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1. INTRODUCTION

Knowledge of Origin-Destination (OD) trip matrices is needed in many stages of trans-

port planning. As direct observations of OD-flows are usually not available, a com-

monly used approach is to estimate them from traffic counts and other aggregated flow

constraints. The under-specification that characterizes this estimation process can be

resolved by requiring that OD-values conform to a model of travel demand. Several

approaches of this kind have been discussed in literature and are being used in practice.

In this paper we consider a class of methods based on the gravity model, with either an

exponential or a piecewise constant deterrence function. We focus on numerical meth-

ods to calibrate these models from traffic counts and establish a unifying analysis of

them.

The paper starts with a description of the gravity model, and a summary of the

assumed modelling and observation error structures. Subsequently a likelihood expres-

sion is established which we seek to maximise. The paper then concentrates on meth-

ods that can be used for this purpose. Existing methods are discussed, and it is shown

that some of the difficulties that occur when applying them can be resolved by a

change of variables to logarithms of the model parameters. A key result concerns the

matrix of second derivatives of the likelihood function. This result is then applied and

leads to a new optimisation method. In a series of experiments this method is shown to

be robust and computationally efficient.

2. MODELLING

2.1 Model Description

The description of the gravity model that is used in the present paper is given by:

Tij= +εij

=OiDj F(cij),

i=1,2,…I, j=1,2,…J, (1)
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with:

Tij OD-flow from zone i to zone j

I,J number of origins, number of destinations

model estimated OD-flow

εij model residual

Oi production ability

Dj attraction ability

F(.) deterrence function

cij generalized travel costs

A plausible approach is to specify the conditional distribution of the OD-flows, given

the model estimated OD-flow as a Poisson distribution, with the model estimated OD-

flow as its expectation. However, for analytical convenience we adopt a normal distri-

bution for this instead, with variance equal to expectation, noting that for sufficiently

aggregated OD-tables (e.g. Tij > 8) this only represents a minor change. This is

effected by the assumption:

εij ~ N[0, ] (2)

Various functional forms for the deterrence function are found in literature, see e.g.

Ortuzar and Willumsen (1990)for an overview. In the present paper we will confine

ourselves to two popular cases:

Case 1: The exponential deterrence function

F(cij) = exp[ -α cij ] (3)

Case 2: The piecewise constant deterrence function

F(cij) = δh(cij) (4)

where:

H number of cost ranges

1, if cij is in cost range h.

δh(cij)=

0, otherwise.

It is assumed that each OD-pair has costs in exactly one range. The piecewise constant

function may be thought of as a histogram, in which the height of each bar corresponds

to the deterrence value for travel costs within the corresponding cost range.

2.2 Traffic Counts

The model parameters are to be estimated from traffic counts or other aggregated flow

observations. In our analysis, traffic counts yk are assumed to be arbitrary linear com-

binations of OD-flows:

yk =  + ξk k=1,2,…K (5)
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with:

K number of traffic counts

yk traffic count at location k

ξk counting error at location k

τijk proportion of flow from i to j that traverses link k

The assignment proportions τijk are assumed to be given. The physical counting errors

ξk are assumed to be zero mean, mutually independent and normally distributed, with

known variance ωk
2. Model estimated traffic counts  are defined by substituting

model estimated OD-flows  in the r.h.s. of (5). If needed, the approach presented in

this paper may be made more general by allowing for the use of a prior matrix. In such

case, each cell would correspond to a separate further observation.

2.3 Maximum Likelihood Approach to Model Calibration

The following notation summarizes the symbols that were introduced earlier as vectors

and matrices, and will be used in the derivation of a maximum likelihood (ML) estima-

tor for the model parameters: their sizes are implicit in their definitions.

O, D, F vectors of production abilities, attraction abilities and

deterrence function parameter(s) respectively.

T, x(i,j) vector of OD-flows, location of matrix element Tij in T.

y vector of traffic counts

ξ vector of counting errors

Tm, ym vectors of model estimated OD-flows and model

estimated traffic counts respectively

T
m diagonal matrix with the elements of Tm on its main

diagonal.

Ω covariance matrix associated with the counting errors,

which as a result of earlier assumptions is diagonal.

τ matrix of assignment proportions, τk,x(i,j) = τijk,

k=1,2,...K

Using this notation, (5) is summarized as:

y = τ T+ξ (6)

Furthermore, the equivalent of (1) and (2) in matrix notation is:

T ~ MVN[Tm,Tm] (7)

i.e. the distribution of T is given by a multivariate normal distribution with expected

value Tm, and covariance matrix T
m. Combining these two equations results in an

expression for the conditional distribution of the traffic counts given the model param-

eters:

y ~ MVN(τ Tm,τ T
m τ′+Ω) (8)

where Tm should satisfy the requirements that follow from (1). In theory, the parame-

ters O, D and F can be found by maximising the joint likelihood, so that these parame-

ters are given by:

y
k

m

T
ij

m



= MVN(τ Tm,τ T
m τ′+Ω) y (9)

2.4 Simplifying the Likelihood Objective Function

In (9) both the expectation and the covariance matrix of the density that is to be max-

imised depend on the model parameters. It seems that any algorithm designed to solve

(9) would do so in an indirect manner, for example by keeping the covariance matrix

constant while solving the model parameters, and then updates the covariance matrix.

Such a process could continue until a fixed point is found, as is suggested in figure 1.

A covariance matrix that could be used to initialize such an iterative scheme, would be

given by a matrix with the elements of y on the main diagonal that account for model

residuals (see eq.(2)), increased with the covariance matrix of physical counting errors.

This matrix will be denoted by Y+Ω . This iterative process is expected to converge as

the solution of each individual step in this process is not especially sensitive to the cov-

ariance matrix that is used. However, the present paper does not provide a mathemati-

cal proof of convergence.

In the remainder of this paper, we discuss algorithms that can be used to maximise the

likelihood if the covariance matrix is fixed. This corresponds to solving the following

optimisation problem:

J(O,D,F) = ( y-τ Tm )’ ∑ -1 ( y-τ Tm )

Tm = Tm(O,D,F) (10)

Where ∑ is the covariance matrix that may or may not be updated during the process.

There are several advantages in formulating the OD-estimation in this way, compared

to formulations derived from a maximum entropy arguments. The main advantages

are:

 • The traffic counts that are used may represent arbitrary linear combinations of OD-

cells,

 • The objective function offers the possibility to calibrate a gravity model, even if no

explicit data are available on trip ends and/or trip length distribution,

 • The possibility exists to specify the variance of counting errors, or to weigh the

observations according to the confidence in them,

 • Spatial dependencies that occur due to the fact that the model prediction error, εij, is

observed at several locations can be accommodated by using the iterative scheme

shown in figure 1.

The objective function (10) is a generalization of approaches that are used in practice,

e.g. Willumsen (1991).
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3. EXISTING ALGORITHMS FOR CALIBRATING THE GRAVITY 

MODEL

Note that (10) describes several classes of optimisation problems, depending on the

form of the deterrence function. Here we consider separately the exponential deter-

rence function (case 1, see equation (3)) and the piecewise constant deterrence func-

tion(case 2, see equation (4)). For each of these classes of problem, special algorithms

exist.

3.1 Balancing Methods

The bi-proportional method starts with an initial or prior matrix. This matrix is subse-

quently scaled row by row and then column by column to yield the observed or given

trip end totals. Therefore, after each iteration the resulting matrix can be written as:

= (11)

where:

αik multiplicative factor applied to row i in the kth iteration.

βjk multiplicative factor applied to column j in the kth

iteration.

prior matrix

K number of iterations

The iterations stop if no more substantial changes occur in the estimated matrix, i.e.

when the observations are reproduced exactly. An equivalence with the gravity model

with exponential deterrence function exists if  is replaced by exp[ -α cij ]. In that

case equation (11) can be summarized as:

= OiDj exp[ -α cij ] (12)

Note that the bi-proportional method can not be used to find appropriate values for α.

For this purpose Hyman’s method (Hyman, 1969) can be used. A prerequisite to apply

the latter method is that an observed trip length distribution (OTLD) is available.

The tri-proportional method implies that in addition to this, the prior matrix is scaled

to force the estimated matrix to match an OTLD. In this case the estimated matrix can

be written as:

= (13)

where:

γhk multiplicative factor applied during the kth iteration to

OD-cells with corresponding costs, cij, in cost bin h.

δh(cij) membership function as defined in equation (4).

An equivalence with the gravity model with piecewise constant deterrence function is
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reached if the prior matrix is replaced with a matrix of ones. In that case (13) simplifies

to:

= OiDj δh(cij) (14)

In a balancing method, the iterations continue until all observations are met by the esti-

mated values. A requirement for convergence of the bi- and tri-proportional balancing

methods is that such a solution exists, i.e. that the traffic counts that are used are mutu-

ally consistent. The analogy between balancing methods and other gravity model cali-

brating methods becomes weaker if an initial matrix is scaled to meet measurements

that do not represent trip ends, as is done in entropy maximizing approaches such as

ME2 (Ortúzar and Willumsen, 1990; Willumsen, 1991; Van Zuylen and Willumsen,

1980). Similarly, if an arbitrary prior matrix  is used, the solution resulting from

applying a balancing method can not be written in the forms (12) or (14). Balancing

methods can hence only be applied to find a candidate solution to (10) in cases where:

 • observations and constraints represent trip ends or observed trip length distribu-

tions, and

 • observations are mutually consistent.

In this case, the solution that will be found will exactly reproduce the observations and

will hence correspond to a zero value for the objective function (10), which also is the

global minimum. Balancing methods are popular due to their ease of implementation.

However, convergence can be slow (see Maher, 1983) if not uncertain. Proofs of con-

vergence only apply to special cases, e.g. only trip-ends are given and the deterrence

function is kept constant, see Evans (1971) and Kirby (1974). In the more general case

where observations represent traffic counts, and may not be mutually consistent, other

techniques should be considered, two of which are discussed below.

3.2 Gradient Search Methods

With some effort it is possible to establish the derivatives of the objective function (10)

with respect to the model parameters Oi, Dj and Fh. The resulting gradient vector can

be used as a basis for an iterative scheme to minimise (10). The simplest way this can

be done is to apply a steepest descent method. However, steepest descent method tend

to converge very slow. A gradient search methods with a higher speed of convergence

is the conjugate gradient method, see Bazaraa et al. (1993). An easy way to find conju-

gate gradient search directions was proposed in Fletcher and Reeves (1964). There are

however a number of difficulties that occur when a gradient search method is applied

to minimise (10):

 • The solution to the line searches can not be expressed in analytical way. Hence, the

line searches must be done numerically,

 • The parameter space is constrained to non-negative values. Again this makes the

line search more complex, and removes the theoretical basis of conjugate gradient

methods,

 • It is difficult to establish an effective convergence criterion,

 • Convergence can be extremely slow.

These factors make it difficult to construct a gradient search method that operates in a
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reliable way in all circumstances.

3.3 Gauss-Seidel Methods

Another way to tackle the minimization problem (10) is to divide the model parameters

in groups and to solve the parameters in each group separately, while keeping the

parameters in other groups temporarily constant. This iterative process is continued

until a fixed point is found. For problem (10) it seems advantageous to first solve the

vector of production abilities (O), then solve the vector of attraction abilities (D), and

then solve the vector of deterrence function values (F) (this procedure can only be used

to calibrate a gravity model with a piecewise constant deterrence function). Each step

in this sequence corresponds to minimizing a quadratic function. If the nonnegativity

constraints can be ignored, this can be solved at the expense of one matrix inversion, so

line searches can be avoided. The details of the method are described in Van Der Zijpp

and de Romph (1996).

Although the method works well in a large number of cases and is easy to implement

with the help of modern software packages, there are a number of technical difficulties:

 • No theoretical proof of convergence exists,

 • The minimization problems can be expensive to solve if the nonnegativity con-

straints become active,

 • The method can not be applied to calibrate gravity models with exponential deter-

rence functions,

 • It is difficult to establish an effective convergence criterion.

4. A UNIFYING ANALYSIS OF THE ML OBJECTIVE FUNCTION

We now show how, by using a logarithmic transformation, the gravity model formula-

tions presented here can be unified and solved conveniently.

4.1 The Logarithmic Transformation

It has been shown earlier (see e.g. Sen and Smith, 1995) that both the gravity model

with exponential deterrence function (equations (1) and (3)), and the gravity model

with piecewise constant deterrence function (equations (1) and (4)) can be summarized

in the following form:

t=exp(Cq) (15)

where

exp(.) is the exponentiation operator, applied element by

element

q is the vector of logarithms of the model parameters, i.e.

q = log

C is a matrix with three nonzero elements per row. The first

and second nonzero elements are given by respectively:

O
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F 
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 



(16)

The way the third nonzero element is defined depends on whether an exponential or a

piecewise constant deterrence function is used:

Case 1: The exponential deterrence function

(17)

Case 2: The piecewise constant deterrence function

, h=1,2,…H (18)

In summary, the problem of estimating OD-matrices from traffic counts using a gravity

model combined with either an exponential or a piecewise constant deterrence function

is equivalent to the minimization of the following objective function:

J(q)=(y-At(q))′ ∑-1 (y-At(q)),

t=exp(Cq) (19)

Compared to the formulation given in (10) this change of variables has the following

practical advantages:

 • A single objective function can be used to represent methods based on exponential

and piecewise constant deterrence functions,

 • The minimization is not subject to nonnegativity constraints. This argument does

not apply strictly in case of the exponential deterrence function, as one can argue

that it would not be realistic if the parameter α in the deterrence function (3)

assumed negative values,

 • Ease of notation and analysis. This advantage will become apparent in the next sec-

tion, where expressions for the gradient and the Hessian (the matrix of second

derivatives) of the objective function with respect to the vector q will be given.

4.2 Deriving the Gradient and Hessian of the Objective Function

Applying some analysis to the objective function (19) has led to expressions for the

gradient and the Hessian (the matrix of second derivatives) of this function. These are

given respectively by:

∇q[ J ]= =2C′diag(t)A′ ∑ -1 (At-y) (20)

∇2
q[ J ]= =2C′[diag(t)diag(A′ ∑ -1 (At-y))+diag(t)A′∑ -1A diag(t)]C (21)

In these equations, the diag(.) operator transforms a vector into a diagonal matrix. For

a full derivation of (20) and (21) we refer to Van Der Zijpp and Heydecker (1996b).

Equations (20) and (21) give insight into the performance of existing solution methods,

and provide a foundation for new ones.
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4.3 Implications for Existing Methods

The gradient search methods and Gauss-Seidel methods discussed in section 3 can be

used effectively to find stationary points of an objective function. Whether such a point

represents a local minimum or a saddle point can easily be determined by evaluating

the Hessian at that point: a local minimum only exists if the Hessian is PD. Therefore

result (21) can be used as a useful addition to existing methods: it supplies a powerful

convergence criterion. However the analysis needed to determine if a particular local

minimum to objective function (19) is also a global minimum is more intricate; this

problem is still open to investigation. 

5. A NEW ALGORITHM TO CALIBRATE GRAVITY MODELS

Using expression (21) for the second derivatives, it is possible to define a new numeri-

cal method to minimize (19). This method is based on a quadratic approximation of the

objective function of the form:

J*(q+ε)=J(q) + ε'.∇q[ J(q) ] + ½ ε' ∇2
q[ J(q) ] ε (22)

 This expression can be minimised over the vector ε at the cost of one matrix inversion,

provided that the Hessian of J in point q is Positive Definite (PD). An iterative method

based on this strategy is known as the Newton method. The advantage of this method

is that each successive iterate can be found analytically, so no numerical line search

procedure is needed. Two factors should be taken into account when applying this

method to minimize objective function (19):

 • The Hessian ∇2
q[ J(q) ] need not necessarily be strictly PD for all q. Therefore the

quadratic approximation of the objective function, J*, may not always be bounded

below. In such cases the next iterate would not be defined. Therefore a modified

Newton will be used to ensure that each successive iterate exists and will reduce the

objective function. In the present paper, we adopt the Levenberg-Marquardt type of

method, see Bazaraa et al. (1993), pp. 312. This method will be explained below.

 • The vector q contains the logarithms of the model parameters. This ensures that the

nonnegativity requirements are satisfied. However there does not exists a bounded

value of q that corresponds to a solution to (9) that contains one or more zero

parameter values. Although the value of zero can be approximated arbitrarily

closely, it may not be possible to represent such small numbers internally in a com-

puter, resulting in problems of convergence caused by rounding errors or underflow.

Therefore the following penalty function is added to the objective function:

f(q) = c1 (23)

This function is continuous in its first and second derivatives, and prevents the 

above mentioned problems. The values that were chosen for c1 and c2 were 100 and 

20 respectively.

The idea behind the Levenberg-Marquardt method is that even if the Hessian in a par-

ticular point is not PD, a next iterate with a lower objective function value can be

found by performing a small step in the direction of the negative gradient. This is

max 0 c
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effected by adding a multiple of the identity matrix, i.e. µ I, to the Hessian in (22),

before minimizing this expression. The values of µ are modified between iterations

using a strategy that is illustrated in figure 2. The next value of µ depends strongly on

the ratio R of the true improvement and the predicted improvement. If this ratio is

favourable then the value is µ is decreased, if this ratio is poor the value of µ is

increased. The thresholds that were used are given in Bazaraa et al. (1993).

6. NUMERICAL EXPERIMENTS

Numerical experiments have been performed on a set of empirical trip data obtained

from a French toll road. These data consist of an observed trip table for eight different

days between 29 origins and 26 destinations, resulting in 570 OD-flows that contribute

to link-flows observed in the study area. There is no route choice in this network, and

107 traffic counts have been synthesized from these data. Two types of experiments

were undertaken.

The first series of experiments involved estimating an OD-matrix by calibrating a

gravity model on the traffic counts. This was done for a model with a piecewise con-

stant deterrence function, see eq. (4). The number of distance classes that were distin-

guished was varied between 1 and 16. Each additional class was formed by sub-

dividing an existing one, so that a hierarchical sequence of models was constructed.

From the models discussed in this paper, each of the conjugate gradient, Gauss-Seidel

and modified Newton method were implemented. The conjugate gradient search

method turned out to be extremely slow, which prevented the completion of a full set

of experiments for this method. In table 1 the results were summarized for the Gauss-

Seidel method and the modified Newton method. Each row in this table contains the

results of calibrating the model using a deterrence function with the corresponding

number (N) of classes, averaged over the eight different days for which observed data

were available. The model prediction error could be computed by comparing the

model estimated OD-flow with the value contained in the toll-ticket database, and is

expressed using the Root Mean Squared Error (RMSE). The log-likelihood value is

denoted with L, and decreases with the addition of each extra class. The other columns

in the table contain the average CPU-time (on a Pentium 90) and the number of cases

for which the algorithm did not converge before a preset maximum number of 2000

iterations was reached (indicated with the symbol E).

In all cases, a solution with an equal or higher likelihood value was computed with the

modified Newton method. Moreover, with this method a solution that satisfied the con-

vergence criterion was reached without exception, whilst the Gauss-Seidel exceeded

the maximum number of iterations in 12 of the 128 instances. The main advantage of

the modified Newton method is its speed: none of the cases that were considered took

more than 290 seconds, whilst the Gauss-Seidel consumed 2975 seconds in one case;

the average values were 106 and 626 seconds respectively. The experiments also

revealed that for this particular dataset the best fit according to the RMSE measure is

obtained if a deterrence function with six classes is used. Unfortunately, in practice it is

not possible to determine this number as one needs a completely observed trip matrix

to compute this measure. This issue is discussed in Van Der Zijpp and Heydecker

(1996a).



In a second series of experiments each of the 570 observed OD-flows is used as a

measurement. This is similar to the case in which a prior matrix is available. When cal-

ibrating the gravity model on these data the solution with the highest likelihood value

and that with the lowest RMSE coincide: the resulting RMSE is known as the model

specification error, see Van Der Zijpp and Heydecker (1996a). The results of the cali-

bration are shown in table 2. On average, the computation time needed for the Gauss-

Seidel method has increased, whilst the computation time needed for the modified

Newton method has decreased substantially. Again the Newton method converged in

all cases, whilst the Gauss-Seidel did not meet the convergence criterion in 19 of the

128 computations. The maxima of the computation times over these 128 computations

are 4671 seconds for the Gauss-Seidel method and 16.42 seconds for the Newton

method; the average values were 1489 and 9.82 seconds respectively.

7. CONCLUSION

It has been shown that the problem of calibrating a gravity model is equivalent to the

minimization of a highly non-linear objective function. This formulation has a number

of advantages over more traditional ones, including the possibility to use arbitrary traf-

fic counts and constraints, not requiring the presence of an observed trip length distri-

bution (OTLD) and taking into account counting errors and spatial dependencies.

However, the minimization of this objective function is quite complex. Specific diffi-

culties are the presence of the nonnegativity constraints, slow convergence, the

absence of an adequate convergence criterion, and the complexity of implementation.

The problem of the nonnegativity constraints can be avoided by a change of variables

to the logarithms of the model parameters. This formulation unites methods with expo-

nential and piecewise constant deterrence functions. A key result presented in the

paper is an expression for the matrix of second derivatives of the objective function.

Based on this matrix a minimization method is presented with a greatly improved

speed of convergence. Moreover, this matrix, which can be computed easily with the

aid of modern software packages, provides an effective convergence criterion that can

also be applied in combination with other solution methods, such as Gauss-Seidel and

gradient search methods.
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Table 1: Estimation results based on traffic counts

for the number of classes ranging from 1 to 16

Gauss-Seidel Newton

N RMSE L av.CPU E RMSE L av.CPU E

1 537.33 -17443.93 321 536.91 -17443.90 77

2 485.57 -11308.71 245 486.09 -11308.68 223

3 470.82 -8184.56 255 470.81 -8184.55 151

4 478.93 -7514.64 984 480.46 -7182.98 86

5 387.47 -5176.33 506 387.45 -5176.31 166

6 380.23 -4940.86 202 380.18 -4940.86 61

7 381.40 -4934.20 113 381.46 -4934.19 37

8 639.94 -4539.26 1181 3 643.58 -4538.52 94

9 805.85 -4229.48 1648 5 806.40 -4227.91 64

10 783.25 -3533.62 1099 2 784.37 -3533.28 150

11 840.49 -3467.37 634 839.90 -3467.30 61

12 840.47 -3467.37 56 839.90 -3467.30 33

13 843.22 -3459.97 436 843.65 -3459.91 94

14 872.92 -3427.43 439 874.67 -3427.38 51

15 700.29 -2999.34 724 699.89 -2998.97 137

16 777.60 -2719.70 1176 2 777.74 -2719.48 206

tot.av.CPU 626 106

max. CPU 2975 289

Table 2:  RMSE fit of the gravity model

for the number of classes ranging from 1 to 16

Gauss-Seidel Newton

N RMSE av.CPU E RMSE av.CPU E

1 329.36 307 329.36 14.82

2 273.12 408 273.12 10.29

3 235.05 946 235.05 11.08

4 224.08 769 224.08 9.75

5 216.94 807 216.94 10.38

6 215.03 1191 215.03 8.23

7 214.74 1392 1 214.74 7.83

8 213.83 837 213.83 7.74

9 212.45 1055 212.45 10.80

10 212.37 1093 1 211.28 8.86

11 207.30 1664 2 206.71 9.25

12 205.97 1697 1 205.87 8.63

13 203.40 1891 2 203.20 9.20

14 202.53 2422 2 202.49 8.33

15 196.48 4165 7 196.35 13.13

16 196.23 3180 3 196.22 8.82

tot.av.CPU 1489 9.82

max. CPU 4671 16.42



maximise MVN(τ Tm,∑) y

set ∑ := Y+Ω

set ∑ := τ T
m τ′+Ω

yes

no

Figure 1: Outline of iterative process to maximise expression (8)

Export Tm
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initialize:

k:=1, q(k):=1, µ:=1

H is P.D.

q(k+1) :=

R:=[J(q(k))-J(q(k+1))]/[J*(q(k))-J*(q(k+1))] k = k+1

R<0.25? µ := 4µ

µ := µ/2

H = [∇2
q[ J(q(k) ] + µ I]

R>0.75?

argmin
q

J*(q)

µ := 4µ

 convergence
reached?

yes

no

no

no

yes

yes

export q(k+1)

Figure 2: Overview of Levenberg-Marquardt method (modified Newton method)

R<0? q(k+1) := q(k)

no

yes

no
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ABSTRACT

Knowledge of Origin-Destination (OD) trip matrices is needed in many stages of trans-

port planning. As direct observations of OD-flows are usually not available, a com-

monly used approach is to estimate them from traffic counts and other aggregated flow

constraints. The under-specification that characterizes this estimation process can be

resolved by requiring that OD-values conform to a model of travel demand. In this

paper we consider a class of methods based on the gravity model, with either an expo-

nential or a piecewise constant deterrence function. We focus on numerical methods to

calibrate these models from traffic counts and establish a unifying analysis of them.

The paper starts with a description of the gravity model, and a summary of the

assumed modelling and observation error structures. Subsequently a likelihood expres-

sion is established which we seek to maximise. The paper then concentrates on meth-

ods that can be used for this purpose. Existing methods are discussed, and it is shown

that some of the difficulties that occur when applying them can be resolved by a

change of variables to logarithms of the model parameters. A key result concerns the

matrix of second derivatives of the likelihood function. This result is then applied and

leads to a new optimisation method. In a series of experiments this method is shown to

be robust and computationally efficient.


