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1 An Old Problem

Consider these two sentences:

(1) a. It’s likely that Georgia will join the E.U.

b. It’s likely that if Russia needs foreign aid, Georgia will join the E.U.

Intuitively, it seems that both sentences are of the form: it’s likely that x, where,

in the first case, x = Georgia will join the E.U. and, in the second case, x = if

Russia needs foreign aid, Georgia will join the E.U..1 Understanding how these

∗I am grateful to Chris Barker, Paul Égré, Linda Rothschild, James Shaw, Robbie Williams,
and Seth Yalcin for pointing out some errors and giving helpful comments on earlier drafts. Also
thanks to Kai von Fintel and Robbie Williams for giving me some crucial references.

1Kratzer (1981, 1986) denies this syntactic parsing, claiming that the function of “if”-clauses
is to restrict higher up modal quantifiers in the sentence, in the case of (1-b) the natural choice is
the probability operator it’s likely that. While there is much to be said for her view, I think that,
generally speaking, her strategy will not easily explain all the recalcitrant facts about probability
and conditionals that the proposal presented below aims to. For example, many judge (i) to have
the same truth conditions as (1-b):

(i) It’s likely to be true that if Russian needs foreign aid, Georgia will join the E.U.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/78076728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sentences get their meaning as a function of the meaning of both the embedding

construction, it’s likely that . . . , and the embedded sentence, x, would seem an

easy task. The natural way would be to assume i) that in each case the particular

sentence x expresses a proposition, and ii) that sentences of the form it’s likely that

x are true iff x expresses a proposition that has a probability greater than one-half.

In other words the in general it’s likely that x is true iff p(x) > .4. This simple

proposal leaves various questions unanswered. For instance, what does it mean for

x to have a probability greater than one-half? Is it that the speaker has a credal

state that assigns a subjective probability of more than one-half to x, or is that there

is a more objective or intersubjective probability at stake? We will leave questions

along these lines aside, since a more basic problem confronts this proposal.

The problem goes as follows: Suppose we understand (1-b) to be true iff p(x) > .5

where x is if Russia needs foreign aid, Georgia will join the E.U.. It seems that as

a matter of fact (1-b) is judged true iff the conditional probability that Georgia will

join the E.U given that Russia needs foreign aid is high. To see this think about two

sorts of cases: in the first, you think it’s very likely that Russia will need foreign aid,

but you think it’s very unlikely that it’s both the case that Russia will need foreign

aid and Georgia will join the E.U. Then your conditional probability of Georgia

joining the E.U given that Russia will need foreign aid cannot be very high, and

correspondingly you must judge (1-b) as false. By contrast, if you think it’s likely

Russia will need foreign aid and only slightly less likely that Russia will need foreign

aid and Georgia will join the E.U. then you would seem to need to judge (1-b) as

true. Generalizing, it’s likely that if a then c is true iff the conditional probability

of c given a is greater than one half. Our prior assumptions about the meaning of

sentences of the form it’s likely that x along with this last observation should lead

use to the conclusion that conditionals express propositions whose probability is just

the conditional probability of the consequent given the antecedent. This hypothesis

is what is often called the equation: the probability of “if a then c” is equal to p(c|a)

(see Edgington, 1995, and references therein). The problem with this conclusion, is

that, in a certain sense, there is no proposition that satisfies the equation.

However, in this case it seems rather implausible that the antecedent of the conditional embedded
under it’s true that pops out to restrict it’s likely. Other cases can be found of this sort: such as
cases where there is no linguistically present modal at all and speakers or audiences merely make
judgments of the probability of various conditional sentences without expressing them in sentence.
But I will leave further discussion of these points to another occasion, so that this discussion may
be considered as presenting an alternative to Kratzer’s account of (1-a) and (1-b). See also von
Fintel (2007) for further discussion of the limitation of Kratzer’s approach to conditionals.
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Here’s the sense:2 suppose we assume that there’s a set of possible worlds W , and

any given sentence, x, expresses a proposition by picking out a subset of W , i.e. the

worlds where x is true. Let’s then say that any given credal state is a probability

function defined over the power-set of W , i.e. a function that tells you for any

given set of possible worlds how much credence you have that the actual world

is one of those. Now let a → c be if Russia needs foreign aid, then Georgia will

join the E.U., and a and c, be the antecedent and consequent respectively. Since

a → c, a, c are all sentences that we can have credences in, they each pick out a

subset of W . Suppose that on someone’s credal state, p, p((a → c) ∧ a) > 0, and

p(c|a) 6= p(c) 6= p(a), and none of those values are 0 or 1. Further suppose, as

suggested, that p(a → c) = p(c|a). Now, it is easy to show that there will exist

another probability function p1 such that p1(a→ c) 6= p1(c|a).3

What’s the problem with this? Well, what we’ve just shown is there isn’t any

subset of W to which every probability function assigns a probability equal to the

conditional probability of c given a. This suggests that our semantic theory will not

be able to assign a general meaning to a→ c which 1) applies across different credal

states and 2) fits into the natural account of the semantics for sentences of the form

it’s likely that x. This is not a happy situation, since a → c, intuitively, has some

sort of uniform meaning.4

In the next section, I will give an extension of probability theory that covers trivalent

expressions, and I will show that on this theory we can treat conditionals as express-

ing (trivalent) propositions whose probability is equal to the conditional probability

of the consequent given the antecedent. Using this trivalent probability theory we

can give a natural, compositional semantics of expressions of the form it’s likely that

x for conditional and non-conditional x’s. I will then conclude, in the third and last

section, with some remarks on this system and its overall plausibility.

2This is a variation on Lewis’s first “triviality theorem” (Lewis, 1976).
3One can construct p1 for instance by making it the result of conditionalizing p on ¬(¬a∧ (a→

c)). It will then follow that p1(a→ c) < p(c|a), since p1(a→ c) < p(a→ c) but p1(c|a) = p(c|a) .
4Some have argued that the proposition expressed by a conditional sentence varies with the

epistemic state of the speaker—this is, for instance, a direct consequence of Kratzer’s theory of
epistemic modals and indicative conditionals. In this case, the argument I gave in the previous
paragraph would have no force. There are, in fact, further problems with maintaining “the equa-
tion” even if one allows conditionals to express different propositions relative to different credal
states, but I won’t discuss them here. See Edgington (1995) and Bennett (2003) for discussion and
citations to the major results.
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2 A Trivalent Extension of Probability Theory

We’ll here give an interpretation of probability functions and conditionals that al-

lows us to assign propositions to conditionals. The view I will explore is almost

exactly the same as that put forward by de Finetti (1936) in a short lecture.5 I’ll

define a trivalent language, L, and describe how we can assign values analogous to

probabilities to it. The language, L formed in the usual way, with an extra operator

‖:

• A, B . . . are atomic sentences.

• if α and β are sentences so are α ∧ β, α ∨ β, α‖β and ¬α.

Again, let W equal a set of possible worlds. We’ll think of each sentence in L as

having as its meaning a function from W to the set of values {T, F, U}, where we

think of T as false, F as true, and U as undefined, so each sentence is true, false or

undefined at each “possible world”. Each atomic sentence is bivalent in the sense

that it takes W into {T, F}, in other words, it is true or false at every possible world.

We get trivalence through the extra binary operator ‖, whose semantics is defined

as follows: α‖β is undefined for every member of W where β is not T (i.e. where β

is false or undefined) and otherwise has the same truth-value as α. Graphically, its

truth table is as follows:6

A B A ‖ B

T T T

F T F

T F U

F F U

T/F U U

U T/F U
We will understand the trivalent values of complex formulas to be, otherwise, de-

5Thanks to Guy Politzer and Jean Baratgin, via Paul Égré, for this reference. See Milne
(1997) for discussion of de Finetti’s theory. The idea of using a trivalent semantics for conditionals
generally put forward by Belnap (1970). Von Fintel(2007) suggests Belnap’s idea as a possible
solution to problems with conditionals and probabilities, thus putting forward de Finetti-style
approach to conditionals an probability. Another working out of Belnap’s idea can be found in
Huitink (2008, 2010).

6This is the same trivalent truth table for conditionals given by McDermott (1996). On his
account, however, the probability of a conditional is not its conditional probability (p. 20), rather
it is simply the probability it is true simpliciter.
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termined by the strong-Kleene truth tables7

For any given probability function, p, defined over the powerset of W , we will call

p′ its extended probability.8 The definition of p′ is straight-forward: p′ is a function

that goes from sentences in L to real numbers in the interval [0,1] such that for any

sentence α in L, if R is the set of worlds where α is T and S is the set of worlds

where α is T or F , p′(α) = p(R)/p(S) where p(S) > 0 and is otherwise undefined.

Some notation: For any formula α in L, let p(α) be equal to the probability of all

the worlds in W is assigned T by α (we will generally only discuss p as applied

to bivalent formulas). Likewise p(α|β) is defined as p(α∧β)
p(β)

where p(β) > 0. By

contrast, p′(α‖β) is just the extended probability function p′ applied to the formula

α‖β. So, for α and β ∈ L, p(α|β) and p′(α‖β), despite the superficial similarity, have

a different syntax since the former uses a conditional probability function applied

to two formulas, α and β whereas the latter just applies an extended probability

function to the formula α‖β. To not multiply possible expressions too much let

us suppose there is no analogue of conditional probability for p′ so that p′(α|β) is

not well-formed. Luckily, there are some very close connections between p(α|β) and

p′(α‖β), just as there are between p(α) and p′(α):

Fact 1. For any bivalent formula α, p(α) = p′(α).

Proof. This is trivial: since α is true or false in all worlds in W , p′(α) = p(α)
p(W )

=
p(α)
1
.

Fact 2. For any bivalent formulas, α and β, p(α|β) = p′(α‖β), if p(β) > 0.

Proof. Since α‖β is only defined over the worlds in W in which β is true and is only

true in the worlds in which α and β are true: p′(α‖β) = p(α∧β)
p(β)

.

7As follows:

• α ∧ β is true in all worlds in which α and β are true, false in all worlds in which one of α
or β is false, and undefined in all other worlds.

• α∨ β is false in all worlds in which α and β are false, true in all in which where one of α or
β is true, and undefined in all other worlds

• ¬α is true in all worlds where α is false, false in all worlds where α is true, and undefined
in all other worlds.

Since we will mostly talk about conjoining bivalent formulas with ∧ and ∨ we can usually just
think about theses connectives as classical.

8Cantwell (2006) independently suggests this means of extending probability functions to triva-
lent formula, though he does not use it for the same purposes as I have done here.
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Extended probability functions allow us to interpret conditional probabilities in a

different way than usual: we just think of conditional probabilities as being the

extended probabilities of certain trivalent formulas formed out of the bivalent ones.

So we don’t need a specially defined conditional probability operator for extended

probability functions: the ‖ operator will do the work for us. Extended probabilities

can do more than this: after all, any trivalent formula will have an extended prob-

ability. So we can also discuss the probability of formulas that have no analogue in

standard probability theory, such as (α‖β)‖γ.

To return to our original discussion of sentences, (1-a) and (1-b). We will understand

sentence of the form it’s likely that x to be true iff p′(x) > .5. We will also understand

sentences of the form if a then c (where a and b express bivalent propositions) to

express the proposition c‖a. It then follows that a sentence of the form it’s likely

that if a then c is true iff p′(c‖a) > .5 iff p(c|a) > .5, the desired result.

I’ll go through a concrete example to illustrate how this system works (taken from

Grice, 1967/1989, lecture IV).

Chess Yog and Zog play chess according to normal rules, but with the special

condition that Yog has white 9 out of 10 times and there are no draws. Up to

now there have been a hundred games. When Yog had white, he won 80 out

of 90. When he had black he lost 10 out of 10. Suppose we are talking of a

randomly chosen game of these hundred. It’s then true to say of this game:

(2) There’s a 50/50 chance that (if Yog lost, then he drew white).

Let W = Yog had white and L = Yog lost. The embedded sentence in (2), “If

Yog lost, then he drew white” can be formalized as W‖L. Let us suppose that

there are 100 possible “worlds” each one corresponding to the selection of one

of the 100 games and the probability that we are in each of these worlds is

.01. Then L is true at 20 of these worlds and W is true at 80 of them. W‖L
is true or false at 20 of these worlds, and of those it is true at 10 and false at

10. So p′(W‖L) = .5, which explains why we accept sentence (2).

3 Comments

Syntax and Semantics of Conditional Probability The trivalent system is a

way of thinking about conditional probabilities as the probabilities of certain
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trivalent formulas, rather than as the ratio of probabilities of two formulas.

This is simply not possible in standard probability theory in which the the

formula α|β as it appears in p(α|β) has no independent status. Since we ut-

ter complete sentences, i.e. conditionals, that bear some relation to α|β, as it

appears in standard probability theory, it is perhaps worthwhile describing a

system on which we do give something akin to α|β a free-standing interpreta-

tion.

Relation to Natural Language Conditionals Let us assume that the indica-

tive conditional operator → is just a backwards ‖ since we have seen evidence

that p(α|β) = p(β → α) and we showed that p′(α‖β) = p(α|β), for bivalent α

and β.

Logical We validate various plausible logical inferences involving conditionals using

our trivalent truth-table definition. Consider γ → (β → α), which some (e.g.

Lewis, 1976) propose is equivalent to (γ ∧ β) → α. On our interpretation of

‖ and ∧ this equivalence obtains (and thus its probabilistic analogue does as

well).

Of course, I have not yet discussed which particular consequence relation we

are using for this trivalent logic. The choice of this relation will obviously have

a large effect on how we understand the proposal.9 Huitink (2008) suggests

Strawson entailment: entailment on the assumption that the every formula is

either true or false. We could consider other alternatives, though.

Semantics of Conditionals The trivalent system treats conditional sentences as

having the same type of semantic value as non-conditional sentences while

still maintaining the link between conditional sentences and conditional prob-

ability. It do so by treating all sentences as potentially trivalent and treating

probability as a feature of trivalent sentence. By this trick we eliminate the

need for a sharp distinction between conditional and non-conditional sentences

such as that posited by Edgington (1995) and Bennett (2003). Admittedly we

do partially affirm their conclusion that conditionals lack truth values, in the

sense that we do make conditionals neither true nor false when their antecedent

is false.

Trivalence We use trivalence in a different way than it is used to model either

vagueness or presuppositions. Soames (1989) observes that the use of triva-

9This point was emphasized to me by Paul Egre, James Shaw, and Robbie Williams.
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lence for vagueness and presupposition are clearly distinct: one cannot treat

the lack of truth values in vague expressions in the same way one treats them

in presuppositional expressions. The trivalence in the system here seems like

it cannot be assimilated to either of these two, different uses. Their are

many reasons for this. Here are two: 1) conditionals do not generate pre-

suppositions that there antecedent is true,10 and 2) the probabilities of vague

or presupposition-bearing sentences do not behave as in the account above.

Trivalence, on one level, is a technical trick that allows sentences to encode a

three-fold partition of possibilities rather than the usual two-fold one. Not all

uses of this trick to characterize various linguistic phenomena fit together.

Plausibility Just how independently plausible are these truth-conditions for con-

ditionals? Do they correspond to our judgments of the truth-value of condi-

tionals? Not obviously, as many indicative conditionals when uttered seem

to have clear truth-values. Suppose my friend Bob is made entirely of com-

bustible paper. There is a fire in his office building, but, unbeknowest to me,

he is vacationing in the Mexican Riviera at the time. Seeing the fire but not

knowing if Bob is in his office building or not, I might utter:

(3) If Bob is in his office, he’s going to go up in flames.

In this situation, suitably elaborated, it seems plausible that my utterance of

(3) is true, despite the fact that the antecedent is false. Many more cases along

these lines can be constructed. This should make us somewhat skeptical of

semantic legislation that makes indicative conditionals with false antecedents

truth-valueless.11 So the kind of truth-valuelessness that conditionals might

have, is not as with presupposition failure, something akin to falsity, nor is

it, as with borderline instances of vague predicates, something akin semantic

underdetermination. What is it then?

Assertion Conditions Let us accept for the moment that one can only assert an

indicative conditional α → β if one is uncertain about the truth value of α.

Many authors, such as Kratzer (1986) and Yalcin (2007), propose that the

further condition for asserting an indicative conditional, α → β is essentially

10von Fintel (2007) observes this point.
11McDermott (1996, p. 2) argues in a different case to the opposite conclusion. While I agree

that in some cases the trivalent theory is more intuitive, my point is just that often it is not at all
intuitive.
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that one can rule out the possibility that any α world is a ¬β world. These are

exactly the conditions under which one can assert the trivalent conditional with

the knowledge that it is not false (with the material conditional by contrast

one can assert it with knowledge that it is true in this circumstance). So, if

we are to take the trivalent account on board, the rules governing its assertion

can be stated as follows:

1. Only assert α→ β if you are uncertain about the truth-value of α.

2. Only assert α→ β if you are sure it is not false.

These rules are not so implausible: 1. is something that almost every account

of conditionals needs to stipulate one way or the other (or sketch some more

or less ad hoc Gricean explanation of), while 2. is natural enough in the sense

that in the bivalent case it simply amounts to an injunction to say what you

are sure is true.
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