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Abstract

Background: The human gene coding for apolipoprotein E is polymorphic, and the APOE 

s4 allele has been associated with less favourable outcome after acute brain injury 

including traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH). 

Experimental studies identify key roles for apoE in the central nervous system such as the 

scavenging and recycling of lipids for cellular maintenance and repair and formation of 

cerebral amyloid aggregate. Human in-vivo evidence supporting the concept that apoE is 

involved in the response of the brain to acute injury is sparse. Objectives: This study tests 

the hypothesis that apoE is involved in the response of the human brain to injury, and this 

role is reflected by changes in cerebrospinal fluid (CSF) apoE concentration after brain 

injury which correlate with injury severity and outcome. In addition it was hypothesised 

that changes in apoE concentration would be paralleled by changes in the composition of 

CSF lipoprotein particles (Lps) of which apoE is a major component. Lastly, apoE is 

reported to chaperone amyloid-beta peptide (AP), therefore we hypothesised that alteration 

in CSF apoE after brain injury would parallel alterations in Ap. Methods: Enzyme linked 

immunosorbant assay (ELISA) was used to determine the concentration of apoE, Ap, 

S100B and Tau (as surrogate markers of brain injury) in CSF from TBI and SAH patients 

and a non-brain injured control group. Lipoprotein particles were isolated from CSF using 

size exclusion chromatography and characterised in relation to cholesterol, phospholipid, 

apolipoprotein E, and apolipoprotein AI composition. Injury severity was determined using 

the Glasgow Coma Score, and clinical outcome using the Glasgow Outcome Score. 

Results: Compared to controls there was a sustained decrease in the concentration of apoE 

in the CSF after TBI and SAH which was paralleled by a depletion of apoE containing 

lipoprotein particles. Furthermore, CSF Ap also decreased, and the decrease correlated 

with injury severity and clinical outcome. In contrast the levels of S100B and Tau in brain 

injury CSF was substantially elevated. Conclusion: Despite the likely leakage of plasma 

apolipoprotein E into the subarachnoid space at the time of brain injury, apoE in the form 

of LpE is cleared from the CSF within days of injury. In addition, indirect evidence 

suggesting apoE-Ap interactions in-vivo support the concept that apoE may form insoluble 

aggregates with Ap soon after brain injury. The finding that these alterations in the CSF 

correlate with injury severity and outcome provides novel indirect in-vivo evidence that 

apoE is important to the response of the human brain to injury.
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1 Introduction

Traumatic Brain Injury (TBI) and spontaneous Subarachnoid Haemorrhage (SAH) are two 

conditions commonly encountered in neurosurgical practice. There is considerable 

variation in clinical outcome for patients with these conditions even after accounting for 

injury severity, suggesting that other unidentified factors influence recovery. The 

possibility that genetic factors influence the recovery after TBI and SAH recently found 

preliminary support from studies associating possession of the APOE e4 allele with 

unfavourable outcome. (Niskakangas et al. 2001; Teasdale et al. 1997) Although, 

evidence from post mortem and experimental brain injury studies support the concept that 

apolipoproteinE (apoE indicates protein; APOE, gene) plays a key role in the response of 

the brain to injury, in-vivo evidence in humans is lacking. This thesis presents indirect in- 

vivo evidence from the analysis of cerebrospinal fluid (CSF) that apoE is involved in the 

response of the brain to injury. This chapter discusses TBI and SAH, the response of the 

brain to injury, apolipoprotein E, and the utility of CSF analysis for investigating acute 

brain injury.

1.1 Traumatic Brain Injury and Subarachnoid Haemorrhage

1.1.1 Definitions of TBI and SAH

1.1.1.1 TBI

TBI refers to brain injury resulting from trauma. Haemorrhage into the subarachnoid space 

may be a consequence of TBI, and is the commonest cause of secondary/non-spontaneous 

SAH. SAH secondary to TBI is often referred to as tSAH and is not to be confused with 

spontaneous SAH discussed below.

1.1.1.2 SAH

SAH, usually due to rupture of an intracranial aneurysm, is a spontaneous event, which 

results in haemorrhage into the subarachnoid space. Often the haemorrhage extends 

beyond the subarachnoid space into the ventricular system and brain parenchyma. 

Occasionally SAH is limited to the brain parenchyma with relatively little haemorrhage 

into the subarachnoid space.
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1.1.2 Epidemiology and aetiology of TBI and SAH

1.1.2.1 TBI

In the UK, there are estimated to be at least 1 million patients presenting to hospital each 

year following head injury, representing 10% of all patients attending Accident and 

Emergency (A&E) departments. Approximately 90% of these patients have minor 

(Glasgow Coma Score, GCS 15-see table 1) or "mild" (GCS 13-15) head injury, and 5% 

have moderate (GCS 9-12), and 5% severe (GCS 3-8) head injury. (Kay and Teasdale, 

2001) Approximately 20% require admission for observation, and less than 5% are 

transferred to neurosurgical care. It is estimated that 30-50% of trauma deaths are due to 

TBI accounting for 1-2% of all deaths of all causes. Importantly TBI accounts for 20% of 

deaths occurring between the ages of 5 and 45 years, in which group injury is the leading 

cause of death. Most head injuries result from a fall (40%) or an assault (20%) but most 

serious injuries follow a road traffic accident (RTA). These account for 58% of deaths and 

approximately one third of those transferred to neurosurgical care. (Teasdale, 1995) The 

population of patients in the regional neurosurgical unit tends to be a selected group with 

injuries at the more severe end of the spectrum, though differences exist due to variation in 

the criteria for transfer. In addition Geographical variations in aetiology exist within the 

United Kingdom (UK) and continental Europe, and between the European and American 

continents. A study of patients with severe head injury, admitted to four neurosurgical 

units in the UK, found that 22% of patients fell under the influence of alcohol in Glasgow 

compared to less than 10 % in Southampton, and that RTA accounted for less than 50% of 

the admissions to the Glasgow unit but nearly 70% in Southampton. (Kay and Teasdale, 

2001; Murray et al. 1999) In 1999 the European Brain Injury Consortium (EBIC) 

published the findings from a survey of more than one thousand severely and moderately 

head injured patients admitted to sixty seven neurosurgical units in twelve European 

countries. (Murray et al. 1999) This survey found that the proportions that were injured as 

a vehicle occupant ranged from 11% in the UK up to 48% in the Benelux countries. In 

Spain only 1% of patients admitted to the neurosurgical unit had fallen under the influence 

of alcohol compared to 33% in Scandinavia. Gunshot wound to the head is uncommon in 

the UK and Europe in contrast to the United States of America (USA). These differences in 

aetiology and severity of injury, and the patterns of transfer to neurosurgical care, must be 

borne in mind when considering the relevance of findings in one unit to other units. Many 

of these injuries are avoidable occurring in risk taking young males with impaired 

judgement due to excessive consumption of alcohol.
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SAH, mostly from rupture of an intracranial saccular aneurysm, accounts for only 3% of 

strokes and 5% of stroke deaths, but 25% of life years lost through stroke. (Johnston et al. 

1998) The estimated overall incidence rate is 10.5 (95% Cl: 9.9-11.2) per 100,000 life 

years. (Linn et al. 1996) The reported incidence of SAH is higher in Finland (22/100,000 

patient years; 95% Cl: 20-23) and Japan (23/100,000; 95% Cl: 19-28). Women have a 1.6 

(95% Cl: 1.5-2.3) times higher risk than men, and black people have twice the risk of 

white people. (Broderick et al. 1992; Linn et al. 1996) The average age of patients with 

SAH is lower than for other types of stroke, peaking in the sixth decade, but higher than 

those with TBI. (Lanzino et al. 1996; Longstreth et al. 1993) Modifiable risk factors for 

SAH include smoking, hypertension, amphetamine/cocaine abuse and heavy alcohol 

consumption (Odds ratios of 2 - 3). (Teunissen et al. 1996) An important, but non- 

modifiable, risk factor is the familial predisposition to SAH such that 5-20% of patients 

with SAH have a positive family history. (Schievink, 1997) First degree relatives (parents, 

siblings, children) of patients with SAH have a three to seven fold increased risk, whilst 

second-degree relatives (grandparents, grandchildren, aunts, uncles, nieces, nephews) have 

a similar risk to the general population. (Bromberg et al. 1995; Gaist et al. 2000; 

Schievink, 1997) In addition, a small minority of patients with SAH have inherited 

connective tissue disorders. The commonest of these is Autosomal Dominant Polycystic 

Kidney Disease (ADPKD) and is found in 2% of all patients with SAH. (Schievink et al. 

1992) Other rare genetic disorders associated with SAH include Ehlers Danlos disease IV 

and Neurofibromatosis type I. (Schievink et al. 1990) Saccular aneurysm rupture accounts 

for 85% of spontaneous SAH. It is largely unknown why some adults develop aneurysms 

at points of arterial bifurcation and most do not. The idea that a tunica media defect allows 

the inner layers to bulge through has fallen from favour recently as these defects are 

equally as common in vessels without aneurysms and are strengthened by densely packed 

collagen fibrils. Furthermore they are found in the fundus of the aneurysm, not at the neck. 

(Finlay et al. 1998; Fujimoto, 1996; Stehbens, 1989) The current hypothesis is that risk 

factors such as smoking and hypertension result in acquired local thickening of the intimal 

layer (intimal pads) proximal and distal to the vessel branch point producing decreased 

elasticity, increasing the strain on more elastic portions of the vessel, (van Gijn J. and 

Rinkel, 2001). SAH not due to saccular aneurysm rupture is due to perimesencephalic or 

prepontine haemorrhage in 10% of cases and rare conditions (e.g. transmural arterial 

dissection, arterial-venous malformation, dural arterio-venous fistula, septic aneurysm, and 

pituitary apoplexy) in the remaining 5% of cases.
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1.1.3 Assessment of Injury severity
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1.1.3.1 TBI and the Glasgow Coma Scale

The Glasgow Coma Scale (GCS) is the internationally recognised measure of impaired 

consciousness. Prior to the development of this scale in 1974, impaired consciousness was 

described using terms such as comatose, stupor, obtunded, drowsy and delirium. 

Inconsistency in the definition and interpretation of these terms made assessment of 

recovery and deterioration for individual patients difficult and made meaningful 

comparisons of different patient cohorts difficult limiting their value for research purposes. 

In contrast the GCS is a simple robust method for describing the level of consciousness 

which can have a consistency as high as 97%. The Glasgow Coma Scale enables simple 

description of a patient's responsiveness in terms of best motor response, verbal response 

and eye opening. Each of these is then stratified according to increasing impairment. The 

GCS grades patients according to three scales, which are summed to give a total score 

ranging from three to fifteen. The Glasgow Coma Scale is an artificial index obtained by 

adding scores for the three responses. The GCS scoring system is summarised in table 1. 

This score can be used as a single figure summary for purposes of head injury 

classification, but contains less information than separate descriptions of the three 

responses. Hence the Scale, not the Score, should provide the basis for monitoring and 

exchange of information about individual patients. The motor scale awards six points for 

obeying commands, five for localising a painful stimulus, four for "normal" flexion, five 

for "abnormal" flexion, two for "extensor posturing" and one for no motor response. In the 

first description of the scale the motor response had only five options with no demarcation 

between "normal" and "abnormal flexion". The inclusion o f " abnormal flexion" to give a 

six point motor response, and a total score of fifteen, adds little to the monitoring of 

individual patients but is relevant to prognosis. The verbal scale awards five points to the 

patient who is orientated in time, place and person, four if speech is confused, three for 

inappropriate unsustained speech, two for incomprehensible sounds and one for no verbal 

response. Spontaneous eye opening is awarded four points, eye opening to speech three, 

eye opening to painful stimuli two, and no eye-opening one point. (Teasdale and Jennett, 

1974; Teasdale and Jennett, 1976; Teasdale et al. 1978)



19

Table 1 The Glasgow Coma Score

Feature Scale Score

Spontaneous 4

Eye To Speech 3

Opening To Pain 2

None 1

Orientated 5

Confused 4

Verbal Words (inappropriate) 3

Response Sounds (incomprehensible) 2

None 1

Obeys Commands 6

Best Localises Pain 5

Motor Flexion Normal 4

Response Flexion Abnormal 3

Extends 2

None 1

Total Coma "Score" 3-15
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Despite extensive studies supporting the repeatability, validity, and other clinimetric 

properties of the GCS, as few as 30% of doctors making neurosurgical referrals may be 

fully conversant with its use. (Morris, 1993) The motor scale alone has almost as high 

predictive value as the total GCS, thus the GCS is still useful if eye-opening or verbal 

response cannot be assessed e.g. due to facial trauma. The timing of assessment of 

conscious level is important as this may be influenced by the presence of sedatives, 

intoxication, hypoxia and hypotension. The increased use of pre-hospital sedation and 

intubation complicates the early assessment of injury severity using the GCS. (Marion and 

Carlier, 1994) The GCS does not take account of other correlates with injury severity such 

as the reactivity of the pupils to light, the oculocephalic response, and physiological 

parameters.

1.1.3.2 The World Federation of Neurological Surgeons Severity Scale for SAH

Severity of brain injury after SAH is also based upon the assessment of consciousness level 

graded using the GCS. In addition the grading scale of the World Federation of 

Neurological Surgeons (WFNS) includes an assessment of the presence or absence of focal 

neurological deficits as summarised in table 2. (Teasdale et al. 1988) Though poor 

neurological condition after SAH may be due to global ischaemic damage secondary to 

raised intracranial pressure from the haemorrhage, potentially reversible factors such as 

hydrocephalus, intracerebral or subdural haematoma also contribute to the impairment of 

conscious level.

1.1.3.3 Radiological assessment of severity of TBI

The computerised tomography (CT) scan is currently the means by which the nature, 

distribution and severity of brain injury is assessed after trauma providing satisfactory 

imaging for immediate management decisions. The Marshall CT classification is often 

used to categorise the various radiological manifestations of TBI for the purposes of 

clinical research. This is summarised in table 3. Even after combining the CT scan 

appearance with clinical information such as age and motor score from the GCS, survival 

is correctly predicted in less than 40% of cases. Further limitations of CT classification of 

TBI relate to the dynamic nature of brain injury and the time elapsed between injury and 

investigation, coupled to the relatively poor resolution of the technique. Thus when the 

initial scan shows diffuse injury, without swelling or shift, approximately one in six 

patients will have evidence of a mass lesion on a later scan, and will have increased risk of 

unfavourable outcome. (Marshall et al. 1992; Servadei et al. 2000)
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Table 2 The World Federation of Neurological Surgeons Grading of SAH

WFNS grade of SAH Glasgow Coma Scale total Score

I 15

II 13-14 no focal deficit*

III 13-14 with focal deficit

IV 7-12

V 3-6

*Cranial nerve palsies are not considered a focal deficit 

WFNS: World federation of Neurological Surgeons 

SAH: Subarachnoid Haemorrhage
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Table 3 Radiological assessment of severity of TBI

Grade Classification CT findings

1 Diffuse injury Intracranial pathology not visible on CT scan

2 Diffuse injury

a) 1 only

b) 2 unilateral

c) Bilateral

Cisterns present with shift of 0-5 mm, 

lesion present, but no high or 

mixed density lesion >25 cc.

May include bone fragments 

and foreign bodies.

3 Diffuse injury + swelling Cisterns compressed or absent, 

shift of 0-5 mm, no high 

or mixed density lesion >25 cc

4 Diffuse injury + shift Shift of >5 mm ,

no high or mixed density lesion >25 cc

5 Evacuated mass lesion

a) Extradural

b) Subdural

c) Intracerebral

d) >/= 2 lesions

Any lesion surgically evacuated

6 Nonevacuated mass lesion

a) Extradural

b) Subdural

c) Intracerebral

d) > 2 lesions

High or mixed density

lesion >25 cc,

not surgically evacuated
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1.1.3.4 Radiological assessment of severity of SAH
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The Fisher grading system is often used to categorise radiologically the quantity of blood 

seen on the CT scan after SAH, for the purposes of clinical research and audit. The Fisher 

grading system for blood load on CT scan is summarised in table 4. The Fisher grade is 

reported to correlate with clinical outcome, and the development of vasospasm, but is 

renowned for poor inter-observer agreement. (Fisher et al. 1980)

Table 4 Fisher CT scan radiological grading system for SAH

Fisher group Blood on CT

1 No SAH detected

2 Diffuse or vertical layers <1 mm thick

3 Localised clot and/or vertical layers>lmm thick

4 Intracerebral or intraventricular clot with diffuse or no SAH

CT: computerised tomography 

SAH: Subarachnoid Haemorrhage

1.1.3.5 Classification of Clinical Outcome

Since it was described in 1975, the Glasgow Outcome Scale has become the most widely 

used method to summate the wide range of different sequelae of brain injury into a single 

overall method of classification of outcome. (Jennett and Bond, 1975) There are five 

grades to the scale: dead, persistent vegetative state, severe disability, moderate disability, 

and good recovery. The GOS is assessed six months after TBI. When assessment is 

performed three, six and twelve months after injury it is apparent that some patients 

(particularly those with severe disability at three months) improve supporting the concept 

of late recovery. From the European Brain Injury Consortium (EBIC) survey of 481 

patients not obeying commands after TBI, less than 50% had a favourable outcome six 

months after injury. (Murray et al. 1999) The GOS is often assessed three months after 

SAH. The average case fatality rate after SAH is approximately 50% ranging from 32 -
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67%. Approximately one third of survivors remain dependent and less than one third have 

no reduction in quality of life, (van Gijn J. and Rinkel, 2001) The GOS has proved 

acceptable in many parts of the world, in particular for describing the outcome in cohorts 

of patients, but there have been reservations about its reliability, sensitivity, validity, and 

relevance. These result in part from the original description having not provided explicit 

criteria for distinguishing between different outcome categories. As a consequence the 

outcome could be assigned variably, between observers. Moreover the problem could be 

compounded by inconsistencies in the method used to obtain information (e.g. face to face 

interview, telephone interview or postal questionnaire) and in the timing at which outcome 

is assessed. An extension of the original 5-category scale into an 8-category scale (GOSE) 

was described to improve discrimination but this was offset by less consistency in 

allocation. Recently, a structured interview based on a questionnaire has been developed to 

improve reliability of classification of outcome. Careful studies showed that the structured 

approach improved reliability and that a high level of consistency achieved by all methods 

of obtaining information. Furthermore, the classification produced by the structured 

assessment of the Glasgow Outcome Scale showed strong correlation with the results of a 

wide range of neuropsychological tests and with the findings of generic assessments of 

health and quality of life. As a consequence, the GOS remains a valuable ‘overall’ index, 

of particular use in classifying outcome in studies involving large cohorts of brain injured 

patients. Much experience supports the use of the GOS in studies of outcome after a severe 

TBI. (Pettigrew et al. 1998; Teasdale et al. 1998; Wilson et al. 1998; Wilson et al. 2000) 

More recently application of the GOS to survivors of so called mild TBI has challenged the 

assumption that most survivors are free of sequelae. A recent study of 3,000 adults with a 

head injury in Glasgow, confirmed that 90% had a GCS of 13-15 when they arrived at 

hospital. Follow-up of a representative cohort confirmed that the majority (78%) of 

survivors of a severe head injury were either moderately or severely disabled but produced 

a surprising finding that disability was also common in survivors of a moderate (54%) and 

mild (51%) head injury. In accord with this finding, reports of various specific problems 

were found to be frequent in patients with a mild injury, 79% of whom had persistent 

headache, 59% memory problems and 34% were unemployed. (Thornhill et al. 2000) The 

findings of this and similar studies questions the categorisation of patients admitted to 

hospital who have lost consciousness but recovered to a GCS of 13-15 as a mild injury. 

(Pettigrew et al. 1998; Teasdale et al. 1998) Patients with so-called mild and moderate 

TBI may represent a previously under-investigated subgroup that may potentially benefit 

from neuroprotective measures. Furthermore, the possibility that so called mild or
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moderate injury may accelerate chronic neurodegeneration has not been conclusively 

investigated.

1.2 The response of the brain to injury

1.2.1 Classification

Evidence from experimental brain injury, and the all too frequent observation that after 

acute brain injury patients "talk and die", support the concept that brain injury stimulates a 

complex dynamic cascade of events which culminate in an accumulative burden of 

neuronal loss greater than that resulting from the initial injury. Thus damage occurring at 

the time of injury is referred to as primary injury, and that resulting from the cascades 

unleashed by the injury is referred to as secondary injury. More recently the concept of 

tertiary injury has emerged, which refers to the immunological and inflammatory changes 

in response to the primary and secondary injury. Neuroprotective strategies targeted at 

ameliorating secondary injury, though successful in experimental brain injury, have not 

translated to improved outcome after human brain injury. (Graham et al. 1995; Graham et 

al. 2000; Teasdale and Graham, 1998)

1.2.2 Primary injury

Primary injury results from the physical effects of tissue strain. Though tissue strain occurs 

after SAH due to raised intracranial pressure, brain shift and intraparenchymal 

haemorrhage, the effects have been more extensively characterised in experimental TBI. 

Tissue strain is the final common pathway for the forces of inertia and/or contact resulting 

from TBI. Contact may result in scalp laceration, skull fracture (and possibly extra-dural 

haematoma), cerebral contusions/laceration and intracerebral haematoma. Rapid 

acceleration or deceleration may result in forces of inertia causing subdural bridging veins 

to tear (and subdural haematoma formation) and widespread damage to white matter. 

Slower rates of tissue deformation tend to be tolerated better than rapid loading. Thus static 

loading, where the force is applied relatively slowly (more than 200 milliseconds) may 

only result in multiple comminuted skull fractures with little underlying brain injury. More 

commonly loading is dynamic (occurring in less than 200 msec and often <20 msec) due to 

impact (e.g. blunt object striking head) and/or impulsive (head moved or arrested rapidly, 

with or without contact). If a blunt object impacts the head a combination of contact and 

inertial forces result in tissue strain the nature of which depends on the mass, velocity and 

force of impact. Impulsive dynamic loading occurs when the head is rapidly accelerated or
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decelerated and the brain injury results from inertial forces of translation, rotation and 

angulation. There is considerable variability in the types of tissue strain encountered in real 

life, which often occur in combination. Though primary injury may be further classified as 

open or closed injury, and focal or diffuse injury, such explicit categorisation may become 

impossible as the injury severity increases. (Graham et al. 1995; Graham et al. 2000; 

Teasdale and Graham, 1998)

1.2.3 Secondary injury

1.2.3.1 Hypoxic injury

Hypoxic and ischaemic injuries are major secondary events that occur after both TBI and 

SAH, and substantially influence clinical outcome. (Chesnut et al. 1993a; Chesnut et al. 

1993b) Sustained global ischaemia occurs in the very early phase (i.e. 4-8 hours) after 

acute brain injury and before evacuation of mass lesions. (Marion et al. 1991) Ischaemic 

injury has been identified in 90% of patients dying after TBI, and episodes of transient 

diffuse ischaemia occur in 90% of patients in the highest quality neuro-intensive care units. 

(Graham et al. 1989; Jones et al. 1994) Focal ischaemia occurs in the surrounding area 

adjacent to cerebral contusions, intracerebral haemorrhage, beneath subdural haematomas, 

and tissue rendered ischaemic due to vasospasm. Hypoxic brain injury may also result 

from a wide range of aetiologies outside the CNS, which cause significant 

cardiopulmonary insufficiency, and from epileptiform seizures. Cardiopulmonary 

insufficiency and epileptiform seizures also occur after TBI and SAH (e.g. neurogenic 

pulmonary oedema) and may add to the burden of ischaemic insults in these patients.

The major component of hypoxic injury occurring after TBI and SAH is that due to 

reduced cerebral blood flow (CBF) due to the sudden increase in intracranial pressure at 

the time of haemorrhage or trauma. (Bouma et al. 1992a; Bouma et al. 1992b; Obrist et al. 

1984; Schroder et al. 1996; Symon et al. 1974) The effects of the primary ischaemic 

injury, like the effects of tissue strain, are highly variable depending on the severity, 

duration, and type of hypoxic insult. Cerebral blood flow studies in the non-human primate 

determined the effects of reduced CBF and introduced the concepts of ischaemic 

thresholds, and selective neuronal vulnerability. The mean blood flow through the brain is 

approximately 50ml/100g/min (grey matter 80ml/100g/min: white matter 20ml/100g/min). 

In the healthy normally autoregulating brain cortical flow reduction (with normal arterial 

oxygen tension) down to 20ml/100g/min may be tolerated without functional consequences 

though the electro-encephalogram (EEG) may slow and the subject may develop anxiety
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and drowsiness. Just below this level consciousness is lost and the brain loses the capacity 

to make neurotransmitter substances resulting in coma. The threshold of electrical failure 

has been reached resulting in flattening of EEG, and loss of evoked potentials. When flow 

falls below 18ml/100g/min the threshold for energy failure is reached resulting in 

mitochondrial dysfunction and failure of the Na+/K+ ATPase pump system resulting in 

potassium release. Between these thresholds there is a penumbra of brain that is electrically 

silent with normal or slightly raised potassium content, and though non-functioning is said 

to be capable of full recovery provided sufficient blood supply is maintained. At flows of 

lOml/lOOg/min membrane integrity is lost, massive Ca influx begins and the biochemical 

cascade of neuronal destruction begins. This cascade involves neuronal membrane 

deformation, cytoskeletal disintegration, ionic flux (Na+, K+, Ca2+, H+) disturbance and 

depolarisation/energy failure. Neurochemical, neurovascular, neurotransmitter and receptor 

changes occur due to disturbances involving catecholamine neurotransmitters, monoamine 

neurotransmitters, excitatory amino acids, nitric oxide, endogenous opioid peptides, 

platelet activating factor and various ion such as Mg2+ and Ca2+. These mediators give rise 

to lipolysis, proteolysis, oxidation, phosphorylation activity, and cytoskeletal 

disintegration. This culminates in cell swelling, further membrane damage, free radical 

production with lipid peroxidation, proteolysis, axonal swelling and culminates in acute, 

delayed or programmed cell death (PCD). If flow is profoundly reduced e.g. to 

5ml/100g/min within the distribution of one cerebral end artery for more than 60 mins, 

infarction is inevitable. However, when flow reduction is less marked e.g. 15ml/100g/min 

for 30 mins then selective neuronal loss may occur.

The most vulnerable neuronal types are:

• Hippocampal neurons (CA1).

• Cerebellar Purkinje cells.

• Cortical neurons, particularly the larger cells in the cuneate visual cortex.

• Basal Ganglia.

Classically selective neuronal loss is seen among patients who die after an episode of 

global ischaemia associated with cardiopulmonary arrest after which circulation has been 

restored. Neuronal groups may be selectively vulnerable due to differences in the 

microvascular anatomy that supply them (e.g. watershed changes at arterial boundary 

zones), though more recently evolved regions appear to be selectively vulnerable due to the 

physicochemical properties of the neurons themselves. A variety of phenotype differences 

have been postulated to account for selective vulnerability including differences in receptor 

expression e.g. selectively vulnerable neurons express glutamate receptors increasing
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vulnerability to excitotoxicity. Other postulates include differences in cellular stores of 

adenosine triphosphate (ATP), or antioxidants, or apoptosis related proteins. Selective 

neuronal loss may be particularly important in patients with raised intracranial pressure 

where cerebral perfusion pressure may be marginal (e.g. 30-40 mmHg) for many hours or 

even days resulting in ischaemic neuronal loss especially in the hippocampus. Such 

bilateral hippocampal and cerebellar damage explains the high frequency of memory 

disorders and co-ordination difficulty seen in so many survivors of severe head injury. 

Even though local cerebral blood flow may not reach sub-therapeutic levels it is 

hypothesised that acute brain injury increases neuronal vulnerability to secondary insult. 

(DeGirolami et al. 1984; Pulsinelli et al. 1982; Symon, 1993; Teasdale and Graham, 

1998)

1.2.3.2 Cytoskeletal injury

Cytoskeletal injury and disintegration has devastating consequences for the brain-injured 

patient. The original description of Diffuse Axonal Injury (DAI) defined focal lesions in 

the corpus callosum, focal lesions in one or both dorsolateral regions of the rostral 

brainstem adjacent to the cerebellar peduncles, and diffuse damage to axons that occurred 

after TBI. This anatomical distribution of injury accounts for the coma of brain injured 

patients, but has been reproduced in only one animal model of non human primates, 

limiting the rate of progress in understanding the underlying mechanisms. (Gennarelli et al. 

1982) The term Traumatic Axonal Injury (TAI) is currently applied to animal models of 

axonal injury after trauma. In TAI, within two hours of injury the injured axons form focal 

swellings at intervals along their length which increase in size until the axons undergo 

disconnection four to six hours after injury. (Maxwell et al. 1997) This is called secondary 

axotomy and is distinct from primary axotomy where the axolemma is fragmented 

resulting in rapid loss of the axonal cytoskeleton. Secondary axotomy appears to result 

from damage to the axolemma with loss of the ionic gradient homeostatic mechanisms 

necessary for axonal electrical activity. Thus Ca2+ influx causes mitochondria to swell, 

microtubules to depolymerize, calpain activation and disruption of fast axonal transport. 

(Buki et al. 1999; Maxwell et al. 1997; McCracken et al. 1999) The definite 

identification of retraction bulbs (the hallmark of DAI) under the light microscope can be 

made approximately eighteen to twenty-four hours post injury. However, 

immunocytochemistry (ICC) using an antibody to Amyloid Precursor Protein ((3-APP) 

shows evidence of axonal damage after two to three hours of survival and can be used to 

identify injured axons scattered amongst the population of uninjured axons. (Sherriff et al.

1994) As many axons appear to be unaffected by injury, the concept of selective neuronal
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vulnerability appears to apply to cytoskeletal injury too. Possible explanations for this 

observation are that axons in a particular orientation relative to the axis of strain, or those 

changing direction and decussating, are more prone to injury. In the days following injury 

many irregular swellings are noted on the axons associated with oval or rounded bulbs at 

the end of the axon. Over the ensuing weeks these features dissipate and clusters of 

microglia in the white matter dominate the field as the damaged axons are phagocytosed. 

Months after the injury Wallerian degeneration of the white matter is noted which at the 

severe end of the spectrum is associated with a clinical vegetative state. (Graham et al. 

1995; Graham et al. 2000) It is now recognised that axonal injury, as identified by p-APP 

ICC, occurs after a variety of different types of brain injury, and is not specific for TBI. 

(Dolinak et al. 2000a; Dolinak et al. 2000b; Geddes et al. 2000)

1.2.3.3 Vascular injury

Studies using contrast enhanced magnetic resonance imaging (MRI) and, single photon 

emission computed tomography (SPECT) have been used to demonstrate breakdown of the 

blood-brain barrier (BBB) after human acute brain injury. (Bullock et al. 1990; Lang et al. 

1991; Marmarou et al. 2000) Gadolinium enhanced MRI and pertechnetate enhanced 

SPECT scan studies show the majority of early brain oedema, both global and focal, to be 

cytotoxic. Vasogenic oedema associated with opening of the BBB is seen at later time 

points around contusions and intracerebral haemorrhage, and is absent from patients with 

diffuse non-focal injury. Acute brain injury causes complex neurovascular changes 

resulting in altered cerebral blood flow at a number of levels. The cerebral 

microvasculature, which is more resistant to shear damage than axons, tends to stretch and 

leak rather than tear or burst. Pial vessels at the tip of the frontal poles and temporal lobes 

are subjected to greater focal concentrations of force and have a tendency to form 

contusions. Such injury to the microvasculature results in:

• Swelling of perivascular astrocytic end feet narrowing the vessel lumen.

• Increased endothelial microvacuolation and micro pseudopodial activity from increased 
trans endothelial flux of intravascular components.

• Perivascular haemorrhage and transvascular diapedesis of red cells.

• Increased intravascular leukocyte adherence as a result of cytokine activation due to 
free radical release.

In addition changes in these and larger vessels may occur due to alterations in vasomotor 

tone. Increased tone results in vasospasm, which may occur after both SAH and TBI, and 

is a major contributory factor to death and disability. Vasospasm is reported to occur in
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70% of patients presenting with aneurysmal SAH, and results in symptomatic ischaemia or 

infarction in 36% of cases. (Biller et al. 1988) The biological mechanisms underlying 

vasospasm are poorly understood and treatment options are limited. The presence of blood 

in the subarachnoid space is the key initiator of vasospasm, and it is postulated that the 

oxyhaemoglobin (oxy-Hb) in subarachnoid blood induces vessel wall contraction. 

(Macdonald and Weir, 1991) Oxyhaemoglobin may act as a scavenger of Nitric Oxide 

(NO), and inactivate guanylate cyclase (GC) by oxidising a ferrous haeme group linked to 

the enzyme, and increases the production of radical species. NO has been identified as the 

major endothelial derived relaxing factor (EDRF) which upon release from endothelial 

cells diffuses to adjacent smooth muscle cells where it activates soluble GC resulting in 

production of cGMP. The cGMP activates intracellular sarcoplasmic reticulum bound
• j i

calcium pumps sequestering free Ca into intracellular stores relaxing the smooth muscle 

cell through reduced calmodulin mediated myosin light chain kinase activation. After SAH 

the released oxy-Hb may bind NO resulting in vasoconstriction and/or add to the burden of 

oxidative stress due to the production of globin free haemin released from Hb in the 

presence of H2O2, or oxidation of ferryl haeme, or formation of apoprotein radicals. In the 

absence of NO, endothelium derived constricting factors (EDCF) such as endothelin (ET), 

angiotensin II, prostaglandin F2a and thromboxanes operate unopposed constricting the 

vessel wall. In addition, other factors such as ion channel activation, contractile protein 

phosphorylation, and conducted vasomotor responses may play important roles in the 

development of vasospasm after SAH. (Dietrich and Dacey, 2000; Laher and Zhang, 2001; 

Sobey, 2001) In addition to vessel spasms, acute brain injury may result in loss of 

autoregulation of cerebral blood flow and vasoparesis. Many patients, particularly after 

evacuation of intracranial haematomata, develop a phase of hyperaemic cerebral blood 

flow from the second through to the seventh day post injury. These cerebrovascular 

abnormalities following reperfusion have been attributed to the generation of oxygen- 

derived free radicals, and mediators of the inflammatory response.

1.2.3.4 Inflammatory response to injury

Injury results in a co-ordinated cellular response organised to clear both blood clot and 

necrotic brain tissue, and to reconstitute the glia limitans. The acute phase lasts until the 

blood clot within the subarachnoid, subdural, intraventricular or parenchymal spaces has 

dissolved, and serves to deliver serum, and haematogenous cells including platelets, 

neutrophils, monocytes, and macrophages. Cytokines are released stimulating glial 

reactions such that astrocytes upregulate expression of S100B and glial fibrillary acidic 

protein (GFAP), and microglia become active amoeboid-like cells, with shortened
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processes, that actively migrate into the neuropil. The activated astrocytes play a key role 

in:

• Remodelling of the extracellular matrix by protease secretion

• Clearance of debris.

• Mediation of inflammation by release of transforming growth factors (TGFs) and 
Interleukins (ILs).

• Enhancement of neuronal survival by secretion of fibrosing growth factors (FGFs) and 
insulin like growth factors (IGFs).

• Metabolism of excitatory amino acids.

Demyelination of degenerating axons is initiated, but many of the processes of 

oligodendrocytes maintain contact with fragmenting intemodal myelin segments and do 

not change morphologically. Clot lysis is followed by the subacute phase, which terminates 

with the formation of the accessory glia limitans from astrocyte processes forming a 

condensed layer, bound together by tight junctional complexes. Fibroblasts, which by now 

are more frequent than macrophages, deposit matrix and neovascularization occurs. The 

consolidation phase results in scar formation, and down regulation of astrocyte and 

macrophage activity. However, microglia appear to populate the perilesional tissue in 

increased numbers for a prolonged period the limit of which is yet to be defined. (Holmin 

et al. 1998; Logan et al. 1994)

Whilst there is little doubt that post injury immunoactivation mediates delayed neuronal 

damage the exact function of each mediator or activated cell type is less clear. Indeed 

inflammatory events after injury appear to display dual and opposing roles promoting the 

repair of injured tissue but also causing additional brain damage mediated by the numerous 

neurotoxic substances released. Most of the data supporting these hypotheses derive from 

experimental work based on both animal models and cultured neuronal cells. Recent 

evidence suggests that elimination of selected inflammatory mediators is detrimental 

resulting in attenuation of neurological recovery. In the peripheral nervous system, post 

injury inflammation is a prerequisite for regeneration and restoration of function. In the 

CNS the glial reaction after injury and glial scar formation inhibits axon regeneration. 

(Fawcett, 1997; Fawcett and Asher, 1999; Fitch and Silver, 1997) Presumably, in the CNS 

where regeneration is limited, the purpose of the inflammatory response is to facilitate the 

removal of debris in order to minimise further neuronal injury due to chronic inflammation 

and/or neurotoxic effects of debris degradation products. It seems likely that inflammatory 

mediators regulate the production or release of effectors involved in the clearance of debris 

after brain. (Lenzlinger et al. 2001; McIntosh et al. 1998; Morganti-Kossmann et al.



A D Kay 2003 Chapter 1 32

2001; Morganti-Kossmann et al. 2002; Stoll et al. 2002) We may speculate that debris 

removal via inflammatory processes is important for the removal of degradation products, 

which over time could accumulate and exert an osmotic effect resulting in raised intra­

cranial pressure.

1.2.3.5 Programmed cell death

The form of cell death that occurs from primary injury is necrosis. Necrotic cell death is 

characterised by a loss of ionic homeostasis. The membranes of dying cells are leaky 

resulting in swelling and fragmentation of the cells and their organelles with spillage of 

their contents into the surrounding tissues damaging it, and stimulating an inflammatory 

response. In contrast, apoptosis (or programmed cell death, PCD) is an active orderly 

process by which the cell undergoes an intrinsically programmed transition from an intact, 

metabolically active state to cellular breakdown. Membrane bound fragments (or apoptotic 

bodies) contain intact cellular organelles and masses of condensed DNA that are released 

and quickly phagocytosed by macrophages or microglia cells. This occurs without lysis of 

organelles or spillage of intracellular contents and without an accompanying inflammatory 

response. Apoptotic cells are found singularly or in small groups and are reduced in 

volume. A characteristic feature of apoptotic cell death is that cellular DNA is cleaved at 

intemucleosomal linkages generating fragments that are multiples of the intemucleosomal 

length which produce a laddering appearance when separated by agarose gel 

electrophoresis. Programmed Cell death is classically associated with normal CNS 

development. However, there is an increasing literature that supports the concept that PCD 

may be triggered directly after acute brain injury by some biochemical mediators of 

secondary injury or indirectly as a result of secondary pathophysiological processes such as 

ischaemia or inflammation. Thus terminal deoxynucleotidyl transferase (TdT) mediated 

biotinylated deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL) positivity, a 

marker of PCD, has been identified in neurons and oligodendrocytes after both 

experimental and human brain injury. (Rink et al. 1995; Smith et al. 2000) In addition, 

anti-apoptotic cell death regulatory genes which are involved in development (e.g. the Bcl- 

2 superfamily) have been implicated in the regulation of PCD in experimental models of 

ischaemic, excitotoxic, and TBI. Transgenic mice over expressing human Bel-2 protein 

have significantly less neuronal loss after experimental brain injury. (Raghupathi et al. 

1998) It is postulated that Bcl-2 proteins modulate cell death and survival via 

mitochondrial cytochrome c, an activator of the caspase family of death related proteases. 

Activated caspase-1 (IL-lp converting enzyme) and caspase-3 cleave proteins that are 

important in maintaining cytoskeletal integrity and DNA repair, and activate
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deoxyribonucleases, producing cell death with morphological features of apoptosis. 

Caspase-3 activation has been identified after experimental and human TBI, and central 

administration of a caspase inhibitor is reported to reduce post-traumatic apoptosis and 

neurological deficits. (Clark et al. 1999; Pike et al. 1998; Yakovlev et al. 1997) The 

tumour suppresser gene p53 which is typically induced and upregulated in response to 

DNA damage, is also activated in experimental brain injury in regions exhibiting TUNEL 

positive apoptotic cells. (Kaya et al. 1999; Napieralski et al. 1999) After experimental 

global cerebral ischaemia, base excision repair (BER) pathways are reported to decrease 

suggesting that neuronal apoptosis may result from a failure to repair damaged DNA. 

(Kawase et al. 1999) Furthermore, the nuclear protein Poly (ADP ribose) polymerase 

(PARP), which detects BER of double and single stranded DNA breaks is activated after 

experimental TBI and inhibition of PARP is reported to be neuroprotective. (LaPlaca et al. 

1999; LaPlaca et al. 2001) In addition to the programmed cell death response of the brain 

to injury, there is evidence to support a co-ordinated intrinsic neuroprotective response, 

which facilitates the survival of viable neurons. Thus, proteins that modulate oxidative 

stress (glutathione peroxidase, and superoxide dismutase), and nitric oxide (inducible nitric 

oxide synthetase) production are induced after acute brain injury. Other factors produced 

by neurons and glia include trophic factors such as nerve growth factor, brain derived 

neurotrophic factor, insulin-like growth factor, etc. Examples of other genes identified as 

important for survival of the injured neuron include the "Immediate Early Genes" 

(activated within five minutes of an insult) fos/jun, and the so-called stress proteins such as 

hsp 70. It is postulated that these proteins activate downstream processes or act as 

molecular chaperones stabilising other proteins such as those making up the cytoskeleton 

or mobilising cell defences. However, it is estimated that there are 20,000 different 

proteins in the brain underlying the challenge involved in unravelling their relative 

contribution to intrinsic neuroprotection. (Graham et al. 2000)

1.2.4 Limitations in improving outcome after acute brain injury

Advances in understanding the chain of dynamic events that follow brain injury has 

prompted the development of so called "neuroprotective agents". Recognition of secondary 

processes and the vulnerability of the injured brain to these delayed insults suggests an 

opportunity to alter the "milieu" after the primary injury as a pre-treatment to the 

subsequent secondary insults. Recognition of the importance of ischaemia in head injury 

has encouraged the use of pharmacological agents developed with a view to treatment of 

stroke. Other approaches included hypothermia and corticosteroids. Efficacious in the 

controlled experimental conditions of the animal model, these agents underwent Phase II
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studies with acceptable levels of safety and tolerability and in some cases preliminary 

evidence of improvement in outcome. However, Phase III studies have now been 

completed and no "neuroprotective agents" so far have reached the selected threshold for 

demonstrating a 10% improvement in favourable outcome. The reasons for the apparent 

failure of these studies are complex and require careful consideration in order to advance 

our understanding of the problems involved and how best to tackle them. These problems 

relate to heterogeneity of the target population and biological processes coupled to a 

dichotomous outcome whereby a relatively small proportion of patients have an 

intermediate outcome upon which a neuroprotective agent must exert its effect. 

Multicentred studies have identified prognostic factors determining outcome, however, 

increasingly, clinical information is less conspicuous given the earlier and increased use of 

ventilation. CT scanning reveals a heterogeneous array of abnormalities associated with 

mortalities ranging several fold. Continuous monitoring enables capture and analysis of 

hypoxic and hypotensive episodes that also influence outcome. Techniques such as 

stratification at the time of randomisation and statistical modelling are necessary to refine 

treatment and placebo groups for the purposes of comparison. Heterogeneity in patient 

management is an additional complexity, which could be minimised by adherence to 

guidelines. Centres where guidelines are not followed may have the greatest burden of 

secondary insults. Exclusion of these centres from "neuroprotection trials" may result in 

loss of the population of patients most likely to benefit from intervention. Not only is the 

brain injury population variable, so is the biological process that follows. The relevance of 

any particular pathophysiological or biochemical process that follows brain injury is 

uncertain. Hence, administration of a Glutamate antagonist, which may be of benefit in 

focal ischaemia predominated by excitotoxicity and intermittent depolarisation, is unlikely 

to benefit a population of patients with diffuse cerebral hypoxic insults. It may be that 

some of the failure to show clinical benefit of "neuroprotective agents " resulted from 

failure to meet the required criteria:

• The agent has been shown to have an effect on the relevant pathophysiological process 
in brain injury models

• The process is known to occur in human brain injury

• The agent can be safely administered in a regimen that is appropriate therapeutically in 
terms of dosage, brain penetration and time scales.

It may be that different agents are beneficial at different stages of the injury process or that

multiple agents are required at a given time (a "cocktail") to minimise the multiple

processes that are ongoing. A further difficulty that these trials have encountered relates to

"end points" and quantification of effect. As many as 40% of patients with severe head
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injury die and approximately 40% recover to independence. Hence the remainder are left in 

a dependent state in the "U-bend" of the outcome distribution. Given that independence is 

the goal, not survival in dependency, improving outcome by 1 0 % requires "shifting” large 

proportions in each category up by two categories. Therefore a target of 10% improvement 

in favourable outcome may be unrealistic. It can be argued that the failure to show any 

adverse effect of the various agents supports some effect, not statistically significant at the 

chosen threshold that may be of benefit to the greater population of head injured patients. 

Furthermore, some trials were abandoned due to "futility analysis" and because of the 

experience of parallel trials in stroke patients. This is unfortunate given the profound 

differences in biological process, patient population and management of stroke and severe 

head injury. It is now recognised that increased focus is required upon the phase of 

translation from experimental brain injury to human brain injury. (Maas et al. 1999; 

Teasdale et al. 1999) Thus the requirement for in-vivo clinical research, despite the 

scientific challenges involved, is greater if progress in treatment of acute brain injury is to 

be achieved.

1.3Apolipoprotein E

Although first described nearly thirty years ago, current understanding of the molecular 

and cellular biology of this 34 Kilo-Dalton (KDa) glycoprotein is far from complete. 

(Shore and Shore, 1973) While the relevance of apoE to clinical disorders such as 

atherosclerosis is now well established, a substantial body of evidence supporting a role for 

apoE in central nervous system (CNS) disease is accumulating. (Mahley and Huang, 1999) 

In relation to atherosclerosis, molecular genetic studies have established three key 

functions for apoE that are atheroprotectant. First, plasma apoE maintains overall plasma 

cholesterol homeostasis through efficient hepatic uptake of cholesterol containing 

lipoprotein remnants, mediated by apoE functioning as a ligand for the low density 

lipoprotein (LDL) family of receptors. Second, apoE (working in concert with the 

cholesterol esterification enzyme activator, apoAI) facilitates cellular cholesterol efflux 

from macrophage foam cells in the blood vessel intima. Third, apoE, by modulating both 

T-lymphocyte and macrophage cytokine production, influences the chronic inflammatory 

response integral to atherosclerosis. (Curtiss and Boisvert, 2000) However, the complexity 

and relevance of apoE to human disease is not limited to its range of biological functions, 

since in humans the gene coding for the apoE protein is polymorphic. Point mutations, at 

codons 112 and 158, in the APOE gene (on chromosome 19) result in amino acid 

substitutions in the protein, altering the tertiary structure. It is postulated that this natural,
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genetically based, variation in the apoE protein tertiary structure underlies the risk 

stratification for ischaemic Heart disease (IHD), Alzheimer’s Disease (AD) and recovery 

from TBI, and SAH. Although rare APOE alleles (e) have been described in humans, three 

(s2, e3, s4) predominate. (Kamboh et al. 1999) The APOE e3 allele has the highest 

population frequency of approximately 77% while APOE s4 and APOE s2 comprise about 

15% and 8 % respectively with significant ethnic variations in the allele distribution around 

the world. (Mahley and Rail, 1999) In contrast to humans, other species, including great 

apes, do not display this genetic polymorphism; their gene product has sequence homology 

resembling apoE4 with arginine at the position corresponding to residue 112 in human 

apoE. (Finch and Sapolsky, 1999; Weisgraber, 1994) The two polymorphic sites in human 

APOE are CPG sequences, which are regarded as mutation "hot spots". Thus, the 

methylation of C in the CPG sequences, and their ready deamination to T, make a C to T 

mutation more likely than T to C, which would be necessary to obtain APOE e4 from 

APOE s3. (Hanlon and Rubinsztein, 1995) Although the APOE e4 allele is less common 

than APOE s3, it is probably the ancestral/wild type allele with APOE s3 resulting from 

one mutational event, and APOE e2 resulting from two such events. These specific point 

mutations enable the determination of APOE genotype using Restriction Fragment Length 

polymorphism (RFLP). Alternatively, the apoE protein phenotypes may be identified by 

iso-electric focussing (IEF). Functional consequences result from differences in intra­

protein amino acid-amino acid interactions dictating isoform dependent lipoprotein 

preference and receptor binding. The amino two thirds of apoE (residues 1-191) contains 

both the Heparin Sulfate Proteoglycan (HSPG) binding site and the receptor binding 

region, of which the side chain of Arginine 150 forms a component. The carboxy terminal 

domain contains the major lipid-binding site. ApoE3, which has arginine at residue 158, 

forms a salt bridge with aspartic acid 154. This is not possible in apoE2, which has a 

cysteine at residue 158, instead a salt bridge forms between aspartic acid 154 and the 

receptor binding residue arginine 150 reducing the affinity of apoE2 for the LDL receptor. 

In contrast to apoE isoforms 2 and 3, which have cysteine at residue 112, apoE4 has 

arginine here which forms a salt bridge with glutamic acid 109 re-orientating the side chain 

of arginine 61 such that it interacts with glutamic acid 255 in the carboxyl terminus. This 

determines the preference of apoE4 for very low density lipoprotein (VLDL), while apoE3 

and apoE2 prefer smaller, phospholipid rich high density lipoprotein (HDL). This might 

also account for differential association with the high capacity, low affinity cell surface 

HSPGs in the HSPG-LRP pathway. (Mahley, 1988; Mahley and Huang, 1999; Mahley et 

al. 1996)
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1.3.1 Apolipoprotein E and the central nervous system
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In contrast to the periphery where a variety of apolipoproteins are found, there are 

relatively few apolipoproteins in the CNS. Though mRNA has not been detected for 

apoAI, apoAII, apoAIV, apoB, apoCII, apoCIII, apoF and apoH in the brain, apoE mRNA 

expression in the brain is second only to the liver. (Elshourbagy et al. 1985) CNS apoE is 

synthesised entirely intrathecally since CSF apoE isoform type is unaltered by liver 

transplantation from a donor of different genotype. (Linton et al. 1991) ApoE, which does 

not cross the intact "blood brain barrier", is synthesised by astrocytes and microglia; 

neurons probably do not synthesise apoE under normal circumstances. (Boyles et al. 1985; 

Diedrich et al. 1991; Elshourbagy et al. 1985; Poirier et al. 1991; Stone et al. 1997; 

Zlokovic, 1996) However, neurons do have the capacity to internalise apoE-containing 

lipoproteins and apoE has been localised within neurons of apparently normal brains, and 

in response to acute and chronic injury. (Beffert et al. 1998; Han et al. 1994; Horsburgh et 

al. 1997; Horsburgh et al. 2000b; Horsburgh and Nicoll, 1996; Metzger et al. 1996; 

Schmechel et al. 1993) Using immuno-electron microscopy on human brain sections from 

young epileptic patients, apoE is reported to localise to the cytoplasm of cell bodies and 

proximal dendrites in association with the external membrane surface of some organelles 

supporting the concept of intracellular apoE trafficking. (Han et al. 1994; Nicoll et al. 

2001) Thus apoE appears to play a principal role in the CNS in the transport of cholesterol 

and lipid from glial cells to the neuronal cytoplasm. The vehicle in which the lipid and 

cholesterol are transported is the apoE lipoprotein particle (LpE).
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Figure 1 Lipoprotein Particles
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Five classes o f lipoprotein particle are described in plasma. Chylomicrons have the lowest 
density (d): < 0.95 g/mL and a mean particle diameter of 500 nm. They are rich (85%) in 
triglyceride, but have the lowest (2%) apoprotein (Cl, CII, CIII, B-48, E, Al, and All) 
content. Very low density lipoproteins (VLDL) have smaller diameter (43 nm) and d < 
1.006 g/mL. They have less triglyceride (50%), more cholesterol (7%), cholesteryl ester 
(13%) and phospholipid (20%) and the same apoproteins as chylomicrons. Intermediate 
density lipoproteins (IDL) arise from the catabolism of chylomicrons and VLDL. IDL 
density = 1.006 - 1.019 g/mL, and mean diameter = 27 nm. They contain a higher 
proportion (18%) of apoprotein (apoB-100 and apoE), and lipid, but less triglyceride 
(26%). Low density lipoproteins (LDL) arise from the catabolism of VLDL and comprise 
three subfractions (LDL I, II, III). Apoprotein (apoB-100 and apoE) represents 25%, 
triglyceride 10% and cholesteryl ester 37% o f the composition. LDL I has a diameter of 27 
nm (d = 1.02 - 1.03 g/mL), LDL II = 26.6 nm (d = 1.03 - 1.04 g/mL) and LDL III = 26 nm 
(d = 1.04 - 1.06 g/mL). High density lipoproteins (HDL) occur as three main subfractions 
(HDL|, HDL2 , and HDL3); HDLi is rarely seen in human plasma. HDL2 has a mean 
particle diameter o f 9.5 nm and density range of 1.063 - 1.125 g/mL. HDL3 has a mean 
particle diameter o f 6.5 nm and density range o f 1.125 - 1.210 g/mL. HDL has the highest 
(55%) apoprotein (Al, All, D, CII, CIII, and E) and phospholipid (24%) content and the 
lowest (4%) triglyceride. See also figures 21 and 22.
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1.3.1.1 CSF lipoprotein particles

As in plasma, apoE forms a key component of CSF lipid transport vesicles known as 

lipoprotein particles (Lps), which facilitate the solubilisation of lipids within an aqueous 

environment, and their transport to appropriate metabolic pathways. In plasma, these 

vesicles have a nonpolar core containing triglyceride and cholesteryl esters, surrounded by 

a monolayer of phospholipid (see figure 1). The polar head groups of the phospholipids are 

orientated toward the aqueous environment stabilising the lipoprotein particle allowing 

them to remain in solution. The surface monolayer contains unesterified cholesterol and 

the apoproteins, which function as ligands for cell surface receptors and regulators of 

enzymes involved in particle remodelling. (Mahley et al. 1984) Phospholipid is the most 

abundant lipid in CSF lipoproteins followed by cholesterol and cholesteryl esters. The 

CNS accounts for 2% of body mass and 25% of total body free cholesterol. The cholesterol 

content of brain tissue is high making up 1% of grey matter (wet weight) and 4% of white 

matter. The CNS cholesterol pool is non-exchangeable with the plasma and its 

interchangeable pools. Evidence from experimental cholesterol turnover studies suggests 

that brain cholesterol demand for development and day to day maintenance is met entirely 

by intrathecal cholesterol synthesis. (Dietschy and Turley, 2001) Though the CNS apoE 

lipoprotein particle most likely plays a key role in regulating cholesterol homeostasis, as it 

does in plasma, differences between the plasma and CSF particles have been identified and 

have been an area of focus for those researching neuronal degeneration. (Montine et al.

1997) In contrast to plasma where five different lipoprotein classes exist, Lps in the CSF 

are more homogeneous having a size similar to plasma HDL. At least two subclasses of 

HDL- like CSF Lps have been identified which appear to be either relatively rich apoAI or 

apoE. CSF HDL contrasts plasma HDL in that the larger apoE rich HDLi- like particle 

found in CSF are a very minor component of plasma HDL where smaller HDL2 and HDL3 

particles predominate. There is very little HDL] in human plasma as cholesteryl ester is 

transferred via cholesteryl ester transferase protein (CETP) to the larger apoB containing 

lipoprotein, LDL. Normal CSF does not contain apoB so apoE lipoproteins play a special 

role in cholesterol transport by virtue of their ability to expand to HDLj. Other smaller Lps 

have been identified in the CSF but are yet to be fully characterised. In contrast to plasma, 

the concentration of apoE in CSF is reported not to vary according to genotype. (Rebeck et 

al. 1998; Schiele et al. 2000a; Vincent-Viry et al. 1998) ApoE phenotype has been 

reported to affect the distribution profile of apoE containing lipoproteins in the CSF 

suggesting that metabolism of apoE containing lipoproteins depends on the apoE isoform 

present. ApoE2 and apoE3 (but not apoE4) can form heterodimers with apoAII, which 

have greatly diminished LDL receptor binding compared to apoE. Therefore apoE4 Lps,
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which do not form apo (E-AII) and apo (AII-E-AII) complexes, may be metabolised more 

efficiently than apoE3 and apoE2 containing lipoproteins. CSF associated with apoE4 is 

reported to have a lower cholesterol concentration (contrasting the situation in plasma) 

than CSF associated with apoE3 and apoE2. (Borghini et al. 1995; Borghini et al. 1993; 

Guyton etal. 1998; Montine et al. 1998; Montine et al. 1997; Pitas et al. 1987) However, 

others have found no significant differences between CSF Lps with respect to the different 

apoE isoforms. (Fagan et al. 2000; Koch et al. 2001) CSF Lps may not be representative 

of the population of Lps present in the neuropil. Lps isolated from serum free rat astrocyte 

culture media (ACM) contain only apoE and apoJ in contrast to human CSF Lps, which 

contain apoE and apoA. Rat astrocyte Lps are discs that contain less cholesteryl and have 

the potential to accumulate cholesterol ester via lecithin, cholesterol acyltransferase 

(LCAT) and CETP and remodel to cholesterol ester laden CSF spheres. Thus these 

particles may represent a population of particles participating in the recycling of 

cholesterol within the brain parenchyma. (Albers et al. 1992; Smith et al. 1990) ApoE 

appears to be important to the regulation of cholesterol cycling as APOE -/- (knockout) 

mice serum free ACM contains little or no free cholesterol or phospholipid and lipoprotein 

particles were not detectable under the electron microscope. (Fagan et al. 1999)

1.3.2 Apolipoprotein E and neuronal plasticity

In contrast to the CNS, peripheral nerves have the capacity to regenerate. Following rat 

sciatic nerve crush injury, macrophage apoE secretion increases one hundred fold, reaching 

a peak one week after injury and normalises within a few months when regeneration is 

largely complete. The secreted apoE facilitates the recycling of cholesterol from the 

degenerating neuron, which may then be used by the growth cones of neurites via 

upregulated LDL receptors at their tips. (Goodrum, 1990; Goodrum, 1991; Goodrum et al. 

2000a; Goodrum et al. 2000b; Ignatius et al. 1987a; Ignatius et al. 1987b) However, 

when APOE -/- (knockout) mice undergo peripheral nerve injury, there is no apparent 

reduction in regeneration suggesting that in the mouse peripheral nervous system, 

lipoproteins other than apoE (e.g. apoJ) may be utilised for the same purpose. (Goodrum et 

al. 1995; Popko et al. 1993) The CNS of APOE knockout mice are reported to have 

synapto-dendritic structural abnormalities, measured using Microtubule-Associated Protein 

(MAP-2) and synaptophysin immunoreactivity, in hippocampal and cortical areas, which 

increase with age. Amelioration of these changes by intraventricular infusion of exogenous 

apoE or endogenous expression of human apoE3 (but not human apoE4) suggests there is a 

degree of synaptic plasticity that is apoE dependent. (Masliah et al. 1996; Masliah et al.

1997) If these apoE knockout mice experience hippocampal injury, then clearance of lipid-
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laden products of neurodegeneration is impaired supporting the concept that apoE plays a 

role in lipid and cholesterol recycling. (Fagan et al. 1998; White et al. 2001a) A number 

of in- vitro studies utilising peripheral and central nervous system cell cultures, and more 

recently organotypic hippocampal cultures from human APOE transgenic mice, have 

shown that apoE3 promotes neurite extension to a greater extent than apoE4. The effect 

requires the apoE to be associated with a lipoprotein transport vehicle directing it to the 

HSPG-LRP pathway. The mechanism by which apoE promotes neurite extension and the 

reason for greater effect with apoE3 has not been conclusively elucidated. (Bellosta et al. 

1995; DeMattos et al. 1998; Fagan et al. 1996; Holtzman et al. 1995; Nathan et al. 1994; 

Nathan et al. 1995; Sun et al. 1998) In vitro studies support a role for apoE in the 

stabilisation and remodelling of the neuronal cytoskeleton. Binding of apoE3 to the 

microtubule associated protein Tau stabilises the microtubules and prohibits 

hyperphosphorylation. It has been postulated that deficient apoE4- Tau interactions result 

in Tau self association and hyperphosphorylation, laying down the foundations for Paired 

Helical Filament (PHF) formation and thereafter neurofibrillary tangles (NFT). If cultured 

Neuro-2a cells are treated with neurite outgrowth inhibiting lipidated apoE4 there are 

fewer microtubules, and a lower ratio of polymerised to monomeric tubulin, compared to 

cultures treated with neurite outgrowth promoting lipidated apoE3 treated cells. (Nathan et 

al. 1995) There is additional evidence to support a role for apoE in cytoskeletal 

remodelling from the APOE transgenic and knockout mice. In addition to cytoskeletal 

abnormalities, APOE knockout mice have increased phosphorylated Tau immunoreactivity 

compared to wild-type mice. (Genis et al. 1995; Masliah et al. 1995) The transgenic mice 

expressing human APOE&4 have more cytoskeletal abnormalities than those expressing 

APOEz3. (Buttini et al. 1999) However, the relevance of these cytoskeletal-remodelling 

observations to human pathology such as Alzheimer's Disease (AD) is uncertain given the 

failure to demonstrate apoE in the neuronal cytosol, and the lack of consistent evidence 

supporting an association between APOE genotype and NFT burden in AD brain. (Beffert 

et al. 1998; DeMattos et al. 1999)

1.3.3 Apolipoprotein E and amyloid p protein

The function of the transmembrane protein beta-amyloid precursor protein (P-APP) is not 

known. However, as a part of normal cellular processing, secretase enzymes cleave 

specific regions of the protein generating peptides, known as amyloid beta-protein (Ap), of 

varying length, e.g. APmo and AP1.42. For unknown reasons these hydrophobic peptides 

form a major component of AD plaques. Although the 42 amino-acid peptide ( A p i . 4 2 )
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constitutes the minority (10%) of Ap, it is the most hydrophobic species, and forms the 

seed of the amyloid plaque. The Ap peptides are known to be chaperoned by apoE (and 

apoJ) containing HDL-like lipoprotein particles in the CNS, and the proportion of Api-40 

appears to be influenced by APOE genotype. Thus CSF Lps isolated from APOE e4 

subjects have significant elevation of the Api-40 ratio than CSF Lps from non-APOE s4 

subjects. (Biere et al. 1996; Fagan et al. 2000; Koudinov et al. 1996; LaDu et al. 1995; 

Tokuda et al. 2000; Wisniewski et al. 1993) There is therefore evidence to support direct 

interactions between apoE and Ap, which results in the formation of insoluble aggregates. 

However, human in-vivo evidence for such an interaction is sparse. Microglia scavenge 

Ap-apoE aggregates via scavenger and lipoprotein receptors and deliver it to the lysosomal 

pathway for degradation. Microglia have the capacity to secrete apoE which may then 

capture Ap for internalisation by these receptors (secretion capture), possibly in 

conjunction with HSPGs. (Cole and Ard, 2000) Interest in Ap degradation has increased 

following reports that Ap immunization not only reduces Ap deposit formation, but also 

established Ap deposits. (Schenk et al. 1999) Although it is not clear whether apoE 

directly regulates Ap degradation or indirectly regulates degradation by promoting 

aggregation and deposition, evidence from human post-mortem studies and work with 

transgenic mice support a role for apoE controlling the ultimate fate of Ap. (Bales et al. 

1999; Bales et al. 1997) In vitro studies provide supporting evidence for both the 

chaperone role and an effect of apoE directly promoting assembly of Ap into amyloid 

fibrils, though the effects appear to be dependent on the lipidation and oxidation status of 

the apoE. (Sanan et al. 1994; Wisniewski et al. 1994) In vitro apoE4 is more 

amyloidogenic than apoE3 and apoE2, which is consistent with reports that APP TG mice 

expressing human APOE4 exhibit accelerated Ap deposition. (Holtzman et al. 2000a; 

Holtzman et al. 2000b; Ma et al. 1994) In addition, apoE may indirectly influence APP 

processing via the regulation of cellular cholesterol, which is reported to regulate the 

activity of the intra-membranous secretase APP cleavage enzyme. (Dodart et al. 2002b; 

Simons et al. 1998) The concept that cholesterol reduction may decrease Ap production 

has received recent attention due to the observation that cholesterol-lowering agents may 

reduce the risk of Alzheimer's disease. (Jick et al. 2000; Wolozin et al. 2000)

1.3.4 Apolipoprotein E and oxidative stress

Given that apoE2 possesses two cysteine residues, at positions 112 and 158, apoE3 has one 

at position 112 while both these positions are arginine in apoE4, it has been suggested that 

differences in free radical scavenger ability exist between isoforms. Differences in
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oxidative stress have been identified in TG mice but the relevance to human brain injury is 

unknown. The APOE -/- transgenic (TG) mice are reported to be in a state of chronic 

oxidative stress resulting with increased protein nitration in the cortex, hippocampus, 

cerebellum and brainstem, indicating formation of the neurotoxic free radical, 

peroxynitrite. (Lomnitski et al. 1999; Matthews and Beal, 1996) APOE knockout and 

APOE4 transgenic mice are reported to be more susceptible to closed head injury and some 

of this effect is reported to be attributable to reduced anti-oxidant activity. (Chen et al. 

1997; Lomnitski et al. 1997; Sabo et al. 2000) Furthermore, APOE -/- knockout and wild- 

type (WT) mice, when subjected to global cerebral ischaemia, show reduced neuronal 

damage and lipid peroxidation if apoE is infused into the ventricle supporting a role for 

apoE as an antioxidant. (Horsburgh et al. 2000a; Kitagawa et al. 2002)

1.3.5 Apolipoprotein E and Alzheimer's Disease

Alzheimer’s disease (AD) accounts for 70% of late onset dementia and 100,000 deaths per 

year in the USA. Clinical features include personality change, language and visuo-spatial 

problems, memory loss and global cognitive decline. The neurological deficit results from 

selective neuronal dropout and synaptic loss. (DeKosky and Scheff, 1990; DeKosky et al. 

1996) Currently, the clinical diagnosis of probable AD can only be confirmed post­

mortem, by the presence of abundant neurofibrillary tangles (NFTs) and (3-Amyloid (AP) 

plaques distributed in characteristic and specific brain regions, cells types and laminae. 

Though the pathology of AD is characterised by the accumulation of these insoluble 

aggregates, and despite compelling evidence supporting their role in the pathogenesis of 

AD, neither has been universally accepted as the primary aetiological factor. NFTs are the 

insoluble intracellular structures consisting of abnormal cytoskeletal elements, called 

paired helical filaments (PHFs), the major component of which consists of abnormally 

phosphorylated microtubule associated Tau protein. (Goedert, 1993) Hyper­

phosphorylation of Tau results in reduced flexibility disrupting axonal transport and 

microtubule binding, resulting in intra-neuronal accumulation. NFTs are not diagnostic of 

AD since they are seen in other neurodegenerative disorders (Tauopathies) such as 

progressive supranuclear palsy, cortico-basal degeneration, Pick's disease, Parkinson- 

dementia complex of Guam, post-encephalitic Parkinsonism and the chronic TBI disorder, 

dementia pugilistica. (Goedert, 1999) Tangle formation appears to represent a stereotypical 

cellular reaction to a range of pathological initiators. (Wisniewski et al. 1979) In addition 

to NFTs, two other neurofibrillary structures are recognised which, despite morphological 

differences, share Tau epitopes and occur in the same neuronal pool. These are neuropil 

threads, which are the distal dendrites of tangle containing neurons, and dystrophic
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neurites, surrounding senile plaques and neuropil threads. (Braak and Braak, 1988) The 

second major manifestation of AD is the senile or neuritic plaques comprising extracellular 

lesions containing a dense central core of (3-amyloid protein, surrounded by dystrophic 

neurites, reactive astrocytes and microglia. The p-amyloid protein is a hydrophobic 

fragment of the transmembrane glycoprotein Amyloid Precursor Protein (APP), which 

although its' function is uncertain, appears to be up regulated by a wide range of 

pathologies causing axonal injury. (Graham et al. 1995)

1.3.5.1 Apolipoprotein E and AD-epidemiological evidence

Although several genetic loci, including APP, Presenilin-1 (PS-1) and PS-2 contribute to 

Familial Alzheimer’s disease (FAD), the commonest known genetic susceptibility factor 

for the population at large is APOE. (Adroer et al. 1995; Basun et al. 1995; Corder et al. 

1993; Frisoni et al. 1995; Goate et al. 1991; Levy-Lahad et al. 1995; Lucotte et al. 1993; 

Mayeux et al. 1993b; Okuizumi et al. 1994; Payami et al. 1994; Saunders et al. 1993a; 

Sherrington et al. 1995; St et al. 1995; Strittmatter et al. 1993). Estimates of attributable 

risk as high as 50% have been reported for the development of AD based on APOE 

genotype. (Corder et al. 1993) In both sporadic and familial late-onset AD, the prevalence 

of the e4 allele is increased from approximately 15% to 40%. (Poirier et al. 1993; 

Saunders et al. 1993b) Approximately 80% of familial and 64% of sporadic late-onset AD 

cases carry at least one copy of the APOE e4 allele compared to 30% of controls. 

Possession o f APOE s4 reduces the age of onset of AD and thus the frequency of this allele 

is low in the very elderly. Thus APOE e4 homozygotes represent 40% of AD patients at 55 

years of age but less than 5% over 91 years of age. (Corder et al. 1993; Rebeck et al.

1994) In contrast APOE s2 is protective in that it delays the onset and reduces the risk of 

AD. (Corder et al. 1994; Talbot et al. 1994; West et al. 1994) For patients with FAD, age 

of onset appears to be influenced by APOE e4 in patients with APP mutations but not PS-1 

mutations. (St George-Hyslop et al. 1994; Van et al. 1994) However, the APOE s4 allele 

does not appear to influence the rate of disease progression once started. (Beffert et al.

1998) A meta-analysis of 5930 AD patients for APOE genotype AD associations, found 

APOE s4 to be a risk factor for AD across a wide range of ethnically different groups, but 

that though women were more likely to develop AD, this was not attributable to 

differences in APOE genotype frequency. (Farrer et al. 1997)



A D Kay 2003 Chapter 1

1.3.6 Apolipoprotein E and Alzheimer's Disease pathology

45

After Strittmatter reported the overrepresentation of the APOE s4 allele among AD 

patients, several studies examined the relationship between possession of the APOE s4 

allele and markers of AD pathology such as amyloid containing senile plaques (SP) and 

intra-neuronal neurofibrillary tangles (NFT). (Beffert et al. 1999; Beffert and Poirier, 

1996; Berg et al. 1998; Chen et al. 1999; Gearing et al. 1996; Gomez-Isla et al. 1996; 

Marz et al. 1996; McNamara et al. 1998; Nagy et al. 1995; Ohm et al. 1995; Polvikoski 

et al. 1995; Schmechel et al. 1993; Strittmatter et al. 1993) Senile plaque density is 

reported to correlate with APOE s4 in a dose dependent manner while APOE e2 is reported 

to be associated with less amyloid deposition. (Lippa et al. 1997) The association between 

APOE e4 and amyloid deposition has not been reported unanimously though some of the 

inconsistency may be attributable to different methods for labelling amyloid deposits as 

immunostaining with Ap identifies the correlation between APOE s4 and Ap better than 

silver stains. (Berg et al. 1998; Chen et al. 1999) Furthermore, few studies discriminate 

between APmo and ApM2 plaque, the former of which increase with APOE e4. (Gearing et 

al. 1996) Although the presence of abundant amyloid plaques is a prerequisite for the 

pathological diagnosis of AD, they may be present in cognitively normal individuals and it 

is the presence of intracellular neurofibrillary lesions that correlate best with the presence 

of dementia. (Arriagada et al. 1992a; Arriagada et al. 1992b). However, there is even less 

correlation between NFTs, which are generally regarded as correlating with AD severity 

better than SPs, and possession of APOE s4 and NFTs. (Beffert et al. 1998) Thus, there 

appears to be some evidence in humans that APOE e4 is relatively more amyloidogenic 

and may influence formation of tangles, yet some continue to question this and the 

relevance to the aetiology of AD.

1.3.6.1 Apolipoprotein E and Ap deposition in transgenic mouse models of AD

Prior to the creation of transgenic (TG) mice, recreating AD pathology in animal models of 

AD has been unsuccessful. These TG mice overexpress a mutant form of the human 

amyloid precursor protein (APP) gene known to cause FAD (APP V7i7p) and develop age 

related and region specific Ap immunoreactivity, fibrillar amyloid deposition, glial 

activation and neuritic dystrophy similar to that observed in AD. (Games et al. 1995) 

Crossing these APP mutant mice with APOE -/- knockout mice results in reduced Ap 

immunoreactivity, compared to age matched littermates expressing wild-type mouse apoE,
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providing in vivo evidence for mouse apoE promoting amyloid deposition. (Bales et al.

1999) When APPy717F transgenic mice are crossed with APOE transgenic mice expressing 

either human APOE3 or APOE4, there is almost no detectable A(3 immunoreactivity unless 

15 month old mice are used, which develop fibrillar Ap deposits associated with greater 

neuritic plaque density in APOE s4 crosses compared to APOE e3. (Holtzman et al. 

2000a; Holtzman et al. 2000b)

1.3.7 Apolipoprotein E and Traumatic Brain Injury

1.3.7.1 Pathological studies

The brains of approximately 30% of patients who die after TBI have deposits of Ap in the 

cerebral cortex; patients younger than 60 years of age only have Ap if they die after TBI. 

The APOE e4 allele frequency in Ap positive cases is significantly higher than in the Ap 

negative cases. There is also an allele dosage effect in that 10% of patients without APOE 

e4 had Ap compared to 35% with one copy and 100% with two copies of the e4 allele. One 

interpretation of this association is that TBI is an acute trigger for deposition of Ap and this 

occurs predominantly in patients with the APOE s4 allele. (Nicoll et al. 1995) 

Alternatively, age related Ap deposition may occur in individuals with the APOE e4 allele, 

and patients with the APOE s4 allele are more likely to die after TBI. (Roses and Saunders,

1995) Some support for the argument of increased mortality in TBI patients possessing the 

APOE s4 allele comes from the higher frequency of this allele in the ninety patients with 

fatal TBI than in the control population. (Nicoll et al. 1995) Studies of patients who die 

after hypoglycaemia, status epilepticus, herpes encephalitis and global ischaemia identify 

selective neuronal injury with increased neuronal apoE immunoreactivity within a few 

days of injury. (Horsburgh et al. 1999a; Nicoll et al. 2001) It should be noted that these 

intriguing findings have not been extensively replicated by others, and the possibility exists 

that findings from the West of Scotland population may not reflect the brain injury 

population at large. The influence of environmental factors (e.g. diet, ischaemic heart 

disease, cigarette smoking etc) upon brain apoE and Ap are not known.

1.3.7.2 Human APOE transgenic mice and TBI

The majority of studies using human APOE TG or knockout mice models of experimental 

brain injury focus upon AD pathology and ischaemia. (Chen et al. 1997; Genis et al. 

2000; Horsburgh et al. 1999b; Horsburgh et al. 2000a; Horsburgh et al. 2000b;



A D Kay 2003 Chapter 1 47

Laskowitz et al. 2000; Laskowitz et al. 1997; Lomnitski et al. 1999; Lomnitski et al. 

1997; Lomnitski et al. 2000; Sheng et al. 1998; Sheng et al. 1999) The absence of 

association between possession of APOE s4 and poor outcome after human ischaemic 

stroke questions the relevance of findings from experimental models of ischaemia to 

human TBI, even though both focal and global ischaemia are major components of TBI. 

(Graham et al. 1995; McCarron et al. 2000) Nevertheless studies of global ischaemia in 

APOE4 TG mice suggest they have greater neuronal vulnerability than APOE3 TG mice, 

suggesting that APOE4 is less protective than APOE3. (Horsburgh et al. 2000a; Horsburgh 

et al. 2 0 0 0 b)

1.3.7.3 Clinical studies

Following on from the human APOE transgenic mice, and human neuropathology studies, 

prospective observational studies in TBI patients have identified an association between 

possession of the APOE s4 allele and an unfavourable outcome (dead or severely disabled) 

six months after TBI. In the Glasgow study, after correcting for age and injury severity, the 

likelihood of an unfavourable outcome was doubled by possession of the APOE s4 allele. 

(Friedman et al. 1999; Teasdale et al. 1997) A separate study of TBI patients completing 

a rehabilitation program also associated possession of the APOE e4 allele with reduced 

functional recovery. (Lichtman et al. 2000) Possession of the APOE s4 allele has also 

been associated with more severe chronic TBI in boxers. High exposure boxers (i.e. those 

with 12 or more professional bouts) have significantly higher Chronic Brain Injury (CBI) 

scores compared to low exposure boxers, and boxers with APOE s4 have significantly 

greater CBI scores than high exposure boxers without APOE e4. Furthermore a gene 

dosage affect is apparent as boxers with severe impairment have at least one copy of the 

APOE s4 allele. (Jordan, 2000) Possession of APOE e4 has also been associated with 

reduced cognitive performance in older football players, and patients who undergo 

cardiopulmonary bypass for cardiac surgery. (Kutner et al. 2000; Newman et al. 1995; 

Tardiff et al. 1997) Other studies have identified associations between possession of the 

APOE s3 allele and more favourable outcome following non-TBI such as SAH, 

spontaneous intracerebral haemorrhage, cardiopulmonary bypass and resuscitation. 

(Alberts et al. 1995; Niskakangas et al. 2001; Schiefermeier et al. 2000; Tardiff et al. 

1997; Schiefermeier et al. 2000; Schiefermeier et al. 2000)
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1.3.8.1 Epidemiological evidence supporting TBI as a risk factor for AD

Compared to other risk factors for AD such as age, sex, level of education and family 

history epidemiological evidence consistently supporting an association with TBI is 

lacking. This may be partly due to the failure to conduct rigorous long-term prospective 

studies exploring this specific hypothesis. Conducting these studies presents several 

challenges to the epidemiologist. First, the diagnosis must be defined using the criteria of 

the American Psychiatric Association (DSM-III-R) to diagnose dementia, and those of the 

National Institute of Neurological and Communicative disorders and Stroke/Alzheimer's 

Disease and Related Disorders Association, to diagnosis probable AD. (Letenneur et al. 

2000; McKhann et al. 1984) Second, pathological confirmation of the diagnosis of AD has 

often not been established. (Mendez et al. 1992). Third, TBI among probable AD cases is 

often identified on the basis of patient, spouse or sibling reported measures introducing 

recall bias, or from medical register data which may also be unreliable. Unfortunately there 

is relatively little high quality information concerning long term outcome years or decades 

after TBI and though some studies have stratified injury severity according to the presence 

or absence of loss of consciousness, the degree and duration of unconsciousness is often 

not described. Thus many case control studies have shown no significant risk for AD after 

TBI. (Broe et al. 1990; Chandra et al. 1989; Chandra et al. 1987; Ferini-Strambi et al. 

1990; Fratiglioni et al. 1993; Li et al. 1992; Mendez et al. 1992; Ryan, 1994) Some 

studies do report an association between TBI and the development of AD but several of 

these are of borderline significance (Breteler et al. 1995; French et al. 1985; Graves et al. 

1990; Guo et al. 2000; Mayeux et al. 1993a; Mortimer et al. 1985; Mortimer et al. 1991; 

None, 1994; OMeara et al. 1997; Rasmusson et al. 1995; Salib and Hillier, 1997; Shalat 

et al. 1987; van et al. 1992). Few longitudinal cohort studies report increased risk of AD 

in patients with a history of TBI, though some of these studies have short follow-up 

intervals. (Katzman et al. 1989; Launer et al. 1999; Mehta et al. 1999; Schofield et al. 

1997; Williams et al. 1991) Nemetz reports that TBI reduces the age of onset of AD by 8  

years in individuals susceptible to the disease. (Nemetz et al. 1999)

1.3.8.2 Pathological evidence linking TBI to AD

The brains of people dying with AD share some pathological features with those dying 

after TBI. Plaque-like deposits of Ap are found in the cerebral cortex of 30% of fatal cases 

of TBI. Amyloid is derived from the cleavage of APP, a transmembrane protein, by a,p,y
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secretases to form mostly A(3 1.40 and Ap m2 the latter of which is insoluble and deposited 

as p amyloid. Immunostaining for Ap 1.42, the earliest cleavage product species deposited 

in AD brain, is also the predominant species after fatal head injury. (Gentleman et al. 

1993; Gentleman et al. 1997; Gentleman et al. 1993; Gentleman et al. 1995; Graham et 

al. 1995; Graham et al. 1996; Horsburgh et al. 2000; McKenzie et al. 1994; McKenzie et 

al. 1996; Roberts et al. 1991; Roberts et al. 1994) However, a study of twenty one long­

term survivors of TBI, who died from other causes up to twenty years later, failed to 

identify more Ap deposits compared to controls. (Macfarlane et al. 1999) Thus it is 

possible that deposits of Ap present after TBI are at a later stage cleared via inflammatory 

pathways including activated microglia, which are upregulated in the acute phase after 

TBI. (Griffin et al. 1994) Chronic Traumatic Brain Injury (CTBI) e.g. due to boxing, 

where in its' most extreme form it is referred to as dementia pugilistica, also shares 

pathological features with AD. Extensive plaques and NFTs with the same PHF formation 

as in AD have been observed in the brains of boxers with dementia pugilistica. Repetitive 

head injury in young adults appears to be associated with neocortical NFT formation 

around blood vessels particularly penetrating vessels in the depths of the sulci contrasting 

AD where cytoskeletal pathology does not cluster around blood vessels. Furthermore, 

repetitive head injury pathology in young adults does not appear to be associated with Ap 

deposition, which along with the early involvement of the neocortex would be unusual in 

AD. The absence of amyloid in repetitive head injury patients contrast dementia pugilistica 

where amyloid is often but not always noted. (Corsellis, 1989; Dale et al. 1991; Jordan, 

2000; Roberts, 1988; Roberts et al. 1990)

1.3.8.3 Animal model evidence linking AD to TBI

Attempts to reproduce these human pathological observations in rodent models of TBI 

have largely failed though a diffuse increased expression in p-APP is observed. Using a 

nonimpact head rotation acceleration model to generate DAI in pigs, Ap, Tau and NF are 

reported to co-localise to damaged axons throughout the white matter 3-10 days after 

trauma. A proportion of the pigs with DAI had diffuse Ap-containing plaque-like profiles 

in both the grey and white matter, and accumulations of Tau and NF rich inclusions in the 

neuronal perikarya. (Smith et al. 1999) TG mice expressing excessive levels of heavy 

chain neurofilament protein (NFH-LacZ mice) are more histologically and behaviourally 

vulnerable to TBI than wild type mice supporting the concept that neurofilament rich 

intraneuronal inclusions have deleterious effects on neuronal function. (Galvin et al. 2000) 

When the APP7 1 7 (PDAPP) TG mice, which overexpress APP ten fold, are subjected to
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Controlled Cortical Impact (CCI) both young (4 months of age) and older (2 years of age) 

APP7 1 7 TG mice undergo prominent loss of neurons, gliosis and atrophy near the site of 

CCI. When the cortex of young mice eight months after injury is compared to the 

contralateral unlesioned cortex, Ap deposition is reduced in the ipsilateral hippocampus 

and cingulate cortex and there is hippocampal atrophy. In contrast, hippocampal atrophy 

and reduced Ap deposits are not seen in hippocampus or cingulate cortex of sham-injured 

(PDAPP) APP7 1 7  TG mice or in any WT mice. The older mice too, four months after injury 

demonstrate marked regression in ipsilateral hippocampal Ap plaque burden compared to 

the contralateral hippocampus. This work supports the possibility that plaque resulting 

from progressive amyloidosis in AD brain may be reversible. (Nakagawa et al. 1999; 

Nakagawa et al. 2000) Furthermore, non injured PDAPP mice have impaired memory 

function compared to non injured wild-type littermates and brain-injured PDAPP mice had 

more profound memory dysfunction than brain-injured wild-type littermates. (Smith et al.

1998) When young PDAPP transgenic mice are immunized with Api_42> amyloid 

deposition is prevented; astrocytosis is dramatically reduced as is the Ap-induced 

inflammatory response. In addition, AP1.42 immunization appears to arrest the progression 

of amyloidosis in older PDAPP mice. Thus AP1.42 immunization (e.g. administered via a 

nasal spray) appears to increase clearance of amyloid plaques, and is a potential therapeutic 

or preventative strategy for AD. (Bard et al. 2000; Games et al. 2000; Janus et al. 2000; 

Schenk et al. 1999; Weiner et al. 2000) To date the clinical trial assessing the safety and 

efficacy of Api.42 immunization in patients with AD has halted due to adverse events 

underlining the requirement for increased understanding of Ap biology. If such a treatment 

strategy proves beneficial in AD then consideration could be given to extending the 

application to patients with TBI.

1.4CSF proteins and the response of the brain to injury

All of the currently available research tools used to investigate the in-vivo response of the 

human brain to injury have limitations, and these must be taken into account when 

interpreting findings from studies in acute brain injury. Imaging type investigations, such 

as XeCT, PET, MRI, SPECT and MRS, allow in vivo studies of metabolic processes and 

alterations in cerebral blood flow, but require substantial financial investment and are 

limited to single or a few time points after injury. These techniques have not yet been 

applied to large-scale studies of human brain injury. Techniques for continuous monitoring 

of physiological and biochemical parameters are available, but these are restricted to 

patients with severe brain injury, and for limited time intervals. Although multimodal
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monitoring and capture of physiological variables such as intracranial pressure (cerebral 

perfusion pressure), cerebral oxygen content and pH, and jugular bulb oxygen saturation 

(SjV0 2 ) enables trend analysis, it is often challenging to correlate these observations with 

clinical end points such as clinical outcome six months after injury. Microdialysis can be 

used to continuously monitor biochemical changes after brain injury such as glutamate, 

lactate, and aspartate but substantial variations are observed depending on the location of 

the microdialysis membrane in relation to the area of injured brain monitored. Uncertainty 

regarding the true location of the dialysis membrane in relation to the area targeted for 

monitoring compound these problems. Analysis of CSF is limited to patients who require 

CSF access for the purpose of treating acute hydrocephalus, or the monitoring of 

intraventricular pressure after acute brain injury. Analysis of the constituents of ventricular 

CSF at best facilitates a global reflection of upstream (parenchymal) events. In contrast to 

microdialysis CSF analysis allows larger molecules such as structural proteins to be 

assayed, and is a relatively cheap and simple technique. Through the analysis of CSF 

proteins in the first instance, CNS proteins have been identified and in some cases their 

release has correlated with injury severity and outcome. The identification of proteins in 

the CSF that act as surrogate markers of brain injury may in the future be extrapolated to 

studies in plasma and serum, which would be applicable to a wider spectrum of brain 

injured patients, including those with "mild” injury.

1.4.1 Cerebrospinal Fluid

Cerebrospinal Fluid (CSF) is essentially an ultrafiltrate of plasma. In normal CSF eighty 

percent of proteins are transudated from plasma and the remainder are synthesised by the 

brain. All known proteins pass from plasma into CSF, but do so in inverse proportion to 

their molecular size. In addition lipophilicity, hydration, and charge influence transfer to 

the CSF. The term "barrier" should not be taken literally to mean "impervious" as this is 

not in fact the case. There are six main "barriers":

• Blood-CSF barrier-choroid plexus accounts for sixty percent of CSF production.

• Blood-brain barrier-the remainder of the brain vasculature accounts for one third of
CSF production.

• Blood-dorsal root barrier-representing the vasculature within the dorsal root ganglion, 
which is more permeable than the rest of the brain vasculature.

• Meninges-(do not normally produce CSF)

• Wandering cells-normal CSF contains a cell ratio of two thirds lymphocytes (blood 
derived) and one third monocytes (blood derived and from microglia) (blood contains 
mainly granulocytes which are essentially absent from normal CSF).
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• Structural cells-neurons, astrocytes, oligodendrocytes, and microglia.

The adult CSF space is a volume of approximately 140 ml whilst CSF is produced at a rate 

of approximately 500ml per day, which equates to a four times a day turnover rate. Thus a 

sample of CSF will reflect brain protein concentration at that particular point in time. 

Serial sampling shows whether the protein concentration is changing, and over what time 

interval. Although proteins have been identified in the CSF, which have been described as 

"brain specific", none are exclusively brain specific. A small number however, have 

emerged which almost fit this definition and are under evaluation as research tools for the 

investigation of a variety of neurological disorders. Though none appear to be of sufficient 

specificity or sensitivity for the purposes of disease diagnosis, some have been correlated 

with injury severity and outcome, and may reflect cell-specific response to injury. 

Neuronal markers include "neuron specific enolase" (NSE or Protein 14-3-2), Protein 14-3- 

3 (y isoform the most brain specific), Tau (discussed below) and many others. 

Measurement of these proteins in CSF is limited by the availability of antibodies specific 

for the "brain specific" isoforms, availability of purified proteins, quality control, reagent 

cost, and physicochemical properties of the analyte (e.g. NSE is unstable). CSF protein 

markers for astrocytic cells include Glial Fibrillary Acidic Protein (GFAP), and S100B 

(discussed below), both of which are amenable to assay. CSF Ferritin measurement reflects 

microglial activity in response to brain injury. A CSF marker protein for Oligodendrocytes 

is myelin basic protein. (Thompson and Keir, 1990)

1.4.2 S100 protein

SI0 0  belongs to a family of low molecular weight acidic calcium binding proteins, which 

are found in much higher concentrations in the CNS then in any other tissues. (Donato, 

1991; Hidaka et al. 1983; Kindblom et al. 1984) S I00 proteins contain no carbohydrate, 

lipid, nucleic acid or phosphate and exist as homodimers or heterodimers of two subunits a  

and p, which have molecular weights of 10.5 and 10.4 KDa respectively. (Fano et al.

1995) These subunits contain hydrophobic regions in both the C and N termini and a Ca2+
• 94-binding site which when occupied by Ca causes conformational changes in the protein 

with the exposure of some aromatic amino acids, hydrophobic residues and two sulphydryl 

groups. (Baudier and Cole, 1988b; Heizmann and Hunziker, 1991) The subunits share 45% 

sequence homology, but have been shown by complement fixation and cross- 

immunofixation to be antigenically different. The subunits are the product of two separate 

genes, the locus of the a subunit beinglq2 1  and that for the p subunit being 2 1 q2 2 .2 - 

21q22.3. The classical S I00 proteins are S100B (pp), S-lOOao (aa) and S-lOOa (ap).
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S100B is found in Schwann cells and within the astrocytes (90% cytosolic, 10% membrane 

bound) where it reaches the concentration of lOpM. Approximately 90% of the total 

S100B pool is found within the brain, with the remainder being located in non-neuronal 

tissues such as the testes, melanocytes and T-lymphocytes. (Fano et al. 1995; Hidaka et al. 

1983; Kindblom et al. 1984) SlOOao is found in neuronal cells, particularly the 

hippocampal neurones, of the central nervous system in much lower concentrations than 

S100B. Outside the CNS, S-lOOao is found in high concentrations in cardiac and skeletal 

muscle, and within the kidneys. S-lOOa is found within astrocytes but not Schwann cells. 

(Kato and Kimura, 1985; Takashi et al. 1988) Thus it is the S-lOOp subunit which is 

regarded as a protein marker for the astrocytic cells of the CNS.

In-vitro studies suggest both intracellular and extracellular functions for S I00. Intracellular 

S100B appears to modulate the activity of target proteins through calcium-dependent 

interactions effecting cell-signalling systems, cell metabolism and cell structure. For 

example, in the presence of GTP, S100B can stimulate the activity of the cerebral cortex 

membrane adenylate cyclase system, and inhibits membrane bound phospholipase-C thus 

influencing membrane-induced transduction. (Fano et al. 1995; Zimmer et al. 1995) In- 

vitro, S100B binds fructose-1, 6-bisphosphate aldolase suggesting a role in the regulation 

of astrocytic energy production via the glycolytic pathway. (Zimmer and van, 1986) S100B 

may influence cell morphology through interactions with protein like Tau preventing 

phosphorylation, and GFAP preventing polymerisation. (Baudier and Cole, 1988a; Bianchi 

et al. 1993) Both interleukin-1 (IL-1) and cAMP are reported to stimulate astrocytic 

S100B expression. (Kahn et al. 1991) The extracellular effects of S100B are to stimulate 

astrocyte proliferation and hypertrophy, promote neuritic growth, increase neuronal 

survival, and elevate neurone and glial intracellular calcium concentrations. (Selinfreund et 

al. 1991; Whitaker-Azmitia et al. 1990) S100B has also been reported to cause apoptosis. 

(Fano et al. 1993) The effect of S100B on cell proliferation appears to be dose dependent 

with cells increasing in number at lower doses of S100B but when the concentration is 

increased the effect is reversed, resulting in cell death. S100B has been shown to stimulate 

inducible nitric oxide synthase (iNOS) in rat cortical astrocytes, and to cause the death of 

neurones co-cultured with astrocytes by the production of nitric oxide. (Hu et al. 1996; Hu 

et al. 1997)
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Raised concentrations of S100B have been reported to occur in the CSF of patients with a 

wide variety of neurological disorders including strokes, encephalitis, meningitis, 

Creutzfeld-Jakob disease, brain tumours, Guillain-Barre syndrome, epilepsy, Parkinson’s 

disease and dementia. (Jimi et al. 1992; Mokuno et al. 1983; Noppe et al. 1986; Otto et 

al. 1997; Persson et al. 1987; Sindic et al. 1982) Elevated concentrations of CSF S100B 

have been found in the acute phase of Multiple Sclerosis (MS) but only marginally 

increased concentrations in the non-acute phase of the disease. (Massaro et al. 1985; 

Michetti et al. 1980; Mokuno et al. 1983; Noppe et al. 1986; Sindic et al. 1982) The

raised concentration of S100B in the CSF may result from cell damage, or be due to an

active response from the brain to the injury. (Jongen et al. 1997; Mokuno et al. 1983).

Raised concentrations of S100B have been reported in the CSF of patients with large

cerebral infarcts, but not in smaller infarcts or transient ischaemic attacks. Thus, S100B has 

emerged as a surrogate marker for injury severity. In addition, the concentrations of S100B 

in the CSF within twenty-four hours of SAH has been correlated with clinical outcome 

assessed using the GOS. (Persson et al. 1987) The utility of measuring S100B in CSF is 

limited by the invasive means required to obtain samples. A number of studies report 

elevated S100B concentrations in plasma or serum after stroke, cardiac arrest, cardio­

pulmonary bypass, TBI and SAH, corroborating the findings in CSF. (Abraha et al. 1997; 

Blomquist et al. 1997; Buttner et al. 1997; Ingebrigtsen and Romner, 1996; Missler et al. 

1997; Rosen et al. 1998; Taggart et al. 1997; Waterloo et al. 1997; Westaby et al. 1996; 

Wiesmann et al. 1997) Thus plasma S100B measurement as a surrogate marker for acute 

brain injury is emerging as a useful research tool to be used as an adjunct to injury severity 

classification.

1.4.3 Tau protein

Tau protein is a microtubule-associated phosphoprotein found predominantly within the 

axons of CNS neurons, although a form of Tau, known as big Tau, has been found within 

the peripheral nervous system. Tau promotes the assembly and stabilisation of neuronal 

microtubules. Six isoforms are found in the CNS of healthy adults, which range from 352- 

441 amino acids in length, and differ from each other by the size of the N-terminal inserts, 

and the presence of three or four tandem repeat regions of 31-32 amino acids in the 

carboxyl terminal end. Studies with recombinant Tau have shown that it is in these repeat 

regions in the carboxyl terminal regions which are the microtubule binding domains and
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each contain a characteristic Pro-Gly-Gly-Gly motif. The Tau gene is located on 

chromosome 17q21 and contains 15 exons, 11 of which are used to encode the major Tau 

protein isoforms. (Goedert et al. 1991; Goedert et al. 1989; Hardy et al. 1998) The one or 

two phosphorylation sites on each isoform are serine or threonine residues followed by 

proline, suggesting that protein kinases with a specificity for seryl-proline and threonyl- 

proline residues are responsible for phosphorylation. Protein kinases such as mitogen- 

activated protein (MAP) kinase, glycogen synthase kinase-3 and proline-directed protein 

kinase have been shown to phosphorylate recombinant Tau on at least some of the residues 

seen in adult or foetal Tau. The phosphorylation status of a protein depends on a balance of 

phosphorylation and dephosphorylation and Tau phosphorylation by MAP kinase is only 

dephosphorylated by phosphatase 2A. (Goedert et al. 1992) The phosphorylation status of 

Tau affects its ability to bind to microtubules, such that, Tau phosphorylated by MAP 

kinase has one-tenth the ability of non-phosphorylated Tau, to bind to microtubules. 

(Drechsel et al. 1992) The relevance of these observations to neurodegeneration and 

cytoskeletal disintegration after acute injury is not currently known.

There are a number of degenerative diseases of the CNS, which are associated with the 

intracellular or extracellular inclusion bodies consisting of a hyperphosphorylated form of 

Tau protein. These include Alzheimer’s disease (AD), Pick’s disease (PiD), and 

progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Although 

methods are available for the determination of CSF Tau concentration, it is not possible to 

reliably differentiate between these conditions. As with S100B, CSF Tau is elevated by a 

wide range of neurological conditions. (Jensen et al. 1995; Vandermeeren et al. 1993; 

Vigo-Pelfrey et al. 1995) Thus the utility of measuring CSF Tau for the purpose of 

diagnosing dementia is limited. To date only one systematic study reports CSF Tau 

concentration after TBI, utilising an in-house ELISA to quantify axonal injury. (Zemlan et 

al. 1999)
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1.5 Study hypotheses

• Alterations in the concentration of apoE occur in the CSF reflecting the role of apoE in 
the response to CNS injury.

• Altered CSF apoE concentration after CNS injury is related to injury severity and 
clinical outcome.

• After CNS injury altered CSF apoE concentration is related to changes in CSF 
amyloid-beta concentration.

• Alterations in CSF lipoprotein particles occur reflecting the role of apoE in cholesterol 
recycling in response to CNS injury.
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This chapter describes the subjects investigated, and the methods used for CSF analysis. 

The subjects investigated comprise a control group of patients without acute brain injury, 

and an acute brain injury group. The acute brain injury group comprises patients with 

either TBI or SAH. The CSF of these patient groups was investigated in two ways. First, 

quantification of apoE, S100B, Tau, Ap, albumin, and total protein was undertaken on 

CSF. In addition, the time course of these alterations was investigated in a subgroup of 

patients for whom serial CSF samples were available. The relationship between the 

concentration of the proteins assayed and clinical measures of injury severity, and outcome 

were determined. Second, CSF lipoprotein particles were isolated and analysed from a 

subgroup of patients from the control and brain injury groups to determine whether 

differences observed in the concentration of apoE in nascent CSF were paralleled by 

changes in CSF lipoprotein particle composition.

2.1 Patients investigated

CSF from three categories of patients were investigated:

• Patients with no acute brain injury-the control group.

• Patients with TBI.

• Patients with SAH.

The control CSF samples were obtained from patients admitted to the Institute of 

Neurological Science (INS) in Glasgow (discussed later). SAH CSF for the analysis of 

lipoprotein particles by size exclusion chromatography (discussed later) was obtained from 

patients admitted to the INS in Glasgow. The remainder of the brain injury CSF analysis 

was performed on CSF from the Neurosurgical Unit at the University Hospital, Pittsburgh, 

Pennsylvania, USA.

An absolute requirement for participation in the study was the granting of informed 

consent by patients (or assent from next of kin of patients incapable of giving informed 

consent) participating in the study. The study had approval from the local hospital ethics 

committee.
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2.1.1 Ethics and Consent
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This study commenced immediately after the Medical Research Council (MRC) issued 

Interim Operational and Ethical guidelines for use o f human tissue and biological samples 

in research. (Medical Research Council, 1999) A summary of the issues to address when 

obtaining consent, as outlined in the MRC guidelines, is given in the appendix. The 

consent form was based upon that recommended by the MRC (see appendix for consent 

form and patient information sheet).

Consent was sought for:

• Collection, storage and analysis of residual CSF for apoE determination.

• Determination of APOE genotype using DNA isolated from CSF, or a buccal swab 
from the oral cavity.

• Collection, storage and analysis of residual CSF for other protein relevant to brain 
injury.

• Analysis of other genes of relevance to brain injury.

• Retrieval, analysis and storage of relevant personal (e.g. age, sex) and clinical (e.g. 
diagnosis) information.

• Publication, and presentation of anonymised data resulting from the study.

Patients were given assurances regarding confidentiality and restriction of access to data 

collected to members of the research team. Patients were given a written information sheet 

stating the goals of the research, the types of tests to be done, the diseases to be 

investigated, and how the results might affect their interests. In addition patients were 

informed that the study had local ethics committee approval. The patient information sheet 

was approved by the local ethics committee, and was adapted from that used in previous 

studies undertaken at the Southern General Hospital, University Department of 

Neurosurgery, investigating the association between APOE genotype and recovery after 

acute brain injury. In addition the study was approved by the consultant neurosurgeons and 

neurologists at the Institute of Neurological Sciences.

Informed consent was undertaken by face to face interview in the majority of patients. 

Where patients were incapable of giving informed consent, assent from the next of kin was 

obtained. Many patients were discharged from hospital before it was possible to obtain 

informed consent by face to face interview and these patients were contacted by post, and 

of those who were contactable the majority returned the signed consent form. These 

patients (and those consented by face to face interview) were encouraged to telephone or 

write if they had any questions or required more information. Consent to perform APOE
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genotype determination, and retain and analyse CSF in Pittsburgh was undertaken by the 

Pittsburgh research team. The study protocol had approval of their local ethics committee.

2.1.2 Selection and characteristics of controls

Sampling CSF requires the use of invasive techniques such as lumbar puncture, cistema 

magna puncture, or ventricular puncture. The risks associated with these invasive 

techniques limit the sampling of CSF to patients for whom the potential clinical benefits of 

the procedure outweigh the small, but definite risks. The risks of CSF sampling preclude 

the study of healthy, asymptomatic "normal" subjects. Control group CSF was selected 

according to the results of CSF analysis and clinical exclusion criteria. Thus a substantial 

number of consecutive CSF samples sent to the department of neuropathology for analysis 

were used to create a population from which a smaller control population was selected on 

the basis of "normal" CSF analysis (see below). In addition, from knowledge of the 

patients’ clinical diagnosis, it was possible to select patients according to clinical indication 

for CSF analysis, and estimate the effect of confirmed neurological disease upon the study 

parameter. This approach enabled identification of an age and sex matched control group 

of similar size to the acute brain injury groups.

2.1.2.1 CSF exclusion criteria for control group

The control group was selected by excluding patients with CSF indices as follows:

• Presence of xanthochromia.

• Nucleated cell count greater than five cells per cubic millilitre.
th• Albumin concentration outside the 95 centile of the population (CSF samples with no 

xanthochromia, and cell count less than 5 nucleated cells per mm3) mean (i.e.> 273 
mg/1).

tfi• Total protein concentration outside the 95 centile of the population mean (i.e.> 576 
mg/1).

• S100B greater than the 95th centile of the population mean (>0.39 ng/ml).

• Presence of Oligoclonal bands.

2.1.2.2 Control group clinical exclusion criteria

These included patients with clinical features consistent with SAH, TBI and, for "health 

and safety reasons", microbiological infection and transmissible spongiform 

encephalopathy (TSE). Patients investigated for demyelination or dementia formed a 

separate subgroup for comparison with the control group to estimate the impact of these
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disorders upon CSF parameters. Clinical information was obtained prospectively from the 

patients' clinical records, and from discharge summaries.

2.1.3 Patients with acute brain injury

The availability of CSF is limited due to the tendency to restrict ventriculostomy to 

patients with severe brain injury. It is argued that in this category of patients, the risk of 

ventriculostomy is outweighed by the benefits of CSF drainage for the treatment of raised 

intracranial pressure/or hydrocephalus. In the USA, intraventricular pressure monitoring is 

considered the gold standard and is recommended for patients with severe brain injury. 

(Brain Trauma Foundation, 1996) In the UK intracranial pressure monitoring is usually 

undertaken using intraparenchymal pressure sensors because ventricular cannulation is 

generally regarded as having an unacceptably high risk of brain injury secondary to 

cannulation and infection. The quantification of CSF proteins in CSF after SAH and TBI 

was therefore limited to CSF obtained by the neurosurgical unit in Pittsburgh, USA. CSF 

was available from all patients within three days of injury, and in a subgroup serial samples 

were available for as long as two weeks after injury. CSF lipoprotein particles were 

isolated and analysed from SAH and control CSF from patients at the INS, Southern 

General Hospital, in Glasgow. The studies of TBI CSF lipoprotein particles utilised CSF 

from the Neurosurgical unit in Pittsburgh, USA.

2.1.3.1 Characteristics of TBI patients

CSF samples were available from 27 TBI patients within three days of injury, and serial 

samples from 13 TBI patients for up to one week after injury. The characteristics of these 

patients are summarised in table 5. In addition to the demographic and clinical features of 

the TBI patients, radiological features were classified according to the CT findings at 

admission. The radiological features of the TBI patients are summarised in table 6 .

2.1.3.2 Characteristics of SAH patients

Serial CSF was available from 19 SAH patients for up to two weeks after haemorrhage. 

The clinical and radiological characteristics are summarised in table 7. Ruptured 

intracranial aneurysms were identified in 18 SAH patients (16 anterior circulation, 2 

posterior circulation), and one patient was unfit for investigation.
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Table 5 Characteristics of TBI patients

Characteristic Number of patients (%)

CSF within 

three days of TBI

Serial TBI CSF

Age (years)

Average 32 33

Median 25 37

range 16-65 16-65

Gender

Male 2 2  (81) 10(77)

Female 5(19) 3 (23)

Total 27 13

APOE genotype

s33 20 (74) 10(77)

s34 5(18) 1 (8 )

832 2(7) 2(15)

Best GCS

Average 5 6

Median 5 6

range 3-8 3-8

Mechanism of TBI*

RTA** 18(67) 8(62)

Fall 6 (2 2 ) 3(22)

Other 2(7) 1 (8 )

Assault 1(4) 1 (8 )

*TBI: Traumatic Brain Injury

**RTA: Road Traffic Accident 

GCS: Glasgow Coma Score
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Table 6 Radiological features of TBI patients

Marshall
Grade

Classification Number of patients

within 3 days serial

1 Diffuse injury 1 1

2 Diffuse injury

a) 1 only

b) > 2  unilateral

c) Bilateral

0 0

3 Diffuse injury + swelling 1 1

4 Diffuse injury + shift 1 1

5 Evacuated mass lesion

a) Extradural 3 2

b) Subdural 0 0

c) Intracerebral 2 0

d) > 2  lesions 5 3

6 Nonevacuated mass lesion

a) Extradural 1 0

b) Subdural 3 1

c) Intracerebral 3 2

d) > 2  lesions 7 2

CT: computerized tomography
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Table 7 Characteristics of SAH patients including radiological features

Characteristic N (%)

Age (years)

Average 56

Median 54

range 35-74

Gender

Male 6(32)

Female 13 (6 8 )

Total 19

APOE  genotype

s33 11 (58)

s34 7(37)

unknown 1(5)

Best GCS

Average 1 0

Median 1 0

range 3-15

Fisher CT Grade

1 0

2 1

3 9

4 9
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2.1.4 Assessment of clinical outcome after acute brain injury

Clinical outcome was assessed using the Glasgow Outcome Scale (GOS). Outcome was 

assessed six months after TBI injury and three months after SAH. Outcome assessments 

were determined by Dr Marion (blinded to the results of CSF analysis) at the outpatient 

clinic review at the Department of Neurosurgery in Pittsburgh.

2.2 Analysis of CSF proteins

2.2.1 CSF collection, storage and analysis

CSF was collected from the lateral ventricle in all acute brain injury patients, and the 

lumbar subarachnoid space for the majority of the controls. Ventricular CSF was obtained 

from ventricular catheters sited for the purposes of intraventricular pressure monitoring in 

patients with acute brain injury. CSF samples from patients with suspected hydrocephalus 

or shunt dysfunction, but no acute brain injury, were used as ventricular CSF controls for 

comparison with control CSF obtained by lumbar puncture, and as the control group for 

comparison with serial brain injury CSF samples. CSF obtained from the lumbar 

subarachnoid space was obtained by lumbar puncture for the purpose of assessing 

intrathecal pressure, treatment of communicating hydrocephalus or benign intracranial 

hypertension, or for analysis of CSF for investigation of suspected neurological disease.

CSF was collected in Polypropylene tubes and centrifuged at approximately 450g at 4° C 

for 1 0  minutes to eliminate cells and debris and was aliquoted prior to freezing and storage 

at -80° C until subsequent analysis. CSF from brain injury patients and controls was 

processed and stored identically for simultaneous analysis at a later date. Analysis of CSF 

from controls and acute brain injury patients was performed simultaneously with cases and 

controls on each analysis plate. It was not possible to blind the observer to sample type due 

to the difference in macroscopic appearance of CSF from controls and patients with acute 

brain injury. CSF samples underwent one freeze-thaw cycle prior to analysis, and 5 pi of 

protease inhibitor cocktail (Product number P 2714, SIGMA, Missouri, USA) was added at 

a final concentration of ImM.
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2.2.2 Determination of CSF apoE concentration
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A method for assaying apoE of sufficient sensitivity for the concentration range present in 

CSF was not readily available and was therefore developed for the purpose of this study. 

The technique used was Enzyme Linked Immunosorbant assay (ELISA) based upon the 

method described by Stark and Siest. (Starck et al. 2000) The results of the assay 

evaluation for the purposes of this study are described in detail in the chapter 3. The 

principal of the assay involves binding a capture antibody to the surface of a microtitre 

plate, which specifically captures apoE from the CSF. This antibody-apoE complex is then 

bound by a second (detection) antibody, to which a third antibody is targeted. The third 

antibody is conjugated to horseradish peroxidase (HRP) which catalyses the peroxidation 

of a substrate to a coloured product detectable spectrophotometrically.

2.2.2.1 CSF ELISA method

In brief, the capture antibody for the apoE assay was rabbit polyclonal anti-human apoE 

antibody (Dako, Ely, UK), diluted in 0.02 M Citrate buffer. The coated plate was washed 

with Phosphate Buffered Saline (PBS) and non-specific binding sites were blocked with 

2% bovine serum albumin (BSA). The blocked plate was washed with PBS/Tween, prior 

to incubation at 37°C with diluted CSF samples and the apoE standard curve (1.5-100 

ng/ml) in duplicate. After further washing with PBS/Tween, goat anti-human apoE 

antibody (Chemicon, Harrow, UK) was used as detection antibody, followed by HRP 

conjugated rabbit anti-goat IgG as the secondary antibody for the colour reaction. A 

detailed description of the apoE ELISA is given in the appendix. There was parallelism 

between the apoE calibration curve and serial dilutions of control CSF, brain injury CSF, 

brain homogenate and mixtures of CSF and plasma or lysed red blood cells. The range of 

assay recovery was 92-98%. The intra-assay and inter-assay coefficients of variation were 

7.4% and 8 . 6  % respectively. These data are presented in chapter 3.

2.2.3 S100B ELISA

The S100B ELISA used was a previously established, and extensively evaluated, in house 

assay for the determination of S100B in CSF. (Green et al. 1997) In brief, 96 well micro­

titre plates were coated with 200pl of 0.05M carbonate buffer containing monoclonal anti- 

S100B (Affinity Research Products, Exeter, UK). The plates were washed with 0.67 M 

Barbitone buffer containing 5mM Calcium Lactate, 0.1% BSA, and 0.05% Tween, and 

then blocked with 2% BSA and washed again. CSF samples diluted in 0.67 M Barbitone
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buffer containing 5 mM Calcium Lactate were added in duplicate. After incubation and 

washing, HRP conjugated polyclonal anti S100B (Dako, Copenhagen, Denmark) was used 

as detecting antibody. The cr-phenylenediamine (OPD) colour reaction was stopped with 

1M hydrochloric acid and the absorbance read at 492 nm and 405 nm. The antigen 

concentration was calculated from an internal standard curve ranging from 0.01 to 2.5 

ng/ml. The intra and inter-assay coefficient of variation for the S100B assay was 9.3% and 

8.1% respectively. The recovery of S100B added to CSF was 94%.

2.2.4 Tau ELISA

CSF Tau measurements were performed using the Innotest hTau Antigen, and enzyme- 

linked immunoassay supplied by Innogenetics, Belgium (UK suppliers: Autogen Bioclear, 

Wiltshire, UK). This assay uses a monoclonal capture antibody (AT 120) which reacts with 

both the normal and the hyperphosphorylated forms of Tau. (Vandermeeren et al. 1993) 

The microtitre plates are supplied pre-coated with this monoclonal antibody, and after 

blocking of the unbound protein sites on the microtitre plate wells, standards and CSF 

samples were added in duplicate. Tau calibrants were prepared from recombinant Tau 

protein and a series of calibrants 0, 75, 150, 300, 600 and 1200 pg/ml were used for the 

standard curve. A pair of biotinylated monoclonal antibodies (HT7 and BT2) were added 

to each well of the microtitre plate and the plate incubated over night at room temperature. 

The HT7 monoclonal antibody reacts with both normal and phosphorylated Tau protein, 

whilst the BT2 monoclonal antibody reacts preferentially with the hyperphosphorylated 

Tau protein. (Goedert et al. 1994) After overnight incubation the microtitre plate was 

washed and peroxidase conjugated streptavidin added. The streptavidin binds to the biotin 

on the monoclonal antibodies to form a complex, the quantity of which is proportional to 

the amount of Tau protein in the standard or CSF sample. The microtitre plate was washed 

and the substrate containing 3', 3', 5', 5' tetramethylbenzidine (TMB) and hydrogen 

peroxide added. The peroxidase activity converts the colourless TMB into an insoluble 

blue precipitate. The peroxidase activity was stopped by the addition of sulphuric acid, 

converting the insoluble blue precipitate to a soluble yellow product. The absorbance of the 

yellow product was measured at 450 nm being proportional to the amount of Tau protein 

originally present in the sample. The manufacturer claims the lower limit of detection to be 

59 pg/1. The intra and inter assay coefficient of variation are both reported to be below 6 %, 

and the recovery of Tau added to plasma is reported to be 92%. Detailed evaluation of this 

commercial ELISA was beyond the scope of this study.



A D Kay 2003

2.2.5 Amyloid ELISA
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Ap 1-40 and Ap 1-42 peptides were also assayed using commercially available ELISA kits 

(BioSource International, Inc. California, USA) according to manufacturers instructions. 

The kits were identical for each peptide other than the antibody specificity. In brief, 100 pi 

of Ap standard (0-1000 pg/ml) and CSF samples were aliquotted in duplicate into the wells 

of the 96 well microtitre plate. Control and brain injury CSF samples were distributed 

within the same plate. The wells, which were pre-coated with capture antibody specific for 

Ap 1 -4 0  (or Ap 1 . 4 2 ) ,  were incubated for two hours, at room temperature, on a plate shaker. 

After washing, rabbit anti human Ap detection antibody was added to each well and 

allowed to incubate for a further two hours. After this incubation and further washing, HRP 

conjugated anti-rabbit antibody was added and incubated for a further 2 hours. After 

further washing steps, chromogen (OPD) was added, and after 30 mins (in the dark) the 

reaction was stopped with acid, and the absorbance read at 450 nm. The coefficient of 

variation for intra-assay precision is claimed by the manufacturer to be 3.6%, and inter­

assay precision 3.7%. The recovery of Ap added to serum is reported to be approximately 

100%. Again detailed evaluation of these commercial ELISAs was beyond the scope of 

this study.

2.2.6 CSF total protein concentration

The concentration of protein in the CSF was determined using a turbidimetric assay in 

which protein precipitation was achieved using benzethonium chloride, EDTA, and NaOH. 

(Luxton et al. 1989) To a volume of 10 pi of CSF was added 190 pi of precipitating 

reagent (5.0 g of benzethonium chloride, 20 g of EDTA, and 10 g of NaOH per litre). The 

plate was left at room temperature for 15 minutes before the absorbance of each well was 

measured at 410 nm (Dynatech MR700 microtitre plate reader) after blanking the 

instrument with precipitating reagent. The amount of precipitated protein (e.g. albumin and 

globulin) is proportional to the concentration of protein present in the CSF, and results in 

proportionate absorbance to light. The method is rapid, requires only 10 pi of CSF, and can 

be performed in a microtitre plate with between batch coefficient of < 5%. The protein 

calibration standards used were prepared by dissolving 150mg of human albumin (Sigma, 

Poole, UK) and 50 mg of human gamma globulin (Sigma, Poole, UK) in 100ml of isotonic 

saline (NaCl 0.85 g/1) containing 10 g of sodium azide per litre to give a stock 2000 mg/1 

standard for total protein. From this solution serial dilution was performed to create a set of 

working standards in the 50 to 1500 mg/1 concentration range.
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2.2.7 CSF Albumin rocket electrophoresis
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CSF albumin concentrations were determined using rocket electrophoresis as detailed in 

the appendix. In brief, CSF and an albumin standard curve are loaded onto an agarose gel 

containing polyclonal anti-human albumin antibody and electrophoresed overnight, 

washed and stained for protein with brilliant Coomassie blue. The distance (measured in 

mm) migrated from the well is proportional to the albumin concentration and values 

derived from the albumin standard curve electrophoresed in parallel to the CSF samples.

2.3 Detection of CSF apoE by SDS-PAGE and Western blotting

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) was performed on control and acute 

brain injury CSF samples in order to:

• Identify the presence of small molecular weight apoE epitopes/fragments, which might 
conceivably arise from proteolysis.

• Estimate the influence of apoE denaturation (SDS and thermal energy) upon 
immunoreactivity (i.e. evidence for epitope masking).

• Obtain an approximate corroboration of the CSF concentration obtained by the ELISA 
method, and the semi-quantitative SDS-PAGE method.

2.3.1 SDS-Polyacrylamide gel electrophoresis

SDS-PAGE separates proteins according to their molecular weight, independent of 

intrinsic electrical charge. Prior to electrophoresis the CSF sample is diluted with a buffer 

containing sodium dodecyl sulphate (SDS), and a reducing agent, and the mixture is heated 

to 100°C. The reducing agent breaks inter and intra subunit disulphide bonds, and the SDS 

(an anionic detergent) denatures the protein by wrapping around the polypeptide backbone. 

As a result the proteins in the sample become rods of negative charge with equal charge 

per unit length. Acrylamide is used for preparing electrophoretic gels for separating 

proteins by size. A mixture of acrylamide and bis-acrylamide polymerises to form a cross- 

linked network with a pore size that is dependent on the concentration of acrylamide used. 

The higher the concentration of acrylamide, the smaller the pore size. The migration of the 

protein in the gel is thus a function of its size and the intensity of the band when visualised 

gives a semi-quantitative estimate of the amount of protein present in the CSF sample. The 

gel used for this investigation was a 10% running gel, and 4% stacking gel assembled 

according to manufacturers instructions (Amersham Pharmacia Biotech, Herts, UK).
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2.3.1.1 Sample preparation
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Seven CSF samples with known apoE concentration (determined by ELISA) were run on 

the gel. Three were control CSF samples: one with high apoE concentration (ventricular 

CSF), one with intermediate apoE concentration, and one with low apoE concentration. 

Four TBI samples were run: two with low apoE concentration and two with intermediate 

apoE concentration. For each CSF sample 60pL was diluted with an equal volume of 

sample diluent (0.125 M Tris-Cl, 4% SDS, 20% v/v glycerol, 0.2 M dithiothreitol, 0.02% 

bromophenol blue, pH 6 .8 ) and placed in a boiling water bath for 4 minutes.

2.3.1.2 Running the SDS-PAGE gel

The comb was carefully removed from the stacking gel and the wells were rinsed with 

electrophoresis buffer (0.025 M Tris, 0.192 M glycine, 0.1 % SDS, pH 8.3). After fitting 

the gaskets to the upper tank chamber it was placed onto the gel and secured using the 

cams supplied. The lower tank chamber was filled with 3 L of electrophoresis buffer and 

the gel plus upper chamber were lowered into the lower tank chamber, being careful to 

avoid trapping any bubbles at the bottom of the gel. The upper chamber was filled with 

electrophoresis buffer, making sure that there was no leakage of buffer into the lower 

chamber. To each well 100 pL of diluted CSF was added and molecular weight markers 

were included on each run. The gel was run at 250 V, 50mA for 3 hours using an EPS 200 

power supply (Amersham Pharmacia Biotech, Herts, UK).

2.3.2 Western blotting

"Western blotting" or electroblotting refers to the process of transferring the separated 

proteins from the gel onto a nitrocellulose matrix to which they bind and become 

immobilised. It is necessary to transfer the proteins to the nitrocellulose matrix from the 

gel matrix because the gel matrix restricts access to the detecting antibody. In addition to 

the accessibility of protein immobilised on the nitrocellulose matrix to the detecting 

antibody, nitrocellulose is less fragile.
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2.3.3 Gel to nitrocellulose protein transfer step
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At the end of the electrophoresis, the gel was removed from the electrophoresis system and 

the lane containing the molecular weight markers were removed and placed in Coomassie 

Brilliant Blue stain for 1 hour and destained using deionised water. The remaining gel was 

placed into a pre-chilled transfer buffer for 30 minutes. Two pieces of filter paper and a 

piece of nitrocellulose were cut to the same dimensions of the gel and placed into the 

transfer buffer, along with two fibre pads supplied with the Trans-blot® Electrophoretic 

Transfer cell (Bio-Rad, Herts, UK). After 30 minutes one fibre pad was placed onto the 

plastic gel holder and onto this was placed a piece of wet filter paper ensuring that there 

were no trapped air bubbles. The gel was removed and placed on top of the filter paper. A 

piece of pre-wetted nitrocellulose was placed on top of the gel, being careful not to trap 

any bubbles. The remaining filter paper and fibre pad were placed on top of the gel, all 

bubbles removed and the gel holder closed. The transfer cell was filled with pre-chilled 

transfer buffer (0.025 M Tris, 0.192 M glycine, 0.1 % SDS, pH 8.3, containing 20% 

methanol) and the cooling coil was placed inside the cell and attached to a free flowing 

water system. The gel holder was placed into the Trans-blot® Electrophoretic Transfer cell 

with the gel facing the cathode. The transfer of proteins was carried out using a constant 

currant of 400 mA and a starting voltage of 50 V for 16 hours.

2.3.4 ApoE immunoblotting technique

After transferring the apoE onto nitrocellulose, empty protein binding sites were blocked 

by incubating the membrane in 2% non-fat milk in PBS for 30 minutes at room 

temperature. The nitrocellulose membrane was rinsed with running water and then washed 

with PBS containing 0.05% Tween 20 (wash solution), and placed in 50 mL PBS/milk 

containing rabbit anti-human apoE. After incubating the nitrocellulose membrane 

overnight at 4°C, the membrane was rinsed with running water and washed and then 

placed into 50 mL PBS/milk containing swine anti-rabbit immunoglobulin HRP conjugate. 

After incubating the nitrocellulose membrane for 1 hour at room temperature, the 

membrane was rinsed with running water and washed with several changes of wash 

solution over 1 hour. The membrane was developed with aminocarbazole colour regent for 

20-30 minutes at room temperature, then rinsed under running water and then washed for 

30 minutes before being dried.
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2.4 Isolation and analysis of CSF lipoprotein particles
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In addition to the quantification of apoE of controls and patients with SAH or TBI, CSF 

lipoprotein particles were isolated from the CSF, and their composition analysed. Because 

the concentration of these particles in the CSF is low, a substantial volume (excess of 20 

ml) of CSF is required. The volume of residual CSF obtained from control and TBI 

patients is relatively low (e.g. 1 ml), therefore it was necessary to pool CSF from at least 

twenty patients. The approach of pooling CSF to generate the volume required for the 

isolation of CSF lipoprotein particles has been used by others for the same reasons. 

(Demeester et al. 2000; Koch et al. 2001) Obtaining sufficient volumes of CSF from 

patients with SAH is less problematic as a daily drainage volume of approximately 200 ml 

of CSF is not unusual.

2.4.1 CSF size exclusion chromatography

Twenty millilitres of CSF was concentrated 50 times by filtration through Centricon YM- 

10 concentration filters (Amicon, Beverly, MA, USA). These filters have a pore size 10 

KDa (Molecular weight of apoE protein is 34.2 KDa) and a recovery of 99.9%. The 

concentrated CSF was fractionated by size exclusion chromatography as follows. The 

concentrated CSF (500 pi) was loaded onto a Superdex 200 size exclusion chromatography 

column (sepharose 6 HR 10/30) and eluted with elution buffer (lOmM Tris, 150mM NaCl, 

0.01% EDTA, ImM NaN3) at a flow rate of 0.25ml/min, and flow pressure of 0.5 Mpa. 

Fractions of 250 pi were collected and assayed for a free cholesterol (FC), phospholipid 

(PL), triglyceride (TG), apoE, and apoAI as follows. Lipid and lipoprotein concentrations 

were determined from the elution profile by calculating the area under the curve (AUC). 

Molar concentrations and ratios were calculated from the molecular weight (KDa) of apoE 

(34.2), apoAI (30.7), apoB (549), FC (38.6), and PL (77.4). The control CSF pools had no 

detectable apoB confirming the absence of plasma contamination.

2.4.2 Free cholesterol assay

Free cholesterol was determined colorimetrically using a commercially available kit (Wako 

Chemicals, Japan) according to manufacturer's, instructions. In this assay free cholesterol 

is oxidised by cholesterol oxidase to 4-cholestenone generating hydrogen peroxide. The 

hydrogen peroxide formed, in the presence of peroxidase, oxidises phenol and 4 - 

aminoantipyrine resulting in a red colour product. The amount of free cholesterol in the 

test sample is determined by measuring the absorbance of the red colour at the maximum
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absorption wavelength of 505 nm on a Hitachi 704-auto analyser. The coefficient of 

variation for the assay was 1.9%.

2.4.3 Phospholipid assay

Phospholipid was determined colorimetrically using a commercially available kit (Roche 

Diagnostics GmbH, Germany) again using the hydrogen peroxidase reaction, measuring 

the absorbance of the coloured product at 505 nm on Hitachi 704-auto analyser. The 

coefficient of variation for the assay was 1.5%.

2.4.4 Triglyceride assay

Triglyceride was also assayed using the Hitachi 704 auto-analyser using a commercial 

Triglyceride kit (Roche Diagnostics GmbH, Germany). In this case Lipoprotein lipase 

hydrolyses triglyceride to glycerol, which is oxidised to dihydroxyacetone phosphate and 

hydrogen peroxide which is measured as above. The coefficient of variation for the assay 

was 2 .1%.

2.4.5 Apolipoprotein turbidimetric immunoassay

Commercially available turbidimetric immunoassay kits are commonly used in clinical 

laboratories for the determination of plasma apoE, apoB, apoAI, apoAII, apoCI, apoCII 

and apoCIII. The concentration of these proteins in native CSF is generally below the limit 

of detection of this method. However, the method can be used to assay the concentration of 

these proteins in concentrated CSF fractionated by size exclusion chromatography. The 

principle of the assay is identical for all the proteins analysed. The concentrated CSF 

fraction is mixed with the buffer and a solution containing antibody to the lipoproteins. 

The apolipoprotein in the sample then combines with anti-human antibody specific for that 

apolipoprotein in the reagent to yield an insoluble aggregate, which causes an increase in 

the turbidity of the sample. The degree of turbidity is measured optically and is 

proportional to the amount of analyte in the sample. These kits are compatible with the 

Hitachi 704 auto-analyser. The linear range of detection for apoE, apoAI and apoB were 0- 

12 mg/dl, 0-70 mg/dl and 25-200 mg/dl respectively.
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2.5 APOE  genotyping
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APOE genotyping was performed, blind to the CSF concentration, using a hot start 

polymerase chain reaction (PCR) method. DNA was extracted from the buffy coat layer of 

haemolysed blood, or CSF, by ethanol extraction. Residual ethanol wash was removed by 

vacuum desiccation for 15 minutes, or overnight evaporation. To each sample was added 

50 j l l 1 of proteinase K (800 pg/ml), 20 pi of 10X PCR buffer, and 130 pi of Analar water. 

The solutions were overlaid with 100 pi of mineral oil and incubated at 37°C overnight. 

The samples were then heated to 95 °C for 10 minutes to inactivate the proteinase K, and

2.5 pi of the resulting solution was used as a target for PCR with the APOE primers. 

(Wenham et al. 1991) The reactions took place in a total volume of 50pl comprising 35pl 

of master mix A (see below), which was separated initially by a wax barrier to allow a "hot 

start", from 12.5pi of master mix B (see below) and 2.5pi of target. Master mix A 

contained the following reagents, in volumes multiplied by the number of samples to be 

amplified: 19.5 pi Analar water; 3.5 pi 10X PCR buffer; 5 pi dNTP solution containing 2 

mM dTTP; 5 pi dimethyl sulfoxide; and lpl of each primer to give final concentrations in 

the reaction of 0.2 pM. Thirty-five microlitres of Master mix A were aliquoted to each 

500-pl reaction tube. An Ampliwax gem (Perkin Elmer Cetus) was added to each tube, 

heated to 75-80°C for 5-10 minutes to melt the gem, and cooled to allow it to resolidify. 

Master mix B contained the following reagents, in volumes multiplied by the number of 

samples to be amplified: 10.75 pi of Analar water, 1.5pl 10X PCR buffer, and 0.25 pi Taq 

polymerase; 12.5pi of Master mix B was added to each reaction tube overlying the 

Ampliwax gem followed by 2.5 pi of target, prepared as described above. The samples 

were heated to 95°C for 7 minutes, followed by 40 cycles of 95°C for 1 minute, 65°C for 1 

minute and 70°C for 2 minutes. Ten units Hhal was added directly to the PCR product and 

incubated overnight at 37°C. The products of the digestion were separated on a 10% 

polyacrylamide gel, stained with ethidium bromide and visualised by ultraviolet-induced 

fluorescence. (Nicoll et al. 1997)

2.6 Data collection, storage and protection

2.6.1 Clinical data

Clinical (and demographic) data was collected prospectively from clinical case notes and 

entered onto a paper proforma. Patients were assigned an anonymous study identity
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number, and this was entered, with the clinical data of relevance to the study, to an 

ACCESS database minus the patients name, address, and hospital number, which were 

stored separately. The study identity number was used to link the clinical data to the 

relevant CSF sample. This data was stored on a network-protected system, and access to 

the database was password protected.

2.6.2 CSF analysis data

Data from analysis of CSF was recorded in paper copy form as raw data, which was 

imported manually to an EXCEL database for analysis of mathematically derived values

from standard curves etc. The CSF samples were labelled with the identity number only.

This data was also stored on a network, and password, protected system.

2.7 Statistical Analysis

2.7.1 Statistical software

Statistical analysis was performed using Microsoft Excel, GraphPad Prism and InStat 

software.

2.7.2 Types of data analysed

2.7.2.1 Categorical data

• Male/female

• TBI, SAH, control

• Glasgow Coma Score (ordered categorical)

• WFNS grade (ordered categorical)

• Glasgow Outcome Score (ordered categorical)

• Marshall/Fisher CT grade (ordered categorical)

• APOE genotype (nominal)

2.7.2.2 Numerical

• Number of patients (discrete)

• Age (continuous)

• Cell count, albumin, total protein, apoE, S100B, Tau, Ap etc.
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Ratios and percentages are used to describe relative frequency. Examples include:

• ApoE to albumin ratio, apoE to total protein ratio

• Molar ratios of lipoprotein particle constituents

2.7.3 Data description

2.7.3.1 Measures of central tendency

• Arithmetic mean (average) e.g. CSF apoE concentration (pg/1)

• Median e.g. CSF concentration (pg/1)

2.7.3.2 Description of variability

Variability was described by plotting the continuous data using relative frequency

histograms. The approximation of the data distribution to a Gaussian distributed was

estimated using Dallal and Wilkinson's approximation to Lilliefors' method (mindful of 

the limitations of this test when the sample size is small). Log transformation of positively 

skewed data was performed to approximate normality where necessary.

2.7.3.3 Quantification of variability

• Range e.g. GCS, GOS, and age.

• Centiles-95th centile.

• Standard deviation (SD).

• Coefficient of variation (standard deviation divided by the mean and expressed as a 
percentage). This was used to describe the precision of the assays.

• 95% confidence intervals.

2.7.4 Comparing groups of data

The analysis performed depended upon the data type, the distribution, and the variance.

2.7.4.1 Comparing group parameters to parameters of one sample

The one sample t-test was used to compare concentrations derived from the area under the 

curve of a variable from one pool of TBI patients (comprising 27 patients) with that of 

several (6 ) pools of control patients (comprising 2 0  patients in each control pool).
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If the data was normally distributed or could be normalised, t-tests (with Welch's 

correction if the variance of the two groups was significantly different) were used to 

compare group means. If the data did not pass the normality test and/or log transformation 

failed to normalise the data, or the sample size was small and appeared not to have a 

Gaussian shaped frequency distribution histogram, or the group variances were 

significantly different, the Mann-Whitney test was used. For example, comparing the 

median ventricular CSF apoE with lumbar CSF apoE.

2.7.4.3 Comparing three (or more) groups of continuous data

Normally distributed data was analysed using parametric ANOVA with Tukeys multi­

comparison test. However, non-parametric analysis was performed for all the data for 

consistency of approach, as some data sets did not satisfy the criterion for parametric 

analysis. Data groups, which did not pass the normality test or where the difference 

between group variances was significant, were compared using the Kruskall-Wallis test, 

with Dunn's multi-comparison test to compare group medians.

2.7.4.4 Comparing groups of categorical data

Fisher's exact test was used to compare the proportions within columns and rows of 

frequency tables. For example, APOE genotype and GOS (dichotomised into favourable 

and unfavourable) after SAH. In addition, continuous data was assigned to a category 

according to an arbitrarily selected threshold and analysed as categorical data according to 

the proportion of values above or below the threshold. For example, the proportion of TBI 

patients with CSF apoE concentration below the lowest value observed in controls. Where 

all brain injury CSF values were above the highest control value, the daily mean CSF Tau 

concentration after TBI (or SAH) was determined, and patients were categorised according 

to whether the value recorded on that day was above or below the mean value for all TBI 

patients that day. The proportion of patients above or below the daily mean was then 

compared with the proportion of patients with favourable or unfavourable outcome (or 

injury severity) using Fisher's exact test.
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The association between two variables was analysed using Spearmans' rank correlation 

(Spearman rank correlation coefficient). The results are summarised in the form of a 

correlation matrix, and the data plotted using scatter diagrams.



78

3 Results

This chapter comprises four sections. The first section presents the results from the 

evaluation of the ELISA used to assay apoE in the CSF. The second section presents the 

results of the analysis of CSF from different categories of control patients. The third 

section presents the results of the analysis of apoE and other proteins in CSF from TBI, 

SAH patients, and selected controls. The final section presents the results from the 

isolation and analysis of CSF lipoprotein particles in control, SAH and TBI CSF.

3.1 Apolipoprotein E ELISA evaluation

3.1.1 Calibration of the apoE ELISA

Recombinant human apoE3 (Panvera, U.S.A.) was serially diluted in the dilution buffer to 

give concentrations of 100, 50, 25, 12.5, 6.2, and 3.1 pg/1. Aliquots of these were stored at 

-20° C. Each batch of standards was calibrated by analysing the new batch in parallel with 

the old batch on at least 20 separate occasions. One way analysis of variance demonstrated 

that there was no statistically significant difference between consecutive calibration curves. 

See figure 2, panel A. There was no significant difference between calibration curves using 

recombinant apoE3, apoE4 or apoE2.

3.1.2 The lower limit of detection of the apoE ELISA

The lower limit of detection was calculated from the mean plus three standard deviations 

of 40 separate consecutive replicate analysis of apoE free sample (incubation buffer). The 

lower limit of detection was 2.9 pg/1. See figure 2, panel B.

3.1.3 The linearity of the apoE ELISA and the presence of parallelism

CSF was serially diluted with dilution buffer and the apoE concentration of the diluted 

CSF was determined confirming the presence of linearity. Parallelism was investigated by 

assaying doubling dilutions of control, TBI, SAH CSF and the apoE3 calibration standard. 

The resulting optical densities were normalised by expressing the absorbance obtained for 

each dilution as a percentage of that given by the highest value for that series. Analysis of 

covariance confirms that the slopes are not different and are therefore parallel. In addition 

serial dilution of CSF mixed with plasma, or lysed red cells, demonstrated parallelism with
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the calibration curve. Thus there are no systematic differences in the ability of the assay to 

detect apoE in a variety of matrices over a range of concentrations.

3.1.4 Within and between batch precision of the apoE ELISA

One hundred control CSF samples were pooled and diluted (1 in 250) such that the 

absorbance from the apoE assay was in the upper region of the linear portion of the 

standard curve. This diluted pool was then aliquotted and frozen simultaneously with the 

calibration curve aliquots, under identical storage conditions. These aliquots represent the 

high CSF quality control (high CSF QC). One hundred patient plasma samples were 

pooled and diluted (1 in 2500) such that the absorbance from the apoE assay was in the 

upper region of the linear portion of the standard curve. This diluted pool was then 

aliquotted and frozen simultaneously with the calibration curve, and CSF QC aliquots, 

under identical storage conditions. These aliquots represent the high plasma quality control 

(high plasma QC). The within batch precision (intra-assay coefficient of variation = CV%) 

was calculated from the mean and standard deviation of 40 replicate analysis of the CSF 

and plasma QC performed on one micro-titre plate. The intra-assay variation for the CSF 

and plasma QCs were 8.5% and 7.3% respectively. The scatter plot of the apoE 

concentration of the QCs versus position of the QC on the ELISA plate illustrates the low 

variability within the plate. See figure 3. Statistical analysis of the regression line 

confirmed that the slope of the line was not significantly different from zero. In addition, 

the variation in apoE concentration attributable to the position of the sample on the ELISA 

plate is estimated to be less than 10% (CSF and plasma QC: R2 = 0.08).

The between batch precision was calculated from 20 replicate analyses of the plasma and 

CSF QCs performed on consecutive microtitre plates. See figure 3. The between batch 

precision (inter-assay variation) for the CSF and plasma QC were 9.6% and 9.4% 

respectively. The regression line for serial apoE measurements is not significantly different 

from zero, and estimates that less than 5 % of the variation in apoE concentration is 

attributable to plate order (CSF and plasma QC: R = 0.004). Furthermore, there was no 

statistically significant reduction in the apoE signal of the QCs with time, indicating that 

the apoE was stable in CSF and plasma under the conditions of storage (-20°C) used for 

the period of storage (6 months).
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Figure 2 ApoE ELISA precision and linearity
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Figure 2A: Precision of the apoE ELISA from the mean (SD) normalised absorbance ratio 

relative to the highest standard of 20 consecutive calibration curves. There was no 

significant difference between the slope of each calibration curve (ANOVA).

Figure 2B: Linearity of the assay for the measurement of CSF apoE over a range of 

dilutions.

Figure 2C: There is linearity of the control CSF dilution curve, which is parallel with that 

of the calibration curve, and that of brain injury CSF.
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Figure 2A : ApoE ELISA callibration curve
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Figure 3 ApoE ELISA intra and inter-assay variation
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Figure 3A: Scatter diagram of CSF quality control (QC) determinations within one ELISA 

plate.

Figure 3B: Scatter diagram of plasma quality control (QC) determinations within one 

ELISA plate The intra-assay coefficient of variation (CV% = SD/mean * 100) of the CSF 

and plasma QC were 8.5 % and 7.3 % respectively.

Figure 3C: Scatter diagram of CSF QC determinations from 20 consecutive ELISA plates.

Figure 3D: Scatter diagram of plasma QC determinations from 20 consecutive ELISA 

plates. The inter-assay coefficient of variation (CV% = SD/mean * 100) of the CSF and 

plasma QC were 9.6 % and 9.4 % respectively. From linear regression analysis there was 

no significant variation between each microtitre plate.
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Figure 4 Recovery of apoE added to CSF and absence of albumin interference

Figure 4A: The column bar graph demonstrates that apoE added to CSF and brain 

homogenate can be efficiently detected, and is not significantly different between the 

mixtures to which the apoE spike is added.

Figure 4B: There was no significant decrease in the apoE signal in the presence of 

increasing albumin concentration.
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Figure 4A : Recovery of apoE added to  CSF and brain homogenate
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3.1.5 The recovery of apoE added to CSF and white matter homogenate

The ability of the apoE ELISA to measure apoE added to TBI, SAH, and control CSF was 

tested by analysing CSF to which a known amount of apoE had been added. In addition the 

recovery of apoE added to human cerebral white matter homogenate, obtained post 

mortem, was determined (see appendix). Both the spiked and unspiked samples were 

analysed and the difference in apoE concentration calculated as a percentage of that added 

to the spiked sample. An equal volume of the apoE top standard (100pg/l) was added to 

equal volumes of TBI (n=3), SAH (n=3), control (n=6 ) CSF, and white matter homogenate 

(n=3). The mean recovery (SD) in TBI CSF was 98% (10%), in SAH CSF was 97% (7%), 

in control CSF was 95% (10%), and white matter 97% (16%). The difference between 

mean values is not statistically significant. See figure 4.

3.1.6 The specificity of the apoE ELISA for apoE

The specificity of the apoE ELISA for apoE has been extensively investigated. (Starck et 

al. 2000) No interference in blank values, or apoE spiked samples, was detected when 

increasing concentrations of apoAI, apoAII, apoB, apoCI, apoCII or apoCIII were added 

indicating that the assay is specific for apoE. In the present study there was no significant 

difference between the calibration curves obtained using recombinant apoE3, apoE4, or 

apoE2, justifying the use of apoE3 as the calibrant for the quantification of apoE in CSF 

from patients of different genotype. In addition, there was no significant interference from 

human albumin or protein (as used for albumin and total protein standard curves) added at 

increasing concentrations (to levels encountered in brain injury CSF) to the apoE 

standards. See figure 4.

3.1.6.1 Summary of evaluation of apoE ELISA

In summary, the apoE ELISA developed for the quantification of apoE in CSF from 

control, TBI, and SAH patients was robust, sensitive, precise, and specific. Importantly, 

there was no significant interference from substances present in brain injury CSF that are 

not present in control CSF.

3.2 Determination of CSF apoE concentration in controls

This section presents the results from the analysis of control CSF
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3.2.1 Control selection according to CSF analysis
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It is not ethical to sample CSF in humans unless there are substantial clinical indication for 

CSF analysis. The control group for this study was selected from a population of 229 

consecutive patients admitted to the neuroscience unit for investigation of suspected 

neurological disease, and this included analysis of CSF. None of these patients had a recent 

history of SAH or TBI. CSF analysis using spectrophotometry confirmed the absence of 

xanthochromia. Microscopic examination of the CSF enabled exclusion of CSF containing 

more than five nucleated cells per cubic millilitre. Analysis of the total protein and albumin 

concentration of the CSF enabled identification and exclusion of CSF with values beyond 

the 95% confidence interval of the sample population. The results of the selection of 

controls according to this analysis are summarised in table 8 .

Displaying these data as a column scatter graph illustrates the wide concentration range for 

apoE in control CSF. See figure 5. Of the 39 CSF samples with normal cell count, and total 

protein and albumin concentration within the 95% confidence interval of the population 

mean, the oligoclonal band status was determined in 28, and found to be negative. The 

mean apoE for this group was 12.4 mg/L (median 12.1, SD: 4.8 mg/L). Inspection of the 

frequency distribution histogram for the control subgroups shows that the distribution of 

the mean concentrations of apoE in control CSF is positively skewed. Analyte 

concentrations are often positively skewed, and appear more Gaussian after log 

transformation. The advantage of the log transformation is that parametric tests can be 

used, which are more sensitive than non-parametric tests, and provide a confidence interval 

(geometric mean ratio). However, the number of patients in the brain injury groups is 

small, and normality tests become even less reliable with small sample sizes. Data, which 

passed the normality test, sometimes appeared to be skewed on the frequency distribution 

histogram, even after log transformation. In addition, there was data, which appeared to be 

parametrically distributed, but had more than twice the variance of the control group. 

Therefore, one way analysis of variance was performed using non-parametric tests. One­

way analysis of variance using the Kruskall-Wallace test with Dunn's post- test found no 

statistically significant difference in the median CSF apoE concentration of these control 

CSF subgroups.
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Table 8 CSF apoE according to biochemical analysis

Control CSF 

category

Number Mean ± SD 

apoE 

mg/L

Median

apoE

mg/L

95 % Cl

!A11 CSF 229 11.8 ±7.4 11.3 10.9-12.8

zCell count 
<5/mm3

138 13 ±6.9 1 2 . 0 11.9-14.2

3Total protein 
<576 mg/L

117 13.5 ±6.0 1 2 . 8 12.2-14.8

4Albumin 
<273 mg/L

82 12.5 ±5.5 11.9 10.7-14.3

SD: Standard Deviation.

95 % Cl: ninety-five percent confidence interval.

1 No xanthochromia present but cell count not known in 91 patients

2 No xanthochromia present, and cell count less than or equal to 5 / mm3

3 CSF with mean total protein within 95% Cl of the <5 cells/mm3 group (21 not known)

4 CSF with mean albumin within 95% Cl of the group with <5 cells/mm3, and total protein within 95%CI (35
not known)
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The concentration of apoE in the CSF according to the various indications for lumbar 

puncture are summarised in table 9. Displaying the raw data as a column scatter plot again 

shows a wide range for apoE concentration across diagnostic groups and a lower median 

apoE concentration in CSF from patients with definite MS. As discussed above the 

frequency distribution histograms of the clinical subgroups also demonstrate that CSF 

apoE concentration has a positively skewed distribution, and this appears more Gaussian 

with log transformation. As justified above, for consistency of approach, non-parametric 

tests were used for analysis of variance. Using the Kruskal-Wallace test, the difference 

between the median apoE in CSF from patients with definite MS and other control groups 

is statistically significant (p<0.001). There is no significant difference between the median 

CSF apoE concentration in the other control subgroups.

3.2.2 The relationship between site of CSF sampling and apoE 

concentration.

The median concentration of apoE in ventricular CSF is higher than that of lumbar CSF, 

and using the U-Mann-Whitney test, this difference is statistically significant (p=0.036). 

The albumin and total protein concentration was higher in the lumbar CSF, but the 

difference was not statistically significant. See figure 6 , panel A.

3.2.3 The relationship between gender and CSF apoE concentration

The mean (SD) apoE concentration in CSF from female controls (n=57) was 12.5 (6.4) 

mg/L, and 13.8 (8.1) mg/L in the CSF of (n= 33) males. The difference between the 

median concentration of apoE in CSF from male versus female controls was not 

statistically significant. See figure 6 , panel B.

3.2.4 The concentration of apoE during continuous CSF drainage

ANOVA found there was no statistically significant change in the concentration of apoE in 

CSF when sampled daily for seven consecutive days from six patients undergoing 

continuous CSF drainage for management of CSF rhinorrhoea. There was no significant 

decrease in CSF apoE concentration in-vitro between CSF before and after passage 

through a ventricular drainage catheter. In order to investigate the possibility that CSF 

apoE is lost from the supernatant during centrifugation, CSF was assayed before and after 

centrifugation and was found not to be significantly different. See figure 7.
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Table 9 CSF apoE in controls according to indication for CSF analysis

Mean ± SD Median 95 % Cl

Indication for CSF Number apoE apoE

examination mg/L mg/L

5N o d isease identified 14 15.7 ±9.6 13.4 10.2-21.3

6O ther 23 14.317.5 13.7 11.1-17.6

7BIH 7 11.317.6 10.4 4.2-18.3

8D em entia 82 13.516.9 11.5 12.0-15.0

9PossibIe

MS
18 12.413.9 12.4 10.5-14.3

10ProbabIe

MS
1 0 15.217.1 11.9 10.1-20.3

n D efln ite

MS***
44 6.514.5 5.8 5.1-7.9

***P<0.001

SD: Standard Deviation.

95 % Cl: ninety-five percent confidence interval.

5 All Investigations negative

6 CSF leak, Guillan Barre Syndrome, ?malignancy, ?Vasculitis,

7 BIH-'Benign" Intracranial Hypertension

8 Dementia=all types (un-specified)

9 Possible MS

10 Probable MS

11 Defmate MS
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Figure 5 Concentration of apoE in the CSF of non-acutely brain injured subjects

91

Figure 5A displays the column scatter plots for CSF apoE concentration from potential 

control subjects categorised according to:

• Nucleated cell count of<5/mm3.
o th

• Nucleated cell count of<5/mm and CSF total protein within 95 centile of population.
<5 it.

• Nucleated cell count of<5/mm , CSF total protein within 95 centile of population, and 
CSF albumin within 95th centile of population.

• Nucleated cell count of<5/mm3, CSF total protein within 95th centile of population, 
CSF albumin within 95th centile of population, and oligoclonal bands absent.

Figure 5B displays column scatter plots for CSF apoE concentration from potential control 

subjects categorised according to indication for CSF analysis as follows:

• No objective evidence of neurological disease identified.

• Benign Intracranial Hypertension (BIH).

• Dementia (type unspecified)

• Possible Multiple Sclerosis (MS).

• Probable MS.

• Definite MS. The concentration of apoE in definite MS CSF is significantly (p<0.001) 
lower than in the other groups.

• Other (e.g. CSF leak).

Horizontal bar represents the median concentration (mg/L)
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Figure 6 Column scatter plot of CSF apoE concentration according to anatomical sampling 
site and gender

Figure 6 A: Column scatter plot for CSF apoE concentration (mg/L) in lumbar and 

ventricular CSF from control subjects without evidence for acute brain injury or raised 

intracranial pressure. The median apoE concentration (represented by horizontal bar) was 

significantly (Mann-Whitney, p=0.036) higher in ventricular CSF than CSF sampled via 

the lumbar subarachnoid space. The apoE concentration gradient is the result of intrathecal 

synthesis of CSF apoE. The nucleated cell count of the ventricular and lumbar CSF 

samples was <5/mm . The ventricular CSF albumin and total protein concentrations were
if.

within the 95 centile of the control group mean.

Figure 6 B: Column scatter plot for CSF apoE concentration (mg/L) in male and female 

subjects. There is no significant difference in control CSF apoE concentration according to 

gender.
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Figure 7 The concentration  o f CSF apoE during continuous drainage

There was no significant change in CSF apoE concentration relative to the initial value 

obtained on the first day after initiation of continuous external CSF drainage. The CSF was 

obtained from patients undergoing continuous CSF drainage as treatment for or prevention 

of CSF leakage. The patients (n=6) had no neurological deficits, no acute brain injury, and 

the CSF concentration o f albumin and protein was within normal limits.
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Figure 8 Relationship between CSF apoE, albumin, and apoE to albumin ratio and subject 
age

Figure 8 A: Scatter plot of CSF apoE concentration in controls of different ages, with the 

linear regression line and the 95% confidence interval for the slope of the regression line 

(dotted line). Spearman rank correlation failed to reach statistical significance at the p<0.05 

level.

Figure 8 B: Scatter plot of CSF albumin concentration in controls of different ages, with the 

linear regression line and 95% confidence interval for the slope of the regression line. 

There was significant (p< 0.0001) correlation between CSF albumin concentration and age.

Figure 8 C: Scatter plot of CSF apoE to albumin concentration ratio in controls of different 

ages, with the linear regression line and the 95% confidence interval for the slope of the 

regression line. Spearman rank correlation failed to reach statistical significance at the 

p<0.05 level.
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3.2.5 The relationship between APOE  genotype and CSF apoE 

concentration

There were no e44 or s22 controls, and only one s24 control. There was no significant 

difference between s33 (average ± SD apoE = 10.1 ± 4.7 mg/L), s34 (6 . 6  ± 4.5 mg/L) and 

s23 (7.3 ± 2.4 mg/L) CSF apoE concentration.

3.2.6 The relationship between CSF apoE and albumin concentration

There is no significant rank correlation (Spearman r = 0.267, P = 0.0176, 95% Cl: 0.042 to 

0.466) between CSF apoE and albumin concentration in 79 controls. Regression analysis 

suggests that only 2% of the variation in apoE is due to variation in albumin in controls (R 

= 0 .02).

3.2.7 The relationship between age and CSF apoE concentration

The association between age and CSF concentration was determined using rank correlation 

analysis of a group of 90 control CSF samples with known age, apoE and albumin 

concentration. There was no significant correlation between CSF apoE and age (r = 0.23, 

P=0.116). See figure 8 , panel A. There was statistically significant correlation between 

CSF albumin and age (r = 0.55, P0.0001, 95% Cl: 0.30-0.72). See figure 8 , panel B The 

correlation between the ratio of CSF apoE to albumin and age (r = -0.27, P = 0.067, 95% 

Cl: -0.52 to 0.03) just failed to reach statistical significance. See figure 8 , panel C. 

Regression analysis suggests that approximately 5% of the variation in CSF apoE 

concentration is attributable to age (R2 = 0.055). In contrast, approximately 25% of the 

variation in CSF albumin is attributable to age (R2 = 0.245).

Using the Mann-Whitney test, there is no statistically significant difference between the 

median apoE/albumin ratio of non-demented controls compared to patients investigated for 

dementia.

3.2.8 Summary of quantification of control CSF apoE

The concentration range for apoE in the CSF of controls is wide, but the difference 

between diagnostic groups is not significant except for patients with definite MS. The
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concentration of apoE in controls is not significantly affected by age, CSF albumin 

concentration, APOE genotype, or continuous CSF drainage. The concentration of apoE in 

ventricular CSF is higher than that from the lumbar subarachnoid space.

3.3 The concentration of apoE and brain specific proteins in the 

CSF after TBI and SAH

This section presents the results of quantification of apoE, and other proteins, in the CSF of 

TBI, SAH, and control patients. Due to the limited availability of CSF from patients with 

acute brain injury, particularly TBI, the investigation comprises two data sets. The first is 

the analysis of twenty-seven TBI, and nineteen SAH patients for whom CSF was available 

within three days of brain injury. The second data set investigates a subgroup of these 

patients for whom serial CSF samples were available for up to two weeks after brain 

injury. Due to the expense of the commercial assay kits used for A0 and Tau fewer time 

points were assayed using these kits compared to assays done using in house techniques 

(i.e. apoE, S100B, albumin, and total protein).

3.3.1 CSF protein concentrations within three days of TBI and SAH

3.3.1.1 The control group

The control group used for this analysis was matched for age (mean age 40, median 37, 

and range 19-73 years) with the acute brain injury group. It was selected from the larger 

control population of non-xanthochromic CSF samples, with less than five nucleated cells 

per cubic millilitre, on the basis that oligoclonal bands were known to be absent, and the 

albumin and total protein concentration were within the 95 centile of the control 

population mean. This resulted in a control group of similar size (n=28) to the brain injury 

group. The median concentration of apoE in this control group was 12.1 mg/L.

3.3.1.2 CSF apoE within three days of TBI and SAH

The characteristics of the patients in this TBI and SAH group are summarised in tables 5, 6  

and 7. The mean concentration of apoE in the CSF (one CSF sample per patient) sampled 

from patients within three days of TBI or SAH is approximately one third that of the 

control group. The median concentration of apoE in the CSF from TBI patients was 1.9 

mg/L, and 3.9 mg/L in SAH patients. These data are summarised in table 10. ANOVA 

using the nonparametric Kruskall-Wallis test, with Dunn's post test, determined that the
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median concentration of apoE in control CSF was significantly higher than in TBI 

(P<0.001), and SAH (PO.OOl) CSF. In addition Dunn's post test determined that the 

median concentration of apoE in TBI and SAH CSF was not significantly different. See 

figure 9.

3.3.1.2.1 Estimation of CSF apoE concentration in control, TBI, and SAH CSF using PAGE

In addition to apoE quantification using ELISA, denaturing PAGE was used to determine 

the relative amount of apoE in control (n=3), TBI (n=3), and SAH (n=3) CSF as described 

in methods. Denaturing PAGE is at best semi-quantitative, but is capable of detecting apoE 

epitopes present due to proteolysis. In addition, because denaturing conditions are used the 

possibility that signal loss due to epitope masking may be evaluated. We found the signal 

intensity from the denaturing PAGE approximately correlated with the apoE ELISA 

determined concentration. No immunoreactive proteolytic fragments were identified. See 

appendix.

3.3.1.3 The ratio of CSF apoE to albumin within three days of TBI or SAH.

The mean (SD) concentration of albumin in control CSF was 177 (40) mg/L, in SAH CSF 

was 957 (1610) mg/L, and TBI CSF was 716 (1096) mg/L. Thus, the concentration of 

albumin in the acute brain injury CSF is approximately three times higher than in the 

control group. From the Kruskall-Wallis ANOVA the median CSF albumin concentration 

is significantly increased in TBI (PO.OOl) and SAH (PO.OOl) compared to control CSF. 

Although the CSF albumin concentration after SAH is higher than after TBI, the difference 

is not statistically significant. The mean (SD) apoE to albumin ratio of control CSF was 

0.07 (0.03) and was seven times higher than that in TBI and SAH CSF (mean ratio 0.01, 

SD: 0.02). Thus, after acute brain injury, compared to controls, the seven-fold decrease in 

the apoE to albumin ratio is disproportionate to the three-fold increase in albumin 

concentration. From the ANOVA for the apoE to albumin ratio, the ratio is significantly 

decreased after TBI (PO.OOl and SAH PO.OOl) but the difference between TBI and SAH 

is not significant. See figure 10.
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Table 10 ApoE, S100B, albumin and total protein in controls, SAH and TBI CSF

CSF

Concentration

Patient group

Control

N=28

SAH

N=19

TBI

N=27

ApoE (mg/L)

12.4 (12.1) ±4.7 

[0.34]

4.6 (3.9) ±3.8 

[0.13]

3.7 (1.9) ±4.2 

[0 .1 0 ]

S100B ( pg/L)

0.39 (0.29) ± 0.37 

[0.018]

19.9 (5.8) ±30.1 

[1.5]

23.3 (14.7) ±21.7 

[1.76]

Albumin (mg/L)

177 (171) ±40 

[2.7]

957 (359) ± 161 

[14.5]

716 (330) ±1096 

[1 0 .8 ]

Total protein (g/L) 0.32 (0.27) ±0.12. 1.97 (1.81) ± 1.34. 3.34 (1.57) ±5.37

Mean (median) CSF protein concentration ± standard deviation is given. Micromolar (pM) 

concentration is given in square brackets.
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Figure 9 CSF apoE and S100B concentration in controls and patients within three days of 
TBI and SAH

Figure 9A: Column scatter plot of apoE concentration in control CSF and CSF from 

patients within three days of TBI or SAH. Horizontal bar represents the group median.

Figure 9B: Column scatter plot of S100B (Log concentration) in control CSF and CSF 

from patients within three days of TBI or SAH. From ANOVA using the Kruskall-Wallis 

test the median concentration of apoE and S100B in TBI (p<0.001) and SAH (p<0.001) 

CSF is significantly different from controls. CSF apoE is less than controls after acute 

brain injury contrasting S100B, which is increased. The controls were age matched lumbar 

CSF samples from patients without acute brain injury with no objective clinical or 

biochemical evidence of CNS disease.
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Figure 10 Ratio of apoE/albumin and apoE I total protein in CSF fom controls and patients 
within three days of TBI and SAH

Figure 10A: Column scatter plot of apoE/ albumin concentration ratio in CSF from 

controls and patients within three days of TBI and SAH.

Figure 10B: Column scatter plot of apoE/ total protein concentration ratio in CSF from 

controls and patients within three days of TBI and SAH.

From ANOVA using the Kruskall-Wallis test the ratio for TBI and SAH CSF is 

significantly different (p<0.001) from controls for each ratio. After TBI or SAH CSF 

albumin and total protein concentration increase compared to control CSF. Despite the 

release of plasma apoE into CSF after brain injury, CSF apoE concentration is decreased. 

The controls were age matched lumbar CSF samples from patients without acute brain 

injury with no objective clinical or biochemical evidence of CNS disease.
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Figure 11 Relationship between CSF apoE, injury severity and clinical outcome

Figure 11 A: Relationship between CSF apoE concentration and best recorded level of 

consciousness (GCS) within 24 hours of SAH.

Figure 11B: Relationship between CSF apoE concentration and clinical outcome (GOS) 

three months after SAH.

Figure 11C: ApoE concentration in the CSF of patients with favourable and unfavourable 

outcome after SAH. Patients with unfavourable outcome scores have significantly lower 

CSF apoE within three days of SAH (Mann-Whitney, p=0.03).
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3.3.1.4 The ratio of CSF apoE to total protein within three days of TBI or SAH

Within three days of injury, the mean concentration of total protein in the CSF is 

substantially higher than that of the control group. The mean (SD) concentration of total 

protein in control CSF was 324 (273) mg/L, in SAH CSF was 1974 (1343) mg/L, and TBI 

CSF was 3399 (5367) mg/L. From the Kruskall-Wallis ANOVA the median CSF protein 

concentration is significantly increased after TBI (P<0.001) and SAH (P<0.001) compared 

to control CSF. Although the total protein concentration is substantially higher in TBI CSF 

compared to SAH CSF, the difference is not statistically significant. The mean (SD) apoE 

to total protein ratio in control CSF was 0.044 (0.023), in SAH CSF was 0.0045 (0.0046), 

and in TBI CSF was 0.0023 (0.0028). Thus after SAH, there is approximately six fold 

greater total protein concentration and ten fold decrease in the apoE to total protein ratio. 

After TBI, the total protein concentration increases by order of magnitude but there is 

nearly a twenty fold decrease in the apoE to total protein ratio. From the ANOVA for the 

apoE to total protein ratio, the ratio is significantly decreased after TBI (P<0.001), and 

SAH (P<0.001), but the difference between TBI and SAH is not significant. Thus the 

reduction in the CSF apoE after brain injury is substantially greater than the increase in 

total protein. See figure 10.

3.3.1.5 The concentration of S100B in the CSF within three days of TBI and SAH

CSF S100B increased substantially after acute brain injury. The mean (SD) concentration 

of S100B in control CSF was 0.39 (0.37) pg/1, in SAH CSF was 19 (30) pg/1, in TBI CSF 

was 23 (22) pg/1. ANOVA using the Kruskall-Wallis test determined that there was a 

statistically significant difference between group medians (P<0.0001). Dunn's multiple 

comparison test determined this difference to be significant for TBI (PO.OOl) and SAH 

(PO.OOl) compared to controls, but not between TBI and SAH. See figure 9.

3.3.1.6 The relationship between CSF apoE and S100B within three days of injury 

and GCS and GOS

The proportion of patients in coma (GCS<8 ) after TBI was significantly higher than the 

proportion after SAH (Fishers' exact test, p = < 0.0001). The injury severity (GCS) after 

TBI did not correlate significantly with clinical outcome (GOS). The correlation between 

GCS and GOS after SAH failed to reach statistical significance (Spearman r = 0.4, 95%
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Cl: -0.08 to 0.73, p = 0.09). There was no significant correlation between CSF S100B and 

apoE, GCS, or GOS after TBI or SAH. There was no significant correlation between CSF 

apoE and GCS, or GOS, and there was no significant difference between the concentration 

of apoE (or S100B) in the CSF of patients with favourable versus unfavourable outcome 

after TBI. After SAH, there was significant correlation between CSF apoE concentration 

and injury severity (Spearman r = 0.5, p<0.03, 95% Cl: 0.04-0.78). See figure 11, panel A. 

However, there was no significant difference between the concentration of apoE in the 

CSF of SAH patients in coma, and those with GCS of 9-15. There was significant 

correlation between the concentration of apoE in the CSF of SAH patients and clinical 

outcome (Spearman r = 0.53, p = 0.018, 95% Cl: 0.09-0.80). See figure 11, panel B. The 

concentration of apoE in the CSF of SAH patients with unfavourable outcome was 

significantly lower than the concentration of apoE in the CSF of patients with favourable 

outcome (Mann-Whitney: p = 0.03). The proportion of patients with unfavourable outcome 

and CSF apoE concentration below the lowest control value, was significantly greater than 

those with favourable outcome (Fishers' exact test: p = 0.02). See figure 11, panel C. The 

sample size was too small to determine any possible influence of APOE genotype upon any 

of these data.

3.3.1.7 Summary of findings

The concentration of apoE in the CSF within three days of acute brain injury is 

substantially less than that of controls. The concentration of albumin, total protein, and 

S100B increase substantially. The decrease in apoE is far greater than the increase in 

albumin and total protein. Decreased CSF apoE concentration is associated with more 

severe injury and outcome after SAH. The results from the investigation of the time course 

of these changes in apoE are presented in the next section, and are related to changes in 

other proteins.

3.3.2 Temporal alterations in CSF proteins after TBI and SAH

In addition to the proteins assayed at one time point within three days of injury, Tau, Api_ 

40, and APi.42 were assayed in serial CSF samples from the nineteen SAH patients and a 

subgroup of thirteen TBI patients for whom serial samples were available. The 

characteristics of the patient subgroups are summarised in tables 5,6 and 7. The proportion 

of patients in coma (GCS<8 ) after TBI was significantly (Fishers exact test pO.OOOl) 

greater than after SAH. The median concentration of protein at each time point was 

compared to the control group median using non-parametric ANOVA, assuming that the
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concentration of the various proteins in the CSF of non-brain injured individuals does not 

vary significantly with time. From analysis of the change in concentration with time after 

injury, the maximum or minimum value for each patient protein time series was identified 

and used to determine the time from brain injury to the minimum/maximum value. In 

addition the maximum or minimum values were used to investigate the relationship 

between injury severity and outcome with the magnitude of the change in protein 

concentration. The control group comprised 13 patients (mean age 36, median 32, range 

16-61 years) with suspected shunt dysfunction, or chronic hydrocephalus, with no history 

of acute brain injury or impaired conscious level, requiring drainage/examination of 

ventricular CSF. CSF found to have a cell-count greater than five cells per millilitre,
tlixanthochromia, or albumin and total protein concentration above the 95 centile of the 

population, were excluded to produce a group of controls with "normal" ventricular CSF 

parameters as far as was feasible.

3.3.2.1 The change in CSF concentration of apoE with time after TBI and SAH

After TBI, the decrease in CSF apoE concentration compared to controls was not 

statistically significant one day after injury, but was significant on day two (p<0.01), day 

three (p<0.001), day four (pO.OOOl) and day five (p<0.05). After SAH, the decrease in 

CSF apoE concentration compared to controls was not significant on day two and days five 

to twelve. However, the decrease was statistically significant (p<0.05) on days three and 

four after SAH. See figures 12 and 13, panel A.

3.3.2.2 The change in CSF concentration of albumin and total protein with time 

after TBI and SAH

One day after TBI, CSF albumin concentration increased significantly (p<0.05) compared 

to control values. The increase in albumin after TBI is not statistically significant from day 

two to five. After SAH, the CSF albumin concentration is significantly (pO.OOOl) 

increased, compared to controls, on days one to three, and on day five, but not on day four 

or days six to eleven. The apoE to albumin ratio is significantly decreased compared to the 

control group on days two to five after TBI (p<0.01), and after SAH on days two and three 

(p<0.001), and day nine (p<0.05). The SAH apoE to albumin ratio on day ten is not 

significantly different from the controls. See figures 12 and 13, panel B.
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Figure 12 Time course fo r alterations in the CSF apoE concentration and the ratio o f apoE to 
albumin and total protein after TBI

Figure 12A: Serial column scatter plot of apoE concentration (mg/L of CSF) after TBI.

Figure 12B: Serial column scatter plot for ratio of CSF apoE to albumin concentration. 

Mean (± SD) CSF albumin concentration of control group was 135 (37) mg/L. Mean (± 

SD) albumin concentration in TBI CSF was: day 1 = 454 (457), day 2 = 221 (164), day 3 = 

193 (138), day 4 = 181 (154) and day 5 = 170 (144) mg/L.

Figure 12C: Serial column scatter plot for ratio of CSF apoE to total protein concentration 

after TBI. Mean (± SD) CSF total protein concentration of control group was 313 (112) 

mg/L. Mean (± SD) total protein concentration in TBI CSF was: day 1 = 2773 (1532), day 

2 = 995 (671), day 3 = 1170 (1621), day 4 = 683 (577) and day 5 = 761 (667) mg/L.

Non-parametric ANOVA was used to compare the median concentration (represented by 

horizontal bar) of apoE in the CSF of the TBI patients at each time point with the control 

group median. No comparison was made between serial samples from the TBI group. 

Differences that are not statistically significant are summarised as ns (i.e. p>0.05), * 

represents p<0.05, ** represents p = 0.01-0.001, *** represents p<0.001. The CSF 

albumin, and total protein, concentration increased significantly after TBI and then 

decreased towards normal thereafter. The control CSF is from the ventricles of age 

matched subjects without acute brain injury and CSF profile within normal limits (i.e. no 

xanthochromasia, < 5 nucleated cells per ml of CSF, and normal biochemical profile 

including S100B etc).
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Figure 13 Time course for alterations of CSF apoE concentration and the ratio of apoE to
albumin and total protein after SAH

Figure 13 A: Serial column scatter plot of apoE concentration (mg/L of CSF) after SAH.

Figure 13B: Serial column scatter plot for ratio of CSF apoE to albumin concentration after 

SAH. Mean (± SD) CSF albumin concentration of control group was 135 (37) mg/L. Mean 

(± SD) albumin concentration in SAH CSF was: day 2 = 1815 (1723), day 3 = 531 (507), 

day 4 = 530 (499), day 5 = 618 (303), day 6  = 357 (260) and day 7 = 306 (262) mg/L.

Figure 13C: Serial column scatter plot for ratio of CSF apoE to total protein concentration 

after SAH. Mean (± SD) CSF total protein concentration of control group was 313 (112) 

mg/L. Mean (± SD) total protein concentration in SAH CSF was: day 2 = 2214 (1574), day 

3 = 1750 (1074), day 4 = 1121 (747), day 5 = 1239 (1035), day 6  = 1163 (1141) and day 7 

= 867 (572) mg/L.

Non-parametric ANOVA was used to compare the median concentration (represented by 

horizontal bar) of apoE in the CSF of the SAH patients at each time point with the control 

group median. No comparison was made between serial samples from the SAH group. 

Differences that are not statistically significant are summarised as ns (i.e. p>0.05), * 

represents p<0.05, ** represents p = 0.01-0.001, *** represents p<0.001. The CSF 

albumin, and total protein, concentration increased significantly after SAH and then 

decreased towards normal thereafter. The control CSF is from the ventricles of age 

matched subjects without acute brain injury and CSF profile within normal limits (i.e. no 

xanthochromasia, < 5 nucleated cells per ml of CSF, and normal biochemical profile 

including S100B etc).



ap
oE

/to
ta

l 
pr

ot
ei

n 
ra

tio

A D Kay 2003 Chapter 3 114

Figure 13A : CSF apoE after SAH
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Compared to controls, there is significantly increased total protein concentrations in TBI 

CSF (p<0.001) on day one after injury, but not on days two to five. After SAH, the 

increase in total protein is significant on days one to four (p<0 .0 0 1 ), on days four and five 

(p<0.01), and days six and seven (p<0.05). After SAH the increase in total protein is not 

statistically significant from days eight to ten. After TBI, the apoE to total protein ratio is 

significantly decreased on days one to four (p<0.001), but not on day five. After SAH, the 

decrease in apoE total protein ratio is statistically significant on days two to eight (p<0.001 

on days two, three and four; p<0.01 on day five; p<0.05 on day six and seven). See figures 

12 and 13, panel C.

3.3.2.3 The change in CSF concentration of Api-40 and Api-42 with time after TBI 

and SAH

There is a significant decrease in CSF ApMo concentration after TBI (day one pO.OOl, 

day three pO.Ol, day five p<0.05) and SAH (day three p<0.001, day seven p<0.01) 

compared to controls. After TBI, the decrease in APi.42 is not statistically significant on 

days one and three after injury, but is significant on day five (p<0.05). After SAH, ApM 2  

concentration is significantly decreased compared to the controls on day three (pO.Ol) and 

day seven (p<0.05). See figure 14. The ratio of APmo is not significantly different from the 

control group ratio for all time points investigated in TBI and SAH CSF.

3.3.2.4 The change in CSF concentration of S100B and Tau with time after TBI 

and SAH

After TBI, there is statistically significant increase (pO.OOl) in CSF S100B concentration 

compared to non injured controls for all the time points investigated. After SAH, S100B is 

significantly increased on days one (pO.OOl) to nine, after which the increase is not 

statistically significant. See figures 15 and 16. After TBI, there is significant (day one 

pO.OOl, days three and five pO.Ol) increase in CSF Tau concentration compared to non 

injured controls. After SAH, the increase in Tau is significant (pO.OOl) for all time points 

investigated. See tables 11 and 12.



116

Figure 14 Time course for alterations in CSF A|3i_4o and Api.42, concentration after
TBI and SAH

Figure 14A: Serial column scatter plots of Api-40 concentration (ng/L of CSF) in control 

and TBI CSF.

Figure 14B: Serial column scatter plots of Api-42 concentration (ng/L of CSF) in control 

and TBI CSF.

Figure 14C: Serial column scatter plots of AP1-40 concentration (ng/L of CSF) in control 

and SAH CSF.

Figure 14D: Serial column scatter plots of Api-42 concentration (ng/L of CSF) in control 

and SAH CSF.

Non-parametric ANOVA was used to compare the median concentration of Ap peptides in 

the CSF of the TBI or SAH patients at each time point (represented by horizontal bar) with 

the control group median. Differences that are not statistically significant are summarised 

as N.S. (i.e. p>0.05), * represents p<0.05, ** represents p = 0.01-0.001, *** represents 

pO.OOl. There was no significant difference between the ratio of APmo to APm2 in 

control and TBI or SAH CSF.
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Figure 14A CSF Ap after TBI
Figure 14B CSF Ap 1.42 after TBI
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Figure 15 Time course fo r alterations in CSF S100B, and Tau concentration after TBI

Figure 15 A: Serial column scatter plot of CSF S100B (Log concentration) after TBI and 

controls.

Figure 15B: Serial column scatter plot of CSF Tau (Log concentration) after TBI and 

controls.

Non-parametric ANOVA was used to compare the median concentration of S100B or Tau 

in the CSF of the TBI patients at each time point (represented by horizontal bar) with the 

control group median. S100B concentration of TBI CSF was elevated (p = 0.01-0.001) at 

each time point compared to the control group. Tau was also elevated (day 2: pO.OOl, day 

3 and 5: p = 0.01-0.001) compared to the control group.
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Figure 16 Time course for alterations in CSF S100B, and Tau concentration after SAH

Figure 16A: Serial column scatter plot of CSF S100B (Log concentration) after SAH and 

controls.

Figure 16B: Serial column scatter plot of CSF Tau (Log concentration) after SAH and 

controls.

Non-parametric ANOVA was used to compare the median concentration of S100B or Tau 

in the CSF of the SAH patients at each time point (represented by horizontal bar) with the 

control group median. S100B concentration of SAH CSF was elevated (p = 0.01-0.001) at 

each time point compared to the control group. Tau was also elevated (p = 0.01-0.001) at 

each time point compared to the control group.
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Figure 16A : S100B in control and serial SAH CSF
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Table 11 CSF Tau and S100B in controls and serial TBI samples

122

Protein 
concentration 
Mean 
± SD

control

Time after TBI

Day 1 Day 2 Day 3 Day 4 Day 5

Tau
Hg/L 0.19 a 3.5 2.3 a 2.0

±0.2 ±2.0 ±2.2 ±2.6

S100B
ng/L 0.26 70.7 17.5 20.4 16.3 19.0

±0.1 ± 5 5 ± 14 .4 ±20.1 ±19 .6 ± 18.2

a Not determined due to limited sample volume

S100B and Tau concentrations were significantly elevated after TBI for each time 

point compared to the control value using non-parametric ANOVA (p<0.001).
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Table 12 CSF Tau and S100B in controls and serial SAH samples

Protein
concentration
Mean
± SD

control

Time after SAH

Day 2b Day 3 Day 4 Day 5 Day 9

Tau
Hg/L 0.19 3.4 a 2.7 a 2.9

± 0 . 2 4.4 ±2.9 ±1.9

S100B
Hg/L 0.26 55.7 19.7 14.4 9.6 12.3

± 0 .1 ± 4 5 ± 30 .5 ± 17 .6 ± 7 .7 ±15 .3

a Not determined due to limited sample volume 

b Limited SAH CSF day 1 after SAH.

S100B and Tau concentrations were significantly elevated after SAH for each time point 

compared to the control value using non-parametric ANOVA (p<0.001).
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3.3.2.5 Time elapsed between brain injury and maximal change in protein 

concentration in CSF

The greatest decrease in apoE (apoE min), compared to controls, occurred earlier after TBI 

(3.4 days) than apoE min after SAH (5.2 days) (P = 0.003, 95% Cl: 0.4-3.3 days). The 

greatest decrease in A P m o  (Ap 4 0 m i n ) ,  compared to the controls, occurred 2 days after TBI, 

and is not significantly earlier than Ap 40min after SAH (3.9 days). The greatest decrease in 

Api-42 (Ap 42min), compared to the controls, occurred 2.9 days after TBI, and is not 

significantly earlier than Ap 42min after SAH (4.2 days). The greatest increase in S100B 

(S100B max), compared to controls, occurred 2.2 days after TBI, and is not significantly 

earlier than S100B max after SAH (3.3 days). The greatest increase in Tau (Tau max), 

compared to controls, occurred 2.5 days after TBI, and is significantly (P = 0.008, 95% Cl: 

0.7- 4.3) earlier than Tau max after SAH (5 days). See figures 17.

After TBI there was statistically significant (r = 0.8, 95% Cl: 0.44-0.94, P = 0.001) 

correlation between the magnitude of the reduction in CSF ApMo concentration, and the 

time elapsed between injury and trough levels. Other maximal changes did not correlate 

significantly with time after injury.

3.3.3 The relationship between CSF protein concentration changes after TBI 

and SAH

Multiple correlation analysis found no statistically significant association between the 

minimum concentration of apoE in the CSF after TBI, and the maximal changes in other 

proteins. These data are presented in the form of a correlation matrix (contains r-values) in 

table 13 for TBI, and table 14 for SAH. There was significant correlation between trough 

apoE and APmo after SAH (r = 0.85, pO.OOOl). See figure 18.

3.3.4 The relationship between CSF proteins, injury severity, and outcome

3.3.4.1 The relationship between CSF protein concentration and injury severity

The relationship between CSF protein concentration and injury severity was determined by 

generating a correlation matrix for Glasgow Coma Score and the maximal change in CSF 

concentration after TBI and SAH. This is summarised in table 15 for TBI, and SAH. After
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TBI, Ap 40min correlated significantly (Spearman r = 0.69, P = 0.0123, 95% Cl: 0.17-0.89) 

with injury severity measured using the GCS. It is estimated that approximately 47% of the 

variation in CSF Ap 40min is attributable to variation in severity of injury, or vice versa. 

There was no statistically significant correlation between injury severity and apoE min after 

SAH. This contrasts with the finding in the CSF samples analysed within three days of 

haemorrhage where apoE correlated with injury severity and outcome. From the scatter 

diagram of apoEmin versus injury severity (and outcome), there are a greater number of low 

apoE concentrations in the less severely injured patients, and these low values occur more 

than three days after injury. Injury severity correlated with Tau max (Spearman r = -0.8, P = 

0.008, 95% CI:-0. 85 to -0.19) after SAH. Approximately 64 % of the variation in CSF Tau 

and 25% of the variation in apoE is attributable to variation in injury severity after SAH. 

There was no statistically significant correlation between the other proteins and best GCS. 

Comparing the proportion of patients in coma versus the proportion with a GCS> 8  is not 

possible in the TBI group as they are all categorised as severely injured. Dichotomising 

this group into GCS 3-5, and GCS 6 -8 , identified no difference in the proportion of 

patients with S100B, or Tau, above the highest control value (all above the highest 

control), and there was no significant difference in CSF concentration between the injury 

severity subgroups. Similarly, for apoE, Ap 4omin, and Ap 42min, there was no significant 

difference in the protein concentration, or proportions below the minimum control value, 

between severe injury subgroups. After SAH, injury severity according to the GCS ranged 

from 3 to 15. There was no significant difference in the proportion of patients with protein 

concentrations above or below the limits of the control values and the proportion in coma 

or with a GCS>8 . However, there were no SAH patients in coma with CSF AP1.42 

concentration above the minimum control value, and the difference in proportions just 

failed to reach statistical significance (Fishers' exact test: p = 0.06). There was no 

statistically significant difference between the protein concentration of the SAH patients in 

coma versus those with GCS>8 , although the difference in CSF Tau concentration between 

injury severity groups just failed to reach statistical significance (Mann-Whitney: p = 

0.07).
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Figure 17 Column bar graph comparing the time elapsed between brain injury and the 
maximal change in CSF protein concentration after TBI and SAH

Figure 17A: Column bar chart of time elapsed between brain injury and trough apoE, A(3i. 

4 0 ,  and A p i - 4 2  levels after TBI and SAH. From the Mann-Whitney test, trough apoE and 

Ap ].40 levels occurred significantly earlier in TBI CSF compared to SAH CSF

Figure 17B: Column bar chart of time elapsed between brain injury and peak S100B and 

Tau levels after TBI and SAH. From the Mann-Whitney test, peak Tau levels occurred 

significantly earlier in TBI CSF compared to SAH CSF

Error bars represent the 95% confidence interval.
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Figure 17A : Time elapsed between brain injury and minimum CSF 
concentration of apoE and Ap peptides
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Table 13 Correlation matrix for protein concentration change after TBI

S100B max Tau max APi-40 min APi_42 min ApoEmin

S100B „,ax 1 -0.18 -0 . 1 2 0.19 0.13

Tail max -0.18 1 0.09 0.07 0.55

APi_40 min -0 . 1 2 0.09 1 -0.05 0.08

APi-42 min 0.19 0.07 -0.05 1 0.09

Table 14 Correlation matrix for protein concentration change after SAH

S100B max Tau max APi-40 min APi-42 min ApoEmin

S100B max 1 0.44 -0.45 -0.47 -0.34

Tau max 0.44 1 -0.64 -0.60 -0.18

APi-40 min -0.45 -0.64 1 0.79 0.85

APi-42 min -0.47 -0.60 0.79 1 0.25



129

Figure 18 Relationship between trough CSF apoE and trough Ap^o after SAH

There is significant correlation between the trough concentration o f apoE and Api_4 o in the 

CSF after SAH.
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Figure 19 Relationship between CSF Ap^o and in jury severity after TBI and CSF Tau and 
in jury severity after SAH

The maximal change in CSF concentration after injury was plotted against Glasgow Coma 

Score (GCS) in the form of a scatter diagram for all of the proteins analysed. Dotted line 

represents the 95% Cl of the slope of the regression line.

Figure 19A:Relationship between trough CSF Ap 1.40 concentration and injury severity after 

TBI. All TBI patients had severe (GCS <8 ) injury.

Figure 19B:Relationship between peak CSF Tau concentration and injury severity after 

SAH.
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F igu re  19A : R e la tionsh ip  betw een  tro u g h  CSF A p ^ o  
co n ce n tra tio n  a fte r TBI and in ju ry  se ve rity  (GCS)
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Table 15 Correlation matrix fo r maximal change in CSF proteins and GCS

GCS TBI GCS SAH

ApoEmjn -0.35 -0.021

S100B max 0.135 -0.53

Tail max -0.25 -0.8

APi-40 min 0.69 0.27

APi-42 min 0.04 0.47

AIbuminmax -0.36 -0.37

Total
proteinmax

-0.58 -0.08
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3.3.4.2 The relation between CSF protein concentration and clinical outcome

There was significant correlation (Spearman r = -0.89, P = 0.0013) between S100B max and 

clinical outcome (GOS) six months after TBI. It is estimated that approximately 80% of 

the variation in TBI CSF S100B is attributable to variation in clinical outcome, or vice 

versa. Three months after SAH, S100B max (Spearman r = -0.5, P = 0.029, 95% Cl: -0.78 to 

- 0.04), Tau max (Spearman r = -0.63, P = 0.007, 95% Cl: -0.85 to - 0.19), AP 40min 

(Spearman r = 0.73, P = 0.015, 95% Cl: 0.13 to 0.87), and Ap 42min (Spearman r = 0.84, P= 

0.002, 95% Cl: 0.34 to 0.93), correlated with the GOS. These data are summarised in table 

16. Albumin and total protein did not correlate significantly with GOS. There was no 

significant correlation between injury severity (GCS) and outcome (GOS) after TBI. After 

SAH, GOS just failed to correlate significantly with GCS (p = 0.09). The head injured 

patients were more severely injured and a higher proportion had unfavourable outcomes 

after TBI then SAH (Fishers exact test p = 0.036). The proportion of patients with CSF 

protein concentration above or below the control limit was not significantly different 

between TBI patients with favourable versus unfavourable outcome. The concentration of 

the proteins in the CSF was not significantly different between outcome categories. After 

SAH, no patients with unfavourable outcome had Ap 42min above the minimum control 

CSF value. However, the proportion of SAH patients with CSF Ap 42min below the lowest 

control value just failed to reach statistical significance (Fishers exact test p = 0.07).
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Table 16 Correlation matrix fo r maximal change in CSF proteins and GOS

GOS TBI GOS SAH

ApoEmin - 0 .7 3 0 .5 6

S100B max - 0 .8 9 - 0 .5

T a U  max - 0 .0 0 - 0 .6 3

A P i-4 0  min 0 .3 7 0 .7 3

A P i -42 min - 0 .1 7 0 .8 4

Albuminmax -0 .4 1 - 0 .7 5

Total
proteinmax

- 0 .2 6 - 0 .6 0
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Figure 20 Relationship between CSF A fh^S IO O B , and Tau and clin ical outcome after SAH

The maximal change in CSF concentration after injury was plotted against Glasgow 

Outcome Score (GOS) in the form of a scatter diagram. The dotted line represents the 95% 

confidence interval of the slope of the regression line. GOS 4 and 5 equate to favourable 

(independent) recovery (assessed three months after SAH); GOS 2 and 3 equate to 

dependent outcome; GOS 1 equates to fatal outcome.

Figure 20A:Relationship between trough CSF Api.42 concentration and clinical outcome 

after SAH.

Figure 20B:Relationship between peak CSF S100B (Log) concentration and clinical 

outcome after SAH.

Figure 20C:Relationship between peak CSF Tau (Log) concentration and clinical outcome 

after SAH.
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Figure 20A : Relationship between 
trough CSF A p42 concentration and 

clinical outcome (GOS) after SAH

Figure 20B : Relationship between 
peak CSF S100B concentration after 

SAH and clinical outcome (GOS)
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Figure 20C : Relationship between 
peak CSF Tau concentration after SAH 

and clinical outcome (GOS)
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There were significant differences between the median concentrations of Taumax (Mann- 

Whitney: p = 0.039), Ap 40min (Mann-Whitney: p = 0.014), and Ap 42min (Mann-Whitney: p 

= 0.011) in the outcome groups after SAH.

3.3.4.3 The relationship between the temporal changes in CSF protein 

concentration and injury severity and outcome

Within 48 hours of admission all TBI patients had a best GCS recording of eight or less 

(severe head injury). Injury severity was dichotomised into groups with GCS 3-5, and GCS 

6-8. The proportion of patients in each severity group were then compared according to 

CSF levels above or below the minimum control value for apoE and Ap, and maximum 

control Tau or S100B at each time point using Fisher's exact test. There was no statistically 

significant difference in the proportion of TBI patients with CSF protein concentrations 

above or below the control limits at each time point after injury. The SAH patients were 

dichotomised into groups of GCS 3-8, and 9-15, and analysed as above. Again there was 

no statistically significant differences in CSF protein concentration over time according to 

injury severity. The same analysis was undertaken for clinical outcome, dichotomising 

GOS into favourable outcome (GOS 4, 5), and unfavourable outcome (GOS 1,2,3). For 

S100B and Tau, there were no brain injury CSF values below the maximum value of the 

control group, which prevents the comparison of proportions. In these circumstances the 

threshold selected was the median of the brain injury values. Thus the contingency table 

comprised patients categorised according to favourable and unfavourable outcome 

(columns), and CSF S100B (or Tau) above or below the brain injury group median (rows). 

There was significantly increased relative risk of unfavourable outcome after SAH for 

patients with CSF S100B above the SAH group median concentration on day three 

(Fishers' exact test: p = 0.017, RR of favourable outcome: 0.23, 95% Cl: 0.04-1.36) to day 

seven (Fishers' exact test: p = 0.046, RR of favourable outcome: 0.39, 95% Cl: 0.12-1.25). 

The difference in proportions was not significant beyond one week after injury. There was 

a significant increase in the relative risk of unfavourable outcome after SAH for patients 

with CSF Tau above the SAH group median on days six (Fishers' exact test: p = 0.027, RR 

of favourable outcome: 0.24, 95% Cl: 0.04-1.44) and day nine (Fishers' exact test: p = 

0.048, RR of favourable outcome: 0.25, 95% Cl: 0.05-1.36) after injury.

3.3.5 Summary of CSF protein concentration changes after TBI and SAH

The concentration of apoE in the CSF after TBI and SAH is substantially lower than that of 

non-brain injured controls. The reduction is apparent within three days of injury, and
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persists for at least one week after injury. Other proteins increase in the CSF after acute 

brain injury with the exception of the Ap peptides. For some proteins the magnitude of the 

maximal alteration in CSF concentration correlates with injury severity, and clinical 

outcome.

3.4Characterisation of lipoprotein particles in control, TBI and 

SAH CSF

The first section of this chapter presents the results from the development of a robust 

ELISA method for the measurement of apoE in control and brain injury CSF. The previous 

two sections present the results of the quantification of apoE in the CSF of non brain 

injured controls, and patients with TBI and SAH using this ELISA. It was found that the 

concentration of some proteins in the CSF increased after TBI and SAH compared to 

controls. In contrast, the concentration of apoE (and AP) decreased. As apoE is a major 

component of CSF lipoprotein particles, studies were undertaken to investigate whether 

reduced concentration of the apoE protein in the CSF are paralleled by changes in the CSF 

lipoprotein particles after brain injury. This section presents the findings from the isolation 

and analysis of lipoprotein particles isolated from control, TBI, and SAH CSF.

Prior to the isolation and analysis of lipoprotein particles in the CSF of non-brain-injured 

controls and patients with SAH or TBI, the size exclusion chromatography column was 

calibrated using plasma lipoprotein particles of known size and composition.

3.4.1 Characterisation of size exclusion chromatography column

Plasma derived lipoprotein particles (VLDL, LDL, and HDL), were freshly prepared by 

sequential density ultracentrifugation, and mixed in equivalent proportions. A volume of 

500pl was eluted at a rate of 0.25ml/min in fractions of 250pl. These fractions were 

assayed for apoB, total cholesterol (TC), and phospholipid (PL) as described in methods. 

In addition protein was assayed by measuring the absorbance of the fraction at 280nm. See 

figure 21.
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Figure 21 Characterisation of size exclusion chromatography column using plasma 
lipoproteins

VLDL LDL HDL
150-

125-

100-

|  75-

50-

25-

0-

r0.75

-0.60

-0.45

-0.30

-0.15

.00
Tr T T T T T T 1

25 30 35 40 45 50 55
Fraction Number

60 65

£coO-tCTfi)3O
CD
Q>«-►
hO
03OD
3

Abs at 280nm Total Cholesterol

apoB Phospholipid

Figure 21 shows the plasma lipoprotein elution profile from a Sephadex 200 size exclusion 

column. VLDL (d < 1.006 g/ml) elutes from fraction 26-33, LDL (d = 1.019-1.063 g/ml) 

elutes from fraction 34-45 and HDL (d = 1.063-1.21 g/ml) elutes from fraction 46-58. The 

protein content o f the fractions eluting from the column are monitored from the absorbance 

at 280nm.
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Figure 22 Lipoprotein composition of Plasma and CSF HDL

Figure 22 displays the triglyceride (TG), phospholipid (PL), cholesterol ester (CE), free 

cholesterol (FC), apoAI and apoE composition (mg %) of plasma and CSF HDL. Plasma 

and CSF HDL differ substantially in their relative compositions as demonstrated in the bar 

chart. There is no triglyceride in CSF HDL. There is more apoE, apoAI, and free 

cholesterol in CSF HDL.
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3.4.1.1 Lipoprotein particle profile of plasma

141

The elution profile of plasma confirmed the presence of three peaks comprising particles of 

differing size: VLDL eluted in fractions 26 to 33, LDL in fractions 34 to 45, and HDL in 

fractions 46 to 58. The fractions containing the LDL particle are clearly defined, as the 

only apoprotein in LDL is apoB.

3.4.1.2 Composition of plasma lipoprotein particles

The VLDL particle is rich in triglyceride (data not shown), and has relatively little protein, 

cholesterol or phospholipid. The LDL particle is characterised by the presence of apoB, 

and has relatively more cholesterol and phospholipid. The HDL particle has no apoB, is 

protein rich, and compared to the LDL particle has proportionately more phospholipid than 

cholesterol. The composition of plasma lipoprotein particles, contrasted with CSF 

lipoprotein particles, is summarised in table 17 and figure 2 2 .

Table 17 Composition of CSF and plasma HDL lipoprotein particles

Plasma
h d l 2

Plasma
h d l 3

CSF
HDLi

CSF
h d l 2

CSF
HDL3

ApoE % (SD) 0.5 (0.3) 0 . 2  (0 .2 ) 16.1 (8 .8 ) 14.1 (6 .6 ) 5.6 (7.6)

ApoAI % (SD) 15.2 (7.4) 34.2 (3.6) 13.8(15.5) 42.8 (6.1) 54.7 (37)

FC % (SD) 4.9 (1.1) 3.0 (0.5) 13.8(15.5) 4.3 (4.9) 10.1 (11.9)

CE % (SD) 34.3 (3) 25.5 (2.9) 20.1 (18.5) 14.4 (6.4) nd

PL % (SD) 38.3 (3.0) 32.5(1.2) 47.6(15.3) 24.4 (2.9) 29.6 (23.1)

TG % (SD) 6 . 2  ( 1 .2 ) 4.7 (0.8) nd nd nd

FC = free cholesterol, CE = cholesterol ester, PL = phospholipid, TG = triglyceride, 

nd = not detected. HDL] is rarely seen in human plasma.
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3.4.2 Isolation and analysis of lipoprotein particles from control CSF

The minimum volume of CSF required for the isolation of CSF lipoprotein particles is 20 

ml. The substantial volume required was generated by pooling 1ml aliquots of CSF from 

twenty-five consecutive control patients. A total of six control pools were generated in this 

manner from one hundred and fifty of the control CSF samples. These pools had no 

detectable apoB. The mean age of the patients was 32 years (median 25 years and range 

16-65 years).

3.4.2.1 Lipoprotein particle profile and composition of control CSF

In contrast to plasma, the lipoprotein particles present in control CSF form one major peak. 

This peak occurs in fractions containing particles of similar size to the plasma HDL and 

LDL particles at the LDL/HDL boundary, which peaked at fraction 47. CSF does not 

contain apoB, thus these large CSF lipoprotein particles are known as HDLi (plasma has 

HDL2 and HDL3, but HDLi is rarely seen in plasma). Examination of the control apoE and 

apoAI elution profile indicates the presence of overlapping populations of particles 

containing both apoE and apoAI (fractions 45 to 52) and particles containing apoAI alone 

(fractions 50 to 60). Thus apoAI is present in both the HDLi and smaller HDL lipoprotein 

particle fractions and apoE is present mainly in the larger HDLi sized particle. See figure 

24.

The larger CSF lipoprotein particles contain most of the phospholipid and cholesterol 

associated with the CSF lipoproteins. The molar ratio of apoAI to apoE in control CSF was 

approximately 1:3 and that of free cholesterol to phospholipid was approximately 1: 2.

Having calibrated the size exclusion chromatography column for the fractionation of CSF 

lipoprotein particles from control CSF, isolation and compositional analysis of TBI and 

SAH CSF was performed.
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Figure 23 Lipoprotein composition of CSF HDL particles

CSF lipoprotein particles are unique in that they comprise HDLi sized particles, which are 

not normally present in human plasma. Analysis o f the HDL subgroups in control CSF, as 

displayed in the bar chart clearly shows the differences between CSF HDL subgroups. The 

smaller HDL3 have less apoE and cholesterol ester. In contrast apoAI predominates. The 

smaller HDL particles remodel through the action of the cholesterol ester forming enzyme 

LCAT, the activity o f which is promoted by the abundant apoAI present on the smaller 

HDL particles. As the HDL accumulate cholesterol ester apoAI is replaced by apoE, which 

facilitates the transport o f the cholesterol to target cells expressing the LDL family of 

receptors.
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3.4.3 Isolation and analysis of lipoprotein particles from acute brain injury 

CSF

3.4.3.1 CSF lipoprotein particle profile and composition after SAH

After SAH the CSF contains plasma lipoprotein particles released at the time of 

haemorrhage. Compared to control CSF there was a ten-fold increase in total cholesterol (p 

= 0.007), and free cholesterol (p = 0.001) in SAH CSF. Importantly, there was no 

significant difference between the ratio of FC to TC in control and SAH CSF. The FC to 

TC ratio was constant across the lipoprotein profile. The phospholipid concentration of 

SAH CSF was five times higher than that of the controls (p<0.05). The molar ratio of free 

cholesterol to phospholipid increased from 1:2 in controls to 1:1 in SAH. The apoE to 

apoAI ratio decreased from 1:3 in controls to 1:13 in SAH. In SAH CSF these changes 

were accompanied by the appearance of a population of particles of very small size 

(fractions 58-68) that are rich in phospholipid and free cholesterol. There was a significant 

increase (p = 0.04) in the total area under the curve (AUC) for apoAI associated particles 

in SAH CSF compared to control subjects, but the difference in the total AUC for the apoE 

associated particles failed to reach statistical significance. These data are summarised in 

table 18. However, near the LDL/HDL boundary in SAH CSF there was a reduction in 

apoE AUC (p = 0.13) indicating a depletion of large apoE-containing lipoproteins. In SAH 

CSF the concentration of apoB was 1.5 (± 0.5) mg/100ml; apoB was not detected in 

control CSF. Although the decrease in concentration of CSF LpE after SAH is not 

statistically significant (Mann-Whitney: p = 0.86), it is surprising that LpE does not 

increase in proportion with apoAI as they have similar proportions in the plasma. The ratio 

of LpAI to LpE is significantly lower after SAH (Mann-Whitney: p = 0.026). See figure 

24.
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Figure 24 Composition of lipoprotein particles fractionated from non-injured control and 
SAH CSF

The vertical dashed line indicates the elution intervals for LDL and HDL sized particles for 

the size exclusion column. Panels A and B correspond to total cholesterol, Panels C and D 

correspond to free (non-esterified) cholesterol, E and F correspond to phospholipid, G and 

H correspond to apoE, and panels I and J correspond to apoAI in non-injured controls and 

SAH patients respectively. After SAH, phospholipid, free cholesterol and apoAI levels 

increase and are associated with plasma VLDL, LDL and HDL sized particles. Large 

apoE-HDL particles are decreased and VLDL associated apoE appears after SAH. In 

addition very small lipoprotein particles appear in SAH CSF that are not present in control 

CSF. Profiles represent the mean of six control pools and CSF from six patients after SAH. 

CSF was obtained from six SAH patients (mean age 54, median 52, and range 26-65 years) 

admitted to the neurosurgical unit at the Institute of Neurological Science Glasgow, U.K., 

between March 2000 and February 2001. All SAH patients were in coma (Glasgow Coma 

Score < 8 ), had an aneurysmal distribution of blood in the subarachnoid space on the 

admission CT (all Fisher grade III), and required insertion of an external ventricular drain 

for the treatment of acute hydrocephalus. The SAH CSF was obtained from the cerebral 

ventricles within three days of aneurysm rupture.
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Figure 25 Composition o f lipoprotein particles fractionated from non-injured control and TBI 
CSF

CSF from 150 patients was used to generate 6  non-injured CSF pools of sufficient volume 

for CSF lipoprotein particle fractionation by size exclusion chromatography. CSF from 27 

patients with severe traumatic brain injury was pooled for comparison with the control 

pools. The vertical dashed line indicates the elution intervals for LDL and HDL sized 

particles for the size exclusion column. Panels A and B correspond to free (non-esterified) 

cholesterol, C and D correspond to phospholipid, E and F correspond to apoAI, and panels 

G and H correspond to apoE in non-injured controls and traumatic brain injury patients 

respectively. As observed in SAH CSF, there is a population of very small lipoprotein 

particles associated with free cholesterol, phospholipid and apoAI.
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Table 18 Composition o f lipoprotein particles in control and SAH CSF

149

Lipoprotein

Component

Concentration 

mg/lOOml of control CSF, [pM]

Concentration 

mg/lOOml of SAH CSF, [pM]

Total cholesterol
0.13 ±0.06, [3.4] 1.28 ±1.12 [33.2] **

Free cholesterol
0.08 ± 0.04, [2.3] 0.78 ± 0.66, [20.2 ] **

Phospholipid
0.29 ± 0.08, [3.8] 1.33 ±1.12, [17.2]*

ApoAI
0.30 ±0.146, [0.1] 1.24 ±0.99, [0.4]*

ApoE
0.14 ±0.05, [0.04] 0.10 ±0.03, [0.03]

Values are means ± S.D. Significance of difference: *p<0.05, **p<0.001 control and SAH 

means compared with unpaired t-test of log transformed data
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Table 19 Composition o f CSF lipoprotein particles in control and TBI CSF
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Lipoprotein

component

Concentration 

mg/100ml of control CSF, [pM]

Concentration 

mg/lOOml of TBI CSF, [pM]

Total cholesterol 0.13 ±0.006, [3.4] 0.29, [7.5] *

Free cholesterol 0.09 ±0.04, [2.1] 0.36, [9.3] **

Phospholipid 0.29 ±0.09, [3.8] 0.44, [5.7] *

ApoAI 0.30 ±0.15, [0.1] 0.32, [0.1]

ApoE 0.14 ±0.05, [0.04] 0.01, [0.004]**

Single TBI pool compared to six control pools using the one sample t-test. 

*p<0.05, **p<0.01
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The volume of TBI CSF available for size exclusion chromatography was very limited. 

One pool comprising one millilitre of CSF from each of twenty-seven TBI patients (within 

three days of injury) was fractionated for analysis of the lipoprotein particles. In CSF from 

TBI patients, there was a five-fold increase in non-esterified cholesterol compared to 

control CSF (p = 0.0001). In addition, phospholipid containing particles increased 

significantly compared to control CSF (p = 0.04). The molar ratio of free cholesterol to 

phospholipid in TBI patients increased from 3:5 in controls to 11:5 in TBI. These changes 

were accompanied by the appearance of a population of particles of very small size 

(fraction 58-63) which were phospholipid and free cholesterol rich. Large apoE- HDL 

particles were depleted in the TBI CSF as evidenced by the shift to the right of the elution 

peaks for free cholesterol and phospholipid. There was no significant change in the apoAI 

associated particles of the TBI CSF pool compared to control pools, but apoE associated 

particles were significantly decreased (one sample t-test; p = 0.002). The molar ratio of 

apoAI to apoE in TBI patients increased from 2:1 in controls to 25:1 in TBI. There were no 

apoB containing lipoprotein particles in TBI CSF. These data are summarised in table 19 

and figure 25.

3.4.4 Summary of characterisation of CSF lipoproteins after acute brain 

injury

CSF lipoproteins are distinctive from plasma lipoproteins. Substantial differences in the 

composition of the lipoprotein particles exist between control and acute brain injury CSF. 

After SAH, despite the substantial increase in lipoprotein particles originating from the 

plasma, there is a reduction in the quantity of apoE containing particles. After TBI, where 

there is a lesser release of lipoprotein particles originating from the plasma, there is even 

greater decrease in the apoE containing lipoprotein particles. The changes in the apoE 

containing lipoprotein particle composition parallel the changes identified in nascent CSF 

apoE concentration.
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4 Discussion

4.1 Principal findings of the study

4.1.1 Protein concentrations in control, TBI and SAH CSF

The principal findings in relation to the proteins selected for investigation in this study are:

• The concentrations of apoE, ApMo, and Api-42 are significantly lower in the CSF of 
patients with TBI, and SAH compared to controls.

• The decrease in these proteins occurs within days of injury and persists for at least one 
week after injury.

• The decrease in protein concentration after acute brain injury correlates with injury 
severity and clinical outcome.

• The concentrations of S100B and Tau are markedly increased in the CSF of TBI and 
SAH patients compared to controls.

• The increase in these proteins occurs within days of injury and persists for at least one 
week after injury.

• The peak CSF concentration of Tau and S100B correlates with the severity of the brain 
injury, and the clinical outcome after SAH.

4.1.2 The analysis of lipoprotein particles in control, TBI and SAH CSF

The principal findings in relation to the lipoprotein particles present in the CSF of controls 

and patients with TBI and SAH are:

• CSF contains unique lipoprotein particles.

• The apoE lipoprotein particles were depleted from brain injury CSF compared to 
controls.

• CSF lipoprotein particles undergo remodelling after acute brain injury.

• Novel lipoprotein particles are present in brain injury CSF that are not present in 
control CSF.

4.2 Interpretation of results

4.2.1 Protein concentrations in control, TBI and SAH CSF

There are a number of possible explanations for the decrease in CSF apoE, and Ap, after 

acute brain injury. These include increased clearance from CSF, decreased production, 

dilution effects, sampling artefact, and assay artefact or interference. Evaluation of the 

apoE ELISA determined that the assay has high recovery, sensitivity, and precision.
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Importantly, the recovery of apoE added to control or brain injury CSF, and white matter 

homogenate was high, and there was no significant difference between brain injury and 

control CSF. Thus there appears to be no significant interference from substances present 

in the brain injury CSF that are not present in control CSF. There was no decrease in the 

apoE signal when CSF was assayed in the presence of increasing concentrations of human 

albumin, or the total protein used for the protein standard curve (comprising human 

albumin and gamma globulin) at concentrations recorded in the brain injury CSF. In 

addition, there was linearity in the assay over a range of CSF dilutions for control and 

brain injury CSF and these dilution lines were parallel with the apoE calibration curve. 

Thus, differences detected between control and brain injury CSF are not significantly 

affected by differences in the matrices at different analyte concentration. The lower limit of 

detection of the assay was substantially lower than the lowest recorded CSF apoE 

concentration. The precision of the assay, coupled to the simultaneous assay of controls 

and brain injury CSF decreased the chance that differences between cases and controls are 

due to inter or intra assay variation. The specificity of an assay is particularly important 

when high values are observed (which is not the case here) due to concern about antibody 

cross reactivity. The specificity of the assay has been extensively described by Stark et al, 

who found no significant cross reactivity with the major lipoproteins present in plasma. 

Both in their study and the present study, there was no significant difference between 

calibration curves obtained using apoE3, apoE4 or apoE2. (Starck et al. 2000) The 

potential that other variables, such as pH, are substantially different in brain injury CSF has 

not been investigated. Although this does not affect the ability to detect apoE added to 

brain injury CSF, there is a possibility that in-vivo apoE undergoes physiochemical 

alterations resulting in an apparent decrease in the CSF due to masking of epitopes. For 

example, the apoE may form stable complexes in-vivo with Ap or components of the 

complement cascade. Formation of amyloid aggregate in-vitro appears to be pH dependent 

and the possibility that acidosis after brain injury contributes to depletion of apoE-Ap from 

CSF in-vivo requires further investigation. (Atwood et al. 1998) Although only semi- 

quantitative, denaturing SDS PAGE correlated approximately with the ELISA findings in 

the samples analysed using this method, suggesting that the decreased signal in brain injury 

CSF is not attributable to differences in secondary and tertiary structure, or detergent 

sensitive binding interactions. In addition, the apoE ELISA assay dilution buffer contains 

detergent, which results in protein unfolding and removes associated cholesterol and lipid. 

There are non-antibody based methods for the quantification of apoE such as HPLC 

(derived from phenylalanine content of apoE) and capillary electrophoresis in SDS gels 

(SDS-CGE), but these were not utilised in the present study. (Schlenck et al. 1999) It has
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not been possible to independently evaluate the amyloid beta assays due to the high cost of 

the assay. However, these commercial assay kits have been evaluated by others and have 

been used to assay amyloid beta in the CSF of patients with AD and controls, as well as 

other biological fluids. (Chishti et al. 2001; Kusiak et al. 2001) The manufacturers report 

high recovery of amyloid beta from plasma.

The possibility that apoE and amyloid beta are decreased in brain injury CSF compared to 

control CSF due to a systematic difference in CSF sample acquisition and processing 

requires evaluation. It has been demonstrated that the route of sampling influences the 

concentration of apoE such that the concentration is higher in ventricular CSF than CSF 

from the lumber subarachnoid space. CSF apoE is intrathecally synthesised accounting for 

the concentration gradient between ventricular and lumbar CSF. (Carlsson et al. 1991; 

Linton et al. 1991) The decrease in ventricular CSF apoE observed after acute brain injury 

is significant when compared to either control CSF obtained from the lumbar subarachnoid 

space or control CSF from the lateral ventricles. Thus the magnitude of the decrease in 

apoE concentration observed when brain injury CSF is compared to lumbar CSF represents 

an underestimate of the true decrease that would be observed when compared to the less 

often available ventricular control CSF. It has been demonstrated that continuous CSF 

drainage does not significantly reduce the concentration of apoE in non-brain injured 

controls over time. Thus, the loss of apoE from brain injury CSF is unlikely to be a 

consequence of brain apoE exhaustion due to external drainage. The high concentration of 

apoE in control ventricular CSF obtained via ventricular catheters suggests that there is no 

significant decrease in apoE due to sampling via this route. Furthermore, there was no 

significant difference in the apoE concentration before or after passage through a 

ventricular catheter in-vitro. The conditions for collection and storage are particularly 

important for hydrophobic polypeptides such as Ap, which have a tendency to aggregate 

and adsorb onto surfaces. Thus the CSF collection tubes utilised in this study were of the 

polypropylene type as recommended by Hesse et al. (Andreasen et al. 2001; Hesse et al. 

2000) Brain injury and control CSF samples were processed and stored in an identical 

manner, and underwent only one freeze-thaw cycle prior to simultaneous batch analysis. 

Analysis was performed within three months of freezing in the majority of cases, though 

serum or plasma apoE is reported to be stable when stored at -20 degrees centigrade for as 

long as three years. (Alsayed et al. 1990; Blum et al. 1980; Koffigan et al. 1987; Kottke 

et al. 1991; Phillips et al. 1983; Schiele et al. 2000b) The stability of apoE in the CSF 

samples used for this study is supported by the finding that the frozen CSF standard curve 

and QCs did not change significantly over the six-month period of apoE ELISA evaluation
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and sample analysis. The consistent finding that CSF apoE is decreased in SAH CSF 

obtained from patients in the USA and Scotland provides supporting evidence that the 

differences in brain injury CSF and control CSF are not due to systematic differences in 

sample processing between the two units. The apoE concentration of CSF supernatant 

before and after centrifugation was not significantly different suggesting that the apoE was 

not lost from the supernatant in the initial centrifugation step. All samples once thawed 

were vortexed prior to sample dilution. The rapid freezing after sampling and addition of a 

protease inhibitor to all the CSF samples decreased the chance that apoE was lost due to 

increased proteolysis in brain injury CSF. Poly acrylamide gel electrophoresis of control 

and brain injury CSF did not identify apoE antibody immunoreactive fragments suggestive 

of apoE proteolysis.

The possibility" that the decrease in CSF apoE is attributable to dilution is unlikely for the 

following reasons. First, in the acute phase after TBI, ventricular volume is often decreased 

such that CSF spaces including the basal cisterns, third and lateral ventricles may become 

completely obliterated. This observation often results in difficulty cannulating the 

ventricle, and is associated with raised intracranial pressure and unfavourable outcome. 

(Teasdale et al. 1984) Second, a substantial increase in CSF volume would be required to 

produce the scale of decrease in CSF apoE observed after TBI, which would not be 

tolerated within the fixed confines of the skull. Third, the brain tissue water content has 

been estimated to increase by less than ten percent after TBI. (Marmarou et al. 2000) 

Fourth, from the analysis of lipoprotein particles a significant decrease in LpE was 

observed, but not in LpAI, which would be expected if the effect was due to dilution alone. 

This strongly supports the concept that the observed decrease in apoE after TBI is specific 

to apoE. It is possible that dilution accounts for some of the decrease in CSF apoE 

observed after SAH, as acute hydrocephalus is not an uncommon finding, (van Gijn J. and 

Rinkel, 2001) However, there is still a substantial decrease in the relative amount of LpE to 

LpAI supporting the concept that apoE is selectively lost from the CSF after SAH as well.

Reduced production of apoE, by astrocytes, oligodendrocytes and microglial cells, in 

response to brain injury could potentially contribute to the decreased concentration 

observed in CSF after acute brain injury. However, failure of apoE production would not 

explain the decrease observed after SAH, where plasma apoE is likely to be released into 

the CSF. In vitro, pro-inflammatory cytokines, which are prevalent after acute brain injury, 

are reported to result in reduced astrocyte culture medium apoE concentration. (Baskin et 

al. 1997; Starck etal. 2000)
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Soon after acute brain injury, the concentration of albumin (and total protein) increase 

substantially indicating substantial opening of the blood brain barrier. The effect is 

relatively transient given that the CSF concentration of albumin (and total protein) 

decreases progressively over subsequent days. During this time period, the ratio of apoE to 

albumin (or total protein) is disproportionately decreased suggesting that apoE is 

selectively depleted from the CSF. One would speculate that the brain has substantial 

capacity to clear apoE given that the concentration of apoE in plasma (which is released 

into the subarachnoid space or neuropil, at the time of brain injury, or haemorrhage) is an 

order of magnitude higher than in CSF. (Carlsson et al. 1991) Analysis of paired plasma 

and CSF samples has not been undertaken in this preliminary study. The possibility that 

apoE released into the CSF after injury is rapidly cleared to the plasma compartment 

requires further investigation.

An alternative explanation for the findings that apoE and Ap are depleted in brain injury 

CSF is possible, for which there is indirect supporting evidence from studies of other forms 

of human brain injury, and experimental brain injury. It is hypothesised that selective 

retention and active uptake of apoE, and Ap, takes place within the neuropil and 

subarachnoid space as part of the response of the brain to injury, and this results in 

diminished concentrations in the CSF. Such a concept would not be novel as there are 

several neurological disorders for which such a mechanism has been proposed to explain 

the observation that Ap or apoE concentration are decreased in the CSF and increased in 

the brain parenchyma. For example, patients with AD have decreased concentration of Ap 

in the CSF compared to controls, whilst the concentration of Ap in the brain parenchyma is 

increased. (Andreasen et al. 1999; Andreasen et al. 2001; Fagan et al. 2000; Kuo et al. 

1996; Mehta et al. 2000; Motter et al. 1995; Nitsch et al. 1995; Shoji et al. 1998; 

Tamaoka et al. 1997) Similarly, increased apoE immunoreactivity has been observed in 

AD brain, and the concentration of apoE is reported to decrease in the CSF of patients with 

AD. (Blennow et al. 1994; Hesse et al. 2000; Landen et al. 1996; Skoog et al. 1997) 

However, decreased apoE concentration in the CSF of patients with AD has not been 

consistently reported with some studies reporting increased concentrations. (Blain et al. 

1997; Fukuyama et al. 2000; Lindh et al. 1997; Merched et al. 1997) Indeed in this study 

there was no significant difference between the concentration of apoE in the CSF of the 

control group and that of eighty-two patients investigated for dementia, although the 

number of patients in this group who will meet the criteria for definite AD is unknown at 

this time. In the present study, the concentration of apoE in the CSF of patients with 

definite MS was decreased, which is consistent with the observations of others. (Gaillard et



al. 1996; Rifai et al. 1987) These findings in CSF of MS patients are corroborated by the 

observation that apoE immunoreactivity is increased in macrophages and astrocytes 

located in regions of demyelinating MS brain. (Carlin et al. 2000) There is evidence from 

experimental brain injury studies, and human post mortem studies, that apoE is upregulated 

in the brain after injury, and participates in a co-ordinated response to acute brain injury. 

Neurons, which do not normally demonstrate immunopositivity to apoE, develop 

immunoreactivity after experimental transient global ischaemia, and acute subdural 

haematoma. In the subdural model intense immunoreactivity to apoE localises to the 

neuronal population adjacent to the haematoma. Possible explanations for this observation 

include the transport of apoE from the haematoma to injured neurons beneath the 

haematoma, increased de-novo synthesis of apoE by the injured neuron, or increased 

uptake of apoE released by other cells in the neuropil in response to injury. In the transient 

ischaemia model, intense apoE immunoreactivity is initially observed in astrocytes, which 

is later followed by apoE immunoreactivity in the population of neurons that are 

selectively vulnerable to ischaemia. (Horsburgh et al. 1997; Horsburgh et al. 2000b; 

Horsburgh and Nicoll, 1996) Although these temporal and cell type dependent changes 

suggest that apoE is involved in a co-ordinated response of the brain to injury, the actual 

role that apoE plays is not known. APOE knockout mice have delayed tissue clearance 

after cerebral infarction, macrophage related apoE expression being observed at the centre 

of infarcts in wild-type mice. (Kitagawa et al. 2001) There is evidence from experimental 

brain injury that apoE has a role as an anti-oxidant, or may be functioning as a lipid and 

cholesterol transporter recycling debris to injured cells. (Horsburgh et al. 2000a; Kitagawa 

et al. 2002; White et al. 2001a) These findings in experimental brain injury corroborate 

findings in human brain injury given the observation that apoE immunoreactivity is 

increased among patients who die after TBI, global ischaemia, and Herpes encephalitis. 

(Horsburgh et al. 1999a; Nicoll et al. 2001) Importantly, APOE dependent endocytic 

pathway alterations have been observed in the human hippocampus after fatal global 

ischaemia. (McColl et al. 2003) Thus there is a body of evidence to support the concept 

that brain apoE is up-regulated in response to injury. However, these studies do not explain 

the concept that apoE is decreased in the CSF after SAH where it is likely that substantial 

quantities of apoE are released into the subarachnoid space at the time of haemorrhage. 

There have been no systematic studies in post-mortem specimens from patients who die 

after SAH examining the distribution of apoE, or Ap within the brain. The possibility that 

apoE is depleted due to binding with debris released after cell injury and haemolysis, and 

that this is a non-specific process facilitating debris disposal without recycling or 

functional significance has not been excluded.
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In addition to a role in CNS cholesterol trafficking, apoE appears to promote the formation 

of extracellular fibrillary amyloid. Amyloid beta (especially Ap 1.42) is hydrophobic and 

binding interactions between apoE and Ap have been reported in-vitro. (LaDu et al. 1994; 

LaDu et al. 1995; Munson et al. 2000; Pillot et al. 1999) Studies using APOE and APP 

transgenic mice support the concept that apoE is pro-amyloidogenic. (Bales et al. 1999; 

Bales et al. 1997; Holtzman et al. 2000a) The finding from this study that after acute brain 

injury Ap and apoE concentration decrease in the CSF may be explained by the formation 

of insoluble apoE-Ap aggregates. These aggregates may precipitate in vivo or be rapidly 

cleared to the plasma compartment. Studies of post-mortem tissue from patients who die 

after TBI identify apoE in association with aggregates of Ap in the neuropil consistent with 

this hypothesis. (Bales et al. 1997; Clinton et al. 1991; Gentleman et al. 1997; Graham et 

al. 1996; Graham et al. 1999; Horsburgh et al. 2000) Raby et al report an increase in Ap 

concentration in the CSF of TBI patients. (Emmerling et al. 2000; Raby et al. 1998) CSF 

samples were analysed from six TBI patients (average age thirty-five years) and twenty- 

four post mortem controls (average age seventy eight years) raising concerns about sample 

size and control selection. The authors compare mean values from one hundred and five 

TBI samples raising the additional concern that the statistical significance reported is 

confounded by repeated measures. They report that the concentration of Ap is significantly 

elevated compared to controls after TBI. However, Franz et al report findings in TBI CSF 

concordant with the present study. In 29 patients with severe head trauma, the 

concentration of Api-42 was significantly lower than that of controls, and low levels were 

associated with more severe outcome. (Franz et al. 2003) There are no published series 

reporting alterations in CSF Ap after SAH, though they are reported to be unchanged after 

ischaemic stroke. (Hesse et al. 2000)

The decrease in apoE and Ap observed in this study occurs within days of injury, and 

returns to normal approximately one week after injury. Due to the absence of CSF samples 

very soon (i.e. within hours) after injury it has not been possible to investigate the 

possibility that apoE is initially increased. Furthermore, the requirement to restrict external 

ventricular drainage to the minimum clinically indicated time period limits the analysis of 

CSF for longer than one week after TBI and two weeks after SAH. The absence of 

correlation between the trough in apoE, and Api.42, concentration and the time elapsed 

from injury to the time of maximal change suggests that these proteins are rapidly depleted 

from the CSF. One may speculate that the greater hydrophobicity of AP1.42 would result in 

the rapid formation of insoluble aggregates. From the weak correlation between the time 

taken to reach trough Ap 1.40 and the magnitude of the reduction we may speculate that Ap
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1.40 is depleted in a time dependent process after TBI. The ratio of APmo to AP1.42 did not 

change significantly after injury suggesting that the decrease in these peptides is not 

fragment length specific.

Analysis of the time course for the change in apoE and Ap concentration enabled 

determination of the lowest value attained after injury and its relationship to injury severity 

and clinical outcome. There was significant correlation between injury severity and Ap4o 

after TBI and apoE after SAH. Although no deductions regarding causality may be 

inferred, we may hypothesise that more severe injury results in increased clearance of apoE 

and Ap from the CSF. Alternatively, some other factor that is influenced by injury severity 

also influences the concentration of these proteins, or low CSF concentration results in 

more severe injury. There was significant correlation between clinical outcome and the 

lowest CSF concentrations of apoE and Ap after SAH. Thus we may hypothesis that the 

degree of the decrease in apoE and Ap concentration observed in the CSF soon after SAH 

determines some of the variation in clinical outcome three months later. Again, other 

confounding variables may account for the association. From the time course data, it is 

apparent that CSF apoE is significantly diminished by a lesser degree and for shorter time 

period after SAH then TBI. This may be due to the greater amount of plasma derived apoE 

released into the subarachnoid space after SAH compared to TBI. According to the GCS 

score, the TBI patients were more severely injured than the SAH patients. Thus, it is 

possible that the TBI patients have lower CSF apoE due to greater retention within the 

brain, or greater clearance to the plasma, or some other factor. In addition, hydrocephalus 

due to CSF outflow obstruction is more common after SAH then TBI, which may result in 

less rapid clearance of apoE from the CSF.

The observation that outcome after SAH was less favourable in patients with low CSF Ap 

is intriguing suggesting that Ap peptides may be important after SAH. Importantly apoE 

isoform dependent properties have been identified for Ap peptides and these may be 

important after SAH. Firstly, vasoactive properties have been identified for Ap peptides 

and promotion of endothelin-1 mediated vasospasm by Ap appears to be apoE isoform 

dependent. (Paris et al. 1998) Secondly ischaemic susceptibility of transgenic APP mice 

appears to be dependent on apoE isoform, possibly by modulation of the inflammatory 

response induced by middle cerebral artery occlusion. (Koistinaho et al. 2002) 

Furthermore, Ap appears to diffuse freely within neural tissue raising the possibility that 

Ap cleared via the cerebral vasculature may become deposited within smooth muscle, as in 

Cerebral Amyloid Angiopathy, resulting in intimal narrowing and alterations in cerebral
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blood flow. (McCarron et al. 1999; Meyer-Luehmann et al. 2003) Lastly, Ap peptide 

induce free radical mediated oxidative stress and neuronal vulnerability appears to be 

APOE dependent. (Butterfield et al. 2002)

In addition to the decreased concentration apoE, and Ap, in the CSF after acute brain 

injury, the time course for release of S100B, and Tau was investigated. These proteins 

were chosen as they are selectively expressed in astrocytes and neurons respectively, and 

are emerging as marker proteins for the processes of astrocytosis and axonal disintegration 

that occur after brain injury. Furthermore ELISA assays developed for use in CSF were 

readily available. There are few reports relating to the concentration of Tau in CSF from 

patients with TBI. (Zemlan et al. 2002; Zemlan et al. 1999) Zemlan developed an ELISA 

for cleaved Tau using monoclonal antibody generated by differential CSF hybridoma 

screening using CSF from TBI and control patients. CSF Tau was elevated one thousand 

fold in the fifteen TBI patients. Affinity purification identified a cleaved form of Tau in the 

TBI CSF, which consisted of the interior portion of the protein, containing the 

microtubule-binding domain. Although the mechanism and type of TBI (e.g. from the CAT 

scan) is not specified, the authors conclude that CSF Tau measurement may be useful for 

the quantification of axonal injury and disintegration. The concentration of Tau in the CSF 

of the patients investigated in this study increased by the same order of magnitude as in 

Zemlans' study. Importantly, the Tau assay kit used in this study is commercially available 

enabling other groups to add to this series. Total Tau has been reported to increase 

substantially after stroke, but there appears to be no increase in phospho-Tau, which is the 

predominant form, observed to increase in AD. (Blennow et al. 1995; Hesse et al. 2001; 

Sjogren et al. 2001) The assay used in this study assays total Tau concentration preventing 

estimation of the proportion of phospho-Tau released after acute axonal injury. Increased 

Tau immunoreactivity has been observed in the brains of patients with a history of mild 

chronic repetitive head trauma, being predominantly localised to perivascular regions. 

(Geddes et al. 1999) CSF Tau was significantly higher in SAH compared to TBI, and time 

from injury to maximal CSF Tau concentration was significantly longer. Although this 

may partly be explained by the longer period of ventricular drainage, it is also possible that 

after SAH there is greater microtubule disintegration and a more sustained release 

compared to TBI. This finding is surprising given that the TBI patient group was more 

severely injured according to the admission GCS, and unfavourable outcome was less 

prevalent. The detection antibody used in the ELISA kit is specific for CNS Tau, therefore, 

the high concentrations observed in SAH CSF are unlikely to result from cross reactivity 

with epitopes present in plasma. One explanation might be that injury severity, and
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outcome, after TBI may not be due to the quantity of axonal loss, but the anatomical 

distribution of axonal loss. Alternatively, axonal loss may be greater after TBI compared to 

SAH, but recovery greater after SAH. Thus one might speculate that the less profound and 

shorter decrease in apoE observed after SAH facilitates the survival (and reconnection) of 

injured axons not destined to undergo complete disintegration.

As discussed in the introduction, S100B has emerged as a non-specific marker protein, 

which is elevated in the CSF of patients with a range of neurological disorders. It is not 

known if the high S100B observed in the CSF after acute human brain injury is due to an 

active response of the brain to injury, or a passive process whereby brain injury disrupts 

astrocytic (and oligodendrocyte) integrity releasing cell constituents into the extracellular 

space. The pattern of release in this study is similar to that reported by others, with 

maximum CSF S100B concentration occurring within two days of injury, followed by 

sustained levels for up to two weeks after SAH. (Persson et al. 1987) In-vitro S100B has 

concentration dependent paracrine effects that are trophic to developing or injured neurons 

at nanomolar concentrations, but at micromolar concentrations result in glial activation, 

upregulation of nitric oxide synthase (NOS), and apoptosis. (Delphin et al. 1999; Hu et al. 

1997; Ikura and Yap, 2000) Several intracellular functions have been attributed to S100B 

including the regulation of cytoskeletal dynamics through disassembly of tubulin 

filaments, and inhibition of protein kinase phosphorylation. (Sorci et al. 1998) The role 

that S100B plays in acute brain injury is not yet established. The high concentration of 

S100B observed in the CSF after acute brain injury is in the micromolar range and 

precedes the release of Tau into the CSF. One may speculate that S100B released after 

brain injury acts as a signal for apoptotic cell death resulting in the disintegration of 

microtubules manifest by the release of Tau into the CSF. There was significant correlation 

between peak S100B concentration and clinical outcome after SAH and TBI, but not injury 

severity. One may speculate that high S100B concentration results in worse outcome, or 

merely reflect more severe damage, which itself results in a more severe outcome. The 

peak Tau concentration correlated significantly with both injury severity and clinical 

outcome after SAH. Thus, in the case of Tau, it seems likely that the increase in CSF Tau 

reflects the severity of the injury and this reflects in the poorer outcome for the patient.

4.2.2 The analysis of lipoprotein particles in control, TBI, and SAH CSF

Size exclusion chromatography is now regarded as the optimal method for isolating Lps 

from the CSF, and in agreement with others, the current study identified a solitary peak of 

CSF Lps. (Guyton et al. 1998; LaDu et al. 2000; Montine et al. 1998; Montine et al.
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1997) The CSF Lps contrast plasma Lps in several ways. First, due to the absence of apoB 

in the CNS, there are no apoB containing LDL Lps. Second, the triglyceride content of 

CSF is substantially less than that of plasma such that there is no detectable VLDL in CSF. 

Third, a unique CSF Lp of a size in the upper HDL and lower LDL range is present in 

CSF. These Lps are referred to as HDLj and are rarely seen in human plasma. The larger 

CSF Lps (HDLj) are mainly apoE containing particles. The CSF LpEs are the "end-stage" 

cholesterol particle ready for receptor mediated endocytosis. ApoAI resides on the smaller 

Lps where it promotes the esterification of cholesterol through it's activation of LCAT. 

Thus the LpAs are in the process of expanding to form LpEs, the final cholesterol transport 

package. The concept that CSF lipoprotein particles remodel after injury is supported by 

the finding that there was no significant difference between the ratio of FC to TC in control 

and brain injury CSF and the FC to TC ratio was constant across the lipoprotein profile 

range.

After TBI, LpE virtually disappears from the CSF. In contrast to LpE, LpA did not 

decrease significantly after TBI, but the apoAI localised to a smaller population of Lps 

than those present in control CSF. Smaller sized apoAI particles are the preferred 

substrates for the formation of cholesterol ester by lecithin cholesterol acyltransferase 

(LCAT), which facilitates efficient reverse cholesterol transport. The majority of the 

increased lipoprotein cholesterol and phospholipid is associated with very small particles, 

the characteristics of which are still to be determined. We speculate that after TBI, CSF 

LpE is markedly decreased due to increased clearance via lipoprotein receptors of the 

ependymal layer lining the ventricular space, the astrocytes adjacent to the arachnoid 

space, the neurons in the adjacent cortex and the pial cells of the arachnoid itself. In 

support of this concept, APOE dependent endocytic pathway alterations have been 

identified in human hippocampus after global ischaemia. (McColl et al. 2003) There is 

evidence for cholesterol and phospholipid recycling within the peripheral and CNS after 

experimental injury, and apoE is believed to participate in this process along with other 

lipoproteins. (Poirier, 1994; White et al. 2001a) The finding that CSF LpE is diminished 

after TBI might also be explained by the formation of insoluble aggregates with the Pmo 

and ApM2 peptides. In-vitro binding between LpE and the Ap peptides could be 

investigated using affinity chromatography to determine whether LpE is absorbed onto a 

column surface to which Ap peptide has been immobilised. Whilst APOE genotype does 

not appear to influence the lipid composition of LpE, there is evidence to support 

differential binding between CSF lipoproteins comprising different apoE isoforms. (Fagan 

et al. 2000; Rebeck et al. 1998) Alternatively LpE cleared to the plasma compartment is 

likely to be rapidly remodelled to LDL via peripheral CETP, and cleared via the liver.
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Figure 26 Schematic illustration of cholesterol recycling after acute brain injury

Lipid released from neurons undergoing necrotic or programmed cell death release 

cholesterol and other lipids. The debris combines with apoE and rafts o f lipid and apoE 

remodel through the action of lecithin cholesteryl ester transferase to form high density 

lipoprotein (HDL) particles. Initially the particles are rich in apoAI as it promotes the 

activity o f LCAT. Once the particle has maximally accumulated cholesterol ester, apoAI 

disengages, and the apoE rich particles form. The apoE rich particle may be taken up via 

receptor mediated endocytosis by cells expressing receptors such as rab4, rabantin-5, and 

the LDL family o f receptors. The cholesterol ester may then be eliminated from the CNS 

via the 24S-hydroxycholesterol pathway for excretion via the liver, or be utilised for repair 

within the CNS.
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After SAH the CSF Lp profile is more complex due to the presence of plasma Lps released 

into the subarachnoid space at the time of haemorrhage. There is almost one order of 

magnitude more cholesterol in the CSF after SAH compared to controls. After SAH, when 

plasma Lps are released into the subarachnoid space, one would expect both LpE and LpA 

to increase in the CSF as their concentration in plasma is an order of magnitude higher than 

in the CSF. It is surprising that while the concentration of LpA in the CSF after SAH 

increases compared to control CSF, the concentration of LpE in SAH CSF is lower than 

that observed in controls. Thus as with TBI, apoE containing Lps are cleared from the CSF 

compartment after SAH. In addition, as observed from the elution profile of TBI CSF, 

SAH CSF also has small (estimated from elution profile to be < 7 nm) apoAI-containing 

lipoprotein particles. We speculate that these small lipoprotein particles will be discoidal in 

shape and are formed when rafts of phospholipid and free cholesterol are sheared from 

neuronal membranes after neuronal cell death. (LaDu et al. 1998) Thus the excess lipid 

released into the neuropil after cell death may combine with apoAI and through reverse 

cholesterol transport involving apoE is delivered to neurons involved in synaptogenesis 

and sprouting. (LaDu et al. 2000)

4.2.3 Limitations of the study

There are a number of limitations to this study. First, due to limited availability of CSF in 

brain injured patients, the study population is small, selective, and derived from more than 

one centre. Small sample size limits the power to relate differences in marker protein 

concentration to differences in injury type, injury severity, APOE genotype and clinical 

outcome. The patient sample in this study is restricted to patients for whom there is a 

clinical indication for ventriculostomy. After TBI, intraventricular pressure monitoring 

tends to be performed in patients at the severe end of the clinical spectrum, and these 

patients tend to have poorer outcome. The small sample size coupled to the positively 

skewed nature of the severity of injury prevents analysis comparing more than two 

variables by multiple regression. Thus, it is not possible to correct for factors known to 

influence outcome after brain injury, such as age, temperature, hypoxia, hypotension, 

pupillary response to light and the presence of hemiparesis, brain stem reflexes and the 

lesions identified on CT scanning. Furthermore, selection bias limits the generalisability of 

the findings to patients with less severe injury who do not undergo ventriculostomy. The 

SAH group, though also too small for multiple regression analysis, did include less 

severely injured patients and consequently the clinical outcome was less positively skewed. 

Significant correlations were identified in the SAH patients between CSF parameters and
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both injury severity and clinical outcome. Injury severity, assessed using the Glasgow 

Coma Score, after SAH or TBI did not correlate with clinical outcome in this study.

Second, assaying the concentration of a substance in the ventricular or lumbar CSF of 

healthy normal controls is not ethical, due to the invasiveness of the procedure, and the 

associated risks. Thus the control group was selected from patients with suspected shunt 

dysfunction, hydrocephalus, or a suspected neurological disorder for whom there was a 

clinical indication for CSF analysis. The control patients did not have acute brain injury, 

had normal conscious level and ICP, and the CSF indices were within the normal range. A 

substantial number of control CSF (less than five cells per cubic millilitre) samples were 

analysed and these were categorised according to the indication for CSF analysis and 

biochemical indices. From the analysis of these subgroups it was possible to estimate the 

influence of category type upon the concentration of apoE in the control CSF. Patients with 

a diagnosis of definite MS were found to have significantly lower CSF apoE concentration 

compared to the other subgroups. However, there was no significant difference between 

the apoE concentration of the other subgroups. On the basis of this finding, patients with 

suspected or definite MS were not used as controls. Although there was significant 

correlation between the concentration of albumin in the CSF of the control group and age, 

there was no significant correlation between CSF apoE and age. The association between 

the ratio of apoE to albumin in the CSF of the control group and age just failed to reach 

statistical significance. Control CSF for the determination of control values for Tau and Ap 

were selected from the population of control CSF specimens such that they matched the 

age distribution of the brain injured patients, and had albumin and total protein 

concentration within the ninety-fifth centile of the larger control population. The values for 

the various protein concentrations determined in the control group of this study compared 

reasonable favourably to those reported by others given the variations that exist between 

groups with regard to control selection, methodology, and random variation. In the present 

study the apoE concentration of control CSF was 12.5 ±5.5 mg/L. This is higher than that 

reported by Carlson (7.5 ± 3.2), Pirttilla (5.6 ± 1.7), Blennow (5.1 ± 2.7), Hesse (4.5 ± 2.7), 

Skoog (3.8 ± 1.7), Song (4.1 ± 1.7) and Merched (0.8 ± 0.3). (Blennow et al. 1994; 

Carlsson et al. 1991; Hesse et al. 2000; Merched et al. 1997; Pirttila et al. 2000; Skoog et 

al. 1997; Song et al. 1997) Importantly, in the present comparative study brain injury and 

control CSF was assayed simultaneously. Thus it is the relative, and not absolute, apoE 

concentration that are important to this study. The validity of the CSF controls is 

underpinned by the normality in terms of total protein concentration and low albumin 

(absence of plasma contamination). Furthermore, the concentration of astrocytic and
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neuronal markers, S100B and Tau respectively, were similar in the controls used in the 

present study when compared to values in the published literature. The concentration of 

S100B in control CSF was 0.39 pg/L, almost identical to that reported in controls by Green 

et al (0.4). (Green et al. 1997) The concentration of Tau in control CSF was 190 pg/ml 

which compares favourably to that reported by Green et al (198 pg/ml) and Vandermeeren 

(120 pg/ml). (Green et al. 1999; Vandermeeren et al. 1993) In relation to the Ap peptides 

assayed, published values for the concentration of Api.40 and Api-42 in "normal" CSF are 

approximately 10 ng/ml and 1 ng/ml respectively. (Andreasen et al. 1999; Kanai et al. 

1998; Mehta et al. 2000; Motter et al. 1995; Shoji et al. 1998) Again though the absolute 

values obtained from the controls in the present study are less than these published values, 

the relative difference between control and brain injury CSF is striking.

In addition, a critical limitation arising from the analysis of CSF stems from the 

uncertainty as to how closely the composition of ventricular or subarachnoid CSF reflects 

that of the extracellular space. Studies in human brain injury comparing ventricular CSF 

and extracellular fluid (ECF) concentrations (determined using microdialysis catheters) of 

metabolites, amino acids, and proteins are at an early stage. Ventricular CSF most likely 

reflects global release via the CSF, and excludes molecules transported via perivascular 

and other channels. There is evidence in the literature that Ap diffuses relatively freely 

through neural tissue, and may be deposited in periarterial interstitial fluid drainage 

pathways in AD. (Meyer-Luehmann et al. 2003; Preston et al. 2003; Weller et al. 2000; 

Weller et al. 1998) A preliminary microdialysis study identified substantially higher 

concentrations of S100B in the ECF of brain injured patients compared to ventricular CSF 

suggesting very high local ECF concentration or some other factor (personal 

communication). With respect to apoE, ECF concentrations may be relatively low due to 

receptor mediated uptake and an intracellular location. Thus the present study at best 

presents indirect in-vivo evidence and should be interpreted accordingly.
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Figure 27 ApoE- amyloid aggregate hypothesis
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The function o f APP is unknown, but under normal physiological conditions APP is 

cleaved by secretase enzymes to form hydrophobic peptide fragments (Ap). Ap diffuses 

within neural tissue and is conveyed by bulk flow to the CSF of the ventricular system (the 

CSF sump) or via perivascular channels to blood vessel walls. In Cerebral Amyloid 

Angiopathy (CAA) Ap accumulates in vessel walls for unknown reasons. In AD Ap 

colocalises with apoE in amyloid plaque. Ap mo is the predominant form in those with AD 

in possession of the APOs4 allele. Amyloid aggregates appear to be neurotoxic resulting in 

dystrophic neurites and activation of the inflammatory response. As AD develop and 

advances, the concentration of Ap in the CSF diminishes as Ap accumulates in the cortex 

as Ap aggregate. This process is promoted by apoE with possession o f the APOe4 allele 

having the greatest amyloid promoting effect.
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4.3 Future investigations and potential clinical relevance

Although these data demonstrate alterations occurring in the CSF of patients with acute 

brain injury, the extrapolation that these finding reflect the response of the brain to injury 

may not be justified. This is at best indirect evidence to support a role for these proteins in 

the response of the brain to injury. Key areas that require further investigation are as 

follows. First, the possibility that apoE, and Ap, are depleted from the CSF due to 

increased clearance to the plasma compartment requires investigation. Peripheral insults 

such as acute myocardial infarction are associated with alterations in plasma lipoprotein 

and lipid profiles, which may persist for months after the initial insult. (Ryder et al. 1984) 

Marked alterations in lipoprotein particles have been observed in the plasma of patients 

undergoing a systemic inflammatory response to bacterial infection. Total plasma HDL 

decreases in these patients due to the decrease in plasma apoA HDL; plasma apoE HDL 

actually increases. (Barlage et al. 2001) After ischaemic stroke (where APOE appears not 

to influence outcome) the investigators of the Northern Manhattan Stroke Study reported 

that lipoproteins remained stable during the acute phase. (Kargman et al. 1998) Such 

studies have not been undertaken after TBI and SAH. Under normal circumstances the 

plasma to CSF ratio for apoE is approximately ten to one, resulting in a steep gradient 

across the intact blood brain barrier. In order for apoE and LpE to decrease in the CSF due 

to increased transfer to the plasma compartment there would have to be a substantial 

decrease in plasma apoE to reverse this gradient even under conditions of impaired blood 

brain barrier integrity.

A relatively simple approach would be to administer labelled apoE into the CSF before 

experimental brain injury and determine the distribution of the labelled apoE thereafter. 

Cannulating the ventricles or cistema magna of rodents subjected to experimental brain 

injury presents significant challenges due to scale, but has been performed in rodents as 

small as mice enabling studies to be conducted on transgenic mice. When apoE was 

infused into the lateral ventricle of APOE knockout mice, however, apoE was not detected 

by immunocytochemistry. (Horsburgh et al. 2000a) Labelled apoE could also be 

introduced to the plasma compartment prior to experimental brain injury, and the 

anatomical distribution determined after injury and in controls. The attraction of 

experimental brain injury is the ability to control for, and limit, variation in biological 

factors, and the type or size of injury to a degree that is often not possible in human 

studies. Furthermore, histological and biochemical examination of the brain tissue is 

feasible, and the administration of agents is often acceptable. The disadvantage of
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experimental brain injury is that findings from experiments performed in the controlled 

environment of the laboratory on different species may be of limited relevance to humans.

Second, the hypothesis that apoE and Ap decrease in the CSF as a result of increased 

retention and uptake by the brain could be explored further in humans by a variety of 

means. For example comparison could be made between the concentration of apoE in the 

CSF, brain tissue, and plasma during surgery after brain injury. For example, CSF is often 

drained from the subarachnoid space for the purpose of brain relaxation during aneurysm 

surgery, and brain tissue may be resected for the purposes of access to the aneurysm neck 

(e.g. gyrus rectus). These patients would have been fasted for general anaesthetic reducing 

the concerns relating to gastric ulceration. CSF is less often accessible at the time of 

surgery after TBI due to raised intracranial pressure, but it might be feasible to determine 

the concentration of apoE in contused brain resected after trauma. Controls are a problem 

in this type of study, though relatively normal brain may be resected during the course of 

epilepsy surgery. Alternatively, in vivo measurement of the tissue concentration of smaller 

proteins and peptides could be attempted using microdialysis but would require the 

development of dialysis membranes with high recovery of the protein. Methods for 

imaging these proteins in-vivo may be on the very distant horizon. (Bacskai et al. 2001; 

Fox and Rossor, 2000) In addition, CSF and brain tissue could be obtained from autopsy 

cases and comparisons made between patients who die after acute brain injury and those 

dying from other causes, provided consent can be obtained for tissue retention for the 

purpose of medical research. Studies of this nature may be confounded by changes that 

occur post mortem particularly in cases where there is a time delay between death and 

autopsy during which time brain liquefaction occurs. Further immunocytochemical studies 

could be performed on archive brain injury tissue to supplement previous studies with 

focus upon the distribution of apoE, and CNS lipoprotein receptor immunoreactivity after 

SAH. A limited study undertaking semi-quantitative apoE determination in archival head 

injury material found no increase in apoE levels compared to controls. (Horsburgh et al. 

2000)

The end-point of clinical research is improved outcome for patients. The question as to 

whether novel treatment strategies targeting brain apoE, Ap, or cholesterol, have the 

potential to improve patient outcome after acute brain injury requires definitive evidence to 

support their involvement in the response of the brain to injury. This study provides some 

novel preliminary evidence supporting a role for these molecules in the response of the 

brain to injury, but large scale systematic studies would be required, in addition to the post 

mortem and experimental brain injury studies outlined above, to establish such a role.
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Placebo controlled randomised trials of neuroprotective agents have proved expensive and 

of no demonstrable benefit to brain injury patients. (Maas et al. 1999) The challenges that 

beset the neuroprotection studies apply equally to large-scale observational studies. One 

particular criticism of the neuroprotection trials was the failure of the investigators to 

monitor the physiological effect to which the agent was targeted, focussing mainly on 

clinical outcome as the treatment outcome measure. In addition, it had not been established 

that a process, which may be demonstrable in experimental brain injury, actually occurred 

in the various types of human brain injury, nor at what time point the process was 

occurring. In future studies there is likely to be increased use of physiological and 

biochemical monitoring to determine treatment effects. This may include intracranial 

pressure monitoring and trend analysis, brain oximetry and cerebral blood flow studies, 

and biochemical monitoring using microdialysis and or positron emission tomography or 

magnetic resonance spectroscopy. In addition there is the potential that proteins relevant to 

acute brain injury could be serially monitored in CSF, microdialysis dialysate, plasma, and 

urine. These could potentially help classify and quantify the response of the brain to injury 

in terms of secondary processes such as cytoskeletal disruption, astrocytosis, neuronal 

apoptosis or necrosis, microglial activation and the inflammatory response. The less 

invasive the means of monitoring such proteins (e.g. plasma and urine versus CSF or 

microdialysis) the less is the associated risk, and the wider the acceptability. However, 

biochemical monitoring of plasma (and CSF) reflect global changes in the response of the 

brain to injury, obscuring valuable information relating to focal injury, which is an 

important component to brain injury. Microdialysis does give biochemical information 

about focal events, but there may be uncertainty relating the position of the microdialysis 

membrane to the intended area of monitoring. Currently available dialysis membranes have 

acceptable recovery of molecules with a molecular weight below 12KDa. Plasma 

monitoring has a number of other disadvantages. First, there is a time delay during transit 

of the protein from the brain to the plasma via the CSF and cerebral venous sinuses, 

making the correlation of plasma concentration with acute cerebral events such as raised 

intracranial pressure or ischaemic insults problematic. Second, dilution and metabolism in 

the peripheral compartment, coupled to the possibility of shared epitopes between the CNS 

protein and peripheral proteins, requires the assay to have high sensitivity and specificity. 

The substantial advantage of plasma monitoring is that monitoring can continue over a 

much broader time window than is acceptable for the invasive methods. Furthermore, 

plasma monitoring of protein release after brain injury may enable monitoring of patients 

who are not severely injured, in whom invasive measures are inappropriate. Patients with 

so-called mild and moderate head injury are often managed with less therapeutic
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intervention than those with severe head injury. However, it has recently been recognised 

that these so-called mild and moderate head injuries constitute the substantial majority of 

community based disability after head injury. (Thornhill et al. 2000) This raises the 

question as to whether this patient group should be more aggressively targeted for 

pharmacological intervention. Whilst imaging techniques such as MRI may facilitate the 

non-invasive stratification and monitoring of structural alterations after mild and moderate 

head injury, there are limitations due to availability and injury classification. Stratification 

of injury severity and monitoring of secondary processes after injury may be feasible by 

assaying brain derived proteins released into the plasma compartment after injury. There 

are a number of published series reporting increased plasma S100B after acute brain injury, 

but no large scale studies and no studies reporting increased plasma Tau. (Anderson et al. 

2001; Biberthaler et al. 2001; Herrmann et al. 2001; Petzold et al. 2002; Raabe et al. 

1999a; Raabe et al. 1999b) Furthermore, there are no published series reporting alterations 

in Ap, apoE, or cholesterol after acute brain injury. Thus whilst CSF studies such as this 

provide insight into the response of the brain to injury they are of limited utility with 

regard to large scale observational studies.

There are several key questions relating to the finding that apoE, and Ap, is decreased in 

the CSF in response to injury, the answers to which may be clinically relevant:

• If the apoE is decreased in the CSF because it is retained and taken up by the brain 
after injury, is the apoE beneficial or harmful?

• If the apoE is decreased in the CSF because it is lost to the plasma compartment, is this 
effect beneficial or harmful?

• Would treatment strategies targeting the depletion of apoE from the CSF improve 
clinical outcome after acute brain injury?

Whilst there is evidence that apoE has cholesterol and lipid recycling functions, and

antioxidant activity, there is also evidence that apoE promotes amyloid formation. The

relative importance that these postulated functions have upon outcome must be determined

before undertaking studies targeting CNS apoE after brain injury. Evidence from

experimental brain injury using APOE transgenic mice, which exhibit impaired neuronal

plasticity after injury, identify increased apoE immunoreactivity in association with

clearance of lipid and cholesterol from the site of injury. The observed effect is not

dependent of APOE genotype and therefore does not explain the observed difference in

recovery observed in TBI and SAH patients of different APOE genotype. (White et al.

2001a; White et al. 2001b) The failure to determine differences in functional recovery

after experimental injury in many studies limits estimation of the relevance of changes

observed histologically. Although intraventricular infusion of apoE appears to decrease
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oxidative stress in experimental brain injury, the failure to determine such an effect on 

functional recovery, limits interpretation of such findings in terms of potential clinical 

benefit. There are a number of preliminary studies that could be performed in vitro. First, 

the toxicity of lipoprotein particles, isolated from the CSF as described in this study, to 

serum free human cell cultures of neurons and glial cells could be determined. Importantly 

effects upon Ap and cholesterol metabolism should be assessed. Second, the effect of 

insults such as hypoxia, added Ap, or cholesterol to such cultures could be evaluated. 

Third, the effect of cholesterol lowering or apoE modifying agents could be assessed upon 

these cultures under different conditions. ApoE labelled with a fluorescent marker could be 

added to the culture medium to monitor apoE trafficking in response to injury.

The studies with APP and APOE transgenic mice support the concept that apoE is 

amyloidogenic and that APOE s4 is more so than APOE s3. These findings, coupled to the 

finding of increased amyloid deposition in the brains of patients who die after TBI, provide 

compelling evidence to support an isoform dependent interaction that is important after 

TBI. However, studies with APP transgenic mice suggest that amyloid deposits may be 

cleared after experimental brain injury. (Bales et al. 1997; Nakagawa et al. 1999; 

Nakagawa et al. 2000) Furthermore, studies of long-term survivors of TBI, who die for 

other reasons, do not identify increased numbers of Ap deposits in TBI patients compared 

to controls. (Macfarlane et al. 1999) Although these studies suggest that Ap deposition 

after TBI may be reversible, they do not provide evidence that Ap deposition results in 

worse outcome after TBI. The data identifying increased prevalence of Ap deposits in the 

brains of APOE e4 patients who die after TBI could be interpreted as suggesting that 

patients who have the APOE e4 allele have more deposits and are more likely to die after 

TBI. (Roses and Saunders, 1995) The clinical relevance of Ap deposition and clearance 

after TBI stems from the recent finding that Ap deposits are cleared from APP transgenic 

mice immunised with Ap. (Dodart et al. 2002a; Games et al. 2000) Importantly, in these 

studies, evidence of improved function in immunised animals was presented. Clinical trials 

assessing Ap immunotherapy in AD have currently been halted due to adverse effects 

underlining the requirement to understand more about human apoE and Ap biology. 

(Schenk et al. 2000) Intriguingly, a recent case report identified post-mortem findings in 

the brain of an AD patient who died after Ap immunization (AN-1792) similar to those 

observed in the transgenic mice studies. (Nicoll et al. 2003)

This study suggests that cholesterol containing LpE is selectively depleted from brain 

injury CSF. Relatively little is known about brain cholesterol flux in the normal human
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the LpE is decreased in the CSF due to increased uptake by the brain. Thus cholesterol and 

other debris released from injured cells undergoing necrotic or apoptotic death may be 

recycled to viable cells with an ongoing cholesterol demand. It is also possible that 

excessive cholesterol release after injury is potentially toxic, and the response of the brain 

to this biochemical hazard is to clear the excessive cholesterol to the plasma compartment 

for metabolism in the liver and clearance via the gastro-intestinal tract. In the CNS 

cholesterol is converted to 24S-hydroxycholesterol for excretion via the liver. There are 

reports that 24S-hydroxycholesterol is increased in the plasma of patients with AD, and it 

is speculated that this reflects increased cholesterol turnover due to increased 

neurodegeneration in the brains of AD patients. It is also reported that this effect is greatest 

in AD patients who posses the APOE e4 allele. (Lutjohann et al. 2000; Papassotiropoulos 

et al. 2000) Intriguingly, patients who are brain dead and patients with advanced AD have 

decreased plasma concentration of 24S-hydroxycholesterol. (Bretillon et al. 2000) The 

increased interest in cholesterol and AD stems from the key role that apoE plays in 

cholesterol homeostasis and the recent finding that patients treated with Statins have a 

decreased prevalence of AD. (Jick et al. 2000; Wolozin et al. 2000) If it can be shown that 

cholesterol is an important determinant of outcome after acute brain injury, and high brain 

cholesterol levels adversely affect outcome then treatment of acute brain injury patients 

with Statins that decrease brain cholesterol levels may improve outcome. The effect of 

Statins could be monitored centrally via microdialysis or via the CSF as in this study or in 

the plasma via 24S-hydroxycholesterol, which would be expected to decrease. The 

attraction of such a study in patients with acute brain injury is that Statins have well 

characterised safety profiles, and are administered parentally. Cholesterol has also been 

implicated in Ap deposit formation through in-vitro evidence supporting the concept that 

the cholesterol status of the cell membrane lipid bi-layer is an important determinant for 

the activity of the APP cleavage enzyme a-secretase. (Bodovitz and Klein, 1996) 

Furthermore, in vitro evidence suggests that cholesterol depletion due to Statins results in 

decreased amyloid deposition in hippocampal neurons. (Simons et al. 1998) Prior to any 

consideration of the use of cholesterol lowering agents in the context of acute brain injury, 

the relationship between brain or plasma cholesterol status and outcome must be 

established. After ischaemic stroke, low cholesterol appears to be associated with worse 

recovery, and low plasma cholesterol is a risk factor for haemorrhagic stroke. (Dyker et al. 

1997; Iso et al. 1989; Leppala et al. 1999; Vauthey et al. 2000) Thus after acute brain 

injury it may be more beneficial to supplement the brains' depleted cholesterol-apoE (LpE) 

status by the infusion of HDL.
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5 Conclusions

After traumatic brain injury and subarachnoid haemorrhage there is a profound decrease in 

the concentration of apolipoprotein E in the cerebrospinal fluid compared to that found in 

controls. The decrease in the apolipoprotein E concentration is paralleled by a decrease in 

the apolipoprotein E class of lipoprotein particles in the cerebrospinal fluid. The decrease 

in apolipoprotein E is paralleled by a decrease in the concentration of amyloid-beta. The 

decrease in apolipoprotein E and amyloid-beta correlate with the severity of injury and 

clinical outcome. The concentration of marker proteins for astrocytes and neurons are 

increased in the cerebrospinal fluid after traumatic brain injury, and these correlate with the 

severity of injury and clinical outcome.

These findings provide new indirect evidence to support the concept that apolipoprotein E 

plays a role in the response of the brain to injury. These findings are consistent with those 

from other studies suggesting that apolipoprotein E participates in a co-ordinated response 

to clear or recycle debris that results from brain injury. In addition, the finding that both 

apolipoprotein E and amyloid-beta decrease in the cerebrospinal fluid after injury is 

consistent with the concept that apolipoprotein E and amyloid-beta form insoluble 

aggregates in-vivo. From the finding that the concentration of apolipoprotein E in the 

cerebrospinal fluid of patients with subarachnoid haemorrhage is lower in those with more 

severe clinical outcome, one may hypothesise that increased clearance adversely affects 

recovery. This effect is not detected at later time points suggesting that low concentrations 

of apolipoprotein E in the cerebrospinal fluid are critical soon after injury.

This study takes the first steps to find in-vivo evidence to support a role for apolipoprotein 

E in the response of the brain to injury. From this study emerge a number of avenues for 

future investigation using post-mortem material, experimental brain injury, and further 

clinical studies. The justification for the further investigation of the relationship between 

apolipoprotein E, amyloid-beta deposition, and cholesterol homeostasis after acute brain 

injury, is the recent identification of novel treatment and prevention strategies for chronic 

neurodegenerative disorders. Thus amyloid-beta immunization or cholesterol lowering 

agents may have a role after acute neuronal injury. In addition, if low cerebrospinal fluid 

apolipoprotein E results in worse outcome, this begs the question as to whether 

apolipoprotein E supplementation by administration to the plasma or cerebral ventricle 

would improve outcome?
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6 Appendix

6.1 Summary of issues to address when obtaining consent

6.1.1.1 For all samples

• The sample will be treated as a gift

• The donor has no right to a share of any profits that might arise from research using the 
sample.

• Who will be responsible for custody of the sample (host institution/funding body).

• What personal information will be used in the research.

• The arrangements for protecting the donor’s confidentiality.

• If the research might reveal any information of immediate clinical relevance, this will
be fed back.

• Arrangements for feeding back or obtaining access to individual research results, if 
any, and for informing participants of the outcome of the research.

• Consent to access medical records, if required.

• Specific consent for any genetic tests, if required.

6.1.1.2 If the sample is to be stored for possible secondary use

• The types of studies the sample may be used for and the diseases that may be
investigated

• Possible impact of secondary studies on the interests of donors and their relatives.

• Means of accessing information on secondary studies, if appropriate.

• Secondary studies will have to be approved by an ethics committee.

• Consent to share samples with other uses.

• Consent to commercial use, and an explanation of the potential benefits of commercial 
involvement, if appropriate.

6.2 Patient information sheet and consent form

6.2.1.1 Information sheet for patients and their relatives participating in the apoE 

CSF study

Thank you for considering taking part in this study. Before reading any further, could I 

remind you that you are under no obligation to participate in this study and if you should 

decide to participate you are able to discontinue at any stage.
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6.2.1.2 What is the study about?

We are doing research into a brain protein called apoE. ApoE may be involved in the 

recovery process following brain injury. You may not have had a brain injury but the 

analysis of your fluid is important to us for comparison with those who have had a brain 

injury. Relatively little is known about this protein but it may have a role in recovery after 

brain injury and the type of protein we inherit may influence this process. We hope this 

research will provide useful information that may benefit patients in the future.

6.2.1.3 What does the study involve?

We require your permission to undertake research on a sample of brain fluid (cerebrospinal 

fluid or CSF for short). This fluid would normally be discarded. The tests we would like to 

do involve the study of the apoE protein and the DNA (genetic material) of the gene that 

produces the protein. No extra procedure is involved but we do require your permission to 

keep the fluid and perform the tests. It would also be helpful for us to store the sample for 

future analysis of other proteins and genes that may be related to brain injury.

6.2.1.4 Who will have access to the data?

The information from this investigation will be stored on a computer that is not linked to 

other systems such as the Internet so will only be known to the research team here in 

Glasgow. The results of this study will at a later date be published in medical journals so 

that other doctors and researchers can share this knowledge but it will be presented in such 

a way that patient confidentiality is preserved. If you have any further questions please do 

not hesitate to contact me. If I am not available at that time then please leave a name and 

number so I can call you back. Thank you for your consideration. Andrew Kay BSc MBBS 

FRCS. Wellcome Trust Clinical Research Fellow. University Department of Neurosurgery. 

Tel: 0141 201 2047

6.2.1.5 Consent form for CSF study

I consent to residual cerebrospinal fluid (CSF) being used for analysis of the protein apoE 

including the determination of the APOE gene type.

YES/NO
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I consent to storage of residual CSF and analysis of other proteins and genes that may be 

involved in brain injury.

YES/NO

I understand that I am under no obligation to participate in this study and that I may 

discontinue at any stage.

YES/NO

I have read the patient information sheet and understand that any questions relating to the 

study may be discussed with a member of the research team.

YES/NO

I understand that information arising from this research may at a later date be presented in 

medical journals and that my anonymity and confidentiality is assured.

YES/NO

Name (Please print)

Signature

Date

6.3 ApoE ELISA

In detail, 5 p i of neat rabbit polyclonal anti human apoE antibody (DAKO ref. no. A0077), 

was added to 25ml of 0.02 mol/1 Citrate buffer pH9.6 and mixed. 100 p i of the diluted 

antibody solution was aliquotted to each well of a 96 well ELISA plate (Nunc-immuno 

plate, Maxisorp ref. no. 43945A) and the plate incubated overnight at 4°C. After overnight 

incubation the plate was washed four times with 300 pi phosphate buffered saline (PBS) 

pH 7.3. After four washes the plate was blotted dry. 150 p i of fresh blocking buffer (2% 

Bovine Serum Albumin in PBS pH 7.3) was aliquotted into each well, and the covered 

plate was incubated at 37° C for one hour. The CSF sample/antibody diluent (dilution of 

equal volume of blocking buffer with PBS pH 7.3) was prepared, and CSF samples diluted
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one volume in three hundred. The standard curve (100 pg/1, 50 pg/1, 25 jLXg/1, 12.5 jLxg/1, 6.2 

g/1, 3.1 (J.g/1, apoE) which had previously been prepared as a batch, aliquotted, and stored at 

-80°C, was thawed along with the internal quality controls. After incubated at 37° C for 

one hour the ELISA plate was washed four times with 300 pi of wash buffer (PBS pH 

7.3/Tween 20) and blotted dry. The standard curve and diluted CSF samples were then 

added in duplicates of 100 pi to the ELISA plate. The plate was covered and incubated for 

one hour at 37° C. The goat anti human apoE antibody (CHEMICON ref. no. AB497) was 

diluted in assay diluent by adding 12.5 pi of the goat anti human apoE antibody to 25ml of 

assay diluent. After incubation of the standards and samples, the ELISA plate was washed 

four times as previously described. The diluted goat anti human apoE antibody was added 

to each well (100 pi) and the plate was covered for incubation at 37° C for one hour. The 

rabbit anti goat peroxidase (HRP) conjugate was prepared by adding 5 p i of rabbit anti 

goat IgG HRP conjugate to 25ml of assay diluent. After incubation at 37° C for one hour, 

the plate was washed as previously described. The diluted HRP conjugated (100 p i) 

antibody was aliquoted into each well, and the plate covered for incubation at 37° C for 

one hour. The HRP substrate was prepared and kept in the dark at room temperature until 

required. After incubation at 37° C for one hour, the plate was washed. In addition to the 

usual four washes with PBS/tween the plate was washed two times with 300 pi of PBS 

pH7.3, and blotted dry. 14 pi of 30% H2O2 was added to the 20ml of substrate solution 

and mixed. 100 p i of this solution was aliquotted into each well and incubated at room 

temperature for 15 minutes. The colour reaction was stopped by adding 50 pi of 1M 

hydrochloric acid to each well. The absorbance was determined at 492nm and 405 nm 

using a plate reader. The concentration of apoE was determined for each sample relative to 

the standard curve by plotting the standards and fitting a polynomial regression line, from 

which sample values mathematically derived. The internal quality control assayed on each 

plate comprised a CSF pooled from 100 patients CSF samples, and plasma pooled from 

100 plasma samples. These were prepared, frozen, and stored at the same time as the 

standard curve.

6.3.1.1 Reagents required for one plate (usually do 2 or more)

96 well Nunc Maxisorp plate 

1 g BSA, fraction V (SIGMA, ref. A 7030)

1 g Glycine (Merck, ref. 104201)
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1 ml Tween 20 (Sigma, ref. P I379)

1 compound ci-phenylenediamine (Sigma, ref. P8412)

10 ul H202 30 % (Merck, ref 107298)

1 gN a2C 03 (Merck, ref. 106392)

1 g NaHC03 (Merck, ref. 106329)

25 g Na2HP04, 2 H20  (Merck, ref. 106580)

20 g NaCl (Prolab, ref. 27810295)

3 g KH2P 04 (Merck, ref. 104873)

5 ml H2S04 (Merck, ref. 100731)

0.5 g Citric acid (Merck, ref 818707)

5 ul Rabbit polyclonal antibody anti human apoE (DAKO, ref A0077)

5 ul Goat polyclonal antibody anti human apoE (CHEMICON, ref. AB 497)

5 ul Rabbit polyclonal antibody anti goat IgG conjugated with peroxidase (DAKO, ref. 

P0449)

A variety of standards are available e.g. Human recombinant apolipoprotein E3 or E4 or 

E2 from PANVERA, CHEMICON, or DADE BEHRING.

6.3.1.2 Stock Solutions

(Volumes calculated for a 96 well plate)

• R1 Sodium Carbonate 0.20mol/l -store for 1 month at +4°C

Na2C 03 0.53 g 

H20  25 ml
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• R2 Sodium Hydrogen Carbonate 0.2 mol/1- store fori month at +4°C 

NaHC03 0.42 g

H20

• R3 Carbonate Buffer 16 mmol/l-Bicarbonate 34 mmol/1 pH 9.6- Store 1 week at +4° C 

Sodium anhydride solution 0.2 M (Rl) 2 ml

Sodium hydrogen carbonate 0.2 M (R2) 4.25 ml 

H20  16 ml

If pH>9.6, add R2 until pH=9.6 

If pH<9.6,add Rl until pH=9.6 

Make up to total volume of 25 ml

• R4 Disodium Phosphate 10/15 mol/1, NaCl 1.54 mol/1 

Na2HP04, 2H20  23.76 g

N aC l18 g 

H20  200 ml

Warm to 40°C to dissolve

Store at room temperature for 1 week

• R5 Potassium Phosphate 1/15 mol/l-Store 1 week at +4°C 

KH2P 04 2.27 g

H20  250 ml

• R6 Citrate Buffer 0.04mmol/l pH 5.8- Store 1 week at +4°C
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Citric acid 0.192 g 

Na2HP04, 2H20  0.538 g 

H20  20 ml

Adjust to pH 5.8 as necessary 

H20  25 ml

• R7 Sulphuric Acid 1 mol/l -store 6 week at room temp 

H2S04 1,47 ml

H20  25 ml

• R8 Coating Polyclonal Rabbit Ab (Abl)- 1/5005, 118 ng/well in carbonate buffer

• R9 Phosphate disodium solution 1/15 mol/l, NaCl 0.154 mol/l 

Phosphate disodium solution 10/15 M NaCl 1.54 M (R4) 100ml 

H20  1000 ml

• R10 PBS buffer 1/15 mol/l, NaCl 0.154 mol/l pH 7.4 

Solution of mono-potassium phosphate 1/15 M (R5) 150 ml 

Solution of disodium phosphate 1/15 M, NaCl 0.154 M (R9) pH 7.4

• Rl 1 BSA with 2% glycine 7.5 g/1 

BSA (Sigma, ref. A7030) lg 

Glycine (Merck, ref. 1.04201) 0.375 g

PBS buffer 1/15 M, NaCl 0.154 M pH7.4 (R10) 50 ml

• R12 Sample/Ab diluent
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Blocking reagent (Rl 1) 35 ml

PBS buffer 1/15 M, NaCl 0.154 M pH 7.4 (RIO) 35 ml

• R13 Wash Solution

PBS 1/15 M, NaCl 0.154 M pH 7.4 (RIO) 500ml 

Tween 20 (Sigma, ref. P I379) 0.5 ml

• R14 goat polyclonal anti human apoE -1/2 000

• R15 HRP anti goat IgG- 1/5000

• R16 Substrate (OPD at 2.8 mg/ml)

Citrate buffer 0.04 mol/l pH 5.8 (R6) 10.5 ml 

H20 2 30% (MERCK, ref. 107298) 7 ul 

a-phenylenediamine, HCL (SIGMA, ref. P8412, 30 mg)

6.3.1.3 Summary of Steps

• Coat

Polyclonal Dako (118 ng/well) 100 pl/well

Seal with sticking paper and incubate for >17 hours at 4°C

Prepare solutions R9R10R11 R12R13

• Wash-PBS

Wash 3 times with PBS 1/15 M pH 7.4 (R10) 300pl/well 

Remove wash buffer
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• Block

Block solution (Rl 1): 150 pl/well

Incubate for 1 hour in a well-humidified room at 37°C

• Prepare dilutions and standard curve 

Dilute samples; thaw standard curve and QCs

• Wash

Wash 3 times with wash solution (R13) 300 pl/well

• Add samples and standard curve 

Aliquot 100 pl/well

• Capture

Seal plate and incubate for 2 hours at 37°C in humidified room

• Incubate with detection antibody 

Prepare R14 (final dilution Ab2 1/2000)

3 washes R13 300 pl/well

Remove wash 

R 14 100 jLxl/well

Incubate plate for 1 hour at 37°C in humidified room

• Incubation with HRP Ab 

Prepare R15 (Ab3 diluted to 1/5 000)
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3 washes (R13) 300 jul/well 

Dry

R15 at 4°C

Incubate plate at 37 °C for 1 hour in humidified room

• Develop colour reaction 

Prepare R16

4 washes (R13) 300 pl/well

2 washes with PBS Buffer (RIO) 300 pl/well 

Dry

Substrate (R16) 100 pl/well 

<30 mins at room temperature

•  Stop reaction

Sulphuric acid 1 mol/l (R7) 100 pl/well or 50 pl/well of 1M HCL 

Read absorbance at 492 nm.

6.4 Albumin rocket electrophoresis

• Electrophoresis buffer 

Barbitone buffer pH =8.6/1 = 0.075

Per litre: Na-Barbitone 13.14g, Barbitone 2.07g, Ca-lactate 0.58g.



185

Dissolve the Na-Barbitone in half the final volume of H2O, add Barbitone and mix until 

dissolved. Dissolve the Ca-lactate and make up to final volume. Preserve by adding lml/L 

of 5% w/v thymol in isopropanol (anti-bacterial).

• Stain

2g Comassie Brilliant Blue G250 dissolved in 1L of Methanol (350): glacial acetic acid 

(100): water (550) by volume. Ethanol may substitute methanol.

• Destain

Methanol (350): glacial acetic acid (100): water by volume. Ethanol may substitute 

methanol.

• Gel

50mL electrophoresis buffer, 1.5g polyethylene glycol 6000 (PEG6000), 0.5g ME agarose. 

Dissolve in boiling water. Gel dimensions 190mm x 159mm x 1.5mm thick gel (47mL).

• Antibody

Poly- goat anti-human albumin (Inctar, Lot No. 918743)

Cool gel to 65 0 C before adding antibody 

Concentration = 200 pi in 50 ml 

CSF neat 5pl/well

• Electrophoresis

Power 150V/25mA. Run overnight, but can be run in 3 hours.

• Assay

Remove gel and press under filter paper x 15-30 minutes. Wash in normal saline x 15-30 

minutes. Repress and dry. Stain for 15 minutes.

• Destain

• Dry with hairdryer

Enlarge with photocopier x 200
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Measure with ruler for calibration curve.

Albumin standard = 50mg/mL dilute down4 0 / 3 0 / 2 0 / 1 0 / 5

6.5 Sequential preparation of VLDL, IDL, LDL, HDL2 and HDL3 by 

ultracentrifugation

6.5.1.1 IDL 1.019 g/ml (Containing VLDL).

4 ml Plasma + 0.32 ml d = 1.182g/ml mix and overlay with 1.68 ml of 1.019g/ml. 

Centrifuge at 35,000 r.p.m. overnight in 50.4 rotor. Remove and discard the top 2ml.

6.5.1.2 LDL 1.063 g/ml

To remaining 4 ml add 1.47 ml d = 1.182 mix and overlay with 0.53 ml d = 1.063g/ml. 

Centrifuge at 35,000 rpm overnight in 50.4 rotor. Remove and keep the LDL in the top 2 

ml if 4 ml of Plasma was spun.

6.5.1.3 HDL2 1.125 g/ml.

To the remaining 4 ml add 1.3 ml d = 1.3104 g/ml + 0.7 ml of d = 1.125 g/ml. Centrifuge at 

35,000-rpm for 48hr in 50.4 rotor. Remove and keep the top 1 ml. (Discard next 2ml).

6.5.1.4 HDL3 1.21 g/ml.

To remaining 3 ml add 3ml of d = 1.3104 mix. Centrifuge at 35,000-rpm for 48hr in 50.4 rotor. 

Remove and keep the top 1ml.

6.6 Brain tissue preparation

Unfixed post-mortem brain tissue was obtained from control subjects courtesy of Dr Axel 

Petzold and the MS Society Tissue Bank at the Institute of Neurology, Queen's Square. 

The mean post-mortem interval was 26.9 (1-40) hours. Snap-frozen blocks of control tissue 

(0.5-1 g wet weight) were cut and re-suspended at 1:5 g/mL in Tris-HCL buffer (100 mM 

Tris, pH 8.1 with 1% Triton X-100). Samples were homogenised on ice by sonication, 

triturated 3 times through 19 and 21 gauge needles and spun at 20,000g. In order to 

separate myelin protein, di-iso-propyl (1:5,000) was added. After extensive mixing the 

mixture was spun at 20,000g. The supernatant was covered by a myelin layer. A needle
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was put through the myelin layer and the supernatant drawn up into a 1ml syringe. A 

protease inhibitor cocktail containing AEBSF for inhibition o f trypsin and chymotrypsin; 

aprotinine for inhibition o f trypsin, chymotrypsin, plasmin, trypsinogen, urokinase and 

kallikrein; leupeptin for inhibition of calpain, trypsin, papain and cathepsin B; statin for 

inhibition o f aminopeptidases; pepstatin A for inhibition o f acid proteases and E-64 for 

inhibition o f cysteine proteases was added in a dilution of 1:100 to supernatant. After 

dilution into aliquots o f 1:1000, 1:5,000, 1:10,000, and 1:100,000 the samples were stored 

at -70°C.

6.7 CSF PAGE

Results from 4% PAGE and immunoblotting o f brain injury and control CSF samples.

a = control CSF: [apoE] ELISA = 7.1 mg/L 

b = control CSF: [apoE] EUSA = 31 mg/L 

c = control CSF: [apoE] ELISA = 18 mg/L 

d = TBI CSF: [apoE] EL,SA = 0.5 mg/L 

e = TBI CSF: [apoE] ELISA = 0.2 mg/L 

f  = TBI CSF: [apoE] EUSA = 10.5 mg/L 

g = TBI CSF: [apoE] ELISA = 5.5 mg/L

h and i = white matter homogenate: [apoE]ELISA = 0.5 and 0.4 mg/L respectively
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