
Chaotic Hamiltonian Ratchets with Cold 
Atoms

by

N icolas H utchings
September 2003

m \

UCL
A thesis submitted to 

THE UNIVERSITY OF LONDON 

for the degree of 

DOCTOR OF PHILOSOPHY



UMI Number: U602587

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U602587
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Abstract

Currently there is a great amount of scientific research directed at ratchet devices 

and mechanisms. Initially stimulated by a need to understand biological systems, the 

field has widened to encompass mesoscopic and atomic physics as well as quantum 

effects. The great majority of this effort has been directed at systems which include 

noise (Brownian ratchets). Comparatively little work has been undertaken on deter­

ministic ratchets (i.e. with no noise but possibly including dissipation). Prior to our 

work there had only been two studies of Hamiltonian ratchets (no noise or dissipation) 

which concluded tha t only mixed-phase space mechanisms were feasible. However, 

the work in this thesis proposes a new fully chaotic, noise-free, Hamiltonian ratchet. 

This ratchet system is studied in both the quantum and classical regimes and is found 

to produce, reversible, non-zero currents for well closen parameter values.

The ratchet mechanism proposed in this thesis is has now been implemented 

experimentally with ultra-cold cesium atoms in a pulsed optical lattice. Optimum 

system parameters are suggested to produce the best experimental signature for the 

ratchet. The work presented here has inspired farther experimental work for the 

specific Hamiltonian of the system.
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Chapter 1

Introduction

The last few years have seen enormous progress in the areas of cold atom physics 

and atom optics. Nobel prizes were awarded in 1997 and 2001 for laser-cooling of 

atoms and the experimental implementation of Bose-Einstein condensation.

There is much current interest in atom optics techniques to coherently manipulate 

the transport of atoms. Inspired by recent experimental developments using lasers 

and optical lattices, in this thesis a new type of ratchet is presented: in the past 

ratchets were not associated with coherent transport since most research was in noisy 

and dissipative ratchets. The level of control now possible over trapped, ultra-cold, 

atoms makes it possible for these atoms to generate ratchet transport when the correct 

symmetries are broken. Here, a system which fulfils these symmetry requirements, 

as well as having a new, generic, ratchet mechanism is presented and analysed (both 

classically and quantum mechanically). A full parameter range is explored for both 

the classical and quantum system with optimum ratchet parameters suggested for 

both regimes. This work is believed to  be of importance as the system proposed is 

fully chaotic, noise free, quantum enhanced and experimentally realisable. As such, 

the model, or models of the same type, should provide ground for much future research 

and offer potential for use in optical devices. It should also be noted tha t previously 

noise free Hamiltonian ratchets have only been shown to exist in the regime of mixed 

phase space. A very brief overview of the contents of each chapter is now given.

12



Chapter 1: Introduction 13

Chapter 2: Quantum Chaos and Dynam ical Localisation

An introduction to chaos and quantum chaos is given, with the important, rele­

vant, discoveries in the field explained. An introduction to dynamical localisation in 

terms of the kicked rotor and a brief explanation of the optical lattice, with related 

important experimental work, forms the mainstay of the chapter.

Chapter 3: Ratchets

This chapter gives a summary of the important work to date in the field of ratchet 

systems. Motivations are given for the study of ratchet systems as well as definitions 

for each type of ratchet. The key thought experiment of the Smoluchowski-Feynman 

ratchet and the recent work on deterministic ratchets are explored in more detail.

Chapter 4: Classical Theory

The ratchet proposed in this thesis is presented classically. The system Hamilto­

nian is given and a discrete mapping derived. System symmetries, phase space plots 

and the ratchet mechanism (in terms of the diffusion constant) are all explained.

Chapter 5: Classical Calculations

In this chapter the system is modelled classically. The evolution of a Gaussian 

distribution of trajectories is explored for a wide parameter space. Important trends 

seen in the system for varying parameter values are explained physically and with 

reference to  the diffusion constant.

Chapter 6: Quantum Theory

The system is presented in the quantum regime with the system Hamiltonian 

derived from and atom-optics stand point. The time evolution operator, in matrix 

form, in a plain wave basis, is derived.
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Chapter 7: Quantum Results

The system’s quantum parameter space is explored in detail. Special attention 

is given to the localisation length for varying parameter values. Results for quan­

tum ratchet current are presented with a modified Shepelyanski relationship for the 

ratchet. Also, optimal experimental parameters are suggested.

Chapter 8: Conclusions

A summary of all the results presented in the thesis is given. The importance of the 

work is again highlighted with suggestions for future work and possible applications.



Chapter 2 

Quantum Chaos and Dynam ical 

Localisation

2.1 Chaos and N on-Linear System s

The study of chaotic dynamics can be traced back to the turn of the 20th century 

and to the work of Henri Poincare, the French mathematician. His interest was in 

planetary orbits around a star, where all bodies experience gravitational forces acting 

on each other. He considered sets of starting conditions and was able to show that 

extremely complex orbits are possible. There was more important work on chaos in 

dynamical systems in the early and middle 20th century, including the KAM theory 

of Kolmogorov, Arnold and Moser, [1]. However, it wasn’t until relatively recently 

that much of this work has been brought over to the analysis of real physical systems. 

Much of the reason behind this was the invention of the computer which has allowed 

large scale simulations of these complex systems to be possible, for example, the great 

improvement in our ability to predict the weather. W ith extended use of computers, 

many of the complexities in chaotic systems could be shown to be real effects rather 

than being blamed on experimental errors and short-fallings. Chaotic motion has 

been seen in many different and surprisingly simple systems, even the dripping of 

water from a tap can be argued to exhibit chaotic motion at a sufficiently large inflow 

rate.

15
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Deterministic chaotic motion is understood in terms of unstable orbits charac­

terised by exponential sensitivity to changes in initial conditions, i.e. a small change 

in initial conditions can lead to dramatic changes in system behaviour. Despite the 

fact that, over short time intervals, the motion of these systems seems smooth and 

flowing, typically they will never reach a reasonable fixed state with a recognisable 

pattern, as over long times unpredictable jumps are made in their position, momenta 

and state. It is because of the high degree of the complexity of the dynamics that, 

theoretically, chaotic systems are understood in terms of statistical concepts such as 

system entropies and diffusion rates. Some of the phenomena seen in chaotic systems 

are quite universal and have dependencies on just a limited number of the parameters 

of the system.

2.2 Quantum  Chaos

Over the last twenty five years or so, the study of the quantum dynamics of systems 

with chaotic classical behaviour has been one of considerable interest and activity in 

the scientific community. It is the study of these systems that has become generally 

known as quantum chaos. Chaotic classical dynamics require an infinite amount of 

detail in phase-space, which is excluded by the Heisenberg Uncertainty principle of 

quantum mechanics. However, these systems often have signatures of the classical 

chaos (such as quantum scars or Wigner-Dyson spectral statistics) in the quantum 

dynamics. It is this, which has spurred much of the active research. Conversely, 

quantum effects such as tunnelling, which is allowed in the quantum regime but 

not in the classical regime, provide an interesting range of additional phenomena at 

moderate values of h. In fact, this difficulty in explaining the absence of chaos in the 

quantum dynamics, even in the small h limit, made the field of quantum chaos, at first, 

somewhat controversial. The initial apparent contradiction with the correspondence 

principle, which requires a transition from quantum to classical as h is reduced to 

zero, caused much debate and interest. The use of classical mechanics to describe 

physical systems could be viewed as merely an approximation to  the actual and exact 

description given by quantum theory. The time and length scales of a given system
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relative to the quantum wavelength axe a good indication to how good the classical 

description will be. If the quantum wavelengths are small but non-zero, then the 

system is said to be in the semi-classical regime, and quantum effects start to become 

important.

This thesis is concerned with time dependent systems, specifically in the case 

where the Hamiltonian varies periodically with time. Time dependent chaotic sys­

tems where the quantum dependancy becomes important (for example, varying elec­

tromagnetic field on Rydberg atoms and Molecules) have been studied by Bayfield 

and Koch, Casati et al, Jensen et al, Meerson et al, [3, 36] and Bliimel et al, [4]. Work 

has been carried out on an experimental configuration of Josephson junctions, [104]. 

Also, important work on the kicked rotor model and the discovery of dynamical locali­

sation, which forms one of the focuses of this report, was done by Casati and Fishman 

et al, [5, 36]. Since their work tha t particular field has bloomed with experimental 

realisations of many theoretical predictions, including Wannier-Stark ladders, dynam­

ical Bloch band suppression and the quantum chaos effects of dynamical localisation 

and chaos assisted tunnelling, [11]-[26].

2.3 D ynam ical Localisation

The quantum effect of dynamical localisation in systems where the classical dy­

namics are chaotic has been found to be a very robust phenomenon. It can be found in 

a wide range of systems and is insensitive to the small details of the particular systems 

in which it is found. The effect has been observed in experiments on the ionisation 

of Rydberg atoms where the relative probability of atom ionisation by a microwave 

field is suppressed relative to  the classical predictions, [5, 4]. The effect is also seen in 

dissociation of molecules by a strong monochromatic field and kicked optical systems 

recreating the delta kicked and driven rotor. In all cases classical chaotic diffusion is 

eventually stopped by quantum wave effects. Dynamical localisation manifests itself 

in this quantum suppression of classical diffusion and the localisation of quasi-energy 

eigenfunctions and is best explained in terms of a destructive interference effect. In 

1982, a close link between Dynamical localisation in the kicked rotor model and Am
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derson localisation in disordered solids was made by Fishman et al, [5]. It is this 

paradigm system which is discussed next to demonstrate this effect.

2.4 The D elta  Kicked R otor

2.4.1 Classical Analysis

Many systems have been thoroughly investigated by many groups around the 

world in the field of non-linear dynamics, however the most studied of all of these 

systems is probably the Delta Kicked Rotor. This system was investigated by Casati 

et al, who first showed the effect of dynamic localisation in a quantum chaotic system.

The kicked rotor is considered as a paradigm system in the field of quantum 

chaos. It consists of a weightless rotor subject to a periodic train of delta kicks, 

£ n($(£/T — n)). The Hamiltonian for the system can be written as follows;

H(L,  0 ; t) = £  + k  cos(0) £ (<5(t/T  -  n)), (2.1)

where ©, is the angle of the rotor, L, the angular momentum, k, the kick strength, t, 

time and T  the period.

In breaking the system into periods of free evolution interspersed with kicks and by 

considering each of these parts separately, it can be easily shown th a t this Hamiltonian 

can be translated into a discrete mapping. This mapping is written down in terms

of the angular momentum, and angle of the rotor immediately before kick number n

and immediately before kick number n - 1-1. This mapping is known as the standard 

mapping and is written;

ln+1 = ln -\- K  sin(#n), (2.2)

0n+i — & n  + l n + 1» (2-3)

where all variables, I, 0 and K  are now written in dimensionless units, n  indicates 

the kick number.
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This mapping was first written by Chirikov et al [2]. It is clear from the map 

tha t the classical dynamics of the rotor depend only on one control parameter, the 

kicking strength K.  An important point to note is that the mapping cannot be solved 

explicitly, so the best method for predicting ln and 6n is by iterating the map itself. 

The most effective way to observe the dynamics of the system as they change with 

K  is through the use of Poincare surfaces of section plots (SOS) of the phase space 

for the system. The angle variable is periodic in 2ir and the angular momentum 

unbounded, making the topology cylindrical for the phase space of the kicked rotor.

These SOS plots can be used to examine how the dynamics can vary as a function 

of K.  As can be seen in figure 2.1 as the kicking strength is increased more and more 

tori (solid lines running across the plots) are destroyed and chaotic regions appear. 

At K  ~  0.97 it was numerically shown by Greene [76] (and estimated by Chirikov 

[4] ) tha t the last torus is destroyed and the transition to global chaos is complete. 

The last KAM torus corresponds to the most irrational winding number (A#) =  2ttR, 

where R  is the golden mean  ratio, R  = (\/5 +  l)/2 . As K  is further increased the 

remaining cantori (which are broken tori) are progressively weakened and more and 

more islands in phase space disappear.

After the last of the KAM tori are destroyed, the system’s energy then grows 

diffusively with the number of kicks and each trajectory is free to expand through 

all phase space. The average energy for an ensemble of rotors can be written, by 

considering (2.2) as,

e " ={JT  = 9Y  + \  £  <2-4)
m ,m '= 0

here, the correlation functions Cm_m/ are given as,

Cm-m' =  (K  sin(0m)sin(0m/)) (2.5)

The angle brackets denote an averaging of the ensemble over all phase space and the 

(m — m') indicates the kick separation over which the correlations are considered. 

These correlations are short time as they are only found to be significant over small 

(m — m'). In the quasi-linear approximation the value 6n is assumed to be effectively
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Ratchet Surface of Sections
Transition to GlobaJ Chaos

a,

aB
E5
s

(a) (b) (c) (d)
Position, x.

Figure 2.1: Stroboscopic Poincare surface of section plots for the kicked rotor, (a) 
Low kick strength K  = 0.3 nearly all phase space consists of regular manifolds, (b) 
Mixed phase space with K  = 0.97 just below threshold for the destruction of the last 
KAM torus, however, trajectories axe still bounded, (c) K  = 2 in the region of global 
chaos, trajectories not started on a regular island are free to explore all momentum 
space, (d) High K  = 5 phase space is completely chaotic with the exception of only 
a small number of tiny regular islands.
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randomised for large values of the kicking strength. In doing this, equation (2.5) can 

be simply solved to show,

Dgi(K) = K ^ j i .  (2.6)

This random phase approximation is effectively assuming a random walk in momen- 

turn, so the momentum distribution is asymptotically Gaussian with width y/n.

For finite values of K , the quasi-linear approximation is not always sufficient. The 

diffusion rate can deviate from the quasi-linear approximation due to non-zero longer 

time correlations. These correction terms were evaluated by use of a Fourier path 

technique by Rechester et al, [74, 75], and shown to be,

° { K )  = ^  j i  -  U K )  -  J f (K )  + J l (K )  +  •/!(*■) j  (2.7)

to 0 ( K ~ 2). This formula, although more general than the random phase approxima­

tion of equation (2.5), still only takes into account a few early correlations. Even for 

very large values of the kicking strength there still remain small islands in the chaotic 

sea. These islands can attract some orbits that wonder past after some time, these 

orbit may then remain in the area of these islands for many kicks, either reducing 

or enhancing the chaotic transport of the system, depending on the nature of the 

islands. There are two types of islands tha t may form; some surrounding a fixed 

point of the motion, these islands lead to reduced transport, and accelerator modes 

[60], where particles are at the correct position at each kick to receive the maximum 

possible impulse, so momentum is rapidly increased, these islands can enhance trans­

port through streaming [23]. In these regimes the diffusion of the system is known as 

anomalous diffusion and is particularly apparent around values of K  near 2itj where 

j  is a positive integer. At these values of K,  the main family of accelerator modes is 

stable.

2.4.2 Quantum Analysis

The quantum dynamics of this simple system show some different and surprising 

results when compared to the classical dynamics. The quantum dynamics can be
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analysed in terms of a time evolution operator in the Heisenberg picture of quantum

theory. The most general form of the time evolution operator is,

U(t, t0) =  T e x p i  [ ‘ H ’(t')dt', (2.8)
h Jt0

where T  is the time-ordering operator. This may be used to evolve the quantum 

wavefunction over one time period, r ,

y ( r )  = U(T,0)y(t  = 0). (2.9)

In the J-kicked rotor, U (r, 0) can be factorised into a free evolution part and a kick 

part, reflecting the two halves of the Hamiltonian.

U(r, 0) =  Utotal = Ufree&kick• (2.10)

The evolution operator can be written;

Ufree = exp( - i r£2/2 ) (2.11)

and

Ukick =  exp(ifccos(0)), (2.12)

Where £ are the momentum operator ,& represents the position, r  and k  are the new 

dimensionless quantum control parameters.

To evolve the system quantum mechanically the evolution operator is used to 

iterate the wavefunction, and the quantum evolution takes the form;

((n +  1)t) =  UV(t  =  n r) . (2.13)

The simplest method to attain  numerical results for the quantum kicked rotor is 

to expand the rotor wavefunction in the angular momentum basis with the iterated 

wavefunction calculated from the expansion amplitudes of the angular momentum 

eigenstates. In plotting the quantum mechanical energy growth, calculated as,

£=oo

En =  (</>„|i72|t« = f i2 £  f V M I 2, (2.14)
£=—oo
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Figure 2.2: Kicked rotor plot for energy vs time (measured in kicks). Both classical 
(c) and quantum behaviours are plotted. Line (a) displays the effect of a quantum 
resonance and exhibits parabolic behaviour, (b) shows the more widely seen quan­
tum localisation where quantum energy growth is suppressed by localisation of the 
wavefunction in momentum space
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for values of the quantum control parameters corresponding to classical K  =  5, two 

unexpected results were observed and axe displayed in figure 2.2.

Firstly, for r  as rational multiples of 7r, quadratic energy growth was observed. 

This unexpected behaviour, which is caused by the existence of quantum resonances, 

was first researched by Izrailev and Shepelyansky in 1979 [63]. This effect has be 

understood by considering that, between kicks the system evolves by an amount,

— il2r
Ufree = exp —— , (2-15)

where I is an integer. This means that if r  is a rational multiple of 7r, the phase is 

not randomised between consecutive kicks. In fact for r  =  47r, Ufree = 1 and the 

system experiences no evolution a t all between kicks. Hence, the effect of the kicks 

accumulates constructively. So rational values of r / i t  correspond to the quantum 

resonances, [5].

Secondly, the discovery of dynamical localisation, which manifests itself as the 

suppression of the quantum energy growth [63, 4, 5, 36]. Dynamical localisation is 

explained as an interference effect tha t stops the wavefunction spreading out into 

all of the available angular momentum basis. The dynamical localisation in the 

quantum kicked rotor system is characterised in terms of the localisation length and 

the quantum break time. The localisation length defines how fast the momentum falls 

off exponentially after the wavefunction becomes frozen in momentum space. This 

freezing of the rotor energy only occurs after a finite period of time t*, the quantum 

break time, before this time, the quantum energy diffuses as the classical energy does 

until the quantum coherence effects arrest the diffusion of the wavefunction. The 

smaller the effective % of the system, i.e. the more classical the system is, the longer 

the quantum dynamics follow their classical counterparts. However, even for small r  

the quantum interference effects eventually dominate. Estimations for the localisation 

length, L, and the break time were made by Shepelyanski, [63], he states L ~  D/% 

and t* ~  L/%. A strong argument for the explanation of dynamical localisation 

was put forward by Fishman et al , [5], he proposed tha t dynamical localisation is 

analogous to Anderson localisation in disordered solids. He showed that the quantum 

rotor dynamics could in fact be mapped on the Anderson model as there is a close



Chapter 2: Quantum Chaos and Dynamical Localisation 25

similarity of Floquet’s theory for time periodic systems and the Bloch theorem for 

spatial periodicity. The time evolution of a wavefunction can be expanded in the 

following way,

# > , f ) = £ 4 ,va0.f) (2.16)
LJ

where the A u are constants, u  is the quasi-energy and the quasi-energy eigenstates 

are given by,

t) =  exp (—io;)^w(0, t) (2.17)

and F  is the quasi-energy operator. Notice tha t F  is the one period time evolution 

operator in equation (2.8). Floquet’s theorem states that, for a time periodic system, 

the eigenfunction can be written,

t )  — exp(—latfjiiwfa;, t )  (2.18)

where is periodic in time with the same periodicity as the Hamiltonian,

U u i U j t )  =  Uu ( L J , t  + 1). (2.19)

Here the period of the system has been normalised to unity. Next the quasi-energy 

states are projected onto the momentum states so their properties can be investigated, 

it can be shown that,

u j  =  exp(z(u; — r£2/2 ) )u f  (2.20)

and

u+(6, m) = exp(iV(9))u~(6, m)  (2.21)

where, u+ and u~ are values just after and just before a kick. It can be further 

shown that by introduction of the function, W(Q) = — tan(V (0)/2), the rotor model 

is mapped to the Anderson model,

TtU l+ Y ,W t-rUr = Q (2.22)
r

with

Tt = t a n ( l ( a > - l r f 2)) (2.23)
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which are the diagonal matrix elements. The hopping matrix elements are Wg-r and 

are projected onto the momentum basis, ug is the average ug before and after a kick. 

In analogy to the Anderson model, I  is the lattice site. In the Anderson model Tg is 

an externally given random number reflecting impurities in the lattice and it is this 

randomness which prevents one solution of the Bloch wave at every lattice site, in 

effect localising the wavefunction. In the rotor mapping for large values of i  the value 

Tg varies erratically and can be thought of as being in essence the random factor 

required for dynamical localisation.

2.5 E xperim ental D evelopm ents

Recent developments in the world of laser cooling and trapping have enabled 

many of the theoretical predictions put forward in quantum chaos to  be tested. The 

control of the external degrees of freedom of atoms in laser fields has become more 

and more exact. The work done in the field recently led to the Nobel prize for 

S. Chu, W. P. Phillips and C. Cohen-Tanonudji for the optical lattice in 1997 and 

for Eric Cornell, Carl Weinmann and Wolfgang Ketterle for the observation of a 

Bose-Einstein condenstate in a dilute gas in 2001. In particular, the realisation of 

the optical lattice has enabled the prediction of the quantum effect of dynamical 

localisation described above to be demonstrated in experiment and henceforth many 

interesting phenomenon tha t depend on it.

2.5.1 The Optical Lattice

An optical lattice [28, 31] can be in broad terms described as the interaction of 

a cold atomic gas with a spatially modulated light field to form an ordered pattern, 

in effect, an ordered gas. These light bound atom lattices typically consist of alkali- 

metal atoms, for example sodium and cesium. The light interaction acts on the 

degrees of freedom of the atoms as a force dependent on the internal state of the atom 

and proportional to the polarisation of the laser light. A periodic one dimensional 

optical lattice is achieved by setting up a standing wave of laser light using counter
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Figure 2.3: The process of Sisyphus cooling in an optical lattice. The atomic energy 
levels are modulated by the phase variation in the laser light (light shifts) creating a 
potential energy surface. Spatial correlation between the light shift and the optical 
pumping ensures a loss in atomic K.E. as the atom climbs the potential but never 
goes without photon recoil, from [29]
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propagating, coherent and orthogonally linearly polarised beams. This gives a spatial 

variation in the polarisation of the light field and hence a spatial variation of the 

photon angular momentum. The potential the atoms see is associated with the spatial 

variation of the light shifts of the atoms internal states (ac Stark shifts), known as a 

light-shift potential energy surface, figure 2.3. The cooling mechanism at the heart 

of the optical lattice is Sisyphus cooling, named after the legendary king of Corinth, 

who was condemned to a punishment of rolling a huge stone up a hill, only to have 

it roll to the bottom before he reached the summit each time, [33]. In the realm 

of the optical lattice the atom is optically pumped down to the potential minima of 

the other ground state sub-level as it climbs the potential hill. During this process, 

on average, the kinetic energy lost through the spontaneously emitted photons is 

larger than tha t from the photons absorbed from the light field. This reduction in 

kinetic energy of the atom eventually renders it trapped in the potential wells of the 

energy surface. Once trapped in the lattice, these cold atoms can be very precisely 

manipulated opening new possibilities for experimentation.

2.5.2 Experimental Results

W ith the new tool of the optical lattice available, a large body of experimental 

work has been done, verifying large amounts of theoretically predicted physics as well 

as discovering new physics. A good proportion of this effort was put towards creating 

an experimental test bed for the kicked rotor system in particular. This effort was 

motivated by the fact tha t much of the large body of the theoretical work done on 

this model and some similar models remained unverified and also that these systems 

display a rich variety of phenomena from very simple equations of motion.

The first experimental kicked rotor was realised by the Raizen group in Texas, [11], 

in terms of a pulsed optical lattice. This work was done with trapped sodium atoms 

and not only demonstrated dynamical localisation but also quantum resonances for 

specific values of the pulse period, notably for multiples of the natural period. In 

their experiment, as a delta kick is not experimentally feasible, a very narrow pulse 

width was used. This had the disadvantage of the control parameter K , falling off in
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Figure 2.4: Localised momentum distributions achieved by the Meacher Group at 
UCL for an experimental realisation of the kicked rotor. The figure shows momentum 
distributions for ultra cold caesium atoms in an optical lattice. The straight sided 
signature of a dynamically localised distribution is clear after 90 kicks (turquoise line).
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intensity for larger momentum. In later experiments, the group changed to cesium 

atoms in their kicked rotor setup, [12]. The large atomic mass of cesium allows a larger 

amount of momentum space to be investigated for an equivalent pulse duration.

In previous work the group had already experimentally realised the periodically 

driven rotor, [14], which was first suggested by Zoller et al, [6 6 ]. In this model the 

phase of the standing light wave is sinusoidally modulated. Momentum transfer only 

occurs when the velocities of the atom and the standing wave are matched, these 

momentum transfers are known as resonant kicks. Above a certain atomic velocity, 

these resonant kicks (RK) switch off and so there is a predicted RK boundary and this 

was shown experimentally. Dynamical localisation was also observed experimentally 

in the regime where t* is less than the time taken to reach the RK boundary.

In 1996 the group experimentally demonstrated the overlap criterion, [15]. This 

was done by observing a single pulse momentum transfer and varying the pulse du­

ration to show a critical pulse length required to induce chaotic behaviour. For this 

chaotic behaviour to be observed, the quantum break time must be significantly longer 

than the interaction time.

The group did further experiments on atomic tunnelling, in 1997, [16], using an 

accelerating optical potential, tunnelling was investigated in terms of the maximum 

acceleration allowed before the atomic loss from the wells became too large. This ac­

celeration limit was reach well before the predicted classical limit and was attributed 

to quantum mechanical tunnelling. The atoms tunnelled out of the potential wells via 

Landau-Zener transitions to higher energy bands until they became effectively free 

particles. More recently, [17], the group investigated chaos assisted tunnelling. The 

experimental set-up was an amplitude modulated standing wave double well. Exper­

imental parameters set in the region of mixed phase space. A quantum wavepacket 

is predicted to oscillate between two symmetry related islands, this tunnelling can be 

enhanced in the doublet state of the double well by interaction with a chaotic state. 

This effect was demonstrated to be reduced in the presence of noise and decrease 

with the coupling strength, a , which is in opposition to expectation for two state
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tunnelling. The Hamiltonian for the system is written,

H  = p2 /2  — 2a c o s 2 (7t t) cos(x) (2.24)

More work was done on the effects of noise on the quantum dynamics, [18]. The 

group showed tha t dynamical localisation is completely destroyed for high amplitude 

noise and that at lower h the system becomes more sensitive to this noise. This showed 

that the system of the kicked rotor could be driven to its classical limit through noise. 

They showed this through recovered diffusive growth in their system and Gaussian 

momentum distributions.

The group were also the first to experimentally show dynamical Bloch band sup­

pression, [20]. This is achieved through strong phase modulation of the standing 

wave light field which causes the band structure to collapse stopping the dc transport 

which was driven by the ac field. More recent work has been the state reconstruction 

of the kicked rotor, [2 1 ], in which a clever interferometric method was used involving 

a mixed starting state. Half of the state feels the kicked rotor potential and the other 

half does not. The unaffected half can then be used as a reference state to recover the 

phase of the wavefunction as well as its amplitude. This could provide insight into 

the phase behaviour at the heart of dynamical localisation and quantum resonances.

Other important experimental work in the field has been done by a group at Ox­

ford University. The main experimental discovery of this group is tha t of quantum 

accelerator modes, [57, 59, 61]. While accelerator modes have been known classically 

for many years a quantum counterpart had not been experimentally shown. These 

quantum accelerator modes exhibit large energy growth exceeding classical predic­

tions. The accelerator modes were achieved in a system very similar to the delta 

kicked rotor, the only difference being, that the cesium atoms are allowed to fall 

freely under gravity between the kicks and the potential is oriented in the vertical 

plane. The group have also developed a theoretical model for the effect. According 

to their model, these modes can be understood as the repeated application of blazed 

diffraction gratings. These accelerator modes are a very efficient way of imparting a 

coherently large amount of momentum to a particle. A possible application is put 

forward in terms of an atomic beam splitter although only momentum change can
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be accomplished and not amplitude splitting. The group later investigated the ef­

fect of noise in the form of random scattering events. Noise effect were investigated 

in the regime of the quantum accelerator modes, [60], and it found tha t the effect 

was reduced significantly by the introduction of noise. The group also investigated 

noise in the region of quantum resonance in the delta kicked rotor, [58]. In these 

regions, the system proved to be especially sensitive to noise compared to the well 

localised regions studied by other groups. The argument then is that it is in these 

resonant regions of the system dynamics that will provide the best testing ground of 

quantum-classical correspondences.



Chapter 3

R atchets

3.1 M otivation for the Study o f R atchets

Ratchets are in wide ranging use today, both in man made technologies and in 

nature. Artificial ratchets are used mainly as energy saving devices, making useful 

work from random motions. For example, a self winding wrist watch uses some of 

the kinetic energy from the motion of the wrist on which it is worn to load the 

spring in the watch’s mechanism, which in turn drives the watch’s hands. Winding 

wrenches on yachts, spanners, and screw drivers all use simple ratchets, allowing 

work to be done only in one direction, providing labour-saving devices and improving 

efficiency. As technology pushes further and further towards the atomic level, the 

motivation for the scientific study of ratchet systems becomes more apparent. Already 

nano-technological devices are used to manipulate on the atomic level. Ratcheting 

systems could be implemented in these technologies to  provide a possible method for 

atomic transport. Nature also provides us with a great motivation for understanding 

molecular ratchets on a biophysical level. Cell highways could possibly be understood 

on a molecular level in terms of a ratchet system. Cell highways are the means by 

which chemicals are transported around cells. It is conjectured, [37], that Brownian 

noise effects along with a broken parity symmetry potential is the motor behind these 

highways. In fact as almost all systems are subjected to random fluctuations in some 

form or another, often as an unavoidable consequence of the environment in which

33
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the system is situated (for example thermal noise), the idea of utilising this natural 

randomness is very appealing.

3.2 The D efinition of a R atchet

The ratchet effect can be defined as the rectification of random or anti-symmetric 

fluctuations into useful work. In many cases, this can be narrowed down further to 

preferred or directed transport in spatially periodic systems. However, this useful 

work cannot be achieved without cost. Gaining useful work from a system which 

exerts no net force in a particular direction without the input of energy, for example, 

a spatially periodic system in contact with a single thermal heat bath, is ruled out by 

the second law of thermodynamics. This was first investigated by Smoluchowski and 

was presented in conference in 1912 and later extended by Feynman in his popular 

Lectures on Physics, [106] The two investigators’ model system was a simple ratchet 

and pawl and is explained in section (3.3.1). Many types of ratchet system, some of 

which are very complicated in structure, have been investigated since and as a result, 

a common thread of requirements has been established to produce a ratchet effect or 

directed transport. Most importantly, the system must not be in thermal equilibrium 

in order to obey the second law of thermodynamics. Aside from this requirement, 

system symmetries must be appropriately lowered. Time reversal symmetry must be 

destroyed and this symmetry is most commonly broken by the use of thermal noise. 

Also in many systems, the spatial inversion symmetry is required to be broken in con­

junction with the broken time symmetry. In fact there is a hypothesis which states 

that: i f  a certain phenomenon is not ruled out by symmetries then it will occur. This 

is known as Curie’s principle. So one can argue, some cases that show no transport 

are equally as interesting as those which do. The symmetry requirements suggested 

above for directed transport axe most commonly achieved through either one of three 

basic schemes: pulsed ratchets, tilting ratchets and fluctuating state ratchets. Exam­

ples and definitions of each type are outlined and reviewed in this chapter. However, 

the main focus of this thesis is on the stochastic, pulsed scheme. There are, as always, 

exceptions to rules and, as discussed later, a special set of apparently broken symme­
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try  systems are possible tha t produce no directed transport [41]: these systems axe 

referred to as supersymmetric. In the progression of this research field, noisy Brow­

nian motors have been studied, then noise free dissipative ratchets and finally clean 

Hamiltonian ratchets. Ratchets have been studied in both the classical and quan­

tum  regimes. The largest body of research has been in Brownian ratchets, probably 

because these ratchets have the most obvious motivation from biophysics, for a full 

review see [40]. There has been a tendency to reduce models towards the more simple 

systems more often found in the study of non-linear dynamics. So the first logical 

step in the simplification of the models was to remove the random noise in favour 

of deterministic chaos. The ratchets effect was first accomplished in these systems 

by including frictional terms, [83]. These ratchets became known as deterministic 

inertia ratchets with dissipation. The next step in the chain was the removal of all 

frictional terms. These ratchets rely only on the chaotic Hamiltonian dynamics and 

so are the cleanest, most simple systems. Unlike the dissipation ratchets mentioned 

above, where a large body of research has been carried out, there has been little in 

comparison for this last class of ratchet. Notable exceptions are Schanz et al and 

Flach et al, [53, 54, 52]. A more detailed overview of the important and recent work 

in the field is presented in the following sections.

3.2.1 Types of Ratchet

As hinted at earlier, there are many different and diverse ways to achieve a ratchet 

effect and whether considering the quantum or classical, Hamiltonian or noisy regimes 

most can be classified into three groups: pulsed ratchets, tilting ratchets and state 

fluctuating ratchets or a combination thereof. Here, a model equation of motion (in 

this case for a noisy dissipative system) is introduced so as to demonstrate the various 

classes and highlight the differences between them. The particular form of each term 

on the right hand side can be related to a different type of ratchet.

(3.1)
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£ represents Gaussian white noise of zero mean, which satisfies the relation:

(((t)i(s)) =  2’>K BTS(t-s) (3.2)

F  is the force against which the ratchet can do work and y(t) represents a time 

dependent tilting of the potential. g is the coefficient for viscous friction. Primes 

mark differentials with respect to x,  and dots with respect to t. The potential V(x,g)  

is periodic in x. The potential will be termed as a ratchet potential if it does not 

satisfy the symmetry condition V ( —x,g(t))  =  V(x  +  Ax,g(t)).  The tilting process 

y(t) is inversion symmetric if there is a A t satisfying — y(t) = y{t -f At) or, if the y(t) 

is stochastic, symmetry requires tha t all statistical properties are identical for — y(t) 

and y{t) alike.

Pulsed Ratchets

Pulsed ratchets themselves can be divided up in to two main subclasses. The first 

is when the potential is modulated or kicked and takes the mathematical form,

V(x,g( t ) )  = V(x)[ l+g( t ) \ .  (3.3)

Ratchet models of this form axe generally known as fluctuating potential ratchets. In

the case where the function g(t) can only take the values ± 1 , the fluctuating ratchet

becomes an on-off ratchet. In the extreme case, where g(t) takes the form of a delta 

function, the system is being kicked in a similar way to the kicking seen in the kicked 

rotor model described in the previous chapter. It is this type of ratchet potential that 

is explored in detail in this thesis.

The second subclass of the pulsating ratchet is where the potential can be written 

in the form:

V(x,g( t ) )  = V ( x - f ( t ) ) .  (3.4)

This is a travelling potential ratchet type. Here the potential is most commonly 

subject to a drift and hence breaks the symmetries defined earlier. Only after the 

subtraction of this drift are the symmetries seen. It should be noted that, in this 

potential arrangement, a non-zero current is possible without the need for a ratchet
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potential of the form defined earlier, i.e., a symmetric potential can produce a system 

current.

Tilting Ratchets

In this case, we focus on the y(t) term and where this term is stochastic, the name 

fluctuating force ratchets is used. In the case where the y(t) is periodic in nature the 

well known and experimentally very significant rocking ratchet results. In order to 

gain non-zero current, either an asymmetric V{x)  when y(t) is symmetric is necessary, 

or the reverse, y(t) asymmetric while V(x)  is symmetric. Non-zero current can also 

be gained when both term are asymmetric.

State Changing Ratchets

In the case where both g(t) and y(t) are zero, the ratchet effect can still be achieved 

for a ratchet potential by changing the state of the system in a periodic manner. The 

most obvious route to this is the changing of the temperature of the entire system, 

either modulated in respect to time, a temperature ratchet, or with respect to space, 

known as a Seebeck ratchet. A potentially more subtle example could be seen in atom 

optics, with atoms fluctuating between two states or potential surfaces of an optical 

lattice, exploring the dynamics of fluctuations between independently added states.

3.3 Brownian M otors

Brownian motors exploit the fact that most systems are subjected to thermal 

noise. On a molecular level this thermal noise is easily demonstrated in terms of 

Brownian motion and can be seen by the motion of a polystyrene ball floating on the 

surface of warm water in almost every school laboratory. The detailed study of the 

molecular motion of Brownian particles revolves around three sets of equations. The 

Langevin, Fokker-Planck and Smoluchowski equations represent Brownian motion on 

different time scales of the motion respectively, the Smoluchowski equations being 

over the longest time scale. The next section explores briefly the most well known of
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Figure 3.1: A graphical representation of the Feynman ratchet showing both the 
bombarded panels and the ratchet and pawl. From [50].

Brownian motors, proposed by Smoluchowski in a thought experiment in 1912.

3.3.1 T he Sm oluchow ski-Feynm an R atchet

The system, figure 3.1, often referred to as the Smoluchowski-Feynman Ratchet, 

consists of an axle with paddles attached to one end and a saw-toothed ratchet and 

pawl at the other. A small weight is attached in the middle of the axle to allow 

the work done by the system to be measured. The whole system is surrounded by 

a gas in thermal equilibrium. W ithout the pawl, if the system could freely turn  it 

would perform rotational Brownian motion caused by the random impacts of the gas 

molecules on the paddle in all directions. The pawl is designed to allow only motion 

in one direction: the forward direction. It is intuitive th a t the pawl would allow the 

teeth to pass in the forward direction if there were enough favourable impacts from 

the gas molecules, and not at all in the backward direction. So, it would seem at
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first sight tha t the system would slowly turn in the forward direction, even without 

the input of external energy, this, on the condition tha t the ratchet can overcome 

the stopping force of the small weight. This would of course be a perpetual motion 

machine, strictly forbidden by the second law of thermodynamics. Something must 

have been overlooked and the working of the pawl would seem to be the most natural 

suspect. The pawl, resembling a Maxwell’s demon, as shown by Smoluchowski, would 

also be affected by the thermal impacts of the gas molecules. These impacts can lift 

the pawl, thus allowing motion in both directions. When the pawl can be lifted by 

these impacts, the motion of the axle will be in favour of the backwards direction. 

Indeed, quantitative analysis shows the right balance to prevent such a perpetual 

motion machine. When this ratchet and pawl model was experimentally recreated on 

a molecular scale, [46], with use of nuclear magnetic resonance techniques, the lack 

of any preferred direction was verified. Later, Feynman extended the ratchet pawl 

model, [106]. He explored the case where the cog-wheel and pawl at one end were 

surrounded by a gas at temperature Ta , while the paddles were surrounded by a gas 

of temperature Tb • Feynman showed that the system does work if the temperature 

are not equal. He also showed that the system does this work with an efficiency of 

(Ta — Tb ) /Tai the Caxnot efficiency. Feynman also pointed out a similarity with an 

electrical rectifier with an asymmetric response to an external static force field. Here 

too, random thermal variations are not converted to useful work in any way. In this 

example, the effect (or lack thereof), is known as Brillouin’s paradox. The analysis 

of the ratchet and pawl presented by Smoluchowski and Feynman is complex, so as 

a guide system which displays the qualitative features of the ratchet and pawl, an 

analysis of a Brownian particle is followed from [41], in the following section.

3.3.2 The Brownian Particle

A Brownian particle subjected to a periodic potential is considered in one dimen­

sion. Newton’s equation of motion for this particle can be written as,

mx(t)  +  V'(x(t)) = -r)x(t)  +  £(£). (3.5)
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Here the left hand side of equation (3.5) is made up of the inertial term and the 

force resulting from the periodic potential interaction and so is the conservative and 

deterministic part of the particle dynamics. On the right hand side is the thermal 

environment of the system, made up of the thermal noise and viscous friction, these 

two terms arising from the same source. Once again the thermal noise is Gaussian 

white noise of zero average satisfying the fluctuation-dispersion relationship (3.2). In 

re-scaling the system into dimensionless units, it becomes apparent tha t in the regime 

of over-damped dynamics, the re-scaled mass of the particle is small compared to the 

other system terms, therefore, to a good approximation the inertial term m x  can be 

dropped.

A statistical approach is now taken, where an ensemble of Brownian particles 

is considered. Since each particle being independently acted on by one of the ran­

dom fluctuations of £(£), a probability distribution describing the distribution of the 

Brownian particles can be written,

P(x, t )  = ( S ( x - x ( t ) ) ) ,  (3.6)

which can be normalised to unity by direct integration.

The key to the dynamics is the time evolution of the probability distribution 

(3.6). Two special cases are considered: Firstly V' (x ) =  0, a free thermal diffusion of 

a Brownian particle. This diffusion is described by the Einstein relation,

D = —  (3.7)

and the evolution of P ( x , t) by the diffusion equation,

M p { x ’t] = D i * p [ x ’t] - m
The next special case to consider is the deterministic case, so the noise contribution 

£(£) is zero. In this case, the dynamics of P ( x , t ) are evolved through a Liouville 

equation,

£ p <*'t> =  £ [ n r p M  (a9 )
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In the case where neither £(t) or V' (x) is zero, the evolution of the probability 

distribution is a combination of both equations (3.8) and (3.9) due to the linear nature 

in P{x, t) .  Now the Fokker-Planck equation can be written as,

d d r V'(x) i d2
d t p ( x ' t] = & [ — 'P(x,<)] +  D a ? p ( l , t )  (3'10)

As for determining whether there is a ratchet effect or directed transport and 

the extent to which it is occurring, the quantity of greatest interest is the average 

velocity of the ensemble of Brownian particles, the particle current. The definition of 

the probability current, J(x, t )  is introduced, such that,

J(x, t )  = ((x(t))5(x — x(t))) (3-11)

where x(t) is the particle current which can be determined by direct integration of

(3.11),

/OO

J(x, t )dx.  (3.12)
-OO

It is also possible, from the definition of the probability distribution to write down 

a continuity equation in P(x, t ) .
r\ r\

— P(x, t )  + — J(x, t )  = 0, (3.13)

by comparison to equation (3.10) the specific Fokker-Planck equation for the Brown­

ian particle an expression for the probability current can be obtained,

J(x,  t) = -  [ 1 ^ 1  +  D  A ]  P(x,  (), (3.14)

so then, by directly integrating (3.14), an expression for the particle current can 

be derived for a given potential, V(x).  When considering the long time limit, as t 

approaches infinity, a steady state probability density is expected for physical reasons. 

As a result of this, the probability current would also reach a steady state. Equation

(3.12) can be re-written, by means of partial integration, as:
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Now, by using (3.13), the expression for the particle current can be again re-written 

as follows,

{±)= _  ! Z x ^ ~ d t ^ dx- (3-16)
Therefore, for a long time limit steady state probability distribution, d P ( x , t ) /dt  = 0, 

it is expected that the ensemble average particle current will fall to zero.

(x) =  0. (3.17)

Therefore, as required by the second law of thermodynamics, no net work is performed 

by this system when it is in thermal equilibrium. In the condition tha t thermal 

equilibrium is broken, the results axe different. In considering a system where the 

temperature, or the noise intensity, is varied with time, an excellent demonstration of 

an on-off ratchet is demonstrated. The equation of motion for the Brownian particle 

can be updated as follows,

rj± = - V ' ( x )  +  g ( t ) £ ( t ) .  ( 3 . 1 8 )

Here the intensity of the Gaussian white noise is modulated by the function g(t) = 

[r)k,BT(t)]ll2. T{t ) = T[ 1 +  ASgn(sin(27rt/r))] and is a periodic function in time with 

period r .  So, the temperature function T{t) jumps between values of T[1 +  A] and 

T[1 — A] twice every period. The particle current in this new system can be shown 

to be non-zero for an asymmetric potential, as here the probability distribution does 

not reach a steady state long term behaviour due to the permanent temperature 

oscillations. The probability function becomes periodic in time in the long time limit. 

Because of this periodic behaviour, it makes more sense to write a time averaged 

particle current over one period,

1 rt+T r°° —VHx')
(x) = — [  dt [   P(x, t ) .  (3.19)

T  J t  J — oo Tj

The mechanism for the ratchet effect in this system is explained as follows: In the 

first part of the time period, the thermal energy is at a constant value, A;bT[ 1 — A], 

which is smaller than the potential barrier height (the change in the magnitude of 

V(x)  between the maxima and minima). As a result of this, the particles will gather
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at the local minimum of the potential. In the next half of the time cycle, the thermal 

energy jumps to a much higher value 4 - A], which is significantly greater than

the potential maxima. As a result, the particles don’t  feel the potential to any great 

extent and diffuse out evenly for this half period. Next, as the thermal energy is 

reduced to its original level, the potential is once again significant. Now, once again 

trapped between adjacent maxima the particles are pushed towards the minima and 

axe redistributed accordingly. It is the fact the potential is asymmetric which leads 

to this redistribution also being asymmetric resulting in a net displacement every 

time cycle and a non-zero current. The ratchet effect explained above is tenable 

with more general temperature variations, so long as they are sufficiently slow to 

allow particle diffusion. Experimentally, the required manipulation of the thermal 

energy in terms of time scale and magnitude could be difficult to achieve. However, 

many Brownian ratchets have been studied experimentally and Buttiker and Landauer 

achieved macroscopic movement of a particle using a temperature ratchet with a 

spatially periodic distribution of temperature with the correct asymmetries.

It is easy to see tha t this temperature ratchet process is extremely similar to 

the effect of switching on and off the potential itself whereby the particles are put 

through the same sequence of free diffusion and trapping at local minima by changing 

the potential rather than the particle energy. In figure 3.2 a schematic diagram of 

the asymmetric redistribution is shown for such an on-off ratchet.

The on-off ratchet was experimentally realised in terms of polystyrene latex spheres 

in solution. The experimental set-up was devised by Rousselet et al where the spheres 

were subjected to a pulsed periodic ratchet potential created by switching on and off 

electrodes deposited on a glass slide. The experiment was later refined by Gorre-Talini 

using optical diffraction gratings to produce the electrostatic ratchet potential.

In Biophysics, motor proteins are studied as Brownian ratchets, here chemical 

energy released is used to give unidirectional motion. The ratchets effect is thought 

to explain muscle action and contraction as well as intracellular transport. Experi­

ments have been carried out to measure the stopping force in Kinesin transport along 

microtubes [84] which is fueled by the exothermic chemical hydrolysis of ATP into 

ADP -I- P, releasing approximately 20k^T of chemical energy in the reaction.



Chapter 3: Ratchets 44

°n W V V*

Figure 3.2: An on-off ratchet to illustrate the mechanism for directed transport from 
[91]. While the potential is on the particle form around the potential minima. As soon 
as the potential is switched off the particle diffuse in all directions, as the potential 
is re-engaged the particles move to the next minima and are thus asymmetrically 
redistributed. This results in a net current to the left despite there being no net 
force.

3.3.3 Q uantum  Brownian R atchets

Most of the ratchet effects already considered occur on a very small scale, where 

although the phenomena are classical in nature, it is on the molecular level tha t the 

systems are considered. It is therefore a very natural and obvious step to next con­

sider whether quantum mechanical effects play an important role in the workings of 

these sometimes nano-scale ratchets. It could well be expected that important and 

surprising results may be discovered when the system length, time and energy scales 

are approaching that of the Planck’s constant. In modelling the quantum system and 

the therm al environment, a Hamiltonian framework is used to maintain consisten­

cies with the second law of thermodynamics. The Hamiltonian system consists of a 

standard Hamiltonian for a particle in a one dimensional ratchet potential V(x) plus 

a heat bath which is modelled by an infinite number of harmonic oscillators. The 

infinite number of oscillators means an infinite heat capacity and therefore the heat 

bath keeps its initial tem perature for all time. The Hamiltonian and heat bath are
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written as the following equations,

H(t) =  7T- +  V ( x ) - x y ( t )  +  HB (3.20)

(3.21)

where x  and p are the position and momentum operators of the particle and the

unbiased on average. The effect of the thermal environment, which is coupled via 

the coupling strengths Cj to the base system, is controlled by the spectral density of 

the heat bath. Integrating over the bath degrees of freedom it is possible to arrive at

A theoretical system was considered by the Reimann et al [42]. The group consid-

the group made two interesting observations. Firstly, tha t at low temperatures the 

directed quantum transport of the system was considerably enhanced compared to 

the classical behaviour and as the temperature was lowered this effect was increased 

further. As the temperature was increased the classical dynamics were approached. 

Secondly, as the temperature of the system is lowered still further, the system under­

goes a current reversal. Classically, as the temperature is lowered, no such reversal 

occurs. Both of these observations are surprising. The asymmetry in the potential, 

the barrier height that particles need to overcome is lower for a tilt to the right in 

figure 3.2 than a tilt to the left, therefore, the directed current would classically al­

ways be expected to be to the right. The quantum mechanical particles can tunnel 

through barriers however. The tunnelling probability for a particle not only depends

£j,f>j denote those of the heat bath oscillators. The y(t) is a tilting force which is

an analogous equation to (3.5) such that left hand side of the equation describes the 

system dynamics and the right hand side describes the thermal environment.

mx(t)  -I- V'{x(t)) — y(t) = — [  fj(t — t^ x it^d t ' + £(t). (3.22)
Jo

ered a model where the driving term y(t) was limited to  values only of JtF. This they 

called the adiabatically tilting quantum ratchet. While making the assumptions of 

weak noise compared to the potential barrier height and excluding running solutions 

(i.e. a classical, noise free, particle would reside in the potential minima under tilting)
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Figure 3.3: The tilting ratchet considered by Reimann [41]. It is clear to see tha t the 
potential and the tilting axe of zero average and time periodic. One can also note 
that in tilting it is not just the barrier height tha t is affected: the barrier thickness 
also oscillates in magnitude.
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on the height of the barrier but also the barrier’s shape. Since, under tilting, the 

barrier width is less for a tilt to the left, the tunnelling probability is greater and 

a net negative tunnelling current is expected. Above a certain critical temperature, 

quantum mechanical tunnelling becomes rare, so the escape over the barrier dom­

inates the dynamics and in agreement with the classical theory, a positive current 

results but enhanced in magnitude. As the temperature is reduced below the critical 

temperature, a point is reached where tunnelling effects dominate and the current is 

inverted. This current reversal is a very robust physical mechanism and as such it 

would be expected to be readily experimentally observable.

The experimental evidence of this effect was first shown by the Linke Group in 

their experiments in a semiconductor ratchet for electrons, [90, 91, 93, 95]. The group 

created an asymmetric conducting channel by etching trenches into a GaAs/AlGaAs 

hetrostructure. The channel shown in figure 3.3 acts as a wave-guide, an electron in 

the channel sees the double saw-toothed patterns as asymmetric energy barriers. A 

current in the channel is induced by a bias voltage and is determined by the reflection 

and tunnelling coefficients of the barriers. The barriers are themselves deformed in a 

way tha t depends on the direction of the applied electric field and since the tunnelling 

probabilities are dependent on the barrier shape, a net current can be generated with 

an alternating electric field. The experiment is set up such tha t the probabilities of 

escaping over the barriers and tunnelling through them are comparable, resulting in 

the current direction being highly temperature dependent.

Quantum Brownian ratchets have been observed experimentally in different con­

texts, including, the directed motion of vortices in a superconductor. The vortex 

patterns formed in many superconductor experiments axe induced by fields as small 

as the earth’s magnetic field. These vortices substantially hinder experiments as once 

present, they dissipate energy and create internal noise which can inhibit the oper­

ation of many superconductor devices. So a method for removing such vortices is 

greatly welcomed. It would seem the answer may lie in the application of a ratchet 

potential, [104]. When a superconductor is patterned with an asymmetric saw-tooth 

pinning potential, which is obtained by varying the sample thickness, the vortices 

will move along the potential in the presence of a directed current. If the current
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Figure 3.4: The experimental realisation of the tunnelling ratchet produced by the 
Linke group [90]. Inset is an image of the semiconductor channel used in the exper­
iment, the dark regions representing the etched asymmetry waveguide. The graph 
clearly shows a current reversal as the tem perature is reduced due to the increasing 
contribution of the tunnelling current.
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Figure 3.5: Vortices caused by small magnetic field effects, can be removed from a 
superconductor by the application of an alternating current in the direction perpen­
dicular to the asymmetry in the pinning potential. A net current results as the vortex 
velocity in the positive x direction is greater than th a t in the negative x direction 
because of the asymmetry of the potential. The potential is created by varying the 
depth of the superconductor d. [104]
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direction is in the positive y direction (see fig. 3.4 above) the vortices move in the 

positive x  direction, when the current is reversed the direction of the vortex motion 

is reversed. However, the magnitude of the vortex velocity in the negative x  direction 

is smaller than tha t of the positive x  direction due to the asymmetry of the potential, 

so, by applying an alternating current a net vortex motion can be achieved with a 

velocity v = (v+ +  u_)/2 in the positive x  direction. Furthermore, superconduct­

ing vortex ratchets have also been used to demonstrate the temperature dependent 

current inversions predicted by Reimann et al [82].

3.4 D eterm in istic R atchets

From the noisy and dissipative regime of the Brownian motor, the next step in the 

evolution of ratchet concepts came by stripping the models down to their simplest 

forms and removing noise completely. This is the deterministic ratchet. As a further 

step the case of vanishing dissipation, i.e. Hamiltonian dynamics, is of great interest. 

The system equation can now take the form for a general deterministic ratchet,

m x — —V'(x(t))  — ' jx +  y(t) (3.23)

where the function y(t) provides a rocking as before and 7  is the frictional term which 

vanishes in the case of Hamiltonian dynamics. V (a?) is again spatially periodic.

The re-inclusion of the inertial term  m x  for both the dissipative and Hamiltonian 

regimes allows the system to exhibit chaotic behaviour and as such brings with it 

new theoretical considerations. Due to the complex nature of chaotic systems, for 

example, phase space islands, stochastic layers and KAM tori, many of the system 

dynamics are dependent on initial conditions. However, in the case of strong system 

perturbations leading to  global chaos, novel and generic phenomenon can be observed. 

The combination of the well understood field of diffusive transport with the idea of 

directed transport shows new robust physical mechanisms.

In comparison to the mountain of work done on the subject of Brownian ratchets, 

there has been little on their deterministic counter parts. One of the most noteworthy
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studies was carried out by Flach et al [52], where the system was studied by inspecting 

various symmetry properties. The group showed tha t the correct lowering of the 

system symmetries can lead to a nonzero dc current and argued tha t even lowering 

the symmetry of y( t ) alone can give this result. While this system has been studied 

by many groups, in general, harmonic functions have been considered for V{x(t))  and 

y(t ) and it is this choice of symmetry that leads to zero current. The group defined 

system symmetries such that for f ( x ) =  V'(x),

fa ■ f ( x  + x) = ~ / ( - z  +  x), (3-24)

y9 : y(t-\ -r) = y ( - t  +  r ) , (3.25)

and

y,h ■ y{t)  =  - y ( t  +  T/2) .  (3.26)

Where T  is the time period of the system, \  and t  are appropriate origin shifts. If 

the system is invariant for the transformations,

Sa : x  •—> (—x  +  x)» t ■-* (—t -f- T /2) (3.27)

and,

Sb : t ^ * ( - t  + r ) t (3.28)

then all trajectories subject to the above symmetries in a stochastic layer will remain 

in the layer with a zero time averaged velocity. The group go on to show numeri­

cally th a t if the symmetries are not present, then the above does not hold and that

nonzero time averaged velocities result. The effect is attributed to desymmetrization 

of Levy flights in the positive and negative directions. Furthermore, the current can 

be inverted in the dissipationless case by applying the substitutions t = — t  or x  = —x  

and y(t) = —y(t). In the case where 7 ^ 0  only the symmetry transformation Sa is 

possible (as the dissipation acts to break time reversal symmetry) and when present, 

zero current results. For every trajectory there is a counter moving partner. In the 

instance when the symmetry Sa is broken, the resulting current can be reversed under 

the operation V(x)  = —V{—x)  and y(t) = —y(t) only.
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Figure 3.6: (a) Spatial distribution of a classical ensemble of particles after 20,000 
kicks for a driven system, (b) the corresponding phase space plot, where the upper 
and lower limits are KAM tori, (c) and (d) are the same for a kicked system, with 
V'(x) = (x — 0.5)m odl and T'(p) = Sgn(sin27rp +  3/(27r)cos27rp) from [54]
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Another block of important work has been carried through by the Dittrich group 

in Germany, [53, 54]. This group’s approach was to analyse both the regular and 

chaotic regions of phase space and determine the transport characteristics for each 

one. The resulting classical and quantum sum rules give excellent insight into the 

detailed structure of the dynamics of Hamiltonian ratchets. The group analysed a 

time periodic system of the Hamiltonian form,

H ( x , p , t ) = T ( p )  + V(x, t ) ,  (3.29)

where T(p) is the kinetic energy and the potential has the features of time periodicity, 

V(x,  t  +  T) =  V(x,  £), and a periodic spatial derivative in x , V'(x  +  X,  t) = V'(x,  t). 

The group considered the system in the regime of mixed phase space, i.e. a phase 

space tha t is made up of regions of both chaotic and regular dynamics. Due to the 

conservative nature of Hamiltonian systems, the transport features of finite invariant 

regions of phase space were studied and for such a region, the ballistic transport is 

defined as phase space volume times the average velocity of the phase space area. As 

such it can be written,

r T  r x  r+oo Q f f
tm = dt dx dpxM(x,Pjt) —  . (3.30)

Jo Jo 7 - o o  d r

Here, x m  is the characteristic function of the invariant section of phase space M.  

Now the total transport for all the invariant phase space regions can be summed,

TM = J 2 TMi- (3-31)
i

The regular regions of this mixed phase space was assumed to be made up of only 

regular islands for simplicity. So treating each island as an invariant region in phase 

space, the ballistic transport for the regular region of the phase space is,

Ti = AiVi. (3.32)

The area Ai is the island area in a stroboscopic surface of section plot and the average 

velocity Vi of that island is given by the winding number of the stable fixed point at 

the islands centre, = Xi/t{. Before the onset of global chaos and the destruction
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of the last KAM surface, chaotic regions of phase space are typically bounded by 

two KAM tori forbidding any trajectory started within from escaping. The bounded 

region between these KAM surfaces can be considered as a large invariant area in 

phase space itself and as such its transport can be calculated. This can be shown to 

be the difference between the average kinetic energies of the two bounding tori and 

written as (T)a — {T%. Now a point has been reached where the transport for the 

chaotic region of the phase space can be written down as the total transport of the 

stochastic layer minus the regular transport of the embedded islands [54].

AchVch = (Ta) -  (Tb) -  A iu i- (3.33)
i

In [54] the predicted theoretical values for the chaotic drift agree well with nu­

merical results obtained by evolving many trajectories over a long time period. The 

group also showed for a ^-kicked system with V'(x) = (x — 0 .5)m odl and T'(p) = 

Sgn(sin 27rp+3/(27r) cos 2ttp) tha t if the initial starting conditions were evenly spread 

over the entire unit cell, zero net transport (i.e. no not current in either direction) 

would result. Therefore, for these system parameters the regular and chaotic regions 

cancel each other.

AchVch, “t“ A regVreg = 0 . (3.34)

The group also derived a quantum mechanical counterpart to their classical sum 

rule. This was achieved by considering the Floquet band structure of the system and 

once again centred around the invariants of the dynamics which satisfy the Bloch- 

Floquet conditions. The quantum transport for the system is related to the expecta­

tion values of the stationary states. These velocities can be written in terms of the 

band slopes,

va,k =  J d k J 2  iV’a.fcl2^ ^ ,  (3.35)

where ea>k is the quasi-energy and k the quasi-momentum. Now, transport can be 

analysed in terms of the spectral properties and through band diagrams.

The group showed tha t in the diabatic regime, the band diagram has two sets of 

bands, straight (negatively) sloping bands attributed to regular islands and spaghetti 

like bands for the chaotic regions of phase space. In the adiabatic limit (fine detail)
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Figure 3.7: The band structure of the quantum mechanical system, on the left panel 
the diabatic case with band crossings. The regular invariant islands are represented 
by the straight strongly sloping lines, the chaotic regions by the spaghetti style lines. 
The average gradient of each group represents its transport velocity. On the right the 
avoided crossings of the adiabatic case.

all band crossing are avoided and hence the sum of gradients over all bands is zero. 

Each band can be associated with a winding number according to its gradient, with 

the sum of all winding numbers being also zero. Moving from the adiabatic to  the 

diabatic regime conserves winding numbers and hence once again the quantum chaotic 

drift current can be calculated through a sum rule as the regular bands have a finite 

gradient in the diabatic regime.

+  (3.36)
a ot

Work concerning the nature of current reversals in deterministic ratchets has been 

completed by Mateos [38]. He found tha t current reversals in his system correspond 

to bifurcations in the system’s period doubling route to chaos. The system which was 

studied is represented as,

x +  hi +  V'(x) = a cos(wt). (3.37)

The parameters b and w were held constant while a was varied. It was shown th a t the
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system underwent current reversals as a was increased, furthermore, these reversals 

were observed to occur at the same values of a as the bifurcations. It was shown that 

in the periodic regions of the bifurcation diagram the trajectories were in running 

modes which had certain constant momentum values. Near the bifurcation, the orbit 

intermittently behaves periodically, broken up by short times of chaotic motion, as 

the bifurcation is crossed, the orbit becomes truly periodic and has directed motion in 

a given direction (negative for the four period orbit). As these running modes were 

switched on and off with increasing a the current produced by the system jumped 

between different levels. This is described as precisely the mechanism by which the 

current reversal takes place.

In the next few chapters a new mechanism for directed transport in a Hamiltonian 

ratchet is introduced. This mechanism operates purely in the fully chaotic regime 

and therefore requires no specific dynamic phase space features and the ability to 

produce directed transport is independent of starting conditions. The model is fully 

consistent with the sum rules of the Dittrich group and the symmetry arguments 

of the Flach group. The model displays current reversals which are dependent on 

system parameters and which are explained in terms of the momentum diffusion of 

the system.
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Classical Theory

4.1 Introduction

The main focus of this thesis is in presenting a model for clean atomic transport. 

The model presented is a new type of Hamiltonian ratchet and will be known as the 

chirped double well classical kicked rotor (CDW-CKR). The motivation for the system 

springs from the recent series of experiments in optical lattices involving kicked and 

driven systems which were outlined in chapter 2. The model proposed is experimen­

tally realisable due to  the possibility of asymmetric optical lattice potentials which 

can be pulsed on and off and as such the system is an on-off ratchet as explained in 

chapter 3. This Hamiltonian model is studied for high values of the stochasticity pa­

rameter, so, it is in the completely chaotic regime and therefore does not rely on any 

specific preparation of islands and/or tori in its phase space. The system is a kicked 

system in nature and can be seen as an extension of the standard map. However, in 

line with all other ratchet models the system symmetries have been lowered. In this 

instance both time (by chirped series of kicks) and spatial symmetries (asymmetric 

double well) have been broken. This is the first system to rely on a ratchet mecha­

nism of preferred diffusion - whereby the diffusion of atoms with positive and those 

with negative momentum are uneven up to a finite time, the ratchet time, tr. The 

dynamics of the system are explored in both the classical and quantum regimes and 

in later chapters comparisons between the quantum and classical are explored. In

57
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this chapter the model is presented classically.

4.2 Sym m etry

As discussed in detail in chapter 3 when considering a ratchet system a necessary 

condition for a non-zero particle current is the lowering of one or more of the model’s 

symmetries. In the CDW-CKR, time reversal symmetry is broken; f{ t)  ^  / ( —£)• 

Also spatial symmetries are broken such that V ( x ) ^  V ( —x). The CDW-CKR also 

does not fall into the group of system which axe super-symmetric [41], whereby a 

combination of symmetry breaking conditions leads to a zero net dc current.

4.2.1 Spatial Symmetries

The spatial symmetries of the system are broken by means of an asymmetric 

double well potential. This potential is an approximation (to the second harmonic) 

of a saw-tooth potential seen in many ratchet systems. The potential can be written 

as follows;

V(x) = sin(rr) +  a sin(2x -I- (f>) (4.1)

The variable a, is the ratio of the relative strengths of each harmonic component and 

<f) is the relative phase difference between them. The potential is clearly periodic in 

x , such th a t for the correct value X  and any integer n,

V{x) = V(x  + nX) .  (4.2)

Figures 4.1 and 4.2 show some of the variations possible with this simple potential 

set-up.

This potential is pulsed on and off by a delta function. The amplitude of each kick

is defined by a stochasticity parameter K , the kicking strength. In order to  relate

back to the kicked rotor model an effective kick strength is defined K ef f ,  where:

K ef{ =  K V 1 +  4a2 (4.3)
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Figure 4.1: Potential surfaces for the CDW-CKR for various values of the parameter 
a. a = 1 shows very pronounced double well formation (blue line) while a saw-tooth 
potential is better approximated by a = 0.25 (red line). For all curves 0 =  0

where neglecting all classical correlation terms, the diffusion constant is calculated to 

be D ~  D0 =  K*ff /2. Hence the quasi-linear diffusion rate analogous to the kicked 

rotor is regained, see equation (2 .6 ).

4.2 .2  Tem poral Sym m etries

The time reversal symmetry of the model is broken by means of using a repeating 

chirped sequence of delta kicks as opposed to the equal kick spacing in the kicked rotor 

model. For a value j , an integer greater than one and 6, a small time perturbation, 

the time intervals between kicks in a 2j -I- 1 kick cycle can be written down as follows,

1 -I- jb , 1 + ( j -  1)6...., 1 -  ( j -  1)6,1 -  jb. (4.4)
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Figure 4.2: Diagram showing how the direction of the ratchet teeth can be altered 
by varying phase. For typical on-off ratchet dynamics, figure 3.2, the direction of 
the particle current could be expected to reverse for changes in phase from 0  =  0  to 
<j> — 7r. Note that the potential becomes symmetric for 4> =  7r/ 2  and anti-symmetric 
for <f> = 0 .
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The overall time period in the model is the sum of all the kicks in a cycle,

Ttot = Y / Ti. (4.5)
1 = 1

The time is rescaled such tha t over each cycle the average time between kicks, T, 

is unitary: (T;) =  1. This gives Ttot = N  without a loss of generality. The number of 

kicks in a cycle, IV, is N  = 2j ' 4 -1, for N  odd and N  = 2j  for even N.  So for example 

for N  = 3, the repeating cycle of kicks are spaced as: Ti =  1 +  6 , T2 =  1, T3 =  1 — 6 . 

For N  = 2 the cycle is: Ti =  1 +  6/2, T2 =  1 — 6/2.

Now, the chain of delta kicks can be written down as the double summation,

oo N  M

m  =  E £ < * ( « -  (nT,o, + E Ti)) (4.6)
n = 0  M —l  i = l

So in the sequence the first delta kick comes at time T\ the next at T\ 4 - T2 the 

next at 7\ +  T2 +  T3, in a three kick cycle (N  =  3) the fourth kick would come at 

time Ti +  (Ti 4- T2 +  T3 ).

4.3 C lassical Scaling and the H am iltonian

The motivation for the study of the model initially came from an atom-optics 

point of view as mentioned in earlier sections. Therefore in defining the Hamiltonian 

for the system I will start from an atom-optics stand point. It can be shown (see 

section 6.1 and [67]) tha t the Hamiltonian for an atom in a kicked optical lattice can 

be written in the form,

H(pC’ P,t) = Z M + V°n t ' 2kLX) (4'7)
where momentum and position take their normal notation x, p and is the wavenum- 

ber of the standing wave of laser light of frequency ujl- Vo is the intensity of the laser 

potential and M  is the atomic mass. The function F  represents the potential and 

incorporates both time and space dependencies.
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Figure 4.3: Schematic diagram of the time intervals between successive kicks. Shown 
axe the first 11 kicks of a sequence for N  =  3 with the first three intervals labelled 
for the first complete time period.

The classical dynamics represented by the above Hamiltonian appear to depend 

on three separate parameters: M, Vo, kL- For a study of the system dynamics and 

the onset of chaos each of the parameters would have to be varied in turn along with 

the time between consecutive kicks. This would require a very large parameter space 

to be explored. However, due to re-scaling of the Hamiltonian to dimensionless units

it can be shown tha t the classical dynamics only depend on one re-scaled parameter

which is a combination of all the above. This is achieved by introducing the following 

scaling transformations;

t : T t (4.8)
x f

x : W L (4-9)

f - S r r  ^
So, after substitution into the Hamiltonian (4.7),

H  = ^ ^ p l2 + V0F (r ,x ')  (4.11)
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which can be re-written with a re-scaled energy,

^  + K F (r ,x ' )  = e (4.12)

where e =  8 u rT 2H/Ti and u r = h k ^ j ^ M  and is the atomic recoil frequency.

After dropping primes and approximating the short pulse of an experiment by a 

delta kick, the classical Hamiltonian for the system is written,

H(p , x, t ) = y  +  K V  (x ) f ( r ), (4.13)

where V{x)  is defined in section 4.2.1. and / ( r )  is given by equation (4.6) before

re-scaling.

4.3.1 The Map

The Hamiltonian (4.13) is solved to  give an iterative map, like the kicked rotor, 

by considering the free evolution and kick separately. So, Hamilton’s equation for the 

model are written as,

d H  • (A ^ A \—  =  x =  p (4.14)

and, fllT
—  = - p  = K V ’(x)f( r ) .  (4.15)

The kicking part of the evolution (4.13) is solved by integrating over a small dimen- 

sionless time interval 2A£. This interval starts just before and finishes just after 

the kick to give an expression for the change in momentum. For the n th  kick from 

n(T) -  £ to n(T)  +  f  •
rn (T )+ Z

A p  = - K V ' ( x )  /  f ( r )dr .  (4.16)
J n ( T ) - Z

The delta kick is an instantaneous process, therefore no change in position results 

across the kick. In the free evolution between each kick, of duration 7*, the change 

in the position variable is written simply as,

A x  — pT{. (4.17)
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The discrete mapping for the system can now be written,

P n + l  ~  P n  KV'{x)  (4.18)

%n+ 1 — Xn T  P n + l ^ i i

where n implies the kick number and V'(x) = dV /dx  and i is the ith  kick of the N  

kick sequence. So for the CDW-CKR the mapping for the first kick in a three kick 

chirp sequence is written as,

Pn+l = P n -  K V ' ( x n), (4.20)

x n+l = xn + pn+i(l  + b). (4.21)

4.4 P hase Space Features

The dynamics of the above map axe, like the kicked rotor, explored through sur­

face of section plots. The phase space plots can be used to investigate the system’s 

transition to global chaos and any features of the system such as the existence and 

position of regular islands, KAM tori, accelerator modes etc. In the following sec­

tions, surface of section plots are presented for varying system parameters to show 

their effects on the system dynamics.

4.4.1 Variation of the Effective Kick Strength

Here the effective stochasticity parameter K ef f  is varied. Starting at very low 

kicking strength (figure 2.4a) the phase space of the system is almost entirely regular, 

with only very narrow stochastic regions trapped between invariant KAM tori. The 

phase space bears close resemblance to a completely unperturbed system, where all 

tori are flat and there are no chaotic areas of phase space. The next plot is for a mixed 

phase space where there are still many regular islands and intact KAM tori, so initial 

trajectories cannot explore the whole phase space and are limited to stay between 

their nearest two bounding KAM tori. Moving further right and still in the regime 

of mixed phase space, the surface of section plot is for a value of K ef f  = 0 . 6  where
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Keff = 0.01 Keff=0.1 Keff=0.6 Keff=2 Keff=5

0 3 6 0  3 6 0  3 6 0  3 6 0  3 6
<p

x-axis, particle position, x.

Figure 4.4: Five surface of section plots as the effective kick strength is varied from 
K ef f  = 0.01 until Kef f  = 5 going from left to right. 6 =  0.1, a = 0.5, <f> = 0
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the last KAM torus has just been destroyed. Note th a t both in (b) and (c) not all 

islands in the positive momentum phase space have a matching island in the negative 

momentum phase space. This is as a result of the lowered system symmetries - not 

all trajectories have a counter moving partner. The next phase space is for K ef f  =  2 

and is largely chaotic. Most of the area is taken up by the chaotic sea. Finally in the 

last plot the kicking strength is such tha t phase space is almost entirely chaotic with 

only minute islands still existing.

4.4.2 Am plitude ratio of potential harmonics

In figure 4.5, the ratio of the two components of the potential, a, is varied. While 

for values of a from 2  until 1 / 2  there is little difference in the phase space features, 

it is clear to see tha t as the second harmonic (the sin(2 r  +  0 ) term) is reduced 

and eventually switched off (4.5e) the phase space becomes more regular (there are 

more intact tori) despite the effective kicking strength K ef f  remaining a constant 

throughout.

4.4.3 Relative phase of potential harmonics.

In figure 4.6 the phase difference between the two terms in the potential is varied 

from —7r to 7r. Here in figure 4.6c there is less matching between phase space islands 

in positive and negative regions of the phase space, especially relative to figures 4.6a 

and 4.6e where all islands in the positive momentum space are very well matched in 

terms of size to their counter propagating negative momentum counter parts.

4.4.4 Phase-Space Structure as a Function of N

In this section, the effect of varying N,  the number of kicks in the sequence, on the 

classical phase space features is examined. There is a very clear pattern: For N  = 1 

there is no time asymmetry and the phase space looks quite regular, KAM tori still 

exist and as such phase space is mixed but bounded. For figure 4.7b where there are 

two kicks in the sequence, time symmetry is still not broken, but the dynamics are
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a=2 a=l a=l/2 a=l/8 a=0

0 3 6 0  3 6 0  3 6

x-axis, particle position, x.

Figure 4.5: phase space diagrams for the CDW-CKR as a is changed from values
on the left where a = 2  and the second harmonic has the biggest contribution in
the potential until the second harmonic is completely removed at a =  0. Other
parameters are all kept constant; b = 0.1, K ef f  = 0.5, (f> = 0
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(p=—7T/2 cp=—7C/4 cp=0 (p=7C/4 (p=7t/2

6 0  3 6 0  3 6 0  3 6 0
<P x-axis, particle position, x.

Figure 4.6: Surface of section plots showing phase varied, while a = 0.5, K ef f  = 0.5, 
b = 0 . 1  are kept constant.
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x-axis, particle position, x.

Figure 4.7: Surface of section plots as the number of sequence kicks, N, is increased. 
0 =  0, b =  0.1, a =  0.5.)

already comparably more chaotic. As the value of N  is increased still further, time 

reversal symmetry is broken after N = 3 and for every additional kick in the sequence 

the phase space becomes more chaotic. This can be explained by considering that 

for a sequence with a high value of N  there are more kicks separated by long time 

intervals, for example, for N = 5, T5 =  1 +  26. The time between kicks can be mapped 

onto the kick strength for the next kick in the sequence and as a result a longer time 

between two adjacent kicks is equivalent to a higher effective kicking strength. While 

there are also the same number of kicks with smaller time separations it is those with 

a high effective stochasticity parameter that allow the trajectories to explore the full 

range of the phase space.



Chapter 4- Classical Theory 70

4.4.5 Kick separation, b

Once again, there are obvious trends in the phase space plots in figure 4.8. Starting 

at 4.8b, with the parameter b set to  zero, the time reversal symmetry remains intact. 

As a result, the system bears a closer resemblance to  the standard map and is far 

more regular than at other values of b for the same K eff .  As 6  is increased once 

again the system tends more and more towards the totally chaotic phase space and 

to an increasing extent, not all islands can be matched to their counter propagating 

partners. An im portant point of interest is the comparison between figures 4.8a 

and 4.8d, which show very similar features of their phase space, only reversed in 

momentum. It will be shown later in this report tha t b is one system parameter tha t 

can be used to generate a current reversal. It should also be noted that the phase 

space periodicity in momentum scales with b for rational values of this parameter. 

This can be seen by examining the map where b is represented by M / N  in a similar 

way to Cheon et al , [55]. Here, M  and N  are both integer numbers, so 6  is a rational 

number,

2-71+1 =  X n  +  P n + l  (1 +  M /N ) ,  (4.22)

P n + l  = P n -  K V '{xn). (4.23)

From direct substitution of pn ■► pn +  2N tt, it is straight forward to see,

x n+i xn+i +  2(M  +  N)7r (4.24)

so, as there is a 2n periodicity in x , for integer N  +  M  there is a 2irfi periodicity in 

momentum, where (3 is defined 1/(3 = M / N . Therefore, the periodicity of momentum 

scales as 2ir/3 = 27r/6, an inverse relationship with b.

4.5 Is there a R atchet?

Now tha t the classical phase space has been presented in detail, the next question 

to answer is whether a non-zero current does result from the broken symmetries 

despite the absence of any noise or dissipation. In figure 4.9 an ensemble of 300,000 

trajectories were started along the line p = 0 between values in x  of 0 ,2ir. The
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b=-0.2 b=0 b=0.05 b=0.2 b=0.7

0 3 6 0  3 6 0  3 6 0  3 6 0  3 6

x-axis, particle position, x.

Figure 4.8: The time perturbation , 6, the amount by which the kicks are moved from 
an even time spacing is studied via the phase space. 4> = 0, a = 0.5, Kef f  =  0.5.
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particular system setup these trajectories were subjected to was one of a three kick 

sequence with the small time perturbation b = 0.1. The average energy and the 

ensemble average momentum are displayed and it is strikingly clear that the system 

is indeed a ratchet. The presence of non-zero current, which is constant after a 

finite time, was found to be a generic effect: it is not only independent of specific 

dynamical features of the phase space, but exhibits current reversals for varying 

control parameters. Such control over the current produced in such a system could 

prove useful for devices based around the model.

4.5.1 Ratchet Mechanism

The mechanism by which the system produces the ratchet effect relies on an un­

even diffusion in momentum. For a finite time, the positive and negative momentum 

trajectories of the system gain energy at different rates. This lasts up to the ratchet 

saturation time tr , which can be read from figure 4.9 as the point at which the aver­

age momentum flattens. This is further illustrated in figure 4.10 where for a similar 

ensemble as used in figure 4.9 the energy of the positive and negative momenta are 

plotted on two different curves with half of the total energy plotted between (red 

line). This figure clearly shows that negative momentum trajectories are gaining en­

ergy considerably faster than their positive momentum counter-parts at early time 

scales before the two lines later begin to draw parallel around 1500 kicks.

The diffusion formula for the ratchet is momentum dependent, in fact periodic in 

p. Locally, about p = 0, the diffusion is a decreasing function in p , this results in a 

preferred diffusion in the negative direction. For short time scales the distribution in 

p is subjected to  this gradient in diffusion. Over long time scales, the distribution 

spreads over several periods in momentum and the effect becomes averaged out or 

saturated. The splitting in the positive and negative momentum seen in figure 4.10. 

To start with the energies split in a linear fashion before some averaging takes place 

as some of the trajectories explore a wide range of the phase space on their random 

walk. Full saturation is reached at tr when the momentum distribution has a width 

significantly greater than the momentum period of the diffusion function.
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An asymmetric potential V(x)  produces a momentum dependent diffusion which is 

not symmetric in p. Although a symmetric potential also leads to a periodic diffusion 

function, a wavepacket started at p = 0  would not exhibit a directed current as the 

trajectories would diffuse evenly away from their starting positions. A measurable 

ratchet effect would, however, be achievable with a carefully chosen non-zero starting 

position.

To gain some insight into how the momentum dependence of the diffusion arises 

a brief analysis of the mappings for the standard map and the ratchet are compared. 

This is before a more mathematically rigourous description of the diffusion formula 

follows in the remaining sections of this chapter.

So, from the mapping of the standard kicked rotor,

Pn ~ P o = ^ 2  - v '(xi) = J 2 K  s in fe ) , (4.25)
j = o j = o

is it clear to see,

{(p n  ~  Po)2) =  {(V'(x0) +  V 'fo ) • • ■ V'(xN))2). (4.26)

The R.H.S of equation (4.26) gives terms like (V'(xj ) ) 2 which from equation (4.25) 

will average to K 2/2  since (sin2 (rj)) =  1/2 for an ensemble of particles spanning 

a large range of X j .  The corrections to the diffusion constant come from the cross 

terms  resulting from (4.26). For example (2V,(xj)V,(xk)) is the correlation between 

kick j  and kick k. Adjacent kicks are uncorrelated, for example consider,

l y ' ( xq)V'(x^)) =  K 2(sm(x0) sin(x0 + p0))

= (K 2{ sin2 (x0) cos(p0) +  sin(x0) cos(x0) sin(p0)])- (4.27)

If an ensemble average is taken, with, for example, a Gaussian distribution in x  

and p which is not too narrow (which would be typical after a small number of kicks), 

then, (cos(po)) and (sin(p0)) both average to zero. Hence, the adjacent kicks provide 

no correction to the diffusion.

The 2-kick correlations, however, for example ( V ' ( x do produce non­

zero corrections. It is straightforward to see that terms in cos2p  and sin2p result
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for the 2-kick average. Since both (cos2 p) and (sin2 p) are 1/2 there are non-zero 

correlations. The average over x  yields a second order Bessel function =  J 2 (if) for 

the two kick correction.

So why is there a p-dependent correction in the ratchet? By considering the 

mapping of the CDW-CKR it is clear to see that the introduction of the uneven kicks 

allows an additional free evolution for a small distance Pib. Hence, there are now 

corrections which depend on the sign of p and scale with b and (for short time scales 

at least) D(p)~ ^  D(p)+. The mapping for the CDW-CKR is written,

Xi+\  =  X i + P i ( t i + 1  -  ti), (4.28)

pj +1 = P i -  K V ' [ x l  (4.29)

where (ti+i — U) is the time between consecutive kicks which is no longer always unity.

Instead of the cos2 p and sin2 p terms in the standard map, for the ratchet we have 

terms of the type,

(cos(p(l -I- b)) cos(p)) =  (cos2 pcosp& — sinpcospsinpfr)

~  ( -  cos pb)

-  (4-30)

Here, cos2p oscillates fast compared to cos pb which for small b oc 0.05 is approxi­

mately constant, cos pb ~  1. There are also terms like;

(sin (p(l-}-6 )) cos(p)) =  (sin2 p sinp 6  +  sinpcospcospfr)

-  (4.31)

This term produces the ratchet effect and carries the p-dependence of the 2-kick 

correlations. It is argued that while terms such as sin2 (p) will be quickly averaged 

away after only a few kicks, the terms with the much smaller arguments sin2 (pb), will 

not average so quickly and for short time scales, smaller that the ratchet saturation 

time, the small angle approximation holds. While this argument provides insight 

into the origin of the ratchet, a more formal, mathematically rigourous approach is 

possible and is outlined in the next section.
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4.5.2 The Ratchet Diffusion Constant

Through a more rigourous method it is possible to attach a time dependence to 

the diffusion in the ratchet, allowing more accurate estimates of the system satura­

tion point and behaviour with various system parameters. Here, the derivation of

the diffusion constant for the ratchet is outlined and given up to the first non-zero

correction term, C(2,p). This is done through a modified version of a method first 

demonstrated by Rechester and White [74]. Firstly, the simple case for the kicked 

rotor. From equation (4.25),
i

Si = Y l K  sin (xj), (4.32)
j = o

so now one can write,

Pn  = Po +  S n - i  (4.33)

x N = x N-i  + p N = x N- i  +  po +  SN- 1 . (4.34)

Next, the probability distribution which gives the probability such that at time t, 

x(t) = x  and p(t) = p is given by the function G(x,p,  t). At time t = T,

roo r2ir r2ir r2ir
G ( x t , P t , T ) = •** /  dPog(Po) /  dx0f ( x 0) /  dxx /  dx2

n T = - o o  m = —o o * '- 0 0  • '°
r2ir

• • • /  dxTS(pr — Po — S t - i )S (x t  — xT- i  — Po — S t - 2  +  27r nT)Jo
- ’S ( x i —xo — po — S0 -\-27rni). (4.35)

Where f ( x o) is the normalised distribution for Xq and g(po) is the normalized distri­

bution for po- The T  summations over n  are due to the periodic boundary conditions 

imposed on X{ by the mapping. Following [74] the initial starting conditions are taken 

85 9(Po) — d(Po~Pin) and f ( x o) =  1/27r. An expression for the diffusion constant can 

be arrived at by starting with the definition,

D = ~  Po)2) t - (4.36)

Now,
2  /*27T roo

D = 2T  Jo d X T  J - oo dpG ixTiPTiTXpr -  p0)2. (4.37)
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By direct substitution the diffusion constant can be written as,
1 ° °  ° °  r2Tt fjxn r

D  =  2T  o d X T S "• E i  2j L  d X l Jo dX2{ ' " ]v m=—oo nx=—oo
(ST- i )2S(xt  -  xT~\ -  Vinit ~  ST- i  +  27rnT)

• • • S(Xi -  X0 -  Pinit -  So +  271711). (4.38)

The above expression can be somewhat simplified with the use of the Poisson sum­

mation formula,
OO 2  0 0

Y  %  +  27rn) =  —  Y  exP(imy). (4.39)
n=—oo m=—oo

and can be written as,

r> r  1 ^  x2' f 2n dxo [ 2lT d x \ f 2ir d x T
D  =  fe jT  £  -• S  I  27 J o  ~2n J o 1 7mi=—oo rriT—~oo 

(ST_i)2e*mr(xT-XT-1-Pimt-5T-1) . . . gimi(a;i-xo-Pinit-5o) ^

The simplest solution to the diffusion constant integral is the quasi-linear diffusion 

rate which neglects all correlations between neighbouring kicks. This is calculated by 

setting the values of all the rrij =  0 and recalling equation (4.32), it can be shown 

that,

Dql *  (4.41)

The corrections to this result come from considering terms with non-zero m* or in 

physical terms by the consideration of the kick to kick correlations for the sequence. 

The integral in (4.40) can be solved by using the identity,
oo

e ± i t s in ( l )  _  J n ( fc) e ± in*t (4.42)
n=—oo

whereby now the correction terms will appear as a series of Bessel functions. The 

most simple correction arises from considering 2 -kick correlations i.e. correlations 

between kicks j  and j  — 2, as argued above. This term is the lowest order correction 

and is derived by setting =  ±1 and =  =fl. The resulting correction term is 

then,
K 2 r2* d x 0 f 27r d x \  r2n d xq. . _  K f  axo f  dx\ rzir axx

“  2 T  Jo 2 7  Jo 2 ir '"Jo  ~27
( T~l 'k 2
|  Y  s in fe ) j  (4.43)
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where here rrii+i = == —rrii and i =  2 , 3 Not ing tha t S{-\ — <S'i _ 2 =

K  sin(x*_i) and using equation (4.42) then the first part if the correction term is,

&  f i * d x o  r2* p _ . . .  sin(x )}2 gite-to.-.+x,-,) £  Jn( K) e - inx‘- ‘
2 T  7o 2 ?r Jo 2 tr ./o 2 tt I J nir'oo

(4.44)

The integral above only returns a non-zero result for terms involving 2 sin(^j) sin(:Cj_2)

and when the value of n  in the summation of Bessel functions is set to —2, giving,

f i n  (It - (It - o  „ .
2 ^ M k )J q 2^  JQ — 2  sin(xj) sin(xi-2)e +x (4.45)

which simplifies to,

- f j U ( t f ) .  (4.46)

There is an equal result for values of =  —1, ra*_i =  1. There are in fact (T — 1)

terms of this type for each value of i,

E a ( 2 )  =  ^ M K ) ( - l ) ( T -  1) ~  f j 2( K ) (4.47)
i

for large T. The diffusion constant is now,

D(K) = -  y -J2(K).  (4.48)

Higher order correction terms are derived in the paper of Rechester et al [75]. For the 

standard map the diffusion rate is independent of the sign of the starting momentum 

and as such is the same whether averaged over all negative momentum or positive 

momentum i.e. D(p)~ =  D(p)+.

Now, considering the case of the ratchet system, the map can be defined,

Sl = ' t K V ' [ x j \, (4.49)
j = o

as before, and by following the same line of argument used in the derivation of the 

standard map diffusion constant, the CDW-CKR diffusion constant is written,

n v  1 V' V' f 2 * d x o [ 2*  d x i  [ '
°  = to? 2 T m oo m oo7o 2 7 / .  2 7 " 7 „m  i = —oo m rp = —oo

(St  l )2eimT X̂T~XT- l ~̂ tT~tT- 1̂ Pinit~ST- ^  • • • eimi X̂1 - to)(pin«-s0)) ^

IXj '

2 7
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Once again the quasi-linear diffusion constant is regained by setting rrij =  0 but 

the differences begin to arise when the higher order corrections are considered. It is 

the inclusion of the (U+i — U) in the exponential gives rise to the extra 6-dependent 

correction for the chirped double well map. Taking as an example an N  = 3, i.e. a 

three kick sequence map, there are three different 2-kick correlations to be considered 

for the C(2,p) correction term. These three correlations are between the 1st and 

3rd, 2nd and Ath and also 3rd and 5th kicks in the sequence. These three different 

contributions to the correction term are averaged to give the final C(2,p) correction 

term. Also important to note is tha t for this lowest order correction two values of ra* 

are required for each contribution: m* ±  1, ±2. This is to pick out each of the terms 

in the double well potential. This is in contrast to the one correlation considered in 

the derivation for the same correction in the standard map above. The derivation of 

even this lowest order term is very involved and so here it will be merely quoted.

/^il:3 i /^rl:3 . ✓-'(2:4 . /^2 :4  , s~i3:5 . >—»3:5 I
^ K s ia (x )  ~f" '->.K’asin(2x) ' ^ /iT sin(x) ^ K a s in (2 x )  ■ '-'/C sin(x) ■ K asin (2x) f

(4.51)

where,

C]fsin(i) =  - t E  ■h--ia( ( l -b )K)JJ( l -h )2Ka)(cos(pnb) cos(7rs/2)+sin(p06) sin(7rs/2))

(4.52)

results from the (sin Xi sin £*+2) correlations and,

c k I Si«<2x) =  7 Z  J i - i a(2 ( l -b )K )J3((l-b)4Ka)(cos(2p0b) cos(ir.s/2)+sin(2p06) sin(7rs/2))

(4.53)

results from the (sin 2Xi sin 2 ^ + 2) correlations and so forth:

c k \ in(x) =  ~ \ J 2 - 2 s ( 0 - + b ) K ) J a((l+b)2Ka)(cos(2p0b) cos(7rs/2)-sin(2p06) sin(7rs/2))

(4.54)

^ ls in ( 2x) =  T ^4- 2s ( ( l—6)2A)JS((1—6)4ifa)(cos(4p06) cos(7rs/2)-sin(4p06) sin(7rs/2))

(4.55)

Ctot(2, p) — g
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CK5sin(x) = J2-2s(K)Js(2Ka)(cos(p0b) cos(?rs/2) +  sin(p06) sin(7rs/2)) (4.56)

^Msin(2x) =  i 5 > -  2s((2K) Js((4:Ka)(cos(2pob) cos(7rs/2) +  sin(2p0b) sin(7rs/2)).

(4.57)

As can be seen from equations (4.52-57) the diffusion constant for the correction 

is dependent on the sign of po and the magnitude of b. This dependence takes form 

in both the arguments of the Bessel functions and additional cos(p06) and sm(p0b) 

terms not existent in the standard map. It is these terms which are responsible for 

the splitting of the D(p)~ and D(p)+ curves in figure 4.10. For a complete derivation 

of the C(2,p)  refer to [56].

Numerically, the energy spread for the ratchet can be shown to vary with initial 

momentum, els shown in figure 4.11. The figure shows the total average energy spread 

for 106 initial trajectories. The energy spread is an oscillating periodic function in po, 

the period of which matches the p-periodicity of the phase space. In the lower plot of 

figure 4.11, the momentum independent terms are removed and by a Fourier analysis 

a good fit is found to  a polynomial in sin(p6). This is because the sin(po&) dependent 

terms are the largest contributors to the diffusion constant correction at time scales 

of 100 kicks (those shown in figure 4.11).

The time scales for each contribution to the diffusion constant correction can be 

analytically derived [56], and are given here,

t (sinpob) 21n(j_°-). ( 4  5 8 )
(Kb)2 ’ { }

±(sin2pob) _  2  M ^ O )  / . g g \
(2Kb)2 ’ 1 }

£(sin4po6) _  2 ln(2Q) (4 go)
(4AT6)2 ' 1 '

Each of these time scales refers to the point at which each contribution to the diffusion

constant (from sin(p06), sin(2po6), sin(4p06)) becomes saturated or averaged away. In

the following chapters the value of the total ratchet time tr will be shown to be vital

to optimising the ratchet current.
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4.6 C onclusion

In this chapter the CDW-CKR is introduced in detail. The broken system sym­

metries are shown for both the space and time domains. The classical Hamiltonian 

is given in dimensionless units. Phase space features were discussed for variations in 

each system parameter and the mechanism for this new type of ratchet was explained 

in terms of momentum dependent diffusion. The CDW-CKR is also given up to  the 

first 2-kick correction term. In the chapter 5 the classical system’s parameter space 

is explored in order to find the best system parameters for producing the strongest 

ratchet current.
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Figure 4.9: Plots of both Energy (top panel) and average ensemble momentum(lower 
panel) for 300,000 trajectories started along the line p = 0. The lower graph shows 
a strong negative particle current which is still constant after 5,000 iterations of the 
mapping.
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Figure 4.10: Shows the comparison between the rates at which positive and negative 
momentum gain energy. The red (middle) line is the total energy for the trajectories 
divided by two. This calculation was performed using the same starting conditions 
as in figure 4.9
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Classical Energy Spread vs. Momentum
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Figure 4.11: Shows momentum dependent energy spreading for the ratchet classically. 
K  = 14, a =  1/2, 6 =  0.005. The lower panel shows the spreading after all momentum 
independent contributions have been removed



Chapter 5

Classical Calculations

5.1 Introduction

Now that the model for the CDW-CKR has been described classically and in 

detail, the system’s behaviour can been examined over the large parameter space. In 

this chapter the system is the subject of a numerical investigation of its properties 

under changing system parameters. How these calculations are performed including a 

description of the initial starting conditions is given in detail. Each system parameter 

is investigated individually and those parameters which control current inversions are 

highlighted. Also, a combination of parameter values and ranges is proposed to give, 

classically, the best ratchet, i.e. the combination which produces the largest net 

current. While this chapter focuses on the classical dynamics of the system, with 

a view to a comparison of the quantum and classical regimes, the classical starting 

condition are chosen to reflect those of their quantum counter-parts.

5.2 Classical Sim ulation o f a G aussian W avepacket

For the numerical calculation of the classical observables, momentum and energy, 

a classical wavepacket is used. This wavepacket takes the form of a large number of 

particles (~  106) with a Gaussian distribution in both momentum and position of a 

uniform deviate. A uniform deviate is a random number within a specified range and

84
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in this case the range is specified to be between 0 and 1. One or more uniform deviates 

can be used, through an appropriate operation, to form other types of deviate such 

as the Gaussian deviate used in this chapter.

In order to get useful statistical results it is important to ensure that the random 

number generator used performs well. Here, a simple multiplicative algorithm [108] 

of the form,

I j + 1 =  a/jm od(m ), (5.1)

is used.

This type of algorithm has been shown to fill a multi-dimensional space sufficiently 

evenly so long as the multiplication factor a and the modulus m  are carefully chosen. 

Following [108] these values axe chosen as a = 16807 and m  = 2147483647.

Once the random numbers have can be successfully generated the resulting uni­

form deviates are, by means of a transformation method, converted to a Gaussian 

distribution. The transformation method chosen here is known as the Box-Muller 

transformation [108]. The details of this method used to generate the random devi­

ate with a Gaussian distribution axe now described.

The generated uniform deviates have a uniform distribution in the specified range 

such tha t the probability of generating a number in tha t range between X\ and x\+ dx\  

is given by,

p{x\)dx\ = dx i (5.2)

and for a joint probability for n deviates,

p(xi,x2 ... ,xn)dxi,dx2...,dxn = dxi,dx2-.-,dxn. (5.3)

Now, the joint probability distribution of yn functions of the n  uniform deviates can 

be written using the transformation law of probability as,

For a phase space dimensionality of two as in the system of the CDW-CKR a 

gaussian distribution takes the form,

p(y i,y2)dyidy2 = ^ e (~ ^ {̂ +̂ )')dy1dy2 (5.5)

dyidy2...,dyn (5.4)
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Here, cr, is the width of the distribution. y\ and y2 are functions of X\ and x 2, the 

uniform deviates. In order to transform uniform deviates in the range of (0,1) the 

following Box-Muller transformations axe used for each deviate.

?/i =  \ j —2a ln(xi) cos(27TX2) (5.6)

y2 — \J -2 o  ln(rri) sin(27nr2) (5.7)

These transformations can be proven to form the desired distribution by calculating

the Jacobian determinant from equation 5.4,

d(xi
9(y

=  - (  (5.8)
l j 2/2) \  \p h t )\y/27T )

The efficiency of the algorithm can be improved by choosing initial deviates that 

are formed from the ordinate and abscissa if a random point inside a unit circle. The 

angle that this point defines from the ordinate axis replaces the angle 2 t t x 2 and the 

distance from the origin to the point squared replaces xi. In effect, a transformation 

to polar co-ordinates, allowing the trigonometric calls to be replaced by ri/y/R?  and 

r2/y /R 9. Where (7*1 , r2) is the co-ordinate of the point within the unit circle and with 

R 2 =  r\ + r\. Now, the transformations are written,

yi = y /~ 2(TH R2) ^ =  (5-9)

y2 =  \ j —2o \n(R2)-j== (5.10)

Initial distributions formed using this transformation method are displayed for 

various values of cr both spatially and across momentum in figs 5.1 and 5.2.

This distribution of initial trajectories is used in Monte-Carlo type calculations 

discussed throughout the rest of this chapter. To insure a good statistical average 

the number of trajectories typically used is in the order of 106. This initial distribu­

tion is used as a classical analogy to the quantum mechanical minimum uncertainty

wavepacket defined in chapter 6.
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Figure 5.1: shows initial distribution of classical particles in position (top panel) and 
momentum (bottom panel) for various values of cr. The figure shows that the number 
of initial trajectories used provides a smooth distribution, the shape of which very 
closely approximates a Gaussian in both position and momentum.
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5.3 Calculations

The classical evolution of the system is easy to perform; for each trajectory after 

each kick two quantities are calculated. These are the ensemble average energy,

which is a normalized sum over all m  trajectories after each kick n, and secondly the 

average classical momentum,

The results of these calculations are displayed in various forms over this and the 

following chapters.

As demonstrated in the previous chapter the ratchet effect in the CDW-CKR 

results from trajectories with negative momentum gaining, on average, more energy 

than the positive momentum trajectories or vice versa. This effect is also shown to 

be a short time scale effect in figure 4.9 in the previous chapter. After only ~  500 

kicks the average momentum saturates and thereafter remains at a constant value. 

This saturation point will be known as the ratchet tim e , tr. As explained in the 

previous chapter this saturation point is affected by the magnitude of the small time 

perturbation b. Figure 5.2 shows the energy splitting for p~ and p+ for two different 

values of 6. It can be clearly seen that in the instance of the smaller value of b = 0.04 

the value of tr is significantly larger than the corresponding saturation time for b = 0.1. 

It is the behaviour of tr and (p) as system parameters are varied that is investigated 

numerically in the following sections.

-i M

—  Y p l mM rn,m (5.11)

(5.12)

5.4 The R atchet Tim e
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Figure 5.2: Shows the splitting of the energy for various b for the ratchet (top panel). 
The lower panel displays the corresponding (p) for each b. The system parameters 
used in the figure are K  = 1.8, a = 0.5, 0 =  0, N  = 3 and b = 0.1 and 0.04 as stated 
above.
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5.5 A sym m etry in M om entum

The asymmetric diffusion, for trajectories with differing signs in momentum, up 

to the ratchet time, tr, leads to an asymmetric distribution in momentum. This 

asymmetry, which is clearly demonstrated in figure 5.3, continues to build up until 

the ratchet time is reached. The greater the asymmetry the greater the net current for 

the ratchet. Particularly clear in the top right panel of figure 5.3 is a distinctive bulge 

in the momentum distribution for negative momentum. This graph was plotted from 

initial system parameters of 6 =  0.03, K  =  1.6, a = 0.5 and N  = 3 with zero phase 

difference for the harmonics. The lower plot shows the time averaged momentum 

distribution shown in the plot above but this time multiplied by p. It is straight 

forward to see that the difference in area underneath the curves for positive and 

negative momentum is proportional to the net current. This is because the top panel 

plots are calculated by simply summing the number of trajectories with momentum 

Pi < p < pi +  Sp in a histogram fashion after kick n. The resulting distribution is 

then normalized to unity.

5.6 Kick Separation (Variance o f b)

Recall that the parameter 6 specifies the deviation from the period-one kicking: 

for N  = 3 system kicks are at intervals 1+6, 1, 1 — 6. Here, 6 is varied through a range 

—0.3 < 6 < 0.3. Figure 5.4 displays results obtained using the Gaussian distribution 

of initial conditions described in section 5.2 for 106 starting trajectories. The top 

panel of the plot shows the average momentum of the ensemble, calculated simply by 

averaging all momenta for all trajectories after each kick in the sequence, for several 

values of 6. Even from the top panel alone it is clear to see the large increase in 

the ratchet saturation time, tr, and the resulting final average momentum. These 

results and more are recast in the two lower panels, firstly a plot of tT against 6 

where the ratchet time is calculated for values of 6 at intervals of 0.01. The value 

of tr was taken at the point where a the standard deviation of a running average 

of (p) for 100 kicks falls to 5 percent. These numerical results are plotted against
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Figure 5.3: Shows the asymmetry in classical momentum distributions for values of 
K  = 1.6, N  = 3, a = 0.5 and (j) =  0 for b = 0.1 on the left hand side and b = 0.03 
for the right hand side. The lower panel of plots show the same result multiplied by 
momentum.
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an analytical formula of the form tr = 6.3/Db2. The fit is very close and presents 

a strong numerical argument that the ratchet time is oc 1 /Db2, [56, 111]. This 

numerical result is in good agreement with estimations possible from the diffusion 

analysis of the previous chapter. For an order of magnitude estimate only it is noted 

that in section 4.5.1 there axe odd terms (i.e. sensitive to the sign of p) of the form 

I(p) — (sin(p(l +  6)) cosp). When these terms are averaged over p the terms take 

the form 7(p) = {p±)b/2 from the small angle approximation for small pb. For large 

values of pb such terms tend towards a zero average and the correction for the ratchet 

is lost. Estimating the small angle approximation to be no longer valid for values 

of byj(p2) ~  7r for both positive and negative momentum, one arrives at a value for 

the ratchet time tr ~  6.32/Db2. This estimate proves consistent with the numerical 

findings. A more accurate estimate is possible from a more detailed consideration 

of the diffusion equations where each individual contribution of diffusion equation in 

section 4.5.1 can be assigned an individual ratchet time, [56]. The next panel shows 

the average current (p) against 6, here once again values are plotted for intervals in 

6 of 0.01. The most striking aspect of this final plot is the current reversal for b < 0. 

Numerically, the relationship of |(p)| with varying b is shown to closely resemble a 

1/5 proportionality. This relationship is as expected from the 1/6 scaling of the phase 

space in momentum, explained in chapter 4.5.4. For a longer phase space periodicity 

in p, the momentum distribution can spread further before the effect of the momentum 

dependent diffusion becomes averaged to zero (once several periods of D(p) have been 

encompassed by the widening distribution). This increased saturation time results in 

a greater current magnitude despite the local gradient (in p) of the diffusion formula 

becoming smaller. This can be observed from figure 5.2 where a greater acceleration 

can be seen for 6 =  0.1 compared to 6 =  0.04, however, note that the longer saturation 

time allows for a greater final current and hence the asymptotic response in (p) to 

decreasing 6. As 6 approaches zero, the local gradient in p for the diffusion formula 

also approaches zero, with the ratchet effect switching off in the limit 6 =  0. The 

average current accurately follows a (p) =  —1/6.36 trend seen again as the dashed line 

curve. All calculations in figure 5.4 were performed with the kick strength K  = 1.6, 

a =  1/2, <j) =  0 and a sequence length of N  = 3. The Gaussian starting distribution
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had zero average in both position and momentum and were of width a =  1.5.

5.7 Variation o f a

The parameter controlling the amplitude ratio of the potential harmonics, a , is 

varied through a range of zero to two. The resulting classical system behaviour with 

respect to a is presented in figure 5.5, where both (p) and tr are examined. The 

figure shows a close relationship between tr and (p) for increasing a. Longer ratchet 

times correspond well with large currents. The largest current magnitude is seen for 

a =  0.4 which is plotted (green line) in the top panel of figure 5.5. The basic form of 

the tT and (p) graphs can be explained by considering the shape of the potential. For 

a approaching zero, the potential closely approximates the a symmetric sin x  shape, 

for which no current is produced. As a result both tr and (p) also tend to zero. For 

larger values of a > 1.5, the first harmonic starts to become less significant and once 

again a symmetric potential is approximated. Again, a corresponding fall off in the 

magnitude of tr and (p) can be observed.

5.8 Sequence length  (Variation of N )

Another system parameter affecting the time symmetry of the system is the num­

ber of kicks in the repeated chirped sequence, N. In order to break the time reversal 

symmetry a minimum number of 3 kicks is needed. In this section the numerical re­

sults have the same initial starting conditions as before but with system parameters 

set to K  = 1.8, b = 0.05, a = 0.25, <f> = 0 and values of N  = 3,4,5..., 11. Increasing N  

has little effect on the dynamics of the CDW-CKR. Although there is a clear change 

in the ratchet current as A  is increased, no current reversal is seen. Also the value of 

tr shows only a slight downward trend for increasing N. The unspectacular system 

behaviour with varying N  can be attributed to the fact that, for any sequence (with 

N  > 3), the two kick correlations, which are the most significant contributors to the 

ratchet effect, are always present. There are in fact N  two kick correlations for an 

N  kick sequence. These N  correlations are merely averaged and so it is no surprise
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Figure 5.4: Demonstrates the variance of the net current for the CDW-CKR for 
various values of b. The top panel shows various evolutions of the (p) of the system 
for varying values of b. All other system parameters are kept constant with N  = 3, 
K  = 1.6, a = 0.5 and 0 =  0. It should be noted that as well as the saturated (p) 
increasing as b is reduced that the flattening point of each curve also occurs at a longer 
time. This time, tr is plotted against various b in the middle panel and compared to 
a fitted line with equation tr = 6 .3/(Kb)2. The lowest panel show a current reversal 
as b goes negative and a clear 1/6 proportionality.
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Figure 5.5: Shows classical behaviour for a varied from 0—2. The top plots depicts (p) 
versus time measured in the number of kicks. The next two graphs moving down show 
tr versus a and (p) versus a respectively. All graphs were calculated from 106 initial 
starting conditions with a Gaussian distribution described in section 5.2. System 
parameters are Kef f  = 1.7, (j) = 0, N  =  3 and b = 0.05.
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that the classical behaviour is relatively unchanged for different N.  It is fortunate, 

however, that the largest (p) is recorded for N  = 3. Not only is this the simplest 

sequence to analyse in terms of it diffusion formula, but, as will be shown in chapter 

8, the shortest sequence provides the most favourable quantum behaviour.

5.9 Variation of Stochasticity  Param eter K

In figure 5.7, in the top graph, (p) is plotted against time. The familiar behaviour 

with the current increasing until the ratchet time is reached is once again clear, this 

time for parameter values of N  = 3, a = 1/2, (f> = 0 and b = 0.1 for a range of 

values of K. It comes as no surprise that there is a strong dependence of the current 

on the kicking strength. The expression for the momentum dependent diffusion for 

the CDW-CKR is primarily a series of Bessel functions with arguments of various 

multiples of K. This dependence is apparent in the top graph of figure 5.7 where 

increases in K  lead to a lower (p). This trend could be argued to be due to a similar 

reduction in the ratchet time, which as shown in section 5.4 is ~  l / (K b )2. This 

trend is illustrated in the middle graph of figure 5.7 for values of K  = 1 to 8 at 

intervals of K  = 0.1. There is shown to be, numerically, a good fit to the dashed 

line with equation t = 6 .3 /{Kb)2. This, however, is only part of the story. In the 

bottom panel of the figure {p) is plotted against K  for two different values of b. The 

graph shows two current reversals as K  is increased for the lower value of b the first 

of which occurs at approximately K  = 2.7. For the higher value of b =  0.1 the 

momentum has a minimum at K  = 1.6 which coincides with the minimum value 

for the b = 0.07 plot. After this, the magnitude of the current slowly drops to zero 

as K  is increased, as for this higher value of 6, the ratchet time becomes too small, 

due to the 1 /K 2 proportionality, for sufficient asymmetry in momentum space to 

accumulate to produce a non-zero current. However, for the lower value of 6, the 

ratchet time remains sufficiently long at higher values of the stochasticity parameter 

to see current reversals. These current reversals are due to the fact that the diffusion 

constant correction terms are oscillating functions and can be both positively and 

negatively valued. For the region of a net positive current the various contributions
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Figure 5.6: shows a comparison of (p) and tr for the CDW-CKR with all system 
parameters except N  held constant at K  =  1.8, b = 0.05, a =  0.5 and 0 =  0. Each 
curve is an iteration of 106 initial starting conditions with gaussian distribution. The 
greatest (p) is demonstrated for N  = 3. The graphs from top to bottom display: (p) 
vs time for various N, tr vs N  and (p) vs N.
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to the diffusion constant combine in such a way that the sum of all the diffusion 

components return a value which is greater for the positive momentum tha t the 

negative momentum. For the long time scales in figure 5.7 the correction terms with 

the longest time scale which prove most important and as a result the variation of 

(p) with K  follows the form of the sinp0b dependent terms in equation 4.51 at the 

end of the previous chapter. The trend towards zero for small K  is due to the sum 

of Bessel functions seen in each term in 4.51 tends to zero for small K.

5.10 R elative Phase o f the Harm onics

The final system parameter that gives a current reversal is the phase parameter 

(j>. A range of values from 0 =  — it to 0 =  7r is plotted in figure 5.8 each for the same 

classical wavepacket starting conditions and with system parameters of b = 0.07, 

K  = 1.8, N  = 3 and a = 1/2. The range of 0 is sufficient to encompass a spatial 

symmetry inversion, see figure 4.2 in the previous chapter. This reversal of the spatial 

symmetry is sufficient to give a current reversal. The inclusion of the phase results 

in a term of the form et<f> being introduced within the diffusion formula, reversing the 

overall sign in the case of 0 =  7r resulting in the current reversal and given a zero real 

value in the case of </> =  n/2. The lower two panels in figure 5.8 highlight the points 

of symmetry in the potential with minima in the tr versus (p) graph (middle) and 

points of (p) ~  0 in the bottom graph. Also highlighted once again is the matching 

of maximum tr with maximum current (in both directions). Also, it can be seen that 

both the tr and (p) are periodic in 0. The periodicity of the tr curve is half that of 

the (p) curve. This is explained as the ratchet time is proportional to 1/Db2 and as 

a result tr takes the periodicity of (p2).

5.11 O ptim al R atchet Param eters

Classically the best ratchet will be considered as the set of parameters which 

produce the greatest net current. As such, the only time scale of importance in 

maximizing the current is the ratchet time, tr , this is a clear contrast to the quantum



Chapter 5: Classical Calculations 99

K=l.5 
K=l.8 
K=2.1 
K-2A  
K=2.7

A
v

1000 2000 3000 4000
800

600

is 400

200

0

b=0.1
b=0.03

■5

10

K

Figure 5.7: Displays the sensitivity to K  of the dynamics of the CDW-CKR. Starting 
condition consist of 106 initial trajectories with a random gaussian distribution. The 
top graph displays the behaviour for various K , with (p) dropping as K  is increased 
towards K  = 2.7. Also note that the saturation point or flattening point of each 
curve, tr, is smaller for the higher kick strengths. The middle graph plots tr as a 
function of K  and is compared to an analytical 6.3/{Kb)2 curve. The bottom panel 
displays (p) against K  and displays a more complicated nature than expected with 
current reversals for low values of h.
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Figure 5.8: Classical calculation from 106 initial starting condition randomly gen­
erated with a normalized gaussian distribution. Each curve is plotted for system 
parameters of K  = 1.8, b = 0.07, N  = 3 and a = 0.5. Results are displayed for 
values of 0 ranging 0 to 7r. Current reversal is seen as the potential goes through an 
asymmetric - symmetric - asymmeric transition as 0 goes through the value of ±7r/2.
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Table 5.1: displays which system parameters give current inversions and shows what 
parameter value gives the maximum tr and (p)

Parameter tr (p) Current Reversal
N  3 3 no
a 0.7 0.4 no
b small but non-zero small but non-zero yes
<f) -7r, 0, 7r 0 yes
K  small but non-zero 1.6 yes

system described in the following two chapters. The system has an approximately 

linear growth in energy (and spread in momentum) whether a strong ratchet current 

is being produce or not, so choosing parameter values which maximise tr , will optimise 

the ratchet. As has been shown in this chapter, a net current relies on the build up of 

asymmetry in momentum. This asymmetry results from the momentum dependent 

diffusion constant given at the end of the previous chapter. This asymmetry continues 

to build up to the ratchet time, tr , so the longer the ratchet time the greater the 

asymmetry and the greater the net current. Follow this logic choosing correct values 

of K  and b on which the ratchet time strongly depends is important. From figure 5.7 

the best value of K  would appear to be ~  1.6, to partner this the lower the value of b 

leads to a longer ratchet time, so a value in the range b = 0.015 leads to a very strong 

negative current, figure 5.9. Other system parameters effect on the ratchet current 

are summarised in table 5.1. Where there are several values for a parameter, each 

producing equal |(p)|, choosing the simplest system is the preferred path. So, from 

the table above setting N  = 3, <j) = 0 and a =  0.4 along with K  = 1.6 and b =  0.015 

produces a very strong ratchet current from zero average starting conditions.

5.12 Conclusions

Through this chapter the classical behaviour for the ratchet has been studied in 

detail. A full parameter space has been explored. Resulting from this, optimum 

parameters are suggested to produce the maximum |(p)|. Also numerically demon­

strated are relationships for the ratchet time and ratchet current with system parame-



Chapter 5: Classical Calculations 102

8-
-12

-16

-20

0 10000 200005000 15000

Time in Kicks, n.

Figure 5.9: Shows the average momentum for a ratchet with b = 0.015. There is a 
very strong current at long times for small b. Here the (p) becomes saturated after 
~  20,000 kicks, with a maximum value of 20.69. The system parameters used are 
K  = 1.6, N  = 3, a =  0.4 and 0  =  0.

ters. The large (and rapid) spread in momentum, seen in the classical system, would 

suggest that an experimentally detectable ratchet current would be very difficult to 

achieve. The asymmetry in the classical system would quickly become very small 

compared to the increasing energy and momentum range resulting from the diffusive 

nature of the classical dynamics. In the next chapter the system is theoretically dis­

cussed in the quantum regime. For non-zero values of the Planck’s constant, h, it 

is found that the diffusive growth in energy for the system is eventually stopped. It 

is due to this well known effect of dynamical localisation, tha t there is proposed, a 

possible experimental realisation for the ratchet in a pulsed optical lattice. The quan­

tum  Hamiltonian is, therefore, introduced in terms of an atom-optics stand point in 

chapter 6 . The system is then investigated numerically in detail in chapter 7 which 

finishes with suggestions for the best experimental ratchet parameters.



Chapter 6 

Quantum Theory

6.1 Introduction

As for the classical system, in the quantum analysis of the system, the evolution is 

iterated in terms of a discrete mapping. This mapping takes the form of an evolution 

operator and closely parallels to the analysis of the quantum kicked rotor. The 

evolution operator maps the wavefunction of the system from just before a kick to 

that just before the next kick in the sequence. For the long time evolution of the 

quantum system the evolution operator is iterated repeatedly. The quantum system 

can be formulated so that there are only two control parameters, the effective Planck’s 

constant, h and the kicking strength K .  In this chapter the explicit form of the time 

evolution operator for the quantum ratchet is derived, the initial starting conditions, 

the form of the matrix elements, the expectation values for energy and momentum 

and the Hamiltonian. Example results are also shown as a prelude to the following 

chapter.

6.2 The Quantum  H am iltonian

Since a possible experimental realisation of the ratchet system is being proposed, 

in this thesis (in terms of an optical lattice experiment). The Hamiltonian for the 

chirped double well quantum kicked ratchet (CDW-QKR) will be derived from an

103
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atom-optics standpoint. Following [67] and considering a two-level atom in a standing 

wave of far detuned laser light, the laser field is described, for a standing wave of laser 

light, formed by two counter propagating waves,

E (x , t) = zEo(sin(kLx))(elu;Lt 4- e- ^ * ) ,  (6.1)

here E0 is the amplitude of the field and ujl the laser frequency. Also note that the

light is treated classically.

The free evolution Hamiltonian for the atom can be written,

= 2M  +

where h is Planck’s constant, ujq is the atomic resonance frequency and |e) is the 

excited internal state of the atom. For the Hamiltonian describing the interaction of 

the atom and the field,

Haf = - d .E ,  (6.3)

here d is the atomic dipole operator which can be written in terms of the atomic 

lowering operator a = \g)(e\ as d = (a"f +  a)(e|d|p). Now the interaction Hamiltonian 

can be re-written,

H af = ^ ( a f +  a)(sm(kLx). (6.4)

The tilde denotes the rotating frame of the laser having made the relevant transfor­

mations. Q =  — 2(e\dz \g)E0/h  is defined as the maximum Rabi frequency. In this 

frame the free atomic Hamiltonian is now,

&A = 7 ^  + h A L\e)(el (6.5)

which follows from using the transformation Ul = e*WL̂ ê el, where is the laser 

de-tuning from the atomic resonance.

As the laser is far detuned, i.e. is large, spontaneous emission can be neglected

and the Schrodinger equation can be written,
r\

{HA +  H AF) \ i , ) = i h - \ ‘4>). (6.6)
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Now, decomposing the vector |-0) into a linear combination of its internal and external 

states and noting that in the interaction representation, in which some of the time 

dependence is carried by the operators, not the eigenstates, the time derivatives of 

|(/) and |e) are dropped and the Schrodinger equation can be written as a coupled 

pair of equations:

iTi^dt = 2 M ^ e +  ”  h A ^ e ,  (6.7)

iTl̂ tt = 2M̂ 9 + Y(sin(klX̂ e' ^
Equations 6.7 and 6.8 are the equations for the center of mass motion for wavefunc- 

tions ^ e(x, t) = (xl'ipe) and iftg(x,t) = (x\ipg) respectively. These equations can be 

simplified using the adiabatic approximation. Since the center of mass motion for 

the atom is slow compared to the internal atomic motion, which occurs on a time 

scale much shorter than the damping time (which corresponds to the natural atomic 

decay rate), it is a good approximation to assume that the internal motion is damped 

instantaneously. Now d ^ e/d t  =  0 as this is the term which carries the internal time 

dependence. This gives a relationship between i/jg and and as a result ifje can be 

eliminated from equation 6.7 which becomes,

ih l t  = 2 M ^ 9 +  Vo(sin(2kLx ))- (6-9)

where V0 = hfl?/8 A l - Due to the large detuning almost all the atomic population 

is in the ground state. As a result the excited state can be ignored from the problem 

and the atoms have a center of mass Hamiltonian,

H  = ^  + vo ( s m ( ^ ) -  (6.10)

The second Harmonic in the CDW-QKR is formed by considering, an additional, 2nd 

pair of laser beams, with the spatial phase of the resulting interference pattern with 

the first pair locked, in the following geometric configuration, figure 6.1,

In the experimental set up there is a large frequency difference between each laser 

(A / =  160M H z)  so the standing waves produced by each laser can be added incoher­

ently, i.e. Iinc = {Ei)2 +  {E2)2. This produces the desired sin(2A:z,x) -I- sin(4k ix )  +  0)

potential surface.
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Figure 6.1: Shows the experimental set up for a kicked optical lattice. One laser 
is retro-reflected and one set in a ’bow-tie’ configuration with a 160MHz frequency 
difference between the beams. The black circle in the center represents the interaction 
area. A=60 degrees.

This is the equation investigated below. For the CDW-CKR the chirped kicks 

are introduced by multiplying the term  involving V0 by f{t) defined in equation 4.6 

giving,

H = ^  + V0F(2kLx,t),(6.11)

where F(2&£,, t ) give both the time dependence and the spatial form of the laser field. 

Following the same re-scaling transforms as in section 5.3 this Hamiltonian can be 

written as,

H' = ^  + KV(x')f(r)(6.12)

where this time p' =  —ih'd/dx', K  = 2V0k \ t2/M.  The new effective Planck’s constant 

satisfies [x',p '] =  iTi and as such h' = Ak2Lth/M  = 8ujRt, where t is the period of the 

kicks and wr atomic recoil frequency.
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6.3 M om entum  Basis and B loch Functions

In the solution of the problem the spatial periodicity of the potential, V (x ), and 

hence the Hamiltonian, is used. Bloch’s theorem states tha t because of this periodicity 

we can write the system wavefunction, t/>, in Bloch functions, such that is expanded 

in plane waves,

ipq(x) = exp (iqx)(j)q(x), (6.13)

where (j)q is a function periodic in x , which can be Fourier decomposed using the 

momentum basis,

\p) =  ^ ^ exp(“ ^ a;), (6-14)

such that the wavefunction can be written as the following superposition of the basis

states,

<j>q( x ) = Y ; A p,qeipx. (6.15)

r l / 2
ip(x) = /  exp {iqx)(f)q{x)dq (6.16)

7 - 1 / 2

Now, the wavefunction is written,

rl /2 

- 1 /2

Here, q represents the quasi-momentum and the range of the integral is over the 

first Brilliouin zone. Quasi-momenta outside of the first Brillouin zone are written 

q' = q +  Q. The Bloch conditions are still satisfied as Q is defined, exp(2zQ7r) =  1 for 

V(x) = V (x  +  27t).

Since the kicking conserves quasi-momentum q, it is only the 0g(x)’s that need 

be evolved for each q to determine the state of the system. So, the probability 

amplitudes APtq are evolved to find the wavefunction of the system at a later time or 

any dynamical variable such as the momentum or energy. The Schrodinger equation 

for <pq(x), by direct substitution, takes the form,

~lhl t = I (v+2 i)2 + W  (6-17)
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6.4 The M inim um  U ncertainty W avepacket

The quantum starting conditions are chosen to minimise initial uncertainty and 

hence gain the most information possible about the system at later times. The starting 

point is to consider a normalized Gaussian wavefunction in position space describing 

a free particle at time t — 0.

r 1 1 :/4 _ r2
V>(z,°) =  e W  (6-18)

where here (3 is the variance if the wavepacket. It should be noted that (x) = 0 as 

the integrand,

/OO

dx\'ip(x,0)\2x  (6.19)
-OO

is an odd function in x. Also the value {x2)t=o is given by the integral,

_ r  1 'I 1 /2  fOO _ 2 x 2

<X>,=° = W  i j xeWx (620)
and using the integral,

=  ^  (6 .21)

can be shown to take the value {x2) = (32/2. Correspondingly (p2)t=o is calculated,

/ OO f)
dx'tp*(-ih— )2ip (6 .22)

-oo O X

<*-M>
also noting (p)t=o =  0 since the integrand,

(p)t=o = ~ r f  i>*^r-dx (6-25)l J - oo ox

is also odd in x. So now (p2)(x2) = Ti2/A and the starting conditions have minimum

uncertainty. For a generalized wavepacket centered at (zo,Po) in phase space the

analytical form is,
1  ipn(x — Xrt)

iPg w p (x , 0) =  ,— —e 2̂  e * , (6.26)
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where (3 =  \[h is chosen for a circular wavepacket in phase space i.e. Ap =  Ax.  

Since the chosen basis vectors are the momentum basis the initial wavefunction can 

be written in terms of a linear superposition of the basis vectors. So taking account 

of the Bloch functions,

r l / 2
$ g w p ( x )  = ^2  dqAp,get{p+q)x, (6.27)

p  ■' — 1/2

where we have directly substituted for (f)q in equation (6.16). For the time iteration of 

the Schrodinger equation the initial amplitude coefficients are needed. These can be 

calculated through by working out the overlap integral Ap<q = (p +  q\'tpGWp)- Which 

is written in full as,

Ap,  = . 1 ■ f°° ei(™ )ze~î $ Le*sdTrM dx (6.28)

The integrand is solved by making the substitution z = x  — xq and completing the 

square in the exponential below,

A . ,  =  . 1 r  dzez2/202eK<}vm-',- p)‘ (6.29)

giving the expression for the amplitude coefficients,

Apq = . / A c-i(i*9)*oc- £  (P+q~Po/h)\ (6.30)
V V*r

6.5 Tim e evolution o f the W avefunction

The evolution operator solves the time-independent Schrodinger equation:

th% = (6-31)
Equation (6.31) has the solution,

tp(t) = e x ^ —iHt/tyipfto)  (6.32)

Since the Schrodinger equation is a first order differential equation in time the 

state vector \i^(t)) is determined for all t once it has been specified at any given time
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to. As such an evolution operator U(t, t0) can be defined,

\ijj(t)) =  U (t, to) |^(*o)> • (6.33)

To preserve probability the evolution operator must be unitary. It should also be 

noted that it follows directly that the evolution operator can be applied repeatedly 

and that,

U(t, t0) = U( t , t1)U(ti1t0). (6.34)

For the particular case of the Hamiltonian being time independent the evolution 

operator can be written down directly as,

U(t, t0) = e - k * (t- to), (6.35)

however, in the case of the CDW-QKR the Hamiltonian is time dependent and so by 

considering a sequence of infinitesimal time steps,

U(t, to) = T exp(—i/Ti f Hdt) (6.36)
Jt0

where T  is a time ordering operator which ensures that time is evolved consecutively.

6.5.1 The Evolution Operator

To derive the exact form of the evolution operator once again the Hamiltonian is 

split into two parts, the kick and the free evolution. As with the kicked rotor the 

evolution operator is written as a product of the these two halves of the evolution 

(2.9). Ukick is calculated by integrating across the kick for an infinitesimally short 

time St, as a result the effect of the kinetic energy term, can be ignored.

Ukick = exp (—  / V{pc)g{t)dt) (6.37)
Tl J t - S t

Since the time dependance, g(t), is of the form 6(t — t'),

Ukick = exp( %V̂ ) (6-38)
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In rescaled units.

For the free evolution part, the kinetic energy is a constant between kicks. It is 

then straightforward to write,

tt / ftn+Ti(p + hq)2 . ( ihTJl + q)2. . .
Uqjree =  exp(-z ^     dt) =  exp(----- - ------- ) (6.39)

Where the substitution p = hi is made to relate the quantum and classical mappings. 

Ti, (i =  1,2,3,4) is the period for the z-th kick of the cycle of N  kicks.

The total evolution operator can now be immediately written for one complete 

kick-free evolution cycle, for the ith kick,

/ ihTAl + q)2. . iK  . , . laK  .
u q,tot = exp( 2 -------^exp^— n sm(x ^ exp^— sm(2x +  ^  (6-40^

So the evolution operator for one complete period, i.e N  kicks in an N-kick cycle is 

written as the following product,

U,(T = ' £ T i) = f [ U i u  (6.41)
i i

6.6 M atrix M ethod

In this chapter the method for extracting the results is explained for the quantum

ratchet described is the Heisenberg matrix method. In this method the probability

expansion amplitudes, A f q, are evolved by the evolution operator and used to calculate 

the observables momentum and energy. Firstly, the plane wavefunction, is evolved 

over one kick,

4>” +1(x) = U,4,” (x) (6.42)

and now for the wavefunction,

/* l/2
V>„+1 = U'ipn( x ) =  / exp (iqx)Uq(j)qdq (6.43)

J - 1/2

So the evolution for a kick cycle is carried out such that each plane wave is evolved 

individually by Uq and then integrated over the range of the quasi-momentum to form
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the complete wavefunction for the system. This is done in accordance with Bloch’s 

theorem. In practice the integral in equations (6.43) is replaced by a sum over a finite 

number of quasi-momenta.

6.6.1 Heisenberg M atrix Elements

The evolution operator defined in the previous sections is used to evolve the plane 

wavefunctions by means of a matrix, Ui>ti, the form of which is derived below. From 

equation (6.16) and again having made the substitution p = ITi,

By direct substitution from equation (6.40) the matrix elements are written,

Now as before the evolution operator can be split into the free evolution part and

(6.44)

where the matrix element {l'\Uq\l) is evaluated from,

(6.45)

the kicking part, Uq =  UfTeeUkick, so it can be written,

(l'\Uq\l) = (l'\UfreeM'\Ukid'\l) (6.47)

evaluating (V\Ufree\l),

exp(—iVx) exp(— ̂ ^ ^  ) exp(ilx), (6.48)

{l'\Ufree\l) = e x p ( -^ T^ 2+  ^  exp(z(Z -  Z')rr), (6.49)

(l'\Ufree\l) = exp ( - m i  + q)2)8(l -  /')• (6.50)
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which gives a diagonal matrix for the free evolution in momentum space. Now to 

evaluate (l'\UkiCk\l) the Bessel function generating function is used,
v  i  oo

e x p ( ( - ) ( t - - ) )  -  £  Jm(y)tm (6.51)
Z  1 m ——oo

where Jm is an ordinary Bessel function. If y is set to K/Ti and t to einx then the 

generating function takes the form,

K  °° K
exp(z— sm(nx))  =  £  Jm(—) exp(zmnx). (6.52)

n  nm = —oo

which is a more convenient form to perform the integration {l'\Ukick\l)- So now,

1 00 K  a K  r2*
(l'\Ukick\l) = 7T £  J r ( - r ) M - r - )  exp(is0) /  exp(*(i -  l')x) exp(z(2s -  r)x)dx  

Z7r r ,s = —cxd n  h  Jo
(6.53)

the integrand in (6.53) is zero unless / — — r  4- 2s =  0 so setting r  =  / — /' +  2s gives,
OO T /-  TS-

(l'\Ukick\l) = £  J /- r+2*(T )J a(-r-)exp(*s0). (6.54)
5= - o o  h  h

All Bessel function orders axe integer valued. So bringing everything together,

= exp( lhTlV + q} ) ^ ] e x p ( is$)Ji-i ' -2a ( j r ) J a ( ^ - ) ,  (6.55)

It should be noted that the form of {l'\Ukick\l) is effectively a banded complex unitary 

matrix. For computational purposes, it should be noted that, the value that Bessel 

function returns sharply drops towards zero as its order increases. As a result, by 

choosing a suitable order limit i.e. limiting the maximum value of s the matrix 

becomes sparsely filled and can be transformed into a 2s x Imax  matrix where Imax 

is the momentum basis size. This results in a significant reduction of computation 

time.

6.7 Observables

The calculation of the expectation values for the observables momentum and en­

ergy is now a simple task given the time evolved momentum amplitudes. For a
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dynamical variable with an associated linear Hermitian operator,

A\a') =  a > ') ,  (6.56)

the expectation value for the dynamical variable A  is given by,

(A) = (^>|j4|^) (6.57)

where if; is the state vector for the wavefunction. Now,

( A ) =  Y , W ' ) ( A A W W \ i ’), (6-58)
a',a"

since 11/>) = J2a’ Ca'\a') implies Ca> =  (a'\i/;),

(A ) = K W ) |2(a'W a') = H  \Ca’\2a! (6.59)
a' a1

so following this formalism the energy and momentum expectation values can be 

written as,

(E)  =  7L2 (</>„ | ^ | < U  =  y  E ( '  +  ( 6 - 6 0 )

and,

(p) = h(l) = H^n\i\^n) = h ^ 2 ( l  +  q)\Alq\2 (6.61)
l,q

where the \Afq\ is the momentum and quasi-momentum dependent amplitude coeffi­

cient. The superscript n  refers to the kick number.

As an illustration before the main results are presented in chapter 7, figure 6.2 

shows 3 plots for the CDW-QKR. For all three plots the starting conditions used

are the minimum uncertainty wavepacket described in section 6.4 with a value of

% = 0.25. In the top panel the value (p2) is plotted against time. The tell-tale sign 

of dynamical localisation takes the form of the saturation of the growth in energy 

with time as the suppression in momentum space occurs at the break time t*. The 

middle plot demonstrates the average current for the quantum ratchet. This graph too 

saturates after some time, this time due to the ratchet time tT introduced in previous 

chapters, as in this case tr < t*. The bottom panel show the average displacement 

resulting from the ratchet effect.
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Figure 6.2: Displays in the top panel the quantum energy for the quantum ratchet. 
Note the saturation in energy which is indicative of dynamical localisation. The 
break time for the ratchet system is significantly larger than the corresponding time 
symmetry system. The middle panel shows the (p) for the ratchet and show that the 
non-zero current is not just a classical phenomenon. The current saturated after the 
ratchet time tr. The bottom panel shows the calculated average displacement due to 
the ratchet effect and is calculated by (p)t. All plots had initial system parameters of 
h = 0.25, a = 0.5, K  = 1.6, b =  0.1 and N  = 3 and were started with a minimum 
uncertainty wavepacket.
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6.8 M om entum  D istribution

As the effect of dynamical localisation is understood in terms of a destructive 

interference that limits the spread of the wavefunction in momentum space it is very 

instructive to plot the time averaged amplitude coefficients. Also as from the diffusion 

analysis in chapter 4 there is expected to be an asymmetric distribution in momentum 

it serves as a doubly important study. For the CDW-QKR the time averaged absolute 

square of the momentum amplitudes after time t = n  kicks are calculated,

( ,6 2 )

where q is the quasi momentum, n  the kick number and I the angular momentum 

basis. Figure 6.3 shows the momentum distribution for h = 0.25, AT =  1.6, a =  0.5 

and N  = 3. The bottom panel has the same result plotted against a log scale and 

show the characteristic straight sided shape associated with a localised wavefunction. 

The shape of the plot in the lower panel is well approximated by the equation,

Pp = e x p ( - ^ - ^ )  (6.63)

where L is the localisation length which for the three kick cycle is significantly longer 

than for the time symmetric case.

Also note the slight asymmetry due to the broken symmetries in the system which 

are now frozen in by the localisation of the wavefunction for all time t > t * .
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Figure 6.3: Displays the localised momentum wavepacket for the same initial starting 
conditions used in figure 6.2. The lower plot shows the same result but plotted on a 
logarithmic scale. This lower plot shows the easily recognisable straight side features 
of dynamical localisation.
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Quantum R esults

7.1 Introduction

The quantum behaviour of the ratchet turns up some interesting results. The 

effect of dynamical localisation was shown to exist in the CDW-QKR (figs. 7.1-2). 

However, extra considerations arise when trying to predict the system behaviour. For 

instance, is the localisation length for the CDW-QKR of similar magnitude to that of 

the standard quantum kicked rotor? How do the break time t* and the localisation 

length, L, depend on system parameters such as K  or the number of kicks in a cycle, 

N ? These questions are investigated in this chapter. As will be demonstrated through 

the following sections a good understanding of the behaviour of the localisation length 

is essential when considering the ratchet current. I examine in detail the effect of each 

system parameter on the localisation length for the ratchet. A study of the quantum 

current is presented. At every point a comparison between the quantum and classical 

results is given.

7.2 D ynam ical localisation in the C D W -Q K R

Now it has been shown that the CDW-QKR does indeed localise (despite bro­

ken time reversal symmetry) the extent and speed with which the system reaches 

a localised state needs to be investigated. The localisation of the system should be

118
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compared qualitatively with that of the paradigm delta kicked rotor. As explained 

in chapter 2, the quantum dynamics of the ^-kicked rotor depend on only two pa­

rameters. The quantum kicked rotor’s localisation behaviour with respect to K , the 

stochasticity parameter, and h is well known so this provides a good starting point 

for an analysis of the more complex nature of the CDW-QKR. As a follow-on from 

figs 6.1-2 at the end of the last chapter, figure 7.1 shows the localised momentum 

wavefunctions for the CDW-QKR as three of the system parameters are changed. 

Figure 7.1(a) shows a not unexpected increase in the localisation length as the effec­

tive Planck’s constant is reduced. The corresponding increase in the quantum break 

time is shown in figure 7.2 (top panel). This shows the system follows the classical 

dynamics for longer times as h is reduced, as is expected by the correspondence prin­

ciple. In the middle panel the parameter K  is varied and as for the standard quantum 

kicked rotor the localisation length increases. In the third panel, the momentum dis­

tributions are shown for the system as the time symmetry is turned on (b = 0.1) 

and off (b = 0). A marked increase in the localisation length for the time asymmet­

ric system, as well an asymmetry in the momentum distribution, is apparent. The 

fine detail (of order 1 in momentum) observable in the shape of both the quantum 

momentum distributions, in figure 7.1, is attributed to scarring by remnants of the 

most irrational cantori and tiny phase space islands still seen at moderate K.  In fact, 

momentum values associated with winding numbers which are 27r multiples of the 

golden mean torus were found to leave the most pronounced scars in the momentum 

distribution. These scars are caused by regions of phase space where these highly 

irrational tori existed where there is a lower flux through very broken-down phase 

space barriers. These broken-up barriers cause a t r a f f i c  j a m  in the expansion of the 

momentum distribution, resulting in a noticeable change in number density either 

side of one these barriers.

Also of interest is the ratchet current for the CDW-QKR. As with the classical dy­

namics, the current produced by the system varies considerably with changing system 

parameters. However, the additional h dependence shows up some marked differences 

between quantum and classical behaviour for some parameter values. Figure 7.2 dis­

plays some quantum ratchet average momentum plots for various h (middle panel)
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and K  (bottom panel). In the middle panel it is clear to see tha t the ratchet current 

is highly dependent on the effective Planck’s constant. This can be explained by a 

considering how the localisation interrupts the diffusive growth of the system and will 

be expanded on later in the chapter. From the plot there is a clear inverse relationship 

between the magnitude of the current and the value of h i.e. decreasing h leads to an 

increased current. In the bottom panel the correspondence with changing K  and the 

ratchet current appears to back up the classical dynamics as the current once again 

falls away with increased K.

7.3 The Shepelyanski R elationship

Dynamical localisation for the CDW-QKR occurs for the same reasons as argued 

for the kicked rotor in section 2.4. Briefly, during the free evolution phase (represented 

by Ufree) the phases of each of the wavefunction components evolve different amounts 

and for irrational these components quickly become pseudo-random. When

Ukick now operates on the wavefunction and causes transitions between momentum 

states this randomislocaliseation cause transitions to large momenta to destructively 

interfere, causing the wavefunction to localise in momentum space.

A method for the estimation of the localisation length L, was argued first by 

Shepelyanski et al [63] and is now outlined. Numerical simulation and experimental 

results show a wavepacket that has dynamically localised (i.e. evolved to or beyond 

the break time t*) is represented well by the form,

^ ( / ,t )  ~ e x p | — y | .  (7.1)

This can be represented as a superposition of Floquet states (which are the eigen­

functions of U(t )). The most excited states localised around p = 0 are within L, 

so there are L /h  excited eigenfunctions. Each state has an associated quasi-energy 

phase e~luJi, where the Ui lie within zero to 2ir. This in turn results in a quasi-energy 

level spacing of 8to ~  2/kTi/L.  The system must now evolve for a time t* > 1/Suj 

before the quantum effect of the discrete spectrum is felt. This time, defined as the
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Figure 7.1: Shows the variation in localisation length with changing system parame­
ters. Each plot shows, for the CDW-QKR, a localised momentum space wavefunction 
for t > t*. a) In the far left hand panel the effective scaled Planck’s constant is shown 
for h = 1/2 (green) and h = 1/8 (black). The significant increase in the localisa­
tion length, L, for small h is reflected in a longer break time, b) In the middle plot 
the stochasticity parameter is shown for K ef f  = 1.8%/2 (green) and K ef f  =  2.8\/2 
(black) and illustrates the proportionality of L and Dd , c) In the last plot, the 
presence/absence of the time reversal symmetry is demonstrated. 6 =  0 (green) and 
6 =  0.1 (black) shows that, L, increases substantially as the time symmetry is de­
stroyed. This is largely due to the effective tripling of the time periodicity of the 
system.
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Figure 7.2: Shows graphs of energy, (p2) and average momentum, (p), against time, 
measured in the number of kicks. The top two panels compare various h with classical 
behaviour. The top panel shows that with decreasing h , the quantum energy growth 
follows that of the classical for longer times. The middle panel compares quantum and 
classical average momentum. The values of high h shows significantly lower average 
final momentum as localisation sets in before tr has been reached. The final plots 
shows that the quantum current also falls off with increasing K  in the range 1.8 to 
2.2. All plots were for parameter values b = 0.1, a =  0.5, N  = 3 and K  = 1.8 unless 
otherwise stated.
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quantum break time, is now written,

t* ~  L/h.  (7.2)

Since the quantum diffusion of the system closely mirrors the classical diffusion 

Dd well past the Ehrenfest time t s  up until t* the approximation,

Ddt' ~  L 2 (7.3)

can be made, where the quantum system evolves like the classical one until an energy 

(p ~  Po) L2 is reached. From this the localisation length can be estimated,

L ~  aD d/h,  (7.4)

where a  is a constant of proportionality, which was estimated to be a  — 0.5 by 

Shepelyanski for the standard quantum kicked rotor. The classical diffusion constant 

for the ratchet is somewhat more complex than that of the standard kicked rotor 

as explained in chapter 3. For the CDW-QKR the value Dd will take arguments 

Dd(K,a,b,(f>) and a corresponding change in the quantum localisation length would 

be expected. Through the following sections each system parameter is varied in 

turn (with all others held constant) and the localisation and classical diffusion rates 

axe plotted for each parameter. This should show the correspondence between the 

quantum localisation length and the classical diffusion rate and also highlight any 

purely quantum effects. As a result a value for the constant of proportionality a  for 

the CDW-QKR can be determined.

7.3.1 Variation of K eff

The stochasticity parameter K ef f  has the largest effect on the rate of classical 

diffusion as it is the only parameter in the quasi-linear term in the diffusion constant 

Dd. Here the value of K ef f  is varied through a wide range for several different values

of h. In figure 7.3 the localisation length is plotted against each value for the quasi-

linear diffusion constant (Dq̂( K )  ~  K 2̂ / 2 )  so tha t the gradient of the line will give 

the value a/% for the ratchet. The values for the localisation constant were obtained
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by fitting the form exp(—2\l\h/L) to the final momentum wavefunctions (the 2 arises 

as it is the modulus squared of the expansion amplitudes which is used). The initial 

wavepacket starting conditions were as described in section 6.5. Both negative and 

positive momentum wings  of P(p) where used in the fit so that in instances where 

there is a strong asymmetry in the momentum distribution, such as in figure 7.1c, a 

corresponding decrease (or increase) in the estimate of L was avoided. The resulting 

value of a  taken from the gradients of the graphs is a  ~  6.4. The constancy of the 

value for a  in each graph is consistent with the quantum kicked ratchet relationship 

between L, D and Ti in equation 7.4. This relation between the localisation length 

and Drf ignores corrections to the diffusion constant which can be significant for 

some values of the system parameters, notably for low i f e/ / .  In this case, the effect 

of changing the values of 6, <f> and a can be important and are explored in sections 

7.3.3-5.

7.3.2 Variation of h

Here the effective Planck’s constant, h, is varied. The expected behaviour resulting 

from the Shepelyanski relationship given by equation 7.4 is an inverse relationship. 

The quantum system was numerically simulated for values of % ranging from 0.1 

to 1 and the results plotted against L  in figure 7.4. Parameters were chosen to be 

K  = 1.8, b = 0.1, a = 0.5 and N  = 3, and as such the expected proportionality 

constant is aD  = 20.73. This value is plotted in figure 7.4 (red line) and shows an 

excellent agreement across the range of h used. This result adds substantial weight 

to the other results in the chapter as the system is behaving as expected, backed 

by the great amount of numerical results seen for other kicked Hamiltonian systems 

such as the quantum kicked rotor. This result underlines the finding that for lower 

h the quantum system will follow the behaviour of its classical counterpart. This is 

demonstrated by the increasing localisation length, showing tha t the wavefunction 

spreads further in momentum before the quantum destructive interference is felt.
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Figure 7.3: Displays the linear D vs L relationship for h = 1 ,1/2,1/4 the gradient of 
the curve will be a /h  according to the Shepelyanski relationship. From measurement 
by a line of best fit this proportionality constant a  is found to be ~  6.4. The rr-axis 
shows the quasi-linear diffusion and as such ignore all kick-to-kick correlations in Dd-
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Figure 7.4: Parameters were chosen to be K  = 1.8, 6 =  0.1, a — 0.5 and N  = 3 and L 
plotted against h. A good correspondence to the expected proportionality constant 
is shown by the red curve taking the values L = 20.73/h.
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7.3.3 Variation of a

It is shown here tha t the value of a has a significant effect on the localisation 

length. The ratio between the two harmonics in the ratchet potential is an important 

parameter in the correction term to the diffusion constant (equation 4.51) for low 

values of K .  Numerically, for values of a = 1.6 compared to a = 0.4, there is a 25 

percent increase in classical ratchet energy after ~  4000 iterations when the effective 

kicking strength, K ef f  = 2.2. However, when K ef f  is increased to 12.2 this energy 

difference is reduced to the order of 1 percent. Since, as was shown in chapter 5, there 

is a strong current seen in the classical ratchet for values of K  ~  1.6 or K ef j  ~  2.25, a 

can be expected to be an important parameter when considering the quantum ratchet 

current. As a result the behaviour of the localisation length needs to be considered 

for varying a for this important range in K e/ f .  Figure 7.5 shows the behaviour of L 

and Dd (both numerically calculated) as the parameter a is varied from zero (where 

the second harmonic is removed altogether) until a value a = 2. The form of the 

top and bottom plots in figure 7.5 show a close resemblance and give weight to the 

argument for the direct proportionality between L and Dd shown in equation 7.4. 

Both graphs start at their lowest value for a = 0 where the potential takes the form 

of sin a: alone. Saturation is seen for increasing a as the second harmonic begins to 

dominate the dynamics.

7.3.4 Dependence on </>

The variation of the localisation length with the parameter 0, the relative phase 

of the sin x  and sin 2x terms in the potential, like the behaviour for a, follows closely 

the classical behaviour for the diffusion constant. In figure 7.6 it can be seen that as (j> 

is increased from —7r to n  the localisation length and classical diffusion constant both 

go from a minimum at ±7r and rise towards maximum around ±7r/2 before falling 

to another minimum at zero phase difference. It can be noted tha t the minima of 

the curves (smallest localisation length and diffusion constant) roughly correspond to 

maximum spatial asymmetry and maximum ratchet current. Conversely the maxima 

in the plots matches zero ratchet current and maximum symmetry. These trends are
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Figure 7.5: Demonstrates the same trend for increasing a in both the quantum local­
isation length and the classical diffusion constant. This shows that the variation of 
localisation length with a can be traced to a classical effect. The explanation for the 
shape of both plots can be seen from equation (4.51) where a is in the argument of 
second Bessel function in the product of Bessel functions.
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Figure 7.6: Shows that again the variation in localisation length for varying (j) has 
classical roots. Note that in the figure the phases which produce maximum asymmetry 
and ratchet current have the largest L. Each graph was produced for K  =  1.7, a =  0.5, 
b = 0.1 and N  = 3. The quantum plots are for h = 0.5

explained by noting that the correction to the diffusion constant with respect to 4> 

acts to reduce the diffusion and that maximum correction is seen at ±7r and 0. Both 

plots in figure 7.6 were calculated with N  =  3, a = 1/2, K  =  1.7 and b =  0.1. For 

the quantum plot h was set to 0.5.

7.3.5 b -  D ependence

As for 0 and a discussed above, 6, the deviation from period one kicks, also 

affects the correction terms in the classical diffusion constant for small values of K ef f ,
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however, it does so to a lesser extent. As for a this parameter also forms part of the 

arguments of the Bessel functions in equation (4.51) and is in fact seen in all terms 

in the C(2,p) correction term. W hat might initially be expected to be a complex 

behaviour for the classical Dd as 6 is varied turns out to be a simple smooth fall-off 

in Dd as 6 is increased from 0 to 0.30, shown in the lower panel of figure 7.7, in fact 

the variation in Dd becomes almost constant for values of b > 0.05. The quantum 

behaviour of the localisation is the same general form as predicted from equation 7.4, 

but is somewhat more erratic. This volatility could be due to quantum sensitivity to 

the changes in the kick to kick time scales as the quantum behaviour is dependent on 

the time periods in the system. The value of h = 1/2 was again used in the numerical 

calculations performed for the localisation plot in figure 7.7, other system parameters 

take the values K  =  1.8, a — 0.5, N  = 3 and (j> = 0.

7.3.6 Variation of N

Perhaps the most significant of all the system parameters with regard to the 

localisation length is N  the number of sequence kicks. For an iV-kick cycle the kicks 

come at times: T  = 1-1- (N/2  — 1)6,..., 1, ...1 — (N/2  — 1)6. So it is clear the value N  

determines the overall system periodicity in time. The system’s time periodicity is 

related the value of the scaled Planck’s constant for the system. The effect of doubling 

the time period for the system, or doubling the value of N,  is equivalent to reducing 

the value of h by two: in the quantum evolution T  and Ti appear as a product in 

Ufree = exP(—i(l +  q)2TiT). Figure 7.8 shows the localisation length plotted against 

increasing N  and gives the expected linear relationship. A new approximation for the 

localisation length for the CDW-QKR can now be defined,
L  =  OLNDdN

n
The gradient from figure 7.8 gives a value a D d /h  = 13.18. For the system parameters 

used, K  = 2.5, a = 1/2 (which from equation (4.3) gives the quasi-linear approxima­

tion to the diffusion as D^ — 6.25), 6 =  0.1 and h = 1 and writing a ^  =  a / N  ~  2.13 

from previous results, expression 7.4 gives a gradient of 13.31 which is in good agree­

ment with the result from figure 7.8. The variation of the classical diffusion constant
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Figure 7.7: As with the values of (f> and a the graph shows the variation in the lo­
calisation length compared to classical diffusion constant. The lower panel shows 
classical Dd plotted against b. Once again the quantum behaviour mimics the clas­
sical. However, the top panel quantum plots shows a much more erratic behaviour 
which can be argued to be as a result of the quantum system’s time sensitivity. Both 
plots were calculated numerically for values of K  = 1.7, a = 0.5, <f> = 0 and N  = 3. 
The quantum plots takes a value of h =  0.25.
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with N  shows an entirely different behaviour. This underlines the quantum nature 

of the effect of varying N.  The classical behaviour grows rapidly with increasing N  

for N  small, but quickly saturates at N  = 8. This can be explained by considering 

that with each additional increase in N  there will be proportionally smaller influence 

from the new 2-kick correlation terms introduced into the diffusion constant.

7.4 Quantum  R atchet Current

For sufficiently long break times the current for the ratchet in the quantum regime 

follows closely the behaviour of the classical ratchet. Each classical system parameter 

(except N ), when varied, will affect the magnitude and direction of the final current in 

a similar way to those seen in chapter 5. This result is due to the classical origin of the 

ratchet effect. In the quantum ratchet the asymmetry in the diffusion constant with 

respect to p means that negative momentum states will gain more energy than their 

positive momentum counter parts, in complete analogy to the classical asymmetric 

momentum distribution. Rather than effectively repeating all the results from chapter 

5 again in this chapter, as an illustration, the quantum ratchet current for various (f) is 

shown in figure 7.10. The reader is referred to figure 5.8 for a qualitative comparison.

However, if the system parameters are chosen such that the localisation length and 

hence the quantum break time are short, the momentum wavefunction can localise 

before sufficient asymmetry has been built up across the momentum states of the 

system. This freezing out of the ratchet momentum asymmetry, if it occurs well 

before fr , prevents any significant ratchet current being produced in the quantum 

system. The effect of dynamical localisation is not necessarily a negative phenomenon 

for the quantum ratchet current and can in fact be used advantageously. The effect 

of dynamical localisation can be used to enhance the ratchet effect by limiting the 

energy growth beyond the ratchet time, tr. The classical momentum distribution 

continues to  grow indefinitely as the atoms gain more and more energy with each 

kick, hence, the classical trajectories become very spread out in momentum space. 

After many kicks the net current of the ratchet is very small compared to the total 

energy, so the effective asymmetry in the momentum distribution can be considered
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Figure 7.8: The variation of the system parameter N  produces the most marked 
variation in the localisation length. The quantum results vary dramatically from 
the classical. The gradient of the quantum line is measured at ~  13.18 which is 
consistent with previous numerical results and the Shepelyanski relationship, which 
together produce a prediction of 13.31 for the gradient. The system parameters used 
were K  =  2.5, a =  0.5, h = 1, 6 =  0.1 and zero phase. This system parameters were 
mirrored in the classical calculation in the lower panel which shows only a very small 
increase in D with increasing N.
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Figure 7.9: The figure shows how quantum break time increases with number of 
kicks in sequence. The break time is shown to increase significantly, for the ratchet 
parameters K  = 2, b = 0.1, a = 0.5 and zero 0.
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Figure 7.10: (a) Quantum graph of (p) vs time in kicks for system parameters K  =  1.8, 
(j> = 0, a = 0.5, h = 0.25, b =  0.1 and varying phase. The plots shows agreement with 
the classical behaviour - current is reversed for <fi > n/2. Also current magnitudes 
match well with larger currents seen for positive net currents.
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Figure 7.11: Quantum probability distributions for K  = 1.6, b = 0.1, a = 0.5, 
h = 0.25 and changing (j> for t t*. In the discretised momentum basis, ip = Hpe*px, 
P(p) =  \A(p)\2. The asymmetry in momentum can be seen to reverse as the phase is 
increase. The greater the asymmetry matches to greater ratchet current.
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to be small. By taking advantage of the quantum effect of dynamical localisation, the 

effective quantum momentum asymmetry can be kept as high as possible by freezing 

the momentum distribution of the system. In turn this limits the energy growth after 

t* has been reached. The ratchet effect can, therefore, be enhanced by the effect 

of dynamical localisation. The quantum dynamics merely mimic the classical, then 

become frozen in time after tr is reached. In the quantum ratchet a meaningful way 

to quantify the asymmetry is to use a re-scaled momentum such that pl = (p )/L • 

This value tends to a constant for long times t > t*. It is this value that should be 

maximised for the best experimental signature of the ratchet.

7.5 Q uantum  - Classical Com parison

It is now clear that a good understanding of how system parameters affect both 

the classical and quantum behaviour is needed to produce the optimum current from 

the quantum ratchet. Figure 7.12 shows plots of quantum final P('ijj(p)).p for various 

h versus classical N(p).p after varying number of kicks (td) corresponding to t* for 

each ?i. The figure demonstrates well the matching between the classical and quan­

tum  distributions as td is matched to t*. Also clear is the visible washing out of 

momentum asymmetry as the system energy is allowed to grow for the high values 

of t* corresponding to the bottom panels in the figure. The asymmetry built up in 

momentum up until the ratchet time tr is dwarfed when the system evolves for a 

much longer time. This corresponds to values where t* is significantly larger than tr. 

It would seem logical that in order to maximise the current (oc tr) to total energy 

(oc L) ratio resulting from the ratchet, parameters should be chosen to set the ratchet 

time tr and the quantum break time t* to be roughly equal. Setting these two times 

equal should not only allow all possible momentum asymmetry to accumulate but 

also halt the energy growth of the system at tha t point. Some system parameters 

will be set according to the classical behaviour: there would be little point choosing a 

value for K  tha t produces no momentum asymmetry classically as no current would 

be produced no m atter how well tr and t* are matched.

Figure 7.13 displays the variation of average quantum momentum in the top panel
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Figure 7.12: Shows corresponding momentum distributions for classical and quantum 
regimes. Each plot was run from system parameters taking the values K  = 2.0, 
b =  0.07, a = 0.5, (j) — 0 and N  = 3. The results show how for lower and lower 
values of h the quantum system evolves as the classical does for longer times. The 
lower plots for h = 0.125 shows how the asymmetry in the system can become small 
compared to the spread in the wavefunction. The optimum condition is to arrest the 
wavefunction spread just as maximum asymmetry is accumulated.
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Table 7.1: displays the quantum localisation and diffusion constant maxima and 
minima for all system parameters. Also comment is made as to whether the quantum 
behaviour follows that seen in the classical system.

Parameter L (min) D  (min) Quant. Class. Correspondence
N l 3 no
a 0 0 yes
b b > 0 .1 b > 0.1 yes
<t> 0, ±7r/2 0 yes
K low K lowif yes
h large Ti no effect no

against the classical results from chapter 5 in the lower panel. While the quantum 

and the classical curves have the same basic shape, sharing the same axis crossings 

with current reversals at K  =  2.6 and the same regions for their maxima and minima, 

there are some important differences. The quantum plots in the top panel show an 

improving fit to the classical results for decreasing h. This shows the interplay between 

the two time scales tr and t*. The classical curve for matching system parameters 

has a minimum at K  = 1.5. For each successive reduction in the value of % the break 

time is increased. For the low K  ~  1.5 and for h = 0.125 the quantum wavepacket 

is allowed to evolve for long enough (i.e. t* is sufficiently long) for all the possible 

momentum asymmetry (from the momentum dependent diffusion) to be built in. This 

is demonstrated by minima at matching values of K  for the classical and quantum 

U = 1.125 curves. In the h = 0.25 and h = 0.5 plots, for this value of K , the value 

of t* is too short and the wavepacket localises before tr. As K  is increased for these 

higher h plots the classical dynamics are recovered at the point where t* > tr. For 

higher h higher values of K  are required for this inequality to be met. Classically 

higher values of b lead to tr small and as a result the current reversal after K  — 2.6 

shows only a very small positive current for 6 > 0.1.
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Figure 7.13: Displays average ratchet final momentum against variations in the 
stochasticity parameter K. The figure shows in the upper panel quantum results 
for b = 0.1 for several different values of h. When compared to the classical plots 
in the lower panel for varying b insight is gained into the interplay between the time 
scales tr and t*. In the quantum plots the local minimum of the curve move closer 
and closer to that of the classical results for smaller h. For higher h > 0.5 the value 
of t* is too short and insufficient asymmetry is built up resulting in small net current. 
It requires a higher K  for the quantum to ’catch up’ with the classical. For h = 0.125 
the value of t* has met or exceeded tr and the quantum current matches the classical 
for K  ~  1.6. Both plots show a current reversal after K  = 2.6. The net classical 
current is reduce for increasing b corresponding to lower tr at high K.
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7.6 The Optim um  Quantum  R atchet

To produce the best quantum ratchet (i.e. the set of system parameters which 

would produce the clearest experimental signature of non-zero current) values for 

tr >  t* must be met as well as the second condition, maximise Pl =  (p)/L. Firstly, in 

order to maximise the value pi,  parameters for which L shows the greatest sensitivity 

must be chosen carefully. Hence, the value for K  should be chosen to be small, 

therefore the maxima or minima for (p) corresponding to the lowest K  so, K  ~  1.6 

is chosen. Happily this also produces the greatest current magnitude. The value for 

Ti should not be too small due to the inverse relationship with L. A value of h = 0.5 

is suggested as this also produces a sizeable quantum current at K  = 1.6, values of h 

greater than this localise too quickly preventing sufficient asymmetry build up. Also, 

N  is chosen as N  = 3 as not only does this provide by far the smallest L  (as there is 

a linear relationship L  oc N )  but also the maximum classical current. The parameter 

a should be set to achieve maximum current (as the is a relatively small penalty in 

increased L) which from chapter 6 was seen to be a = 0.4. Parameters responsible 

for current inversions should be chosen such that maximum current is achieved, so <j) 

is chosen as zero. The value for b should be set below a minimum value which can be 

approximated as follows: for tr > t*,

2* > £  (7.6)Db2 D

so, from equation 7.5,
2tt_ D2b2N 2 
a 2N > ti

a n  has been numerically estimated at 2.1, so,

y  > — 5 1 - •  (7-7)

T  < ™
so putting in K  = 1.6, N  = 3 and ti = 0.5 one finds that b < 0.08.

There is a good argument for choosing a value of 6 as close to this maximum limit 

as possible. Before tr is reached the ratchet current is increasing, or, the particles are 

subject to a net acceleration. It is noticed that although for smaller b the ratchet time 

is longer, resulting in greater final classical currents, the initial gradient on the (p)
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Figure 7.14: Shows the initial ratchet acceleration for t < tr. System parameter 
values used axe K  =, a = 0.5, N  = 3, 4> =  0.

vs. t curves is higher for higher b. This can be expected, as at the ratchet saturation 

time, £r , which is oc 1/62, the final (p) is reached which is oc —1/6, from figure 5.4. 

The average gradient up until tr is given by (p)/tr oc 6. Using the analytical fits in 

figure 7.14 and the ratchet parameters of the plots, the constant of proportionality is 

estimated ~  —0.1. The average gradient for t = tT is plotted (classically) for values 

of —0.08 < 6 < 0.08 in figure 7.14.

Experimental constraints need to be considered for the proposed kicked optical 

lattice experiment: there may be limiting factors on measurement magnitudes and
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experimental time scales. Firstly, what momentum range can be feasibly measured? 

A typical CCD camera used in atom optics experiments has a width corresponding 

to  ±200hkL [112]. Which in the dimensionless units used here means a momentum 

scale of ±100 momentum units at h = 1. So, L should be restricted to be less 

than 100, which is consistent with the parameter values listed above. Secondly, the 

experimental time scale sets a limit for the number of kicks at ~  1000 before the 

atoms move away from the centre of the laser beam. This time scale is also consistent 

with the selected parameter range.

7.7 Conclusions

In summary, in this chapter a numerical study of all parameter dependencies for 

L  has been carried out. A new form of the well known Shepelyanski relationship 

has been derived numerically. Also a comparison between the classical and quan­

tum  times scales of tT and t* is given, classical and quantum momentum evolutions 

are compared in figure 7.13. Ratchet current numerically calculated for a range of 

quantum parameters in figure 7.14 showing the best quantum current and a closer 

quantum correspondence to the classical behaviour as h is reduced. Finally, a range 

of experimental system parameters are suggested (in dimensionless units) to produce 

the clearest experimental signature for the ratchet effect for a kicked optical lattice 

experiment.
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Conclusions

8.1 O verview  o f C om pleted Work

A new type of ratchet system has been presented, modelled and analysed in de­

tail. The chirped double well kicked ratchet (CDW-KR) is a noise-free, Hamiltonian, 

dissipationless, fully chaotic ratchet. This type of system was previously thought to 

be non-current producing. In this thesis the CDW-KR is demonstrated both numer­

ically and analytically to be current producing. In fact, the CDW-KR was not only 

shown to produce a net current for the correct parameter values, but, current rever­

sals as some of these parameters are varied. This is the first system of its type and 

the mechanism by which non-zero current is produced is quite generic. As a result 

similar behaviour can be expected in other systems of its type, [69].

The CDW-KR is also experimentally realisable and was actually inspired by the 

recent developments in the area of atom optics, expanded on in chapter 2. The 

Hamiltonian for the system was derived from consideration of cold atoms in an optical 

lattice. Also, system parameters are estimated at the end of chapter 7 tha t should 

provide the best experimental signature for detection of non-zero current.

The system was analysed in both the classical an quantum regimes with each 

system parameter considered in turn. Classically the parameters were classified as 

those whose variation produces a current reversal and those that are non-current 

reversing. Parameter values are also given that maximise tr and (p). Quantum

144
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mechanically the ratchet effect was found to be enhanced for well chosen parameters. 

This is due to the freezing of the momentum space wavefunction in time as the 

system is dynamically localised. This effect allows for the asymmetry in the system 

to be maximised for the best experimental detection. The localisation of the CDW- 

QKR was examined in detail. All trends that were shown in numerical simulations 

were explained physically and with reference to the system diffusion constant. A 

numerically derived modified Shepelyanski relationship was presented which follows 

all trends predicted in previous work. All codes written to perform the numerical 

calculations in this thesis were developed in FORTRAN 90.

The ratchet mechanism for the CDW-KR was explained in terms of asymmetric 

diffusion in momentum before the onset of dynamical localisation. The momentum 

dependent diffusion constant was given, up to the 2-kick correlation correction term, 

as well as a qualitative argument as to the origin of the ratchet terms. This was 

verified by numerical calculations of energy for positive and negative momentum 

particles respectively. These calculations showed the striking splitting of the positive 

and negative momentum curves over short time scales, see figure 5.2.

8.2 Points o f Interest

The most significant findings in this thesis are reiterated here:

1. The discovery and analysis of a new ratchet type.

2. This ratchet is quantum enhanced, fully chaotic, experimentally realisable and 

noise free.

3. The ratchet displays the dynamical phenomena of current reversal and a new 

momentum dependent quantum localisation.

4. A modified Shepelyanski relationship including the parameter N.

5. The mechanism for the ratchet is explained in terms of momentum dependent 

diffusion and is found to be generic for its type.
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6. System parameters axe proposed to produce the optimal experimental ratchet 

signature.

8.3 Future D irections

There are possibilities to extend the work presented in this thesis in the following 

ways. To better simulate the proposed experimental work the replacement of the 

(5-kick by an experimentally feasible pulse of finite duration could be included. Clas­

sically this is shown to produce a modified momentum dependent K ef j  which scales 

as a sine function. In the resulting phase space features the reappearance of KAM 

tori at high values of momentum is found, [24].

The addition of noise into the system may well be of significant interest. Could 

weak noise enhance transport properties in the ratchet without completely destroying 

the quantum dynamical localisation effects? Much work has been done with noise 

in the standard kicked rotor. This work could be extended to the ratchet system 

proposed here.

The dynamical localisation in the ratchet was found to be momentum dependent. 

Strongly localised states occur at diffusion constant minima in p, where as more 

weakly localised states axe observed where the diffusion constant peaks. The study 

of Floquet states and energy level dynamics may prove interesting. The possibility of 

new level statistics for a ratchet system of this type could be investigated.

Bose-Einstein condenstates (BEC’s) have been achieved in an optical lattice, [114]. 

The inclusion, in the system Hamiltonian, of an extra non-linear term from the BEC 

could destroy the dynamical localisation in the system if it is too large. Further 

work in this area could answer the question: Could a BEC be survive in the CDW- 

QKR in devices such as atom chips ? Conversely, would ratchet transport survive the 

non-linearity in the Gross-Pitaevski equation?
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8.4 Possible Future A pplications

The momentum dependence of the diffusion constant allows a possible application 

for the CDW-KR and other systems of this type, [69]. Since the localisation length in 

the quantum system are dependent on the local diffusion constant (in momentum), 

both the rate at which energy is absorbed and the length of time this energy is 

absorbed for are controlled by a particle’s initial momentum. As a result atoms 

started at one momentum may pass through such an atom optic device relatively 

unaffected compared to atoms at different starting momenta. This forms a velocity 

selector [69] which could have a potential application in atom chips. Atom chips are 

a result of recent work in atom optics where cold atoms are trapped and guided by 

fields above a solid substrate, [113, 114]. Possibly, one day, an atom optics analogy 

for an integrated circuit will be possible where devices, like the velocity selector, may 

provide an important role in trafficking atoms. Already experimental work is being 

carried out taking advantage of the momentum dependence of the diffusion constant 

for this type of system, see figure 8.1. In the figure momentum dependent variations 

in diffusion axe used to produce non-zero currents for a double kick system. Initial 

wavepackets are started at different momenta to produce asymmetric distributions in 

momentum, much like those presented in this thesis.
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Chapter 9 

Appendix: Papers

Two Papers are presented in this appendix:

Proposal for a Chaotic Ratchet Using Cold Atoms in Optical Lattices 

T. S. Monteiro, P. A. Dando, N. A. C. Hutchings and M. R. Isherwood

Physical Review Letters 

Volume 89, Number 19

Chaotic Hamiltonian Ratchets for pulsed periodic double-well potentials : classical

correlations and the ratchet current 

N. A. C. Hutchings, M. R. Isherwood, T. Jonckheere and T. S. Monteiro 

To be submitted to Physics Review E.
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Proposal for a Chaotic Ratchet Using Cold Atoms in Optical Lattices

T. S. Monteiro, P. A  Dando, N. A  C  Hutchings, and M. R. Isherwood 
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

(Received 5 April 2002; published 22 October 2002)
We investigate a new type of quantum ratchet which may be realized by cold atoms in a double-well 

optical lattice, pulsed with unequal periods. The classical dynamics is chaotic and we find the classical 
diffusion rate D is asymmetric in momentum up to a finite time tr. The quantum behavior produces a 
corresponding asymmetry in the momentum distribution which is “frozen-in” by dynamical local­
ization provided the break time f  ^  tr. We conclude that the cold atom ratchets require Db/h ~  1, 
where b is a small deviation from period-one pulses.

DOI: 10.1103/PhysRevLetL89.194102

Cold atoms in optical lattices provide an excellent 
experimental demonstration of the phenomenon of dy­
namical localization [1,2]. Dynamical localization 
(DL) has been described as the so-called “quantum sup­
pression of classical chaos.” In the usual realizations, a 
periodically driven or kicked system makes a transition 
to chaotic classical dynamics for sufficiently strong per­
turbation. The classical energy is unbounded and grows 
diffusively with time. For the corresponding quantum 
system, in contrast, the diffusion is suppressed after an 
^-dependent time scale, the “break time” t*. The final 
quantum momentum distribution is localized with a char­
acteristic exponential profile. The formal analogy estab­
lished with Anderson localization [2] forms a key 
analysis o f this phenomenon. A series of recent experi­
ments on cesium atoms in pulsed optical lattices [3] gave a 
classic demonstration of this effect

The possibility of experiments with asymmetric lat­
tices, in particular, with asymmetric double wells [4,5], 
leads us to investigate the possibility of constructing a 
“clean” atomic ratchet, where the transport results purely 
from the chaotic Hamiltonian dynamics, with no Brown­
ian or dissipative ingredients. Ratchets are spatially 
periodic systems which, by means of a suitable spatial- 
temporal asymmetry, can generate a current even in the 
absence of a net force. There is already an extensive body 
of work on Brownian and deterministic ratchets with 
dissipation [6,7], driven by the need to understand bio­
physical systems such as molecular motors and certain 
mesoscopic systems. Some of this work encompasses the 
quantum dynamics [8]. For a full review see [9]. However, 
to date there has been very little work on Hamiltonian 
ratchets. One notable exception is the work by Flach et al 
[10] where the general form of the spatial and temporal 
desymmetrization required to generate transport was in­
vestigated The only substantial study of quantum Hamil­
tonian ratchets, however, is the work o f Dittrich et a l  [11] 
which showed how transport can occur in mixed phase 
spaces. They demonstrated that transport is zero if  start­
ing conditions cover all regions of phase space uniformly. 
A key result was a sum rule showing transport in the

PACS numbers: 05.45.Mt, 05.40.Jc, 05.60.-k, 3280.Pj

chaotic manifold is balanced by transport in the adjoin­
ing regular manifolds (stable islands/tori). Very recently 
[12], it was shown that a kicked map with a “rocking” 
linear potential leads to confinement in the chaotic region 
between a pair of tori which are not symmetrically lo­
cated about p  =  0.

Here we propose a new type of Hamiltonian ratchet 
which, classically, is completely chaotic. This ratchet is 
not inconsistent with the rules established in [10,11], but 
has a quite different mechanism It is the first example of a 
clean, nondissipative ratchet which is fully chaotic and, 
hence, does not require initial preparation on a specific set 
of islands/tori.

The basic mechanism relies on a hitherto unnoticed 
effect In brief: consider particles in the asymmetric 
lattice, subject to a repeating cycle of kicks, of strength 
Kcff, perturbed from period one by a small parameter b. 
We find that the classical diffusion rates for positive and 
negative momenta (D+ and D~, respectively) are (in 
general) different up to a finite time, tr. For t < tr, 
an asymmetry in the classical momentum distribution 
Ndip) accumulates with kick number Beyond this 
“ratchet” time tr, the rates equalize, we have D + ~  
D~ ~  D (where D ~  K%ff/ 2 is the total diffusion rate), 
and the net classical current (pc]j saturates to a constant, 
nonzero value. The energy, of course, continues to grow 
with time as (p^) ~  Dt. The corresponding quantum 
current depends on t*/tr: if  the quantum break time is 
too short, no asymmetry in the quantum Nqm(p) accu­
mulates and there is no quantum transport If f  »  tr, the 
localization length L becomes large and the effective 
quantum momentum asymmetry ~ (p qm)/L  decreases. 
We find that tr ~  ^ . A quantum ratchet will have the 
clearest experimental signature if  t* ~  tr. Since t* ~  
D /h2, the main conclusion of our Letter is that the cold 
atom ratchets need D b/h  ~  1.

Consider the quantum dynamics for a Hamiltonian 
given by H =  ^  +  KV(x) 8(t ~  nT/). The ratchet po­
tential is given by V(x) =  [sin* +  a sin(2x +  <f>)}. In the 
usual realization of DL, the quantum kicked rotor 
(QKR), the kicks are equally spaced For the ratchet,

194102-1 0031-9007/02/89(19)/194102(4)$20.00 © 2002 The American Physical Society 194102-1
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they are unequal but we can use a rescaled time such that, 
without loss of generality, we take (7,-) =  1 over each 
cycle. We take a repeating cycle o f “chirped” kick period 
spacings, 1 +  j b ,  1 +  ( j  — l ) b . . . ,  1 — (J — l ) b ,  1 -  j b  
where j  >  0 is an integer and b is a small tim e increm ent 
N  =  2 j  +  1 for N  odd and N =  2j  for N  even. Then, our 
N  =  3 cycle corresponds to a repeating set o f kick spac­
ings J ]  =  1 4- b, T2 =  1, T3 =  I -  b while an N  =  2 
cycle corresponds to Tx — 1 +  b, T2 =  1 — b, and 
so forth.

T he time-evolution operator for the /th kick o f the nth 
cycle factorizes into a free and a “ kick” part f/, =  
jjfree(jtock j n ^  usuai piane wave basis, for a given 
quasimomentum q , the matrix elements of t/, can be 
shown to take the form:

«3<*> = *-«««♦*« I  «“ •/.—*(f }/,(f )
(1)

where the J  are ordinary Bessel functions. The tim e- 
evolution operator for one period U (T  =  7,) =
n j l f  U ,?• In the experiments, an im portant param eter is 
an effective fte{{ =  8corT , where (or is the recoil fre­
quency. In [3], ^eff ~  L so here we have considered the 
range ft — 1 —► 1/10.

In Fig. 1 we compared the evolution of a quantum wave 
packet with equal kick times (7f- =  1) with a correspond-

4000

3000
A
O72OOO

1000

T=( 1.1,1.0,0.9)T=1

2000
t

4000 0 2000 4000
t

FIG. 1. Effect of equal and unequal kick spacings on a 
minimal uncertainty Gaussian wave packet with ft =  1/2 
with initial <p ) =  0, for kick strength K  — 2 and a — 1/2, 
for different d>. (a) Evolution of energy and momentum for 
T =  1 (dw-QKR). (b) Evolution of energy and momentum for a 
repeating N  — 3 cycle of kicks with 6 =  0.1, hence 7, =  
1.1, 1.0,0.9 (cdw-QKR). (a) and (b) show that there is no 
transport for the equal kick case, but that there is a substantial 
net momentum ( — constant if t >  t*) for the cdw-QKR. Setting 
4> = 7r reverses the current relative to 4> =  0. The insets show 
the first moment of the p  distribution: The current is the 
difference in area between the positive p  and negative p  
“bumps.” The DL form |p|W(lpl) =  ^ fe x p - |p |/L  [with L =  
27.5 — 3.5D0/H (see Fig. 3)] is superposed, showing the DL 
form is regained for large enough p .

ing unequal-kick case with N = 3, b = 0.1. Since V(x) in 
general represents a double-well potential, we refer to it 
as the dw-QKR to distinguish it from the standard map 
case with V =  K situ. We refer to the unequal-kick case 
as the chirped or cdw-QKR.

The upper graph in Fig. 1 shows that, in both cases, the 
average quantum energy initially increases linearly, i.e., 
(p2) — Dt. The straight line corresponding to the classi­
cal energy is also shown. Neglecting all classical cor­
relations, we find D — D0 =  Â ff/2 , where Keff =  
Ky] (1 + 4a2). The 4> dependence lies in neglected corre­
lations, which in this case appear as products of Bessel 
functions [13]. However, beyond a time scale t ~  /*, the 
quantum energy saturates to a constant value (p2) ~  L2, 
where L is the localization length.

The dw-QKR shows a typical, exponentially localized, 
momentum distribution. However, for the cdw-QKR, the 
quantal N(p) is evidently asymmetric, but regains the DL 
form at large p. There is no net current in the T = 1 case: 
asymptotically, {p ) ^ 0. However, for the chirped case, 
for t > t*, in general we have (p) ~  constant. A mean­
ingful way to quantify the asymmetry is a rescaled 
momentum p L =  (p)/L  which also tends to a constant 
for t > t* [e.g., pL »  1/8 in Fig. 1(b) for =  0]. Taking 
<t> =  7r reverses the symmetry of V(.x) and the direction of 
motion relative to 4> =  0. Intermediate values of typi­
cally give (p) within these extremes.

In summary, the cdw-QKR shows a ratchet effect and 
dynamical localization, with an asymmetric profile at 
short range, but a DL form for large p. The quantal 
current increases from zero for a finite time, then satu­
rates to constant magnitude. This is surprising, since it is 
thought that in the fully chaotic regime a Hamiltonian 
ratchet current should not persist In order to understand 
this behavior, we now compare with the corresponding 
classical current

In Figs. 2(a) and 2(b) we show that, in fact, both 
quantum and classical currents (p )  increase in magni­
tude, then saturate to a constant value after a finite time; 
but the saturation time is generally different: t* in the 
quantum cases in Fig. 2(a) and another, ratchet time scale 
tr in the classical cases shown in Figs. 2(a) and 2(b). 
Figure 2(a) shows, in particular, the dependence on h. 
The (pqm) are negligible for H > 1 but increase rapidly 
with decreasing ft, up to ft ~  0.25. This is important 
for any experiment : for these parameters (D ~  2.5, 
b = 0.1), an experiment with ftef{ — 0.8 would show little 
asymmetry, but just halving fteff to ~0.4 would show 
substantial asymmetry. Beyond ft ~  0.4, (pqm) is compa­
rable to the saturated classical value. But since the most 
experimentally “detectable” ratchet is one which maxi­
mizes the asymmetry N (p ) ,  this means maximizing a 
rescaled momentum p L =  ( p qm) / L ,  so there is no advan­
tage in reducing ft much below —0.4 since L ~ f t ~ K  
Figure 2(b) shows that, for a given b (b = 0.05 in 
this graph), the classical saturation time tr falls with

194102-2 151 194102-2
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FIG. 2. Quantal versus classical ratchet currents are com­
pared in (a) and (b) for N  =  3. Both the classical and quantum 
(p ) reach a constant value after a finite time (t* and tr, 
respectively), (a) The quantum current is very sensitive to H 
if the quantum (Gaussian) wave packet localizes before the 
classical equivalent saturates. The values of h, (0.8—*0.125) 
are indicated. K  =  1.6, a  =  0.5 (hence, D 0 ~  2.5), and b =  0.1. 
The asymptotic quantum (p ) increases with b and “catches” up 
with the classical results for H ~  0.25 where t* ~  tr. 
(b) Evolution of (p )  for a classical “wave packet” (500 000 par­
ticles with a Gaussian random distribution in x, p , of width 
cr =  1.5 for b  =  0.05 but different D). The current increases 
and then saturates for t >  tr ~  1 / ( D b 2). (c) Differential clas­
sical diffusion rates [D +(t, b), D ~(t, ft)]: (p 2) is evaluated sepa­
rately at each kick for particles with positive and negative 
momenta for K  =  1.6, a =  0.5, D 0 ~  2.5, and different b. We 
see that (p 2)~ diverge from linear growth by a quantity, which 
is similar in magnitude but opposite in sign for the negative 
and positive components. The -I- and — indicate (p 2)+, (p 2)~, 
respectively. But once t >  tr, we see linear growth: D + ~  
D~ — D  ~  2.5. The lower graphs show 5(Z>) =  (/»2)<_) -  
(P2)*+) (for these parameters, D~ >  D + so the current is 
negative). 8(b) « b & 2 for small t.

increasing D. The fact that (/?cl) saturates at all is surpris­
ing: after all, the ensemble of classical trajectories is 
continually expanding and exploring new phase-space 
regions corresponding to higher momenta 

While t* is well studied, tr is quite new; we find that it 
can be understood in terms of differential rates of absorp­
tion of energy for particles moving left or right To 
illustrate this, we calculated— separately—</?2)(-) for 
those particles with p <  0 and (/?2)(+) for those with 
p > 0. The results are shown in Fig. 2(c) for D0 ~  2.5 
and different b. They are quite striking: (p2y~) and 
(p2Y+) separate gradually, more or less symmetrically, 
about the line ~2.5r, but beyond a certain time, they run 
parallel to each other and their slopes become equal with 
D + ~  D~ ~  2.5. Also in Fig. 2(c) we plot 8(b) =

(p2){ * -  (p2y +) for each b since this shows the saturation 
effect more clearly. We find numerically and from theory 
that, for small t, 8(b) ^  b(D0t)3/2f(K , a), where f(K , a) is 
a function of K, a.

The so-called “quasilinear” approximation for the 
energy diffusion D0 — K2/ 2 [14] neglects correlations 
between sequences of consecutive kicks; for the standard 
map, these give well known corrections to the dif­
fusion constant in the form of Bessel functions: D =  
^ {1  -  2[Ji(K )f -  2J2(K)...}  [14,15]. These corrections 
have even been measured experimentally with cold ce­
sium atoms in pulsed optical lattices [16,17]. For example, 
the 2J2(K) term originates from two-kick correlations of 
the form C(2) =  2(V'(xi)V'(xi+2))- In general, if  we work 
out the change in (p2) for successive kicks, we obtain a 
diffusion rate D which is the same whether we average 
the momentum from 0 —♦ <» or from 0 —* - o o .  Odd terms 
in p such as (sin2p) average to zero once the cloud has an 
appreciable spread, while the even terms (sin2p) =  
(cos2/?) ^ 1/2 are insensitive to the sign of p: in the 
standard map, D+ = D~. But if we consider the first 
kick of the nth cycle of the cdw-QKR, we have:

+ (2)

/>„, =  PM-  K V ' [ x m  + PM{\ + *)]. (3)

The unequal kicks allow free evolution for an additional 
small distance =  P„ob. To first order,

Pn 1 =  PnO ~ K{V'(XnQ + Pn0) + PnQbV"(xn0 + Prt0)}.
(4)

Hence, we now have correlations which depend on the 
sign of p and which scale with b. More precisely, we have 
averages of typical form /(/?) =  (sinpb sin2/?). For pb 
small, /(/?) »  (p±)bf2 ^  ±  |  y/D0t when we average posi­
tive and negative momenta separately. The average over jc 
yields a function f(K , a). Hence, clearly the correspond­
ing energy <p2)± ~  D0t ± (D0t)3/2bf(K, a). f(K , a) is a 
very complicated function involving sums of products of 
Bessel functions [13], but yields good estimates of 8(b). 
In [18] we have investigated the rocking ratchet of [12] in 
the chaotic regime and found the same physics. We ob­
tained excellent agreement between a curve «  bt3̂ 2 and 
numerics and can predict successfully repeated current 
reversals without any detailed study of phase space.

For pb large, /  =  (sin/?&sin2/?) — 0, so there is no 
ratchet correctioa The associated saturation time tr is 
very important since then the classical ratchet speed 
reaches its maximum and for t > tn (/?<.]) — cst. We 
identify it as a point where /  ~  0; hence, we take
*V<p 2><+) ~  7r for the positive component and
bJ{p2y  * ~  v  for the negative component For an order 
of magnitude estimate of the mean time scale involved,
we take byfDt ~  tt. Hence, we obtain tr TT2

D ir In [12]
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FIG. 3. (a) Relation between classical diffusion rate D  and
the quantum localization length L for the cdw-QKR. The solid 
line corresponds to Z. =  (b) Current against D  for a
quantum wave packet (crosses) and a classical “Gaussian 
wave packet” (circles). The graph illustrates the fact that if 
the quantum break time is too short (low D ) the quantum 
momentum is small, but catches up with the classical momen­
tum at t* ~  tr.

tained for smaller h, but this might be harder to achieve in 
an experim ent

We estimate the quantum break time at the cross­
over f  ~  12D / h 2 ~  150 kicks. The ratchet time t r ~  5 / 
{D b 1) ~  160 kicks. Such good agreement is somewhat 
fortuitous, since there are larger uncertainties in the 
time scales. Nevertheless, it does provide us with a useful 
guide for the best parameters for an experim ent

So one of our key results is that the requirement t* ~  t r 
implies that we need D b /h  ~  1. The L  values should, of 
course, be experimentally plausible (L ~  10-100), so this 
places a constraint on D /h .

In conclusion, we have proposed a mechanism for the 
first generic, completely chaotic Hamiltonian ratchet 

We thank Professor S. Fishman for helpful advice. The 
work was supported by EPSRC Grant No. GR/N19519.

a long-ranged periodicity in p ,  of order lir /b , was 
identified We note that for our study of systems with 
zero initial current, this is not significant, since by the 
time the periodicity boundary is sampled I{p) =* 0. 
However, it is an important consideration if we start 
with nonzero initial current [18].

Numerically, we estimated which is not incon­
sistent with the above. This explains the counterintuitive 
behavior that the larger deviation from period-one kick­
ing (Le., the larger b) give a smaller ratchet effect Though 
the perturbation scales as b , the time for which it is 
important scales as b~2.

For the standard map/QKR, there is a well known 
relation between the quantum localization length and 
the classical diffusion constant: L  — s^ ,  where the con­
stant a was found to be 1/2 [15]. The N  =  3, b = 0.1
cdw-QKR takes a modified proportionality constant, i.e.,
/  _  3.5DL n ■

In Fig. 3(a) we plot a set of calculated L  (which range 
from L  ~  10-80) against D  for h =  1/2 together with the 
line corresponding to L  = The agreement is excel­
lent From L 2 ~  D t* we obtain t* ~  12D /h2.

In Fig. 3(b), for the quantum distributions in Fig. 3(a), 
we have also plotted the current as a function of D , 
together with their classical equivalents, obtained from 
an ensemble of 500 000 classical particles. We see that the 
classical (p) fall monotonically with D , apart from fine 
structure which we attribute to cantori. The quantum 
results, however, for low D  are much smaller than the 
classical values but increase in magnitude until there is a 
“crossover” point at D  ~  3, after which they are much 
closer to the classical values.

We do not expect perfect agreement with the classical 
results for h = 1/2; a cleaner comparison might be ob-
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Abstract
We present analytical derivations of the diffusion rates, ratchet currents and timescales of a new 

type of chaotic Hamiltonian ratchet, introduced in [Phys. Rev. Lett. 89, 194102 (2002)], with a 

proposed implementation using atoms in pulsed standing waves of light. The origin of this type of 

ratchet current is in asymmetric momentum diffusion rates which result when a ‘double-well’ lattice 

is pulsed with unequal ‘kick’ periods. The form of the new short-time correlations which modify the 

diffusion rates are derived. The resulting formulae for the classical energy diffusion rates are shown 

to give good agreement with numerical simulations. A closed analytical formula for the ratchet 

current is also obtained, which predicts correctly the current magnitudes and current reversals. The 

characteristic ratchet time, a classical timescale associated with the momentum-diffusion ratchet is 

derived analytically. The competition between the ratchet time, tT, and the quantum break-time, 

t*, is investigated further.

PACS numbers: PACS number(s): 03.65.Sq, 05.45.+b, 32.60.+i

154



I. INTRODUCTION

Recent advances in cold atom  physics, such as techniques for manipulating atoms in 

optical lattices, have led to  experimental implementation of a rich variety of quantum  dy­

namical phenomena. One particular example is the successful demonstration of Dynamical 

Localization [1-3], the so-called quantum  suppression of classical chaotic diffusion.

The current interest in coherent atomic dynamics in periodic potentials has been paral­

leled by burgeoning activity in the area of ratchet dynamics. However, most ratchet studies 

were motivated by interest in biophysical or mesoscopic systems and involved some form of 

Brownian motion combined with dissipation [4]. There was little work, in comparison, on 

Hamiltonian ratchets; the  la tter are of especial significance in cold atom physics since they 

alone can preserve quantum  coherence over longer timescales.

Two exceptions are recent proposals for mixed-phase space ratchets [5, 6]. In [5], the 

spatio-temporal symmetries wrhich must be broken to  generate directed motion were consid­

ered. Directed motion was attribu ted  to  the de-symmetrization of Levy flights. In [6] a  sum 

rule was obtained for the currents carried by different invariant manifolds in a mixed phase 

space. From this it was deduced th a t directed transport in a Hamiltonian system must 

originate from an inbalance between currents in stable regions (eg. islands) and currents 

in the chaotic regions. The fully averaged current for a  uniform phase space density of a 

Hamiltonian system must be zero; this, one can argue, may exclude directed transport in a 

fully chaotic system [4, 6].

In [7] it was dem onstrated th a t a  type of, fully chaotic, Hamiltonian directed transport 

is possible. The proposed system involves broken spatio-temporal symmetries as stipulated 

in [5] and does not violate the sum rule since it is unbounded in momentum and therefore 

does not a tta in  a  uniform phase-space distribution. An implementation was proposed using 

cold atoms in double-well lattices pulsed with unequal periods. The characteristic of this 

system is an asymmetric diffusion in momentum: in other words, equal numbers of particles 

would diffuse right or left, say, bu t one direction would do so with larger momenta, hence 

generating a  net current. Hence we term  this a  momentum-diffusion ratchet.

A key result of our previous work [7] was to show th a t there is a distinctive time-scale 

associated with this process: starting  from an ensemble of particles with, initially, zero 

average momentum current <  p(t =  0) > , we found the current grows with time. However,
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eventually, a  finite classical current was obtained, with a maximum value reached after a 

characteristic time-scale, the wratchet time” , t,r.

In th is system, asymmetry in the momentum distribution accumulates until a  finite non­

zero value is reached a t t r. While the value of the current saturates to a constant value, 

the average kinetic energy of the classical ensemble grows without limit. Hence practical 

implementation of the classical version of the chaotic Hamiltonian ratchet is less interesting. 

However, for the corresponding quantum  system, the phenomenon of Dynamical Localiza­

tion “freezes in” this momentum asymmetry, ensuring th a t the current is not diluted by 

continual expansion of the momentum distribution. For the maximal quantum current, one 

m ust ensure th a t the quantum  break-time, t*, a t which Dynamical Localization occurs, is 

approximately the same as the ratchet time, t r , in order to  suppress momentum diffusion at 

the point where the asymmetry is largest.

A related system, an optical lattice w ith a  rocking linear potential, with a similar directed 

motion mechanism was later investigated by us in [8]. An experimental version of the latter 

was dem onstrated using cesium atoms in an optical lattice [9]. The double-well ratchet 

presented here has not yet been investigated experimentally, bu t is in principle amenable to  

existing techniques in cold atom  physics.

In [7], only a  heuristic derivation of the timescale t r was presented. While it was explained 

th a t the asymmetric diffusion originates in neglected corrections to the diffusion rate which 

are obtained when one considers correlations between short sequences of kicks, no expressions 

were presented. Here we provide formal derivations for tr and the analytical form to  the 

asymmetric diffusion rate. We also derive a closed analytical expression for the current itself 

and show th a t we can predict current, reversals w ithout resorting to a numerical study of 

the dynamics. These are the main new results in this paper.

We show below th a t the current-generating diffusive correlations of the double-well 

ratchet are significantly more complicated than  for the rocking ratchet in [8]. For instance, 

we find th a t there are in fact several significant timescales corresponding to  the different im­

portant correction terms. The observed saturation point corresponds simply to the longest 

one among these.

In Section II, we outline the basic features of the physical system. In Section III we 

derive corrections to  the  diffusion coefficient which give rise to  momentum-dependent 

diffusion rates. We obtain an analytical form for the diffusion coefficient (Eq.3.9) th a t yields
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close agreement with numerical simulations. We also investigate the timescales involved in 

the system, and derive the form for tr (Eqs.3.12 - 3.13). In Section IV we obtain a closed 

formula for the momentum current (Eq.4.2) which yields good results and enables us to 

analyse features of the numerical results such as current reversals. Hence, Eqs. (3.9)-(3.11) 

and Eq.(4.2) represent the main new equations. In Section V we briefly review the quantum 

behaviour of this system and present a few additional results showing the competition 

between Dynamical Localization and the classical asymmetric diffusion process. Finally, in 

Section VI, we conclude.

II. THE CHAOTIC HAMILTONIAN RATCHET WITH PULSED DOUBLE­

WELLS

The ratchet system introduced in [7] is based on a modified form of the well-studied 

Kicked Rotor system, where we have replaced the sinusoidal motion of the rotor with a 

double well potential:

V (x) =  sin x  a sin(2 x -1- <f>) (2 .1 )

and introduced unequally spaced kicks, such th a t the Hamiltonian for the system becomes:
2 oo ncyc ,  * M  x \

H = ^  + K(smx + asm{2x + <j>))Y,J2^[t - [ sTtot+ ^ 2 T, ) j  (2.2)
s = 0  M = 1 '  '  i = l  '  '

In effect, we have a kicked rotor (the QKR in the quantum case), with a spatially asymmetric

potential, kicked with a repeating cycle of unequally spaced ‘kicks’. The T* are the time

intervals between successive kicks, which form a cycle of length ncyc , with Ttot =

This ‘kicked ratchet’ is associated with an effective kicking strength: K ef f  = K y / l  +  4a2.

In the lowest order of approximation, the energy of an ensemble of classical particles grows
2

linearly with time as < p2/ 2  > =  - ^ - t .

The introduction of unequally spaced kicks breaks the time reversal symmetry, which is 

necessary to  generate a non-zero current in the system [7]. In this paper, we focus (as in [7]) 

on a cycle of three kicks such th a t the spacings are : T\ = ( 1  4 - fc), T2 =  1 and T3 =  ( 1  — 6 ), 

with b a small parameter.

For low values of the kicking strength K, the classical phase space demonstrates the 

momentum-asymmetry in the dynamics, with islands and tori having no partners at corre­
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sponding negative momenta, A key feature of our system is that it works in the regime of 

global chaos and does not depend on the presence of regular structures in phase space. A 

typical Poincare surface of section from the parameter space we have studied is shown in 

Fig. 1, showing the absence of visible islands or KAM tori.

Position, x Position, x

FIG. 1: Poincare surfaces of section for the chaotic hamiltonian ratchet, (a) At low kicking 

strength (K  =  0.1) the asymmetry in the system is already apparent, (b) At K  = 2 the system is 

in the globally chaotic regime; note the absence of any islands/tori. It is in this regime that our 

numerical simulations are performed. Each plot was calculated by starting 400 initial trajectories 

evenly spaced over a range of x:[0,27r] and p:[-10,10] then kicking each trajectory 200 times.

The observed build-up, with time, of asymmetry in the momentum distribution is due to 

differing classical momentum diffusion rates for particles with positive momenta relative to 

those with negative momenta. For physical insight (and before we derive a more rigorous 

treatment of the diffusion process in the next section), we show in Fig. 2 the energy absorbed 

by an ensemble of particles for a typical set of parameters. At t =  0 all the particles had 

p = 0. We plot separately the total energy of the particles with negative momenta and those 

with positive momenta, as a function of time. The figure shows clearly that for b — 0.05, and 

time t < 2000 or so, particles with positive momenta absorb kinetic energy significantly more 

slowly than particles with negative momenta. But the average is close to the well known
K2

“quasi-linear” rate < E  > =  Dqit = - ^ - t ,  associated with a random-walk in momentum 

space. These rates appear to equalize after a certain time and to revert to D  ~  Dqi.

From Fig. 2 one can clearly see that the energy splitting is not only momentum-dependent,
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but tha t the corresponding ratchet time is dependent on 6,the perturbation to the kicking- 

period. In [7] we attributed the cause of these differing diffusion rates to correlations between 

short sequences of kicks in the evolution sequence, yielding corrections to overall diffusion 

rate. In effect, the diffusion rate for this system becomes local in momentum D = D(p,t). 

It is also not linear in time - as seen below, except for very short times and for very long 

times. In the next section we derive in detail these corrections, investigate the timescales 

involved and hence can analyse the general behaviour seen in Fig. 2.

10000

5000

b = 0.05
—  b = 0.02
—  y -  D*t -  2.56*1

1000 2000 3000 4000 5000
time

FIG. 2: Figure illustrates differential energy absorption for particles with positive and negative 

momenta. An ensemble of particles (all with p =  0 at initial time, K  =  1.6, a = 0.5) is evolved, 

and (p2) is calculated separately, at each time, for particles with positive and negative momenta. 

The two upper curves (near the (-) sign) show (p2) as a function of time for particles with nega­

tive momentum and two different values of b, the two lower curves (near the (+) sign) show the 

corresponding curves for particles with positive momentum. We see that particles with negative 

momenta, for a certain time period absorb energy faster than those with negative momenta. Note 

also that the behaviour become linear after a certain time.

III. THE M O M ENTU M  D IFFUSIO N CO EFFICIENT

At the lowest level of approximation in ratchet and rotor systems, the growth of the aver­

age energy, in the absence of phase space barriers, can be approximated by the quasi-linear 

formula: Dqi & K 2/4  [10]. However, this approximation neglects the effect of correlations
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between consecutive kicks which can significantly modify the diffusion coefficient. In the 

case of the Standard Map (corresponding, in Eq. (2.2) to a = 0,6 =  0), the energy growth 

for an ensemble of classical particles with initial momentum po is given by:

( (P ~ P°)2^  = D t = Dot + t ' p  (3.1)

where the C(l) terms are corrections to the quasi-linear diffusion resulting from correlations 

between successive kicks.

These corrections have been studied extensively for the Standard Map, resulting in an 

adjusted diffusion coefficient [1 0 , 1 1 ]:

K 2
D = -t { 1 - 2 [ J 1(K)]2 - 2 M K ) . . . }  (3.2)

Here, for example, the —̂ ( i f )  term  arises from the 2-kick correlation which has the form: 

C(2,p) = (V*(Xi)V'(Xi+2 ))• Here is the x  coordinate after kick i and the average is carried 

out over all phase-space coordinates. One can clearly see th a t for the Standard Map, the 

diffusion coefficient is momentum-independent. As the results below show, in our case, the 

diffusion coefficient becomes momentum-dependent. The calculation, outlined below, is an 

extension of the method of Rochester and W hite [12], and is detailed in full in the appendix.

Starting with an initial momentum po, the diffusion coefficient can be written in terms 

of the conditional probability density Q th a t the system evolves to a state (:r/v, Pn ) at time 

t  =  N  (that is, after N  kicks):

D (N ) =  i  J  Q{xN,pN,N \x ,p ,0 )P (x ,p ,Q )(pN -  p)2dxNdpN dxdp (3.3)

where the initial probability distribution is given by:

P (x ,p ,  0) =  (2ir)~1S(p — po),

Using the recursion property of the conditional probability Q, and the 2ir periodicity in the 

x  variable, we can write the diffusion coefficient as (see appendix):



where we define:

Sj = - ' E V t o ) .  (3.5)
1=0

By setting rr ij = 0 for all j  in the above formula, one simply recovers the quasi-linear 

diffusion. In order to  examine the contribution of various correlations one must look a t the 

product of terms where the r r ij  are set to  an appropriate non-zero value.

The main corrections to  the diffusion rate for the ratchet are found by considering the 2- 

kick correlations, C (2 ,p), ie. choosing the term 2V '(x i)V (xi+ 2 ) in the product S% =  SVSjv- 

For small 6 , the leading contribution to  this correction comes by taking m ;+ 2  =  ±1 and 

m;+1 =  2 (all other r r ij  zero; this gives the contribution of the K s m x  part of the

potential), or ra ;+ 2  =  ± 2  and ra ; + 1 =  —771;+ 2  (contribution of the sin 2 x  part of the potential). 

Since there are three different time intervals possible between kicks i and i ■4 - 2  (Ti 4 - T2 , or 

T2 +  T3 , or T3 +  Ti), one has to calculate three different contributions for these three cases. 

Summing the results for all kicks 2 between 1 and N ,  we get a contribution from the sin x 

part of the potential (the full derivation is contained in the appendix):

AT2
Csina;(2 ,p) =  “

O

OO

] T  J 2- 2s(A' ( 1  +  b))J ,(2Ka(l + b)) cos(2pob +  | s )
— OO

OO

+  J2- 7, (K )J ,(2 K a )  cos(pob -  | s )
—OO

OO
+  Y ,  -  b))Js(2K a(l -  b)) cos(p0 6  -  | s ) (3.6)

The sum over s formally spans the range s =  ± 0 0 , but for typical K  values converges for 

\s\ < 20. This result is valid for short times. For longer times (that is, larger kick value 

N ), the correction to  the average energy growth is no longer linear in time, and eventually 

saturates to  a given value. This is discussed later, together with the ratchet time.

The cosines in equation (3.6) can be expanded; for example the first term  in Eq. (3.6) 

becomes:

1^2

= ~q~ ^ 2  J 2- 2s {K (\  +  b))Js(2Ka{\ +  b))(cos2pobcos -  sin 2 p0b sin ^ s )
s

If we wish to  consider only the build-up of asymmetry in the system about p =  0, we can 

neglect the even terms. The asymmetry which drives the directed transport is due solely to 

the sinnpob (n  = 1 ,2,4) dependent term s in the diffusion coefficient (those which are odd
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with respect to reflection about p = 0). We therefore simplify Eq. (3.6) to:

c £ r m)(2,p) =  ^  £  J3-2.(K(1 +  b))Js(2 K a ( l  + b)) s iii2 p0 6  sin
L S

-  ^  *^-2* (K )J s(2Ka)smpob  sin ^ s
S

-  Y j 2- 2s (K ( l  -  b))Js(2Ka(l  -  b)) sinpo& sin^s
s

A similar equation is obtained for the K a s m 2 x  part of the ratchet potential:

^ ( a s y m m )  (cy x _  
sin2x \ZiP) ~

( 2  K a f
— Y ,  ^4- 2s(2 A' ( 1  4- b))Ja(^K a( l  +  b)) sin 4p0b sin —s

s

- \-^Y ,J 4- 2s(2 K ) J s(4 K a ) s m 2 pob s in ^-s
9

4- ' Y ,  ^4- 2s(2 AT(1 — b))Js(4Ka(l  — b)) sin 2pob sin

(3.7)

(3.8)

These formulae can now be rearranged to give the to tal correction to the diffusion coeffi­

cient as a  function of the three sin npb present (note th a t we use s' = 2 —2s and s" =  4 — 2s 

for clarity):

C (“"m">(2,p) =  ~  [sinpo&j ’5 2 [ J s ( K ) J . ( 2 K a ) + M K ( l - b ) ) J . ( 2 K a ( l - b ) ) ]  s m | s )  

-  s in 2p„6 ( (2 a ) 2 Y^,iJ‘"(2 K )JM K a )  +  JS,(K{  1 +  b))Js{2Ka{\ + b))+
 ̂ 5

(2a fJ , .r (2K(l  -  b))J,(4Ka{l  -  6 ))] s i n | s  j  

+  sin4pofr|(2a ) 2 ' Y ,  JS»(2K{\  4- b)) Ja(4Ka(l  4- &)) sin ^ s  1 (3.9)
'  S  “

The form above does not incude the time dependence or information on the ratchet 

time scales. An analytical form for these time scales is obtained by taking the full time 

dependence into account in the calculations (see appendix). For each sinnpob term , there 

is a time-dependent function 3>(N,bK,n).  We re-write Eq. 3.9 as a Fourier series, with the 

Bessel function products replaced by coefficients A n.

K 2
C {asymm)(2,p) = —

6
Ai  sinpob — A<i sin 2p0b 4- A 4 sin 4p0b (3.10)
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The Bessel sum can easily be evaluated: for example, for K  =  14, a = 1 /2 ,6  =  0.005, we 

find Ai  = 0.13 so the sinpo^ term  is weighted by a coefficient ^ - A \  — 4.3, which will later 

be compared to  numerical values.

To go beyond the form valid only at short times, we must weight each term  by $ (N ,  b K , n), 

where N  is the number of kicks and N  = t. Hence:

K 2Q(asymm)^2 p} — _
6

Ai$>(N, bK, 1 ) sinp0 6 —A 2$ ( N ,  bK, 2) sin 2 p0 6 + A 1<I>(jVr, bK, 4) sin 4j>o6

(3.11)'

The leading term  is the time-behaviour function <&(N, bK, 1), which can be shown to  take 

the form (see appendix):

=  3 i - [̂ o w w i ; ;  (3. i 2)
v '  N  1 -  [J0(bK)J0(2abK) f  K ’

(to obtain the form for <&(N,bK,2) we would simply double the arguments of the Bessel

functions above and for <&(N,bK,A) we would quadruple them).

For small 6  and small N ,  <&(N,bK,n) ~  1 , which leads to  the linear correction to the 

energy: in this regime we could write <  ■ > ~  D t = Dot +  C(2,p)t  as in Eq.(3.1).

We recall th a t C(2,p) = C^asymm\ 2 , p )  -f C^symrn\ 2 , p )  and only the C^asymTn\ 2 , p )  term  

represents diffusion asymmetric about p =  0  and hence the ratchet effect.

However, for larger N ,  eventually <&(N,bK) ~  1 /N  so the contribution of the 2-kick 

correction, C^asymm\ 2 , p ) ^ ( N , b K )  t, tends to saturate to a constant value. The saturation 

time for the leading term  &(N, bK, 1) (which is the most long-lived) is the ratchet time.

The ratchet time can be estimated by finding the time a t which 4>(iV, bK, n = 1) t  reaches 

95% of its value at N  = oo. This is found to  be, for a =  1/2:

(̂sinpb) _  2 1 n (2 0 ) ^  6  /g
(Kb)2 (Kb)2 { }

The heuristic arguments in [7] gave a timescale tr ~  (My* which is not too different. The 

same analysis can now be repeated to  obtain the separate (shorter) time scales corresponding 

to  the sin2pb, sin4p6 corrections. It is straightforward to  show th a t 4t ^ m2pb̂  ~  and

16£rsin2p̂  — t r [npb!̂

Note tha t for large N,  4>(7V) t  saturates to the value of ~  l / [ (bK)2]. The energy growth 

is no longer affected by the two-kick correlations and contains no asymmetric diffusion 

component. This results in a progressive dilution of the asymmetry in the classical case
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(but not the quantum  case). One also notes th a t the ratchet effect is clearly dom inated by 

the time-scale corresponding to  the sin pb term  (the two other ratchet times are respectively 

1/4  and 1/16 smaller).

11000
N-100

S  10500-

7  10000 -
o f  9500 -

9000 -
-4.7*i00(sin(pb) - 0.43 sin(2pb) + 0 .15sin(4pb)'

-500-

-3.8* 100( sin(pb) - 0 04 sin(2pb) - 0.08 iin(4pb)].
* 4 0 0 -  

200 —
N = 100;

- 2 0 0 -  

-400 — 
-6 0 0 -

-2000 -1000 0 1000 2000

Po

FIG. 3: (a) Average classical kinetic energy E(po, N = 100) plotted as a function of initial momen­

tum po, calculated numerically for an ensemble of 106 particles with K — 14, a =  1/2, b=0.005 

time t = 100. In (b) and (c) we have removed the momentum-independent and symmetrical cos npb 

contributions by plotting Easymm(Po, N) = ^[E(po, N) — E(—po,N)]. The energy spread after 20 

kicks is shown in (b) and after 100 kicks in (c). The dashed curves, are obtained by Fourier analysis 

of the numerical results. For clarity, these curves have been shifted vertically.

Figure 3(a) plots E ( j > o , N  =  100), the average kinetic energy of an ensemble of 106 

particles which all had p  =  p o  a t N  = 0, as a function of p 0 . These numerics enable us 

to obtain numerical estim ates of the coefficients A n . Now at short times, E ( p o ,  N )  ~  

D o  t + C ( 2 , p ) t  and includes both the symmetric and asymmetric term s in the diffusion 

coefficient. In Figs. 3(b) and (c) we have removed the symmetric contribution (and D o  t )  

by plotting E ( N ) asyrnm =  \ [ E ( p o ,  N ) - E ( - p 0 , N ) ] .  Figure 3(b) shows 5 E asymrn( p o , N  = 20), 

whereas Figure 3(c) shows E asym m ( P o , N  = 100) (the N  = 20 values were re-scaled for ease 

of comparison). We can now fit a Fourier series in sinpo^ to  each curve and obtain the 

relative amplitudes for each of the three term s th a t appear in our analytical formula (3.9);
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s;inpo&? sin2po& and sin 4pob. One can clearly see tha t for the example given, the relative 

am plitudes of the terms vary with time: at 2 0  kicks there is a  strong contribution from 

th e  sin 2 pb term, whereas after 1 0 0  kicks the sin 2 pb contribution is an order of magnitude 

smaller and the curve is almost a pure sin pb. The sin pb weighting coefficients estimated 

from the graphs, 4.7 and 3.8 compare favourably with the estimate of Eq. 3.10, where we 

calculate = 4.3.

Fig 4 shows the dependence of the amplitudes of each of the sine terms on kick strength, 

K, after 20, 40 and 100 kicks. Also shown is the analytical form for each term  as predicted 

in Eq. (3.9). It can be clearly seen tha t the sin pb contribution persists beyond 100 kicks for 

all values of K .  The sin 2pb contribution is still significant a t 40 kicks for all values of K , 

bu t has been significantly damped by 100 kicks for K  > 10. The timescale over which the 

sin 4pb contribution is appreciable is shorter still. For K  > 6  the amplitude at 100 kicks is 

virtually negligible whilst a t 20 and 40 kicks it is heavily damped.

In Fig. 5 the ratchet time is plotted against the parameters b and K . Each point on the 

graph corresponds to  a measurement of tr for a given param eter set. The value of t r was 

estimated by taking a running average over 50 kicks and measuring the standard deviation 

in <  p  >  of the ensemble of 400,000 trajectories. When the deviation fell to  below 5 percent 

of the maximum the value of tr was assigned. In Fig 5(a) the value of b is varied across a 

wide range while the kicking strength K  is kept constant. The plot shows clear numerical 

evidence of the 1/b2 proportionality of the ratchet time. A fit of tr — 2ir/(Kb)2 is plotted 

against the numerical results and very good agreement can be seen. In the lower panel 

(Fig. 5(b)) the parameters are exchanged and K 2 is varied against a constant b. Once again 

the numerical results bear out an excellent correspondence to the expected tr — 6 / (Kb)2 

relationship obtained from the sin pb term  above.

IV. THE RATCHET CURRENT

I t is possible to  obtain an analytical form for the classical ratchet current shown in Fig 7, 

using a very similar method to  th a t used to obtain the diffusion coefficient. In this case we 

define the average current a t a given time to  be:

{p(N )) = /  Q(x n ,Pn , N \ x o,Po}0)P(xo,po,0)(pN - p 0)dxNdpN. (4.1)
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100 Kicks b=0.005
—  40 Kicks b=0.005
— - 20 Kicks b=0.005

—  Analytical Prediction
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Sin(pb)
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-400 -
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-loo t -  
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FIG. 4: Contributions to classical asymmetric energy diffusion that arise from sin(npb) terms in the 

1st order correction to the diffusion constant are shown as a function of K. Analytical predictions 

are compared with numerical results for varying numbers of kicks (all scaled to 100 kicks) to 

highlight the time scales involved. One can see in (a) that the numerical results for the sin(p6) 

term show excellent agreement with the analytical prediction for all K, suggesting that this term 

continues to influence the final current past 100 kicks. In (b) one sees good agreement for both 20 

kicks and 40 kicks up to fairly high K, whereas after approximately K=10 the 100 kick curve begins 

to depart markedly from the analytical prediction. This suggests that for high kick strength the 

contribution to the final current from the sin(2p6) term has been damped by 100 kicks. This effect 

is even more noticeable for sin(4p6) as shown in figure (c). Good agreement between numerics and 

analytics exists only up to approximately K=5 with the 100 kick curve becoming heavily damped 

soon after. One can clearly see the 40 kick curve departing from the analytical result more quickly 

and completely than the 20 kick result. These plots show that for increasing kick strength, the 

time scale over which each term contributes to the final current changes.

It is easily shown that, like the asymmetric energy diffusion, the momentum current increases 

with N  and then saturates after a tim e scale tr ~  1 /(Kb)2. This is unsurprising, since the 

two share a common physical origin.

We evaluate the saturated  current, (p(N —► oo)). The leading order term  for the average
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saturated current obtained using the modified Rechester and White approach is then:

-  k -  -  )

(4.2)

where the approximation 1 — 6  «  1 has been made. The first term in equation (4.2) arises 

from the K  sin x  part of the potential, and the second term is the contribution from sin 2x.

We note that the momentum current tends to a constant value as t —» oo. However 

the width of the momentum distribution continues to grow as Dot. Hence the momentum 

curent, normalised to the width of the momentum distribution, will tend to zero in the 

classical case, but - as discussed in the next section- will tend to a constant in the quantum 

cas«.

The top panel of Figure 6  show's a comparison of this result with numerical simulation for

0000

o 5000

0.2
(b) b

1000

t> 500

2K

FIC. 5: Classical ratchet saturation time, measured in kicks, versus system parameters b (a) and 

A 2 (b). (a) the classical ratchet time is measured when the deviation of a 100 kick running average 

fall; below 2 percent of its maximum value. A very good numerical agreement (solid line) is shown 

to i fit of 2n /K 2b2 (dashed line). The value of K  was fixed at 1.6. (b) using the same measurement 

tecinique for (a) the ratchet time is plotted against A 2 for a fixed b = 0.1. Again a non-linear 

cure fit of 27r/A262, (dashed line) is compared to the numerical results (solid line). Each point 

on sach graph is a result of a classical calculation of 500,000 trajectories run over 10,000 kicks.
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FIG. 6 : Comparison of numerical and analytical average current as a function of kicking strength, 

K. In (a) the leading order analytical term (dashed line) given by equation (4.2) is shown with the 

numerical result (circles) for b = 0.01 and a = 1/2. Note that the current reversals are accurately 

predicted, as is the general trend of the numerical curve. Panel (b) shows the contribution from 

the 1st term in equation (4.2), due to the sinx part of the potential. The final panel (c) shows 

the contribution from the second term, due to sin 2x. Both curves are plotted with the numerical 

result.

b = 0.01, a = 0.5 and zero initial momentum. The individual contributions from each term 

in Eq. (4.2) are shown in the lower two panels of the figure. The shape of the curve is clearly 

dominated by the K sinx part of the potential, but one can easily see where the K a sin2x 

part competes - for example, to create the dips between K  = 3 —► 6 . Whilst the current 

reversals are accurately predicted and the general trend of the curve is in keeping with the 

numerical results, there are some features which are not in keeping with expectation. In 

the region 0 <  K  <  2 the numerical current appears to decrease much more rapidly than 

the analytical prediction. This is possibly due to the increasing regularity of the system 

inhibiting the build up of asymmetry. Once beyond the current reversal at K  =  2 .6 , the 

magnitude of the current never reaches that of the analytical curve. In this region the 

ratchet time is short, and the asymmetry in the system is washed out by the expansion 

of the classical momentum distribution. Also, Eq. (4.2) is the leading order term for the 

current, resulting from the second order correlations. One would expect that, including 

higher order terms might well affect the predicted current, and improve the accuracy of the
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result. Furthermore, the analytical form is valid in the regime of small 6 , and one would 

anticipate th a t the numerical curve will tend to the theoretical prediction as b —> 0 .

V. C O M P E T IT IO N  B E T W E E N  tr A ND t*

Having considered exclusively the classical diffusion mechanism underpinning this ratchet 

in the previous sections, we must now examine the corresponding quantum behaviour. The 

implementation of this type of ratchet is best done using cold atoms in optical lattices, a 

system fax from the classical limit. Here we review in brief the quantum results obtained in

[7] and extend those calculations to test a wider param eter range.

In the quantum  case, in addition to the dynamical param eters if , a , b we must consider 

h (note tha t in the experiment, a rescaling of coordinates introduces an effective value of h. 

In a typical experiment h ~  0.25 — 2). A conclusion of [7] was th a t the key to  achieving 

the most distinctive experimental asymmetry lies in approximately equalizing the two time 

scales of the system: the classical ratchet time, t r and the quantum  break-time t*. We recall 

tha t for the standard Quantum Kicked Rotor (QKR), t* ~  In our case we still have a 

time-periodic system (though with a time-period in effect three times longer than the QKR) 

so its time evolution can be determined by an expansion over the underlying Floquet states: 

in the long-time limit its behaviour is quasi-periodic and diffusion is suppressed as in the 

QKR.

A numerical study in [7] found th a t Dynamical Localization proceeds in a similar way to 

the QKR. For each particular set of dynamical parameters K,  a, b and h , the time evolution 

of a minimal uncertainty wavepacket was calculated in a plane-wave basis. A quantum 

probability distribution for the momentum N(p,  t) was obtained as a function of time. From 

this it is simple to  compute the expectation values of the momentum <  p  > , the energy 

<  p2 > as well as the saturation time for the energy, t*. In our system, unlike the QKR, 

we have a local (in momentum) diffusion rate D{p) which oscillates with momentum (with 

period 27r/6, see Fig.3) about the uncorrelated value Do =  K ^ f / 4. For the parameters 

considered here, the amplitude of these oscillations is not large compared with Do. In th a t 

case, we found from numerics in [7] th a t the break time corresponds closely to  the averaged 

value t* ~  2 0 ^  [13].

It is interesting to  contrast this with the rocking lattice system and experiment in [8 ,
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9] which corresponded to the opposite limit: if the amplitude oscillations in the 2-kick 

correlations are large relative to the uncorrelated rate Do, and b ~  0 .0 1  is small, the typical 

w idth of N(p)  is small relative to  27t/6. For a narrow momentum distribution N(j >q — p), 

strongly peaked about a momentum p =  po, one needs to consider a local break-time £(po)* ~  

which can vary by a factor of ~  1 0 0  as one varies the initial drift momentum po of 

the atoms relative to the optical lattice [8 ]. However, this is not the situation here. For this
K^

system we find th a t t* ~  2 0 - ^  represents a good approximation, for all values of b.

If the quantum  diffusion persists as long as tr , the quantum system acquires the full clas­

sical asymmetry. Hence the condition t* ~  tr ensures th a t the maximal classical asymmetry 

is frozen in and th a t the asymmetry is not diluted by the continual spread of the classical 

momentum distribution. Evidence for this criterion is shown in Fig 7, where the classical 

and quantum  currents (after saturation) are shown for various param eter choices. For the 

quantum  case, h  is decreased from h = |  to h = |  whilst keeping 6 , the perturbation to the 

period, constant at b =  0.1. For the lower values of the kicking strength, K  ~  2.5 or less, 

one can see tha t the quantum current approaches the classical current for b = 0 .1  as h  is de­

creased. Recalling th a t t* oe 1/fi? we see the effect of the changing break-times: in the range 

K  = 2 — 2.5 all the curves (h = 1 /2 ,1 /4 ,1 /8  and classical) are roughly in agreement. In this 

range all values of h allow time for asymmetry to  accumulate. However, for K  = 1.5 — 2, 

for h = 1/2 and 1/4 , in this range, t* < tr so the quantum current falls below the classical 

value. The quantum momentum distribution localises before the full asymmetry is achieved. 

However, h = 1/8 follows quite closely the classical behaviour in this range since it has a 

break time 16 times longer than for h = 1 / 2 .

As the kick strength is increased beyond the crossing (approx. K  «  2.6) one notes 

th a t there is once again a large discrepancy between the classical and quantum results. 

The ratchet time decreases with increasing K  (as shown by the scaled tr curve shown in 

the figure), and when the ratchet time is too short, the calculated classical asymmetry is 

negligible. Perhaps surprisingly though, the corresponding quantum system still exhibits 

significant asymmetry. In fact the quantum behaviour corresponds more closely to the 

classical current for somewhat smaller values of b < 0 .1 : when tr is very small we get 

poor agreement between classical and quantal results, even with small h. It is clear th a t 

some details of the quantum classical correspondence here will only be understood from 

a detailed study of the properties of the Floquet states of this quantum system, which is
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-  Quantum hbar = 0.125
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2 4
Kick strength, K

FIG. 7: Variation of average classical and quant urn currents as a function of kick strength K. In 

the quantum case, where b = 0.1 for each curve, one notes that there is an improving fit with the 

classical b = 0.1 curve for decreasing h. At low K  the break-time for h = 0.5,0.25 is too short, 

and the system localises before the maximum amount of classical asymmetry has been reached. 

As K  is increased, t* increases and the classical and quantum plots show good agreement once 

t* ~  tr. Whilst both the quantum and classical curves share the same crossing, the classical curve 

for b =  0.1 does not show the positive peak that features in both quantum graphs. This is due 

to the fact that the ratchet time is now too short to allow any appreciable build-up of classical 

asymmetry (shown by the scaled ratchet time curve). The classical peak is recovered at smaller b 

(not shown), and therefore increasing tr for a given value of K.

currently underway.

By decreasing the param eter b (and therefore increasing tr) the classical current for high 

K  once again approaches the quantum  current. In broad term s however, we conclude th a t 

while the basic ratchet mechanism is a classical one, the best experimental results will 

be obtained w ith t* ~  tr. The best quantum-classical agreement will be obtained in the 

param eter ranges where neither t* nor tr are too small.

VI. CONCLUSION

We have derived analytical expressions for the energy diffusion rates, the classical ratchet 

currents and the ratchet time. We have shown th a t we can fully characterise the behaviour
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of the only chaotic Hamiltonian ratchet mechanism proposed to date. This new type of 

Hamiltonian ratchet is in fact a  momentiim-diffusion ratchet. The current is generated by 

differential acquisition of kinetic energy by particles moving right or left, rather than an 

asymmetry in the global numbers of particles moving right or left. Finally we have have 

analysed the corresponding quantum  behaviour. We have demonstrated the importance 

of an appropriate choice of ratchet time and quantum break-time in obtaining the best 

experimental momentum asymmetries.

APPENDIX A: DERIVATION OF CORRECTION TERMS

In order to  obtain the Diffusion Coefficient for the ratchet we begin by defining the

generalized map:

x j + i  =  x j  “I"P j + i i P j + i  t j )  ( A l )

P j + i  =  P j ~  V ' ( x j )  ( A 2 )

where t j+\ — tj is the time between successive kicks j  +  1 and j .  For the Standard Map,

these intervals are the same for all kicks. However, this is not true for our chirped sequence.

As explained in the text, we consider explicitly a cycle of three different intervals : (1 + 6 ),

1 and (1 — 6 ), with 6  a small parameter. From the map we have:

P N  =  P o  -  V ' ( x 0) -  v ' f a ) ... -  V W i )

= p o - J 2  v
1=0

and so we define:

£ , =  - X V f a )  (A3)
1=0

We use the standard definition of the diffusion coefficient:

( P - P 0 )2\ = z ) (t )ti (A4)

and assume th a t the systems starts a t p = po a t time t  =  0 .

If we consider the diffusion in terms of the conditional probability density Q th a t the 

system evolves from the state (x  E [0,27r],p =  po) a t time t  = 0 to the state (x = Xn ,P = Pn )
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at time t  — we find:

D (tN) = J  Q(xN,pN, t N\x,p,Q)P(x,p,0)(pN -  p)2dxNdpNdxdp (A5) 

where the initial probability distribution is given to be:

P(x ,p ,  0 ) -  (27r)~18(p — po),

Q obeys the recursion property:

Q (xN ,p N , tN \xo,Po,0) = J  Q(xN ,pNlt s \ x i 1pi1t i)Q(xi ,pi1ti\xo1po10)dxidpi (A6 )

Inserting this property successively for each kick between N  and 0 in equation (A6 ), and 

using:

+00

Q(xN,pN, t N \x N- i ,PN-1, tN-i )  = ^  6(jpN — PN-1 +  K V ' ( x n - i ))
t i n = —oo

S(x n  — XN-l — (tN — tN-l)(PN-l — K V ' ( x n - i )) +  2^71^)

(A7)

where the sum over n n  occurs because of the periodic boundary condition for ( 0  <  x ^  <

27r), we obtain:

Xhr r 2 n  /*27r

Q(xN,PN, tN \xo,po,0)  =  /  _2 7 ^ _PoM  dx i- - dxN- i5(pN - P o  -  S N- i )
Tifl——OO Ml = —OO ® 0 0
6(Xn  — %N-1 — {pN — t N ~  l)((pjsr-l — K V '{ x n - i )) +  27T7l/v) . . .

fi(pi -  Po -  S0)6(xi - x 0 -  (ti -  t0)(pi -  K V ' ( x o)) +  27rni) (A8 )

Inserting the above equation into (A5) and taking into account the ^-function restraint on 

PtVi we find:

I  + ° °  +OO N  -27T d x

D = 2 N  ^  *”  ^  n  I - ^ S ^ S ( x N - x N- i - ( t N - t N - l ) ( p o  +  SN- i )  +  27rnN)
n N ——oo n i = —oo t=0

. . .  S(x 1 -  Xo -  (ti -  t0)(p0 +  So) +  27TTli) (A9)

By making use of the Poisson Summation formula:

+ o o  ^  +00

^  S(y +  2irn) =  —  ]T] exp[imy] (A1 0 )
n = —oo m = —oo
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we can write equation (A9) as:

(A ll)

The term where rrij = 0 for all j  corresponds to  the quasi-linear diffusion:

2 N  e f f 2
Kb

4
(A12)

where we recall th a t K ef f  = K \J  1 4 - 4a2.

All the other terms, where some of the rrij are non-zero, give corrections to  this result.

from correlations of the form C (2 ,p ) =  {2V'(xj)V ' (xJ+2 )), obtained from equation (A ll)

summed over all kicks j  =  1 . . .  N . '  Since there are three different time intervals between 

kicks (7\ =  1 +  6 , T2 =  1, T3 =  1 — 6 ), there are three different contributions to calculate. 

We now address individually each of these three contributions.

1 . C orrelation betw een kicks i, i +  2

We choose the following map for this section:

Xi =  Xi-i +pi(  1 -I- b)

%i+l =  “I" P i + 1

As noted in the text, the main corrections to  the diffusion coefficient for the ratchet arise

by evaluating the contribution of 2V ,(xj)V'(Xj+2) in the term Sfj.  The leading part of this 

contribution is obtained by setting rrij+ 2 = ± 1  and rrij+\ — —rrij+ 2 (all other m are zero) 

for the A"sin:r part of the potential V(x),  and 2 =  ± 2  and m,j+i = —rrij+ 2  (all other 

m are zero) for the K a s m 2 x  part of the potential V(x)  [12]. These corrections have to be

x i+2 =  x i+i +  p i+2{l -  b) (A13)
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Pi = Xi- 1 -  V '(x i- i)  

pi+i = Xi -  V'(xi)

p i+ 2 =  x i+1 -  V '(x i+i) (A14)

We consider first the correction th a t arises as a result of the K  sin x  part of the potential.

Setting rrii+ 2  =  — 1 ana rrii+i = +1 in (A ll) , and keeping the 2V'(xi+zjV1 (xi) term  of S%

we obtain

c (2.P)'.£tj=-i =  “ TT f  ^^2VA'(Xi+2)V'(Xi)e_ Îi+2-I,+1_*1-t*(,>°+Si+1̂ e+’*;Ci+1~:'‘_po-,Si'
j = o  

-I N p2n j
=  — J l J  —i v ' ( x i+2)V'(xi)e~i^ i','2~2x,*I+x^e~ip°bei^ 1~l̂ Sl+1~s^  (A15)

Now we use the fact that:

Si+1(l - b )  + S i=  - ( 1  -  tyV 'fo+ i) -  bSi (A16)

Therefore the correction becomes:
X  /*2ir

- i ( x i + 2 ~ 2 x i ^ i + X i ) e - i p Q b e i { - { l - b ) V ' ( x i + i ) - b S i )

j = 0

(A17)

One can further simplify this equation by using the identity (Jn(x) is the standard Bessel 

function):

exp[±iz cos 6\ = i±nJn(z) exp[±m0], (A18)
n

to obtain:

N  *2ir

< 7 ( 2 ,p ) S £ - i  = ^ I l f  §
- i ( x i+ 2 - 2 x i+1 -Hr, ) e ~ ipob

3=0

e ~ i  ((1 -6 ) [K  cos(zi+ 1 ) + 2 K  a cos(2xi+1)] +bS i)

»2?r1 f  dx
=  T7 /  -7T-V'(xi+2)V '(xj)e -<ta+2- 2l ‘+' +I‘)e - ipoi' V  i~nJn((l -  b )K)e- inx<+‘

™ Jo n

~  b)2Ka)e~i2sx,+1e~ibSl (A19)
S

The integration over X{+1  gives

-nxi+i -  2sxi+i +  2xi+i =  0

=> n = 2 — 2 s
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So, we finally obtain:

C (2 , !> )££__! =

^ 2  r 2+V 2- 2s((l - b ) K ) J . ( ( l -  b)2Ka)e~ibs‘ (A20)
s

The integrations over Xj with j  > i + 2 give simply 1. The integrations over Xj with j  < i 

are all identical. They give a contribution:

( J o { K b ) J o ( K b 2 a ) Y  (A21)

Since K b  Jo(Kb) ~  1, and one can neglect this term  for short times (when the

exponent i is not too large). We show however at the end of the appendix tha t the longer 

time behavior (and so the ratchet time) can be obtained from this term. Finally, we are 

left with the integration over X{+ 2  and X{. For the Xi part, it is easy to show tha t the 

term  exp(—ibSi) can be neglected for small 6 . The exponentials exp(—ixi+ 2 ~  i*x i) must be 

combined with the product V'{Xi+2 )V'{xi)  to  give a non-zero result. We expand the product 

in the following way:

V ' ( x i ^ V ' ( x ^  =  (K  cosXi+ 2  + 2Kacos2xi+2)(K cosxi + 2Kacos2xi)

— K 2 cos x i + 2 cos Xi +  2 K 2a cos Xi+ 2 cos 2x{

+ 2 K 2a cos 2xi+2 cos Xi +  4{Ka)2 cos 2xi+2 cos 2Xi

(A2 2 )

The first term , which arises from the K  sin x  part of the potential, is here the appropriate 

one to  use:

IS 2 (
K 2 cosx i + 2 cos Xi =  —  < e' (;e‘+2-I‘) +  e- i(x‘+2- x‘> +  ei(x,+2+x‘) +  e- i<Xi+2+Xi>

(A23)

The integrations are now trivial, and we get :

K 2
C (2 ,p )'^ U -i =  — e-"°l> ] r r 2+V 2_2s((l -  b)K)J,((l  -  b)2Ka) (A24)

s

The same calculation for the case: rrii+ 2  — 1, ra;+i =  — 1 simply gives the complex conjugate 

of this expression.

176



Combining these results, we get :

C ( 2 , p )% t L  =  £  *̂2—2s((l -  b)K)J,((  1 -  b)2Ka){ i-2+°e-i’*b + ^ e ™ 6}
3

= ~ 5 n 1 L  “  b)K )J‘ ((1 -  6)2'ftra) c°s(Po6  -  (A25)

Since we have iV/3 terms of this kind (only for 1/3 of the N  kicks do we have the map 

chosen in this section, eq. (A13) and (A l4)), we obtain the final form of the i:i + 2 correction 

to  the quasi-linear diffusion resulting from the K  sin x  part of the potential as:
7̂ 2

C & P ) %Kt\nx ~  — — y ' JJ2 -2s( ( l-b )K)Ja(( l-b)2Ka)(casp0bcQ&^s+smpobsmj;s)  (A26)
S

Taking now m ; + 2 =  ± 2  and 77ij+ 1  =  —rrii+2 and following the same analysis we pick out 

the correction to the diffusion coefficient due to  the K a  sin 2 # part of the potential, which 

is:

C ( 2 , p ) ^ n it =  ~ ~  ^ 2  J4-2s(2{1 -  b)K)Js{4(1 -  b)Ka)(cos2pobcos +  sin 2 p0(<sin | s )

(A27)

2. Correlation between kicks i +  1 , i -f 3

The analysis for the correlation between kicks i 1 and z -1-3 of our cycle follows the same 

pattern  as th a t given above, starting from the following 3-kick map:

x i+l =  X i + p i+l (A28)

Xi + 2 =  x i+1 + P i+2(1 - b ) (A29)

X i+ 3 = Xi+2+Pi+3{l +  6 ) (A30)

Pi+i = X i -  V'{xi) (A31)

Pi+2 = %i+1 ^  (* î+l) (A32)

pi+3 =  Xi+2-V' (Xi+2) (A33)

One therefore obtains the diffusion correction due to  K  sin x  for kicks i +  1 : i 4 - 3 to be:
7̂ 2

C (2 ,p ) £ ŝ 3 =  — —  ^2—2 * ( (1  +  b)K)Js({ 1 +  b)2Ka)(cos2p$bcos | s  -  sin2po&sin ^ s )

(A34)
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with the K a  sin 2x  correction being:

c (2 ’P)K«sta2x =  Ji -2s(2( l+b)K)Js(4(l+b)Ka)(cos4p0bcos ^ s-sm 4 p o h s in  ~s)

(A35)

Note th a t in this case we obtain correction terms th a t are dependent on sin 2pb and 

sin 4p6, rather than  sin pb and sin 2pb obtained from the i : i +  2 correlation.

3. C o rre la tion  betw een kicks i 4 - 2, i + 4

Once again, we begin by defining the map:

(A36) 

(A37) 

(A38)

x i + 2 =  xi+1 + p i+2(l -  6 ) 

Xi+.i =  x l+ 2  + p ,+3(l +  b) 

% i+4  *^1+3 P i+ 4

Pi+2 = Xi+i ~  Vr/(xi+1) (A39)

pi+3 =  x i+2 -  V'(xi+2) (A40)

Pi+4. *£*4-3 ^  (* ^ i+ 3 ))  (•^■ ^1)

The analysis then follows precisely the same procedure given above, resulting in the 

K  sinx  correction:

T jT 2

C'(2 > P )* S t4 =  — g- J2-2s(K)Js(2Ka)(cospobcos +  sinp0&sin ^ s ) , (A42)
5

and the K a  sin 2 x correction:

c (2>P)K?BitL = ^ ^ ^ J 4 - 2 a{2K)Js(4Ka)(cos2pobcos?-s + sm2pobsm?-s)  (A43)
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4 . T ota l correction  from  th e  tw o-kick  correla tion

Combining these contributions together one obtains:

C ( 2 , p )  =  ^ J 2 - 2 s ( ( 1  ~  b)K)Js(( 1 -  b)2Ka)(cosp0b c o s ^ s  + sm p0b s in ^ s )
'  S

+ (2 K a )2 J 4_2s(2 ( 1  — b)K)Js(4(1 — b)Ka)(cos2p0bcos ^ s  +  sin2p0&sin —a)
8

—K 2 «/2- 2s((l +  fe)A")Js((l +  b)2Ka)(cos 2pobcos ^-s — sin2p0frsin ^ s )

+ (2 A 'a )2 'Y ,  J4_2S(2(1 +  6 )A ”)«/s(4 (l +  b)Ka)(cos4pobcos ^-s — sin4po& sin ^ a )
z z

—X 2 J2- 2s(K)  Js(2Ka)(cosp0bcos ^-s +  s i n s i n  —a)
z z3

+ ( 2 K a )2 J 4- 2s(2 K )  JS(4Ka)(cos 2p0bcos ^ s  +  s in 2 p0&sin ^ s )  )
Z Z /3 7

As the build-up of asymmetry in the system is a short-time effect, we can neglect any 

term s tha t are symmetric with respect to momentum over this period. We therefore attribute 

the onset of transport solely to  the sinpfr dependent term s in the Diffusion Coefficient. We 

therefore simplify equation 3.6 to:

Tf2 /
C(2,p)asymm =  —  f -  J 2- 2s((l -  b)K)Js(( 1 -  b)2Ka) sinp0 6 sin ^ s

'  S

-f(2a ) 2 J 4_25 (2 (l — b)K) J s(4(l — b)Ka) sin2p0&sin
s

+ Y J 2-2s((1 +  b)K)Js(( 1 +  b)2Ka) sin2p0bsin ^ s )
5

— (2a) 2 Y  ^4- 23(2(1 + b)K)Js(4(l + b)Ka) sin4p0& sin^
z

5

-  Y ,  J 2 - 2 s ( K ) J 8( 2 K a )  sinpo&sin ^ s
8

+ ( 2 a ) 2 JA- 2s (^K)Js(AKa) s in 2 p0&sin ^ s  J (A44)
5  7

These formulae can now be rearranged to  give the to tal correction to the diffusion coeffi­

cient as a function of the three sin npb present (note th a t we use s' =  2 =  2s and s" =  4 — 2s
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for clarity):

C(2,p)asymm =  ~  ^sinpofcj Y i[ M K ) J s(2Ka) + 1 -  b))J,(2Ka(l  -  6 ))] sin J

-  sin2p0 f> j  (2a) 2 ^ 2 { J A 2 K ) J a(4Ka) + 1 +  b))Js(2Ka(l  +  6 ))+
'  fi

(2a)2J, , , (2K( l  -  b))Js( 4 Ka ( \  -  &))] sin | s j  

+  sin 4p0/>|(2«)2 5 3  JS«(2K(1 +  b))Js( 4Ka{ \  +  b)) sin ~,s j- (A45)

5. Derivation of Ratchet Time tT

We now come back to the time-dependence of the corrections to the diffusion coefficient, 

to  calculate the ratchet time. W hen calculating the corrections coming from the («, i +  2) 

correlations, we have neglected the term s like:

{J0{Kb)J0(Kb2a))k (A46)

In Eq. A25 if we included these terms we would have:

C ( 2 , P ) S ,  =  ~ 5 3 J 2 _ 2 . ( ( l - 6 ) j r ) J . ( ( l - t ) 2 i r o ) c o e ( | i d 6 - 5 « )
s

k = N /3

■ 5 3  { M K b ) J a(Kb2a))k (A47)
k = 1

In the previous sections we assumed Jo(Kb) ~  J0(Kb2a) ~  1 so the sum over k  simply 

yielded a factor of N / 3. Although Jo(Kb) ~  1 — (Kb)2/A is very close to 1, when the 

number of kicks (and so, i ) increases, this term  becomes eventually much smaller than 1 . 

The sum can’t then simply be equated to N / 3. We must sum between kicks N  and kick 1 

(with only 1 kick over 3 contributing to this correction) :

(J o ( K b )  J0(Kb2a))N +  (J0(Kb)J0(Kb2a))N- 3 +  (J0(Kb)J0(Kb2a))N- 6 +  . . .  (A48)

This is just a geometrical series, summing up to:

1 -  (Jo(Kb)Jo(Kb2a))N
1 -  {J0(Kb)J0(Kb2a))3 K 1

As a function of the kick number TV, this increases linearly for small N  (and thus 

gives a correction to  the diffusion coefficient), but saturates for large N  a t the value
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(1 — (Jo(Kb)Jo(Kb2a))3)~1 (where the diffusion coefficient is not affected by these corre­

lations anymore). Note tha t for the s in 2pb and sin4p6 terms the Bessel functions have 

argum ents two or four times larger respectively. Hence in the main paper we introduce the 

tim e dependence function

(iS o,
v N  1 -  [J0(bK)J0(2nabK)]3

This multiplies the diffusion rates C(2,p)  which were obtained with the approximation 

(J0(Kb)J0(Kb2a))k ~  1 .

We define the ratchet time, tr, as the time needed for the function 3>(iV, b, n ) N  to  attain  

95% of its saturated  value as N  —> oo. This gives :

ln(5/100)
r ln(J0(bK)J0(2abK)) 

Keeping only the lowest order in b, we get :

(A51)

where we recall = K 2( 1 +  4a2). Note tha t this is the ratchet time for the dominant 

sin pb contribution to  the diffusion coefficient. One can calculate in the same way the ratchet 

times for the sin 2pb and sin 4pb contributions. For a = 1/2 we get :

(A53)

=  S P  (A54)

4s‘"4f*) =  (A55)

[1] G. Casati, B.V. Chirikov, Izraelev F.M., and J. Ford in “Lecture notes in Physics”, Springer, 

Berlin 93 , 334 (1979).

[2] S. Fishman, D.R. Grempel, R.E. Prange, Phys. Rev. Lett. 49, 509 (1982).

[3] F.L. Moore, J.C. Robinson, C.F. Bhaxucha, Bala Sundaxam, and M.G.Raizen, Phys. Rev. 

Lett. 75, 4598 (1995).

181



[4] P. Reimann, Phys.Rep.361,57 (2002).

[5] S. Flach, O. Yevtushenko, Y. Zolotaryuk, Phys. Rev. Lett. 84, 2358 (2000). S.Denisov, S. 

Flach, A. A. Ovchinnikov, O. Yevtushenko, Y. Zolotaryuk, Phys. Rev. E 6 6 , 041104 (2002).

[6 ] T. Dittrich, R. Ketzmerick, M.-F.Otto, and H. Schanz, Ann. Phys. (Leipzig) 9,1 (2000); H. 

Schanz, M.-F.Otto, R. Ketzmerick T. Dittrich, Phys. Rev. Lett. 87, 070601 (2001).

[7] T.S. Monteiro, P. A. Dando, N. A. C. Hutchings and M. R. Isherwood, Phys. Rev. Lett 89, 

194102 (2002).

[8 ] T. Jonckheere, M. R. Isherwood and T. S. Monteiro, Phys. Rev. Lett. 91, 253003 (2003).

[9] P.H.Jones, M.Goonasekera, H.E. Saunders-Singer and D.Meacher quant-phys/0309149

[10] A.J. Lichtenberg and M.A. Lieberman, ‘Regular and Chaotic Dynamics’, Springer-Verlag, 

New York (1992).

[11] D. L. Shepelyansky Phys. Rev. Lett. 56, 577 (1986).

[12] A. B. Rechester and R. B. White, Phys. Rev. Lett. 44, 1586 (1980).

[13] Matthew Isherwood, PhD thesis, UCL (2004).

182



Bibliography

[1] E. O tt, Chaos in Dynamical Systems, Cambridge University Press, (1993).

[2] B.V. Chirikov, Phys. Rep. 52 263 (1979).

[3] G. Casati, B.V. Chirikov, Izraelev F.M., and J. Ford in Lecture notes in  

Physics , Springer, Berlin 93 , 334 (1979).

[4] R. Bliimel in Chaos in Atomic Physics , Springer, Berlin 93 , 334 (1979).

[5] S. Fishman, D.R. Grempel, R.E. Prange, Phys. Rev. Lett. 49, 509 (1982).

[6 ] D.R. Grempel, S. Fishman, R.E. Prange, Phys. Rev. Lett. 49, 833 (1982).

[7] Baruch Fischer, A. Rosen, A. Bekker and S. Fishman, Physics Review. E. 61, 

4694 (2000).

[8 ] S.Wimberger, I. Guarneri and S. Fishman, preprint, Physics/0012013, Dec 7, 

2000.

[9] I.H. Deutsch, J. Grondalski and P.M. Alsing Physics Review. E. 5 6 ,1705 (1997).

[10] G. Schmidt, J.Bialek, Physica D 5, 397 (1982).

[11] F.L. Moore, J.C. Robinson, C.F. Bharucha, Bala Sundaram, and M.G.Raizen, 

Phys. Rev. Lett. 75, 4598 (1995).

[1 2 ] M.G. Raizen, J.Koga, B, Sundaram, Y. Kishimoto, H. Takuma and T.Tajima, 

Physics Review A 58, 4757 (1998).

183



Bibliography 184

13] J.C. Robinson, C.F. Bharucha, F.L. Moore, R.Jahnke, G.A. Georgakis, Q.Nui 

and M.G.Raizen, Phys. Rev. Lett. 74, 3963 (1995).

14] B.G. Klappauf, W.H. Oskay, D.A. Steck and M.G.Raizen, Phys. Rev. Lett. 81, 

1203 (1998).

15] F.L. Moore, J.C. Robinson, C.F. Bharucha, Bala Sundaram, and M.G.Raizen, 

Quantum Semiclass. Opt. 8 , 687 (1996).

16] B.G. Klappauf, W.H. Oskay, D.A. Steck, and M.G.Raizen, Phys. Rev. Lett. 81, 

4044 (1998).

17] C.F. Bharucha, K.W. Madison, P.R. Morrow, S.R. Wilkinson, Bala Sundaram, 

and M.G.Raizen, Physical Review A. 55, 857 (1997).

18] K.W. Madison, M.C. Fisher, R.B. Diener, Q.Niu and M.G.Raizen, Phys. Rev. 

Lett. 81, 5093 (1998).

19] J.Zhong, R.B. Diener, D.A. Steck, W.H. Oskey, M.G.Raizen, E. Ward Plummer, 

Z. Zhang and Q.Niu, Phys. Rev. Lett. 8 6 , 2485 (2001).

20] M.Beinert, F. Haug, W.P.Schleich and M.G. Raizen, Phys. Rev. Lett. 89, 050402- 

1 (2002).

2 1 ] C.F. Bharucha, F.L. Moore, J.C. Robinson, Bala Sundaram, Q. Niu and 

M.G.Raizen, Physics Review. E. 60, 3881 (1999).

22] V.Milner, D.A. Steck, W.H. Oskay and M.G.Raizen, Physics Review. E. 61, 7223

(2000).

23] D.A. Steck, V.Milner, W.H. Oskay and M.G.Raizen, Physics Review. E. 62, 3461

(2000).

24] F.L. Moore, J.C. Robinson, C.F. Bharucha, P.E. Williams and M.G.Raizen, 

Phys. Rev. Lett. 73, 2974 (1994).



Bibliography 185

[25] P.J. Bardoff, I.Bialynicki-Birula, D.S.Krahmer, G.Kurizki, E.Mayr, P. Stifter 

and W.P. Schleich, Phys. Rev. Lett. 74, 3959 (1995).

[26] R. B. Diener, G. A. Georgakis, Jianxin Zhong, M.G.Raizen, Qian Niu, Physical 

Review A. 64, 033416-1 (2001).

[27] T.S. Monteiro, S.M. Owen and D.S. Saraga, The Royal Society 357,1359 (1999).

[28] D.R. Meacher, Contempory Physics. 39, 329 (1998).

[29] L. Guidoni and P. Verkerk, J.Opt. B: Quantum Semiclass. 1 , R23 (1999).

[30] Shmuel Fishman, Lecture notes of the Scottish Summer School (1994).

[31] P.S. Jessen and I.H. Deutsch, Advances in Atomic, Molecular and Optical 

Physics. 37, (1996).

[32] I.H. Deutsch, P.M. Alsing, J. Grondalski, S. Ghose, D. Laycock and P.S. Jessen, 

J.Opt. B: Quantum Semiclasss. Opt. 2 , 633, (2000).

[33] Homer, T he  Odyssey , Book xi, Book of the Dead, Penguin Books Inc., Ha- 

monsworth, Middlesex. (1959).

[34] C. Mennerat-Robilliard, D. Lucas, S.Guibal et al, Phys. Rev. Lett. 82, 851 

(1999).

[35] T.S. Monteiro, Contemporary Physics. 35, 311 (1994).

[36] Giulio Casati, Chaos. 6 , 391 (1996).

[37] F.Julicher, A. Adjari and J.Prost, Rev. Mod. Phys., 69, 1269 (1997).

[38] J.L. Mateos Phys. Rev. Lett. 84, 258 (1999).

[39] P. Reimann, Phys. Rep. 361,57 (2002).

[40] P. Reimann, M. Grifoni, and P. Hanggi, Phys. Rev. Lett. 79, 10 (1997).

[41] P. Reimann, Phys. Rev. Lett. 8 6 , 4992 (2001).



Bibliography 186

[42] R. Eichhorn, P. Reimann, and P. Hanggi, Phys. Rev. Lett. 8 8 , 190601-1 (2002).

[43] R. Bartussek, P. Reimann, and P. Hanggi, Phys. Rev. Lett. 76, 1166 (1996).

[44] P. Reimann, C. Van den Broeck, H. Linke, P. Hanggi, J.M. Rubi and A. Perez- 

Madrid Phys. Rev. Lett. 87, 010602-1 (2001).

[45] P. Hanggi, P. Reimann, Phys. World, 2 1  12 (1999).

[46] T. R. Kelly, I. Tellitu, J. P. Sestelo, J. Org. Chem. 63 3655 (1998).

[47] M. Brooks, Quantum Clockwork, New Scientist 29 2222 (2000).

[48] M. V. Berry, N. L. Balazs, M. Tabor and A. Voros, Annals of Physics, 1 2 2  26 

(1979).

[49] P. Reimann and P. Hanggi, Chaos, 8 , 629 (1998).

[50] R. D. Astumian, Science, 276, 917 (1997).

[51] R. D. Astumian and M. Bier, Phys. Rev. Lett. 72 1766 (1994).

[52] S. Flach, O. Yevtushenko, Y. Zolotaryuk, Phys. Rev. Lett. 84, 2358 (2000).

[53] T. Dittrich, R. Ketzmerick, M.-F.Otto, and H. Schanz, Ann. Phys. (Leipzig) 

9,1 (2000).

[54] H. Schanz, M.-F.Otto, R. Ketzmerick T. Dittrich, Phys. Rev. Lett. 87, 070601 

(2001).

[55] T. Cheon, P. Exner, P. Seba, preprint, cond-mat/0203241, 12 March 2002.

[56] N. Hutchings et al, in preparation.

[57] M Oberthaler, M.B.d’Arcy, R M Godun, G S Summy and K. Burnett. Phys. 

Rev. Lett. 83, 4447 (1999).

[58] M.B.d’Arcy, R M Godun, M Oberthaler, D Cassetari, and G S Summy. Phys. 

Rev. Lett. 87, 741021 (2001).



Bibliography 187

[59] R M Godun, M.B.d’Arcy, M Oberthaler and G S Summy, Physics Review A. 62, 

013411-1(2000).

[60] M.B.d’Arcy, R M Godun, M Oberthaler, G S Summy, K. Burnett and S. A. 

Gardiner. Physics Review E. 64, 056233-1 (2001).

[61] S. Schlank, M.B.d’Arcy, R M Godun, D Cassetari, and G S Summy, Phys. Rev. 

Lett. 90, 054101 (2003).

[62] A.J. Lichtenberg and M.A. Lieberman, Regular and Chaotic Dynamics , 

Springer-Verlag, New York (1992).

[63] D. L. Shepelyansky Phys. Rev. Lett. 56, 577 (1986).

[64] L.A. Caron, H. Krdger, X.Q. Luo, G. Melkonyan and K.J.M Moriarty, preprint, 

Physics/0203022, March 5,2002.

[65] M.Latka and B.J. West, Phys. Rev. Lett. 75, 4202 (1995).

[6 6 ] R. Graham, M. Schlautmann and P.Zoller, Physics Review A, 45, 1, (1992)

[67] D.A. Steck, Atomic Motion in a Standing Wave of Far-Detuned Light, Lecture 

Notes (1998).

[6 8 ] D.A. Steck, Lecture Notes for Los Alamos Summer School (2002).

[69] T. Jonckheere, M.R. Isherwood and T.S. Monteiro, preprint, Physics/0304036vl, 

April 17, 2003.

[70] R. Ketzmerick, K.Kruse, T.Geisel, Physica D. 131, 247 (1999).

[71] A. I. Saichev and G.M. Zaslavsky, Chaos 7, 753 (1997).

[72] J. Gong and P. Brumer, Journal of Chemical Physics 115, 3590 (2001).

[73] L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan and A. J. Libchaber, Phys. Rev. 

Lett.74 1504 (1995).



Bibliography 188

[74] A.B. Rechester and R.B White, Phys. Rev. Lett. 44, 1586 (1980).

[75] A.B. Rechester, M.N. Rosenbluth and R.B White, Physiscs Review. A. 23, 2664 

(1981).

[76] J.M. Greene, J. M ath Physics 2 0 , 1183 (1979).

[77] J.C.A. B arata and D.A. Cortez, preprint, Physics/0201008, Jan 3, 2001.

[78] R. del Rio, S. Jitomirskaya, Y. Last and B. Simon, Phys. Rev. Lett. 75, 117 

(1995).

[79] A. Mouchet, C. Miniature, R. Kaiser, B. Gremaud and D. Delande, preprint, 

Physics/0012013, Dec 7, 2000.

[80] S. Kohler, R. Utermann, P. Hanggi and T.Dittrich, Physics Review. E. 58, 7219 

(1998).

[81] C. Mennerat-Robilliard, D. Lucas, S. Guibal, J. Tabosa, C. Jurczak, J. Courtois 

and G. Grynberg, Phys. Rev. Lett. 82, 851 (1999).

[82] F. Falo, P. J. Martinez, J. J. Mazo and S. Cilia, Europhys. Lett., 45 700 (1999).

[83] P.Jung, J. G. Kissner and P. Hanggi, Phys. Rev. Lett. 76, 3436 (1996).

[84] M. Bier, Contemporary Physics. 38, 371 (1997).

[85] J. Maddox, Nature. 365 203 (1993).

[8 6 ] J. Maddox, Nature. 368 287 (1994).

[87] J. Maddox, Nature. 369 181 (1994).

[8 8 ] S. Leibler, Nature. 370 412 (1994).

[89] J. Spudich, Nature. 372 515 (1994).

[90] H. Linke, Science 299 841 (2003).



Bibliography 189

H.Linke, Appl. Phys. A. 2  75 (2002).

T. E. Humphrey, R. Newbury, R. P. Taylor and H. Linke, Phys. Rev. Lett. 89 

116801 (2 0 0 2 ).

H. Linke, T. E. Humphrey, P. E. Lindelof, A. Lofgren, R. Newbury, P. Omling, 

A. 0 . Sushkov, R. P. Taylor, Hongqi Xu, Appl. Phys. A. 74 237 (2002).

H. Linke, T. E. Humphrey, R. P. Taylor, R. Newbury, Physica Scripta, T 90 54

(2001).

H. Linke, T. E. Humphrey, A. Lofgren, R. Newbury, P. Omling, A. O. Sushkov, 

R. P. Taylor, Science 286 2314 (1999).

H. Linke, W. Sheng, P. E. Lindelof, A. Lofgren, P. Omling, Hongqi Xu, Europhys. 

Lett. 44 341 (1998).

P. Hanggi, I. Goychuk, Stochastic Processes in Physics, Chemistry and Biology, 

Lecture notes in Physics, Springer, Berlin, (2002).

981 Z. Farkas, PhD dissertation in Physics, Eotvos University, Hungary, (2001).

99] A. Riegler, Cybernetics and Systems, 32 411 (2001).

100] S.Scheidl, V. M Vinokur, Physics Review B, 65 195305-1 (2 0 0 2 ).

101] M. O. Magnasco and G. Stolovitzky, Journal of Statistical Physics, 93 615 

(1998).

1 0 2 ] M. O. Magnasco, Phys. Rev. Lett., 71 1477 (1993).

103] J. Lehmann, S. Kohler, P. Hanggi and A. Nitzan, Phys. Rev. Lett. 8 8  228305-1

(2002).

104] C. S. Lee, B. Janko, I. Derenyl and A. L. Barabasl, Nature, 400 337 (1999).

105] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with 

formulas graphs and mathematical tables, Constable, London, (1965).



Bibliography 190

106] R. Feynman, R. B. Leighton and M.Sands, The Feynman Lectures in Physics, 

1  44-46, Addison-Wesley Publishing Company, Inc., London (1963).

107] C. Cohen-Tannoudji, B. Dui and F. Laloe, Quantum Mechanics, Whiley, New 

York (1977).

108] W. H. Press et al., Numerical Recipes in FORTRAN: the art of scientific com­

puting, Cambridge University Press, (1992).

109] W. D. Heiss, Chaos and Quantum Chaos, Springer-Verlag, London, (1992).

110] M.C. Gutzwiller, Chaos in classical and quantum mechanics, Springer-Verlag, 

London (1990).

111] T. S. Monteiro, P. A. Dando, N. A. C. Hutchings, M.R. Isherwood, Phys. Rev. 

Lett. 8 8  228305-1 (2002).

112] P. H. Jones, M. Goonasekera, H. E. Saunders-Singer and D. R. Meacher, 

Preprint, arXiViquant-ph/0309149. (2003).

113] E. A. Hinds, C. J. Vale and M. G. Boshier, Phys, Rev, Lett, 8 6 , 1462 (2001).

114] W. Hansel, P. Hommelhoff, T. W. Hansch and J. Reichel, Nature 413, 498

(2001).


