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Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase
flow at arbitrarily high density ratios
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The pseudopotential lattice Boltzmann method has been widely used to simulate many multiphase flow
applications. However, there still exist problems with reproducing realistic values of density ratio and surface
tension. In this study, a higher-order analysis of a general forcing term is derived. A forcing scheme is then
constructed for the pseudopotential method that is able to accurately reproduce the full range of coexistence
curves. As a result, multiphase flow of arbitrarily high density ratios independent of the surface tension can
be simulated. Furthermore, the interface width can be tuned to allow for grid refinement and systematic error
reduction. Numerical results confirm that the proposed scheme enables independent control of density ratio,
surface tension, and interface width simultaneously.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) is a rapidly de-
veloping approach to computational fluid dynamics (CFD).
It has been successfully applied to a variety of problems,
including (but not limited to) turbulence, microflows, flows
through porous media, magnetohydrodynamics, multiphase
flow, and multicomponent systems (see, for example, Refs.
[1–3] and references therein). Instead of solving the macro-
scopic Navier-Stokes equations as in traditional CFD, the
LBM works on the mesoscopic scales, solving a discretized
Boltzmann equation, designed to recover the Navier-Stokes
equations in the macroscopic limit. Despite its success in many
applications, there still exists a fundamental debate over the
inclusion of a term in the lattice Boltzmann equation that will
correctly recover a force in the Navier-Stokes equation. This is
particularly significant when a forcing scheme is used to model
multiphase behavior in the LBM. Here we propose a forcing
scheme that correctly reproduces the multiphase coexistence
curve at high density ratios and allows for accurate control
over surface tension.

A number of methods for including multiphase behavior
into the LBM have been proposed, including the free-energy
models [4–6], those based on the kinetic theory of dense
fluids [7–9], and the interaction potential models [10–12].
These methods can all be formulated in the form of an
additional forcing term to the collision operator. While here
the interaction potential model of Shan and Chen [10] is
considered, the analysis has implications for each of these
multiphase methods. It is well known that the original
formulation of the Shan-Chen model is only stable for low
liquid to gas phase density ratios, and over a small range
of viscosities. Another significant problem is the formation
of spurious velocities around curved interfaces. A number
of improvements to the model have been proposed and can
be divided into two categories: those that modify the force
calculation, such as increasing the order of isotropy [13] or
modifying the equation of state [14], and those that improve the
incorporation of the force term into the equilibrium distribution
functions. It is these latter modifications that are considered
here. They include the method of explicit derivatives, as used
in the multiphase schemes derived from the kinetic theory of

dense fluids [7–9], the method of Guo et al. [15], which takes
into account discrete lattice effects, and the exact difference
method (EDM) [16].

It has been shown recently that while the method of Guo
et al. [15] recovers the Navier-Stokes equations correctly, the
EDM introduces an error into the pressure tensor, proportional
to the square of the forcing term [15,17]. However, results
show that the EDM is stable over a larger range of density
ratios than the method of Guo et al. [15], and it gives smaller
errors for high density ratio multiphase systems [16,18] when
using the Carnahan-Starling equation of state. Conversely, the
method of Guo et al. [15] preforms better than the EDM for the
exponential form of the equation of state proposed by Shan and
Chen. This has resulted in some confusion over which forcing
scheme is the most appropriate to use. However, the analysis
used is based on a second-order expansion of the LBM, which
has been shown to be insufficient to identify all relevant error
terms when considering forces with large gradients, as are
present at interfaces in multiphase schemes [19]. Here we
extended the third-order truncation error analysis of Holdych
et al. [20] to include forcing terms in order to correctly
identify the errors in the pressure tensor. It is well known that
only one form of the equation of state is thermodynamically
consistent in the interaction potential model. As the error terms
under discussion affect the coexistence curve, it is possible
for errors in the pressure tensor to counteract this lack of
thermodynamical consistency. As will be shown, this effect
can lead to some forcing schemes working better under certain
circumstances, despite introducing larger errors.

The LBM with a generic forcing term and the derivation
of the pressure tensor in the pseudopotential model are
summarized in Sec. II. The extension of the third-order
truncation analysis to include a generic forcing term is then
given in Sec. III. The consequent correction to the surface
tension and the addition of a term to control surface tension
are discussed in Sec. IV. Results for the reproduction of
coexistence curves in one dimension are given in Sec. V A,
along with a study of the effect of varying model parameters
on density ratio. Results for the two-dimensional case are
then given in Secs. V B and V C, including surface tension
measurements and the effect of varying surface tension and
interface width on the spurious velocities found around curved
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phase boundaries. Finally, a summary and outlook are given
in Sec. VI.

II. THE LATTICE BOLTZMANN MODEL

The single relaxation time LBM with a general forcing
term, Fi , is written as

fi (x + vi ,t + 1) − fi (x,t) = − 1

τ

(
fi − f

eq
i

) + Fi, (1)

where fi are particle distribution functions for particles with
velocities vi , x and t are space and time coordinates, and τ

is the relaxation time. The number of discrete velocities, Q,
depends on the lattice, where the subscript i = 1, . . . ,Q. The
equilibrium distribution functions are given by

f
eq
i = ρwi

(
1 + vi · u

T0
+ (vi · u)2

2T 2
0

− u2

2T0

)
+ O(u3), (2)

where T0 is the (lattice dependent) reference temperature, and
wi are weights. The density, ρ, and macroscopic fluid velocity,
u, are found as velocity moments of the distribution functions,

ρ =
∑

i

fi,

ρu =
∑

i

vifi .
(3)

The second, third, and fourth moments are written as �, Q,
and A, respectively. The form of Fi depends on the method,
however the zeroth and first velocity moments must be∑

i

Fi = 0,

∑
i

viFi = F,
(4)

where F is the force acting on the fluid. The general second
and third moments of Fi are � and �, respectively.

The derivation of the Navier-Stokes equation from the LBM
is deferred to the following section, where the exact form of Fi

will be discussed. For now we assume F is correctly introduced
into the Navier-Stokes equation, and we consider the resulting
pressure tensor when F has the form of a pseudopotential force.
In the Shan-Chen model, this is given by

F(x) = −Gc2
s ψ(x)

N∑
i=1

w(|vi |2)ψ(x + vi)vi , (5)

where ψ is the density-dependent interaction potential, G

controls the strength of the interaction, w(|vi |2) are weights,
and cs is the speed of sound. The number of discrete velocities,
N , used in the force calculation does not have to be equal to
the number of lattice velocities. In general, weights are also
different from those in the equilibrium distribution functions.
The Taylor series expansion of ψ(x + vi) gives [8]

F(x) = −Gc2
s ψ∇ψ − λGc2

s ψ∇ (�ψ) , (6)

where λ depends on N . Using this equation and the definition

∇ · P = ∇(
ρc2

s

) − F, (7)

the pressure tensor, P, is given by

P =
(

ρc2
s + G

c2
s

2
ψ2 + Gc2

s
λ

2
|∇ψ |2 + Gc2

s λψ�ψ

)
I

−Gc2
s λ∇ψ∇ψ, (8)

where I is the identity matrix. λ = 1/6 for a two-dimensional
lattice with nine velocities (N = 9). An alternative derivation
of the pressure tensor, originally proposed by Shan and Chen
[11] and more recently extended by Shan [21], results in
different coefficients in place of each λ in Eq. (8). The
derivation is based on the discrete form of the integral of
Eq. (8). However, based on results for coexistence curves in
one dimension, as presented in Sec. V A, these coefficients are
not correct, therefore this result is not discussed further here.

The mechanical stability condition is now considered,
following Shan [21]. From Eq. (8), the pressure normal to
a flat interface with gradients only in the x direction is given
by

Pxx = ρc2
s + G

c2
s

2
ψ2 + Gc2

s a

(
∂ψ

∂x

)2

+ Gc2
s bψ

∂2ψ

∂x2
, (9)

where a and b are given here by a = −λ/2 and b = λ. Setting
this equal to the static pressure in the bulk, p0, and integrating
with respect to ρ (see, for example, Li et al. [22]), gives(
∂ρ

∂x

)2
∣∣∣∣∣
ρl

ρg

∝
∫ ρl

ρg

(
p0 − ρc2

s − G
c2

s

2
ψ2

)
1

ψ1+ε

∂ψ

∂ρ
dρ, (10)

where the subscripts l and g refer to the liquid and gas phase,
respectively, and

ε = −2a

b
. (11)

As ∂ρ/∂x = 0 in the bulk, then the liquid and gas densities
must satisfy∫ ρl

ρg

(
p0 − ρc2

s − G
c2

s

2
ψ2

)
1

ψ1+ε

∂ψ

∂ρ
dρ = 0. (12)

From thermodynamic theory, the Maxwell construction gives
[11] ∫ ρl

ρg

(
p0 − ρc2

s − G
c2

s

2
ψ2

)
1

ρ2
dρ = 0, (13)

therefore for thermodynamic consistency it is required that
[23]

1

ψ1+ε

∂ψ

∂ρ
∝ 1

ρ2
. (14)

Surface tension is defined as [24]

σ =
∫ ∞

−∞
(Pxx − Pyy)dx, (15)

which from Eq. (8) is given by

σ = −Gc2
s λ

∫ ∞

−∞

∣∣∣∣∂ψ

∂x

∣∣∣∣
2

dx. (16)

These expressions for the mechanical stability condition and
surface tension assume that F is introduced into the Navier-
Stokes equation without any error. As will be shown in the
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following section, this is not the case. Before proceeding to
identify these errors, it is important to note the following two
relationships, derivable from Eq. (6):

FF
ρ

= G2c4
s
ψ2

ρ
∇ψ∇ψ, (17)

∂Fα

∂xβ

= −Gc2
s

[
ψ

∂2ψ

∂xα∂xβ

+
(

∂ψ

∂xα

) (
∂ψ

∂xβ

)]
. (18)

Any errors in the pressure tensor proportional to FF or
gradients of F will directly affect the mechanical stability
condition and surface tension. The issue with the second-order
expansion arises as the second-order derivatives in the pressure
tensor are of higher order than the second order in the
Navier-Stokes equations. To correctly identify the errors, the
second-order Chapman-Enskog expansion often used in LBM
analysis is therefore insufficient [19]. However, taking the
expansion to higher order leads to Burnett level equations.
As this is not the goal, only terms in F are needed from a
third-order analysis, because F and its derivatives are large
around phase boundaries. Here we proceed with a third-order
analysis, following the work of Holdych et al. [20]. However,
it should be noted that there is still debate over whether this
method is equivalent to a Chapman-Enskog expansion, once
they are taken beyond second order [19].

III. THIRD-ORDER TRUNCATION ERROR

The third-order analysis of the LBM with a general forcing
term is now given. Equation (1) can be recast in the form

fi(x,t) =
(

1 − 1

τ

)
fi(x − vi ,t − 1) + 1

τ
f

eq
i (x − vi ,t − 1)

+Fi(x − vi ,t − 1), (19)

the recursive application of which can be used to eliminate the
fi dependence on the right-hand side, resulting in

fi(x,t) = 1

τ

∞∑
n=1

(
1 − 1

τ

)n−1

f
eq
i (x − nvi ,t − n)

+
∞∑

n=1

(
1 − 1

τ

)n−1

Fi(x − nvi ,t − n). (20)

Taylor expansions can then be used to give

fi(x,t) = f
eq
i (x,t) + 1

τ

∞∑
n=1

∞∑
m=1

(
1 − 1

τ

)n−1

× (−n)m

m!

(
∂

∂t
+ vi · ∇

)m

f
eq
i (x,t)

+τFi(x,t) +
∞∑

n=1

∞∑
m=1

(
1 − 1

τ

)n−1

× (−n)m

m!

(
∂

∂t
+ vi · ∇

)m

Fi(x,t). (21)

Keeping terms up to third derivatives, the zeroth and first
velocity moments of this equation are then taken. Moments
of the equilibrium distribution are denoted with superscript

0. The resulting equations for ρ and ρu can then be used to
derive the conservation of mass and momentum by recursively
eliminating derivatives of these terms. Full details are given
in the Appendix. The conservation of mass is given by the
familiar form

∂ρ

∂t
+ ∇ · (ρû) = 0, (22)

where as usual the fluid velocity u has been modified as

ρu = ρû − F/2 (23)

(third derivatives have been dropped here, however including
them in the definition of û does not change the final result).
The conservation of momentum gives

∂

∂t
(ρû) + ∇(

c2
s ρ

) + ∇ · (ρûû)

= ∇ · τ + F + ∇ ·
[(

τ − 1

4
− τγ

)
FF
ρ

]

+∇ ·
[

T0

12
[(∇ · F)I + ∇F + (∇F)T]

]
, (24)

where the deviatoric stress tensor is given in the usual form
for the single relaxation time LBM as

τ = T0
(
τ − 1

2

)
ρ[∇û + (∇û)T]. (25)

The last two terms in Eq. (24) are errors in the Navier-Stokes
equation. These errors are general and will apply to any force.
In the case of a small external force, they will have little effect,
but they should be taken into account for any force with large
gradients. This includes all multiphase methods that can be
arranged into the form of Eq. (1). Here, however, we consider
the case in which the force is given specifically by Eq. (5).
Using Eqs. (17) and (18), the pressure tensor with the resulting
errors is then given by

P =
[
ρc2

s + G
c2

s

2
ψ2 + Gc2

s

(
c2

s

12
+ λ

2

)
|∇ψ |2

+Gc2
s

(
c2

s

12
+ λ

)
ψ�ψ

]
I

+Gc2
s

[
c2

s

6
− λ − Gc2

s

(
τ − 1

4
− τγ

)
ψ2

ρ

]
∇ψ∇ψ

+Gc4
s

6
ψ∇∇ψ, (26)

where T0 = c2
s has been used. The importance of the terms

from the third-order expansion is immediately obvious. We
first consider the impact on the mechanical stability condition,
and we leave the discussion of surface tension to the following
section. The pressure normal to a flat interface with gradients
only in the x direction is now given by

Pxx = ρc2
s + G

c2
s

2
ψ2

+Gc2
s

[
c2

s

4
− λ

2
−

(
τ − 1

4
− τγ

)
Gc2

s
ψ2

ρ

] (
∂ψ

∂x

)2

+Gc2
s

[
c2

s

4
+ λ

]
ψ

∂2ψ

∂x2
. (27)
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With the error terms included, the coefficients a and b in
Eq. (9), corresponding to the first and second terms in square
brackets in Eq. (27), have been changed. Consequently, ε is
now given by

ε = −2

c2
s
4 − λ

2 − (
τ − 1

4 − τγ
)
Gc2

s
ψ2

ρ

c2
s
4 + λ

. (28)

From Eq. (12) it can be seen that these errors effect the
mechanical stability condition. This is the reason that previous
methods have not been able to correctly reproduce the
coexistence curve. However, some success has been achieved,
with different forcing schemes working better with different
equations of state. This has led to confusion over which of
the existing forcing schemes is correct. All existing forcing
schemes can be rearranged into the form of Eq. (1), therefore
γ can then be derived. It is well known that the original forcing
scheme in the Shan-Chen method gave liquid and gas densities
dependent on τ ; this is due to a τ 2 term appearing in γ . The
exact difference method has

γEDM = 1. (29)

This cancels the τ dependence in Eq. (28) (the Shan-Chen
method coincides with the EDM at τ = 1). The method of
Guo et al. [15] has

γGuo = 1 − 1/4τ, (30)

and this removes both the τ and ψ2/ρ dependencies in ε. For
the specific case of the two-dimensional, nine velocity lattice,
λ = 1/6, and therefore using this method, ε = 0. Solving
Eq. (14) for thermodynamic consistency with ε = 0 gives

ψ ∝ exp

(
− 1

ρ

)
. (31)

This form for the pseudopotential is common in the literature,
however it must be stressed that without the coincidental
cancellation between the lattice-dependent value of λ and the
error term, the method of Guo would not give the correct
coexistence curve. If a different lattice is used, where λ �= 1/6,
then ε �= 0, and the coexistence curve will be incorrect. More
realistic equations of state can be used by choosing ψ to be
[14]

ψ =
√

2
(
p0 − ρc2

s

)
Gc2

s

, (32)

and setting p0 to the desired equation of state. For example,
the Carnahan-Starling equation of state is given by

p0 = ρRT
1 + βρ

4 + (
βρ

4

)2 − (
βρ

4

)3

(
1 − βρ

4

)3 − αρ2, (33)

where G no longer controls the interaction strength and is set
to G = −1, and T is the effective temperature. R, α, and β are
constants, discussed further in Sec. V. Exact thermodynamic
consistency cannot be achieved with this equation of state,
however it can be approximated with the correct choice of ε

[17]. The exact value of ε is dependent on the parameters in
Eq. (33), which is discussed further in the following, however
it is found to approach 2 in the limit of a large density ratio.

This is why the method of Guo gives very large errors in
gas density, even at a low density ratio. The exact difference
method, however, is not fixed to ε = 0 but is dependent on
ψ2/ρ, and in fact it gives a value of ε greater than 1 but less
than 2. It is not our intention to go into this in detail, but merely
to point out that because of this the EDM gives significantly
better results for the coexistence curve than the method of Guo
for this equation of state (and others of a similar form). This
has led to the conclusion that the EDM is an improvement over
the method of Guo [16], but this is not necessarily the case.

While it is not possible to achieve exact thermodynamic
consistency with the Carnahan-Starling equation of state, a
very good approximation can be made. The second velocity
moment of Fi , Eq. (A11), can be chosen such that γ (τ ) is
given by

γ = 1 − 1

4τ
− ρ

Gc2
s ψ

2τ

ε0

8
(34)

rearranging Eq. (28) for the specific case of λ = 1/6, and using
c2

s = 1/3. An approximation for ε0 can be found by solving
Eq. (14) for a general value of ε and setting this equal to the
pseudopotential in Eq. (32). This gives

(
ρ

ε0

)1/ε0

∝
√

2
[
p0(ρ) − ρc2

s

]
Gc2

s

(35)

for ρ = ρg and ρ = ρl . While in general this cannot be solved
exactly, an approximation for ε0 can be found by an iterative
procedure. For high density ratios, ε is found to be very close
to 2, therefore solving for ε0 can be avoided and ε0 = 2 can
be used without a significant loss of accuracy. The results for
this forcing scheme are given in Sec. V. For now it should be
stressed that while previous methods have proposed improved
coexistence curves by introducing a tunable parameter (see, for
example, Refs. [16,17]), this is not the case here. For example,
Kupershtokh et al. [16] used a combination of two different
discretization schemes for Fi , and they tuned the weighting of
each scheme to improve the recovery of the coexistence curve.
The discretization schemes differ in their higher-order error
terms, and this tuning is effectively a tuning of these errors to
reproduce the required value of ε. Here no tuning is required,
but an approximation to ε is needed to counteract the inherent
thermodynamic inconsistency of the pseudopotential model.

IV. SURFACE TENSION

The new terms identified in the pressure tensor affect the
surface tension. To be able to control surface tension, further
terms should be included in the second moment of Fi . The
expression for γ will then have to be modified such that ε is
unaffected by these new terms. We define � as the new term
in the second moment of Fi , and we write the general form of
the forcing term as

Fi = wi

[
(vi − u) · F

c2
s

+ (vi · u)(vi · F)

c4
s

+γ

(
(vi · F)2

2c4
s ρ

− F · F
2c2

s ρ

)
+

(
vivi − c2

s I
) · �

2τc4
s

]
. (36)
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With this definition, the zeroth and first moments of Fi ,
Eq. (4), are unchanged, and the second moment becomes

� = (Fu + uF) + γ (τ )
FF
ρ

+ 1

τ
�. (37)

We then define � to be

� = Gc2
s ψ

[
−κ

2

∑
i

wi[ψ(x + vi) − ψ(x)]vivi

+κ + 1

12
I
∑

i

wi[ψ(x + vi) − 2ψ(x) + ψ(x − vi)]

]
,

(38)
as proposed by Li and Luo [25] but with an additional term to
account for the higher-order error terms identified here. This
results in the pressure tensor being

P =
[
ρc2

s + G
c2

s

2
ψ2 + Gc2

s

2

(
λ + 1

18

)
|∇ψ |2

+Gc2
s

(
λ + 1

18

)
ψ�ψ

]
I

+Gc2
s

[
−λ + c2

s

6
− Gc2

s

(
τ − 1

4
− τγ

)
ψ2

ρ

]
∇ψ∇ψ

+Gc2
s

(
c2

s

6
− κ

18

)
ψ∇∇ψ. (39)

With this modification, and again taking the specific case of
λ = 1/6, γ should now be

γ = 1 − 1

4τ
−

(
5 − κ

36

)
ρε0

Gc2
s ψ

2τ
. (40)

With this pressure tensor and the expression for γ , the surface
tension can be found using Eq. (15) to be

σ = −Gc2
s σc

∫ ∞

−∞

∣∣∣∣∂ψ

∂x

∣∣∣∣
2

dx, (41)

where

∂

∂x

(
ψ

∂ψ

∂x

)
= ψ

∂2ψ

∂x2
+

(
∂ψ

∂x

)2

(42)

has been used, and the surface tension coefficient is given by

σc = κ

18
− 1

6
+ ε0

(
κ − 5

36

)
. (43)

Surface tension can now be controlled by varying κ , while the
modification to γ should allow surface tension to be varied
without affecting the liquid and gas densities. Results for this
are given in the following section.

It is also important to be able to vary the width of
the diffusive interface without changing other properties of
the model. For the Carnahan-Starling equation of state, we
set R = α, and increasing α will decrease the number of
lattice points in the interface. A relationship for the width
of the interface can be found following Jacqmin [26]. Using
Eq. (40), the pressure normal to a flat interface with gradients

only in the x direction is given by

Pxx = ρc2
s + G

c2
s

2
ψ2 − Gc2

s

(
5 − κ

36
ε0

)(
∂ψ

∂x

)2

+Gc2
s

(
5 − κ

18

)
ψ

∂2ψ

∂x2
, (44)

from which an approximation to the interface width can be
found as

W ∝
√

5 − κ

α
ε0, (45)

where W is a measure of the width of the diffusive interface, in
lattice units. (As with all diffusive interface methods, it should
be noted that the numerical interface widths are orders of
magnitude larger than the physical interfaces.) This is only an
approximation due to the inexact thermodynamic consistency,
but, as results show, it allows for control of the interface width
with very little error. Surface tension is proportional to the
coefficient given above, σc, and the reciprocal of this interface
width. By varying κ and α, and taking into account the required
variation of ε0 with varying κ , it is therefore possible to
vary both surface tension and interface width independently,
without effecting the liquid and gas densities. It has been a
long-standing criticism of the interaction potential multiphase
LBM that such independent variation of model parameters was
not possible, although it should be noted that other multiphase
lattice Boltzmann models, such as that proposed by Lee and
Fischer [27], have introduced separate parameters for tuning
the interface width and the surface tension. While previous
work by Sbragaglia et al. [13] appeared to relax the constraint
on independent tuning of the surface tension and the density
ratio for the interaction potential model, it was shown recently
that changing the surface tension with the additional parameter
introduced in their model still results in small changes in the
density ratio [28]. This is likely due to the neglect of the
higher-order terms discussed here, and it will be considered in
future work.

V. RESULTS

In the following, we present the results for the forcing
scheme for the multiphase LBM described above. First, results
for improved reproduction of the coexistence curve in one
dimension are given. The effect of varying the surface tension
parameter and the interface width are then considered in one
dimension to ensure that the newly introduced control of
the surface tension does not effect the result for improved
reproduction of liquid and gas densities. Droplets in two
dimensions are then considered, including the impact of
the new surface tension coefficient on the measured surface
tension, and the effect of varying the interface width on the
spurious velocities found around curved phase boundaries.

A. Coexistence curve

As an example, Fig. 1 shows the coexistence curves
obtained with the method of Guo et al. [15], the EDM, and
the present method for the exponential form of the equation of
state, compared with the result from the Maxwell equal area
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FIG. 1. Simulation results for gas densities in one dimension,
for ψ = exp(−1/ρ). The method of Guo (diamonds), the EDM
(triangles), and the present method (crosses) are shown compared
with the Maxwell construction (black line).

construction. For this specific case, as described in Sec. III, the
method of Guo agrees exactly with the present method with
ε0 = 0, and both are seen to be in good agreement with the
coexistence curve. As expected, the EDM gives errors in the
vapor branch. This equation of state is not discussed further;
the following results will focus on the Carnahan-Starling
equation of state. Figure 2 shows the coexistence curves
obtained with the method of Guo et al. [15] and the EDM,
for the Carnahan-Starling equation of state, compared with
the result from the Maxwell equal area construction. In all
schemes, the liquid density only shows a small variation across
the different forcing schemes, therefore only the vapor phase
results are shown. Both Guo’s scheme and the EDM are shown
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EDM, α =    1
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FIG. 2. Simulation results for gas densities in one dimension, for
the Carnahan-Starling equation of state. The method of Guo with
α = 1 (crosses) and α = 1/2 (pluses) and the EDM with α = 1
(triangles) and α = 1/2 (diamonds) are shown compared with the
Maxwell construction (black line). In both cases, increasing the
interface width (by decreasing α) does not improve the results. (Liquid
densities are all in close agreement with the Maxwell construction
and are therefore not shown.)

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.000001 0.00001  0.0001  0.001  0.01  0.1  1

T

ρ

Maxwell construction
Present, α = 1

Present, α = 1/4
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FIG. 3. Simulation results for gas densities in one dimension,
for the Carnahan-Starling equation of state. The present method
with increasing interface widths, using α = 1 (triangles), α = 1/4
(crosses), and α = 1/16 (circles), is shown compared with the
Maxwell construction (black line). α = 1, 1/4, and 1/16 give
interface widths of, for example, W = 3.0, 5.8, and 11.5, respectively,
at T = 0.07, reducing to W = 3.2 and 6.1 for α = 1/4 and 1/16 at
T = 0.04 (at which point the interface width at α = 1 has become too
small for a stable solution). Significant improvement over existing
methods (shown in Fig. 2) is observed, with results tending to the
correct density with increasing interface width (decreasing α). (Liquid
densities are all in close agreement with the Maxwell construction
and are therefore not shown.)

using α = 1. Increasing the interface widths by decreasing
α was found to give worse results in both cases, as is also
shown for α = 1/2. It can be seen that Guo’s method does not
agree with the Maxwell construction, even at relatively low
density ratios, and that while the EDM improves on this, it
also shows significant errors as the density ratio is increased.
This is in agreement with the result of Kupershtokh et al. [16],
however the improvement of the EDM is a coincidental result
of error terms increasing ε so as to give a better approximation
of thermodynamic consistency. As discussed above, for the
nine velocity stencil in the forcing calculation, Eq. (5), Guo’s
method gives ε = 0, whereas for approximate thermodynamic
consistency with the Carnahan-Starling equation of state, ε is
found to tend toward 2.

The results for the present method using γ given by
Eq. (34) are shown in Fig. 3. For each point, an approximate
value for ε0 is found, as described above. This ranged from
1.87 for the lowest density ratio (at T = 0.09) to 2 for most of
the higher density ratio cases. It should be stressed again that
the approximations for ε0 are found by comparing ψ from
Eq. (32) with ψ from the general solution of Eq. (14), and
not by tuning ε until the coexistence curve is correct. Three
values of α are given (α = 1, 1/4, and 1/16), showing
results for increasingly wider interfaces. It can be seen that
the coexistence curve from the present method is in very
good agreement with the Maxwell construction, and that
this improvement increases systematically with increasing
interface width. All density ratios can be reproduced
accurately, as long as the interface is wide enough. We
proceed by quantifying this for a few specific cases.
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FIG. 4. Error in gas density (compared with the predicted gas
density from the Maxwell construction) with interface width, W , for
the present forcing scheme with the Carnahan-Starling equation of
state. Three different density ratios are shown: ρr ≈ 10 using T =
0.0790 (diamonds, solid line), ρr ≈ 100 using T = 0.0585 (circles,
dashed line), and ρr ≈ 1000 using T = 0.0455 (crosses, dotted line).

The interface width, W , is measured by fitting the following
curve to the density distribution across an interface:

ρ(x) = ρl + ρg

2
+ ρl − ρg

2
tanh

(
2x

W

)
. (46)

Although it should be noted that the interface does not
exactly follow this function, it is a good approximation. For
three different density ratios, the interface width was varied
between approximately W = 2 and 14 lattice units. This
was achieved by simultaneously varying κ and α so as to
vary the interface width while keeping the surface tension
constant (measurements of surface tension are deferred to
the following section). Three effective temperatures were
used in the Carnahan-Starling equation of state (T = 0.0790,
0.0585, and 0.0455) to give predicted density ratios, ρr ,
of approximately 10, 100, and 1000, respectively. Figure 4
shows the percentage difference between the predicted gas
density and the gas density measured from simulation (of a flat
interface on a 450 × 5 grid, run to equilibrium) for the three
effective temperatures. As discussed above, the difference
between the gas density from the simulation result and the
Maxwell construction reduces with increased interface width.
This is seen to happen at the same rate for all interface
widths. The worst result shows a gas density twice that of
the predicted density; this is at a large density ratio and
a very small interface width. It is also significantly better
than the error in the EDM, which gives gas densities orders
of magnitude below the correct densities at T = 0.05. The
observed systematic reduction in error as the high gradients at
the interface are spread out over more lattice sites may appear
trivial, but it should be reiterated that for the previous forcing
schemes, increasing the interface width resulted in larger
errors. This has previously made mesh refinement difficult
in the pseudopotential multiphase LBM, a major obstacle that
the present method overcomes.
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FIG. 5. Error in gas density (compared with the predicted gas
density from the Maxwell construction) with varying surface tension
parameter, σc, for the present forcing scheme. The result is for the
Carnahan-Starling equation of state with T = 0.0455 (density ratio
of approximately 1000). σ0 is σc with κ = 0. Two different interface
widths are shown: W = 9.5 (triangles, dashed line) and W = 13.3
(circles, solid line).

Having introduced a parameter for varying the surface
tension and discussed varying the interface width in the
preceding section, it is important to ensure that varying this
surface tension parameter does not effect the densities or the
interface width. For an effective temperature of T = 0.0455
(a density ratio of approximately 1000), Fig. 5 shows the
change in the gas density error for reducing the surface tension
parameter over a large range. For both interface widths shown,
very little change in gas density is observed, with the error
reducing slightly as the surface tension parameter is reduced
(measurements of surface tension with varying surface tension
parameter are given in the following section). The interface
widths also show very little variation, from 9.46 to 9.38 lattice
units in the first case, and from 13.33 to 13.28 in the second.
Even for this high density ratio case, the surface tension
parameter can be varied with negligible effects on both gas
density and interface width.

B. Surface tension

Having established that the surface tension parameter, σc,
can be varied with only slight effects on the gas density, and
that increasing the interface width decreases error in the gas
density, we now consider surface tension. First varying surface
tension at a fixed interface width is investigated, followed
by varying the interface width at a fixed surface tension. In
both cases, in addition to measuring the interface width, using
Eq. (46) and surface tension, the average spurious velocity
magnitude and the isotropy were also measured. Isotropy is
defined as

I =
∣∣∣∣ r0

r45
− 1

∣∣∣∣ , (47)

where r is the radius of the droplet, and the subscripts indicate
the angle to the x axis of the line along which the radius is
measured (radii being measured at the density midpoint in the
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diffusive interface). Surface tension was measured using both
the Laplace law and an oscillating droplet. In two dimensions,
the Laplace law is given by

P = σ

r
, (48)

where P is the pressure difference between the inside and
outside of the droplet. For a droplet centered at (x0,y0) given
an initial velocity

ux = U0
x − x0

r
, uy = −2U0

y − y0

r
, (49)

under the assumption that the viscosities in the liquid and gas
phase are sufficiently small, and that deviations of the interface
from equilibrium are small compared to the droplet radius, the
surface tension is related to the frequency of oscillation, �, by
[29]

σ = (ρl + ρg)r3

6�2
. (50)

To measure surface tension using the Laplace law, droplets
of radius between 20 and 50 were initiated in the center
of a 250 × 250 domain. Once equilibrium was reached, the
liquid and gas densities and the radius were measured. The
pressure difference, P , is then plotted against 1/r and
the surface tension obtained from the gradient of a linear fit.
For measurements using the oscillating droplet, a droplet of
radius 40 was initiated in the center of a 500 × 500 domain.
Once equilibrium was reached, the liquid and gas densities and
the radius were again measured, and an initial velocity, given
by Eq. (49), was applied, with U0 kept small enough such that
the maximum amplitude of oscillations was less than 10% of
the droplet radius. The oscillation period was then measured
over at least five oscillations.

To investigate varying surface tension at a fixed interface
width, the Carnahan-Starling equation of state is used with
T = 0.0585 and 0.0455, giving density ratios (over a flat
interface) of 100 and 1000, respectively. By simultaneously
varying κ and α, the interface width can be kept constant, by
Eq. (45), and the surface tension reduced, by Eq. (43) and
using σ ∝ σc/W . As α is varied, a new fit for ε0 is required, in
most cases ε0 ≈ 2. For all results τ = 1, different relaxation
times were tested for a number of cases with virtually no
effect on the density ratio or the surface tension (the slight
variations being due to increases in spurious velocities as the
viscosity is decreased). At each temperature, two interface
widths were used. For T = 0.0585 and 0.0455, the initial cases
(corresponding to no reduction in surface tension using the
present method, with κ = 0) were α = 0.125 and 0.0625, and
α = 0.031 25 and 0.015 625, respectively. Measured interface
widths for each of the four cases were W = 6.1, 8.7, 9.4,
and 13.3. Small increases in interface widths were observed
as surface tension was decreased. At a 32-fold theoretical
reduction in surface tension, the four widths were W = 6.3,
9.2, 9.9, and 14.2. The Laplace law for the first case is
shown in Fig. 6, with results for successively quartering the
theoretical surface tension. Linear fits are in good agreement,
except for the well-known offset from the origin. Figure 7
shows the corresponding measured values of surface tension.
Also shown are measured values for the second case. In both

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0  0.01  0.02  0.03  0.04  0.05

ΔP

1/r

σc = σ0     
σc = σ0/4  
σc = σ0/16
σc = σ0/64

FIG. 6. Laplace law results for T = 0.0585 giving a density ratio
of approximately 100 and an interface width of W = 6.1, including
linear fits. Theoretical surface tensions (normalized by surface tension
at κ = 0, σ0) are 1 (circles, solid black line), 1/4 (crosses, dashed
line), 1/16 (diamonds, solid gray line), and 1/64 (pluses, dotted
line).

cases, a linear reduction in measured surface tension with
theoretical surface tension is observed. It is of particular note
that this is true even at low values of surface tension. Figure 8
shows the two results at T = 0.0455; again, the correct linear
relationship is observed, even at low surface tension. Certain
values of surface tension were measured using the oscillating
droplet. In those cases, τ = 0.59 was used as a compromise
between stability and the low viscosity approximation in the
relationship between oscillation frequency and surface tension.
Only slight deviations between these measurements and those
from the Laplace law were recorded, with the largest being
approximately 10% for a low surface tension case. Results
are also plotted in Fig. 8 and show good agreement with the
Laplace law results.
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FIG. 7. Measured surface tension, σm, against theoretical surface
tension σth (normalized by surface tension at κ = 0, σ0). T = 0.0585
giving ρr ≈ 100. Results shown are for measurements made using
the Laplace law, for two fixed interface widths: W = 6.1 (circles)
and W = 8.7 (crosses). Solid and dashed lines show the theoretical
linear relationship, with gradient equal to σ0 for each case.

023305-8



IMPROVED FORCING SCHEME IN PSEUDOPOTENTIAL . . . PHYSICAL REVIEW E 91, 023305 (2015)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0  0.2  0.4  0.6  0.8  1

σ m

σth/σ0

Theoretical, W =   9.4
Theoretical , W = 13.3

Measured (Oscillations), W = 13.3
Measured (Laplace law), W =   9.4
Measured (Laplace law), W = 13.3

FIG. 8. Measured surface tension, σm, against theoretical surface
tension σth (normalized by surface tension at κ = 0, σ0). T = 0.0455
giving ρr ≈ 1000. Results shown are for measurements made using
the Laplace law, for two fixed interface widths: W = 9.4 (circles)
and W = 13.3 (crosses). Also shown for the W = 13.3 case are
measurements made using oscillating droplets (diamonds). Solid and
dashed lines show the theoretical linear relationship, with gradient
equal to σ0 for each case.

Figures 9 and 10 show variation in the spurious velocity and
isotropy for each of the two cases for T = 0.0585 and 0.0455,
respectively. In all cases, anisotropy increases as surface
tension is decreased, however this increase becomes more
gradual toward lower surface tension. It is also lower for wider
interfaces; additional results in that regard are given below.
Spurious velocities, however, are seen to decrease slightly as
surface tension is decreased.

C. Interface width

We now consider varying the interface width at a fixed
surface tension, again using the same two density ratios. In
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FIG. 9. Variation in isotropy, I , defined in Eq. (47), and average
spurious velocity, ū, with measured surface tension, σm. T = 0.0585
giving ρr ≈ 100. Results for isotropy (crosses) and spurious velocity
(circles) in black are for an interface width of W = 6.1. Results for
isotropy (pluses) and spurious velocity (diamonds) in grey are for an
interface width of W = 8.7.
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FIG. 10. Variation in isotropy, I , defined in Eq. (47), and average
spurious velocity, ū, with measured surface tension, σm. T = 0.0455
giving ρr ≈ 1000. Results for isotropy (crosses) and spurious velocity
(circles) in black are for an interface width of W = 9.4. Results for
isotropy (pluses) and spurious velocity (diamonds) in gray are for an
interface width of W = 13.3.

each case, two surface tensions were used: σ = 0.0077 and
0.000 91, and σ = 0.0063 and 0.000 74, respectively. In all
cases, measured interface widths were in very good agreement
with theoretical values. In the worst case, with ρr = 1000 and
σ = 0.000 74, a theoretical factor of 6 between the largest
and smallest interface widths gave a measured factor of 6.4
(the largest and smallest interfaces having W = 14.7 and 2.3,
respectively). In all cases, interface widths were increased to
values above 10 and decreased to the lowest stable value. This
was found to be around 2 or 3. Variation in surface tension was
found to be less than a few percent everywhere except for at
the lowest interface widths.

Figures 11 and 12 show the variation in spurious velocities
and isotropy with measured interface width for each of the two
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FIG. 11. Variation in isotropy, I , defined in Eq. (47), and average
spurious velocity, ū, with measured interface width, W . T = 0.0585
giving ρr ≈ 100. Results for isotropy (crosses) and spurious velocity
(circles) in black are for a surface tension of σ = 0.0077. Results for
isotropy (pluses) and spurious velocity (diamonds) in gray are for a
surface tension of σ = 0.000 91.
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FIG. 12. Variation in isotropy, I , defined in Eq. (47), and average
spurious velocity, ū, with measured interface width, W . T = 0.0455
giving ρr ≈ 1000. Results for isotropy (crosses) and spurious velocity
(circles) in black are for a surface tension of σ = 0.0063. Results for
isotropy (pluses) and spurious velocity (diamonds) in gray are for a
surface tension of σ = 0.000 74.

cases for T = 0.0585 and 0.0455, respectively. In all cases, the
average spurious velocity is found to reduce with increasing
interface width. In general, anisotropy is also seen to decrease
with increasing interface width. While this relationship is
not exact, anisotropy is small except for at the smallest
interface widths, which in practice would not be used. Spurious
velocities are seen to be converging to zero at a rate of between
1/W 2 and 1/W 3, with the exact rate having some dependence
on the density ratio and surface tension. Having shown that
interface width can be varied without significantly effecting
the density ratio and surface tension, this allows systematic
control over spurious velocities. This has not previously been
possible with the pseudopotential multiphase LBM. However,
it should be noted that the width of the diffusive interface, W ,
should be kept small compared with the relevant length scale of
the system being studied. The ability to control interface width
without affecting the density ratio and surface tension is also
important for mesh refinement, which is a basic requirement
for any CFD methodology. As the interface width has not been
independently controllable in the previous pseudopotential
models, it has not been possible to show convergence as the
number of lattice points in the interface is increased. The
present method, therefore, represents a major step toward

the LBM becoming a superior simulation tool for real-world
multiphase flow applications.

VI. CONCLUSION

A third-order analysis has identified the errors in the
pressure tensor in the pseudopotential lattice Boltzmann
method (LBM). As a result, an improved forcing scheme has
been proposed, which enables the full range of coexistence
curves to be accurately reproduced, even at arbitrarily high
density ratios (at the cost of increasing interface width,
and therefore increased computational cost in keeping the
relative interface width constant). Moreover, the addition of
a term to the pseudopotential method allows variation of
surface tension over a wide range, independent of the density
ratio. Interface width can also be varied independently of
density ratio and surface tension. Increasing the interface
width enables a systematic reduction of errors, leading to an
orders-of-magnitude reduction in the level of spurious currents
at the interfaces. Furthermore, the ability to independently tune
the interface width allows mesh refinement studies, which up
until now has been unavailable to the pseudopotential method,
despite being vital to any CFD methodology. In summary,
these developments enable the pseudopotential LBM to tackle
multiphase flow problems in real-world applications. The
above higher-order analysis of the forcing term is general,
so the findings of this study are not confined to the pseu-
dopotential LBM method considered here. The improved
forcing term treatment, therefore, can be used in conjunction
with other enhancements to the LBM. For example, the
present investigation uses a single-relaxation-time model, but
the derivation given here could be extended for multiple-
relaxation-time models. Further work will demonstrate the
full capabilities of the proposed LBM methodology and its
applications in a variety of multiphase phenomena.
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APPENDIX

Starting from Eq. (21), the equations for the conservation
of mass and momentum, Eqs. (22) and (24), are derived. The
zeroth and first velocity moments of Eq. (21) result in

∂ρ

∂t
+ ∇ · (ρu) =

(
τ − 1

2

) [
∂2ρ

∂t2
+ 2

∂

∂t
∇ · (ρu) + ∇ · (∇ · �0

)]

+
(

−τ 2 + τ − 1

6

)[
∂3ρ

∂t3
+ 3

∂2

∂t2
∇ · (ρu) + 3

∂

∂t
∇ · (∇ · �0) + ∇ · (∇ · (∇ · Q0))

]

−τ∇ · F + τ

(
τ − 1

2

)[
2

∂

∂t
∇ · F + ∇ · (∇ · �)

]

+τ

(
−τ 2 + τ − 1

6

)[
3

∂2

∂t2
∇ · F + 3

∂

∂t
∇ · (∇ · �) + ∇ · (∇ · (∇ · �))

]
(A1)
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and

∂

∂t
(ρu) + ∇ · �0 =

(
τ − 1

2

) [
∂2

∂t2
(ρu) + 2

∂

∂t
∇ · �0 + ∇ · (∇ · Q0)

]

+
(

−τ 2 + τ − 1

6

) [
∂3

∂t3
(ρu) + 3

∂2

∂t2
∇ · �0 + 3

∂

∂t
∇ · (∇ · Q0) + ∇ · (∇ · (∇ · A0))

]

+ F − τ

(
∂

∂t
F + ∇ · �

)
+ τ

(
τ − 1

2

) [
∂2

∂t2
F + 2

∂

∂t
∇ · � + ∇ · (∇ · �)

]

+ τ

(
−τ 2 + τ − 1

6

)[
∂3

∂t3
F + 3

∂2

∂t2
∇ · � + 3

∂

∂t
∇ · (∇ · �)

]
. (A2)

The first and second differentials with respect to time of the momentum equation are then used recursively to eliminate terms in
that equation. Similarly, the first and second differentials with respect to time of the mass equation, along with the divergence
of the resulting momentum equation, are used to eliminate terms in the mass equation, resulting in the familiar equation for the
conservation of mass,

∂ρ

∂t
+ ∇ · (ρũ) = 0. (A3)

The fluid velocity is now defined to take into account the additional terms in the conservation of mass equation that result from
the higher-order expansion:

ρũ = ρu + 1

2
F − 1

12

∂

∂t
∇ · �0 − 1

12
∇ · (∇ · Q0) − 1

6

∂

∂t
F − 1

24

∂2

∂t2
F −

(
− τ 3 + τ

2

)
∂

∂t
∇ · (∇ · �) − τ

12
∇ · (∇ · �). (A4)

Using this definition of fluid velocity, the conservation of momentum is now given by

∂

∂t
(ρũ) + ∇ · �0 =

(
τ − 1

2

)[
∂

∂t
∇ · �0 + ∇ · (∇ · Q0)

]
+ F − τ∇ · � +

(
−τ 2 + τ − 1

6

)
∂2

∂t2
∇ · �0

+
(

−2τ 2 + 2τ − 1

3

)
∂

∂t
∇ · (∇ · Q0) +

(
−τ 2 + τ − 1

6

)
∇ · (∇ · (∇ · A0))

+
(

τ 2 − τ

2

)[
∂

∂t
∇ · � + ∇ · (∇ · �)

]
. (A5)

Third-order derivatives of moments of F have been dropped, and derivatives in time of F have been assumed much smaller
than derivatives in space (this assumption would become invalid in the presence of an oscillatory driving force above a certain
frequency, but it is acceptable for the multiphase forcing terms considered here). The first three terms on the right-hand side are
captured by the usual second-order expansion techniques and are therefore treated in the literature, and up to the order considered
here the first term contains

∂

∂t
�0 + ∇ · Q0 = T0ρ[∇u + (∇u)T] + (Fu + uF) − T0

2
(∇ · F) I, (A6)

where T0 = c2
s . Using Eq. (23), this can be rewritten as

∂

∂t
�0 + ∇ · Q0 = T0ρ[∇ũ + (∇ũ)T] + (Fu + uF) − T0

2
[(∇ · F)I + ∇F + (∇F)T] + FF

ρ
, (A7)

where

T0∇ρ = F (A8)

and

∂uα

∂xβ

= ∂

∂xβ

(
ûα − Fα

2ρ

)
= ∂ûα

∂xβ

− 1

2ρ

∂Fα

∂xβ

+ FαFβ

2T0ρ2
(A9)

have been used, both correct at this order.
The new terms in Eq. (A5) require further consideration. The equilibrium values of the moments are replaced by their

(lattice-dependent) expressions in terms of ρ, u, and T0. The derivatives of ρ and ρu with respect to time can then be replaced
recursively with Eqs. (A3) and (A5). The terms on the right-hand side of Eq. (A5) then contribute the following to P:

∂2

∂t2
�0 = 0,

∂

∂t
∇ · Q0 = 0, ∇ · (∇ · A0) = T 2

0 [(∇2ρ)I + ∇∇ρ + (∇∇ρ)T],
(A10)

∂

∂t
� = 0, ∇ · � = T0[(∇ · F)I + ∇F + (∇F)T]
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(again temporal derivatives of F are assumed much smaller than spatial derivatives). The second moment of the forcing term is
dependent on the forcing scheme used, and for now it is given in the general form

� =
∑

viviFi = (Fu + uF) + γ (τ )
FF
ρ

, (A11)

where γ (τ ) is a function of τ dependent on the method. Inserting these into Eq. (A5), collecting terms and again making use of
Eq. (A8), leads to

∂

∂t
(ρũ) + ∇(

c2
s ρ

) + ∇ · (ρũũ) = ∇ · τ + F + ∇ ·
[(

τ − 1

4
− τγ

)
FF
ρ

]
+ ∇ ·

[
T0

12
[(∇ · F)I + ∇F + (∇F)T]

]
, (A12)

which is the momentum conservation equation given in Eq. (24).
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