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Abstract

Introduction: Age-related microstructural differences have been detected using
diffusion tensor imaging (DTI). Whilst DTI is sensitive to the effects of aging, it is
not specific to any underlying biological mechanism, including demyelination.
Combining multi-exponential T2 relaxation (MET2) and multi-shell diffusion
MRI (dMRI) techniques may elucidate such processes.

Methods: Multi-shell dMRI and MET2 data were acquired on 59 healthy
participants aged 17-70 years. Whole brain and regional age-associated
correlations of measures related to multiple dMRI models (DTI, diffusion
kurtosis imaging (DKI), neurite orientation dispersion and density imaging
(NODDI)) and myelin sensitive MET2 metrics were assessed.

Results: DTI and NODDI revealed widespread increases in isotropic diffusivity
with increasing age. In frontal white matter, fractional anisotropy (FA) linearly
decreased with age, paralleled by increased ‘neurite’ dispersion and no
difference in myelin water fraction (MWF). DKI measures and neurite density
correlated well with MWF and intra- and extracellular water fraction (IEWF).
Conclusion: DTI estimates remain among the most sensitive markers for age-
related alterations in white matter. NODDI, DKI and MET2 indicate that the
initial decrease in frontal FA may be due to increased axonal dispersion rather

than demyelination.



1. Introduction:

Throughout adulthood, the human brain undergoes significant biophysical
changes in both white and grey matter (Pannese, 2011). In contrast to non-
human primates, these maturating and regressive processes occur

heterochronically in different brain regions (Haroutunian, et al., 2014).

Structural magnetic resonance imaging (sMRI) has played a pivotal role in the
context of monitoring and understanding the healthy ageing process, for
example, by measuring atrophy and detecting white matter (WM) lesions (Fjell,
et al., 2009,Raz, et al,, 1997,Salat, et al., 2009). However, single contrast sMRI is
suboptimal for measuring microstructural changes, including myelination, which

may predate atrophy (Haroutunian, et al., 2014).

Other MRI based techniques, such as those that are sensitive to the direction of
water diffusion (diffusion MRI) or myelin content (relaxometry, magnetization
transfer imaging) are increasingly being applied to study lifespan effects. The
most widely used of these approaches is diffusion tensor imaging (DTI) (Basser,
et al, 1994). Fractional anisotropy (FA) describes the degree of non-isotropic
diffusion and is a popular, non-specific DTI metric that is used as a general
indicator of microstructural status because of its sensitivity to changes in cell
density, size, number and myelin status (Beaulieu, 2002,Beaulieu and Allen,
1994). See (Tournier, et al,, 2011) for a review. Age-related differences in FA,
mean diffusivity (MD), and radial diffusivity (RD) have been found in various
WM regions. The changes are often non-linear (quadratic) with an initial
increase in FA and decrease in MD and RD followed by a reversal that is
frequently attributed to deficits in axonal membrane (myelin) integrity. The
greatest changes are often found in the anterior corpus callosum (Bartzokis, et
al.,, 2012,Brickman, et al., 2012,Davis, et al.,, 2009,Inano, et al,, 2011,Lebel, et al.,,
2012,Pfefferbaum, et al., 2000,Salat, et al., 2005,Sullivan and Pfefferbaum, 2006).

Whilst DTI is a popular technique, it is not without significant limitations,

many of which relate to the simplicity of the tensor model (Jones and Cercignani,



2010). In response, novel non-tensor based diffusion MRI techniques have been
developed. In contrast to DTI, Diffusion Kurtosis Imaging (DKI) also measures
non-Gaussian diffusion and may provide additional and complementary
information to DTI (Jensen and Helpern, 2010,Jensen, et al., 2005). To date, only
a few studies have applied this technique to study differences across the lifespan.
In these studies, mean kurtosis (MK), a measure of tissue complexity was found
to increase in WM during maturation and decrease in healthy aging (Coutu, et al,,

2014,Falangola, et al,, 2008,Gong, et al,, 2014,Latt, et al.,, 2013).

Another advanced diffusion MRI analysis technique, neurite orientation
dispersion and density imaging (NODDI)(Zhang, et al., 2012) aims to quantify the
density and dispersion of neurites (i.e. axons and dendrites). These can be seen
as independent factors influencing anisotropy and provide a more biologically
intuitive model of diffusion changes. NODDI has been successfully applied in
previous studies investigating pathological changes (Billiet, et al.,, 20144a,Lally, et
al, 2014,Winston, et al.,, 2014) and neonates (Jelescu, et al., 2015,Kunz, et al,,
2014,Melbourne, et al., 2013), but has not yet been used prospectively in healthy

ageing.

Diffusion estimates have proven to be sensitive to many microstructural
alterations, yet lack specificity. Furthermore, diffusion MRI cannot directly
assess myelin, which has an important role in ageing processes. Several
alternative MRI based techniques provide myelin markers, including the myelin
water fraction (MWF) obtained from multi-exponential T2 relaxation (METZ2, or
“myelin water imaging, MWI”), and magnetization transfer imaging (MTI).
Studies using MTI have found evidence of potential age associated
demyelination; yet the lack of specificity of these measures for myelin means
that MTI based findings need confirmation using alternative techniques. In this
context, the MWF has superior specificity for myelin content (Stanisz, et al.,
2004, Vavasour, et al,, 2011). A few studies have been conducted assessing the
evolution of myelination in neonates and children (Deoni, et al., 2012,Melbourne,
et al, 2013,Whitaker, et al., 2008) yet limited information exists about the
evolution of MET2 metrics during adulthood (Flynn, et al., 2003).



There are undisputable, heterogeneous WM microstructural changes
associated with ageing as assessed using different MRI techniques. However,
attributing differences in univariate MRI measures to specific microstructural
features is confounded by a lack of specificity and, in the case of novel measures,
a lack of studies characterising their behaviour in healthy tissue. In this
multimodal MRI study we therefore aimed to quantify whole brain and regional
age-related differences in both established (DTI) and novel diffusion MRI metrics
(DKI, NODDI) as well as in the myelin specific MET2 technique in a prospective
sample of healthy individuals. We contribute valuable normative data for future
studies using these techniques and demonstrate the added value of using
multiparametric MRI data for assessing age-related WM microstructural

changes.

2. Materials & Methods

2.1 Participants

Age and gender matched healthy volunteers between the ages of 17 and
70 years old were recruited through local advertisement in the Leuven
University Hospital. Inclusion criteria were the absence of current medical
illness, diagnosis of a neurological or psychiatric disorder, previous brain
surgery, traumatic brain injury, use of psychotropic medication, and
contraindications to MRI scanning. The study was approved by the local Ethical
Committee and conducted in accordance with the Declaration of Helsinki.
Originally sixty-two volunteers participated of which fifty-nine were retained
(min age: 17, max age 70). One dataset was discarded because of extensive white
matter hyperintensities. The remaining participants were free of visible
hyperintensities. Two datasets were discarded because of incomplete data
acquisition. Participants were randomly scanned within a timeframe of 7
months, with the timing of data acquisition distributed evenly across the age-
range studied. There were slightly more female participants than males (f/m =

36/23) but their mean age did not differ (t = 0.49, p = 0.62). There was no



significant difference in educational level across the age-range investigated (F=
1.68, p = 0.17). Education level in this instance refers to the highest educational
qualification (i.e. most years of education) obtained in Belgium based on 5 levels,
which include: primary school, secondary school (i.e. high school), higher
education of short duration (equivalent to professional bachelor), higher
education of long duration (equivalent to professional master) and university

degree (academic bachelor + master).

2.2 Data acquisition

MRI brain scans were acquired using a 3T MR scanner (Achieva; Philips,

Best, the Netherlands) and a 32-channel phased-array head coil.

2.2.1 Multi-exponential T2-relaxation

A 3D GraSE sequence was used to acquire multi-slice multi-echo data of
the cerebrum in under 12 minutes (Maedler and MacKay, 2007,Prasloski, et al.,
2012). The data consisted of 32 mid-axial slices for which 32 echoes were

acquired with ATE =10 ms (TE =10, 20, ..., 320 ms), TR = 1000 ms, EPI-read out

factor of 3 and voxel size 1 x 1 x 2.5 mm3.

2.2.2 Diffusion MRI

An echo-planar imaging (EPI), multi-shell, high angular resolution
diffusion imaging (HARDI) scheme was used consisting of diffusion-weighted
images for b-values of 700, 1000, and 2800 s/mm?, respectively applied along
25, 40 and 75 uniformly distributed directions (Poot, et al., 2010). Each series of
diffusion-weighted images was preceded by a b = 0 image. An additional 7 non-
diffusion weighted images were acquired yielding 10 b = 0 images in total.
Constant scan parameters were TR/TE = 7800 ms/90ms, 50 slices, voxel size 2.5
X 2.5 x 2.5 mm3, parallel imaging factor 2.

A T1-weighted image was acquired for anatomical reference and image

registration purposes using a whole brain 3D-TFE sequence consisting of 182



contiguous coronal slices with TE = 4.6 ms, TR = 9.6 ms, voxel size 0.98 x 0.98 x

1.2 mm?3. The total scan time of the protocol was approximately 45 minutes.

2.3 Data pre-processing

The main steps in the image-processing pipeline are visualized in Figure 1.
Following data quality assurance and correction, the MET2 and diffusion
parameter maps were calculated in each subject in native space. These
parameter maps were then brought into a common template space via a series of
controlled affine and non-affine registration steps. The datasets were masked to
define which voxels should be included as WM (based on the T1-weighted
anatomical image), and which should be excluded e.g CSF (including lateral
ventricles), subcortical GM (including basal ganglia and thalamus) and the voxels
closest to the cortical boundary. Parameter values were then assessed in each
individual subject in masked template space. Each of these steps is described in

more technical detail below.

2.3.1 Quality assurance & calculation of quantitative maps

Multi-exponential T2 relaxation

The T2 weighted volumes were visually checked for motion artifacts and
in case of a blurred first echo image, the dataset was discarded.
A decay curve was obtained in each voxel from all T2 weighted images, and was
transformed into a distribution of 120 mono-exponential T2 decay curves using
regularized non-negative least squares estimation (Whittall and Mackay, 1989).
We used the extended phase graph algorithm to account for possible stimulated
echoes due to non-ideal refocusing pulse flip angles (Hennig, 1988,Prasloski, et
al, 2011). A 1.02 regularization factor was used during the fitting procedure to
assure smooth T2 amplitude distributions. From the T2 distributions the
following MET2 metrics were derived on a voxelwise basis: myelin water
fraction (MWF) was calculated as the area fraction between 10 and 40 ms
relative to total T2 distribution area; intra- and extracellular water fraction

(IEWF) as relative area between 40 and 200 ms; [EW-gmT2 is the geometric



mean T2 time of intra-and extracellular water; G-gmT?2 is the geometric mean T2
time of the overall distribution. Example MET2 parameter maps are illustrated in

Figure 2 and summarized in Table 1B.

Diffusion MRI

All DWIs were visually investigated by looping through each dataset in all
three orthogonal views. Datasets with clear artifacts such as signal dropout,
gross geometric distortion or bulk motion were discarded. Satisfactory datasets
were corrected for eddy-current and motion-induced geometric distortions
using the ExploreDTI toolbox, which is based on the approach described by
Irfanoglu et al (Irfanoglu, et al., 2012). This step also included the appropriate
reorientation of the B-matrix. (Leemans, 2009,Leemans and Jones, 2009). From
the corrected and combined DWIs, diffusion tensors and diffusion kurtosis
tensors were obtained per voxel(Jensen, et al, 2005), and the following
parameters were derived: axial diffusivity (AD), radial diffusivity (RD), mean
diffusivity (MD), fractional anisotropy (FA), axial kurtosis (AK), radial kurtosis
(RK), mean kurtosis (MK) and kurtosis anisotropy (KA). NODDI metrics were
derived using the NODDI toolbox!: neurite density index (NDI), orientation
dispersion index (ODI) and (Gaussian) isotropic fraction (FISO). Example dMRI

parameter maps are illustrated in Figure 2 and summarized in Table 1.

2.3.2 Image registration

The registration pipeline is illustrated in Figure 1. A population-based
template was constructed based on the b=2800 shell of the diffusion MRI
dataset, using an affine and subsequently non-rigid DTI-based registration
algorithm incorporating tensor reorientation (Leemans and Jones, 2009,Van
Hecke, et al., 2007). The b = 2800 shell was chosen for optimal angular contrast.
All parameter maps were computed in native space and then coregistered to this
population-based template using the following steps. First, the “Advanced
Normalisation Tools” (ANTS) toolbox (Avants, et al., 2008) was used to affinely

register the MET2 metrics to the native T1 image by maximization of mutual

Lhttp://www.nitrc.org/projects/noddi_toolbox



information between the first echo image and the T1 image. Affine
transformations were justified by the absence of any geometric distortions in
MET2 data. Next, the METZ2 metrics and T1-based tissue classes were
diffeomorphically registered (Avants, et al., 2008) to b = 1000 data (for optimal
GM and WM tissue contrast). To optimally account for remaining geometric
distortions of dMRI data, two similarity measures with equal weight were used:
mutual information between the T1 image and average of the b=1000 DWIs, and
cross correlation between T1 WM and the FA image. Finally, all the MET2 as well
as WM tissue segmentations, DTI, DKI and NODDI native parameter maps were
nonrigidly normalized to the group template using an affine and non-rigid DTI-
based coregistration algorithm (Leemans and Jones, 2009,Van Hecke, et al,

2007).

2.3.3 Construction of white matter masks

To reduce partial volume effects, each participant’s image was multiplied
by a WM mask based on their individual thresholded (0.8) and binarised WM
tissue map obtained from the SPM8 segmentation of their native T1 image. As
such, we restricted analysis to voxels containing at least 80% WM. Furthermore
any voxels that overlapped with the “Automatic lateral ventricle delineation”
(ALVIN) ventricle mask were excluded (Kempton, et al., 2011). Additionally,
another WM mask was applied based on the average white matter segmentation
of all subjects, thresholded at 0.8 and binarised. This was done to ensure that
only voxels that had a high likelihood of being WM in all participants were
incorporated. Finally, to reduce partial volume contamination from voxels in the
basal ganglia and thalamus regions, an exclusion mask was applied including
caudate, putamen, globus pallidus and thalamus ROIs as defined by the Harvard-
Oxford cortical and subcortical structural atlas (Frazier, et al., 2005). The final

mask is visible in Figure 1 and in more detail in Supplementary Figure 1 and 2.

2.4 Data analysis

2.4.1 Region-of-interest analysis



For assessing the correlation of all metrics with age in well-defined
regions of interest (ROIs), we used the Johns Hopkins University (JHU) WM atlas
labels (Mori, et al., 2005). For each participant, the mean metric value of voxels
inside a ROI was calculated, excluding the lowest 2% and highest 2% of values.
Because the 3D GraSE sequence has a limited FOV, metrics were only evaluated
in those regions for which all participants had data in more than half of the ROI
(i.e. all brainstem and cerebellum regions were excluded). To reduce multiple
comparisons, the analysis combined bilateral structures into single regions
(n=23). This was deemed acceptable because age-related differences have been
shown to occur predominantly bilaterally (Callaghan, et al., 2014,Draganski, et
al, 2011,Lebel, et al., 2012,Salat, et al., 2005). Also small ROIs (mean - standard
deviation less than 100 voxels) were excluded from the analysis to avoid ROI size
bias. These included the tapetum, uncinate fasciculus, superior fronto-occipital
fascicles, the cingulum near the hippocampus (separate from the cingulum near
the cingulate gyrus) and the fornix body (separate from the larger fornix
crescent/stria terminalis). The remaining ROIs and their size in voxels are

summarized in Supplementary Table 1.

The resulting mean metric values inside ROIs and whole cerebrum WM
were then assessed for their linear and quadratic correlation with age and the
shared variance between any two metrics was computed. Correlations were
deemed significant if the resulting p-value was below 0.05 after correcting for
multiple comparisons using the Holm-Bonferroni method for family-wise error
(FWE). The Steiger z-test was applied to assess whether there was a significant
difference (ps<0.05) between linear and quadratic correlation with age for each

ROI and metric.

2.4.2 Voxel-wise analysis

Statistical analyses were carried out on smoothed parameter maps
(FWHM=6mm) in population atlas space using mass-univariate linear regression
as embedded in the general linear model framework of SPM8 (statistical

parametric mapping software;



http://www. fil.ion.ucl.ac.uk/spm/software/spm8/, London, United Kingdom)
with age as a regressor. 2-tailed t- tests were used to look for differences in 15
MRI-based measures with age: DTI metrics (FA, MD, AD, RD), DKI metrics (KA,
MK, RK AK), NODDI metrics (NDI, ODI, FISO) and MET2 metrics (MWF, IEWF,
IEW-gmT2, G-gmT2). An explicit mask limited the analysis to the average WM
mask also used in ROI analysis (i.e. average of WM tissue maps thresholded at

0.8, binarised and excluding basal ganglia, thalamus and lateral ventricles).

Additionally, we performed a voxel-based morphometry analysis using
“diffeomorphic anatomical registration through exponentiated Lie algebra”
(DARTEL) (Ashburner, 2007), investigating the correlation of WM volume with
age, expressed as a T-score. This was performed on smoothed (FWHM = 6mm)
modulated normalized WM maps in MNI space generated from the standard
SPM8 DARTEL pipeline. Total WM was calculated using the SPM get_totals
script?.

In all SPM analyses, family-wise error was controlled using an FWE
threshold of p=0.05 and clusters surviving this threshold were deemed

significant below prwe=0.05 at cluster-level.

3. Results

3.1 Region-of-interest analysis

Figure 3 illustrates the linear correlation of DTI, DKI, NODDI and MET2
metrics with age in WM regions and in the cerebral WM (mask). ROIs and
metrics are ranked according to the mean shared variance (R?) with age. Regions
are ranked from top to bottom according to average shared variance across
metrics. Results for the total cerebral WM are added on top of the figure for
comparison. Metrics are ranked from left to right according to average R?across
ROIs. Figure 4 illustrates the correlation coefficient (i.e. square root of shared

variance) for quadratic fit. A positive sign means the metric vs. age relationship

2 http://www0.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m



(a parabola) resembles a U-shaped curve while negative coefficients indicate an

inverse U-shaped curve.

3.1.1 Regional correlations

On average across regions, the NODDI measure of isotropic diffusivity (
FISO) showed the largest differences with age, followed by neurite dispersion
(ODI) and fractional anisotropy (FA). In some regions, a quadratic correlation
describes the data significantly better than a linear correlation. These region-
metric combinations are denoted with a black cell border in Figure 4. As an
example the curves of RD, MK, ODI and IEWF in selected ROIs are illustrated in
Figure 5.

The ROIs that show the strongest correlation with age on average across
metrics were the fornix, cerebral peduncles, external capsules and the genu of
corpus callosum. The least strong correlations were found in posterior regions,

including the callosal splenium.

3. 1. 2 Diffusion metric correlations

The NODDI metrics were frequently positively correlated with age across
the regions investigated. FISO showed the highest correlation with age in the
external capsules (r = 0.67, prwe < 0.001) followed by the total cerebral WM (r =
0.62, prwe < 0.001), suggesting more free (isotropic) diffusion with age. This is
also reflected in the positive correlations of MD (in cerebral WM: r = 0.31, prwg =
0.005). Figure 4 shows that age-related differences of FISO and all diffusivities
(MD, RD, AD) tend to express a U-shaped pattern, which means a local minimum
is reached after which values increase. The sagittal stratum is the only region
where RD and MD show a significantly better quadratic, compared to linear fit.

Because ODI and NDI are believed to represent independent aspects of FA
(Zhang, et al., 2012) we group results from these metrics here. In most ROIs, ODI
and FA show similar but opposite linear correlation, suggesting reduced
anisotropy with increasing age. Figure 4 reveals that in most ROIs where both FA
and ODI change significantly, the curves of ODI vs. age and FA vs. age are

opposite to each other, indicating some similarity between both. The



(predominantly linear) positive correlation of NDI with age furthermore reflects
increasing intracellular-like signal relative to the extracellular-like signal. The
profiles of FA, ODI and NDI vs. age were not consistently U-shaped or inverse U-
shaped across regions.

Diffusion kurtosis metrics revealed less age-related differences compared
to DTI and NODDI metrics. Of all the DKI parameters, AK displayed the most
significant correlation with age, reflected by increasing values over the lifespan.
Mean kurtosis increased most significantly in the anterior limb of the internal
capsules (r = 0.50, prwe = 0.012) and presented inverse U-shaped profiles.
Differences in RK and KA were too small to reveal the shape of quadratic fitted

curves, as only few ROIs yielded above threshold correlation coefficients.

3.1.3 METZ2 metric correlations

Compared to diffusion MRI metrics, the differences in MET2 metrics were
generally smaller. The most significant differences in MET2 metrics were found
in the fornix crescent/stria terminalis. In this structure MWF showed a trend
towards a linear increase (r = 0.46, prwe = 0.057) and IEWF decreased with age

as a U-shaped curve (r =-0.56, prwe = 0.0074).

3.2 Voxelwise assessment of lifespan effects

3.2.1 Whole brain correlations

There was no significant correlation between total WM volume and age
(linear: r =-0.0094 (p = 0.94), quadratic: r =-0.0034 (p = 0.98)). Results from our
voxel based morphometry DARTEL analysis additionally revealed no statistically
significant regional WM volume effects at the selected cluster-level threshold of

pFWE:O.OS.

3.2.2 Diffusion MRI metrics

DTI
Figure 6 illustrates regional differences in FA, MD, RD and AD. Effects

were widespread including a bilateral anterior reduction in FA located along the



frontal projections of the corpus callosum (T>5.28, prwe <0.009 at cluster-level).
This decreased anisotropy was mainly paralleled by an increase in RD (T>5.48,
prwe<0.01 at cluster level) and less by MD or AD. Anisotropy was decreased and
(mainly radial) diffusivity increased in superior parietal WM (corona radiata)
and regions of crossing fibres such as the centrum semiovale (FA: T = 7.17, prwe

<0.001; RD: T = 7.41, prwe < 0.001).

DKI

Figure 7 illustrates regional differences in AK, MK, RK and KA. There were
substantially fewer age-related differences detected using DKI compared to DTI.
Similar to MD, MK increased with age in the corona radiata (T=7.40, prwe<0.001).
In contrast to DTI where RD appeared to drive the increased mean diffusivity,
MK was more paralleled by an increase in AK (T = 7.42, prwe < 0.001) than RK (T
= 6.44, prwe = 0.001). The internal capsules furthermore showed a trend towards

increasing MK (T=4.25, prwe = 0.022)

NODDI

Figure 8 illustrates regional differences in FISO, ODI, and NDI. The most
significant effects were widespread increases in FISO throughout most of the
cerebral WV, including the corpus callosum body and corona radiata, but with

only limited increases in the occipital lobe.

Of the NODDI metrics, differences in NDI were smallest, with increases in
the posterior corona radiata. Only very limited differences in NDI were found in

WM of the frontal lobe.

ODI on the other hand expressed widespread linear increases with age
including both anterior and posterior corona radiata, the intersection of several
parietal and occipital fiber pathways, (T = 7.84, prwe<0.001) and posterior
thalamic radiation (T= 5.82, prwe<0.001).

3.2.3 Mpyelin water imaging metrics



Figure 9 illustrates regional differences in MWF, [IEW-gmT2 and G-gmT?2.
Overall, age-related differences were minor and only few results were
significant. Mean T2 time (G-gmT2), IEWF and IEW-gmT2 slightly decreased in
the external capsules (T = 5.76-6.27, prwe = 0.001 - 0.004)

There was a trend towards an overlapping increase in MWF and decrease in
IEWF and G-gmT2 (but not [EW-gmT2) in the midbrain (T = 4.22 - 5.39, prwe=
0.012 - 0.23). Minor increases of all MET2 metrics were found in the corona
radiata and of IEW-gmT2 in frontal WM. Notably, unlike with the diffusion
metrics, MET2 metrics displayed both increases and decreases within metrics,

which may reflect changing T2 properties of tissue over the lifespan.

3. 3 Correlation between metrics

Figure 10 displays the shared variance (i.e. the square of the linear
correlation coefficient) between pairs of metrics in whole cerebral WM
illustrating how much similar or unique information the different metrics

provide.

As expected, DTI metrics have a high proportion of shared variance
among themselves (i.e. intra-modal). The same is true for DKI and MET2, while
NODDI metrics share only limited variance with each other (FISO vs. ODI: 12%,
NDI vs. ODI: 3%, FISO vs. NDI: 21%). FISO, being an indicator for isotropic
diffusivity, correlated strongly with MD (31%), RD (30%) and AD (20%), which
also quantify isotropic diffusion. Across whole cerebral WM, the measures of
anisotropy FA and ODI showed rather strong (negative) correlations with each
other resulting in 36% of shared variance. In contrast, NDI was not significantly
correlated with FA (17%) or ODI (3%). MWF and IEWF correlated strongly with
DKI metrics and NDI, but not with DTI measures. Similarly, NDI showed higher
shared variance with DKI metrics (in particular with MK: 89%) than with DTI

metrics.

4. Discussion



4.1 Summary

In this cross-sectional study, we examined the relationship between
multiple diffusion MRI and myelin-sensitive MET2 “myelin-water imaging”
measures and age in brain WM in a healthy adult population. We used
complementary ROI and voxel-based analyses, and examined the relationships
between the different parameters used in these analyses. Our results indicate
widespread WM microstructural differences in the absence of gross WM atrophy,
with heterogeneous regional alterations between different measures, potentially
reflecting different aspects of microstructural change and their evolution over
the period of late development and early ageing. Metrics quantifying Gaussian
diffusivity (in particular FISO) had the strongest correlations and most
widespread age-effects, possibly related to cerebrospinal fluid increase, whilst

non-DTI metrics correlated well with myelin water imaging measures.

4.2 Study findings in the context of retrogenesis and (de)myelination

Our results are in agreement with previous findings of an age-related
decline in FA that is more pronounced in frontal regions (Bartzokis, et al,
2012,Davis, et al.,, 2009,Lebel, et al,, 2012,Salat, et al., 2005) and which may
reflect an anteroposterior gradient of retrogenesis (Bartzokis, et al.,, 2012,Inano,
et al, 2011,Kumar, et al, 2013,Lebel, et al, 2012,Madden, et al.,
2004, Pfefferbaum, et al., 2000,Salat, et al., 2005). In this process, WM fibers that
were myelinated latest during development (e.g. genu of corpus callosum) have
thinner myelin sheaths than early developing WM (e.g. splenium of corpus
callosum) and therefore degenerate first during late adulthood and senescence.

Although controversial (Wheeler-Kingshott and Cercignani, 2009),
changes in RD have been associated with changes in the myelin sheath (Song, et
al,, 2005). The age-related decrease in FA and increase in MD we detected were
indeed accompanied by a more significant increase of RD than AD suggesting a
myelin-related contribution to FA decrease. However, our results from myelin

water imaging run somewhat counter to the demyelination hypothesis as we



detected positive, not negative linear correlations between age and MWF, in
agreement with Flynn et al. (Flynn, et al, 2003). The low shared variance
between MWF and FA in our study indicates that age-related FA changes do not
necessarily correspond to changes in myelin content. This is in line with previous
(non-aging) findings showing little correlation between FA and myelin measures
(Beaulieu, 2002,Beaulieu and Allen, 1994,De Santis, et al., 2014,Madler, et al.,
2008). Furthermore, other metrics that are sensitive for tissue fractions (IEWF,
NDI) or compartmentalization (kurtosis metrics) did not show large age-related
differences in frontal WM.

This begs the question of what actually drives the decrease in frontal FA,
if it is not demyelination. Figure 8 has shown us a frontal increase in neurite
dispersion (ODI) as modeled by the NODDI framework. Moreover, throughout
the WM, ODI shared 36% of variance with FA (Figure 10). Although highly
speculative, these combined findings suggest that rather than demyelination or
alterations in tissue compartmentalization, increased axonal disperion may drive
the earliest decreases in frontal FA. In line with this argument, a study
investigating the correlation of similar (but not the same) MET2 and multi-shell
dMRI metrics in a young cohort (mean age/standard deviation =24.2/2.8
yrs) found that DTI measures are more dependent on the underlying
microarchitectural paradigm (e.g. presence/number of crossing-fibers) than

metrics based on multicompartment models (De Santis, et al., 2014).

4.3 Kurtosis metrics and NDI may reveal signs of late maturation.

The VBA and ROI results finding positive correlations of age with MK and
RK diverge from previous studies in which negative correlations were found
(Couty, et al,, 2014,Gong, et al,, 2014,Latt, et al., 2013). Age-related differences in
AK were only reported in (Coutu, et al., 2014) and in contrast to our findings
showed negative correlation with age. This could be explained by the older
sample in the Coutu et al. study, which may have captured the phase of decline
while our sample reflects late maturation and early ageing. Figure 4 indeed
suggests that AK and MK in most ROIs follow an inverted U-shaped curve which,

given the positive linear correlation with age (Figure 3), goes along with an



initial increase (associated with ongoing maturation) and subsequent decline. In
DTI metrics on the other hand, the phase of reversal seems to have already
passed, as FA continues to decrease (inverted U-shape) and diffusivities continue
to increase (U-shape). DTI and DKI metrics may therefore relate to different
dynamics throughout the lifespan, meaning DTI metrics may reveal early decline
through the linear correlation coefficients, while kurtosis metrics may capture
signs of late maturation.

Similar to kurtosis metrics, we detected an increase of NDI with age
instead of an expected decrease. The pattern of age-related differences of NDI
closely resembled that of kurtosis metrics, with the largest clusters in superior
parietal WM (Figures 7,8) and a trend towards an inverted U-shape curve in total
cerebral WM (Figure 4). Furthermore Figure 10 has shown that NDI and MK
correlate very strongly and have 89% of shared variance, suggesting a common
driving factor. One possible explanation could be that age-related differences in
non-Gaussian diffusion as measured by MK are largely driven by changes to

axonal density.

4.4 METZ2 metrics are less sensitive to age-related differences during early to

mid-adulthood than diffusion measures

As only minor differences with age were found using MET?2, it may be less
suitable for studying early aging effects than diffusion MRI and DTI and NODDI
metrics in particular. While shared variance values between MET2 and DTI
metrics were below the significance threshold (Figure 10), some degree of
similarity was detected between MET2, DKI and NDI. This similarity is not
surprising as kurtosis is believed to reflect the degree of compartmentalization
(Hui, et al., 2008), which is also reflected in MWF, IEWF and NDI.

Interestingly, in ROIs where differences in MWF were detected, the
correlation with age was positive, suggesting an increase in myelin content with
age. Although in agreement with Flynn et al. (Flynn, et al, 2003), this is
counterintuitive. In this context it is important to keep in mind that MWF and
IEWF are defined as a ratio relative to the total visible T2 distribution. An age-

related increase in MWF may therefore also be explained by an absolute loss of



IE water. An age-related decrease of MWF may indicate both demyelination and
also an absolute increase of IE water or the presence of an additional water pool
with T2 values outside both myelin and IE integration windows (i.e. between
200ms and 2s). The latter is unlikely to be present in the current study sample as
they have only been detected in pathologic white matter, e.g. in case of

phenylketonuria (Laule, et al.,, 2007b) or multiple sclerosis (Laule, et al., 2007a).

4.5 Comparison between ROI and VBA results

The advantage of an ROI analysis for aging studies is that results can
easily be localized to certain specific anatomical regions and the number of
statistical comparisons may be reduced relative to whole brain VBA approaches.
Moreover, the introduction of smoothing and statistical thresholds means that
changes in smaller regions such as the fornix, are less readily detected using
VBA. One would expect however, that the greatest regional changes would be
detected by both methods. Indeed, in most regions, results from our VBA and
ROI analysis are in agreement. There were however some exceptions. For
example, in the posterior corona radiata, VBA detected subtle differences in
MET?2 metrics, MD and AD that were not detected in the ROI analysis. This could
be due to ROIs not capturing as much WM in this region as well as differential
partial volume effects, smoothing, and statistical significance thresholds related

to FWE correction.

4.6 Methodological considerations

Our results are largely in accordance with previous MRI findings on larger
populations and neurobiology. The age range of our participants most likely
captures the processes of late development and early neurodegeneration, and
therefore our findings may be less comparable to studies that include younger or
older participants. For example, analyses including participants over and under
60 years old have demonstrated more significant decline in the older group
(Salat, et al., 2005). This could also explain why we did not find any significant

decrease in WM volume with age, and why some parameters did not display a



quadratic correlation with age. Because WM volume (and also grey matter
volume) did not decrease significantly, we did not include brain volume as a

covariate. This could also account for discrepancies with other studies.

Undertaking a multimodal multiparametric analysis such as in this study
necessarily requires multiple image registration steps. In order to minimize
registration errors, we used a population atlas based approach and sophisticated
well-validated non-linear registration methods (Avants, et al, 2008), and
assessed registration accuracy at each stage of the processing and analysis
pipeline. However, as with all studies of this type, we cannot rule out the
contribution of subtle registration, interpolation and partial volume effects to
our findings (Van Hecke, et al,, 2011,Vos, et al,, 2011). In this context, although
we did not detect voxel-wise correlations between age and WM volume, it is still
possible that the associations we have detected reflect age-related
macrostructural changes rather than changes in specific microstructural

elements such as myelin content.

Some metrics in our study varied with age, however, correlation does not
imply a causal relationship. Other factors that are not related to age such as 1Q
may have an influence on these metrics. We did not explicitly test 1Q in this
sample; however, there were no differences in educational level across the age-
range studied. Participants of different ages were also randomly scanned,

reducing the influence of scanner changes over time.

In vivo MRI metrics are indirect measures based on averaging multiple
tissue properties over voxels many times larger than the structures that are
being probed. Whilst the various metrics are described in terms of biological
properties such as intra and extracellular water, or myelin, in reality these labels
are based on mathematical models as applied to imperfect MRI data. We
detected a number of counterintuitive findings in this context. For example, NDI
(reflecting neurite density), increased with age. This highlights the need for
further basic research into the neurobiological correlates of diffusion MRI and

MET?2 measures as the models are influenced by other tissue properties beyond



those the metrics attempt to characterize. For example, WM regions in the deep
WM and the midbrain are close to structures that contain iron or accumulate
iron with age (Callaghan et al, 2014). Iron influences the T2 relaxation signal,

which underlies all the metrics assessed in this study.

5. Conclusion

Using advanced diffusion MRI and multi-exponential T2 relaxation we
found age-related differences in multiple MRI measures of microstructure across
the brain WM that predate atrophy. Commonly reported frontal WM decreases in
FA may not reflect demyelination, but an increase in axonal dispersion. The
correlation between MET2, DKI metrics and neurite density (NDI) suggests they
may be sensitive to similar microstructural features, whilst DTI and NODDI
appear to be most sensitive to lifespan effects in young to mid-adulthood.

Further research into the underlying biological basis of novel MRI based
measures is required, however this study clearly demonstrates the added value
of using multimodal multiparametric MRI data for assessing age-related WM

microstructural differences.
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Figure and table legends

Figure 1.
Image processing pipeline used in the current study. Aff. = Affine, Diff. =

diffeomorphic, MI = mutual information, CC = cross correlation, NR = non-rigid.

Figure 2.

Parameter maps obtained from a single participant in template space. FA:
fractional anisotropy; MD: mean diffusivity (mm?2/s); RD: radial diffusivity
(mm?2/s); AD: axial diffusivity (mm?2/s); KA: kurtosis anisotropy; MK: mean
kurtosis; RK: radial kurtosis; AK: axial kurtosis; MWF: myelin water fraction;
IEWF: intra- and extracellular water fraction; [EW-gmT2: geometric mean T2
time of intra-and extracellular water (s); G-gmT2: geometric mean T2 time of
general T2 distribution (s); NDI: neurite density index; ODI: orientation

dispersion index; FISO: isotropic fraction

Figure 3.

Linear correlation coefficients of metrics with age. Cell values in black represent
correlation coefficients that are significant (p<0.05) at uncorrected level. Cell
values in white represent correlation coefficients that are significant (prwe<0.05)
after controlling the family-wise error. The order of ROIs and metrics depends
on the mean R? of linear (standard) or quadratic fit (if significantly better): ROIs
are ranked in order of decreasing mean R? across metrics and metrics are ranked
in descending order of mean R? across ROIs. The color labels correspond to the

JHU ROIs used for analysis, as illustrated on the axial brain slices (below).

Figure 4.

Quadratic correlation coefficients of metrics with age. A positive sign indicates U-
shaped curve and a negative sign indicates an inverse U-shaped curve. Cell
values in black represent correlation coefficients that are significant (p<0.05) at
uncorrected level. Cell values in white represent correlation coefficients that are
significant (prwe<0.05) after controlling the family-wise error. Cells with a black

border indicate the quadratic fit is significantly better than the linear fit from



Figure 3. For comparison, ROIs and metrics are ranked in the same way as in
Figure 3. The color labels correspond to the JHU ROIs used for analysis, as

illustrated on the axial brain slices (below).

Figure 5.

Scatter plots illustrating ROIs where quadratic fit with age is significantly better
than a linear fit (red = female, blue = male). Panel A: intra- and extracellular
water fraction in the fornix stria terminalis increases again with age after a
minimum is reached between 40 and 50 years of age. Panel B: Orientation
dispersion of neurites in the retrolenticular part of the internal capsule. Panel C:
Radial diffusivity in the sagittal stratum. D: Mean kurtosis in the anterior limbs of

the internal capsule

Figure 6.

Statistical parametric maps from voxel-based linear regression of WM diffusion
tensor parameters with age. FA: fractional anisotropy, MD: mean diffusivity, RD:
radial diffusivity, AD: axial diffusivity. The blue color scale indicates negative
correlation (r<0) with age. The red scale indicates positive correlation (r>0) with
age. DTI metrics reveal increasing isotropic diffusion with the most significant

differences in frontal WM.

Figure 7.

Statistical parametric maps from voxel-based linear regression of WM kurtosis
parameters with age. KA: kurtosis anisotropy, MK: mean kurtosis, RK: radial
kurtosis, AK: axial kurtosis. The blue color scale indicates negative correlation
with age. The red scale indicates positive correlation with age. DKI metrics
showed minor but widespread differences with age. The most significant

differences were found in regions near the corona radiata.

Figure 8.
Statistical parametric maps from voxel-based linear regression of WM NODDI

parameters with age. FISO: isotropic fraction, NDI: neurite density index, ODI:



orientation dispersion index. The red scale indicates positive correlation with
age. NODDI metrics reveal a large and widespread increase in isotropic diffusion.
NDI expressed increased neurite density mainly in superior parietal WM (corona
radiata). Differences in ODI were located in frontal WM, superior parietal WM

and regions of crossing white matter pathways.

Figure 9.

Statistical parametric maps from voxel-based linear regression of WM MET2
parameters with age. MWF: myelin water fraction, IEWF: intra-and extracellular
water fraction, IEW-gmT2: geometric mean T2 time of intra- and extracellular
water, G-gmT2: geometric mean T2 time of general T2 distribution. The blue
color scale indicates negative correlation with age. The red scale indicates
positive correlation with age. MWF did not change significantly in frontal WM
but in parallel with IEWF showed largest differences in the midbrain. [EW-gmT2
and to a less extent G-gmT2 showed frontal and superior parietal increases with

age.

Figure 10.

The shared variance of metric values averaged over the cerebral WM mask
expressed as a percentage (The higher the shared variance between two metrics,
the better differences in one metric explain differences in the other metric). Red
and blue color scales additionally indicate whether two metrics are positively
(r>0) or negatively (r<0) correlated, respectively. Non-significant values,
controlling the family-wise error at p=0.05 level, are displayed in grey. Kurtosis
metrics (AK, MK, RK, KA) and NDI correlated well with MWF and IEWF. Mean

kurtosis correlated well with neurite density index

Table 1

Summary of metrics used in this study. Adapted from (Billiet, et al., 2014a). Panel
A) Summary of dMRI techniques, models and derived parameters used in the
present study. FA = fractional anisotropy, MD = mean diffusivity, RD = radial
diffusivity, AD = axial diffusivity, MK = mean kurtosis, RK = radial kurtosis, AK =

axial kurtosis, KA = kurtosis anisotropy, FISO = isotropic fraction, NDI = neurite



density index, ODI = orientation dispersion index. Panel B) Summary of myelin
water imaging model and derived parameters used in the present study. MWF =
myelin water fraction, IEWF = intra- and extracellular water fraction, [IEW-gmT?2
= geometric mean T2 time of intra- and extracellular water, G-gmT2 = geometric

mean T2 time of general T2 distribution

Supplementary Table 1:

Mean size and standard deviation of total cerebral WM and regions of interest
from John Hopkins University white matter atlas (Mori, et al., 2005) after
applying WM masks as described in section 2.3.3.

Supplementary Figure 1

Percentage of overlap of each individual’s white matter mask. Values represent
the frequency that a voxel of the WM mask as described in section 2.3.3 was
classified as white matter across participants (i.e. individual segmentation higher

than 0.8)

Supplementary Figure 2

Comparison of ‘youngest’ and ‘oldest’ white matter masks. Red = mean white
matter segmentation of six youngest participants (age = 19.2 * 1; 3 males)
thresholded at 0.8. Green = mean white matter segmentation of six oldest
participants (age = 62.3 *24; 3 males). Blue = overlap between white matter
masks of both subgroups. A large overlap is seen throughout the white matter

illustrating little age-related differences due to registration.



References

Ashburner, ]. 2007. A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95-113.
d0i:10.1016/j.neuroimage.2007.07.007.

Avants, B.B., Epstein, C.L., Grossman, M., Gee, ]J.C. 2008. Symmetric diffeomorphic image registration with
cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med
Image Anal 12(1), 26-41. doi:10.1016/j.media.2007.06.004.

Bartzokis, G. Lu, P.H. Heydari, P.,, Couvrette, A, Lee, G.J., Kalashyan, G., Freeman, F. Grinstead, ]W.,
Villablanca, P., Finn, ].P,, Mintz, ], Alger, ]J.R,, Altshuler, L.L. 2012. Multimodal Magnetic Resonance
Imaging Assessment of White Matter Aging Trajectories Over the Lifespan of Healthy Individuals.
Biol Psychiatry. doi:10.1016/j.biopsych.2012.07.010.

Basser, P.]., Mattiello, ]., LeBihan, D. 1994. Estimation of the effective self-diffusion tensor from the NMR spin
echo. ] Magn Reson B 103(3), 247-54.

Beaulieu, C. 2002. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR
Biomed 15(7-8), 435-55. d0i:10.1002/nbm.782.

Beaulieu, C,, Allen, P.S. 1994. Determinants of anisotropic water diffusion in nerves. Magnetic resonance in
medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic
Resonance in Medicine 31(4), 394-400.

Billiet, T., Madler, B., D'Arco, F,, Peeters, R,, Deprez, S., Plasschaert, E., Leemans, A., Zhang, H., den Bergh, B.V.,,
Vandenbulcke, M., Legius, E., Sunaert, S., Emsell, L. 2014a. Characterizing the microstructural basis
of "unidentified bright objects" in neurofibromatosis type 1: A combined in vivo multicomponent
T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin 4, 649-58.
doi:10.1016/j.nicl.2014.04.005.

Billiet, T., Madler, B., D'Arco, F,, Peeters, R, Deprez, S., Plasschaert, E., Leemans, A., Zhang, H., den Bergh, B.V.,,
Vandenbulcke, M., Legius, E., Sunaert, S., Emsell, L. 2014b. Characterizing the microstructural basis
of "unidentified bright objects" in neurofibromatosis type 1: A combined in vivo multicomponent
T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin 4, 649-58.
doi:10.1016/j.nicl.2014.04.005.

Brickman, A.M., Meier, 1.B., Korgaonkar, M.S., Provenzano, F.A,, Grieve, S.M,, Siedlecki, K.L., Wasserman, B.T.,
Williams, L.M., Zimmerman, M.E. 2012. Testing the white matter retrogenesis hypothesis of
cognitive aging. Neurobiol Aging 33(8), 1699-715. doi:10.1016/j.neurobiolaging.2011.06.001.

Callaghan, M.F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R., Diedrichsen, ]J.,
Fitzgerald, T.H., Smittenaar, P., Helms, G., Lutti, A.,, Weiskopf, N. 2014. Widespread age-related
differences in the human brain microstructure revealed by quantitative magnetic resonance
imaging. Neurobiol Aging 35(8), 1862-72. doi:10.1016/j.neurobiolaging.2014.02.008.

Coutu, J.P,, Chen, ].J.,, Rosas, H.D., Salat, D.H. 2014. Non-Gaussian water diffusion in aging white matter.
Neurobiol Aging 35(6), 1412-21. d0i:10.1016/j.neurobiolaging.2013.12.001.

Davis, S.W.,, Dennis, N.A,, Buchler, N.G., White, L.E., Madden, D.]., Cabeza, R. 2009. Assessing the effects of age
on long white matter tracts using diffusion tensor tractography. Neuroimage 46(2), 530-41.

De Santis, S., Drakesmith, M., Bells, S., Assaf, Y., Jones, D.K. 2014. Why diffusion tensor MRI does well only
some of the time: variance and covariance of white matter tissue microstructure attributes in the
living human brain. Neuroimage 89, 35-44. d0i:10.1016/j.neuroimage.2013.12.003.

Deoni, S.C., Dean, D.C, 3rd, O'Muircheartaigh, J., Dirks, H., Jerskey, B.A. 2012. Investigating white matter
development in infancy and early childhood using myelin water faction and relaxation time
mapping. Neuroimage 63(3), 1038-53. doi:10.1016/j.neuroimage.2012.07.037.

Draganski, B., Ashburner, ., Hutton, C., Kherif, F,, Frackowiak, R.S., Helms, G., Weiskopf, N. 2011. Regional
specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based
quantification (VBQ). Neuroimage 55(4), 1423-34. doi:10.1016/j.neuroimage.2011.01.052.

Falangola, M.F,, Jensen, ]J.H., Babb, ].S., Hu, C., Castellanos, F.X., Di Martino, A., Ferris, S.H., Helpern, J.A. 2008.
Age-related non-Gaussian diffusion patterns in the prefrontal brain. ] Magn Reson Imaging 28(6),
1345-50. doi:10.1002/jmri.21604.

Fjell, A M., Westlye, L.T., Amlien, I, Espeseth, T., Reinvang, 1., Raz, N., Agartz, 1., Salat, D.H., Greve, D.N., Fischl,
B., Dale, A.M., Walhovd, K.B. 2009. High consistency of regional cortical thinning in aging across
multiple samples. Cereb Cortex 19(9), 2001-12. doi:10.1093 /cercor/bhn232.

Flynn, S.W., Lang, D.J., Mackay, A.L., Goghari, V., Vavasour, .M., Whittall, K.P., Smith, G.N., Arango, V., Mann,
J.J., Dwork, AJ., Falkai, P., Honer, W.G. 2003. Abnormalities of myelination in schizophrenia
detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol
Psychiatry 8(9), 811-20. d0i:10.1038/sj.mp.4001337.

Frazier, J.A, Chiu, S., Breeze, ].L., Makris, N., Lange, N., Kennedy, D.N., Herbert, M.R,, Bent, E.K,, Koneru, V.K,,
Dieterich, M.E., Hodge, S.M., Rauch, S.L.,, Grant, P.E.,, Cohen, B.M,, Seidman, L.J., Caviness, V.S,
Biederman, J. 2005. Structural brain magnetic resonance imaging of limbic and thalamic volumes
in pediatric bipolar disorder. The American journal of psychiatry 162(7), 1256-65.
doi:10.1176/appi.ajp.162.7.1256.



Gong, N.J,, Wong, C.S,, Chan, C.C., Leung, L.M,, Chu, Y.C. 2014. Aging in deep gray matter and white matter
revealed by diffusional kurtosis imaging. Neurobiol Aging 35(10), 2203-16.
doi:10.1016/j.neurobiolaging.2014.03.011.

Haroutunian, V., Katsel, P.,, Roussos, P., Davis, K.L., Altshuler, L.L., Bartzokis, G. 2014. Myelination,
oligodendrocytes, and serious mental illness. Glia. doi:10.1002/glia.22716.

Hennig, J. 1988. Multiecho Imaging Sequences with Low Refocusing Flip Angles. ] Magn Reson 78(3), 397-
407.doi:Doi 10.1016/0022-2364(88)90128-X.

Hui, E.S., Cheung, M.M,, Qi, L., Wu, E.X. 2008. Towards better MR characterization of neural tissues using
directional diffusion kurtosis analysis. Neuroimage 42(1), 122-34.
d0i:10.1016/j.neuroimage.2008.04.237.

Inano, S., Takao, H., Hayashi, N., Abe, 0., Ohtomo, K. 2011. Effects of age and gender on white matter
integrity. AJNR Am ] Neuroradiol 32(11), 2103-9. d0i:10.3174/ajnr.A2785.

Irfanoglu, M.0O., Walker, L., Sarlls, J., Marenco, S., Pierpaoli, C. 2012. Effects of image distortions originating
from susceptibility variations and concomitant fields on diffusion MRI tractography results.
Neuroimage 61(1), 275-88. d0i:10.1016/j.neuroimage.2012.02.054.

Jelescu, 1.0, Veraart, J., Adisetiyo, V., Milla, S.S., Novikov, D.S,, Fieremans, E. 2015. One diffusion acquisition
and different white matter models: How does microstructure change in human early development
based on WMTI and NODDI? Neuroimage 107, 242-56. d0i:10.1016/j.neuroimage.2014.12.009.

Jensen, J.H., Helpern, J.A. 2010. MRI quantification of non-Gaussian water diffusion by kurtosis analysis.
NMR Biomed 23(7), 698-710. doi:10.1002/nbm.1518.

Jensen, ].H., Helpern, J.A, Ramani, A, Lu, H., Kaczynski, K. 2005. Diffusional kurtosis imaging: the
quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic
resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society
of Magnetic Resonance in Medicine 53(6), 1432-40. d0i:10.1002/mrm.20508.

Jones, D.K,, Cercignani, M. 2010. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed
23(7), 803-20. doi:10.1002/nbm.1543.

Kempton, M.]J,, Underwood, T.S., Brunton, S., Stylios, F., Schmechtig, A., Ettinger, U., Smith, M.S., Lovestone, S.,
Crum, W.R,, Frangou, S., Williams, S.C,, Simmons, A. 2011. A comprehensive testing protocol for
MRI neuroanatomical segmentation techniques: Evaluation of a novel lateral ventricle
segmentation method. Neuroimage 58(4), 1051-9. doi:10.1016/j.neuroimage.2011.06.080.

Kumar, R, Chavez, A.S., Macey, P.M., Woo, M.A., Harper, R.M. 2013. Brain axial and radial diffusivity changes
with age and gender in healthy adults. Brain Res 1512, 22-36. doi:10.1016/j.brainres.2013.03.028.

Kunz, N, Zhang, H., Vasung, L. O'Brien, K.R, Assaf, Y., Lazeyras, F. Alexander, D.C.,, Huppi, P.S. 2014.
Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and
biophysical compartment models. Neuroimage 96, 288-99.
d0i:10.1016/j.neuroimage.2014.03.057.

Lally, P.,, Zhang, H., Pauliah, S., Price, D., Bainbridge, A, Balraj, G., Cady, E., Shankaran, S., Thayyil, S. 2014. 8.9
Microstructural Changes in Neonatal Encephalopathy Revealed with the Neurite Orientation
Dispersion and Density Imaging (NODDI) Model. Arch Dis Child Fetal Neonatal Ed 99 Suppl 1, A14.
doi:10.1136/archdischild-2014-306576.38.

Latt, J., Nilsson, M., Wirestam, R., Stahlberg, F., Karlsson, N., Johansson, M., Sundgren, P.C., van Westen, D.
2013. Regional values of diffusional kurtosis estimates in the healthy brain. ] Magn Reson Imaging
37(3), 610-8. doi:10.1002/jmri.23857.

Laule, C.,, Vavasour, I.M,, Kolind, S.H., Traboulsee, A.L., Moore, G.R,, Li, D.K,, Mackay, A.L. 2007a. Long T2
water in multiple sclerosis: what else can we learn from multi-echo T2 relaxation? ] Neurol
254(11), 1579-87. doi:10.1007/s00415-007-0595-7.

Laule, C., Vavasour, .M., Madler, B, Kolind, S.H,, Sirrs, S.M,, Brief, E.E.,, Traboulsee, A.L., Moore, G.R, Li, D.K,
MacKay, A.L. 2007b. MR evidence of long T2 water in pathological white matter. ] Magn Reson
Imaging 26(4), 1117-21. d0i:10.1002 /jmri.21132.

Lebel, C,, Gee, M., Camicioli, R., Wieler, M., Martin, W., Beaulieu, C. 2012. Diffusion tensor imaging of white
matter tract evolution over the lifespan. Neuroimage 60(1), 340-52.
d0i:10.1016/j.neuroimage.2011.11.094.

Leemans, A. 2009. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR
data. 17th Annual Meeting of Intl Soc Mag Reson Med, Hawaii, USA, pp p. 3537.

Leemans, A, Jones, D.K. 2009. The B-Matrix Must Be Rotated When Correcting for Subject Motion in DTI
Data. Magnet Reson Med 61(6), 1336-49. doi:Doi 10.1002/Mrm.21890.

Madden, D.J., Whiting, W.L., Huettel, S.A., White, L.E., MacFall, J.R., Provenzale, ].M. 2004. Diffusion tensor
imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage
21(3),1174-81. doi:10.1016/j.neuroimage.2003.11.004.

Madler, B., Drabycz, S.A., Kolind, S.H., Whittall, K.P., MacKay, A.L. 2008. Is diffusion anisotropy an accurate
monitor of myelination? Correlation of multicomponent T2 relaxation and diffusion tensor
anisotropy in human brain. Magn Reson Imaging 26(7), 874-88. d0i:10.1016/j.mri.2008.01.047.

Maedler, B., MacKay, A. 2007. Towards whole brain myelin imaging. International Society for Magnetic
Resonance in Medicine, Berlin, Germany, pp 1723.

Melbourne, A., Eaton-Rosen, Z., Bainbridge, A. Kendall, G.S., Cardoso, M.]., Robertson, N.J., Marlow, N.,
Ourselin, S. 2013. Measurement of myelin in the preterm brain: multi-compartment diffusion



imaging and multi-component T2 relaxometry. Medical image computing and computer-assisted
intervention : MICCAI International Conference on Medical Image Computing and Computer-
Assisted Intervention 16(Pt 2), 336-44.

Morij, S., Wakana, S., Nagae-Poetscher, L.M., P.C.M., v.Z. 2005. MRI Atlas of Human White Matter. Elsevier.

Pannese, E. 2011. Morphological changes in nerve cells during normal aging. Brain Struct Funct 216(2), 85-
9.d0i:10.1007/s00429-011-0308-y.

Pfefferbaum, A, Sullivan, E.V.,, Hedehus, M., Lim, K.O., Adalsteinsson, E., Moseley, M. 2000. Age-related
decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion
tensor imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic
Resonance in Medicine / Society of Magnetic Resonance in Medicine 44(2), 259-68.

Poot, D.H., den Dekker, AJ., Achten, E., Verhoye, M, Sijbers, ]J. 2010. Optimal experimental design for
diffusion kurtosis imaging. IEEE Trans Med Imaging 29(3), 819-29.
doi:10.1109/TMI1.2009.2037915.

Prasloski, T., Madler, B., Xiang, Q.S., Mackay, A, Jones, C. 2011. Applications of stimulated echo correction to
multicomponent T(2) analysis. Magnetic resonance in medicine : official journal of the Society of
Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine.
doi:10.1002/mrm.23157.

Prasloski, T., Rauscher, A., MacKay, A.L., Hodgson, M., Vavasour, .M., Laule, C., Madler, B. 2012. Rapid whole
cerebrum myelin water imaging using a 3D GRASE sequence. Neuroimage 63(1), 533-9.
d0i:10.1016/j.neuroimage.2012.06.064.

Raz, N., Gunning, F.M., Head, D., Dupuis, J.H., McQuain, J., Briggs, S.D., Loken, W.J., Thornton, A.E., Acker, ].D.
1997. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of
the prefrontal gray matter. Cereb Cortex 7(3), 268-82.

Salat, D.H,, Lee, S.Y., van der Kouwe, A.J., Greve, D.N,, Fischl, B., Rosas, H.D. 2009. Age-associated alterations
in cortical gray and white matter signal intensity and gray to white matter contrast. Neuroimage
48(1), 21-8.doi:10.1016/j.neuroimage.2009.06.074.

Salat, D.H., Tuch, D.S., Greve, D.N., van der Kouwe, A.J., Hevelone, N.D., Zaleta, A.K., Rosen, B.R., Fischl, B,
Corkin, S., Rosas, H.D., Dale, A.M. 2005. Age-related alterations in white matter microstructure
measured by  diffusion  tensor  imaging.  Neurobiol Aging  26(8), 1215-27.
doi:10.1016/j.neurobiolaging.2004.09.017.

Song, S.K,, Yoshino, ], Le, T.Q,, Lin, S.J,, Sun, S.W.,, Cross, A.H., Armstrong, R.C. 2005. Demyelination increases
radial diffusivity in corpus callosum of mouse brain. Neuroimage 26(1), 132-40. doi:Doi
10.1016/].Neuroimage.2005.01.028.

Stanisz, G.J., Webb, S., Munro, C.A,, Pun, T., Midha, R. 2004. MR properties of excised neural tissue following
experimentally induced inflammation. Magnetic resonance in medicine : official journal of the
Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 51(3),
473-9.d0i:10.1002/mrm.20008.

Sullivan, E.V., Pfefferbaum, A. 2006. Diffusion tensor imaging and aging. Neurosci Biobehav R 30(6), 749-61.
d0i:10.1016/j.neubiorev.2006.06.002.

Tournier, ].D., Mori, S., Leemans, A. 2011. Diffusion tensor imaging and beyond. Magn Reson Med 65(6),
1532-56. d0i:10.1002/mrm.22924.

Van Hecke, W., Leemans, A. D'Agostino, E., De Backer, S., Vandervliet, E., Parizel, P.M., Sijbers, ]J. 2007.
Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual
information. IEEE Trans Med Imaging 26(11), 1598-612. doi:Doi 10.1109/Tmi.2007.906786.

Van Hecke, W., Leemans, A., Sage, C.A., Emsell, L., Veraart, ], Sijbers, ]J., Sunaert, S., Parizel, P.M. 2011. The
effect of template selection on diffusion tensor voxel-based analysis results. Neuroimage 55(2),
566-73.d0i:10.1016/j.neuroimage.2010.12.005.

Vavasour, .M., Laule, C, Li, D.K,, Traboulsee, A.L.,, MacKay, A.L. 2011. Is the magnetization transfer ratio a
marker for myelin in multiple sclerosis? ] Magn Reson Imaging 33(3), 713-8.
doi:10.1002/jmri.22441.

Vos, S.B., Jones, D.K,, Viergever, M.A., Leemans, A. 2011. Partial volume effect as a hidden covariate in DTI
analyses. Neuroimage 55(4), 1566-76. doi:Doi 10.1016/].Neuroimage.2011.01.048.

Wheeler-Kingshott, C.A., Cercignani, M. 2009. About "axial" and "radial" diffusivities. Magnetic resonance in
medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic
Resonance in Medicine 61(5), 1255-60. d0i:10.1002/mrm.21965.

Whitaker, K.J., Kolind, S.H., MacKay, A.L., Clark, C.M. 2008. Quantifying development: Investigating highly
myelinated voxels in preadolescent corpus callosum. Neuroimage 43(4), 731-5.
d0i:10.1016/j.neuroimage.2008.07.038.

Whittall, K.P., Mackay, A.L. 1989. Quantitative Interpretation of Nmr Relaxation Data. ] Magn Reson 84(1),
134-52.doi:Doi 10.1016/0022-2364(89)90011-5.

Winston, G.P., Micallef, C., Symms, M.R,, Alexander, D.C., Duncan, ].S., Zhang, H. 2014. Advanced diffusion
imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy
Res 108(2), 336-9. d0i:10.1016/j.eplepsyres.2013.11.004.

Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C. 2012. NODDI: practical in vivo neurite
orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000-16.
d0i:10.1016/j.neuroimage.2012.03.072.



A) Diffusion MRI (dMRI)

Influenced by which
Model Measure Measure relates to . y Scale
microstructural feature(s)
Presence of preferred Axonal organisation, 0-1(0=most
FA direction of giffusion presence of coherently isotropic,
(i.e. anisotropy) organised structures / 1 =most
o Py membranes anisotropic)
. Continuous
Relative presence of CSF .
. (Increasing
. ) and extracellular water (i.e.
Amount of isotropic value =
MD e s water not bounded by . .
diffusion . increasing
membranes, e.g. in CSF or
: amount of
extracellular tissue) cer s
diffusion)
= Relative presence of CSF Continuous
= Amount of diffusion and extracellular water (Increasing
RD perpendicular to along radial direction of value =
direction of largest diffusion. May relate to increasing
diffusion myelin content in isolated amount of
fiber populations. diffusion)
Relative presence of CSF Continuous
Amount of diffusion and extracellular water (Increasing
AD arallel to direction along axial direction of value =
gf lareest diffusion diffusion. May relate to increasing
& axon alignment in isolated ~ amount of
fiber populations. diffusion)
Deviation of mean . Continuous
S Sources of hindered and/or X
diffusion X S (Increasing
. . restricted diffusion, e.g. -
MK displacement profile o . value = more
. myelination, axon packing, .
from a Gaussian . compartmentali
membrane permeability )
curve zation)
Extent to which the
diffusion Continuous
displacement profile . :
lerp endicularpto tile Sources of hindered and/or (Increasing
RK girepction of lareest restricted diffusion value = more
diffusion deviatges perpendicular to axons compartmentali
. ation
from a Gaussian zation)
curve
= Extent to which the
= diffusion Continuous
displacement profile . :
;rzlllel to thep ! Sources of hindered and/or (Increasing
AK girection of lareest restricted diffusion parallel value = more
diffusion deviatges to axons compartmentali
. ation
from a Gaussian zation)
curve
0-1(0=most
isotropic
Presence of preferred . .
direction in Svhich Dependency of hindered compartmentali
KA non-Gaussian and/or restricted diffusion  zation, 1 = most
diffusion occurs on the direction of diffusion anisotropic
compartmentali

zation)



NODDI

Diffusion signal
fraction with

0-1(0=no
CSF-like fluid, 1

FISO isotropic Gaussian Cerebrospinal fluid fraction  _ most CSF-like
properties fluid)
Fractlor? of 1-FISO 0-1 (0 = most
expressing extracellular
unhindered diffusion  Density of axons and diffusion. 1 =
NDI along and restricted dendrites based on L Y
P . D most
diffusion intracellular diffusion .
. intracellular
perpendicular to a diffusion)
set of sticks
Tortuosity measure 0-1(0=well-
Fouphng an Dispersion of axons and ahgn.ed _
intracellular (set of S neurites, 1 =
ODI . dendrites in the .
sticks) and an . highly
intracellular compartment .
extracellular space dispersed
(diffusion tensor) neurites)



B) Myelin Water Imaging (MWI)
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Representative subset of diffusion tensor maps (b=2800)
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Highlights:

e We assessed a range of advanced in vivo MRI based measures of brain
microstructure in healthy volunteers between 17 and 70 years old.

e Diffusion MRI metrics, including those derived from DTI and NODDI, were
more sensitive to lifespan effects than myelin water imaging in our
population.

e Age-related changes in frontal white matter in mid-adulthood, may be
related to an altered organization of fibers rather than altered tissue
composition

e Combining measures which probe different aspects of microstructure
provides novel insights into neurobiological changes over the lifespan.



Supplementary Table 1

Mean size and standard deviation of total cerebral WM and regions of interest
from John Hopkins University white matter atlas (Mori, et al, 2005) after

applying WM masks as described in section 2.3.3.

Region of Interest from JHU atlas Mean ROI size in Standard
study sample deviation

(voxels) (voxels)

Genu of corpus callosum 605 26
Body of corpus callosum 1150 53
Splenium of corpus callosum 1175 18
Superior cerebellar peduncle 110 5
Cerebral peduncle 420 11
Anterior limb of internal capsule 478 23
Posterior limb of internal capsule 843 0
Retrolenticular part of internal capsule 608 3
Anterior corona radiata 1634 16
Superior corona radiata 1829 6
Posterior corona radiata 868 7
Posterior thalamic radiation 901 7
Sagittal stratum (include ILF and IFOF) 447 13
External capsules 626 33
Cingulum (cingulate gyrus) 219 14
Fornix crescent/stria terminalis 128 6
Superior longitudinal fasciculus 1503 14
Total cerebral WM 34272 636

Mori, S., Wakana, S., Nagae-Poetscher, L.M., P.C.M,, v.Z. 2005. MRI Atlas of Human

White Matter. Elsevier.
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Red = youngest participants
Green = oldest participants
Blue = overlap




