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Abstract. We describe a uniform logical framework, based on a bunched logic that combines

classical additives and very weak multiplicatives, for reasoning compositionally about access

control policy models. We show how our approach takes account of the underlying system
architecture, and so provides a way to identify and reason about how vulnerabilities may arise

(and be removed) as a result of the architecture of the system. We consider, using frame rules,

how local properties of access control policies are maintained as the system architecture evolves.

1. Introduction

Access control policies are primarily concerned with controlling information flow within systems.
Such control is achieved primarily by restricting — according to the clearance levels of principals
(or agents), the classifications of data items, and the locations of data items — the extent to which
agents can manipulate (e.g., read, write, copy, move) data.

In formulating models of access control policies, it is commonplace to consider clearances and
classifications of agents and data that are based on the idea of (lattices of) multiple labels, multiple
levels, and multiple regions. For example, the Bell-LaPadula (BLP) model [5] is intended to protect
the confidentiality of data by ensuring that an agent at a given level may not read data that is
located at a higher level and may not write data to locations at lower levels; that is, agents may
only create data at or above their own level of confidentiality. Similarly, the Biba model [7] is
intended to protect the integrity of data by ensuring that a agent at a given level may not read
data that is located at a lower level and may not write data to a higher level: that is, agents may
only create data at or below their own integrity level. These restrictions, which constitute the
Strict Policy of the Biba model, will be referred to as the Biba model throughout. Brewer and
Nash’s Chinese Walls model [11], in contrast, is concerned with multiple, disjoint, non-overlapping,
regions. It is intended to protect the confidentiality of data by ensuring that agents are not subject
to conflicts of interest: that is, an agent may read only data that is located in a region that is not
in conflict with the agent’s own region. Also important is the stateful Clark-Wilson model [16].
In this model, certain groups of agents are permitted to modify certain types data items, but in
some instances multiple authorizations are required, so that at any one time a modification may
be partially authorized, and audit trails must be maintained.

Systems for which access control policy models are formulated are typically complex assemblies
of people, processes, and technology embedded within complex logical and/or physical architec-
tures. The hierarchical structure of access control policies must be implemented for such systems
which, typically, carry a rich structure of layers and regions. In this paper, we employ the graph-
theoretic model of layered architectures introduced by the present authors in [21] to provide a
simple yet flexible model of the the underlying system architecture that is a model of a sub-
structural logic that captures the concept of layering using some very weak (non-commutative,
non-associative) multiplicative connectives. Access control policies, and indeed security policies
and architectures more generally, are defined on top of such an architecture and describe the con-
straints with which agents are expected to comply when interacting with that architecture. In this
paper, we introduce a specific instance of the logic of layered architectures that allows access con-
trol policies for specific architectures to be represented. Such a set-up supports an understanding
of how a policy must be adapted to the specific system architecture to which it is intended to apply
and, indeed, how mismatches between the formulation of a policy and the system architecture may
lead to security vulnerabilities. An example is discussed below.
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In modelling the interaction between system architecture and security policies, we make a
simplifying assumption: that the layers in the system architecture correspond to the levels in the
access control policy model. For the examples we explore in the sequel, this assumption neither
trivializes the models nor introduces unnecessary confusion. Rather, it allows us to focus directly,
with minimal coding, on how the connectivity between layers either supports or undermines the
access control policy.

The layered graphs considered in [21] provide a concrete semantics for a substructural logic,
LGL, of layered graphs. We show how LGL can be used to describe access control policy models in
the context of hierarchically structured (or layered) systems, as modelled in [21]. LGL combines,
in a manner similar to BI [45] and Separation Logic [52], classical propositional additives and
multiplicatives that, in our case, are assumed to be neither commutative or associative. These
very weak multiplicatives describe the layering structure of graphs; that is, how one graph may
be layered over another, and so on.

The logic LGL is related to the system DW considered by Read [51], in which the multiplicative
(intensional) conjunction (corresponding to the multiplicative bunching operation) is commutative
and in which the multiplicative (intensional) implications (handed versions of linear implication, as
in Linear Logic, BI [45], and Lambek’s systems, such as [42] and earlier papers) that are naturally
present in our system are absent. Read considers a hierarchy of extensions of DW, including
axioms for associativity and many stronger structural properties. Read’s hierarchy recovers the
hierarchy of relevant systems up to R and classical logic itself (e.g., see [51]). Just as in these
systems, we work with a classical negation, deferring consideration of weaker systems of negation
to another occasion. Layering need not be defined in one direction only: it may be that two
graphs are layered over each other. In modelling terms, this would mean that, while it is useful
to separate the two layers, resources can flow both up and down. To this end, LGL includes a
notion of ‘bi-layering’, that is consistent with our basic notion of layering. LGL also considers a
class of layered graphs that amount to the intuitive notion of a stack.

For an example, to help clarify the basic ideas, consider an organization that assigns the clear-
ance levels secure and general to agents and data items, partitioning its network accordingly into
Secure and General layers. It is the intention of the organization that no data should pass from
the secure to general level. The organization could choose to maintain this segregation of data by
enforcing an access policy preventing an agent that is in the Secure Layer from writing downwards
into the General Layer. However, this approach is inadequate as the organization is not taking all
of the underlying structure into account.

Now consider Figure 1. This shows the General and Secure Layers connected by a Mobile Stor-

Secure Layer 

Mobile Storage Layer 

General Layer 

Figure 1. Organizational Structure including Mobile Storage Layer

age Layer, giving a much truer illustration of the underlying structure of the organization (which,
indeed, is the structure of many organizations today). The widespread usage of devices such as
USB memory sticks can introduce side-channels, meaning that any organization must consider the
impact this may have on access to data within its system. The policy of the organization does not
prevent data from being written from the Secure Layer to the Mobile Storage Layer and then into
the General Layer. This means that the policy put in place by the organization has been violated
as the underlying structure was not properly considered. Note that in Figure 1, and in all further
figures, we draw explicitly only the vertices and edges that are relevant to the situation being
described and dotted lines are used to indicate an edge that connects one (sub)graph to another.



LAYERED GRAPH LOGIC AS AN ASSERTION LANGUAGE FOR ACCESS CONTROL POLICY MODELS 3

In all such examples, it is important to remember that, as with all forms of mathematical
modelling, the analysis that is possible depends critically on the quality of the model in respect of
its intended use and cannot address aspects of the system that are not represented in the model
[18]: ‘the map is not the territory’ [40].

As another example, consider the construction of a system to support the rules of both the
BLP and Biba models. When implementing multiple policies, the system architecture must not
cause one policy to fail in the presence of the other. This is illustrated in Figure 2, where Agent

A1	  ,	  D	  

A3	  	  

A2	  	  

Level	  1	  

Level	  2	  

BLP	   Biba	  

Figure 2. Location of Agents and Data

A1 can write D to level 2 on the right-hand system. Moreover, if D can reach the location of A3

then it could be written back across to level 2 of the left-hand system. The construction of the
system must therefore be analysed to ensure full compliance with all appropriate rules.

Finally, consider an organization using the Chinese Walls model to segregate its physical network
and prevent agents from accessing data items that are deemed to conflict. Suppose that the
organization also employs outside consultants that are given mobile access to data through a laptop
provided by the organization. This usage of laptops causes an additional layer of organizational
structure, the Mobile Access Layer, which introduces a side-channel in a similar way to that
described earlier. Since the rules of the Chinese Walls model do not guard against information
flow through additional layers of a network, the intended policy of segregation can be violated.
Consider Figure 3. This shows that agent A3 could potentially read data item D1 and subsequently

 

 

Physical Layer 

Mobile Access Layer 

Figure 3. Chinese Wall in a Layered Graph

write a copy upwards that could then be read by A2, which should not be permitted. In order
to preserve the intended segregation, the organization must implement additional rules to guard
against the type of multi-level access described.

2. Related Work and Contribution

The work we present here has little preceding work in the literature. The usual approach to
understanding access control policy models — see [3] and [4] for efficient summaries — is to model
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only security architecture of system, such as the levels of classification of information in multi-layer
models or the separated regions in multi-lateral models, and the roles of the agents to which the
policy is intended to apply. Historically, the technique for representing multi-level access control
policies has been to use lattice models, [24, 53]. This approach, while often effective because the
rules of multi-level policies rarely give consideration to the underlying system architecture, does
not offer adequate scope to investigate the composition of multiple models. It is also rare for
multi-level policies to be studied in conjunction with multi-lateral policies such as Chinese Walls.
An exception can be found in [47], where restrictions are placed on a pre-existing lattice model to
incorporate both clearance level and a notion of conflict of interest. A useful early discussion of
policies and models is in [31].

Our approach differs quite explicitly in that we model not only the security architecture of the
system, and the interactions of the agents with it, but also the underlying system architecture. Our
modelling approach is based in mathematical logic and, in particular, uses models of a particular
system of logic. The basic idea is quite simple. The propositions of the logic, expressed in the
language of the logic, are used to express access control policies in the sense described above. This
part of our work sits in the tradition represented, for example, by papers such as [2], [43], and [1].
Models of the logic based on layered graphs are used to represent the system architecture to which
the policies are intended to apply. The closest work in the literature to this is represented by the
ideas presented in [37] and [52], describing Pointer Logic and Separation Logic, respectively. In
these papers, the propositions of the logic — which, like LGL, is also based on BI [45, 50, 29]
— are used to express the properties of mutable data structures, such as pointers, during the
execution of (imperative) programs and models of the logic are built using the stack and heap of
the (abstract) machine that executes the programs.

Our use of layered graphs here represents an abstraction and simplification of the approach
to representing distributed system structure presented in [19, 18] in which a process calculus
(LSCRP) of locations, resources, and processes, together with an associated modal logic (LMBI)

is set up. The calculus LSCRP has an operation judgement of the form L,R,E
a−→ L′, R′, E′,

asserting that process E evolves by action a, relative to the available resources R at location L,
to become the process E′ that may further evolve relative to resources R′ at location L′. In this
set-up, the algebra of processes is a synchronous one that builds on SCCS to incorporate resources
and locations [18]. Resources are modelled essentially as in the bunched logic BI [45, 50, 29] and
its derivative Separation Logic [52], capturing basic axioms of combination and comparison of
resource elements. Locations are modelled [18, 17] by structures, such as directed graphs, hyper-
graphs, and certain topological spaces, that satisfy some basic axioms — that there are directed
connections between places, that there is a notion of sub-location and a notion of substitution,
supporting refinement and abstraction, and, possibly, a product of locations.

Associated with the calculus is the Hennessy–Milner-style modal logic MBI, with satisfaction
judgement L,R,E � φ, asserting that, relative to resources R at location L, process E has property
φ. The value of this approach in studying access control has been demonstrated in [19, 18] in which
the conjecture of Abadi et al. [2] — that for one agent to act in the role of another is a form of
concurrent composition — is resolved positively.

Belnap logic has been used in [12] to study the composition of access control policies through the
use of a four-valued predicate where judgements are based on the level of information contained in
a piece of data and the trustworthiness of data items. There has also been some efforts in [10, 15]
to compose policies. The work in these papers relies on policies already having a pre-existing
logical framework and an associated interpretation function. Set operations, for example union
and complementation, are then applied to the images of the interpretation functions in order to
describe composition. Other logics have also been used to specify access control models. For
example, the modal logic S5 is used in [22] and in [30] a model of relation-based access control is
given through the use of description logic. Finally, [41] presents an extension of [2, 43] in order to
represent Role-Based Access Control (RBAC).

Access control policies have been specified using so-called system graphs and policy graphs in
[35]. System graphs are created using labelled vertices to describe users, or files, names and
clearance levels while directed edges are labelled with actions. Policy graphs represent access
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restrictions and are applied to the system graphs by matching vertex labels. This programming-
based approach, though clearly related in spirit to our view, does not provide clear accounts of
the system architecture and security policy models and does not provide mathematical tools for
reasoning about compliance or composition.

Access control has also been studied using category theory in [6] to build what the authors
describe as a meta-model, which they use to represent various access control policies and com-
pose, for example, RBAC and BLP. In [39], a category is formed using graphs and partial graph
morphisms. Access control rules are then given by injective morphisms, leading to the definition
of a framework for giving access control policies. While having some connections in spirit to our
approach, particularly in their focus on composition, these approaches do not provide tools for
reasoning about how systems comply with policies.

In our LGL-based approach, compositionality is available in all aspects of system models and
their associated policies. First, logical expressions of policy, built from a class of atomic access
operations, introduced in Section 4, can be composed using the full strength of LGL: classical
additives, non-commutative layering multiplicatives, and, in a later section, BI’s multiplicative
conjunction (∗) and implication (−−∗). Second, the underlying system architecture can be composed
by layers, building up a hierarchical structure. Third, additional structural complexity within
and between layers can be added by composing graphs in the usual ways. These aspects of
compositionality are illustrated extensively in the examples used throughout the paper.

In Section 3, we briefly review the logic of layered graphs LGL, introduced with substantive
theoretical development in [21], summarize its meta-theory and present an n-ary composition that
can be used to represent a stack. In Section 4, we introduce a specific model of LGL that captures
the core notion of access control in the setting of layered graphs. We show how this set-up can
be used to model the implementation of access control policy models (such as Bell-LaPadula and
Biba) in the context of hierarchically structured systems, and show how various vulnerabilities
may be understood. In Section 5, we consider how the usual multiplicatives, familiar from BI
and Separation Logic, can be added and used, within layers, to capture access control policies
described by Chinese Walls. In Section 6, we consider an extension of the logic with actions and
modalities that describe how the underlying system architecture may evolve and consider how
naturally occurring frame rules, both within and between layers, can be used to express invariant
properties. of access control policies. These latter two sections describe rich forms of compositional
structure that are present in our set-up.

We conclude, in Section 7, with some brief remarks on a few technical directions for the specific
work of this paper and, more importantly, a substantial discussion of the broader scientific context
for the technical work presented here. In particular, we discuss how the work presented in this
paper contributes to an overall project to bring to bear logical and economic modelling to analyse
security, design, behaviour, and decision-making, with the aim of delivering a methodology to
support the design and implementation of systems and policies for access control that takes ap-
propriate account not only of security policy objectives but also of the architecture of the system
to which policies apply and the behaviour of agents with the context the both the policy and the
system architecture.

3. Layered Graph Logic

This section has two parts. First, we review very briefly the logic, LGL, of layered graphs as
introduced in detail in [21]. Second, we present an n-ary composition that is used to identify a
particular class of layered graphs called bi-layered stacks. The logic LGL is intended to capture
the concept of layering that is commonly found in the complex systems literature, as discussed
in [21]. Conceptually, our point of departure is the substructural (bunched) modal process logic,
LMBI, described in [18, 19, 17], associated with the calculus LSCRP of locations — where the
concept of layering resides — resources, and processes [18, 19, 17]. This framework is used, in
[20], to resolve positively a conjecture in [2] that one agent acting in the role of another is a form
of concurrent composition.

3.1. Layered Graph Logic. The layered graph logic, in its basic form, focusses on worlds that are
locations and, in particular, directed graphs. Standard graph-theoretic notions are used through-
out this paper. All graphs are assumed to be directed. For any graph G, let V (G) be the set of
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Figure 4. Example of Layer Construction

vertices of G, E(G) be the set of edges of G, and Sg(G) be the set of subgraphs of G. The notation
H v G means H ∈ Sg(G).

We are often interested in situations in which we are given a graph G and a distinguished set of
edges E of G, and we then consider properties of the set of subgraphs of G. In such a situation, we
often refer to G as the ambient graph and E as the distinguished edge set. Let G1 and G2 be any
two subgraphs of G. The notation G1  E G2 is used to signify the fact that G2 is reachable from
G1 via an edge of E . The notation 6 E is the complement of the relation  E . Let G1 and G2 be
any two such subgraphs. Write G(G1, G2) for the set of edges of the ambient graph that connect
any vertex of G1 to any vertex of G2. Define G[G1, G2] = G(G1, G2)∪G(G2, G1). We make use of
partial definedness throughout: the notation X↓ means that a given expression X is defined.

Given a graph G and a distinguished set of edges E , we define a partial, binary operation

@ : Sg(G)× Sg(G) −→ Sg(G) as follows. For any subgraphs G1 and G2 of G, the value G1 @G2 is
defined if and only if V (G1)∩ V (G2) = ∅ and G1  E G2 and G2 6 E G1. When defined, G1 @G2

is given by V (G1 @G2) = V (G1) ∪ V (G2) and E(G1 @G2) = E(G1) ∪ E(G2) ∪ (E ∩ G[G1, G2]).
When G1 @G2 is defined, it gives the (disjoint) union of the graph arguments, together with the
edges of E between G1 and G2. The definition of this operator is relative to the given ambient
graph G and distinguished set of edges E . Where the distinguished set of edges E needs to be
emphasized we write @E . We say that a graph G is layered if G = G1 @G2 for some G1, G2. An
example of this composition, which is non-commutative and non-associative, is shown in Figure 4.

We define a logical language, LGL, for expressing layering properties of graphs. The logic
combines classical additives and a non-commutative, non-associative multiplicative conjunction
(and its adjoints) in the style of BI [45, 50]. The logic is described in detail in [21]. A different logic
for graphs, with a separating (associative and commutative) conjunction is explored in [13, 23].

We give an interpretation of LGL that uses the layered graph composition described above.
The interpretation requires a little extra structure in the layered graphs, which we call a scaffold.
We say that a pair (G, E) is a scaffold if it has at least one pair of subgraphs G1, G2 with G1 @G2

defined.
Assume a set Atoms of atomic propositions, ranged over by p. The set, Formulae, of all

propositional formulae is generated by the following grammar:

φ ::= p | > | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | φ� φ | φ−−�φ | φ�−− φ .

The connectives above are the standard classical additives, together with multiplicative conjunc-
tion, �, and implications −−�,�−−. We define ¬φ as φ→ ⊥. A Hilbert-type proof system, LGLH,
for LGL is given in Table 1. The system combines a Hilbert-type system for the Boolean fragment
of LGL together with the necessary multiplicative rules for �, −−�, and �−−. These latter rules
amount to the evident non-commutative variation of the multiplicative rules in the Hilbert-type
system for BI [50]. Natural deduction, sequent calculus, and display calculus systems are given in
[21].
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1. φ ` φ 2. φ ` >
3. ⊥ ` φ 4. (φ→ ⊥)→ ⊥ ` φ

5.
η ` φ η ` ψ
η ` φ ∧ ψ

6.
φ ` ψ1 ∧ ψ2

φ ` ψi
(i = 1, 2)

7.
η ` ψ φ ` ψ
η ∨ φ ` ψ

8.
φ ` ψi

φ ` ψ1 ∨ ψ2
(i = 1, 2)

9.
η ∧ φ ` ψ
η ` φ→ ψ

10.
η ` φ→ ψ η ` φ

η ` ψ

11.
φ ` ψ

η ∧ φ ` ψ
12.

ξ ` φ η ` ψ
ξ � η ` φ� ψ

13.
η � φ ` ψ
η ` φ−−�ψ

14.
ξ ` φ−−�ψ η ` φ

ξ � η ` ψ

15.
η � φ ` ψ
φ ` η �−− ψ

16.
ξ ` φ�−− ψ η ` φ

η � ξ ` ψ

Table 1. The Hilbert-type System LGLH

Given a scaffold (G, E) and a valuation V : Atoms −→ P(Sg(G)), where P is the powerset
operator, the language can be given a semantics on the set of subgraphs of G. The satisfaction
relation is � ⊆ Sg(G)×Formulae. The definition of the satisfaction relation for the multiplicative
connectives is given in Table 2. Satisfaction for the additive connectives follows that of classical
propositional logic.

(G, E), G �E φ1 � φ2 iff there are G1, G2 such that G = G1@G2, and
(G, E), G1 �E φ1 and (G, E), G2 �E φ2

(G, E), G �E φ−−�ψ iff for all H, G@H ↓ and (G, E), H �E φ implies
(G, E), G@H �E ψ

(G, E), G �E φ�−− ψ iff for all H, H@G↓ and (G, E), H �E φ implies
(G, E), H@G �E ψ

Table 2. The Satisfaction Relation for Multiplicative Connectives of LGL

Let JφK = {G | G � φ} for every proposition φ. This defines an interpretation function
J−K : Formulae −→ P(Sg(G)). Again, this is all relative to (G, E) and V. With this definition, it
is easy to check that the following properties hold for all φ, ψ, and ξ:

Jφ ∧ ψK ⊆ JξK iff JφK ⊆ Jψ → ξK

Jφ� ψK ⊆ JξK iff JφK ⊆ Jψ−−� ξK iff JψK ⊆ Jφ�−− ξK .
These relationships underpin the adjointness relations for the implications →, −−� and �−−.

Fix a scaffold (G, E), and consider an instance of the satisfaction relation of the form (G, E), G �E
φ1 � φ2, where G is a subgraph of G. This means that G can be decomposed into subgraphs G1

and G2, that is G = G1 @E G2, such that G1 satisfies φ1 and G2 satisfies φ2. The asymmetry of
the composition operator, with edges from the component G1 of G to the component G2, means
that it is reasonable to regard G1 as ‘layered over’ G2.

3.1.1. Meta-theory. An algebraic semantics for LGL can be established. See [21] where it is also
explained that the semantics on graphs given here is special case of this algebraic semantics.
The semantics is expressed in terms of layered magmas — adapting terminology from [26, 27] to
describe a structure (M, •) with a partial binary operation • on a carrier set M — and layered
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algebras (A,∧,¬,>,�,−−�,�−−) which combine Boolean operations with a non-commutative binary
operation and � and its associated right and left adjoints, A−−�− and A�−−−, for all A ∈ A.

Theorems 3.1 and 3.2 below show that the Hilbert-type system for LGL is sound and complete
with respect to the algebraic semantics. Proofs are given in [21] and further discussions of the use
of algebraic structures for (commutative) bunched logic can be found in [50, 29].

Theorem 3.1. The rules of LGLH are sound on layered algebras: for any layered algebra A,
for any interpretation J−K : Formulae −→ A, and for any propositions φ and ψ, if φ ` ψ then
JφK ≤ JψK.

Theorem 3.2. For any propositions φ and ψ of LGL, if JφK ≤ JψK for all interpretations J−K in
all layered algebras, then φ ` ψ in LGLH.

3.2. Bi-layering & Stacks. The specific model of LGL for access control policy models that we
develop in Section 4 requires worlds that are a particular class of layered graph called bi-layered
stacks. Firstly, in order to identify this type of graph, we also require the notion of bi-layering.

Let G be a graph and let 〈E ,F〉 be an ordered pair of finite sets of edges such that E and F are

disjoint. The bi-composition operator, @̂E,F , is a partial, binary operator on the set Sg(G). We
omit the subscripts on the operator where the distinguished sets of edges E and F are unambiguous.

For all G1, G2 ∈ Sg(G), the expression G1 @̂G2 is defined just when both G1 @E G2 and G2 @F G1

are defined. When G1 @̂G2 is defined, it is given by the vertex and edge sets

V (G1 @̂G2) = V (G1) ∪ V (G2) and E(G1 @̂G2) = E(G1) ∪ E(G2) ∪ ((E ∪ F) ∩ G[G1, G2]) .

We have a bi-scaffold (G, 〈E ,F〉) if there is at least one pair of sub-graphs (G1, G2) such that

G1 @̂G2 is defined and if G1 @E G2 and G2 @F G1 are defined, then G1 @̂G2 is bi-layered with
respect to (G, 〈E ,F〉).

We can now consider the formation of bi-layered stacks via n-ary partial composition operations.
Let G be a graph and E1, . . . , En−1,F1, . . . ,Fn−1 be non-empty sets of edges of G. Let the strong

bi-composition @̂(G1, . . . , Gn) of any subgraphs G1, . . . , Gn of G be defined just when V (Gi) ∩
V (Gj) = ∅, for all i 6= j, and Ei ⊆ G(Gi, Gi+1) and Fi ⊆ G(Gi+1, Gi), for all i; when it is defined,
let

V (@̂(G1, . . . , Gn)) =
⋃

1≤i≤n

V (Gi) and

E(@̂(G1, . . . , Gn)) =

 ⋃
1≤i≤n

E(Gi)

 ∪
 ⋃

1≤i≤n−1

Ei ∪ Fi

 .

The infix notation of G1 @̂E1,F1
G2 @̂E2,F2

. . . @̂En−2,Fn−2
Gn−1 @̂En−1,Fn−1

Gn will also be used

and in the case n = 1 we define, as in [21], G = @̂(G). Again, we will only write the subscripts

on @̂ where the edge sets need to be emphasized. Further details and examples are in [21] and
naturally arising examples are in, for example, [46, 28, 48]. Illustrations of a bi-layered graph and
a bi-layered stack are shown in Figures 5 and 6, respectively.
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The n-ary composition defined above can be used to give a logical characterization of stacking.
Details are found in [21] but the crucial change is the replacement of the multiplicative connectives
with n-ary versions �n and −−�n,m, where n ≥ 2 and 1 ≤ m < n. In places, we use the notation
φ1�φ2 as an abbreviation for �2(φ1, φ2). The satisfaction relations for the n-ary logical connectives
are shown in Table 3 where, for simplicity, notation specifying scaffolds and the subscript on � is
omitted. As shown in Table 3, any world that satisfies the formula −−�n,m(φ1, . . . , φn−1, ψ) must
occur in the mth position of the n-ary composite satisfying ψ.

G � �n(φ1, . . . , φn) iff there exist G1, . . . , Gn such that G = @̂(G1, . . . , Gn)
and Gi � φi for 1 ≤ i ≤ n

G � −−�n,m(φ1, . . . , φn−1, ψ) iff for all G1, . . . , Gm−1 and Gm+1, . . . , Gn−1

Gi � φi and @̂(G1, . . . , Gm−1, G,Gm+1, . . . Gn−1)↓
implies G1 @̂ . . . @̂ Gm−1 @̂ G @̂ Gm+1 @̂ . . . Gn−1 � ψ

Table 3. Satisfaction relation for n-ary connectives

3.3. The Binary Case. Almost all of the remainder of the paper will focus on the n-ary connec-
tive introduced above, since the theory to represent access control that we develop uses worlds that
are bi-layered stacks. Discussion of the binary case (a 2-ary instance of n) will be included where
appropriate. The binary case is also used when presenting some examples but this has no effect

on the formulation as it is shown in [21] that G1 @̂E,F G2 ' G1@̂E,FG2, where ' denotes Kleene

equality. In cases where n > 2, ifG1 @̂E1,F1
. . . @̂En−1,Fn−1

Gn ↓ thenG1 @̂E1,F1 . . . @̂En−1,Fn−1 Gn ↓
and both compositions are equal. The converse, however, does not hold in general due to the non-

associativity of @̂.
Consider a graph, G, consisting of four vertices, say v1, v2, v3, v4 and precisely the eight edges

indicated in Figure 7. Let Gi be the subgraph consisting of the single vertex {vi}, for i = 1, . . . , 4.

	  	   v1	  

v2	   v3	  

v4	  

Figure 7. Bi-Layered Graph, but not a Stack

We can then consider the composite ((G1 @̂ G2) @̂ G3) @̂ G4, suppressing mention of the unique
edge sets that make this defined. Many graphs can be construed as composites in this rather
trivial way. For some examples, it is necessary to first adjoin edges so that each pair of vertices
with precisely one edge between them has a pair of edges in opposite directions.

4. An Access Control Policy Model of LGL

Access control policy models — such as Bell-LaPadula, Biba, and Chinese Walls, as discussed
in Section 1 — are concerned with regulating how agents access and manipulate data items.
These models are usually presented in terms of the security designations of data items (e.g., ‘no
read-up, no write-down’, and so on). However, the agents and data items concerned are located
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within system architectures and the associated security designations are implemented within those
systems. As mentioned in the introduction, in our approach, we distinguish between the security
architecture, as specified by the security policy, and the underlying system architecture, to which
the security policy is intended to apply. This approach allows, for example, one to consider whether
the security architecture and the underlying system architecture are compatible with one another.
For example, it may be that there are features of the system architecture that undermine the
security architecture. Example 4.5 illustrates this point.

Generally, we would emphasise that security designation is a synthetic attribute and is just
one characteristic attribute for exercising security control (e.g., in authentication, prior to access
control). Other attributes may also be used, and location, which may be logical or physical, is
one that is commonly used. Indeed, the implementation of a control may depend on location; for
example, a mobile device on a corporate network may have direct access to confidential data, but
may require a VPN connection when connected to the internet via an external network, even if in
the same physical location. Moreover, vulnerabilities may arise if it is assumed that all agents at
a given location will have a particular designation: if a passenger gains unauthorized access to an
airline’s lounge via a back door lacking appropriate access control, then she may obtain services to
which she is not entitled according to the policy. That is, there may be a mismatch between policy
(formulated explicitly using designation) and implementation (done without explicit designation
checks). We are interested not merely in the fact that the system may not be secure (according
to policy), but in exactly what way.

In this section, we establish a theory of LGL that describes how access control policies regulate
how located agents access and manipulate located data items. To this end, we establish a class
of atomic formulae that denote an agent’s access to a data item along a path within the system’s
architecture.

The languages and logics introduced below are, at present, only given a semantics on stacks.
These are linear structures. Thus the languages are not currently able to account for all lattice
models of security levels.

Let G = G1 @̂E1,F1
G2 @̂E2,F2

. . . @̂En−2,Fn−2
Gn−1 @̂En−1,Fn−1

Gn be a bi-layered stack and let
the index of each layer identify a security classification with 1 the highest down to the lowest value
n. We restrict ourselves to stacks that do not contain additional, extraneous, distinguished edges.
Graphs of this type may be present in the ambient structure but are not considered. Let A be
a set of agents and D be a set of data items. The sets A and D are disjoint. We use A and D
to denote agents and data items, respectively. Let Atom be a set of atomic actions. For example,
atomic actions might include, among others, read and write, or more system specific actions,
such as moving data items between locations. Let the set of actions be Act = P(A)× Atom×D.
A triple of the form ({A} , write, D) will be denoted as A write D, which is read as ‘agent A
writes to data item D’.

Agents and data items are to be used to define a new family of atoms, with notation 7→ (suitably
indexed), that we call access operators or access assertions. These have some similarity to the
points-to relation of Pointer and Separation Logic, [37, 52]. Access is represented in terms of an
agent and piece of data meaning that an instance of a relation A 7→ D is to be read as ‘agent
A has access to data item D’. The operator is given a superscript relating to actions and we
use r and w throughout to denote read and write actions. An instance of the relation A 7→r D
means that agent A has read access to D. Where the superscript of a is used it is intended to
denote either read or write (or both). Notational similarities between the access operator and
the points-to relation are not indicative of a technical connection but arise as a result of using
points-to as inspiration.

Note that the access operators represent, in a sense, the privilege to perform actions at a single
moment of time, rather than the (state change arising from) the action itself. In Section 6 we
will add the ability to reason about the state change arising from the action. This allows for
a distinction between actions that, viewed statically, could be performed because of appropriate
privilege, and actions that may be performed in a given system taking into account dynamic
changes of state. In much of the existing literature on formal security policy models (e.g., [5]) the
privilege to perform actions in a given state is represented, as is the the action itself in the form of
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a state-transition, allowing for a ‘Basic Security Theorem’ to be proved showing the preservation
of secure state under policy.

We will use the notion of a path within a stack G, [9, 25]. A path P is a (sub)graph where V (P )
is a sequence of vertices v1, . . . , vn and E(P ) = {(vi, vi+1) | 1 ≤ i ≤ n− 1}. That is, E(P ) only
contains edges that connect subsequent vertices in the sequence V (P ). We will denote paths by a
sequence of vertices P = v1, v2, . . . , vn and permit an empty path where vi = vj for all i 6= j and
E(P ) = ∅. Multi-graphs are not permitted. That is, there is at most one edge from one vertex to
another.

Edges of G will be labelled by Access Control Lists (ACLs): an ACL will here consist of a finite
set of triples of the form (A, a, D) ∈ A × Atom × D. Each edge e is labelled by a unique access
control list Label(e). If (A, a, D) ∈ Label(e), this means that A can perform an (atomic) action a

on data item D, via edge e.
In what follows, we define a satisfaction relation for logical formulae at worlds which consist

of bi-layered stacks and mappings of agents and data to vertices of the stack. Formally, a stack

of the form G = G1 @̂E1,F1
. . . @̂En−1,Fn−1

Gn consists of the sequence G1, . . . , Gn of components

(and the ambient graph and distinguished edge sets). Thus, a formal notation should really keep
track of this sequence of components. However, in what follows, we develop a shorthand in which
we simply write instances of satisfaction in the form F,G � φ, where G is the composite stack (for
example, as immediately above), F is an assignment that describes which agents and data lie at
which vertices of G, and φ is a formula; note that this mentions only the composite G and not
its components. In reading this notation, it is important to remember that the graph component
is an abuse that stands in for the whole structure of the stack. The interpretation that we give
demands that worlds carry certain (non-commutative) composition operations. In particular, this
requires composition operators on stacks. Proposition 4.2 shows that these composition operations
on stacks are induced from those on graphs in a very direct fashion. This, together with a notion
of composition for pairs of agent and mapping assignments, justifies our abuse of notation, but we
make select further comment on the notation below for the sake of clarity.

The language LGL was previously interpreted on the set of subgraphs of an ambient graph,
G. Below, it will be interpreted using stacks. However, the new atoms given by access operators
require, in addition, the specification of where data and agents lie.

Definition 4.1. Let G be a given ambient graph. Define an agent-data assignment to be a partial
function from the (disjoint) union of the sets of agents and data to the set of vertices of G. We
reserve the letter F for such assignments. The domain of F is the (largest) set of elements on
which F is defined. Let F be the set of all agent-data assignments (for the given G).

Abusing notation slightly, we define an n-ary composition @̂ for elements F1, . . . , Fn of F. Let

@̂(F1, . . . , Fn) be defined if and only if the domains of F1, . . . , Fn are disjoint; when it is defined,
let the graph of this partial function be the union of the graphs of F1, . . . , Fn.

We will also use the infix notation F1 @̂ . . . @̂ Fn. An illustration for the binary case, denoted

@̂ in line with the notation of Section 3, is shown in Figure 8.
Now consider pairs of the form (F,G), where G is a stack in G and F is an agent-data as-

signment. Define an agent-data assignment F to be compatible with a sub-graph G of the am-
bient graph G when the image of F is contained in the set of vertices of G. The n-ary com-

posite @̂((F1, G1), . . . , (Fn, Gn)) of pairs (F1, G1), . . . , (Fn, Gn) is then defined to be the pair

(@̂(F1, . . . , Fn) , @̂(G1, . . . , Gn)), where both of the components of this pair are defined; the
composite is undefined if either of the components of this pair are undefined. This family of
composites underpins the interpretation of multiplicative connectives given below.

Note that if a graph G is a stack, it can be decomposed into its layers, say G1, . . . , Gn. Any
agent-data assignment F that is compatible with G can then be decomposed into F1, . . . , Fn such
that each Fi is compatible with the corresponding Gi: we simply take each Fi to be the restriction
of F to the set of agents and data that are mapped by F into Gi.

Let G be a stack with layers G1, . . . Gn. Let F be an agent-data assignment that is compatible
with G. Define the corresponding agent assignment to be the restriction of F to A. This will be
written as αF or simply α : A → V (G) when F is clear from the context. Each vertex of G is in
a unique layer Gi of G. For α(A) ∈ V (Gi), define i to give the clearance level of agent A.
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Figure 8. Illustration of Definition 4.1 (binary case)

Define the data assignment corresponding to F to be the restriction of F to D. This will be
written as δF , or simply δ : D → V (G) be a partial function from data items D to a vertex of G.
Define i to be the clearance level of data item D, if δ(D) ∈ V (Gi).

Note that F is a given by a unique pair (α, δ). Let α[A] (that is, F [A]) and δ[D] (that is, F [D])
denote the images of A and D under α and δ, respectively.

It is convenient at this point to begin to discuss some special kinds of atomic formulae that
are available, given the structure of worlds. The atomic formulae q now include not only ba-
sic propositional letters p, as in LGL, but also the access assertions (also referred to as access
operators):

q ::= p | A 7→a D | A 7→a
U D | A 7→a

D D.

The assertion A 7→a D says that the agent A is able to access the data D. Accessing data may
involve reading, writing, or otherwise manipulating (perhaps sharing) the data.

Recall that the worlds satisfying access clauses are bi-layered stacks, G = G1 @̂E1,F1
. . . @̂En−1,Fn−1

Gn.
The semantics of the A 7→a D assertion is

(1)
F,G � A 7→a D iff there is a non-empty path P = F (A), . . . , F (D) in G

such that (A, a, D) ∈ Label(e) for all e ∈ E(P ).

The access operator subscripts U and D to indicate whether the action is taking place upwards
or downwards. The assertion A 7→a

U D says that the action a is (strictly) upward. The semantics
of this assertion is given by

(2)
F,G � A 7→a

U D iff there is a non-empty path P = F (A), . . . , F (D) in G
such that E(P ) ⊆

⋃
k F1≤k≤n−1 and,

(A, a, D) ∈ Label(e) for all e ∈ E(P ).

So, the added condition on edges of the path ensures that the path is strictly monotonic, moving
upwards only. Again, all edges of P must be labelled with the appropriate ACLs.

The assertion A 7→a
D D says that the action a (strictly) downward action. The semantics of this

assertion is

(3)
F,G � A 7→a

D D iff there is a non-empty path P = F (A), . . . , F (D) in G
such that E(P ) ⊆

⋃
k E1≤k≤n−1 and,

(A, a, D) ∈ Label(e) for all e ∈ E(P ).

Let the ambient graph be G and the distinguished edge sets be E1, . . . , En and F1, . . . ,Fn. A
‘stack’ will now be taken to be a strong bi-composition of the form

G1 @̂Ei(1),Fi(1)
. . . @̂Ei(m),Fi(m)

Gm,

where i(j) 6= i(k), for all j 6= k, and 1 ≤ i(j) ≤ n, for all j. Thus, this composite simply uses a
sub-family of the original family of (pairs of) distinguished edge sets. Let stack(G) be the set of
such stacks. Let compatible(F,G) be the set of all pairs (F,G) ∈ F× Sg(G), where G is a stack in
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F,G � > always F,G � ⊥ never F,G � p iff F,G ∈ V(p)

F,G � φ ∧ ψ iff F,G � φ and F,G � ψ

F,G � φ ∨ ψ iff F,G � φ or F,G � ψ

F,G � φ→ ψ iff F,G � φ implies F,G � ψ

F,G � �n(φ1, . . . , φn) iff there exist F1, G1, . . . Fn, Gn such that

G = @̂(G1, . . . , Gn), F = @̂(F1, . . . , Fn)
and Fi, Gi � φi for 1 ≤ i ≤ n

F,G � −−�n,m(φ1, . . . , φn−1, ψ) iff for all F1, G1, . . . , Fm−1, Gm−1 and
Fm+1, Gm+1, . . . , Fn−1, Gn−1,

Fi, Gi � φi and @̂(F1, . . . , Fm−1, F, Fm+1, . . . , Fn−1) ↓ and

@̂(G1, . . . , Gm−1, G,Gm+1, . . . , Gn−1) ↓ implies

@̂(F1, . . . , F, . . . , Fn−1), @̂(G1, . . . , G, . . . , Gn−1) � ψ

Table 4. Satisfaction Relation for Access Control (Basic LGL)

F,G � φ1 � φ2 iff there exist F1, G1, F2, G2 such that

G = G1 @̂G2, F = F1 @̂, F2

and F1, G1 � φ1 and F2, G2 � φ2

F,G � φ−−�ψ iff for all J,H such that G @̂H ↓ and F @̂ J ↓,
J,H � φ implies F @̂ J,G @̂H � ψ

F,G � φ�−− ψ iff for all J,H such that H @̂G↓ and J @̂F ↓,
J,H � φ implies J @̂F,H @̂G � ψ

Table 5. Satisfaction Relation for Binary Versions of Multiplicative Connectors

G, and where F is compatible with G. We suppress here the mention of the distinguished edge set
pairs ((E1,F1, ), . . . , (En,Fn)) in the stack and compatible notation.

For F as above, a valuation function

V : Atoms→ P(compatible(F,G))

generates a semantics for the model. The satisfaction relation is now

� ⊆ compatible(F,G)× Formulae

as defined by Tables 4 and 6. Binary instances of the multiplicative connectives are presented in
Table 5 to further explain the more general n-ary multiplicatives, and because binary cases often
arise in examples.

For any proposition φ, let JφK = {F,G | F,G � φ}. This defines an interpretation function

J−K : Formulae −→ P(compatible(F,G)).

The monoidal structure of compatible(F,G)) discussed above ensures that P(compatible(F,G)) is
a layered algebra.

Note that the (G, 〈E ,F〉) notation of LGL for bi-layering and stacks [21], including the subscript
on �, is suppressed for simplicity (this additional data is implicit), and that the access operators
are the only formulae that require F for interpretation.

The clauses in Table 4 present the satisfaction for the n-ary connectives with satisfaction for
the binary case shown in Table 5. Given that the worlds that satisfy formulae in this specific
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model are stacks, satisfaction requires an implicit enumeration of the decomposition of a stack G

(e.g., G = G1 @̂ . . . @̂ Gn). As noted above, the specific decomposition of the stack occurring in
an instance of this relation is suppressed.

In the case of the multiplicative connector �, G must decompose into stacks (not merely sub-
graphs) that satisfy the respective parts of the formula. They will (implicitly) have their own
specific decompositions into layers. So if, for example, F,G � φ1 � φ2 then, assuming appropriate
functions, for F1, G1 � φ1 and F2, G2 � φ2, G1 and G2 must also be stacks. The stacks G1 and G2

are constructed based on the existence of a specific, but non-unique, decomposition of G. That
is, G1 and G2 are the composition of a subsequence of the n layers of G that allows properties φ1

and φ2 to be satisfied. A decomposition of F , yielding F1 and F2 that are compatible with G1

and G2, respectively, can be found by restricting F to G1 and G2, respectively.
Proposition 4.2, which is a minor adaptation of a result found in [21], shows that stacks have

a well-defined composition operation. As noted above, this extends to a well-defined composition
operation on compatible pairs, and this supports the satisfaction clauses for �n and −−�n,m.

Proposition 4.2. Let G be a graph, let all Gi below be non-empty subgraphs of G, and all Ei,Fi be

non-empty sets of edges of G. Let G1 @̂E1,F1
. . . @̂En−1,Fn−1

Gn be defined. Then, for 1 ≤ k ≤ m ≤
n, Gk @̂Ek,Fk

. . . @̂Em−1,Fm−1
Gm is defined. That is, if an n-ary strong composite is defined with

respect to a sequence of n−1 edge sets, then the evident (1+m−k)-ary strong composite is defined

for any consecutive subsequence. In particular, this holds for m = k + 1, so that Gk @̂Ek,Fk
Gk+1

is defined. Moreover,
(4)

G1 @̂E1,F1
. . . @̂En−1,Fn−1

Gn = (Gk0 @̂E1,F1
. . . @̂Ek1−1,Fk1−1

Gk1) @̂Ek1
,Fk1

. . . @̂Ekz−1,Fkz−1

(Gkz
@̂Ekz+1,Fkz+1

. . . @̂Ekz+1−1,Fkz+1−1
Gkz+1

),

for all 1 = k0 ≤ k1 ≤ . . . ≤ kz ≤ kz+1 = n and 0 ≤ z ≤ n such that the right-hand-side
‘partitions’ the sequence from the left-hand-side into consecutive subsequences (each expression

in brackets). Each of the bracketed expressions Gki
@̂Eki+1,Fki+1

. . . @̂Eki+1−1,Fki+1−1
Gki+1

on the

right-hand-side is intended to be a (1 + ki+1 − ki)-ary composite.

The proof is given in [21] for the case involving edge sets E1, . . . , En−1. The inclusion of the
additional edge sets Fi means only a trivial change.

Example 4.3. Let G = G1 @̂E1,F1
G2 @̂E2,F2

G3 @̂E3,F3
G4. That is, G is a bi-layered stack with

4 layers. Let H1 = G1 @̂E1,F1
G2 and let H2 = G3 @̂E3,F3

G4. Clearly H1 and H2 are defined and

G = H1 @̂E2,F2
H2, showing that G can be decomposed into stacks of fewer layers. �

F,G � A 7→a D iff there is a non-empty path P = F (A), . . . , F (D) in G
such that (A, a, D) ∈ Label(e) for all e ∈ E(P ).

F,G � A 7→a
U D iff there is a non-empty path P = F (A), . . . , F (D) in G

such that E(P ) ⊆
⋃

k F1≤k≤n−1 and,
(A, a, D) ∈ Label(e) for all e ∈ E(P ).

F,G � A 7→a
D D iff there is a non-empty path P = F (A), . . . , F (D) in G

such that E(P ) ⊆
⋃

k E1≤k≤n−1 and,
(A, a, D) ∈ Label(e) for all e ∈ E(P ).

Table 6. Satisfaction Relation for Access Control Assertions

The non-uniqueness of the decomposition of a stack satisfying a formula involving � is illus-
trated by the following example:

Example 4.4. Consider Figure 9. Let G = G1 @̂ . . . @̂ G5 and assume the existence of appropriate
functions Fi that map the agents and data items into G as shown. Also assuming the existence
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Figure 9. Illustration of Example 4.4

of appropriate ACLs, it is clear from the diagram that F,G � (A1 7→a
D D1) � (A2 7→a

U D2), where

F = @̂(F1, . . . , F5). Now let H1 = G1 @̂E1,F1
G2, let H2 = G3 @̂E3,F3

G4 @̂E4,F4
G5, let H ′1 =

G1 @̂E1,F1
G2 @̂E2,F2

G3 and let H ′2 = G4 @̂E4,F4
G5 with J1, J2, J

′
1, J
′
2 denoting the corresponding

composition of functions. Then it is the case that both of the following hold:

J1 @̂E2,F2
J2 , H1 @̂E2,F2

H2 � (A1 7→a
D D1) � (A2 7→a

U D2) and

J ′1 @̂E3,F3
J ′2 , H

′
1 @̂E3,F3

H ′2 � (A1 7→a
D D1) � (A2 7→a

U D2).

�

4.1. Examples of Access Control Policy Models. It is tempting ask whether our LGL-based
approach to modelling systems and their associated access control policy models — that is, access
control policy models of LGL — is able to present all instances of Bell La Padula, Biba, and
Chinese Wall (or Brewer Nash) policies. There are essentially two questions here. First, can
the LGL-based approach express all instances of these policies expressed at the (finite) level of
abstraction taken in, say, [3] or [4]? Second, given our motivations as expressed in Sections 1 and
2, can we identify classes of distributed systems and associated access control policies that are
uniformly and completely expressible using our LGL-based approach?

The answer to the first question is, up to some straightforward choices about the design of
models, quite trivially yes. At the given level of abstraction, it is immediate that LGL with the
access operator(s) as described in Section 4 can capture the various read and write constraints
required for any instance of the Bell La Padula and Biba models. Lattice models in general require
the binary case, as mentioned in Section 3.3.

Similarly, it is immediate that the multiplicative conjunction, as introduced in Section 5, next, is
sufficient to describe the separated regions of a system that Chinese Walls create. However, given
our motivations, as explained in Sections 1 and 2, this question is not of much further interest.

To address the second question, which is very far from trivial, it would seem to be necessary
to develop a more substantially detailed view of class of underlying distributed systems to which
the policy models would be intended to apply, formulate an LGL-based model of that class of
systems, and then formulate a general definition of each class of policy model in that context.
This would be a very substantial piece of work, and is certainly beyond the scope of this paper.
We can, however, briefly discuss some of the issues that would need to be addressed in such a
programme of work.

• First, any such class of distributed systems and associated models would necessarily be
somewhat restrictive. Identifying appropriate choices — sufficiently general for an inter-
esting result, yet sufficiently tractable — would already be a significant challenge.

• Second, even given a class of systems of interest, together with a viable class of models, a
number of choices concerning the relationship between security features, as described by
access control policies, and operational features, which may undermine the intended access
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Figure 10. Organizational Structure including Mobile Storage Layer

control policies, would typically remain. Consequently, further modelling work — in the
established sense of observation, model construction, model exploration, and validation
— would be required in order to identify appropriate classes of systems and policies to be
studied.

• Third, it is unlikely that the simple propositional form of LGL presented here will prove
sufficiently expressive to be a convenient or even adequate tool for the purpose. It is likely
that (at least) an extension with ‘resource modalities’, along the lines of the extension
discussed briefly in [21] will be required. In the weak substructural setting of LGL, such
an extension will require a substantial meta-theoretical development.

Such a general analysis of the expressivity of LGL-based approaches would be intended to help
identify a modelling methodology

Having outlined a rather substantial programme of research about expressivity and methodology
— the execution of which would be well beyond this first paper — we now present a range of
relatively simple examples of how the somewhat elementary version of the approach developed
so far can be applied. A recurrent feature of the examples is compositionality. For example,
composition of policies as in Example 4.7, which occurs at the level logical propositions, or the
compositional structure of system architecture as in Examples 4.5, 4.6, 4.9, or 4.8, which occurs
at the level of the logic’s models. As we have remarked in Section 2, Sections 5 and 6 describe yet
further forms of compositionality.

Example 4.5 (Side-channel). This example, which was introduced in Section 1, gives a first indi-
cation of why it is important that access control policies take account of organizational structure.

Consider an organization whose network contains two clearance levels: secure and the lower
level general. It is the intention of the organization that data is not permitted to be written from
the secure level to the general level, as this may compromise the confidentiality of the data. The
organization chooses to enforce this by implementing a no write-down rule, according to clearance
levels. This policy, based on the traditional method of using clearance levels only, is inadequate
and could lead to a violation in policy if the underlying organizational structure has not been
considered. The widespread usage of mobile storage devices adds an additional layer, the Mobile
Storage Layer, to the organizational structure meaning that data could be written from the secure
to the general layer.

Consider Figure 10, which is similar to Figure 1, showing the structure of the organization.
Let G1, G2, G3 represent the Secure, Mobile Storage, and General layers. Suppose that G = G =

G1 @̂E1,F1
G2 @̂E2,F2

G3, forming a stack. Let F be the function that maps agents A1, A2 and data
item D into the respective layers as shown. Suppose that there are no restrictions placed on data
being written to, or from, mobile devices. Then the existence of appropriate ACLs around G may
then be assumed.

The current policy, as specified by the organization, means that as there are no restrictions
based on this structure. Therefore, agent A1 can write along the edge of E1 into G2 (the Mobile
Storage Layer). A second write action could then be executed along E2, meaning that secure data
has been written from G1 into G3. This sequence of potential write actions is represented the
following judgement:

F,G � A1 7→w
D D.
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This shows that A1, in the secure layer, does have write-down access to data in the general layer.
As a result, the policy of the organization has been violated.

The organization can correct the flaw in its policy by preventing data from being written to a
mobile storage device. In practice this could be achieved by, for example, blocking the USB ports
of agents with a secure clearance level. If the organization does take account of the additional
structure and enforce new access conditions, the original goal that no data should be written from
the Secure layer (G1) to the General layer (G3), will be attained. Assuming this happens, the
policy can be represented by

F,G � ¬(A1 7→w
D D).

So we can see that the organization in question, which failed to take account of its underlying
structure, was unable to write a policy to adequately enforce its wishes. Taking account of the
existence of the Mobile Storage Layer means that a more appropriate rule can be implemented. �

Example 4.6 (Data Access within a Hospital). This very simple example is about access to data
within a hospital. In this somewhat simplified setting, we assume three types of agents and data:
medical, administrative, and technical. In this simple example, we do not address issues such as
privacy or access to anonymized data: whilst of interested, such concerns are beyond our present
scope.

Suppose that medical staff and data are assigned a clearance level of 1 while all other staff
and data are assigned clearance level 2. Administrative data might be, for example, patient
appointments while technical data may concern maintenance schedules for equipment. Medical
staff should not be involved in the setting of appointments or in decisions about scheduling of
maintenance and as a result should be restricted by a no write-down rule. In addition, technicians
have no need to access patients’ medical records so should be under a no read-up restriction. For
this reason, the BLP model is implemented across the hospital. This ‘blanket’ implementation
is consistent with the approach in previous presentations (e.g., a lattice model) of access control,
where access is governed solely by clearance level.

Consider now the administrative staff. It is standard practice in many medical establishments
that administrative staff perform tasks relating to medical records, such as issuing test results. For
this reason, an implementation of BLP based purely on clearance level will inhibit the ability of
these agents to perform their duties. Recognising this, a hospital may wish to write a new policy
so that administrative staff can be given access to specific pieces of medical data. This, however,
cannot be achieved while access restrictions are based solely on a clearance level. In order to design
an appropriate policy, each member of staff will require specific, and possibly individual, access
privileges. For example, consultants in a hospital often have dedicated secretaries who should only
have access to medical data concerning patients of the given consultant. A similar situation could
be described where technicians work solely on a particular piece of equipment. Access conditions
specified in this manner will be very difficult to manage and potentially counter-productive. Agents
may have to be assigned a clearance level that is unique so that the relevant access permissions
can be specified. That is, clearance levels are singleton sets associated with one agent. In such a
situation it would be impossible to, for example, provide holiday cover as access rights are different
for each individual agent. A more effective solution is to design a policy based on the structure of
the system model, allowing specific access rights to be defined.

Let G = G1 @̂ G2 be a bi-layered stack representing the system model of a hospital. Let the
individual layers correspond to clearance levels 1 and 2. Let AM denote medical staff, let AA

denote administrative staff and let AT denote technicians. Similarly, let DM , DA and DT denote
medical, administrative and technical data, respectively. Let F be the function that maps all
agents and data items into the layered graph.

Consider Figure 11. An effective access policy would mean that agent AA has access to DM

while AT does not. Given that there are paths between the locations of both AA and AT to DM ,
satisfaction of the access operator relies on appropriate ACL labels. Let P1 and P2 denote the (by
assumption, unique) paths to F (DM ) from F (AA) and F (AT ), respectively. If the edges of G are
labelled such that (AA, r, DM ) ∈ Label(e) for all e ∈ E(P1) but (AT , r, DM ) /∈ Label(e) for some
e ∈ E(P2), then the access rights of the system can be given as follows:

F,G � AA 7→r
U DM and F,G � ¬(AT 7→r

U DM ).
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Figure 11. Location of Agents and Data

This means that agent rather than preventing AA from fulfilling its duties, a policy can be written
where AA can be given access to pieces of medical data. The system also continues to prevent AT

from accessing medical data, as required.
This illustrates that the architecture of a system can be used to design a more effective policy

than one based solely on clearance levels. In addition, the system model employed here allows
policies applying to an individual agent (or group of agents) to be developed. �

Example 4.7 (Composing Bell-LaPadula and Biba Policy Models). An important and subtle
problem concerns the construction of systems that support both BLP confidentiality and Biba
integrity models. A direct use of the same notion of security level for both BLP and Biba policies
(with no additional refinements) evidently leads to systems that are somewhat trivial, in the sense
that data subjected to both policies never flows from one level to any other.

A more subtle combination is the dual implementation method for composing the BLP and
Biba models. This involves restricting access of an agent or data item based on the rules of BLP
or Biba, but not both [3].

In the dual implementation, agents are either confidentiality agents (intended to observe the
BLP policy) or integrity agents (intended to observe the Biba) policy. The set of agents A is thus
partitioned into sets AC and AI .

Data, on the other-hand, is not partitioned. Both the BLP and Biba policies apply to all data.
An agent is AC thus satisfies NRU and NWD for this data, whilst an agent in AI satisfies NRD
and NWU for this data.

Consider the example indicated in Figure 12. This consists of a conjoined pair of security
systems. The left-hand security system is intended to maintain a BLP policy. The right-hand
system is intended to maintain a Biba policy. Each system has two levels, marked 1 and 2. In the
BLP system, 1 is intended to be high confidentiality and 2 low confidentiality. Assume that all
the vertices and edges of the conjoined system are shown in the figure. All of the confidentiality
agents are located in the left-hand system, and all of the integrity agents in the right-hand system.
In particular, an agent A1 ∈ AC lives in level 1 of the left-hand system, an agent A2 ∈ AI lives in
level 1 of the right-hand system, and an agent A3 ∈ A3 lives in level 2 of the right-hand system
at the locations shown. A data item D lives at the same location as the agent A1. It is then
immediately evident that A1 can write D across to level 2 on the right-hand system. Moreover,
if D can reach the location of A3 then it could be written back across to level 2 of the left-hand
system. At such a point, information would have been written down from high-confidentiality to
low-confidentiality, violating the intended BLP policy. Consider two cases, where the two systems
are aligned or anti-aligned.

First, suppose that the levels of the two systems are aligned: level 1 on the right is high integrity
and level 2 is low integrity. In this case, agent A2 can write data ‘down’ on the right to the location
of A3. The BLP policy is thus violated through a sequence of actions.

Now suppose that the two systems are anti-aligned: level 1 on the right is low integrity, and
level 2 is high-integrity. In this case, A2 cannot write the data ‘up’ to level 2, and the BLP
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policy is retained. Moreover, no confidentiality agent can ever write data from level 1 to the high-
integrity level 2. This can give some resistance against ‘Trojan Horse’ attacks that attempt to use
ordinary user accounts on machines to compromise system files that should only be modified by
administrators [3].

The situation becomes much more complex when there are more complex systems of levels.

A1	  ,	  D	  

A3	  	  

A2	  	  

Level	  1	  

Level	  2	  

BLP	   Biba	  

Figure 12. A Dual Implementation Problem

�

Example 4.8 (Cascade Vulnerabilities). We begin with a brief summary of the problem, following
the description in [44, 36, 8]. A network can be given a security accreditation (rating) based on
assurance levels, which impacts the data it can contain, and moreover: ‘These accreditation ranges
are taken into account when determining whether or not a component should be allowed to connect
to the system. In this way, the potential damage that can occur when information is compromised
or modified can be limited to an acceptable level’ [44].

The cascading problem is identified in [44]: ‘The cascading problem exists when a penetrator
can take advantage of network connections to compromise information across a range of security
levels that is greater than the accreditation range of any of the component systems he must defeat
to do so.’ In straighforward terms, the transitivity of connections can lead to the composabil-
ity of vulnerabilities. A composite vulnerability can be more serious than its components, and
accreditation ratings are closely related to the potential for vulnerabilities to cause undesirable
information flows between security levels.

 

 

 

 

Figure 13. (ability

As an example, consider Figure 13. The network H1 has only Top Secret, TS and Secret, S,
levels. The network H2 has only Secret and Unclassified, U, levels. The two networks H1 and H2

have been joined by a new connection at the Secret level. An attacker who could defeat a BLP
system in H1 could cause Top Secret information to flow down to the Secret level: the severity of
this potential corresponds to a certain accreditation rating. An attacker who could defeat a BLP
system in the H2 network could cause information to flow from Secret to Unclassified: the severity
of this potential corresponds to another accreditation rating. However, an attacker who could
defeat the BLP systems of both H1 and H2 in the conjoined system, could cause information to
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flow from Top Secret to Unclassified: this potential is more severe than that allowed under either
of the two previous accreditations. This example illustrates that accreditation and cascading can
be understood in terms of layered graph models. �

4.2. Language Extensions for Particular Models. The language is intended to be used to
decribe real systems example in a degree of detail. Sometimes the core language set-out above is
insufficient alone for this purpose. For particular examples it can be useful to add information to
the language pertaining to those particular models. We have found certain language extensions of
particular kinds to be useful.

Given a stack G = G1 @̂ . . . @̂ Gn, the language is extended as follows:

q ::= p | A 7→a D | A 7→a
U D | A 7→a

D D, | A 7→a
Gi
D | A 7→a

Θ D,

where Gi is one of the layers of the stack and Θ is an expression relating to the stack structure as
further explained below. The semantics of these assertions is encapsulated in Table 7.

A useful access relation that describes privilege within a specific layer, Gi, is defined by

(5)
F,G � A 7→a

Gi
D iff there is a path P = F (A), . . . , F (D) in G

such that V (P ) ⊆ V (Gi) and,
(A, a, D) ∈ Label(e) for all e ∈ E(P ).

The satisfaction of this relation means that the path from A to D is contained entirely in Gi,
and that the edges of the path are all labelled with the appropriate access permission.

A path property, Θ, is a formula of some logic of paths. For example, for our purposes here,
it is enough to have a first-order language over two sorts, with one sort for the vertices and the
other for the edges of the ambient graph, constants to name every vertex and edge, and predicate
symbols to name every layer and distinguished edge set. Path properties could be formalized
further but this it not necessary for the purposes of this presentation.

Definiens 5, 2 and 3 are specific cases of the definiens of a general access assertion, A 7→a
Θ D,

given as follows:

(6)
F,G � A 7→a

Θ D iff there is a path P = F (A), . . . , F (D) in G
such that the path property Θ holds of P and,
(A, a, D) ∈ Label(e) for all e ∈ E(P ).

Satisfaction of this general access assertion requires that a path, satisfying some path property,
exists within the vertices of a stack G, and that such a path is labelled with the relevant permis-
sions. The relations shown in 5, 2 and 3 enforce conditions about the direction of a path through
G.

F,G � A 7→a
Gi
D iff there is a path P = F (A), . . . , F (D) in G

such that V (P ) ⊆ V (Gi) and,
(A, a, D) ∈ Label(e) for all e ∈ E(P ).

F,G � A 7→a
Θ D iff there is a path P = F (A), . . . , F (D) in G

such that the path property Θ holds of P and,
(A, a, D) ∈ Label(e) for all e ∈ E(P ).

Table 7. Satisfaction Relation for Language Extensions

Example 4.9 (A Confidential Filestore). In [3], a BLP compliant system is illustrated using a
simple example about access to files in a repository. We present a similar example here.

Let G = G1 @̂ G2 be a bi-layered stack representing the network of an organization, and let R
denote a data repository. This repository is represented as a subset of V (G1). We assume if data
is mapped to a vertex of G1 (the high-confidentiality layer), the vertex is contained in R. All data
resident in R has the clearance level 1. The system supports two actions which, when successful,
allow an agent to look inside (read to) R or to append (write to) R.
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Following the presentation in [3], we show that the BLP rules hold relative to R. Assume that
the organization specifies that a read action can only be carried out by an agent of equal clearance
level to R, while there are no restrictions placed on write. This specification means that,

F,G � A 7→r
G1

D

using the single-layer access assertion of Table 7. The fact that access to data in R is compliant
with the no read-up (NRU) rule is captured by this instance of the satisfaction relation.

Given that there are no restrictions on agents writing to data in R,

F,G � A 7→w
> D.

with 7→w
> an instance of the general access assertion 7→a

Θ as in Table 7. Access to data in R is
trivially compliant with the no write-down (NWD) rule. �

Example 4.10 (UNIX). This example uses our model to represent access permissions in a simple
UNIX-like system (www.unix.org). It is not intended to be a fully general description of the
permission system of any UNIX variant.

Suppose that the system permissions have all been fixed in advance. Consider a user A. Suppose
that A is the owner of a directory D. Let Group(D) denote the group associated with D. For
simplicity, assume that A is a member of Group(D). Suppose that A specifies that write access to
D is available to A only, while members of Group(D) have read access. No access is permitted to
non-group members. In UNIX, this would be represented as

dir rw − r−−−−− A Group(D).

We assume that we have a UNIX directory that can be regarded as a tree (and not a directed
graph, as can occur under some implementations), with a subdirectory (or file) belonging to a
directory being the child-parent relationship. Consider a particular such tree, T , and add a formal
inverse to every directed edge. The resulting graph, G, can now be regarded as a bi-layered graph
in more than one way.

Since our logical models are presently restricted to stacks we make a simplistic choice that each
layer consists of all the nodes at each tree height. The set-up is depicted in Figure 14.

…"

…"

…"

Figure 14. A Simple UNIX File System

Let the specified system permissions generate the appropriate ACLs (in the sense used in this
paper, not in the UNIX sense) on the edges of G. Let S be an operating system subject (process).
The execution of this (invoked by some user) is associated with a particular point in the directory
tree (the directory that the user calls it from). Then, in this example, the access clauses can be
stated using group membership. If each agent adheres to the system policies, access conditions to
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D can be specified by the following judgements:

F,G � S 7→r
UX D iff there is a path P = F (S), . . . , F (D) in G

and S is executing on behalf of and with the permissions of some user B
and the final edge of P (into F (D)) is labelled with (B, r, D)
and all other edges of P are labelled with (B, x, D)
and B ∈ Group(D)

and

F,G � S 7→w
UX D iff there is a path P = F (S), . . . , F (D) in G

and S is executing on behalf of and with the permissions of the user A
and the final edge of P (into F (D)) is labelled with (A, w, D)
and all other edges of P are labelled with (A, x, D).

Only execute, x, permission is required to traverse intermediate directories (between that of S and
that of D) for all access operations.

The relations 7→a
Θ are not quite sufficiently general to capture these two access relations. How-

ever the similarity is clear. We do not discuss the many further nuances of permissions for real
UNIX-like operating systems. �

The example above employs a very simple version of the access control set-up found in UNIX
[49]. To handle all of the structure and complexity of the full UNIX access control régime, and
lattice models more generally, would require a much richer logical set-up, for which there are
several design choices to be made. For example, in order to capture the full range of access
permissions that are assignable in UNIX — see [3] for a relevant discussion — it would it would
seem to be necessary to work not with stacks, but rather with the more general layered graph
models of LGL. Such a choice would require the access relations to be formulated in this more
general setting, taking account of the weaker algebraic and combinatorial structure of the more
general models. Such a development, which we believe should also take account of a range of
examples other than UNIX, represents a future project beyond our present scope.

In subsequent sections, where a layer-specific assertion A 7→a
Gi

D or a general path access
assertion A 7→a

Θ D is used, it is to be understood that an appropriate language extension for a
particular model is under consideration.

5. Chinese Walls: Adding ∗ (and −−∗)

As described so far, the use of multiplicative connectives in LGL is restricted to non-commutative
layering. It is also possible to add, as in BI and Separation Logic, a commutative and associative
multiplicative conjunction, ∗, and its associated implication, −−∗. Such an addition is useful for
describing an important class of access control policy models sometimes known as Chinese Walls
[3]. These models decompose a system into regions between which information is not permitted
to flow. Table 8 gives the rules required to extend the Hilbert-type proof system given in Table 1
with ∗ and −−∗.

ξ ` φ η ` ψ
ξ ∗ η ` φ ∗ ψ

η ∗ φ ` ψ
η ` φ−−∗ ψ

ξ ` φ−−∗ ψ η ` φ
ξ ∗ η ` ψ

Table 8. Additional Proof Rules for ∗ and −−∗

Definition 5.1. Let G be an ambient graph. Define a partial binary operation ◦ on the set of
subgraphs of G. For G1, G2 v G, G1 ◦G2 is defined iff V (G1)∩V (G2) = ∅, and there is no edge of
G from a vertex of G1 to a vertex of G2, and no edge of G from a vertex of G2 to a vertex of G1.

When defined, the result of the operation ◦ is the union of disjoint subgraphs of G. This
operation is both commutative and associative. We work with the binary case here, but it would
be easy to define an n-ary version. The additional semantic clauses for satisfaction are shown in
Table 9. This set up requires Definition 5.2, which is similar to Definition 4.1.
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Definition 5.2. Let G be an ambient graph and let F be defined as in Definition 4.1. Define a
partial, binary operation ◦ : F× F→ F in the following way. Let F1 ◦ F2 be defined if and only if
there exists G1, G1 ∈ Sg(G) such that G1 ◦G2 is defined, the image of F1 is contained in V (G1),
the image of F2 is contained in V (G2) and the domains of F1 and F2 are disjoint. When defined,
F1 ◦ F2 produces a function with image contained in V (G1 ◦G2).

In Section 4 , the interpretation was of the form F,G � φ, where G was a graph, formed as a
specific stack. In this section, the graph can now be formed from both of the operations ◦ and

@̂. As a simplifying measure, we consider only a single pair of distinguished edge sets (E ,F) to
allow us to forget about the composite structure and take G simply to be the graph. The definiens
given for the logical atoms given in the relations 5, 2, 3, 6 can then understood unambiguously in
this setting. The interpretation set out in Section 4 is extended to the new language including the
connectives ∗ and −−∗ as shown in Table 9.

F,G � φ1 ∗ φ2 iff for some F1, G1, F2, G2 such that F = F1 ◦ F2 and G = G1 ◦G2,
F1, G1 � φ1 and F2, G2 � φ2

F,G � φ−−∗ ψ iff for all J,H such that F ◦ J ↓ and G ◦H ↓,
J,H � φ implies F ◦ J,G ◦H � ψ
Table 9. Additional Satisfaction Clauses

Example 5.3 (Multi-layer Chinese Walls). As usually formulated, the Chinese Walls model does
not deal with the structure of multi-layered systems. If poorly formulated, or implemented, in
the presence of multiple layers, the rules of a policy that uses Chinese Walls may then not guard
against unwanted potential flows of information through the network. This example shows how
such violations can occur and how flaws can be corrected through the composition of Chinese
Walls with the rules of either BLP or Biba.

Consider an organization that adopts a Chinese Wall model to segregate access in its physical
information network. Suppose that the organization also employs agents as consultants who,
working outside the organizations premises, are provided with a laptop to access data relating to
the organization. This results in an additional layer of organizational structure, which we will call
the Mobile Access Layer.

Consider Figure 15. This shows graphs G1 and G2 at either sides of a Chinese Wall, layered over
another graph G3. The vertices and edges of the ambient graph, G, are precisely those represented
in this figure. The situation shows that a Chinese Wall could be circumvented because of the
presence of the lower layer. The intra-layer edges each represent a pair of edges, with one in each
direction. Each of the inter-layer edges is marked with the distinguished edge set to which it
belongs.

	  
	  

Physical	  Layer	  

Mobile	  Access	  Layer	  

Figure 15. Chinese Wall in a Layered Graph
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Let Ḡ denote the Physical Layer, Ḡ = G1 ◦ G2. Let G3 denote the Mobile Access Layer, let

G = Ḡ @̂ G3.
Let A1 and A2 be agents at a firm (such as an investment bank advising on a merger or an

acquisition), segregated to work solely on datasets D1 and D2. Let A3 be an agent at a vertex of
G3 capable of accessing V (G1) and V (G2), (say through the use of a laptop, as described above).
Assume that F1 has domain {A1, D1}, F2 has domain {A2, D2} and F3 has domain {A3}. Assume
that these together map the elements of these domains to the vertices of G as shown in Figure 15.
Let F̄ = F1 ◦ F2 and let F = F̄ ◦ F3.

Assume that all edges of G are labelled with the relevant ACLs so that each Ai can read or
write any data item Dj when their locations are connected by an edge.

Then, if Ḡ is considered as a stand-alone network, that is, forgetting about G3, the same access
relations between the agents and data items located in Ḡ hold. We say that segregated access
(between G1 and G2) is maintained; this is represented by the following judgement

F̄ , Ḡ � ((A1 7→a
G1

D1) ∗ (A2 7→a
G2

D2))

where the instance of the ∗-connective can be witnessed by the decomposition Ḡ = G1 ◦G2. Let
θ be ((A1 7→a

G1
D1) ∗ (A2 7→a

G2
D2)).

The existence of the Mobile Access Layer means that data can flow from G1 to G2 as there are
presently no rules governing access across layers. For A3 in G3 it is possible, through a combination
of read and write actions, to violate the Chinese Wall. The agent A3 could read upwards to D1

and subsequently write this information upwards to the location of D2, meaning that A2 can gain
access to the data contained in D1. A properly implemented Chinese Wall should ensure that it
can never be the case that A2 can access D1, or for A1 to access D2. It is therefore necessary to
implement additional policies to ensure that unwanted access does not occur. This can be done
by modifying the ACLs on the edges of E and F .

The organization can choose to implement the rules of either BLP or Biba, depending on
whether confidentiality or integrity is its main concern. If the choice is to implement BLP then
the initial read-up action of A3 would be prevented by the NRU rule. The implementation of
Biba’s rules would prevent the final write-up action of A3 through the NWU requirement.

Let φ be a correctness condition that means that A3 is located in G3, so that F3, G3 � φ. Then
the resolution of the potential flaw is represented by the following properties:

BLP (NRU) : F,G � (θ � φ) ∧ ¬(A3 7→r
U D1) ∧ ¬(A3 7→r

U D2)
Biba (NWD) : F,G � (θ � φ) ∧ ¬(A3 7→w

U D1) ∧ ¬(A3 7→w
U D2).

So, the use of either the BLP or Biba model will prevent circumvention by prohibiting the
initial or final action. Given that the rules relate to specific data items, agents mapped to G3 can
retain access to other data items. BLP will also prevent a malicious user, for example A1 in Ḡ,
from writing data to G3, where it could be read by A2. A similar result will hold for Biba if the

layered set-up is G3 @̂ Ḡ. �

6. Dynamics and the Frame Rule

The logic LGL can be extended with a simple form of action and modality [21], along the lines
of Hennessy–Milner logic [34] or dynamic logic (e.g., [33]), in order to provide a mechanism for
describing how a system may evolve.

One way in which a system may evolve is with a change to the underlying architecture, with
connections being added or deleted, so further composing or decomposing the system. The addition
or removal of links allows the presentation of situations where an organization chooses to restrict
access by removing a link, or situations involving access across a connection that is not permanently
open. In graph models, this can be represented by changing the edges of a graph. As in the previous
sections, we work with graphs that have at most a single edge in any direction between any pair
of vertices. As in Section 5, we consider only a single pair of distinguished edge sets E ,F .

Let add(v, v′) and remove(v, v′) be actions that add and remove an edge from vertex v to vertex
v′ within a graph. We exclude actions of this kind for edges of the distinguished edge sets, E ,F .
In particular, inter-layer edges will not be changed by actions. Let b range over the actions of the
forms add(v, v′) and remove(v, v′).
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An add action may alter the ambient graph structure from G to some G′ by adding an edge not
present in G; the remove action is also assumed to remove the edge from the ambient graph, as

well as the sub-graph under consideration. Let (G, G)
b−→ (G′, G′) denote that a given graph G

evolves to G′ via the action b, and that the ambient graph evolves from G to G′.
The logic we now introduce extends that of Section 5. For simplicity here, we assume the

only atomic formulae are access assertions. In addition, actions that reconfigure graphs generate
action modalities. We give the satisfaction clauses for these modalities below before giving two
illustrative examples (restoring the explicit ambient graph in the notation):

(G, 〈E ,F〉), F,G � �b� φ iff there exist G′, G′ such that (G, G)
b−→ (G′, G′),

and (G′, 〈E ,F〉), F,G′ � φ

(G, 〈E ,F〉), F,G � ‖b‖φ iff for all G′, G′ such that (G, G)
b−→ (G′, G′),

G′, 〈E ,F〉, F,G′ � φ.

Example 6.1 (Guarded Access). Consider an organization that keeps sensitive data in a secure
location. To access this data, agents must satisfy an ID check. If an agent satisfies the check, a
link is added from the location of the agent to the location of the data to allow the access. If it
is possible that another agent might be able to piggyback on a successful ID check (such as by
tailgating through a barrier) then an edge from the second agent to the first will be deleted to
prevent this. This situation is shown in Figure 16, where agents A and B are unable to access a

Figure 16. Guarded Access

data item D. The second part of Figure 16 shows that A has successfully identified itself and been
granted access to D, while B still cannot access D (via a path in the graph under consideration)
because of the reconfiguration.

Let G = G be the graph on the left of Figure 16, where all edges marked represent an edge in
both directions. Let F be the associated agent-data assignment that maps agents and data to the
vertices shown.

Let open be the action that adds the edge between A and D and let close be the action that
removes the link between A and B. Note that these are merely instances of the add and remove

actions introduced above. Let G′ = G′ denote the graph after these reconfiguration actions have
taken place. Then the action modalities defined above give the access condition:

(G, 〈E ,F〉), F,G � �open��close� ((A 7→a
G′ D) ∧ ¬(B 7→a

G′ D))

This property shows that the network will allow A access to D, after the appropriate reconfigu-
rations have taken place, while B is still unable to access D (this is, of course, contingent upon A
having the necessary credentials). �

Example 6.2 (Establishment of a Chinese Wall). This example is similar to Example 5.3 and
describes the establishment of a Chinese Wall. Consider a situation (again, such as in the firm
advising on a merger or an acquisition) in which agents are able to choose which data items they
access. Upon accessing certain data items, agents may be precluded from accessing others if they
contain data deemed to conflict (so rendering their advice on the deal tainted).

The left-hand side of Figure 17 shows an agent A1 who could potentially access documents D1

or D2 while A2 is assumed to have access to D2 only. The right-hand side of Figure 17 shows the
construction of a Chinese Wall to prevent A1 from accessing D2 after choosing to access D1. Let
the action of removing the link as shown be denoted as wall. This is just a particular instance of
a remove action. Let G = G be the network shown on the left-hand side of Figure 17. Let F be
the evident agent-data assignment mapping the agents and data to vertices of G as shown in the
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figure. Let G′ = G′ = G1 ◦G2 be the graph as shown on the right-hand side of Figure 17, where
G1 is the component containing A1, D1, and G2 is the component containing A2, D2. The graph
G′ is the network after the wall action. In both the left-hand side and the right-hand side, all of
the undirected edges represent a pair of directed edges, one in each direction.

Figure 17. Establishment of a Chinese Wall

The following relations describe that, in this example A1 can read D1, and A2 can read D2

both before and after the wall action, and A1 cannot read D2 and A2 cannot read D1 after the
wall action:

(G, 〈E ,F〉), F,G � (A1 7→r
G D1) ∧ (A1 7→r

G D2) ∧ (A2 7→r
G D2)

(G, 〈E ,F〉), F,G � � wall� ((A1 7→r
G1

D1) ∗ (A2 7→r
G2

D2)).

�

6.1. Intra-layer Frame Rule. The reconfiguration of graphs (i.e, changes in system architecture)
can have an adverse effect on the implementation of access control policies. To be able to reason
about system structures where changes in the architecture do not impact security measures, we
use a frame rule, similar to the rule adopted in Pointer Logic [37]. Our version of the frame rule
is defined as follows:

Definition 6.3 (Intra-layer Frame Rule). Let G be an ambient graph and let G,H be subgraphs
of G such that (G, 〈E ,F〉), F,G � φ and (G, 〈E ,F〉), J,H � ψ. Let b be an action such that

(G, G)
b−→ (G′, G′) and let (G′, 〈E ,F〉), F,G′ � φ′. Suppose that the action b affects the edges of

G only and that F ◦ J,G ◦H are both defined. Then:

(G′, 〈E ,F〉), F ◦ J,G′ ◦H � φ′ ∗ ψ
holds.

Suppressing the auxiliary data when it is contextually clear, we write the frame rule as

φ b φ′

φ ∗ ψ b φ′ ∗ ψ
.

Although we call it a ‘rule’ it is properly a relation between instances of the satisfaction relation.
The fact that this relation holds under all interpretations is more-or-less immediate, noting that
G′ ◦H is defined, and so that G′ and H give the required witnesses for φ′ ∗ ψ.

The following is obtained straightforwardly:

Proposition 6.4. The intra-layer frame rule is valid.

Example 6.5 (Intra-layer Frame Rule). This example extends Example 6.1 to give a simple il-
lustration of the intra-layer frame rule. Consider an organization that uses some form of security
check to guard access, as described earlier. Suppose now that in addition to this security im-
plementation, a Chinese Wall is in place to maintain complete segregation of particular items of
data.

This situation is shown in Figure 18, which extends Figure 16 to show an agent A′ with access
to D2 while segregated from the area in which guarded access takes place. Let G1, G2 be as
indicated on the left-hand side of Figure 18, where the ambient graph is G = G1 ◦ G2. The
undirected edges marked represent pairs of directed edges, one in each direction. Let F1, F2 be
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the evident agent-data assignments mapping the agents and data into G1 and G2, respectively,
as indicated in the figure. Let φ be a correctness condition associated with A being located in
G1. Let φ′ be (A 7→a

G′1
D1) ∧ ¬(B 7→a

G′1
D1) and let ψ be A′ 7→a

G′2
D2. For simplicity, let change

denote the combined actions of adding and removing the edges as shown. Since change only

Figure 18. Guarded Access and a Chinese Wall

affects the structure of G1 and it is clear that G1 ◦G2 is defined, then (G, 〈E ,F〉), F1, G1 � φ, and
(G, 〈E ,F〉), F2, G2 � ψ, and (G′, 〈E ,F〉), F1, G

′
1 � φ

′, and (G, 〈E ,F〉), F1 ◦ F2, G1 ◦G2 � φ ∗ ψ.
The premisses for the intra-layer frame rule are therefore satisfied, and we may conclude that

(G′, 〈E ,F〉), F1 ◦F2, G
′
1 ◦G2 � φ′ ∗ψ. The satisfaction of the frame rule in this example shows that

the Chinese Wall, which segregates the access of the agents, is unaffected by the change in graph
structure resulting from an agent’s successfully providing ID to access data. �

6.2. Inter-layer Frame Rule. The reconfiguration of edges within a single graph can have an
effect on other layers in a multi-layer system. It is possible that a change in one layer could
unintentionally lead to some policy being undermined, or introduce a requirement to check that a
policy still holds. For this reason, it is necessary to also develop an inter-layer frame rule. In the
remainder of this section, frame rules and examples are stated using the binary versions of graph
composition and the multiplicative connector �.

Definition 6.6 (Inter-layer Frame Rule 1). Let G be an ambient graph and let G,H be subgraphs
of G such that (G, 〈E ,F〉), F,G � φ and (G, 〈E ,F〉), J,H � ψ. Let b denote an action such that

(G, G)
b−→ (G′, G′) and let (G′, 〈E ,F〉), F,G′ � φ′. Suppose the action b affects the edges of G only

and that F @̂ J,G @̂H are both defined. Then

(G′, 〈E ,F〉), F @̂ J,G′ @̂H � φ′ � ψ

holds.

Definition 6.7 (Inter-layer Frame Rule 2). Let G be an ambient graph and let G,H be subgraphs
of G such that (G, 〈E ,F〉), F,G � φ and (G, 〈E ,F〉), J,H � ψ. Let b denote an action such that

(G, G)
b−→ (G′, G′) and let (G′, 〈E ,F〉), F,G′ � φ′. Suppose the action b affects the edges of G only

and that J @̂F,H @̂G are both defined. Then

(G′, 〈E ,F〉), J @̂F,H @̂G′ � ψ � φ′

holds.

Again, suppressing the auxiliary data, we write the two frame rules as

φ b φ′

φ� ψ b φ′ � ψ
and

φ b φ′

ψ � φ b ψ � φ′
.

Again, these are abbreviations for relations between instances of the satisfaction relation. The
fact that these relations holds for any interpretation follows using the G′ and H that appear in
the premisses to witness the satisfaction of φ′ � ψ for the first rule, or ψ � φ′ for the second rule.

The following is obtained straightforwardly:



28 MATTHEW COLLINSON, KEVIN MCDONALD, AND DAVID PYM

Proposition 6.8. The inter-layer frame rules are valid.

Example 6.9 (Inter-layer Frame Rule). This example adapts and extends Examples 5.3 and 6.2
to present an instance of the inter-layer frame rule. As in Example 6.2, consider a firm, such as
an investment bank, advising on a merger or acquisition. The firm’s policy is that, subsequent to
an employee accessing a data item that is in conflict with other data within the deal, a suitable
Chinese Wall will be implemented. Moreover, suppose that the firm’s organizational structure
is multi-layered, with an access control policy model regulating information flow between layers.
The firm must ensure that the Chinese Wall is not undermined by this layered structures. Now
consider Figure 19. The graph on the left-hand side is the ambient graph G with distinguished
edge sets E ,F . Let G = G. The graph on the right-hand side is G′ = G′. The undirected edges
represent pairs of directed edges, one in each direction. The two-headed dotted arrows represent
a pair of arrows, one downward and in the distinguished edge set E , and one upward and in the

distinguished edge set F . Moreover, G = G1 @̂G2 and G′ = G′1 @̂G2. Let F1 and F2 be the
agent-data assignments that map agents and data to the vertices of G1 and G2, respectively, as
indicated in the figure.

The organization must be confident that, in the presence of G2, the Chinese Wall that has been
constructed through the evolution of G1 (from the left-hand side to the right-hand side of the
figure) is secure and cannot be circumvented. As discussed in Example 5.3, circumvention could

Figure 19. Formation of Chinese Wall in Multi-layer Environment

occur as a result of a combination of read and write actions by agent A3 and is prevented by the
composition of Chinese Walls and the policies of either BLP or Biba.

Assume A1 has access to D1 and A2 has access to D2 on the left-hand side of the figure. Let ξ
be valued so that it simply requires that A3 is located in G2. Then F2, G2 � ξ (for ambient graph
G). Let φ be the property (A1 7→a

G1
D1) ∧ (A2 7→a

G1
D2) ∧ (A1 7→a

G1
D2) ∧ (A2 7→a

G1
D1), so that

F1, G1 � φ. Let ψ be the property ((A1 7→a
G′1

D1) ∗ (A2 7→a
G′1

D2)), so that F1, G
′
1 � ψ.

It is clear from the formulation of the example that the action wall only affects the edges of
G1. Thus we obtain an instance of

φ wall ψ

φ� ξ wall ψ � ξ
.

�

7. Summary and Future Work

We have provided, with examples, a uniform logical framework for reasoning compositionally
about both multi-layer and multi-lateral access control policy models. We have shown how our
approach accounts for the underlying system architecture, and so provides a way to identify and
reason about how vulnerabilities may arise (and be removed) as a result of the architecture of the
system.

Further research might address several issues. At the theoretical level, it would be useful to
develop the theory to handle the more general case of using, compositionally, the binary layering
constructor � as a basis for access control models rather than the more restrictive n-ary stack
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construction. Such a development would allow a richer treatment of lattice models than is possible
using stacks (cf. the restricted version of UNIX treated in Example 4.10).

It would also be useful to explore the question, also outlined in Section 4.1, of whether can we
identify classes of distributed systems and associated access control policies that are uniformly
and completely expressible using our LGL-based approach? As we have discussed, it would seem
to be necessary to develop a more substantially detailed view of class of underlying distributed
systems to which the policy models would be intended to apply, formulate an LGL-based model
of that class of systems, and then formulate a general definition of each class of policy model in
that context. As explained in Section 4.1 — we repeat here for convenience — such a programme
of work would require the following issues to be addressed:

• First, any such class of distributed systems and associated models would necessarily be
somewhat restrictive. Identifying appropriate choices — sufficiently general for an inter-
esting result, yet sufficiently tractable — would already be a significant challenge;

• Second, even given a class of systems of interest, together with a viable class of models, a
number of choices concerning the relationship between security features, as described by
access control policies, and operational features, which may undermine the intended access
control policies, would typically remain. Consequently, further modelling work — in the
established sense of observation, model construction, model exploration, and validation
— would be required in order to identify appropriate classes of systems and policies to be
studied;

• Third, it is unlikely that the simple propositional form of LGL presented here will prove
sufficiently expressive to be a convenient or even adequate tool for the purpose. It is likely
that (at least) an extension with ‘resource modalities’, along the lines of the extension
discussed briefly in [21] will be required. In the weak substructural setting of LGL, such
an extension will require a substantial meta-theoretical development.

From a more applied point of view, we might consider the following questions:

• We might explore in detail the location-based access control models of Gollman [32] —
concerned with reference monitors, addressing, and sandboxing in computer memory —
using, for example, the various substructural implications to reason about the movement
of resources (data) around a system (cf. example in [21]);

• We might seek to incorporate a more substantive account of agents (e.g., as processes, as
in [20]), so allowing a treatment of RBAC. A further development along these lines would
take us into the world of stateful access control policy models, such as Clark-Wilson [16].

• We might consider a treatment of how the clearance levels associated with agents and
data may change; This would allow us to address access control policies such as the ‘low
watermark’ in which there is no restriction on read access between levels, but if an agent
reads data at lower level, then its clearance level is reduced to that level.

An important question concerns how we might evaluate the usefulness of our approach in support-
ing the design and implementation of systems and policies for access control. In this respect a key
question — perhaps the key question — is how a policy that is specified for a given architecture,
as may be specified using the techniques presented here, is implemented or undermined by the
users of the system.

Information security can be defined as addressing the problem of ensuring that just the right
agents access to just the right information at just the right times. In fact, this definition readily
adapts to physical security, which addresses the problem of ensuring that just the right agents
(e.g., people) have just the right access to just the right locations at just the right times.

This problem of controlling access to locations and resources, be they physical or logical, arises
throughout the networks of complex systems that support the modern world. Organizations try to
manage information security risks through policies and security mechanisms, and have discovered
over the past decade that these are only effective if their staffs are able and willing to use them
correctly. Johnson & Goetz [38] cite Theresa Jones, a security manager at Dow Chemical:

‘My biggest challenge is changing behaviour. If I could change the behaviour of
our Dow workforce, then I think I’ve [sic] solved the problem.’
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So, access control policies are set by the managers of systems in order to establish their required
or desired security régime. However, a specified policy may fail to deliver the intended outcomes
for a number of reasons, such as the following:

• The policy may not fit well with the system’s logical or physical architecture: there may
be unavoidable preventions or circumventions of intended information flows;

• The policy may not fit well with the necessary or desired working patterns of the orga-
nization’s staff, leading to implicit or explicit behavioural patterns that undermine the
intended security policy in favour of operational priorities.

It is natural to ask, then, whether models of systems and their security policies can be used as
a basis for understanding how the users of systems behave in the context of given security policies.
Such a study would be a form of evaluation of the usefulness of the LGL-based modelling approach
in supporting the design and implementation of systems and policies for access control and might,
indeed, form the basis for a system/policy-design methodology that would encourage compliance
with security policies whilst not unacceptably compromising operational efficiency.

Research along these lines is the topic of two current projects at UCL. The first, the UK
EPSRC/GCHQ-funded project ‘Productive Security’ is exploring how ideas from utility theory can
be incorporated into system models in order to model agents’ decision-making as they encounter
constraints that are imposed by security policies [14]. For example, an agent may trade-off the
benefits and costs of compliance with the policy against the benefits and costs of circumventing the
policy in order to achieve greater operational convenience and efficiency. This work will provide
a systems modelling methodology that is able to express the value of policies. But policies will,
in this setting, not be modelled formally: they will be captured by the model, but not explicitly
represented within it. Models are calibrated using data obtained in extensive empirical studies of
security behaviour conducted in a wide range of organizations.

The second project, a GCHQ-funded project, ‘Access Control: Models and Compliance’, at
UCL, is exploring how to integrate models of policy, models of system architecture, and models
of behaviour to deliver an account of policy compliance and circumvention. From a logical per-
spective, we will need to look at how logics that capture policies can be combined with logics that
capture agents’ beliefs in order, overall, to represent properties of systems in which users interact
with policies in the context of given system architectures.

These projects form part of a substantial project to bring to bear logical and economic modelling
to analyse security design, behaviour, and decision-making. The work presented here is but one
small component of that project.
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