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Abstract

Glaucoma, a group of heterogeneous optic neuropathies characterized by 

progressive visual field loss, is the leading cause of irreversible blindness 

worldwide. The condition has a substantial heritable basis, as illustrated by the 

numerous loci and genes identified to date, and the large proportion of patients 

having a family history. Categorized according to the anatomy of the anterior 

chamber angle, there are 2 main forms of glaucoma, primary open angle 

glaucoma (POAG) and primary angle closure glaucoma (PACG). The first 

half of the thesis describes the molecular genetic study of POAG, while the 

latter deals with PACG.

Primary open angle glaucoma (POAG) accounts for most glaucoma in 

Caucasian and Afro-Caribbean populations. The condition is classified 

according to the presence of elevated intraocular pressure (IOP) into high- 

tension glaucoma (HTG) or normal tension glaucoma (NTG). OPA1, the gene 

responsible for autosomal dominant optic atrophy represents an excellent 

candidate gene for POAG (in particular NTG). Single nucleotide 

polymorphisms on intervening sequence (IVS) 8 of the OPAlgens (genotype 

IVS 8 +4 C/T; +32 T/C) were found to be strongly associated with a fifth of 

NTG cases and may be a marker for disease association, providing the first 

evidence of an association between OPA1 and NTG. However this OPA1 

genotype was not found to be significantly associated with HTG. Further work 

did not detect a significant difference in a range of phenotypic features in 

NTG patients with and without these OPA1 polymorphisms, suggesting that
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these specific genetic variations do not underlie any major phenotypic 

diversity in NTG.

Optineurin (OPTN), in the GLC1E interval on chromosome lOp, was recently 

identified as the second gene underlying POAG, with a common mutation, 

E50K, being found in 13.5% of families, and a M98K variant identified as a 

significant risk-associated genetic factor for POAG. However when a large 

panel of 315 sporadic adult POAG subjects were examined for these 2 OPTN 

sequence variants, the E50K mutation was identified in only 1.5% of NTG 

subjects, making it an infrequent cause of sporadic NTG. The M98K variant 

was found to be associated specifically with NTG but not HTG, suggesting 

allelic heterogeneity between these 2 phenotypes. A characteristic NTG 

phenotype comprising a young-adult age of onset, advanced visual loss and 

progressive disease, has been described in individuals carrying the E50K 

OPTN mutation.

Primary angle closure glaucoma (PACG) is the main form of glaucoma in East 

Asian populations. Two large Singaporean PACG families were examined and 

the first locus for the disease was identified on chromosome 10 using linkage 

analysis. The disease interval was refined to 5.0 cM on chromosome lOql 1 

flanked by the markers D10S225 and D10S568, with the maximum LOD 

score of 3.4 at 0=.OO for D10S220. Several genes, GDF10, TIM23, SLC18A3 

and ASAH2 were excluded as candidates for this condition.
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This molecular genetic study of both POAG and PACG has contributed to our 

knowledge of glaucoma.
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CHAPTER 1

INTRODUCTION

1.1. Overview of chapter

The research described in this thesis involves genetic and clinical studies 

towards the identification of genes involved in primary glaucoma. The 

following sections review the classification and genetic basis of glaucoma. 

The human genome project is also discussed with relation to its relevance in 

the identification of genes involved in ocular diseases, as well as introducing 

concepts in molecular biology relevant to this thesis.

1.2. The eye

The human eye is the primary receptor organ for light. A typical structure of a 

mammalian eye is shown in Figure 1.1. Light enters the eye through the 

cornea and then passes through the pupil (the hole at the centre of the iris), 

through the aqueous humour, the lens and the vitreous humour before finally 

reaching the retina. The first step of visual perception requires the focusing of 

incoming light on to the retina, which contains photoreceptors. The axons of 

all the photoreceptors converge together to create an oval structure called the 

optic nerve head or optic disc, which continues as the optic nerve leading to 

the brain. At the level of the retina, the light energy is converted into electrical 

signals, which are then transported to the visual cortex in the brain via the
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optic nerve.

The production and drainage of aqueous fluid dermines the eye's intraocular 

pressure (IOP). The intraocular pressure maintains the shape of the eyeball and 

holds the retina smoothly against the outer layers of the eye. Aqueous humour 

is produced by the ciliary body of the eye (in the posterior chamber behind the 

iris) and passes through the pupil into the anterior chamber (Figure 1.2). From 

there, the fluid travels into the angle, the area in the anterior chamber where 

the cornea and iris join. The angle is comprised of several structures that make 

up the eye's drainage system, which include the outermost part of the iris, the 

front of the ciliary body, the trabecular meshwork, and the Canal of Schlemm. 

As the aqueous fluid drains out of the eye via the angle, it passes through a 

filter, the trabecular meshwork then through a tiny channel in the sclera called 

the Canal of Schlemm. The aqueous finally flows into other tiny channels and 

eventually into the eye's blood vessels (episcleral venous system). About a 

fifth of aqueous outflow is via the uveoscleral route, which is primarily 

through the face of the ciliary body.

26



Figure 1.1. Structure of the eye, showing the major anatomical landmarks 

(Pharmacia Inc).

Figure 1.2. Aqueous humor dynamics: Aqueous humour produced by the 

ciliary body, flows through the pupil and leaves the eye via the trabecular 

meshwork in the angle.
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1.3. Clinical Overview of Glaucoma

The glaucomas are a group of heterogeneous optic neuropathies characterized 

by progressive loss of axons in the optic nerve. Based on WHOGlobal Data 

Bank on Blindness, glaucoma accounts for 5.1 million of the estimated 38 

million blind in the world (Thylefors et al., 1995). As the number of elderly in 

the world rapidly increases, glaucoma morbidity will rise causing increased 

health care costs and economic burden in the future. It has been estimated that 

glaucoma will be the most common cause of irreversible blindness in the 

world this century with almost 70 million cases of glaucoma worldwide 

(Quigley, 1996). This high figure has important public health implications for 

a condition that is treatable but in which visual loss, at present, cannot be 

reversed.

The different forms of glaucoma share some common clinical manifestations 

that include a specific abnormal appearance of the optic nerve head, and 

progressive loss of visual field (Figure 1.3). The classical change in the optic 

nerve head is ‘cupping’ or excavation of the optic disc, with loss of the 

neuroretinal rim (Figure 1.4).
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Visual field damage

Figure 1.3. Visual field damage in glaucoma. Top left: early nasal loss. Top 

right: superior hemifield defect. Bottom left: Severe superior defect. Bottom 

right: End-stage constricted visual field.

Figure 1.4. Glaucomatous optic disc with increased cup-disc ratio (cupping).
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This is accompanied by a characteristic pattern of visual field loss, which 

usually begins with the loss of peripheral and paracentral vision, with central 

vision often maintained until the late stages of the disease. Raised intraocular 

pressure (IOP) used to be synonymous with glaucoma. However, elevation in 

IOP is not always present. For instance, the IOP may remain in the normal 

range (10-21mmHg on diurnal testing) in patients with so-called normal 

tension glaucoma. IOP is now considered to be a major risk factor for the 

development of glaucoma (Anderson, 1989; Sommer et al., 1991) but is not a 

criterion for diagnosing the onset or progression of the disease.

13.1. Pathophysiology

Visual information from the eye travels as axonal signalling down the optic 

nerve through approximately one million retinal ganglion cells (RGCs) to the 

brain. In glaucoma, the disease affects primarily the RGCs, though other cell 

types such as the optic nerve astrocytes and retinal glia may also be involved 

(Levin, 2003). The primary disease locus is the optic nerve head, either at or 

near the lamina cribrosa or in the peripapillary retina. The mechanism of 

damage is not established, it is not known whether it is mechanical 

compression, ischemic changes, astrocytic reaction (Hernandez, 1997), 

autoimmune attack (Wax, 2000), or changes due to reactive oxygen species 

and nitric oxide production (Neufeld et al, 1997). One or more of these disease 

processes occur, which eventually signal RGCs to die via apoptosis 

(programmed cell death). This is followed by wallerain degeneration of the 

axon which leads to its loss of function. As RGCs are central nervous system 

neurons, once they die, RGC loss is irreversible and they are not replaced, 

leading to the irreversible visual loss seen in glaucoma patients.
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1.3.2 Classification of Glaucoma

Glaucoma can be classified in a variety of ways, including: anatomically (open 

angle versus closed angle), aetiologically (primary versus secondary), 

chronologically (congenital, juvenile or adult), or on the basis of phenotypic 

features such as raised IOP (high tension or normal tension glaucoma). The 

diversity of classifications highlights the paucity of our understanding of the 

molecular mechanisms responsible for this common disease.

Combining the various forms of classification, the major forms of glaucoma 

worldwide are primary open-angle glaucoma (POAG) and primary angle- 

closure or closed angle glaucoma (PACG). These 2 categories are by far the 

most common forms of glaucoma and account for >90% of all glaucomas. 

Both forms of glaucoma also affect the elderly, usually above the age of 60 

years.

1.3.3. Assessment of the angle

Primary glaucomas are classified according to the configuration of the anterior 

chamber angle. The angle is assessed by direct visualization using lenses, a 

technique known as gonioscopy (Figure 1.5 and 1.6). The single most 

important structure to identify when performing gonioscopy is Schwalbe’s 

line. This can be located at the termination of the peripheral corneal wedge. 

Lying immediately posterior to this is the trabecular meshwork. It is believed 

that the posterior half of the trabecular meshwork is responsible for the 

majority of aqueous drainage via the trabecular route. When assessing the
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degree of functional obstruction to drainage, apposition of the iris and 

posterior trabecular meshwork is of greatest relevance.

There are two widely used schemes for classifying and recording the 

gonioscopic appearance of the drainage angle. Scheie’s scheme (Scheie, 

1957) describes the angle structures that are visible, and the degree of 

pigmentation in the angle. The angle width is graded “O” for wide open with 

the ciliary body visible, and “IV” representing a state where no angle 

structures are visible. In contrast, the Shaffer system (Becker and Shaffer, 

1965) attempts to describe the angular width of the irido-comeal recess, and 

uses Arabic numerals in the reverse order, 0 meaning an angle of 0° (closed 

angle) and 4 indicating 30-45° (wide open angle). In practice, most 

ophthalmologists use a combination of these 2 schemes and usually record the 

findings according to Shaffer’s convention in each quadrant (Table 1.1). The 

angle width is graded ‘4’ for wide open with the ciliary body being visible, 

and ‘0’ representing a state where no angle structures are visible (Tablel.l). 

Under this convention, angle grades 3 or 4 are considered open, while grade 0 

is considered closed.
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Description Shaffer

Grade

Angle width Description

Wide open 4 35-45° Wide open

Slightly narrower but open 3 20-35° Open

Angle apex not visible 2 20° Narrow

Posterior half o f trabeculum not 1 10° Extremely narrow

visible

No structures seen 0 0° Closed

Table 1.1. Clinical grading of the angle.

Another system of grading gonioscopic anatomy was that of Spaeth who 

described several features of angle configuration, including angular width, the 

level of insertion of the iris and the iris profile (Spaeth, 1971).
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Scleral spur 
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Sebvvalbe's line 
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v 'n ra m i i t .

Figure 1.5. Angle structures. Left: In cross section. Right: As seen in 

gonioscopy (from the front).

Figure 1.6. Gonioscopy. Clinical slide of the view seen during gonioscopy, 

showing an open angle.
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1.3.4. Primary Open Angle Glaucoma (POAG)

POAG accounts for about two thirds of all glaucoma seen in Caucasian 

populations (Tielsch et al., 1991; Klein et al., 1992; Bonomi et al., 1998) and 

is also the main form of glaucoma in Afro-Carribeans (Mason el al, 1989). 

The angle of the anterior chamber appears open but does not function properly 

in transporting aqueous humour out of the eye in POAG (Figure 1.7). The 

exact nature of this resistance remains to be elucidated.

The onset of POAG is arbitrarily divided into the juvenile and elderly age 

groups but with overlapping clinical presentation. Most POAG cases are 

however found in the elderly, especially those above 60 years. POAG patients 

present with asymptomatic progressive loss of visual field, accompanied by 

cupping of the optic disc. In the classical form of the disease, the IOP is raised, 

usually above 21 mm Hg, and such patients are classified as high tension 

glaucoma (HTG).

Normal tension glaucoma (NTG) is an important subtype of POAG, in which 

the IOPs are consistently within the statistically normal population range. 

NTG accounts for approximately a third (range 20% and 50%) of all POAG 

cases (Sommer et al., 1991; Shiose et al., 1991; Klein et al., 1992; Bonomi et 

al., 1998). As the IOP is normal when measured and patients often have good 

central vision, NTG is under-diagnosed and the condition presents late. The 

main reason for NTG being under-diagnosed is because the main trigger for 

case finding is elevated IOP. Without elevated IOP, the index of suspicion 

falls and as a consequence, glaucomatous cupping may be overlooked. With
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NTG, aqueous dynamics are normal, with normal diurnal curves for IOP and 

normal values for aqueous outflow.

I.3.4.I. Risk Factors Associated With POAG

1. Intraocular Pressure (IOP)

Raised IOP is a major risk factor for POAG (Anderson, 1989; Sommer et al., 

1991). The evidence that elevated IOP is the major risk factor for developing 

glaucoma comes from a series of studies, including the Baltimore survey. This 

demonstrated that 1.2% of the population with an IOP < 21mmHg had 

glaucoma in comparison to 10.3% population with IOP > 22mmHg (Sommer 

et al., 1991). The IOP level has also been shown to correlate with the relative 

risk of developing glaucoma and the severity of the field damage at 

presentation (Sommer et al., 1991; Jay and Murdoch, 1993). Even in NTG 

patients, the eye with the higher IOP exhibits the more severe degree of field 

loss (Cartwright and Anderson, 1988). IOP has been found to fluctuate at 

different times of the day, with nocturnal elevation of IOP and low IOP at the 

end of the light/wake period (Liu et al, 1999). Interestingly, such diurnal 

fluctuations in IOP have even been reported to affect optic disc morphology, 

as measured by scanning laser ophthalmoscopy (Lee et al, 1999).

2. Race

Over the last decade large-scale population studies have shown that 

individuals from Africa, African Americans and Afro-Caribbeans are at higher
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risk of POAG compared to Caucasians (Mason et al., 1989, Sommer et al., 

1991, Tielsch eta l., 1991).

3. Age and Sex

Population studies have shown that increasing age and male gender is also 

associated with higher risk for open angle glaucoma (Leske et al., 1995).

4. Family History

A positive family history is a significant risk factor for POAG, the odds ratio 

of having POAG for those with siblings with the disease being 3.69, parents 

with the disease 2.17 and for those with children the disease 1.12 (Tielsch et 

al., 1994). It has been estimated that 20-60% of glaucoma patients have a 

family history (Wolfs et al., 1998; Nemesure et al., 1996; Nemesure et al.,

2001) and under-reporting of a family history has been well documented in 

glaucoma (McNaught et al., 2000). Twin studies on POAG have reported 

conflicting results. In a population based twin study from Finland on 108 pairs 

(29 monozygotic), the heritability of POAG was calculated to be only 13% 

with a concordance rate of 7.1 (Teikari, 1987). However, in a twin study of 50 

twin pairs from Iceland, the concordance of POAG in monozygotic twins was 

98% (Gottfredsdottir et al., 1999).
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P R IM A R Y
OPfcN ANGU 
GLAUCOMA

Figure 1.7. Aqueous flow in POAG. Aqueous flows normally from the ciliary 

body through the pupil into the angle.

ANOtf ClOSURf 
GLAUCOMA

Figure 1.8. Aqueous flow in PACG. Due to the resistance of flow at the pupil 

(pupil block), pressure builds up in the posterior chamber and bows the iris 

forwards, obstructing access to the angle.
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1.3.5. Primary Angle-Closure Glaucoma (PACG)

Primary angle closure glaucoma (PACG) is the main form of glaucoma in 

Asia (Hu et al., 1989; Foster and Johnson, 2001), compared to POAG, which 

is the predominant disease among Caucasians and Africans (Mason et al., 

1989; Tielsch et al., 1991; Klein et al., 1992). This is true especially in 

populations of Chinese and Mongoloid descent, where the prevalence of 

PACG is between 1-2% in those above 40 (Congdon et al., 1992; Foster et al., 

1996; Foster et al., 2000). Recent glaucoma prevalence studies in southern 

India found that the prevalence of PACG in Indians is also high (Jacob et al., 

1998; Dandona et al., 2000), and is close to that reported in Mongolians 

(Foster et al., 1996). The estimated high prevalence of PACG in China and 

India make PACG a major form of glaucoma worldwide, possibly as common 

as POAG. In China itself, it is estimated that PACG afflicts 3.5 million people 

and 28 million have an occludable drainage angle, which is the anatomical 

trait predisposing to PACG (Foster and Johnson, 2001).

Primary angle-closure glaucoma is visually destructive. Nearly half of PACG 

cases were blind in one or both eyes in an Indian study (Dandona, et al., 

2000), and PACG accounted for most of the glaucoma blindness in Singapore 

(Foster et al., 2000). The visual morbidity of the disease may be related to the 

finding that chronic asymptomatic PACG is the predominant form of the 

disease (Foster et al., 1996; Foster et al., 2000; Dandona et al., 2000). The 

absence of symptoms makes the condition difficult to detect, resulting in a 

large proportion of cases being undiagnosed and untreated. The problem is
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compounded by the requirement that the diagnosis of PACG is verified by 

gonioscopy, but this is not routinely available in many parts of the world.

I.3.5.I. Mechanism of PACG

PACG results from obstruction of the trabecular meshwork to the outflow of 

aqueous in the angle of the eye, the clinical feature sine qua non of the 

condition. The obstruction to outflow is due to the presence of adherent iris 

tissue called peripheral anterior synechiae (PAS) overlying the trabecular 

meshwork in the angle. Pupil block is the main underlying mechanism for 

PACG (Ritch and Lowe, 1996). In pupil block, there is variable resistance to 

aqueous flow from the posterior to anterior chamber through the pupil (Figure 

1.8). This results in a substantial pressure differential between anterior and 

posterior chambers causing a flattening of iris contour. As aqueous production 

continues, posterior chamber pressure rises. The peripheral iris is bowed 

forward, coming into contact with the trabecular meshwork. This then results 

in obstruction of aqueous outflow through the trabecular route and a rise in 

IOP. With time, the iris tissue blocking the angle may adhere to the angle 

forming PAS.

Other mechanisms that contribute to angle closure include iris crowding with 

plateau iris type of configuration, and lens factors such as increased thickness 

and forward lens positioning. It is thought that racial differences seem to play 

a role in the pathogenesis of angle closure glaucoma. The iris joins the scleral
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wall more anteriorly in Asians and more posteriorly in Caucasians (Oh et al., 

1994). There is a greater tendency towards plateau iris and anterior lens 

position without significant lens enlargement in Asia (Congdon et al., 1992; 

Salmon et al., 1994).

I.3.5.2. New Sub-classification of PACG

The terminology for angle-closure is used inconsistently throughout the 

literature. Epidemiological studies have used different diagnostic criteria for 

the definition of angle closure as well as what constitutes an occludable or 

narrow drainage angle. The clinical classification for angle closure is also not 

standardized. The current textbook classification of PACG is based principally 

on symptomatology with PACG traditionally classified as acute or chronic, 

according to the presence of symptoms. This emphasis may be not be 

appropriate as it does not consider the degree or consequences of angle 

obstruction or the presence of optic neuropathy. There is often overlap in the 

clinical presentation, limiting the use of such a classification. For example, 

patients with acute angle-closure can develop chronic PACG after the 

resolution of the acute episode. Similarly, patients with chronic PACG may 

develop acute angle-closure.

Recently, a new diagnostic classification of PACG has been proposed, which 

will provide a more uniform definition of the disease and be in line with the 

classification used in primary open angle glaucoma (Foster and Johnson, 

2000; Foster et al., 2002). The focus of the classification is the presence of 

glaucomatous damage to the optic nerve, as well as damage or obstruction of
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the trabecular meshwork. This approach differentiates those with a true 

disease as opposed to suspects who are at increased risk of disease. The term 

‘glaucoma’ is thus reserved only for people who have suffered injury to the 

optic nerve as judged by visual field abnormality, combined with enlargement 

of the cup/disc ratio outside statistical limits for the population studied.

Using this nomenclature, there are thus 3 classes of angle closure:

1. Narrow angle: At the earliest or most basic stage of the condition, eyes have 

narrow or occludable angles without any other abnormality. The term primary 

angle-closure suspect is an alternative term for this condition, as these eyes are 

at increased risk of developing disease.

2. Primary angle-closure (PAQ is said to occur in eyes with angle-closure due 

to PAS, and/or raised intraocular pressure (IOP) due to closure of the angle, 

but without the presence of glaucomatous optic neuropathy. Eyes with a 

history of previous acute angle closure are also classified as PAC.

3. Finally, primary anele-closure glaucoma (PACG) is reserved for cases of 

primary angle-closure with glaucomatous optic neuropathy.

Symptomatic or acute primary angle closure can occur at any stage of this 

spectrum of disease. This new classification of PACG is used throughout this 

thesis.
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1.3.5.3. Risk Factors Associated With PACG

1. Race

Prevalence of PACG is race dependent, being least in Caucasians and highest 

in Inuits, with Asians in between that of Caucasians and Inuits (Congdon et 

al., 1992; Foster et al., 1996).

2. Age and Sex

The manifestations of ocular damage resulting from primary closure of the 

drainage angle are rare before the age of 40 years. The prevalence of disease 

increases from the age of 40 years (Alsbirk, 1976; Shiose et al., 1991; Salmon 

et al., 1993). Female gender is recognized as a major predisposing factor 

toward development of PAC (Alsbirk, 1976; Arkell et al., 1987; Shiose et al., 

1991; Salmon et al., 1993).

3. Ocular Biometry

The association between a small eye and “acute glaucoma” was first 

recognised in the 19th century by von Graefe (published in 1857). Lowe 

reviewed the development of ocular biometry in the study of primary angle- 

closure and found people suffering angle-closure had shorter axial lengths than 

did unaffected people (Lowe, 1974). Several studies have since found that a 

small eye with a shallow anterior chamber is significantly associated with
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PACG (Tomquist, 1956; Lowe, 1969; Alsbirk, 1974a; Alsbirk, 1974b; Arkell 

e ta l., 1987).

4. Family History

PACG has been found to be more common in first-degree relatives of affected 

probands than in the general population. (Paterson, 1961; Lowe, 1964; Lowe, 

1972; Alsbirk, 1975; Alsbirk, 1976; Leighton, 1976; Lowe, 1988).

1.4. Genetic Basis Of Glaucoma

Glaucoma has a major genetic basis, estimated to account for a third (range 20 

- 60%) of all glaucoma cases (Wolfs et al., 1998; Nemesure et al., 1996; 

Nemesure et al., 2001), although a recent report suggests that this is an 

underestimate (McNaught et al., 2000). Genetic heterogeneity is illustrated by 

the more than 15 loci and 7 glaucoma-causing genes identified to date (Craig 

and Mackey, 1999). These are summarized in Table 1.2. A diverse variety of 

genetic mechanisms have been found to induce glaucoma and these include 

coding mutations, particularly in transcription factors (Kozlowski et al., 2000), 

altered gene dosage (Lehmann et al., 2000; Nishimura et al., 2000) and 

dominant negative effects (Morissette et al., 1998).

The Human Genome Organisation (HUGO) Genome Database Nomenclature 

Committee introduced a nomenclature and classification system for glaucoma 

genetics. The approved gene symbol was GLC1 for all types of primary open 

angle glaucoma (POAG); the letter A, B, C etc. assigned to each newly
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discovered locus. GLC2 was designated to primary angle closure glaucoma 

and GLC3 to primary congenital glaucomas.

Table 1.2. List of glaucoma-causing genes, loci, chromosomal location and 

mode of inheritance.

Phenotype Locus Position Inheritance Gene

JOAG/POAG GLC1A Iq24.3-q25.2 AD MYOC
POAG GLC1B 2cen-ql3 AD
POAG GLC1C 3q21-24 AD
POAG GLC1D 8q23 AD
POAG/NTG GLC1E 10pl5-14 AD OPTN
POAG GLC1F 7q35q36 AD

Pigment Dispersion GPDS1 7q35q36 AD
Pigment Dispersion GPDS2 18qll-21 AD
Axenfeld-Rieger RIEG1 4q25 AD PITX2
Axenfeld-Rieger RIEG2 13ql4 AD
Axenfeld-Rieger IRID1 6p25 AD FOXC1
Axenfeld-Rieger 16q24 AD

Congenital Glaucoma GLC3A 2p21 AR CYPB1
Congenital Glaucoma GLC3B lp36.2-36.1 AR

Nail-Patella Syndrome NPS1 9q34 AD LMX1B
Aniridia PAX6 llpl3 AD PAX6

Nanophthalmos NNOl lip AD
Micropthalmia Xp X
Micropthalmia arMi 14q32 AR
Micropthalmia CHX10 14q24.3 AR CHX10
Micropthalmia adCMIC 15ql2-15 AD
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1.4.1. Genetics of POAG

The first locus for open angle glaucoma was discovered in 1993, mapped at 

1 q21 -q31 and assigned as GLC1A (Sheffield et al, 1993). The gene at the 

GLC1A locus was originally referred to as the trabecular meshwork induced 

glucocorticoid response (TIGR) gene as a candidate cDNA isolated from 

human trabecular meshwork cells after induction with dexamethasone was 

found to reside in the candidate interval (Polansky et al., 1996). 

Independently, other investigators isolated the same cDNA and named it 

myocilin, as they showed its expression in the retina to be localized to the 

connecting cilium of photoreceptors (Kubota et al., 1997). Families linked to 

this locus have both juvenile and adult-onset POAG (Stone et al., 1997;

Suzuki et al., 1997; Alward et al., 1998; Wiggs et al., 1998; Alward et al,

2002). Mutations have been identified in several populations, including 

patients from Scotland, France, Japan, Germany and America (Fingert et al., 

1999).

It was speculated that the MYOC gene product may cause increased 

intraocular pressure by obstruction of aqueous outflow (Stone et al., 1997). Its 

expression in trabecular meshwork and ciliary body (structures of the eye 

involved in the regulation of intraocular pressure) was consistent with this 

hypothesis. Obstruction of aqueous outflow is, however, not the only 

mechanism. Because myocilin is expressed in large amounts in various types 

of muscle, ciliary body, papillary sphincter, skeletal muscle, heart, and other 

tissues, it is possible that some muscle-related ciliary body mechanism may be
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involved in the elevated intraocular pressure. Shepard et al characterized the 

glucocorticoid responsiveness of the MYOC gene in cultured human trabecular 

meshwork (TM) cells and concluded that MYOC is a delayed secondary 

glucocorticoid-responsive gene (Shepard et al, 2001). A recent study reported 

the generation of mice heterozygous and homozygous for a targeted null 

mutation in MYOC. There was a lack of a discemable phenotype in both 

MKOC-heterozygous and MYOC-nuW mice, suggesting that haploinsufficiency 

is not a critical mechanism for POAG in individuals with mutations in MYOC. 

Instead, disease-causing mutations in humans are likely to act by gain of 

function (Kim et al, 2001).

There are several other loci for adult onset POAG. The second locus (GLC1B) 

was assigned to the 2cen-ql3 region (Stoilova et al., 1996). The phenotype 

was less severe than that found in GLC1A linked families. The third locus for 

adult onset POAG has been described in a single American family, mapping to 

the 3q21-24 region, GLC1C (Wirtz et al., 1997). The GLC1D locus for mixed 

normal and high-pressure glaucoma was mapped in one American family 

(Trifan et al., 1998). A specific locus for normal tension glaucoma (NTG), 

GLC1E was assigned to 10pl4-pl5 (Sarfarazi et al., 1998), and a sixth locus 

for POAG was also mapped to chromosome 7q35 (Wirtz et al., 1999).

Recently, a second POAG gene, Optineurin (OPTN, MIM 602432) in the 

GLC1E interval on chromosome lOp was identified (Rezaie et al., 2002), and 

showed that variations in this gene predominantly resulted in NTG. The most 

common OPTN mutation, Glu50 —► Lys (E50K) was identified in 13.5% of 

families, 18% of whom had high IOP. A second OPTN variant, Met98 —►Lys
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(M98K) was identified in 13.6% of familial and sporadic POAG cases 

compared to 2.1% of controls, making it a significant risk-associated genetic 

factor for glaucoma. Vittitow and Borras studied the effect of glaucomatous 

insults on the expression of OPTN in human eyes maintained in organ culture. 

Sustained elevated intraocular pressure, TNF-alpha exposure, and prolonged 

dexamethasone treatment all significantly upregulated OPTN expression, 

indicative of the protective role of OPTN in the trabecular meshwork (Vittitow 

and Borras, 2002).

1.4.2. Genetics of PACG

As the majority of glaucoma research has been centred on populations with a 

preponderance of POAG, PACG has been a relatively poorly researched 

condition. There are no studies to date on the genetics of PACG although 

transmission via a single, dominant gene has been suggested (Tomquist, 

1953).

However, there are various published studies on PACG, which suggest a 

genetic basis for the condition. Firstly, ocular characteristics related to angle 

closure glaucoma are more common in close relatives of affected patients than 

in the general population; these characteristics include anterior position of the 

lens, increased lens thickness and shallow anterior chamber (Tomquist, 1956; 

Lowe, 1964; Lowe, 1972; Tomlinson and Leighton, 1973; Alsbirk, 1975; 

Spaeth, 1978; Francois, 1983). Estimates of the prevalence of PACG among 

first degree relatives in the Caucasian population have ranged from 1-12 %, 

which is higher than the 0.1% prevalence in the general population (Paterson,
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1961; Lowe, 1964; Lowe, 1972; Alsbirk, 1975; Leighton, 1976; Francois, 

1983; Lowe, 1988). First-degree relatives of Inuits with PACG have a three 

and a half times greater risk of developing the disorder compared with the 

general Inuit population (Alsbirk, 1976). There are also racial differences, 

with a higher prevalence among Inuits (2 to 8%) and Asians (0.3 to 1.4 %) 

compared to Caucasians (0.1%), suggesting a genetic predisposition to the 

disorder (Congdon et a l, 1992).

Recently, genetic loci for both nanophthalmos and microphthalmia have been 

found (Bessant et al., 1998; Othman et al, 1998; Morle et al., 2000; Percin et 

al, 2000). These cases are characterized by short axial length, high 

hypermetropia, high lens/eye volume ratio, and a high incidence of prevalence 

of angle-closure. Intraocular pressure was greatly elevated in many cases. 

The combination of ocular defects suggested an embryological disorder 

involving tissues derived from both the neuroectoderm and neural crest. These 

data provide growing evidence that PACG may have a genetic basis.

1.4.3. Genetics of primary congenital glaucomas

GLC3 is the gene symbol for primary congenital glaucoma. Two loci have 

been described in pedigrees segregating glaucoma as an autosomal recessive 

trait, GLC3A at chromosome 2p21 (Tang et a l , 1996) and GLC3B at lp36 

(Akarsu et al, 1996). Mutations in the cytochrome P4501B1 (CYP1B1) gene 

have since been identified in GLC3A linked families (Stoilov I et a l , 1997; 

Bejjani e ta l  1998).

49



1.4.4. Genetics of developmental glaucomas

Syndromes of anterior segment dysgenesis such as Axenfeld-Rieger syndrome 

and iridogoniodysgenesis are frequently accompanied by glaucoma. The usual 

pattern of inheritance for these conditions is autosomal dominant. Mutations 

have been identified in the PITX2 gene, a member of the homeobox family at 

the RIEG1 locus in patients with Rieger syndrome, iris hypoplasia and 

iridogoniodysgenesis (Heon et al., 1995; Semina et al., 1996; Kulak et al., 

1998). The RIEG2 locus was linked to chromosome 13ql4 (Phillips et al.,

1996). A number of families with Axenfeld-Rieger syndrome have been 

linked to chromosome 6p25, and found to have mutations in the FOXC1 gene. 

FOXC1, was subsequently shown to cause a spectrum of glaucoma-associated 

developmental phenotypes including Axenfeld anomaly, Rieger syndrome and 

iris hypoplasia (Nishimura et al., 2001). A large pedigree was reported with a 

chromosomal duplication encompassing FOXC1 indicating that gene 

duplication causes developmental disease in humans and that increased 

FOXC1 gene dosage was the probable mechanism responsible for the iris 

hypoplasia and glaucoma phenotype (Lehmann et al., 2000). Aniridia is also 

associated with developmental glaucoma. The gene for aniridia (PAX6) on 

chromosome lip  13 is a transcription factor of the paired-box family (Ton et 

al., 1991).

1.4.5. Monogenic or Polygenic Disease

At present it is unclear whether (genetically-determined) cases of glaucoma 

are a heterogeneous collection of monogenic disorders or a complex genetic
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disorder with multiple genes acting (either alone or in conjunction with 

environmental factors) to determine an individual's susceptibility to 

developing glaucoma. In the last two years, evidence for the presence of 

modifier genes that modulate the penetrance and or severity of certain forms 

of glaucoma has emerged. The first study, an analysis of Saudi pedigrees with 

primary congenital glaucoma identified 40 apparently unaffected individuals 

in 22 pedigrees with CYP1B1 mutations and haplotypes identical to their 

affected siblings. This suggested the presence of a dominant modifier locus 

capable of modulating the severity of the disease (Bejjani et al., 2000). More 

recently, a single pedigree with autosomal dominant glaucoma was reported in 

which CYP1B1 and MYOC mutations segregated. The mean age at diagnosis 

of glaucoma in the MYOC mutation carriers was 51 years compared to 27 

years in individuals with both mutations, indicating that MYOC and CYP1B1 

may interact through a common pathway (Vincent et al., 2002).

1.5. Dominant Optic Atrophy

Autosomal dominant optic atrophy (ADOA) is another condition that is

characterized by progressive optic nerve damage (Hoyt, 1980; Votruba et al.,

1988; Johnston et al., 1999). This optic neuropathy is attributable to primary

degeneration of retinal ganglion cells followed by ascending atrophy of the

optic nerve (Johnston et al., 1979; Kjer et al., 1983). Loci for ADOA have

been mapped to chromosome 3q28-qter (Eiberg et al., 1994; Jonasdottir et al,
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1997) and 18ql2.2-ql2.3 (Kerrison et al., 1999), and recently, the OPA1 gene 

(MIM 165500) was identified (Alexander et al., 2000; Delettre et al., 2000) 

and shown to be ubiquitously expressed, including in retinal ganglion cells 

and the optic nerve (Alexander et al., 2000).

Since different mutations in the same gene may cause widely different 

phenotypes, as illustrated in glaucoma by FOXC1, MYOC, PAX6 and PITX2, 

the similarities between glaucoma and ADOA (in terms of the cell type 

affected and the phenotype) make OPA1 an excellent candidate gene for 

glaucoma.

1.6. Strategies to identify genes implicated in human disease

A number of different methods can be employed to identify genes implicated 

in human disease, ultimately leading to the screening of a candidate gene for 

mutations. Two major strategies are functional and positional candidate gene 

approach. The functional approach requires prior knowledge of the protein 

product, function of the gene, or biochemical understanding of the disease. 

However, for the majority of inherited human disease, the underlying



biochemical defect is unknown. A positional strategy assumes no functional 

knowledge and is dependent on the chromosomal location of the disease locus 

determined by genetic linkage analysis (Figure 1.9). A combination of the two 

approaches is often used and involves the initial localisation of the disease to a 

chromosomal region, refinement of the genetic interval using polymorphic 

markers, and the subsequent selection of candidate genes based on criteria 

such as gene expression pattern or homology to genes or proteins previously 

implicated in similar disease processes or pathways. The availability of the 

sequence of the human genome has greatly facilitated the elucidation of the 

genetic basis of human disease.
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Figure 1.9. Identifying genes in disease: positional approach.
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1.7. Principles of genetic mapping

Genetic mapping follows the segregation of alleles at a locus for a genetic 

marker during meiosis.

1.7.1. Meiotic recombination

Human genomic DNA is distributed between 22 pairs of autosomes and two 

sex chromosomes. During meiotic cell division, homologous chromosome 

pairs, each consisting of two chromatids, are aligned together and DNA 

segments are exchanged between chromatids of homologous chromosomes. 

This process is referred to as crossing over and results in recombinant 

chromosomes. These recombination events occur on average at least once on 

the arm of each chromosome. As a result of these events, a unique 

chromosome is formed and inherited by the next generation. Loci which lie 

physically further apart are more likely to recombine while loci which lie 

closer together on the chromosome are less likely to recombine and can 

therefore be considered linked to one another.



The frequency of recombination can be calculated by comparing the inherited 

alleles of offspring to those of their parents. Linkage analysis relies on the 

frequency of crossovers to infer the distance between genetic markers in a 

family pedigree. Using linkage analysis, genetic markers can be placed onto 

genetic maps of chromosomes and the segregation of inherited diseases in a 

family can be followed. Linkage analysis in family pedigrees expressing a 

disease phenotype can be used to define a chromosomal locus, leading to the 

isolation of the causative gene.

1.7.2. Recombination frequency

The number of recombinants expressed as a fraction of the total number of 

gametes is called the recombination fraction (0) and it is a measure of the 

genetic distance between any two loci. The further apart two loci are, the 

greater the possibility of crossovers being observed and the recombination 

fraction will then approach 0.5 which indicates independent segregation. 

Conversely, if two loci lie close together on a chromosome and no crossovers 

are observed then recombination fraction will be zero.



1.7.3. Genetic map distance

The genetic map distance (in units of Morgans) is defined as the length of 

chrdmosomal segment, which on average undergoes one crossover per 

chromatid strand. The male autosomal map length is estimated to be 26.5 

Morgans based on an average occurrence of 53 chiasmata. The recombination 

rate in females is higher than in males and is estimated to be 39 Morgans. 

Thus, the sex-averaged autosomal map is 33 Morgans, which implies that the 

average length of a human chromosome is 1.5 Morgans or that it undergoes

1.5 crossovers per meiosis (Renwick, 1969). However, genetic distance is 

usually quoted in centimorgans (cM), where two loci are 1 cM apart if they 

recombine once in 100 meiosis or show a recombination fraction (0) of 0.01. 

There is a linear correlation between 0 and genetic map distance over short 

distances however, over longer distances multiple crossovers can occur 

between two loci and the values of 0 are not additive.

1.8. Linkage analysis

Linkage analysis is the method used in families in order to ascertain the

location of the disease gene in the human genome. The process involves the

use of polymorphic genetic markers of known genomic localisation with the
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purpose being to identify co-segregation between the disease locus, 

represented by the disease phenotype, and an allele of a DNA marker. It relies 

upon the tendency of genes or DNA sequences at fixed chromosomal positions 

(loci) to be inherited together due to their physical proximity on the 

chromosome, and identification of such co-segregation infers linkage between 

the 2 loci and therefore localises the disease gene to the region where the 

marker maps. By measuring the frequency of non-random segregation, a 

statistical value can be calculated for the likelihood that two loci are linked.

1.8.1. Maximum likelihood estimate (MLE)

Linkage analysis utilises the principle of maximum likelihood, which states 

that the hypothesis with the greatest likelihood is that for which the probability 

of the observations is maximised. This maximum value is called the maximum 

likelihood estimate (MLE) or L (0), and is obtained by finding that value of 

the recombination frequency (0) between the disease and the marker that 

maximises the probability of the data. L (0) can be calculated for a range of 

recombination fractions between 0 and 0.5 and the value of Q that produces the 

highest L(0) is the MLE. This is often denoted as odds ratios, L(0)/L(O.5) 

which expresses the probability of linkage versus non-linkage.



1.8.2. Lod score (Z)

The LOD score (Z) (or logarithm of odds ratio) is a useful mathematical 

measure of the likelihood of segregation (linked) of a marker to phenotype as 

opposed to both being unlinked. Crossovers or recombination frequencies will 

affect the Z value so the LOD score is essentially the ratio that two loci are 

linked at a given recombination fraction (0) compared to the same segregation 

pattern if they are unlinked. This ratio is calculated for a range of 

recombination values between 0=0 and 0=0.5 (where loci are regarded as 

independently assorted) (Ott, 1997).

Z(0)=loglO[L(0)/L(O.5)]

where: L(0)=likelihood if the two loci are linked and have a recombination 

fraction of 0.

L(0.5)=likelihood if the two loci are not linked.

By convention, a LOD score of > 3.0 is regarded as significant evidence that 

two loci are linked. This is equivalent to a 1:1000 or less likelihood that the 

observed linkage has occurred by chance. A smaller LOD score is required for
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demonstrating linkage in X-linked disorders (> 2.0). The presence of a 

negative LOD score suggests that the two loci are unlinked and, by 

convention, a LOD score of <-2.0 is taken as evidence against linkage at the 

stated recombination fraction.

LOD scores can be calculated with a variety of computer packages including 

MLINK program (Lathrop and Lalouel, 1984) within Cyrillic 2.1.1 and web 

based programmes (e.g. Genetic Linkage User Environment (GLUE), Human 

Genome Mapping Project).

1.8.3. Polymorphic markers used in linkage analysis

Genetic mapping requires markers that are polymorphic, display Mendelian 

segregation and are distributed at regular interval throughout the genome in 

order to provide a useful tool for the chromosomal localisation of a disease. A 

genetic marker defines a particular chromosomal locus and helps in 

differentiating homologous chromosomes.
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1.8.4. Marker characteristics

For linkage analysis, it is necessary to have informative meiosis. However, in 

order to achieve this, it is necessary for a marker to be polymorphic and 

informative as increased information content of markers can reduce the 

number of individuals that need to be typed to genetically map disease genes. 

The polymorphism information content (PIC) value was used to calculate the 

informativeness of a marker in a given population and is dependent on the 

number of alleles in that population (Weber and May, 1989). A PIC value of 

greater than 70% signifies an extremely polymorphic marker. The formula for 

PIC is as follows:

PIC = l-Spi2-IZ2piV

(where pi and pj are the population frequencies of the ith and jth alleles in a 

diallelic system)

Heterozygosity is defined as the probability that an individual is heterozygous 

for an allele if picked at random, and is depicted by the formula:

H=l-l/a
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where a is the number of alleles of equal frequency. The greater the number of 

alleles, the greater the probability of heterozygosity, and if there are a large 

number of alleles, H approximates PIC.

1.8.5. Types of Markers

1.8.5.1. RFLPs and mini-satellite DNA

The markers used to establish linkage have changed considerably over the last 

twenty years and have become more informative. Restriction fragment length 

polymorphisms (RFLPs) exploit the fact the human DNA can be variable and 

that these variations may result in the alteration of a restriction enzyme site. 

RFLPs were typed by the hybridisation of Southern blots of restriction 

digested genomic DNA with a probe tagged with radioisotope and subsequent 

exposure to autoradiograph film, and were used to provide a marker set 

spanning the entire genome (Botstein et al., 1980). Most RFLP systems have 

only two alleles with a maximum heterozygosity of 50%. A major drawback 

of the use of RFLPs is that it is time consuming and the informativeness of 

markers is low.

Minisatellite or variable number tandem repeats (VNTRs) are tandemly 

repeated units of 11-60 bp that can extend up to 1 kb. Polymorphism occurs as
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a result of the difference in the number of repeats. As such, VNTRs are more 

informative than RFLPs and have higher PIC values hence they become more 

useful for linkage studies. The major limitation of minisatellites is the 

tendency for clustering around the telomeres and the time consuming method 

of analysis (Jeffreys et al, 1985).

1.8.5.2. Microsatellite markers (Short Tandem Repeat Polymorphisms)

Microsatellites are simple tandem repeat sequences that can be found at the 5’ 

and 3’ untranslated region of genes, as well as within introns and non-coding 

DNA (Weber and May, 1989).

The use of microsatellites overcame many of the limitations of minisatellite 

DNA as they are distributed more evenly throughout the genome at 

approximately 30kb intervals. In addition, the ease of analysis with 

amplification by PCR, is more efficient (Litt and Luty, 1989). Microsatellites 

consist of tetra, tri and di-nucleotide repeats with the most common being the 

dinucleotide CA repeat. A number of genetic maps composed of microsatellite 

markers have been published, and the final Genethon map in 1996 brought to 

an end this phase of the human genome project (Dib et al., 1996).



1.8.5.3. Single nucleotide polymorphisms (SNPs)

Single nucleotide polymorphism (SNP) is a bi-allelic system based on a single 

nucleotide change at the sequence level. SNPs are the most frequently 

occurring polymorphic markers available estimated at 1 SNP per 100 to 300 

bp (http://www.ncbi.nlm.nih.gov/SNP). A genetic map of SNPs was created 

using a number of microsatellite markers as anchor points and the automation 

of the analysis was achieved using a genotyping chip that would allow the 

simultaneous analysis of 500 SNPs (Wang et al., 1998). The SNP database at 

The National Centre for Biotechnology Information serves as a central 

repository for both single base nucleotide substitutions and short deletion and 

insertion polymorphisms. It is estimated that 60,000 SNPs fall within exons 

and that 85% of exons are within 5 kb of the nearest SNP (Sachidanandam , et 

ah, 2001). As genetic markers, SNPs can be used for conventional linkage 

analysis. However, due to the availability of high density maps and the 

improvements in technology that allow for the automation of screening SNPs 

they are a useful resource for linkage disequilibrium (LD) and association 

studies.

http://www.ncbi.nlm.nih.gov/SNP


1.9. Mutation detection

Once a disease gene has been linked to a particular locus on a chromosome the 

next step is the identification of the gene mutations responsible. A number of 

different mutation detection methods can be used to detect gene mutations. No 

method of mutation detection is 100% efficient and if changes are seen in 

either method they require confirmation by direct sequencing of the DNA 

product, as direct sequencing of the gene sequence is a more accurate mutation 

technique.

1.9.1. Heteroduplex analysis

Heteroduplex analysis is a technique that can be routinely used to detect

variants in a given sequence. It is based on the fact that two complementary

DNA strands, which differ in sequence by even one base pair, will have

mismatched positions when base paired. These double stranded heteroduplex

molecules tend to show altered mobility in non-denaturing polyacrylamide

gels when compared to the homoduplexes of either allele (Keen et al., 1991).

Recently, denaturing high-pressure liquid chromatography (DHPLC)

technology has been applied to identify mutations such as the Transgenomics

Wave machine. DHPLC uses triethylammonium acetate (TEAA), which acts

as an ion-pairing reagent that binds to the hydrophobic DNA giving it
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hydrophilic characteristics. For the Wave machine (Transgenomics), the 

TEAA (0.1 M) coats the DNA, which allows it to bind to the divinylbenzene 

beads on a column. There is a proportional relationship between the 

association of TEAA and the binding to the DNA separation column. 

Dissociation of the TEAA-bound DNA from the column is accomplished by 

an elution gradient comprising 0.1 M TEAA and 25% acetonitrile. The 

proportions of reagents are changed over time and allow the elution of DNA. 

Smaller DNA fragments, having less TEAA bound, are eluted before the 

larger fragments and the technique allows for a sizing application as well as its 

use for mutation detection. The DNA fragments eluted are detected using a 

UV detector and visualised as a graph.

1.9.2. Single strand conformation polymorphism (SSCP)

The sequence of interest is amplified by PCR and separated as single-stranded 

molecules by resolution on native polyacrylamide gels. Sequence variants tend 

to show a shift in mobility due to changes in the tertiary structure of the 

single-stranded DNA (Orita et al., 1989).



1.10. Human Genome Project

The Human Genome Project was instigated as an international research 

initiative to produce detailed genetic and physical maps of each of the human 

chromosomes. The ultimate goal of the initiative, following the construction of 

physical maps in large insert clones, is to produce a single continuous 

sequence for each chromosome and define the positions of all genes. Similar 

analyses of several other genomes and model organisms were also initiated, 

and the methods and resources used to determine the significantly smaller 

genome sequence of the nematode Caenorhabditis.elegans (97 million base 

pairs) greatly aided the planning and execution of the Human Genome Project 

(approx. 3 billion base pairs). Throughout the progression of the Human 

Genome Project (HGP), new methods and resources were developed and 

complimentary approaches used to create, store and analyse the data (Jordan 

1994; Haldi et al., 1996; Lander 1996; Schuler et al., 1996).

Major achievements of the HGP include;

1995 -  first generation physical map

1996 -  comprehensive genetic map

1998 -  C. elegans genome completed



1999 -  sequence of chromosome 22 completed 

2001 -  complete draft sequence of the human genome

The draft human genome sequence was published in 2001 by the HGP 

consortium and Celera Genomics (International human genome sequencing 

consortium 2001; Venter et a l, 2001). The HGP project estimates that there 

are approximately 31,000 genes and Celera estimates an even smaller number 

of genes, about 26,000. This is in stark contrast to initial estimates of human 

gene number, which ranged from 50,000 to 100,000, and indicates that the 

density of genes in the human genome is much lower than for any other 

genome sequenced so far. Both groups used computational algorithms to 

model and predict gene sequences, however these methods are known to be 

inaccurate through over and under prediction. To arrive at a more accurate 

description of the number of genes in the human genome, reliance will be 

placed upon individual gene and protein characterisation. Initiatives to 

characterise full length mRNAs have already highlighted the fact that the 

current human genome annotation has not detected a significant number of 

gene sequences (Wiemann et al, 2001). It is also evident that alternative 

splicing of genes in the human genome is common (over 60% of genes have



alternative transcripts) which would result in a larger number of protein

products.

Much work remains to be done to complete the sequence and be assured of its 

accuracy, but the vast amount of information that has become available 

through this initiative provides us with basic information on genome evolution 

and structure, and revolutionises the field of medical genetics.

1.10.1. Bioinformatics and human genome resources

Over the past few decades, major advances in the field of molecular biology, 

coupled with advances in genomic technologies, have led to an explosive 

growth in the biological information generated by the scientific community. 

This deluge of genomic information has, in turn, led to an absolute 

requirement for computerised databases to store, organize and index the data, 

and for specialised tools to view and analyse the data. Bioinformatics is the 

term used to describe the discipline which brings together biology and 

computer science. The ultimate goal of the field is to enable discovery of new 

biological insights. Currently the focus on the human genome project has



enabled the analysis and interpretation of various types of data including 

nucleotide and amino acid sequences, the development of tools that enable 

efficient access to different types of information, and the development of new 

algorithms to assess and analyse relationships between data sets.

Alongside the development of new methods for establishing maps of the 

genome and new sequence strategies a great deal of effort is concentrated on 

designing databases and programs to accurately represent and analyse the 

information generated. One major challenge was to collect, store, distribute, 

analyse and retrieve data created as whole genomes were physically mapped 

and sequenced. These original databases and programs are constantly evolving 

and many suites of programs and databases now exist on web sites world wide 

providing a remarkable resource for the field of molecular genetics.

Genome maps have subsequently integrated clone data and the ultimate map, 

the genome sequence, is being deposited in these databases in accessible 

formats for analysis. More recently emphasis has shifted towards the 

establishment of a SNP map covering the genome. Regional and chromosome
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maps can be viewed at many centres, each with their own graphic interface 

and options to view and analyse.

1.11. Sequence analysis tools

The Basic Alignment Search Tool (BLAST) is the main program used to 

compare sequence similarity, with algorithms for nucleotide and amino acid 

sequence analysis. By comparing sequence identity and similarity of a gene or 

protein with all known sequences (GenBank), function can often be inferred. 

Gene and protein sequences can also be analysed using suites of programs 

such as NIX and PIX available at HGMP, which combine many analysis tools 

in one package. In addition, NIX is a useful tool for analysing genomic 

sequence which runs gene prediction programmes similar to ACeDB as well 

as data mining and comparison programs. Many analysis programs have been 

developed for specific applications, however it is important to note that all 

bioinformatic tools merely provide a guide for future experimental work. 

Problems can arise when utilising bioinformatic tools for data analysis. One 

major draw back is that they all rely on the accuracy of the archived data, as 

well as our current understanding of gene families, protein function, exon
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structure etc. As we learn more about the genome and specific gene/protein 

functions, the bioinformatic applications will improve.
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1.12. Aims of Thesis

The overall aim of this thesis was to investigate the role of genetic factors in 

the primary glaucomas using genetic and molecular biology techniques.

The specific aims were:

1. To identify the genetic basis of primary angle closure glaucoma with 

the goal of finding a novel glaucoma-causing gene by linkage analysis 

of large pedigrees with the condition.

2. To investigate the role of the OPA1 gene, the gene responsible for 

dominant optic atrophy, in primary open angle glaucoma, particularly 

normal tension glaucoma.

3. To determine the significance of the Optineurin gene in the causation 

of primary open angle glaucoma and to characterize the phenotype 

attributable to mutations in this gene.
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CHAPTER 2 

MATERIALS AND METHODS

2.1. Patient ascertainment

2.1.1. Patient identification

Pedigrees with primary angle closure glaucoma (PACG) were examined at the 

glaucoma clinics at Singapore National Eye Centre and the National 

University Hospital, Singapore. Informed consent was obtained, and the study 

had the approval of the Singapore National Eye Centre and National 

University Hospital, Singapore ethics committee.

For primary open angle glaucoma (POAG) studies, all cases and control 

subjects were from the greater London area. Cases were collected from a 

cohort of unrelated Caucasian patients who attended tertiary referral glaucoma 

clinics at Moorfields Eye Hospital, London. Control DNA samples were 

obtained from unrelated Caucasian individuals randomly recruited from 

spouses and friends of probands participating in various genetic studies at 

Moorfields Eye Hospital. Written informed consent was obtained from all 

participants, and the study had the approval of the Hospital’s ethics 

committee.

2.1.2. Ophthalmic examination

A variety of data were collected from each individual including demographic 

details, age at diagnosis, and medical or surgical treatment. All glaucoma 

subjects underwent a detailed eye examination that included assessment of 

visual acuity, slit lamp examination, and gonioscopy (see below). Intraocular 

pressure was measured by Goldmann applanation tonometry. The optic disc
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Mid posterior pole were examined using a Volk +78D or +90D lens. The 

vertical cup-disc ratio was judged by observing disc contour and angulation of 

blood vessels that crossed the disc rim. Notching (localised neuroretinal tissue 

loss at the superior or inferior poles) and nerve fibre layer defects were 

recorded.

2.1.3. Gonioscopy

Gonioscopy was carried out in all subjects using a Goldmann-style 2 mirror 

gonioscope. A 2% hypromellose solution in saline was used as a coupling 

medium for the contact lens. The examination was carried out at a low level of 

ambient illumination. A 1 mm beam of light was reduced to a very narrow 

slit, and was offset horizontally for assessing superior and inferior angles, and 

vertically for nasal and temporal angles. Care was taken to avoid light falling 

on the pupil during gonioscopy. The assessment was carried out at high 

magnification (x 16 to x 25). Slight tilting to gain a view over the convexity 

of the iris was permitted, but further manipulation of the lens or redirection of 

gaze was avoided because of the possibility of exerting pressure on the cornea 

and artificially widening the angle. The drainage angle was graded according 

to Shaffer’s convention in each quadrant (as detailed in Section 1.3.2.). The 

total gonioscopic angle width was also calculated by adding the Shaffer grade 

in each of 4 quadrants.

Manipulative or indentation gonioscopy using a Zeiss or Sussman lens was 

used (unless the angle was wide open) to detect peripheral anterior synechiae
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(PAS), graded as present or absent in each quadrant, and the number of clock 

hours of PAS was also recorded.

2.1.4. Biometry

Probands with PACG as well as unaffected family members underwent 

biometry, specifically measurement of the anterior chamber depth (ACD) and 

the axial length (AXL) of the eyeball. After anaesthetising the eye to be 

examined with a drop of local anaesthetic, measurement of ACD and AXL 

was performed by A-mode applanation ultrasonography (Sonomed A2500, 

Haag-Streit, Koniz, Switzerland). Special care was taken in aligning the 

transducer beam probe along the optical axis and to exert minimal comeal 

pressure. Measurements were performed until 5 consecutive readings with a 

standard deviation of < 0.05 were obtained for each variable.

2.1.5. Visual field testing

Patients underwent automated white-on-white threshold perimetry (program 

24-2, model 750, Humphrey Instruments, San Leandro, California, USA). The 

first visual field test for all subjects was discarded from the analyses to allow 

for learning effects, and the subsequent first reliable visual field was used as 

the baseline. A reliable visual field test was defined as one with less than 25% 

false-positive response, 30% false-negative response, and 30% fixation loses. 

The global indices such as mean deviation (MD) and corrected pattern 

standard deviation (CPSD) of the baseline visual fields were recorded for all 

cases.
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The visual fields of some subjects who had at least 5 years of follow-up with 

at least 10 visual field tests performed during this time were also analysed for 

progression. Pointwise linear regression analysis was applied to the field series 

of each of these subjects using PROGRESSOR for Windows software (Fitzke 

FW et al., 1996). Progression was defined as the presence of a significant 

regression slope (p<0.01) showing 1 dB per year or more of sensitivity loss at 

the same test location with the addition of two out of three successive field 

tests to the series starting with the first three. The mean number of progressing 

points per subject, the mean slope for the progressing points as well as the 

mean slope of the whole visual field per year was evaluated.

2.1.6. Optic Disc Imaging

A scanning laser ophthalmoscope, the Heidelberg retina tomograph (HRT, 

Heidelberg Engineering, Heidelberg, Germany) was used to image the optic 

disc in POAG subjects (Figure 2.1). The mean topography of three images was 

generated in the 10x10 degree frame and the disc edge delineated on the mean 

image by a trained observer, using a drawn contour line. Images with 

significant movement artefact were rejected. Global and segmental disc and 

cup areas were analysed directly by means of HRT software (version 2.01b) 

using the standard reference plane. Rim area was calculated by subtracting the 

cup area from the disc area. Six predefined segments were used (0 degrees 

always temporal, 90 degrees always superior): temporal quadrant (-45 to +45 

degrees), temporal superior octant (+45 to +90 degrees), temporal inferior 

octant (-90 to -45 degrees), nasal quadrant (+135 to +225 degrees), nasal
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superior octant (+45 to +90 degrees), and nasal inferior octant (-135 to -90 

degrees).

Figure 2.1. HRT image of an optic disc showing overall disc topography (left) 

and segment analysis (right).

2.2. Diagnostic Criteria

2.2.1. Angle closure

The minimum criteria for the diagnosis of angle closure was the presence of a 

narrow or occludable angle. This was defined as the presence of at least 180 

degrees of angle in which the posterior trabecular meshwork was not visible 

on indentation gonioscopy (Shaffer Grade 0 or 1).

Eyes with a narrow angle with raised IOP (>21 mm Hg) and/or PAS in the 

angle were termed to have primary angle closure (PAC).
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Primary angle closure glaucoma was defined as the presence of glaucomatous 

optic neuropathy with compatible visual field loss, in association with a 

narrow angle on indentation gonioscopy.

Cases of secondary angle closure such as neovascularisation of the iris, 

uveitis, trauma, lens intumescence or subluxation were excluded.

2.2.2. Open angle glaucoma

POAG cases were defined by the following strict criteria: the presence of 

glaucomatous optic neuropathy with compatible visual field loss; open 

drainage angles on gonioscopy, and absence of a secondary cause for 

glaucomatous optic neuropathy such as a previously raised IOP following 

trauma, a period of steroid administration or uveitis. Patients also did not have 

evidence of high myopia or congenital abnormality, and had no other cause 

for their visual loss.

Among POAG subjects, IOP was used to subdivide the cases into normal 

tension glaucoma (NTG) and high tension glaucoma (HTG). NTG patients 

had mean IOP without treatment that was consistently <21 mm Hg on diurnal 

testing, while HTG patients had IOP consistently >21 mm Hg.

2.3. Sample collection

Two 10 ml EDTA impregnated vials of venous blood were collected from 

each adult using Vacuette vacutainer blood collection system. One vial of 

blood underwent DNA extraction and the other vial of the blood from the 

same patient was stored at -20° C. The latter vial was stored for future 

reference and in case there was an error with the DNA extraction from the first 

vial.
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2.3.1. DNA Isolation

Genomic DNA was extracted from EDTA-sequestered blood samples using 

the Nucleon II DNA extraction kit (Scotland Bioscience). Initially, blood 

collected in sodium EDTA tubes were thawed, inverted a couple of times and 

then transferred in a 50 ml tapered falcon tube that contained 37 ml of Reagent 

A for erythrocyte lysis. The tapered tubes containing the solutions were then 

centrifuged at 3500 rpm for 6 minutes. Supernatant from the tapered tubes 

was discarded, retaining a pellet of white blood cells. 2 ml of reagent B was 

added to the pellet for leucocyte lysis and deproteination. The pellets were 

broken up and transferred to a 5 ml polypropylene centrifuge tube containing 

sodium perchlorate and mixed thoroughly. For the DNA extraction, 1.5 ml of 

chloroform was added to each tube and again mixed thoroughly before the 

addition of 300 pi nucleon™ resin without re-mixing the phases. The tubes 

were placed in a centrifuge for a final spin again at 3500 rpm for 4 minutes. 

After the spin, DNA-containing upper phase of the spin was removed without 

disturbing the nucleon resin and added in a 15 ml tapered tube containing 6 ml 

of 100% ethanol and shaken slowly. The pellet of DNA was then spooled out 

with disposable spool and placed in a labelled 1.5 ml eppendorf and left to air 

dry. Upon drying, 400 pi of fresh autoclaved distilled water was added to the 

dried pellet and left in a fridge to dissolve overnight. 20 pi of the stock DNA 

was taken and dissolved in 180 pi distilled water and used as working 

solution.
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2.4. Polymerase Chain Reaction (PCR)

PCR has become one of the most valuable in vitro techniques in molecular 

biology by allowing the synthesis of microgram amounts of specific nucleic 

acid sequences from any part of the genome. To permit selective 

amplification, some prior DNA sequence information from the target 

sequences is required. This enables the construction of two oligonucleotide 

primer sequences (often 15-30 nucleotides long) which derive opposite strands 

of the template DNA to be amplified with their 3' termini face each other. The 

two primers, when added to genomic DNA are denatured at a high 

temperature, before it binds specifically to complementary DNA sequences 

immediately flanking the desired target region at an appropriate annealing 

temperature. In the presence of a suitably heat-stable DNA polymerase 

enzyme {Taq polymerase), DNA precursors (the four dinucleotide 

triphosphates; dATP, dCTP, dGTP, dTTP) and the target DNA, the reaction is 

subjected to an optimal temperature for elongation and synthesis of new DNA 

strands. These are complementary to their individual DNA strands of the 

target DNA segment, and overlap each other.

The newly synthesised DNA strands act as templates for further DNA 

synthesis in subsequent cycles. After approximately 30-35 cycles of DNA 

synthesis, the products of PCR will include, in addition to the starting DNA, 

approximately 105 copies of the original specific target sequence.

The reaction involves cycles composed of three steps: denaturation, annealing 

and extension. A typical temperature of these steps are stated below:

81



I) Denaturation - this occurs typically at about 93-95°C for human 

genomic DNA;

II) Annealing - at temperatures usually from about 50-70°C, depending on 

Tm of the expected primer/target DNA duplex (the annealing 

temperature is typically about 5°C below the calculated Tm).

III) Extension (DNA synthesis) - DNA synthesis occurs typically at 70- 

75°C.

PCR was carried out using a (NHO2 SO4 reaction buffer or KCL, with Taq 

(Thermus aquaticus) polymerase in a 50ul volume. A typical 50 ul volume 

PCR mix contained:

5 ul of 1 X concentration reaction buffer (NH4)

5 ul of dNTPs (2 mM each of dATP, dCTP, dGTP and dTTP)

2  ul of each oligonucleotide primer

1.5 ul of MgCl2 (50 mM)

0.1 ul of Taq polymerase

1.5pl of DNA in solution to be amplified (lOOng)

(Or no DNA, for negative control)

37 ul of dH20.

PCR conditions varied to take in account of annealing temperature of the 

primers and the expected length of the amplified product. Average conditions 

were as follows; an initial denaturation step of 5 min at 95°C, which followed 

by 35 cycles of 3 steps of denaturation at 95°C for 1 min, a primer annealing
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step for 1 min and an extension step at 72°C for 1 min. A final extension step 

at 72°C for a minimum of 5 minutes was also added. Occasionally, extra 

MgCl2 was added to the reaction buffer to optimise specificity of primer 

annealing.

Great care was taken to prevent cross contamination of DNA samples and 

minimise the potential for errors. Separate tip was used for each sample of 

patient DNA. Frequently, a separate work area, pipettes for pre-and post­

amplification steps, and aerosol resistant tips were used for pipetting.

2.4.1. Primer design

PCR primers were designed, whose 5? end lay more than 30 nucleotides from 

the coding start (forward) and end (reverse) of an exon and which would yield 

an end product of between 200-400 base pairs to enable amplification of the 

entire coding region.

The following default parameters were used:

a) Primer lengths were designed to be unique for the human genome and 

varied from 17mer to 24mer, according to the formula:

2N(0.25)n = 1

where for any given nucleic acid sequence of length, N, containing only the 

four normal nucleotides, the segment length, n, is necessary to define a unique 

sequence.



b) to avoid 3' pentamer instability, false priming, dimerisation and secondary 

structure formation, the pentamer AG was set below -8.5kCaJ/mol.

c) Primers with discrete 3' 7mer were preferred to avoid false priming.

d) The melting temperature Tm is determined by the nucleotide sequence of the 

primer, and calculated according to the equation Tm = 4(G+C) + 2(A+T) 

Ideally, primer pairs were designed with similar Tm values. An annealing 

temperature 5°C below the estimated Tm was used as a starting point.

Online human genome databases (NCBI Genbank) were consulted to obtain 

the complete intron and exon sequences for each gene of interest. Where this 

was not readily available or only partially published, exons were reconstructed 

from full length mRNA and intron boundaries characterised by utilising 

BLAST sequence comparison software to identify human clones localised to 

the genomic region of interest.

2.4.2. Reverse transcription PCR (RT-PCR)

Leukocytes were isolated from whole blood by Ficoll-Paque density-gradient 

centrifugation following manufacturer's instructions (Amersham Pharmacia 

Biotech, Little Chalfont, UK) and total RNA extracted with Trizol reagent 

(Invitrogen Life Technologies, Groningen, The Netherlands). Oligo(dT)- 

primed total leukocyte RNA was reverse transcribed into single-stranded 

cDNA using Ready-To-Go You-Prime First-Strand Beads (Amersham
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Pharmacia Biotech). Primers were then used to amplify cDNA segments by 

PCR.

2.5. Cloning of PCR product fragments into plasmid vectors

The plasmid vector used for cloning of PCR products was pGEM®-T Easy 

(Promega), which is a pUC-derived vector and contains dT overhangs at the 

cloning site in order to generate a sticky end. The sticky end is compatible 

with the terminal dA overhangs produced on any PCR product due to the 

template-independent action of certain Taq polymerases. These dA overhangs 

greatly improve the efficiency of PCR product ligation into the plasmid. 

Insertional activation of the alpha-peptide allows recombinant clones to be 

directly identified by colour screening on indicator plates (LB agar plus X-gal, 

IPTG and ampicillin).

2.5.1. Ligations

Ligation takes advantage of the template-independent addition of a single 

adenosine (A) to the 3’ end of PCR products by certain thermostable 

polymerases. 50 ng of vector was ligated to an appropriate amount of purified 

PCR product such that the ratio of molar ends of vector to PCR product was 

1:1 to 1:3. Ligations were incubated at room temperature for 1 hour. Reactions 

were stored at -20 °C following withdrawal of an aliquot for transformation of 

competent E.Coli. Appropriate controls were also set up as per manufacturer’s 

instructions.
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2.5.2. Transformations

JM109 competent cells (Promega) were used and transformed according to the 

manufacturer’s recommendations. Briefly, 2 ul of the ligation reaction was 

mixed with 50ul of competent cells and incubated on ice for 30 minutes. The 

reactions were heat shocked at 42 ° C for 50 seconds and then replaced on ice 

for 2 minutes. 300 ul of Super Optimal Catabolite (S.O.C.) medium was added 

to the reaction, which was then incubated with agitation at 37 ° C for 90 

minutes to allow expansion of the plasmid. 150 ul aliquots of transformation 

reactions were plated onto to LB-ampicillin-Xgal-IPTG agar plates enabling 

for colour selection (white for positive, blue for negative).

2.5.3. Colony PCR

Twelve to 24 positive colonies were picked with sterile picks or disposable 

pipette tips and mixed in a PCR tube. This was used for PCR using pTAG 

primers with 50 °C annealing temperature. The products were then run on an 

agarose gel to see which clones contain inserts of the correct size. The 

colonies of positive clones were then inoculated into LB media containing 

ampicillin and incubated overnight at 37 ° C.
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2.5.4. Extraction of Plasmid DNA

To extract DNA from the plasmids, QIAprep Spin Miniprep kits were used. 

The kits act by lysing the host bacterial cells, releasing the DNA and protein, 

the protein is then precipitated and the DNA eluted out to be subsequently 

sequenced.

2.6. Restriction enzyme digests

Restriction digestion was used to confirm changes found in sequence data. 

Gene Work, a computer programme was used to identify restriction sites in 

both the wild type sequence and the mutated sequence. Restriction mixtures 

(10 pi PCR product, 1 pi of desired enzyme and buffer) were incubated at 

37°C in a water bath for 3-4 hours. Products were compared with undigested 

PCR product and digested unaffected patient controls run on agarose gel.

2.7. Fractionation of DNA by electrophoresis

Electrophoresis is the most commonly used method for separating DNA. This 

method of fractionation separates molecules in an electric field according to 

their charge, size and shape. If a mixture of linear DNA molecules is placed in 

a well cut into an agarose gel, and the well is placed near the cation (-ve) of an 

electric field, the molecules will move through the gel to the anode (+ve), at 

speed dependent on their size (molecular weight). The bands can be visualised 

by staining the DNA with ethidium bromide, which causes the DNA to 

fluoresce in ultraviolet (UV) light.
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2.7.1. Agarose Gel Electrophoresis

This was the method of choice for fractionation of DNA fragments between

0.5 - 25 kb and was used routinely for visualising PCR generated products. 

The appropriate agarose concentrations used for separating DNA fragments of 

various sizes are listed below.

Agarose (%) Range Of Resolution Of Linear DNA 

(kb)

0.3 5.0-60

0.6 1.0-20

1.0 0.5-10

1.5 0.2-6.0

2.0 0.1-2.0

3.0 0.05-<0.1

Table 2.1. Agarose concentrations for separating DNA fragments.

The gel was prepared by melting electrophoresis grade agarose (Biorad) in 1 x 

TAE in a microwave oven. The mixture was heated at a high temperature until 

the agarose had completely dissolved in the solution. The mixture was cooled 

under cold running tap water and a drop of 10 mg/ml ethidium bromide was 

added using a pipette, swirled, and poured into a sealed casting electrophoresis 

tray containing a lOul well-forming comb and left to polymerise for 30 

minutes.
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After PCR amplification had completed, samples were prepared with an 

appropriate amount of lOx loading dye. For example, 10 pi of each PCR 

product was placed in a mixing plate and 5 pi of Ficoll orange G dye was 

added in each of the samples. An appropriate DNA molecular weight size 

marker was always included. The most commonly used markers to size DNA 

were (j)X174/HaeIII or lkb ladder (see below). Once the gel had polymerised, 

the samples were loaded with the molecular weight marker in the wells. The 

gel was then placed within an electrophoresis tank containing sufficient IX 

TAE buffer. Electrophoresis was carried out at 80 volts for 1 hour or until the 

required resolution was achieved (rule of thumb: 5 V/cm gel). Gels were 

photographed on a UV transilluminator using polaroid MP4 camera with a

orange/red filter and Kodak plus-X film.
<t>X174 thaelll k/Hindlll 1 kb ladder

1.358 23.130 10,000

1.078 9.416 8,000

0.872 6.682 6,000

0.602 4.361 5.000

0.310 2.322 4,000

0.281/0.271 2.027 3,000

0.234 0.564 2,500

0.194 0.125 2,000

0.118 1,500

0.072 1,000

750

500

250

Table 2.2. Size of DNA markers (Kb) used for DNA electrophoresis and

heteroduplex analysis.
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2.8. Mutation Detection

2.8.1. Heteroduplex Analysis

The PCR products formed of normal and mutant alleles are separated from 

other homo-allelic products using non-denaturing gel electrophoresis. 

Resolution is based upon detecting conformational differences that occur in 

the DNA molecule as a result of the mutant allele annealing with the wild type 

allele, which can be a result of insertions, deletions or base pair mismatches. 

Heteroduplex DNA is generated by standard PCR amplification and 

amplification occurs between homologous DNA segments as well as across 

the segment containing the mutant allele. By denaturing these samples and 

allowing them to cool to room temperature, double stranded DNA is formed 

between the identical complementary strands (homoduplexes) and also 

between strands of the 2 different amplified segments (heteroduplexes). The 

heteroduplexes migrate at a slower rate on acrylamide than the corresponding 

homoduplexes. Overall the technique is around 80 -85% effective in picking 

up mutations.

2.8.2. Procedure for Heteroduplex Analysis

MDE gels were used routinely used for the detection of heteroduplexes. The 

size range of PCR products in this study ranged from 100 - 300 bp in size
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(within the optimal size range for resolution). The electrophoresis apparatus 

(using 40-cm X 20-cm glass plates) was vertically assembled according to 

manufacturer’s instructions (J.T.Baker, USA) and clamped within the casting 

tray.

A typical 100 ml gel solution was prepared by addition of 50 ml MDE gel 

solution; (Sequagel™) for mutation detection containing acrylamide, 15g of 

urea which acts as a denaturing agent, 40 ml distilled water, and lOx TBE 

(6ml). The gel was polymerised with 450 pi 10 % Ammonium persulphate 

(APS) and 45 pi TEMED. Prior to addition of APS and TEMED, 2 ml was 

removed to which 30 pi and 12 pi TEMED added, and gently poured between 

the plates to form a seal at the base. On setting, the remaining gel was mixed 

and poured between the plates avoiding the formation of air bubbles. On 

insertion of an appropriate comb, the gel was allowed to polymerise for an 

hour following which the comb was removed and IX TBE made-up buffer 

added to the upper and lower buffer reservoirs. On rinsing the wells with 

syringe and needle, 10 pi samples containing 100-200 ng PCR product in 5 pi 

sucrose loading buffer (containing xylene cyanol and bromophenol blue) was 

loaded into each well. A DNA marker was used in each lane. Electrophoresis 

was allowed to occur for ~ 16 hours at 180 volts with the xylene cyanol and 

bromophenol blue being indicator of resolution as they run at 180 - 200 bp and 

50 - 60 bp respectively. The gel were run at 150-180 volts for 14-18 hours, 

and then stained with ethidium bromide and photographed under UV 

illumination.
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Factors affecting the resolution of heteroduplex DNA in MDE gel include 

DNA size (100 to 400 base pairs is optimal, up to 900 base pairs is possible), 

position of mismatch within DNA segment (central mismatch optimal) and 

type and context of mismatch.

2.8.3. Mutation detection by Denaturing High-Performance Liquid 

Chromatography (DHPLC)

PCR products were analysed using the WAVER nucleic acid fragment analysis 

system (Trangenomic). The buffers used for DHPLC consist of Buffer A (0.1 

M triethylammonium acetate (TEAA) and buffer B (0.1 M TEAA with 25% 

acetonitrile). DNA fragment elution profiles were captured online and visually 

displayed using the Transgenomic WAVEMAKER™ software. 

Chromatograms were compared with those of normal controls to detect 

samples with altered elution profiles.

2.8.4. Minisequencing

This method is used to characterize known mutations or single nucleotide 

polymorphisms (SNPs). Briefly, this protocol relies on the extension of a 

primer that ends exactly one base short of a polymorphic site with fluorescent- 

labelled dideoxynucleotides, which are complementarily incorporated 

according to the sequence of the amplified target. The minisequencing 

reactions were carried out in a total volume of 6 ul containing 2.5 ul of 

SNaPshot Multiplex Ready Reaction reagent (Applied Biosystems, Foster 

City, CA, USA), 2.5 ul of primer mixture (5 pmol of each primer, see Table 1) 

and 1 ul of purified PCR product. The SNaPshot Multiplex Ready Reaction
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reagent set contains AmpliTaq DNA polymerase, fluorescently labelled 

dideoxynucloetide triphosphates, and reaction buffer. The minisequencing 

was performed as follows: 25 cycles at 96 ° C for 10 seconds, 50 ° C for 5 

seconds, and 60 ° C for 30 seconds. After extension, the samples were treated 

with shrimp alkaline phosphatase according to the manufacturer’s protocol. 

The samples were then electrophoresed on an automated ABI PRISM 3100 

Genetic Analyzer (Applied Biosystems) and analysed with the ABI GeneScan

3.1 analysis software. Size determinations were performed using the 

GeneScan-120 LIZ size calibrator using the GeneScan 3.1 software.

2.9. DNA Sequencing

Prior to DNA sequencing, PCR products underwent the following procedures:

1. PCR purification

2. Cycle-sequencing

3. Ethanol precipitation

2.9.1. Purification of PCR products by QIAquick™ spin columns

Double stranded DNA products from PCR products were purified using 

QIAquick™ PCR purification kit. Fragments ranging from 100 bp to 10 kb 

were purified using QIAquick spin columns in a microcentrifuge. Firstly, 5 

volumes of buffer PB were added to 1 volume of the PCR reaction mix. The 

provided QIAquick spin columns were placed in 2 ml collection tubes and the 

PCR product samples were applied to the QIAquick column and centrifuged at

13,000 rpm for 1 minute. The supernatant flow-through was discarded after 

the first spin, before the QIAquick columns were placed back into the same 

tube. To wash the fragments from PCR, 0.75 ml of buffer PE was added to the 

columns and centrifuged for 1 minute. Again the flow-through was discarded
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and the QIAquick columns were placed back in the same tube. The columns 

were centrifuged for an additional minute at maximum speed. After the spin, 

the QIAquick columns were placed in a clean 1.5-ml microcentrifuge tube. To 

elute the DNA, 50 ul of buffer EB (10 mM Tris.CL, pH 8.5) was added to the 

centre of the QIAquick membrane and the columns were centrifuged for 1 

minute.

2.9.2. Cycle sequencing

Cycle sequencing was performed on a Perkin-Elmer Cetus 2400 machine. 

Cycle sequencing reactions consisted of 10 pi volumes containing 4pl ABI 

reaction mix (from ABI PRISM™ Big Dye terminator cycle sequencing kit 

with AmplitaqR DNA polymerase FS), 0.5 pi of 3.2 pM sequencing primer,

3.0 pi of sterile distilled water and 2.5 pi of purified DNA. The temperature 

cycling profiles consisted of 26 cycles of denaturation at 96°C for 10 seconds, 

annealing at 50°C for 5 minutes and extension at 60°C for 4 minutes. Upon 

completion, the resultant products were transferred to sterile 0.5 ml eppendorf 

tubes and purified to remove unincorporated fluorescent dyes by ethanol 

precipitation.

2.9.3. Ethanol precipitation

After completion of the sequencing reaction, the extension products were 

brought to a final volume of 20pl with deionized water, and transferred to 1.5 

ml microcentrifuge tubes. An additional 16 pi of deionized water and 64 pi of 

non-denatured 95% ethanol at room temperature was added to the extension 

product. The tubes were then capped and vortexed briefly. The tubes were 

then left at room temperature for 15 minutes to precipitate the extension
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products. After 15 minutes, the capped tubes were placed in the 

microcentrifuge and the orientation of the tubes were marked. The samples 

were then spun at 13.000 rpm for 20 minutes. Upon completion, the ethanol 

was pipetted out carefully and discarded. The pellet of DNA was washed with 

250pl of 70% ethanol, capped and briefly vortexed. Samples were centrifuged 

again for a further 10 minutes at the same speed. The supernatant was 

carefully aspirated with a pipette and discarded. The DNA pellet was either air 

dried or placed to dry in a vacuum centrifuge for approximately 10-15 

minutes. The samples were either stored in this state at -20°C or resuspended 

in ABI loading buffer and sequenced on the ABI automated sequencer.

2.9.4. Direct Sequencing

Sequencing procedures generally use primers or dideoxynuleotides to which 

are attached flourophores (chemical groups capable to fluorescing). During 

electrophoresis, a monitor detects and records the fluorescence signal as the 

DNA passes through a fixed point in the gel. The use of different 

fluorophores in the four base-specific reactions means that, unlike 

conventional DNA sequencing, only one lane on die denaturing gel per 

reaction is required, as unique fluorescent labels can distinguish individual 

labelled nucleotides. The output of the DNA sequence when printed can be 

seen as a profile of the different coloured fluorophores, but the information is 

simultaneously stored electronically and can be seen immediately in a 

computer analysis file.

The resultant pellet after ethanol precipitation was suspended in a 5 pi of ABI 

loading buffer and the sample was denatured in a PCR block at 95°C for 5
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minutes before loading onto the denaturing acrylamide gel. The sequencing 

gel consists of 40 ml Sequagel 6 (National Diagnostics), 10 ml Sequagel 

buffer reagent and 0.04 g Ammonium persulphate (APS). Automated 

sequencing was performed on an ABI 373A DNA sequencer (Perkin Elmer). 

The gel was generally run for 8-12 hours overnight. The data was converted to 

a text file and an analysis file on a computer.

Many samples were also loaded onto 96-well microtitre plates and sequenced 

on the ABI 3100 Genetic Analyser. This more automated process involves 

samples being electrophoretically injected into fused silica capillaries that are 

filled with polymer. DNA fragments migrate towards the other end of the 

capillaries, with the shorter fragments moving faster than the longer 

fragments. The fragments enter a detection cell and move through a laser 

beam in turn. The laser light causes excitation of the fluorescent dye on the 

fragments, which is captured by a CCD camera and converted into electronic 

information., which is in turn transferred to the computer workstation for 

processing by the 3100 Data Collection Software. The data is presented in 2 

formats, text and a sequence analysis file. The latter type of file incorporates 

the electropherogram data and constitutes the original sequence data.

The important differences between the gel and capillary electrophoresis 

systems used in these instruments are the structure of the fragment-sieving 

component, the method of sample loading and overall speed and throughput of 

sample analysis.
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2.10. Linkage Analysis

2.10.1. Polyacrylamide Gel Electrophoresis

This was used for genetic linkage analysis. A non-denaturing 6% 

polyacrylamide sequencing gel was used in 50cm x 38 cm gel plates (Sequi- 

Genll, Bio-Rad Laboratories Ltd., Hertfordshire), washed with warm water 

immediately prior to use. The inner inspects of the glass plates were cleaned 

with ethanol and the back of the plate coated with a siliconising agent- 

dichlorodimethylsilane (Sigmacote, Sigma Chemicals, Co., St. Louis), to 

ensure that during separation of the rig the gel adhered to the front glass plate. 

The apparatus were assembled with 0.75 mm spacers, clamped together in a 

40 cm casting tray.

A 6% non-denaturing polyacrylamide sequencing gel was made up as follows: 

40 ml acrylamide (Protogel:EC890, National Diagnostics)

20 ml 10 x TBE 

140 ml dH20

700 pi 25% ammonium per sulphate

70 pi tetramethylethylenediamine (TEMED, Sigma Chemicals Co., St. Louis)

The above solution was then syringed using a 120 ml volume syringe from the 

base of the rig in a slow manner to prevent air bubbles. Soon afterwards a 64 

well comb was inserted into place and the gel was left to set for approximately 

30 minutes.

97



The set polyacrylamide gel was placed vertically and fixed in a continuous 

electrophoresis tank. The tank and buffer reservoir of the sequencing rig were 

filled with 1.5 litres of 1 x TBE buffer and pre-run for 30 minutes at 110 watts 

to pre-heat the gel to 55°C. Then the comb was removed and the wells were 

flushed clean.

Once set and pre-run, samples were loaded. Microsatellite PCR samples 

containing 3 pi of 15% ficoll loading dye were then loaded onto the pre­

warmed 6% non-denaturing polyacrylamide gel. Electrophoresis was then 

performed out at a constant power of 100 watts for an appropriate length of 

time to achieve maximum resolution in the size required; approximately 2-5 

hours for microsatellites depending upon the expected allele sizes. Product 

size recognition was aided by the use of ladders. Upon completion of 

electrophoresis, the gel was then cut and stained with ethidium bromide and 

photographed with UV illumination using polaroid MP4 camera with a 

orange/red filter and Kodak plus-X film.

2.10.2. Automated Genotyping

PCR reactions were carried out for each marker individually in a 5 ul reaction 

volume, containing 25 ng DNA, 15 mM Tris-HCL, 50 mM KC1, 2.5 mM 

MgC12, 250 uM each dNTP, 1.25 pmol primer (fluorescently labelled) and 

0.25U Taq polymerase. Reactions were performed on a Perkin Elmer 9600 

thermocycler with a standard thermocycling profile for all markers. This
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consisted of an initial denaturation for 12 minutes immediately followed by 10 

cycles at 95°C for 15 seconds, 55’C for 15 seconds and 72’C for 30 seconds 

and then by 20 cycles of 89’C for 15 seconds, 55’C for 15 seconds and 72’C 

for 30 seconds with a single final extension step for 72’C for 10 minutes. PCR 

products for selected sets of markers were pooled, diluted and denatured in 

formamide and size-fractionated using an ABI 3100 Genetic Analyser. PCR 

products were automatically sized by the ABI 3100 Data Collection Software 

version 10.1 program using ROX-500 (Applied Biosystems) as the size 

standard, and scored using the GeneMapper version 2.0 program.

A total genome scan was undertaken utilizing markers from version 2.0 of the 

ABI MD-10 (Applied Biosystems). These allow approximately 10 cM 

resolution of the human genome and consist of fluorescently labelled PCR 

primer pairs for highly polymorphic dinucleotide-repeat microsatellite markers 

chosen from the Genethon human linkage map. Subsequently, and where 

appropriate, markers from the HD-5 Linkage Mapping set which allow 5 cM 

resolution of the genome were used. Most of the initial total genome scan was 

carried out using facilities at the Medical Research Council’s Human Genome 

Mapping Project Resource Centre (HGMP-RC). This unit offers a number of 

services to aid researchers in genetic analysis, and the facilities available may 

be also used by the client themselves to carry out the work. More than half the 

markers were genotyped by staff at HGMP-RC. Other markers were 

genotyped at the Institute of Ophthalmology.
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2.10.3. Linkage LOD score calculation

Pedigree data was collated and checked using the software programme Cyrillic 

2.1.3 (Cherwell Scientific Publishing Limited, Oxford), and the Pedcheck 

program (O’Connell and Weeks, 1998). Two point LOD scores were 

calculated using the program MLINK of the LINKAGE package (version 5.1) 

via the HGMP Genetic Linkage User Environment (GLUE: 

www.hgmp.co.uk). A fully penetrant dominant model with a disease 

frequency of 0.0001 (1 in 10,000) was assumed. Marker allele frequencies 

were assumed to occur at equal frequencies since population allele frequencies 

were not available.

When a significant positive Lod score for a marker was obtained, haplotype 

reconstruction using genotype information from the markers surrounding this 

positive marker(s) was carried out. Haplotypes were compiled by assuming 

minimal number of cross-overs and by forming haplotypes from different 

starting points within the pedigree to achieve a ‘best fit.’ This enabled 

examination of the segregation of the disease haplotype in the family and 

allowed identification of any cross-overs that might serve to limit the defined 

disease interval.

2.11. Computational analysis

The analysis of nucleic acid sequences in silico was essential to this research. 

ENSEMBL was used extensively for identifying genes within genetic
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intervals, contig assessment and Single Nucleotide Polymorphism (SNP) 

analysis. Additional web-based programs included the NCBI homepage for

BLAST (Basic Alignment Search Tool) and the generation of nucleotide

sequences.

The Marshfield map was used extensively in order to estimate genetic 

distances between microsatellite markers. A web-based nomenclature system 

was also used for describing sequence variants. The following online 

databases were used:

Online Mendelian Inheritance in Man http://www3.ncbi.nlm.nih.gov/Omim/

Human Genome Mapping Project http://www.hgmp.mrc.ac.uk/

National Centre for Biological Information http://www.ncbi.nlm.nih.gov/

NCBI-UniGene http://www.ncbi.nlm.nih.gov/UniGene/

The Genome Database http://gdbwww.gdb.org/

Genbank http://www.ncbi.nlm.nih.gov/Genbank

European Cell Culture collection http://www.ecacc.org.uk/

Whitehead Institute for Genome Research http://www-genome.wi.mit.edu/

ENSEMBL http://www.ensembl.org/

Human Gene Mutation Database http://uwcm.ac.uk/uwcm/mg/hgmdO.html

S WIS S-PROT http://www. expasy .ch/sprot/sprottop.html

SNP database http://www.ncbi.nlm.nih.gov/SNP/

Primer 3 http://www-genome.wi.mit.edu/cgi-

in/primer/primer3_www.cgi

Marshfield http://research.marshfieldclinic.org/

Glue analysis http://www.hgmp.mrc.ac.uk/

Nomenclature for sequence variants http://archive.uwcm.ac.uk/uwcm/mg/
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2.12. Buffers and reagents

Buffers

♦ TAE (Tris acetate EDTA) ♦ TBE (Tris borate EDTA)

4 mM Tris acetate 1 M Trizna Base

0.1 mM EDTA 0.83 M Boric Acid

pH 8 10 mM EDTA

♦ Ficoll Loading Dye for Agarose Gels

30% (v/v) Ficoll 400.

0.25% (w/v) Bromophenol blue 

0.25% (w/v) Xylene cyanol FF 

1% (v/v) Tris-EDTA

♦ Heteroduplex loading dye (stock)

40 g sucrose 

250 mg orange G 

250 mg xylene cyanol 

250 mg bromophenol blue 

100 ml sterile distilled water

♦ ABI loading buffer

5:1 (v/v) formamide

50 mM EDTA with 50mg/ml dextran blue
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♦ PCR buffer (lOx)

NH4 buffer 

500 mM KC1 

50 mM MgCb.

Solutions for Human Genomic DNA Isolation

♦ Reagent A (5 x lysis buffer)

320 mM sucrose 

10 mM Tris HC1 (pH 7.5)

5 mM MgC12 (adjust to pH 8.0 with NaOH) 

autoclaved and 1% (v/v) Triton X-100 added.

♦ Reagent B

400 mM Tris-HCl (pH7.5)

60 mM EDTA

150 mM NaCl (adjusted to pH 8.0 with 5 mM NaOH)
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CHAPTER 3

INVESTIGATING THE ASSOCIATION BETWEEN PRIMARY OPEN 

ANGLE GLAUCOMA AND THE OPA1 GENE

3.1. Introduction

Glaucoma is characterised by progressive loss of optic nerve axons and visual 

field damage. The majority of glaucoma in Caucasian and Affo-Caribbean 

populations is of the primary open angle glaucoma (POAG) type, where 

elevated intraocular pressure (IOP) is a major feature. Normal tension 

glaucoma (NTG) is an important subtype of POAG, in which the IOPs are 

consistently within the statistically normal population range, and accounts for 

approximately a third (range 20% and 50%) of all POAG cases. As the IOP is 

normal when measured and patients often have good central vision, NTG is 

under-diagnosed and the condition presents late.

Autosomal dominant optic atrophy (ADOA) is another condition that is 

characterised by progressive optic nerve damage. This optic neuropathy is 

attributable to primary degeneration of retinal ganglion cells followed by 

ascending atrophy of the optic nerve (Johnston et al., 1979; Kjer et al., 1983). 

Loci for ADOA have been mapped to chromosome 3q28-qter (Eiberg et al., 

1994; Jonasdottir et al., 1997) and 18ql2.2-ql2.3 (Kerrison et al., 1999), and 

recently, the OPA1 gene (MIM 165500) was identified (Alexander et al.,
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2000; Delettre et al., 2000) and shown to be ubiquitously expressed, including 

in retinal ganglion cells and the optic nerve (Alexander et al., 2000).

Since different mutations in the same gene may cause widely different 

phenotypes, as illustrated in glaucoma by FOXC1, MYOC, PAX6 and PITX2, 

the similarities between glaucoma and ADOA (in terms of the cell type 

affected and the phenotype- Figure 3.1) made OPA1 an excellent candidate to 

examine in glaucoma patients. It was hypothesised that NTG would be the 

most promising glaucoma subset to study due to the manifestation of optic 

neuropathy in the absence of raised IOP.

3.2. Aim

To investigate whether an association existed between OPA1 and NTG.

Figure 3.1: Genomic structure of the OPA1 gene. Exons are numbered in 

boxes.
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Figure 3.2. Similarities in the phenotype between NTG and DOA.

(a) Top: Left eye of an individual affected with DOA showing pallor of 

the optic disc especially over the temporal half of the disc.

Bottom: Right visual field of a patient with ADOA showing a superior 

centrocaecal scotoma.

(b) Top: A markedly cupped optic disc of a patient with NTG

Bottom: Visual field of a patient with NTG showing a superior 

hemifield arcuate defect.
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3.3. Methods

3.3.1. Study subjects

All cases and control subjects were from the greater London area. Written 

informed consent was obtained from all participants, and the study had the 

approval of the Hospital’s ethics committee and was performed in 

accordance with the Helsinki Declaration [as last revised in Edinburgh in 

October, 2000). NTG cases were collected from a cohort of unrelated 

Caucasian NTG patients who attended a tertiary referral NTG clinic at 

Moorfields Eye Hospital, London, and were defined by the following strict 

criteria (Kamal and Hitchings, 1998) (Section 2.2.2.): the presence of typical 

glaucomatous optic neuropathy with compatible visual field loss; mean IOP 

without treatment that was consistently equal to or less than 21 mm Hg on 

diurnal testing, open drainage angles on gonioscopy, and absence of a 

secondary cause for glaucomatous optic neuropathy such as a previously 

raised IOP following trauma, a period of steroid administration or uveitis. 

Patients also did not have evidence of high myopia or congenital abnormality, 

and had no other cause for their visual loss.

Control DNA samples were obtained from unrelated Caucasian individuals 

randomly recruited from spouses and friends of probands participating in 

various genetic studies at Moorfields Eye Hospital.

3.3.2. Screening for mutations in the OPA1 gene

Genomic DNA, extracted from venous blood using the Nucleon II extraction 

kit (Scotlab Inc., Shelton, CT, USA), was subjected to 35 cycles of PCR 

amplification using oligonucleotide primers (Pesch et a l , 2001, Table 3.1) in 

50 ul reaction volumes (20 ng genomic DNA, 10 pmol of each primer, 200 

mM dNTPs, 1.5 mM MgCl and 2 units of Taq DNA Polymerase (Promega, 

Madison, USA)). Amplified exons were analyzed by heteroduplex gel 

electrophoresis on MDE Flowgen gels run at 180 V for 14-18 hours on
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Hoeffer 600S apparatus. PCR products that demonstrated a heteroduplex 

pattern were purified with QIAquick columns (Qiagen, UK) and then 

sequenced bidirectionally with fluorescent dideoxynucleotides (PE 

Biosystems, Foster City, USA) on an ABI 373 automated sequencer (Applied 

Biosystems, Foster City, CA, USA) using standard conditions. Exons found to 

be altered in NTG subjects (exons 8, 10, 17 and 20) were subsequently 

examined for variations in 100 population controls by the same methodology.

Genotype frequencies among cases and controls, or for different 

polymorphisms, were tested for significant differences using either standard %2 

analysis or Fisher’s exact test, depending upon cell counts. Differences 

between odds ratios were tested for statistical significance using a Breslow- 

Day test as implemented in the FREQ procedure of version 8.02 of the SAS 

software package (SAS Institute, Cary NC).

Table 3.1. OPA1 primers used in mutation analysis.

Exon Forward primer (5'—*3’) Reverse primer (5'—13')

1 ACT TCC TGG GTC ATT CCT GG TCT GGG AAT TCT CCA ACT GC
2 TGC TCT TTT AAT GCC ATT TCC CAT CCA ATT GTA TTC CAC TAC ACA A

3 AAT TTT TCT TTA CAT GTT TAT TTG GC TTT CTC TTT CCT CGA GAT GAC C
4 TTT TGT AGT GGT TGT CAT GAG G AAA AAT GTC CTG TTT TTC ATT GG

5 TGG AGA ATG TAA AGG GCT GC TCT TTC AAG ACT ACC TAC ATG AAC AA
6 AAA AAT TTA ACT TGC TGT ACA TTC TG CAC CTT CCA AAT TTT GCT CTG
7 ACT ATT TGA TAA CCA TCT TTT GC CAG CTC CTT AGA AAC TGG TAC TGA

8 CCG TTT TAG TTT TTA CGA TGA AGA TTT TTG CTA GTT GGC AAG TTC A

9 AGA GCA GCA TTA CAA ATA GGT TTT CAG GTT TCC CTG AAG CAG TT

10+ 11 CTG TCT AGA CCA CAT ACG GGC CCA TAA AAC GTC ACT GAA ATG AA

1 2+ 13 AAA TTC TTG ACA AAT TCC CCC CGA AGA GAA GGC AAA AAT GC
14 TTG CTA TAA TGT AGA CAC AGG GG TAT CAC AGC TGA GCT TTT ACA

1 5 + 1 6 AGC ATT ATT TTG CTT TCT AAA TTG T TGA AAA CAG TTC AAT TTA AGC TAC TC

17 CTG TTA GCA AGC ACA TTC GC TAT GGA TGC CAA AGA TTG CC

18 ACA TCT GGA AAG AAG GAG GG CCC ACT AAA TTA CAG GAA TAC ACG

19 CAG CCT AGT CAA AAA CCT CCC CAA GGC AAC AAT AAA TCA CTG C

20 TCT AAA ATT CAC AGC TCC TAC TCC TGA CTG GTG CGA TTT ACA GG

21 TTT GGC TTG AGC TCG TGT TA CCT ATG AAA AAG TAT CAA TTT GAG AAG

22 TTT TTC CAT ATT TAC TAA GCT GTC AA GAC TCC TTC ACC ACT GTG AAC TC

23 TTT TTC CTT TAT TTC AAC TGC C TGG TCT AGA GCC ACA AAA AGG

24 TTG AGA CTG TTT TTC AAG CAC C CAC GTG ACA AAA GTC AAA TTA AGC

25 TTT TTG TAC AAC TTC TCA GTG TGG TTT CCC CAG ATG ATC AAA GG

26 ATG CTG AAT TTC ATG GCT CC TGG GAA GTA TTT TGG CAT CC

27 TTC ATT TAT AAA AAC GAT GCT CC GAT TAC AAG CGT GAG CCA CC
28 CCT CCT GAT TTG TGA TAC CTT TG CAA GCA GGA TGT AAA TGA AGC A
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3.4. Results

3.4.1. Sequence variants identified in the OPA1 gene

Of the 83 NTG patients in the first cohort, 65 (78%) were females. Overall, 50 

instances of 6 different sequence variations were identified in OPA1 in the 

first cohort of NTG patients (summarized in Table 3.2). All variations found 

were synonymous nucleotide changes, with none resulting in an altered amino 

acid. The most frequent sequence alterations detected were located in intron 8 

(intervening sequence [IVS] 8) with two particular single nucleotide 

polymorphisms (SNPs) identified: +32 T/C and +4 C/T (positions in base pairs 

(bp) relative to beginning of IVS 8).

To test for association of the overall genetic variation in IVS 8 with disease, 

the frequency distribution of the combined genotypes of the two SNPs in the 

NTG group was compared to that in population controls by using a 2 x 4 %2 

test with the CLUMP program. The genetic variation in IVS 8 was found to 

be associated with disease (%2= 13.92, p= 0.002). Nearly 20% of NTG subjects 

carry the double heterozygote in IVS 8 corresponding to +4 C/T together with 

+32 T/C, compared to only 3% of controls (Table 3.2). We tested this 

genotype to see if it could underlie the overall association previously obtained, 

then corrected for multiple comparisons of the 4 genotypes detected. The 17% 

difference in frequencies was indeed found to be significant (%2 =12.91, 

p=0.002) showing that an association exists between +4 C/T, +32 T/C in IVS 

8 and NTG.
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Table 3.2. Sequence variations detected in first cohort of patients and
controls.

Exon and nucleotide 
change

NTG panel 
(n=83)
(%)
(95% Cl)

Controls
(n=100)
(%)
(95% Cl)

P-value Odds
Ratio
(95%CI)

8: IVS 8 +32 T->C 20
(24.1%)
(14.5-
33.5%)

25
(25%)
(15.5-34.5)

0.89 0.95
(0.5-1.9)

8: IVS 8 +4 C->T 10
(12.0%)
(4.0-18.0%)

11
(11%)
(4.0-18.0%)

0.83 1.1
(0.4-2.8)

8: IVS 8 +4 C—>T; 
+32 T—>C

16
(19.3%)
(11.0-29.0)

3
(3%)
(0-6.5%)

<0.001 7.7
(2.1-27.5)

10: IVS 10 +77 A—>C 2
(2%)
(0-5.0%)

0
(0%)
(0-3.0%)

* N/A

17: 1609A—>C 1
(1%)
(0-3.5%)

4
(4%)
(0-8.5%)

♦ N/A

20: 1894A—»G 1
(1%)
(0-3.5%)

1
(1%)
(0-3.0%)

* N/A

* frequencies too small for evaluation

3.4.2. Confirming the association between NTG with Intron 8 OPA1 

polymorphisms

In order to determine whether the initial findings could be replicated, a 

separately ascertained second cohort of Caucasian NTG subjects (n=80) and 

controls (n=86) was analyzed by bidirectional sequencing (Figure 3.2), for 

variations in intervening sequence (IVS) 8 found to be more prevalent in the 

first cohort of NTG cases.
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In the second cohort of 80 NTG patients and 86 controls, genetic variation in 

IVS8 was again found to be associated with disease (x2=l 1.49, p= 0.008). 

Twenty percent of these NTG subjects are double heterozygotes with +4 C/T 

and +32 T/C in IVS 8, compared to 4.7% in controls (Table 3.3). After 

correcting for multiple testing for 4 genotypes, this difference was significant 

(X =9.21, p=0.01), confirming that an association existed between this variant 

and disease. The genotype frequencies found in the second cohort of patients 

were in fact markedly similar to that obtained in the first cohort. Statistical 

comparison of the controls from each cohort showed that their genotype 

frequency distributions are not significantly different (%2 =2.5, p=0.48) and the 

same holds for the patient groups from each panel (%2 =0.6, p=0.89). 

Therefore, these samples appear to have been drawn from the same population 

and may be pooled. Finally, the genotype frequency distribution of the pooled 

patient group was compared to that of the pooled control group. The 

difference in frequency distribution was found to be highly significant (%2 

=24.87, p= lxlO'5). The association of the IVS 8 +4 C/T, +32 T/C genotype 

with disease was then tested and found to be very strongly associated with the 

occurrence of NTG in the pooled sample (%2 =22.04, p= 8x1 O'6 after correcting 

for testing four genotypes). Although the frequency of female patients is 

significantly larger than that of male patients when compared to controls in the 

pooled sample, stratification by gender showed that the association is 

maintained in both sexes. This indicates that the association of the IVS 8 +4 

C/T, +32 T/C genotype with disease is still valid.
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Figure 3.3. Electropherogram section showing SNPs at IVS 8 +4 C/T (left 

arrow) and IVS 8 +32 T/C (right arrow).



Table 3.3. Genotypes in intron 8: comparison of the 2 cohorts of patients.

GENOTYPE FIRST COHORT SECOND COHORT

IVS8 +4 IVS8 +32 NTG Patients Controls NTG Controls
(n=83) (n=100) Patients

(n=80)
(n=86)

C/C T/C 20 25 23 27
(24.1%) (25%) (28.8%) (31.4%)

C/T T/T 10 11 8 5
(12%) (11%) (10%) (5.8%)

C/T T/C 16 3 16 4
(19.3%) (3%) (20%) (4.7%)

C/C or C/C or T/T 37* 61* 33 50
T/T (44.6%) (61%) (41.3%) (58.1%)

Combined genotype 
association with disease

X2=13.92, p=0.0019 X 2=  11.49, p=0.0079

C/T-T/C genotype 
association with disease

X2=12.91, p=0.002 %2= 9.21, p=0.013

*Only Cohort 1 subjects with heteroduplexes were sequenced, so it was not 
possible to ascertain the genotype of homozygotes.

The IVS 8 SNPs from patient and control samples of cohort 2 were sequenced 

and found to be in Hardy-Weinberg equilibrium (%2 = 0.83, df=l, p < 0.5 and 

%2 = 0.025, df=l, p<0.9 respectively), demonstrating that the alleles in these 2 

samples appear to be behaving like normal Mendelian traits in a randomly 

mating population.
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Finally, the allele frequencies at the two common IVS8 SNPs were compared 

to that of controls by applying the %2 test using CLUMP. The frequency of the 

T allele at IVS8 +4 was found to be significantly associated with disease 

(X2=10.66, p=0.002), but this did not apply to alleles at IVS8+32 (x2=0.003, 

p=1.0). The T allele at IVS8+4 confers a relative risk of 3.5 (95% Cl: 1.4-8.8) 

and when considered with the IVS8 +32 site, the relative risk is increased to

6.2 (95% Cl: 2.7-14.6).

3.4.3. Matching of groups

To confirm that affected and control populations were matched, the 

frequencies of 2 SNPs in 2 other genes unrelated to glaucoma were assessed in 

the affected and control populations. The first SNP was 261 C/A in the Tyrp-1 

(Tyrosine related protein-1) gene located on chromosome 9p23, and the 

second SNP was IVS7 +46T/C in the BIGH3 (transforming growth factor) 

gene on chromosome 5q31.

The first SNP, 261 C/A in the Tyrp-1 gene was found in 7.5% of the affected 

panel and 9% in controls (x2=0.09, p=0.76) (See Figure 3.3) and the second 

SNP, IVS7 +46T/C in the B1GH3 gene was found in 94.5% and 92% 

respectively (x2=0.27, p=0.60). This confirmed that affected and control 

populations were matched and that there was no skew in the population 

polymorphisms.
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3.4.4. Effect on splicing: RT-PCR

The SNP IVS8+4 C/T is adjacent to the splice donor site of Intron 8. In order 

to establish if there was any molecular consequence at the RNA level such as 

an effect on splicing, RT-PCR was performed in an affected NTG patient 

compared to an unaffected control.

Leukocytes were isolated from whole blood by density-gradient centrifugation 

(Ficoll-Paque) according to the manufacturer’s instructions (Amersham 

Pharmacia Biotech, Little Chalfont, UK) and total RNA extracted (Trizol 

reagent; Invitrogen Life Technologies, Groningen, The Netherlands). 

01igo(dT)-primed total leukocyte RNA was reverse transcribed into single­

stranded cDNA using Ready-To-Go You-Prime First-Strand Beads 

(Amersham Pharmacia Biotech) and used to amplify cDNA segments 

encompassing the 2 SNPs IVS 8+4 C/T and +32 T/C (cDNA PCR primers 

exon c6F: 5 '-TGT C AG AC AAAG AG AAAATT G AC-3', and exon clOR: 5'- 

ATCAAACTCCCGAGAACTATC-3'). RT-PCR products were separated on a 

2% low-melting-point agarose gel.

The RT-PCR amplification products are shown in Figure 3.4. There was no 

difference in the product size between the affected patient and control, 

indicating that the SNPs did not exert a major effect on splicing or result in 

alternate splicing.
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Figure 3.4. Restriction digest of the SNP, 261 C/A in the Tyrp-1 gene. The 2 

bands indicate digested and 1 band undigested product.

422 bp —►

t t
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Figure 3.5. RT-PCR products of an affected subject with the OPA1 SNPs, 

IVS 8 +4 C/T and +32 T/C (Lane 1) and an unaffected individual (Lane 2) 

showing identical product size (422 bp).



3.4.5. Determining the phase of the 2 SNPs and haplotype construction

In order to determine to phase of the alleles of the 2 SNPs, PCR products were 

cloned into pGEM®-T Easy (Promega) plasmid vector system (as detailed in 

section 2.5). Colony PCR was performed to identify those plasmids that 

contained the inserts. Colonies containing ligated plasmid were selected and 

cultured overnight in 5 ml of LB culture medium with antibiotic selection. 

DNA was extracted from the cultured cells by use of a QLAGEN DNA 

Miniprep kit according to the manufacturer’s protocol (Section 2.3.1.). Inserts 

were subsequently sequenced using pTAG vector primers and sequenced on 

an ABI 3100 Genetic Analyzer (Section 2.9.4.).

A total of 7 affected subjects with the 2 SNPs IVS 8 +4 C/T, +32 T/C were 

used for the above experiment. The haplotype of 5 subjects showed a C-T, T- 

C trans phase, while in 2 subjects, there was a C-C, T-T cis phase. The results 

showed that there was no consistent haplotype for individuals with the OPA1 

SNPs IVS 8 +4 C/T, +32 T/C and that the alleles were not in linkage 

disequilibrium with each other.

3.4.6. Comparison between high-tension glaucoma (HTG) and NTG

Although NTG is a major subtype of glaucoma, the majority of glaucoma

cases in Caucasian and Afro-Caribbean populations are of the high-tension

glaucoma (HTG) type with elevated intraocular pressure (IOP). In order to

investigate whether a similar association existed between OPA1 and HTG, a

cohort of 90 unselected HTG patients was screened for the at-risk OPA1
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genotype IVS8+4C/T;+32T/C by PCR amplification and bi-directional 

sequencing. Of the 90 HTG subjects, five subjects (5.6%; 95% Cl 1.8-12.5) 

were found to carry the genotype, IVS8+4C/T;+32T/C on the OPA1 gene, this 

frequency being similar to 7/186 (3.8%; 95% Cl 1.5-7.6) in control subjects 

(X2=0.47, p=0.49, OR 1.5 [95% Cl 0.5 to 4.9]). In contrast, 32/163 (19.6%; 

95% Cl 13.8-26.6) NTG subjects carried this genotype (%2= 9.2, p= 0.002, OR

4.1 [95% Cl 1.6 to 11.1]). This is summarised in Table 3.4.

Table 3.4. Comparison between NTG, HTG and controls.

Comparison between 
NTG, HTG and 
controls

NTG
(n=163)

HTG
(n=90)

Controls
(n=186)

Frequency of the 32 5 7
genotype (19.6%) (5.6%) (3.8%)
IVS8+4C/T;+32T/C (13.8-26.6) (1.8-12.5) (1.5-7.6)
(%)
(95% Cl)

X 2 test X 2=  9.2, p= 0.002
Odds Ratio OR 4.1
(95%CI) (1.6 to 11.1)

X2 test X2=0.47,p=0.49
Odds Ratio OR 1.5
(95%CI) (0.5 to 4.9)

The genotypes at IVS8+4 and IVS8+32 for NTG subjects and controls of 

Cohort 2 and HTG subjects are summarized in Table 3.5.
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Table 3.5. Genotypes at IVS8+4 and IVS8+32 for NTG subjects and controls 
of Cohort 2 and HTG subjects.

Genotype

IVS8+4 IVS8+32
Cohort 2 NTG 

subjects 
(n=80)

Cohort 2 control 
subjects 
(n=86)

HTG
subjects
(n=90)

CT TC 16 4 5

CC TC 23 27 19
CT TT 8 5 11

CC TT 17 26 34

CC CC 16 24 21

3.5. Discussion

Our results provide the first evidence of an association between OPA1 and 

NTG, a major form of glaucoma. Two OPA1 SNPs, IVS 8 +4 C/T and +32 

T/C have been previously identified in other studies (Pesch et al., 2001; 

Toomes et al., 2001) but these polymorphisms were now found to be 

associated with the NTG disease phenotype, and may be a marker for disease 

association. This is an interesting observation as polymorphisms are associated 

with a variety of diseases including Alzheimer’s dementia (Bullido et al., 

1998), age-related macular degeneration (Allikmets, 2000), diabetes mellitus 

(Horikawa et al., 2000) and schizophrenia (Wei and Hemmings, 2000). The 

results highlight the possibility that the SNPs are in linkage disequilibrium 

with another sequence variation nearby that may be have a major role in NTG, 

possibly in non-coding regions of OPAL

Although this study demonstrates an association between OPA1 and NTG, it
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does not prove causation and the molecular mechanisms mediating NTG 

remain unknown. A number of possibilities can be proposed to explain the 

observed association, including subtle alterations in RNA splicing, protein 

function or the gene product of OPA1, which is thought to affect 

mitochondrial integrity (Alexander et al., 2000). Alternatively, indirect 

mechanisms may be present, possibly by conferring susceptibility in patients 

to other factor(s) that mediate NTG. The CT genotype at IVS 8+4, identified as 

being associated with disease, is adjacent to the splice donor site, but RT-PCR 

failed to show any major effect on splicing. However, minor effects on 

splicing cannot be excluded. It appears that IVS8+32, although not a strong 

risk factor for NTG on its own, may serve to modify the disease risk conferred 

by IVS 8+4 T. Compound heterozygotes comprised of such SNPs have been 

reported in a range of conditions and species including the level of alcohol 

dehydrogenase expression in Drosophila melanogaster (Stam and Laurie, 

1996) as well as in complex human diseases such as diabetes mellitus 

(Horikawa et al., 2000) and schizophrenia (Sivagnanansundaram et al., 2000).

One limitation of this study was the use of a single screening modality to 

detect mutations, namely heteroduplex analysis. This may not be expected to 

identify all disease-causing sequence variations, and may be prone to masking 

of sequence alterations by mutations or SNPs (Orban et al., 2000). Another 

limitation was that while the NTG population studied was well-characterized 

using strict diagnostic criteria and is considered typical of NTG patients, 

control individuals were not subjected to identical clinical examination. 

Although we could not be certain that controls subjects did not have NTG, it 

is unlikely that this would have significantly altered the results.
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The results also indicate that unlike NTG, the OPA1 genotype IVS 8 +4 C/T, 

+32 T/C is not significantly associated with high-tension primary open angle 

glaucoma. Some reports have noted optic disc and visual field differences 

between NTG and HTG patients, implying different mechanisms of optic 

nerve damage (Kamal and Hitchings, 1998). The results raise the possibility of 

genetic differences between the conditions, as the OPA1 genotype 

IVS8+4C/T;32T/C, associated with NTG, was not found to be associated with 

HTG. Such genetic differences may be particularly significant in NTG, 

possibly by affecting susceptibility to factor(s) that mediate glaucoma. The 

possibility that some HTG patients may harbour other mutations or sequence 

changes in OPA1 cannot be excluded.
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CHAPTER 4

THE PHENOTYPE OF NORMAL TENSION GLAUCOMA PATIENTS 

WITH AND WITHOUT OPA1 POLYMORPHISMS

4.1. Introduction

Work described in Chapter 3 found that approximately a fifth of NTG subjects 

were found to carry two single nucleotide polymorphisms (SNPs) on 

intervening sequence (IVS) 8 of the OPA1 gene (IVS 8 +4 C/T; +32 T/C), 

compared to only 3.7% of control subjects (%2 =22.04, p= 0.00001), indicating 

that the genotype IVS 8 +4 C/T, +32 T/C was strongly associated with the 

occurrence of disease, and may be a marker for disease association. This 

association raises the possibility that there exist different subgroups of NTG, 

distinguished by genetic variations in OPAL

4.2. Aim

The aim of this study was to compare the presenting clinical features of NTG 

patients with and without such polymorphisms in order to identify any 

possible phenotypic differences that may occur in such patients.

122



4.3. Methods

4.3.1. Ascertainment of subjects

A retrospective analysis was performed of 108 well-characterized NTG 

patients who had been genotyped for OPA1 variations, and who had 

previously undergone automated perimetry and Heidelberg retina tomography 

(HRT). The diagnostic criteria for NTG have been described in Section 2.2.2. 

There were 25 NTG patients (Group 1) with, and 83 NTG patients (Group 2) 

without the at-risk OPA1 genotype IVS 8 +4 C/T; +32 T/C. Only one eye from 

each patient was included. For bilateral cases, the right eye was analysed. The 

study had the approval of the Moorfields Eye Hospital ethics committee and 

was performed in accordance with the Helsinki Declaration.

Differences between groups were sought in a wide range of structural, 

psychophysical and demographic factors. These included gender, age at 

diagnosis, family history of glaucoma, history of ischaemic risk factors and 

vasospasm, laterality of glaucoma, presenting and highest diurnal intraocular 

pressure (IOP), initial cup-disc (CD) ratio, baseline visual field global indices 

(Section 2.1.5.), and optic disc parameters as measured by HRT (Section

2.1.6.). For a subgroup of patients with at least 5 years of follow-up and 10 

visual field tests, pointwise linear regression analysis (PROGRESSOR for 

Windows software) was applied to the visual field series. Progression was 

defined as the presence of a significant regression slope (p<0.01) showing 

1 dB per year or more of sensitivity loss at the same test location with the
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addition of two out of three successive field tests to the series starting with the 

first three.

4.3.2. Statistics

Statistical analysis was carried out using Statistical Package for Social 

Sciences version 9.0 (SPSS Inc, Chicago, Illinois). Parametric and non- 

parametric tests of significance were carried out where appropriate. 

Comparisons between groups were done with Mann-Whitney U tests for 

continuous variables that were not normally distributed. Chi-square analysis 

was used for comparison of proportions. Statistical significance was assumed 

at the p < 5% level.

4.4. Results

4.4.1. Demographics and history

There was no significant difference in the 2 groups with respect to 

demographic factors such as gender and age at diagnosis. There was also no 

significant difference with respect to family history of glaucoma, history of 

ischaemic risk factors, history of vasospasm or laterality of glaucoma (Table 

4.1).
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Table 4.1. Demographic features and systemic history of study subjects.

Group 1 
(n=25)

Group 2 
(n=83)

P value

Sex Male 8 21 0.51
Female 17 62

Age of onset <60 years 11 31 0.67
>60 years 14 52

Family history of Positive 7 28 0.59
glaucoma

Negative 18 55

Ischaemic risk factors Positive 12 33 0.46
Negative 13 50

Vasospasm Positive 7 17 0.41
Negative 18 67

Laterality Bilateral 19 65 0.81
Unilateral 6 18

4.4.2. Glaucoma status: IOP, visual field and optic disc

The comparison of IOP, CD ratio and visual field global indices, MD and 

CPSD in the 2 groups is summarized in Table 4.2. There was no significant 

difference found although the difference in mean highest diurnal IOP between 

the two groups approached significance (p = 0.06). The mean HRT parameters 

are summarized in Table 4.3. There were no differences in the mean values for 

any parameter analysed. The optic disc photograph and HRT of an NTG 

subject with the OPA1 genotype IVS 8 +4 C/T; +32 T/C is shown in Figure

4.1 and 4.2.
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Table 4.2. Presenting clinical features.

Group 1 
(n=25)

Group 2 
(n=83)

P value

Mean presenting IOP (mmHg) 16.2 ± 1.8 17.0 ±2.8 0.11

Mean highest diurnal IOP (mmHg) 17.9 ±2.3 18.9 ±2.6 0.06

Mean presenting cup disc ratio 0.75 ±0.1 0.76 ±0.1 0.93

Mean presenting MD (dB) -8.7 ± 8.4 -8.0 ±6.5 0.96

Mean presenting CPSD (dB) 8.5 ±4.8 8.0 ±4.3 0.60

IOP: intraocular pressure 
MD: mean deviation
CPSD: corrected pattern standard deviation

Table 4.3. Presenting optic disc parameters, as measured by HRT.

Group 1 
(n=25)

Group 2 
(n=83)

P value

Disc area (mm2) 2.04 ±0.41 2.11 ±0.45 0.77

Global rim area (mm2) 0.90 ±0.31 0.89 ±0.31 0.88

Temporal rim area (mm2) 0.13 ±0.07 0.14 ±0.07 0.57

Temporal superior rim area (mm2) 0.10 ±0.04 0.10 ±0.05 0.80

Temporal inferior rim area (mm2) 0.10 ±0.08 0.08 ± 0.06 0.36

Nasal rim area (mm2) 0.29 ±0.12 0.30 ±0.11 0.49

Nasal superior rim area (mm2) 0.13 ±0.06 0.14 ±0.05 0.63

Nasal inferior rim area (mm2) 0.16 ±0.06 0.13 ±0.06 0.14
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Figure 4.1. Right optic disc of a patient with the OPA1 genotype IVS 8 +4 

CAT; +32 T/C.

Figure 4.2. HRT scan of the right optic disc of the same patient.
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4.4.3. Visual field progression

Comparing the visual fields of the subgroup of 88 subjects (18 from Group 1 

and 70 from Group 2) who had at least 5 years of follow-up (with at least 10 

visual field tests performed during this time) revealed no difference in the 

number of patients with progressing locations, the mean number of 

progressing locations per subject, the mean slope of the progressing locations 

or the mean slope for whole visual field (Table 4.4).

Table 4.4. Visual Field progression of subjects with at least 5 years of follow- 

up and at least 10 visual fields performed during this time.

Sub-Group 1 
(n=18)

Sub-Group 2 
(n=70)

P value

Number of patients with 
progressing locations

16 (88.9%) 54 (77.1%) 0.98

Mean number of progressing 
locations per subject

7.89 ±14.67 7.28 ± 7.77 0.46

Mean slope of progressing 
locations per year (dB/year)

-0.51 ±0.91 -0.37 ±0.56 0.91

Mean slope for whole visual 
field per year (dB/year)

-1.99 ±1.62 -1.92 ±1.13 0.39
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4.5. Discussion

This study did not detect a significant difference in a range of phenotypic 

features in normal tension glaucoma patients with and without the OPA1 

polymorphisms IVS 8 +4 C/T; +32 T/C. This suggests that these specific 

genetic variations in OPA1 do not underlie any major phenotypic diversity in 

NTG, although the possibility of more subtle phenotypic differences, such as 

variable rates of response to treatment cannot be excluded. The mean 

presenting IOP and the highest diurnal IOP appeared to be lower in NTG 

patients with the OPA1 polymorphisms (almost reaching significance for the 

latter), which may indicate that the glaucoma in such patients is less IOP 

dependent. If this were to be the case, it would suggest that NTG patients have 

different IOP thresholds for glaucomatous damage to occur, and that those 

with OPA1 polymorphisms may be at risk of glaucoma at lower IOP levels.

Polymorphisms are associated with a variety of other diseases including 

Alzheimer’s dementia (Bullido et al., 1998), age-related macular degeneration 

(Allikmets, 2000), diabetes mellitus (Horikawa et al., 2000) and schizophrenia 

(Wei and Hemmings, 2000). Although intronic polymorphisms, of which 

OPA1 (IVS 8 +4 C/T and +32 T/C) is an example, are associated with 

conditions like intracerebral haemorrhages and cerebral aneurysms (Takenaka 

et a l, 1999), little is known about how intronic polymorphisms influence 

disease phenotype. Possible mechanisms include regulation of transcription 

(Cruts et a l, 1996; Bailly et al., 1996), effects on protein function or indirectly 

by conferring susceptibility in patients to other factor(s) that mediate disease. 

The biochemical mechanisms by which OPA1 may influence NTG remain
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obscure. The pathogenic characteristics of OPA1 resemble those of Leber 

hereditary optic neuropathy, which results from a defect of the mitochondrion. 

Alexander et al hypothesized that mutations in the OPA1 gene affect 

mitochondrial integrity, resulting in an impairment of energy supply 

(Alexander et al., 2000). Occurring in the highly energy-demanding neurons 

of the optic nerve, notably the papillomacular bundle, this would presumably 

lead to damage of retinal ganglion cells and visual loss.

A variety of factors may contribute to the development of optic neuropathy in 

glaucoma. In the apparent absence of elevated IOP, which is the main risk 

factor identified for glaucoma, non-IOP related factors are advocated to 

predominate in eyes with NTG including abnormal blood flow (Drance et al., 

1973; Phelps et al., 1985; Drance et al., 1988), systemic hypotension (Hayreh 

et al., 1994; Graham et al., 1995; Meyer et al., 1996) and an abnormal 

coagulability profile (Drance, 1972; Carter et al., 1990; Hamard et al., 1994; 

O'Brien et al., 1997). A strong genetic component is likely to be significant in 

NTG (Bennett et al., 1989; Stoilova et al., 1996; Sarfarazi et al., 1998; Rezaie 

et al., 2002). It is hypothesized that several interacting genes contribute to the 

development of disease, with the putative role of each polymorphic sequence 

variation influenced by an individual’s genetic and environmental background. 

However the number and identity of genes contributing to NTG has yet to be 

fully determined. Much remains to be learned about the phenotypic effects of 

specific genes and alleles in this condition.
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CHAPTER 5

PREVALENCE OF OPTINEURIN SEQUENCE VARIANTS 

IN ADULT PRIMARY OPEN ANGLE GLAUCOMA

5.1. Introduction

The majority of primary open angle glaucoma (POAG) in Caucasian and 

Afro-Caribbean populations is of the high-tension glaucoma (HTG) type, with 

elevated intraocular pressure (IOP) being a major contributory factor for 

visual loss (Mason et al., 1989, Sommer et al., 1991; Klein et al., 1992). 

Normal tension glaucoma (NTG) is another important subtype of POAG in 

which typical glaucomatous cupping of the optic nerve head and visual field 

loss are present, but IOPs are consistently within the statistically normal 

population range.

In 1997, Myocilin (MYOC, MIM 601652) was the first POAG gene to be 

characterized and found to be mutated in patients with juvenile and adult onset 

POAG (Stone et al., 1997). Subsequent studies found that MYOC mutations 

account for fewer than 5% of cases of adult POAG (Stone et al., 1997; Suzuki 

et al., 1997; Alward et a l, 1998; Fingert et a l, 1999; Alward et a l, 2002). 

Recently, a second POAG gene, Optineurin (OPTN, MIM 602432) in the 

GLC1E interval on chromosome lOp was identified (Rezaie et a l, 2002), and 

variations in this gene were shown to predominantly result in NTG. The most
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common OPTN mutation, Glu50 —► Lys (E50K) was identified in 13.5% of 

families, 18% of whom had high IOP. A second OPTN variant, Met98 —>Lys 

(M98K) was identified in 13.6% of familial and sporadic POAG cases 

compared to 2.1% of controls, making it a significant risk-associated genetic 

factor for glaucoma. Such high prevalence levels suggest that the E50K/M98K 

variants may be more frequent than the Gln368Stop MYOC mutation, the most 

common mutation found in POAG, identified in 1.6% of unrelated glaucoma 

probands (Fingert et al., 1999).

5.2. Aim

The purpose of this study was to determine the prevalence of these 2 OPTN 

sequence variants in a large cohort of unrelated British patients with adult- 

onset POAG in order to assess the feasibility of developing diagnostic testing 

for these variants in glaucoma subjects.

5.3. Methods

5.3.1. Ascertainment of patients

Written informed consent was obtained from all subjects and the study had 

been approved by the Moorfields Eye Hospital ethics committee and was 

performed in accordance with the Helsinki Declaration. The patients 

comprised an unselected cohort of 315 unrelated Caucasian individuals with 

adult onset POAG that included 186 women with ages ranging from 52 to 81 

years. All were from the greater London area and were attending tertiary 

referral glaucoma clinics at Moorfields Eye Hospital. The diagnostic criteria 

and definitions have been described earlier in Section 2.2.2.
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5.3.2. Molecular genetic studies

Genomic DNA, extracted from venous blood using the Nucleon II extraction 

kit (Scotlab Inc., Shelton, CT, USA), was subjected to 35 cycles of PCR 

amplification using oligonucleotide primers in 50 ul reaction volumes (20 ng 

genomic DNA, 10 pmol of each primer, 200 mM dNTPs, 1.5 mM MgCl and 2 

units of Taq DNA Polymerase (Promega, Madison, USA)). To detect the 

E50K mutation, exon IV of the OPTN gene was amplified using the primers 

(5' CAGGTGACTTTTCCACAGGA3') and

(5'GATTTAGCATTTGGCAAGGC3'), and amplified exons purified with 

QuickStep columns (Edge Biosystems, Gaithersburg, MD, USA), then 

sequenced bidirectionally with fluorescent dideoxynucleotides (PE 

Biosystems, Foster City, USA) on an ABI 3100 automated sequencer (Applied 

Biosystems, Foster City, CA, USA) using standard conditions (as detailed in 

Section 2.9.4.). A section of the electropherogram showing the OPTN E50K 

mutation is shown in Figure 5.1.

To detect the M98K sequence variant, exon V of the OPTN gene was 

amplified using the primers (5' TCCACTTTCCTGGTGTGTGA3') and 

(5'CAGACCGATCCATTGTGATG 3'). The 273 base pair polymerase chain 

amplification product was then digested with 1.0 U of Stu I  restriction enzyme 

(Promega, Corporation, Madison, WI, USA). The M98K nucleotide change 

resulted in the gain of the Stu I  restriction site with the production of two 

fragments of 98 bp and 175 bp in size. For individuals heterozygous for this 

change, three bands were produced (the third band being the 273-bp fragment) 

(Figure 5.2).
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5.3.3. Haplotype Analysis: Single nucleotide polymorphism (SNP) 

characterisation

In order to establish whether individuals with the E50K and M98K variants 

share a common ancestral haplotype or represent independent mutation events, 

4 single nucleotide polymorphisms (SNPs) located within the OPTN gene 

were typed. The SNPs flanked E50K/M98K and were located within a 12 kb 

interval (Figure 5.3). There were 3 non-coding SNPs with the respective 

reference dbSNP (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Snp) 

numbers (660592, 577910 and 545734) and 1 coding SNP (2234968).

The SNPs were characterized by minisequencing reactions. Briefly, this relies 

on extension of a primer that ends one base short of a polymorphic site, with 

fluorescent-labelled dideoxynucleotides, which are complementarity 

incorporated according to the sequence of the amplified target. The 

minisequencing reaction (5 ul of SNaPshot Multiplex Ready Reaction reagent 

[Applied Biosystems, Foster City, CA, USA], 5 pmol of each primer and 3 ul 

of purified PCR product) was performed as follows: 25 cycles at 96 degrees C 

for 10 seconds, 50 degrees C for 5 seconds, and 60 degrees C for 30 seconds.
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Figure 5.1. Section of the electropherogram showing the OPTN E50K 
mutation.
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Figure 5.2. Stu I restriction enzyme digest: In the presence of the M98K 

nucleotide change, three bands were produced. Single band indicates 

undigested product.
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Figure 5.4. SNaPshot minisequencing reaction.
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After extension, the samples were treated with shrimp alkaline phosphatase 

according to the manufacturer’s protocol. The samples were electrophoresed 

on an automated ABI PRISM 3100 Genetic Analyzer and analysed with the 

ABI GeneScan 3.1 analysis software (Applied Biosystems) (Figure 5.4). Size 

determinations were performed using the GeneScan-120 LIZ size calibrator 

with the Genotyper Version 2 data collection software.

5.3.4. Statistical Analysis

Genotype frequencies among cases and controls were tested for significant 

differences using standard %2analysis. Differences between odds ratios were 

tested for statistical significance using a Breslow-Day test (version 8.02, SAS 

software package, SAS Institute, Cary, NC, USA).

5.4. Results

5.4.1. Prevalence of E50K and M98K

A total of 315 POAG subjects (consisting of 132 NTG and 183 HTG subjects) 

and 95 control subjects were examined. Overall the E50K change was found 

in 2 out of 315 POAG subjects (0.6%; 95% Cl 0.08-2.3) and none out of 95 

control subjects (%2= 0.61, p= 1.0). The M98K variant was found in 22 out of 

315 POAG subjects (7.0%; 95% Cl 4.4-10.4) and 3 out of 95 (3.2%; 95% Cl 

0.7-9.0) control subjects (%2= 1.87, p= 0.17). This is summarized in Table 5.1.
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Table 5.1. Overall prevalence of E50K and M98K in glaucoma and control 
subjects.

Frequency
(%)
(95% Cl)

Glaucoma
Subjects
(n=315)

Controls
(n=95)

X2 test 
Odds Ratio 
(95%CI)

E50K 2
(0.6%)
(0.08-2.3)

0
(0%)
(0 -3 .8 )

X2=0.606,p=1.0 
RR= 1.01 
(0.998 to 1.02)

M98K 22
(7.0%)
(4 .4 -10 .4 )

3
(3.2%) 
(0 .7-9 .0)

X2=1.87,p= 0.172 
OR = 2.3 
(0.67 to 7.9)

Looking at the subgroups (Table 5.2), the prevalence of the E50K change was 

2/132 (1.5%; 95% Cl 0.2-5.4) in NTG subjects and 0/183 (0%; 95% Cl 0-2) in 

HTG subjects. The M98K variant was present in 14 /132 (10.6%, 95%CI 5.9 -  

17.2) NTG subjects, compared to 8/183 (4.4%, 95%CI 1.9 -  8.4) HTG 

subjects (x2= 4.6, p= 0.03, OR=2.6 [95% Cl 1.1 to 6.4]) and 3/95 (3.2%, 

95%CI 0.7 -  9.0) control subjects (%2= 4.4, p= 0.04, OR= 3.6 [95% Cl 1.02 to 

13.0]). The difference in frequency of M98K between HTG and control 

subjects was not significant (x2= 0.17, p= 1.0, OR =1.3 [95%CI 0.34 to 5.1]).
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Table 5.2. Prevalence of E50K and M98K by subgroup.

E50K X2 test 
Odds Ratio 
(95%CI)

M98K X2 test 
Odds Ratio 
(95%CI)

HTG
(n=183)

0
(0%)
(0 -2 .0 )

X2=2.8,p=0.18
RR= 1.02 
(0.99 to 1.04)

X2=1.5,p=0.51 
RR= 1.02 
(0.99 to 1.04)

8
(4.4%) 
(1 .9-8 .4)

%2=4.6, p=0.03 
OR =2.6 
(1.1 to 6.4)

X2=4.4, p=0.04 
OR = 3.6 
(1.02 to 13.0)

NTG
(n=132)

2
(1.5%) 
(0.2-5.4)

14 
(10.6%) 
(5.9 -  17.2)

Controls
(n=95)

0
(0%)
(0 -3 .8 )

3
(3.2%) 
(0.7-9.0)

5.4.2. Haplotype

Haplotype analysis of a 12 Kb region within the OPTN gene revealed that no 

common haplotype between patients with either the E50K or M98K variants 

(Table 3).

Table 5.3. Haplotypes of subjects with E50K and M98K variants.

SNP Allelles 
segregating 
with E50K 
change

Allelles segregating 
with M98K change

660592 G/G G/G G/G T/T T/G

2234968 A/G G/G G/G G/G G/G

577910 G/G A/A G/G A/A A/A

545734 G/G G/G G/G G/G G/G
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5.5. Discussion

Our data indicate that the E50K mutation is an infrequent cause of sporadic 

NTG accounting for 1.5% of cases, and it is not associated with HTG in the 

UK population. Based on these results, as only a small proportion of NTG 

subjects (95% Cl 0.2-5.4%) would be expected to have the E50K change, 

diagnostic testing of sporadic NTG cases for E50K is not at present indicated 

in the UK population. Similarly pre-symptomatic screening in the general 

population would be expected to yield an exceedingly low detection rate, as an 

abnormal test result would be rare and a normal test result would be 

meaningless. Commercially available kits such as the OcuGene test (InSite 

Vision), which screen for MYOC variations, have also been found to have low 

sensitivity for detecting glaucoma-causing mutations (Alward et al., 2002), 

and illustrate the current limitations of genetic testing in glaucoma.

Our results contrast with the findings of Rezaie and co-workers who identified 

E50K in 7 out of 52 POAG families (13.5%), most of whom had NTG (Rezaie 

et al., 2002). The ten-fold higher prevalence of E50K mutations in familial 

compared to sporadic cases highlights the enrichment in inherited cases that is 

associated with a family history. Such a high difference in prevalence between 

familial and sporadic cases supports the introduction of targeted diagnostic 

testing in individuals with a family history of NTG, although not at present in 

sporadic cases. As the cost of screening for known mutations declines with the 

continuing rapid advances in mutation detection techniques, it seems likely
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that the cost/benefit considerations of screening singleton NTG patients for 

common mutations such as E50K may become more favourable in the future.

The second sequence change studied, M98K, has previously been reported to 

be an attributable risk factor for POAG, present in 13.6% of both familial and 

sporadic POAG cases compared to 2.1% of controls (Rezaie et a l , 2002). 

However our study did not identify an overall difference in prevalence 

between POAG cases and controls, but that the M98K variant was associated 

specifically with NTG but not HTG. About 10% of NTG subjects were found 

to have this variant, compared to 4% of HTG and 3% of controls. The 

difference in results between the 2 studies may be attributable to the panel of 

patients in the earlier study consisting of predominantly NTG subjects (only 

13% of the POAG subjects used in that comparison actually had IOP values 

above normal). The association of M98K with NTG but not HTG suggests 

genetic and/or allelic heterogeneity between these 2 phenotypes. Such genetic 

differences may imply different mechanisms of optic nerve damage, possibly 

by affecting susceptibility to factor(s) that mediate glaucoma.

In view of the high prevalence of M98K and that reported for E50K (Rezaie 

et al., 2002), we investigated whether this was caused by a founder effect. 

Using intragenic SNPs spanning a 12 kb interval of the OPTN gene (Figure 

1), we identified three different M98K and two E50K haplotypes, indicating 

that these sequence changes arose independently.

Our study was based at a tertiary referral centre, which raises the possibility of

selection bias related to severity of disease, as subjects with more complex

problems may be over-represented. We cannot exclude the possibility that
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these POAG patients may harbour other mutations or sequence changes in 

OPTN. Complete sequencing of the OPTN gene may reveal further mutations, 

and other differences between these groups.
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CHAPTER 6

THE PHENOTYPE OF PATIENTS WITH THE E50K 

MUTATION IN THE OPTINEURIN GENE

6.1. Introduction

A second gene for primary open angle glaucoma (POAG), Optineurin (OPTN, 

MIM 602432) in the GLC1E interval on chromosome lOp, was recently 

identified, and variations in this gene were shown to result predominantly in 

normal tension glaucoma (NTG), a major subtype of POAG in which IOPs are 

within the statistically normal population range (Rezaie et al., 2002). The 

most common OPTN mutation, Glu50 —► Lys (E50K) was found to be a 

significant cause of glaucoma identified in 13.5% of families studied.

Knowledge of the clinical behavior of specific mutations is helpful in disease 

management by providing patients with useful information regarding the 

course and prognosis of their disease. This is illustrated in POAG with the 

finding that the Ile477Asn and Tyr437His mutations in the MYOC gene are 

associated with a more severe form of glaucoma with an early age of onset, 

high IOP and resistance to medical treatment (Alward et al., 1998; Richards et 

al., 1998) while the Gln368STOP MYOC mutation causes a less virulent form 

of disease that is similar to usual cases of adult onset POAG (Alward et al., 

1998; Allingham et al., 1998; Angius et al., 2000; Craig et al., 2001).

143



6.2. Aim

The aim of this study was to investigate the clinical features of subjects 

carrying the E50K OPTN mutation in order to determine if this mutation 

imparts a characteristic phenotype in glaucoma patients. The onset, severity 

and clinical course of these patients were then compared with a group of 

POAG patients without the E50K OPTN mutation.

6.3. Methods

6.3.1. Ascertainment of subjects

A retrospective analysis was performed of all patients attending glaucoma 

clinics at Moorfields Eye Hospital, London who were identified to have the 

E50K mutation in the OPTN gene. The study had the approval of the 

Moorfields Eye Hospital ethics committee and was performed in accordance 

with the Helsinki Declaration. These subjects had been previously identified in 

2 separate studies; in the first study, families with glaucoma were investigated 

for OPTN mutations (Rezaie et al., 2002), while the second study has been 

described in chapter 5.

The diagnostic criteria and definitions for POAG, NTG and HTG have been 

described earlier (Section 2.2.2.).
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Patients' hospital records were reviewed and the following data collected: 

demographic characteristics including gender and age at diagnosis; family 

history of glaucoma; history of ischaemic risk factors such as hypertension, 

diabetes mellitus, ischaemic heart disease and smoking; history of vasospasm 

such as migraine and cold hands and feet; the presenting and highest recorded 

diurnal intraocular pressure (IOP) as measured by applanation tonometry; cup- 

disc (CD) ratio at presentation and interocular symmetry of glaucoma. The 

treatment administered including the type and number of medications, the 

history of filtering surgery was also recorded.

Subjects underwent static automated white-on-white threshold perimetry 

(program 24-2, model 640, Humphrey Instruments, Dublin, California, USA) 

(Section 2.1.5.). The first 2 visual field tests for all subjects were discarded 

from the analyses to allow for learning effects, and the subsequent first 

reliable visual field was used as the baseline. The visual fields of a subgroup 

of subjects who had at least 5 years of follow-up were also analyzed for 

progression. Pointwise linear regression analysis was applied to the field series 

of each of these subjects using PROGRESSOR for Windows software (Fitzke 

et al., 1996). Progression was defined as the presence of a significant 

regression slope (p<0.01) showing 1 dB per year or more of sensitivity loss at 

the same test location with the addition of two out of three successive field 

tests to the series starting with the first three. The Heidelberg retina tomograph 

(HRT, Heidelberg Engineering, Heidelberg, Germany) was used to image the 

optic disc and the baseline optic disc parameters were analyzed (Section 

2 .1.6 .).
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6.3.2. Control Group

From 315 unrelated POAG subjects, a control group of subjects of the same 

glaucoma category (NTG or HTG) but without the OPTN E50K mutation was 

selected for comparison, using identical study methodology and data 

collection. Only those that had undergone repeated automated perimetry (with 

at least 5 years of follow-up), as well as imaging of the optic disc with the 

HRT were eligible for selection as controls.

6.3.3. Statistical analysis

Only one eye from each patient was analyzed. This was randomly selected in 

bilateral cases, and the affected eye in unilateral cases. Statistical analysis was 

carried out using Statistical Package for Social Sciences version 9.0 (SPSS 

Inc, Chicago, Illinois). Parametric and non-parametric tests of significance 

were carried out where appropriate. Comparisons between groups were done 

with Mann-Whitney U tests for continuous variables that were not normally 

distributed. Chi-square analysis was used for comparison of proportions. 

Statistical significance was assumed at the p < 5% level, and significant 

statistical associations were corrected by the Bonferroni test for multiple 

comparisons (20 comparisons made).

146



6.4. Results

6.4.1. Affected subjects

A total of 19 Caucasian subjects were found to have the E50K OPTN 

mutation. This comprised 13 POAG-affected subjects, all of whom were 

classified as having NTG, and 6 asymptomatic mutation carriers. Eight of the 

glaucoma subjects and 2 asymptomatic mutation carriers were from one 

family (Pedigree 1-Figure 6.1a), and 3 glaucoma subjects and 4 asymptomatic 

carriers were from another family (Pedigree 2-Figure 6.1b). Two unrelated 

sporadic NTG cases were also identified with the mutation. The glaucoma 

phenotype in both pedigrees segregated as an autosomal dominant condition, 

and every glaucoma-affected case in the families carried the E50K mutation. 

Two of the NTG subjects (individuals 11:3 and 111:9), with the E50K mutation 

from Pedigree 1 were excluded from the results as they were not examined at 

this hospital.
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Figure 6.1. Pedigrees with the E50K OPTN mutation. A. Pedigree 1. B. 

Pedigree 2. Phenotype information is included on the pedigrees: Primary open 

angle glaucoma with E50K mutation (filled symbol), asymptomatic mutation 

carriers (dotted symbol), normal individuals without mutation (unfilled 

symbol). Individuals’ pedigree number and year of birth (only for 

asymptomatic mutation carriers) is displayed.
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6.4.2. Glaucoma status of affected subjects

Table 6.1 lists the age, sex, age at diagnosis, laterality, presenting CD ratio, 

presenting MD and CPSD, and surgical treatment of the 11 remaining NTG 

patients with the E50K OPTN mutation. These subjects had presenting and 

highest IOP (on diurnal testing) of 15.3 + 3.0 mm Hg (mean + SD) (range: 12- 

20 mm Hg) and 16.5 + 2.5 mm Hg (range: 12-21 mm Hg) respectively. The 

mean corneal thickness (measured in 8 individuals) was 543 + 10.6 (range:
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533-558 um). The mean age at diagnosis was 40.8 ± 11.0 years (range 24-59 

years) with only 2/11 subjects being diagnosed when older than 50 years. All 

but one subject had bilateral disease. This 56-year old had glaucomatous 

cupping (cup-disc ratio 0.8) and visual field defect in one eye, but the other 

eye had a cup-disc ratio of 0.6 with normal visual field and HRT tests. 

Interestingly, the glaucomatous eye had a few signs of pigment dispersion, 

such as deposition of iris pigment on the corneal endothelium, pigmentation of 

the trabecular meshwork and iris transillumination defects. However, IOP was 

consistently within the normal range.

Most of the subjects with NTG presented with relatively advanced disease: the 

mean CD ratio at the time of diagnosis was 0.86 ±0.1, and all but one subject 

had CD ratio > 0.8. Visual field status was also quite severe at the time of 

diagnosis: 8/11 subjects had presenting MD < -15.0 dB, and 7/11 subjects had 

presenting CPSD >10.0 dB. The visual field defects consisted of paracentral 

nerve fiber bundle type defects in all cases except for one subject who had a 

nasal step. One subject was already blind at the time of diagnosis with bilateral 

central visual fields of less than 20 degrees. Eight of the 11 glaucoma subjects 

had undergone filtering surgery for progressive visual field loss.
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Table 6.1. C linical features o f  glaucom a patients affected with the E50K  OPTN mutation.

Pedigree Patie
nt
Num
ber

Sex Age Age at 
diagnosis

Presenting
IOP

Highest IOP 
recorded on 
diurnal testing

Laterality Presenting
Cup-Disc
ratio

Presenting MD 
(dB) on 
Humphrey 
perimetry

Presenting 
CPSD (dB) 
on Humphrey 
perimetry

Filtering
Surgery

1 111:1 Male 56 50 18 18 Unilateral 0.8 -8.1 13.5 +
1 111:5 Female 53 38 12 14 Bilateral 0.9 -15.6 14.5 +
1 111:7 Female 64 52 12 14 Bilateral 0.9 -19.6 14.7 +
1 111:8 Male 60 43 17 19 Bilateral 0.7 -6.5 4.4 +
1 IV:6 Female 33 31 16 17 Bilateral 0.8 -1.2 2.0 Nil
1 IV:7 Female 31 24 13 12 Bilateral 0.9 -16.7 16.6 Nil
2 11:2 Male 63 42 15 15 Bilateral 0.95 -23.5 11.6 +
2 11:5 Female 82 45 18 16 Bilateral 0.9 -32.2 3.4 +
2 111:6 Female 60 25 14 18 Bilateral 0.9 -25.1 10.6 +
Sporadic 1 Female 59 40 12 18 Bilateral 0.8 -21.4 11.8 +
Sporadic 2 Female 71 59 20 21 Bilateral 0.9 -22.3 8.3 Nil

(Mean ±  
SD)

57.0 ±15.0 40.8 ± 15 15.3 ± 3 .0 16.5 ±2 .5 0.86 ±0.1 -16.0 ±  9.5 9.7 ± 4 .7
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6.4.3. Asymptomatic mutation carriers

Six E50K mutation-carrying individuals had normal optic discs and visual 

fields and as yet show no signs of glaucoma. Their ages ranged from 22 to 32 

years (year of birth shown under subject symbols in Figure 1).

6.4.4. Comparison with control group

The clinical features of the 11 NTG subjects with the OPTN E50K mutation 

were compared with that of 87 NTG subjects without the mutation who had 

undergone repeated automated perimetry (with at least 5 years of follow-up) 

and imaging of the optic disc with HRT.

There was no significant difference in the 2 groups with respect to gender, 

history of ischaemic risk factors, history of vasospasm or laterality of 

glaucoma (Table 6.2). NTG patients with the OPTN E50K mutation however 

were younger when first diagnosed (p=0.0001, Bonferroni adjusted p=0.002). 

The comparison of IOP, CD ratio, visual field global indices, MD and CPSD 

and rate of surgery in the 2 groups is summarized in Table 6.3. NTG patients 

with the OPTN E50K mutation had lower mean peak IOP on diurnal testing 

(p=0.01 Bonferroni adjusted p=0.2), and lower mean presenting IOP, which 

approached significance (p =0.06). These patients also had worse initial cup- 

disc ratio (p=0.001 Bonferroni adjusted p=0.02) and higher mean presenting 

MD of initial visual fields (p=0.006 Bonferroni adjusted p=0.12). However 

there was no significant difference in the initial CPSD. Eight patients (72.7%) 

with the OPTN E50K mutation underwent filtering surgery for progression of 

visual field loss, compared to 22/87 (25.3%) patients without the mutation 

(pO.OOOl Bonferroni adjusted p=0.002).
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The presenting optic disc parameters (as measured by HRT) are summarized 

in Table 6.4. There was no difference in the mean optic disc area. However 

optic discs of the 9 patients with the OPTN E50K mutation (HRT scans of 2 

subjects were not interpretable due to poor quality of images) had smaller 

neuroretinal rim areas (global, nasal and temporal). The difference was more 

marked in the nasal neuroretinal rim, for both superior and inferior nasal rim 

areas. Comparing the visual fields of the subgroup of subjects who had at least 

5 years of follow-up, all 8 subjects (100%) with the OPTN E50K mutation 

were found to have progressing locations, as compared to 71/87 (81.6%) of 

those without the mutation (p=0.0001 Bonferroni adjusted p=0.002).

However, there was no difference in the mean number of progressing locations 

per subject, the mean slope of the progressing locations or the mean slope for 

whole visual field (Table 6.5).
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Table 6.2. Comparison between NTG patients with and without the E50K

OPTN mutation: Demographic features and systemic history.

Group 1 
(n=ll)

Group 2 (n=87) P value Corrected 
p value

Sex Male

Female

3
(27.3%)
8
(72.7%)

23
(26.4%)
64
(73.6%)

1.0

Age at diagnosis <60 years 

>60 years

11
(100%)
0
(0%)

33
(37.9%)
54
(62.1%)

0.0003 0.006

Mean age at 
diagnosis (years)

40.8 ± 11.0 61.7+10.1 0.0001 0.002

Ischaemic risk 
factors

Positive

Negative

3
(27.3%)
8
(72.7%)

33
(37.9)
54
(62.1%)

0.74

Vasospasm Positive

Negative

4
(36.4%)
7
(63.6%)

17
(19.5%)
70
(80.5%)

0.24

Laterality Bilateral

Unilateral

10
(90.9%)
1
(9.1%)

70
(80.5%)
17
(19.5%)

0.68
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Table 6.3. Comparison of clinical features between NTG patients with and

without the E50K OPTN mutation.

Group 1 
(n=ll)

Group 2 
(n=87)

P value Corrected 
p value

Mean presenting IOP 
(mmHg)

15.3 ±3.0 17.0 ±2.7 0.06

Mean highest diurnal IOP 
(mmHg)

16.5 ±2.5 18.8 ±2.6 0.01 0.2

Mean presenting cup disc 
ratio

0.86 ±0.1 0.76 ±0.1 0.001 0.02

Mean presenting MD (dB) -16.0 ±9.5 -7.8 ±  6.8 0.006 0.12

Mean presenting CPSD (dB) 9.7 ±4.7 8.1 ±4.4 0.25
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Table 6.4. Comparison between NTG patients with and without the E50K

OPTN mutation: Presenting optic disc parameters, as measured by HRT.

Group 1 
(n=9)

Group 2 
(n=87)

P value Corrected 
p value

Disc area (mm2) 1.95 ±0.53 2.09 ±0.47 0.26

Global neuroretinal rim area 
(mm2)

0.50 ±0.28 0.89 ±0.31 0.001 0.02

Temporal rim area (mm )
Temporal superior rim area 
(m m )
Temporal inferior rim area 
(mm)

0.08 ± 0.04 
0.07 ± 0.05 
0.05 ± 0.03

0.13 ±0.08 
0.10 ±0.05 
0.08 ± 0.07

0.02
0.09
0.13

0.40

Nasal rim area (mm2)
Nasal superior rim area 
(mm2)
Nasal inferior rim area 
(mm2)

0.14 ±0.11 
0.08 ± 0.04 
0.08 ± 0.06

0.30 ±0.11 
0.14 ±0.06 
0.14 ±0.06

0.0004
0.006
0.01

0.008
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Table 6.5. Comparison between NTG patients with and without the E50K 

OPTN mutation: Visual Field progression of subjects with at least 5 years of 

follow-up.

Sub-Group 1 
(n=8)

Sub-Group 2 
(n=87)

P value

Number of patients with 
progressing locations

8
(100%)

71
(81.6%)

0.34

Mean number of 
progressing locations per 
subject

8.63 ± 8.68 7.95 ± 9.6 0.66

Mean slope of progressing 
locations per year (dB/year)

-2.02 ±0.75 -1.97 ±1.22 0.4498

Mean slope for whole 
visual field per year 
(dB/year)

-0.57 ± 0.36 -0.43 ± 0.66 0.15
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6.4.5. Further Subgroup Analysis

In order to reduce bias due to having a younger age of diagnosis, those with 

E50K were compared with a subgroup of 13 control subjects all of whom were 

diagnosed below the age of 50 years (mean 45.2 + 4.5 years, p=0.28). The 

global, temporal and nasal neuroretinal rim areas of those with E50K at the 

time of diagnosis were still smaller than in controls (0.91±0.21 mm2 

[p=0.005], 0.13±0.05 mm2 [p=0.01] and 0.28±0.09 mm2 [p=0.004] 

respectively), and there were a higher percentage of E50K patients with 

progressing locations in the visual fields (100% vs 76.9%, p=0.39). In another 

subgroup analysis, the 11 subjects with the E50K mutation were matched by 

initial MD with 22 subjects without E50K (2 subjects without the mutation 

matched with each subject with E50K) in order to correct for severity of 

glaucoma. Subjects with E50K were found to be diagnosed at a younger age 

(p<0.0001) but there was no significant difference for the other comparisons 

made.

6.5. Discussion

This study has shown that the E50K mutation in the OPTN gene causes a 

distinctive glaucoma phenotype with fairly homogeneous characteristics. All 

subjects with this mutation were found to develop normal tension glaucoma, 

with IOP usually in the mid teens (mean 15.3 mm Hg). The highest measured 

IOP on diurnal testing was found to be significantly lower (mean of 16.5 mm 

Hg) than a control group of other NTG subjects without the mutation.

Although IOP is a major risk factor for visual damage in glaucoma (Anderson, 

1989, Sommer et al.t 1991), the disease caused by E50K thus appears to be 

less IOP dependent than other forms of glaucoma. Interestingly, the comeal 

thickness in these individuals was in the normal range (533-558 um), which 

suggests that IOP was not influenced by an abnormal comeal thickness, and
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contrasts with the finding of thinner corneas in other NTG subjects (Wolfs et 

al., 1997; Morad et a l, 1998; Copt et al., 1999; Lee et al., 2002).

As patients are usually asymptomatic and the condition is difficult to 

diagnose, NTG patients often have marked irreversible visual damage at the 

time of diagnosis. Subjects with the E50K mutation were found to have a 

particularly severe glaucoma phenotype, as evidenced by the advanced optic 

disc cupping, neuroretinal rim thinning and visual field damage when first 

examined. The degree of glaucomatous damage at the time of diagnosis 

exceeded that of other NTG subjects without the mutation, despite some of the 

subjects in the 2 pedigrees being screened for glaucoma at a younger age due 

to a positive family history. These findings emphasize the importance of early 

detection of glaucoma in individuals at risk, such as those with a family 

member affected by this mutation. The glaucomatous disease process caused 

by E50K is also characterized by a progressive course with visual field 

progression detected in all subjects over 5 years (example shown in Figure 

6.2a and b), as opposed to 81% of NTG controls, and 77% in a previously 

reported series of NTG subjects (Membrey et al., 2000). Filtering surgery for 

visual field progression was performed in 70% of NTG cases with E50K, 

compared to only 25% in those without the mutation. The therapeutic 

implications of such an aggressive form of disease are that close monitoring 

and earlier intervention may be necessary in these subjects in order to 

minimize visual loss. Treatment should involve lowering of IOP by 20% or 

more, as this has been found to favorably alter the course of visual field 

progression in some NTG patients (Wilson et al., 1991; Hitchings et al., 1995; 

Bhandari et al., 1997; Koseki et al., 1997; Collaborative Normal-Tension 

Glaucoma Study Group 1998; Membrey et al., 2001). However with starting 

IOPs in the 12-18 mm Hg range, this may be difficult to achieve except by 

means of filtering surgery, possibly augmented by antiproliferative drugs.

The E50K mutation seems to predispose individuals to an early age of onset in

young adulthood (mean age at diagnosis 40 years), which is about 2 decades
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earlier than most NTG subjects, and all subjects (including the 2 sporadic 

cases) were diagnosed before the age of 60. However, there is likely to be 

selection bias towards earlier diagnosis due to positive family history, 

resulting in individuals from the pedigrees being examined systematically for 

glaucoma at a young age. There was some variation in the age of onset of 

disease. There were 2 individuals with the mutation who were diagnosed in 

the 20s, while others were diagnosed in the 50s. It was not possible to 

ascertain the penetrance of E50K as most asymptomatic carriers were below 

the age of 30, and may still develop glaucoma by the time they reach the ages 

of the affected individuals in the study in the future.

The mechanism by which the E50K mutation causes disease is unknown. 

Vittitow and Borras studied the effect of glaucomatous insults on the 

expression of OPTN in human eyes maintained in organ culture (Vittitow and 

Borras, 2002). Sustained elevated IOP, TNF-alpha exposure, and prolonged 

dexamethasone treatment all significantly upregulated OPTN expression, 

suggesting a protective role of OPTN in the trabecular meshwork. The 

recurrent E5 OK mutation is located within a putative bZIP motif, conserved in 

the mouse, bovine, and macaque genomes, and it was hypothesized that visual 

loss and optic neuropathy may be the result of a dominant-negative effect 

(Rezaie et al., 2002). It remains to be seen if there are other molecular 

mechanisms or modifying factors mediating NTG which interact with this 

gene.

Our study was based at a tertiary referral center, which raises the possibility of

selection bias related to severity of disease, as subjects with more complex

problems may be over-represented. It was not possible to ascertain the effect

of treatment or surgery on disease progression due to the retrospective design

of the study and the small sample size of subjects with E50K. The

preponderance of familial cases among those with E50K may also have

limited some of the comparisons made between the 2 groups, and it is possible

that the severity of the phenotype may be related to other factor(s) common in
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these families. The possibility that the control NTG subjects may harbor other 

mutations or sequence changes in OPTN cannot be excluded. It remains to be 

seen if other specific features distinguishing those with and without the 

mutation will become apparent, as may be the case when more patients are 

diagnosed with the mutation.
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Figure 6.2. Visual fields of individual 111:8 (Pedigree 1) showing progressive 

visual field damage. A. Initial visual field of left eye B. Visual field of left eye 

after 5 years.
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CHAPTER 7

PHENOTYPE OF PRIMARY ANGLE CLOSURE 
GLAUCOMA PEDIGREES

7.1. Introduction

Although primary angle closure glaucoma (PACG) is the leading cause of 

glaucoma in East Asia, no pedigrees with the condition have been described in 

the literature. Two large Chinese families with PACG were identified in 

Singapore, and underwent detailed characterization for subsequent molecular 

genetic studies. The clinical phenotype of the families ascertained will be 

described in this chapter.

7.2. Methods

7.2.1. Identification of pedigrees

Pedigrees with primary angle closure glaucoma were identified through a 

national press campaign in Singapore that included publicity in newspapers, 

television news and radio. Families who responded were examined at the 

Glaucoma clinics of Singapore National Eye Centre and the National 

University Hospital, Singapore. Informed consent for genetic studies in 

adherence to the Declaration of Helsinki was obtained from all participants, 

and the study had the approval of the ethics committees of the Singapore 

National Eye Centre and the National University Hospital, Singapore.
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7.2.2. Examination

Only subjects older than 40 years of age were included. The subjects were 

asked about a history of glaucoma including age at diagnosis, previous acute 

angle closure episodes and glaucoma treatment (if any), as well as the visual 

and glaucoma status of deceased ancestors. All participants then underwent a 

detailed eye examination, which involved slit lamp examination, Goldmann 

applanation tonometry, optic disc assessment (measurement of vertical cup: 

disc [CD] ratio and neuro-retinal rim width), and indentation gonioscopy. The 

gonioscopic method and diagnostic criteria used are discussed in Section 2.1.3 

and 2.2.1 respectively. The drainage angle was graded according to Shaffer’s 

convention in each quadrant (as detailed in Section 1.3.2.). The total 

gonioscopic angle width was also calculated by adding the Shaffer grade in 

each of 4 quadrants. Eyes were also assessed for the presence of peripheral 

anterior synechiae (PAS). All subjects with narrow angles also underwent 

visual field testing (see Section 2.1.5.). In addition to the clinical examination, 

subjects underwent refraction, and biometric measurement of the anterior 

chamber depth and axial length of the eyeball by A-scan ultrasound (described 

in Section 2.1.4.).

7.2.3. Diagnostic criteria

The diagnostic criteria for angle closure has been described previously in 

Section 2.2.1, and will be briefly summarized as follows. The minimum 

criteria for the diagnosis of angle closure was the presence of a narrow or 

occludable angle. This was defined as the presence of at least 180 degrees of 

angle in which the trabecular meshwork was not visible on indentation 

gonioscopy. Eyes with a narrow angle with raised IOP (>21 mm Hg) and/or 

PAS in the angle, or with a history of a previous acute angle closure episode, 

were termed to have primary angle closure (PAC). Primary angle closure 

glaucoma was defined as the presence of glaucomatous optic neuropathy with
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compatible visual field loss, in association with a narrow angle on indentation 

gonioscopy.

7.2.4. Statistical analysis

Only one randomly selected eye from each patient was analysed. Comparisons 

between groups were done with Mann-Whitney U tests for continuous 

variables that were not normally distributed. Chi-square analysis was used for 

comparison of proportions. Statistical analysis was carried out using 

Statistical Package for Social Sciences version 9.0 (SPSS Inc, Chicago, 

Illinois), and statistical significance was assumed at the p < 5% level.

7.3. Results

Twelve families with angle closure were ascertained. However, only the 2 

largest families will be described, as these were particularly suitable for 

linkage analysis (>10 meioses). All subsequent linkage studies described in 

Chapter 8 were also limited to these 2 pedigrees.

7.3.1. Mode of inheritance

The angle closure phenotype in both pedigrees segregated as an autosomal 

dominant condition (Figure 7.1 and 7.2).

7.3.2. Ocular features of Pedigree 1

In Pedigree 1, there were 8 living affected subjects and 7 unaffected subjects 

(Figure 7.1).
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Figure 7.1. Pedigree 1. Phenotype information is included on the pedigrees: 

Narrow angle (filled symbol), normal individuals with open angles (unfilled 

symbol). Individuals’ pedigree number is displayed.

Table 7.1 lists the following phenotypic data for members of Pedigree 1: 

gender, age, age at diagnosis, PACG classification (including history of 

previous acute episode), refraction, cup-disc ratio, gonioscopic findings (total 

gonioscopic angle width and presence of PAS), biometric measurements of 

axial length and anterior chamber depth, and glaucoma treatment if any.

Of the 8 affected subjects, there were 4 males and 4 females, with ages 

ranging from 48 to 88 years. Three subjects were diagnosed to have PACG, 4 

with PAC and 1 with narrow angles only. Two of those with PAC and 1 with
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PACG had a history of previous acute angle closure. Five of the subjects were 

diagnosed below the age of 60, the youngest at the age of 38 years only. All 3 

subjects with previous acute angle closure were diagnosed before they were 

60. The 3 subjects with PACG had advanced disease with CD ratio of 0.9, 0.7 

and 0.9 respectively. Two of the PACG and one PAC subject had undergone 

trabeculectomy, and all but one of the other affected subjects had previous 

laser peripheral iridotomy.

All but one of the affected cases had PAS in the angles, and gonioscopy 

revealed extensive angle closure with total gonioscopic width score of 2.13 + 

1.4 (mean + SD) in affected cases compared to 12.14 + 2.0 in those unaffected 

(p<0.001). The mean anterior chamber depth in affected compared to 

unaffected cases was 2.56 + 0.30 mm and 3.15 + 0.31 mm respectively 

(p<0.001). The corresponding values for axial length were 22.8 + 0.68 mm 

and 23.3 + 0.36 mm (pO.OOl)
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Table 7.1. C linical features o f  Pedigree 1. (Abbreviations used for Glaucoma Treatment: Trab= trabeculectomy; PI= peripheral

iridotomy)

Patient
Number

Sex Age
[years]

Age at 
diagnosis 

[years]

PACG
classificat­

ion

Previous
acute

episode

Refraction
(spherical

equivalent)

Cup-disc 
ratio at the 

time of 
examination

Total 
gonioscopic 
angle width

Presence 
of PAS

Anterior
chamber

depth
(ACD)
[mm]

Axial
length
(AXL)
[mm]

Glaucoma
treatment

111:1 Female 88 49 PACG Nil + 1.0 0.9 1 + 2.27 22.7 Trab
111:2 Male 76 75 PAC Nil +2.0 0.6 3 + 2.76 22.17 PI
111:3 Male 74 72 PACG Nil -1.0 0.7 3 + 2.35 23.5 PI
111:4 Male 71 46 PAC + Plano 0.6 1 + 2.35 22.79 PI, Trab
111:5 Male 69 NA Normal Nil Plano 0.3 9 Nil 2.69 23.19 Nil
111:6 Female 66 38 PAC + +2.0 0.5 3 + 2.6 21.8 PI
111:7 Female 63 59 PACG + +1.5 0.9 0 + 2.43 22.48 PI, Meds
111:8 Female 73 NA Normal Nil Plano 0.3 15 Nil 3.5 23.12 Nil
111:9 Female 71 NA Normal Nil Plano 0.5 11 Nil 2.94 23.1 Nil
111:10 Female 68 68 PAC Nil -1.2 0.5 2 + 2.54 23.1 PI
111:11 Female 65 NA Normal Nil +0.75 0.3 11 Nil 2.89 23.07 Nil
IV: 1 Female 52 NA Normal Nil Plano 0.5 14 Nil 3.2 24.1 Nil
IV:2 Female 51 NA Normal Nil -3.5 0.5 12 Nil 3.5 23.4 Nil
IV:3 Female 50 NA Normal Nil -2.0 0.6 13 Nil 3.3 23.46 Nil
IV:4 Male 48 47 Narrow Nil -1.25 0.6 4 Nil 3.2 23.9 Nil
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7.3.3. Ocular features of Pedigree 2

In Pedigree 2, there were 12 living affected subjects and 5 unaffected subjects 

(Figure 7.2). However, one of the affected individuals (IV: 10) refused to be 

examined, leaving 16 subjects with phenotype data. Table 7.2 lists the 

phenotypic data for members of Pedigree 2.

1:1

m:l

IV:1 TW2 IV:3 IV:4 IV :5 IV6 IV:7 W:8 IV:9 IV:10 IV:11 IV12 IVI3

PEDIGREE 2

Figure 7.2. Pedigree 2. Phenotype information is included on the pedigrees: 

Narrow/occludable angle (filled symbol), normal individuals with open angles 

(unfilled symbol). Individuals’ pedigree number is displayed.
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Table 7.2. Clinical features o f  Pedigree 2. (Abbreviations used for Glaucoma Treatment: Trab= trabeculectomy; PI=

peripheral iridotomy)

Patient
No.

Sex Age
[years]

Age at 
diagnosis 

[years]

PACG
classification

Previous
acute

episode

Refraction
(spherical

equiv)

Cup-disc 
ratio at the 

time of 
examination

Total 
gonioscopic 
angle width

Presence 
of PAS

Anterior
chamber

depth
(ACD)
[mm]

Axial
length
(AXL)
[mm]

Glaucoma
treatment

111:1 Female 84 60 PACG Nil +5.0 0.7 0 + 2.4 22.36 PI, Trab
111:2 Male 81 NA Normal Nil Plano 0.6 10 Nil 3.9 22.4 Nil
111:3 Female 79 61 PACG + +2.0 0.95 1 + 2.8 19.97 Trab
111:6 Female 74 NA Normal Nil Plano 0.6 16 Nil 3.6 22.6 Nil
IV: 1 Female 53 53 PAC Nil -0.5 0.5 3 + 2.7 22.29 Nil
IV:2 Female 52 52 PAC Nil Plano 0.6 2 + 3.05 22.1 Nil
IV:3 Female 54 51 PAC + Plano 0.4 4 Nil 2.5 22.01 PI
IV:4 Male 52 NA Normal Nil -6.0 0.3 9 Nil 2.8 25.2 Nil
IV:5 Male 51 NA Normal Nil +1.0 0.3 10 Nil 3.2 23.5 Nil
IV:6 Female 50 49 Narrow Nil + 1.0 0.4 2 Nil 2.57 22.14 Nil
IV:7 Male 40 49 PAC + +2.2 0.4 3 Nil 2.33 22.36 PI
IV:8 Male 47 40 PAC + -1.0 0.5 2 + 2.6 22.3 PI
IV:9 Male 47 NA Normal Nil -1.75 0.4 8 Nil 3.17 23.5 Nil
IV: 11 Female 66 58 PAC + -1.0 0.5 2 + 2.42 23.52 PI
IV:12 Female 55 55 Narrow Nil -0.5 0.4 3 Nil 2.31 22.84 PI
IV: 13 Female 53 55 Narrow Nil -1.5 0.4 1 Nil 2.8 23.46 PI
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Of the 12 affected subjects, there were 2 males and 10 females, with ages 

ranging from 40 to 84 years. Two subjects were diagnosed to have PACG, 6 

with PAC and 3 with narrow angles only. One of those with PACG and 4 with 

PAC had a history of previous acute angle closure. All but 2 of the affected 

subjects were diagnosed below the age of 60, the youngest at the age of 40 

years. Four out of the 5 subjects with previous acute angle closure were 

diagnosed before they were 60. The 2 subjects with PACG had CD ratio of 0.7 

and 0.95 respectively. The visual field of subject 111:3 (with CD ratio of 0.95) 

is shown in Figure 7.3. Both of the PACG subjects had undergone 

trabeculectomy, and 6 of the other 9 affected subjects had previous laser 

peripheral iridotomy. Two subjects were diagnosed to have PAC only 

in the course of this study, and had thus not received 

any prior treatment.

All but one of the PACG/PAC cases had PAS in the angles. The total 

gonioscpic width was 2.09 ±1.1 (mean ± SD) in affected cases compared to 

10.6 ± 3.1 in those unaffected (p<0.001). Figure 7.4 depicts the view of a 

closed angle on gonioscopy, of one of the affected subjects. The mean anterior 

chamber depth in affected compared to unaffected cases was 2.59 ±  0.23 mm 

and 3.33 ± 0.42 mm respectively (p<0.001). The corresponding values for 

axial length were 22.3 ± 0.93 mm and 23.24 ±1.4 mm (p<0.001).
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Figure 7.3. The visual field of subject 111:3 (with CD ratio of 0.95) showing 

superior hemifield loss.

173



7.4. Discussion

Although an autosomal dominant mode of inheritance for primary angle 

closure glaucoma has been previously suggested (Tomquist, 1953), this study 

provides the first supporting evidence for this concept to date. Two large 

pedigrees with PACG have been characterised, and the disease was found to 

segregate in an autosomal dominant manner. Several reasons may account for 

the lack of previous literature on PACG heredity. There is firstly a paucity of 

research into PACG, which is probably related to the high prevalence of the 

condition in populations where glaucoma research has not been a major focus. 

The inheritance of PACG is difficult to determine due to the late onset of the 

disease and the lack of accurate clinical information on previous generations. 

There may also be under-reporting of a family history, as in POAG 

(McNaught et al., 2000), leading to the impression that most affected patients 

are isolated cases.

Affected subjects from the 2 pedigrees appear to have quite a young age of 

diagnosis of the disease, with most being diagnosed before the age of 60 years, 

although there is likely to be some bias towards earlier diagnosis due to a 

positive family history. An early to mid adulthood age of diagnosis has also 

been noted in POAG families (Sheffield et al, 1993; Stoilova et al., 1996; 

Trifan et al., 1998; Sarfarazi et al., 1998), and suggests that the disease 

process manifests earlier in those with a genetic predisposition. Those with a 

history of acute symptomatic angle closure (Figure 7.5) in particular appeared 

to be diagnosed earlier (most in their 40s and 50s), compared to those with 

asymptomatic disease. It is likely that the acute symptoms made the patients 

seek medical help, while the absence of symptoms in chronic cases results in 

them being undiagnosed and untreated until later in life. It is interesting that 

some subjects developed acute PAC, while other subjects of the same pedigree 

had chronic disease. The reasons why some individuals develop an episode of
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acute PAC while others develop asymptomatic disease still remain obscure.

Linkage studies to determine the genetics of POAG have concentrated on the 

presence of glaucomatous optic neuropathy (GON) and/or ocular hypertension 

as the basis of classifying the affection status of patients (Sheffield et al., 

1993; Stoilova et al., 1996; Wirtz et al., 1997; Trifan et al., 1998; Sarfarazi et 

al., 1998; Wirtz et al., 1999). In contrast, the diagnostic criteria that was 

central to the phenotypic classification used in this study was the existence of 

a narrow angle, defined as the presence of at least 180 degrees of angle in 

which the trabecular meshwork was not visible on indentation gonioscopy. 

Thus, the affection status was established not by the presence of glaucomatous 

optic neuropathy, but by the angle configuration. This concept is critical, as it 

is likely that cases will be misclassified if based on the glaucoma status alone. 

For example, eyes with narrow angles (but without raised IOP, PAS or GON) 

would be classified as unaffected under the ‘GON’ classification but such eyes 

may actually have a significant degree of angle closure and with time, may 

develop GON and hence PACG.

A new diagnostic classification of PACG (Foster and Johnson, 2000; Foster et 

al., 2002) was also used in this study, which provides a more uniform 

definition of the disease, and is in line with the classification used in POAG 

(as detailed in Section 1.3.4.2). The focus of the classification is the presence 

of end organ damage, namely glaucomatous damage to the optic nerve, and 

differentiates those with true disease as opposed to suspects who are at 

increased risk of disease. The term ‘glaucoma’ is thus reserved for people who 

have suffered injury to the optic nerve as judged by visual field abnormality, 

combined with enlargement of the cup/disc ratio. Thus, persons suffering an 

acute, symptomatic rise in intraocular pressure would not be considered to 

have glaucoma, unless they showed evidence of optic nerve damage. This is 

counter-intuitive for many Western ophthalmologists, who commonly 

associate PACG with the acute symptomatic angle closure episode, and
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continue to label the presentation as acute angle closure ‘glaucoma,’ despite 

evidence that many episodes of symptomatic angle closure recover without 

visual loss developing as a sequel of the acute attack (Douglas et al., 1975; 

Aung et al., 2001). This was further illustrated in this study by the finding that 

several individuals with a history of acute symptomatic angle closure were 

classified as having PAC and not PACG, i.e. they had no evidence of 

glaucoma damage after the acute episode. Using this classification, it is 

interesting to note that different members of the same pedigree had varying 

degrees of angle closure, from narrow angles alone, to PAC and PACG. This 

is likely to reflect varying levels of damage secondary to the primary angle 

closure process. Thus, eyes in the earliest stage have just narrow angles, PAC 

cases develop PAS and/or raised IOP, while those in the advanced stage 

develop glaucomatous damage and hence PACG.

The association between a small eye and PACG has been recognized for some 

time (Lowe, 1974), and several studies have found that a small eye with a 

shallow anterior chamber is significantly associated with PACG (Tomquist, 

1956; Lowe, 1969; Alsbirk, 1974a; Alsbirk, 1974b; Arkell et al., 1987). 

Interestingly, affected subjects in the 2 pedigrees were also found to have 

significantly shorter axial lengths and shallower anterior chambers compared 

to unaffected cases. This finding makes one speculate that the gene 

responsible for PACG is a growth factor, probably related to eyeball or orbit 

growth. Having such small eyes may not result in disease at a young age, but 

with ageing, the lens becomes increasingly thicker and cataractous. It is 

plausible that this changing configuration of the lens will narrow the angle and 

lead to progressive angle closure and the eyes overtime will develop PAC and 

eventually PACG.
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Figure 7.4. Gonioscopic view of the closed angle of an affected subject from 

Pedigree 2.

Figure 7.5. Clinical slide of a patient with acute angle closure, showing a hazy 

cornea, injected conjunctiva and a mid-dilated pupil.
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CHAPTER 8

LINKAGE ANALYSIS OF PRIMARY ANGLE CLOSURE 

GLAUCOMA PEDIGREES

8.1. Introduction

Although primary angle closure glaucoma (PACG) is a major cause of 

blindness worldwide, no molecular genetic studies related to the condition 

have been performed to date. Two large Singaporean pedigrees with PACG 

were identified and the clinical phenotype described previously in Chapter 7. 

The families showed an autosomal dominant mode of inheritance.

Linkage analysis was used to assess if the disorder mapped to loci 

encompassing possible candidate genes. Loci associated with eyes having 

short axial lengths were first excluded, as were known primary open angle 

glaucoma loci. In order to identify a novel genetic locus, a genome-wide 

linkage scan was performed using fluorescent-labeled dinucleotide 

microsatellite markers. Subsequent genotyping confirmed linkage on 

chromosome lOql 1 and refined the linked genetic interval. The genetic map of 

the linked interval was constructed from data derived from the Human 

Genome Project, which is available on web-based databases; the main one 

used being Ensembl (www.ensembl.org). Four candidate genes located in the 

linked interval were selected based on their expression pattern and function, 

and screened for mutations.
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8.2. Methods

8.2.1. Linkage analysis

Linkage analysis was the method used to assess if the disorder mapped to a 

particular locus (described in Section 2.10). PCR-based microsatellite marker 

genotyping was performed on DNA samples extracted from venous blood 

provided by each subject. The methods used in genotyping have been 

described in Section 2.10.2.

8.2.2. Calculation of LOD scores for microsatellite markers

Two-point LOD scores for each marker analysed were calculated using the 

program MLINK of the LINKAGE package (version 5.1) via the HGMP 

Genetic Linkage User Environment (GLUE: www.hgmp.co.uk) (as detailed in 

section 2.10.3.). A fully penetrant dominant model with a disease frequency of

0.0001 (1 in 10,000) was assumed. Marker allele frequencies were assumed to 

occur at equal frequencies since population allele frequencies associated with 

Singaporean Chinese people were not available.

8.2.3. Direct sequencing

Coding regions of candidate genes were amplified by PCR and then directly 

sequenced using the ABI 3100 DNA sequencer (as detailed in Section 2.9.4.).
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8.3. Results

8.3.1. Exclusion of loci for genes associated with nanophthalmos and 

microphthalmia

To determine the locus for PACG, the initial strategy of this study was to use 

linkage analysis across a number of candidate loci. These candidate loci were 

chosen as a result of similarities in the phenotype. As PACG is strongly 

associated with short axial length, the 2 large Singaporean families with 

PACG were studied with linkage analysis for evidence of linkage to loci for 

genes associated with eyes having a short axial length (microphthalmia). 

These loci and the markers studied are summarised in Table 8.1.

Table 8.1. Loci for genes associated with nanophthalmos and 

microphthalmia, chromosomal location and the microsatellite markers 

genotyped.

Candidate Disease Symbol Chromosomal
localization

Markers

Autosomal dominant 
nanophthalmos

NNOl llp l3 D11S903
D11S1313

Autosomal dominant
microphthalmia/
Nanophthalmos

NN02 15ql2 D15S1007
D15S1031

Autosomal recessive 
microphthalmia

MCOP 14q32 D14S65
D14S267

Syndromic
microphthalmia with 
cataracts and iris 
abnormalities

CHX10 14q24.3 D14S77
D14S1025
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Table 8.2 and 8.3 below lists the LOD scores obtained for these markers. LOD 

scores less then -2.0 were obtained for all loci. This is evidence that PACG in 

these 2 pedigrees is not linked to loci for nanophthalmos and microphthalmia.

Table 8.2. Two-point LOD scores obtained for Pedigree 1 for loci associated 

with nanophthalmos and microphthalmia (0 is the recombination fraction).

0.0 0.05 0.1 0.2 0.3 0.4

D11S903 -00 m -1.26 -0.41 -0.21 -0.01
D11S1313 -00 -1.85 -1.05 -0.39 -0.14 -0.05
D15S1007 -00 -3.71 -2.15 -0.83 -0.5 -0.06
D14S65 -00 -2.62 -1.52 -0.56 -0.17 -0.01
D14S267 -00 -1.96 -1.25 -0.84 -0.23 -0.05
D14S77 -00 -1.68 -0.96 -0.58 -0.11 -0.02
D14S1025 -00 -3.45 -2.16 -0.95 -0.37 -0.05

Table 8.3. Two-point LOD scores obtained for Pedigree 2 for loci associated 

with nanophthalmos and microphthalmia.

M arkersN ^ 0.0 0.05 0.1 0.2 0.3 0.4

D11S903 -00 -2.7 -1.6 -0.68 -0.25 -0.06
D15S1007 -00 -2.22 -1.29 -0.50 -0.18 -0.04
D15S1031 -00 -3.54 -2.17 -0.94 -0.37 -0.09
D14S65 -00 -2.26 -1.36 -0.56 -0.21 -0.05
D14S267 -00 -1.83 -0.92 -0.21 0.05 0.02
D14S77 -00 -3.01 -1.80 -0.74 -0.27 -0.06
D14S1025 -00 -2.42 -1.40 -0.49 -0.13 -0.01

181



8.3.2. Exclusion of known loci for primary open angle glaucoma

After the exclusion of linkage to loci for genes associated with eyes having a 

short axial length, linkage analysis was performed for markers associated with 

a number of known POAG loci. This was to exclude the possibility that 

PACG and POAG shared similar genetic loci. The table 8.4 below lists the 6 

known POAG loci and the microsatellite markers used in the linkage analysis.

Table 8.4. Known loci for POAG, chromosomal location and the 

microsatellite markers genotyped.

Locus symbol Gene symbol Chromosomal
localisation

Markers

GLC1A MYOC Iq23-q24 D1S196
D1S218

GLC1B 2cen-ql3 D2S347

GLC1C 3q21-q24 D3S1569
D3S1279

GLC1D 8q23 D8S284
D8S272

GLC1E OPTN 10pl4 D10S1653

GLC1F 7q35 D7S661

Table 8.5 and 8.6 below lists the LOD scores obtained for these markers. From 

the data, linkage to known loci for POAG was excluded in these 2 pedigrees. 

Thus it is likely that there is a novel genetic locus associated with PACG.
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Table 8.5. Two-point LOD scores obtained for Pedigree 1 for known POAG 
loci.

M arkersN ^ 0.0 0.05 0.1 0.2 0.3 0.4

D1S196 -00 -1.73 -1.11 -0.51 -0.2 -0.05

D2S347 -00 -2.19 -1.33 -0.56 -0.21 -0.05

D3S1569 -3.5 -1.57 -0.82 -0.24 -0.04 0

D8S284 -00 -2.23 -1.38 -0.60 -0.23 -0.05

D10S1653 -00 -2.54 -1.48 -0.61 -0.26 -0.1

D7S661 -00 -2.86 -1.61 -0.59 -0.2 -0.04

Table 8.6. Two-point LOD scores obtained for Pedigree 2 for known POAG 
loci.

MarkersNQ^ 0.0 0.05 0.1 0.2 0.3 0.4

D1S218 -00 -2.19 -1.36 -0.63 -0.27 -0.08

D2S347 -00 -1.90 -1.09 -0.42 -0.14 -0.03

D3S1279 -00 -3.46 -2.14 -0.92 -0.34 -0.06

D8S272 -00 -2.19 -1.52 -0.81 -0.42 -0.17

D10S548 -00 -2.17 -1.37 -0.67 -0.33 -0.12

D7S661 -00 m -2.0 -0.8 -0.27 -0.04

8.3.3. Genome wide linkage-scan

A total genome scan was undertaken utilizing markers from version 2.0 of the 

ABI MD-10 (Applied Biosystems). These allow approximately 10 cM 

resolution of the human genome.
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The results of the genome scan are listed in the Appendix (Tables 1 to 22 for 

Pedigree 1 and in Tables 23 to 44 for Pedigree 2).

The markers showing LOD scores of >1.0 for pedigree 1 and 2 are 

summarized below in Tables 8.7 and 8.8 respectively.

Table 8.7. Genome wide scan: Markers with LOD score >1.0 for Pedigree 1.

(0 is the recombination fraction and Zmax is the maximum lod score for each

microsatellite marker).

Marker Theta=0 0.05 0.1 0.2 0.300 0.4 Zmax

D1S2836 1.35 1.20 1.05 0.74 0.42 0.13 1.35
D3S1297 1.06 0.93 0.80 0.53 0.27 0.08 1.06

D3S1304 1.03 0.87 0.61 0.42 0.20 0.05 1.03

D7S507 1.13 1.12 1.04 0.81 0.50 0.18 1.13
D10S1780 1.24 1.13 1.01 0.75 0.43 0.18 1.24
D10S196 2.34 2.09 1.84 1.29 0.72 0.21 2.34
D10S210 -00 1.57 1.56 1.20 0.70 0.20 1.57
D10S185 1.40 1.39 1.30 1.01 0.66 0.32 1.40
D10S192 1.06 0.98 0.90 0.71 0.48 0.23 1.06
D11S4175 1.22 1.05 0.91 0.66 0.42 0.19 1.22
D13S265 1.22 1.14 1.02 0.76 0.48 0.21 1.22
D18S452 1.34 1.28 1.19 0.94 0.61 0.23 1.34

Table 8.8. Genome wide scan: Markers with LOD score >1.0 for Pedigree 2.

Marker Theta=0 0.05 0.1 0.2 0.300 0.4 Z m a x

D2S162 1.15 1.11 1.03 0.78 0.44 0.08 1.15
D10S591 1.51 1.30 1.08 0.66 0.29 0.04 1.51

D12S345 -0 0 1.36 1.36 1.05 0.63 0.21 1.36

D17S921 1.36 1.26 1.14 0.82 0.48 0.18 1.36
D19S418 1.43 1.40 1.32 1.08 0.76 0.38 1.43
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There were no common markers with LOD score>1.0 in both pedigrees.

The highest LOD score was obtained in Pedigree 1 for the marker DIOS 196 

(LOD=2.34 at 0=0) on chromosome lOqll (Figure 8.1). However, for this 

marker, the LOD score for pedigree 2 was -2.23 at 0=0, which shows that the 

disease did not link to this locus for Pedigree 2, indicating genetic 

heterogeneity between the 2 pedigrees.
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Figure 8.1. LOD score obtained for DIOS 196.

A targeted approach was taken to refine the linkage found for Pedigree 1, and 

stop further linkage studies on Pedigree 2. The remainder of the chapter will 

summarize the work done confirming this locus in Pedigree 1, as well as 

sequencing of candidate genes in this interval.
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8.3.4. Refinement of locus of Chromosome 10

In order to refine the disease interval, fine mapping around marker DIOS 196 

was performed using 35 additional microsatellite markers for Pedigree 1.

The following markers were not informative: D10S1566, D10S538, 

D10S1790, D10S524, D10S1642, D10S1470, D10S1869, D10S2283, 

DIOS 1766, D10S1577, D10S1464, D10S1577, D10S1220, D10S2283 and 

D10S1458.

The linkage results of markers with positive LOD scores are summarised 

below in Table 8.9, The maximum LOD score was obtained for marker 

D10S220 (LOD=3.4 at 0=0)(see Figure 8.2).

Table 8.9. Further markers genotyped on Chromosome 10: Markers with 

positive LOD score for Pedigree 1.

M arker^ 0
0 0.05 0.1 0.2 0.3 0.4 Zmax

D10S1100 1.12 1.0 0.86 0.55 0.28 0.08 1.12

D10S141 2.29 2.03 1.76 1.19 0.59 0.11 2.29

D10S1793 -00 0.90 1.08 0.98 0.62 0.20 1.08

D10S225 -00 0.89 1.08 0.98 0.63 0.20 1.08

NM2 2.95 2.69 2.42 1.84 1.20 0.5 2.95

D10S196 2.3 1.97 1.75 1.26 0.72 0.21 2.3

D10S220 3.4 3.15 2.86 2.2 IA$ 0.64 3.4

NM3 2.57 2.32 2.05 1.46 0.82 0.27 2.32

NM1 1.2 1.0 0.86 0.55 0.28 0.08 1.2

D10S568 -00 0.58 0.91 0.93 0.66 0.29 0.93

D10S539 -00 0.72 0.85 0.73 0.44 0.17 0.85

D10S546 1.33 1.22 1.08 0.76 0.44 0.17 1.33

D10S1584 0.57 0.73 0.75 0.61 0.36 0.12 0.75

D10S1124 2.11 1.96 1.76 1.28 0.70 0.14 2.11
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Figure 8.2. LOD score obtained for D 10S 220

8.3.5. Linkage of the PACG disease phenotype to chromosome 10: 

Haplotype analysis

Haplotype analysis (Figure 8.3) revealed a 5 cM genetic interval (Marshfield 

map distances) on chromosome lOqll that linked to disease. The flanking 

markers for this region were D10S225 (centromeric end) and D10S568 

(telomeric end).
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Figure 8.3. Haplotype analysis of microsatellite markers in the genetic 
interval.
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The order of markers used to construct the haplotype (in Figure 8.1) are shown 

as follows in Table 8.10:

Markers

D10S1100

D10S141

D10S1793

D10S225 Flanking marker

NM2

D10S196

D10S220 Maximum LOD score

NM3

NM1

D10S568 Flanking marker

D10S539

D10S546

D10S1584

D10S1124

Table 8.10. Order of microsatellite markers used to construct the haplotype 

shown in Figure 8.1.

8.3.6. Genetic map for the PACG interval

The genetic map of the linked interval on chromosome 10 was constructed 

from data derived from the Human Genome Project, which is available on 

web-based databases. The main database used was Ensembl 

(www.ensembl.org), a joint project between the European Molecular Biology 

Laboratory-European Bioinformatics Institute (EMBL -  EBI) and the Sanger 

Institute. All such databases present up-to-date sequence data and the best 

possible automatic annotation for the genome, and are updated regularly.
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From the data available in July-August 2002 (Ensembl version 7.29), six 

known and several predicted genes were found to be present between the 

flanking markers, D10S225 and D10S568. The known genes and their 

position in relation to the microsatellite markers are shown in Figure 8.4.

Genes

GDF10
SLC18A3
CHAT
TIM23
ASAH2

ACF

PKKG1

Genetic
Interval

Markers

D10S225

D10S538
DIOS 196 
D10S220

D10S568

D10S546

D10S1124

ql 1 23

Distance
cM frompter

49

50

515
51.9

54

564

57

q212

59

Figure 8.4. Genetic map for the linked PACG interval (August 2002). Known 

genes are in the left column, microsatellites are in bold, genetic distances in 

cM shown in the right column.

8.3.7. Candidate genes in the linked interval.

All the genes located in the linked genetic interval are possible candidates for 

PACG. Unfortunately, there is very little data available about the genes in the 

interval from the databases, and there was no obvious or good candidate gene
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found in this interval. Information about the six known genes in the interval is 

summarized as follows:

8.3.7.1. GDF10: growth differentiation factor 10 gene.

The protein encoded by this gene is a member of the bone morphogenetic 

protein (BMP) family and the TGF-beta superfamily (Cunningham et al., 

1995). The members of this family are regulators of cell growth and 

differentiation in both embryonic and adult tissues. Studies in mice suggest 

that the protein encoded by this gene plays a role in skeletal morphogenesis 

(Wozney etal., 1988).

83.7.2. SLC18A3: solute carrier family 18 (vesicular acetylcholine), 

member 3 gene.

The protein encoded by this gene is a vesicular proton-dependent 

acetylcholine transporter thought to be important for cholinergic 

neurotransmission (Erickson et al., 1994).

8.3.7.3. CHAT: choline acetyltransferase gene.

The protein encoded by this gene synthesizes the neurotransmitter 

acetylcholine (Cohen-Haguenauer et al., 1990). Cholinergic systems are 

implicated in numerous neurological functions, and alteration in some 

cholinergic neurons may account for diseases such as myasthenia gravis 

(Ohno etal., 2001).
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8.3.7.4. TIMM23: translocase of inner mitochondrial membrane 23 

homolog gene

The gene is associated with the production of a mitochondrial inner membrane 

translocase subunit, which translocates nuclear-encoded proteins into the 

mitochondrion (Donzeau et al., 2000).

8.3.7.5. ASAH2: N-acylsphingosine amidohydrolase 2 gene (non- 

lysosomal ceramidase).

The gene is related to mitochondrial ceramidase, which hydrolyzes ceramide 

and functions in sphingolipid metabolism.

8.3.7.6. ACF: apobec-1 complementation factor gene

The gene product belongs to the hnRNP R family of RNA-binding proteins. It 

has been proposed that this complementation factor functions as an RNA- 

binding subunit and may be involved in RNA editing or RNA processing 

events (Henderson et al., 2001).

8.3.7.7. Selection of possible candidate genes

Three of the genes in the genetic interval, SLC18A3, TIMM23 and ASAH2,

are known to be expressed in the eye and therefore represent good candidate
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genes for PACG. A fourth gene, GDF10 was also considered to be a possible 

candidate gene, as it is a growth factor and it was thought that the gene 

responsible for PACG might affect eyeball growth. These 4 genes were thus 

selected for mutation screening.

8.3.8. Mutation screening of candidate genes by direct sequencing

All coding exons of GDF10, SLC18A3, TIMM23 and ASAH2 were amplified 

in two affected members and one unaffected member of Pedigree 1, using the 

primer pairs listed in Table 8.11. The PCR products were directly sequenced 

using the ABI 3100 DNA sequencer (as detailed in Section 2.9.4.) and 

compared to the known exon sequences. No changes were detected in the 

coding region of all 4 genes, ruling out the possibility that coding region 

mutations in these genes are responsible for the PACG seen in this family.
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Gene Exon Forward primer Reverse primer
TIMM23 1 GG A ACC ACT CGGTTT GCT G CGCGC AACTT AGT GT AGACG

2 CATGT AAC A AT CAGGAGCTGGA AGC AT AGC ACTT GGCGTTTT

3 GAGGGACACTCAGCTTGGTT TTT G ATTTT ACGC ACCCTCA

4 GCT GT CTTT AT CT GGGT G A ATTG TC A AGGTT GT ACT CAT C A AACC A

5 TGGGTCT AGAC AT GTT A A AT AGC 
C

TGTTCATGATATTTGTGCATTCTTT

6 TTTTGTCACTGAGCACTTCCA TGTAATTTCCTTGAAAACCATGAA

7 CCCAGCCC ATTTC AC AGT A G ACT ACT G A AGT GT CCT CC ATT C A

GDF10 1 CCTTCCTCCTCCTGGACTTC AATG AGG AG A AGGGGTCCT G

2a CACGAGCGAGAACTTCACAG GGTCCCT CTCCT C AG A ATCC

2b CCCAGCTGGATTCTGAGGA GGCTGAGGAACTTGACGGT A

3 CGG AGCT G AGGT AACCCT AC CACAAGTCCTGGTTGCAGAA

SLC18A
3

1 CT GAGGCACAGGGGAGTCT T CTT CGCT CTCCGT AGGGT A

2 CCT ACACGGCCAACACCT GGCGAACTCATAGAGGATGC

3 GCCATGATCGCCGATAAGTA AGGT AGACGCCCAGCACAT

4 CACGTGGATGAAGCATACGA CAT AGAGC AGGTTGGCCAGT

5 CATCGCCGACATCTCCT ATT CAGAGCAGCCCCCTTGAC

ASAH2 1 C AGGTTCTT GAGCT GTT CCT G GGAGCCCATTGTCTACTTGC

2 TTTCTTTGTTTTTCTGCAGTCG TCCTGTCACATTCACCCACT

3 TCCTGGATCAGTGATTGAACTC T A AAG A AC AGCT GCCT CT GG

4 TGTCCCCACCAGGATTT CT A CCCTAAAGGGAATGAAACGA

5 TGTGTCAGCTGCTACTGTTCA AAG A AAAGCT ACCCGACAGAA

6 TC AT AGTT CTT GGCCCC AGT TGCAGCATGAATGATGACAC

7 TGCCTGCAAATGATTTTGAAT GGCC AGTGT AT ACT AGAAGAC AAG 
G

8 CCTGAAAAGAAATGCAAGAATG ACCTCCCAAGCTGACCTCTT

9/10 CACTTT AGCCTTTTTGCTTGG CAGAGAACAGAACCCAGAAGC

11 TT G AGAGGGTT GGTTC A AGG CCATTCATTACCTGACAGTTACAC

12 AG AGG AA ATT CT GGG ACC ACT ACCAAGGGGTCAACACAGAA

13 GCC AGT GTTT CT GT GT ACTCT GC CCTCTTCACCAAACATGAACA

14 TCCATTGACTTGTCCAACTGT AGC A AGT CCT GC ATTT G AC AC A

Table 8.11. Candidate genes sequenced with the primer pairs shown.
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8.4. Discussion

This study identified the first locus for primary angle closure glaucoma on 

chromosome lOql 1. The locus, spanning a region of 5 cM, was flanked by the 

markers D10S225 and D10S568, with the maximum LOD score of 3.4 at 

0=0 obtained for the marker D10S220. Under the nomenclature and 

classification system for glaucoma genetics devised by the Human Genome 

Organisation (HUGO) Genome Database Nomenclature Committee, this locus 

would thus be termed GLC2A.

The finding that Pedigree 2 did not link to this locus implicates the existence 

of another genetic locus for PACG, and hence genetic heterogeneity for 

PACG. This is not surprising as there is likely to be more than one genetic 

locus for the condition, as illustrated in POAG by the identification of 6 

different loci and 2 genes so far (Craig and Mackey, 1999). Further linkage 

analysis is ongoing for Pedigree 2 in order to identify the locus in this family.

The initial strategy of searching for linkage to potential candidate genes and 

known glaucoma loci was not successful. Genes associated with small eyeball 

dimensions such as microphthalmia and nanophthalmos are obvious 

candidates for PACG. This is because eyes with PACG have smaller 

dimensions including anterior chamber depth and axial length. It is speculated 

that the gene responsible for PACG is a growth factor, probably related to 

eyeball or orbit growth. Such small eyes may not result in disease at a young 

age, but with ageing, the lens becomes increasingly thicker and cataractous. It 

is likely that this new configuration of the lens will narrow the angle and lead 

to progressive angle closure. Identification of the causative gene for PACG 

may even improve the understanding of the mechanisms underlying human 

eye morphogenesis, including the development of myopia. However, the 2 

pedigrees did not link to the four known loci for nanophthalmos and 

microphthalmia.
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The six known POAG loci were also excluded in these 2 pedigrees. The 

exclusion of these POAG loci however, is perhaps not surprising. This is 

because POAG and PACG, though both leading to glaucoma, have different 

mechanisms. In PACG, the main pathology is the angle configuration, and 

glaucoma is thought to be secondary to the high IOP induced by angle closure. 

On the other hand, the angle configuration is normal in POAG, but there are 

other factors likely to be involved in the pathophysiology of the glaucomatous 

process such as increased outflow resistance at the angle, and optic nerve 

susceptibility to damage by increased IOP.

Apart from growth factors and other POAG loci and genes, it would be useful 

to propose other possible candidate genes or classes of genes for PACG. For 

example, there is some evidence that autonomic dysfunction may be a 

contributory factor in the development of pupil-block, and hence primary 

angle closure, as individuals with PACG have been found to have both ocular 

as well as systemic autonomic dysfunction (Clark, 1989; Clark, 1990). Thus it 

is speculated that a possible role for a PACG gene is in autonomic function. A 

gene related to intraocular inflammation may also be plausible. This is because 

eyes with angle closure get peripheral anterior synechiae (PAS) in the angles, 

which also occurs in inflammatory conditions of the eye such as uveitis, and 

one can hypothesize that eyes predisposed to PAS may develop angle closure.

The human genome project has made significant contributions to the mapping 

and characterisation of genes implicated in human disease. Once a disease 

locus has been genetically refined to a region, the identification of genes 

within this interval has been facilitated by positional candidate gene strategies 

utilising data of the sequence of the human genome that is continually updated 

on websites such as Ensembl (http://www.ensembl.org) and NCBI 

(http://www.ncbi.nlm.nih.gov). Using this approach, four genes, GDF10, 

SLC18A3, TIMM23 and ASAH2 were localised to be in the linked genetic 

interval. The genes were chosen based on their expression in the eye (for
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SLC18A3, TIMM23 and ASAH2) and for function (GDF10). These genes 

were then analyzed and excluded as being responsible for PACG. The 

information about the position and annotation of these genes was obtained in 

July-August 2002 from Ensembl version 7.29 (Hubbard et al., 2002). 

However, recent data from the latest sequence (Ensembl version 11 in 

February 2003) have since emerged that these 4 genes actually lie just outside 

the genetic interval. This new location of these genes outside the linked 

interval thus explains the exclusion of coding regions of these genes for the 

disease. The latest genetic map of the linked interval on chromosome 10 

(constructed from Ensembl version 11) is shown below in Figure 8.5.

Three known genes, ACF, PRKG1 and DKK1, as well as 4 predicted genes, 

Q9P136, NM 018505, NM 014114 and Q96MTO, are now localized to be in 

this linked interval. The ACF (apobec-1 complementation factor) gene product 

functions as an RNA-binding subunit and the protein may be involved in RNA 

editing or RNA processing events. PRKG1 (protein kinase, cGMP-dependent, 

type I gene) is a type I cGMP-dependent protein kinase that is involved in 

vascular smooth muscle tone and inhibition of platelet aggregation. The 

DKK1 (dickkopf homolog 1) gene is involved in Wnt signalling and may 

influence DNA alkylation damage. None of these genes are obvious 

candidates for PACG. However, due to the localisation of these genes in the 

linked interval, they will be screened for mutations.
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Figure 8.5. Latest genetic map for the linked PACG interval (constructed in 

February 2003). Predicted genes are in the extreme left column, known genes 

are in the next column, microsatellites are in bold, genetic distances in cM 

shown in the right column.
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Chapter 9

GENERAL DISCUSSION

9.1. Overview of the research

Molecular genetics involves the identification of disease-causing genes, and 

the application of this information to unravel the pathophysiology of diseases. 

While the traditional approach to understanding disease has been ‘outside in’

i.e. a clinical observation spurs the formation of a hypothesis which is then 

tested, it is now possible to dissect a disease from the ‘inside out’ i.e. identify 

the molecular basis first, and then understand the disease pathophysiology and 

clinical implications. This approach has been a recurring feature of the 

research presented in this thesis, a summary of which is detailed below.

Single nucleotide polymorphisms on intervening sequence (IVS) 8 of the 

OPA1 gene (genotype IVS 8 +4 C/T; +32 T/C) were found to be strongly 

associated with a fifth of normal tension glaucoma (NTG) cases and may be a 

marker for disease association, providing the first evidence of an association 

between OPA1 and NTG. However this OPA1 genotype was not found to be 

significantly associated with high tension glaucoma (HTG). Further work did 

not detect a significant difference in a range of phenotypic features in NTG 

patients with and without these OPA1 polymorphisms, suggesting that these 

specific genetic variations do not underlie any major phenotypic diversity in 

NTG.

Although Optineurin (OPTN) gene variants were recently found in almost 

15% of families with POAG (predominantly NTG), this prevalence was not 

replicated when a large panel of 315 adult POAG subjects were examined for 

the 2 most common OPTN sequence variants, E50K and M98K. The E50K
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mutation was identified in only 1.5% of NTG subjects, making it an infrequent 

cause of sporadic NTG. The M98K variant was found to be associated 

specifically with NTG but not HTG, suggesting genetic heterogeneity between 

these 2 phenotypes. A characteristic NTG phenotype comprising a young- 

adult age of onset, advanced visual loss and progressive disease, was found in 

individuals carrying the E50K OPTN mutation.

Finally, two large Singaporean families with primary angle closure glaucoma 

(PACG) were examined by linkage analysis. The first locus for the disease 

was identified on chromosome 10, and the disease interval was refined to 5.0 

cM on chromosome lOqll flanked by the markers D10S225 and D10S568, 

with the maximum LOD score of 3.4 at 0=0 for D10S220. Several genes, 

GDF10, TIM23, SLC18A3 and ASAH2 were excluded as candidates for this 

condition.

9.2. Molecular genetic approaches towards identifying disease-causing 

genes

Identifying a disease-causing gene is a formidable task, given the complexity 

of the human genome. The route chosen for the identification of the disease 

gene rests on the type of information known about the disease. Two different 

approaches were employed in this research. The first method was the 

"candidate gene" approach, in which a biologically plausible candidate gene, 

OPA1, was tested directly for mutations in NTG subjects, on the basis that 

dominant optic atrophy and NTG share similarities in the phenotype. This 

approach led to the identification of an association between NTG and OPA1 

intronic polymorphisms. These polymorphisms are not likely to be directly 

causative of disease but may be may be a marker for disease association. It is 

thought that indirect mechanisms may be present, possibly by conferring
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susceptibility in patients to other factor(s) that mediate the disease. In general, 

the candidate gene approach is limited by the fact that the number of identified 

genes with a known function represents only a small fraction of the estimated 

total number of genes in the human genome. In addition, there are a large 

number of disorders where the underlying cause and mechanism is not well 

understood. This approach may also be complicated by genetic heterogeneity 

and if a particular disease results from a combination of mutations in more 

than one gene.

The second approach used in this research was the "positional cloning" 

approach that compares within a family, the inheritance of a disease gene with 

the inheritance of specific DNA markers, and relies solely upon identifying the 

disease gene by its location in the genome rather than by its functional 

properties. What are required are precise diagnostic criteria and large families 

with affected individuals. Clear diagnostic criteria are critical to separate 

affected, suspect and unaffected individuals because misclassification can 

seriously undermine genetic linkage efforts. This method is laborious and time 

consuming, but has recently been increasingly successful due to the efforts 

from the Human Genome Project initiative, namely the production of high 

resolution genetic and physical maps which aid localisation of disease genes. 

Using this approach, a first locus for PACG was identified on chromosome 10. 

Potential genes have been investigated in the genetic interval and the disease 

gene may be identified with further work in the future.

9.3. Advances in the human genome project

The human genome project has made a significant contribution to the mapping 

and characterization of genes implicated in human disease through 

microsatellite analysis, physical mapping and ultimately genome sequencing. 

Novel microsatellite markers are now easier to identify with the new
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information available. In addition, these markers are now supplemented by 

high-density single nucleotide polymorphism (SNP) maps enabling the fine 

mapping of disease loci, which has greatly enhanced the prospects of studying 

multifactorial or complex traits (Chanock, 2001). Once a disease locus has 

been genetically refined to the smallest region possible, the identification of 

genes within this interval has been facilitated by knowledge of the sequence of 

the human genome. Using this data, positional candidate gene strategies can 

be employed to identify and prioritize possible disease genes that map to the 

critical disease interval.

The human genome was estimated to be comprised of 60-80 000 genes (Fields 

et al, 1994). However, the publication of the first draft sequence of the human 

genome (Lander et al, 2001; Venter et al, 2001) led to the revised estimate of 

30-40 000 genes. Recently, Wiemann and colleagues (2001) sequenced 500 

novel cDNAs and when these sequences were aligned to the sequences of 

finished chromosomes 21 and 22 a large proportion of the novel cDNAs had 

either been completely missed by the bioinformatic analysis of the genomic 

sequencing or had been incorrectly predicted. If this finding is extrapolated to 

the remaining chromosomes in the genome, then perhaps the estimate of 30-40 

000 genes was too conservative. In addition, the complexity of the human 

genome, with many alternatively spliced products, translates to a greater 

number of proteins with modified locations and/or functions than first thought.

The frequent revisions, adjustments and evolution of the data derived from the 

Human Genome Project were well illustrated in the research presented. For 

example, sequence data derived from the Human Genome Project and 

pertaining to the linked genetic interval on chromosome 10, was not at the 

completed stage at the time of positional candidate gene identification. New 

data was regularly added and modified during the period of the research 

according to the progress of the Human Genome sequencing. The genetic map
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of the linked interval constructed in 2002 thus differed from that in 2003. This 

led to genes thought to be in the linked interval to be erroneously sequenced. It 

is likely that the completion of the Human Genome Project in the coming year 

or two will greatly improve the chances of identifying the gene responsible for 

PACG.

As individual research groups take on the challenge of in depth functional 

analysis of gene and protein families (‘post genomics’), bioinformatic tools 

are likely to become more accurate but will also evolve with the research. This 

in turn will aid annotation of cDNA and protein, as well as genomic sequence. 

In the post genomic era, the techniques collectively known as proteomics are 

useful for characterizing the protein phenotype of a particular tissue or cell, as 

well as quantitatively identifying differences in the levels of individual 

proteins following modulation of a tissue or cell. These tools will enable us to 

monitor changes in the expression of a given protein(s) and its post- 

translational modification, identify novel therapeutic targets and evaluate 

pharmacological effects on a given metabolic pathway. These technologies are 

now set to provide us with an immense amount of data for future analysis, 

which will hopefully pave the way to further understanding disease 

pathogenesis and therapies.

9.4. Heterogeneity of glaucoma

The molecular genetic studies described in this thesis encompassed the two 

main forms of glaucoma worldwide, POAG and PACG, and the findings 

highlight the genetic and phenotypic heterogeneity of glaucoma.

In POAG, there is controversy as to whether NTG and HTG are separate 

disease entities, or if they represent different ends of the phenotypic 

spectrum of POAG. While some studies have found that the conditions
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cannot be distinguished in terms of clinical behaviour or pathophysiology 

(Motolko et al., 1982; Lewis et al., 1983; Miller and Quigley, 1987; Fazio et 

al., 1990), other reports have noted optic disc and visual field differences 

between patients with HTG and NTG (Caprioli and Spaeth, 1984, Caprioli 

and Spaeth, 1985; Chauhan et al., 1989; Tuulonen and Airaksinen, 1992; Edi 

et al., 1997). The association of OPA1 polymorphisms, IVS 8 +4 C/T; +32 

T/C, and the M98K OPTN variant specifically with NTG but not HTG 

suggests genetic and/or allelic heterogeneity between these 2 phenotypes, 

and may be evidence that the diseases are distinct entities. Such genetic 

differences may imply different mechanisms of optic nerve damage, possibly 

by affecting susceptibility to factor(s) that mediate glaucoma.

For PACG, the first locus for this condition was found on chromosome 10 

(Chapter 8). The finding that the second pedigree (Pedigree 2) did not link to 

this same locus suggests the existence of another genetic locus for this 

family, and is also evidence of genetic heterogeneity for PACG.

9.5. Genotype / Phenotype correlation

Research in molecular genetics unlocks the underlying mechanisms and 

inter-relationships of disease phenotypes at a molecular level. The 

knowledge of the clinical behavior of specific mutations is particularly 

helpful in disease management by providing patients and clinicians with 

useful information regarding the course and prognosis of their disease. A 

correlation between specific mutations in MYOC and the clinical course of 

glaucoma has been previously described (Alward et al., 1998; Allingham 

et al., 1998; Angius et al., 2000; Craig et al., 2001). In this research, a 

correlation between genotype and phenotype has been identified that is 

likely to be useful in predicting the course and prognosis of disease caused 

by the OPTN E50K mutation. The characteristic NTG phenotype produced
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by this mutation comprises a young-adult age of onset, advanced visual 

loss and progressive disease, and it remains to be seen if other specific 

features distinguishing those with and without the mutation will become 

apparent in the future. With more detailed phenotyping and longer follow- 

up, it may even be possible to provide information on the rate of disease 

progression and the likely response of a given individual to specific or 

pharmacological agents (conventional and novel) or the need for early 

surgery.

9.6. The role of the clinician in the age of molecular genetics

The clinician plays a pivotal role alongside scientists in the process of gene 

discovery. Accurate phenotyping and establishment of precise diagnostic 

criteria by clinicians are essential first steps in genetic studies. The clinician 

can identify suitable pedigrees, sib-pairs and individual subjects for such 

studies, as well as enquire about family history in all patients to find disorders 

with a familial aggregation. Based on the knowledge obtained regarding the 

genetic mutation and relevant genetic epidemiological information, clinicians 

can identify genotype-phenotype correlations, which will be useful in 

counseling patients regarding the natural history of the disease and the 

identification of at risk individuals in the family. More detailed counseling 

may be given to patients regarding the risk of having children who will 

manifest the same disorder. Other vital roles for clinicians will be to develop 

and evaluate diagnostic tests, to help elucidate disease pathophysiology, and to 

develop novel pharmacological therapies based on molecular genetic findings.
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9.7. Future perspectives for glaucoma genetics

Much progress has been achieved over the past few years on understanding 

the genetic basis of glaucoma and glaucoma-related disorders. Undoubtedly 

the answers will be far more complex than can be imagined at our current 

state of knowledge. Multiple putative genes on chromosomal loci linked to 

glaucoma have yet to be identified. As more pedigrees are studied and 

candidate genes analysed, new glaucoma-causing genes will be identified. As 

we continue to understand more about the known genes, we undoubtedly will 

learn more about the mechanisms of different types of glaucoma and their 

interactions. It is likely that isolation of the genes and characterization of the 

gene products concerned with glaucoma will offer considerable insight into 

retinal and optic nerve susceptibility factors in the disease process.

Recent developments in microarray technology, sequencing of the human 

genome, and bioinformatics may enhance our investigations into the genetic 

basis of glaucoma. The advent of more cost- and time-efficient mutation 

screening strategies may enable a more generalized population-based 

screening to be developed to identify at-risk individuals. The emerging field of 

pharmacogenetics holds promise to determine which therapeutic interventions 

are most likely to be effective in a given patient. Therapeutic application of 

this work (gene therapy) is not on the immediate horizon for glaucoma and is 

likely to require long-term expression capabilities. Nonetheless, the prospect 

of being able to correct or compensate for an underlying molecular defect in 

certain situations, thereby preventing the onset of disease or reversing early 

changes, is indeed exciting, and will find its niche among the methods to treat 

and possibly cure glaucoma. Finally genetic approaches to slow or prevent 

neuronal damage in glaucoma may provide another front for research. It is 

hoped that all these advances derived from molecular genetics will lead to 

improved understanding of the molecular basis of the disease, better 

treatments and even cures to conquer this major cause of world blindness.
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Appendix: Genome Scan Data
Table 1. Pedigree 1: Chromosome 1 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0. 0.45

D1S468 -CO -1.42 -0.66 -0.29 -0.08 0.03 0.07 0.07 0.05 0.02

D1S214 -00 -0.31 -0.04 -0.06 -0.08 -0.07 -0.05 -0.03 -0.01 0.00

D1S450 -00 -2.26 -1.27 -0.74 -0.42 -0.21 -0.08 0 0.03 0

D1S2667 -00 -2.21 -1.19 -0.66 -0.35 -0.15 -0.03 -0.04 -0.06 0

D1S2697 -0.10 -0.05 -0.02 0 0 -0.01 -0.01 -0.01 0 0

D1S199 -00 -2.86 -1.84 -1.28 -0.89 -0.60 -0.38 -0.21 -0.09 -0.02

D1S234 -00 -2.00 -1.20 -0.75 -0.47 -0.28 -0.16 -0.08 -0.03 -0.01

D1S255 -0.31 -0.31 -0.29 -0.25 -0.21 -0.16 -0.11 -0.07 -0.03 -0.01

D1S2797 -00 -0.26 -0.04 0.05 0.09 0.09 0.08 0.05 0.03 0.01

D1S2890 -0.04 -0.05 -0.05 -0.03 -0.02 -0.01 0 0 0 0

D1S230 -00 -1.53 -1.00 -0.70 -0.5 -0.36 -0.25 -0.16 -0.09 -0.04

D1S2841 -00 -1.19 -0.55 -0.24 -0.07 0.01 0.05 0.05 0.03 0.01

D1S207 0.17 0.18 0.17 0.14 0.11 0.08 0.05 0.03 0.01 0.00

D1S2868 -00 -2.12 -1.25 -0.79 -0.50 -0.31 -0.18 -0.10 -0.04 -0.01
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D1S206 -00 -0.59 -0.32 -0.18 -0.10 -0.05 -0.02 -0.00 -0.01 -0.01

D1S2726 -00 -1.76 -1.03 -0.63 -0.37 -0.20 -0.10 -0.03 -0.01 -0.01

D1S252 -00 -2.96 -1.80 -1.15 -0.72 -0.43 -0.23 -0.09 -0.02 0.01

D1S498 -0.09 -0.08 -0.07 -0.06 -0.04 -0.03 -0.02 -0.01 -0.01 0

D1S484 -00 -2.07 -1.27 -0.81 -0.5 -0.3 -0.16 -0.07 -0.02 0

D1S2878 -00 -1.13 -0.61 -0.29 -0.09 0.03 0.08 0.10 0.08 0.05

D1S196 -00 -1.73 -1.11 -0.76 -0.51 -0.33 -0.20 -0.11 -0.05 -0.01

D1S218 -00 0.54 0.66 0.63 0.54 0.42 0.28 0.14 0.04 0.00

D1S238 -00 -1.32 -0.76 -0.48 -0.33 -0.23 -0.17 -0.12 -0.08 -0.04

D1S413 -00 -2.45 -1.57 -1.10 -0.79 -0.57 -0.40 -0.26 -0.15 -0.06

D1S249 -00 -3.74 -2.37 -1.58 -1.06 -0.68 -0.42 -0.22 -0.01 -0.02

D1S425 -00 -1.44 -0.86 -0.54 -0.34 -0.21 -0.12 -0.06 -0.03 -0.01

D1S213 -00 -2.22 -1.19 -0.67 -0.37 -0.20 -0.09 -0.04 -0.01 0.0

D1S2800 -0.01 -0.02 -0.03 -0.03 -0.03 -0.02 -0.01 -0.01 -0.01 0

D1S2785 -00 -1.43 -0.63 -0.26 -0.07 0.017 0.04 0.03 0.013 0.002

D1S2842 -0.32 -0.27 -0.21 -0.16 -0.11 -0.07 -0.04 -0.02 -0.01 0.0

D1S2836 1.35 1.20 1.05 0.90 0.74 0.58 0.42 0.27 0.13 0.04
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Table 2. Pedigree 1: Chromosome 2 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D2S319 -00 -1.69 -0.84 -0.4 -0.13 0.02 0.1 0.12 0.1 0.05

D2S2211 -0.4 -0.38 -0.33 -0.26 -0.19 -0.14 -0.09 -0.05 -0.02 -0.01

D2S162 -00 -1.92 -1.35 -1.07 -0.92 -0.80 -0.68 -0.53 -0.35 -0.17

D2S168 -00 -2.3 -1.26 -0.73 -0.41 -0.22 -0.10 -0.04 -0.02 0

D2S305 -0.18 -0.15 -0.13 -0.09 -0.06 -0.03 -0.01 -0.01 -0.0 -0.0

D2S165 -0.18 -0.15 -0.13 -0.10 -0.07 -0.05 -0.03 -0.02 -0.01 0

D2S367 -00 -1.85 -1.05 -0.64 -0.39 -0.24 -0.14 -0.08 -0.05 -0.02

D2S2259 -00 -1.43 -0.83 -0.53 -0.35 -0.24 -0.16 -0.1 -0.06 -0.03

D2S391 -00 -1.47 -0.84 -0.49 -0.26 -0.12 -0.04 0 0 -0.02

D2S337 -00 -1.48 -0.77 -0.41 -0.21 -0.1 -0.04 -0.01 0 0

D2S2368 -00 -2.16 -1.33 -0.88 -0.58 -0.38 -0.23 -0.12 -0.05 -0.01

D2S286 -00 -2.69 -1.63 -1.07 -0.71 -0.46 -0.28 -0.15 -0.06 -0.02

D2S2333 -00 -3.71 -2.15 -1.33 -0.83 -0.5 -0.28 -0.14 -0.06 -0.01

D2S2216 -1.82 -0.28 -0.05 0.06 0.11 0.13 0.11 0.08 0.04 0.01

D2S160 -00 -1.03 -0.54 -0.30 -0.16 -0.08 -0.04 -0.01 -0.01 0
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D2S347 -00 -2.19 -1.33 -0.86 -0.56 -0.36 -0.21 -0.11 -0.05 -0.01

D2S112 -00 -1.49 -0.93 -0.62 -0.41 -0.27 -0.16 -0.09 -0.04 -0.01

D2S151 -00 -0.96 -0.49 -0.26 -0.14 -0.07 -0.03 -0.01 -0.01 0

D2S142 -00 -1.26 -0.7 -0.41 -0.25 -0.14 -0.08 -0.04 -0.02 0

D2S2330 -00 -1.15 -0.66 -0.39 -0.23 -0.13 -0.06 -0.03 -0.01 0

D2S335 -00 -1.74 -1.08 -0.67 -0.4 -0.21 -0.09 -0.02 0.02 0.03

D2S364 -00 -2.62 -1.52 -0.93 -0.56 -0.32 -0.17 -0.07 -0.01 0.01

D2S117 -1.15 -0.66 -0.42 -0.28 -0.18 -0.11 -0.07 -0.03 -0.01

D2S325 0.47 0.42 0.38 0.33 0.28 0.23 0.18 0.13 0.08 0.04

D2S2382 -00 -1.2 -0.66 -0.35 -0.16 -0.03 0.05 0.08 0.09 0.06

D2S126 -0.13 -0.04 0 0.02 0.03 0.03 0.02 0.02 0.01 0

D2S396 -00 -1.82 -1.03 -0.63 -0.38 -0.23 -0.13 -0.06 -0.03

D2S206 -00 -2.56 -1.47 -0.89 -0.53 -0.29 -0.14 -0.04 0.01 0.02

D2S338 -00 -0.62 -0.36 -0.23 -0.15 -0.09 -0.06 -0.03 -0.01 0

D2S125 -00 -0.48 0.15 0.41 0.50 0.49 0.43 0.32 0.20 0.09
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Table 3. Pedigree 1: Chromosome 3 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D3S1297 1.06 0.93 0.80 0.66 0.53 0.40 0.27 0.16 0.08 0.02

D3S1304 1.03 0.87 0.61 0.56 0.42 0.30 0.20 0.11 0.05 0.01

D3S1263 0.33 0.45 0.43 0.35 0.25 0.13 0.01 -0.08 -0.12 -0.09

D3S2338 -00 -1.96 -1.25 -0.84 -0.57 -0.37 -0.23 -0.12 -0.05 -0.01

D3S1266 -00 -1.37 -0.96 -0.68 -0.47 -0.31 -0.19 -0.10 -0.04 -0.01

D3S1277 -0.54 -0.41 -0.31 -0.23 -0.17 -0.12 -0.07 -0.04 -0.02 -0.01

D3S1289 -00 -3.35 -2.14 -1.44 -0.97 -0.63 -0.38 -0.21 -0.09 -0.02

D3S1300 -00 -1.9 -1.18 -0.77 -0.49 -0.30 -0.18 -0.09 -0.04 -0.01

D3S1285 0.38 0.42 0.41 0.38 0.33 0.28 0.22 0.15 0.09 0.03

D3S1566 -00 0.33 0.55 0.60 0.57 0.49 0.39 0.28 0.17 0.07

D3S3681 -00 -1.68 -0.96 -0.58 -0.34 -0.20 -0.11 -0.05 -0.02 -0.01

D3S1271 -0.05 -0.06 -0.05 -0.03 -0.01 0 0 0 0 0

D3S1278 -0.04 -0.04 -0.03 -0.03 -0.02 -0.02 -0.01 -0.01 0

D3S1267 -00 -3.43 -2.09 -1.36 -0.89 -0.57 -0.34 -0.19 -0.08 -0.02

D3S1292 -00 -1.42 -0.45 -0.01 0.22 0.32 0.32 0.27 0.17 0.06
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D3S1569 -3.5 -1.57 -0.82 -0.45 -0.24 -0.12 -0.04 -0.01 0 0

D3S1279 -0.12 -0.12 -0.11 -0.09 -0.07 -0.05 -0.03 -0.02 -0.01 0

D3S1565 -0.24 -0.06 0.02 0.05 0.06 0.06 0.04 0.03 0.01 0

D3S1262 0.98 0.89 0.79 0.68 0.57 0.45 0.32 0.20 0.10 0.03

D3S1580 -00 -1.02 -0.64 -0.52 -0.50 -0.51 -0.49 -0.42 -0.30 -0.16

D3S1601 0.03 0.04 0.04 0.03 0.03 0.02 0.01 0.01 0.00 0.00

D3S1311 -0.01 -0.02 -0.03 -0.03 -0.04 -0.03 -0.02 -0.02 -0.01 0

Table 4. Pedigree 1: Chromosome 4 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D4S412 -00 -0.63 -0.37 -0.24 -0.15 -0.09 -0.05 -0.02 0.01 0.01

D4S2935 -0.03 -0.01 -0.02 -0.03 -0.04 -0.03 -0.03 -0.02 -0.01 0

D4S403 -00 -0.42 -0.04 0.10 0.14 0.13 0.10 0.07 0.03 0.01

D4S419 -00 -3.45 -2.16 -1.43 -0.95 -0.61 -0.37 -0.20 -0.09 -0.02

D4S391 -00 -0.63 -0.21 -0.02 0.06 0.09 0.08 0.06 0.03 0.01

D4S405 -00 -1.3 -0.65 -0.33 -0.14 -0.03 0.02 0.05 0.05 0.03

D4S1592 -00 -0.58 0.06 0.31 0.41 0.41 0.35 0.26 0.15 0.05

D4S392 -00 -0.36 0.24 0.46 0.52 0.49 0.41 0.29 0.17 0.07
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D4S2964 -00 -0.05 0.32 0.43 0.43 0.36 0.26 0.16 0.07 0.02

D4S1534 -0.82 -0.45 -0.25 -0.12 -0.05 -0.01 0.01 0.01 0.01 0.0

D4S414 -00 -0.24 0.01 0.13 0.19 0.21 0.20 0.17 0.12 0.07

D4S1572 -00 -2.44 -1.45 -0.97 -0.70 -0.54 -0.42 -0.31 -0.19 -0.08

D4S406 -00 -0.87 -0.60 -0.44 -0.32 -0.23 -0.15 -0.09 -0.04 -0.01

D4S402 -00 -1.92 -1.04 -0.60 -0.35 -0.20 -0.11 -0.06 -0.03 -0.01

D4S1575 -00 -1.50 -0.97 -0.64 -0.41 -0.25 -0.14 -0.07 -0.03 -0.01

D4S424 -00 -3.86 -2.29 -1.45 -0.93 -0.58 -0.34 -0.18 -0.08 -0.02

D4S413 -0.77 -0.52 -0.36 -0.25 -0.17 -0.12 -0.08 -0.05 -0.03 -0.01

D4S1597 -00 -1.51 -0.93 -0.61 -0.40 -0.25 -0.15 -0.08 -0.03 -0.01

D4S1539 -00 -0.28 -0.05 0.06 0.11 0.13 0.12 0.11 0.08 0.04

D4S415 0.042 0.02 0.001 -0.01 -0.02 -0.02 -0.01 -0.001 -0.004 -0.001

D4S1535 0.13 0.10 0.07 0.05 0.04 0.03 0.02 0.01 0 0

D4S426 -00 -1.07 -0.51 -0.24 -0.10 -0.02 0.02 0.03 0.03 0.02
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Table 5. Pedigree 1: Chromosome 5 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D5S1981 0.16 0.19 0.19 0.17 0.14 0.11 0.07 0.04 0.02 0.01

D5S406 0.63 0.51 0.41 0.33 0.26 0.19 0.13 0.08 0.04 0.01

D5S630 -00 -0.45 -0.25 -0.17 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02

D5S416 -00 -2.58 -1.60 -1.05 -0.70 -0.45 -0.28 -0.16 -0.07 -0.02

D5S419 -00 -3.02 -1.84 -1.21 -0.81 -0.53 -0.33 -0.18 -0.08 -0.02

D5S426 0.34 0.30 0.26 0.21 0.17 0.12 0.08 0.05 0.03 0.01

D5S418 -00 -1.33 -0.61 -0.28 -0.10 -0.02 0.02 0.02 0.01 0

D5S407 0.15 0.18 0.17 0.15 0.13 0.10 0.07 0.04 0.02 0.00

D5S647 -00 -1.02 -0.55 -0.33 -0.20 -0.13 -0.08 -0.04 -0.02 0

D5S424 -00 -1.20 -0.77 -0.52 -0.35 -0.23 -0.14 -0.08 -0.03 -0.01

D5S641 -0.72 -0.45 -0.30 -0.20 -0.13 -0.08 -0.05 -0.03 -0.01 0

D5S428 -00 -0.3 -0.09 0 0.03 0.04 0.04 0.03 0.01 0

D5S644 -00 -2.04 -1.55 -0.69 -0.42 -0.24 -0.14 -0.07 -0.03 -0.007

D5S433 -00 -0.24 -0.05 0.03 0.06 0.06 0.05 0.03 0.02 0.00

D5S2027 0.93 0.84 0.75 0.66 0.56 0.45 0.35 0.25 0.16 0.07
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D5S471 -00 -2.54 -1.49 -0.94 -0.60 -0.37 -0.21 -0.11 -0.05 -0.01

D5S2115 -00 -1.37 -0.67 -0.34 -0.17 -0.07 -0.02 -0.002 0.003 0.001

D5S436 -0.05 0.24 0.32 0.33 0.31 0.26 0.19 0.13 0.06 0.02

D5S410 -00 -0.77 -0.27 -0.02 0.11 0.17 0.19 0.18 0.13 0.07

D5S422 0.11 0.15 0.16 0.15 0.12 0.09 0.06 0.04 0.02 0.00

D5S400 -00 -3.03 -1.71 -1.02 -0.60 -0.32 -0.14 -0.04 0.01 0.02

D5S408 -00 -0.15 0.04 0.10 0.12 0.11 0.09 0.06 0.03 0.01

Table 6. Pedigree 1: Chromosome 6 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D6S1574 -00 0.06 0.21 0.23 0.21 0.16 0.11 0.06 0.02 0.01

D6S309 -0.69 -0.46 -0.31 -0.21 -0.14 -0.09 -0.05 -0.03 -0.01 -0.0

D6S470 0.07 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.01 -0.0

D6S289 -00 -0.59 -0.27 -0.12 -0.05 -0.02 -0.01 -0.01 -0.01 -.0.01

D6S276 -0.53 -0.27 -0.13 -0.05 0 0.02 0.02 0.01 -0.01 0

D6S1610 -00 -1.41 -0.93 -0.62 -0.41 -0.26 -0.15 -0.08 -0.03 -0.01

D6S257 0.39 0.29 0.21 0.15 0.10 0.06 0.04 0.02 0.01 0.0
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D6S460 -00 -0.49 -0.23 -0.11 -0.05 -0.02 -0.01 -0.01 0 0

D6S462 0.19 0.19 0.17 0.15 0.12 0.09 0.06 0.03 0.02 0

D6S434 -00 -0.68 -0.43 -0.29 -0.20 -0.13 -0.08 -0.04 -0.02 -0.01

D6S287 0.16 0.17 0.15 0.13 0.11 0.08 0.05 0.03 0.02 0.0

D6S262 -00 -0.9 -0.44 -0.22 -0.09 -0.02 0.02 0.04 0.038 0.02

D6S292 -00 -1.56 -0.79 -0.39 -0.13 0.02 0.11 0.15 0.13 0.08

D6S308 -0.08 -0.04 -0.02 -0.01 0 0 0 0 0 0

D6S441 0.21 0.20 0.19 0.16 0.13 0.09 0.06 0.04 0.02 0

D6S1581 -00 0.02 0.18 0.22 0.20 0.16 0.11 0.06 0.03 0

D6S264 0.38 0.34 0.29 0.24 0.18 0.14 0.09 0.05 0.02 0.01

D6S446 -0.45 -0.31 -0.20 -0.10 -0.01 0.02 0.02 0.01 0.01 0

D6S281 0.10 0.10 0.10 0.08 0.07 0.05 0.03 0.02 0.01 0
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Table 7. Pedigree 1: Chromosome 7 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0300 0.35 0.4 0.45

D7S531 -0.23 -0.204 -0.17 -0.14 -0.1 -0.07 -0.04 -0.02 -0.01 -0.002

D7S517 -0.12 -0.03 0.02 0.04 0.05 0.05 0.04 0.02 0.01 0

D7S513 -00 -2.18 -1.38 -0.94 -0.65 -0.44 -0.29 -0.18 -0.10 -0.04

D7S507 1.13 1.12 1.04 0.94 0.81 0.66 0.50 0.34 0.18 0.05

D7S493 -00 -6.5 -3.19 -1.19 -0.75 -0.46 -0.25 -0.12 -0.04 0.002

D7S516 -00 -2.7 -1.6 -1.04 -0.67 -0.42 -0.25 -0.13 -0.06 -0.01

D7S484 -00 -2.08 -1.23 -0.77 -0.48 -0.28 -0.14 -0.05 -0.01 -0.01

D7S510 -00 -1.03 -0.69 -0.49 -0.34 -0.23 -0.14 -0.08 -0.04 -0.01

D7S519 -00 -2.46 -1.41 -0.87 -0.54 -0.32 -0.18 -0.09 -0.04 -0.01

D7S502 -00 -4.141 -2.55 -1.7 -1.1 -0.7 -0.4 -0.23 -0.1 -0.26

D7S669 -00 -0.77 -0.43 -0.25 -0.14 -0.08 -0.04 -0.02 -0.01 0

D7S630 -CO -0.28 -0.07 0.01 0.04 0.05 0.04 0.03 0.01 0

D7S657 0.48 0.62 0.62 0.57 0.49 0.40 0.3 0.2 0.11 0.04

D7S515 -00 -2.22 -1.29 -0.80 -0.50 -0.31 -0.18 -0.09 -0.04 -0.01

D7S486 -00 -2.23 -1.38 -0.91 -0.60 -0.39 -0.23 -0.13 -0.05 -0.01
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D7S530 0.03 0.05 0.06 0.06 0.06 0.05 0.04 0.04 0.03 0.02

D7S640 -00 -3.04 -1.78 -1.11 -0.68 -0.4 -0.2 -0.08 -0.01 0.02

D7S684 -00 -0.78 -0.12 0.160 0.28 0.31 0.28 0.21 0.122 0.045

D7S661 -00 -2.86 -1.61 -0.97 -0.59 -0.35 -0.20 -0.10 -0.04 -0.01

D7S798 0.26 0.43 0.44 0.39 0.32 0.24 0.16 0.09 0.04 0.01

D7S2465 -00 -2.96 -1.87 -1.27 -0.86 -0.57 -0.35 -0.19 -0.08 -0.02

Table 8. Pedigree 1: Chromosome 8 markers
Marker Theta=

0
0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D8S264 -00 -2.63 -1.58 -1.02 -0.67 -0.43 -0.26 -0.14 -0.07 -0.02

D8S277 -00 -2.33 -1.35 -0.85 -0.54 -0.35 -0.22 -0.13 -0.07 -0.03

D8S550 -00 -0.75 -0.48 -0.34 -0.24 -0.16 -0.11 -0.06 -0.03 -0.01

D8S549 -0.39 -0.36 -0.29 -0.22 -0.16 -0.11 -0.07 -0.04 -0.02 0

D8S258 -00 -0.68 -0.41 -0.27 -0.18 -0.11 -0.07 -0.03 -0.01 0

D8S1771 -0.79 -0.57 -0.43 -0.33 -0.24 -0.17 -0.11 -0.06 -0.03 -0.01

D8S505 -00 -0.29 -0.06 0.04 0.08 0.09 0.09 0.08 0.06 0.03

D8S285 -0.81 -0.55 -0.37 -0.24 -0.16 -0.10 -0.06 -0.03 -0.01 0
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D8S260 -CO -2 -1.31 -0.9 -0.62 -0.4 -0.25 -0.13 -0.05 -0.01

D8S270 -oo -1.65 -1.0 -0.65 -0.42 -0.27 -0.16 -0.09 -0.04 -0.01

D8S1784 -00 -0.65 -0.40 -0.27 -0.19 -0.13 -0.09 -0.06 -0.04 -0.02

D8S514 -00 -1.12 -0.62 -0.37 -0.23 -0.13 -0.08 -0.04 -0.02 -0.01

D8S284 -00 -2.23 -1.38 -0.91 -0.60 -0.39 -0.23 -0.13 -0.05 -0.01

D8S272 -00 -2.38 -1.46 -0.96 -0.63 -0.4 -0.24 -0.13 -0.05 -0.01

Table 9 Pedigree 1: Chromosome 9 markers
Marker Theta=

0
0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D9S288 -00 -1.95 -0.95 -0.46 -0.18 -0.03 0.05 0.06 0.05 0.02

D9S286 -00 -0.75 -0.23 0.01 0.11 0.14 0.13 0.09 0.05 0.01

D9S285 -00 -1.76 -0.92 -0.51 -0.27 -0.14 -0.07 -0.03 -0.01 -0.00

D9S157 -00 -2.09 -1.21 -0.76 -0.48 -0.30 -0.18 -0.10 -0.04 -0.01

D9S171 -0.03 -0.04 -0.04 -0.03 -0.02 -0.02 -0.01 -0.00 -0.00 0.00

D9S161 -00 -1.74 -0.93 -0.54 -0.33 -0.21 -0.14 -0.10 -0.06 -0.03

D9S1817 -00 -0.53 -0.19 -0.06 -0.02 -0.03 -0.04 -0.06 -0.05 -0.03

D9S273 -00 -0.41 -0.16 -0.05 -0.01 0.02 0.02 0.01 0.01 0.01

D9S175 -00 -2.26 -1.36 -0.88 -0.58 -0.38 -0.24 -0.14 -0.08 -0.03
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D9S167 -CO -0.96 -0.57 -0.40 -0.33 -0.31 -0.30 0.28 -0.22 -0.12

D9S283 -0.70 -0.11 0.04 0.08 0.07 0.02 -0.03 -0.06 -0.07 -0.04

D9S287 -00 -1.21 -0.71 -0.48 -0.35 -0.27 -0.21 -0.16 -0.10 -0.04

D9S1690 -00 -0.99 -0.53 -0.30 -0.17 -0.09 -0.04 -0.02 -0.01 0

D9S1677 -0 0 -2.10 -1.28 -0.84 -0.56 -0.37 -0.23 -0.14 -0.07 -0.03

D9S1776 -1.99 -1.40 -0.93 -0.61 -0.40 -0.25 -0.15 -0.08 -0.03 -0.01

D9S1682 -0.23 -0.09 0.02 0.10 0.13 0.14 0.12 0.09 0.05 0.01

D9S290 0.05 0.19 0.21 0.18 0.14 0.09 0.05 0.023

D9S164 -00 -3.54 -2.17 -1.42 -0.94 -0.61 -0.37 -0.20 -0.09 -0.02

D9S1826 -00 -2.81 -1.79 -1.27 -0.94 0.72 -0.54 -0.38 -0.24 -0.11

D9S158 -0.13 -0.11 -0.09 -0.06 -0.04 -0.02 -0.01 0 0 0
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Table 10 Pedigree 1: Chromosome 10 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D10S249 -00 0.04 0.42 0.53 0.54 0.48 0.39 0.27 0.14 0.04

D10S591 -00 -1.17 -0.67 -0.40 -0.24 -0.14 -0.07 -0.03 -0.01 0

D10S189 -00 -1.78 -1.07 -0.67 -0.41 -0.24 -0.13 -0.06 -0.02 -0.01

D10S547 -00 -1.40 -0.86 -0.57 -0.39 -0.26 -0.16 -0.09 -0.04 -0.01

D10S1653 -00 -2.54 -1.48 -0.94 -0.61 -0.40 -0.26 -0.17 -0.10 -0.05

D10S548 -00 -0.33 0.07 0.22 0.27 0.25 0.20 0.14 0.07 0.02

D10S197 -00 -0.91 -0.57 -0.4 -0.3 -0.24 -0.19 -0.14 -0.09 -0.04

D10S213 -00 -2.34 -1.41 -0.93 -0.63 -0.42 -0.26 -0.15 -0.08 -0.03

D10S208 0.6 0.74 0.74 0.68 0.59 0.48 0.35 0.23 0.11 0.03

D10S1780
1.24 1.13 1.01 0.89 0.75 0.61 0.43 0.32 0.18 0.07

D10S578
-00 -1.26 -0.58 -0.28 -0.12 -0.05 -0.03 -0.03 -0.03 -0.02

D10S196 2.34 2.09 1.84 1.57 1.29 1.01 0.72 0.44 0.21 0.05

D10S1790
-0.32 0.5 0.6 0.58 0.5 0.38 0.26 0.14 0.05 0.00

D10S1652
-00 0.58 0.69 0.67 0.6 0.5 0.37 0.25 0.13 0.04

D10S581 -00 -2.26 -1.36 -0.88 -0.56 -0.35 -0.21 -0.11 -0.05 -0.01
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D10S210 -00 1.57 1.56 1.41 1.20 0.96 0.70 0.43 0.20 0.05

D10S537 -00 -1.22 -0.72 -0.48 -0.36 -0.30 -0.26 -0.22 -0.16 -0.08

D10S580 -00 -0.71 -0.09 0.14 0.21 0.18 0.11 0.02 -0.04 -0.05

D10S1730 -00 0.57 0.65 0.61 0.51 0.39 0.26 0.15 0.06 0.01

D10S1686 -00 -0.39 0.01 0.20 0.30 0.33 0.31 0.27 0.19 0.10

D10S185 1.40 1.39 1.30 1.16 1.01 0.84 0.66 0.49 0.32 0.15

D10S1709 -00 -1.06 -0.4 -0.11 -0.04 0.12 0.14 0.13 0.10 0.06

D10S192 1.06 0.98 0.90 0.81 0.71 0.60 0.48 0.36 0.23 0.11

D10S597 -0.06 0 0.03 0.04 0.04 0.04 0.03 0.02 0.01 0

D10S1693 -0.59 -0.38 -0.26 -0.17 -0.12 -0.07 -0.05 -0.02 -0.01 0

D10S587 -00 -0.87 -0.50 -0.28 -0.14 -0.07 -0.04 -0.03 -0.04 -0.04

D10S1656 -00 -3.01 -1.86 -1.23 -0.81 -0.52 -0.32 -0.17 -0.07 -0.02

D10S217 -0.32 -0.32 -0.28 -0.22 -0.14 -0.08 -0.04 -0.02 -0.01 0

D10S1651 -00 -0.83 -0.19 0.08 0.20 0.23 0.22 0.18 0.12 0.06

D10S212 -0.31 -0.32 -0.31 -0.28 -0.24 -0.18 -0.13 -0.08 -0.03 -0.01
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Table 11 Pedigree 1: Chromosome 11 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0300 0.35 0.4 0.45

D11S4046 -00 -1.14 -0.55 -0.26 -0.11 -0.02 -0.01 0.02 0.01 0

D11S1338 -0.75 -0.51 -0.35 -0.24 -0.16 -0.10 -0.06 -0.03 -0.01 0

D11S902 -00 -1.73 -0.74 -0.26 -0.01 0.12 0.16 0.15 0.09 0.03

D11S904 -00 -0.27 -0.06 0.03 0.07 0.08 0.08 0.07 0.05 0.03

D11S935 -00 -2.00 -1.07 -0.58 -0.29 -0.11 -0.01 0.05 0.06 0.04

D11S905 -00 -0.29 0.02 0.14 0.19 0.20 0.18 0.14 0.10 0.05

D11S4191 -00 -1.77 -0.81 -0.35 -0.10 0.04 0.10 0.09 0.05 0

D11S987 -00 -0.99 -0.42 -0.16 -0.03 0.02 0.03 0.02 0.01 0.0

D11S1314 -0.13 -0.13 -0.10 -0.07 -0.04 -0.02 -0.00 0 0 0

D11S901 0.19 0.28 0.26 0.18 0.08 -0.03 -0.13 -0.19 -0.18 -0.11

D11S937 -0.35 -0.35 -0.33 -0.28 -0.21 -0.15 -0.09 -0.05 -0.02 -0.00

D11S4175 1.22 1.05 0.91 0.78 0.66 0.54 0.42 0.30 0.19 0.08

D11S898 0.007 0.04 0.06 0.06 0.055 0.043 0.03 0.017 0.008 0.002

D11S908 0.10 0.09 0.07 0.06 0.05 0.03 0.02 0.01 0.01 0.0

D11S925 -0.35 -0.15 -0.06 -0.02 0.01 0.01 0.01 0.01 0 0
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D11S1320 -0.05 -0.06 -0.05 -0.05 -0.04 -0.02 -0.02 -0.01 0 0

D11S968 -00 -1.45 -0.72 -0.36 -0.15 -0.03 0.04 0.07 0.07 0.04

Table 12. Pedigree 1: Chromosome 12 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D12S352 -00 -0.1 0.1 0.19 0.22 0.22 0.2 0.17 0.12 0.06

D12S99 -00 -0.78 -0.29 -0.09 -0.02 -0.01 -0.02 -0.03 -0.03 -0.2

D12S336 -00 -0.47 -0.17 -0.04 0.02 0.04 0.04 0.03 0.02 0

D12S364 -00 -0.77 -0.11 0.17 0.29 0.32 0.29 0.22 0.14 0.07

D12S310 -0.18 -0.01 0.08 0.12 0.14 0.14 0.12 0.10 0.07 0.03

D12S1617 -00 -2.371 -1.51 -1.0 -0.7 -0.46 -0.28 -0.15 -0.07 -0.01

D12S345 -00 -2.71 -1.57 -0.95 -0.55 -0.29 -0.12 -0.02 0.03 0.03

D12S85 -00 -4.16 -2.53 -1.65 -1.08 -0.69 -0.42 -0.22 -0.10 -0.02

D12S368 -00 -0.31 -0.04 0.06 0.08 0.07 0.05 0.03 0.01 0

D12S83 -00 -3.02 -1.89 -1.29 -0.90 -0.63 -0.43 -0.28 -0.16 -0.07

D12S326 -00 -1.59 -0.83 -0.46 -0.26 -0.14 -0.07 -0.04 -0.03 -0.02

D12S351 -00 -1:3 -0.75 -0.46 -0.29 -0.18 -0.11 -0.06 -0.03 -0.01
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D12S346 -00 -1.07 -0.41 -0.14 -0.03 -0.01 -0.04 -0.07 -0.08 -0.05

D12S78 -00 -1.05 -0.57 -0.34 -0.20 -0.12 -0.06 -0.03 -0.01 0

D12S79 -00 -2.46 -1.21 -0.61 -0.27 -0.08 0.01 0.03 0 0

D12S86 -00 -2.4 -1.15 -0.55 -0.22 -0.04 0.044 0.054 0.019 -0.02

D12S324 -00 -0.81 -0.57 -0.43 -0.32 -0.23 -0.15 -0.09 -0.04 -0.01

D12S1659 -00 -2.8 -1.7 -1.1 -0.75 -0.49 -0.3 -0.19 -0.1 -0.04

D12S1723 -0.21 -0.06 0.02 0.05 0.06 0.05 0.04 0.03 0.01 0.0

Table 13. Pedigree 1: Chromosome 13 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D13S175 -0.04 -0.03 -0.01 0.02 0.03 0.04 0.03 0.02 0.01 0

D13S217 -00 -1.83 -0.92 -0.47 -0.21 -0.06 0.02 0.05 0.05 0.03

D13S171 -00 -1.02 -0.55 -0.33 -0.21 -0.13 -0.09 -0.06 -0.04 -0.02

D13S218 -00 -0.32 -0.08 0.03 0.08 0.10 0.09 0.07 0.05 0.02

D13S263 -00 -1.19 -0.82 -0.62 -0.47 -0.33 -0.22 -0.13 -0.06 -0.01

D13S153 -00 -3.93 -2.29 -1.41 -0.85 -0.48 -0.24 -0.08 0.01 0.03

D13S156 -00 -1.5 -0.8 -0.5 -0.3 -0.16 -0.08 -0.03 -0.01 -0.01
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D13S170 -00 -0.64 -0.09 0.17 0.30 0.34 0.33 0.28 0.20 0.10

D13S265 1.22 1.14 1.02 0.90 0.76 0.62 0.48 0.35 0.21 0.09

D13S159 -00 -1.67 -0.87 -0.45 -0.19 -0.04 0.05 0.08 0.08 0.05

D13S158 -00 -1.47 -0.72 -0.34 -0.12 0 0.06 0.08 0.06 0.03

D13S173 -00 -2.4 -1.41 -0.85 -0.5 -0.28 -0.15 -0.07 -0.02 -0.01

D13S1265 -0.13 -0.13 -0.12 -0.09 -0.06 -0.04 -0.02 -0.01 0 0

D13S285 -00 -4.26 -2.73 -1.89 -1.33 -0.92 -0.61 -0.38 -0.20 -0.08

Table 14. Pedigree 1: Chromosome 14 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D14S261 -2.04 -0.95 -0.60 -0.38 -0.23 -0.13 -0.07 -0.03 -0.01 0

D14S283 -00 -1.3 -0.48 -0.09 0.11 0.2 0.22 0.19 0.13 0.06

D14S275 -00 -1.75 -0.98 -0.59 -0.38 -0.26 -0.20 -0.16 -0.13 -0.08

D14S70 -00 -0.90 -0.37 -0.11 0.03 0.10 0.11 0.09 0.05 0.02

D14S288 -00 -3.10 -1.93 -1.26 -0.81 -0.51 -0.31 -0.17 -0.08 -0.03

D14S276 -00 -3.15 -2.05 -1.44 -1.02 -0.72 -0.49 -0.31 -0.17 -0.07

D14S63 -00 -0.63 -0.32 -0.18 -0.12 -0.09 -0.07 -0.06 -0.04 -0.02

D14S258 -00 -2.11 -1.21 -0.74 -0.44 -0.25 -0.13 -0.05 -0.01 0
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D14S74 -00 -3.01 -1.80 -1.15 -0.74 -0.46 -0.27 -0.14 -0.06 -0.02

D14S68 -00 -2.28 -1.47 -0.97 -0.64 -0.41 -0.24 -0.13 -0.05 -0.01

D14S280 -00 -2.56 -1.44 -0.87 -0.52 -0.31 -0.17 -0.09 -0.04 -0.01

D14S65 -CO -1.98 -1.15 -0.66 -0.36 -0.18 -0.07 -0.02 -0.01 0

D14S985 -00 -2.09 -1.32 -0.90 -0.62 -0.43 -0.29 -0.19 -0.11 -0.05

D14S292 -00 -3.41 -2.03 -1.27 -0.79 -0.46 -0.25 -0.10 -0.02 0.01

Table IS. Pedigree 1: Chromosome 15 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 035 0.4 0.45

D15S128 -00 -2.15 -1.14 -0.62 -0.31 -0.11 0 0.06 0.08 0.05

D15S1002 -00 -1.74 -0.90 -0.47 -0.23 -0.08 0 0.05 0.06 0.04

D15S165 0.046 0.026 0.008 -0.01 -0.01 -0.01 -0.01 -0.01 -0.00 -0.001

D15S1007 -00 -2.66 -1.42 -0.78 -0.40 -0.17 -0.03 0.04 0.06 0.05

D15S1012 0.24 0.21 0.18 0.14 0.11 0.08 0.05 0.03 0.01 0

D15S994 -1.652 -0.636 -0.28 -0.07 0.03 0.08 0.083 0.064 0.035 0.01

D15S978 -00 -1.34 -0.55 -0.15 0.05 0.14 0.16 0.13 0.08 0.02

D15S117 -00 -1.30 -0.71 -0.42 -0.24 -0.13 -0.07 -0.03 -0.01 0

D15S153 -00 -1.49 -0.75 -0.39 -0.19 -0.08 -0.02 0 0.01 0
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D15S131 -00 0.35 0.46 0.45 0.38 0.30 0.21 0.13 0.06 0.02

D15S205 -00 -0.23 -0.02 0.06 0.09 0.09 0.07 0.05 0.03 0.02

D15S127 -00 -0.89 -0.37 -0.15 -0.05 -0.01 0.003 0.005 0.003 0.001

D15S130 -00 -0.87 -0.4 -0.2 -0.12 -0.07 -0.04 -0.02 -0.01 -0.003

D15S120 -0.26 -0.26 -0.22 -0.17 -0.12 -0.07 -0.03 -0.01 -0.01 0

Table 16. Pedigree 1: Chromosome 16 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D16S423 -00 -2.68 -1.42 -0.79 -0.41 -0.17 -0.03 0.05 0.07 0.05

D16S404 -0.23 -0.23 -0.23 -0.20 -0.17 -0.13 -0.09 -0.05 -0.03 -0.01

D16S3075 -00 -2.64 -1.40 -0.77 -0.39 -0.16 -0.02 0.06 0.08 0.06

D16S3103 -00 -1.99 -1.42 -1.04 -0.73 -0.49 -0.30 -0.17 -0.07 -0.02

D16S3046 -0.32 -0.18 -0.16 -0.17 -0.17 -0.15 -0.11 -0.07 -0.03 -0.01

D16S3068 -0.04 -0.04 -0.04 -0.03 -0.02 -0.02 -0.01 -0.01 0 0

D16S3136 0.41 0.48 0.49 0.47 0.43 0.37 0.31 0.24 0.16 0.08

D16S415 -00 0.78 0.89 0.87 0.80 0.69 0.55 0.40 0.25 0.11

D16S503 -00 -0.7 -0.25 -0.03 0.09 0.14 0.15 0.13 0.09 0.05

D16S515 -00 -4.13 -2.51 -1.63 -1.07 -0.68 -0.41 -0.22 -0.10 -0.02
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D16S516 0.163 0.14 0.12 0.1 0.07 0.05 0.03 0.02 0.01 0.003

D16S3091 -00 -0.13 0.25 0.43 0.49 0.47 0.41 0.30 0.18 0.08

D16S520 -00 1.008 1.09 1.019 0.09 0.75 0.58 0.39 0.2 0.06

Table 17. Pedigree 1: Chromosome 17 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D17S849 -00 -2.10 -1.37 -0.93 -0.63 -0.41 -0.25 -0.14 -0.06 -0.02

D17S831 -00 -2.42 -1.40 -0.84 -0.49 -0.27 -0.13 -0.05 -0.01 0.01

D17S938 -00 -0.88 -0.41 -0.19 -0.07 -0.02 0 0 -0.01 -0.01

D17S1852 -00 -0.86 -0.41 -0.20 -0.09 -0.03 -0.01 -0.01 -0.02 -0.02

D17S799 -00 -0.84 -0.44 -0.29 -0.23 -0.22 -0.20 -0.18 -0.13 -0.06

D17S921 -00 -2.05 -1.17 -0.7 -0.42 -0.23 -0.12 -0.05 -0.01 0

D17S1857 0.29 0.36 -0.34 -0.29 -0.23 0.17 0.11 0.06 0.03 -0.01

D17S798 -00 -0.34 0.07 0.22 0.27 0.26 0.22 0.16 0.09 0.04

D17S1868 -00 0.11 0.36 0.44 0.44 0.39 0.32 0.22 0.11 0.03

D17S787 -00 -0.92 -0.53 -0.39 -0.34 -0.32 -0.30 -0.26 -0.19 -0.11

D17S944 -00 -2.08 -1.25 -0.81 -0.52 -0.33 -0.20 -0.11 -0.06 -0.02
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D17S949 -00 -1.14 -0.57 -0.30 -0.16 -0.09 -0.05 -0.03 -0.03 -0.02

D17S785 -00 -1.24 -0.58 -0.26 -0.09 -0.02 0.01 0 -0.01 -0.01

D17S784 -0.39 -0.23 -0.14 -0.08 -0.04 -0.02 -0.01 0 0 0

D17S928 -00 -0.27 0.21 0.39 0.44 0.42 0.34 0.24 0.13 0.04

Table 18. Pedigree 1: Chromosome 18 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D18S59 -CO -0.90 -0.34 -0.09 0.04 0.1 0.11 0.09 0.04 -0.01

D18S63 -CO 0.27 0.47 0.49 0.44 0.35 0.24 0.15 0.07 0.02

D18S452 1.34 1.28 1.19 1.07 0.94 0.78 0.61 0.42 0.23 0.07

D18S464 -00 -2.63 -1.59 -1.05 -0.70 -0.46 -0.28 -0.15 -0.07 -0.02

D18S53 -0.17 -0.20 -0.21 -0.20 -0.15 -0.1 -0.06 -0.03 -0.01 0

D18S478 0.51 0.448 0.39 0.33 0.29 0.24 0.19 0.137 0.08 0.028

D18S1102 -00 -3.57 -2.12 -1.34 -0.85 -0.51 -0.28 -0.13 -0.03 0.01

D18S474 -00 0.54 0.87 0.95 0.92 0.82 0.67 0.50 0.32 0.14

D18S64 -00 0.45 0.57 0.56 0.51 0.42 0.33 0.23 0.14 0.06

D18S68 -00 -1.28 -0.75 -0.47 -0.30 -0.19 -0.11 -0.06 -0.02 -0.01

D18S61 -00 -1.65 -0.69 -0.24 0.01 0.14 0.19 0.20 0.16 0.09
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D18S1161 -00 -1.74 -0.83 -0.37 -0.11 0.04 0.11 0.12 0.10 0.05

D18S462 0.56 0.58 0.52 0.42 0.29 0.17 0.05 -0.04 -0.07 -0.06

D18S70 -00 -3.95 -2.31 -1.43 -0.87 -0.50 -0.25 -0.09 -0.01 0.02

Table 19. Pedigree 1: Chromosome 19 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D19S216 -00 -1.95 -1.17 -0.76 -0.51 -0.35 -0.24 -0.17 -0.11 -0.06

D19S884 -00 -1.92 -1.29 -0.93 -0.69 -0.51 -0.37 -0.25 -0.16 -0.08

D19S221 -00 -1.46 -0.88 -0.57 -0.36 -0.23 -0.13 -0.07 -0.03 -0.01

D19S226 -00 -0.90 -0.31 -0.04 0.09 0.14 0.15 0.12 0.08 0.04

D19S414 -00 -0.81 -0.22 -0.01 0.068 0.077 0.058 0.028 -0.01 -0.023

D19S220 -00 -3.55 -2.00 -1.2 -0.7 -0.4 -0.2 -0.1 -0.02 -0.005

D19S420 -00 -3.25 -1.91 -1.20 -0.74 -0.44 -0.24 -0.10 -0.02 0.01

D19S902 -00 -3.16 -1.84 -1.16 -0.74 -0.46 -0.28 -0.16 -0.07 -0.02

D19S571 -00 -0.92 -0.59 -0.39 -0.26 -0.17 -0.10 -0.06 -0.03 -0.01

D19S418 -00 -1.23 -0.31 0.10 0.29 0.35 0.34 0.27 0.17 0.07

D19S210 -00 -2.79 -1.5 -0.8 -0.46 -0.2 -0.07 0.02 0.05 0.04
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Table 20. Pedigree 1: Chromosome 20 markers

Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D20S117 -CO -1.33 -0.75 -0.44 -0.25 -0.14 -0.07 -0.03 -0.01 -0.003

D20S889 -00 -3.67 -2.19 -1.38 -0.87 -0.52 -0.28 -0.12 -0.03 0.01

D20S115 -00 -0.63 -0.35 -0.21 -0.12 -0.06 -0.03 -0.01 0 0

D20S186 -0.18 -0.07 -0.01 0.02 0.03 0.03 0.02 0.01 0.01 0

D20S112 -00 -1.62 -0.90 -0.54 -0.34 -0.21 -0.12 -0.07 -0.03 -0.01

D20S195 -00 -1.80 -0.94 -0.50 -0.25 -0.11 -0.04 -0.01 -0.01 -0.01

D20S107 -00 -3.30 -2.06 -1.38 -0.93 -0.61 -0.39 -0.23 -0.11 -0.04

D20S119 -00 -3.58 -2.26 -1.50 -0.99 -0.63 -0.37 -0.19 -0.07 -0.01

D20S178 -00 -3.79 -2.32 -1.52 -1.0 -0.64 -0.38 -0.21 -0.09 -0.02

D20S196 -00 -0.76 -0.40 -0.22 -0.14 -0.11 -0.11 -0.11 -0.09 -0.06

D20S100 -0.05 -0.03 -0.02 -0.01 0 0 0 0 0 0

D20S173 -1.41 -0.95 -0.63 -0.41 -0.26 -0.16 -0.09 -0.05 -0.02 -0.01

D20S171 -00 -1.94 -0.98 -0.52 -0.26 -0.12 -0.05 -0.02 -0.01 -0.01
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Table 21. Pedigree 1: Chromosome 21 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D21S1256 -00 -0.44 -0.16 -0.05 0.001 0.015 0.014 0.008 0.003 0.00

D21S1914 -00 -0.70 -0.27 -0.05 0.06 0.12 0.13 0.12 0.08 0.04

D21S263 -00 -0.32 -0.1 -0.01 0.03 0.04 0.03 0.02 0.01 0

D21S1252 -00 -2.0 -0.98 -0.47 -0.18 0 0.09 0.13 0.12 0.07

D21S266 -00 0.16 0.50 0.61 0.61 0.54 0.45 0.33 0.20 0.09

Table 22. Pedigree 1: Chromosome 22 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D22S420 -00 -2.08 -1.05 -0.55 -0.26 -0.09 -0.01 0.02 0.02 0

D22S539 -00 -2.18 -1.31 -0.85 -0.55 -0.36 -0.22 -0.13 -0.07 -0.03

D22S315 -00 -2.25 -1.50 -1.10 -0.84 -0.64 -0.46 -0.31 -0.18 -0.08

D22S280 -00 -2.78 -1.78 -1.20 -0.81 -0.53 -0.33 -0.18 -0.09 -0.03

D22S283 -00 -3.51 -2.30 -1.63 -1.17 -0.84 -0.58 -0.37 -0.21 -0.08

D22S423 -00 -1.58 -0.92 -0.57 -0.36 -0.22 -0.13 -0.07 -0.03 -0.01

D22S274 -00 -1.8 -1.0 -0.67 -0.44 -0.28 -0.17 -0.09 -0.04 -0.01
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Table 23. Pedigree 2: Chromosome 1 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D1S468 -00 -1.88 -1.15 -0.78 -0.55 -0.39 -0.27 -0.17 -0.1 -0.04

D1S214 -00 -2.54 -1.64 -1.15 -0.82 -0.59 -0.41 -0.27 -0.15 -0.07

D1S450 -0.13 -0.01 0.03 0.04 0.04 0.03 0.02 0.02 0.01 0.01

D1S2667 -1.9 -0.5 -0.22 -0.1 -0.04 -0.02 -0.01 -0.01 -0.01 -0.01

D1S2697 -00 -0.73 -0.45 -0.29 -0.19 -0.12 -0.07 -0.04 -0.02 -0.01

D1S199 -00 -2.20 -1.42 -0.99 -0.69 -0.46 -0.28 -0.15 -0.07 -0.02

D1S234 -00 -2.11 -1.23 -0.75 -0.46 -0.27 -0.16 -0.08 -0.04 -0.01

D1S255 -0.18 -0.1 -0.05 -0.03 -0.01 0 0 0 0 0

D1S2797 -00 -0.56 -0.16 0.05 0.17 0.22 0.23 0.21 0.15 0.08

D1S2890 -0.76 0.40 0.54 0.57 0.56 0.51 0.43 0.32 0.19 0.08

D1S230 -00 -0.99 -0.45 -0.19 -0.05 0.02 0.05 0.05 0.04 0.02

D1S2841 -00 -0.92 -0.51 -0.34 -0.24 -0.18 -0.12 -0.08 -0.04 -0.01

D1S207 -00 -0.95 -0.56 -0.33 -0.19 -0.09 -0.03 0.01 0.02 0.02

D1S2868 -00 -2.5 -1.57 -1.04 -0.69 -0.45 -0.27 -0.15 -0.06 -0.02

D1S206 -00 -2.35 -1.47 -0.96 -0.62 -0.37 -0.21 -0.09 -0.03 0
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D1S2726 -00 -1.66 -0.99 -0.63 -0.4 -0.25 -0.15 -0.08 -0.04 -0.01

D1S252 -00 -0.62 -0.31 -0.19 -0.16 -0.16 -0.19 -0.2 -0.17 -0.1

D1S498 -00 -0.84 -0.28 0.03 0.20 0.27 0.28 0.24 0.16 0.08

D1S484 -00 -0.7 -0.43 -0.29 -0.19 -0.12 -0.07 -0.04 -0.01 0

D1S2878 -00 -1.07 -0.45 -0.21 -0.1 -0.06 -0.04 -0.03 -0.02 -0.01

D1S196 -00 -0.93 -0.58 -0.37 -0.24 -0.15 -0.08 -0.04 -0.01 0

D1S218 -00 -2.19 -1.36 -0.92 -0.63 -0.42 -0.27 -0.16 -0.08 -0.03

D1S238 -00 -1.06 -0.59 -0.37 -0.23 -0.15 -0.09 -0.04 -0.02 0

D1S413 -00 -3.83 -2.49 -1.7 -1.17 -0.79 -0.52 -0.31 -0.16 -0.06

D1S249 0.09 -0.01 -0.09 -0.15 -0.17 -0.17 -0.15 -0.11 -0.08 -0.04

D1S425 0.01 0.11 0.15 0.15 0.14 0.12 0.09 0.06 0.04 0.02

D1S213 -00 -1.26 -0.8 -0.54 -0.36 -0.24 -0.16 -0.1 -0.06 -0.03

D1S2800 -00 -1.74 -1.09 -0.71 -0.47 -0.31 -0.19 -0.11 -0.06 -0.02

D1S2785 -00 -3.2 -1.9 -1.2 -0.77 -0.5 -0.3 -0.14 -0.06 -0.01

D1S2842 -00 -0.78 -0.32 -0.13 -0.05 -0.02 -0.02 -0.02 -0.02 -0.01

D1S2836 -0.07 -0.04 -0.03 -0.01 0 0.01 0.01 0.01 0 0
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Table 24. Pedigree 2: Chromosome 2 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D2S319 -00 -1.41 -0.86 -0.58 -0.41 -0.30 -0.22 -0.16 -0.1 -0.05

D2S2211 -00 -1.18 -0.77 -0.53 -0.36 -0.24 -0.15 -0.09 -0.04 -0.02

D2S162 1.15 1.11 1.03 0.92 0.78 0.61 0.44 0.25 0.08 -0.03

D2S168 -00 -1.14 -0.69 -0.49 -0.37 -0.29 -0.23 -0.16 -0.10 -0.05

D2S305 -1.7 -0.28 -0.1 -0.03 0.004 0.016 0.017 0.014 0.009 0.004

D2S165 -0.54 -0.39 -0.29 -0.21 -0.14 -0.1 -0.06 -0.03 -0.01 0

D2S367 -00 -0.55 -0.03 0.21 0.32 0.35 0.34 0.28 0.2 0.1

D2S2259 -00 -1.37 -0.65 -0.29 -0.09 0.02 0.07 0.07 0.05 0.02

D2S391 -1.33 -0.94 -0.67 -0.47 -0.33 -0.21 -0.13 -0.07 -0.03 -0.01

D2S337 -00 -0.01 0.2 0.25 0.23 0.19 0.14 0.09 0.05 0.02

D2S2368 -00 -2.33 -1.22 -0.65 -0.31 -0.11 0.01 0.07 0.08 0.06

D2S286 -00 -2.53 -1.63 -1.11 -0.76 -0.50 -0.31 -0.17 -0.07 -0.02

D2S2333 -00 -0.9 -0.3 -0.02 0.1 0.16 0.15 0.12 0.07 0.03

D2S2216 -00 -2.92 -1.82 -1.22 -0.83 -0.55 -0.35 -0.21 -0.10 -0.04

D2S160 -00 -0.22 0.1 0.2 0.2 0.16 0.1 0.03 -0.01 -0.02
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D2S347 -00 -1.90 -1.09 -0.68 -0.42 -0.25 -0.14 -0.07 -0.03 0

D2S112 -00 -3.05 -1.87 -1.22 -0.80 -0.51 -0.31 -0.17 -0.08 -0.03

D2S151 -00 -0.68 -0.3 -0.13 -0.05 -0.01 0 0 0 0.01

D2S142 -00 -1.51 -0.90 -0.57 -0.37 -0.23 -0.14 -0.08 -0.04 -0.02

D2S2330 -00 -2.07 -1.27 -0.85 -0.6 -0.43 -0.31 -0.22 -0.14 -0.07

D2S335 -00 -2.92 -1.71 -1.04 -0.61 -0.33 -0.14 -0.03 0.03 0.04

D2S364 0.24 0.2 0.17 0.14 0.11 0.08 0.06 0.03 0.02 0.01

D2S117 -00 -2.63 -1.57 -1.0 -0.6 -0.4 -0.2 -0.15 -0.07 -0.02

D2S325 -00 -0.88 -0.55 -0.4 -0.32 -0.28 -0.24 -0.2 -0.15 -0.08

D2S2382 -0.01 0.11 0.19 0.22 0.22 0.19 0.14 0.08 0.02 -0.01

D2S126 -00 -0.41 -0.19 -0.09 -0.04 -0.01 0 0.01 0.01 0.01

D2S396 -00 0.48 0.55 0.5 0.42 0.33 0.24 0.15 0.07 0.02

D2S206 -00 -1.43 -0.84 -0.52 -0.32 -0.19 -0.1 -0.04 -0.01 0.01

D2S338 0.57 0.53 0.49 0.44 0.38 0.32 0.25 0.18 0.12 0.05

D2S125 -00 -3.47 -2.23 -1.53 -1.05 -0.71 -0.45 -0.26 -0.13 -0.04
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Table 25. Pedigree 2: Chromosome 3 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D3S1297 -00 -1.9 -1.22 -0.82 -0.56 -0.37 -0.23 -0.13 -0.07 -0.02

D3S1304 -1.26 0.44 0.62 0.65 0.63 0.56 0.47 0.37 0.24 0.12

D3S1263 -00 -1.78 -1.35 -0.99 -0.69 -0.46 -0.29 -0.16 -0.08 -0.02

D3S2338 -00 -2.82 -1.72 -1.1 -0.7 -0.43 -0.24 -0.12 -0.04 -0.01

D3S1266 -0.06 -0.03 -0.01 0.01 0.01 0.01 0.01 0 0 -0.01

D3S1277 0.68 0.68 0.64 0.56 0.46 0.34 0.21 0.09 -0.01 -0.05

D3S1289 -00 -0.91 -0.57 -0.37 -0.24 -0.15 -0.09 -0.04 -0.02 0

D3S1300 -00 -2.31 -1.37 -0.87 -0.55 -0.33 -0.19 -0.1 -0.04 -0.01

D3S128S 0.15 0.27 0.32 0.33 0.31 0.27 0.21 0.14 0.07 0.02

D3S1566 -00 -3.37 -2.19 -1.49 -1.01 -0.66 -0.41 -0.23 -0.1 -0.03

D3S3681 -00 -2.54 -1.66 -1.13 -0.78 -0.52 -0.33 -0.20 -0.1 -0.04

D3S1271 -0.8 -0.52 -0.35 -0.24 -0.16 -0.1 -0.06 -0.03 -0.02 -0.01

D3S1278 -0.18 -0.13 -0.1 -0.07 -0.05 -0.03 -0.02 -0.01 -0.01 0

D3S1267 -00 -3.11 -1.96 -1.33 -0.9 -0.6 -0.38 -0.21 -0.1 -0.03

D3S1292 -0.79 -0.38 -0.23 -0.14 -0.1 -0.06 -0.05 -0.03 -0.03 -0.01
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D3S1569 -0.44 -0.26 -0.18 -0.16 -0.14 -0.14 -0.13 -0.11 -0.08 -0.05

D3S1279 -00 -3.46 -2.14 -1.4 -0.92 -0.58 -0.34 -0.17 -0.06 -0.01

D3S1614 -00 -0.52 -0.21 -0.06 0.03 0.07 0.09 0.09 0.07 0.04

D3S1565 -00 -2.64 -1.63 -1.08 -0.71 -0.46 -0.28 -0.16 -0.08 -0.03

D3S1262 -0.16 0.08 0.16 0.18 0.18 0.16 0.13 0.10 0.07 0.03

D3S1580 -00 -2.92 -1.88 -1.24 -0.8 -0.5 -0.28 -0.13 -0.04 0.01

D3S1601 -00 -2.27 -1.45 -0.99 -0.69 -0.47 -0.3 -0.17 -0.08 -0.02

D3S1311 -00 -1.37 -0.76 -0.46 -0.29 -0.19 -0.13 -0.09 -0.06 -0.03

Table 26. Pedigree 2: Chromosome 4 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D4S412 -00 -0.52 -0.27 -0.14 -0.07 -0.02 0.01 0.02 0.02 0.02

D4S2935 -00 -3.43 -2.06 -1.33 -0.87 -0.56 -0.34 -0.19 -0.09 -0.03

D4S403 -00 -2.51 -1.58 -1.06 -0.72 -0.48 -0.31 -0.18 -0.09 -0.03

D4S419 0.36 0.46 0.47 0.44 0.38 0.31 0.23 0.15 0.08 0.02

D4S391 -00 -0.74 -0.16 0.12 0.25 0.3 0.29 0.23 0.15 0.06

D4S405 -1.87 -1.04 -0.64 -0.39 -0.22 -0.11 -0.04 0.01 0.02 0.02

D4S1592 -00 0.07 0.36 0.46 0.48 0.43 0.36 0.27 0.16 0.07
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D4S392 -00 -1.61 -0.85 -0.48 -0.28 -0.16 -0.08 -0.03 -0.01 0.01

D4S2964 -00 -2.71 -1.63 -1.05 -0.69 -0.45 -0.28 -0.16 -0.08 -0.03

D4S1534 -00 -2.07 -1.23 -0.78 -0.49 -0.3 -0.17 -0.09 -0.04 -0.01

D4S414 -00 -0.09 0.24 0.36 0.38 0.35 0.27 0.18 0.09 0..03

D4S1572 -00 -2.06 -1.24 -0.79 -0.51 -0.32 -0.19 -0.1 -0.04 -0.01

D4S406 0.46 0.39 0.34 0.28 0.23 0.18 0.13 0.09 0.05 0.02

D4S402 -00 -1.45 -0.95 -0.63 -0.42 -0.26 -0.15 -0.07 -0.03 -0.01

D4S1575 -0.03 0.01 0.03 0.04 0.04 0.04 0.03 0.02 0.01 0.01

D4S424 -0.5 -0.4 -0.29 -0.19 -0.11 -0.04 0 0.02 0.03 0.02

D4S413 -00 -2.37 -1.46 -0.98 -0.67 -0.46 -0.31 -0.2 -0.11 -0.04

D4S1597 -0.1 -0.06 -0.03 -0.01 0 0.01 0.01 0.01 0.01 0.01

D4S1539 -0.34 -0.29 -0.24 -0.19 -0.14 -0.1 -0.06 -0.03 -0.01 0

D4S1535 0.132 0.133 0.114 0.082 0.046 0.013 -0.01 -0.03 -0.03 -0.02

D4S426 0.08 0.13 0.13 0.11 0.07 0.04 0.01 -0.02 -0.03 -0.02
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Table 27. Pedigree 2: Chromosome 5 markers

Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D5S1981 -00 -0.71 -0.26 -0.06 0.03 0.07 0.07 0.06 0.04 0.01

D5S406 -00 -2.59 -1.62 -1.08 -0.71 -0.46 -0.28 -0.15 -0.07 -0.02

D5S630 -1.31 -1.05 -0.7 -0.46 -0.29 -0.17 -0.09 -0.04 -0.01 0.01

D5S416 0.12 0.14 0.15 0.15 0.14 0.13 0.11 0.09 0.06 0.03

D5S419 -00 -1.25 -0.52 -0.19 -0.01 0.07 0.1 0.09 0.06 2

D5S426 -00 -0.23 -0.04 0.04 0.07 0.08 0.08 0.06 0.05 0.02

D5S418 -00 -1.79 -.15 -0.77 -0.51 -0.31 -0.17 -0.08 -0.02 0.01

D5S407 -00 -0.79 -0.48 -0.32 -0.22 -0.16 -0.12 -0.09 -0.07 -0.03

D5S647 -1.69 -1.08 -0.74 -0.51 -0.34 -0.22 -0.14 -0.08 -0.03 -0.01

D5S424 -0.06 -0.05 -0.04 -0.03 -0.02 -0.02 -0.01 -0.01 -0.01 0

D5S641 0.16 0.21 0.19 0.16 0.11 0.05 0 0 -0.05 -0.04

D5S428 -0.37 -0.3 -0.26 -0.23 -0.19 -0.16 -0.13 -0.09 -0.06 -0.03

D5S644 -00 -1.1 -0.65 -0.4 -0.3 -0.2 -0.15 -0.09 -0.5 0.02

D5S433 -00 -0.46 -0.22 -0.1 -0.04 0 0.01 0.02 0.02 0.01

D5S2027 -00 -0.83 -0.44 -0.24 -0.12 -0.05 -0.01 0 0.01 0
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D5S471 -00 -1.5 -0.97 -0.62 -0.39 -0.22 -0.12 -0.05 -0.02 0

D5S2115 -00 -4.0 -2.4 -1.5 -1.0 -0.67 -0.4 -0.23 -0.1 -0.03

D5S436 -0.3 -0.21 -0.15 -0.1 -0.07 -0.04 -0.03 -0.01 -0.01 0

D5S410 -0.45 -0.33 -0.24 -0.18 -0.12 -0.08 -0.05 -0.03 -0.01 0

D5S422 -00 -0.46 -0.04 0.13 0.19 0.19 0.16 0.12 0.07 0.03

D5S400 -0.68 -0.53 -0.39 -0.28 -0.19 -0.12 -0.07 -0.04 -0.02 0

D5S408 -00 -1.02 -0.66 -0.44 -0.29 -0.19 -0.11 -0.05 -0.02 -0.01

Table 28. Pedigree 2: Chromosome 6 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 035 0.4 0.45

D6S1574 -0.25 0.04 0.12 0.14 0.13 0.11 0.09 0.06 0.04 0.02

D6S309 0.39 0.37 0.33 0.28 0.22 0.16 0.11 0.06 0.02 0

D6S470 -0.78 -0.38 -0.23 -0.14 -0.08 -0.04 -0.01 0 0.01 0.01

D6S289 -0.25 0.04 0.12 0.14 0.13 0.11 0.09 0.06 0.04 0.02

D6S422 -00 -1.3 -0.9 -0.7 -0.6 -0.5 -0.3 -0.1 -0.01 -0.01

D6S276 -00 -2.0 -1.3 -0.89 -0.61 -0.41 -0.26 -0.16 -0.08 -0.03

D6S1610 -00 -1.93 -1.28 -0.91 -0.66 -0.48 -0.33 -0.22 -0.12 -0.05
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D6S257 -00 -2.82 -1.81 -1.22 -0.82 -0.54 -0.33 -0.18 -0.08 -0.02

D6S460 0.84 0.81 0.73 0.63 0.53 0.43 0.33 0.23 0.14 0.06

D6S462 0.42 0.32 0.22 0.12 0.03 -0.04 -0.08 -0.09 -0.08 -0.05

D6S434 -0.06 -0.05 -0.04 -0.03 -0.02 -0.02 -0.01 -0.01 -0.01 0

D6S287 -00 -0.04 0.15 0.21 0.2 0.17 0.13 0.08 0.04 0.01

D6S262 -00 0.3 0.5 0.5 0.4 0.35 0.24 0.14 0.05 0

D6S292 -00 -1.28 -0.65 -0.36 -0.19 -0.09 -0.03 -0.01 0.01 0.01

D6S308 -00 -0.54 -0.3 -0.19 -0.12 -0.08 -0.05 -0.02 -0.01 0

D6S441 -00 -1.86 -1.01 -0.56 -0.29 -0.12 -0.02 0.04 0.06 0.04

D6S1581 -00 -1.02 -0.66 -0.44 -0.29 -0.19 -0.11 -0.05 -0.02 0

D6S264 0.2 0.21 0.21 0.19 0.15 0.1 0.04 -0.01 -0.04 -0.04

D6S446 -0.82 -0.55 -0.37 -0.25 -0.16 -0.09 -0.05 -0.02 0 0.01

D6S281 -00 0.23 0.39 0.41 0.38 0.32 0.24 0.15 0.08 0.02
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Table 29. Pedigree 2: Chromosome 7 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D7S517 -00 -1.24 -0.71 -0.44 -0.27 -0.17 -0.1 -0.06 -0.03 -0.01

D7S513 -00 -0.27 0.05 0.12 0.1 0.05 -0.01 -0.05 -0.06 -0.04

D7S507 -00 -1.05 -0.66 -0.42 -0.25 -0.14 -0.06 -0.01 0.01 0.02

D7S493 0.108 0.131 0.133 0.12 0.1 0.075 0.05 0.03 0.01 0.003

D7S516 0.369 0.368 0.363 0.317 0.260 0.198 0.140 0.088 0.048 0.019

D7S484 -00 0.42 0.50 0.45 0.36 0.24 0.12 0 -0.08 -0.09

D7S510 -00 -1.52 -0.94 -0.6 -0.39 -0.24 -0.14 -0.08 -0.04 -0.01

D7S519 -00 0.24 0.48 0.57 0.57 0.53 0.44 0.34 0.22 0.11

D7S502 -00 -1.8 -1.0 -0.7 -0.4 -0.3 -0.2 -0.1 -0.07 -0.03

D7S669 -00 -1.4 -0.91 -0.62 -0.42 -0.28 -0.18 -0.11 -0.05 -0.02

D7S630 -00 -2.27 -1.46 -0.97 -0.64 -0.4 -0.23 -0.12 -0.05 -0.01

D7S657 -00 -1.97 -1.26 -0.85 -0.58 -0.39 -0.25 -0.14 -0.07 -0.02

D7S486 0.27 0.25 0.22 0.18 0.14 0.10 0.06 0.03 0.01 0

D7S530 -00 -1.29 -0.76 -0.49 -0.31 -0.19 -0.11 -0.06 -0.03 -0.01

D7S640 -00 -2.27 -1.48 -1.04 -0.75 -0.54 -0.38 -0.26 -0.15 -0.06
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D7S684 -00 -2.9 -1.6 -1.0 -0.6 -0.36 -0.19 -0.08 -0.03 0

D7S661 -00 -3.5 -2.0 -1.3 -0.8 -0.5 -0.27 -0.12 -0.04 -0.002

D7S636 -00 -1.14 -0.69 -0.49 -0.37 -0.29 -0.23 -0.16 -0.10 -0.05

D7S798 -00 -3.01 -1.84 -1.20 -0.78 -0.5 -0.3 -0.16 -0.07 -0.02

D7S2465 -00 -0.33 0.02 0.12 0.12 0.08 0.03 -0.02 -0.03 -0.02

Table 30. Pedigree 2: Chromosome 8 markers
Marker Theta=

0
0.05 0.1 0.15 0.2 0.25 0J00 0.35 0.4 0.45

D8S264 -00 -1.19 -0.54 -0.23 -0.07 0.01 0.04 0.03 0.02 0.01

D8S277 -00 -3.51 -2.28 -1.54 -1.04 -0.69 -0.43 -0.24 -0.11 -0.03

D8S550 -00 -1.09 -0.53 -0.24 -0.08 0 0.05 0.06 0.05 0.03

D8S549 -00 -0.75 -0.46 -0.31 -0.20 -0.13 -0.08 -0.04 -0.02 -0.01

D8S258 -00 -1.12 -0.73 -0.5 -0.34 -0.22 -0.14 -0.08 -0.04 -0.01

D8S1771 -2.0 -0.35 -0.14 -0.05 0.01 0.04 0.05 0.05 0.04 0.02

D8S505 -0.23 -0.15 -0.10 -0.06 -0.04 -0.02 -0.01 0 0 0

D8S285 -00 -1.57 -0.98 -0.63 -0.41 -0.25 -0.15 -0.08 -0.03 -0.01

D8S260 -00 -1.97 -1.28 -0.87 -0.59 -0.38 -0.24 -0.13 -0.06 -0.02
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D8S270 -00 -2.24 -1.25 -0.74 -0.42 -0.22 -0.10 -0.02 0.01 0.02

D8S1784 -0.68 -0.17 -0.02 0.03 0.04 0.04 0.03 0.02 0.01 0

D8S514 0.09 0.12 0.12 0.11 0.09 0.07 0.05 0.04 0.02 0.01

D8S284 -1.38 -1.19 -0.93 -0.73 -0.56 -0.42 -0.31 -0.21 -0.13 -0.06

D8S272 -00 -2.19 -1.52 -1.10 -0.81 -0.59 -0.42 -0.28 -0.17 -0.07

Table 31. Pedigree 2: Chromosome 9 markers
Marker Theta

=0
0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D9S288 -CO -2.31 -1.35 -0.82 -0.48 -0.25 -0.1 -0.02 0.03 0.03

D9S285 0.33 0.3 0.27 0.24 0.21 0.17 0.14 0.1 0.06 0.03

D9S157 -00 -2.14 -1.21 -0.76 -0.50 -0.34 -0.24 -0.16 -0.1 -0.04

D9S171 -0.25 -0.17 -0.12 -0.08 -0.05 -0.04 -0.02 -0.01 -0.01 0

D9S161 -00 -1.96 -1.11 -0.66 -0.37 -0.18 -0.06 0.01 0.04 0.04

D9S1817 -00 -0.65 -0.27 -0.09 0 0.05 0.07 0.06 0.05 0.03

D9S273 0.06 0.07 0.07 0.06 0.05 0.04 0.02 0.01 0.01 0

D9S175 -00 -1.26 -0.73 -0.45 -0.28 -0.16 -0.09 -0.04 -0.01 0

D9S167 -00 -2.06 -1.29 -0.85 -0.57 -0.37 -0.23 -0.13 -0.06 -0.02

D9S283 -00 -0.84 -0.47 -0.26 -0.14 -0.06 -0.01 0.01 0.02 0.02
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D9S287 -00 -2.08 -1.27 -0.82 -0.54 -0.34 -0.21 -0.11 -0.05 -0.02

D9S1690 -00 -1.0 -0.48 -0.24 -0.12 -0.06 -0.05 -0.06 -0.07 -0.05

D9S1677 -00 -0.73 -0.46 -0.31 -0.21 -0.14 -0.09 -0.06 -0.03 -0.01

D9S1776 -00 0.38 0.5 0.51 0.46 0.39 0.29 0.18 0.07 0

D9S1682 -00 -0.4 0.07 0.26 0.32 0.3 0.23 0.13 0.02 -0.04

D9S290 0.047 0.16 0.2 0.18 0.15 0.11 0.07 0.04 0.02 0

D9S164 -00 -1.61 -0.85 -0.48 -0.26 -0.13 -0.06 -0.02 0 0.01

D9S1826 -00 -2.02 -1.06 -0.55 -0.25 -0.06 0.04 0.08 0.08 0.05

D9S158 -00 -2.08 -1.21 -0.76 -0.49 -0.32 -0.21 -0.13 -0.07 -0.03

Table 32. Pedigree 2: Chromosome 10 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0300 035 0.4 0.45

D10S249 -00 -1.13 -0.78 -0.6 -0.48 -0.38 -0.29 -0.21 -0.13 -0.06

D10S591 1.51 1.30 1.08 0.87 0.66 0.47 0.29 0.14 0.04 -0.01

D10S189 0.35 0.37 0.39 0.38 0.35 0.3 0.22 0.13 0.05 -0.01

D10S547 0.10 0.11 0.10 0.09 0.07 0.05 0.03 0.01 0.01 0

D10S1653 -00 -0.1 0.3 0.45 0.48 0.44 0.37 0.28 0.19 0.09

D10S548 -00 -2.17 -1.37 -0.94 -0.67 -0.48 -0.33 -0.21 -0.12 -0.05
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D10S197 -00 -0.45 -0.1 0.02 0.04 0.03 0 -0.02 -0.04 -0.03

D10S213 -00 -1.2 -0.6 -0.34 -0.22 -0.16 -0.14 -0.11 -0.09 -0.05

D10S208 -00 -1.06 -0.47 -0.18 -0.01 0.08 0.11 0.12 0.09 0.05

D10S1780
-00 -1.22 -0.51 -0.17 -0.01 0.09 0.12 0.12 0.09 0.05

D10S578
-00 -0.1 0.04 0.06 0.04 0.01 -0.02 -0.04 -0.04 -0.03

D10S196 -00 -3.65 -2.23 -1.46 -0.96 -0.61 -0.36 -0.19 -0.08 -0.01

D10S1790
-00 0.59 0.9 0.94 0.87 0.73 0.55 0.36 0.19 0.06

D10S1652 -1.56 -0.56 -0.3 -0.2 -0.13 -0.09 -0.06 -0.03 -0.02 -0.01

D10S581 -00 -1.92 -0.95 -0.48 -0.22 -0.07 -0.01 0.01 0.01 -0.01

D10S537 -00 -2.69 -1.63 -1.08 -0.72 -0.48 -0.31 -0.19 -0.11 -0.05

D10S580 -00 -1.03 -0.56 -0.33 -0.19 -0.11 -0.06 -0.03 -0.01 0

D10S1686 -00 -1.02 -0.58 -0.34 -0.19 -0.1 -0.05 -0.02 -0.01 0

D10S185 -00 -2.17 -1.29 -0.82 -0.53 -0.33 -0.19 -0.1 -0.04 -0.01

D10S1709 -00 -1.24 -0.54 -0.22 -0.05 0.04 0.07 0.08 0.07 0.04

D10S192 -00 -0.79 -0.47 -0.31 -0.2 -0.13 -0.07 -0.03 0 0.01

D10S597 -00 -1.26 -0.87 -0.61 -0.42 -0.28 -0.17 -0.10 -0.05 -0.01

D10S1693 -00 -0.91 -0.58 -0.42 -0.32 -0.25 -0.20 -0.15 -0.1 -0.05
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D10S587 -00 -0.81 -0.47 -0.27 -0.14 -0.05 0 0.03 0.04 0.03

D10S1656 -00 -1.64 -0.9 -0.54 -0.33 -0.21 -0.14 -0.09 -0.05 -0.03

D10S217 -00 -2.78 -1.60 -0.97 -0.58 -0.32 -0.15 -0.04 0.02 0.03

D10S1651 -00 -1.47 -0.81 -0.51 -0.35 -0.26 -0.19 -0.14 -0.09 -0.04

D10S212 -00 -1.38 -0.87 -0.58 -0.4 -0.27 -0.18 -0.11 -0.06 -0.03

Table 33. Pedigree 2: Chromosome 11 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D11S4046 0.40 0.39 0.36 0.32 0.27 0.21 0.16 0.11 0.06 0.02

D11S1338 -00 0.22 0.44 0.51 0.51 0.47 0.41 0.32 0.21 0.11

D11S902 -00 -1.63 -0.78 -0.38 -0.16 -0.04 0.02 0.04 0.04 0.02

D11S904 -00 -1.06 -0.67 -0.44 -0.29 -0.18 -0.1 -0.05 -0.02 0

D11S935 -00 -2.28 -1.43 -0.94 -0.6 -0.37 -0.21 -0.1 -0.04 -0.01

D11S905 -00 -1.95 -1.03 -0.54 -0.24 -0.06 0.04 0.08 0.08 0.05

D11S4191 -00 -2.62 -1.75 -1.20 -0.82 -0.53 -0.32 -0.17 -0.07 -0.01

D11S987 -00 -0.22 0.08 0.19 0.22 0.2 0.16 0.1 0.04 0.01

D11S1314 -0.2 -0.08 -0.01 0.04 0.07 0.09 0.09 0.08 0.06 0.03
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D11S901 -00 -2.70 -1.72 -1.16 -0.78 -0.51 -0.32 -0.18 -0.08 -0.02

D11S937 -00 -2.09 -1.22 -0.76 -0.47 -0.28 -0.16 -0.07 -0.02 0

D11S898 0.5 0.5 0.4 0.35 0.3 0.22 0.16 0.1 0.06 0.02

D11S908 -00 -0.15 0.31 0.49 0.54 0.53 0.46 0.36 0.23 0.1

D11S925 -00 -1.53 -0.97 -0.67 -0.49 -0.37 -0.28 -0.2 -0.13 -0.07

D11S4151 -00 -2.65 -1.59 -1.03 -0.68 -0.45 -0.29 -0.18 -0.10 -0.04

D11S1320 -00 -2.29 -1.54 -1.07 -0.73 -0.48 -0.30 -0.16 -0.07 -0.02

D11S968 -00 -0.74 -0.27 -0.05 0.07 0.13 0.14 0.13 0.09 0.05

Table 34. Pedigree 2: Chromosome 12 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D12S352 -00 -2.74 -1.66 -1.0 -0.71 -0.45 -0.27 -0.15 -0.07 -0.02

D12S99 -00 - 2.2 -1.17 -0.6 -0.3 -0.12 -0.02 0.03 0.036 0.02

D12S336 -00 -2.37 -1.38 -0.85 -0.52 -0.31 -0.17 -0.08 -0.03 0

D12S364 -00 -1.67 -0.97 -0.63 -0.44 -0.33 -0.25 -0.18 -0.12 -0.06

D12S310 -0.32 -0.21 -0.14 -0.09 -0.06 -0.04 -0.02 -0.01 0 0.01

D12S1617 -00 0.26 0.2 0.15 0.12 0.1 0.1 0.08 0.02 0.01
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D12S345 -00 1.36 1.36 1.23 1.05 0.85 0.63 0.41 0.21 0.05

D12S85 -00 0.24 0.47 0.53 0.51 0.44 0.34 0.21 0.09 0

D12S368 -00 -0.92 -0.56 -0.37 -0.26 -0.18 -0.13 -0.09 -0.05 -0.03

D12S83 -00 -1.65 -1.04 -0.71 -0.50 -0.35 -0.24 -0.16 -0.09 -0.04

D12S326 -0.12 0.03 0.09 0.11 0.11 0.10 0.08 0.06 0.04 0.02

D12S351 -00 -0.36 -0.15 -0.06 -0.03 -0.02 -0.02 -0.03 -0.03 -0.02

D12S346 -00 -1.79 -0.93 -0.51 -0.26 -0.12 -0.05 -0.01 0 0

D12S78 -00 -1.5 -0.84 -0.5 -0.29 -0.16 -0.08 -0.02 0 0.01

D12S79 -00 -0.28 0.14 0.30 0.35 0.34 0.29 0.21 0.13 0.05

DI2S86 -00 -1.7 -1.0 -0.6 -0.4 -0.3 -0.2 -0.15 -0.1 -0.05

D12S324 0.51 0.39 0.28 0.18 0.10 0.04 -0.01 -0.03 -0.03 -0.02

D12S1659 0.446 0.4 0.35 0.28 0.022 0.165 0.112 0.07 0.03 0.01

D12S1723 0.14 0.25 0.28 0.27 0.24 0.19 0.14 0.08 0.04 0.01
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Table 35. Pedigree 2: Chromosome 13 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D13S175 -0.19 -0.03 0.08 0.14 0.17 0.17 0.16 0.13 0.09 0.05

D13S217 -00 -1.29 -0.71 -0.39 -0.18 -0.04 0.04 0.08 0.09 0.06

D13S171 -00 -1.25 -0.75 -0.46 -0.28 -0.16 -0.08 -0.03 -0.01 0

D13S218 -00 0.47 0.63 0.63 0.56 0.45 0.32 0.20 0.10 0.03

D13S263 -00 -1.49 -0.8 -0.48 -0.3 -0.2 -0.16 -0.12 -0.09 -0.05

D13S153 -00 0.09 0.26 0.30 0.28 0.24 0.19 0.13 0.08 0.03

D13S156 -00 -1.8 -1.0 -0.66 -0.4 -0.2 -0.12 -0.05 -0.01 0.01

D13S170 -00 -2.63 -1.56 -0.99 -0.64 -0.4 -0.24 -0.13 -0.06 -0.01

D13S265 -00 -0.9 -0.52 -0.32 -0.2 -0.13 -0.08 -0.05 -0.03 -0.01

D13S159 -00 -3.49 -2.39 -1.69 -1.17 -0.79 -0.51 -0.29 -0.14 -0.05

D13S158 -00 -1.23 -0.80 -0.56 -0.39 -0.28 -0.19 -0.12 -0.07 -0.03

D13S173 -00 -3.35 -2.11 -1.44 -0.99 -0.68 -0.45 -0.28 -0.15 -0.06

D13S1265 -00 -1.19 -0.74 -0.48 -0.31 -0.19 -0.11 -0.06 -0.02 0

D13S285 -00 -1.69 -0.84 -0.41 -0.15 -0.01 0.05 0.06 0.04 0.01
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Table 36. Pedigree 2: Chromosome 14 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 035 0.4 0.45

D14S261 -00 -0.59 -0.13 0.08 0.19 0.23 0.23 0.20 0.15 0.08

D14S283 -00 -2.98 -1.83 -1.2 -0.79 -0.51 -0.31 -0.17 -0.08 -0.02

D14S275 -00 -0.53 -0.19 -0.05 0.01 0.03 0.02 0.01 0 0

D14S70 -00 -1.24 -0.69 -0.41 -0.23 -0.13 -0.06 -0.02 0 0.01

D14S288 -00 -0.96 -0.52 -0.27 -0.11 -0.01 0.04 0.07 0.07 0.04

D14S276 -00 -2.58 -1.81 -1.31 -0.94 -0.66 -0.43 -0.26 -0.13 -0.05

D14S63 -00 -3.31 -2.05 -1.35 -0.89 -0.57 -0.34 -0.18 -0.07 -0.02

D14S258 -0.61 -0.36 -0.24 -0.16 -0.11 -0.08 -0.05 -0.04 -0.02 -0.01

D14S74 -00 -2.01 -1.28 -0.85 -0.57 -0.37 -0.23 -0.13 -0.06 -0.02

D14S68 -00 -1.36 -0.78 -0.49 -0.31 -0.21 -0.14 -0.10 -0.07 -0.04

D14S280 -00 -1.26 -0.61 -0.29 -0.11 -0.01 0.03 0.05 0.04 0.02

D14S65 -00 -3.47 -2.17 -1.44 -0.95 -0.62 -0.38 -0.21 -0.10 -0.03

D14S985 -00 -1.96 -1.29 -0.91 -0.65 -0.46 -0.32 -0.21 -0.12

D14S292 -00 -1.64 -1.03 -0.68 -0.46 -0.30 -0.19 -0.11 -0.05 -0.01
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Table 37. Pedigree 2: Chromosome 15 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D15S128 -00 -1.58 -1.07 -0.75 -0.53 -0.37 -0.25 -0.15 -0.08 -0.03

D15S1002 -00 -1.54 -0.73 -0.32 -0.08 0.05 0.12 0.13 0.11 0.06

D15S165 0.209 0.160 0.126 0.096 0.072 0.053 0.038 0.025 0.015 0.007

D15S1007 -00 -2.9 -1.69 -1.02 -0.6 -0.32 -0.14 -0.03 0.03 0.03

D15S1012 -00 -2.74 -1.61 -1.0 -0.62 -0.36 -0.18 -0.07 -0.01 0.01

D15S994 0.556 0.49 0.42 0.36 0.29 0.23 0.17 0.11 0.07 0.03

D15S978 -00 -2.02 -1.17 -0.72 -0.44 -0.25 -0.13 -0.05 -0.01 0.01

D15S117 -00 -0.68 -0.35 -0.18 -0.08 -0.02 0.01 0.02 0.02 0.01

D15S153 -00 -0.78 -0.53 -0.40 -0.31 -0.23 -0.17 -0.12 -0.07 -0.03

D15S131 -00 0.11 0.28 0.32 0.30 0.25 0.20 0.15 0.09 0.04

D15S205 -00 -1.82 -1.02 -0.62 -0.37 -0.22 -0.12 -0.05 -0.01 0.01

D15S127 -00 -1.7 -0.9 -0.57 -0.32 -0.16 -0.06 -0.01 0.02 0.02

D15S130 -00 -2.35 -1.4 -0.9 -0.7 -0.5 -0.35 -0.24 -0.15 -0.07

D15S120 -00 -0.92 -0.28 0 0.13 0.18 0.18 0.15 0.10 0.05
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Table 38. Pedigree 2: Chromosome 16 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D16S423 -00 -3.87 -2.50 -1.70 -1.17 -0.78 -0.49 -0.28 -0.13 -0.04

D16S404 -00 -2.67 -1.5 -0.9 -0.6 -0.4 -0.2 -0.12 -0.06 -0.02

D16S3075 -00 -2.40 -1.50 -1.0 -0.67 -0.44 -0.27 -0.15 -0.07 -0.02

D16S3103 -0.25 -0.14 -0.08 -0.04 -0.02 -0.01 0 0 0 0

D16S3046 -00 -1.26 -0.83 -0.57 -0.38 -0.26 -0.16 -0.10 -0.05 -0.02

D16S3068 -00 -1.66 -0.98 -0.67 -0.51 -0.40 -0.33 -0.25 -0.17 -0.08

D16S3136 -00 -0.68 -0.33 -0.15 -0.05 0 0.03 0.04 0.03 0.02

D16S415 -00 -1.36 -0.76 -0.44 -0.25 -0.13 -0.06 -0.03 -0.01 -0.01

D16S503 -1.02 -0.68 -0.45 -0.30 -0.19 -0.11 -0.05 -0.02 0 0.01

D16S515 -00 -1.53 -0.87 -0.50 -0.26 -0.11 -0.02 0.03 0.05 0.04

D16S516 -1.7 -0.7 -0.4 -0.25 -0.15 -0.09 -0.06 -0.04 -0.02 -0.01

D16S3091 -0.75 -0.51 -0.36 -0.26 -0.19 -0.14 -0.09 -0.06 -0.04 -0.02

D16S520 -00 -2.7 -1.4 -0.8 -0.4 -0.2 -0.1 -0.02 -0.02 0.02
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Table 39. Pedigree 2: Chromosome 17 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D17S849 -1.44 -0.72 -0.43 -0.26 -0.15 -0.07 -0.02 0.01 0.02 0.01

D17S831 -00 -0.99 -0.45 -0.15 0.02 0.11 0.15 0.14 0.11 0.06

D17S938 -00 -1.56 -1.13 -0.81 -0.56 -0.37 -0.23 -0.12 -0.06 -0.01

D17S1852 0.54 0.52 0.47 0.42 0.37 0.3 0.24 0.17 0.11 0.05

D17S799 -00 -1.20 -0.59 -0.28 -0.11 -0.01 0.03 0.04 0.03 0.02

D17S921 1.36 1.26 1.14 0.99 0.82 0.65 0.48 0.32 0.18 0.07

D17S1857 -00 -1.36 -0.77 -0.46 -0.26 -0.13 -0.05 -0.01 0.02 0.02

D17S798 -00 -2.53 -1.65 -1.14 -0.78 -0.51 -0.32 -0.18 -0.08 -0.02

D17S1868 -00 0.47 0.66 0.68 0.63 0.53 0.4 0.26 0.13 0.03

D17S787 -00 0.38 0.63 0.7 0.69 0.63 0.53 0.41 0.27 0.13

D17S944 -0.11 -0.11 -0.11 -0.10 -0.08 -0.07 -0.06 -0.04 -0.03 -0.01

D17S949 -00 0.83 0.87 0.80 0.69 0.56 0.43 0.31 0.19 0.08

D17S785 -00 0.1 0.33 0.39 0.38 0.31 0.22 0.13 0.04 -0.01

D17S784 -0.47 -0.35 -0.23 -0.14 -0.08 -0.04 -0.01 0 0 0.01

D17S928 -00 -0.11 0.13 0.21 0.21 0.18 0.13 0.08 0.05 0.02
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Table 40. Pedigree 2: Chromosome 18 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D18S59 -00 -2.95 -1.94 -1.35 -0.94 -0.64 -0.41 -0.25 -0.13 -0.04

D18S63 -CO -1.43 -0.85 -0.55 -0.36 -0.23 -0.15 -0.09 -0.04 -0.02

D18S452 -00 -1.3 -0.76 -0.47 -0.28 -0.15 -0.07 -0.02 -0.01 0.01

D18S464 -00 -2.56 -1.63 -1.10 -0.74 -0.48 -0.30 -0.16 -0.08 -0.03

D18S53 -00 -2.16 -1.28 -0.79 -0.48 -0.28 -0.14 -0.05 0 0.01

D18S478 -00 -1.25 -0.7 -0.47 -0.3 -0.2 -0.13 -0.07 -0.04 -0.01

D18S1102 -00 -1.4 -0.69 -0.36 -0.18 -0.07 -0.02 0 0.01 0.01

D18S474 -00 -0.69 -0.37 -0.2 -0.1 -0.04 0 0.02 0.02 0.01

D18S64 -1.99 -1.19 -0.71 -0.44 -0.28 -0.17 -0.1 -0.05 -0.02 -0.01

D18S68 -2.46 -0.32 -0.07 0.03 0.08 0.09 0.07 0.05 0.03 0.01

D18S61 -00 -0.81 -0.27 -0.03 0.06 0.09 0.07 0.03 0 -0.02

D18S1161 -00 -0.54 -0.16 0.05 0.16 0.21 0.22 0.19 0.13 0.07

D18S462 -00 -0.97 -0.63 -0.44 -0.32 -0.23 -0.16 -0.11 -0.07 -0.03

D18S70 -0.52 -0.23 -0.07 0.02 0.07 0.08 0.08 0.06 0.04 0.02
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Table 41. Pedigree 2: Chromosome 19 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D19S209 -00 -2.30 -1.29 -0.71 -0.39 -0.19 -0.07 -0.01 0.02 0.02

D19S216 0.44 0.35 0.27 0.2 0.14 0.10 0.06 0.03 0.01 0

D19S884 -00 -2.37 -1.43 -0.93 -0.6 -0.38 -0.24 -0.13 -0.06 -0.02

D19S221 -00 0.02 0.19 0.23 0.22 0.18 0.14 0.10 0.06 0.03

D19S226 -00 -0.91 -0.45 -0.24 -0.12 -0.05 -0.02 0 0.01 0.01

D19S414 -00 -3.5 -2.17 -1.44 -0.9 -0.6 -0.39 -0.22 -0.01 -0.03

D19S220 -00 -4 -2.4 -1.6 -1.0 -0.66 -0.39 -0.2 -0.08 -0.01

D19S420 -00 -2.36 -1.45 -0.95 -0.62 -0.38 -0.22 -0.11 -0.04 -0.01

D19S902 -00 -2.33 -1.44 -0.96 -0.65 -0.44 -0.28 -0.16 -0.08 -0.03

D19S571 -00 -1.27 -0.87 -0.63 -0.46 -0.34 -0.24 -0.16 -0.10 -0.05

D19S418 1.43 1.40 1.32 1.21 1.08 0.93 0.76 0.58 0.38 0.18

D19S210 -0.8 -0.003 0.226 0.313 0.331 0.308 0.26 0.2 0.129 0.06
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Table 42. Pedigree 2: Chromosome 20 markers

Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D20S117 -00 -1.33 -0.4 -0.01 0.188 0.268 0.273 0.23 0.159 0.08

D20S889 -00 -2.97 -1.74 -1.10 -0.71 -0.44 -0.27 -0.15 -0.06 -0.02

D20S115 -00 -2.07 -1.24 -0.79 -0.50 -0.31 -0.18 -0.09 -0.03 0

D20S186 -00 -3.11 -1.98 -1.37 -0.97 -0.68 -0.46 -0.29 -0.16 -0.06

D20S112 -00 -0.94 -0.59 -0.39 -0.26 -0.17 -0.11 -0.06 -0.03 -0.01

D20S195 -00 -2.82 -1.68 -1.07 -0.68 -0.42 -0.23 -0.11 -0.04 0

D20S107 0.34 0.30 0.27 0.23 0.19 0.15 0.11 0.08 0.05 0.02

D20S119 -00 -2.12 -1.22 -0.69 -0.37 -0.17 -0.04 0.02 0.04 0.03

D20S178 -00 -1.73 -0.92 -0.5 -0.25 -0.09 0 0.05 0.07 0.05

D20S196 -00 0.04 0.37 0.44 0.42 0.35 0.27 0.18 0.10 0.04

D20S100 0.89 0.77 0.65 0.53 0.42 0.32 0.22 0.14 0.07 0.03

D20S173 -00 -1.96 -1.18 -0.76 -0.49 -0.31 -0.18 -0.10 -0.04 -0.01

D20S171 -00 -1.32 -0.62 -0.28 -0.10 0.01 0.04 0.05 0.04 0.02
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Table 43. Pedigree 2: Chromosome 21 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D21S1256 -00 -3.58 -2.22 -1.49 -1.01 -0.69 -0.45 -0.28 -0.15 -0.06

D21S1914 -00 -2.06 -1.3 -0.9 -0.65 -0.48 -0.35 -0.25 -0.15 -0.07

D21S263 -0.14 0.11 0.22 0.25 0.23 0.19 0.12 0.05 -0.01 -0.03

D21S1252 -00 -2.46 -1.72 -1.25 -0.91 -0.66 -0.46 -0.30 -0.18 -0.08

D21S266 -00 0.27 0.43 0.42 0.34 0.21 0.06 -0.08 -0.15 -0.13

Table 44. Pedigree 2: Chromosome 22 markers
Marker Theta=0 0.05 0.1 0.15 0.2 0.25 0.300 0.35 0.4 0.45

D22S420 -00 -1.73 -0.87 -0.46 -0.25 -0.14 -0.10 -0.08 -0.07 -0.04

D22S539 -00 -1.95 -1.25 -0.85 -0.58 -0.38 -0.23 -0.12 -0.05 -0.01

D22S315 -00 -2.67 -1.55 -0.95 -0.57 -0.32 -0.16 -0.06 0 0.02

D22S280 -00 -2.8 -1.86 -1.28 -0.87 -0.56 -0.34 -0.18 -0.07 -0.02

D22S283 -00 -1.25 -0.87 -0.65 -0.5 -0.39 -0.29 -0.21 -0.13 -0.06

D22S423 -00 -3.14 -1.93 -1.26 -0.81 -0.51 -0.29 -0.14 -0.05 0

D22S274 -0.69 0.096 0.229 0.254 0.233 0.19 0.137 0.082 0.036 0.006
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The End
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