
1

A Constellation Scaling Approach to Vector
Perturbation for Adaptive Modulation in MU-MIMO

Ang Li, and Christos Masouros, Senior Member, IEEE

Abstract—It is known that vector perturbation (VP) precoding
does not apply to the case where users employ different modu-
lations, while existing solutions for this scenario are suboptimal.
In this letter, a joint vector perturbation precoding algorithm
is proposed for multiuser MIMO (MU-MIMO) downlink system
in the adaptive modulation scenario where different users apply
different modulation types. Compared with conventional block
diagonalized vector perturbation (BD-VP) and user grouping VP
where the search dimension of the perturbation vector is reduced,
the proposed algorithm keeps the search dimension unchanged
by applying a simple transformation to the VP operation. Our
analysis and results show that the proposed algorithm provides
an applicable VP solution to the adaptive modulation scenario,
with optimal VP performance.

Index Terms—MIMO, vector perturbation, precoding, adap-
tive modulation, joint perturbation

I. INTRODUCTION

IN recent MIMO communications, precoding techniques
have been widely studied due to the need for power and

cost efficient UE devices. These range from capacity achieving
dirty paper coding [1] to linear precoding schemes [2]. Vec-
tor perturbation (VP) precoding is proposed to improve the
performance of channel inversion and can reach near-capacity
performance [3]. However, one drawback of VP precoding is
that adaptive modulation where different users apply different
modulation types cannot be used due to the constant modulo
base τ= 2|C|max +∆ which is modulation dependent, where
|C|max is the absolute value of the constellation symbol
with the maximum magnitude and ∆ denotes the minimum
Euclidean distance between constellation symbols. On the
other hand, when users employ multiple antennas, the most
popular precoding technique is block diagonalization (BD) [4].
In [5], BD and VP precoding are combined and proposed as
block diagonalized vector perturbation (BD-VP) which enables
different users to apply different modulation types. However,
due to the direct combination of these two techniques, the
complexity of BD-VP is rather high. The authors in [6]
therefore propose a low-complexity BD-VP, and furthermore a
user grouping vector perturbation (UG-VP) that improves the
performance of the BD-VP precoding.
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Both BD-VP and UG-VP are suboptimal since perturbation
is applied for each user or group independently. In order to
eliminate the performance loss, in this letter we propose a joint
vector perturbation algorithm which reaches a comparable
performance with the conventional VP and can be applied
to adaptive modulation scenario. By scaling the constellation
of the modulation, the modulo base for different modulation
types is made the same. Therefore, the search of the optimal
perturbation vector of each users can be performed jointly as in
conventional VP. Another advantage of the proposed algorithm
is that it forms a basis for the VP precoding technique to be
applied with users applying different modulation types. As a
result, while out of the scope of this paper, other complexity
reduction VP algorithms [7]-[9] can be applied on top of this
algorithm for complexity benefits.
Notation: E(·), (·)T , (·)H , (·)−1 and (·)† denote expec-

tation, transpose, conjugate transpose, inverse and Moore-
Penrose inverse respectively. ||·|| denotes the Frobenius Norm,
In is the n× n identity matrix and 0 denotes zero matrix or
vector. {X}a:b denotes the matrix formed from the ath column
to the bth column of the matrix X. CZk represents n × 1
vectors in the complex set.

II. SYSTEM MODEL AND VP

A. MU-MIMO Channel Model

We consider a multiuser multi-stream MIMO downlink
system where the base station communicates with K users.
The base station is equipped with Nt antennas and user k is
equipped with nk ≥ 1 antennas. The total number of receive

antennas is therefore defined as Nr =
K∑

k=1

nk with Nr ≤ Nt.

We assume the channel from the base station to each user to
be flat fading and modeled by the nk × Nt channel matrix
Hk, and the channel matrix from the base station to all users
can be expressed as H = [HT

1 ,H
T
2 , ...,H

T
K ]T . The received

signal at kth user is

yk = HkFkxk +Hk

K∑
i=1,i̸=k

Fixi + zk (1)

where xk is the transmit signal and zk is the additive complex
Gaussian noise vector with zero mean and unit variance. Fk

is the precoding matrix for the kth user.

B. BD-VP Precoding

VP Precoding employs a channel inversion to form the
precoding matrix and then applies a perturbation on the
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transmitted signals so that the useful signal at the receiver
is maximized. In traditional BD-VP [5], the precoder Fk for
the kth user can be expressed as Fk = BkDk, where Bk

is the matrix chosen to eliminate multi-user interference, i.e.,
HiBk = 0, for i ̸= k. Bk can be obtained from the singular
value decomposition (SVD) of H̃k as follows:

H̃k = Ũk∆̃k[Ṽ
(1)
k , Ṽ

(0)
k ]H (2)

where H̃k = [HT
1 , ...,H

T
k−1,H

T
k+1, ...,H

T
K ]T . Bk is chosen

as Bk = Ṽ
(0)
k because Ṽ

(0)
k is the orthogonal basis of the

null space of H̃k. After applying Bk, user k now has a non-
interfering channel Hequ

k = HkBk. Based on the idea of
channel inversion, Dk is chosen as Dk = (HkBk)

−1. Thus,
the perturbation vector for the kth user is given by

loptk = argmin
lk∈CZk

||(HkBk)
−1 · (sk + τklk)||2 (3)

For the low-complexity BD-VP in [6], the precoding matrix
for user k can be expressed as Fk = Ĥk, and Ĥk =
{H†}(k−1)nk+1:knk

. The transmit signal of user k is then given
by

xk =

√
P

βk
Ĥk(sk + τklk) (4)

where βk = ||Ĥk · (sk + τklk)||2 denotes the transmit
power scaling factor so that E(||xk||2)=P . lk belongs to nk
dimensions perturbation vector and is given by

loptk = argmin
lk∈CZk

||Ĥk · (sk + τklk)||2 (5)

At the receiver, the signal is first scaled back to eliminate the
effect of the transmit scaling factor, and then fed to a modulo
operator to remove the perturbation vector [3].

C. UG-VP Precoding

For UG-VP, the basic idea is to divide K users into B
groups (denoted as {G1, G2, ..., GB}) based on their modu-
lation type, and perform the vector perturbation within each
user group. Users with the same modulation type are divided
into the same group, therefore τ bk = τ b, k ∈ Gb, b = 1, ..., B.
For each group, the optimal perturbation vector is given by

loptb = argmin
lb∈CZnb

||Ĥb · (sb + τblb)||2 (6)

where H† = [Ĥ1, ..., ĤB], Ĥb is a nb × Nt channel ma-
trix from the base station to the user group Gb, sb =

[sTb1 , s
T
b2
, ..., sTbM ]T and nb =

bM∑
k=b1

nk, bM is the total number

of users in the bth group. By reducing the number of individual
search for the optimal perturbation vectors, it is shown in [6]
that UG-VP outperforms BD-VP.

III. PROPOSED JOINT VECTOR PERTURBATION (JVP)

In conventional VP algorithm, the perturbation vector lopt

is searched over Nr dimensions to minimize the total transmit
power. However, due to the limitation of the constant value
of τ , conventional VP cannot be directly applied to scenar-
ios where users employ multiple modulation types. BD-VP

performs a nk dimensions search for K times to obtain the
perturbation vector, while UG-VP performs a nb dimensions
search for B times. Rewrite H† = [Ĥ1, ..., ĤK ], then we have

||H†(s+ τ l)||2 = ||
K∑

k=1

Ĥk · (sk + τklk)||2

≤
K∑

k=1

||Ĥk · (sk + τklk)||2
(7)

It is found that with the increase of K, the gap between

||H†(s + τ l)||2 and
K∑

k=1

||Ĥk · (sk + τklk)||2 is larger [6].

Therefore, it is easy to conclude that although UG-VP per-
forms better than BD-VP, they are both sub-optimal compared
with conventional VP.

In order to keep the performance advantage of conven-
tional VP, we propose a joint perturbation that retains the
search dimension as Nr. Without loss of generality, we as-
sume there are multiple modulation types applied, denoted
as A,B,C,...,M. For modulation type i, the total number of
symbols applying this kind of modulation is denoted as Ni

and
M∑
i=A

Ni = Nr. Rewrite H† = [HA, ...,HM], s + τ l =

[(sA + τAlA)
T , ..., (sM + τMlM)T ]T , where si denotes the

symbols from the constellation of modulation type i and Hi

is the corresponding channel matrix. Then, we can reformulate
the transmit signal norm as

||H†(s+ τ l)||2 = ||[HA, ...,HM] · (s+ τ l)||2

=

∥∥∥∥∥
M∑
i=A

τi
τ0

· τ0
τi
Hi(si + τili)

∥∥∥∥∥
2

=

∥∥∥∥∥
M∑
i=A

τi
τ0

Hi(
τ0
τi
si + τ0li)

∥∥∥∥∥
2

(8)
where li is the perturbation vector for modulation type i and
τ0 denotes the modulo base to be used. Based on the derivation
above, it is worth noting that there is no special restriction for
the choice of τ0. By defining G=

[
τA
τ0
HA,...,

τM
τ0

HM

]
and

t =
[

τ0
τA
sTA, ...,

τ0
τM

sTM

]T
, (8) can be transformed into

||H†(s+ τ l)||2 = ||G(t+ τ0l)||2 (9)

With this transformation, the search for the optimal per-
turbation vector in the adaptive modulation scenario can be
applied within Nr dimensions so that there will be no per-
formance loss compared with BD-VP and UG-VP. Intuitively,
this algorithm functions as follows: by scaling the constellation
of the modulation, different modulation types have the same
value of τ so that they can perform the vector perturbation
jointly. Fig. 1 depicts the normalized constellation points of
16QAM, QPSK, and scaled QPSK (sQPSK) to show how
our algorithm works. According to the definition of τ [4],
the length of the fold lines τ16QAM = d16QAM

1 + d16QAM
2

and τQPSK = dQPSK
1 + dQPSK

2 denotes the values of the
modulo base for 16QAM and QPSK as per Fig. 1, respectively.
As the value of modulo base for original QPSK is larger
than that of 16QAM, we scale the constellation of QPSK by
τ16QAM/τQPSK

such that τ16QAM

τsQPSK
=

d16QAM
1 +d16QAM

2

dsQPSK
1 +dsQPSK

2

= 1,
i.e., the value of the modulo base for the scaled QPSK is
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Fig. 1. Normalized constellation points for QPSK, scaled QPSK and 16QAM

equal to that of 16QAM. In this way, joint perturbation could
be performed.
Remark: Although we consider a multi-stream MIMO

system in this paper, the proposed algorithm is also applicable
for single-stream MIMO systems. Moreover, it is obvious that
our algorithm can be extended to the scenario where users
apply more than two types of modulation. Finally, while for
simplicity we have used instantaneous scaling factor above,
the benefits of JVP directly apply to average scaling factor as
well.

A. Achievable Sum Rate

Based on [5], we derive the achievable sum rate of the
proposed algorithm and compare it with BD-VP and UG-VP,
given as:

RJV P = Nr log(1 +
px

∑Nr

i=1 φ
2
i

Nrσ2
z

) (10)

RBD−V P =

K∑
k=1

nk log(1 +
pk

∑nk

i=1 λ
2
k,i

nkσ2
z

) (11)

RUG−V P =
B∑

b=1

nb log(1 +
pb

∑nb

i=1 ψ
2
b,i

nbσ2
z

) (12)

where pk = E{||xk||2}, pb = E{||xb||2}, xb = sb+τblb, px =
E{||x||2}, and x = [(sA + τAlA)

T , ..., (sM + τMlM)T ]T .
{φi}Nr

i=1 are the singular values of the equivalent channel
matrix HQ, and Q is obtained through QR decomposition of
H†. {λk,i}nk

i=1 are the singular values of the channel matrix
HkBk. {ψb,i}nb

i=1 are the singular values of HbQb, and Qb

is the null space of other group‘s channel matrix and can be
obtained via QR decomposition.

B. Complexity Analysis

We compute the complexity in terms of the required floating
point operation (flops) [10]-[11]. The inversion of the nk×nk
matrix Dk and Nr ×Nt matrix H using Gauss-Jordan elim-
ination requires 4n3k/3 flops and 4N3

t /3 flops, respectively.
According to [11], the search for the optimal perturbation
vector within n dimensions requires O(n6) operations. The
operator O(·) defines the order of numerical operators and is
used to analyze the efficiency of an algorithm, also known as
time complexity.

It is easy to observe that compared with the conventional
VP precoding initially proposed in [4], our proposed algorithm
involves the calculation of G and t which has a negligible con-
tribution to the total complexity, therefore the complexity of
the proposed algorithm is almost the same as the conventional
VP algorithm. The number of flops of each algorithm needed
is given as

CBD−V P = 4N3
t /3 +

∑K

k=1
O(n6k) (13)

CUG−V P = 4N3
t /3 +

∑B

b=1
O(n6b) (14)

CJV P = 4N3
t /3 +O(N6

t ) + 2Nt (15)

where it can be seen that the complexity of JVP is of the order
of the conventional VP complexity.

C. Energy Efficiency Analysis

Energy efficiency is another metric to evaluate the useful-
ness of each of the VP algorithms towards an energy efficient
communication system. In this section, the energy efficiency
of proposed JVP is compared with previous VP algorithms
in terms of the number of transmit antennas. We define the
energy efficiency of the communication link as the bit rate
per total transmit power consumed [8][12], shown as

ε =
R

PPA +Nt · P0 + pc · C
(16)

where PPA = (ξ/η − 1)P in Watts is the power consumed
at the power amplifier to produce the transmit power P ,
with η being the power amplifier efficiency and for M -QAM,
ξ = 3

√
M−1√
M+1

being the modulation dependent peak to average
power ratio (PAPR). P0 = Pmix + Pfilt + PDAC denotes the
power consumption of the mixers and filters and the digital-
to-analog converter (DAC), which is regarded as constant
in this paper. From [13], the values of each parameter are
as follows: η = 0.35, Pmix = 30.3mW, Pfilt = 2.5mW
and PDAC = 1.6mW which yields P0 = 34.4mW. pc in
mW/Mflops denotes the power consumption per 106 flops
of the digital signal processor (DSP). In this paper we use
pc = 1/12.8 mW/Mflops.

IV. NUMERICAL RESULTS

In this section we compare the performance of JVP, BD-
VP and UG-VP in adaptive modulation scenarios by means of
Monte Carlo simulations. Unless stated otherwise, we assume
P = 1, the number of transmit antennas is Nt = 12. There
are K = 6 users and each is equipped with nk = 2 antennas.
Except for the conventional VP where all users apply QPSK,
8PSK or 16QAM, it is assumed that user 1,2 apply QPSK,
user 3,4 apply 8PSK and user 5,6 apply 16QAM in BD-VP,
UG-VP and JVP. Above parameters and assumptions remain
the same for the following simulations. It is intuitive that the
benefits of JVP extend to other adaptive modulation scenarios.

Fig. 2 shows the bit error rate (BER) performance under
the adaptive modulation scenario where QPSK, 8PSK and
16QAM are applied by different users. It is obvious that JVP
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Fig. 2. Bit error rate of all users for K=6, transmit antenna Nt = 12

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

BD−VP
UG−VP
VP Averaged over all modulation
JVP

Fig. 3. Averaged bit error rate of all users for K=6, transmit antenna Nt =
12

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Nt=Nr=N

E
ne

rg
y 

E
ffi

ci
en

cy
 (

bp
s/

H
z/

W
at

t)

 

 

BD−VP
UG−VP
JVP
VP all users 16QAM
VP all users QPSK

Fig. 4. Energy efficiency with the increasing number of antennas

outperforms BD-VP and UG-VP. It can also be seen that
the BER performance of the users applying QPSK with the
proposed algorithm is even better than the conventional VP
due to the fact that the signal norm for JVP is smaller than
that of QPSK. For the users applying 8PSK and 16QAM, the
performance of the proposed algorithm is comparable with
conventional VP.

Fig. 3 shows the BER performance averaged over all
users of conventional VP, BD-VP, UG-VP and proposed joint
perturbation. In this figure, ‘VP Averaged over all modulation’
means the averaged BER performance of VPs in which all
users apply QPSK, 8PSK or 16QAM. From the figure, we can
also see a similar trend as Fig. 2 that the proposed algorithm
performs much better than BD-VP and UG-VP, and has a
comparable performance with conventional VP algorithm.

Fig. 4 compares the energy efficiency of different VP
algorithms and here we assume P=43dBm. From this figure,

we could observe that the energy efficiency of all the VP
algorithms increases with the increasing number of antennas
and we could also observe that the proposed JVP outperforms
BD-VP and UG-VP due to the higher achievable sum rate.
Moreover, we also find that PPA dominates the total power
consumption for all VP algorithms. VP with all users applying
QPSK reaches the highest energy efficiency because the value
of ξ for QPSK is smaller than that of 16QAM, which makes
the power consumption of VP with QPSK is smaller than that
with 16QAM.

V. CONCLUSION

In this letter, we propose a joint vector perturbation pre-
coding algorithm for multiuser multistream MIMO downlink
system that enables the concept of VP applicable to the case
where users apply different modulation types. By scaling the
constellation of the modulation, the search for the perturbation
vector can be performed jointly as the conventional VP so that
there will be no performance loss. Simulation results validate
our algorithm and show that the performance of the proposed
algorithm greatly exceeds existing solutions and is comparable
with the performance of the conventional vector perturbation.
The combination of the proposed JVP and flexible power
allocation in adaptive modulation scenarios will be a future
research focus.
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