 
(n=26) melanoma patients. 
D: Frequency of CD4+ T cells producing cytokines in response to CMV lysate among CMV 
positive stage I, II and III melanoma patients (n=4, 16 and 17 respectively). Populations were 
compared using the Kruskal Wallis test. Horizontal lines depict mean values with standard 
deviation for all graphs. 
*p>0.05 
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Among the melanoma patients, a CMV+ status was associated with a significant 

decrease in naïve cell frequencies and increase in TEM and TEMRA, compared to 

patients that were CMV- (p=0.0221, p>0.001 and p=0.0053 respectively; Fig. 

3-4A). Similarly, healthy old CMV+ individuals had increased frequencies of TEM 

and TEMRA compared to healthy old CMV- donors (p=0.006 and p= 0.0204, 

respectively). The increase of TCM detected in the old melanoma patients 

compared to healthy controls did not persist after excluding all the participants 

that were CMV+. Instead, CD4+ TCM was increased compared to the controls in 

the CMV carrier group only (p= 0.0448). 

In order to investigate whether the increase in TCM among CMV+ melanoma 

patients varied with tumour stage, participants were separated into their 

respective disease stages and analysed for subset frequencies (Fig. 3-4C). 

However, as mentioned above, the groups were not age matched and no 

significant differences in naïve, TCM, TEM and TEMRA CD4+ subset distributions 

were detected among patients of different stages.  
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Fig. 3-4: The role of CMV status and disease stage in the subset distribution of 
circulating CD4+ T cells in old melanoma patients and healthy controls 

A: Percentages of CD4+ T cell subpopulations in old (>60 years) CMV positive and CMV 
negative melanoma patients (n=37 and 27, respectively) and healthy controls (n=19 and 10, 
respectively). 
B: Frequency of CD4+ T cell subsets in old (>60 years) CMV negative melanoma patients 
according to their disease stage (n=11 for stage I, n=6 for stage II and n=9 for stage III).  
C: Frequency of CD4+ T cell subsets in old (>60 years) CMV positive melanoma patients 
according to their disease stage (n=4 for stage I, n=15 for stage II and n=17 for stage III).  
Horizontal lines depict mean values with standard deviation for all graphs and populations were 
compared using the Student t-test in A and one-way ANOVA in B and C. Note that the old 
patients of different stages are not age matched. 
*=p<0.05; **=p<0.01; ***=p<0.001; ****p>0.0001 
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 CD4+FoxP3+ Tregs are not increased in old melanoma patients 3.3.1.3

CD4+ FoxP3+ Tregs have suppressive activity and are often associated with 

malignancies (Viguier et al. 2004; Chen et al. 2005). In both, old melanoma 

patients and healthy controls, the majority of FoxP3+ Tregs were confined to the 

TCM compartment within the CD4+ T cells (Fig. 3-5A,C). It was therefore 

investigated if the increase in TCM detected amongst the old CMV positive 

patients could be linked to an increase in FoxP3+ Tregs in the patients. This 

was not found to be the case as FoxP3+ Treg frequencies remained similar 

between circulating CD4+ T cells of old melanoma patients and healthy aged 

matched controls (Fig. 3-5B). 
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Fig. 3-5: Quantification and phenotyping of circulating CD4+ FoxP3+ Tregs in old 
melanoma patients and healthy controls 

A: Representative gating strategy showing identification of CD4+FoxP3+CD127-CD25+ cells, 
also known as Tregs, and showing the CD45RA/CD27 phenotype of total CD4+ T cells and 
Tregs. 
B: Percentages of Tregs amongst the CD4+ T cells of old melanoma patients and healthy age 
matched controls (n=6 each). 
C: CD45RA/CD27 subset distribution of Tregs derived from melanoma patients and healthy 
controls (n=6 each). 
Horizontal lines depict mean values with standard deviation for all graphs. 
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 Global circulating CD8+ T cell differentiation in melanoma patients 3.3.2

compared to healthy controls  

 

 Old melanoma patients display an increase in CD8+ TEMRA 3.3.2.1

compared to healthy age matched controls 

Each CD45RA/CD27 subset was measured as percentage of the total CD8+ T 

cell population and plotted against age in healthy individuals and melanoma 

patients (representative staining and cumulative data are shown in Fig. 3-6A,B). 

In both healthy and melanoma groups, naïve CD8+ T cells decreased 

significantly with age (both p<0.0001), whilst TEM and TEMRA increased 

(p=0.0025 and p<0.0001 for TEM and p=0.0084 and p<0.0001 for TEMRA 

respectively). The fraction of TCM also increased with age amongst healthy 

individuals (p=0.0057), but was not found to change with age in the melanoma 

patients. Young melanoma patients did not show a significant difference in the 

CD8+ T cell subset distribution compared to age matched healthy controls. Old 

melanoma patients however showed a significant increase in TEMRA (p=0.0382; 

Fig. 3-6C). 
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Fig. 3-6: Frequency of CD8+ T cell subsets by age in the blood of melanoma patients and 
healthy controls 

A: Representative FACS plots showing CD45RA/CD27 defined CD8+ T cell subset distribution 
in young and old melanoma patients and healthy controls. The schematic diagram on the right 
shows the names given to the subpopulations in each gate. 
B: Frequencies of each of the CD45RA/CD27 populations within total CD8+ T cells are 
correlated against age in melanoma patients (n=113) and healthy controls (n=59). Lines of best 
fit were generated by linear regression and the correlation assessed by Pearson and Spearman 
rank. 
C: comparison of percentages of the CD8+ T cell subsets between young melanoma patients 
(n=11) and young healthy controls (18) and between old melanoma patients (n=67) and old 
healthy controls (n=33). Populations were compared using the unpaired T-test or the Mann-
Whitney test. Horizontal lines depict mean values with standard deviation for all graphs. 
*=p<0.05; **=p<0.01; ***=p<0.001; ****p>0.0001 
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 TEMRA CD8+ T cells are increased in melanoma patients in the 3.3.2.2

absence of CMV  

The effect of CMV infection history on CD8+ T cell differentiation in older 

melanoma patients and healthy controls was also assessed (Fig. 3-7A). Positive 

CMV status was linked to a decrease in naïve CD8+ T cell frequencies in 

patients (p<0.0001) and controls (p=0.0156) and in TCM (p=0.0088 in melanoma 

and p<0.0001 in healthy subjects). TEM levels were increased among CMV 

positive melanoma patients (p<0.0001) and controls (p=0.0024) compared to 

individuals from the same groups that were unaffected by the virus and so were 

TEMRA levels (p=0.0009 in melanoma and p=0.0018 in healthy subjects). 

Intriguingly, old melanoma patients who did not have CMV still displayed 

decreased levels of TCM and increased levels of TEM and TEMRA compared to 

healthy age matched individuals who were also CMV negative (p=0.0044 for 

differences in TCM, p=0.0275 in TEM and p=0.0470 in TEMRA; Fig. 3-7A).  

In order to determine whether the accumulation of these highly differentiated 

CD8+ TEMRA cells in melanoma patients was related to disease severity, the 

CMV negative melanoma patients aged 60 or more were further subdivided into 

their respective disease stage for comparison of CD8+ T cell subset frequencies 

(Fig. 3-7B,C). However, no association could be found between increased 

disease stage and CD8+ TEMRA cell frequency, although it should be noted that 

the old participants of different stages were not age matched. 

A non-CMV associated increase in highly differentiated CD8+ TEMRA cells was 

therefore detected in old melanoma patients. However, since high TEMRA levels 

could not be linked to disease stage, no links could be drawn between TEMRA 

levels and disease severity. 
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Fig. 3-7: The role of CMV status and disease stage in the CD8+ T cell subset distribution 
in the circulation of old melanoma patients and healthy controls 

A: Percentages of CD8+ T cell subpopulations in old (>60 years) CMV positive and CMV 
negative melanoma patients (n=37 and 27, respectively) and positive and negative healthy 
controls (n=19 and 10, respectively). 
B: Frequency of CD8+ T cell subsets in old CMV negative melanoma patients according to their 
disease stage (n=11 for stage I, n=6 for stage II and n=9 for stage III).  
C: Frequency of CD8+ T cell subsets in old (>60 years) CMV positive melanoma patients 
according to their disease stage (n=4 for stage I, n=15 for stage II and n=17 for stage III).  
Horizontal lines depict mean values with standard deviation for all graphs and populations were 
compared using the student t-test or Mann-Whitney test (in A) or one-way ANOVA or Kruskal 
Wallis test (in B and C). Note that the old patients of different stages are not age matched. 
*=p<0.05; **=p<0.001; ***=p<0.001; ****=p<0.0001 
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 EBV infection is not responsible for increased TEMRA levels in CMV 3.3.2.3

negative patients. 

EBV is another common persistent herpes virus that potentially generates 

CD45RA+ memory cells (Dunne et al. 2002) and might therefore explain the 

high levels of TEMRA found in some CMV negative melanoma patients. However, 

cytokine production in response to EBV lysate was only found in one out of six 

melanoma patients who had previously been shown to display high frequencies 

of TEMRA in the absence of CMV (Fig. 3-8).  

In order to rule out the possibility that the PBMCs from the patients of interest 

had a defect in their ability to respond to stimuli in vitro and might therefore be 

mis-interpreted as CMV or EBV negative, cells were further treated with 

Varicella zoster virus (VZV) lysate or the superantigen Staphylococcus 

Enterotoxin B (SEB). Four out of six melanoma patients responded to VZV 

lysate and all responded to unspecific stimulation with SEB, confirming that the 

cells were able to respond to other stimuli (Fig. 3-8).  

Additionally to CMV, EBV could therefore be ruled out as potential cause for 

increased TEMRA in the melanoma patients. 
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Fig. 3-8: EBV and VZV prevalence in the six old melanoma patients who displayed high 
frequencies of CD8+ TEMRA in the absence of CMV. 

PBMCs were stimulated overnight with Staphylococcus enterotoxin B (SEB), Epstein–Barr virus 
(EBV) or Varicella zoster virus (VZV) lysate or left unstimulated. IL-2 and IFNγ production were 
measured intracellularily in the CD4+ T cell subset by flow cytometry and compared to the 
unstimulated control to determine presence of anti-viral responses. SEB was used as positive 
control. The donors selected were 6 melanoma patients who had previously been shown to 
have high CD8+ TEMRA frequencies despite appearing to be CMV negative. 
A: representative flow cytometric gating showing cytokine responses of CD4+ T cells under the 
various stimulation conditions. 
B: Stacked histograms showing the prevalence of individuals responding to EBV, VZV and SEB 
in vitro. 
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 Characteristics of CD8+ T cell subsets of old melanoma patients 3.3.3

As an increase in CD8+ TEM and TEMRA was observed in the circulation of 

patients with melanoma, it was of interest to investigate whether these cells 

displayed the same functional and phenotypic properties as in healthy 

individuals. Features of senescence and exhaustion, cytotoxic potential, 

proinflammatory cytokine production and expression of skin homing markers 

were therefore assessed in the CD8+ T cell subpopulations of melanoma 

patients aged 60 and above.  

 CD8+ TEMRA of old melanoma patients display features of 3.3.3.1

senescence  

TEMRA are thought to be the most differentiated T cell subset based on their low 

proliferative capacity and telomere length compared to the other subsets (Di 

Mitri et al. 2011; Libri et al. 2011; S. M. Henson et al. 2014). Indeed TEMRA of old 

melanoma patients were confirmed to have the lowest levels of proliferative 

capacity amongst all the subsets, as shown by ki67 expression following three 

days of stimulation with plate bound anti-CD3 and irradiated autologous antigen 

presenting cells (difference between TEMRA and naïve: p=0.0008 and between 

TEMRA and TCM: p=0.0011; Fig. 3-9). Similarly and as has been described in 

healthy subsets, TEMRA of melanoma patients showed significantly reduced 

telomere lengths compared to Naive (p=0.0098) and TCM p=0.0342) subsets 

(Fig. 3-10) and reduced capacity to produce IL-2 compared to TCM and TEM 

(p>0.0005; Fig. 3-11). 

CD57 and KLRG1 have previously been described as senescence-associated 

markers. Indeed, the co-expression of these receptors was found to be highest 

in TEMRA of melanoma patients and healthy controls alike (Fig. 3-12). 
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Fig. 3-9: Proliferative capacity of blood-derived CD8+ T cell subpopulations in old 
melanoma patients measured by Ki67 expression. 

CD8+ T cells were FACS sorted according to their CD27 and CD45RA expression and 
incubated for 3 days in the presence of 0.5µg/ml plate bound anti-CD3 antibody and irradiated 
autologous antigen presenting cells.  
A: Representative flow cytometry dor plots showing Ki67 in the various subsets 
B: Cumulative data showing mean Ki67 levels and standard error amongst the various subsets 
obtained from 5 participants. 
Populations were compared using one-way ANOVA.  
**p<0.01 
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Fig. 3-10: Telomere length of blood-derived CD8+ T cell subsets of old melanoma 
patients. 

Telomere length was measured using the Flow-FISH method (described in detail in the 
materials and methods chapter).  
A: Representative histograms showing mean fluorescence (MFI) of telomere probe stained 
CD8+ T cells subsets. 
B: Bars show mean telomere lengths in kilo base pairs (kbp) in the subsets with standard error 
in 3 participants. Populations were compared using one-way ANOVA. *=p<0.05; **=p<0.01 
 
 
 

 

Fig. 3-11 IL-2 production in the blood-derived CD8+ T cell subsets of old melanoma 
patients and healthy controls 

PBMCs from old (60+ years) melanoma (n=17) patients and healthy controls (n=17) were 
stimulated overnight with the superantigen SEB before being measuring IL-2 production per cell 
intracellularily via flow cytometry. Horizontal bars and stars highlight significant differences 
between the melanoma patient subsets, calculated with the Friedman test. Vertical bars indicate 
standard deviation. 
***p<0.001; ****p<0.0001 

Naive TCM TEM TEMRA
5

10

15

20

T
el

om
er

e 
le

ng
th

 (k
bp

)

*
**

A" B"

Naive"

TCM"

TEM"

TEMRA"

0 102 103 104 105

MFI"
11974"

8417"

6185"

6989"

Fluorescent"telomere"probes"

Naive TCM TEM TEMRA

0

2

4

6

8

10

%
 IL

-2
+

Healthy
Melanoma

****

***
****



 98 

 

Fig. 3-12: Senescence associated marker expression in blood-derived CD8+ T cell 
subsets of old melanoma patients compared to healthy controls. 

CD57 and KLRG1 expression were measured ex vivo in CD8+ T cell subsets using flow 
cytometry. 
A: Representative flow cytometric dot plots showing CD57 and KLRG1 coexpression in the 
subsets of melanoma patients and healthy controls. 
B: Frequency of CD57 and KLRG1 double expressing cells in the CD8+ T cell subsets of old 
melanoma patients (n=15) and healthy controls (n=19). Vertical bars indicate standard 
deviations. Stars and horizontal bars highlight significant differences between the melanoma 
patients’ subsets (calculated using the Friedman test). Vertical bars indicate standard deviation. 
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 
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 Cytotoxic potential in the subsets of old melanoma patients 3.3.3.2

Despite showing decreased ability to proliferate and an increase in senescent 

features, TEMRA of healthy individuals display an array of effector functions 

(Henson et al. 2014). In old melanoma patients and old healthy individuals alike, 

TEMRA were found to bear the highest levels of perforin and granzyme B 

coexpression out of all the CD8+ T cell subsets, as 57±23% of TEMRA in healthy 

and 59±31% of TEMRA in old melanoma patients expressed both granzyme B 

and perforin (Fig. 3-13). 

CD107a, a marker of cytotoxic granule release, was measured after overnight 

stimulation with anti-CD3 antibody  (Fig. 3-14). In old healthy individuals, the 

highest levels of CD107a were measured in the TEM (14±4%) and TEMRA 

(15±4%) CD8+ T cell subsets. Melanoma patients were found to have 

significantly increased levels of CD107a in their TEM compartment (20±6%; 

p=0.0355), but similar levels the TEMRA compartment (14±6%) compared to 

healthy controls.  

TEMRA of melanoma patients therefore resembled those of healthy individuals in 

terms of cytotoxic potential.  
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Fig. 3-13: Cytotoxic granule components located in blood-derived CD8+ T cell subsets of 
old melanoma patients and healthy controls. 

A: Representative flow cytometry dot plots showing Granzyme B and Perforin expression 
patters in the CD8+ T cell subsets of old melanoma patients and healthy controls. 
B: Cumulative data showing standard deviations and means of granzyme B and perforin 
coexpression in the CD8+ T cell subsets of old melanoma patients (n=11) and healthy controls 
(n=14). Grey horizontal bars and stars mark statistical differences in the frequency of Granzyme 
B and Perforin coexpressing cells amongst the subsets of the melanoma patients. These were 
calculated using one-way ANOVA.  
**p<0.01; ***p<0.001 
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Fig. 3-14: Cytotoxic degranulation in the blood-derived CD8+ T cell subsets of old 
melanoma patients and healthy controls. 

PBMCs were stimulated overnight in the presence of plate-bound anti-CD3 antibody and 
fluorochrome-conjugated anti-CD107a antibody. Cells were labelled with the appropriate 
antibodies the following day before being analysed via flow cytometry.  
A: Representative flow cytometric histograms showing CD107a expression in the CD8+ T cell 
subsets of old melanoma patients and healthy controls. 
B: Cumulative data showing average percentages and standard deviations of CD107a+ cells in 
the CD8+ T cell subsets of old melanoma patients (n=8) and healthy controls (n=6). Stars in 
black denote significant differences in CD107a expression between patient and control subsets 
(calculated by the unpaired T-test). Stars in grey highlight significant differences between the 
subsets within the melanoma patients (calculated using one-way ANOVA). Vertical bars indicate 
standard deviation. 
*p<0.05; **p<0.01; ***p<0.001 
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 TEMRA of old melanoma patients produce less TNFα than those of 3.3.3.3

healthy controls 

Known effector functions associated with TEMRA are not only restricted to 

cytotoxic granule components but also include increased ability to produce high 

levels of effector cytokines such as TNFα and IFNγ (Hamann et al. 1997). 

In order to test whether TEMRA cells of the old melanoma patients were also able 

to produce these cytokines, IFNγ and TNFα production were measured in 

response to overnight stimulation with anti-CD3 antibody via intracellular flow 

cytometry in the CD8+ T cell subsets of old participants (Fig. 3-15). Whilst TEMRA 

and TEM were the highest producers of both cytokines among the healthy, TEMRA 

of old melanoma patients produced significantly less TNFα than their healthy 

counterparts (p=0.0111). 
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Fig. 3-15: Cytokine production in blood-derived CD8+ T cell subsets in old healthy 
individuals and melanoma patients (aged 60+) 

IFNγ and TNFα cytokine production were measured by intracellular flow cytometry staining in 
the CD8+ T cell subsets of old melanoma patients (n=13) and healthy controls (n=9) following 
overnight incubation in the presence of immobilized anti-CD3 antibody.  
A: Representative flow cytometric dot plots and  
B: Cumulative data showing IFNγ production in the CD8+ T cell subsets. 
C: Representative flow cytometric dot plots and  
D: Cumulative data showing TNFα production in the CD8+ T cell subsets.  
Histograms show mean values with standard deviation. Stars in black denote significant 
differences in cytokine production between the patients’ and control subsets (calculated by the 
unpaired T-test). Stars in grey highlight significant differences between the subsets within the 
melanoma patients (calculated using one-way ANOVA). 
 *=p<0.05; **p<0.01; ****p<0.0001 
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 Exhaustion markers PD-1 and CTLA-4 are not increased in the 3.3.3.4

circulating CD8+ T cell subsets of old melanoma patients 
compared to healthy controls 

Exhaustion in T cells is characterized by the simultaneous expression of an 

array of inhibitory markers on the surface of these cells (Blackburn et al. 2009). 

Since CTLA-4 and PD-1 expression are associated with immune exhaustion, 

the expression of these molecules was measured in the T cell subsets of old 

healthy individuals and melanoma patients. Both PD-1 and CTLA-4 were 

highest in the TCM and TEM subsets compared to the Naïve and TEMRA cells in 

both participant groups and not different between patients and controls (Fig. 

3-16). Therefore, TEMRA in melanoma patients did not display features of 

immune exhaustion. 
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Fig. 3-16: Expression of exhaustion the associated markers PD-1 and CLTLA-4 in the 
blood-derived CD8+ subsets of old melanoma patients and healthy controls. 

PD-1 surface expression was detected ex vivo via flow cytometry on unstimulated cells, whilst 
intracellular detection of CTLA-4 necessitated stimulation of the PBMCs with immobilized anti-
CD3 antibody overnight before intracellular staining. 
A: Histograms show representative gating for PD-1 and CTLA-4 in the various CD8+ T cell 
subsets.  
B: Frequencies of PD-1+ cells in the CD8+ T cell subsets of old melanoma patients (n=15) and 
healthy individuals (n=17).  
C: Frequencies of CTLA-4+ cells amongst the CD8+ T cell subsets of old melanoma patients 
(n=10 ) and healthy controls (n=10) 
Bar graphs depict mean values with standard deviation. Grey horizontal lines and stars highlight 
statistical differences in PD-1 or CTLA-4 percentage expression between the individual subsets 
of the melanoma patients and were calculated using one-way ANOVA. 
*p<0.05; **p<0.01; ****p<0.0001 
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 The skin homing marker CLA is reduced among the TCM and TEM of 3.3.3.5

old melanoma patients 

CLA and CCR4 are surface receptors involved in the migration of circulating T 

cells into the skin. CLA and CCR4 expression were measured on the surface of 

the CD8+ T cell subsets in old melanoma patients and healthy controls (Fig. 

3-17).  

In the CD8+ T cells of old melanoma patients, the highest levels of CLA and 

CCR4 were found on cells of intermediate differentiation stages. CLA was 

expressed by 11±5% of TCM and 6±6% of TEM. CCR4 was detected on 6±2% of 

TCM and on 5±3% of TEM. Only 2±1% of naïve or TEMRA subsets of melanoma 

patients expressed CLA or CCR4. The relative distribution of the homing 

markers was similar for healthy individuals. Interestingly melanoma patients 

were found to display significantly decreased levels of CLA on their TCM and TEM 

subsets (p=0.0428 and 0.0077 respectively) compared to healthy controls (Fig. 

3-17). Therefore, CLA was reduced in the old melanoma patients compared to 

healthy controls, particularly in the TCM and TEM subsets. 
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Fig. 3-17: Expression of the skin homing markers CLA and CCR4 in the blood-derived 
CD8+ T cell subsets of old melanoma patients and healthy controls. 

CLA and CCR4 expression were measured ex vivo by flow cytometry in circulating the subsets 
of CD8+ T cells of old melanoma patients and healthy age matched controls. 
A: Representative FACS histograms showing the expression patterns of the skin homing 
surface receptor CLA in the CD8+ T cell subsets of old melanoma patients and healthy controls  
B: Cumulative data showing the percentage CLA surface expression in the CD8+ T cell subsets 
of old melanoma patients (n=15) and healthy controls (n=11) 
C:  Representative FACS histograms showing the expression patterns of the skin homing 
surface receptor CCR4 in the CD8+ T cell subsets of old melanoma patients and healthy 
controls  
D: Cumulative data showing the percentage CCR4 surface expression in the CD8+ T cell 
subsets of old melanoma patients (n=6) and healthy controls (n=6)  
Mean and standard deviation are shown; Participants were compared using the unpaired T-test 
or Mann-Whitney test, subsets from melanoma patients by one-way ANOVA. 
*p<0.05; **p<0.01; ****p<0.0001 
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 Differentiation status of tumour specific CD8+ T cells in old 3.3.4

melanoma patients 

 Optimization and gating for the detection of melanoma-specific T 3.3.4.1

cells 

We next investigated whether the highly differentiated TEMRA cells found to be 

expanded in old melanoma patients were specific to melanoma antigens. 

Fluorochrome labelled peptide loaded MHC class I multimers are routinely used 

to identify peptide specific CD8+ T cells in patients with the appropriate matched 

HLA haplotype. A Melan-A peptide loaded HLA-A2 pentamer was initially used, 

but produced unreliable and non-specific staining. When a Melan-A specific 

MHC class I Dextramer was used, it generated reproducible data that allowed 

labelling of CD8+ T cell populations without staining positively in any HLA-A2 

negative participants. Every experiment included a negative control dextramer 

stain by using a MHC dextramer loaded with an irrelevant peptide (see Fig. 

3-18). 
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Fig. 3-18: Detection of Melan-A and NY-ESO-1 specific cells among blood-derived CD8+ T 
cells using fluorochrome conjugated MHC class I dextramers. 

Representative flow cytometry gating strategy used to identify melanoma specific CD8+ T cells 
in a melanoma patient. 
A:  Gating of true live CD8+ T cells, excluding doublets. 
B: Gates for Melan-A and NY-ESO-1 peptide containing Dextramer stains were drawn 
according to a control sample stained with a dextramer containing an irrelevant peptide as 
shown in the flow cytometry plots. 
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 Melan-A specific CD8+ T cells in old melanoma patients belong to 3.3.4.2

naïve or TCM subsets. 

Melan-A peptide loaded dextramers were used to detect Melan-A specific cells 

among the PBMCs of HLA-A2 positive participants. Four out of seven stage I, 

seven out of eight stage II and ten out of 12 stage III old melanoma patients 

displayed detectable levels of Melan-A specific CD8+ T cells (Fig. 3-19A). The 

frequency of these cells ranged between 0.01 to 0.09% of the total CD8+ T cells 

and was not found to be significantly altered among the old melanoma patients 

of different stages (p>0.05). 

Based on their CD27/CD45RA expression profiles, Melan-A cells detected 

among the patients were found to belong either to the naïve or the TCM subset 

(Fig. 3-19C). None of the old melanoma patients screened displayed Melan-A 

specific cells with a TEM or TEMRA phenotype. In order to see if the phenotype of 

Melan-A specific cells changed with disease stage, we compared the frequency 

of naïve-like cells among the Melan-A specific cells between patients of stages 

I, II and III (Fig. 3-19D). The fraction of Melan-A specific cells averaged 84±18% 

in stage I, 73±33% in stage II and 75±27% in stage III patients. Therefore, 

frequency and differentiation state of Melan-A specific cells were unchanged 

between patients of different disease stages.  
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Fig. 3-19: Frequency and differentiation profiles of Melan-A specific CD8+ T cells in the 
circulation of old melanoma patients. 

Melan-A specific CD8+ T cells were detected by flow cytometry using fluorochrome conjugated 
Melan-A peptide loaded MHC class I HLA-A2 Dextramers. 
A: Frequency of stage I, II and III donors presenting with detectable levels of Melan-A specific 
cells amongst their CD8+ T cell compartment. 
B: Percentages of Melan-A specific cells amongst CD8+ T cells of stage I (n=7), II (n=8) and III 
(n=12) melanoma patients. Means and standard deviation are shown. 
C: Representative flow cytometry dot plots showing CD45RA and CD27 expression patterns in 
total CD8+ T cells and Melan-A specific cells detected in old melanoma patients.  
D: Percentages of Melan-A specific cells that display a naïve-like phenotype in stage I (n=4), II 
(n=6) and III (n=10) melanoma patients. Means and standard deviation are shown. 
Populations were compared using the one-way ANOVA. 
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 Low frequency of NY-ESO-1 specific CD8+ T cells amongst 3.3.4.3

melanoma patients 

A second HLA-A2 dextramer containing a peptide of NY-ESO-1, another widely 

described melanoma antigen, was used to detect and characterize melanoma 

specific CD8+ T cells amongst the old melanoma patients (Fig. 3-20). Amongst 

22 HLA-A2 positive donors tested, only two were found to have detectable 

levels of NY-ESO-1 specific CD8+ T cells and both were confined to stage III 

disease. Further, in both donors, the NY-ESO-1 specific CD8+ T cells were 

confined to the TCM subset. 

 

Fig. 3-20 Frequency and differentiation profiles of NY-ESO-1 specific CD8+ T cells in the 
circulation of old melanoma patients 

Melan-A specific CD8+ T cells were detected by flow cytometry using fluorochrome conjugated 
Melan-A peptide loaded MHC class I HLA-A2 Dextramers. 
A: Frequency of patients with detectable levels of NY-ESO-1-specific CD8+ T cells amongst 
stage I (n=6), II (n=5) and III  (n=11) melanoma patients. Mean and standard deviation are 
shown. 
B: Frequency of NY-ESO-1 specific cells detected amongst old stage III melanoma patients. 
C: CD45RA/CD27 profile of total and NY-ESO-1 specific CD8+ T cells. NY-ESO-1 specific cells 
in both donors were >60% TCM. 
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 The role of IL-15 in CD45RA expression 3.3.5

 IL-15 causes upregulation of CD45RA on CD8+ T cells of old 3.3.5.1

melanoma patients 

CD45RA, which is used as a marker to identify naïve and TEMRA cells, can be 

upregulated in response to IL-15 (Griffiths et al. 2013). By inducing CD45RA 

expression, IL-15 may therefore generate TEMRA- or naïve-appearing memory 

cells. This may occur in melanoma patients and cause the increased 

occurrence of TEMRA cells and occurrence of naïve-like Melan-A specific cells in 

an antigen independent manner. To address this, melanoma patients’ CD8+ 

naïve, TCM, TEM and TEMRA were therefore FACS sorted and individually cultured 

in the presence of IL-15. CD45RA and CD27 surface expression were 

measured on the subsets by flow cytometry directly after sorting and after 14 

days in culture. Indeed, CD45RA was significantly increased on TCM and TEM 

cells after 14 days in culture with IL-15 compared to pre-culture levels at day 0 

(p= 0.0021 for TCM and p= 0.0373 for TEM; see Fig. 3-21A,B). Whilst TCM and 

TEM cells upregulated CD45RA in response to IL-15, they also retained 

expression of CD45RO (Fig. 3-21C). 

Therefore, IL-15 might explain the high levels of TEMRA cells in some CMV 

negative old melanoma patients. IL-15 might also lead to the development of 

naïve-appearing (CD45RA+CD27+) memory cells and could explain the high 

frequencies of naïve-like Melan-A specific cells.  
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Fig. 3-21: Change in CD45RA surface expression in blood-derived CD8+ T cells from 
melanoma patients after in vitro incubation with IL-15. 

CD8+ T cells subsets (based on CD27/CD45RA expression) taken from melanoma patients 
were FACS sorted and subsequently incubated with IL-15 for 14 days. Surface marker 
expression was measured via flow cytometry at day 0 (pre-incubation) and day 14 following 
incubation with IL-15. 
A: Representative flow cytometry dot plots showing CD45RA and CD27 surface marker 
expression at day 0 and day 14 following incubation with IL-15 in T cell subsets derived from an 
old melanoma patient. 
B: Change in percentages of cells expressing CD45RA in sorted CD8+ T cells subsets of 7 
melanoma patients after incubation with 10ng/ml IL-15 for 14 days (note: one patient did not 
yield enough naïve and TEMRA cells for measurement at d=12). 
C: Representative flow cytometry dot plots showing CD45RA and CD45RO surface marker 
expression at day 14 following incubation with IL-15 in T cell subsets derived from an old 
melanoma patient. 
*=p<0.05; **=p<0.01 
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 Discussion 3.4

This chapter explored whether differentiation of circulating T cells is increased 

in the context of melanoma. Differentiation was measured by assessing 

CD45RA/CD27 subset frequencies in both CD4+ and CD8+ T cells of 

participants across all ages. Differences in patients compared to healthy 

controls were restricted to the old age group and only the changes in the CD8+ 

T cell compartment were found to be CMV independent. This discussion 

therefore focuses on results generated in the old cohort and on the CD8+ T cells 

in particular. 

Global T cell differentiation patterns were strongly affected by CMV positivity in 

both old melanoma patients and healthy controls. However, CMV+ melanoma 

patients showed particularly high levels of CD4+ TCM levels compared to age 

matched CMV+ controls, suggesting that the melanoma patients were affected 

more profoundly by their CMV burden than healthy controls. Literature 

discussing the role of CMV infections in the context of melanoma is scarce, with 

only one report suggesting an increase in CMV viral loads in patients with 

malignancies (Dolgikh and Bychkova 2004). CMV is known to reactivate under 

conditions of psychological stress and immunosuppression (Prosch et al. 1999; 

Mehta et al. 2000; Torres et al. 2006). The increase in the CD4+ TCM in old 

CMV+ melanoma patients compared to old CMV+ healthy individuals might 

therefore be due to increased CD4+ T cell stimulation after increased CMV 

reactivation. This could be caused directly by the immunosuppressive effects of 

the tumour or indirectly by the psychological stress patients might undergo after 

becoming aware of their disease. Published follow up studies in healthy elderly 

participants have linked large expansions of CMV specific T cells to increased 

mortality (Wikby et al. 2005). In the present study, no correlation between CMV 

burden and the melanoma patients’ health status could be made due to a lack 

of follow up data.  

Within the CD8+ T cell compartment, a significant increase in TEMRA cell 

percentages could be detected in old melanoma patients compared to healthy 

age matched controls. High frequencies of CD8+ TEMRA in the melanoma 

patients were partly CMV independent, as a significant number of the patients 

with high TEMRA tested negative for the virus. Further analyses confirmed that 
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these cells matched the functional and phenotypic properties of TEMRA cells in 

healthy individuals in terms of decreased proliferative capacity, IL-2 production 

and telomere length and increased cytotoxic capacity and senescence 

associated marker expression. Increased T cell exhaustion (as measured by 

PD-1 and CTLA-4 expression) was not detected among circulating CD8+ T cells 

of old melanoma patients compared to healthy controls. 

The question that arose next was whether the CD8+ TEMRA found among the 

melanoma patients were melanoma specific. Using peptide loaded Dextramers, 

CD8+ T cells specific to the tumour antigens Melan-A and NY-ESO-1 were 

detected in a number of the old melanoma patients. However, specific cells in 

these patients did not have a TEMRA phenotype. It should be noted that MHC 

multimer technology is restricted to detecting T cell populations specific to a 

single peptide:MHC combination and might therefore not pick up on other 

possible melanoma-specific clones. It is consequently still possible that the 

global T cell changes observed are related to T cells of specificity to other 

melanoma associated antigens or different epitopes presented on alternative 

HLA molecules. For example, another widely described tumour-specific T cell 

population can recognize tyrosinase epitopes. Cells of this specificity were not 

investigated in this study but have been reported by others to show a 

senescent-like, unresponsive phenotype in patients with advanced stage 

disease (Lee et al. 1999; Maczek et al. 2005).  

Recent evidence involving CMV specific TEMRA indicates that these cells have 

lower avidity compared to CMV-specific CD45RO+ cells (Griffiths et al. 2013). 

Since most anti-tumour specific T cells are thought to be of low affinity (due to 

deletion of highly self-reactive clones in the thymus) (Zhong et al. 2013), the 

TEMRA compartment might indeed contain weakly melanoma reactive T cells, 

which would be difficult to detect in vitro. In the absence of evidence for a link 

between tumour specific immunity and increased global T cell differentiation, 

non-antigen specific T cell stimuli such as cytokines might also play a role in the 

generation of TEMRA in melanoma.  IL-15 can contribute directly to TEMRA 

generation and maintenance in an antigen independent manner (Griffiths et al. 

2013) and was shown to induce CD45RA in this work in TEM and TCM of 

melanoma patients. IL-15 improved in vivo CD8+ T cell reactivity to murine 

melanoma and, at high concentrations, T cell responses to human melanoma in 
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vitro (Gamero et al. 1995). Although there are currently no reports suggesting 

increased IL-15 levels in the circulation of patients, TEMRA in melanoma patients 

might therefore have been expanded in an antigen-independent manner 

through cytokines. 

Accumulation of highly differentiated CMV-associated T cells in old healthy 

individuals has been linked to decreased survival (Wikby et al. 2005). Although 

high TEMRA levels in melanoma patients might similarly be associated with 

poorer disease outcome, no link was found between the frequency of these 

cells and disease stage. Current literature suggests no clinical benefit for 

melanoma patients in having expanded populations of highly differentiated 

CD8+ cells. Indeed, high levels of CD8+CD57+ cells were linked to worse 

prognosis amongst melanoma patients treated with IFN-α (Characiejus et al. 

2008). Further, in melanoma treatments involving adoptive transfer of 

autologous T cells expanded in vitro from tumour infiltrating lymphocytes, 

clinical responses were associated with the level of persistence of the 

reintroduced T cells. Increased persistence and proliferative capacity were 

enhanced in cells that had longer telomeres and higher expression of CD28 

compared to cells with shorter telomeres, indicating a beneficial role of cells 

having undergone less differentiation in vitro and in vivo in mice and humans 

(Zhou et al. 2005; Huang et al. 2005; Klebanoff et al. 2005; Li et al. 2010).   

Interestingly, a decrease in CLA positive CD8+ TCM and TEM could be found in 

the melanoma patients compared to healthy controls. TEMRA generally only 

express low levels of this skin homing receptor and expressed similar levels of 

CLA in the patients compared to controls. The reduction in skin homing cells in 

the melanoma patients could be due to the cells being recruited to the skin. 

Indeed, it is published that vitiligo patients, who suffer from autoimmune 

destruction of cutaneous melanocytes, have reduced frequencies of CD8+CLA+ 

cells in the circulation compared to healthy controls, whilst showing increased T 

cell infiltration in the skin (Antelo et al. 2011).   

Using Melan-A and NY-ESO-1 peptide loaded Dextramers, melanoma specific 

cells were detected in the blood of old melanoma patients. Large expansions of 

circulating melanoma specific T cells of over 1% of the total CD8+ T cells were 

not observed, which was surprising given the abundance of literature describing 

the phenotypes of such cells in the patients. However these are often found in 
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stage IV melanoma patients that were not available to us (Lee et al. 1999; 

Fourcade et al. 2009).  

The Melan-A specific cells detected among the melanoma specific cells were 

found to have either a naïve-like phenotype or a TCM-like phenotype. Healthy 

HLA-A2 positive individuals often present with naïve like Melan-A CD8+ T cells 

of frequencies around 0.1% of the total CD8+T cells (Pittet et al. 1999). Such an 

abundance of naïve appearing cells specific for one antigen is unusual as 

frequencies of naïve precursor T cells against other known epitopes are in 

average 100 fold lower (Alanio et al. 2010). Data have been published on 

Melan-A specific T cells being generated at high frequencies in the thymus and 

having a low proliferative history (Zippelius et al. 2002), supporting the notion 

that these cells are indeed naïve. However, recent publications have described 

memory populations expressing markers usually associated with naïve T cells 

and the upregulation of naïve cell markers in memory cells in response to 

cytokines (Gattinoni et al. 2011; Griffiths et al. 2013), indicating that naïve 

appearing cells such as Melan-A cells might not necessarily be truly naïve. 

It is thought that the shift in the melanoma-specific T cells from naïve to an 

activated or memory phenotype requires tumour metastasizing into of the lymph 

node and beyond in order to activate the cells sufficiently (Dunbar et al. 2000; 

van Oijen et al. 2004). However, Melan-A specific T cells that had a TCM 

phenotype could also be detected in the circulation of patients who had 

localized melanoma only (stages I and II), indicating that melanoma-specific T 

cells can become activated before melanoma has spread beyond the skin. NY-

ESO-1 specific CD8+ T cells, which were detected in two out of 22 HLA-A2 

positive patients tested, also showed a TCM-like phenotype. TCM express low 

levels of effector molecules such as perforin and granzyme B and high levels of 

costimulatory molecules CD27 and CD28, suggesting that they have a low 

proliferative history and are not very differentiated. This implies that the memory 

T cells specific to Melan-A and NY-ESO-1 have only encountered low levels of 

antigen but have the capacity to differentiate to effector cells if the antigen is re-

encountered.  

In summary, the results presented in this chapter revealed a CMV-independent 

expansion of highly differentiated TEMRA cells in a number of old melanoma 

patients. However, we were not able to show whether these TEMRA comprise 
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melanoma specific cells. Instead, the Melan-A and NY-ESO-1 specific cells 

detected in the old melanoma patients displayed less differentiated naïve or 

TCM-like phenotypes. 

It should be noted that T cell subset frequencies were measured in melanoma 

patients and healthy controls as percentage within the CD4+ or CD8+ T cell 

compartments and not as absolute cell numbers per volume of blood. Although 

lymphocyte counts were reportedly unchanged in melanoma patients compared 

to healthy controls in previous studies (Andres et al. 2006), this might not have 

been true for the participants of this study. Increased levels of TEMRA cells 

observed in some melanoma patients might therefore be due to an overall 

increase in distribution of these cells, or alternatively to the depletion of all other 

subsets because of an overall decrease in CD8+ T cells. To conclusively 

determine which scenario is true, absolute cell numbers should have been 

measured in whole blood via TruCount or similar techniques. 

Recent advances in melanoma therapies have focussed on antibody therapies 

against inhibitory receptors such as PD-1 to boost anti-tumour T cell function. 

However, these treatments only work on a fraction of patients and beneficial 

effects are often found to be only transient (Brahmer et al. 2012). Assuming that 

the increased TEMRA cells detected in the old melanoma patients are melanoma-

reactive but hindered in tumour killing by their senescent nature, these patients 

might benefit from additional treatment by targeting pathways or receptors 

intrinsic to these senescent T cells, such as p38 signalling which is thought to 

actively maintain highly differentiated T cells in their senescent-like state (Di 

Mitri et al. 2011; Henson et al. 2014). This has been attempted during this 

project and is discussed in the final results chapter (chapter 6). 

A point of consideration in this work is the use of CD45RA in conjunction with 

costimulatory receptor CD27, rather than the lymph node homing receptors 

CCR7 or CD62L to define T cell memory subsets. The latter were originally 

used to distinguish the lymph node homing subset TCM from TEM and TEMRA 

which by definition do not home to the lymph nodes (Sallusto et al. 1999). 

Despite a broad correlation between CD27 and CCR7/CD62L expression, co-

expression of these receptors is not absolute, as T cells can be highly 

heterogeneous and populations displaying intermediate CCR7-CD27+ and 

CCR7+CD27- profiles have been described (Appay et al. 2002; Appay et al. 
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2008). Since T cells irreversibly lose CD27 during differentiation (Hintzen et al. 

1993), the use of this marker allows distinction of cells at different stages of 

differentiation, rather than lymph node homing capability. Although the terms 

TCM, TEM and TEMRA are used here, CCR7 or CD62L were not measured and the 

ability of these cells to home to lymphoid organs was therefore not addressed. 

The use of the TCM/TEM/TEMRA terminology is therefore restricted in the context 

of this work and comparisons with other studies using these terms should be 

made with care as different subset markers might have been used. 

The frequency and differentiation status of melanoma-specific T cells in the 

circulation is often thought to be a late event and to have no predictive value to 

disease outcome (van Oijen et al. 2004). Conversely, the presence of tumour 

infiltrating lymphocytes has been shown to be a positive prognostic factor by a 

number of studies (Ladányi et al. 2004; Haanen et al. 2005).  The following 

results chapters will therefore investigate differentiation patterns of T cells in the 

skin of melanoma patients. 
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4 Establishing patterns of T cell differentiation in 
healthy skin 

 

  Introduction 4.1

In order to assess T cell differentiation in the skin of patients with melanoma, it 

is important to understand T cell phenotypes and functions in healthy skin first. 

The characteristics of T cells in the skin have only been poorly studied 

compared to the circulation, as blood samples are easier to obtain and 

technically less challenging to process. However, the last decade has seen a 

surge in research on tissue resident T cells as their importance in tissue 

immunity is being recognized. 

As described in the previous chapters, T cells in the blood can be divided into 

subsets, namely naïve, TCM, TEM and TEMRA, with the former being the least and 

the latter being the most differentiated. These subsets can be distinguished on 

the basis of surface receptors involved in various physiological processes such 

as costimulation or migration. Whilst TCM are thought to migrate between 

secondary lymphoid organs, TEM and TEMRA have often been associated with 

migration to peripheral tissues. As it was discovered that the skin is populated 

with a vast number of resident T cells, it was originally proposed that these cells 

are of the TEM subset because they lack the lymph node homing markers CCR7 

and CD62L (Clark et al. 2006; Clark et al. 2012). Although the paradigm has 

now shifted toward the notion that these cells are not true effector memory T 

cells (TEM), but instead a separate subset of tissue resident memory T cells 

(TRM), the idea persists that skin resident T cells share many characteristics with 

blood borne TEM and are readily poised to respond to antigenic challenges 

(Schenkel and Masopust 2014; Natsuaki et al. 2014).  

The differentiation patterns of skin resident T cells under steady state remain 

poorly understood, particularly in humans. The following chapter will therefore 

try to assess the differentiation of skin resident T cells in healthy human skin 

based on the expression of surface markers commonly associated with 

differentiation in T cells derived from the blood. 
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 Aims  4.2

The aim of this chapter was to establish rules and patterns of T cell 

differentiation in the skin of healthy individuals to enable the interpretation of 

changes found in the skin of patients with melanoma (described in the following 

chapter). 
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 Results 4.3

 T cell extraction from skin specimens 4.3.1

 Optimizing a protocol to isolate T cells from the skin 4.3.1.1

A skin digestion protocol involving overnight incubation of samples with 

collagenase type IV in complete medium was adopted in order to disaggregate 

skin specimen and to obtain a single cell suspension suitable for flow cytometry 

(outlined schematically in Fig. 4-1A and in full detail in the methods section). 

This technique is a laborious and time consuming process which requires 

manual cutting of skin specimen and filtration using a syringe plunger and 

repeated additions of PBS to pass the sample through a nylon mesh. 

In order to reduce processing time and increase cell recovery, other methods of 

skin disaggregation were explored. The use of mechanical disaggregation 

methods was tested, initially by using the Medimachine tissue dissociator (by 

Becton Dickinson Biosciences). However, even small pieces of skin were found 

to not disaggregate efficiently and to obstruct the rotating blades of the device. 

This resulted in low cell yields compared to the enzymatic method (Fig. 4-1B). 

Combining overnight enzymatic digestion with the mechanical disaggregation 

allowed the blades to rotate unobstructed but did not result in increased yields 

(Fig. 4-1B). Likewise, no advantage in cell recovery was obtained by a similar 

device called GentleMACS (by Miltenyi; Fig. 4-1C). Mechanical skin 

disaggregation methods were therefore abandoned in favour of the combined 

manual/enzymatic method.  

Initial analyses of lymphocytes recovered using collagenase digestion showed 

decreased surface expression of certain markers such as CD4 but not of others, 

including CD8 (Fig. 4-2A). Using a different type of collagenase (Type Is, Fig. 

4-2A) also affected cell surface markers. Allowing the isolated cells to rest 

overnight in collagenase-free medium did also not recover the lost epitopes 

(data not shown). Finally, increasing the serum content in the digestion medium 

from 10% to 20% or above, as suggested by Mulder and colleagues, allowed 

prevention of surface marker degradation without significant reduction in 

collagenase-mediated tissue breakdown (Mulder et al. 1994) (Fig. 4-2B).  
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The skin samples available from healthy volunteers were generally obtained 

from redundant plastic surgery skin, whilst melanoma skin samples were 

obtained from wide local excisions. Cell yields were estimated from counts of 

leukocytes using a haemocytometer. Cell recovery from skin samples was 

highly variable, averaging 49,000±35,0000 cells per cm2 in healthy skin and 

116,000±180,000 cells per cm2 in melanoma patient skin samples (difference in 

recovery between patients and controls was not significant). 

Skin samples were obtained on an irregular basis, at unpredictable times and 

were subject to availability. Due to these difficulties in sample collection, data 

obtained on skin T cell differentiation is spread across participants of all ages 

and adequate age matching between participants was not always possible, 

particularly in the melanoma cohort. 
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Fig. 4-1: Comparison of cell yields using various methods of skin disaggregation. 

A: Schematic diagram outlining the method of skin disaggregation for the extraction of single 
cell suspensions. Manual disaggregation involved filtration directly after overnight digestion. 
Mechanical disaggregation using the Medimachine or GentleMACS was tested on undigested 
or overnight digested skin before filtration. 
B: Cell yields were compared using enzymatic (overnight collagenase treatment) and 
mechanical (Medimachine) skin disaggregation methods, alone or in combination on 8mm 
punch biopsies. Horizontal lines depict mean values with standard deviation between three 
biopsies. 
C: Cell yields of skin T cells from punch biopsies obtained following collagenase digestion via 
manual/enzymatic disaggregation or mechanical/enzymatic disaggregation using the 
GentleMACS tissue dissociator. Horizontal lines depict mean values with standard deviation 
between three 8mm punch biopsies. 
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A         

 

B 

  

Fig. 4-2 Loss of T cell surface markers after incubation of PBMCs from a healthy donor 
with collagenase and prevention of this phenomenon through increased FBS 
concentration 

A: Comparison of cell surface marker expression following collagenase digestion. CD4 and 
CD8 surface expression were assessed by flow cytometry following overnight incubation of 
PBMCs with 0.8mg of collagenase type IV and type Is and 10% FBS in RPMI medium. Flow 
cytometry gates were drawn on the dot plots according the untreated sample and applied to 
collagenase treated samples. 
B: Cell surface marker detection after digestion in the presence of varying levels of FBS. Cells 
were incubated overnight with medium containing 0.8mg of collagenase type IV and varying 
concentrations of FBS. CD4 and CD8 surface expression were measured via flow cytometry the 
following day and percentage change in MFI for both markers was calculated compared to 
untreated cells. 
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 T cell differentiation in healthy skin 4.3.2

To date little is still known about the T cell differentiation in the skin of healthy 

humans. It was therefore necessary to first investigate T cell differentiation 

patterns in the skin of healthy individuals, before being able to assess the state 

of T cell differentiation in the skin of patients with melanoma. The 

characterization of T cell differentiation in healthy skin, based on T cell 

differentiation markers commonly used in the blood, was therefore attempted. 

 Skin derived T cells in healthy individuals express high levels of 4.3.2.1

the tissue retention marker CD69 

First, expression of CD69 was measured in order to verify if cells extracted from 

the skin samples were true skin resident T cells. CD69 is not normally 

expressed on resting T cells in the circulation, but is stably expressed on tissue 

resident T cells, as it is thought to be involved in tissue retention (Ledgerwood 

et al. 2008; Sathaliyawala et al. 2013). Blood derived T cells from healthy 

individuals did not express CD69, whilst 80±8% of CD4+ T cells and 91±5% of 

CD8+ T cells expressed CD69 in the skin (Fig. 4-3A,B). 

To see which of the differentiation subsets in the skin were the most likely to 

express CD69, expression of the receptor was measured in the CD45RA/CD27 

defined differentiation subsets of skin derived CD4+ and CD8+ T cells. In the 

skin CD4+ T cells the CD27 positive subsets (Naïve and TCM) expressed 

significantly lower levels of CD69 than the CD27 negative subsets (TEM and 

TEMRA), as 88±6% of TEM and 92±5% of TEMRA expressed CD69, whilst only 

63±25% of naïve and 60±13% of TCM did so. All CD8+ T cell subsets expressed 

CD69 equally at averages of 87-92%. 

Therefore, the majority of skin CD8+ T cells extracted had characteristics of 

resident T cells, whilst 20% of CD4+ T cells appeared to be transient as they 

were CD69 negative. The majority of these transient CD4+ T cells belonged to 

the naïve and TCM subsets. 
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Fig. 4-3: Ex vivo expression of the tissue retention marker CD69 in skin and blood 
derived T cells in healthy individuals. 

CD69 expression was measured by flow cytometry in blood and skin derived CD4+ and CD8+ T 
cells derived from healthy individuals. 
A: representative flow cytometry histogram showing CD69 expression in matched blood and 
skin derived CD4+ and CD8+ T cells. 
B: Cumulative data showing CD69 expression in CD4+ and CD8+ T cells from the blood (n=26) 
and skin (n=24) of healthy individuals. Mean and standard deviation are shown. 
C: Cumulative data showing CD69 expression in the CD45/CD27 defined subsets of skin 
derived CD4+ and CD8+ T cells from 24 healthy individuals. Mean and standard error are 
shown. Subsets were compared using the Friedman test. 
*=p<0.05; ****=p<0.0001 
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 The majority of healthy skin resident CD4+ T cells have a TEM 4.3.2.2

phenotype, irrespective of age 

As described previously, CD27 and CD45RA are commonly used to identify T 

cell differentiation subsets in the blood. CD27 and CD45RA based subset 

distribution was therefore assessed by flow cytometry in T cells extracted from 

the skin and blood of healthy individuals (Fig. 4-4A).  

No significant age-related changes in subset distribution were observed among 

the skin derived CD4+ T cells, although this might be due to the low number of 

skin donors and high variation between the samples (Fig. 4-4B). The dominant 

skin subset in donors of all ages was found to be the TEM subset, which in 

average constituted 60±15% of CD4+ T cells. A smaller population of TCM cells 

was also present at 32±13%, whilst the CD45RA expressing naïve and TEMRA 

subsets were only detected at minor frequencies (2±3% and 6±5% 

respectively).  

When comparing paired samples in young and old individuals respectively, skin 

derived naïve T cells (p= 0.0023 and 0.0101 for young and old respectively) and 

TCM cells (p=0.0255 and 0.0624) were reduced and TEM (p=0.0007 and 0.0006) 

and TEMRA (p= 0.2889 and 0.0408) increased when compared to matched blood 

samples. 

Therefore, CD4+ T cell differentiation profiles are profoundly altered in the 

healthy skin compared to the blood and are dominated by TEM- like cells in both 

young and old donors. 
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Fig. 4-4: CD4+ T cell subset distribution with age in skin compared to blood in healthy 
donors. 

CD45RA and CD27 expression were measured via flow cytometry in CD4+ T cells of healthy 
blood and skin donors. 
A: Representative flow cytometry plots show CD45RA and CD27 expression in blood and skin 
derived CD4+ T cells obtained from the same healthy donor. The diagram on the right highlights 
the names given to the four subsets. 
B: Relationship with age of subset frequencies in the skin (n=29) and blood (n=35) of healthy 
individuals. Lines of best fit were generated by linear regression and the correlation (r-value) 
and significance were assessed by Pearson and Spearman rank. 
C: Comparison of paired blood and skin T cell subset frequencies in young (n=4; aged 40 and 
younger) and old (n=5; aged 60 and older) healthy individuals. Percentages were compared 
using the paired T test or the Wilcoxon test. 
*=p<0.05; **=p<0.01; ***=p<0.001 
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 CD8+ T cell differentiation patterns are altered in the skin 4.3.2.3

compared to the blood but show all four differentiation subsets 

CD45RA/CD27 subset gates were applied to CD8+ T cells derived from the 

blood and skin of healthy individuals (Fig. 4-5A). As was the case with skin 

derived CD4+ T cells, CD8+ T cell CD45RA/CD27 subset frequency did not 

change significantly with age, although there seemed to be a trend towards 

increased abundance of TCM and decreased TEM in the older age groups (Fig. 

4-5B). TCM and TEM cells comprised on average 34±21% and 33±16% 

respectively, whilst naïve (17±12%) and TEMRA (16±15%) populations were also 

present. Paired blood and skin samples were compared in the young and old 

(Fig. 4-5C). In the young, skin derived CD8+ T cells were found to contain 

significantly less naïve and more TEM cells compared to the blood of the same 

donors (p= 0.0489 and 0.0432, respectively). Similar patterns were observed in 

the old, where they were not significant (p= 0.0724 and 0.0552). 

Therefore, based on their CD45RA/CD27 expression, CD8+ T cells in the 

healthy skin are comprised mainly of TEM and TCM, as well as lower levels of 

TEMRA and naïve-live cells. 
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Fig. 4-5: Change in CD8+ T cell subset distribution with age in skin compared to blood in 
healthy donors. 

CD45RA and CD27 expression were measured via flow cytometry in CD4+ T cells of healthy 
blood and skin donors. 
A: Representative flow cytometry plots show CD45RA and CD27 expression in blood derived 
and skin derived CD8+ T cells obtained from the same healthy donor. The diagram on the right 
highlights the names given to the four subsets. 
B: Relationship with age of subset frequencies in the skin (n=29) and blood (n=35) of healthy 
individuals. Lines of best fit were generated by linear regression and the correlation (r-value) 
and significance were assessed by Pearson and Spearman rank. 
C: Comparison of paired blood and skin T cell subset frequencies in young (n=4; aged 40 and 
younger) and old (n=5; aged 60 and older) healthy individuals. Percentages were compared 
using the paired T test or the Wilcoxon test. 
*=p<0.05; **=p<0.01; ***=p<0.001 
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 T cells in the skin do not display surface receptor patters 4.3.2.4

commonly associated with highly differentiated cells in the blood 

A number of surface marker combinations other than CD27/CD45RA are often 

used on blood derived T cells to distinguish cells at different stages of 

differentiation. This includes combined measurement of CD27 and CD28. T 

cells that express both CD27 and CD28 are thought to be the least 

differentiated, whilst double negative cells, which accumulate with age, are the 

most differentiated. This means that CD27+CD28+ cells typically comprise naïve 

and TCM cells, whilst CD27-CD28- cells include TEM and TEMRA cells. Cells that 

express either CD27 or CD28 are in an intermediate differentiation stage that 

mostly includes TCM (S. M. Henson et al. 2009; Appay et al. 2008).  

CD27 and CD28 coexpression was analyzed in the skin and blood of healthy 

individuals (Fig. 4-6). The majority of skin resident CD4+ (67±10%) and CD8+ T 

cells (44±14%) expressed CD28 but no CD27. Only 21±8% of skin resident 

CD4+ T cells expressed both CD27 and CD28, whilst 11±7% expressed neither. 

Cells that only expressed CD27 but no CD28 were virtually absent among skin 

resident CD4+ T cells (1±1%). Similarly, minor populations of CD27+CD28+ 

(16±8%) and CD27-CD28- (28±10%) cells could be detected among the skin 

resident CD8+ T cells. CD27+CD28- cells were also present among the skin 

CD8+ T cells (16±8%). 
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Fig. 4-6: CD27 and CD28 coexpression in skin and blood derived T cells of healthy 
individuals 

CD27 and CD28 were measured ex vivo by flow cytometry in blood and skin derived CD4+ and 
CD8+ T cells 
A: Representative flow cytometric dot plots showing CD27 and CD28 expression in CD4+ and 
CD8+ T cells derived from the blood and skin of a healthy individual. 
B: Cumulative data showing the distribution of subpopulations defined by CD27 and CD28 
expression in CD4+ (on the left) and CD8+ T cells (on the right) derived from the blood (n=34) 
and skin (n=16) of healthy individuals. Comparisons were made using the Student or paired t-
test. 
*=p<0.05; **=p<0.01; ***=p<0.001; ****=p<0.0001 
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As previously mentioned, KLRG1 and CD57 can also be used to identify highly 

differentiated cells and are increased in the blood on cells of the TEM and TEMRA 

subsets. KLRG1 and CD57 expression were therefore measured in T cells 

extracted from healthy skin and compared to levels in the blood (Fig. 4-7). The 

majority of skin resident T cells were negative for both CD57 and KLRG1 

(85±9% for CD4+ and 65±15 for CD8+ T cells), whilst double-expressing cells 

remained rare in the CD4+ T cells (1±2%) and low in the CD8+ T cells (9±12%; 

Fig. 4-7). Interestingly, a population of CD57+KLRG1- cells among the CD4+ 

(10±6%) and CD8+ T cells (20±10%) was detected in the skin, which was not 

present in the blood, as T cells in the blood cells were unlikely to express CD57 

in the absence of KLRG1.  

Therefore, based on commonly used differentiation-associated markers, the 

majority of skin resident T cells appeared to be of an intermediate (CD27-

CD28+CD57-KLRG1-) differentiation stage. 
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Fig. 4-7: Expression of senescence-associated markers KLRG1 and CD57 in the blood 
and skin T cells of healthy donors. 

KLRG1 and CD57 were measured ex vivo by flow cytometry in blood and skin derived CD4+ 
and CD8+ T cells of healthy donors. 
A: Representative flow cytometric dot plots showing KLRG1 and CD57 expression in CD4+ and 
CD8+ T cells derived from the blood and skin of the same individual. 
B: Cumulative data showing the distribution of subpopulations defined by KLRG1 and CD57 
expression in CD4+ (on the left) and CD8+ T cells (on the right) derived from the blood (n=27) 
and skin (n=21) of healthy individuals. Populations were compared using the Student or paired 
t-tests. 
*=p<0.05; **=p<0.01; ***=p<0.001; ****=p<0.0001 
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 CD45RA/CD27 T cell subsets in the skin have different 4.3.2.5

characteristics to CD45RA/CD27 subsets in the blood 

As described in the previous chapters, CD45RA and CD27 expression patterns 

in blood T cells reliably predict other phenotypic properties. TEMRA cells for 

example do not express CD28 but express high levels of the KLRG1 and CD57 

(Appay et al. 2008). To determine if this was also true in skin derived T cells, 

surface expression of CD28, KLRG1 and CD57 was measured in the 

CD45RA/CD27 subsets of skin derived T cells from healthy individuals and 

compared to the patterns in the blood subsets (Fig. 4-8). 

CD28 expression is known to decrease during differentiation in blood derived T 

cells and is therefore generally found to be highest in the naïve and TCM 

subsets, lower in the TEM and lowest in the TEMRA. It was confirmed that this was 

the case in blood derived CD4+ and CD8+ T cells of healthy individuals (Fig. 

4-8). CD28 expression followed a similar pattern in the skin, where CD28 was 

higher in the TCM cells compared to the TEM and lowest in the TEMRA cells in both 

CD4+ and CD8+ T cells. Interestingly, the majority of the naïve appearing skin 

CD8+ T cells did not express CD28. 

Expression of senescence associated markers KLRG1 and CD57 increases 

gradually with differentiation. Consequently, expression of both markers was 

found to be lowest in naïve and TCM, higher on TEM and highest in TEMRA in 

blood derived CD4+ and CD8+ T cells. However, skin T cell subsets did not 

follow this pattern: CD57 and KLRG1 were not markedly increased in the skin 

TEMRA compared to the other subsets and were particularly low in the TEM 

among of the CD8+ T cell compartment. 

Therefore CD45RA and CD27 surface expression was disconnected from 

senescence associated marker expression in the skin. Further, CD45RA+CD27+ 

naïve appearing CD8+ T cells in the skin are unlikely to be truly naïve as they 

expressed reduced levels of CD28.  
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Fig. 4-8: Expression of markers commonly used to define T cell differentiation in the 
blood in the CD45RA/CD27 subsets in the blood and skin of healthy individuals. 

CD28, KLRG1 and CD57 expression were measured ex vivo in blood and skin derived CD4+ 
(graphs on the left) and CD8+ (graphs on the right) T cell subsets. Naïve, TCM, TEM and TEMRA T 
cell subsets were based on CD45RA and CD27 expression as previously described. The bar 
graphs show means and standard errors. Populations were compared using one-way ANOVA 
or the Friedman test. Participant numbers were as follows for blood and skin donors 
respectively:  26 and 17 for CD28, 32 and 27 for KLRG1 and finally 27 and 21 for CD57 
measurements. 
*=p<0.05; **=p<0.005; ***=p<0.0005; ****=p<0.0001 
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 PD-1 but not CTLA-4 expression is increased in skin T cells from 4.3.2.6

healthy individuals compared to the blood. 

CTLA-4 and PD-1 play major roles in maintaining T cell tolerance and have 

been associated with T cell exhaustion (but not senescence) in various disease 

settings including cancer (Baitsch et al. 2011; Blackburn et al. 2009; 

Duraiswamy et al. 2013). In order to investigate expression of these receptors in 

tissue resident T cells in the absence of melanoma, PD-1 and CTLA-4 

expression were measured in skin derived T cells and compared to the blood of 

healthy individuals (Fig. 4-9). PD-1 expression was significantly increased in 

skin CD4+ and CD8+ T cells (35±18% and 51±18%, respectively) compared to 

the blood (CD4+: 10±6%, p= 0.0002; CD8+: 14±8%, p< 0.0001). Conversely, 

CTLA-4 expression levels were low in the skin and similar to levels in the blood 

in both CD4+ T cells (16±8% in the skin and 20±12% in the blood) and CD8+ T 

cells (5±5% in the skin and 8±7% in the blood). 

In the blood PD-1 and CTLA-4 expression were highest in the subsets of 

intermediate differentiation (TCM and TEM) in both CD4+ and CD8+ T cells (Fig. 

4-10). In the skin, PD-1 expression was increased in all the subsets, but highest 

in the TCM-like subsets, where 46±16% of CD4 and 60±19% of CD8+ TCM 

expressed this marker. CTLA-4 expression in the skin was low in all subsets 

apart from the TCM, where 38±15% of CD4+TCM and 10±6% of CD8+ TCM 

expressed the receptor. 

Therefore PD-1 (but not CTLA-4) was significantly increased in skin derived T 

cells compared to the blood, and the TCM-like subset in the skin expressed the 

highest levels of both these markers. 
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Fig. 4-9 Surface expression of the inhibitory/exhaustion markers PD-1 and CTLA-4 in 
blood and skin derived total CD4+ and CD8+ T cells derived from healthy individuals. 

Extracellular PD-1 expression was measured by flow cytometry ex vivo, intracellular CTLA-4 
expression following overnight stimulation of the cells with immobilized anti-CD3 antibody. 
A: Representative flow cytometry histograms and cumulative data showing PD-1 expression in 
total CD4+ and CD8+ T cells in the blood (n=12) and matched skin (n=12) of healthy individuals. 
Populations were compared using the paired t-test. 
B: Representative flow cytometry histograms and cumulative data showing CTLA-4 expression 
in total CD4+ and CD8+ T cells in the blood (n=19) and skin (n=14) of healthy individuals. 
Populations were compared using the Student t-test. 
Mean and standard deviation are shown. ***=p<0.001; ****=p<0.0001 
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Fig. 4-10: PD-1 and CTLA-4 expression in the CD45RA/CD27 subsets of skin and blood 
derived T cells in healthy individuals. 

PD-1 expression was measured by flow cytometry ex vivo, CTLA-4 expression following 
overnight stimulation of the cells with immobilized anti-CD3 antibody. Participant numbers were 
as follows: 35 blood and 29 skin donors for PD-1 measurements and 19 blood and 14 skin 
donors for CTLA-4 measurements. 
Means and standard error are shown, differences in PD-1 and CTLA-4 expression were 
calculated using one-way ANOVA or the Friedman test. 
*=p<0.05; **=p<0.01; ***=p<0.001; ****=p<0.0001 
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 CD4+ FoxP3+ Tregs in the skin are confined to the TCM subset 4.3.2.7

Suppressive CD4+FoxP3+ Treg cells are known to be important for immune 

tolerance in the skin and it was of interest to understand their phenotypic 

properties in that tissue. Consistent with previous findings (Sanchez Rodriguez 

et al. 2014), FoxP3+ Treg frequency in the CD4+ T cell compartment was 

increased in the skin compared to the blood (9±2% versus 4±2%, p= 0.0019), 

as measured by flow cytometry (Fig. 4-11A,B). Like circulating FoxP3+ Tregs, 

Tregs in the skin were found to be confined to the CD45RA-CD27+ TCM 

compartment but made up only 23±6% of the skin TCM compartment (Fig. 

4-11C,D). Compared to the total CD4+ T cells in the skin, skin FoxP3+ Tregs 

expressed lower levels of CD69 and increased levels of CTLA-4 (Fig. 4-11E). 
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Fig. 4-11 Frequency and phenotypic properties of FoxP3+ Tregs in healthy skin 

Skin and blood derived T cells were analysed by flow cytometry and gating was applied to 
identify total CD4+ T cells and FoxP3+CD25+CD127+ Tregs within the CD4+ compartment. 
A: Flow cytometric dot plot showing frequency of FoxP3+CD127- cells in the blood and skin of 
healthy individuals. 
B: Frequency of FoxP3+CD25+CD127+ Tregs in the CD4+ T cell compartment in samples 
derived from the blood (n=6) and skin (n=5) of healthy individuals. Mean and standard deviation 
are shown. Populations were compared using the t-test. 
C: Flow cytometric dot plot showing CD45RA/CD27 surface expression on skin derived total 
CD4+ T cells and FoxP3+ CD4+ Tregs. 
D: Frequency of TCM among FoxP3+ Treg compartment and of FoxP3+ Treg cells in the TCM 
compartment of skin derived CD4+ T cells (n=4). Mean and standard deviation are shown. 
E: Flow cytometry histogram showing CD69 and CTLA-4 expression in total skin CD4+ T cells 
and FoxP3+ CD4+ Tregs. 
**=p<0.01 
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 The majority of skin resident CD8+ T cells do not express 4.3.2.8

granzyme B or perforin 

Memory cells expressing high levels of the cytotoxic granule components 

perforin and granzyme B can be detected in the blood of healthy individuals and 

are generally associated with a more differentiated phenotype (Henson et al. 

2014). Whilst these cells therefore have low proliferative capacity and reduced 

functional plasticity due to their lineage commitment, they are thought to confer 

immediate protection against infected and malignant cells compared to other 

less differentiated cells types that would need more time to synthesize effector 

proteins upon activation. The expression of cytotoxic granule components and 

markers associated with cytotoxicity have yet to be fully investigated in skin 

resident T cells. 

Intracellular granzyme B and perforin expression were therefore measured in 

the blood and skin derived CD8+ T cells of healthy individuals by flow cytometry 

(Fig. 4-12). Whilst granzyme B and perforin could be detected in blood samples 

in varying amounts ranging from 5-57% and 3-35% respectively, skin CD8+ T 

cells consistently expressed low levels of granzyme B (averaging at 6±3%, 

maximum 11%), and no perforin (2±2%).  

In order to verify that the process of skin cell extraction was not the reason for 

the low levels of perforin and granzyme B measured, immunofluorescent 

staining of frozen skin sections was performed. Staining for either granzyme B 

or perforin together with CD8 confirmed that the majority of skin resident T cells 

did not express granzyme B or perforin in situ (Fig. 4-13). 
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Fig. 4-12: Perforin and Granzyme B expression in CD8+ T cells derived from blood or skin 
of healthy individuals. 

A: Representative dot plots showing typical granzyme B and Perforin expression patterns in 
blood and skin derived CD8+ T cells.  
B: Percentage of CD8+ T cells expressing granzyme B or perforin in the skin compared to the 
blood of the same donor. Populations were compared using the paired t-test.  
*=p<0.05 

 

Fig. 4-13: Immunofluorescent staining of healthy skin for granzyme B or perforin and 
CD8+ T cells. 

Immunofluorescence stain performed on frozen sections of healthy skin using CD8 (green), 
DAPI (blue) and either granzyme B or perforin (both red). The white arrow indicates the 
presence of a rare CD8 and granzyme B double positive staining cell. The first row shows full 
staining, whilst the second row shows control stains using only the appropriate 2° antibodies, 
omitting primary antibodies for granzyme B and CD8 (on the left) and antibodies for perforin and 
CD8 (on the right). 
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 Disconnection between CD45RA/CD27 defined subsets and 4.3.2.9

expression of cytotoxic markers in the skin 

Among memory T cells in the blood, perforin and granzyme B expression are 

associated with a highly differentiated phenotype. Cells carrying these cytotoxic 

granule components therefore mainly belong to the TEM and TEMRA phenotypes 

and express low levels of the costimulatory marker CD28 and high levels of the 

senescence-associated marker KLRG1 (Henson et al. 2014; Appay et al. 2008; 

Speiser et al. 1999). It was confirmed that in the blood CD8+ T cells, granzyme 

B expression was highest among the TEM and TEMRA (Fig. 4-14) and was 

strongly associated with low levels of CD28 and high levels of KLRG1 (Fig. 

4-15). Among the skin derived CD8+ T cells, granzyme B and perforin were only 

expressed in a minority of TEMRA cells (16±16% and 12±15% respectively) and 

particularly low in the TEM-like subset (8±10% and 2±5% respectively; Fig. 

4-14).  

Loss of CD28 in skin CD8+ T cells did not correlate with an increase in 

granzyme B as it did in the blood (Fig. 4-15B). Indeed, cells in the skin that 

expressed granzyme B and those that did not comprised equal levels of CD28 

expressing cells (60±12% and 62±15% respectively; Fig. 4-15C). Interestingly, 

granzyme B expressing cells in the skin showed increased levels of KLRG1 

(22±10%) compared to granzyme B negative CD8+ skin T cells (5±4%; 

p=0.0002; Fig. 4-15). However, KLRG1 was not a suitable marker for granzyme 

B expression in the skin, as the majority of Granzyme B expressing skin T cells 

did in fact not express KLRG1. 

CD8+ T cells in the skin therefore appear to have low cytotoxic potential under 

steady state conditions, as they only express low levels of cytotoxic granule 

components. Further, the small fraction of cells expressing granzyme B in the 

skin did not display the surface markers commonly associated with a cytotoxic 

phenotype in memory T cells in the blood. 
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Fig. 4-14: Expression of the cytotoxic granule components granzyme B and perforin in 
the CD8+ T cell subsets derived from the skin and the blood of healthy donors. 

A: Representative flow cytometry dot plots showing the expression of Perforin and Granzyme B 
in the subsets of skin and blood derived T cells. 
B: Histograms showing the frequency of granzyme B and perforin expressing cells in the CD8+ 
T cell subsets in the blood (n= 34) and in the skin (n=17) of healthy volunteers. Mean and 
standard error are shown, populations were compared using one-way ANOVA. 
*=p<0.05; ****=p<0.0001 

N
ai
ve

T C
M

T E
M

T E
M
R
A

N
ai
ve

T C
M

T E
M

T E
M
R
A

0

25

50

75

100

SkinBlood

GranzymeB+

****
*

****

**

A"

B"

%
"o
f"C

D8
+ "T

"c
el
ls"

N
ai
ve

T C
M

T E
M

T E
M
R
A

N
ai
ve

T C
M

T E
M

T E
M
R
A

0

25

50

75

100

SkinBlood

Perforin+

****
*

****
*

0 102 103 104 105

0

102

103

104

105
11.7 68.1

4.7315.5

0 102 103 104 105

0

102

103

104

105
8.88 25.8

11.254.1

0 102 103 104 105

0

102

103

104

105
12.8 6.77

14.765.7

0 102 103 104 105

0

102

103

104

105
4.58 5.74

2.1387.6

0 102 103 104 105

0

102

103

104

105
7.08 4.2

1.1487.6

0 102 103 104 105

0

102

103

104

105
3.74 0.51

0.3795.4

0 102 103 104 105

0

102

103

104

105
21.5 0.89

1.4476.2

0 102 103 104 105

0

102

103

104

105
9.98 1.44

1.6187

Naïve"
(CD45RA+CD27+)"

TCM"
(CD45RA<CD27+)"

TEM"
(CD45RA<CD27<)"

TEMRA"
(CD45RA+CD27<)"

Blood"
CD8+"T"cells"

Skin"
CD8+"T"cells"

Perforin"

Gr
an
zy
m
e"
B"



 148 

 
Fig. 4-15: Correlation of surface CD28 and KLRG1 to intracellular granzyme B expression 
in CD8+ T cells derived from skin and blood of healthy individuals. 

A: Representative flow cytometry dot plots showing CD28 and KLRG1 expression in relation to 
Granzyme B expression in blood and skin derived CD8+ T cells. 
B: Correlations between percentage CD28 or KLRG1 expressions with percentage granzyme B 
expression in blood and skin derived CD8+ T cells. Lines of best fit, r values and significance are 
shown. 
C: Cumulative data showing frequencies of CD28 or KLRG1 expressing cells in granzyme B 
positive (GranB+) and granzyme B negative (GranB-) blood and skin derived CD8+ T cells. 
Averages and standard errors are shown. Populations were compared using the paired t-test. 
***p<0.001, ****p<0.0001. 
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  Discussion 4.4

 Optimizing a protocol to isolate T cells from the skin 4.4.1

The fact that isolation of skin resident T cells is technically challenging has long 

hampered advances in skin immunology research. However, a number of 

protocols have been published, most relying on enzymatic digestion or crawl-

out methods. In 2006 Clark and colleagues described a technique yielding in 

average about 250,000 T cells per cm2 of skin, by using a method involving 

culture of skin explants for up to 21 days and harvesting cells spilling out from 

the tissue (Clarket al. 2006a; Clark et al. 2006b). The authors argued that this 

technique yielded unaltered cells and was therefore superior to collagenase 

digestion, which caused degradation of surface markers such as CCR4 and 

yielded on average only around 2 000 T cells per cm2.  

However, culture conditions and relying on a cell’s ability to migrate out of the 

skin sample might affect compositions and phenotypes of cell populations 

harvested. An enzymatic digestion based method was therefore adopted for this 

work in order to reduce the time samples spent in culture. Methods for 

mechanical skin disaggregation were tested to further reduce processing time 

but were found to be unsatisfactory for efficient skin cell recovery. Using an 

optimized method of overnight collagenase-based skin digestion, an average of 

50,000 cells were recovered per cm2 of skin, although this count likely included 

cell types other than T cells due to morphological similarities when viewed 

under the light microscope. Surface marker degradation was prevented reliably 

by increasing the concentration of FBS in the digestion medium from 10% to 

20% as recommended by Mulder and colleagues, who proposed that this would 

block contaminating proteases in the commercial collagenase preparations 

(Mulder et al. 1994). 

It is estimated that a million cells reside in each cm2 of healthy skin under 

steady state conditions (Clark et al. 2006) and the technique used here only 

allowed for the recovery of a fraction of these cells for analysis. However, we 

are confident that the cells recovered (and therefore the data presented here) 

are a reliable representation of skin cells in vivo, as a majority of results 
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matched previously published results and/or were matched by histological 

evidence. 
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 Characterizing skin derived T cells 4.4.2

It is often reported that skin resident T cells are TEM-like (Schenkel and 

Masopust 2014; Natsuaki et al. 2014). The findings described here on healthy 

skin T cells suggest that the majority of skin resident CD4+ and CD8+ T cells 

may appear indeed TEM-like on the basis that most expressed neither CD45RA 

nor CD27. However, further phenotyping revealed high levels of CD28 

expression (commonly found on less differentiated cells) and low levels of 

CD57, KLRG1, granzyme B and perforin, which are commonly associated with 

the TEM subset (Appay et al. 2008) . Therefore, based on the associations made 

in the blood (by us and others) between surface marker expression patterns 

and T cell differentiation, one might deduce that skin resident T cells have an 

intermediate differentiation phenotype. However such projection of rules 

established in the blood onto cells in the skin should be made with care: Cell 

surface markers might have different physiological functions in the tissue and 

correlations made between these markers and cellular differentiation might be 

circumstantial rather than casual, as their role in T cell differentiation is still 

poorly understood. The fact that phenotypic markers established in the blood 

might not hold true in the context of skin resident T cells is supported by our 

observation that the CD45RA/CD27 defined subsets in the skin predicted poorly 

the expression of CD28, KLRG1 and CD57 compared the blood. Similarly, 

markers commonly associated with cytotoxic potential in the blood were not 

applicable to granzyme B expressing cells in the skin.  

The question on how differentiated resting skin resident T cells are therefore 

remains enigmatic. A recent study on mice showed that skin T cells were 

predominantly KLRG1+ during the effector phase shortly after activation, whilst 

the long-lived memory cells remaining after disease resolution were KLRG1-. 

Interestingly, these memory cells were not derived from the dominant KLRG1+ 

population, but instead from a minor KLRG1- memory precursor population 

generated early during infection (Mackay et al. 2013). The predominantly 

KLRG1- memory T cells observed in the healthy human skin might therefore 

similarly be derived from such precursor cells with low differentiation rather than 

more differentiated cells with effector properties. Future experiments should 

include measurements of the telomere length and proliferative capacity of the 

skin resident T cells in order to confirm their relative state of differentiation.  



 152 

 

PD-1 and CTLA-4 are inhibitory markers involved in immune regulation and 

maintenance of tolerance (Waterhouse et al. 1995; Nishimura et al. 1999). In 

the context of persistent disease, they have also been associated with immune 

exhaustion (Nakamoto et al. 2009; Ahmadzadeh et al. 2009; Pentcheva-Hoang 

et al. 2014). Skin derived T cells displayed significantly increased levels of PD-1 

compared to blood derived cells, whilst CTLA-4 levels were similar between the 

two organs. Previous studies have shown that PD-1 levels are also increased 

(compared to the blood) on T cells in other healthy non-lymphoid tissues such 

as the brain and gastric mucosae (Sadagopal et al. 2010; Saito et al. 2013). 

This suggests that PD-1 may be important in regulating tissue resident T cells in 

the skin and other peripheral organs. 

Despite the often-stated assumption that skin resident T cells are readily poised 

effector cells, granzyme B and perforin expression were low in healthy skin. 

This observation has been made previously by others who confirmed low 

expression of both enzymes at protein and mRNA levels in situ. Interestingly, 

the same authors noted an increase in these molecules in the skin during 

vitiligo, Lichen sclerosus, psoriasis and atopic dermatitis, confirming that T cells 

can express granzyme B and perforin in the skin during inflammatory conditions 

(van den Wijngaard et al. 2000; N. Yawalkar et al. 2001; Hunger et al. 2007). 

Granzyme B is not only important for target cell killing, but can also, when 

secreted, promote inflammation and extracellular matrix degradation and 

threaten skin matrix integrity (Hiebert and Granville 2012). Perforin and 

granzyme B expression might therefore be maintained at low levels in healthy 

skin in order to limit immune-mediated tissue damage. 

Finally, it was noted that the skin is not formed of phenotypically uniform CD4+ 

and CD8+ T cells. The CD4+ T cell compartment for example included a TCM-like 

population, which contained FoxP3+ Treg cells expressing high levels of CTLA-

4 but no CD69. Confirming previous reports, Treg frequency was higher in the 

skin compared to blood (Clark and Kupper 2007; Booth et al. 2010; 

Vukmanovic-Stejic et al. 2013; Sanchez Rodriguez et al. 2014). FoxP3+ Tregs 

are known to have strong immunosuppressive functions and their role in 

maintaining immune tolerance in the skin has been highlighted in knockout 

models in mice (Dudda et al. 2008). Other smaller populations of skin resident T 
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cells that might deserve special attention are the KLRG1-CD57+ cells not 

present in the blood. 

In summary, the results in this chapter suggest that the majority of skin resident 

T cells are at an imbalance with T cells from the blood. They appear to have an 

intermediate differentiation phenotype with low cytotoxic potential and may be 

regulated through surface expression of PD-1. The signals involved in licensing 

skin resident T cells to become potent effector cells will be explored in the final 

results chapter. First, T cell differentiation of melanoma patients’ skin T cells will 

be examined in the following chapter. 
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5 T cell differentiation in the skin of patients with 
melanoma 

 Introduction 5.1

Much research has been devoted to phenotyping melanoma specific cells in the 

circulation, whilst little is known about the T cells in the skin of the patients. This 

is despite the fact that frequency and phenotypes of circulating melanoma 

specific cells do not correlate with disease outcome, whilst immune processes 

in the uninvolved skin as well as lesions of the patients have prognostic value. 

For example, the presence of tumour infiltrating lymphocytes has been shown 

to be a positive prognostic factor in a number of studies (Ladányi et al. 2004; 

Haanen et al. 2005). Similarly, delayed type hypersensitivity responses in 

melanoma vaccination studies were very good indicators of treatment efficacy 

(A. Baars et al. 2000). 

After establishing differentiation marker expression patterns in the skin of 

healthy donors, we therefore investigated if and how differentiation patterns 

might be altered in the skin T cells of melanoma patients. In this study, the 

majority of melanoma skin samples were derived from wide local excision skin, 

as described in Fig. 5-1. Skin specimens available for research were removed 

from the outermost margins of the excision, which was deemed unlikely to 

contain tumour cells. Primary melanoma tissue itself was only available for 

research purposes on very rare occasions (when the lesion had grown very 

large), as these samples were needed for clinical histological grading. 
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Fig. 5-1: Schematic diagram outlining the procedure for obtaining skin from melanoma 
patients for research purposes. 

Step (1): The patient presents a suspicious mole and a biopsy is taken from the site. The biopsy 
is analysed by histology to confirm malignancy. 
Step (2): After confirmation of malignancy (typically 2 weeks after the first visit), the patient 
undergoes surgical removal of a wide area around the melanoma lesion. This wide local 
excision is performed by removing the skin surrounding the primary melanoma in a margin of at 
least 2cm in order to ensure total removal of tumour cells from the skin of the patients. 
Step (3): Skin from the outermost areas of the wide local excision is made available for research 
purposes. 
WLE= wide local excision 
 

 Aims 5.2

The aim of this chapter was to investigate T cell differentiation in uninvolved 

skin and sites of tumour invasion in melanoma patients and compare the 

phenotypes where possible to T cells derived from the skin of healthy controls. 
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 Results 5.3

 Assessing T cell differentiation in the wide local excision skin of 5.3.1

patients with melanoma 

 Imbalance of phenotypic properties between melanoma patient 5.3.1.1

skin and blood T cells 

First, phenotypic properties were compared between the blood and skin of 

patients with melanoma, as skin derived T cells were found to differ markedly 

from their circulating counterparts in healthy individuals (see chapter 4). 

Frequencies of CD45RA and CD27 defined subsets were measured by flow 

cytometry and compared between the blood and the skin of patients with 

melanoma (Fig. 5-2). Compared to the cells in the circulation, skin T cells of 

melanoma patients displayed a significant increase in CD4+ and CD8+ TCM (p= 

0.0002 and p< 0.0001, respectively). This was accompanied by a decrease in 

naïve CD4+ T cells (p< 0.0001) and CD8+ T cells (p= 0.0273), an increase in 

CD4+ TCM (p= 0.0002) and a decrease in CD8+ TEMRA (p= 0.0100). 

In circulating T cells, CD28 expression is lost and KLRG1 expression is gained 

with differentiation. Naïve and TCM in the blood therefore have high CD28 and 

low KLRG1, whilst TEM and TEMRA have low levels of CD28 and high levels of 

KLRG1 (Appay et al. 2008). To determine whether this was also true in skin 

derived T cells from patients with melanoma, matched blood and skin samples 

of patients were analysed via flow cytometry for these markers (Fig. 5-3). Whilst 

blood derived CD4+ and CD8+ T cell subsets of the patients followed the 

expected pattern, TEM and TEMRA cells in the skin expressed high CD28 and 

decreased KLRG1 compared to their circulating counterparts. 

Similarly to previous observations in healthy individuals, melanoma patients 

therefore presented with altered T cell subset compositions in the skin 

compared to the blood and a disconnection was found between the skin T cell 

subsets and markers of differentiation.  
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Fig. 5-2: CD45RA/CD27 subset distribution patterns of CD4+ and CD8+ T cells derived 
from melanoma wide local excision skin compared to the blood of the same donor. 

T cell CD45RA/CD27 subset distributions were measured by flow cytometry in cells derived 
from paired skin and blood samples from patients with melanoma (n=10). 
A: Representative flow cytometric dot plot showing CD45RA/CD27 expression in the blood and 
skin derived CD4+ and CD8+ T cell compartments of the same donor. The diagram on the right 
highlights the names given to the four subsets. 
B: Direct intraperson comparison of skin and blood T cell subset distribution. Populations were 
compared using the paired t-test. 
*=p<0.05; **=p<0.01; ***=p<0.001; ****=p<0.0001 
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Fig. 5-3: CD28 and KLRG1 expression in CD4+ and CD8+ T cell subsets in the skin 
compared to the blood in melanoma patients. 

CD28 (n=3) and KLRG1 (n=9) were measured by flow cytometry in the CD27/CD45RA subsets 
of CD4+ and CD8+ T cells derived from paired blood and skin samples from patients with 
melanoma. Mean and standard deviation are shown. 
Frequencies of positive cells in each subset were compared between blood and skin using the 
paired t-test. 
*=p<0.05; **=p<0.01; ***=p>0.001 
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 CD45RA/CD27 subset distribution is altered in the skin derived T 5.3.2

cells of melanoma patients compared to healthy controls 

Next, CD45RA/CD27 CD4+ T subset distribution was assessed in the skin of 

melanoma patients and compared to healthy controls (Fig. 5-4A). In healthy 

individuals, the skin CD4+ T cells were mostly TEM with a smaller proportion of 

TCM-like cells and this did not change with age. Melanoma patients on the other 

hand displayed an age dependent change in subset distribution by displaying a 

significant decrease of TCM-like cells (p=0.0082) and an increase of TEM-like 

cells (p=0.0069) with age (Fig. 5-4B). Young (aged under 40) melanoma 

patients’ CD4+ T cells showed high levels of TCM-like cells that were significantly 

increased compared to age matched healthy controls (79±11% compared to 

27±9% in healthy; p<0.0001) and this was accompanied by a significant 

reduction in TEM (16±11% compared to 67±11%; p<0.0001) and TEMRA-like cells 

in the patients (0.6±0.6% compared to 5±4%; p=0.0494; Fig. 5-4C). Old 

melanoma patients (aged 60 and above) showed lower levels of TCM compared 

to young patients, but these levels were still increased compared to healthy age 

matched controls (49±18% in old melanoma compared to 32±11% in old 

healthy skin, p=0.0266; Fig. 5-4C). Old melanoma patients also displayed a 

significant decrease in TEMRA-like cells compared to healthy controls (2±2% 

versus 10±9% in healthy; p=0.0182), whilst TEM levels were at similar levels 

(46±19% versus 53±14% in healthy; p=0.2731). 
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Fig. 5-4: CD4+ T cell CD45RA/CD27 subset distribution patterns in the wide local excision 
skin of melanoma patients compared to skin derived cells of healthy controls. 

CD4+ T cell CD45RA/CD27 subset distributions were measured by flow cytometry in cells 
derived from the skin of melanoma patients and healthy controls of all ages.  
A: Representative flow cytometric dot plot showing CD45RA/CD27 expression in the CD4+ T 
cell compartment in skin derived cells of a melanoma patient and a healthy individual. The 
diagram on the right highlights the names given to the four subsets. 
B: Cumulative data showing CD4+ T cell subset distribution with age in skin derived cells from 
melanoma patients (n=17) and healthy controls (n=29). Lines of best fit were generated by 
linear regression and the correlation (r-value) and significance were assessed by Pearson or 
Spearman rank. 
C: Direct comparison of CD4+ T cell subset distribution in melanoma patients and healthy 
controls in the young (aged under 40 years; n=3 for melanoma and n=13 for healthy) or old 
(aged 60 and above; n=8 for melanoma and n=7 for healthy) cohorts. Populations were 
compared using the unpaired T test. 
*=p<0.05; ****=p<0.0001 
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Changes in the CD8+ T cell compartment in the skin of melanoma patients 

resembled those observed in the CD4+ T cells and again, age-dependent 

changes is subset frequencies were found in melanoma patients but not healthy 

controls. In melanoma patients, TCM and naïve-like frequencies decreased (not-

significant and p=0.0181 respectively) and TEM levels increased (p=0.0007) with 

age (Fig. 5-5B). When comparing subset frequencies in patients and controls, 

young melanoma patients’ CD8+ T cells displayed an increase in TCM-like cells 

compared to age matched healthy controls (76±5% compared to 25±14% in 

healthy; p< 0.0001), and this was accompanied by a significant decrease in TEM 

(5±2% vs 39±15%; p=0.0021) and TEMRA-like cells (2±1% vs 17±11; p=0.0384), 

whilst naïve-like cells remained at similar levels (17±4% for melanoma and 

19±11% for healthy young donors). Conversely, old melanoma patients 

exhibited similar levels of subset frequencies as healthy controls, apart from 

displaying a significant decrease of naïve-like cells (11±5% in melanoma 

patients compared to 21±12% in healthy controls; p=0.0495). 

Based on CD45RA/CD27 expression, melanoma patients’ skin derived CD4+ 

and CD8+ T cells therefore appeared to display an increase in TCM-like cells and 

decrease in TEM-like cells compared to healthy controls, particularly at younger 

age. 
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Fig. 5-5: Changes in CD8+ T cell subset distribution patterns in the skin of melanoma 
patients compared to healthy controls 

CD45RA/CD27 subset distributions were measured by flow cytometry in the skin derived CD8+ 
T cells of melanoma patients and healthy controls of all ages.  
A: Representative flow cytometric dot plot showing CD45RA/CD27 expression in the CD8+ T 
cell compartment in skin derived cells of a melanoma patient and a healthy individual. The 
diagram on the right highlights the names given to the four subsets. 
B: Cumulative data showing CD8+ T cell subset distribution with age in skin derived cells from 
melanoma patients (n=17) and healthy controls (n=29). Lines of best fit were generated by 
linear regression and the correlation (r-value) and significance were assessed by Pearson or 
Spearman rank. 
C: Direct comparison of CD8+ T cell subset distribution in melanoma patients and healthy 
controls in the young (aged under 40 years; n=3 for melanoma and n=13 for healthy) or old 
(aged 60 and above; n=8 for melanoma and n=7 for healthy) cohorts. Populations were 
compared using the unpaired T test. 
*=p<0.05; **=p<0.005; ****=p<0.0001 
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 CD45RA/CD27 subset distribution in primary melanoma lesions 5.3.2.1

resembles that of melanoma skin  

Our observations made on T cell phenotypes in the skin of melanoma patients 

were based on wide local excision skin, as this was the tissue most readily 

available. We were also able to obtain tissue from primary melanoma lesions 

from old donors on 3 occasions. We extracted resident T cells from these 

primary lesions via collagenase digestion and measured CD45RA and CD27 

surface expression via flow cytometry.  T cell subset distribution of primary 

melanoma derived cells was compared to cells from wide local excision skin 

and healthy skin of age matched individuals (Fig. 5-6). T cells from primary 

melanoma lesions from old donors displayed similar CD45RA/CD27 expression 

patterns to those from old melanoma wide local excisions and increased TCM 

levels compared to T cells from the skin of old healthy individuals, particularly 

among the CD4+ T cells (p=0.0269). T cell subset distribution in primary 

melanoma lesions therefore appears to follow similar patterns to wide local 

excision skin by displaying an increase in TCM-like cells. However, more primary 

melanoma lesions should be collected in the future to confirm this.  
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Fig. 5-6:  CD27 and CD45RA subset distribution in T cells derived from primary 
melanoma lesions compared to melanoma patient skin from wide local excisions and 
skin from healthy controls. 

Cells were extracted from tissues using collagenase digestion and analysed via flow cytometry. 
All participants were aged 60 or above. CD45RA and CD27 expression was compared between 
CD4+ and CD8+ T cells from primary melanoma lesions (n=3) , melanoma skin from wide local 
excisions (WLE; n=8) and healthy skin (n=7). 
A: Representative flow cytometric dot plots showing CD45RA and CD27 expression in CD4+ T 
cells and CD8+ T cells in the three different conditions. The diagram on the right highlights the 
names given to the four subsets. 
B: Cumulative data showing average percentages and standard deviation of each 
CD45RA/CD27 subset in healthy skin, wide local excision skin and primary melanoma skin.  
Percentages in different conditions were compared using the standard T-test. *=p<0.05 
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 CD28 expression is increased on T cells in the skin of patients 5.3.2.2

with melanoma compared to healthy controls 

CD27 and CD28 are costimulatory markers which are lost on highly 

differentiated cells (Appay et al. 2008). Because we found an increase in CD27 

expressing cells in the skin of patients with melanoma compared to healthy 

controls, we investigated whether this was also true for CD28. We measured 

CD28 expression on the T cells extracted from the skin of patients with 

melanoma and compared levels to the T cells extracted from the skin of healthy 

individuals (Fig. 5-7). Because expression of CD28 did not change with age in 

both patients and controls, participants were compared across all age groups. A 

significant increase of CD28 could be detected among the CD4+ T cells of 

melanoma patients as 96±4% expressed the receptor compared to 89±8% in 

healthy individuals (p=0.0157). CD28 was also increased on the CD8+ T cells of 

some melanoma patients compared to healthy controls but this difference was 

not significant (75±21% compared to 61±14% in healthy individuals; p=0.0693). 

Therefore, like CD27, CD28 was increased on the T cells of patients with 

melanoma. 
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Fig. 5-7: Comparison of CD28 expression in T cells derived from the skin of melanoma 
patients and healthy individuals. 

CD28 expression was measured by flow cytometry ex vivo in T cells derived from the skin from 
melanoma patients (n=7) and healthy controls (n=17) across all age groups. H= healthy skin. 
Mel= melanoma skin. 
A: representative graph and cumulative data showing CD28 expression in CD4+ T cells. 
B: representative graph and cumulative data showing CD28 expression in CD8+ T cells.  
Mean and standard deviation are shown. Cohorts were compared using the standard T-test.  
*=p<0.05 
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 Skin derived CD8+ T cells of melanoma patients show an increase 5.3.2.3

in CD57 and KLRG1 expression. 

As described in the previous chapters, KLRG1 and CD57 are expressed on 

highly differentiated cells in the blood. KLRG1 and CD57 coexpression were 

measured in skin derived T cells of melanoma patients and compared to healthy 

individuals. Although expression of both markers increases with age in blood T 

cells, this was not found to be the case in the skin. Participants were therefore 

compared across all age groups (Fig. 5-8A,B). CD4+ T cells in the skin of 

melanoma patients expressed similar levels of CD57 and KLRG1 compared to 

healthy controls and were predominantly CD57-KLRG1-. Skin derived Skin 

CD8+ T cells from melanoma patients showed a small but significant increase of 

CD57+KLRG1+ expressing cells, as 21±20% of CD8+ T cells were positive for 

both markers among the patients compared to 9±12% in healthy individuals 

(p=0.0169). This was accompanied by a significant reduction in cells not 

expressing either marker (45±18% compared to 65±15%, p=0.0083). 

CD57+KLRG1+ CD8+ T cells were further analysed for CD45RA and CD27 

coexpression in order to determine which T cell subset they belonged to (Fig. 

5-8C). Whilst in healthy skin these CD57+KLRG1+ CD8+ T cells clustered in 

both, the TCM and TEMRA compartments. CD57+KLRG1+ CD8+ T cells in 

melanoma patients belonged predominantly to the TCM compartment. Therefore, 

a significant increase of KLRG1 and CD57 coexpressing cells could be found in 

the skin CD8+ T cells of the melanoma patients. However, these cells belonged 

predominantly to the TCM compartment and not to the TEM or TEMRA 

compartments, which are commonly associated with increased differentiation 

and CD57 and KLRG1 expression in the blood. 
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Fig. 5-8: KLRG1 and CD57 expression in CD4+ and CD8+ T cells derived from the skin of 
melanoma patients and healthy controls. 

CD57 and KLRG1 and other surface markers were measured ex vivo by flow cytometry in cells 
extracted from the skin of melanoma patients (n=21) and healthy controls (n=21).  
A: Representative FACS dot plot showing KLRG1 and CD57 expression in skin CD4+ and CD8+ 
T cells in a healthy individual and melanoma patient. 
B: CD4+ and CD8+ T cells were divided into four subgroups according to KLRG1 and CD57 
expression and frequencies of each subgroup were compared between patients (n=7) and 
healthy controls (n=21) using the Student t-test. 
C: CD45RA/CD27 subset distribution of CD57+KLRG1+ CD8+ T cells in the skin of healthy 
individuals and patients with melanoma. Horizontal bars in grey highlight significant differences 
in the melanoma patients’ subset frequencies, calculated using one-way ANOVA. 
Mean and standard deviation are shown. Differences between patients and healthy controls 
were compared using the Student T-test or the Mann-Whitney test. *=p<0.05; **=p<0.005 
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 PD-1 is increased in the skin of young but not old melanoma 5.3.2.4

patients compared to healthy controls. 

PD-1 is an inhibitory marker often associated with immune exhaustion and with 

reduced T cell function in anti-tumour immune responses (Chapon et al., 2010). 

Surface expression of the inhibitory marker PD-1 was measured on skin derived 

T cells from melanoma patients and healthy controls via flow cytometry (Fig. 

5-9).  In healthy individuals, PD-1 increased with age on skin T cells (p=0.0060 

for CD4+ and p=0.0017 for CD8+ T cells). Young melanoma patients were 

therefore found to have significantly increased PD-1 expression compared to 

healthy controls (31±14% versus 54±8%; p=0.0177 for CD4+ T cells and 

38±14% versus 67±8%; p=0.0039 in the CD8+ T cells), whilst PD-1 was not 

increased further in old melanoma patients compared to healthy age matched 

controls (49±8% of CD4+ and 65±18% of CD8+ T cells in old healthy individuals 

expressed PD-1, compared to 51±20% of CD4+ and 60±19% of CD8+ T cells in 

old melanoma patients). 

This meant that although PD-1 levels were high on skin derived T cells of 

melanoma patients across all age groups, PD-1 levels were only significantly 

increased compared to healthy controls in the younger age groups. 
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Fig. 5-9 Ex vivo PD-1 expression in CD4+ and CD8+ T cells derived from the skin of 
melanoma patients and healthy controls. 

Surface PD-1 expression was measured by flow cytometry in T cells derived from the skin of 
melanoma patients and healthy controls. H= healthy skin. Mel= melanoma skin. 
A: Representative histograms showing PD-1 expression in CD4+ and CD8+ T cells derived 
from the skin of young and old melanoma patients and healthy controls. 
B, D: Percentage of PD-1 expressing cells by age in the CD4+ and CD8+ T cells derived from 
the skin of melanoma patients (n=19) and healthy controls. Lines of best fit were generated by 
linear regression and the correlation (r-value) and significance were assessed by Pearson rank. 
C, E: Percentage of PD-1 positive cells in the CD4+ and CD8+ T cells derived from the skin of 
young (aged under 40) melanoma patients (n=3) and healthy controls (n=13) and old (aged 60 
or above) melanoma patients (n=10) and healthy controls (n=7). 
*=p<0.05; **=p<0.005 
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 CTLA-4 expression is increased in CD4+ and CD8+ T cells in the 5.3.2.5

skin of patients with melanoma 

Similar to PD-1, CTLA-4 is a receptor associated with immune regulation and 

immune exhaustion and with reduced T cell function among melanoma 

infiltrating T cells (Curran et al. 2010). CTLA-4 was measured on stimulated 

CD4+ and CD8+ T cells extracted from the skin of melanoma patients and levels 

were compared to cells from healthy skin. Due to the low numbers of 

participants, it was not possible to assess differences of expression with age 

and participants were therefore compared across all age groups. We found that 

CTLA-4 expression was significantly increased in both CD4+ and CD8+ T cells 

of melanoma patients compared to healthy controls. 44±26% of melanoma 

patients’ CD4+ T cells expressed CTLA-4 compared to only 16±8% of CD4+ T 

cells in healthy controls (p=0.0012). In healthy skin, only 5±5% of CD8+ T cells 

express CTLA-4, which was increased to 23±26% in melanoma (p=0.0023). 

CTLA-4 expressing CD4+ and CD8+ T cells were further analysed for their 

CD45RA and CD27 expression in order to identify if they were more likely to 

associate with a particular differentiation subset. Indeed, CTLA-4+ T cells were 

detected more frequently in the TCM and TEM subsets than the Naïve and TCM 

subsets. CTLA-4 was therefore increased on the skin T cells of patients with 

melanoma. 
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Fig. 5-10: Comparison of CTLA-4 expression in T cells derived from the skin of melanoma 
patients and healthy individuals. 

CTLA-4 expression was measured following overnight stimulation with immobilized anti-CD3 
antibody in the skin from melanoma patients (n=6) and healthy controls (n=14) across all age 
groups. H= healthy skin. Mel= melanoma skin. 
A: representative graph and cumulative data showing CTLA-4 expression in CD4+ T cells. 
B: representative graph and cumulative data showing CTLA-4 expression in CD8+ T cells.  
C: CD45RA/CD27 subset distribution of CTLA-4 expressing CD4+ and CD8+ T cells in the skin 
of healthy individuals and patients with melanoma. Horizontal bars in grey highlight significant 
differences in the melanoma patients’ subset frequencies, calculated using one-way ANOVA. 
Mean and standard deviation are shown. Melanoma and healthy cohorts were compared using 
the Student t-test.  
**=p<0.005 
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 CD69 expression is decreased in the skin of patients with 5.3.2.6

melanoma across all age groups 

We next examined cell surface expression of CD69, a marker for tissue 

retention, in the CD4+ and CD8+ T cells derived from the skin of melanoma 

patients and healthy controls using flow cytometry (Fig. 5-11). CD69 expression 

did not change significantly with age but was significantly decreased in 

melanoma patients compared to healthy controls. 58±14% of CD4+ T cells of 

melanoma patients expressed CD69 compared to 80±8% in healthy controls 

(p< 0.0001), as did 66±19% of CD8+ T cells in melanoma patients compared to 

91±5% among controls (p< 0.0001). 

As CD69 negative cells in tissues are thought to be more mobile compared to 

those that express the receptor (Mackay et al. 2013), we asked next whether 

the CD69 negative cells in melanoma patients were phenotypically distinct from 

the CD69 positive cells. CD27, PD-1 and KLRG1 surface expression were 

compared between CD69 positive and CD69 negative cells in the melanoma 

patients (Fig. 5-12). In the CD4+ T cells of melanoma patients, CD69 negative 

cells expressed significantly more CD27 (p< 0.0001) and less PD-1 (p< 0.0001), 

whilst KLRG1 expression was similar between the two populations. Conversely, 

CD69 negative cells of the CD8+ skin T cells of melanoma patients displayed no 

change in CD27 expression compared to CD69 positive cells, whilst showing a 

significant reduction in PD-1 (p< 0.0001) and increase in KLRG1 (p=0.0026). 

Therefore T cells in the skin of melanoma patients showed an increase in cells 

negative for the tissue retention marker CD69 compared to healthy controls. 

These CD69 negative cells expressed less PD-1, and more CD27 among the 

CD4+ and more KLRG1 among the CD8+ T cells compared to CD69 negative 

cells. 
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Fig. 5-11: CD69 expression on skin derived CD4+ and CD8+ T cells in melanoma patients 
compared to healthy controls 

CD69 expression was measured ex vivo in T cells extracted from the skin of patients with 
melanoma (n=17) or healthy individuals (n=24) across all age groups. H= healthy skin. Mel= 
melanoma skin. 
A: Representative graph and cumulative data showing CD69 expression in CD4+ T cells. 
B: Representative graph and cumulative data showing CD69 expression in CD8+ T cells.  
Mean and standard deviation are shown. Cohorts were compared using the standard T-test.  
**=p<0.005 
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Fig. 5-12 Comparing CD27, PD-1 and KLRG1 expression between CD69 positive and 
CD69 negative CD4+ and CD8+ T cells derived from the skin of melanoma patients. 

Surface receptors were measured by flow cytometry in cells extracted from the skin of 
melanoma patients of all ages. Statistical differences of surface marker expression between 
CD69 positive and CD69 negative cells were calculated using the paired T-test or Wilcoxon test. 
**=p<0.005; ****=p<0.0001 
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 Skin CD8+ T cells in patients with melanoma have low cytotoxic 5.3.2.7

potential 

The cytotoxic granule components perforin and granzyme B are thought to be 

important for tumour cell killing (Medema et al. 2001; Cullen et al. 2010). We 

assessed intracellular expression of these proteins in skin derived T cells of 

melanoma patients by flow cytometry and compared measurements to healthy 

controls.  

Although granzyme B and perforin expressing T cells increase in frequency with 

age in the circulation, this was not found to be the case in the skin in both 

healthy and patients groups. We therefore compared expression in CD8+ skin T 

cell of participants across all ages (Fig. 5-13). Whilst only 8±5% of skin resident 

CD8+ T cells expressed granzyme B in healthy individuals, 23±6% CD8+ T cells 

in melanoma patients were positive for this protease (p< 0.0001). Conversely, 

perforin expression was found to remain low in melanoma patients’ skin (4±3%) 

and at a similar level to healthy individuals (3±3%; p=0.1915).  

To test how these results based on wide local excision skin compared to 

cytotoxic potential in primary lesions, we performed histological staining for 

granzyme B or perforin in combination with CD8 on a primary melanoma 

section of a lesion. As can be seen in Fig. 5-14, the CD8+ T cells infiltrating in 

this melanoma lesion did not express granzyme B or perforin.  

We were also interested in finding out whether the few granzyme B expressing 

cells in wide local excision skin of melanoma patients showed increased 

differentiation compared to the granzyme B negative cells of the same patients. 

We compared CD27 and CD28 expression by flow cytometry, but did not find a 

significant difference in these receptors levels between granzyme B positive 

and negative CD8+ T cells in the melanoma patients (Fig. 5-15). 

CD8+ T cells in the skin of melanoma patients therefore appeared to express 

more granzyme B but not perforin compared to healthy controls. Further, 

granzyme B expressing cells in the patients maintained high levels of CD27 and 

CD28.  
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Fig. 5-13: Ex vivo expression of the cytotoxic granule components perforin and 
granzyme B in the CD8+ T cells derived from the skin of melanoma patients and healthy 
controls. 

Skin cells were extracted using collagenase digestion and analysed using flow cytometry. H= 
healthy skin. Mel= melanoma skin. 
A: Representative flow cytometry dot plot showing granzyme B and perforin expression in the 
CD8+ T cells extracted from the skin of a melanoma patient and a healthy individual. 
B: Cumulative data showing granzyme B and perforin expression in the skin of melanoma 
patients (n=7) and healthy controls (n=17). Mean and standard deviation are shown. Groups 
were compared using the standard t-test. Participants were from all age groups. 
****=p<0.0001 
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Fig. 5-14: Immunofluorescent staining for granzyme B or perforin in CD8+ cells infiltrating 
a primary melanoma lesion. 

Immunofluorescence staining was performed on frozen sections of a primary melanoma lesion 
using CD8 (green), DAPI (blue) and either granzyme B, shown on the left, or perforin, shown on 
the right (both red).  
 

 

 

Fig. 5-15: CD27 and CD28 expression in granzyme B positive and negative CD8+ T cells 
derived from the skin of healthy individuals and patients with melanoma. 

CD27, CD28 were measured extracellularly and granzyme B intracellularly by flow cytometry in 
CD8+ T cells derived from the skin of melanoma patients (n=7) and healthy individuals (n=17). 
Surface marker expression on granzyme B positive cells was compared to granzyme B negative 
cells using the paired T-test. 
Mean and standard error are shown. 
***=p<0.0005 
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 Discussion  5.4

T cells extracted from wide local excisions of young melanoma patients 

displayed increased expression of the inhibitory receptors PD-1 and CTLA-4 

and the costimulatory receptors CD27 and CD28, whilst showing reduced levels 

of the tissue retention marker CD69 compared to age matched healthy controls. 

Uninvolved skin in old melanoma patients showed similar changes. PD-1 levels 

were high in the T cells of these individuals but not significantly different from 

age matched healthy controls, as healthy individuals expressed increased 

levels of PD-1 with age. Proportions of TCM were decreased in the skin of old 

compared to young melanoma patients. However, cells extracted from the 

primary melanoma of old individuals did display high levels of TCM-like cells, 

suggesting that an increase in TCM is inherent to T cells associated with primary 

melanoma lesions of all ages. This is further supported by published data 

showing high CD27 expression levels (>90%) in T cells of primary melanomas 

(Pepe et al. 2011). 

Perforin and granzyme B are normally absent from T cells in healthy skin. 

However, cells expressing granzyme B and perforin have been shown to occur 

in T cells during vitiligo, which involves autoimmune destruction of healthy 

melanocytes (van den Wijngaard et al. 2000). Further, a retrospective study 

showed that absence of granzyme B in primary melanoma infiltrating T cells 

correlated with occurrence of metastases in draining lymph nodes and distant 

organs (van Houdt et al. 2009). These observations suggest that granzyme B 

and perforin are important for T cell mediated killing of healthy or malignant 

melanocytes in the skin. In this study, 20% of CD8+ T cells in the skin of 

patients with melanoma expressed granzyme B but less than 5% expressed 

perforin. This is interesting, as perforin is absolutely essential for granzyme 

mediated cytoloytic activity (Browne et al. 1999). Therefore, CD8+ T cells in the 

skin of melanoma patients seem to lack effector molecules essential to kill the 

local tumour cells. It is possible that skin resident T cells in the patients 

expressed low intracellular cytotoxic granule components due to recent 

degranulation events. Measurement of perforin mRNA in these cells could 

address this.  
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Acquisition of effector functions such as cytotoxic granule components involves 

differentiation and is associated with phenotypic changes in T cells. In the 

blood, this includes increased expression of KLRG1 and CD57 and a decrease 

in CD27 and CD28 (Speiser et al. 1999; Appay et al. 2008). Resting T cells in 

healthy skin expressed high levels of CD28 and literature suggests that CD28 

can be downregulated in T cells during the inflammatory autoimmune condition 

psoriasis (De Rie et al. 1996). CD8+ T cells in the skin of melanoma patients 

expressed high levels of CD27 and CD28, but also showed increased 

expression of KLRG1,CD57 and granzyme B in absence of perforin. This 

suggests that full maturation to an effector phenotype does not occur in skin T 

cells of melanoma patients. Similar findings on a lack of effective T cell 

differentiation into cytotoxic effectors have been published on CD8+ T cells 

extracted from melanoma lymph node metastases, where the majority of cells 

had a non-differentiated CCR7+CD45RA+CD27+CD28+perforin- phenotype and 

on CD8+ T cells derived from distant metastases, which were 

CD27+CD28+CD57+GranzymeB+ and expressed little or no perforin (Mortarini et 

al. 2003; Wu et al. 2012). The findings in this chapter therefore indicate that 

CD8+ T cells in the skin of melanoma patients fail to mature into potent cytotoxic 

T cells that might mediate tumour cell killing.  

The inhibitory receptors PD-1 and CTLA-4 were found to be significantly 

increased on skin derived CD4+ and CD8+ T cells of patients with melanoma 

compared to healthy controls. Expression of both PD-1 and CTLA-4 on the 

surface of CD8+ T cells has been associated with reduced proliferative capacity 

and cytokine production upon challenge (Duraiswamy et al. 2013). This 

functional state, maintained by inhibitory receptor signalling, is known as T cell 

exhaustion and has been shown to occur in the context of chronic antigen 

stimulation during persistent viral diseases and in a number of tumours 

including melanoma (Ahmadzadeh et al. 2009; Duraiswamy et al. 2013; Baitsch 

et al. 2011). Upon ligation, PD-1 and CTLA-4 are thought to inhibit T cell 

activation through separate intracellular signalling pathways, as dual blockade 

of the receptors shows synergistic effects in vitro and in mouse models in vivo 

(Duraiswamy et al. 2013; Parry et al. 2005; Curran et al. 2010). PD-1 and 

CTLA-4 mediated inhibition might therefore have contributed to the lack of 
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cytotoxic granule components observed in the skin resident T cells in the 

melanoma patients. 

High expression of CD27 and CTLA-4 observed on skin T cells in patients with 

melanoma might also be associated with an increase in Tregs. Skin resident 

CD4+ Tregs are restricted to the CD27 expressing TCM compartment in healthy 

individuals and express high levels of CTLA-4 but low levels of CD69 (see 

section 4.3.2.7). Investigating the frequency and suppressive activity of Tregs in 

the skin of the melanoma patients was beyond the scope of this work because 

of limited sample availability. However, previous reports suggest increased 

levels of CD4+ FoxP3+ Tregs in melanoma patients’ primary lesions and 

metastases (Jacobs et al. 2012). Tregs might therefore contribute to the 

observed increase in TCM in melanoma patients and might inhibit effector T cell 

maturation through CTLA-4 mediated signalling (Takahashi et al. 2000).  

Changes in T cell phenotypes in melanoma patients could be explained by 

increased T cell infiltration and/or local modulation of cells. CD69 is a marker for 

tissue retention in T cells. Mouse experiments have shown that T cells which 

have recently entered the skin during inflammation do not initially express CD69 

but will do so upon memory formation (Mackay et al. 2013). In this chapter, we 

observed a reduction in CD69 expression among skin derived T cells from 

melanoma patients, suggesting an increase in T cell infiltration. The overall 

increase in TCM-like cells that expressed high levels of PD-1, CD27 and CD28 in 

the skin of melanoma patients might therefore be due to preferential recruitment 

from the circulation of cells with this phenotype. However, the CD69 negative 

cells expressed less PD-1 than CD69 positive resident cells in the same patient. 

PD-1 is low on cells in the circulation but increased in skin resident T cells of 

healthy individuals, suggesting that additionally to being recruited, cells 

infiltrating into the skin of the melanoma patients are undergoing local 

modulation, possibly as a result of the skin microenvironment created directly or 

indirectly by the tumour. 

A number of cytokines and chemokines are differentially expressed in stressed 

skin or by melanoma cells and might actively inhibit T cell differentiation or 

promote expression of inhibitory receptors. The immunosuppressive cytokine 

TGFβ is often increased in the tumour microenvironment and can prevent the 

expression of cytotolytic genes in CD8+ T cells or enhance cell death in 



 182 

cyototoxic T cells (D. A. Thomas and Massagué 2005; Cumont et al. 2007). 

Indeed, exogenous addition of TGFβ prevented differentiation and upregulation 

of granzyme B and perforin in melanoma metastases derived stimulated T cells 

in vitro (Wu et al. 2012).  

It is also possible that the stimulatory signals required for cytotoxic 

differentiation are simply not present in the skin of the melanoma patients. 

CD27 can be initially upregulated on T cells upon CD3 ligation, but exposure to 

IL-2 and CD70 ultimately lead to CD27 downregulation (Hintzen et al. 1993; 

Huang et al. 2006). Partial activation through the TCR but suboptimal levels of 

CD70 or IL-2 in the skin of the melanoma patients might therefore explain the 

high levels of CD27 observed on the T cells in this study. Immature dendritic 

cells, which occur in melanoma lesions and normal skin, may be responsible for 

such signals or lack thereof (Polak et al. 2012; Vermi et al. 2003). It would be 

interesting to include staining for IL-2 and CD70 in future histological studies of 

primary melanoma lesions. 

Finally, it should be noted that the skin obtained in this study was generally 

derived from sun exposed sites (such as arms, legs, head and neck) and a 

mixed gender pool in the case of melanoma patient samples and from sun 

protected sites (breast, abdomen) from a healthy volunteer pool that was mostly 

female. It has been shown that sun exposure can alter composition of immune 

cells in the skin and might therefore play a role in the results obtained (Di Nuzzo 

et al., 2009). Other studies however reported no significant difference between 

phenotypes in T cells derived from sun exposed and sun unexposed skin (Clark 

et al. 2006). In order to confirm that the results presented here were not due to 

sun exposure on the melanoma patient skin, the panels used could be repeated 

on skin samples from sun exposed and sun-unexposed sites, preferably within 

the same individual.  

A further point of consideration is the fact that the majority of data described in 

this chapter is based on skin derived from wide local excisions. This skin was 

taken from areas that were declared tumour-free, but might have been 

influenced by soluble factors emitted from the melanoma lesion. This means 

that T cells derived from the skin of wide local excisions are neither completely 

uninvolved, nor directly involved with the tumour. Another factor to consider is 

the effect of wound healing from the biopsy taken within the melanoma lesion 
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prior to performing the wide local excision. However, the striking increase in 

CD27 expressing cells observed in the wide local excision skin in many of the 

patients was also found to occur in T cells in primary melanoma lesions by us 

and others (Pepe et al. 2011), suggesting that this phenomenon is a true 

attribute of melanoma rather than a side effect from the wound healing. 

In summary, the results presented in this chapter indicate increased T cell 

infiltration in the skin of patients with melanoma. These skin derived T cells 

expressed the hallmarks of immune exhaustion, with high levels of 

costimulatory and inhibitory receptors but few cytotoxic granule components. 

This suggests that T cells are being attracted into the skin of patients but are 

unable to undergo full cytotoxic maturation. The following chapter will therefore 

investigate what signals might directly modulate effector functions in skin-

derived T cells (such as inflammatory cytokines or PD-1 signalling). 
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6 Modulation of T cell functionality in the blood and 
skin 

 Introduction 6.1

Standard treatments for melanoma currently rely on surgery, radio- and 

chemotherapy and are often insufficient to treat advance stage disease. Whilst 

melanoma is highly immunogenic and can lead to melanoma specific immune 

responses in the patients, various levels of immune dysfunction may occur, 

such as immune exhaustion and increased frequencies of regulatory cells 

(Robert et al. 2011). Recent years have therefore seen an increasing interest in 

immune based therapies that aim to restore anti-melanoma immune function in 

patients. 

Although many recent clinical trials for melanoma immunotherapies have 

focussed on blocking inhibitory receptors associated with immune exhaustion, 

such as PD-1 and CTLA-4 (Ahmadzadeh et al., 2009, Fourcade et al. 2009), 

these markers were not found to be markedly increased on the surface of 

overall circulating CD8+ T cells in melanoma patients (see chapter 3). Instead, 

we identified increased frequencies of highly differentiated TEMRA cells in the 

blood of old patients, which expressed high levels of effector molecules but 

showed aberrant proliferation and IL-2 production. Although it could not be 

determined whether these cells were melanoma specific, melanoma patients 

might therefore benefit from restoring these functions in this cell subset. The 

highly differentiated TEMRA cells express high levels of p38 and show increased 

proliferation upon p38 inhibition in healthy individuals (Di Mitri et al, 2011). 

TEMRA cells in old melanoma patients might therefore similarly respond to p38 

blockade. The first part of this chapter will therefore address if p38 blockade can 

boost proliferation and cytokine production in the CD8+ T cell compartment of 

old melanoma patients. 

The previous chapters in this thesis have also highlighted that both, melanoma 

and healthy skin CD8+ T cells only express low levels of the cytotoxic granule 

components granzyme B and perforin. Because these molecules are important 

in T cell mediated tumour killing (Medema et al. 2001; Cullen et al. 2010), it was 
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of interest to identify mechanisms that can license skin resident T cells to 

become effective killers. The second part of this chapter therefore investigates 

the role of positive and negative signals that might influence effector functions in 

skin derived T cells. 

 Aims 6.2

The aim of this chapter was to investigate ways to manipulate blood and skin 

derived CD8+ T cells in order to boost T cell function and therefore potentially 

enable anti-tumour immune responses in patients with melanoma. 
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 Results 6.3

 Restoring T cell function in blood derived CD8+ T cells of old 6.3.1

melanoma patients 

As described in chapter 3, old melanoma patients showed increased markers of 

highly differentiated TEMRA cells in the circulation compared to healthy controls. 

These cells display high levels of p38 phosphorylation (Fig. 6-1), whose 

signalling is thought to be actively involved in the maintenance of their 

senescent state (Henson et al. 2014). This is supported by the fact that the 

small molecule inhibitor for p38, BIRB 796, which inhibits all four isoforms of 

p38, was previously shown to partially restore proliferation and telomerase 

activity in CD4+ and CD8+ TEMRA cells (Di Mitri et al. 2011; Henson et al. 2014). 

This section therefore explores if p38 blockade can restore TEMRA CD8+ T cell 

function of old melanoma patients. 

 

Fig. 6-1: P38 phosphorylation levels in CD8+ T cell subsets in the blood of melanoma 
patients 

Levels of phosphorylated p38 (pp38) were measured via phosphoflow as described in the 
material and methods section in the CD8+ T cell subsets of patients with melanoma (n=3). The 
antibody used recognizes phosphorylation of the conserved T180/Y182 in all four p38 isoforms: 
α, β, γ, and δ. 
A: Representative flow cytometry histograms showing expression and median fluorescence 
intensity (MFI) for intracellular pp38 levels in CD8+ T cell subsets of a melanoma patient. 
B: Cumulative data showing average and standard error for pp38 MFI, measured in 3 
melanoma patients. 
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 Effect of p38 signalling blockade on T cell proliferation 6.3.1.1

As p38 blockade has previously been shown to reinstate proliferation in highly 

differentiated T cells, it was investigated whether this would also be true for the 

highly differentiated T cells in old melanoma patients (Di Mitri et al. 2011; 

Henson et al. 2014). Proliferation was measured via ki67 expression in total 

PBMCs or sorted CD8+ T cell subsets stimulated overnight with anti-CD3 

antibody in the presence or absence of the p38 inhibitor BIRB796 (Fig. 6-2). 

Cell sorting before stimulation was essential to analyse proliferation in the CD8+ 

T cell subsets, as the expression of the markers used to identify these cells 

(CD45RA and CD27) can be altered after 3 days in culture. A significant 

increase in ki67 was measured in total CD8+ T cells incubated with the p38 

inhibitor (p=0.0055). However, changes in Ki67 expression following p38 

inhibitor treatment in sorted CD8+ T cell subsets varied among patients, with 

some showing an increase and others a decrease in proliferation in TEMRA cells 

following treatment. P38 blockade was therefore shown to boost proliferation of 

total CD8+ T cells in melanoma patients, but did not significantly increase 

proliferation in the TEMRA compartment. 
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Fig. 6-2: Changes in proliferation in response to p38 blockade in blood-derived CD8+ T 
cells derived from old melanoma patients. 

Ki67 expression was measured by intracellular flow cytometry as marker of proliferation in 
whole PBMCs or sorted CD8+ T cell subsets stimulated for 3 days with 0.5µg/ml immobilized 
anti-CD3 in the presence of 500nM of the p38 inhibitor BIRB796 or 0.1% DMSO as control. 
Sorted T cells further required the presence of autologous irradiated antigen presenting cells as 
source of co-stimulation. All participants were old melanoma patients. 
A: Percentage of ki67 expressing cells in total CD8+ T cells. Whole PBMCs were stimulated in 
this assay (n=7). 
B: Percentage cells expressing ki67 in CD8+ T cells subsets. CD8+ CD45RA/CD27 T cell 
subsets of old melanoma patients were FACS sorted and incubated for 3 days with anti-CD3 
and irradiated autologous antigen presenting cells (n=5).  
P38 treated samples were compared to control samples using the paired T-test. 
*=p<0.05; **=p>0.01 
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 p38 signalling blockade enhances IL-2 and IFNγ cytokine 6.3.1.2

production in TEMRA 

As described in the introduction and chapter 3, highly differentiated TEMRA cells 

in melanoma patients and healthy individuals express the lowest levels of IL-2 

out of all the differentiation subsets, whilst maintaining production of effector 

cytokines such as IFNγ and TNFα. We therefore investigated whether p38 

blockade might also affect cytokine production in these cells. 

PBMCs from old melanoma patients were stimulated overnight with immobilized 

anti-CD3 in the presence or absence of the p38 blocking agent and cytokine 

production was measured the following day via intracellular flow cytometry (Fig. 

6-3). Whilst TNFα levels were not significantly altered in any CD8+ T cell 

subsets following p38 blockade, we observed that both IL-2 and IFNγ 

production were significantly enhanced in the TEM and TEMRA subsets following 

treatment (p=0.0151 for TEM and p=0.0122 for TEMRA IL-2 production and 

p=0.0024 for TEM and p=0.0171 for TEMRA IFNγ production). 

Therefore, IL-2 and IFNγ but not TNFα production could be enhanced in 

differentiated CD8+ T cells of old melanoma patients by p38 blockade during 

stimulation. 

 

 



 190 

 

Fig. 6-3: Changes in cytokine production in stimulated, blood-derived CD8+ T cell subsets 
of old melanoma patients following p38 blockade 

PBMCs of old melanoma patients were incubated overnight with immobilized 0.5µg/ml anti-CD3 
and the presence of 500nM of p38 inhibitor BIRB796 or 0.1% DMSO as control. Intracellular IL-
2, IFNγ and TNFα levels were measured via flow cytometry in the CD8+ T cell subsets. 
A: Representative FACS dot plots showing changes in IL-2, IFNγ and TNFα expression in CD8+ 
TEMRA after treatment with the p38 inhibitor compared to the control. 
B,C,D: Cumulative data showing IL-2 (n=7), IFNγ (n=13) or TNFα (n=13) production in CD8+ T 
cell subsets in untreated or p38 inhibitor treated cells. Populations were compared statistically 
using the paired t-test or Wilcoxon test. Mean and standard error are shown. 
*=p<0.05; **p<0.01 
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 p38 signalling blockade enhances degranulation during anti-CD3 6.3.1.3

stimulation 

In the previous chapter, TEMRA cells were also shown to have the highest levels 

of cytotoxic granule components out of all the CD8+ T cell subsets but failed to 

show equally high levels of degranulation as measured by CD107a staining 

following overnight stimulation with anti-CD3. The potential of p38 blockade to 

enhance degranulation in highly differentiated T cells of old melanoma patients 

was therefore investigated. PBMCs from patients were stimulated with anti-CD3 

overnight in the presence of CD107a antibody and in the presence or absence 

of the p38 inhibitor BIRB796. CD107a and granzyme B levels were measured 

by flow cytometry. P38 inhibition during in vitro stimulation was found to cause a 

small but significant decrease in granzyme B (p=0.0391 for TEM and p= 0.0416 

for TEMRA) and a marked increase in CD107a (p=0.0004 for TEM and p=0.0002 in 

TEMRA) in CD8+ TEM and TEMRA of old melanoma patients. 

Therefore, inhibition of p38 signalling during in vitro stimulation resulted in an 

increase in degranulation and might therefore be beneficial in enhancing 

cytotoxic function in highly differentiated TEMRA cells in patients with melanoma. 
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Fig. 6-4 Changes in expression of cytotoxicity markers CD107a and granzyme B in 
stimulated, blood-derived CD8+ T cell subsets from old melanoma patients induced by 
p38 signalling blockade. 

PBMCs from old melanoma patients (n=8) were stimulated overnight with plate-bound 0.5µg/ml 
anti-CD3 in the presence of 500nM of the p38 inhibitor BIRB796 or 0.1% DMSO as control. 
CD107a antibody was added to the cells prior to stimulation. Samples were harvested the 
following day and stained extra- and intracellularly. Percentage cells expressing CD107a and 
granzyme B in CD8+ T cells subsets were measured via flow cytometry. 
A: Representative flow cytometry histograms showing granzyme B and CD107a staining in 
stimulated T cell subsets treated with or without p38 inhibitor. 
B: Cumulative data showing changes in granzyme B and CD107a expression in stimulated p38 
treated CD8+ T cell subsets compared to untreated samples. Treatment groups were compared 
using the paired T-test or Wilcoxon test. Mean and standard error are shown. 
*=p<0.05; ***=p<0.001 
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 Increasing cytotoxic potential in skin derived T cells 6.3.2

Results shown in previous chapters indicate that although old melanoma 

patients present with increased T cell differentiation in the blood, T cells in their 

skin fail to differentiate into cytotoxic effectors. Cytotoxic granule components 

are important for T cell mediated tumour cell killing (Browne et al. 1999), but T 

cells in healthy skin do not normally express perforin or granzyme B. We 

therefore explored what signals might influence cytotoxic maturation of T cells in 

the skin in order to identify mechanisms that might boost T cell function in the 

skin of patients with melanoma. First, we investigated the role of inflammatory 

cytokines and then the role of PD-1 signalling in the cytotoxic maturation of skin 

resident T cells. Because skin from patients with melanoma was not available in 

sufficient amounts to perform the assays required, skin from healthy individuals 

was used for this purpose. 
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 IL-2, IL-15 and CD3/CD28 induce granzyme B and perforin 6.3.2.1

expression in skin T cells in vitro 

Although cytotoxic effector-like T cells are not present in healthy skin, previous 

studies have shown that T cells bearing cytotoxic granule components are 

present in this organ under certain inflammatory conditions (van den Wijngaard 

et al. 2000; Yawalkar et al. 2001). We therefore hypothesised that the 

inflammatory cytokines IL-2 and IL-15 as well as strong signalling through the 

CD3 and CD28 receptors may induce cytotoxic maturation in skin resident T 

cells, especially as these signals have previously been shown to induce 

cytotoxic T cell functions in blood-derived cells (Salcedo et al. 1993; Alves et al. 

2003; Geginat et al., 2003).  

In order to test whether these signals would also induce granzyme B and 

perforin expression in T cells derived from the skin, PBMCs or skin derived cells 

were incubated with recombinant TNFα, IL-2 or IL-15 or CD3/CD28 beads. After 

4 days in culture, intracellular perforin and granzyme B were analysed by flow 

cytometry (Fig. 6-5). 21±15% of untreated blood-derived CD8+ T cells were on 

average granzyme B positive and remained unchanged after treatment with 

TNFα, but increased slightly to 26±16% in cells treated with IL-2 (p=0.0017) and 

to 34±16% in cells treated with IL-15 (p=0.0001), as well as showing a very high 

increase to 68±30% after treatment with anti-CD3/CD28 (p=0.0001). Granzyme 

B expression in skin derived T cells averaged 10±7% and was also unaffected 

by TNFα but increased to 19±11% after treatment with IL-2 (p=0.0042), to 

37±20% with IL-15 (p=0.0006) and to 60±20% in response to anti-CD3/CD28 

stimulation (p<0.0001). 

Perforin expression followed similar patterns but remained overall lower: 

Untreated blood derived CD8+ T cells expressed on average 4±4% perforin and 

this increased to 8±11% after IL-2 (p=0.0371), to 12±15% after IL-15 (p=0.0059) 

and to 12±12% after anti-CD3/CD28 treatment (p=0.0039). Similarly, only 2±2% 

of untreated skin CD8+ T cells expressed perforin, but this increased slightly to 

3±4% after IL-2 (p=0.0078) and to 4±4% after IL-15 (p=0.0039) treatment and 

increased greatly to 19±17% after anti-CD3/CD28 treatment (p=0.0078). 
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Although not expressing perforin and granzyme B under steady state, skin 

derived T cells were therefore shown to upregulate these cytotoxic granule 

components given the appropriate signals in vitro. 

 

 

 

Fig. 6-5: Changes in Granzyme B and Perforin expression in blood and skin-derived CD8+ 
T cells of healthy individuals in response to cytokines or anti-CD3/CD28 stimulation. 

PBMCs or collagenase digested skin samples from healthy individuals were incubated for 4 
days in the presence or absence of 5ng/ml IL-2, 10ng/ml IL-15, 10ng/ml TNFα or anti-
CD3/CD28 microbeads, before being analyzsed by flow cytometry.  
A, C: Representative histograms for granzyme B and perforin expression in blood and skin 
derived CD8+ T cells following incubation with the various stimuli. 
B: Cumulative data showing average granzyme B expression following the various treatments 
in the CD8+ T cells derived from the blood (n=12) and skin (n=10) of healthy donors 
D: Cumulative data showing average perforin expression following the various treatments in the 
CD8+ T cells derived from the blood (n=10) and skin (n=9) of healthy donors. 
Data was analysed by one-way ANOVA. 
*=p<0.05; **p>0.01, ***p>0.001, ****p>0.0001 
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 Skin derived T cells acquire granzyme B in the absence of 6.3.2.2

proliferation 

Increased frequencies of granzyme B expressing cells can be caused by 

proliferation of cells that already express the marker or alternatively by an 

increase of granzyme B expression in cells that previously did not. In order to 

test which of these cases was true in skin derived T cells, cells were labelled 

with CFSE before stimulation with IL-2, IL-15 or CD3/CD28 for 4 days (Fig. 

6-6A). 

The percentage of proliferating cells among the granzyme B expressing skin 

CD8+ T cells was compared to the relative increase (compared to the untreated 

control) in granzyme B expressing cells for each treatment (Fig. 6-6B). 

Proliferation among the granzyme B expressing cells remained low, with only 

6±4% of IL-2, 5±4% and 22±3% of granzyme B treated cells showing reduced 

CFSE in response to IL-2, IL-15 and anti-CD3/CD28 bead treatment 

respectively. These proliferation rates were lower than the relative gain in 

granzyme B expressing cells, which were 16±5% for IL-2, 30±5% for IL-15 and 

35±15%. The increase in granzyme B expression among skin T cells was 

therefore not due to increased proliferation of granzyme B expressing cells. 

Instead, it seems that IL-2, IL-15 and anti-CD3/CD28 stimulation induced 

granzyme B expression in the majority of skin cells de novo. 
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Fig. 6-6: Proliferation among granzyme B expressing cells derived from the skin of 
healthy individuals, after stimulation with IL-2, IL-15 or anti-CD3/CD28 

CFSE labelled skin derived cells were cultured for 4 days in the presence of 5ng/ml IL-2, 
10ng/ml IL-15 or anti-CD3/CD28 beads. Loss of CFSE staining indicates cell proliferation. 
A: Representative flow cytometry scatter dot plots showing CFSE and Granzyme B staining in 
skin derived CD8+ T cells following treatment. 
B: Cumulative data showing the increase of granzyme B expressing cells per treatment relative 
to the unstimulated control (in black) compared to the percentage of proliferating cells amongst 
total Granzyme B expressing CD8+ T cells (in grey) in samples derived from the skin (n=3). 
Populations were compared using the paired T-test. Mean and standard error are shown. 
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 The role of PD-1 signalling in T cell function in the skin 6.3.3

Whilst skin resident CD8+ T cells of melanoma patients and healthy controls 

expressed low levels of cytotoxic granule components, levels of the inhibitory 

receptor PD-1 were high among these cells. We therefore hypothesised that 

PD-1 signalling might play a role in blocking acquisition of effector functions in 

skin resident T cells. In order to explore the role of PD-1 signalling in skin T cell 

function, skin derived T cells were treated with anti-PDL-1 and PDL-2 blocking 

antibodies during anti-CD3 stimulation in vitro. A suboptimal dose of 0.05µg/ml 

of plate coated anti-CD3 antibody was chosen for this purpose as previous 

studies have shown that saturating conditions of TCR activation may overcome 

the effects of PDL-1 blockade (Freeman et al. 2000). 

The production of granzyme B and perforin as well as proliferation were 

analysed in blood and skin derived CD8+ T cells in response to PD-1 ligand 

blockade. Again, these assays used cells derived from healthy skin due to a 

lack of sufficient amounts of skin of melanoma patients. Additionally, skin blister 

cells were used and skin samples obtained by collagenase digestion needed to 

undergo FACS sorting due to the technical implications discussed below.  

 Skin debris interferes with functional assays 6.3.3.1

Collagenase digestion allows the generation of single cell suspensions of 

immune cells that can be manipulated in vitro. Whilst cells extracted using this 

method responded to soluble or microbead-based stimuli, these cells did not 

respond to stimuli that relied on cell-to-cell contact or contact with plate-bound 

antibody. The reason for this was found to be the high amount of debris present 

in the cell preparations (Fig. 6-7A). 

Further filtration, magnetic-bead based sorting and density gradient 

centrifugation techniques (using Ficoll or Percoll) were tested, but did not yield 

the desired debris-free single cell suspensions required (data not shown). 

Finally, FACS-based sorting of live CD3+ and antigen presenting cells was 

found to successfully isolate viable cells that could be used for PD-1 ligand 

blocking assays (Fig. 6-7B). Simultaneously to using FACS-sorted skin cells, we 

tested PD-1 ligand blockade on skin suction blister derived cells, as this method 

also allowed effective isolation of viable, debris-free immune cells from human 

skin without the need for cell sorting. 
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Fig. 6-7: Effect of skin debris on functional assays. 

Cell suspensions extracted via collagenase digestion from healthy skin underwent FACS-based 
cell sorting in order to remove skin debris. Sorting involved selection of viable cells suitable for 
functional assays via staining using a live/dead dye, anti-CD3 antibodies and a cocktail of 
antibodies selecting for antigen presenting cells in the skin as described in detail in the material 
and methods section. Skin samples were obtained from healthy donors. 
A: Comparison of forward scatter (FSC-A)– side scatter (SSC-A) profiles of skin cell 
preparations before and after cell sorting. 
B: Whole digested skin or FACS sorted digested skin cells from a healthy individual were 
incubated for 3 days in the presence of 0.05µg/ml plate-bound anti-CD3 antibody. Intracellular 
Ki67 staining was performed as measure of proliferation. 
 

0 102 103 104 105

0

102

103

104

105

13.4

0 50K 100K 150K 200K 250K
0

50K

100K

150K

200K

250K

49.5

A"

B"

Unsorted" FACS/sorted"
Skin%cells%

Unsorted" FACS/sorted"
S*mulated%skin%CD8+%T%cells%

0 102 103 104 105

0

102

103

104

105

1.24

Ki67"

CD
3"

0 50K 100K 150K 200K 250K
0

50K

100K

150K

200K

250K

13.3

SS
C/
A"

FSC/A"



 200 

 Granzyme B expression is increased in stimulated skin CD8+ T 6.3.3.2

cells after PDL-blockade. 

After optimizing conditions to successfully stimulate skin-derived T cells in vitro 

in a contact dependent manner, we tested whether blockade of the PD-1 

ligands PDL-1 and PDL-2 during T cell stimulation might influence cytotoxic 

granule component production in skin derived T cells. For this purpose, we 

stimulated PBMCs, blister-fluid derived cells and sorted skin cells from healthy 

individuals with anti-CD3 antibody in the presence of PDL-1 and PDL-2 blocking 

antibodies or the appropriate isotype control. After 3 days of stimulation, 

intracellular levels of granzyme B and perforin were measured using flow 

cytometry in the CD8+ T cells and treatment groups were compared statistically 

(Fig. 6-8). 

Granzyme B was significantly increased after PD-1 ligand blockade compared 

to the isotype control in CD8+ T cells derived from the blood (p= 0.0198), blister 

(p=0.0316) and skin (p= 0.0170). Conversely, perforin was only significantly 

increased after PD-1 ligand blockade in blood derived CD8+ T cells (p= 0.0234), 

but not in blister or skin derived cells. 

Therefore, PD-1 signalling seems to negatively regulate granzyme B expression 

in stimulated skin derived CD8+ T cells. 
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Fig. 6-8: Granzyme B and perforin expression after PD-1 ligand blockade in CD8+ T cells 
derived from blood, blister fluid or skin of healthy individuals. 

Whole PBMCs, whole blister cells and sorted skin cells (sorted for CD3 positive and antigen 
presenting cells; described in detail in the material and methods section) from healthy donors 
were stimulated with 0.05µg/ml plate coated anti-CD3 antibody in the presence of 10µg/ml of 
anti-PDL-1 and anti-PDL2 antibodies or isotype control antibody. Cells were harvested after 3 
days of stimulation and stained for flow cytometric analysis. Perforin and granzyme B were 
detected using intracellular staining. 
A: Representative flow cytometry plot showing Granzyme B expression in anti-PDL or isotype 
treated, stimulated CD8+ T cells derived from blood, blister or skin of healthy donors. 
B: Cumulative data showing changes in Granzyme B expression in anti-PDL treated CD8+ T 
cells compared to isotype controls derived from the blood (n=8), blister (n=3) and skin (n=6). 
C: Representative flow cytometry plot showing Perforin expression in anti-PDL or isotype 
treated, stimulated CD8+ T cells derived from blood, blister or skin of healthy donors. 
D: Cumulative data showing changes in Perforin expression in anti-PDL treated CD8+ T cells 
compared to isotype controls derived from the blood (n=8), blister (n=3) and skin (n=6). 
Treatment and control groups were compared using the paired T-test or Wilcoxon test. 
*p<0.05 

0 102 103 104 105

0

102

103

104

105 22.7

0 102 103 104 105

25

0 102 103 104 105

54.9

0 102 103 104 105

0

102

103

104

105 27.7

0 102 103 104 105

30.4

0 102 103 104 105

82.5

Blood Blister Skin
0

25

50

75

100

%
 G

ra
nz

ym
e 

B
+

isotype
anti-PDL

*

*

*

A" Skin"

CD8+%T%cells%

Granzyme"B"

B"

Blood Blister Skin
0

20

40

60

80

%
 K

i6
7+

iso
aPDL

0 102 103 104 105

0

102

103

104

105

8.39

0 102 103 104 105

0

102

103

104

105

12.1

0 102 103 104 105

0

102

103

104

105

73.4

Blister"Blood"

0 102 103 104 105

0

102

103

104

105

10.5

0 102 103 104 105

6.01

0 102 103 104 105

32.8

0 102 103 104 105

0

102

103

104

105

13.3

0 102 103 104 105

4.42

0 102 103 104 105

42.4

Blood Blister Skin
0

25

50

75

100

%
 P

er
fo

rin
+

isotype
anti-PDL

*

C"
Skin"

Perforin"

D"

Blood Blister Skin
0

20

40

60

80

%
 K

i6
7+

iso
aPDL

0 102 103 104 105

0

102

103

104

105

8.39

0 102 103 104 105

0

102

103

104

105

12.1

0 102 103 104 105

0

102

103

104

105

73.4

Blister"Blood"

iso
ty
pe

"
aP
DL

"
iso

ty
pe

"
aP
DL

"



 202 

 Effects of PD-1 blockade on T cell proliferation  6.3.3.3

PD-1 is an inhibitory receptor that downmodulates contact-dependent signalling 

during T cell activation (Freeman et al. 2000). In order to find out if PD-1 

regulates functions other than cytotoxic granule formation in skin derived T 

cells, CD8+ T cell proliferation was also examined in the context of PD-1 ligand 

blockade. Proliferation was therefore measured indirectly via flow cytometric 

detection of intracellular Ki67 levels in stimulated blood, blister and skin derived 

T cells (Fig. 6-9). 

Ki67 levels were compared between anti-PDL-1/anti-PDL-2 or isotype treated 

cells in the CD8+ T cell compartment in various tissues. Whilst blood derived 

CD8+ T cells of half of the donors responded to PD-1 ligand blockade by 

showing increased proliferation, no overall significant difference was detected in 

the proliferation in blood CD8+ T cells after incubation with PDL-1 and PDL-2 

blocking antibodies. Further, PD-1 ligand blockade did not affect ki67 levels 

significantly in the CD8+ T cells derived from blisters or skin. Unlike granzyme B 

expression, proliferation was therefore not affected by PD-1 signalling in skin 

derived CD8+ T cells. 
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Fig. 6-9: Proliferation in response to PD-1 ligand blockade in stimulated CD8+ T cells 
derived from blood, blister fluid or skin of healthy individuals. 

Whole PBMCs, whole blister cells and sorted skin cells (sorted for CD3 positive and antigen 
presenting cells; described in detail in the material and methods section) from healthy donors 
were stimulated with 0.05µg/ml plate coated anti-CD3 antibody in the presence of 10µg/ml  of 
anti-PDL-1 and anti-PDL-2 antibodies or isotype control. Cells were harvested after 3 days of 
stimulation and stained for flow cytometric analysis. High intranucellular levels of ki67 were 
used as markers for proliferation. 
A: Representative flow cytomtry plot showing Ki67 expression in anti-PDL or isotype treated, 
stimulated CD8+ T cells derived from blood, blister or skin of healthy donors. 
B: Cumulative data showing changes in Ki67 expression in anti-PDL treated CD8+ T cells 
compared to isotype controls derived from the blood (n=8), blister (n=3) and skin (n=6). 
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 PDL-1 and PDL-2 expression in the skin 6.3.3.4

After having shown that PD-1 expression is high on skin derived CD8+ T cells in 

healthy individuals and melanoma patients, and that PD-1 signalling might 

regulate their function, we investigated PD-1 ligand expression in the skin. For 

this, frozen sections of skin biopsies from healthy individuals and primary 

melanoma lesions were stained separately by immunohistochemistry using 

antibodies against the PD-1 ligands PDL-1 and PDL-2. 

Expression of PDL-1 and PDL-2 was considered in young and old healthy 

individuals separately, as PD-1 expression on healthy skin resident T cells was 

previously found to be age-dependent (see section 5.3.2.4). PDL-1 and PDL-2 

expressing cells were successfully detected in the skin of some but not all 

healthy individuals, and was restricted to individual cells in the dermis (Fig. 

6-10). Three out of five young and three out of eight old healthy individuals 

presented with PDL-1 positive cells in their skin. The average frequency of PDL-

1 expressing cells in the skin of healthy individuals was 2±2 per mm2 in both 

age groups. PDL-2 expressing cells could be detected in all young skin sections 

and in four out of five old individuals. The average frequency of PDL-2+ cells 

also remained similar between both age groups, with 5±3 PDL-2+ cells per mm2 

in young and 6±5 in old donors. Overall, PDL-2+ cells were found more 

frequently than PD-1+ cells in healthy skin and this difference was significant if 

cell frequencies were compared irrespective of donor age (p=0.0125) 

PDL-1 and PDL-2 expression was also investigated in frozen skin sections of 

primary melanoma lesions of old patients (Fig. 6-11). Primary melanoma 

presented with 27±15 PDL-1+ cells per mm2 compared to 2±2 cells in the skin of 

old healthy individuals (p=0.0108). PDL-2 expression was similarly increased in 

the melanoma patients, who displayed 42±27 PDL-2+ cells per mm2 compared 

to 7±5 in the healthy controls (p=0.0146). Within the primary melanoma lesions, 

PDL-2+ cells were found more frequently than PDL-1+ cells (p=0.0374). 

In summary, PD-1 ligand expressing cells were more abundant in primary 

melanoma lesions than in healthy skin. Further, PDL-2 was more abundantly 

expressed than PDL-1 in both, healthy skin and primary melanoma. 
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Fig. 6-10: PDL-1 and PDL-2 expression in skin sections of young and old healthy donors 

Punch biopsies were taken from the skin of young and old healthy donors and indirect 
immunoperooxidase staining was performed on frozen healthy skin sections for PDL-1 and 
PDL-2 separately. PDL-1 and PDL-2 expressing cells were identified via marked red-brown 
circular staining. 
A: Representative stains for PDL-1 and PDL-2 in skin sections from young and old healthy 
donors. Boxed areas are shown in two-fold magnification in order to highlight individual positive 
staining cells. Only the representative skin section shown for anti-PDL-1 staining in a young 
donor highlights an area of intense staining that was not counted as staining was nut circular. 
B: Cumulative data showing frequency of cells expressing PDL-1 and PDL-2 in the skin of 
young (n=5 for both) and old donors (n=8 for PDL-1 and n=5 for PDL-2).  Scale Bar =100µm 
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Fig. 6-11: PDL-1 and PDL-2 expression in the primary melanoma lesions of old melanoma 
patients compared to age matched healthy controls. 

Indirect immunoperooxidase staining was performed for PDL-1 and PDL-2 on frozen skin 
sections from old healthy individuals and primary melanoma lesions from old patients. PDL-1 
and PDL-2 expressing cells were identified via marked red-brown circular staining. 
A: Representative stainings for PDL-1 and PDL-2 in the skin of healthy donors and lesions of 
melanoma patients. Boxed areas are shown in two-fold magnification in order to highlight 
individual positive staining cells. 
B: Cumulative data showing frequency of cells expressing PDL-1 and PDL-2 in the skin of old 
healthy donors (n=8 and n=5, respectively) and primary melanoma lesions of old patients (n=8 
for PDL-1 and n=10 for PDL-2).  
Patients and controls were compared using the Student t-test, PDL-1 and PDL-2 levels within 
participant groups were compared using the paired t-test. *p<0.05; Scale Bar =100µm 
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 Discussion 6.4

 Restoring circulating TEMRA CD8+ T cell function in melanoma 6.4.1

patients 

P38 signalling is actively involved in maintaining a state of replicative 

senescence in highly differentiated T cells, as previous reports have shown an 

increase in T cell proliferation in CD4+ and CD8+ TEMRA in healthy individuals 

after p38 inhibition (Di Mitri et al. 2011; S. M. Henson et al. 2014). Whilst 

proliferation was boosted after p38 blockade in melanoma patients’ total CD8+ T 

cells when they were stimulated with anti-CD3 in PBMC preparations, this effect 

was not observed in FACS sorted CD8+ TEMRA of all donors. Indeed, some 

donors displayed a decrease in proliferation after p38 blockade. This 

discrepancy in results might be due to the fact that p38 does not control T cell 

proliferation in some patients as it does in healthy controls. Alternatively, 

reduced proliferation in the TEMRA cells of melanoma patients after p38 blockade 

might have been caused by technical constraints of the assay as excessive 

stimulation can cause a decrease in cell viability in vitro (Shi et al. 2013). 

Previous reports mention that blockade of P38 signalling is associated with a 

decrease in TNFα production in T cells of healthy individuals (S. M. Henson et 

al. 2014). Here, TNFα production was not significantly affected by the blockade 

in CD8+ T cells of patients with melanoma. However, melanoma patients’ 

stimulated TEMRA cells displayed increased IL-2 and IFNγ production as well as 

increased degranulation (as measured by CD107a surface detection) upon p38 

blockade. Targeting the p38 pathway might therefore improve functionality in 

the highly differentiated cells in old melanoma patients and might therefore be 

beneficial for improving anti-tumour immune responses.  

It should be noted that growth arrest in senescence is thought to be a 

physiological mechanism to prevent malignancy and blockade of p38 might 

therefore promote tumour growth. Interestingly, a number of melanoma cell 

lines display aberrant intracellular signalling pathways and use p38 signalling to 

promote growth and migration (Estrada, Dong, and Ossowski 2009). P38 

inhibition in melanoma patients might therefore affect the tumour directly as well 

as T cell functions. 
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 Signals inducing a cytotoxic phenotype in skin cells 6.4.2

Skin resident T cells in healthy individuals were shown in previous chapters to 

express no perforin and only low levels of granzyme B. In the skin T cells of 

patients with melanoma an increase in granzyme B but not in perforin was 

found, suggesting insufficient cytotoxic maturation. This chapter therefore 

explored what signals might contribute to cytotoxic maturation of T cells in the 

skin and confirmed that IL-2, IL-15 and CD3/CD28 stimulation induced 

granzyme B and perforin expression in skin resident T cells in vitro. This is 

consistent with previous findings in the blood that showed acquisition of 

granzyme B and perforin and increased cytotoxic function in T cells cultured 

with IL-2, IL-15 and strong signalling through the TCR/CD3 complex and CD28 

receptor (Janas et al. 2005; Alves et al. 2003; Grossman et al. 2004; Azuma et 

al. 1992) 

The fact that perforin and granzyme B levels were low under steady state 

conditions in healthy skin suggest that these cells are not exposed to sufficient 

amounts of IL-2 or IL-15 to induce cytotoxic granule formation. Indeed, IL-15 

and IL-2 are not normally expressed in healthy skin and the majority of skin 

derived cells only upregulate these cytokines during inflammatory conditions, as 

has been found to be the case for IL-15 in keratinocytes and dermal fibroblasts 

(Han et al. 1999; Rappl et al. 2001; Bouchaud et al. 2013). Similarly, only 

mature but not immature dendritic cells in the skin, such as Langerhans cells, 

will express the CD28 ligands CD80 and CD86 and therefore activate effector T 

cells in a contact dependent manner (Peña-Cruz et al. 2010). 

High expression of IL-15 and IL-2 and presence of activated dendritic cells 

might therefore explain the occurrence of perforin and granzyme B in psoriasis 

lesions (Uyemura et al. 1993; Nestle et al. 1994; Yawalkar et al. 2001; 

Bouchaud et al. 2013). Conversely, T cells detected in melanoma patients might 

only present low levels of cytotoxic granule components due to a lack of these 

cytokines and dendritic cell maturation in the areas within and surrounding the 

tumour (El Marsafy et al. 2009). 
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 The role of PD-1 in controlling skin cells 6.4.3

Results presented in previous chapters showed that although PD-1 expression 

is low in circulating T cells, it is constitutively expressed on a large proportion of 

T cells the skin in healthy individuals as well as patients with melanoma. We 

therefore hypothesized that signalling of this inhibitory receptor might inhibit 

cytotoxic marker expression. In this chapter the inhibitory role of PD-1 in skin T 

cells was confirmed by showing increased granzyme B expression following 

PD-1 ligand blockade during stimulation. However perforin expression and 

proliferation (as measured by ki67 expression) were not affected by the 

treatment. 

This work shows for the first time that PD-1 signalling can control granzyme B 

expression upon activation in human skin cells and is consistent with previous 

findings showing that PD-1 signalling reduces expression of transcription factors 

involved in effector functions (such as Tbet and Eomes) and cytotoxicity in 

circulating CD8+ T cells (Nurieva et al. 2006). Although blockade of the PD-1 

signalling pathway is also often associated with increased proliferation 

(Freeman et al. 2000; Carter et al. 2002), other studies have shown changes in 

T cell function (such as cytokine production) in the absence of proliferation in 

certain animal models or at higher antigen doses (Kuipers et al. 2006; 

Latchman et al. 2001). PD-1 might therefore still regulate proliferation and 

perforin production in skin resident T cells under physiological conditions or 

under experimental conditions other than the one used during this work. 

PD-1 signalling is only effective during stimulation and ligation of PD-1 in 

absence of TCR signalling has no significant effect on T cell functions (Freeman 

et al. 2000). Therefore, PD-1 binding to its ligands is physiologically only 

relevant in the context of concomitant T cell activation. This is consistent with 

our finding that the PD-1 ligands PDL-1 and PDL-2 were only expressed at low 

levels in healthy skin (where T cell activation does presumably not occur), whilst 

being upregulated in melanoma lesions. This work did not discern whether PDL-

1 and PDL-2 were expressed by healthy or malignant cells. Previous studies 

have shown that melanoma cells can express PDL-1 to evade immune 

responses and that inflammatory conditions promote PDL-1 and/or PDL-2 in 

skin derived Langerhans cells and keratinocytes (Peña-Cruz et al. 2010; 

Freeman et al. 2000; Gadiot et al. 2011). Increased PD-1 ligand expression in 
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melanoma lesions may therefore indicate the presence and activation of 

immune cells or tumour immune evasion.  

It should be noted that although the increase in granzyme B expression in skin 

resident T cells after PD-1 ligand blockade was significant, it was not as 

pronounced as in the blood, suggesting that additional mechanisms prevent 

cytotoxic T cell maturation in these tissue resident cells. 

 Points of consideration 6.4.4

One point of consideration is that increased granzyme B and perforin 

expression in vitro do not necessarily translate into increased killing capacity, as 

even cells that do express high levels of cytotoxic granule components might 

show impaired cytolytic activity (Lee et al. 1999). However, identifying 

mechanisms that allow skin resident T cells to acquire cytotoxic granule 

components is a first step in understanding how skin resident T cells in 

melanoma patients can be induced to become effective at killing melanoma 

cells in vivo. 

Whilst cells in healthy skin express only low levels of cytotoxic granule 

components, we identified in this chapter positive and negative signals that 

might control their cytotoxic maturation. The low expression of cytotoxic granule 

components in skin resident T cells of melanoma patients might therefore be 

explained by an imbalance of these signals. 
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7 Overall Discussion 

The results presented in this thesis do not only contribute to our understanding 

of T cell differentiation in the blood and skin of patients with melanoma, but also 

to our appreciation of the phenotypic properties of T cells residing in healthy 

skin. 

 T cells in healthy skin 7.1

 An imbalance between skin and blood T cells 7.1.1

Recent studies have shown that skin resident T cells are phenotypically and 

transcriptionally distinct from cells in the blood and recognize different targets 

(Clark, Chong, Mirchandani, Brinster, et al. 2006; L. K. Mackay et al. 2013). 

However, human skin resident T cells remain poorly characterized to this day. 

This work confirmed that T cells in the skin are at an imbalance with T cells in 

the blood in humans, as both CD4+ and CD8+ T cells are phenotypically distinct 

in both organs. Further, surface markers that define T cell differentiation in the 

blood were not co-expressed in the same manner in skin resident T cells and 

could therefore not be used in the same manner to define skin resident T cell 

differentiation stages. This also suggests that some of these surface receptors 

may have different physiological roles and may be differentially regulated in the 

skin compared to the blood. The role of markers for differentiation, such as 

CD45RA, CD27, CD28, CD57 and KLRG1, should therefore be considered with 

care in the context of tissue resident T cells.  

It is often stated that tissue resident T cells are TEM-like because they lack 

lymph node homing receptors and are at the site of potential pathogen 

encounter, making them important immune sentinels (Jiang et al. 2012; Ariotti et 

al. 2014). However, the data presented in this thesis suggests that skin resident 

T cells are in fact profoundly distinct from circulating TEM. For example, 

circulating TEM readily displayed effector functions such as pre-formed cytotoxic 

granule components, whilst the majority of T cells derived from healthy skin did 

not, although they could be induced to do so in vitro. This, together with the 

observation that skin resident T cells express high levels of the costimulatory 
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receptor CD28 and the inhibitory receptor PD-1, suggests that T cell functions in 

the skin are heavily regulated. 

 The skin as a tolerogenic environment 7.1.2

The concept that the skin is an environment that favours immune telerance over 

activation during steady state conditions is supported by the detection of the 

inhibitory receptor PD-1 on resident T cells as well as the presence of inhibitory 

cell types in the skin. 

The role of PD-1 in peripheral tolerance has been highlighted in PD-1 knock out 

mice that developed spontaneous systemic autoimmunity (Nishimura et al. 

1999). T cells obtained from healthy skin expressed high levels of PD-1, 

suggesting that PD-1 may also be an important factor in skin tolerance. Indeed, 

we observed that PD-1 signalling during CD3 activation decreased acquisition 

of granzyme B in skin derived T cells in vitro. The role of PD-1 in controlling T 

cell functions in the skin has been further exemplified in a mouse model, where 

OVA-expressing keratinocytes upregulated PDL-1 during inflammation and 

were more likely to be killed and contribute to immunopathology when exposed 

to PD-1 deficient compared to wild-type OVA-specific T cells (Okiyama and 

Katz 2014). 

Inhibitory CD4+ FoxP3 Treg cells are also important in immune tolerance in the 

skin and other organs(Dudda et al. 2008) and FoxP3 Treg frequency was found 

to be increased in the skin compared to the blood in this and previous studies 

(Booth et al. 2010; Vukmanovic-Stejic et al. 2013; Sanchez Rodriguez et al. 

2014). Other immunomodulatory cell types in the skin may include immature 

dendritic cells which patrol healthy skin and have been shown to readily 

promote in vitro Treg formation and proliferation rather than effector T cell 

differentiation (Seneschal et al. 2012; Chu et al. 2012). 

The skin is an organ that is constantly exposed to environmental insults, most of 

which might be innocuous or rapidly contained by innate immune mechanisms. 

In order to maintain tissue integrity, it is therefore important to limit immune 

mediated tissue damage through the mechanisms listed above, including PD-1 

signalling. However, during infection or malignancy, mechanisms must exist to 

promote inflammation and induction of T cell effector functions. 
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 Induction of effector T cell responses in the skin 7.1.3

Whilst not expressing perforin and granzyme under steady state conditions, skin 

derived T cells were shown to acquire perforin and granzyme B when exposed 

to IL-2, IL-15 or CD3/CD28 stimulation in vitro. This suggests that skin resident 

T cells can acquire effector functions given the appropriate signals and is 

supported by published observations that confirm granzyme B and perforin 

expression in the skin during autoimmune conditions such as psoriasis and 

vitiligo (van den Wijngaard et al. 2000; Yawalkar et al. 2001). 

The cue for the conversion of resting skin resident T cells to potent effector cells 

might simply be TCR-ligation through antigen recognition on a target cell, but is 

likely to further require costimulatory signals in form of receptors or cytokines 

provided by either target or bystander cells. The importance of cell help for 

effector T cell licensing in the skin has been demonstrated in a recent murine 

graft-versus-host model, where T cell infiltration into the skin graft was not 

sufficient for rejection but required local Langerhans-mediated help for T cell 

mediated killing of the mismatched graft (Bennett et al. 2011). Other cell types 

might also be involved in promoting effector T cell functions in the skin, such as 

activated dermal dendritic cells or keratinocytes, when exposed to danger 

signals (El Marsafy et al. 2009; Igyarta et al. 2011; Kupper 1990). In absence of 

receptor-mediated stimulation, increased local levels of inflammatory cytokines 

might be sufficient to induce effector functions in resident T cells and therefore 

contribute to a tissue-wide state of “readiness” when skin integrity is breached 

(Ariotti et al. 2014). 

A balance of pro- and anti-inflammatory signals therefore seems to determine 

effector function acquisition of T cells in the skin (as visualised in Fig. 7-1). In 

healthy skin, this balance is tilted in favour of the negative signals, possibly by 

virtue of missing inflammatory signals under steady state conditions and high 

prevalence of suppressive Tregs and PD-1. This balance must however be 

shifted in favour of T cell effector maturation in order for CD8+ T cell mediated 

immune responses to occur during infection and malignancy. 
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Fig. 7-1: Schematic diagram visualising the proposed model for cytotoxic T cell 
differentiation in the skin. 

In healthy skin, T cells do not express cytotoxic granule components. Positive signals, such as 
TCR stimulation, costimulation with CD28 and inflammatory cytokines such as IL-2 and IL-15 
can induce differentiation into a cytotoxic phenotype. Negative signals such as the inhibitory 
receptor PD-1 and Treg cells may inhibit acquisition of effector functions.  

  T cells in patients with melanoma 7.2

 Lack of effector T cells in the skin of patients with melanoma 7.2.1.1

T cells in the skin of patients with melanoma showed phenotypic differences in 

the skin compared to healthy controls, which might have been caused by 

increased infiltration and/or local modulation of the cells. Interestingly, no 

increase in cytotoxic granule components was observed in the tissue CD8+ T 

cells of the patients. This suggests that a lack of inflammatory signals or 

prevalence of inhibitory signals prevent T cells in the patients from acquiring 

potent effector functions in order to mediate tumour rejection. High expression 

of PDL-1 and PDL-2 on melanoma or melanoma infiltrating cells in the primary 

lesion, as well as high levels of PD-1 expression on melanoma skin T cells, 

suggest that the tumour has hijacked the tolerogenic properties of the skin in 

order to avoid effective T cell activation and killing. Additional inhibitory 

mechanisms might prevent the development of effector functions in the 

melanoma microenvironment: This is supported by reports of increased levels 

of local Tregs, of inhibitory cytokines such as TGFβ and IL-10 and absence or 

lack of maturation of antigen presenting cells (Stene et al. 1988; Toriyama et al. 

1993; Vermi et al. 2003; Jacobs et al. 2012; Díaz-Valdés et al. 2011). In 
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summary, the balance of signals in the skin of patients with melanoma seems to 

be in tilted favour of immune tolerance and therefore prevent acquisition of 

effector molecules in local T cells.  

 T cell differentiation in blood and skin of melanoma patients 7.2.1.2

End stage differentiated and senescent CD8+ TEMRA cells were increased in old 

patients with melanoma and certain functions in these cells could be boosted 

through blockade of p38 signalling during activation. However, the origin and 

role of these cells in melanoma could not be established. Instead, melanoma-

specific T cells recognizing Melan-A and NY-ESO-1 derived peptides had a 

TCM-like phenotype. Similarly, the majority of T cells accumulating in the skin of 

the patients expressed surface receptors consistent with a TCM phenotype. A 

number of these cells also expressed high levels of the inhibitory receptors PD-

1 and CTLA-4, suggesting that these cells were exhausted. 

End stage differentiation, even during senescence, is usually associated with 

high effector functions at the expense of proliferative capacity and generally 

occurs in cells after repeated intermittent stimulation, particularly through strong 

TCR signalling or can be induced by bystander exposure to high levels of IL-15 

(Griffiths et al. 2013; van Baarle et al. 2005; Arne N. Akbar and Henson 2011). 

Exhaustion on the other hand is associated with immune dysfunction, both at 

the level of proliferation and effector functions and is caused by persistent 

stimulation and maintained by inhibitory receptor signalling (Wherry et al. 2007; 

Nakamoto et al. 2009). As the phenotype of skin resident T cells in melanoma 

patients suggests that they belong to the latter, it makes sense to design 

melanoma treatments that diminish inhibitory signalling and simultaneously 

boost acquisition of effector functions.  

 Clinical relevance of this work 7.3

The data presented in this thesis suggests that T cells in the skin of melanoma 

patients fail to differentiate into potent effector cells, therefore potentially 

impairing melanoma cell killing. IL-2, IL-15 or CD3/CD28 ligation were shown to 

induce expression of cytotoxic granule components, whilst PD-1 signalling 

inhibited it, suggesting targets that could be exploited to improve immune 

function in the patients. Indeed, various studies have already examined the 
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efficacy of boosting anti-melanoma immune function through administration of 

IL-2 and IL-15 or blocking antibodies that target inhibitory receptors such as PD-

1: 

Based on promising animal models (Rosenberg et al. 1985), administration of 

IL-2 was one of the first immunotherapies tested as treatment for melanoma. In 

270 metastatic melanoma patients treated with high dose recombinant IL-2, 

16% were partial or complete responders of which 12% remained disease free 

during the follow up period. However, 6 of the patients treated died of treatment 

toxicity (Atkins et al. 1999). Interestingly, frequency of perforin and granzyme B 

expressing cells increased upon treatment with IL-2 in the circulation of patients 

(Leger-Ravet et al. 1994), but IL-2 treatment also induced Treg expansion, with 

patients that showed particular high Treg expansions having worse clinical 

outcome than the other participants (Sim et al. 2014). 

IL-15 has been shown to improve disease outcome in a melanoma mouse 

model where adoptively transferred transgenic melanoma specific CD8+ T cells 

were pre-treated with the cytokine (Klebanoff et al. 2004). IL-15 was also 

efficacious in boosting T cell function in a number of non-melanoma mouse and 

in vitro models (Pagliari et al. 2013). A recent trial in metastatic melanoma 

patients and renal cell carcinoma patients showed that administration of 

recombinant IL-15 was safe and induced lymphocyte redistribution and 

expansion in patients. However, no objective clinical responses were recorded 

after treatment, despite a decrease in tumour metastases sizes in some 

patients (Conlon et al. 2014). It should also be noted however that IL-15 may 

directly act as a growth factor to the malignant cells (He et al. 2004). 

Inhibition of PD-1 signalling in order to boost immune function in melanoma 

patients is the focus of numerous emerging clinical trials that use monoclonal 

blocking antibodies against PD-1 or its ligands. A recent trial showed an 

encouraging 28% complete or partial response rate for advance stage 

melanoma patients after treatment with anti-PD1 and the response lasted for 

over a year in more than half of the responders that were followed up (Topalian 

et al. 2012). In a different study, a 17% response rate was found in melanoma 

patients treated with anti-PDL-1 (Brahmer et al. 2012). 

Combination therapy targeting PD-1 together with other inhibitory receptors 

associated with immune exhaustion such as CLTA-4 and TIM-3 have been 
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reported to rescue anti-tumour T cell responses in mouse models and in vitro 

and might therefore become the next generation of therapeutic targets in 

humans (Curran et al., 2010, Fourcade et al., 2010).  

Anti-melanoma T cell responses are a multistep process that requires activation 

in the lymph node, effective migration into the tumour itself, overcoming 

inhibitory signals within the tumour microenvironment and finally effective killing. 

In this thesis we have shown that T cells in melanoma patients can be impaired 

through different mechanisms in the skin compared to the blood. All these 

factors should therefore be considered carefully when manipulating T cell 

functions in order to treat patients with melanoma effectively. 

 Technical aspects of using flow cytometry 7.4

Because the data presented in this thesis were acquired over a period of 

several years, great care was applied in order to ensure consistency and 

reliability of results obtained. The same series of experiments (such as the 

screening for T cell memory subset frequency in melanoma patient and healthy 

controls) used continuously the same protocol with antibodies matched for 

fluorochrome, clone and manufacturer. Further, the same flow cytometer was 

used for acquisition of similar experiments and all flow cytometry files were re-

analysed prior of the writing of this thesis to assure a consistent gating strategy. 

Pure water was run between FACS tubes during acquisition to avoid spill over 

between samples and dead cells and duplets were excluded during analysis to 

avoid unspecific staining. Where possible, at least 20 000 CD8+ or CD4+ T cells 

were acquired for phenotyping purposes and at least 100 0000 CD8+ T cells for 

enumeration of rare events such as melanoma specific T cells using MHC-

Dextramers, as recommended by Britten and colleagues (Britten et al. 2009). 

However, a certain degree of variation between experiments could not be 

prevented due to unavoidable factors such as the occasional re-calibration of 

the flow cytometer or potential batch variation in the antibodies used. Different 

experiments may have involved the use of different clones for certain markers 

of interest (e.g. CD27 and CD45RA), further accounting for potential variation in 

results obtained in experiments using different antibody panels. 
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 Future work 7.5

 Identifying the source and role of increased TEMRA in old melanoma 7.5.1

patients 

Obtaining clinical follow up data for the patients that participated in this work 

might reveal changes in disease outcome in relation to CMV status and T cell 

differentiation levels and might hint at the role of TEMRA expansions in the 

melanoma setting. Testing for T cells recognizing alternative melanoma 

associated antigens to the ones used previously (using tetramer or dextramer 

technology) might elucidate the origin of TEMRA. Tyrosinase or gp100 specific T 

cells for example have not been investigated in this work. An alternative method 

for identifying the antigen specificity of the TEMRA could be to stimulate these 

cells with melanoma antigen peptide libraries, and measure potential cytokine 

responses. However, the limitation of this technique is that it relies on the TEMRA 

cells being functional in this assay. 

 Understanding T cell differentiation in healthy skin 7.5.2

This work showed that surface markers commonly used in the blood to measure 

T cell differentiation might not be applicable in the skin. The extent of 

differentiation of skin resident T cells therefore remains to be elucidated. One 

key experiment that will help to address this question will be to measure the 

telomere length of the skin resident T cells and compare levels to blood derived 

T cells. Preliminary experiments have shown that debris from the collagenase-

digested skin interfered with telomere probe binding in Flow-FISH experiments. 

Future experiments will therefore require FACS sorting of the skin cell 

preparations or could use cells from suction blisters.  

 FasL expression on skin T cells 7.5.3

This work showed that T cells in the skin of healthy individuals and patients with 

melanoma express only low levels of cytotoxic granule components, suggesting 

that skin resident T cells are not readily cytotoxic. However, T cell mediated 

killing can also be mediated through the receptor FasL (CD95L) and therefore 

be cytotoxic granule independent (Kägi et al. 1994). Future experiments 

addressing T cell cytotoxic function in the skin should therefore measure FasL 

expression of skin resident T cells. 
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