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We study a broadly tunable quantum-dot based ultrashort pulse master 

oscillator power amplifier with different diffraction grating orders as an 

external-cavity resonance feedback. A broader tuning range, narrower 
optical spectra as well as higher peak power spectal density (maximun 

of 1.37 W/nm) from the 2
nd

-order diffraction beam are achieved 

compared to those from the 1
st
-order diffraction beam in spite of slightly 

broader pulse duration from the 2
nd

-order diffraction.     

 

 

Introduction: High–power semiconductor ultrashort pulse laser systems 

with wide wavelength and/or broad pulse repetition rate tunability are 

very useful for non-linear imaging techniques [1], especially in the 

biomedical field [2]. The wide tunability offered by the quantum-dot 

(QD) diode lasers, due to the temperature insensibility, ultrafast carrier 

dynamics and broad gain bandwidth [3,4], is very promising for the 

development of broadly tunable high-power picosecond source. Due to 

the merits of the diffraction grating as the external-cavity feedback, 

extremely broad wavelength tunability from a pulse laser could be 

achieved using diffraction grating techniques [5,6]. In this paper, a 

tunable master oscillator power amplifier (MOPA) picosecond optical 

pulse source using all chirped QD structures was investigated. The 

MOPA system consisted of a QD external-cavity passively mode-

locked laser (ECMLL) and a tilted QD semiconductor optical amplifier 

(SOA). A comparison between the 1
st
 and 2

nd
 grating diffraction orders 

for this wavelength tunable QD-MOPA was further investigated. A 

broader tuning range, narrower optical spectra can be obtained from the 

configuration with the 2
nd

-order of grating diffraction. Peak power 

spectral density achieved with the 2
nd

-order of grating diffraction is 

much higher (~2-3 times) than that from the 1
st
-order of grating 

diffraction under the similar operation conditions. The narrowest pulse 

of ~14 ps and the better dynamic contrast of RF spectra were observed 

from the setup with the 1
st
-order of grating diffraction.  

The scheme of the experimental setup is shown in Fig. 1. The tunable 

MOPA setup consists of a master laser and an optical amplifier to boost 

the output power, where the master laser is a QD-ECMLL and the 

optical amplifier is a QD-SOA. 

   

   

Fig. 1 Configuration of a tunable MOPA system and measurement 

setup, consisting of diffraction grating (DG); optical isolator (OI); half 

wave plate (HWP); single-mode fibre (SMF); fibre splitter (FS); optical 

spectrum analyser (OSA); autocorrelator (Autoco); oscilloscope (Osc); 

photo detector (PD); RF spectrum analyser (RFSA).  

 

The detailed description of the scheme of the experimental setup 

and the MOPA system can be found in Ref. 4. In brief, the two-

sectional gain chip had a total length of 4 mm with an 800-μm-long 

absorber section placed near the front facet, and a ridge waveguide 

width of 6 µm with 7
o
 tilting from the normal direction of the cleaved 

facet. Both facets of the gain chip had conventional anti-reflective (AR) 

coating, which resulted in total estimated reflectivities of ~10
-5

 for the 

rear facet and ~10
-2

 for the front facet. The active region of the gain 

chip consists of 10 non-indentical InAs QD layers, similar to that 

described in [7]. The SOA had a length of 6 mm and a gain guided 

waveguide width changing from 14 µm at the input facet to 80 µm at 

the output facet. The tapered SOA was fabricated from the wafer with 

the same epitaxial structure as the gain chip. Both the gain chip and the 

SOA were kept at 20
o
C by Peltier coolers. The diffraction grating (DG) 

had a blaze wavelength of 1.25 µm and groove density of 600 

grooves/mm. Broad wavelength tunability in the mode locked regime 

was achieved under varieties of bias condition: gain chip current of 600 

mA − 900 mA, reverse bias applied to the absorber section of the gain 

chip changing between 1 V and 5 V, and SOA current of 2180 mA.  

In Fig. 2, the tuning range from both cases can be increased by 

increasing the injection current of the gain chip. The maximum 

fundamental mode-locking (FML) wavelength tuning range of nearly 

100 nm (from 1187 nm to 1283 nm) has been achieved under 900 mA 

current applied to the gain chip with the 2
nd

-order grating diffraction. In 

comparison, the maximum FML wavelength tuning range with a 1
st
-

order grating diffraction is only 82 nm under the similar operation 

conditions. For a higher injection current (e.g. 1A) applied to the gain 

chip, we achieved 118-nm tuning range (see Fig. 3) from the 2
nd

-order 

grating diffraction. But the FML stability (from the RF linewidth and 

signal-to-noise ratio) under such a high current is not good as that under 

a relatively low current because of a faster gain recovery [8]. The 

investigation is still in progress. 

1180 1200 1220 1240 1260 1280 1300

600

700

800

900

 

[96nm] 1283 nm1187 nm

[86nm] 1282 nm1194 nm

[76nm] 1279 nm1203 nm

[60nm] 1274 nm

C
u

rr
e
n

t 
(m

A
)

Wavelength (nm)

 

 

1214 nm

1219nm [42nm] 1261nm

1215nm     [60nm]           1275nm

1209nm          [75nm]                 1284nm

  1203nm               [82nm]                   1285nm

                 

1
st

 order 2
nd

 order T=20
o

C

 
 

Fig. 2 Tuning range limits for the MOPA system operating in the mode-

locking regime for different pump currents applied to the gain chip and 

constant SOA current of 2180 mA for two configurations of the external 

cavity: using the 1
st
 (red lines) and the 2

nd
 (black lines) grating 

diffraction orders. 
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Fig. 3 Optical spectra of tunable gain chip in the mode-locked 

operation with gain chip current of 1 A, reverse bias of 0-4 V.  

 

     In theory, the output power from the configuration with the 1
st
-order 

of grating diffraction should be higher than that from the configuration 

with the 2
nd

-order, whereas, we did not find the obvious difference 

between the two configurations with the different DG orders. As shown 

in Fig. 4, the highest peak power was obtained from the MOPA with the 

2
nd

-order grating diffraction at 1226 nm. However, the peak power from 

the configuration with the 1
st
-order DG is higher than that from the 

configuration with the 2
nd

-order DG for the longer wavelength side 

(over 1230 nm). The peak power changes not too much with an 

increasing current applied to the gain chip because the pulse duration 

increases with the increasing current and offsets the increase of average 

output power with the increasing current.  

     For the 2
nd

-order DG configuration, it can be treated as a stricter 

filter so that the optical spectra should be narrower than that for the 1
st
-

order DG configuration. Correspondingly, the pulse duration from the 
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setup with the 1
st
-order DG should be somewhat narrower than that 

from the setup with the 2
nd

-order DG. As expected, we found a full-

width at high maximum (FWHM) of the optical spectra from the setup 

with the 2
nd

-order DG are much narrower than that from the setup with 

the 1
st
-order DG within the whole tuning range from the experiments. 

On the other hand, the pulse durations from both cases are similar, 
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Fig. 4 Dependence of the MOPA output peak power on wavelength for 

the 1
st
 (red curve) and the 2

nd
 (black curve) grating diffraction orders. 

Gain chip and SOA currents are 600 mA and 2185 mA, respectively.  

 

although slightly broader pulse duration from the 2
nd

-order diffraction 

can be observed. The narrowest pulse of ~14 ps was found from the 

setup with the 1
st
-order DG. The dynamic contrast of RF spectra from 

the 1
st
-order DG is better than that from the 2

nd
-order DG which 

indicates the mode-locking quality from a 1
st
-order DG is better and 

each case has its own merits.  

     The peak power spectral density which describes how the peak 

power of a pulse is distributed with wavelength is very important for 

some applications [9]. From Fig. 5, we can see that the peak power 

spectral density obtained with the 2
nd

-order DG is much higher than that 

from the 1
st
-order DG under the similar conditions, which can be 

attributed to the obvious difference of FWHM of optical spectra.   
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Fig. 5 Comparison of the peak power spectral density from the MOPA 

at different wavelengths for the 1
st
 (red curve) and the 2

nd
 (black curve) 

grating diffraction orders. Gain chip and SOA currents are 600 mA and 

2185 mA, respectively. Inset: the optical spectra from the two 

configurations with the different DG orders.  

 

Conclusion: From the comparison of the two configurations with the 

1
st
-order and the 2

nd
-order DG, the following conclusions can be 

obtained: the tuning range from both cases can be increased by 

increasing the injection current of the gain chip. However, a broader 

tuning range can be achieved from configuration with the 2
nd

-order DG. 

As a trade-off, the narrowest pulse (~14 ps) and better dynamic contrast 

of RF spectra can be found from the 1
st
-order DG. For the consideration 

of potential applications, the peak power spectral density obtained with 

the 2
nd

-order DG is much higher than that from the 1
st
-order DG under 

the similar conditions, which hints the 2
nd

-order DG is more promising.  
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