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Abstract

In addition to giving rise to the gut, the endoderm plays a crucial role in embryonic axis 

determination. The murine extra-embryonic endoderm is thought to provide an early 

positional cue defining the antero-posterior axis of the embryo. The axial 

mesendoderm, which emanates from the gastrula organizer, populates the midline of the 

embryo and patterns it in all three axes. Later, maintenance and refinement of the 

antero-posterior axis of the brain requires the embryonic endoderm (reviewed in 

Martinez-Barbera and Beddington, 2001).

Genes expressed in the endoderm are responsible for imparting it with its patterning 

properties. It is therefore useful to identify the expression profile of the endoderm. To 

this end, a cDNA library was made from 7.5 days post-coitum  mouse endoderm 

(Harrison et al., 1995). Many clones from this library were sequenced and constitute a 

set of expression sequence tags (ESTs). I screened these ESTs in silico for non- 

essential molecules whose role in embryonic patterning had not been determined. I then 

screened clones obeying these criteria by whole-mount in situ hybridisation on

6.5 -9 .5  dpc mouse embryos. Restricted expression was displayed by 18 % of the 

clones (from the total of my work and that of two other students). The restricted 

expression patterns encountered are presented.

One of the restricted genes I encountered in the mouse in situ hybridisation screen was 

that encoding the serum and glucocorticoid-regulated kinase (Sgk). I was very 

interested in the expression pattern of Sgk since it was asymmetric in the visceral 

endoderm at the onset of gastrulation. Sgk expression presented other interesting 

features, such as being exclusively expressed in angioblasts at 9.5 dpc. I constructed a 

targeting vector in order to analyse Sgk function in mouse by a loss-of-function 

approach. I targeted embryonic stem (ES) cells with this construct and recovered 

neomycin-resistant clones. One of these is possibly a clone where homologous 

recombination took place at the Sgk locus.

I cloned zebrafish orthologues of some of the restrictedly expressed endoderm genes. I 

functionally screened these genes in zebrafish by a loss-of-function approach, using
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antisense morpholino oligonucleotides (MOs). I uncovered several molecules required 

for proper early embryonic development, one of which I studied in more detail. This 

was Nop seven-associated protein 2 (Nsa2), a eukaryotic protein involved in ribosome 

biogenesis (Hampichamchai et al., 2001). Zebrafish nsal morphants have slowed 

epiboly and early patterning defects. Furthermore, nsal morphant cells gradually die by 

apoptosis. A smaller embryo develops from surviving nsa2 morphant cells during the 

first day of development, after which presumably all cells die. The phenotype of nsal 

zebrafish morphants is analogous to that of morphants for the ribosomal proteins RpL19 

and RpS5, which when mutated in fly cause the Minute phenotype. I describe the 

zebrafish Minute phenotype and hypothesize that nsal is likely to be a Minute.
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1.5 Aims and thesis outline

The most influential study ever performed in experimental embryology was the one 

published in 1924 by Hans Spemann and Hilde Mangold (Spemann and Mangold, 

1924). Using differences in pigmentation between two species of salamanders, they 

showed that the dorsal region of one gastrula embryo, when grafted to a ventral or 

lateral location of another, could induce the formation of a complete second embryonic 

axis. Pigmentation differences allowed them to observe that the majority of the 

secondary axis was made up from cells of the host organism rather than from the graft. 

The active region, which comprises the dorsal lip of the blastopore, was named 

organizer. Since the organizer was first described in amphibia, functional equivalents 

have been identified in every major vertebrate taxon. For example, the embryonic 

shield in teleost fish (Oppenheimer, 1936c; Shih and Fraser, 1996; Saude et al., 2000), 

Henson’s node in avians (Waddington, 1932) and the node in mammals (Beddington,
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1994; Knoetgen et al., 2000). The cellular and molecular basis of organizer formation 

and function remain the object of intense investigation.

1.1 Model organisms and conservation of developmental 
processes

Despite the recognition of the conservation of fundamental cellular processes, such as 

DNA replication and cell division, transcription and translation, the remarkable 

diversity among animal species led to the widely held notion that the basic molecular 

machinery and processes governing animal development must be divergent. This was 

largely overturned throughout the last two decades as a result of application of classical 

mutational genetics and modem molecular biology to the study of developing model 

organisms.

The genetic screens of Christiane Nusslein-Volhard and Eric Wieschaus (Nusslein- 

Volhard and Wieschaus, 1980) and the analysis of homeosis by Ed Lewis (Lewis, 1978) 

marked the beginning of a new era in developmental biology. Identified genes could be 

grouped according to related phenotypes, which in turn obeyed strict hierarchical 

relationships. In addition to generating a conceptual framework to explain how a 

homogenous population of cells can acquire domains of distinct fates, these studies led 

to the discovery that molecules and processes controlling development are conserved 

among metazoa.

Drosophila melanogaster was an already prominent model for the study of heredity and 

evolution, and it naturally became a model also for the new discipline of developmental 

genetics. Modern genetic and molecular methods rapidly took over from the 

biochemical ones in their application to animals traditionally used for embryological 

studies. On the one hand, the fly is small, has a short generation time and only 4 

chromosomes, so its genetic amenability has been used over and over again in the 

recovery of mutations affecting development. On the other hand, the classical 

embryological models, frog and chick, have large embryos, suitable for transplantation 

and tissue recombination, which had already yielded intriguing results. In addition, as 

vertebrates, they have the attraction of being evolutionarily closer to humans than the 

fly. This has naturally been the main incentive for the pursuit of mouse development,
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even if the mammalian embryo is the least accessible of all, gestating inside the mother. 

Two other species, the nematode worm Caenorhabditis elegans and the teleost fish 

Danio rerio (zebrafish), have become well established as model organisms for 

developmental genetic studies. C. elegans has an even shorter life cycle than that of the 

fly (3 days from egg to egg), has a small and traceable number of cells, occurs as self- 

fertile hermaphrodites in addition to males which can cross-fertilise the former, is 

transparent from embryo to adult, and profits from the easiest possible way of stock 

maintenance by larvae freezing. Zebrafish have a short and productive breeding cycle 

and transparent embryos. These properties combined to make zebrafish suitable for 

mutagenesis screens of the sort performed with Drosophila and so it was the first 

vertebrate in which this was done in large-scale (Driever et al., 1996; Haffter and 

Nusslein-Volhard, 1996).

Biologists will forever be short of having a detailed account of the developmental 

genetics of the ten million species of animals known (Alberts et al., 2002). However, 

the embryology of numerous other animal species has been studied and, combined with 

detailed molecular understanding, this has allowed evolutionary biologists to discern 

some of the molecular basis of diversity. Scientists are still assessing the degree of 

conservation among metazoan species. It cannot be ruled out that some developmental 

processes are indeed evolutionary divergent, but the great conservation that has 

emerged as the main theme of developmental biology is at times motivation enough for 

persistent endeavours to look for a particular mechanism in a species where it has not 

been found.

Early development, from oogenesis up to and including gastrulation, is one of the areas 

in developmental biology where the notion of conservation has been most challenged. 

It has not been considered useful to pursue analogies between invertebrate and 

vertebrate early development. Nonetheless, there is an example of striking analogy 

between the molecular mechanism used by arthropods and vertebrates in a fundamental 

patterning process such as the generation of a dorso-ventral axis. There remains some 

dispute, however, as to whether this reflects homology of the process, i. e., continuity by 

descent or convergent evolution (reviewed in De Robertis and Sasai, 1996). Also, as we 

now enter an era of understanding the effects of patterning on cellular behaviour, 

vertebrate developmental biologists will surely look closer at simpler organisms for
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lessons in cell biology applicable to early development. For example, evidence is now 

emerging that the molecular pathway implicated in cell movements of gastrulation in 

vertebrates is the planar cell polarity pathway (Heisenberg et al., 2000), first discovered 

in Drosophila as the basis for bristle orientation (for reviews see Heisenberg and Tada, 

2002 and Tada et al., 2002).

In this thesis, I will describe my work on mouse and zebrafish early development. 

Given the premise that many developmental processes are likely to be conserved, it is 

appropriate to compare the four most widely used vertebrate model organisms with 

respect to the topic in question. The central goal was to identify new molecules 

involved in early patterning, with the hope of contributing to the understanding of 

antero-posterior and dorso-ventral axes formation. I therefore start by reviewing 

literature concerning the early patterning of the most popular vertebrate model 

organisms (Fig. 1.1), presenting a comparative analysis and the highlighting of 

unresolved issues.

1.2 Vertebrate embryology from egg to gastrula

1.2.1 Generalities

Most eggs contain yolk for nutrition of the embryo. The yolk can be intermixed with 

cytoplasm, as in amphibia where every cell inherits yolk in its cytoplasm; but when the 

amount of yolk is very large, it can become segregated into a special compartment, 

either before or after fertilisation, as with chicken or zebrafish embryos, respectively. 

Independently of the yolk, the nucleus is positioned towards one end of the egg, limiting 

the loss of cytoplasm to the polar bodies during meiosis (Gardner, 1999a). It is from 

this end, which is organelle-rich and thus metabolically active, that the polar bodies are 

extruded. This end of the zygote is known as the animal pole, and the opposite is 

known as the vegetal pole (Fig. 1.1).

The morphology of the first cell divisions in an embryo is correlated with the amount 

and distribution of yolk because the cleavage furrow is greatly delayed in yolk-rich 

regions (reviewed in Gilbert, 2000). In telolecithal embryos, where yolk and cytoplasm 

are separated, as with teleost fish and birds, the yolk mass does not cleave at all and the
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Fig. 1.1 Zygotes of four vertebrate model organisms. Schematics of A, Xenopus laevis (frog); B, Danio rerio (zebrafish); 

C, Gallus gallus (chick); D, Mus musculus (mouse) zygotes, oriented with the animal pole upward. A, B and D are shown 

at the same magnification whereas C is shown at a 10 x lower magnification that the others. In fish and chick (B and C), embryo 

and yolk are segregated from each other and the two compartments are labelled e and y, respectively. With the exception of chick, 

information on sizes was taken from Wolpert et. al., 1998.
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embryo develops from a flat disc of cells on top of the yolk mass. Such cell divisions 

are said to be meroblastic and the flat mass of embryonic cells is referred to as the 

blastodisc or blastoderm. In mesolecithal embryos, where the yolk is mingled with 

cytoplasm, as with amphibians, or in isolecithal embryos, where the yolk is evenly 

distributed or absent, as with mammals, furrows extend through the entire egg in what is 

called a holoblastic cleavage.

In embryos that undergo meroblastic cleavages the cells of the embryo remain in 

contact with the yolk for a few divisions. In the early fish embryo, the cells are 

surrounded by a plasma membrane but there are wide cytoplasmic bridges linking them 

to the yolk. In the chick embryo, up to the 64-cell stage newly formed cells are not 

surrounded by a plasma membrane but, rather, open directly to the yolk; these are called 

open cells (reviewed in Bellairs, 1993). In animals that undergo holoblastic cleavages, 

adhesion of cells to the hyaline layer, a transparent surface coat secreted by the embryos 

shortly after fertilisation, as well as osmotic pressure created by secretion of proteins 

into the extracellular medium, causes the formation of a fluid-filled cavity in the animal 

region of the embryo (reviewed in Gilbert, 2000). This is called the blastocoel and the 

embryos are said to be at the blastula stage at the time it forms. In animals that undergo 

meroblastic cleavages, a thin cavity is present between the blastoderm and the yolk at 

blastula stage (Fig. 1.2).

During cleavage cell divisions, cells employ a rapid cell-cycle, consisting of alternating 

S and M phases, with no gap phases and no cell growth. There is no change in the 

overall volume of the embryo; instead, the initial content of the zygote becomes 

partitioned into smaller cells. Cells resulting from cleavage divisions are called 

blastomeres. Cleavage divisions are usually synchronous within a species. When cell- 

cycles acquire gap phases, however, synchrony is lost. This cell-cycle transition, 

termed mid-blastula transition (MBT), often correlates with the onset of zygotic 

transcription (Wylie, 1972; Newport and Kirschner, 1982a; Newport and Kirschner, 

1982b; Sawicki et a l, 1982; Kane and Kimmel, 1993). One mechanism thought to 

control this transition is the nuclear-to-cytoplasmic volume ratio in the blastomeres. In 

frog embryos, its onset has been altered experimentally by adding or removing nuclei 

thus altering the ratio between the two volumes (Newport and Kirschner, 1982a and 

Newport and Kirschner, 1982b).
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Fig. 1.2 Blastulae of four vertebrate model organisms. Schematics of sagittal sections through A, frog; B, zebrafish; C, chick; 

D, mouse embryos at blastula stage. A - C, animal pole is upward; D, proximal is upward; bl, blastocoel. Adapted from Tam and 

Quinlan, 1996, and Wolpert et. ai,1998.
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1.2.2 Frog

Fertilisation in Xenopus laevis begins when a sperm enters the egg in the pigmented 

animal hemisphere. Microtubule growth from the sperm aster leads the outer, cortical, 

region of the egg to rotate by 30° relative to the central yolky core, which remains 

stationary due to gravity (Ancel and Vintemberger, 1948; Vincent et al., 1986; Scharf et 

al., 1986; Vincent and Gerhart, 1987; Elinson and Rowning, 1988; Scharf et al., 1989). 

This process is called cortical rotation and occurs before the zygote undergoes its first 

cleavage. Cortical rotation has its maximal effect at a point directly opposite the sperm 

entry point (SEP) and displaces a set of cortical-located patterning molecules as well as 

a set of organelles (Ubbels, 1977; Kirschner et al., 1980; Rowning et al., 1997), while 

leaving other, deeper, proteins and mRNAs unaffected (see below). The region of 

maximal cortical rotation, opposite the SEP, marks the future dorsal side of the embryo 

and dorsal determinant molecules are concentrated in this region.

When cortical rotation is impaired, for example by ultraviolet (UV) irradiation, the three 

germ-layers still form but the mesoderm consists only of the ventral type, such as lateral 

plate mesoderm and blood, and the ectoderm gives rise solely to epidermis rather than 

to epidermis and nervous system. The resulting embryo is totally devoid of dorsal 

structures and consists of radially symmetric ventral tissue around a gut (Gerhart et al., 

1989). In contrast, if a Xenopus zygote is manually tilted or centrifuged gently in 

opposite directions sequentially before the first cell division, cortical rotation can occur 

for a second time and a double axis will become apparent in the later embryo (Scharf 

and Gerhart, 1980; Black and Gerhart, 1986). Removal of vegetal pole cytoplasm 

before cortical rotation blocks formation of dorsal structures and its injection into 

another embryo induces an ectopic axis in the recipient (Sakai, 1996; Kikkawa et al., 

1996). Thus, dorsal determinants are normally resident in the vegetal region and are 

shifted dorsally by cortical rotation (Fujisue et al., 1993; Yuge et al., 1990; Holowacz 

and Elinson, 1993; Sakai, 1996; Kageura, 1997; Kikkawa etal., 1996).

As amphibian embryos undergo holoblastic cleavage, cytoplasmic determinants become 

segregated into individual cells. In Xenopus leavis, the first two cleavages are 

meridional with respect to the animal-vegetal axis and at right angles to each other but 

the third cleavage is equatorial. Therefore, from the eight-cell stage onwards the
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embryo has distinct animal and vegetal blastomeres. In the early 1970s, Pieter 

Nieuwkoop showed that transplantation of dorsal-vegetal blastomeres of a 32-cell stage 

embryo could induce a complete second axis in a host without contributing to axial 

tissues (Nieuwkoop, 1973). These dorsal-vegetal blastomeres would contain the dorsal 

determinants displaced by cortical rotation and this region has since been called the 

Nieuwkoop centre. Thus, as a model of dorsal determination, cortical rotation generates 

the Nieuwkoop centre; then the Nieuwkoop centre induces the dorsal organizer in the 

overlying blastomeres (reviewed in Moon and Kimelman, 1998). Supporting this 

notion, 32-cell embryos in which two dorsal-marginal and two dorsal-animal 

blastomeres are removed will develop a normal axis, demonstrating that a Nieuwkoop 

centre is sufficient to dorsalise an embryo in the absence of normal organizer precursor 

cells (Kageura, 1995). The simplicity of this model is very attractive, but it does not 

fully explain all the data. Later experiments showed that Nieuwkoop activity is broadly 

distributed over the dorsal side of the embryo, reaching as far as the upper animal 

hemisphere. Indeed, it is greatest in the dorsal-vegetal cells that lie just below the 

equator, the traditional Nieuwkoop centre, but significant levels of activity are also 

present in cells that will populate the organizer itself (Kageura, 1990). In addition, 

embryos in which the two dorsal-vegetal blastomeres are removed at the 32-cell stage 

are able to develop an axis, although gut development is impaired (Kageura, 1995). The 

broad distribution of dorsalising activity and its presence in organizer precursor cells 

calls into question the existence of a separate Nieuwkoop centre for normal organizer 

formation and raises the possibility that the organizer may arise directly from dorsal 

determinants localised during cortical rotation. Alternatively, Nieuwkoop centre and 

prospective organizer may cooperate or act redundantly to ensure organizer formation 

(reviewed in Moon and Kimelman, 1998 and Kodjabachian and Lemaire, 1998).

1.2.3 Fish

In teleost fish, sperm enter the egg through a specialised structure at the animal pole, 

called the micropyle. Yolk and cytoplasm are intermixed in the egg but soon after 

fertilisation most cytoplasm is shifted to the animal pole, while a thin layer of 

subcortical cytoplasm covers the entire surface of the yolk. In fish there is no 

correlation between the first division planes and the dorso-ventral axis (Clapp, 1891; 

Oppenheimer, 1936a; Kimmel and Warga, 1987; Abdelilah et al., 1994; Helde et al.,
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1994; Wacker et al., 1994). Moreover, removal of single Fundulus blastomeres up to 

the four-cell stage does not affect development (Morgan, 1895; Hoadley, 1928; cited in 

Jesuthasan and Stahle, 1997).

In zebrafish, starting at about 40 min after fertilisation at 28 °C, the cytoplasm 

undergoes regular cleavages every 15 min. After ten such cleavages, MBT takes place 

and, as zygotic transcription begins, three distinct embryonic compartments/lineages 

form. The outermost cells differentiate into a protective layer, first called the 

enveloping layer (EVL) and later called the periderm. Marginal blastomeres, still 

connected to the yolk cell via large cytoplasmic bridges, open up to and formally 

become part of the yolk cell, generating a syncytium called the yolk syncytial layer 

(YSL) (Kimmel and Law, 1985a; Kimmel and Law, 1985b). Both the EVL and the 

YSL are extraembryonic lineages. The remaining blastomeres, called the deep cell 

layer (DEL), are destined to form the embryo-proper (Kimmel and Law, 1985c). YSL 

nuclei undergo several more cell divisions before becoming post-mitotic (Kane et al., 

1992). These nuclei are initially restricted to the rim of the upper part of the yolk 

(external YSL) but spread to also populate the centre of the upper yolk (internal YSL), 

underlying the entire blastoderm (reviewed in Sakaguchi et al., 2002). At the time of 

YSL formation, gap junctions between the yolk and overlying marginal blastomeres are 

eliminated, hindering the free translocation of large proteins between the two 

compartments (Kimmel and Law, 1985).

There are several lines of evidence demonstrating that dorsal determinants are 

segregated within the yolk during early teleost development. When the vegetal half of 

the yolk cell is removed shortly after fertilisation or even after a few cell divisions, fish 

embryos later display dorsal deficiencies (Tung et al., 1945; Mizuno et al., 1997; 

Yamaha et al., 1998; Mizuno et al., 1999a; Mizuno et al., 1999b; Ober and Schulte- 

Merker, 1999; Aanstad, 1999). The severity of the ventralised phenotype was observed 

to decrease gradually with increasing the time of contact between the blastoderm and 

the yolk such that most embryos develop normally when vegetal yolk is removed after 

the four- or eight-cell stages (Mizuno et al., 1999b). Earlier experiments had already 

shown there is a critical stage before which yolk removal results in total absence of 

dorsal/axial structures and after which embryos are able to form an axis (Oppenheimer, 

1936a). Younger blastodiscs require a larger fraction of adhering yolk to develop
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normally (Tung et al., 1945). Furthermore, when young blastodiscs are transplanted 

onto gastrula stage yolk cells that have been marked on the dorsal side, it can be 

observed that embryos develop with a dorso-ventral axis determined by the yolk cell 

(Long, 1983). Finally, a gastrula stage yolk transplanted to the animal pole of a host 

blastoderm is able to induce dorsal and mesodermal molecular markers in the host 

(Mizuno etal., 1996).

Within the yolk cell, is the YSL required for inducing the dorsal organizer? As with the 

amphibian Nieuwkoop centre, there is debate over this issue. The dorsal YSL is able to 

specify dorsal deep cell fates but when YSL transcripts are eliminated, dorsal fates are 

unaffected, although ventro-lateral mesoderm specification is impaired (Chen and 

Kimelman, 2000).

No cortical rotation has been reported for fish. However, in zebrafish, cytoplasmic 

streaming, also a microtubule-dependent process, is capable of transporting substances 

from the yolk into blastomeres up to the 128-cell stage (Jesuthasan and Stahle, 1997). 

Following fertilisation, microtubules begin to organise in the vegetal pole as parallel 

arrays, becoming disorganised near the equator. After the first cleavage, equatorial 

cortical microtubules gradually extend and become aligned with the animal-vegetal axis 

(Jesuthasan and Stahle, 1997). Disruption of microtubules prior to the first cleavage 

causes cytoplasmic streaming to cease and the resulting embryos display dorsal deficits 

later in development (Strahle and Jesuthasan, 1993; Jesuthasan and Stahle, 1997). How 

the dorsal bias is imposed is not yet known.

1.2.4 Chick

At the time the chicken egg is laid, it is at the blastula stage. In chick blastulae the 

posterior is morphologically recognisable by the presence of a transparent crescent­

shaped region on one side of the blastodisc, called Koller’s sickle. Early chicken 

development up to the blastula stage is obscured by its intrauterine location. A few 

studies, however, suggest that maternal, yolk-localised antero-posterior patterning cues 

become asymmetrically positioned by gravity. While the egg descends the oviduct, 

peristalsis of the uterine wall causes the outer, albumin-rich, layers of the conceptus to 

rotate on the long axis while the yolk remains stationary but slightly oblique in the
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direction of rotation (Kochav and Eyal-Giladi, 1971; Callebaut, 1993a; Callebaut, 

1993b). The side of the embryo that is tilted upward is gradually specified to become 

posterior-dorsal and bias towards this fate can be imposed by experimentally tilting 

embryos of this stage (Vintemberger and Clavert, 1960; Kochav and Eyal-Giladi, 1971; 

reviewed in Gerhart and Kirschner, 1997). When blastoderms are cultured in isolation 

so, without yolk, they will form an axis only if harvested after stage VII (Eyal-Giladi 

and Kochav, 1976), suggesting need for vegetal cytoplasmic determinants to reach the 

animal pole in order for radial symmetry to be broken in the blastoderm. Stage VI-VII 

is thus thought to be the time they reach the blastoderm in a chick embryo. Tilting is 

accompanied by a subtle sliding of the embryo towards the anterior, as seen by a minute 

shear zone left behind in the posterior (Callebaut, 1987; Callebaut, 1993b; Callebaut, 

1993a; Callebaut and Van Nueten, 1994). This movement is reminiscent of cortical 

rotation in the frog. In both cases a superficial layer moves in an anterior direction 

relative to a deep layer with, presumably, accompanying redistribution of cytoplasm in a 

large yolky cell (reviewed in Bachvarova, 1999).

Despite the interuterine cues, antero-posterior patterning is not irreversibly established 

until stage 2 HH, when the primitive streak becomes visible, defining the onset of 

gastrulation. Prior to gastrulation, the chick blastoderm can be cut into posterior, lateral 

and anterior quadrants, each of which can develop into an embryo with a complete axis. 

The different quadrants differ in their ability to regulate in this way, though, where 

posterior quadrants have a very high regulative capacity and anterior quadrants have a 

very low one (Spratt and Haas, 1960). If pieces of posterior Roller’s sickle, called the 

posterior marginal zone (PMZ), are ectopically positioned on all quadrants of a 

developing embryo, only a single, normal embryo develops (Spratt and Haas, 1960). 

The latter experiment shows that the blastodisc has the ability to suppress 

supranumerary axes. The PMZ has been proposed to be the avian Nieuwkoop centre: 

when transplanted to another part of the marginal zone, it induces a complete embryonic 

axis without making a cellular contribution to the induced structures; and when 

removed, the embryo can initiate axis formation from another part of the remaining 

marginal zone known to possess, albeit weaker, Nieuwkoop activity (Skromne and 

Stem, 2001).
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Extraembryonic cell lineages are set aside very early in avian development. Adaptation 

to land engendered the evolution of several tissue layers in order to protect the embryo 

from desiccation among other things. Birds, reptiles and mammals are classified as 

amniote vertebrates, which means they are supported by four kinds of specialised 

extraembryonic membranes, the yolk sac, the amnion, the allantoic membrane and the 

chorion (reviewed in Gerhart and Kirschner, 1997 and Gilbert, 2000). As in fish, avian 

extraembryonic lineages are set aside around MBT. Initially scattered clumps of cells 

found in the thin blastocoelic cavity are thought to shed from the overlying epithelial 

layer (Eyal-Giladi and Kochav, 1976) and are called primary hypoblast (Stem, 1990). 

The centre of the epithelium becomes a translucent monolayer, the area pellucida, 

surrounded by a bilayered opaque ring, the area opaca. The border between the two 

areas is known as the marginal zone. Sections show that the PMZ is actually bilayered 

as well. The epithelial monolayer is called epiblast and will mainly give rise to the 

embryo-proper. The lateral marginal zone together with the area opaca will give rise to 

extraembryonic tissues other than the yolk sac. Slightly later, at stage XIV (Eyal-Giladi 

and Kochav, 1976) / HH 2 (Hamburger and Hamilton, 1992), another deep layer starts 

to form, mainly by migration of cells from the PMZ but also from ingression of cells 

from the posterior epiblast. This tissue forms in an anterior-to-posterior direction, 

displacing the primary hypoblast anteriorly and eventually coming to lie under the entire 

area pellucida. This is the secondary hypoblast or hypoblast proper, which will give rise 

to the yolk sac. At approximately this time, gastrulation begins, defined by the 

appearance of a dark triangle with its base in the PMZ and its apex in the epiblast. In 

this triangular area, a groove develops which is the primitive streak. The traditional 

view, based on the PMZ transplantation and removal experiments described above, is 

that the primitive streak is induced by the underlying PMZ / hypoblast (reviewed in 

Eyal-Giladi, 1997). However, this view has been challenged by the finding that a few 

scattered cells found in the pre-streak stage epiblast contribute to both endoderm and 

mesoderm (Stem, 1990; Stem and Canning, 1990).

1.2.5 Mouse

Mouse zygotes from which substantial fractions of either animal, vegetal or meridional 

cytoplasm have been removed three to five hours prior to the first cleavage can develop 

into healthy and fertile adults (Zemicka-Goetz, 1998). Moreover, after centrifugation
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(Mulnard and Puissant, 1984) or high-speed swirling of cytoplasm by an electrically 

controlled glass probe (Evsikov et al., 1994) development proceeds normally. It has 

been argued, however, that no assessment was made of whether scrambling effects were 

cortical as well as central, or whether the egg might have reversed to its original polarity 

prior to the first cell division (Gardner, 1999b). The cytoplasmic stratification caused 

by the centrifugation performed, however, was determined to last for at least 8 h.

Very recently, attention turned from highly invasive procedures to the observation of 

what happens in normal, unperturbed, mouse embryo development. Sperm can enter 

the mouse egg at any point of its surface, with the exception of an area above the 

metaphase II spindle (Piotrowska and Zemicka-Goetz, 2001). The first cleavage plane 

of the zygote is meridional with respect to the animal-vegetal axis of the zygote. 

Whether the orientation of this initial cleavage about the animal-vegetal axis is 

somehow regulated or whether it is random is still subject of controversy. Recent 

studies reach opposing conclusions. Using either lectin-treated fluorescent 

microspheres as a long-lasting means of labelling the SEP, or direct fluorescent 

labelling of the sperm, one group finds that the first cleavage plane is usually located 

close to the SEP (Piotrowska and Zemicka-Goetz, 2001; Plusa et al., 2002b). By 

removing, transplanting or duplicating the animal or vegetal poles of the mouse egg, 

this group further showed that the site of the last meiotic division, in the animal pole, 

contains, or correlates with, a cue that orients the plane of the initial cleavage (Plusa et 

al., 2002a). A correlation between SEP inheritance and subsequent cleavage was also 

shown by this group, whereby the blastomere that inherits the SEP usually divides 

earlier (Piotrowska and Zemicka-Goetz, 2001; Piotrowska et al., 2001). Another group, 

using injection of small oil drops into the zona pellucida as a means to landmark the 

embryo, finds that the plane of first cleavage is random with respect to the SEP (Davies 

and Gardner, 2002).

To address whether an early distinction exists between the extraembryonic 

trophectoderm lineage and the embryonic inner cell mass (ICM) lineage, two-cell stage 

fate mapping experiments have been done. In several studies, marking of single cells of 

the two-cell stage embryo revealed disproportionate contribution of the early dividing 

blastomeres to the ICM (Kelly et al., 1978; Graham and Deussen, 1978; Balakier and 

Pedersen, 1982; Surani and Barton, 1984). However, in one very recent study this bias
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was not observed (Fujimori et al., 2003). Concern about the perturbation to cleavage 

timing caused by intracellular microinjection of lineage tracers led to the repetition of 

the two-cell lineage tracing experiment using the membrane-soluble dyes Dil, DiD and 

DiO or the use of oil droplets on the zona pellucida to mark early blastomeres. A 

reciprocal fate bias of the two-cell blastomeres was again found (Piotrowska and 

Zemicka-Goetz, 2001; Gardner, 2001). The embryonic part of the blastocyst, the ICM, 

consists predominantly of the progeny of the blastomere that divides first (Piotrowska et 

al., 2001). One possibility is that the early cell division imparts an advantage that 

allows cells in one lineage to initiate a developmental program earlier than the other. 

Alternatively, sperm entry may promote some other developmental process influencing 

the fate of the cell (Piotrowska et al., 2001).

These studies suggest that the early mouse zygote may be prepattemed but this is 

difficult to reconcile with results obtained in many previous experiments. The capacity 

to generate correct pattern after blastomere disaggregation, aggregation or 

rearrangement, has been used to argue against the existence of cytoplasmic determinants 

in mammalian eggs. Blastomeres isolated at the 16-cell stage and reaggregated in 

groups of 16 cells can form blastocysts that undergo normal post-implantation 

development when transferred to pseudopregnant recipients (Ziomek et al., 1982). 

Chimeras have been generated from up to four eight-cell embryos, that regulate to 

normal size by gastrulation (Rands, 1986) without segregation of blastomeres (Gamer 

and McLaren, 1974), and develop into apparently normal mice (Petters and Markert, 

1980). Individual blastomeres from two-, four- and eight-cell embryos have been 

observed to give rise to relatively normal blastocysts (Tarkowski, 1959; Tarkowski and 

Wroblewska, 1967; Rossant, 1976; Tojo and Ogita, 1984; Pierce et al., 1997). It is not 

known, however, if all blastomeres isolated from a single embryo have the same 

capacity, the only example other than monozygotic twins being a report of bovine 

monozygotic quadruplets (Johnson et al., 1995).

By the eight-cell stage, mammalian embryos undergo compaction, during which cells 

maximise surface contact between each other and become polarised, with apical, 

external, and basolateral, internal, domains. Asymmetric divisions, along the apico- 

basal axis, of each of these cells leads to the generation of distinct cell types in the 16- 

cell stage embryo: outer, trophectoderm lineage cells, which are polarised in the same
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way as the eight-cell blastomeres were; and inner, ICM lineage cells, which are round 

and appear to be apolar (reviewed in Gilbert, 2000). Following disaggregation, eight­

cell or outer 16-cell blastomeres retain several traces of their polarity, such as 

asymmetric distribution of organelles, actin, tubulin and microtubule-organising centres, 

whereas the internal 16-cell blastomeres remain apparently apolar (reviewed in Johnson 

et al., 1986). This feature has been exploited to show that subsequent division planes 

are not fixed but, rather, depend upon the cellular context. The plane of division 

adopted will indicate cell fate. If two 16-cell stage polar blastomeres are cultured in 

contact with each other, they will in most cases divide asymmetrically, i. e., equatorially 

with respect to their axis of polarity, and give rise to one polar and one apolar daughter 

cell. If a polar blastomere is cultured in contact with an apolar one, the former 

envelopes the latter and its division will in most cases be symmetrical, i. e., meridional, 

giving rise to two polar daughter cells, while the apolar blastomere will give rise to two 

apolar daughters. If two apolar blastomeres are cultured in contact with each other, at 

least one of them will generate a polar daughter cell and the polar-plus-apolar cell 

behaviour ensues (Johnson and Ziomek, 1983). When several of these cells are present, 

polar ones always wrap around an apolar cell core and there seems to be a constraint on 

the ratio of inside to outside cells (Fleming, 1987).

Cavitation takes place at 3.5 days post-coitum (dpc) in the mouse, when a critical 

number of polar blastomeres wrapped around an apolar core is attained. ICM cells 

remain attached to one part of the trophectoderm and detach from the other, while the 

blastocoel forms; the embryo is at the blastula stage and is called a blastocyst. What 

determines which part of the trophectoderm will remain attached to the ICM is not 

known but this relationship controls subsequent cell fate decisions within the 

trophectoderm. Those trophectoderm cells in contact with the ICM will differentiate 

into polar trophectoderm, pushing the ICM into the blastocoel and forming the egg- 

cylinder, whereas remaining trophectoderm will differentiate into the polytenic mural 

lineage, responsible for implantation into the uterus (Fig. 1.3). The embryo-proper 

forms from the distal portion of the egg-cylinder and is derived entirely from the ICM. 

However, not all the ICM gives rise to the embryo-proper: the portion of the ICM in 

contact with the blastocoel differentiates into another extraembryonic tissue called 

primitive endoderm. The primitive endoderm gives rise to the parietal endoderm, which 

by egg-cylinder stages lines the mural trophectoderm, and the visceral endoderm (VE),
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which by egg-cylinder stages surrounds both the epiblast -  the embryo-proper -  in the 

distal half of the egg-cylinder, as well as the extraembryonic ectoderm, in the proximal 

half, which is derived from the polar trophectoderm. At egg-cylinder stages, the mural 

trophectoderm cells have ceased to undergo cytokinesis and become polytenic, being 

named trophoblast giant cells.

If the mouse zygote were to contain molecular determinants that would promote 

development in a stereotypical way, it would be expected that its polarity would 

correlate with that of blastocyst, egg-cylinder and the embryonic axes. The blastocyst 

has an obvious axis of polarity that runs between the ICM and the blastocoel. In this 

orientation, it is called the embryonic-abembryonic or the proximo-distal axis and it will 

correspond to the dorso-ventral axis of the future embryo. A top view of the 

embryonic-abembryonic axis reveals that the blastocyst is not radially symmetric but, 

rather, bilaterally symmetric, with a long and a short diameter (Smith, 1980; Gardner, 

1990), as had long been observed for the rat (Huber, 1915; referred to in Gardner, 

1999b). The animal-vegetal axis of the blastocyst, when recognizable by the presence 

of a polar body tethered by a thin cytoplasmic bridge, is usually aligned with the greater 

diameter of the blastocyst and orthogonal to the embryonic-abembryonic axis (Gardner,

1997).

There is some evidence that the axes of the mouse blastocyst predict the embryonic 

axes. When blastocyst stage primitive endoderm cells in proximity to the polar body 

are labelled they are found to contribute progeny predominantly to the distal half of the 

egg-cylinder. In contrast, progeny of primitive endoderm labelled away from the polar 

body becomes localised to the proximal half (Weber et al., 1999). This raises the 

possibility that the animal-vegetal axis of the blastocyst is translated into the distal- 

proximal axis of the egg-cylinder. Shortly after, at approximately 5.0 dpc, the distal- 

proximal axis of the egg-cylinder is translated into the antero-posterior axis of the 

embryo, as distal VE cells move to what will be the anterior of the conceptus (Thomas,

1998). This movement of distal VE cells to the anterior, forming the so-called AVE, 

has been postulated to be part of the global movement of the VE revealed by the 

primitive endoderm labelling experiments described above. However, recent 

observations indicate that distal VE cells move actively and independently of 

surrounding VE cells (Srinivas, 2004). Approximately 24 h after the formation of the
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AVE, at 6.5 dpc, an indentation is formed on the opposite side of the embryo 

(posterior). The indentation is called primitive streak as in the chick, and its appearance 

marks the onset of gastrulation.

What has been lacking for an assessment of the existence of axial patterning cues in the 

mouse zygote is the long-term labelling of the progeny of early blastomeres, up to post­

implantation stages, when the embryonic axes are clearly observable. This has very 

recently been accomplished by genetic labelling of one of the two- and four-cell stage 

blastomeres using the P-galactosidase (P-gal) reporter gene activated by the Cre-loxP 

system. In 35/37 cases, single blastomeres of the two-cell stage embryo contribute 

uniformly to all embryonic lineages and extraembryonic ectoderm displaying no clear 

predominance at any level of any of the embryonic axes. However, in one case, labelled 

cells were found exclusively in the extraembryonic ectoderm and in another, no labelled 

cells were found in the extraembryonic ectoderm. More embryos belonging to the latter 

categories were found when single blastomeres of the four-cell stage embryo were 

labelled: 16/54 and 4/54, respectively (Fujimori et al., 2003). The issue of whether the 

progeny of particular blastomeres of the two- or four-cell stage embryo, with identifable 

animal-vegetal positions, showed a bias in the contribution to particular lineages or 

regions of the embryo was not addressed in this study. Delivery of the Cre protein to 

the desired blastomere was performed by injection so arguments concerning 

perturbation of normal development can still be raised. Also, when injecting Cre 

protein into zygotes, or even when crossing wild-type females to males ubiquitously 

expressing Cre and P-gal, only few X-gal-positive cells were detected later in the 

parietal endoderm and none were ever detected in the primitive endoderm or VE, 

revealing lack of promoter activity in these tissues. This is particularly disappointing 

and precludes a definite argument against prepattem of the mouse zygote since the VE 

is known to grow in a clonally coherent manner -  as opposed to other tissues, which 

undergo extensive cell mixing (Gardner, 1984; Lawson and Pederson, 1987) -  and is 

known to possess early axial patterning cues, features that are likely related (see Section 

1.4.6, below).
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1.3 Vertebrate morphogenetic movements during 
gastrulation

Gastrulation consists of a series of cell movements during which the three classically 

defined germ layers are specified and arranged spatially, with the ectoderm on the 

outside, the endoderm on die inside and the mesoderm in between. The germ layers 

generate embryonic tissues gradually, following stereotypical and hierarchical 

commitment steps. The ectoderm will ultimately give rise to the skin, neural crest and 

central nervous system; the mesoderm to muscle, cartilage, bone, reproductive organs, 

kidneys, blood vessels and blood cells; and the endoderm will give rise to the gut and its 

derivative structures, liver, pancreas and lungs.

1.3.1 Vertebrate fate maps

The fate of distinct regions of the germ layers generated during gastrulation is 

established very early in most embryos. Despite the rather different topologies of the 

model organisms at gastrula stages, some degree of similarity between the relative 

positions of regions with similar fates and/or expressing orthologous molecules can be 

noted (Figs. 1.4 and 1.5, respectively). The depiction of a fate map does not mean that 

cells are irreversibly committed to a particular fate but, rather, that cells in specific 

locations will normally adopt a particular fate. It should also be noted that a fate map is 

not a lineage map nor, conversely, are cells of the same lineage necessarily committed 

to the same fate.

Fate mapping as well as molecular marker analyses show that in frog and fish the 

endoderm and mesoderm are specified prior to internalisation whereas in chick and 

mouse, the internal germ-layers are specified as they emanate from the streak (Tam and 

Beddington, 1987; Dale and Slack, 1987; Wetts and Fraser, 1989; Kimmel etal., 1990; 

Warga and Kimmel, 1990; Schoenwolf et al., 1992; Psychoyos and Stem, 1996; David 

and Rosa, 2001; Horb and Slack, 2001). In the zebrafish, progenitors of mesoderm and 

endoderm co-localise in the equatorial region of the blastoderm (Warga and Nusslein- 

Volhard, 1999) and are collectively called mesendoderm. In the frog blastula, the 

region fated to become ectoderm is the animal pole, prospective endoderm is in the 

vegetal pole and prospective mesoderm lies at the equator, or marginal zone, between 

two other prospective germ layers.
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1.3.2 Morphogenetic movements converge in the phylotypic stage

Morphogenetic movements are highly reproducible within each class of vertebrates and 

different classes share strategies in order to bring cells that were on the outside of the 

embryo to the inside, to generate migratory cells and to extend an originally circular, 

convex or spherical mass of cells. The specific topology of the blastula and the way the 

embryo obtains nutrition determine the gastrulation movements of a species. Vertebrate 

embryos display great morphological variation at the blastula stage but by the end of 

gastrulation they assume a common morphology, often referred to as the phylotypic 

stage (Sander, 1983) (Fig. 1.6). This presumably reflects a constraint on the relative 

positions of tissues as they form, for proper cellular interactions and appropriate 

development thereafter.

The morphogenetic movements that occur during gastrulation were first described 

extensively for amphibians. Work in teleosts uncovered similarities and differences 

between gastrulation cell movements in the two classes of vertebrates. Due to 

accessibility and size, the morphogenetic movements of amphibians and teleosts have 

been studied in the most detail. A comparison of the gastrulation movements in the four 

most common vertebrate model organisms is presented next.

1.3.3 Epiboly

In zebrafish, morphogenetic movements start when the yolk cell bulges in an animal 

direction and pushes the DEL cells up and from the centre to the periphery. This is 

radial intercalation and it initiates the thinning and spreading of the blastoderm over the 

yolk cell in an animal-to-vegetal direction, in a process called epiboly (Fig. 1.7 A, 

Epiboly). Teleost epiboly takes place until the whole yolk cell is engulfed by embryo- 

proper. Epiboly is thought to be driven by shortening of cortical microtubules all 

around the yolk cell, which moves external YSL nuclei towards the vegetal pole. The 

external YSL is attached to the EVL and thus presumably tows it along, as well as the 

DEL in between the two (Warga and Kimmel, 1990; Strahle and Jesuthasan, 1993; 

Solnica-Krezel and Driever, 1994). In Fundulus embryos, when the blastoderm is 

removed, the YSL autonomously carries on its vegetal-ward movement (Trinkaus, 

1951). There is no evidence for an active role of the deep cells in teleost epiboly 

(reviewed in Kane and Adams, 2002).
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Fig. 1.7 Morphogenetic movements during vertebrate gastrulation.

A, Schematic of zebrafish gastrulation movements; B, Schematic of chick gastrulation 

movements. In black are written the name of the gastrulation movements whereas in 

grey are labelled the organizer and primitive streak. Gastrulation movements are 

analogous throughout the Vertebrata but are particularly similar between fish and frog, 

and between chick and mouse. Epiboly is less prominent in the frog than in the fish 

since there is no acellular yolk to cover up with blastoderm. In mouse, gastrulation 

movements take place in a cupped-shape embiyo rather than in a flat one as in chick. 

Adapted from Walbot and Holder, 1987, and Gilbert and Raunio, 1997. See text for 

description.
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Epiboly also occurs in frog embryos although they have no EVL or YSL. Frog epiboly 

is thought to be driven entirely by radial intercalation (Keller, 1980). Whether epiboly 

occurs in avians and mammals is a topic of debate. Those that advocate epiboly in 

avians consider it to be driven by a ring of cells called the zone of juncture, which 

outlines the zona opaca, that move in an analogous way to the YSL (Arendt and Nubler- 

Jung, 1999); in mammals, trophectoderm expansion has been suggested to be the 

homologous morphogenetic movement to epiboly but is not at all clear whether these 

two cell movements are evolutionarily related (reviewed in Kane and Adams, 2002).

1.3.4 Cell internalisation

At approximately 50% epiboly in zebrafish, another morphogenetic movement is 

initiated. Mesendodermal cells at the blastoderm margin move inward ultimately to 

form the bilayered structure known as the germ ring (Fig. 1.7 A, Involution). The inner 

layer is called the hypoblast while the outer layer is called the epiblast. There is a 

temporary pause in epiboly as the inward movement begins but once epiboly resumes 

new cells at the blastoderm rim become specified as mesendoderm and become 

internalised (reviewed in Kimmel et al., 1995; Solnica-Krezel et al., 1995; Kane and 

Adams, 2002). It is unclear whether hypoblast formation in teleosts involves the 

coordinate internalisation of a sheet of cells -  involution -  or whether it results from the 

independent internalisation of individual cells -  ingression (reviewed in Kane and 

Adams, 2002). Traditionally, the movement has been called involution and it is 

homologous to that of amphibians.

In frogs, gastrulation starts by the appearance of the so-called bottle cells, a group of 

cells whose apical constriction and invagination generates the blastopore lip (Rhumbler, 

1902). Morphological analyses, however, suggest that initiation of gastrulation 

movements takes place in the deep marginal zone rather than in the superficial layer, of 

which the bottle cells are part (Keller, 1981). Prospective endoderm is moved inside, 

just beneath the blastocoel roof, pulled by the deep mesodermal cells, forming a cavity 

called the archaenteron. As involution proceeds, mesodermal precursors are also pulled 

inside the embryo, between the forming endoderm and ectoderm. Cells of the dorsal- 

most marginal zone involute first, followed by lateral and ventral marginal cells.

27



General Introduction

In both chicken and mouse the homologous movement involves an epithelial-to- 

mesenchymal transition of epiblast cells, which individually internalise at the primitive 

streak (Fig. 1.7 B, Ingression). This is called ingression and as it takes place endoderm 

displaces the hypoblast or VE and mesoderm moves between the epiblast and the 

hypoblast or VE. As cells delaminate, they move laterally, making way for newly 

ingressing cells. The streak elongates in an anterior direction as new cells ingress in its 

most anterior portion. The anterior tip of the streak becomes morphologically distinct, 

forming in chick a circular thickening of cells called Hensen’s node and in mice a 

bilayered depression known as the node. At this stage, node-derived cells give rise to 

the axial mesendoderm structures, notochord and prechordal plate. In mice, some cells 

emerge proximally from the posterior of the streak, which become extraembryonic 

mesoderm; cells emerging from the intermediate streak form lateral plate and paraxial 

mesoderm. Eventually, in both chicken and mice, the node starts to regress, moving in 

an anterior-to-posterior direction, depositing somitic, intermediate and lateral 

mesodermal precursors (reviewed in Hogan et al., 1994; Bellairs and Osmond, 1998; 

Beddington and Robertson, 1999; Gilbert, 2000).

1.3.5 Convergence and extension

In the zebrafish, germ-ring cells in both the hypoblast and the epiblast converge to the 

future dorsal side of the embryo, forming a local thickening called the embryonic shield, 

which is the dorsal organizer (Fig. 1.7 A, Convergence). As with frog embryos, while 

cells converge towards the midline they undergo medio-lateral intercalation. This 

results in the extension of the embryo along the antero-posterior axis, perpendicular to 

the movement of individual cells (Fig. 1.7 A, Extension). This coordinated cell 

movement is denominated convergence-extension (reviewed in Gilbert, 2000; Sive et 

al., 2000). Convergence-extension is thought to occur also in birds and mammals, 

although being rather more difficult to visualise directly given the small size of gastrula- 

stage cells in these Classes of organisms (Fig. 1.7 B, Convergence and Extension).

With organizer formation and convergence-extension, the dorso-ventral and antero­

posterior axes as well as, consequently, the left-right embryonic axis, are defined.
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1.3.6 Mouse embryo turning

The cup-shaped mouse embryo is unusual, even among mammalian embryos, in that the 

endoderm is formed on the outside and the ectoderm on the inside. Following 

gastrulation, at 8.5 dpc, this tissue topology is reversed to the normal endoderm-on-the 

inside, ectoderm-on-the-outside by the process of turning (see Kaufman, 1992 for figure 

and description).

1.4 Early molecular events in vertebrate axes specification 
and germ-layer formation

In the previous sections, attention was focused on the dynamics of embryonic 

morphogenesis, highlighting regions or tissues responsible for early pattern generation. 

In this section I will review our understanding of the molecular basis of those early 

morphogenetic and patterning events, which lead to dorsoventral and antero-posterior 

axes specification. Due to space restrictions I will not touch upon the issue of left-right 

specification. At the same time as the embryonic axis become specified, the internal 

germ layers, mesoderm and endoderm, are formed, and cells of the ectoderm commit to 

either an epidermal or a neural fate. The molecular cues underlying mesoderm, 

endoderm and neural induction will be discussed but, again owing to space restrictions, 

I will not dwell upon molecular interactions between the formed germ-layers nor upon 

fine patterning within them. Although aiming for a comparative review, due to the 

extent of the literature, I emphasise zebrafish and mouse studies as they are the basis of 

the work described in this thesis, but I also make frequent reference to frog research as 

much of our understanding draws from it.

1.4.1 Maternal dorsal determinants are present in fish and frog

Embryological experiments in frog and fish reveal the existence of vegetal-located 

maternal patterning cues that move dorsally where they impart dorsal character to this 

region of the embryo. Teleost and amphibian eggs do contain vegetally localised 

maternal mRNAs and proteins. In frog, these include Vgl mRNA and protein, 

VegT / Antipodean / Xombi / Brat mRNA and Dishevelled (Dsh) protein (Melton, 1987; 

Tannahill and Melton, 1989; Dale et al., 1989; Kloc et al., 1993; Ku and Melton, 1993;
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Stennard et al., 1996; Zhang and King, 1996; Lustig et al., 1996; Miller et al., 1999; 

Wessely and De Robertis, 2000).

Vgl, a member of the Transforming Growth Factor p (TGF(3) superfamily of growth 

factors, was the first molecule associated with Nieuwkoop activity. Vgl protein is 

synthesised as an inactive precursor that is cleaved into a mature, active, form that can 

completely rescue UV-ventralised embryos (Thomsen and Melton, 1993), induce 

secondary axes when overexpressed (Dale et al., 1993) and induce dorsal mesoderm in 

animal pole explants (animal caps) (Thomsen and Melton, 1993; Dale et al., 1993; 

Kessler and Melton, 1995). Expression of mutant Vgl ligands impairs normal 

endodermal development and dorsal mesoderm induction in vivo (Joseph and Melton, 

1998). A true loss-of-function of Vgl has not been reported. Vgl is not the 

endogenous dorsal determinant, however. Firstly, Vgl remains vegetal throughout 

cleavage stages, rather than becoming dorsally restricted, as does the Nieuwkoop 

activity. Secondly, endogenous mature Vgl protein remains to be detected in embryos 

(Tannahill and Melton, 1989; Dale et al., 1989).

VegT, a member of the T-box family of transcriptional regulators, is not the endogenous 

dorsal determinant either since it is not able to induce a secondary axis in embryos when 

overexpressed (Stennard et al., 1996). At low doses VegT can induce endoderm as well 

as ventral mesoderm, and at high doses it can induce pan-mesodermal markers 

(Stennard et al., 1996; Lustig et al., 1996; (Horb and Thomsen, 1997)). VegT 

antisense-depleted embryos lack endoderm (Zhang et al., 1998a). Given that VegT is a 

transcription factor, lack of VegT protein is presumed to be manifest after the onset of 

zygotic transcription, at MBT. Indeed, VegT depleted embryos do develop normally up 

to blastula stage in morphology and timing (Zhang et a l, 1998a). Yet, there is an earlier 

effect of VegT mRNA depletion: it causes dispersion of vegetal mRNAs, namely that of 

Vgl, implicating it in vegetal transcript localisation (Heasman et al., 2001). This effect 

is specific to the loss of mRNA and not protein since injection of an antisense 

morpholino oligonucleotide (MO) against VegT does not cause transcript dispersion 

(Heasman et al., 2001).

The closest zebrafish homologue of VegT is the T-box-containing gene 16 (Tbxl6), also 

called spadetail, spt (Ruvinsky et al., 1998; Griffin et a l, 1998). Expression of
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spadetail is only zygotic and mutant analysis also dismisses it as implicated in early 

dorso-ventral patterning. No T-box gene with an analogous role to VegT has been 

identified in other classes of vertebrates.

Following cortical rotation in frog, Dsh, as well as two other intracellular components 

of the Wnt signalling pathway that are initially evenly distributed, P-catenin and 

glycogen synthase kinase 3p (Gsk3P), become differentially enriched dorso-ventrally. 

Dsh and P-catenin are displaced dorsally (Larabell et al., 1997; Rowning et al., 1997; 

Miller et al., 1999) whereas Gsk3p, a negative regulator of p-catenin, is depleted 

dorsally (Dominguez and Green, 2000). The timing, location and magnitude of Gsk3p 

depletion are coincident with those of endogenous p-catenin accumulation (Dominguez 

and Green, 2000). Blocking cortical rotation by UV-irradiation results in vegetal pole 

accumulation of nuclear p-catenin (Schneider et al., 1996; Larabell et al., 1997) and 

abolishes dorsal depletion of Gsk3p (Dominguez and Green, 2000). Overexpression of 

Dsh or P-catenin in Xenopus embryos induces a complete secondary axis (Sokol et al., 

1995; Funayama et al., 1995) and so does expression of dominant-negative Gsk3fS 

(Dominguez et al., 1995; Pierce and Kimelman, 1995; He et al., 1995; Kimelman and 

Pierce, 1996).

What has proved difficult to determine is which is/are the endogenous dorsal 

determinant(s), since the assays through which dorsal activity has been demonstrated 

are usually quite artificial. There are molecules other than those mentioned that can 

dorsalise the embryo when overexpressed but which are ruled out as endogenous 

dorsalising factor(s) given that they are not expressed at the right time and/or place. 

This is the case for the homeobox transcriptional regulators Goosecoid (Gsc) and 

Siamois, as well as the secreted molecules Activin p B, Noggin, Wntl, Wnt2b, Wnt8 

and Wnt8b (McMahon and Moon, 1989; Thomsen et al., 1990; Cho et al., 1991; Sokol 

et al., 1991; Smith and Harland, 1991; Smith and Harland, 1992; Cui et al., 1995; 

Lemaire et al., 1995; Landesman and Sokol, 1997). Then, there are maternal molecules 

that are widespread throughout early development and that when overexpressed also 

induce a secondary axis. Examples include the Xenopus homologue of the mammalian 

immunosupressant Fkbp (Nishinakamura et al., 1997), the protooncogene homologue 

Xski (Amaravadi et al., 1997) as well as Smad7 and Smad8, intracellular transducers of 

signalling by Bone Morphogenetic Proteins (BMPs) (Casellas and Brivanlou, 1998; 

Nakayama et al., 1998).
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Highlighting the caution with which overexpression results should be interpreted, the 

ability of ectopic Smad7 to dorsalise Xenopus embryos is concentration-dependent. 

Xsmad7 acts as a dorsalising factor when overexpressed at moderate levels and 

represses endogenous axis formation when overexpressed at higher levels (Casellas and 

Brivanlou, 1998). Loss-of-function experiments provide the only strong assessment of 

the requirement of a molecule for a given process. Depletion of P-catenin with 

antisense oligonucleotides blocks the formation of the endogenous dorsal axis in 

Xenopus embryos (Heasman et al., 1994; Heasman et al., 2000). This established p- 

catenin as the earliest dorsal determinant known.

Gain and loss of p-catenin function in other organisms corroborate the notion that it is 

conserved as an early dorsal determinant in vertebrates. In zebrafish, dorsal nuclear P- 

catenin is first seen in the YSL but is soon followed by the dorsal blastomeres 

(Schneider et al., 1996). What causes dorsal accumulation of p-catenin in zebrafish is 

not known but it presumably is the unknown vegetal-located dorsal determinant 

postulated by embryological experiments. Overexpression of p-catenin also induces a 

secondary axis in zebrafish (Kelly et al., 1995). In the pre-streak chick embryo, P- 

catenin protein starts by being present in a radially symmetric fashion. Nuclear P- 

catenin is found all around the blastoderm, in the area opaca and marginal zone, and 

cytoplasmic but not nuclear p-catenin is found in the central part of the blastoderm 

(Roeser et al., 1999). However, with the formation of Koller’s sickle and the hypoblast, 

preceding streak formation and expression of organizer genes, cells containing nuclear 

p-catenin accumulate in the midline directly anterior of the sickle (Izpisua-Belmonte et 

al., 1993; Ruiz i Altaba et al., 1995; Streit et al., 1998; Roeser et al., 1999). Ectopic 

expression of processed cVgl in chick embryos only results in secondary axis induction 

when it overlaps with the domain of nuclear p-catenin expression (Shah et al., 1997). 

p-catenin-null mouse embryos fail to form the antero-posterior axis by 5.5 dpc. They 

retain the bilayered structure of the early egg-cylinder, with correct proximal-distal 

polarity, but simply continue to grow rather than undergoing morphogenetic change. 

These embryos never express primitive streak and mesoderm markers and no mesoderm 

or head structures are generated (Haegel et al., 1995; Huelsken et al., 2000). 

Concordantly, mouse embryos mutant for Axin / Fused, which encodes a protein that 

promotes p-catenin degradation, develop axial duplications (Zeng et al., 1997).
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1.4.2 Downstream of P-catenin

Since p-catenin is the earliest endogenous dorsal determinant known, a major issue in 

understanding dorsal specification is the identity of its targets, in cooperation with the 

high mobility group (HMG) transcription factors of the lymphoid enhancer factor (LEF) 

/ T-cell factor (TCF) family (Behrens et al., 1996; Huber et al., 1996; Molenaar et al., 

1996; Miller and Moon, 1996; He et al., 1998; Tetsu and McCormick, 1999; reviewed 

in Polakis, 1999; Daniels etal., 2001).

In Xenopus, P-catenin directly promotes transcription of the organizer genes Siamois 

and Twin (Heasman et al., 1994; Kelly et al., 1995; Brannon and Kimelman, 1996; 

Wylie et al., 1996; Carnac et al., 1996; Brannon et al., 1997; Fagotto et al., 1997; 

Laurent et al., 1997). Siamois and Twin are homeodomain-containing transcriptional 

activators that are structurally closely related and expressed in a similar manner, in 

dorsal vegetal and equatorial cells shortly after MBT. They are likely to control the 

same target genes and to be functionally redundant (Lemaire et al., 1995; Carnac et al., 

1996; Brannon and Kimelman, 1996; Brannon et al., 1997; Fan and Sokol, 1997; 

Kessler, 1997; Laurent et al., 1997). Overexpression of dominant-negative Siamois 

suggests requirement of the endogenous protein for axis formation (Fan and Sokol, 

1997; Kessler, 1997) but no loss-of-function of Siamois nor that of Twin has yet been 

reported.

No Siamois or Twin orthologues have been identified in other species although 

functionally analogous genes may exist. In zebrafish, another homeobox-containing 

gene called bozozok (boz) f dharma / nieuwkoid (Solnica-Krezel et al., 1996) is a direct 

target of p-catenin. The boz gene is expressed at the sites of P-catenin accumulation, 

that is, dorsal YSL and dorsal blastomeres (Koos and Ho, 1998; Yamanaka et al., 1998), 

its expression follows that of p-catenin when the latter is enhanced or reduced 

artificially (Ober and Schulte-Merker, 1999; Shimizu et al., 2000; Yamanaka et al.,

1998) and is dependent on TCF binding sites (Ryu et a l, 2001). However, unlike 

Siamois or Twin, which can induce complete secondary axes in Xenopus (but not in 

zebrafish, Sumoy et al., 1999), overexpression of boz in zebrafish has weak axis- 

inducing activity (Lemaire et al., 1995; Koos and Ho, 1998; Yamanaka etal., 1998). 

Also unlike Siamois or Twin, boz is a transcriptional repressor (Solnica-Krezel and
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Driever, 2001). The boz mutation has variable penetrance and expressivity but even 

strong mutants, which lack prechordal plate and notochord as well as having a variety of 

head defects, have a less severe phenotype than P-catenin-depleted embryos and possess 

some organizer activity since a neural axis is induced (Fekany et al., 1999; reviewed in 

Solnica-Krezel and Driever, 2001). No boz orthologues have been identified in other 

species.

The expression pattern of boz and its function directly downstream of p-catenin 

implicate Boz as a component of the Nieuwkoop centre (Solnica-Krezel and Driever, 

2001). As such, Boz should promote the expression of organizer genes, even if, as a 

transcriptional repressor, it does so by antagonising ventral genes (reviewed in Solnica- 

Krezel and Driever, 2001; Schier, 2001). This is indeed the case, as seen by altered 

gene expression in boz mutants. According to how their expression is affected in boz 

embryos, genes can be grouped into one of four classes (Solnica-Krezel, 2001 #538}). 

The expression of most organizer genes is reduced or eliminated from blastula 

throughout gastrulation in boz embryos. These include the transcriptional regulators 

goosecoid (gsc), floating-head (flh, the zebrafish orthologue of Xnot, Talbot et al.,

1995), liml and foxa2 / hnf3p (called axial in zebrafish, Strahle et al., 1993), and the 

secreted BMP antagonist nogginl (Solnica-Krezel et al., 1996; Fekany et al., 1999; 

Koos and Ho, 1999; Sirotkin et al., 2000a). There are organizer genes whose 

expression is more severely reduced at blastula and early gastrula stages than at late 

gastrula stages. This is the case for another BMP antagonist, chordin (chordino, din, in 

zebrafish, Schulte-Merker et al., 1997; Koos and Ho, 1999; Shimizu etal., 2000; 

Fekany-Lee et al., 2000). There are organizer genes whose induction is independent of 

Boz but whose maintenance during gastrulation depends on Boz. These include the two 

zebrafish nodals, called squint (sqt) and cyclops (eye) (Feldman et al., 1998; Sampath et 

al., 1998), members of the TGFp superfamily of proteins, as well as the gene coding for 

the Wnt antagonist dkkl (Sampath et al., 1998; Hashimoto et al., 2000; Shimizu et al., 

2000; Sirotkin et al., 2000a). Finally, there are nonaxial mesoderm genes whose 

absence from the dorsal side of the embryo also depends upon Boz. These include the 

secreted factors bmp2b (swirl, swr, in zebrafish, Kishimoto et al., 1997) and bmp4, 

consistent with Boz induction of Bmp antagonists mentioned above, and wnt8, as well 

as the transcription regulators tbx6 and tbxl6 / spt (Griffin et al., 1998), vox and vent 

(Koos and Ho, 1999; Fekany-Lee et al., 2000; Melby et al., 2000). Surprisingly,
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though, bmp2b has a small domain of expression in the organizer (Kishimoto et a l ,

1997), whose function is not known.

So, a main strategy employed by the organizer to promote dorsal fates involves 

inhibition of ventral fates. This is accomplished by direct inhibition of bmp genes, 

promotion of the expression of Bmp antagonists, as well as by direct inhibition of wnt 

genes and promotion of the expression of genes coding for Wnt antagonists (Fig. 1.8). 

In addition to Dkkl, Wnt signalling antagonists in the organizer include Frzb, a secreted 

molecule which competes with the structurally similar Wnt receptors (Frizzled, Fz) 

sequestering Wnts (Leyns et a l , 1997; Moon et a l, 1997; Wang et a l, 1997), and 

Cerberus, a secreted cysteine knot superfamily member that multivalently binds to 

Nodals, BMPs and Wnts, antagonising their activity (Bouwmeester et a l, 1996; Piccolo 

e ta l, 1999).

DorsalVentral

Chordin 
Dkk1 )

BMP
Wnt

Fig. 1.8 One strategy employed by the organizer to promote dorsal fates is to 

inhibit ventralising activities. Schematic of a zebrafish embryo at gastrula stage. 

BMP and Wnt signals from the ventral side of the embryo are antagonised by factors 

expressed within the shield region. Thus, a gradient of signals is created, allowing 

varying fates to be specified in an activity-level dependent fashion. Picture kindly 

provided by K. A. Thomas.
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Another theme in organizer formation is that the genes downstream of P-catenin are 

subject to complex regulation. A complex regulatory network might reflect the 

distinction between induction and maintenance phases of gene expression but it 

probably also accounts for the high redundancy observed between organizer gene 

functions, making gastrulation a very well protected process.

1.4.3 Mesoderm induction

The immediate steps in the genetic cascade downstream of p-catenin appear to be 

evolutionarily very plastic. However, these divergent steps soon converge, as most 

organizer genes are conserved throughout vertebrate classes. This is in accordance with 

the results of heterospecific transplantation experiments, which have long suggested 

evolutionary conservation of the signals that emanate from the organizer and induce 

axis formation (Oppenheimer, 1936b; Kintner and Dodd, 1991; Blum et al., 1992; Hatta 

and Takahashi, 1996; Knoetgen et al., 1999; Knoetgen et al., 2000). A molecular 

pathway that is at the pivotal point of convergence in organizer formation is the Nodal 

signalling pathway (Fig. 1.9). Nodals are involved in both of the organizer main 

functions: dorsal specification and induction of the internal germ-layers, mesoderm and 

endoderm (reviewed in Harland and Gerhart, 1997; Heasman, 1997).

Xenopus blastulae animal pole explants (animal caps) differentiate into ectodermal 

derivatives in the absence of growth factors. However, in combination with vegetal 

explants, mesoderm is induced at the interface between the two. One manifestation of 

mesoderm induction is animal cap extension, due to convergence and extension-like 

movements that can occur in vitro. The first protein shown to be able to induce 

mesoderm (blood and muscle) was a member of the Fibroblast Growth Factor (FGF) 

family (Slack et al., 1987), which is enhanced in its muscle-inducing activity by TGFp 

(Kimelman and Kirschner, 1987). Pursuit of endogenous members of these growth 

factor families followed, in search for the endogenous mesoderm inducer(s). These 

studies led to the identification of the already-mentioned Vgl as well as Activin, 

another member of the TGFp superfamily (Smith et al., 1990; van den Eijnden-Van 

Raaij et al., 1990; Thomsen et al., 1990; Thomsen and Melton, 1993; Dale et al., 1993; 

Kessler and Melton, 1995).
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Zebrafish Xenopus

Both Generate 
Nodal Signalling 

Responses

Nodal Signallinj

Fig. 1.9 In vertebrates, early dorsalising signals act through p-catenin and 

converge in the activation of the Nodal pathway. Schematics of pre-gastrula fish and 

frog embryos, where p-catenin is the earliest dorsal determinant known. Early p- 

catenin target genes are divergent between the two classes of animals (bozozok in 

zebrafish; Siamois and Twin in Xenopus) but produce the same outcome of inducing the 

Nodal signalling pathway. Picture kindly provided by K. A. Thomas.

Activins signal by binding to one of two so-called type II receptors, ActRIIA and 

ActRIIB, which then heterodimerise with and phosphorylate one of the so-called type I 

receptors / Activin receptor-Like Kinases, ALK1, 4 or 5, responsible for the activation 

of downstream transducers (reviewed in Moustakas et al., 2001). Overexpression of 

dominant-negative Activin in fish as well as dominant-negative (truncated) forms of 

Activin receptors blocks mesoderm formation in Xenopus (Hemmati-Brivanlou and 

Melton, 1992; Schulte-Merker et al., 1994; Wittbrodt and Rosa, 1994; Dyson and 

Gurdon, 1997; Chang et al., 1997). Targeted disruption of murine ALKA results in egg- 

cylinder disorganisation and arrest prior to gastrulation (Gu et al., 1998). Chimeric 

analysis shows that ALKA-xmW ES cells can contribute to mesoderm suggesting that 

ALK4 is not essential for mesoderm induction (Gu et a l, 1998). Nonetheless, primitive 

streak formation is impaired in these chimeras (Gu et al., 1998). Disruption of ActRWA

Activation of 
B eta^tatenin

Factor Cortical Rotation
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results in late skeletal and endocrinological phenotypes, and that of AcfRIIB results in 

antero-posterior defects at segmentation stages as well as laterality defects (Matzuk et 

al., 1995a; Oh and Li, 1997). Composite AcfRIIA and ActRllB mutants, however, arrest 

at egg-cylinder stage but chimeric analysis showing requirement for these receptors for 

mesoderm formation was not reported (Song et al., 1999). A role for Activin as the 

endogenous mesoderm inducer was questioned mainly by the fact that mice mutant for 

both ActivinfiA and ActivinftB undergo unperturbed gastrulation, forming mesoderm 

normally (Matzuk et al., 1995b). The accumulating disparate evidence concerning the 

role of Activins as endogenous mesoderm inducers was resolved by the finding that 

other molecules signal through the Activin receptors. This is the case for Vgl and 

Nodals (Schulte-Merker et al., 1994; Yamashita etal., 1995; Hemmati-Brivanlou and 

Thomsen, 1995; Meno etal., 1999).

Nodal was first identified in the mouse by positional cloning of a mutation that results 

in lack of a primitive streak and near-total depletion of mesoderm (Zhou et al., 1993; 

Conlon et al., 1994). In the mouse, chimeras can be generated with embryonic and 

extraembryonic tissues of different genotypes. This is possible because when ICM- 

derived, embryonic stem (ES), cells are injected into a blastocyst they mainly populate 

the ICM, from which the embryo-proper is derived, and not the extraembryonic tissues 

(Beddington and Robertson, 1989). This allowed the demonstration that it was lack of 

Nodal signalling in the epiblast, and not in the VE, that was required for primitive streak 

formation (whereas lack of Nodal signalling specifically in the VE led to impairment of 

antero-posterior development, Varlet et al., 1997; see section below). In zebrafish, 

while mutants for either eye or sqt have some mesodermal defects, cyc;sqt double 

mutants lack all head and trunk mesoderm as well as endoderm (Hatta et al., 1991; 

Heisenberg and Nusslein-Volhard, 1997; Feldman et al., 1998).

The phenotype of cyc;sqt double mutant fish is identical to that of maternal and zygotic 

(MZ) mutant embryos for the Nodal co-receptor, One-eyed pinhead (Oep), related to 

mammalian Cripto and Cryptic, as well as to the Xenopus FGF Receptor Ligand 1 

(FRL-1) (Zhang et al., 1998b; Gritsman et al., 1999). Oep is essential for Nodal 

signalling in fish since overexpression of Nodals in MZ-oep embryos has no effect 

(Gritsman et al., 1999). Cripto-null mouse embryos fail to form a streak and are totally 

devoid of embryonic mesoderm and endoderm (Ding et al., 1998). However, in
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contrast with what is observed in fish, Cripto loss-of-function does not phenocopy 

Nodal loss-of-function in the mouse. Mouse Cryptic, despite being expressed in the 

node, axial mesendoderm, and nascent mesoderm (Shen et a l, 1997), is not essential for 

the establishment of the antero-posterior and dorso-ventral axes (but it is required for 

normal left-right development; Gaio et al., 1999).

In Xenopus, Nodals signal through ActRIIA and B, and specifically through ALK4 / 

ActRI|3 and ALK7 (reviewed in Whitman, 2001; Oh et al., 2002). The phenotype of 

mouse embryos depleted from both type II receptors, as well as that of ALKA-null 

embryos, was discussed above. Depletion of ALK4 / TARAM-A (Tar; Renucci et al,

1996) in zebrafish has not been reported but TARAM-A can rescue some phenotypes of 

oep embryos, suggesting the existence of ALK4-dependent and ALK4-independent 

Nodal signalling (Peyrieras et al, 1998).

Nodal signalling is transduced intracellularly by the ubiquitously-expressed members of 

the Smad family of transcriptional regulators (reviewed in Moustakas et al., 2001). 

Smads can also mediate BMP signalling but the only Smad thought to be common to 

the two pathways is Smad4, which oligomerises with Smads specific for either Nodal or 

BMP signalling (reviewed in Moustakas etal., 2001). The Nodal-specific Smad 

mediators are Smad2 and 3 that, after being directly phosphorylated by active type I 

receptors (R-Smads), can oligomerise with Smad4, translocate into the nucleus and act 

as transcriptional regulators (reviewed in Whitman, 2001). Mouse embryos devoid of 

Smad2 fail to form a streak and any embryonic mesoderm (Nomura and Li, 1998; 

Waldrip et al., 1998; Weinstein et al., 1998). In contrast to Nodal-null embryos, 

however, Smad2-null embryos express many dorso-posterior markers, some of which 

are even expanded (Brennan et a l, 2001). SmadZ-null mice do not present an early 

embryonic phenotype (Zhu et al., 1998; Datto et al., 1999). iSma<i4-null embryos have 

reduced cell proliferation, which results in growth retardation, do not express 

mesodermal markers, do not gastrulate and show abnormal VE development (Sirard et 

al., 1998). However, chimeras in which the epiblast is mainly of the SmadA-null 

genotype and the VE is wild-type have restored mesoderm formation (Sirard et al.,

1998). Although disruption of SmadA impairs both Nodal and BMP signalling, this 

analysis allows for some reflection on Nodal signalling. Nodal is required in the 

epiblast for mesodermal gene expression (Varlet et al., 1997) but neither Smad2, 3 or 4
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are required in the epiblast for that gene expression (Sirard et al., 1998; Zhu et al., 1998; 

Datto et al., 1999; Brennan et al., 2001). This suggests that these three Smads are not 

the only intracellular Nodal transducers, either there remaining other Smads to be 

identified or there being a Smad-independent mechanism of transducing Nodal 

signalling (reviewed in Whitman, 2001).

Context-specificity of Nodal signalling is conferred by the transcriptional partners of the 

Smads (reviewed in Derynck et al., 1998; Massague and Wotton, 2000). The first of 

these to be identified and one that is important in the context of mesoderm formation is 

the winged helix transcriptional regulator FoxHl / Fast, called Schmalspur in zebrafish 

(Huang et al., 1995; Chen et al., 1996; Labbe et al., 1998; Pogoda et al., 2000; Sirotkin 

et al., 2000b; reviewed in Whitman, 2001). FoxHl only activates transcription when 

associated with Smads and can form complexes with receptor-activated Smad2 or 

Smad3 (Labbe et al., 1998; Yeo et al., 1999). Deletion of the mouse FoxHl results in 

patterning defects of the anterior primitive streak and consequent failure to form the 

node, prechordal mesoderm, notochord and definitive endoderm (Hoodless et al., 2001). 

The schmalspur mutant phenotype includes lack of floorplate, reduced prechordal plate 

and ventral forebrain defects (Brand et al., 1996). However, this phenotype is not as 

strong as that of cyc’,sqt or MZ oep embryos, which means there are schmalspur- 

independent effectors of Nodal signalling. The mouse FoxHl phenotype is very similar 

to that of another member of the winged helix family of transcriptional regulator, that of 

FoxAl (formerly known as Hnf3fi) (Dufort et al., 1998) and in fact, FoxAl expression is 

dependent upon FoxHl (Hoodless et al., 2001).

At least in zebrafish, Nodals can function as morphogens, that is, they can act directly in 

a concentration dependent manner over many cell diameters, generating different 

responses in cells with varying distance from the source of the signal. Thus, a point 

source of Nodal can activate Nodal-target genes in distant cells, even if the intervening 

cells are unable to transduce Nodal signals (Chen and Schier, 2001). This confirms that 

Nodals act directly and not via a relay mechanism whereby they induce local production 

of a second signal. Despite the sequence similarity between the Nodal ligands, Cyc and 

Sqt, it is only Sqt that has long-distance activity. In contrast, Cyc appears able to only 

activate gene expression in neighbouring cells. The biochemical basis of this difference 

in activity is not understood. It is likely that Nodals will function as morphogens in
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other animals and indeed Gurdon and other workers have extensively documented how 

TGF6 proteins can function in concentration dependent manner in Xenopus embryos 

(reviewed in McDowell and Gurdon, 1999).

Nodal signalling induces expression of both agonists (ligands) and antagonists, which 

restrict Nodal signalling in time and/or range. The divergent Lefty family of TGF(3s 

antagonise Nodal signalling probably through competition for the same receptor (Meno 

et al., 1999; Bisgrove et al., 1999; Thisse and Thisse, 1999). Overexpression of lefty 1 

or lefty2 in zebrafish leads to a phenotype analogous to that of cyc,sqt double-mutants or 

MZ oep embryos (Meno et al., 1999; Bisgrove et al., 1999; Thisse and Thisse, 1999). 

Depletion of Lefty2 in zebrafish using MOs has no obvious phenotype whereas 

depletion of Lefty 1 by the same means causes aberrations during somitogenesis, 

including laterality defects (Agathon et al., 2001; Feldman et al., 2002). Depletion of 

both Lefty 1 and Lefty2 results in excess Nodal signalling, excess cell internalisation and 

excess mesoderm production at the expense of ectoderm (Feldman et al, 2002). In 

mice, mutants for Lefty2 have an enlarged streak and produce excess mesoderm whereas 

Lefty I mice produce mesoderm normally but present laterality defects (Meno et al., 

1998; Meno et al., 1999). The phenotype of Lefty2-nu\\ mice can be partially rescued 

by reducing Nodal levels through heterozygosity (Meno et al., 1999). Another Nodal 

antagonist is Cerberus but deletion of the mouse Cerberus orthologue, Cerberus-like or 

Cerberus-related, results in no obvious phenotype (Simpson et al., 1999; Shawlot et al., 

2000; Belo et al., 2000).

Mouse Nodal embryos, as well as fish cyc,sqt double-mutants and ML-oep mutants still 

form posterior mesoderm (Conlon et al., 1994; Feldman et al., 1998; Gritsman et al.,

1999). This means that another, as yet uncharacterised, mesoderm inducing factor 

exists. Candidate molecules for posterior mesoderm inducing signals are FGFs and 

BMPs (reviewed in Altmann and Brivanlou, 2001).

1.4.4 Endoderm induction

Endoderm formation is tightly coupled to that of mesoderm, both in time and space. In 

addition, in all vertebrate classes at least a portion of the endoderm and mesoderm are 

specified initially as a common progenitor population, which has been named 

mesendoderm (reviewed Shivdasani, 2002). Impairment of endoderm formation often
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results in mesoderm expansion and, conversely, endoderm expansion occurs mainly at 

the expense of mesoderm (Henry and Melton, 1998; Yasuo and Lemaire, 1999; Kikuchi 

et al., 2001). It is therefore not surprising that some of the molecules implicated in the 

induction of the two internal germ-layers appear to be shared by the two processes, 

namely the Nodal signalling pathway.

In the frog, the molecule thought to be at the top of the molecular cascade directing 

formation of endoderm is the maternal T-box-containing transcriptional regulator VegT. 

VegT transcripts are localised in the vegetal hemisphere of the egg and early frog 

embryo and this corresponds to the prospective endoderm (Lustig et al., 1996; Stennard 

et al., 1996; Zhang and King, 1996; Horb and Thomsen, 1997). When ectopically 

expressed in animal caps, VegT can induce endoderm (Horb and Thomsen, 1997) and 

frog embryos depleted of VegT totally lack endoderm as well as most mesoderm 

(Zhang et al., 1998a; Xanthos et al., 2001).

In other species, VegT-related genes with an equivalent function in endoderm induction 

have not been found. In zebrafish, Tbx 16 / spt is only expressed zygotically and 

although the existent spt mutations are likely to be null alleles, spt embryos form 

endoderm (Griffin et al., 1998) and both Tbx6 and Eomesodermin have been implicated 

in mesoderm rather than endoderm specification in zebrafish and mouse (Hug et al., 

1997; Chapman and Papaioannou, 1998; Russ et al., 2000).

Downstream of VegT in the frog, mediation of endoderm induction by secreted factors 

is suggested by the observation that cellular disaggregation reduces induction of the 

endoderm markers Soxll and Mix. 1 in animal caps (Clements et al., 1999; Yasuo and 

Lemaire, 1999). These secreted factors might be the Nodals, which are believed to be 

VegT targets (Hemmati-Brivanlou and Melton, 1994; McKendry et al., 1997; Kofron et 

al., 1999; Clements et al., 1999; Osada and Wright, 1999; Yasuo and Lemaire, 1999; 

Hyde and Old, 2000; Chang and Hemmati-Brivanlou, 2000; Xanthos et al., 2001). 

Furthermore, several endoderm markers lie downstream of Nodal signalling. This is the 

case for Mix.2, Mixer, Soxll and Gata5, which are FoxHl targets.

Genetic analyses in zebrafish clearly implicate Nodal signalling in endoderm induction. 

Zebrafish cyc\sqt or MZ oep mutants lack all endoderm in addition to lacking nearly all
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mesoderm (Feldman et al., 1998; Gritsman et al., 1999). In the mouse, several 

mutations in the Nodal signalling pathway cause developmental arrest at the egg- 

cyUnder stage prior to primitive streak formation (see previous section). Although these 

results are consistent with a role of Nodal signalling in endoderm induction in 

mammals, these mutants have not been analysed specifically for this issue. This will 

require further studies on chimeric embryos and/or conditional targeted mutation 

analyses.

In agreement with Nodal signalling driving endoderm formation, expression of 

constitutively active TARAM-A in zebrafish causes marginal or central blastomeres to 

acquire an endodermal fate (Peyrieras et al., 1998). However, constitutively active 

TARAM-A can also induce mesodermal fates (see above) and it is not clear what the 

local cues are that direct cells preferentially into one of the two responses by this one 

reagent (Renucci et a l, 1996). It has been suggested that dosage of Nodal signalling 

regulates the discrimination between endoderm and mesoderm in zebrafish embryos, 

where high levels of Nodal signalling are required for endoderm formation, lower levels 

being required for that of mesoderm (Schier et al., 1997; Feldman et al., 1998; Thisse 

and Thisse, 1999; Thisse et al., 2000; Aoki et al, 2002; reviewed in Warga and Stainier,

2002). Fate mapping shows that endoderm progenitors lie in the two most marginal 

tiers of cells whereas mesoderm progenitors extend further animally, well in agreement 

with the action of Sqt as a morphogen (reviewed in Warga and Stainier, 2002). 

Zebrafish embryos mutant singly for cyc, sqt or zygotic oep, or expressing a dominant- 

negative TARAM-A have a greater loss of endoderm than of mesoderm (Schier et al., 

1997; Warga and Nusslein-Volhard, 1999; Aoki et al., 2002). Furthermore, embryos 

overexpressing low levels of the Nodal antagonist lefty 1 are mainly depleted of 

endoderm and anterior mesoderm whereas those overexpressing high levels of lefty 1 are 

additionally depleted of the remainder of the mesoderm (Thisse et al., 2000). 

Nonetheless, these effects could reflect a timing rather than a dosage issue given that the 

fates which are most affected by reduction of Nodal levels are also those adopted by the 

first cells to internalise (Thisse et al., 2000; Aoki et al., 2002).

Other zebrafish mutants that have impaired endoderm development turned out to 

contain mutations in genes that are targets of Nodal signalling. These consist of 

casanova (cas), a gene closely related to Soxll (Dickmeis et a l, 2001; Sakaguchi etal.,
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2001;Kikuchi et al., 2001), bonnie and clyde (bon), a mixer-like homeobox gene 

(Kikuchi et al., 2000), and faust (fau), gata5 (Reiter et al., 1999).

All three genes, cas, bon and fau, initiate expression simultaneously at dome stage, 

where they are restricted to deep marginal cells. The extent of their expression differs 

in the vegetal-animal direction, with bon / mixer being the broadest and cas being 

expressed in only a subset of the fau / gata5-expressing cells. Whereas /aw-expressing 

cells comprise endoderm and mesoderm progenitors, the subset that also express cas has 

been hypothesised to be the ones fated to become endoderm. All three genes are also 

expressed in the YSL during high and sphere stages (Alexander and Stainier, 1999; 

Dickmeis et al., 2001}; Sakaguchi et al., 2001; Kikuchi et al., 2001).

Cas, Fau / Gata5 and Bon / Mixer occupy high positions in the pathway leading to 

endoderm formation, directly downstream of Nodal signalling (Poulain and Lepage,

2002). In zebrafish, expression of the genes coding for these transcription factors 

precedes that of other endoderm markers such as sox ll and axial / foxA2, which are 

only expressed in internalised cells, and gataA, expressed only after gastrulation (Reiter 

et al., 2001).

How do fau, bon and cas relate to each other in the genetic cascade that controls 

endoderm formation? Several lines of evidence suggest that fau and bon act in parallel. 

First, fau and bon are expressed in reciprocal mutants; second, \htfau\bon phenotype is 

more severe than that of either single mutants, with the development of very little or no 

endoderm; third, fau  overexpression can still lead to endoderm expansion in bon 

mutants (Reiter et al., 2001). Whether cas acts in parallel to or downstream of fau and 

bon is still object of debate. On one hand, cas mutants fail to maintain fau expression 

but on the other hand they have normal bon expression (Alexander et al., 1999). 

Furthermore, fau or bon overexpression has very little effect on cas mutants, as judged 

by sox ll expression, arguing that Cas function lies between Fau and/or Bon and soxll 

but, then again, a few soxll cells are sometimes induced in these embryos (Alexander 

and Stainier, 1999; Reiter et al., 2001). Finally, cas overexpression in bon or fau  

mutants leads to expansion of endodermal markers (Kikuchi et al., 2001).

In the mouse a single member of the Mix / Bix family of homeobox genes is known. It 

is called (murine) Mix-likel (Mixll or M mll) and it is expressed in the VE, primitive
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streak and nascent mesoderm of the early mouse embryo (Pearce and Evans, 1999; 

Robb et al., 2000). Mur/1 -null embryos display a variety of morphological defects and 

arrest at early somite stages. Significantly, however, the defects include absence of 

heart tube and gut, deficient paraxial mesoderm as well as an expansion of midline 

mesoderm; in addition, Mixl 1-null cells can contribute to all embryonic structures but 

the hindgut (Hart et al., 2002). Expression of early definitive endoderm markers such 

as Cer 1 and Soxll indicates that endoderm induction takes place but is severely reduced 

Mur/1-null embryos (Hart et al., 2002).

Murine Gata5 is first expressed in the developing heart and subsequently in the lungs, 

vasculature and genitourinary system. GataS-mxll mice are viable and fertile although 

females exhibit pronounced genitourinary abnormalities (Molkentin et al., 2000). It is 

possible that another Gata factor assumes the role of fish Gata5 in endoderm formation. 

There are six GATA factors in the mouse and these can be grouped into two classes 

according to their expression pattern and sequence. Gatal -  3 are expressed 

predominantly in hematopoietic cell lineages and are required for their differentiation; 

Gata3 is also required for nervous system development (Pevny et al., 1991; Tsai et al., 

1994; Pevny et al., 1995; Pandolfi et al., 1995; Ting et al., 1996; Shivdasani etal.,

1997). G ata4 -6  are expressed in several distinct sites but all are expressed in the 

cardiovascular system (Arceci et al., 1993; Kelley et al., 1993; Laverriere et al., 1994; 

Morrisey et al., 1996; Morrisey et al., 1997). Gata4-nu\\ mice die at 8 dpc from 

impaired ventral morphogenesis that prevents the formation of the heart tube (Kuo et 

al., 1997; Molkentin et al., 1997), whereas Gata6 mutant embryos die before 

gastrulation from defects in the VE (Morrisey et al., 1998; Koutsourakis et al., 1999). 

Therefore, if a GATA factor is conserved throughout vertebrate evolution as an obligate 

player in endoderm formation, Gata6 seems the strongest candidate but it might also be 

that two or more family members, especially of the Gata4 -  6 subfamily, act 

redundantly in this process.

Sox 17-null mouse embryos are specifically deficient in gut endoderm. Mid- and 

hindgut endoderm induction is greatly reduced and the few progenitors fail to expand 

whereas prospective foregut endoderm undergoes massive apoptosis after an initial 

period of normal specification (Kanai-Azuma et al., 2002).
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1.4.5 Neural induction

Neural induction, the early commitment of ectodermal cells to a neural fate, takes place 

as the organizer forms and for a long time embryologists held the view that the 

organizer directed close-by ectodermal cells to become neural. It was postulated that, 

by default, ectodermal cells would form epidermis and that a signal(s) from the 

organizer diverted them from the default route (reviewed in Hamburger, 1988). 

Xenopus animal cap explants indeed differentiate into epidermis in the absence of any 

growth factors. However, when these explants are dissociated into single cells these 

adopt a neural rather than an epidermal fate (Grunz and Tacke, 1989; Sato and Sargent, 

1989; Godsave and Slack, 1991). The new hypothesis became that the ectoderm, by 

default, commits to neurectoderm and that diversion into an epidermal fate requires a 

signal(s) that is resident in the ectoderm and that is diluted out by cell dissociation.

The discovery that BMPs can divert dissociated animal cap cells from a neural to an 

epidermal fate (Wilson and Hemmati-Brivanlou, 1995; Suzuki et a l , 1997) led to the 

formulation of the Neural Default model. According to this model, ectodermal cells 

adopt a neural fate unless exposed to BMPs; BMP antagonists are direct neural 

inducers; one function of the organizer is to secrete BMP antagonists in order to 

suppress the BMP signals that originate in the ventral side of the embryo (see Fig. 1.8), 

thus promoting / allowing neural commitment on the dorsal side (Hemmati-Brivanlou 

and Melton, 1997). Indeed, overexpression of several components of BMP signalling 

pathway induces epidermis in dissociated animal cap cells and BMP antagonists or 

overexpression of dominant-negative versions of some components of the pathway 

repress epidermal differentiation in intact animal caps (Sasai et al., 1995; Suzuki et al., 

1995; Xu et a l, 1995; Hawley et al., 1995; Onichtchouk et al., 1998; reviewed in 

Weinstein and Hemmati-Brivanlou, 1999). Furthermore, the organizer-expressed BMP 

antagonists Noggin, Chordin, Follistatin and Cerberus (Piccolo etal., 1996; Zimmerman 

et al., 1996; Fainsod et al., 1997; Piccolo et al., 1999) induce neural fates in animal cap 

explants in a direct manner, that is, without inducing mesoderm (Lamb et al., 1993; 

Hemmati-Brivanlou et al., 1994; Sasai et al., 1995; Bouwmeester et al., 1996; Hansen 

etal., 1997).

The Neural Default model does not accommodate all the information available
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concerning neural induction. Mouse embryos devoid of the hepatocyte nuclear factor 

3(3 (HNF3|3) do not form an organizer (Ang and Rossant, 1994; Weinstein et al., 1994) 

and, despite the absence of organizer-secreted BMP antagonists such as Chordin and 

Noggin, still develop a neural tube with correct antero-posterior patterning 

(Klingensmith et al., 1999). Mice mutant for C ere b ru s-like , Noggin and 

Chordin;Noggin double-mutants undergo neural induction (McMahon et al., 1998; 

Simpson et al., 1999; Shawlot et al., 2000; Belo et al., 2000; Bachiller et al., 2000). In 

zebrafish, the gastrula ectoderm in the ventral-vegetal quadrant adopts neural fates, 

despite being a region with high levels of BMPs (Kudoh et al., 2003). In the chick, 

misexpression of BMP antagonists in the area opaca margin (extraembryonic epiblast), 

a region where node transplants are able to induce a complete secondary axis (Storey et 

al., 1992), does not induce ectopic neural commitment and misexpression of BMPs does 

not repress endogenous neural induction, despite inhibiting primitive streak formation 

(Streit et al., 1998). One possibility is that BMP antagonists play a role in the 

maintainance, rather than in the induction, of the neurectoderm. When a chick node is 

transplanted onto the area opaca margin for 5 h, a period of time insufficient to induce 

a neural plate, and is then replaced by Chordin-secreting cells, expression of the pan- 

neural marker Sox3 is stabilised in the host tissue (Streit et al., 1998).

In vitro studies of embryonic stem (ES) cells, which are cell lines derived from the ICM 

of mouse blastocysts and have the potential to differentiate into all embryonic and adult 

cell types (reviewed in Keller, 1995), show that these cells can undergo neural 

conversion in the absence of serum or any growth factor addition to the culture medium, 

whether in multicellular aggregates, in single cell suspension, or in adherent 

monoculture (Wiles and Johansson, 1999; Tropepe et al., 2001; Ying et al., 2003). In 

the most recent of these studies the Neural Default model was addressed by the addition 

of BMP antagonists to the culture medium. ES cell differentiation along neural fates 

was insensitive to Noggin but was suppressed by the presence of BMP4 (Ying et al.,

2003). These results suggest that, although exogenous BMP signals stimulate ES cell 

differentiation into non-neural fates, endogenous BMP signalling in these cultures does 

not obstruct neural conversion (Ying et al., 2003).

As for positive neural inducers, FGF signalling is emerging as required for neural 

induction in planaria, fish, frog and chick (Launay et al., 1996; Streit et al., 2000;
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Wilson et al., 2000; Cebria et al., 2002; Kudoh et al., 2003). ES cell differentiation 

studies are in agreement with this view, since addition of FGF4 to a chemically defined 

culture medium increases neural conversion, and since administration of a 

pharmacological inhibitor of FGF receptor tyrosine kinases (Mohammadi et al., 1997) 

eliminates it without a discernible effect on cell viability or proliferation (Ying et al.,

2003).

A subject of debate is whether neural induction predisposes an unpatterned 

neurectoderm to antero-posterior signals that then regionalise it or whether neural 

induction inherently carries antero-posterior information (Chapman et al., 2003; 

reviewed in Foley and Stem, 2001). The first of these models goes back to Nieuwkoop. 

When testing the capacity of neurectoderm to induce antero-posterior pattern in naive 

ectoderm, Nieuwkoop inserted pieces of naive ectoderm perpendicularly into the 

presumptive neural plate of early amphibian gastrulae at different antero-posterior 

levels. While the proximal portion of the graft always conformed with the host in 

antero-posterior value, the distal portion always exhibited the character of the most 

anterior neural tissue. To explain these results he proposed the Activation- 

Transformation model, according to which the axial mesoderm produces an initial, 

activator, signal, that induces anterior neurectoderm in the overlying ectoderm; and 

then, a second, transformer, signal, present in the mesoderm with an antero-posterior 

gradient with the highest level in the posterior, posteriorises the neurectoderm in an 

accordingly graded fashion, giving rise to all intermediate values between the most 

anterior and the most posterior neural tissue (Nieuwkoop, 1952). More recently, the 

molecular translation of the Activation-Transformation model states that BMP 

inhibitors would be the activator signal(s) and that FGFs, Wnts and Retinoic Acid (RA) 

are the signals responsible for posteriorising the neurectoderm. Experimental support 

for this model has been obtained mainly with Xenopus animal caps, where the neural 

markers induced by BMP inhibitors are anterior ones, and where the combination of 

BMP inhibitors with FGFs, Wnts or RA can elicit posterior neural markers (e.g., Lamb 

et al., 1993; Kengaku and Okamoto, 1993; Hemmati-Brivanlou et al., 1994; Sasai et al., 

1994; Cox and Hemmati-Brivanlou, 1995; Lamb and Harland, 1995; McGrew et al., 

1995; Kengaku and Okamoto, 1995; Blumberg et al., 1997; Domingos et al, 2001; 

Kudoh et al., 2002; reviewed in Conlon, 1995; Sasai and De Robertis, 1997).
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The notion that the organizer necessarily induces anterior neural tissue has been 

challenged mainly by transplantation studies in zebrafish, which advocate that the 

epiblast possesses antero-posterior pattern that is independent of dorso-ventral pattern. 

Transplantation suggests that the zebrafish germ-ring, that is, non-axial mesendoderm, 

confers antero-posterior pattern to the overlying epiblast (Woo and Fraser, 1997). The 

antero-posterior specification of the epiblast is uncovered by organizer transplantion 

onto the ventral side of a wild-type host with variation of the latitude where the 

organizer is placed. Organizer grafts close to the margin (vegetal location) are not able 

to induce the most anterior neural markers, whereas grafts further away from the margin 

(animal location) are. Therefore, distance to the margin reflects the antero-posterior 

competence of the epiblast, where the vegetal epiblast is posterior and the animal 

epiblast is anterior, which cannot be overridden by signals present in the organizer 

(Koshida et al., 1998). Furthermore, the antero-posterior pattern of the secondary axes 

induced by organizer grafts in ventralised host embryos, advocate independence 

between antero-posterior and dorso-ventral patterning (Koshida et a l , 1998). Antero­

posterior prepatterning of the epiblast is consistent with the fact that the antero-posterior 

polarity of the secondary axis induced by organizer transplant in any species is always 

reproducible, with the anterior ends of ectopic and host axes facing each other.

1.4.6 The AVE and patterning of the early mouse embryo

The study of early mouse development has brought forth a new set of ideas concerning 

neural and anterior induction as well as organizer formation and function. It was long 

known that the outcome of organizer transplantation in several species is dependent on 

the stage of both donor and host tissues. A complete secondary axis is induced in the 

frog, fish or chick when the organizer is transplanted early enough, meaning at early 

gastrula, onto gastrula-stage hosts. When a late gastrula from these species is used as 

donor, organizer transplants result in an incomplete secondary axis, which is anteriorly 

truncated (Spemann, 1931; Waddington, 1932; Saude et al., 2000). The mouse, 

however, has been a puzzle since, no matter how early the donor gastrula, the secondary 

axis induced by transplant of its node or node precursor cells, called the early gastrula 

organizer (EGO), is invariably incomplete, lacking the fore- and midbrains 

(Beddington, 1994; Tam et al., 1997). This suggests requirement for a tissue other than 

the node for induction and/or maintenance of the mammalian anterior neural plate.
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It has since been shown that the AVE, an extraembryonic tissue, is required for 

complete anterior patterning of the mouse axes. As already mentioned, the AVE is a 

group of VE cells that migrate from the distal tip of the egg cylinder to the prospective 

anterior side of the conceptus 24 h prior to gastrulation, where they come to underlie the 

future neural plate. The first hint as to the importance of the AVE came from the 

observation of asymmetric gene expression in the VE as early as 24 h prior to 

gastrulation (5.5 dpc), which demonstrated antero-posterior polarity in this tissue way 

before primitive streak formation revealed morphoplogical polarity (at 6.5 dpc). The 

homeobox-containing gene Hex was observed to be expressed on the side of the VE 

opposite to that where the primitive streak would form (Thomas et al., 1998). Since, 

other VE transcripts were found to be specific to the AVE, such as VE-1 antigen, L im l, 

Hesxl, Gsc, Cerberus-like, Hnf3ft, Otx2 and/g/8 (Sasaki and Hogan, 1993; Simeone et 

al., 1993; Ang et al., 1994; Rosenquist and Martin, 1995; Shawlot and Behringer, 1995; 

Crossley and Martin, 1995; Wakamiya et al., 1997; Belo et al., 1997; Rhinn et al., 1998; 

Tam and Steiner, 1999). Interestingly, some of these genes, for example, Liml, Gsc and 

Hnf3f$, are also expressed in the mouse node.

Hex remains the earliest AVE marker. By blastocyst stage, Hex is expressed in the VE- 

precursor cells, called the primitive endoderm. As the embryo grows, this resolves into 

distal VE expression at 5.0 dpc. As distal cells move anteriorly, so does Hex expression 

move with them (Thomas, 1998). On the other hand, early primitive streak markers 

such as the T-box family founder T or Brachyury, are expressed in a ring of cells in the 

proximal epiblast at the onset of gastrulation. As the streak forms and elongates, T 

expression moves posterior-distally (Wilkinson et al., 1990). It thus seems that the 

expression of AVE and primitive streak markers move in a somewhat complementary 

fashion: distal-proximally on the anterior versus proximal-distally on the posterior. This 

is in agreement with the proposed global movement of the VE (Weber et al., 1999).

The first experiment assessing the requirement of the AVE for patterning of the early 

embryo was its removal. AVE removal at the beginning of gastrulation prevents or 

diminishes the expression of forebrain markers in the adjacent anterior ectoderm but 

does not affect gene expression in more caudal neurectoderm (Thomas and Beddington, 

1996). Genetic experiments subsequently showed a requirement for the expression of a 

number of genes specifically in the VE for anterior neurectoderm formation. Mouse
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mutants for Hnf3(3, Otx2 {Drosophila orthodenticle homologue) or Liml were known to 

lack the anterior neural plate (Ang and Rossant, 1994; Acampora et al., 1995; Shawlot 

and Behringer, 1995). With the emergence of the AVE model, it was shown that it is 

the lack of these gene products specifically in the VE that is the primary cause for the 

anterior truncation phenotypes. Chimeras generated by injection of wild-type ES cells 

into mutant blastocysts show that Otx2, Nodal, Liml and Hnf3fi are required specifically 

in the VE for correct anterior neurectoderm patterning (Varlet et al., 1997; Filosa et al., 

1997; Rhinn ef al., 1998; Dufort et al., 1998; Shawlot et al., 1999).

The AVE is able to induce forebrain markers when transplanted into an ectopic location. 

This was shown by transplanting pre-streak stage rabbit AVE onto chick epiblast 

(Knoetgen et al., 1999). However, the AVE is not an organizer in the classical sense 

since it is not able to alter gene expression in neighbouring tissues in such a complete 

way that whatever those tissues were fated to become they will coordinately assume the 

fate and morphology imposed by the organizer (as is the case of the Spemann organizer 

and of the Zone of Polarising Activity in the limb, for example). Transplant of the AVE 

is not able to induce the formation of a head but the AVE is required to form a head in 

the mouse. It is noteworthy that the visceral endoderm grows in a clonally coherent 

manner, as opposed to the epiblast, where extensive cell mixing occurs (Gardner, 1984; 

Lawson and Pederson, 1987). The former type of growth would seem a requirement for 

a tissue that is to carry patterning information, especially in an organism where 

patterning occurs in concomitance with ample cell proliferation, as is the case for 

mammalian embryos.

Transplantation of the AVE along with the EGO onto a mouse host does result in the 

induction of a complete secondary axis (Tam and Steiner, 1999). This indeed suggests 

that antero-posterior patterning activity is subdivided into two disunited regions of the 

mammalian embryo, the AVE and the node. Surprisingly, however, rabbit and mouse 

nodes have been transplanted onto chick ectoderm, resulting in the induction of 

complete secondary axes (Knoetgen et al., 2000). These experiments highlight the 

importance of assessing the molecular nature and topology of the responding / host 

tissue as well as of the donor graft.

It is still not clear whether the properties of the AVE allocated to this tissue after 

mammals evolved as a distinct class from birds or when amniotes separated from
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anamniotes, or whether the unique topology of the mouse embryo allowed for the 

discovery of two distinct antero-posterior signalling centres that also exist as such in 

other vertebrates, possibly lying in closer proximity. It has been argued that the chick 

anterior hypoblast, the amphibian deep mesendoderm -  the cells that line the blastocoel 

floor -  and the fish dorsal YSL are the equivalents of the mammalian AVE (Beddington 

and Robertson, 1998). According to this idea, the dorsal-central location of 

anteriorising signals in these other species would allow them to act upon the ventral 

region of the embryos onto which organizers are transplanted, explaining why a 

complete secondary axis is obtained (Thomas et al., 1997). Indeed, the anterior 

hypoblast, the deep mesendoderm and the dorsal YSL express AVE markers 

(Bouwmeester et al., 1996; Yamanaka et al., 1998; Yatskievych et al., 1999; Jones et 

al., 1999; Zorn et al., 1999) and it has been shown that the frog deep mesendoderm cells 

possess anterior signalling ability (Jones et al., 1999). In addition, it has been suggested 

that the anterior migration of Xenopus deep mesendoderm and of the chick anterior 

hypoblast could be the equivalent of the anterior migration of mouse distal VE cells 

(Arendt and Nubler-Jung, 1999).

Chick hypoblast removal, unlike mouse AVE removal, does not prevent forebrain 

marker expression (Knoetgen et al., 1999). Furthermore, anterior hypoblast 

transplantation is not able to stably induce neurectoderm. However, anterior hypoblast 

does induce transient expression of the early neural markers Sox3 and Otx2 (Foley et al.,

2000), which is in accordance with a model where the AVE / anterior hypoblast is 

responsible for initiating anterior character in the embryonic ectoderm, after which the 

anterior definitive endoderm (ADE) and the axial mesendoderm take over in its 

maintenance (reviewed in Martinez-Barbera and Beddington, 2001). In Hex null mice, 

it is lack of the later, definitive endoderm, expression domain that is responsible for the 

observed forebrain truncations, rather than lack of the AVE domain of expression 

(Martinez-Barbera et al., 2000). In Hex mutant mice, the most anterior early forebrain 

markers are induced but are not maintained (Martinez-Barbera et al., 2000). In mice 

mutant for the novel conserved gene Arkadia, which possess a primitive streak but lack 

a node, both the ADE and the axial mesendoderm are markedly reduced while AVE 

marker expression and location are normal. Arkadia mutant embryos initiate anterior 

neurectoderm marker expression but fail to maintain it (Episkopu et al., 2001). In 

chick, removal of the head process-stage ADE results in embryos that lack induction
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or maintenance of regionalisation within the forebrain, rather than in loss of the most 

anterior neurectoderm markers (Withington et al., 2001). Although non-identical, the 

results from both mouse and chick argue for a role of the early ADE in patterning of the 

anterior neurectoderm.

The role mainly advocated for the chick anterior hypoblast has been a mechanical one, 

of moving prospective forebrain cells away from posteriorising signals emitted by the 

classical organizer (Foley et al., 2000). This is in accordance with the results obtained 

decades ago by Waddington. When the hypoblast was rotated 90° relative to the 

epiblast, the primitive streak curved towards the anterior hypoblast (Waddington, 1932), 

showing an influence of the hypoblast on the movement of the overlying epiblast. On 

the other hand, the AVE has been mainly ascribed a patterning role in the mouse. In the 

mouse, FgfS and Otx2, as well as the widespreadly expressed Nodal co-receptor- 

encoding gene Cripto, are required for the anteriorward displacement of the AVE from 

the distal tip (Ding et al., 1998; Sun et al., 1999; Perea-Gomez et al., 2001a). Mouse 

mutants for these genes retain AVE markers in a distal position and primitive streak 

markers are either absent or retained as proximal. In Otx2 mutants it appears that the 

proximal expression of posterior markers, typical of early wild-type gastrulae, extends 

further anteriorly than in younger wild-type embryos, suggesting a role for the AVE in 

restricting posterior character in the mouse embryo (Perea-Gomez et al., 2001a; 

reviewed in Perea-Gomez et al., 2001b). Future work should show if both tissues exert 

both actions with the ultimate goal of separating anterior and posterior influences.

1.4.7 Molecular pathways mediating vertebrate gastrulation movements

Although a great deal has been learnt about the signalling pathways that specify cell fate 

during early development, we still know very little about the pathways that regulate cell 

movement and shape the embryo. In the large-scale genetic screens performed on 

zebrafish, mutants with impaired epiboly, cell internalisation and convergent-extension 

movements were isolated. The cloning of the epiboly mutants has not yet been 

reported. Analyses of the behaviour of MZ-oep cells as well as cells overexpressing 

lefties has demonstrated the requirement for Nodal signalling in cell internalisation and 

the requirement for Nodal antagonists in order to suppress excess of this cell movement 

(Carmany-Rampey and Schier, 2001; Feldman, 2002). As for convergence-extension, 

cloning of silberblick {sib, Heisenberg and Nusslein-Volhard, 1997), a mutant with a
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shorter and wider body axis, implicated Wntl 1 in this cell movement (Heisenberg et al., 

2000).

From overexpression studies in Xenopus, it was known that not all Wnt signalling 

proteins are able to efficiently induce axis formation (Du et al., 1995). The members of 

the so-called Wnt5a class of Wnts, Wnt4, Wnt5, Wnt5a and W ntll, do not have axis- 

inducing activity and appear not to signal through p-catenin but, rather, through Jun N- 

terminal kinase (JNK), in a pathway similar to the Drosophila Planar Cell Polarity 

pathway, often termed the non-canonical Wnt signalling pathway (Du et al., 1995).

The hypothesis that the non-canonical or planar cell polarity Wnt signalling pathway 

mediates vertebrate convergence-extension has been supported by data showing that 

vertebrate homologues of other components of the pathway play a role during 

gastrulation movements. These include Fz, Dsh, small GTPases, rho kinase 2 (Rok2), 

Prickle, Strabismus / van Gogh / Trilobite and Widerborst (Carreira-Barbosa et al, 

2003; Habas et al., 2003; reviewed in Wallingford et al., 2002; Tada et al., 2002).

Although all of these genes are implicated in regulating cell movements, it is unclear if 

they function in a single linear pathway. For instance, both Prickle and Trilobite / 

Strabismus are required for neuronal migration, whereas there is no indication of a 

requirement for Wntl 1 or proteins involved in the reception of the Wntl 1 signal in this 

process. We also have much to learn regarding how this (and other) pathway(s) actually 

influence cell dynamics. W ntll functions in a non-cell-autonomous fashion to regulate 

cell movements in mesoderm and ectoderm (Heisenberg et al., 2000). Related studies 

in Xenopus showed that a dominant negative form of W ntll is able to block Activin 

induced elongation of animal cap explants (Tada and Smith, 2000). Although it is a 

challenge to quantify cell morphologies in 3 dimensions over time, this approach is now 

technically feasible and has shown that Wntl 1 is required for polarised outgrowth of 

processes in the direction of cell movement (Ullrich et a l, 2003). W ntll is not, 

however, required for polarised cell movement, instead it appears to ensure movement 

is efficient and free of errors. This suggests that other signalling pathways are likely to 

influence the overall directionality of gastrulation cell movements. In support of this, 

several studies have implicated other genes / pathways in promoting gastrulation cell 

movements. For instance, a PI3 kinase pathway possibly involving Stat3 affects the
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migratory behaviours of axial mesendodermal cells (Montero et al., 2003; Yamashita et 

al., 2002), and the Robo / Slit pathway may be important for the dorsalward movement 

of gastrulating cells (Yeo et al., 2001).

1.5 Aims and thesis outline

The aim of my project was to search for new molecules involved in the early patterning 

of the vertebrate embryo. In particular, I aimed at exploring the Beddington Endoderm 

cDNA library (Harrison et al., 1995) for genes expressed either in the definitive or 

visceral endoderm, node and/or axial mesendoderm that had not previously been 

characterised in an early developmental context. The results are presented in four 

chapters, which are outlined next.

The first results chapter, Chapter 3, delineates the screening of the endoderm library by 

whole-mount in situ hybridisation in early-to-mid-gestation mouse embryos. A new, 

sequence-based, approach to clone selection was used and its effectiveness in leading to 

restricted expression patterns is compared with that of random selection from parent, 

subtracted and normalised libraries (performed by others).

Chapter 4 describes in further detail Sgk, a gene selected from the above screen for loss- 

of-function analysis in the mouse embryo. Mouse genomic DNA encompassing Sgk 

was isolated and used to generate an Sgfc-targeting vector, which was transfected into 

embryonic stem cells (ES). ES cells successfully transfected were selected and 

screened for the rare event of homologous recombination. At this point I learnt about 

the phenotype of Sg&-null mice from others. This was not a developmental phenotype 

but, rather, a renal physiological phenotype and I stopped the task of generating Sgk- 

null mice myself.

I next performed a small-scale loss-of-function screen of zebrafish orthologues of 

mouse genes chosen from the first screen, using antisense morpholino oligonucleotides 

(MOs). This is reported in Chapter 5. I isolated zebrafish orthologues of the chosen 

genes making use of ongoing zebrafish expression sequence tag (EST) and genome 

sequencing projects and, when necessary, performed rapid amplification of cDNA ends
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(RACE) in order to obtain 5’ end sequence. The expression patterns of mouse and fish 

orthologues are compared, and the MO phenotypes, assessed usually up to 30 h, are 

briefly described.

Chapter 6 consists of the functional analysis of Nsal, a gene isolated from the zebrafish 

screen, which is required for proper epiboly and embryo survival up to 24h. At the 

beginning of my analysis of Nsal there was no structural or functional information on 

this gene in any species. During the course of my work the product of the yeast 

orthologue of this gene was designated Nsa2, for Nop seven associated protein 2, where 

Nop7 is a nucleolar protein involved in ribosome biogenesis. Nsa2 itself was shown to 

be involved in ribosome biogenesis. I discuss my own results concerning zebrafish 

Nsal in the light of its ascribed function.

Each chapter of results starts with a short specific introduction to the topic of study, 

which is followed by the results obtained concerning that topic, and ends with a 

discussion of those results.
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2.4.3 ES cell electroporation with targeting vector
2.4.4 ES cell antibiotic resistance selection
2.4.5 Resistant ES cell colony picking and culture

2.1 Bioinformatics and genomics

2.1.1 General software used

All manipulations of DNA sequences were performed with Sequencher, DNAStrider, 

DNASTAR or SoftBerry software (see below for the latter). Protein alignments were 

performed with the Clustal method in MegAlign (DNASTAR) or MacVector.

2.1.2 Selection of mouse endoderm library clones to screen

Clustered sequences were compared to the publicly available sequence databases using 

the gapped BLAST algorithms (Altschul et al., 1997) accessed via the internet at 

http://www.ncbi.nlm.gov/BLAST/. Clones that matched genes or domains belonging to 

one of the following categories: transcriptional regulators and proteins involved in 

chromatin structure, splicing factors and proteins involved in RNA binding and 

transport, signalling molecules (extracellular, intracellular or transmembrane proteins), 

cell-cycle regulators, cytoskeleton, extracellular matrix components, and genes 

implicated in human disease were selected for performing whole-mount in situ 

hybridisation. In addition, clones that matched ESTs found in other species, most of 

which were human or murine (uncharacterized mammalian ESTs), and some of which 

spanned invertebrate to vertebrate species (presumably, conserved open reading frames) 

were also selected, as well as clones which did not match anything in the databases. 

Selected clones were picked from 384 plates and sequenced in order to confirm their 

identity.

2.1.3 Identification of zebrafish orthologues of mouse proteins

Zebrafish ESTs corresponding to orthologues of mouse genes were sought by name in 

the nucleotide databases or by using the mouse sequence as the query for TBLASTN at 

http://www.ncbi.nlm.gov/BLAST/. Sequences were clustered using Sequencher 

software. When available, ESTs were ordered to obtain DNA templates for riboprobe
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synthesis (from the Integrated Molecular Analysis of Genomes and their Expression, 

IMAGE or Resource Center/Primary Database, RZPD).

Zebrafish genomic clones containing exons corresponding to desired orthologues were 

sought by probing the Ensembl Trace Server with the mouse protein using the SSAHA 

algorithm, at http://trace.ensembl.org/. Sequences found were clustered using 

Sequencher software. Cluster consensus sequences were used to probe the protein 

databases using the blastx algorithm, at http://www.ncbi.nlm.gov/BLAST/. in order to 

confirm their coding for the desired protein. In this way, exons sequence could be 

identified but to this end I also used the SoftBerry FGENESH gene-finder algorithm 

(Salamov and Solovyev, 2000), available at http://www.softberrv.com/berrv.phtml.

2.1.4 Oligonucleotide design

2.1.4.1 Primers

Primers for sequencing or performing rapid amplification of cDNA ends (RACE) were 

designed either manually or using the program Primer3 (Rozen and Skaletsky, 2000), 

available at http://www-genome.wi.mit.edu/cgi-bin/primer/primer3 www.cgi (Table 

2.1), from regions where reliable DNA sequence was available. Both methods worked 

equally well. When designed manually, primers were between 18 and 23 nts in length 

and aimed at having a melting temperature Tm of 60 °C according to the following 

simplified rule: each C or G contributes 4 °C to the Tm and each A or T contributes 

2 °C to the Tm.

Table 2.1 Parameters entered in Primer3 for primer design

Minimum Optimum Maximum
Length 18 nt 20 nt 27 nt

Sequencing Tm 57 °C 60 °C 63 °C
G/C content 20% 50% 80%

Length 23 nt 25 nt 27 nt
RACE Tm 70 °C 72 °C 75 °C

G/C content 50% 60% 70%
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2.1.4.2 Antisense morpholino oligonucleotides (MOs)

To disrupt mRNA translation in vivo, MOs were designed to target the region around 

the first codon (most frequently) or the 5’ untranslated region (UTR). The translation 

start site of zebrafish genes was identified by alignment of orthologous protein 

sequences belonging to several species and by looking in the cDNA for a Kozak 

consensus sequence in the identified region (Kozak, 1987). MOs were designed and 

synthesised by GeneTools LLC using sequence I provided. All MOs were 25-mers of 

approximately 50% G/C content, with less than 36% G content, no more than two 

consecutive Gs, and forming no more than 4 contiguous internal paired bases. The MOs 

used in this investigation are indicated in Table 2.2.

Table 2.2 MOs used in this investigation

Target mRNA MO
None (Control MO)* CCTCTTACCTCAGTTACAATTTATA

sgk MO 1 CTGTAGITTT'CCACTCTGGGCCCCA

sgk M02 CTCGTCTCCGTTTAGATTGTCATGG

14-3-3 e TCCCGGTCACCCATGTTGGAGAGCG

embigin ATGTATTTCGCCATGTCTGCCTGCA

lztr-1 G ACGGTC AAACGCC ACC AT AGTGTG

claudin b CCGGTTGATGCCATGCTTTTTCG

pancortin Module A CTGCATCTCGCGCCGCCGCTCGCTC

pancortin Module B (genomic*) CGATCTTCAGCAAAGGCACCGACAT

calcyphosine (genomic*) GCGATGTACCTGCCATCCTCCACC

sp\20 TCTTGTCGATTTAGCGTAGATGGTC

nsal MOl GCATCTTAATCGTCTTCTTCATCTG

nsal M02 AAGTGTTTATGGAGCTACCAGGTGT

novel p7822b53 TCACCAGAATCCATGACACCTTCAA

RpS5 GTGCAGCCTCCCAATCTTCAGCCAT

RpL\9 GAGCATACTCATGGCTGGTGGTCAG

* Designed by GeneTools LLC

* Designed from genomic rather than expressed sequence

61



Materials and Methods

2.2 Embryo manipulation

2.2.1 Embryo collection 

2.2.1.1 Mouse embryo harvest

5.5 -  13.5 dpc wild-type mouse (Mus musculus) embryos for staining procedures were 

collected from either C57BL6 x DBA or C57BL6 x C57BL6 matings. Noon on the day 

of vaginal plug detection was considered 0.5 dpc. All extraembryonic membranes were 

removed in M2 medium (Hogan et ai, 1994) plus 10% foetal calf serum (FCS). 

Embryos were fixed overnight (O/N) in 4% para-formaldehyde (PFA) in phosphate 

buffer saline (PBS: 137 mM NaCl, 2.7 mM KC1, 4.3 mM Na2HP04.7H20 , 1.4 mM 

KH2P04) at 4 °C, after which they were dehydrated in increasing concentrations of 

methanol (MeOH) in PBS (25 -  100%). Dehydrated embryos were stored in 100% 

MeOH at -20 °C until used.

2.2.1.2 Zebrafish embryo collection

Zebrafish (Danio rerio) female and male pairs were placed in tanks together in the 

evening preceding the desired collection day. Eggs are usually laid and fertilised the 

following morning shortly after the lights come on in the mating room. Embryos were 

collected in Embryo Water (0.03 g/1 Red Sea Salt, 2 mg/1 methylene blue) shortly after 

having been laid. Embryos were raised from the day of collection up to 3 days at 25 °C 

-  32 °C (usually 28 °C) in Embryo Water or in 0.3 -  lx Danieau’s solution (lx: 58 mM 

NaCl, 0.7 mM KC1, 0.4 mM MgS04, 0.6 mM Ca(N03)2, 5 mM HEPES (pH 7.6)). 

Embryos were staged according to the morphological criteria provided in Kimmel et al., 

1995. Zebrafish embryos collected for staining procedures were fixed at least O/N in 

4% PFA in PBS at 4 °C. Embryos 24 hours post fertilisation (hpf) or older were 

dechorionated prior to fixation whereas embryos younger than 24 hpf were 

dechorionated after fixation and before dehydration. Following fixation, embryos were 

dehydrated in increasing concentrations of MeOH in PBS. Dehydrated embryos were 

stored in 100% MeOH at -20 °C until used.
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2.2.2 Paraffin-embedded embryo sectioning

Prior to or after having been subject to whole-mount in situ hybridisation, 

embryos/tissues were dehydrated in increasing concentrations of EtOH in PBS. Once 

washed twice in 100% EtOH, embryos/tissues were cleared in Histoclear (National 

Diagnostics) for at least 40 min at 56 °C. Cleared embryos/tissues were subsequently 

washed several times in paraffin (at least 2 h in total), also at 56 °C, and finally oriented 

at room temperature paraffin while the latter set. Embedded embryos were placed for 2 

h at 4 °C prior to sectioning. Sections 10 pm thick were cut using a microtome (Jung 

CM3000, Leica Instruments GmbH), and placed to dry O/N on water-covered positively 

charged glass slides (Superfrost Plus, BDH) on a warm table. Slides containing 

attached sections were kept in a covered box at 4 °C until used.

2.2.3 Embryo/tissue stainings

2.2.3.1 Whole-mount in situ hybridisation

Mouse embryos were rehydrated in decreasing concentrations of MeOH in PBS. Once 

in PBS, 7.5 and 9.5 dpc embryos were pierced with a glass needle in regions likely to 

trap probe. Whole-mount in situ hybridisation of mouse embryos was performed 

according to a classical protocol (Wilkinson, 1992), using the hybridisation conditions 

of Rosen and Beddington, 1993, with the following modifications: proteinase K 

(10 mg/ml) treatment was 5 min for 6.5 -  7.5 dpc embryos, 12 min for 8.5 -  9.5 dpc 

embryos and 20 - 30 min for 10.5 -  13.5 dpc embryos; embryo powder was omitted 

from the procedure. Embryos were processed in baskets with mesh bases (Costar) 

applied to 12-well plates: 7.5 dpc or younger in 12 pm pore meshes and 8.5 dpc or older 

in 74 pm pore meshes. After staining, embryos were post-fixed in 4 % PFA, 0.1% 

glutaraldehyde in PBS for 1 h at room temperature and stored in 0.4% PFA at 4 °C. 

Stained mouse embryos were photographed in 0.1% Tween 20 in PBS (PBT) on 1% 

agarose-coated dishes.

Zebrafish embryos were rehydrated in decreasing concentrations of MeOH in PBT. 

Whole-mount in situ hybridisation of zebrafish embryos was performed using a 

modification of a standard protocol (Thisse and Thisse, 1998). Embryos were washed 5 

times in PBT, 5 min each. Embryos older than 24 hpf were digested with 10 pg/ml 

proteinase K for 15 min, washed twice in PBT and refixed in 4% PFA in PBT for
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20 min at room temperature, then. Embryos were then transferred to hybridisation 

buffer (Hyb: 50% formamide, 5x SSC (0.75 M NaCl, 75 mM Na3Citrate.2H20  (pH 

7.0)), 500 pg/ml type VI torulae yeast RNA, 50 p,g/ml heparin, 0.1% Tween-20, 9 mM 

citric acid (pH 6.0-6.5)) for 2-5 hours at 68 °C. The Hyb was then replaced with Hyb 

containing 1 pg/ml of digoxigenin (DIG)-labelled riboprobe and the embryos were 

incubated at 68 °C O/N. The first washes of the following day were done at the 

hybridisation temperature with preheated solutions: 75% Hyb / 2x SSC; 50% Hyb / 

2x SSC; 25% Hyb / 2x SSC; 100% SSC for 15 min each, and two washes with 0.2x 

SSC for 30 min each. Next, a series of washes was performed at room temperature: 

75% 0.2x SSC / PBT; 50% 0.2x SSC / PBT; 25% 0.2x SSC / PBT and 100% PBT for 

10 min each. The embryos were blocked in 2 mg/ml BSA, 2 % heat-inactivated goat or 

sheep serum in PBT for several hours, after which they were incubated with 

alkaline-phosphatase-conjugated anti-DIG Fab fragments diluted 1:2500 in blocking 

solution at 4 °C, O/N. The following day embryos were washed with PBT at least 

8 times, for 15 min each. The embryos were then rinsed 3 times for 5 min each in 

NTMT buffer (0.1 M tris(hydroxymethyl)methylamine (TRIS)-HCl pH 9.5; 50 mM 

MgCl2; 0.1 M NaCl; 0.1% Tween 20). Detection was performed using NBT / BCIP 

(112.5 \i\ of 100 mg/ml NBT in 70% dimethyl-formamide and 175 pi of 100 mg/ml 

BCIP in 70% of dimethyl-formamide, in 50 ml of NTMT). After stopping the reaction 

with 100% PBS (pH 5.5), embryos were refixed in 4% PFA in PBS. Stained zebrafish 

embryos younger than 24 hpf were dehydrated in increasing concentrations of MeOH in 

PBT and two final washes in 100% MeOH. These were then cleared in a fresh 2:1 

mixture of benzyl-benzoate:benzyl alcohol (BBA) and mounted in a 10:1 mixture of 

Canada Balsam : methyl-salicylate. As soon as embryos were in BBA their exposure to 

light was kept to a minimum to avoid the yolk turning red. For storage, these embryos 

were rehydrated in decreasing concentrations of MeOH in PBT, two final washes in 

PBT, and finally placed in 0.4% PFA in PBT at 4 °C. 24 hpf or older embryos were 

placed straight into 80% glycerol in PBT, which was both the clearing and mounting 

solution. These embryos were stored in 80% glycerol at 4 °C.

2.2.3.2 In situ hybridisation on paraffin-embedded tissue sections

In situ hybridisation on paraffin-embedded mouse tissue sections was carried out either 

in slide boxes or Coplin jars. Slides containing tissue sections were de-waxed by
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washing 3 times in Histoclear (National Diagnostics), 5 min each, followed by 2 washes 

in ethanol (EtOH). Tissue was bleached and dehydrated by incubating with gentle 

shaking in 6% H20 2 in MeOH for 2.5 -  3 h at room temperature. Slides were 

rehydrated in MeOH/PBT series: 75%, 50%, 25%, 5 min each, and finally 3 times in 

PBT. Tissue was digested for 15 min at room temperature by incubating with

12.5 p-g/ml proteinase K in PBT, in slide box. When slides are incubated flat in slide 

boxes, 300 pi solution / slide is enough to cover tissue. Digestion was stopped by 

washing twice in 2 mg/ml glycine in PBT. Slides were refixed in slide box for 20 -  30 

min at room temperature, in 4% PFA (fresh), 0.2% gluteraldehyde in PBS, followed by 

2 washes in PBT. Hybridisation mix (Sections Hyb: 50 % formamide, 5x SSC, 50 

pg/ml heparin, 50 pg/ml tRNA) was added to slides and these were covered with 

coverslip or parafilm (note that the latter shrinks at the high temperature). Pre­

hybridisation was carried out in humidified slide box for at least 1 h at 70 °C. Sections 

Hyb was then replaced with Sections Hyb containing previously denatured (80 °C for 2 

min; ice for 5 min) DIG-labelled riboprobe, slides were covered as before, and 

hybridised in humidified slide box O/N at 70 °C. The following day, slides were 

washed twice for 30 min each in pre-heated 50 % Formamide, 5x SSC (pH 4.5 -  5.2), 

1% SDS, at 70 °C; and twice again for 30 min each in pre-heated 50% Formamide, 

5x SSC (pH 4.5 -  5.2), at 65 °C. Slides were washed in fresh MAB (100 mM maleic 

acid, 150 mM NaCl, pH 7.5), 3 times for 5 min each at room temperature. Blocking 

was performed for at least 2 h at room temperature in slide box, with 2 % Blocking 

Reagent (Boehringer; dissolve hot) in MAB (no serum). Blocking solution was then 

replaced with 1:2000 anti-DIG antibody in blocking solution and slides were incubated 

for 2 h at room temperature in slide box. Slides were washed with gentle shaking in 

MABT (MAB, 0.1% Tween-20), 3 times, 20 min each, at room temperature, followed 

by washing in NTMT, 3 times 5 min each. Detection was performed using NBT / BCIP 

(112.5 p-1 of 100 mg/ml NBT in 70% dimethyl-formamide and 175 pi of 100 mg/ml 

BCIP in 70% of dimethyl-formamide, in 50 ml of NTMT). Detection reaction was 

carried out in light-tight slide box and was left to take place for at least O/N (when left 

longer, slides were checked occasionally to ensure they were not drying out and more 

developing solution was added when necessary). After stopping the reaction with 10 

mM EDTA in PBS, slides were refixed in MEMFA (0.1 M MOPS (pH 7.4), 2 mM 

EGTA, 1 mM MgS04, 37% formaldehyde), for 1 h at room temperature. Slides were 

then washed in PBS and mounted with Aquamount (MERCK).
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2.2.3.3 Whole-mount terminal deoxy-nucleotidyl transferase- 
mediated dUTP nick end labelling (TUNEL)

Zebrafish embryos were rehydrated, washed and, for embryos older than 24 hpf, 

digested with proteinase K followed by post-fixation with 4% PFA in PBS, as for 

whole-mount in situ hybridisation. Embryos older than 24 hpf were then subject to 

endogenous alkaline phosphatase inactivation, by incubation with pre-chilled (-20 °C) 

EtOH:glacial acetic acid (2:1) for 10 min at -20 °C. Specialised reagents subsequently 

used were those of ApopTag kit (Intergen). All embryos were incubated in 75 pi 

Equilibration Buffer for 1 h at room temperature and then incubated in at least 50 pi 

working strength TdT enzyme (prepared fresh by mixing Reaction Buffer:TdT enzyme 

2:1 + 0.3% TritonX-100) O/N at 37 °C. The following day, the reaction was stopped by 

washing embryos in working strength Stop/Wash Buffer (Stop/Wash Buffer:water 1:17) 

for 3 h at 37 °C. Blocking was performed by incubation in 2 mg/ml BSA, 5% goat 

serum in PBT for at least 1 h at room temperature, after which embryos were incubated 

with alkaline-phosphatase-conjugated anti-DIG Fab fragments diluted 1:2500 in 

blocking solution at 4 °C, O/N. Subsequent washes, detection and mounting were 

performed as for whole-mount in situ hybridisation.

2.2.4 Mouse embryo wound-healing protocol

For wound healing experiments, performed by Dr. Lisa Cooper in Prof. Paul Martin’s 

Lab, 11.5 dpc mouse embryos were recovered according to Martin and Cockroft, 1999 

from CD1 x CD1 matings. Living embryos were immediately wounded by hind limb- 

bud amputation as well as flank incision and healing was allowed to take place for 

30 min, 3 h, 6 h or 12 h by culturing the embryos under the conditions described in 

Martin and Cockroft, 1999. Whole-mount in situ hybridisation of wounded embryos 

was performed as described above with Sgk or Krox24 (positive control) riboprobes.

2.2.5 Zebrafish embryo injections

Injection needles were prepared by pulling 1.0 mm filament-containing borosilicate 

glass capillaries (Word Precision Instruments, item no. 1B100F-4) with a vertical 

pipette puller (David Kopf Instruments, Model 720), cutting the edge with a razor blade, 

and calibrating under the microscope with micrometer. The injection system consisted
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of a needle holder (Word Precision Instruments), carried by a 3-axis micromanipulator 

(Narishige, MN-153), connected to a foot-pedal-controlled pressure injector (World 

Precision Instruments, Pneumatic PicoPump PV 820).

Prior to microinjection, MOs were usually diluted to desired concentration in MO 

Buffer (1:4 25 mg/ml phenol red : 5 mM HEPES (pH 7.2), 200 mM KC1). In general, a 

volume of 1.4 nl, containing 10 ng of the desired solution, was injected through the 

chorion of zebrafish embryos up to the 8-cell stage, targeting the whole embryo and 

extraembryonic tissues. In a few experiments where the YSL was targeted, embryos 

were injected at 4 hpf, a stage when blastoderm cells have detached from the YSL 

(Cooper and D’Amico, 1996; see also Cooper and D’Amico, 2001). By injecting the 

yolk cell just below the blastoderm, in the centre of the YSL, the latter can be targeted 

specifically, as seen by a thin layer of phenol red (constituent of the MO buffer 

described above) lying just beneath the blastoderm. For injection, embryos were 

aligned on the side of a glass slide in a glass petri dish, with just enough Embryo Water 

to ensure their hydration.

2.2.6 Zebrafish embryo incubation with cycloheximide

Prior to incubation with cycloheximide, live zebrafish embryos were dechorionated in 

lx Danieau’s Solution on 2% agarose in lx Danieau’s Solution-coated dishes. At the 

chosen stages, dechorionated embryos were incubated with desired concentration of 

cycloheximide in lx Danieau’s Solution.

2.2.7 Embryo photographing

Low-power photographs of embryos were taken using a Nikon camera-coupled Nikon 

dissecting microscope, using tungsten film (Kodak 64T). Images acquired through the 

former were digitised using a Polaroid SprintScan 35 scanner. High-power Nomarski or 

fluorescent images of live or fixed embryos as well as images of tissue sections were 

obtained using a Zeiss Axiophot microscope fitted with a Kodak DCS420 digital 

camera. Images were treated with AdobePhotoshop. Living zebrafish embryos were 

photographed in 3% methylcellulose (Sigma).

67



Materials and Methods

2.2.8 Transmission electron microscopy (TEM)

Whole zebrafish embryos were dechorionated manually and fixed overnight with 

2% glutaraldehyde, 2% paraformaldehyde in 0.1M sodium cacodylate buffer (pH 7.2) 

(SCB). The following day, embryos were washed for 10 min in SCB and postfixed for 

1 h in 1% osmium tetroxide in SCB. They were washed again with SCB and stained en 

bloc with 1% aqueous uranyl acetate for 1 h. The samples were then dehydrated 

through a graded ethanol series, followed by 2 changes of propylene oxide over 20 min 

and embedded in Epon resin (Agar Scientific). 50 nm ultra thin sections were cut and 

mounted on pioloform coated slot grids and stained with 1% aqueous uranyl acetate for 

15 min, followed by Reynold's lead citrate for 7 min. Sections were visualised in a Jeol 

1200 EX electron microscope.

2.3 Molecular biology

2.3.1 Plasmid transformation of competent bacteria

TOP 10 chemically competent bacteria (Invitrogen) were used for heat-shock 

transformation of plasmid DNA. 2 pi of DNA solution were added to 25 pi cells and 

incubated on ice for 5 min. Cells were then heat-shocked at 42 °C for 30 s and 250 pi 

of SOC (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KC1, 10 mM MgCl2, 

20 mM glucose) medium was added. An aliquot of the culture was spread onto a 

selective L-Broth (LB: 1% w/v bacto-tryptone, 0.5% w/v bacto-yeast extract, 

1% w/v NaCl) + agar (L-agar) plate (e.g., 100 mg/ml of ampicillin in L-agar) previously 

treated with 40 pi of 20 mg/ml in dimethylformimide 5-bromo-4-chloro-3-indoly 1-(3-D- 

galactosidase (X-Gal) and, if the bacteria so require, 40 pi of 200 mg/ml isopropylthio- 

P-D-galactosidase (IPTG). Plates were incubated O/N at 37 °C.

TOP10 electrocompetent bacteria (Invitrogen) were used for electroporation of plasmid 

DNA. Up to 2 pi of DNA solution was added to 20 pi of cells thawed on ice and 

immediately transferred to a pre-cooled 0.1 cm electroporation chamber. Cells were 

electro-shocked at 1.8 kV, 25 pF and 200 Q. 1 ml of warm SOC medium was 

immediately added to the electroporated cells. The mixture was transferred to a plastic 

tube and incubated with shaking at 37 °C for 1 hour. Cells were plated as described for 

chemical transformation.
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2.3.2 Purification of plasmid DNA

For all plasmid preparations, Qiagen Spin kits (Mini or Midi Prep) were used as 

recommended. For a small-scale plasmid preparation, 2 ml bacterial cultures were 

grown O/N at 37 °C in selective LB medium with vigorous shaking. 1.5 ml culture was 

transferred to a 1.5 ml microcentrifuge tube and spun for 20 s at -10,000 x g on a bench 

centrifuge. The supernatant was removed completely and the pellet resuspended in 250 

pi of Resuspension Buffer (10 mM EDTA, 50 mM TRIS-HC1 (pH 8.0), 100 p<g/ml 

RNase A). 250 pi of Lysis Buffer (0.2 M NaOH, 1% SDS) were added, mixed and the 

tubes left for 5 min at room temperature to allow alkaline lysis of the cells. Lysis 

solution was then neutralised by adding 350 pi of ice-cold Neutralisation Buffer (3 M 

KOAc (pH 5.5)) and mixed by carefully inverting the tube a few times, followed by 

10 min incubation on ice. The tube was spun for 15 min at room temperature and the 

supernatant was transferred into a fresh microcentrifuge tube containing a mini column 

and spun for 1 min at -10,000 x g on a bench centrifuge. Column was washed with 

750 pi of Wash Solution and DNA was finally eluted with 30 - 50 pi of sterile water by 

spinning at -10,000 x g on a bench centrifuge.

For a medium scale plasmid preparation, 25 ml bacteria culture were grown O/N at 

37 °C in selective LB medium with vigorous shaking. Culture were transferred to 30 ml 

polycarbonate tubes (Nalgene) and spun for 15 min at 6,000 x g in a Sorvall SS-34 rotor 

at 4 °C in a Sorvall RC5C centrifuge. The supernatant was removed completely and the 

pellet resuspended in 4 ml of Resuspension Buffer (10 mM EDTA, 50 mM TRIS-HC1 

(pH 8.0), lOOpg/ml RNase A). 4 ml of Lysis Buffer (0.2 M NaOH, 1% SDS) were 

added, mixed and the tubes left for 5 min at room temperature to allow alkaline lysis of 

the cells. Lysis solution was then neutralised by adding 4 ml of ice-cold Neutralisation 

Buffer (3 M KOAc (pH 5.5)) and mixed by carefully inverting the tube a few times, 

followed by 15 min incubation on ice. Tube was spun for 30 min at 20,000 x g in a 

Sorvall SS-34 rotor at 4 °C in a Sorvall RC5C centrifuge. Supernatants were transferred 

into Qiagen-tip 100 columns previously equilibrated with 4 ml of Equilibration Buffer 

(750 mM NaCl, 50 mM MOPS (pH 7.0), 15% isopropanol, 0.15% Triton X-100). 

Columns were washed with 2 x 10 ml of Wash Solution (1.0 M NaCl, 50 mM MOPS 

(pH 7.0), 15% isopropanol) and DNA was finally eluted with 200 p,l of sterile water into 

30 ml glass tubes (Corex). DNA was precipitated by adding 3.5 ml of isopropanol and 

centrifuging for 30 min at 15,000 x g in a Sorvall SS-34 rotor at 4 °C in a Sorvall RC5C
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centrifuge. DNA pellets were washed with 2 ml of 70% EtOH and centrifuged for 

10 min at 15,000 x g in a Sorvall SS-34 rotor at 4 °C in a Sorvall RC5C centrifuge. 

Pellets were air-dried for approximately 10 min and resuspended in 200 pi of sterile 

water.

2.3.3 Nucleic acid spectrophotometric quantification

Nucleic acid quantification was performed by spectrophotometry at X = 260 nm, where 

an optic density (OD) unit corresponds to 50 pg/ml of double-stranded nucleic acid or 

to 35 pg/ml single-stranded nucleic acid. The ratio between the readings at X = 260 nm 

and X = 280 nm provided an estimate of the purity of the nucleic acid preparation (pure 

preparations of DNA should have OD260/OD280 ratio of 1.8).

MOs were supplied lyophilised. Following solution and column-purification (see 

section 2.3.24), eluates were diluted 1/1000 in 0.1 N HC1 and quantified by 

spectrophotometry at X = 265 nm. MO concentration corresponds to the ratio between 

the OD and their molar extinction coefficient (s), multiplied by their molecular weight 

(MW). Manufacturers provide e and MW values for each MO synthesised.

2.3.4 Agarose gel electrophoresis

Nucleic acid concentration estimation, size determination and/or separation were 

performed by agarose gel electrophoresis. Gels were prepared by dissolving agarose in 

0.5x TAE (20 mM TRIS acetate, 1 mM Na2EDTA.2H20  (pH 8.5)) to a final 

concentration of 0.8 -  2% (w/v), depending on the expected size of the DNA fragments, 

and 0.5 mg/ml ethidium bromide. Nucleic acid samples were mixed with 6x gel loading 

buffer (6x TAE, 50% v/v glycerol, 0.25% w/v bromophenol blue) and, in the case of 

RNA, with RNase inhibitor. Electrophoresis was performed at 5 -  20 V/cm gel length 

until appropriate resolution was achieved. Ethidium bromide-stained nucleic acid was 

visualised using ultraviolet light (X « 302 nm) and fragment size was estimated by 

comparison with the 1 kb ladder molecular weight markers (Gibco BRL) run in at least 

one of the gel lanes.
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2.3.5 Gel extraction of DNA

For the extraction of DNA from agarose gels, the appropriate band was excised under 

long ultraviolet light (k » 365 nm) with minimal amount of agarose. The QIAquick Gel 

Extraction Kit (Qiagen) was then used according to manufacturer’s protocol. The 

1% agarose slice containing the desired band(s) was weighed and using the 

correspondence 100 mg « 100 p,l, 3 volumes of Buffer QG (Qiagen) were added. 

Sample was incubated for 10 min at 50 °C, with occasional vortexing. After slice was 

completely dissolved, 1 gel volume of isopropanol was added if purifying DNA 

fragments < 500 bp or > 4 kb. Samples were loaded onto QIAquick spin columns 

(Qiagen) and spun for 1 min at -10,000 x g on a bench centrifuge (MicroCentaur). No 

more than 800 pi per column were loaded at a time. When sample volume exceeded 

800 pi, it was loaded and spun as many times as necessary on the same column. Flow­

through was discarded and agarose traces were removed by adding 0.5 ml QG Buffer 

(Qiagen) and spinning for 1 min at -10,000 x g. Flow-through was discarded and 

column was washed by adding 0.75 ml PE Buffer (Qiagen) and spinning for 1 min at 

-10,000 x g. Flow-through was discarded and column was spun for 1 min more at 

-10,000 x g. Flow-through was discarded and column was placed into fresh microfuge 

tube. DNA was eluted by adding 30 or 50 pi of water and spinning for 1 min at 

-10,000 x g.

2.3.6 Phenolichloroform extraction of nucleic acids

To remove proteins from nucleic acid solutions, one volume of a 25:24:1 mixture of 

phenol: chloroform : isoamyl-alcohol (v/v/v) was added to the nucleic acid solution and 

mixed for 1 minute. After a 5 min centrifugation, the upper (aqueous) layer was 

transferred into a new microcentrifuge tube and extracted again with one volume of 

chloroform.

2.3.7 Ethanol precipitation of nucleic acids

EtOH precipitation of nucleic acids was carried out by adding 1/10 volume of 3 M 

sodium acetate (NaOAc) (pH 4.6) and 2.5 volumes of cold 100% EtOH to the nucleic 

acid solution. This mixture was left at -20 °C or -80 °C (depending on how much 

concern salt precipitation is for subsequent procedures) for approximately 20 min. 1 pi
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of 10 mg/ml tRNA was often used as a carrier to visualise the pellet formation. 

Centrifugation was carried out at 20,000 x g for 5 -  20 min, the DNA pellet was washed 

in 70% EtOH and spun again at the same speed for 5 min. After EtOH removal nucleic 

acid was left to air-dry at room temperature for approximately 10 min and resuspended 

in TE (1 mM EDTA, 10 mM TRIS.HC1 (pH 8.0)) or distilled water.

2.3.8 Lambda bacteriophage growth

XLl-Blue bacteriophage host cells cells were grown 10 mM MgS04, 0.2% maltose in 

LB at 37 °C until reaching O .D .^ = 1.0. Cells were centrifuged down and resuspended 

to O.D.goo = 0.5 in 10 mM MgS04. This cell suspension was used up to 1 week.

For phage growth in plates, phage suspension was mixed with bacterial suspension, 

combined with Top-agarose (0.7g agarose, 0.2 g MgS047H20 , 100 ml LB), and plated 

on LB-agar plates to grown O/N. Success of phage culture in plates is assessed by 

confluency of plaques formed by bacterial lysis. An ideal culture generates a confluent, 

totally lysed, plate. Phage grown in plates were used for up to 1 week to inoculate XLl- 

Blue cells in liquid medium.

For phage growth in liquid medium, plaque plugs were punched with a Pasteur pipette 

from a confluent portion of the plate and added to a 50 ml tube containing 3 ml of the 

following solution: 0.5 ml host cells prepared as described above, 30 ml SM buffer 

(0.58 g NaCl, 0.20 g MgS047H20 , 5 ml 1 M TRIS-HC1 (pH 7.5), 0.5 ml 2% gelatin in 

water), 0.2% maltose (which can be kept at 4 °C for 4 -  5 days). This mix was shaken 

for at least 20 min at 37 °C, after which 12 ml of XLl-Blue Medium (500 ml LB, 15 ml 

1 M TRIS (pH 7.4), 1.5 ml 1 M MgS04) were added. Culture was grown at 37 °C with 

shaking and monitored for lysis after 7 h. Lysis was recognised by solution clearing. 

Culture was shaken at 37 °C for up to 2 h more after clearing. Lysis was finalised by 

the addition of 0.5 ml of chloroform and culture was left for at least 30 min at 4 °C 

before DNA purification.

2.3.9 Purification of bacteriophage DNA from liquid cultures

1 -  2 ml phage lysate was kept for stock and remaining was poured into a 30 ml glass 

tube (Corex), avoiding the chloroform layer. Suspension was spun at 15,000 x g for
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10 min after which supernatant was poured into a 50 ml tube containing 10 pi of 

10 mg/ml RNase and 10 pi of 10 mg/ml DNase. Tube was mixed and incubated for 1 h 

at 37 °C with shaking. Equal volume of 20% polyethylene glycol (PEG), 2 M NaCl 

was added, mixed, and suspension left for at least 30 min at 4 °C. This suspension was 

then spun at 1000 xg for 10 min and the supernatant discarded. In order to completely 

remove PEG, tube was spun again at 1000 x g for 10 min and supernatant completely 

removed with a pipette. The pellet was resuspended in 0.5 ml of 10 mM TRIS (pH 7.4), 

10 mM EDTA, the solution was transferred to a microfuge tube containing 0.5 ml of 

phenol and shaken intermittently for 5 -  10 min, then spun in a microfuge for 15 s. The 

aqueous (upper) layer was transferred to a fresh tube and DNA was precipitated with 

1 ml of EtOH. The solution was spun for 2 -  5 min, the supernatant was aspirated, the 

pellet was resuspended in 250 pi of 10 mM TRIS (pH 7.4), 0.1 mM EDTA and left at 

4 °C for at least 30 min for DNA to disperse. A second precipitation was performed 

with 5 pi of 3 M (pH 4.6) NaOAc, 600 p,l of EtOH and the pellet was washed with 

500 pi of 70% EtOH and left to dry at room temperature. Finally, the pellet was 

resuspended in 50 pi of 10 mM TRIS (pH 7.4), 0.1 mM EDTA.

2.3.10 Purification of genomic DNA from 96-well plates

Genomic DNA was purified from ES cells grown in 96-well plates. Cells were washed 

twice with 100 pi PBS / well. Lysis Buffer (10 mM TRIS (pH 7.5), 10 mM EDTA, 

10 mM NaCl, 0.5% sarcosyl) + 1 mg/ml proteinase K was added at 50 pi / well and 

plates were incubated in a humidified environment O/N at 55 °C. EtOH/salt solution 

(15% 5 M NaCl in EtOH, kept at -20 °C), was mixed thoroughly and added to plates, 

100 pi / well, with no mixing. Plates were incubated for 30 min at room temperature 

and then slowly inverted, allowing the EtOH/salt solution to drain and removing excess 

liquid by blotting plate on paper towels. The DNA was washed three times with 70% 

EtOH, 150 pi / well. Each time, EtOH was removed by slowly inverting the plates and 

after final wash, plates were blotted on paper towels and left inverted to dry.

2.3.11 Restriction digestion of DNA

Restriction enzyme digests were performed at the recommended temperature for 

approximately 2 h (or O/N) using commercially supplied restriction enzymes and 

buffers (Boehringer Mannheim, Promega, New England Biolabs). The enzyme
73



Materials and Methods

component of the reaction never comprised more than 10% of the reaction volume. For 

multiple enzymatic digests, the most compatible buffer for all the enzymes used was 

chosen as long as all the enzymes were predicted to digest at least 75% of the DNA in 

those conditions; when enzymes required incompatible buffers, one digest was done at a 

time and the DNA was either phenol/chloroform extracted and precipitated or gel 

extracted between digests. When multiple digests with restriction sites in close 

proximity were performed, the enzyme with worse performance close to DNA ends was 

used first.

2.3.12 Automatic sequencing of plasmid DNA

DNA sequencing was performed using the ABI PRISM Big Dye Terminator Cycle 

Sequencing Ready Reaction kit (Applied Biosystems) and an ABI 377 automatic 

sequencer. Samples were prepared essentially according to the manufacturers 

instructions. Each reaction contained 1 -  2 pg of plasmid DNA (in 5 pi), 8 pi H20 , 3 pi 

5x CSA buffer, 2 pi 1.6 pmol/pl primer and 2 pi Big Dye Terminator reaction mix. 

Labelled product was amplified using the following polymerase chain reaction (PCR) 

program:

35 cycles of: 96 °C for 30 s 

50 °C for 15 s 

60 °C for 4 min

The product was precipitated by adding 60 pi EtOH (cold) and 2 pi 3 M NaOAc 

(pH 4.6), incubating 10 min on ice and centrifuging for 30 min at ~10,000 x g in a 

bench centrifuge at 4 °C. The pellet was washed with 250 pi 70% EtOH and spun for 

5 min at ~10,000 x g in a bench centrifuge at 4 °C. After EtOH removal, the DNA was 

left to air-dry at room temperature for approximately 10 min and resuspended in 4 pi 

Sequencing Buffer (5:1 deionised formamide : 25 mM EDTA (pH 8.0) with 50 mg/ml 

Dextran Blue). Samples were kept at 4 °C for up to several days until loading on the 

gel. For the gel, 18 g urea were mixed with 5 ml 1 Ox TRIS borate EDTA (TBE) buffer 

(0.89 M TRIS borate (pH 8.3), 20 mM Na2EDTA), 5 ml of Long ranger Gel solution 

and the volume made up to 50 ml with distilled water. The mix was stirred and filtered 

though 0.4 pm pore membrane and left at 4 °C for up to a few hours until use.

Glass plates were washed with warm water, rinsed with distilled water, left to dry and
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assembled with spacers in between. They were then clamped to the frame with which to 

mount on the sequencing machine and tilted slightly, ready for pouring. Just prior to 

pouring, 250 pi of fresh 10% ammonium persulfate (APS) and 50 pi N, N, N’, N’- 

tetramethyl-ethylenediamine (TEMED) were added to the gel mix. The mix was poured 

between the plates with the aid of a syringe, with constant tapping so as to ensure steady 

gel progression with no bubbles. Back of plastic comb was inserted at the top of the gel 

to create chamber for subsequent loading and this region of the gel was very tightly 

clamped. Gels were left to polymerise for at least 2 h (O/N at a maximum, for which 

gel edges were covered with plastic film to avoid drying). 36-well paper combs (PE 

Biosystems) were used for loading, which was performed with duck-bill tips 

(2 pi / well). Running buffer consisted of lx TBE.

2.3.13 32P-labelled DNA probe synthesis

Where possible, all steps were performed on ice. 28 pi aqueous solution containing 

15 -25  ng linearised DNA template were mixed with 5 pi of Random Primers (DNA 

Labelling System, Invitrogen). This mix was denatured for 5 min at 95 °C and spun 

briefly. 10 pi Labelling Buffer (DNA Labelling System, Invitrogen), 5 pi 32P deoxy- 

cytidine 5’-triphosphate (dCTP) (« 1.85 MBq), 2 pi Klenow (DNA Labelling System, 

Invitrogen) were added, mixed carefully and the whole mixture was spun briefly. Mix 

was incubated for 10 min at 37 °C, after which reaction was stopped with 2.5 pi 0.5 M 

EDTA, 47.5 pi TE. Meanwhile, a spin column was prepared: 1ml syringe stopped with 

glass wool filled with Sephadex-G50 was spun at 150 x g for 5 min. The reaction was 

pipetted onto spin column and spun at 150 x g for 5 min. To quantify the radioactivity, 

1 pi of probe was added to scintilation fluid and labelling intensity was measured on a 

scintillation counter (Beckman LS6000IC). The remaining probe was denatured for 5 

min at 95 °C and left on ice for 2 min before adding to Pre-Hyb (1 -  1.5 x 106 

counts/ml).

2.3.14 32P end-labelled DNA oligonucleotide probe synthesis

1 pi containing 5 ng DNA was mixed with 10 pi water, 1.5 pi lOx T4 polynucleotide 

protein kinase buffer, 2.2 pi 32P-y adenosine 5’-triphospate (ATP), 0.3 pi T4 

polynucleotide protein kinase. Mix was incubated for 30 min at 37 °C.

75



Materials and Methods

2.3.15 Bacteriophage plaque hybridisation with DNA probe

Mouse Sgk genomic clones were isolated from a Stratagene mouse genomic library 

cloned into Lambda Fix™ II. In order to plate library, eight 22 x 22 cm2 plates (NUNC) 

were poured with LB-agar and left for 2 days to harden and dry completely. 2 pi library 

(phage suspension) were diluted in 1 ml SM Buffer. 8 aliquots of 36 pi of this were 

mixed with 8 aliquots of 1.2 ml of XLl-Blue host cells prepared as described in section

2.3.8 and incubated for 15 min at 37 °C. Each of these mixes was combined with 22 ml 

40 °C Top-Agarose and pour onto one of the LB-agar plate previously prepared and 

preheated at 37 °C. We aimed at plating 150,000 pfu/plate. Plates were incubated for 8 

-  9 h at 37 °C, after which they were kept at 4 °C.

For library plaque-lifting, sixteen 22 x 22 cm2 positively charged nylon membranes 

{Hybond™-N+) were cut (2 per plate). Membranes were carefully placed on top of 

plaqued plate and left transferring for: 2 min for the first membrane and 4 min for the 

duplicate. Each membrane was unequivocally identified on the back and exact 

correspondence between membrane and plate orientation was achieved by piercing a 

distinct number of holes in each corner of the membrane through to the agar and 

marking these sites on the back of the plate. Membranes were submerged face-up in 

Denaturing Solution (1.5 M NaCl, 0.5 M NaOH) for 2 min, placed in Neutralising 

Solution (1.5 NaCl, 0.5 M TRIS-HC1 (pH 8.0)) for 5 min and rinsed in Rinsing Solution 

(0.2 M TRIS-HC1 (pH 7.5), 2 x SSC) for 30 s. Membranes were left to dry at room 

temperature, face-up on filter paper (Whatmann). DNA was crosslinked to membranes 

(Stratagene crosslinker). When not used immediately, filters were stored at 4 °C 

between filter paper.

Membranes were prehybridised for at least 2 h at 65 °C in PreHyb (7% SDS, 1% BSA, 

1 mM EDTA, 0.5 M sodium phosphate buffer (pH 7.2)), inside rotating hybridisation 

bottles (Hybaid). After adding the radioactive DNA probe, membranes were left to 

hybridise O/N at 65 °C. The next day, membranes were washed at 65°C with preheated 

solutions. First, a low stringency wash with 0.5 x SSC, 0.1% SDS for 20 min; and next, 

2 - 3  high stringency washes with 0.2 x SSC + 0.1% SDS for approximately 20 min 

each (decided upon scanning filters with Geiger-counter). Membranes were left to dry 

at room temperature, face-up on filter paper. Once dry, the membranes were enclosed
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in plastic wrap (Saran) and placed in developing cassette with film. After developing, 

film was lined up with membranes to label it with the positions of landmark holes. 

Putative positive clones were determined by comparison between the two duplicate 

films.

For the secondary screening, landmark labels on film were lined up with the dots on the 

back of the plates and the site of the putative positive clones was marked on the back of 

the plate. Agarose “windows” corresponding to putative positive clones were cut and 

placed in 1 ml SM Buffer supplemented with 20 pi chloroform. This was vortexed for 

10 min and left for at least 2 h in rotating carrousel at room temperature. In 15 ml 

tubes, 3 different concentrations of phage suspension in SM Buffer were added to 

300 pi of O.D.goo = 0.5 host cells, aiming for an ideal 1000 pfu. These mixes were 

incubated for 15 min at 37 °C, after which they were combined with 3 ml 48 °C Top- 

agarose. Whole mix was poured onto LB plates and left to harden at room temperature 

for 10 min. Plates were incubated inverted for 8 -  9 h at 37 °C; then placed at 4 °C. 

The plate with the most appropriate plaque concentration was chosen to carry out 

screening, as before. Up to quaternary screening was performed in order to obtain 

plates containing solely a positive clone.

The probe used to screen this library was the mouse Sgk cDNA fragment identified in 

the endoderm library, linearised with Sal I and labelled with 32P-dCTP.

2.3.16 Southern analysis of genomic DNA

Lambda DNA was subject to various single and double digestions. Fragments were 

separated on a 0.8% agarose gel and transferred to a nylon filter (Hybond™-N+). 

Filters were probed with a 32P-labelled DNA probe. Hybridisation solution consisted of 

Amersham Rapid-Hyb Buffer. Hybridisation was performed O/N at 50 °C in rotating 

bottles. The following day, filters were washed at room temperature in 5x SSC, 

0.1% SDS, covered with plastic wrap and exposed at least O/N to X-ray films in 

cassettes at -80 °C. Between probing with different probes, filters were stripped with 

0.4 N NaOH at 45 °C for 30 min and washed in O.lx SSC, 0.1% SDS, 0.2 M TRIS 

(pH 7.5) at 45 °C for 15 min.
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DNA fragments used as templates for probes used for Southern analysis are described in 

Chapter 4 (see Fig. 4.9).

2.3.17 Cloning of DNA fragments prepared by restriction digest

Cloning reactions of restriction digest products contained a molar ratio of ^ 3:1 of 

insert: vector, whenever possible, in a total volume of 10 pi. Fresh or gel-extracted 

digest products were EtOH-precipitated before mixed with 1 pi of lOx DNA ligase 

buffer and 1 pi of lOx DNA ligase. Mix was incubated O/N at 16 °C. 2 -  10 pi of the 

ligation reaction were then transformed into competent bacteria as described above.

2.3.18 Cloning of PCR products

The cloning of PCR products was performed using the TOPO TA Cloning kit 

(Invitrogen). The cloning reaction consisted of the following: 4 pi fresh or gel extracted 

PCR product, lp l of 1.2 M NaCl solution and 0.5 pi pCR II-TOPO vector (which 

contains covalently bound topoisomerase I for fast cloning). These were mixed gently 

and incubated for 5 min at room temperature. 2 pi of this reaction were then 

transformed into competent bacteria as described above.

2.3.19 Total RNA purification

Embryos, tissues or cells for RNA purification were either fresh or quick-frozen for 10- 

15 min in dry-ice and stored at -80 °C. TRIzol reagent (GibcoBRL) was used for total 

RNA purification, essentially according to manufacturer’s instructions. 1 ml TRIzol 

Reagent was added to approximately 100 pi of embryos, tissues or cells and these were 

triturated thoroughly in homogeniser and/or by passing suspension several times 

through needle or pipette tip. 200 pi chloroform were added and mixture was left for 

3 min at room temperature. Samples were centrifuged at 12,000 x g for 15 min at 4 °C. 

The aqueous (upper) phase was transferred to fresh tube and 0.5 ml isopropanol was 

added. The mixture was left for 10 min at room temperature and then centrifuged at 

12,000 x g for 10 min at 4 °C. The pellet was washed by adding 1 ml of 70 % EtOH 

and vortexing. The suspension was centrifuged at 7,500 x g for 5 min at 4 °C and the 

pellet was left to dry at room temperature for approximately 10 min. The dry pellet was 

resuspended in water and placed at 55 °C to dissolve completely when necessary. The
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RNA solution was then subject to DNase treatment for 1 -  2 h at 37 °C. RNA was 

extracted by adding equal volume of acid phenol (pH 4.5) : chloroform (1:1), vortexing 

vigorously and centrifuging at 12,000 x g for 15 min at 4 °C. The aqueous phase 

(approximately 100 pi) was transferred to fresh tube and 200 pi EtOH + 10 pi 3 M 

NaOAc (pH 4.5) were added. The RNA was left to precipitate for 30 min at -80 °C and 

then centrifuged at 12,000 x g for 15 min at 4 °C. The pellet was washed with 70% 

EtOH and spun at 12,000 x g for 5 min at 4 °C and left to dry at room temperature for 

approximately 10 min. The pellet was resuspended in water and placed at 55 °C to 

dissolve completely when necessary. Finally, 1 pi RNA solution was analysed by gel 

electrophoresis, with 0.5 pi RNase Inhibitor.

2.3.20 mRNA purification from total RNA

Poly-T-coated Dynabeads (Dynal) were resuspended by placing tube in roller O/N at 

4 °C. The concentration of total RNA was adjusted to 75 pg / 100 pi with 10 mM 

TRIS-HC1 (50 -  250 ng mRNA should be obtained per 75 pg total RNA) and the 

solution was heated to 65 °C for 2 min and placed on ice. Dynabeads were washed by 

pipetting into microfuge tube, placing on the Dynal magnetic particle concentrator 

(MPC) for 30 s, discarding supernatant, removing tube from MPC, resuspending beads 

in 100 pi Binding Buffer (Dynal), and repeating this once. The 100 pi of RNA solution 

were added to resuspended 100 pi resuspended Dynabeads and mixed thoroughly by 

placing tube in roller for 3 -  5 min at room temperature. The tube was then placed on 

MPC for at least 30 s (until solution is clear) and the supernatant was discarded. The 

Dynabeads were washed twice with 200 pi Washing Buffer B (Dynal), with complete 

removal of the supernatant between washes. The mRNA was eluted from the 

Dynabeads by adding 5 -  20 pi of 10 mM TRIS-HC1, heating to 65 -  80 °C for 2 min, 

placing tube immediately on MPC, and immediately recovering RNA-containing 

supernatant into fresh tube.

2.3.21 Reverse transcriptase (RT)-PCR

First strand cDNA was synthesised from total RNA template using random hexamer

primers and superscript reverse transcriptase (GibcoBRL). To this end 20 pi aqueous

reactions were prepared, containing 1 pg of RNA, 1 pi 0.1 mg/ml primer mix, 4 pi 5x

RTase buffer, 1 pi 20 mM dithiothritol (DTT), 0.5 pi RNase inhibitor, 2 pi 5 mM dNTP
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mix and 0.25 pi RT. A negative control devoid of RT was also prepared. Reactions 

were allowed to proceed at 42 °C for 30 min, after which cDNAs were used directly as 

templates for PCRs with specific primers for Sgk, Oct A or Gapdh (Table 2.3). RT-PCR 

primers for Oct4 were manually designed and kindly provided by Dr. Ariel Avilion. 

RT-PCR primers for glyceraldehyde 3-phosphate dehydrogenase (Gapdh), as well as for 

Sgk were designed using Primer3 software (see above).

Table 2.3 Primers used in this investigation for RT-PCR

cDNA Forward Primer Reverse Primer

Sgk

Oct4

Gapdh

GCCAAGTCCCTCTCAACAAA

GACAACAATGAGAACCTTCAGGAG

CCCACTAACATCAAATGGGG

CAGGAAAGGGTGCTTCACAT

CTGAGTAGAGTGTGGTGAAGTGG

CCTTCCACAATGCCAAAGTT

PCR was performed on 20 pi aqueous reactions, containing 2 pi cDNA template 

prepared as described above, 2 pi 0.05 mg/ml of each of the gene-specific primers,

2.5 pi lOx Taq DNA polymerase buffer, 0.5 mM dNTP mix, 0.1 10 pC/pl 32P dATP and 

0.25 pi 5 U/pl Taq DNA polymerase. PCR program was as follows:

93 °C for 2.5 min 

25 cycles of: 94 °C for 1 min 

55 °C for 1 min 

72 °C for 1 min 

Ended by lx: 72 °C for 5 min

PCR products were analysed by non-denaturing polyacrylamide gel electrophoresis. 

60 ml gels were prepared with 6% polyacrilamide in lx TBE, 0.1% APS. Just before 

pouring, 120 pi of the polymerising agent TEMED were added and gel was allowed to 

polymerise for at least 2 h. Buffer consisted of lx TBE. Gels were pre-run for 

1 5 -20  min at 12 -  14 W, loaded, and then run at 12 W for approximately 2 h. After 

running, gel was fixed for 20 min in 25% MeOH, 10% acetic acid, dried for 2 h in gel 

dryer (Savant), and exposed to X-ray films in cassettes at -80 °C.
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2.3.22 Rapid amplification of cDNA ends (RACE)

RACE PCRs were performed using cDNAs synthesised by the GeneRacer cDNA 

amplification kit (Invitrogen). mRNA was purified total RNA purified from pooled 

zebrafish embryos of the following stages: sphere, 50% epiboly, 11-13 somite, 40 h and 

4 days (a volume of 100 pi of embryos of each stage). Non-mRNA or truncated mRNA 

species were dephosphorylated by treatment with calf intestinal phosphatase (CIP). The 

reaction consisted of 0.2 pi mRNA (containing 200 ng mRNA), 1 pi lOx CIP buffer, 

1 pi 40 U/pl RNaseOUT, 1 pi 10 U/pl CIP made up to 10 pi with water. The reaction 

was allowed to proceed at 50 °C for 1 h, after which RNA was phenol-chloroform- 

extracted and ethanol-precipitated with the aid of 2 pi 10 mg/ml glycogen. The pellet 

was resuspended in 7 pi water, after which the 5’ cap structure was removed from full- 

length mRNA. This reaction consisted of 7 pi dephosphorylated mRNA, 1 pi lOx 

tobacco acid pyrophosphatase (TAP) buffer, 1 pi 40 U/pl RNaseOUT and 1 pi 0.5 U/pl 

TAP. Reaction was allowed to proceed at 37 °C for 1 h, after which RNA was phenol- 

chloroform-extracted and ethanol-precipitated with the aid of 2 pi 10 mg/ml glycogen. 

The pellet was resuspended in 7 pi water, after which the GeneRacer 5’ RNA 

oligogonucleotide (CGACUGGAGCACGAGGACACUGACAUGGACUGAAGGAG 

UAGAAA) was ligated to the 5’ end of decapped mRNA. Decapped mRNA was 

heated at 65 °C for 5 min to relax secondary structure and left to rest on ice for 2 min. 

Subsequently, the RNA was mixed with 1 pi lOx ligase buffer, 1 pi 10 mM ATP, 1 pi 

RNaseOUT and 1 pi T4 RNA ligase. The reaction was allowed to proceed at 37 °C for 

1 h, after which RNA was phenol-chloroform-extracted and ethanol-precipitated with 

the aid of 2 pi 10 mg/ml glycogen. The pellet was resuspended in 10 pi water, after 

which it was reverse transcribed using either the GeneRacer Oligo dT primer or a 

random primer mix. RNA template (10 pi) was mixed with 50 pM primers (1 pi) and 

heated at 65 °C for 5 min to relax secondary structure, after which they were left to rest 

on ice for 2 min. Subsequently, 2 pi 1 Ox RT buffer, 1 pi 5 U/pl avian myeloblastosis 

virus (AMV) RT, 1 pi RNaseOUT and 4 pi water were added to this mix. Reaction was 

allowed to proceed at 42 °C for 1 h, after which AMV-RT was heat-inactivated at 85 °C 

for 15 min. The cDNA thus prepared was stored at -20 °C and used directly for 

5’ RACE.
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RACE reactions were performed by nested PCR. The GeneRacer 5’ end primer 

(CGACTGGAGCACGAGGACACTGA) and a gene-specific primer (GSP 1), designed 

by us using Primer3 software (see above), were used in a first round of PCR, for 15 

cycles. The product of this round of PCR was diluted 1/40 and 5 pi of this dilution were 

used as template for the second round of PCR. In the latter, the GeneRacer 5’ end 

nested primer (GGACACTGACATGGACTGAAGGAGTA) and a second, nested, 

gene-specific primer (GSP 2) were used for 25 cycles. The GSP primers used in this 

investigation for 5’ RACE are indicated in Table 2.4.

Each PCR reaction consisted of the following: 5 pi DNA template, 5 pi lOx buffer, 

36 pi water, 1 pi 10 mM dNTP mix, 1 pi 10 pM each primer and 1 pi Taq polymerase. 

A touchdown PCR program was used to increase specificity of the reaction. The 

standard PCR program used was as follows:

94 °C for 3 min 

5 cycles of: 94 °C for 30 s

72 °C for 4 min*

5 cycles of: 94 °C for 30 s

70 °C for 4 min*

15 or 25 cycles of: 94 °C for 30 s

68 °C for 4 min*

*Extension time was varied according to the expected length of the PCR product, with a 

minimum of 2 min and adding 1 min more for each kb of predicted product (e.g. 3 min 

for a 1 kb product, 4 min for a 2 kb product, etc.).

2.3.23 Riboprobe synthesis

Template (plasmid) DNA was linearised for 2 h after which 1/4 of initial volume of 

enzyme was added and left to digest for 1 h more. In all cases, digoxigenin (DIG)- 

labeled deoxy-uracil triphosphate (dUTP) (Boehringer Mannheim) was incorporated 

during RNA transcription, following manufacturer’s instructions. After synthesis, 

riboprobes were treated with 20 U DNase I (Boehringer Mannheim) at 37 °C for 15 min 

to remove DNA template and were purified by size-exclusion chromatography through 

a DEPC water column (Clonatech Chroma Spin-100). All riboprobes were 

electrophoresed on a 1% agarose gel to check size and integrity prior to use. All
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Table 2.4 Primers used in this investigation for 5’ RACE

cDNA RACEd Gene-specific primer 1 Gene-specific primer 2 (nested primer)

ptp(r) a GTTTCCAGCGGTGGGAAGACAATGG TGGGTCCACCATCGCTACTGTCCTG

embigin ACCAGTTCCAGGTGTTTGGCATGTG CCAATGTAGCTCACCACAGGCTTGTCC

lztr-1 TGACGCTTCAATGTACTGAACGCAGAGC CTGCTGCATGGAACAGCCTTCCACTT

spl20 CTCGGCCTTCAACCCCTTGTCAGAG TGCCGCTTCTTTAGCTCGTCCTTCA

Rho GEF 16 ATCAGAAGCGGCAGACGGGTGACTC TGCATGGGTAAGAAGGAGAGCA

liv-1-related TGATGCACCATCACTTTCCGGATGC ATCTGGTACAGGAGGGCAGGGCACA

novel p7822b53 GACAGCACCAAACGGTGAAGCTGGA TGATGCTCTTCACAACACGGCTGGA



Materials and Methods

riboprobes were denatured (at 80 °C for 2 min, followed by 5 min on ice) prior to 

adding to Hyb solution. Mouse riboprobes were added to Hyb immediately prior to use 

and this Hyb was discarded after use. Zebrafish riboprobes were added to Hyb shortly 

after synthesis and were stored in this way. For zebrafish in situ hybridisations, the 

same riboprobe-containing Hyb solution was used several times. In all cases, 

riboprobes were stored at -20 °C

Mouse endoderm library cDNAs are in a pSPORTl. To prepare antisense riboprobes, 

these plasmids were linearised with Sal I and transcribed with SP6 RNA polymerase. 

Zebrafish cDNAs used as templates to prepare antisense riboprobes are indicated in 

Table 2.5, along with the restriction enzyme used to linearise plasmid and RNA 

polymerase used to transcribe cDNA. Templates consisted of EST cDNAs, 5’RACE 

products, ordinary PCR products or Stemple Lab stock plasmids obtained from a variety 

of sources. In the cases where templates were isolated by 5’RACE or ordinary PCR, 

they were cloned into pCR II TOPO. Primers used to PCR riboprobe templates, other 

than by 5’RACE are indicated in Table 2.6. The zebrafish sequences determined in this 

investigation are presented in Appendix 3.

2.3.24 MO column-purification

MOs were supplied lyophilised (approximately 300 nmole) and resuspended in 60 pi of 

DEPC water. Concern about MO purity led to the standard procedure of column- 

purification of MO suspension using Micro-spin G-25 diethyl-pyrocarbonate (DEPC) 

water columns (Amersham Pharmacia). Columns were pre-spun at 750 x g for 2 min in 

a bench-top centrifuge. 50 pi MO solution were loaded onto a column and spun at 

750 x g for 2 min in a bench centrifuge (MSE MicroCentaur). The first eluate is the 

most concentrated one; it was quantified spectrophotometrically and diluted in MO 

Buffer (containing phenol red) to the desired concentration prior to injection. A second 

eluate was also recovered from the columns by adding 50 pi of DEPC water and 

spinning at 750 x g for 2 min in a bench centrifuge (MSE MicroCentaur). Note: MOs 

precipitate out of solution even when stored at -20 °C. Therefore, when using a MO 

solution for a period of months, it is advisable to re-evaluate regularly its real 

concentration by spectrophotometry.
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Table 2.5 Preparation of zebrafish antisense riboprobes used in this investigation

cDNA Template origin Template 
size (bp)

Vector Linearisation RNA
polymerase

ptp(r)o PCR product 1677 pCR IITOPO Not I SP6
14-3-3 s EST fk44f04 480 pSPORTl EcoR I SP6
embigin 5’ RACE product 650 pCR II TOPO Spe I T7
lztr-\ EST fj94f07 710 pBK-CMV BamH I T7
claudin b EST fb01gl2 1082 pBK-CMV Sal I T7
claudin-like EST AGENCOURT_10693383 737 pCMV-SPORT6.1 .ccdb Not I SP6
pancortin Module A PCR product 350 pCR II TOPO Xho I SP6
pancortin Module B (EST) PCR product 250 pCR II TOPO Xho I SP6
pancortin Module B (genomic) PCR product 377 pCR II TOPO Xho I SP6
pancortin Module Y PCR product 495 pCR II TOPO Xho I SP6
pancortin Module Z PCR product 1090 pCR II TOPO Hind III T7
calcyphosine (EST) EST fj05bl0 626 pSPORTl Sac II SP6
spl20 a EST fb39f08 1474 pSPORTl Sal I SP6

120 b EST fb93d06 >3500 pSPORTl Sail SP6
plu-1 a PCR product 890 pCR II TOPO BamH I T7
plu-1 b PCR product 930 pCR II TOPO Not I SP6
nsal EST fb52h05 1113 pSPORTl Sal I SP6
transformer 2 |3 EST fk31a01 1073 pBK-CMV Sal I T7
rho GEF 16 5’ RACE product 520 pCR II TOPO BamH I T7
liv-1-related EST ZF637-2-000611 1733 pSPORTl EcoR I SP6
novel p7822b53 PCR product 940 pCR II TOPO Not I SP6



Table 2.5 (cont.)

cDNA Template origin Linearisation RNA
polymerase

flh As in Talbot et al, 1995 (S temple Lab stock) EcoR I T7
fgf8 As in Furthauer et al., 1998 (Stemple Lab stock) Xba I T7
PapC As in Yamamoto et al., 1998 (Stemple Lab stock) Apa I T3
pax 2b As in Krauss et al., 1991 (Stemple Lab stock) BamH I T7
hggl As in Thisse et al., 1994 (Stemple Lab stock) Xho I T3
gsc As in Stachel et al., 1993 (Stemple Lab stock) EcoR I T7
dbxla As in Fjose et al., 1994 (Stemple Lab stock) Xba I T7
axial As in Strahle et al., 1993 (Stemple Lab stock) Sac I T3
evel As in Joly et al., 1993 (Stemple Lab stock) EcoR I T7
bhikhari As in Vogel and Gerster, 1999 (Stemple Lab stock) Pst I T7
bmp2b As in Nikaido et al. 1997 (Stemple Lab stock) Xba I T7
ntl As in Schulte-Merker et al., 1992 (Stemple Lab stock) Xho I T7



Table 2.6 Primers used in this investigation to isolate templates for riboprobe synthesis

cDNA Forward Primer Reverse Primer

pancortins Module A CTGCGTGACGCTCATCTAAC GTGAGTTCCGTGCCCATC

pancortins Module B (ESTs) TTGGTGGTCCTCCAGTTCTC AGCAGTGACAGCGACACACT

pancortins Module B (genomic) GCAGACTGCTCGGTTTTCAT GGTCAGTTTGGTGGTGTTGA

pancortins Module Y GGCTAACTATAAAGACATGATAGGAGA GGG AAA AG ACTTTATTAGTTTATCGTT

pancortins Module Z CCGTCCTGGAGGAGTACAAA CCAAAGGATGGTCTTGTTCC

plu-1 a TCCT ACCTC AC ACC ACC AC A GGAAGAGAAACCTGCTGCAC

plu-1 b GCACTATTGCTCGCAGA CCGAAACCTCCAGAAACGTA

novel p7822b53 GATGACGTCACTGCGAAGAA ACACTAATGGCGTGGTCCTC



Materials and Methods

2.4 ES cell manipulation

2.4.1 Production of buffalo rat liver (BRL) cell conditioned medium

BRL cells were stored in cryovials submerged in liquid nitrogen. Each BRL cell vial 

was thawed into and grown in previously gelatinised 150 mm tissue culture dishes: dish 

surface was covered with 0.1% gelatine solution for at least 5 min, which was then 

replaced with medium in order for gelatine not to dry. BRL cells were cultured in E l4.2 

Medium (480 ml Dulbecco’s modified Eagle’s medium (DMEM) High glucose / no L- 

glutamine, 6 ml L-glutamine, 6 ml non-essential amino acids, 4.4 pi (3-mercaptoethanol) 

supplemented with 20% ES quality foetal calf serum (ESQ FCS). All FCS batches were 

tested for their ability to support normal ES cell growth at clonal densities according to 

Robertson, 1987.

To thaw BRL cells, cryovials were removed from liquid nitrogen and placed into ice 

with screw caps loosened. After a few minutes on ice, cryovials were placed at 37 °C to 

thaw completely. Cells were then transferred into a 15 ml tube and 9 ml of ES cell 

Complete Medium (1000 U/ml leukaemia inhibiting factor (LIF) in 3:2 BRL cell 

conditioned medium : E14.2 Medium supplemented with 20% ESQ FCS; see below for 

BRL conditioned medium) were slowly added while agitating the tube. Cells were 

spun-down at 250 x g for 5 min, resuspended in fresh medium and plated. Cells were 

incubated at 37 °C in a 95% humidified incubator with 7% C02 until reaching 80 -  90% 

confluency. At this stage, the medium was collected, filtered through a 0.2 pm pore 

membrane and stored at -20°C. Cells were split 1:10 as follows: cells were washed with 

Ca2+ and Mg2+ free (CMF) PBS; 3 ml of 37 °C Trypsin/EDTA (0.25% Trypsin, 1 mM 

Na2EDTA in CMF PBS (pH 7.5)) were added per 15 mm dish; cells were incubated in 

Trypsin/EDTA at 37°C for 5 min or slightly longer, until lifting from dish. This 

suspension was further triturated (approximately 6 times) with a PI000 tip in order to 

obtain a single cell suspension. Trypsin solution was neutralised by adding at least 

5 times its volume of medium, and 9 x 1/10 cell suspension was plated in 9 new dishes.

The non-plated 1/10 cell suspension was spun at 250 x g for 5 min and resuspended in 

1 ml of 90% foetal bovine serum (FBS), 10% dimethylsulphoxide (DMSO). This cell 

suspension was transferred to a cryovial, which was placed in a freezing pot (Nalgene)
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Materials and Methods

containing isopropanol, O/N at -80 °C. The following day, the cryovial was transferred 

from -80 °C to liquid nitrogen.

The nine new plates were grown for 2 days, after which conditioned medium was 

collected and replaced by fresh medium. This process was repeated two more times, 

after which plates were discarded. As before, collected medium was filtered through a 

0.2 p,m pore membrane and stored at -20°C.

2.4.2 ES cell thawing, expansion and freezing

ES cells used in this investigation were feeder-independent E14.2 cells (Fisher et al., 

1989). ES cells were stored in cryovials submerged in liquid nitrogen. Each ES cell 

vial was thawed into a 25 cm2 tissue culture flask. Flasks or tissue culture dishes were 

always gelatinised prior to ES cell plating (see above section).

To thaw ES cells, cryovials were removed from liquid nitrogen and placed into ice with 

screw caps loosened. After a few minutes on ice, cryovials were placed at 37 °C to 

thaw completely. Cells were then transferred into a 15 ml tube and 9 ml of ES cell 

Complete Medium were slowly added whilst agitating the tube. Cells were spun-down 

at 250 x g for 5 min, resuspended in ES cell Complete Medium and plated. Cells were 

incubated at 37 °C in a 95% humidified incubator with 7% C 02. ES cell Complete 

Medium was replaced daily until culture reached 70 - 80% confluency (3-4  days).

Medium was replaced 2 -  4 h prior to splitting ES cells. For splitting, medium was 

removed and cells washed with CMF PBS. 0.3 ml of 37 °C Trypsin/EDTA was added 

per 25 cm2 flask (or an accordingly higher volume for larger flasks or plates). Cells 

were incubated in Trypsin/EDTA at 37°C for 5 min or slightly longer, until lifting from 

dish. This suspension was further triturated (approximately 6 times) with a PI000 tip in 

order to obtain single cell suspension. Trypsin solution was neutralised by adding at 

least 5 times its volume of medium, and 1/6 -  1/4 cell suspension was plated per new 

flask, as needed.

To freeze, ES cells were spun-down at 250 x g for 5 min, the supernatant was carefully 

aspirated and cells were resuspended at the approximate concentration of 5xl06 cells/ml 

in 90% FBS, 10% DMSO. This cell suspension was transferred to a cryovial, which
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was placed in a freezing pot (Nalgene) containing isopropanol, O/N at -80 °C. The 

following day, the cryovial was transferred from -80 °C to liquid nitrogen.

2.4.3 ES cell electroporation with targeting vector

For each ES cell transfection, around 3xl07 cells should be used, that is, a well growing 

75 cm2 flask. Prior to electroporation, cells were washed in CMF PBS, trypsinised, 

washed again in CMF PBS, and resuspended in 0.8 ml DMEM. This cell suspension 

was then transferred to a 0.4 cm electroporation cuvette and mixed with 40 pg of 

linearised targeting vector suspended in 0.1 ml DMEM. Mixture was left to stand at 

room temperature for 20 min, after which it was subject to 2 electro-shocks: first, at 

240 V, 500 pF for approximately 6 s; second, at 230 V, 500 pF for approximately 6 s. 

Cuvette was tapped and placed on ice for 20 min. Electroporated cells were then 

transferred to a 50 ml tube where 30 ml of ES cell Complete Medium was added. Cells 

were plated in 3 x 10 mm dishes.

2.4.4 ES cell antibiotic resistance selection

Positive selection is started the day following electroporation with the targeting vector. 

The positive selection cassette used in the Sgk targeting vector contained the neomycin- 

resistance gene, so cells were incubated in G418, at the concentration 200 pg/ml ES cell 

Complete Medium. Cells were washed with CMF PBS daily and medium replaced by 

fresh one, until resistant colony picking had ended (12 days later).

2.4.5 Resistant ES cell colony picking and culture

Resistant ES cell colonies reached an adequate size for picking by 10 days of incubation 

in selection medium. Each colony was picked into an individual well of a round- 

bottomed non-gelatinised 96-well plate containing 25 pi Tripsin/EDTA / well. Prior to 

picking colonies, medium was replaced by 10 ml CMF PBS. Colonies were picked in 

CMF PBS outside the tissue-culture hood, using a microscope. Each colony was gently 

detached around the edges with a 10 pi tip, aspirated and transferred into a well 

containing Tripsin/EDTA. After picking 48 colonies (half of the 96-well plate), 75 pi 

medium were added to the first row of trypsinised colonies. These were triturated well 

and transferred to a flat-bottomed 96-well plate, previously gelatinised and containing
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50 (a1 of 200 (ig/ml G418 in ES cell Complete Medium / well. This process was 

repeated for the other three rows of trypsinised cells. The whole procedure was 

repeated until all colonies available in that day were picked. Colonies were picked 

during 2 days.

The cultures in the 96-well plates were fed daily until the majority was ready to split. 

Each clone was split into 2 wells of 48-well plates, one in each plate, in order to 

generate duplicate 48-well plates. A few cells were left in original 96-well plates and 

left to grow for subsequent preparation of genomic DNA. Clones in the 48-well plates 

were frozen individually in cryovials, when approximately 80% confluent.
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Chapter 3

Whole-mount in situ hybridisation screen of 
a mouse endoderm library

3.1 Introduction to the in situ hybridisation screen of the endoderm library
3.1.1 Organism gene counts
3.1.2 Gene expression profiling
3.1.3 Mouse endoderm cDNA library

3.2 Results of the in situ hybridisation screen of the endoderm library
3.2.1 Sequence-based clone selection
3.2.2 Expression analysis
3.2.3 Brief description of 12 restricted expression patterns
3.2.4 Synexpression and co-expression groups

3.3 Discussion of the in situ hybridisation screen of the endoderm library
3.3.1 Overview
3.3.2 Efficiency of novel strategy for cDNA selection
3.3.3 Perspectives

3.1 Introduction to the in situ hybridisation screen of the 
endoderm library

3.1.1 Organism gene counts

The complete genomic sequences of several animal species have been or will soon be 

determined (The C. elegans genome consortium, 1998; Adams et al., 2000; 

International Human Genome Sequencing Consortium, 2001; Venter et al., 2001; 

Aparicio et al., 2002; Carlton et al., 2002; Dehal et al., 2002; Gardner et al., 2002; 

Mouse Genome Sequencing Consortium, 2002). Although the past decade taught us 

how similar patterning mechanisms can be between distantly related animals, we still 

appreciate big differences between a fly and a man, from morphology and physiology to 

behaviour. It was therefore expected that more genes might account for the greater 

complexity of a species over another. However, as far as current predictions go, this is 

not the case. Flies possess -13,600 protein-coding genes, nemotodes -19,000, the 

lower chordate Ciona intestinalis is estimated to have -16,000, and mice and humans 

-30,000 (The C. elegans genome consortium, 1998; Adams et al., 2000; Venter et al., 

2001; International Human Genome Sequencing Consortium, 2001; Dehal et al., 2002; 

Mouse Genome Sequencing Consortium, 2002).
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Whole-mount in situ  hybridisation screen of a mouse endoderm library

Estimates of the number of protein-coding genes and gene products in a genome rely on 

prediction algorithms that are designed with all the existent knowledge about gene 

structure, as well as experimental evidence for the expression of these genes. For 

example, sequencing of multiple full-length-enriched cDNA libraries generated by the 

RIKEN Mouse Gene Encyclopedia Project contributed around 22,000 new exons and 

1,200 new genes to the efforts of the mouse genome project (Mouse Genome 

Sequencing Consortium, 2002).

To resolve real genes and pseudogenes and to identify non-coding genes and splice 

variants, direct analysis of expressed genes is essential. For example, mammals use 

alternative splicing to produce, on average, significantly more proteins per gene than 

other genomes sequenced (International Human Genome Sequencing Consortium, 

2001; Venter et al., 2001; The FANTOM Consortium and the RIKEN Genome 

Exploration Research Group Phase I & II Team, 2002). This suggests a significant 

increase in the number of gene products generated by the genomes of increasingly 

complex organisms. Nonetheless, genomic and proteomic analyses, namely between 

humans and invertebrates, has shown that increased organism complexity is associated 

with a richer arrangement of pre-existing components, such as more domains per 

protein and novel combinations of domains (Baltimore, 2001).

3.1.2 Gene expression profiling

The generation of cDNA libraries and the sequencing of cDNA clone ends, called 

expressed sequence tags (ESTs), is a simple and effective way to evaluate the 

expression profile of tissues, organs or whole-organisms. Once an expressed gene is 

identified, it becomes important to elucidate its function. One approach is to describe 

the spatio-temporal profile of its expression as well as the phenotype caused by 

perturbation of this expression. Also, it has often been the expression pattern of a gene 

that has motivated endeavours for the elucidation of its function and/or been the first 

clue to the existence of a previously unsuspected structure or process. For example, the 

expression of Hex in the mouse AVE led to the recognition of a distinct molecular 

domain within the VE (Thomas, 1998); and in chick, it was the cyclic expression of 

cHairyl in the paraxial mesoderm that led to the recognition of a segmentation clock 

involved in somitogenesis (Palmeirim et a l, 1997).

94



Wliole-mount in situ hybridisation screen of a mouse endoderm library

Gene expression analysis can be performed in several ways, from reverse transcriptase- 

poly merase chain reaction (RT-PCR) to the recent technique of microarray 

hybridisation, but in situ hybridisation is the only method that provides spatial 

information. Many research groups have screened cDNA libraries from various model 

systems by whole-mount in situ hybridisation, following the temporal and spatial 

pattern of mRNA expression during embryogenesis. Libraries screened have either 

been unmanipulated ones (for example, Gawantka et a l , 1998), normalised (for 

example, Neidhardt et al., 2000; Kudoh et al., 2001) or libraries which have undergone 

subtractive hybridisation with another library in order to enrich for genes expressed 

differentially between the tissues from which the libraries were made (for example, 

Christiansen et al., 2001; Neidhardt et al., 2000). Although subtractive hybridisation 

greatly enriches for differentially expressed genes, and greatly reduces the number of 

essential genes screened, which by definition are ubiquitously expressed, it has the 

disadvantage of greatly enriching for clones that are expressed at high levels, at the 

expense of rare transcripts. This problem can be overcome by performing a 

normalisation prior to subtraction, which places the representation of rare transcripts on 

a par with high copy number ones, at the minor risk of loss of some clones.

Although there are many examples of developmentally important genes expressed in a 

widespread manner, restricted expression patterns may suggest a function, especially 

when associated with other pieces of information. For example, the combination of 

gene mapping with expression analysis has been the basis for defining candidate human 

disease genes (Ballabio, 1993; Reymond etal., 2002).

3.1.3 Mouse endoderm cDNA library

The Beddington mouse endoderm cDNA library was generated from 7.5 dpc endoderm 

dissected manually from mouse embryos (Harrison et al., 1995). At 7.5 dpc, the 

definitive endoderm is in continuum with the VE, the node and the axial mesendoderm. 

Hence, these three signalling centres are represented in the endoderm library. The 

endoderm library contains more than 5.8 x 105 independent clones of which 

approximately 10,000 have been randomly picked and gridded into 384-well plates 

using an automatic colony picker (Harrison et al., 1995). Nearly 2000 of these clones 

have been partially sequenced, and the ESTs clustered, in collaboration with Dr.s A.
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Forrest, S. Grimmond, P. Avner and H. Lehrach, based at the Institute of Molecular 

Bioscience, University of Queensland, Australia, Unite Genetique Moleculaire Murine, 

Institut Pasteur, Paris, France, and the Max-Planck Institute for Molecular Genetics, 

Berlin, Germany. Clustering of 1978 ESTs resulted in 1440 independent sequences.

I screened clones from this library by whole-mount in situ hybridisation to identify 

genes whose expression pattern suggested a role in early patterning. On the whole, I 

was looking for restricted expression patterns but, in particular, I was looking for genes 

with an asymmetric expression prior to or during the onset of gastrulation, especially in 

the VE, as well as genes expressed in the node and/or axial mesendoderm

3.2 Results of the in situ hybridisation screen of the 
endoderm library

I performed this screen with two other students (Kettleborough, 2002; Rana, 2003). I 

present the combined results of the three of us so that the screen is appreciated in its 

entirety. I will delineate my own contribution.

3.2.1 Sequence-based clone selection

We first compared 1440 independent mouse ESTs with the publicly available sequence 

databases using gapped BLAST algorithms (Altschul et al., 1997). I performed one- 

third of these sequence comparisons. We found that 1317 of these sequences matched 

mouse ESTs and 123 did not. We found mouse orthologues of genes identified in other 

species, genes similar to others previously identified either in mouse or other species, 

clones containing a known domain, and clones which matched nothing in the current 

databases.

We excluded cDNAs predicted to be ubiquitously expressed, cDNAs representing genes 

already extensively studied in a developmental context and cDNAs representing the 

same gene. We selected clones that matched genes, or domains found in genes, 

belonging to one of the following categories: transcriptional regulators and proteins 

involved in chromatin structure, splicing factors and proteins involved in RNA binding 

and transport, components of signalling cascades, cell-cycle regulators, cytoskeleton
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constituents, extracellular matrix components, and genes implicated in human disease. 

In addition, clones that matched uncharacterised ESTs found in other species and clones 

that did not match anything in the databases were also selected. With these criteria, 173 

clones were selected for expression analysis and I selected 38 of these.

3.2.2 Expression analysis

We performed whole-mount in situ hybridisation on 6.5 -  9.5 dpc mouse embryos with 

riboprobes derived from 160 of the 173 selected clones. The remainder 13 clones either 

did not grow, linearise, release insert or transcribe. The expression patterns obtained 

were classified subjectively as ubiquitous (64; 40 %) if similar levels of expression were 

observed in all tissues, widespread (57; 36 %) if expression was observed in several but 

not all tissues (frequently with different levels in different tissues), restricted (29; 18 %) 

if transcripts were detectable in just a few regions or tissues in at least one of the 

embryonic stages examined, and undetectable (10; 6 %) when no expression was 

observable at any of the stages examined.

The expression patterns of the 29 cDNAs classified as restricted, as well as two 

examples of widespread and one example of a ubiquitous expression pattern, are shown 

on Fig. 3.1. Details concerning the identification of the restricted clones are presented 

in Table 3.1 and details concerning the identity and expression classification of 

widespread and ubiquitous clones is presented in an Appendix to this Thesis. I 

identified 12 clones with restricted expression patterns. I depict and describe their 

expression at all stages examined. With the exception of Sgk, mD2LIC and v8130b25, 

these descriptions are based solely on the observation of whole-mount stained embryos; 

in some cases, confirmation and/or more detailed description of the tissues stained 

would require analysis of sections.
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(Fig. 3.1 cont.)
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(Fig. 3.1 cont.)
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Fig. 3.1 Restricted expression patterns found in whole-mount in situ

hybridisation screen of mouse endoderm library. Individual clones are outlined by 

black lines, in some cases carrying on to the next row; further outlined in red or green 

are clones selected for functional analysis in zebrafish; outlined and/or numbered in red 

are the clones I identified; the numbering in red matches that of the descriptions 

presented in the next section. On the top left of each clone composite is its sequence 

identifier. Clones are presented in the same order as they appear in Table 3.1. Staging 

(in dpc) is indicated below each embryo. 29 restricted expression patterns are shown, as 

well as two examples of widespread (t8130b25 and p8224a43) and one example of a 

ubiquitous one (k8311b01). I thank Dr. R. Kettleborough and Dr. A. Rana for 

contributing their pictures and Prof. J. C. Smith for the composition of this figure.
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Table 3.1 Identity of endoderm library cDNAs with restricted expression patterns

Sequence ID Frequency Representative ID Description

r8220b57 1 ENSMUSG00000005566 Transcription intermediary factor l-(3 (Tif l-(3); also known as Krip-1 or Kap-1

t7822bl0 2 ENSMUSG00000013236 Protein-tyrosine phosphatase, receptor-type (EC 3.1.3.48)

s8609b60 2 ENSMUSGOOOOOO19970 Serum and glucocorticoid-regulated kinase (Sgk) (EC 2.7.1.)

k8709a20 2 ENSMUSG00000020849 14-3-3 protein epsilon (protein kinase C inhibitor protein-1)

r8319a44 2 14-3-3 protein sigma

m8708a09 4 ENSMUSG00000021728 Embigin; also known as Teratocarcinoma glycoprotein 70 (GP-70)

m8708a39 1 ENSMUSG00000022761 Leucine-zipper-like transcriptional regulator 1 (Lztrl)

r8707a53 3 ENSMUSG00000023906 Claudin-6

t8417b56 1 ENSMUSG0000002764 Neuronatin; also known as Peg5 (isoform 2)

r8316a33 1 ENSMUSG00000024253 Dynein 2 light intermediate chain

v8130b53 9 TC461859 Solute carrier family 2 (facilitated glucose transporter) member 3 (Slc2a3)

s8129b58 1 ENSMUSG00000026833 Pancortins 1 and/or 3

k8709a24 1 ENSMUSG00000031665 Sal-like 1 (Salll)

m8708a22 1 ENSMUSG00000039676 Calcyphosine

t7825b42 3 TC511260 Spl20 (Hnrpu)

t8219b26 1 ENSMUSG00000032376 Ubiquitin specific protease 3 (Ubp7)



t7822bl9 ENSMUSG00000021681 Paternally expressed gene 3 (Peg3)

t8130b26 ENSMUSG00000042142 Plul (Rb-binding protein 2 (Rb-BP2)-like)

k8220b03 ENSMUSG00000029381 Shroom (actin binding protein) (Shrm)

k8710a07 ENSMUSG00000021667 Nop seven associated protein 2 (Nsa2); also known as Lnr42, TINP1 or HCLG1

r8220b09 TC501397 Transformer 2 (3 (arg/ser-rich splice factor); also known as Silg41

w8609b57 ENSMUSG00000029032 Rho GEF 16; also known as Neuroblastoma

s8609b24 ENSMUSG00000039878 LIV-1 (estrogen-regulated)-related

t8219b25 TC488224 16% identity to human KIAA0802

p7822b53 ENSMUSG00000005505 Weakly similar to ring canal protein; contains BTB/POZ domain

v8130b25 ENSMUSG00000028162

t8219b01

r8220b29 TC469486

t8130b59 TC503400

The twenty-nine cDNAs with restricted patterns of expression are grouped into four categories (separated by dashed lines) based on gene 

description. From the top of the table, 20 are categorised as known genes, 4 are similar to known genes, 1 contains a known protein domain and 4 

have no known motif. Headings represent (i) the sequence identification number; (ii) the number of times the sequence was isolated; (iii) the 

ENSEMBL gene number of the cDNA or its TIGR Cluster number; (iv) gene family.
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3.2.3 Brief description of 12 restricted expression patterns

1 s8609b60 At the onset of gastrulation, the serine/threonine protein kinase

Sgk is strongly expressed in the VE overlying the nascent mesodermal wings and, more 

weakly, in the mesoderm itself. Transcripts are also detected in the VE overlying the 

extra-embryonic ectoderm. As gastrulation proceeds, the latter domain of expression 

becomes more robust, and in the embryo proper it is strongest in the regions juxtaposed 

to the streak. At 8.5 and 9.5 dpc Sgk transcripts are found in the vasculature as well as 

in the eye and branchial arches. The expression pattern of Sgk at 8.5 and 9.5 dpc has 

recently been described elsewhere (Lee et al., 2001). Loss of function of this gene 

reduces the ability of mice to reduce Na+ excretion when subjected to dietary NaCl 

restriction (Wulff et al., 2002).

2 k8709a20 14-3-3 epsilon, which encodes a phospho serine/threonine-

binding protein, is ubiquitously expressed at 6.5 dpc but is then down-regulated such 

that by 7.75 dpc transcripts are barely detectable. At 8.5 dpc weak expression occurs in 

the forebrain and heart At 9.5 dpc, forebrain expression is prominent, along with 

strong expression in the midbrain and branchial arches. These observations 

complement work by McConnell et al., 1995, where 14-3-3 epsilon expression was 

analysed from 8.5 dpc and found to be high in the neural tissue by 12.5 dpc.

3 m8708a09 At 6.5 dpc, Em bigin , which encodes a transmembrane 

glycoprotein of the immunoglobulin superfamily, is strongly expressed in the VE at the 

junction between extra-embryonic and embryonic portions of the conceptus. By

7.5 dpc, expression occurs throughout the VE and, more weakly, in the definitive 

endoderm. At head-fold stages, Embigin transcription occurs in the ADE, with strong 

expression also detectable in the VE. At 8.5 dpc transcripts are present in the forebrain 

neuroepithelium the foregut diverticulum, and the yolk sac. By 9.5 dpc, expression is 

strong in forebrain neuroepithelium (especially in the dorsal midline), and also occurs in 

the mid- and hindbrain. Transcripts are also detectable in the branchial arches and the 

nephrogenic cord. The early expression pattern of this gene has been described in 

Shimono and Behringer, 1999 and later stages in Fan et al., 1998.
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4 m8708a39 At 6.5 dpc, the leucine-zipper transcriptional regulator Lztr-1 is

expressed in the epiblast and in extraembryonic ectoderm and/or endoderm adjacent to 

in the ectoplacental cone (arrow). At 7.5 dpc, although expression is widespread in the 

embryonic region, it is stronger posteriorly and down-regulated in the node. At head­

fold stages Lztr-1 expression is most prominent in the neural folds and nascent neural 

tube. At 9.5 dpc expression is high in the forebrain, branchial arches and limb buds.

5 t8417b56 At 6.5 dpc, the imprinted gene Neuronatin is expressed weakly in

the embryonic half of the conceptus. By 7.0 dpc transcripts are present throughout the 

mesoderm and ectoderm and maximal expression is then seen in the posterior head- 

folds (arrows). At 8.5 to 9.5 dpc, Neuronatin expression is detectable in ventral 

forebrain, branchial arches and foregut diverticulum. Forebrain expression is more 

widespread at this time and expression also occurs throughout the trunk mesoderm. 

Expression of Neuronatin at 8.5 and 9.5 dpc has also been described in Wijnholds et al., 

1995, where expression in rhombomeres 3 and 5 was detected.

6 s8129b58 At the onset of gastrulation, Pancortin -1 and/or -3, which encode

putative endoplasmic reticulum-localised proteins that belong to the olfactomedin 

family of extracellular matrix proteins, is expressed at the junction between embryonic 

and extra-embryonic portions of the conceptus, with higher levels anteriorly. As 

gastrulation proceeds, expression occurs in the amnion and chorion and becomes 

widespread within the embryo proper. During somitogenesis, expression becomes 

restricted to rhombomere 4 (arrow), to the junction between the diencephalon and 

mesencephalon and to anterior and posterior portions of trunk mesenchyme. At 10 dpc 

spotty expression is detectable in the midbrain in what are presumed to be the earliest 

differentiating neurons. Expression also occurs in the olfactory placodes and in some 

cranial ganglia. Expression in limb buds is initially widespread but becomes restricted 

to posterior regions as development proceeds. Expression of the closely related genes 

Noelin 1 and 2 at 10.5 dpc has recently been reported (Moreno and Bronner-Fraser,

2002). The expression pattern described is similar, though not identical, to that 

described here for 10 dpc embryos.

7 k8709a24 At egg cylinder stages Salll, a vertebrate homologue of the

Drosophila homebox gene spalt, is expressed in the anterior and, more weakly, in the
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posterior epiblast. At headfold stages, transcripts become restricted to anterior neural 

folds and at 8.5 dpc this expression resolves into ventral neural plate and neural groove. 

Weak expression is also seen in the branchial arch region and posterior trunk. At 9.5 

dpc Sa111 is expressed in the ventral forebrain, anterior midbrain, the 

midbrain/hindbrain boundary, branchial arch ectoderm, posterior trunk and, most 

prominently, in the mesonephros, presomitic mesoderm and newly-formed somites. 

SALLl is implicated in Townes-Brocks syndrome (Kohlhase etal., 1998) and loss-of- 

function of murine Salll indicates that this gene is required for ureteric bud invasion 

during kidney development (Nishinakamura et al., 2001). Expression of Salll at 7.5,

8.5 and 9.5 dpc has been reported in Buck et al., 2001.

S m8708a22 Calcyphosine, a gene encoding a calcium-binding protein of the

calmodulin superfamily, is weakly expressed in extra-embryonic ectoderm at 6.5 dpc. 

At 7.0 dpc expression occurs throughout the extra-embryonic ectoderm and the epiblast, 

with maximal expression in the node. During elongation of the streak, highest 

expression is seen in axial mesendoderm (arrow). At 8.5 and 9.5 dpc expression is 

ubiquitous at low level.

9 t7825b42 At egg cylinder stages, the mouse heteronuclear riboprotein-

encoding gene Spl20  is most strongly expressed in the extra-embryonic half of the 

conceptus, with only weak expression in the embryonic half, mostly in the primitive 

streak. At 8.5 and 9.5 dpc, robust expression is seen in the tail bud, when transcripts are 

also present in the ventral forebrain, branchial arches and limb buds.

10 k8710a07 The ribosome biogenesis protein encoded by Nsa2 is expressed

throughout the epiblast and extraembryonic ectoderm at 6.5 dpc. At 7.5 dpc it continues 

to be expressed in all internal cell layers of the conceptus. By 8.5 and 9.5 dpc 

expression is strongest in the branchial arches and neural tube, particularly in the 

forebrain. Low-level expression also occurs throughout the lateral mesoderm.

11 w8609b57 At the onset of gastrulation, the guanine exchange factor

Rho GEF 16 is strongly expressed in a single domain comprising the most proximal 

region of the egg cylinder and a proximo-distal stripe within the ectoplacental cone 

(arrow). This domain persists during headfold stages, when the gene becomes weakly
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expressed throughout the VE and strongly activated in the headfold pocket and 

notochord (arrow). At 8.5 dpc expression is strong in the notochord and ventral 

forebrain, with weak activation in the foregut diverticulum. By 9.5 dpc, epithelial 

expression extends from the ventral forebrain to the fourth branchial arch, with 

transcription also occurring in the otic vesicle.

12 s8609b24 At 6.5 dpc the unknown gene represented by s8609b24 is

expressed in the VE. VE expression of this gene is absent from the most proximal 

region of the conceptus. At 7.5 dpc, expression persists in most of the VE and is still 

absent from its most proximal region. By 8.5 dpc, expression is confined to the yolk sac 

but by 9.5 dpc there is widespread, albeit weak, expression in the embryo proper, 

particularly in the forebrain, anterior midbrain, branchial arches and gut.

3.2.4 Synexpression and co-expression groups

The restricted expression patterns reveal a single group of genes with a similar 

expression pattern at all stages examined (6.S-9.5 dpc). This synexpression group 

(Niehrs and Pollet, 1999) comprises clones t8219b01, r8220b29 and t7822bl0, all of 

which are expressed in the VE at 6.5 and 7.5 dpc and in the yolk sac at 8.5 and 9.5 dpc. 

Members of a synexpression group might be co-regulated and function in the same 

process but we do not have data to support this. Of the three, only t7822bl0 has been 

described previously. It encodes a receptor-type protein tyrosine phosphatase termed 

Ptpt9, whose loss of function causes abnormalities of the central and peripheral nervous 

systems and of the neuroendocrine system (Elchebly et al., 1999; Wallace et a l , 1999; 

Batt et a l, 2002). No known motifs have been identified in t8219b01 or r8220b29. 

Ptpt9 is on chromosome 17 at 56.3 Mb, while t8219b01 maps to chromosome 8 at

61.5 Mb and r8220b29 to chromosome 5 at 130.7 Mb. The coordinated expression of 

the three genes is therefore unlikely to be a consequence of their genomic organisation.

In addition to the synexpression group, we have also identified three co-expression 

groups, all members of which are expressed in a particular tissue at a particular stage of 

development and which therefore may cooperate in the specification of the tissue in 

which they are expressed. Members of a co-expression group may also be expressed in 

other regions and their expression patterns at earlier and later stages may also diverge.
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The co-expression groups comprise clones expressed in the tissues that constitute the

7.5 dpc mouse endoderm. We found 6 restricted clones expressed in the VE, 5 in the 

node and 2 in the gut endoderm (Table 3.2). One clone, v8130b25, belongs to all three 

co-expression groups.

Table 3.2 Co-expression groups found in endoderm library screen

Co-expression Clones
group

VE s8609b60, m8708a09, v8130b53, t7825b42, s8609b24, v8130b£

Node r8316a33, m8708a22, p7822b53, v8130b25, t8130b59

Gut Endoderm r8707a53, v8130b25

3.3 Discussion of the in situ hybridisation screen of the 
endoderm library

3.3.1 Overview

Approximately 1.8 % of the Beddington Endoderm cDNA Library has been gridded and 

one-third of that sequenced. Of the sequences generated, two-thirds (1978 sequences) 

were of high quality and used for clustering, followed by our own analysis. We 

therefore explored -0.4 % of the endoderm library. Clustering reduced the number of 

independent sequences to two-thirds of the original number (1440 clusters). This means 

that most transcripts are represented only once in the subset of the library analysed, but 

it also meant a significant reduction in the number of sequences to be analysed 

manually. Manual sequence comparisons reduced the number of clones to be analysed 

by in situ hybridisation by 88%. To minimise prejudice as to which might be essential 

genes, the majority of clones we excluded from our screen were those encoding energy 

metabolism enzymes and ribosomal proteins. A few transcripts belonging to these 

groups, however, show spatially restricted patterns of expression at some stage of 

embryonic development (see for example, Gawantka et al., 1998).

Out of the 160 genes analysed by in situ hybridisation, 29 (18%) were restricted to 

particular tissues at least at one of the time points examined. Of these 29 restricted
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clones, 22 (76%) were expressed in the cell types predicted to constitute the endoderm 

library and for which this screen was designed: VE, definitive endoderm, axial 

mesendoderm and node (see Table 3.2). Clones w8609b57, r8220b09, t8130b26, 

m8708a39, r8220b57, r8319a44, t8219b26 were undetected in tissues from which the 

library was made, which might be accounted for by low endoderm expression or by 

tissue contamination during the extremely difficult dissections required for library 

construction.

3.3.2 Efficiency of novel strategy for clone selection

The mouse embryo is less accessible than other, non-mammalian, vertebrate embryos. 

In addition, the early streak mouse embryo (200 -  300 pm long) is much smaller than 

other early streak embryos, rendering it unamenable to automatic whole-mount in situ 

hybridisation at present. It is thus impractical to perform a large-scale whole-mount in 

situ hybridisation screen on mouse embryos prior to organogenesis. We were 

particularly interested in the patterning events known to occur prior to or during 

gastrulation that establish the axes in the mammalian embryo. We therefore limited the 

number of whole-mount in situ hybridisation we would manually carry out on

6.5 -  9.5 dpc mouse embryos by a preliminary sequence analysis of clones identified as 

ESTs.

We chose non-redundant cDNAs and eliminated cDNAs already extensively studied in 

an embryological context. Consequently, our screen differed from related screens 

(Gawantka et al., 1998; Neidhardt et al., 2000; Christiansen et al., 2001; Kudoh et al.,

2001) in that we only examined unique cDNAs that had not been characterised in the 

context of embryonic development. The restricted clones we found may constitute 

useful molecular markers for the tissues in which they are expressed and their 

expression patterns may provide hints as to their developmental functions. They 

represent genes with a variety of cellular functions as well as a few unknown genes and 

their study could generate insight into the mechanistics of patterning. Since this screen 

was undertaken, mutations in 7 of the 29 restricted genes presented here have been 

generated in the mouse by us or others (Hildebrand and Soriano, 1999; Li et al., 1999; 

Elchebly et al., 1999; Wallace et al., 1999; Nishinakamura et al., 2001; Wulff et al., 

2002; Batt et al., 2002; Kettleborough, 2002; Rana, 2003). Each of these mutations
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results in discernible phenotypes and one was found to be required for the establishment 

of the embryonic axes (Rana, 2003).

Our strategy proved successful in that the percentage of restricted expression patterns 

obtained (18%) was comparable to the highest obtained in previous whole-mount in situ 

hybridisation studies (18 % in Neidhardt et al., 2000 when random clones were picked 

from a normalised library). In Table 3.3 I have compared our screen with other in situ 

hybridisation screens, emphasising the efficiency of discovery of restricted expression 

patterns. It is difficult to make direct comparisons because definitions of restricted may 

vary. Also, other screens have used different species at different stages, and we selected 

certain families of cDNAs to study. Nevertheless, screens using randomly selected 

cDNAs have tended to produce proportionately fewer restricted expression patterns than 

ours (Neidhardt et al., 2000; Christiansen et al., 2001; Kudoh et al., 2001; Table 3.3). 

We distinguished between restricted and widespread expression patterns, as did 

Neidhardt and co-workers. In contrast, the 25% of differentially expressed genes 

reported by Gawantka and colleagues include all expressed clones that are non- 

ubiquitous. A similar percentage of restricted patterns to ours was obtained in the 

expression analysis of murine orthologues of the genes contained in human 

chromosome 21 at 9.5 dpc (Reymond et al., 2002; Gitton et al., 2002).

The similarity between the percentage of restricted clones obtained in our study and that 

by Neidhardt et al., 2000 when using a normalised library is consistent with the 

similarity of the two approaches. Indeed, the strategy we used for clone selection is 

comparable to a normalisation since sequence clustering allowed us to assess the 

relative abundance of clones and sequence identity allowed us to reject presumably 

essential transcripts, both aims of a normalisation procedure. Our strategy presents a 

few advantages over a hybridisation-based normalisation. Our method precludes the 

loss of rare clones, saves material, especially important when tissue collection requires 

skilled embryo manipulation, and circumvents clone repetition.
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Table 3.3 Frequency of restrictedly expressed cDNAs identified in different expression screens

Reference Species Stages screened cDNA library Library type No. clones 
screened

Restricted
cDNAs

This study Mouse 6.5-9.5 dpc 7.5 dpc endoderm Parent 160 18%

Neidhardt et al., 2000 Mouse 9.5 dpc 9.5 dpc embryo Parent 989 6%

Neidhardt et al., 2000 Mouse 9.5 dpc 9.5 dpc embryo Subtracted 3737 7%

Neidhardt et al., 2000 Mouse 9.5 dpc 9.5 dpc embryo Normalised 622 18%

Reymond et al., 2002 Mouse 9.5 dpc Murine orthologues of 
human chromosome 21 genes

— 158 21%

Reymond et al., 2002 Mouse 10.5 dpc idem — 158 28%

Reymond et al., 2002 Mouse 14.5 dpc (sections) idem — 158 42%

Gitton et al., 2002 Mouse 9.5 dpc idem — 158 21%

Christiansen et al., 2001 Chick HH* 9-12 Hindbrain HH* 10-11 Subtracted 445 8%

Kudoh et al., 2001 Zebrafish Shield, 3 somites, 
15 somites, 24 h

Early somitogenesis embryo Normalised 2765 13%

Gawantka et al., 1998 X. laevis Stages 10+, 13, 30 Neurula stage embryo Parent 1765 25 %T

♦Staging according to Hamburger and Hamilton, 1992.

tThis figure is reduced to 16% if only unique cDNAs with a restricted expression pattern are considered.
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3.3.3 Perspectives

The identification of mouse transcripts is incomplete as measured by the level of non­

overlap between the output of gene prediction programs and the study of cDNA 

libraries (Mouse Genome Sequencing Consortium, 2002). We found 123 new mouse 

ESTs in the endoderm library and a few completely novel sequences that matched 

nothing in the currently available databases. Our work thus contributes to the efforts of 

many in the definition of the mouse genome and transcriptome, in addition to providing 

spatial information concerning the expression of 160 mouse transcripts during early 

stages of embryogenesis. The endoderm library provides a valuable source of ESTs that 

can be useful in future structural and functional genomic projects as well as expression 

profiling. Exploring 0.4% of the endoderm library we found 29 transcripts with 

restricted expression patterns, of which 4 (2.5%) constitute completely novel sequences. 

Extrapolating for the total library, this means that a few thousand more restricted genes, 

of which a few hundred completely novel ones, could still be found using this resource.
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Chapter 4

Functional analysis of mouse Sgk

4.1 Literature review on Sgk
4.1.1 Sgk expression
4.1.2 Sgk protein and mRNA structure
4.1.3 Sgk transcriptional regulation
4.1.4 Sgk post-translational regulation
4.1.5 Subcellular localisation of Sgk
4.1.6 Downstream of Sgk
4.1.7 Biological roles of Sgk
4.1.8 Sgk family members

4.2 Results of the functional analysis of mouse Sgk
4.2.1 Further characterisation of mouse Sgk expression
4.2.2 Groundwork for the differentiation of ES cells into endothelial cells
4.2.3 Is Sgk upregulated during embryonic wound-healing?
4.2.4 Isolation and characterisation of mouse Sgk genomic DNA
4.2.5 Construction of Sgk targeting vector
4.2.6 Targeting of Sgk in ES cells
4.2.7 Zebrafish sgk

4.3 Discussion of the functional analysis of mouse Sgk
4.3.1 Regulation of Sgk expression
4.3.2 Sgk targeting strategy
4.3.3 Is there a role for Sgk in embryonic patterning?

4.1 Literature review on Sgk

From the 12 genes showing restricted expression that I isolated in the mouse endoderm 

screen, I selected Sgk (serum and glucocorticoid-regulated kinase) for functional 

analysis in the mouse. Sgk was interesting to us because of its asymmetric expression 

during early gastrulation. Sgk is expressed in the posterior and not in the anterior of the 

embryo at early streak stages. In addition, I was also interested in the restriction of Sgk 

expression to a single cell type, angioblasts, in the mid-gestation embryo.

4.1.1 Sgk expression

Sgk is found in numerous embryonic and adult cDNA libraries, as well as in many cell 

lines. Mouse embryonic libraries containing Sgk cDNA include one made from 

embryos as young as 2-cell stage. No Sgk expression has been detected in oocytes
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(Alliston et al., 1997). In the adult, Sgk mRNA has been detected by Northern analysis 

in all tissues examined in a variety of species, including shark, rat and human (Imaizumi 

et al., 1994; Waldegger et al., 1997; Waldegger et al., 1998; Kobayashi et al., 1999). 

In situ hybridisation shows that Sgk is not expressed in all cell types of each tissue, 

however. For example, in the brain, Sgk is expressed in most oligodendrocytes but only 

in a limited set of neurons (Imaizumi et al., 1994; Warntges et al., 2002); in the ovary, 

Sgk is selectively expressed in granulosa cells (Alliston et al., 1997); in the pancreas, 

highest levels of Sgk transcripts are found in the acinar cells, followed by the ductal 

epithelial cells and are undetectable in the pancreatic islet cells (Klingel et al, 2000); in 

the intestine, the vast majority of Sgk transcripts are detected in the apical villus 

enterocytes whereas none have been detected in the crypt cells (Waldegger et al., 1999).

There are two reports concerning the embryonic expression of murine Sgk. One 

describes the overall expression of Sgk between 8.5 and 16.5 dpc (Lee et al., 2001) and 

the other deals specifically with the localisation of transcript and protein during 

metanephrogenesis (Huber et al., 2001). Lee et al., 2001 describe expression of Sgk in 

the yolk sac of 8.5 dpc conceptuses, followed by expression in the heart chamber, 

intersomitic vessels, otic vesicles and lung buds between 9.5 and 12.5 dpc. Between

13.5 and 16.5 dpc Sgk transcripts are still detected in the heart and intersomitic vessels, 

and become apparent in the choroid plexus, bronchi and bronchioles, adrenal gland, 

liver, thymus and intestines (Lee et al., 2001). Huber et al., 2001 detect Sgk mRNA in 

the ureteric buds as well as in the adjacent mesenchymal cells that undergo 

condensation and mesenchyme-epithelial transition, in 15 dpc embryos. These 

condensations first constitute the so-called comma-shaped bodies that then develop into 

the s-shaped bodies and eventually form the segments of the nephron up to the 

collecting duct (reviewed in Horster et al., 1999). In the metanephrogenic system, Sgk 

protein is undetectable at 14 dpc but at 16 dpc its localisation is consistent with the 

mRNA signals detected at 15 dpc. In addition, at 16 dpc Sgk is found in the loops of 

Henle and the maturing medullary collecting duct. At postnatal day 1, Sgk protein is 

still found in the latter domain, whereas it is down-regulated in the nephrogenic zone 

(Huber et al., 2001).
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4.1.2 Sgk protein and mRNA structure

Sgk is a 50 kDa protein that was initially classified as a serine/threonine protein kinase 

on the basis of its amino acid sequence. Protein kinases contain a large central catalytic 

domain of approximately 270 amino acid residues and which can be subdivided into 11 

subdomains, and regulatory regions in the N- and/or C-termini (reviewed in Hanks et 

al., 1988). The catalytic domain of Sgk contains all the essential features to make it a 

functional serine/threonie kinase, with a characteristic ATP-binding motif, downstream 

of which lies a conserved lysine (LI27); with highly conserved motifs in subdomains 

VIb, VII and VIII; and a threonine in the activation loop (T256) (Webster et al, 1993b). 

The catalytic domain of Sgk is mainly related to that of second-messenger-regulated 

kinases. In particular, it is most similar (45-55% identity) to the Rac protein kinases, 

the ribosomal protein S6 kinase (S6K), protein kinase C-zeta (PKC-zeta), PKB / AKT 

and cyclic adenosine monophosphate-dependent protein kinase (PKA) (Webster et al., 

1993b), rendering Sgk a member of the growth factor-activated AGC family of 

serine/threonine protein kinases (so-called because it includes PKA, PKG and PKC) 

(reviewed in Firestone et al., 2003).

In addition to the similarity of their catalytic domains, AGC kinases have in common 

aspects of their regulation. Thus, many AGC kinases are activated by 

phosphatidylinositol 3,4,5-trisphosphate (PIP3), by translocation to the plasma 

membrane, and by phosphorylation within a highly conserved motif in the activation 

loop and, sometimes, in another site some 160 residues C-terminal to the former 

(reviewed in Peterson and Schreiber, 1999). Sgk contains three phosphorylation sites: 

S78, in the N-terminal domain; the already mentioned T256, which lies within the 

activation loop; and S422, in the C-terminal domain (reviewed in Firestone et al., 2003). 

The first of these sites has not yet been shown to be of functional significance but the 

other two have (see below).

The N-terminal region of Sgk bears no obvious similarity with any known protein but 

other regions contain several putative protein-protein interaction domains, including a 

PY motif (PPxY) and a nuclear localisation signal (NLS) set in the central (catalytic) 

portion of the protein, and a PDZ domain in the C-terminal region (Chun et al., 2002; 

Maiyar et al., 2003; Firestone et al., 2003). Theoretical three-dimensional modelling of
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the catalytic domain of Sgk with previously resolved structures of related kinases shows 

that the PY domain and the NLS lie in an external face of the protein, available for 

establishing interactions with molecular partners (Firestone et al., 2003).

The 3’ UTR of the Sgk transcript contains several AU-rich regions analogous to those 

implicated in destabilising short-lived mRNAs such as a few early-response oncogenes 

and cytokines (Webster et al., 1993b). Indeed, rat Sgk mRNA has a half-life of 

approximately 20 min, placing it in the group of transcripts with the shortest observed 

turnover times (Webster et al., 1993a). So, this gene product is prone to regulation by 

transcript stability. In addition, Sgk transcription itself is subject to complex regulation, 

an unusual feature for a protein kinase.

4.1.3 Sgk transcriptional regulation

Sgk was originally identified in a differential display using a rat mammary tumour cell 

line induced by the glucocorticoid dexamethasone (Webster et al., 1993a; Webster et 

al., 1993b). Sgk expression was found to be an immediate-early response to 

dexamethasone, as well as to serum (Webster et al., 1993b; Webster et al., 1993a).

Since its initial discovery, many more inducers of Sgk transcription have been 

identified, acting through a variety of molecular pathways, in a cell type-dependent 

manner, and with variable kinetics and duration. In many cell lines, cell shrinkage 

induces expression of Sgk and cell swelling halts its transcription. These include human 

hepatoma, pancreas carcinoma, macrophage and endothelial cell lines, mouse 

fibroblasts, mammary epithelial and neuroblastoma cell lines, and a canine kidney cell 

line (Waldegger et al., 1997; Waldegger et al., 1999; Bell et al., 2000; Klingel et al., 

2000; Lang et al., 2000; Warntges et a l, 2002). The distinct ways by which cell 

volume changes were induced in hepatoma cells, including both hyper- and isotonic 

conditions, suggest that Sgk is regulated by cell volume rather than by osmolarity and it 

was shown to be an immediate-early effect of volume change (Waldegger et al., 1997). 

Excessive concentration of extracellular glucose, a condition found in patients suffering 

from diabetic nephropathy, also leads to Sgk upregulation (Lang et al., 2000) and Sgk 

mRNA is increased in diabetic kidneys (Kumar et al., 1999). Sgk transcription in 

hyperosmotic conditions appears to be mediated by the stress-activated protein kinase 2
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(SAPK2)/p38 mitogen-activated protein kinase (MAPK) pathway since it is abolished in 

the presence of a SAPK2 inhibitor or of a kinase-dead MAP-kinase-kinase 3 (Bell et al. , . 

2000; Waldegger et al., 2000). Surprisingly, however, in Xenopus A6 cells Sgk is 

induced by hypotonicity (Rozansky et al., 2002).

TGF|31, which also leads to renal cell hypertrophy (Fine et al., 1985; Ling et al., 1995; 

Sharma et al., 1996), has been shown to lead to immediate-early upregulation of Sgk 

mRNA in intestinal, hepatocarcinoma macrophage and fibroblast cell lines and 

expression of both molecules is concordant in the intestine of both healthy subjects and 

patients with Crohn’s disease (Waldegger et al., 1999; Lang et al., 2000).

The mineralocorticoid aldosterone, which controls body fluid homeostasis, namely 

blood pressure, also leads to immediate-early transcription of Sgk in the Xenopus A6 

cell line, primary cultures of rabbit cortical collecting duct cells, rat kidneys and colon 

but not lungs (Chen et al., 1999; Naray-Fejes-Toth et al., 1999; Shigaev et al., 2000; 

Brennan and Fuller, 2000). Aldosterone controls body fluid homeostasis mainly 

through the regulation of renal Na+ reabsorption, largely achieved by increasing the 

activity of the epithelial sodium channel (ENaC) (reviewed in Farman et al., 2002). 

Aldosterone also induces Sgk expression in neonatal rat cardiac myocytes and 

fibroblasts. Interestingly, it does so exclusively via the glucocorticoid receptor rather 

than through the mineralocorticoid receptor, indicating that aldosterone can have 

glucocorticoid-like actions in the heart (Sheppard and Autelitano, 2002). Nonetheless, 

transgenic mice overexpressing the mineralocorticoid receptor in aldosterone target 

tissues shown a significant increased Sgk expression in those tissues (Le Menuet et al., 

2001).

Dehydration increases both in situ hybridisation and immunohistochemistry signals for 

Sgk in the temporal lobe and in hippocampal neurons of the rat brain (Warntges et al.,

2002). The effect of dehydration on Sgk regulation should not be mediated by 

aldosterone as this mineralocorticoid is decreased following water deprivation (Huang 

et al., 1996).

Other immediate-early inducers of Sgk are the follicule-stimulating hormone (FSH), its 

mediator PKA, and forskolin, a PKA agonist that directly activates adenylyl cyclase in
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primary granulosa cells (Alliston et al., 1997; Gonzalez-Robayna et al., 1999; Alliston 

et al., 2000), several proinflammatory cytokines in human peripheral blood 

granulocytes (Cowling and Birnboim, 2000), FGF, platelet-derived growth factor 

(PDGF) and the tumour promoting phorbol ester tetradecanoylphorbol acetate (TPA) in 

a fibroblast cell line (Mizuno and Nishida, 2001), and amphetamine in the rat striatum 

(Gonzalez-Nicolini and McGinty, 2002). Transcriptional activation of Sgk by FGF, 

PDGF and TPA is mediated by the extracellular signal-regulated kinase (ERK) MAPK 

pathway since it is blocked by a specific MAPK-kinase inhibitor (Mizuno and Nishida,

2001). FSH activates the p38 MAPK in ovary granulosa cells via PKA (Maizels et al.,

1998) and specific inhibition of PKA, p38MAPK or of the phosphatidylinositol 3’- 

kinase (PI3K) pathway abolishes Sgk induction by FSH (Gonzalez-Robayna et al., 

2000).

Additional inducers of Sgk expression include the secreted factors carbachol and 

vasoactive intestinal polypeptide in the shark rectal gland (Waldegger et al., 1998), 

several phorbol esters other than TPA and increased cytosolic Ca2+ concentration, in 

pancreatic cells (Klingel et al., 2000), and heat shock, UV irradiation and oxidative 

stress induced by hydrogen peroxide, also through a p38/MAPK-dependent pathway, in 

murine mammary cells (Leong et al., 2003). Central nervous system (CNS) injury 

induces Sgk expression in the oligodendrocytes surrounding the lesion, within 3 days 

and for at least 14 days (Imaizumi et al., 1994; see also Hollister et al., 1997).

Sgk transcription is not induced by just any stimulus, however. Heparin downregulates 

Sgk transcription in vascular smooth muscle cells (VSMCs) (Delmolino and Castellot, 

1997), as does the protein kinase inhibitor staurosporine and the second messenger 

cAMP in pancreatic cells (Klingel et al., 2000).

The immediate-early effect of many Sgk inducers means that they activate Sgk 

expression independently of de novo protein synthesis. Therefore, they either directly 

bind the gene regulatory elements or modulate factors already present in the cells, which 

in turn do so. Software analysis of the genomic sequence upstream of the Sgk 

transcriptional start site reveals numerous consensus transcription factor binding sites. 

These include binding sites for the cAMP regulatory element binding protein (CREB), 

Activating Proteins (AP)-l and -2, Activating Transcription Factor 6, NF-kB, E2F,
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STAT, p53, c-Rel, SMAD 3 and SMAD 4, FAST, Spl and Sp3, heat shock factors, 

retinoid X receptor, vitamin D receptor, glucocorticoid/mineralocorticoid/progesterone 

receptors, farnesoid receptor, peroxisome proliferator activator receptor and sterol 

regulatory element binding protein (Firestone et a l, 2003). Very few of these have 

been analysed functionally but, given the number of different Sgk inducers, it would not 

be surprising if many were found to be operational. There is a functional glucocorticoid 

responsive element (GRE) as well as a functional p53 binding site, and glucocorticoids 

and p53 can indeed induce Sgk transcription through these enhancers (Maiyar et al., 

1996; Itani et al., 2002b). Activation of these two elements is probably interdependent 

as p53 represses dexamethasone-stimulated activation of the GRE and, conversely, 

activated glucocorticoid receptors suppress the transactivation function of p53, as seen 

with reporter constructs (Maiyar et al., 1997). None of these elements mediate 

FSH/PKA/forskolin-induced Sgk transcription but another region of the Sgk promoter 

that does specifically binds the general transcriptional co-factors Spl and Sp3 (Maiyar 

et al., 1996; Alliston et al., 1997). Mutations in this region prevent Spl/Sp3 binding 

and abolish PKA-mediated transactivation of reporter constructs (Maiyar et al., 1997). 

The same region mediates Sgk transcription in response to hyperosmotic stress, via 

binding of Spl (Bell et al., 2000). A putative AP-2 binding site has thus far failed to 

prove functional or even to bind AP-2 (Alliston et al., 1997). No serum-responsive 

element has yet been uncovered.

4.1.4 Sgk post-translational regulation

In addition to regulation at the transcriptional level, Sgk protein is post-translationally 

regulated by phosphorylation. The enzymatic activity of Sgk has been shown to depend 

upon phosphorylation of the activation loop T256 and the C-terminal domain S422 

(Park et al., 1999; Kobayashi et al., 1999). These two sites can be phosphorylated by 

the phosphoinositide-dependent protein kinase (PDK)-l, which is in turn directly 

activated by PI3 kinase (reviewed in Storz and Toker, 2002; Cantley, 2002). Sgk 

phosphorylation by PDK1 requires interaction between Sgk and a pocket in the kinase 

domain of PDK1, called the PIF domain, which is a substrate recognition domain 

(Biondi et a l, 2001). In some contexts PDK-1 phosphorylation of Sgk can be promoted 

by the formation of a protein complex mediated by the Na+/H+ exchanger regulatory 

factor 2 (NHERF2/TKA-1/E3KARP). The PDZ domain of Sgk interacts with the first
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PDZ domain of NHERF2 and the PIF domain of NHERF2 binds to the PIF-binding 

pocket of PDK-1, resulting in an Sgk-NHERF2-PDK-1 complex (Chun et al., 2002).

Mutation of T256 and S422 to alanines (a non-polar amino acid) results in an 

enzymatically inactive Sgk, with a dominant-negative activity (Brunet et al., 2001; 

Leong et al., 2003). On the other hand, mutation of T256 to the negatively charged 

amino acid aspartate results in a constitutively active Sgk (Park et al., 1999). Sgk can be 

further phosphorylated on S78 and can be phosphorylated by the big mitogen-activated 

protein kinase (BMK)1/Erk5, a member of the MAPK pathway (Hayashi et al., 2001). 

Mutation of Sgk S78 to an alanine prevents cells of the human mammary epithelial cell 

line MCF10A to undergo growth factor-stimulated S phase entry (Hayashi et al., 2001), 

implicating Sgk in mediating the previously reported requirement for BMK1 for this 

effect (Kato et al., 1998). Unlike for T256 and S422, the effect of Sgk phosphorylation 

on S78 on the enzymatic activity of the protein has not yet been defined.

Many inducers of Sgk expression, result in the production of a hyperphosphorylated, 

catalytically active, protein. This has been demonstrated for serum, glucocorticoids, 

hyperosmotic conditions, insulin and insulin-like growth factor, heat shock, UV 

irradiation and oxidative stress (Buse et al., 1999; Park et al., 1999; Kobayashi and 

Cohen, 1999; Bell et al., 2000; Perrotti et al., 2001; Leong et al., 2003; Firestone et al.,

2003). Heat shock, UV irradiation and oxidative stress have been shown to activate Sgk 

in conditions where PKB remains in its non-phosphorylated state (Leong et al., 2003). 

This is a relevant point since a difficulty in establishing a link between the 

enzymatically active Sgk and a biological response is that many signals that produce 

hyperphosphorylated Sgk also result in the activation of the constitutively-expressed, 

structurally related, PKB (Brazil and Hemmings, 2001). Both proteins are 

phosphorylated by PDK-1 at analogous sites and both proteins share substrate 

recognition sites.

Another level of post-translational regulation of Sgk is achieved by ubiquitination. 

Several groups observed low levels of endogenous Sgk in several cell lines, as well as 

low levels of the protein following overexpression of full-length mRNA. Much higher 

levels of Sgk are observed with overexpression of a truncated transcript, lacking the 

codons for the first 60 amino acid residues, which mediate polyubiquitination of Sgk 

(Brickley et al., 2002).
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Finally, a few stimuli are known to modulate Sgk activity but the molecular 

mechanisms involved are often not known. In human embryonic kidney cells, insulin 

and insulin-like growth factor, working through PI3K, activate ectopically expressed 

Sgk, but not Sgk transcription (Park et al., 1999; Kobayashi and Cohen, 1999). A PI3K- 

independent pathway, however, mediates insulin-mediated Sgk activation in Chinese 

hamster ovary cells. Treatment of cells with a cell-permeable Ca2+ chelator abolishes 

insulin-induced Sgk activation, whereas treatment with Ca2+ ionophores greatly 

increases it. This effect is insensitive to the PI3K inhibitor wortmannin, but is 

completely blocked by calmodulin inhibitors. Furthermore, Sgk was detected in direct 

association with the Ca2+ and calmodulin-dependent protein kinase kinase (CaMKK), 

suggestive of a Ca2+-triggered signalling cascade in which an increased intracellular 

Ca2+ concentration directly stimulates Sgk through CaMKK (Imai et al., 2003). 

Hepatocyte growth factor and Racl, but not Rapl (small guanidine 5’-triphosphate 

(GTP)-binding proteins of the Rho family), as well as adhesion to immobilized 

fibronectin, induce activation of Sgk in MDCK cells (Shelly and Herrera, 2002).

4.1.5 Subcellular localisation of Sgk

The phosphorylation status of Sgk correlates with the intracellular localisation of the 

protein, in accordance with the proliferative conditions of cells. In mammary tumour 

cells exposed to glucocorticoids, which induce a G1 cell cycle arrest, Sgk is detected as 

a hypophosphorylated form and is seen by immunocytochemistry to localise mainly to 

perinuclear or cytoplasmic cellular compartments. In contrast, in highly proliferative 

serum-stimulated cells, the protein transiently assumes a hyperphosphorylated form and 

is located in the nucleus (Buse et al., 1999). In synchronous cells, Sgk shuttles between 

the nucleus and the cytoplasm in synchrony with the cell cycle, where it is localised to 

the nucleus during S phase and is mainly cytoplasmic at the other stages (Buse et al., 

1999). This suggests that it might be important to make Sgk accessible or inaccessible 

to certain substrates at particular stages of the cell-cycle. It is probably not a particular 

subcellular localisation that influences proliferation, since forced retention of exogenous 

Sgk in either subcellular compartment supresses growth and DNA synthesis of serum- 

stimulated cells (Buse et al., 1999). It might therefore be the nuclear-cytoplasmic 

shuttling that is important for Sgk function under proliferative conditions. This may
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mean that Sgk substrates necessary for cell-cycle progression lie both in the nucleus and 

the cytoplasm.

Within the cytoplasm, Sgk can be further compartmentalised, having been detected in 

the inner surface of the plasma membrane (Brickley et al., 2002), a feature shared by 

many AGC kinases, as mentioned above; and in association with mitochondria, in 

response to hyperosmotic conditions, UV irradiation, heat shock and oxidative stress 

(Firestone et al., 2003)

4.1.6 Downstream of Sgk

Three endogenous Sgk substrates have been identified. The first two were identified by 

a candidate approach, testing known substrates of the related PKB. One is the forkhead 

transcription factor Fox03a, which upon phosphorylation is withdrawn from its role as 

a transcription factor by exiting the nucleus. Sgk, like PKB, can phosphorylate the three 

regulatory sites of Fox03a but they differ in the efficiency with which they 

phosphorylate specific sites. Thus, Sgk preferentially phosphorylates S315 of Fox03a 

whereas PKB preferentially phosphorylates S253. The third site, S32, is phosphorylated 

more efficiently by PKB than by Sgk (Brunet et al., 2001). For a discussion on the 

possible significance of the differential phosphorylation of Fox03a by these two 

kinases, see Brunet et al., 2001.

A second Sgk substrate is the MAPK pathway mediator B-Raf, itself a protein kinase. 

B-Raf has several phosphorylation sites and its activity is both positively and negatively 

regulated by phosphorylation. Sgk phosphorylates B-Raf mainly on S364, which results 

B-Raf inhibition. Although PKB can phosphorylate B-Raf of the same serine, inhibition 

of B-Raf activity by Sgk phosphorylation is stronger than by PKB phosphorylation, 

which is probably due to a higher affinity of Sgk-B-Raf binding than that of PKB-B-Raf 

binding (Zhang et al., 2001).

A third Sgk substrate is the ubiquitin ligase called neural precursor cell-expressed 

developmentally down-regulated (Nedd) 4-2. Following phosphorylation by Sgk, 

Nedd4-2 loses affinity for the ENaC, mediating body fluid homeostasis by aldosterone 

(reviewed in Farman et al., 2002), leading to increased abundance of ENaC in the
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plasma membrane (Debonneville et al., 2001; Snyder et al., 2002). Indeed, Sgk 

increases the activity of ENaC but not by direct phosphorylation (Chen et al., 1999; 

Naray-Fejes-Toth et al., 1999; Alvarez de la Rosa et al., 1999; Loffing et al., 2001). 

Sgk enzymatic activity, however, is necessary for ENaC-mediated Na+ transport (Faletti 

et al., 2002). Expression of each of the three ENaC subunits is stimulated by 

glucocorticoids in parallel to that of Sgk, in a bronchiolar epithelial cell line (Itani et al., 

2002a). In addition to potentiating Na+ transport through the ENaC, Sgk synergises 

with other activators of this channel, mCAPl -  3, resulting in a more than additive 

effect (Vuagniaux et al., 2002). Several other ion channels may be substrates for Sgk, 

as they have been shown to be modulated by Sgk activity (Wagner et al., 2000; Wagner 

et al., 2001; Setiawan et al., 2002; Yun et al., 2002; Gamper et al., 2002a; Gamper et 

al., 2002b; Wamtges et al., 2002; Embark et al., 2003; Boehmer et al., 2003; Yoo et al.,

2003).

4.1.7 Biological roles of Sgk

Immediate-early transcriptional regulation of a protein kinase is unusual and, besides 

Sgk, is only known to occur with three other serine/threonine kinases: Snk (serum 

inducible kinase) (Simmons et al., 1992), Fnk (FGF inducible kinase) (Donohue et al., 

1995) and Prk (proliferation related kinase) (Li et al., 1996). All are rapidly 

transactivated in response to specific hormonal and environmental stimuli and their 

induction is often associated with increased cellular proliferation. However, Sgk is also 

transactivated during differentiation, such as that elicited by glucocorticoids, which 

induce a G1 cell cycle arrest. This sets Sgk apart from any other kinase. How Sgk 

might be implicated in cell proliferation as well as differentiation is not understood but 

its restriction to certain cell types argues against it being a general intermediate in a 

ubiquitous process.

The distinct cellular localisation of most Sgk in proliferating versus differentiated 

granulosa cells suggests that there are distinct Sgk functions under the two conditions. 

The state of Sgk phosphorylation is also distinct under the two conditions, where the 

hyperphosphorylated form is the main one found in proliferating cells (Buse et al., 

1999). The exact Sgk sites phosphorylated under these conditions have not been 

determined but another study has shown that Sgk phosphorylation at S78 is required for 

MCF10A cells to enter S phase in response to growth factors (Hayashi et al., 2001).
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The same cell type may use Sgk for mediating its proliferation and differentiation 

stages. Ovarian granulosa cells show a bi-phasic response to FSH, with an initial 

proliferative reaction, including transient induction of Cyclin D2 mRNA, followed 24 -  

48 h later by differentiation (reviewed in Richards, 1994). In the rat ovary, Sgk mRNA 

is detected exclusively in the granulosa cells. In cultured granulosa cells, Sgk mRNA is 

also induced in a bi-phasic manner, which parallels both stages of FSH action. 

Immediate-early Sgk transcript levels reach a maximum after 2 h of exposure of cells to 

FSH; levels then decrease but rise several hours later, being highest by 48 h (Alliston et 

al., 1997). Sgk protein is mainly nuclear in the first phase and as granulosa cells 

differentiate, luteinise and cease dividing, Sgk becomes mainly cytoplasmic (Gonzalez- 

Robayna et al., 1999). The same progression of Sgk compartmentalisation is observed 

in vivo, in ovaries of hypophysectomised rats, stimulated to differentiate by hormonal 

administration (Alliston et al., 2000).

A role for Sgk in cell survival was demonstrated by the reduction of apoptosis levels of 

MCF10A cells in the absence of growth factors when Sgk was ectopically expressed. 

Protection from apoptosis was not observed when the kinase-dead versions of Sgk 

(K127M, T256A or S422A) were used (Mikosz et al., 2001). This implicates the 

enzymatic activity of Sgk in mediating the known antiapoptotic role of glucocorticoid 

receptor activation in these cells (Moran et al., 2000). Sgk enzymatic activity is also 

correlated with increased cell survival under several stress-inducing stimuli. Ectopic 

expression of wild-type or constitutively active Sgk protects mammary epithelial cells 

against stress-induced cell death, whereas that of the enzymatically inactive 

T256A/S422A Sgk mutant does not (Leong et al., 2003).

The generation of Sg^-null mice has confirmed a role for Sgk in osmoregulation. Sgk- 

null mice fail the normal response of decreasing Na+ excretion when subject to NaCl 

dietary restriction (Wulff et al., 2002). Na+ excretion is similar in wild-type and Sgk- 

null mice subject to a normal NaCl diet (Wulff et al., 2002), which suggests Sgk 

mediates the response to osmotic stress rather than establishing normal osmotic balance. 

Sgk transactivation by systemic pathological triggers, such as in patients with diabetes, 

Crohn’s disease or during dehydration, is consistent with a role in osmotic stress 

response. A role for Sgk in the physiological regulation of blood pressure has also been
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suggested. The human SGK locus is linked to blood pressure phenotypes. Furthermore, 

significant interactions exist between each of two single nucleotide polymorphisms and 

blood pressure, as well between the single nucleotide polymorphisms themselves, which 

in combination enhance the effect observed with each individually (Busjahn et al.,

2002). The action of Sgk on blood pressure is possibly exerted by ENaC, which 

remains the only Na+ transport protein for which there is genetic evidence supporting its 

involvement in the genesis of both hypertension (Liddle's syndrome) and hypotension 

(pseudohypoaldosteronism type 1) (reviewed in Kamynina and Staub, 2002).

There are other possible roles for Sgk. Recently, Sgk mRNA was found to be 

upregulated in the dorsal hippocampus of rats that are fast learners in the Morris water 

maze task, when compared with slow learners. There is clear upregulation of Sgk in 

three areas of the fast learners’ hippocampus (CA1, CA3 and dentate gyrus). Consistent 

with this, transfection of Sgk into the CA1 facilitates water maze performance, whereas 

transfection of S422A mutant Sgk impairs water maze performance. That learning and 

memory rather than sensory-motor abilities is affected is further supported by the fact 

that mutant Sgk transfection did not alter spatial learning when the platform was visible 

(Tsai et al., 2002). This provides a substantial biochemical mechanism underlying 

glucocorticoid-induced memory facilitation (Tsai et al., 2002). The fact that Sgk 

modulates the activity of several ion channels involved in neuronal excitability offers 

obvious molecular candidates to establish a link between Sgk activity and memory 

consolidation.

4.1.8 Sgk family members

Sgk was the first of three Sgk genes to be discovered in vertebrates. Since the finding of 

others, Sgk is often referred to as Sgk-1. Sgk-3 is also known as cytokine-independent 

survival kinase, CISK (Liu et al., 2000) or SGK-like (SGKL) in humans. In addition, 

human SGK-2 and SGK-3 give rise to at least two splice variants (Kobayashi et al.,

1999). Analysis of the human proteins shows that SGK-1 and -3 are most similar in 

their catalytic domain (approximately 80% identical). The C-termini are the next most 

similar regions (44 -  68% identity) and the N-termini differ considerably (only 

approximately 25% identity in the best of cases, i. e., between SGK-1 and -3, which 

present nearly no identity to SGK-2 in this region (Kobayashi et al., 1999). In contrast
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to the N-terminus of SGK-1, which contains no known motifs, the N-terminus of SGK- 

3 contains a Phox (PX) homology domain (Liu et al., 2000). The function of the PX 

domain is not known but it has been implicated in cellular trafficking. PX domains can 

mediate interactions with phospholipids or with other proteins (Haft et al., 1998).

The most structurally related family members, SGK-1 and -3, are also the ones that 

display the most similar expression profiles in a Northern analysis of adult tissues. 

SGK-1 and -3 mRNAs are widely expressed in adult tissues, as opposed to that of SGK-

2, which is significantly more restricted in adults (present mainly in the brain, liver, 

kidney and pancreas) (Kobayashi et al., 1999). Sgk-3 mRNA has been identified in a 

few cDNA libraries but much less frequently than that of Sgk-1. Sgk-3 is expressed in 

the 7.5 dpc (Liu et al., 2000) and 13.5 dpc mouse embryo (forelimb and testis cDNA 

libraries), but no spatial information has been published. There is no spatial information 

available for Sgk-2 mRNA.

In contrast to Sgk-1 mRNA, Sgk-2 and -3 mRNAs are not induced by serum nor by 

dexamethasone in rat fibroblast or human hepatoma cell lines (Kobayashi et al., 1999). 

Sgk-2 and -3 can be phosphorylated and activated in vitro by PDK1, although with 

slower kinetics. Phosphorylation occurs in residues equivalent to the activation loop 

T256 of Sgk-1. Also like Sgk-1, the activities of Sgk-2 and -3 are greatly increased in 

the presence of H20 2 but, in contrast to Sgk-1, this activation is only partially 

suppressed by PI3K inhibitors. In addition, Sgk-2 and -3 are activated by the insulin­

like growth factor-1 but less so than Sgk-1. Furthermore, the preferential consensus 

phosphorylation sites for Sgk-2 and -3 are identical to those of Sgk-1 (and PKB) 

(Kobayashi etal., 1999).

Further characterisation of Sgk-3 shows that it is activated by IL-3 in a PI3K-dependent 

manner and that it can block the apoptotic response that normally occurs upon IL-3 

withdrawal. The latter phenomenon might be explained by the fact that Sgk-3 can 

phosphorylate Fox03a and the proapoptotic Bcl-2 family member Bad. Therefore, Sgk-

3, like Sgk-1, appears to mediate cell survival (Liu et al., 2000).

Sgk-3 has a distinct subcellular localization from Sgk-1. In embryonic kidney and COS 

cells, Sgk-3 has been found to localise in endosomes and this localisation is strictly
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dependent upon the PX domain (Liu et al., 2000; Xu et al., 2001; Virbasius et al., 

2001). The PX domain of Sgk-3 was shown to interact with PIP2 and PIP3 and mutation 

of this domain was shown to impair Sgk-3 activity and activation by the insulin-like 

growth factor-1 and by EGF (Xu et al., 2001; Virbasius et al., 2001).

There are Sgk orthologues in Ciona intestinalis and C. elegans as well as two 

homologous budding yeast genes, YPK1 and YKR2. YKR2 mutants present no obvious 

phenotype but YPK 1 mutants exhibit slow growth (Chen et al., 1993). Double-mutants 

fail to grow in glucose-containing medium, a phenotype which can be complemented by 

rat Sgk (Casamayor et al., 1999). The phosphorylation and intracellular localisation of 

Ypkl is regulated by the intracellular levels of sphingolipids, via yeast kinases 

homologous to PDK1 (Pkh kinases) (Sun et al., 2000). Yeast do not have PIP2 or PIP3 

and it is thought that sphingolipid signalling might be their equivalent to the 

phosphoinositide pathway of metazoans. Concordantly, yeast Pkh kinases do not have 

the pleckstrin homology (PH) domain, which in PDK mediates its interaction with 

inositol phospholipids. So, Sgk and Ypkl appear to be regulated in an analogous 

fashion (Sun et al., 2000). Furthermore, overexpression of mammalian Sgk overcomes 

sphingolipid depletion in yeast (Sun et al., 2000).

4.2 Results of the functional analysis of mouse Sgk

To understand a role for Sgk in early development I began a project to generate Sg£-null 

mice. In addition, I addressed the role of Sgk with a few other experiments. There were 

several questions I wanted to address: Is Sgk asymmetrically expressed as early as at

5.5 dpc? Is Sgk required for primitive streak formation and/or mesoderm induction? 

Does Sgk expression label some stem cell populations, namely endothelial stem cells / 

angioblasts? Is Sgk expression involved in angioblast or endothelial cell proliferation 

and/or differentiation?

4.1 Further characterisation of mouse Sgk expression

I have described Sgk expression during early gastrulation (clone s8609b60 in Fig. 3.1; 

section 3.2.3). At the onset of gastrulation Sgk is strongly expressed in the VE overlying 

the nascent mesodermal wings and, more weakly, in the mesoderm itself (Fig 4.1).
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Fig. 4.1 Sgk is expressed strongly in the VE and weakly in the nascent 

mesoderm of the egg-cyclinder stage mouse embryo. Transverse section of a 6.5 dpc

mouse embryo at approximately the level of the extraembryonic-embryonic junction, 

following whole-mount in situ hybridisation with Sgk riboprobe. Anterior is to the left. 

Strong staining is visible in the VE and weaker staining is visible in the nascent 

mesoderm.

Whole-mount in situ hybridisation on 5.5 dpc embryos reveals Sgk mRNA in the VE 

and the epiblast on both the anterior and posterior of the conceptus (Fig. 4.2). In most 

cases, Sgk mRNA was symmetric at 5.5 dpc (Fig. 4.2, A-B) but in some cases staining 

did seem stronger on one of the sides of the pre-gastrula conceptuses (Fig. 4.2 C-D), 

presumably in the future posterior, as this is where staining is detected at 6.5 dpc. 

Therefore, Sgk is initially expressed symmetrically in the pre-gastrula mouse embryo, 

after which it is specifically down-regulated in the anterior.

At 8.5 and 9.5 dpc Sgk transcripts are found in the vasculature as well as in the eye and 

branchial arches. Both nascent capillary endothelial cells and blood cells are thought to 

derive from a common precursor called the hemangioblast. These cells derive from 

mesoderm that lies in close proximity to the endoderm, the splanchnopleura. They 

group into spheres, called blood islands, which then fuse to form primary capillaries. 

The outside cells of the blood islands give rise to the endothelial lineage, whose 

precursors are named angioblasts. The interior cells of the blood islands give rise to the 

hematopoietic lineages. The process of de novo blood vessel formation is called 

vasculogenesis. However, vasculature formation makes use of another process, termed 

angiogenesis, whereby already existent vessels branch and invade non-vascularised 

areas (reviewed in Risau and Flamme, 1995). In addition to being expressed in blood 

islands of the splanchnopleura, Sgk is expressed in the forming limb blood vessels,
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where no endoderm is present (Fig. 4.3). This means that Sgk mRNA labels sites of 

both vasculogenesis and angiogenesis in the embryo.

Fig. 4.2 At 5.5 dpc, mouse Sgk expression is transiting from symmetric to 

asymmetric. Whole-mount in situ hybridisation with Sgk riboprobe on four distinct 

5.5 dpc mouse embryos: A -  D.

In 10.5 -  13.5 dpc mouse embryos, whole-mount staining was indistinguishable from 

that obtained with a probe for the endothelial marker foetal liver kinase (Flk)-1, receptor 

for the vascular endothelial growth factor (VEGF). At these stages the vasculature has 

branched and refined considerably so the overall staining assumes a blurred aspect (data 

not shown). To assess whether Sgk is expressed throughout the vasculature or in a 

subtype of vessels, I collaborated with Dr. Marcus Fruttiger (University College 

London) who analysed Sgk expression in retinal vasculature preparations. The retinal 

vasculature is an excellent model for vascular development given that each contains a 

continuum of developmental stages ordered ontogenetically from the periphery to the 

centre. The retinal vasculature develops from the centre to the periphery. Hence, the 

centre contains the most mature vessels (reviewed in Fruttiger, 2002). The expression 

of Sgk in the retinal vasculature presents several unusual features (Fig. 4.4). Sgk 

expression is not uniform throughout development, unlike most blood vessel markers.

Ontological variation of Sgk expression in blood vessels is most apparent in arteries, 

where mRNA signals are high in the immature vessels and greatly down-regulated as 

the arteries mature. In general, expression of Sgk in mature veins is higher than in
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mature arteries. Highest levels of Sgk expression are found in capillaries, rather than in 

any large vessel. This could be related to the higher levels observed in immature, 

capillary-like, arteries, compared to the mature vessel. In addition to labelling 

endothelial cells, Sgk is also seen in pericytes (VSMCs), the other cell type required to 

generate blood vessels. Sgk mRNA does not label all pericytes, however.

M t.

Fig. 4.3 Sgk is expressed in sites of embryonic angiogenesis. Transverse 

section of a 9.5 dpc mouse embryo at the level of the forelimb bud, following whole- 

mount in situ hybridisation with Sgk riboprobe. Staining is visible in blood islands and 

primary capillaries within the limb bud.

I performed in situ hybridisation on sections of 10.5 -  13.5 dpc mouse embryos. As 

expected, Sgk is visible in the forming vasculature but other sites of expression, such as 

the choroid plexus, Rathke’s pouch, from which the pituitary is derived, the eye, the hair 

placodes of the whisker pads, and limb bud mesenchyme, are prominent (Fig. 4.5).
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Fig. 4.4 Sgk expression is the vasculature is very dynamic. Transverse 

sections through the retina of a newborn mouse, following in situ hybridisation with Sgk 

riboprobe. In A, the centre of the retina is to the right and the periphery is to the left; ‘a ’ 

arrows point at downregulation of Sgk expression in mature arteries and V  arrows 

point at high Sgk expression in mature veins; arrowhead points at a small capillary, the 

vascular structures where Sgk expression is highest. Note that Sgk is also strongly 

expressed in immature arteries. B and C are higher power images than A; black 

arrows point at background staining (in C it points at a macrophage), which can easily 

be distinguished from the real, darker, staining; white arrows point at Sgk expression in 

what appear to pericytes.
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Fig. 4.5 Sites of Sgk expression in the 11.5 -  13.5 dpc mouse embryo. In situ 

hybridisation with Sgk riboprobe on parasagittal sections of 11.5 and 13.5 dpc mouse 

embryos. Anterior is to the left, except in E-G. A and B depict vasculature staining 

throughout the developing organs at 11.5 and 13.5 dpc, respectively; h, heart, s, 

stomach, u, urogenital ridge, I, liver. C is a section through the 13.5 dpc brain; black 

arrow points at Sgk expression in the choroid plexus; white arrow points at Sgk 

expression in Rathke’s pouch. D is a section through the 13.5 dpc head; black arrows 

point at two of the whisker pad hair placodes stained. E is a section through 11.5 dpc 

limb buds, where the forelimb is at the top and the hindlimb at the bottom; F and G are 

sections through 13.5 dpc fore- and hindlimb buds, respectively; Sgk is expressed 

mainly in the interdigital areas and becomes more refined as development proceeds. 

H -  I are sections through the 11.5 dpc eye and J -  K are sections through the 13.5 dpc 

eye; black arrows point at the pigmented layer; white arrows point at the presumptive 

choroid and arrowhead points at the hyaloid plexus.
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In the eye, Sgk is expressed in the retina and in one or two cell layers outlining 

exteriorly the pigmented layer, in what is probably the presumptive choroid, in addition 

to the vascular cells that accumulate between the lens and the retina constituting the 

hyaloid plexus. At 11.5 dpc Sgk expression in the retina is not uniform and detectable 

only in the periphery. At 13.5 dpc, retinal expression is also stronger in the periphery 

but central expression was also visible. Retinal expression appears biased towards the 

inner retinal layers (Fig. 4.5, H and I) although in some sections it spanned all cell 

layers (Fig. 4.5, K).

I performed whole-mount in situ hybridisation on 6.5 -  9.5 dpc mouse embryos with an 

Sgk-2 antisense probe and no expression was detected (data not shown). Therefore, 

Sgk-1 and Sgk-2 are unlikely to be redundant during these stages of mouse development. 

Sgk-3 is, however, the most likely candidate for redundancy. At the time of my study, 

however, no Sgk-3 cDNA was available.

I was interested in determining the subcellular localisation of Sgk in the early 

embryonic tissues. To this end we established a collaboration with Dr. Gary Firestone 

(University of California at Berkeley) who sent us an anti-Sgk polyclonal antibody 

(Alliston et a/., 1997), which failed in whole-mount immunohistochemistry using a 

variety of fixation methods.

4.2.2 Groundwork for the differentiation of ES cells into endothelial cells

Sgk expression in angioblasts and endothelial cells provides us with an opportunity to 

study the role of this gene in a differentiation process since endothelial cells can be 

generated in vitro from ES cells. This differentiation takes place in a progressive 

fashion involving at least three steps, defined by the onset of expression of: 1) Flk-1\ 

2) platelet endothelial cell adhesion molecule {PECAM) and the tyrosine kinase with 

immunoglobulin and EGF homologous domains {Tie)-2\ 3) vascular endothelial 

cadherin (VE-cadherin) and Tie-1 (Vittet et al., 1996). The order of endothelial cell 

transcript appearance upon in vitro ES cell differentiation recapitulates that of 

vasculogenesis in vivo.
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I combined the endothelial-specific conditions defined in Vittet et al., 1996 with the 

protocol for ES cell differentiation into hematopoietic lineages established by Dr. G. 

Keller (Keller et al., 1993). The protocol (Appendix 2) is adequate for feeder- 

independent ES cells and is accomplished via the formation of embryoid bodies.

I performed RT-PCR on ES cells and detected high levels of Sgk transcript (Fig. 4.6), 

consistent with the presence of Sgk cDNA in a blastocyst cDNA library. Therefore, in 

addition to providing an opportunity to study the role of Sgk in endothelial 

differentiation, ES cells directly constitute a cell type in which to compare proliferation 

and apoptotic indexes of wild-type and Sgk'1' cells.

Ocl4 S g k  Gapdh  -RT

9.5 ES1 ES2 9.5 ES1 ES2 9.5 ES1 ES2 9.5

Fig. 4.6 RT-PCR of Oct4, Sgk and Gapdh performed on whole RNA obtained 

from 9.5 dpc mouse embryos or each of two ES cell lines. 9.5, 9.5 dpc mouse 

embryo; ESI, ES cell line 1; ES2, ES cell line 2. Oct4 is positive control for ES cells 

and negative control for 9.5 dpc embryos; fragment size is 374 bp. Gapdh is loading 

control for all samples; fragment size is 264 bp. Sgk is expressed at high levels in ES 

cells; fragment size is 251 bp. -RT lane represents reaction mix in the absence of 

reverse transcriptase.
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4.2.3 Is Sgk upregulated during embryonic healing?

The fact that Sgk mRNA is upregulated after cortical brain injury in adults (Imaizumi et 

al., 1994), led us to ask whether Sgk is a general mediator of the wound healing 

response. I collaborated with Dr. Lisa Cooper in Prof. Paul Martin’s lab in order to 

perform wound healing experiments directly on our system of interest, the mouse 

embryo.

No Sgk mRNA was detected by whole-mount in situ hybridisation in the wounds of

11.5 dpc embryos allowed to heal for 30 min, 3 h or 6 h (data not shown), in contrast to 

Krox24 positive control mRNA (Grose et al., 2002). Nonetheless, microarray analysis 

of mRNAs expressed in wound-healed mouse embryos compared to unwounded 

controls revealed an approximately two-fold increase in Sgk mRNA by 3 h after 

wounding, which was maintained up to 24 h (L. Cooper, personal communication). 

More experiments are needed to confirm the specificity and reproducibility of this 

result. In case the result is confirmed, further experiments are needed to address 

whether Sgk is required for the healing process and if, so, in which cells it is required.

4.2.4 Isolation and characterisation of mouse Sgk genomic DNA

I screened a mouse genomic bacteriophage (phage) lambda library (Stratagene) to 

isolate genomic clones containing Sgk and found three independent clones. Two of 

these clones contained both the 5’ and 3’ ends of the Sgk open reading frame (ORF). 

I used one of these, hereafter called Sgk genomic clone, for all subsequent work. This 

Sgk genomic clone contained an insert of approximately 12 kb that could be released 

from the vector with Not I or Sal I.

I mapped the insert of the Sgk genomic clone with restriction digests followed by 

Southern analysis probed with end-labelled DNA oligonucleotides that identified the 5’ 

and 3’ ends of the Sgk cDNA. A map displaying a few informative restriction sites 

found in the Sgk genomic clone is shown in Fig. 4.7. I used this map to design and 

construct an Sgk targeting vector. Additionally, as this was being carried out, I 

sequenced the Sgk genomic clone in order to aid the mapping and cloning process. The 

Sgk genomic sequence obtained is 99% identical to the sequence subsequently
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Fig. 4.7 Map of mouse Sgk genomic clone. Selected restriction sites, exon -  intron structure of Sgk , and fragments chosen as 

homologous arms for Sgk targeting construct are shown. Each restriction enzyme and corresponding site is represented in a different 

colour. Boxes represent exons, wherein the 5’ and 3’UTRs are depicted in grey and coding regions are depicted in black. Proportions 

are approximately correct.
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published in the public database (Accession NT_039491.1) following completion of the 

mouse genome sequencing. In addition to Not I and Sal I, Age I, Asc I, BamH. I, Fse I, 

Nco I and Pme I sites are absent from the Sgk genomic clone. Comparison between Sgk 

cDNA and genomic sequences, refined with current knowledge on splice donor and 

acceptor sequences, allowed me to determine the genomic organisation of the gene 

(Fig. 4.7 and Table 4.1). Like the human gene, mouse Sgk contains 12 exons (Table 

4.1, A -  L), which span approximately 5 kb. The exon-intron organisation of mouse 

Sgk is identical to that of human SGK gene (Kobayashi et al., 1999).

Table 4.1 Exon and intron size, and exon-intron boundary sequences of mouse 

Sgk

Exon Exon length (bp) Splice donor Intron length (bp) Splice acceptor

A 144
(68 are 5’UTR)

TC ATC Ggtgagt 140 ttatagCT TTT A

B 76 C AAA CAgtaatg 428 ccacagC GAC AA

C 76 CCT CCGgtaagt 243 ttctagCCA AGT

D 90 GGA AAGggcagt 123 atgactGGC AGT

E 99 AAA GAGgtaagg 113 tcctagGAG AAG

F 132 GGA GAGgtgagc 204 tcgcagCTG TTC

G 113 T TAT AGgtgagc 310 ctacagA GAC TT

H 124 CCT GAGgtaggc 241 tttcagTAT CTG

I 96 GGC CTGtgagta 414 ttccagCCC CCG

J 156 GAC TTTgtgagt 104 caacagATG GAG

K

L

90

1233 
(1068 are 3’UTR)

AAT GTGgtaagt 410 taacagAGT GGG

Capital letters refer to exonic sequences and lowercase letters to intronic sequences. 

Codons are separated by a space.
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4.2.5 Construction of Sgk targeting vector

I aimed at generating a null Sgk allele. Leaving exons behind in the targeted locus after 

homologous recombination means that a portion of the coding region of the targeted 

gene might still be expressed. In many cases, however, a null allele is still generated 

due to disruption of the promoter or given that expressed sequences often result in 

nonsensical and/or severely truncated gene products. However, when possible, the most 

desirable approach is to remove most or the whole coding region of a gene. Sgk is a 

kinase and, as such, its catalytic domain is spread throughout a large portion of the 

protein. I aimed at removing the largest possible portion of the coding region in order 

to preclude possible dominant-negative effects from a putative truncated enzyme that 

might be generated otherwise. The steps involved in the construction of the Sgk 

targeting vector are described in Fig. 4.8

The fragments of genomic DNA chosen as homologous arms for the Sgk targeting 

construct were already highlighted in Fig. 4.7. The 5’ homologous arm is an EcoR I -  

Xma I fragment (following partial digest of the genomic DNA with EcoR I) that spans 

4.9 kb and the 3’ homologous arm is an Nde I -  Xma I fragment that spans 1.4 kb. In 

our strategy, 9 out of the 12 Sgk exons are removed and they contain the vast majority 

of the kinase domain. There were no convenient restriction sites to allow us to design 

the 3’ homologous arm further downstream or even to make this arm longer in the 

3’ direction. Given that the 3’ homologous arm is relatively short, it was important that 

the 5’ homologous arm be as long as possible. The 5’ arm was designed taking this into 

consideration along with the restriction map of the 5’ genomic region, the aim of 

removing great part of the Sgk coding region and promoter, and the necessity of leaving 

genomic sequence upstream of the arm to probe for the homologous recombination 

event.

The rare homologous recombination event is best selected for by means of positive- 

negative selection scheme (Mansour et al., 1988). The targeting vector must contain a 

positive selection gene, usually an antibiotic resistance gene, that selects for cells with a 

successfully integrated targeting vector; and a negative selection gene, coding for a 

lethal protein, that selects against random integration events rather than homologous 

recombination. Both selection genes should be linked to position-independent
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A Two distinct Xma I fragments of approximately 5 kb were obtained from the Sgk genomic clone 

and cloned into intermediate vectors, il and i2. Each fragment contains one of the homologous arms. 

Fragment containing 3’ homologous arm was cloned upstream of an Nde I site in the vector.

a *

il- i2
5’ homologous arm 3’ homologous arm

B  MC-DTA was cloned into main vector containing floxed ) PGK-NEO, between Xho I and 

Sal I sites. ^

CO

PGK-NEO

C 3’ homologous arm was excised from i2 by Nde I and was cloned into the Nde I site in main vector

P G K -N E O

D Xma I insert was excised from il and subject to partial digestion with £xoR I. Resulting 4.9 kb 

fragment was cloned into an intermediate vector, i3, so as to be flanked upstream by a Pme I site 

and dowsntream by an Asc I site.

I  8
CL, k j

Q£
I

i3

E 5’ homologous arm was excised from i3 by Pme I and Asc I and cloned into corresponding sites 

in main vector, upstream of PGK-NEO.

QtO
*1 , St << I I CO

L r ------- - J ---------iK 1 1
— q/1 PGK-NEO IX- |m c -d t a  ■

Fig. 4.8 Construction of Sgk targeting vector. Selected restriction sites 

are shown. All intermediate vectors and main vector backbone are pBSK- 

based. Targeting vector can be linearised with Not I and contains unique Nco I 

site that is absent from endogenous locus. PGK-NEO is positive selection gene 

and MC-DTA is negative selection gene. Insert proportions are approximately 

correct but size of loxP sites and of multiple cloning sites between inserts is 

exaggerated to allow their depiction or that of restriction sites.
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promoters to assure their expression. In addition, each selection gene must hold a 

particular position within the targeting vector if it is to accomplish its role. Thus, the 

positive selection gene must reside between the homologous arms so that following 

homologous recombination it replaces the deleted genomic region and the negative 

selection gene must reside outside the homologous arms so that it is lost when 

homologous recombination takes place and is only left in the cases where random 

integration of the targeting vector occurs. When a reporter gene is used, it should be 

placed between the homologous arms so that it is expressed in homologous 

recombinants, hopefully under the control of the endogenous regulatory regions of the 

targeted gene (reviewed in Torres and Kuhn, 1995). For positive selection I used the 

Neomycin resistance cDNA under the control of the phosphoglycerate kinase promoter 

(PGK-NEO), and for negative selection I used the Diptheria toxin A-chain cDNA 

downstream of the synthetic mutant polyoma enhanced HSVtk promoter (MC-DTA) 

(Fig. 4.8). Positive selection was achieved by exposing targeted cells to the antibiotic 

G418.

When homozygous null cells are to be generated from heterozygous cells, the PGK- 

NEO positive selection cassette has the added function of selecting for mitotic 

recombination events in the locus of interest upon increasing the concentration of 

selecting agent, since those cells with two copies of the antibiotic resistance gene will 

resist better to a great antibiotic insult than those with only one (Mortensen et al., 1992). 

This avoids having to target the same locus twice, each with a different positive 

selection gene, when generating homozygous targeted cells.

The strong promoters used to drive expression of positive selection genes, such as the 

PGK promoter, have been found to account for phenotypes observed in some of the 

earliest targeting experiments performed. Therefore, it is now current practise to delete 

the positive selection gene from the genome of targeted cells once the desired targeting 

event has been confirmed. This can be achieved by flanking the positive selection 

cassette in the targeting vector with 34 bp sites from the bacteriophage PI, each called 

locus of X-over of PI (loxP) sites, placed in the same orientation, which can 

subsequently be recognised and induced to recombine by the product of the PI 

cyclisation recombination (ere) gene. Cre recognises loxP sites and induces their 

recombination. Recombination of the intrachromosomal loxP sites results in excision of
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the positive selection cassette from the targeted locus. Excision of the “floxed” cassette 

can be achieved in cell culture, by expressing ere in targeted cells prior to their injection 

into blastocysts or, more commonly, in vivo, by crossing mice ubiquitously expressing 

the ere transgene with heterozygous carriers of the targeted allele. An identical result 

can be achieved by means of other recombination sites / recombinase pairs, but the 

Cre/LoxP system remains the most reliable for use in a mammalian context (reviewed in 

Torres and Kuhn, 1995). In the Sgk targeting vector constructed, PGK-NEO is flanked 

by loxP sites (Fig. 4.8).

Another consideration in the design of a targeting construct is that homologous 

recombination is most efficient between linear DNA (Bollag et al., 1989; Hasty et al., 

1992). Therefore, the targeting vector must include a unique restriction site in the 

backbone with which to linearise the construct without disrupting any of its modules. 

The Sgk targeting vector I constructed can be linearised with Not I (Fig. 4.8).

Finally, the targeting event must remove or add a restriction site within the locus, in 

order for us to distinguish between endogenous and targeted loci. This means that there 

is a restriction site between the homologous arms of in the construct that is not present 

in the targeted locus or vice-versa. Homologous recombination events induced by my 

targeting vector in the Sgk locus can be recognised by digesting ES cell genomic DNA 

with Nco I, a site for which is introduced within the PGK-NEO cassette and which is 

absent from the region of the Sgk genomic locus targeted (Fig. 4.9). I tested Nco I in 

advance for its ability to digest mammalian genomic DNA and it proved successful.

Successful targeting of the Sgk locus should be visualised by a genomic probe flanking 

either of the homologous arms, as generating a smaller Nco I fragment than the 

endogenous locus (Fig. 4.9). A 5’ genomic probe can be generated by excising the 

320 bp Xma I -  EcoR I fragment in the intermediary construct il (Fig. 4.8) and a 

3’ genomic probe can be generated by excising a 1.1 kb Xma I - N o t  I fragment 

containing the 3’UTR from an Sgk cDNA. Probes were tested for their ability to label a 

specific genomic fragment following genomic DNA digestion with Nco I and proved 

successful, labelling a fragment larger than 13 kb.

142



X
PGK-NEO

X
■ I I llll I I

1

©
£

. 1

Targeting vector

Endogenous locus

I
. 1

I
PGK-NEO

©
£

Targeted locus

Genomic probesHomologous arms in 5’ -> 3’ orientation [/> loxP sites in 5’ -> 3’ orientation g  Sgk UTR 

 ] Selection cassettes Homologous recombination I  Sgk coding

Fig. 4.9 Sgk targeting with construct used in this investigation. Following homologous recombination, the negative selection 

cassette MC-DTA is lost and an Nco I site is introduced in the targeted locus. Targeting event can be assessed by Southern analysis 

of genomic DNA digested with Nco I, probed with one of the genomic probes indicated. Insert proportions are approximately correct 

but size of loxP sites and of multiple cloning sites between inserts is exaggerated to allow their depiction or that of restriction sites.
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4.2.6 Targeting of Sgk in ES cells

I electroporated 1.6 x 107 ES cells with 40 pig of linearised targeting vector and plated 

them into three 10 cm tissue culture dishes. Positive selection was started the following 

day by replacing ES cell medium with fresh one containing 200 pig/ml G418. Positive 

selection was undertaken for 10 days. On the tenth day of selection, 96 G418-resistant 

clones were picked into 48-well plates. The following day, 32 more G418-resistant 

clones were picked, and the day after 4 more, bringing the total of putative positive 

clones up to 132. Picked clones were grown and split individually into duplicate 48- 

well plates, and a few cells of each seeded into 96-well plates in order to generate 

material for genomic DNA purification and analysis. Fresh duplicate clones were 

grown and frozen individually when appropriate.

Genomic DNA was prepared from each clone in the 96-well plates and digested with 

Nco I. 81 out of the 132 sample lanes analysed by agarose gel electrophoresis displayed 

clearly detectable genomic DNA whereas the remainder 51 lanes displayed weak or 

undetectable signal. Out of the 51 lanes where genomic DNA was weak or 

undetectable, 5 corresponded to clones that never grew in selection medium; the 

remainder 46 probably correspond to clones that grew comparatively slower and for 

which the material collected from the 96-well plate was insufficient for analysis. Since 

all clones picked were expanded into duplicate 48-well plates, one of the duplicate vials 

for each can be used to purify more genomic DNA.

Southern analysis of the Nco I genomic digests was performed using the 5’ genomic 

probe. The results of this Southern analysis are depicted in Fig. 4.10. Results indicate 

that only 1 out of the 81 analysed samples may represent a successful targeting event 

(arrow in Fig. 4.10).

The next step would be to confirm the candidate positive clone with the 3’ genomic 

probe and also to assay the remainder untested 46 clones by purifying a larger amount 

of genomic DNA from one of their frozen duplicates. If this were not positive, another 

round of targeting would be attempted.
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Fig. 4.10 Southern analysis of ES cells targeted with Sgk targeting vector. Genomic 

DNA was digested with Nco I. All lanes where DNA was visible display band at > 13 kb, 

which corresponds to endogenous Sgk locus. Arrow points at single lower molecular weight 

band that may represent a successful targeting event.
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By this point I learnt that Sgk had been targeted by another group that was preparing a 

manuscript for publication. More importantly, I learnt that Sgk was not required for 

embryonic patterning. In the published Sgk knock-out, the first three exons and the last 

exon of Sgk were left intact but the remainder of the coding region, which contains the 

catalytic domain, was removed. This targeting strategy should result in a null allele 

(Wulff et al., 2002). I accepted Dr. Derek Stemple’s offer to perform a small-scale 

functional screen of the other endoderm library restricted clones in zebrafish, under his 

supervision.

4.2.7 Zebrafish sgk

I looked for a zebrafish orthologue of Sgk in order to compare its early expression with 

the murine one and to assess the embryonic phenotype of its depletion. At the time of 

this experiment, I found a single zebrafish Sgk orthologue but at the time of writing this 

thesis I detected another orthologue in the sequence database. I named the two 

zebrafish orthologues Sgk-1 a and b, respectively. Zebrafish sgk-1 a is strongly 

maternally expressed and is ubiquitous up to somite stages (data not shown). At 24 hpf, 

however, sgk-1 a expression becomes more restricted and is strong throughout the brain 

mesenchyme, the otic vesicles and pronephros (Fig. 4.11).

Fig. 4.12 shows the alignment between mouse Sgk-1 and zebrafish Sgk-1 a and b. 

Zebrafish Sgk-1 a is indeed the closest to mouse Sgk-1, with 85.6% identity between 

the two proteins; zebrafish Sgk-1 b presents 67.8% identity to the mouse protein and 

68.3% identity to zebrafish Sgk-1 a. The cDNA sequences of zebrafish sgk-1 a and b 

are shown in Appendix 3, where the sites targeted in sgk-1 a mRNA by the MOs used in 

this investigation are highlighted. Depletion of zebrafish sgk-1 a with 10 ng of either 

one of two distinct MOs did not cause any overt patterning defect up to 4 days of larval 

development.
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Fig. 4.11 Expression of zebrafish s#A-l a at 24 hpf. A, side view; B, dorsal 

view at the level of the hindbrain and posterior trunk. Arrowheads point at expression 

in the otic vesicles and arrows point at expression in the pronephric ducts.
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D. rerio (a) N I s N A A R H L L E G L L Q K D R T K R L G F T D  D F T E I K
D. rerio (b) N V s N A  G| R D L L E G L L H K D R T K R L G S K D  D F L E L K

H I F  F Si  Li  I
H  M F  F S P I
H S F  F S P I

M.  musculus N  W  D  D L I N K K I T P P F N P N  V S G P S D L R H F D  P E F T E E P V p s s I

D. rerio (a) N  W  D  D L N A K K L T P P F N P N V  T  G P N D L R H F D  P E F T D E P V p N S I
D. rerio (b) N W  D D L M A  K R I V P P F V P T V T G P T D L R H F D  P E F T H Lj P V s T S L

M.  musculus G R S P D  S I L V T A  S V K E A  A  E A  F L G F S Y A P P V D  S F L
D. rerio (a) G C S P D  S A L V  T S S I T E A T E A  F L G F S Y A P A M D  S Y L
D. rerio (b) - C  N T D  N L H V T S s V R E A  A  G A  F P G F S Y G P P S D  A F Q

Fig. 4.12 Alignment between zebrafish Sgk-1 a and b, and mouse Sgk-1 

proteins. |  Identical amino acids; similar amino acids.
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4.3 Discussion of the functional analysis of mouse Sgk

4.3.1 Regulation of Sgk expression

Sgk has a very interesting expression pattern at all stages examined, given that it is 

highly restricted within tissue domains in the early mouse embryo, within cell types in 

each tissue, and, unusually, displaying variability within the same cell type. The fact 

that the Sgk transcript has a short half-life allows for rapid regulation of its levels. We 

can only speculate on the significance of the restricted expression pattern of Sgk in the 

embryo given that Sgfc-null mice do not hint at an embryonic role for Sgk. A few 

noteworthy points are discussed next.

Sgk is upregulated in the nascent mesoderm, which could reflect one or several of the 

dramatic changes in cellular properties associated with the epithelial-to-mesenchymal 

transition that occur during mesoderm induction. It would be interesting to know if and 

how cell volume is altered in this process, for example. The nascent angioblasts, where 

Sgk is highly upregulated, are also a population of cells that have undergone an 

epithelial-to-mesenchymal transition. Is this a recurrent theme in Sgk expression? Is 

there a role for Sgk in this process? If so, is it linked to the role of Sgk as a cell survival 

kinase? In other words, is an epithelial-to-mesenchymal transition a stressful event for 

a cell, as defined by molecular criteria?

Sgk mRNA levels are higher in the endothelial cells lining mature veins than in the 

endothelial cells lining mature arteries; and are higher in the endothelial cells lining 

small capillaries than in the endothelial cells lining large vessels. Do these differences 

correlate with variations in the osmotic pressure to which endothelial cells are subject 

during their development?

The differential expression of Sgk in the peripheral and central retina could reflect the 

fact that the former lags behind in development relative to the latter (Furukawa et al., 

1997). Namely, at 11.5 dpc of murine development there is higher cellular 

proliferation in the the retinal periphery than in the remainder of the retina (Burmeister 

etal., 1996),
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4.3.2 Sgk targeting strategy

In studying the function of Sgk, our main experimental goal was to generate and analyse 

S'gfc-null mice. In the design of an Sgk targeting vector, several options were possible. 

Expression of Sgk in ES cells would allow the use a promoterless construct, which 

would be designed to place the positive selection gene in frame with the endogenous 

promoter after homologous recombination (promoter trap strategy). With such a 

construct the positive selection gene should only be expressed once homologous 

recombination took place, since random insertion events would only rarely place the 

selection gene in frame with another promoter. In order to adopt this strategy, the 

promoter of Sgk could not be part of the 5’ homologous arm. The 5’ UTR of Sgk is 

only 68 nts long and to have a 5’ homologous arm of at least 1 kb in a promoter trap 

strategy would require leaving intact the first 4 exons, which I did not want, especially 

since the 3 last exons would be part of the 3’ homologous arm. Moreover, a promoter 

trap method can only be applied safely to a gene that is expressed in all ES cells and not 

only in a subset of them, in order to assure colonisation of all lineages after injection 

into blastocysts, most importantly the germ-line. I did not test this.

Another decision to be made was whether a conventional or conditional targeting 

should be performed. I opted for the more simple conventional strategy since I was 

interested in the role of Sgk in early embryonic development.

In the design of my targeting vector I used both negative and positive selection 

cassettes. Only a small percentage of the cells containing random insertion of a 

construct containing a negative-selection gene actually express it, presumably due to 

position effects, so false positives are always encountered in this way (false positives 

occur less frequently in a promoter trap strategy).

4.3.3 Is there a role for Sgk in embryonic patterning?

Targeted mutation has so far failed to reveal a role for Sgk in embryonic patterning. 

Histological analysis of the skin, brain, skeletal muscle, heart, lung, liver, spleen, 

pancreas, intestine, colon, ovary, uterus, urinary bladder and kidney of bom mice failed 

to reveal any phenotype for Sgk deletion in mice (Wulff et al., 2002); and
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morphological inspection of zebrafish larvae depleted of Sgk protein also failed to 

reveal any notorious patterning defect up to 4 days (data not shown). Nonetheless, a 

role for Sgk in osmoregulation was found by challenging Sgk-null mice with NaCl 

deprivation (Wulff et al., 2002). This could mean that Sgk, with its highly sophisticated 

regulation that allows swift up- and downregulation, is engaged in adaptive responses to 

physiopathological triggers. This is in accord with Sgk induction and activation by 

many stress-inducing stimuli.

As with all genetic experiments, there is the possibility that another gene compensates 

for the loss of Sgk in targeted mice. This would likely be a gene encoding for a protein 

structurally and/or functionally related to Sgk, which might normally even display some 

functional redundancy with Sgk and be exacerbated in its absence. The most likely 

candidates are Sgk-2 and -3 and the PKB proteins. Between Sgk-2 and -3, the latter 

seems a stronger candidate for compensating Sgk-1 given their stronger similarity in 

terms of structure and expression profile (Kobayashi et al., 1999). As for PKB, it 

shares the same consensus target recognition sequence with Sgk and at least two 

substrates, Fox03a and B-Raf, are shared between the two kinases (Brunet et al., 2001; 

Zhang et al., 2001). Even if the phosphorylation efficiencies of Sgk and PKB at 

particular sites of particular targets differ, it would seem probable that one could take 

over the whole process if the other was missing. PKB-1- and PKB-2-null mice do not 

appear to have any developmental abnormalities. PKB- 1-null mice exhibit growth 

retardation as early as foetuses, are smaller, are less able to survive genotoxic stress and 

at least a few of tissues are more susceptible to apoptosis (Chen et al., 2001; Cho et al., 

2001b). PKB-2-null mice display an impaired response to insulin, in its ability to lower 

blood glucose levels (Cho et al., 2001a). Targeted deletion of PKB-3 has not yet been 

reported. It seems appropriate to analyse the effect of the PKB-1 and -2 composite 

mutations, which is surely underway, but also that of each and both of the PKB 

mutations with that of Sgk. This might uncover redundant roles for these proteins, 

downstream of phosphoinositide signalling, in embryonic patterning.

The existence of more than one zebrafish sgk-1 implies that the MOs used in this 

investigation might have only partially depleted Sgk-1 activity in the early zebrafish 

embryo. We do not know if the activities of zebrafish Sgk-1 a and b are equivalent and, 

if so, whether they are redundant or spatially and/or temporally complementary;
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alternatively, these activities could be co-regulatory or might have diverged into 

unrelated functions. With the availability of zebrafish ESTs representing sgk-1 b one 

can easily assess its expression pattern and with the availability of full-length sequence, 

one can design MOs to knock-down Sgk-1 b protein as well as Sgk-1 a and b together, 

and one can generate overexpression constructs. These experiments should allow the 

evaluation of whether zebrafish sgk-1 a and b are indeed redundant, complementary or 

functionally unrelated. The amenability of zebrafish to injection and multiple protein 

knocks-down could also prove very useful in assessing whether/which other proteins 

play a compensatory role when Sgk activity is absent. Namely, in testing the 

hypothesised compensatory role between several Sgk proteins and between Sgks and 

PKBs.
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Chapter 5

Functional screen of endoderm 
library genes with restricted expression

5.1 Introduction to the functional screen of endoderm library genes
5.1.1 Selection of clones to screen
5.1.2 Use of MOs

5.2 Results and discussion of the functional screen
5.2.1 Search for zebrafish orthologues of mouse genes
5.2.2 Expression of screened zebrafish molecules
5.2.3 Early phenotypes of zebrafish morphants screened

5.1 Introduction to the functional screen of endoderm 
library genes

5.1.1 Selection of clones to screen

Because of the time-consuming nature of generating targeted mutations in mice and the 

technical development of a rapid method for protein depletion in zebrafish, I decided to 

examine the function of some of the expression-restricted clones found in the whole- 

mount in situ hybridisation screen performed on mouse embryos.

Out of the 29 restricted clones identified in the whole-mount in situ hybridisation screen 

(Table 3.1), 7 have now been deleted in the mouse by targeted mutagenesis (Hildebrand 

and Soriano, 1999; Li et al., 1999; Elchebly et al., 1999; Wallace et al., 1999; 

Nishinakamura et al., 2001; Wulff et al., 2002; Batt et al., 2002; Kettleborough, 2002; 

Rana, 2003). Out of the remainder 22 genes, 5 are being analysed in Xenopus tropicalis 

by Dr. Amer Rana. I decided to identify zebrafish orthologues of the remaining 17 

clones and to deplete zebrafish embryos of the corresponding proteins, using MOs 

(Nasevicius and Ekker, 2000).

The Zebrafish Genome Project has greatly advanced over the past year 

("http://trace.ensembl.org/V In addition, there are -355,000 zebrafish ESTs published in 

GenBank. Taken together, these two sequence databases allow the rapid identification 

of zebrafish orthologues of known genes or genomic sequence for most genes.
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Using the protein sequence from other species as a query, I obtained othologous 

zebrafish sequences, which I assembled into contigs. I then compared the predicted 

zebrafish sequence to the non-redundant protein database using BLAST algorithms 

(http: //www. ncbi. nlm. go v/B LAST/).

5.1.2 Use of MOs

MOs are oligonucleotides in which the sugar-phosphate backbone has been modified to 

include 6-membered morpholine rings instead of (deoxy)riboses and 

phosphorodiamides instead of phosphates. These modifications render the 

oligonucleotides non-ionic and, most importantly, resistant to nuclease degradation 

(Hudziak et al., 1996). Therefore, MOs are extremely stable in vivo.

MOs have a high affinity for complementary RNA sequences (Stein et al., 1997) and 

can reliably hybridise with target RNA sequences (reviewed in Summerton and Weller, 

1997; Summerton, 1999). When bound to the region of translation initiation, MOs 

sterically prevent ribosome attachment to the mRNA and, consequently, inhibit 

translation. When bound to splice junctions, MOs prevent spliceosome attachment and, 

consequently, inhibit splicing.

MOs have been used to deplete gene products from cells in culture and have recently 

been successfully applied to deplete proteins from embryos of several species (Heasman 

et al., 2000; Nasevicius and Ekker, 2000; Howard et al., 2001; Kos et al., 2001; 

Mellitzer et al., 2002; Siddall et al., 2002). It is in zebrafish that the MO methodology 

has become well established and even routine among developmental biologists. In July 

2001, an entire issue of the journal Genesis reported many MO-phenocopies of known 

zebrafish mutations.

MOs are non-toxic so they display minimal unspecific activity and their excellent 

sequence specificity allows for predictable targeting (reviewed in Summerton, 1999). 

In the above-mentioned Genesis issue, the MO doses used, namely to phenocopy known 

mutations, were usually below 10 ng. This is the maximum dose of MO I have used in 

my studies.
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Although MOs have been used mainly to target translation initiation sites, successful 

targeted inhibition of splicing has been reported for zebrafish (Draper et al., 2001). 

This approach has a few specific applications or advantages. First, it can be used to 

selectively disrupt the protein product of a zygotic mRNA without affecting the product 

of the corresponding maternal transcript, which is already processed when deposited in 

the egg so will not be subject to splicing (Draper et al., 2001). Second, it can be used to 

knock-down a specific product of a gene with multiple splice variants that share the 

initiation of translation site. Furthermore, in the absence of an antibody to confirm 

depletion of the product of the targeted mRNA, a MO-derived aberrant splice form can 

be detected by RT-PCR allowing the confirmation of the MO activity and the 

acknowledgement of the abnormal product generated (Draper et al., 2001). Current 

knowledge does not yet allow us to predict the exact product generated by a splice MO. 

Blocking of a splice site might result in exon skipping but it might also result in the 

usage of a cryptic splice site that emerges in an intron or an exon. Nonetheless, as 

mentioned, the outcome can always be unequivocally assessed a posteriori by RT-PCR.

Considerations to take into account when designing a MO are the following: MOs are 

generally effective when designed to target anywhere in the 5’ UTR or the first codon, 

up to approximately 20 bases downstream of it; MOs should have little or no self­

complementarity, forming no more than 4 contiguous internal base pairing; MOs should 

have no more than 36% of G content or 3 consecutive Gs in order to dissolve well in 

aqueous solution; the longer the MO, the more efficient it should be so the maximum 

commercially available length, 25-mer, should be used whenever possible. When 

inhibiting a splicing event, targeting the splice donor has proved more successful than 

targeting the splice acceptor (www.gene-tools.com).

Controls that have been used for the analysis of a phenotype obtained by a MO, namely 

for the non-toxicity and specificity of the MO, are the following: injection of a standard 

control MO designed by Gene Tools LLC, which in the same concentration as the 

experimental MO should result in no observable phenotype; the use of another, non­

overlapping, MO targeting the same transcript, which should result in a similar 

phenotype; the use of a MO targeting the exact same region as the first but with 4-5 

mismatches, which should result in no observable phenotype; rescue of the MO 

phenotype by overexpression of an mRNA that is unsusceptible to the MO, coding for
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the protein that is being downregulated. An easy way to achieve the latter is to design 

the MO to target the 5’ UTR and to rescue with an RNA that does not comprise the 

targeted region. However, us and others have observed higher efficiency of targeting of 

particular mRNAs when the MO actually comprises the first codon than when it is far 

upstream of it so 5’ UTR targeting might compromise MO efficacy in the first place. A 

laborious alternative would be to design a MO that does span the first codon but then 

introducing mismatches into the cDNA from which the RNA is synthesised so that it is 

not targeted by that MO. Far easier is the rescue with an orthologous RNA from 

another species. Nonetheless, it should be noted that the RNA overexpression itself 

might cause a phenotype and/or that the RNA need to be stable enough to be able to 

rescue, both which could preclude the interpretation of the rescue experiment. In the 

few cases where antibodies are available, they are the best way to assess the 

effectiveness of protein knock-down achieved.

5.2 Results and discussion of the functional screen

5.2.1 Search for zebrafish orthologues of mouse genes

The 17 mouse genes for which I tried to identify zebrafish orthologues or paralogs are 

outlined in red (found by me) or green (found by Dr. Kettleborough) in Fig. 3.1 and are 

indicated in Table 5.1. They consisted of: tifl-fi, ptp(r) a, 14-3-3 e, embigin, lztr-\, 

claudin-6, neuronatin 2, pancortins Modules A and B (the mouse clone identified as 

restricted in the whole-mount in situ hybridisation screen could belong to either of the 

isoforms AMZ/pancortin-3 or BMZ/pancortin-1), calcyphosine, spl20, plu 1, nsa l, 

transformer 2(3, rho GEF 16, liv-1-related, and two novel genes whose sequence 

identifiers in the Beddington endoderm cDNA library are p7822b53 and t8130b59.

In order to block translation of the corresponding mRNAs in zebrafish embryos, 5’ end 

zebrafish sequence is necessary. Table 5.1 summarises the steps taken towards finding 

these sequences and, ultimately, designing the desired MOs.

Zebrafish orthologues or paralogs of 14 of the selected mouse genes were identified in 

the mRNA or EST databases. This was the case for ptp(r) o, 14-3-3 e , embigin, Iztr-1, 

claudin b and claudin-like (two paralogs of mouse claudin-6), pancortin Modules A
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Table 5.1 Steps in searching for zebrafish orthologues of selected mouse endoderm library genes.

Mouse ID Murine name Zebrafish
EST/cDNA*

Genomic
sequence0

5’ Notes 
RACE*§

MO§

r8220b57 tifl-$ -  zfish41361-436fll.plc

t7822bl0 ptp(r)o  AJ311886 Z35723-a4160f03.plc

k8709a20 14-3-3 e fdl7bl0 -

m8708a09 embigin fk62a01 —

m8708a39 Iztrl fj89h04 Z35725-a6648a02.pl c
zfishC-a1960e04.q 1 c

r8707a53 claudin-6 faa02a04
(claudin b) 

idem idem ft84hl0
(<claudin-like) 

t8417b56 neuronatin 2 —

s8129b58 pancortin-l (BMZ) — 

idem idem fr67hl2

idem pancortin-3 (AMZ) fd42d07

z06s004714

Y

Y

Sequence found could belong to any of several 
family members

5’ RACE from ptp(r) a-specific sequence was 
unsuccessful; other sequence available could 
belong to any of several family members

5’ end from ESTs 

5’ RACE successful

5’ RACE successful but recent ESTs reveal that 
protein is longer than previously thought so MO 
ordered does not block translation

— 5 ’ end from ESTs

— 5’ end from ESTs

— No zebrafish sequence found

— 5’ end from genomic sequence

— 5’ end from ESTs

— 5’ end from ESTs

N

N

Y

Y

Can
order
new

Can
order

N

Can
order

Y



m8708a22 calcyphosine — zfishC-a 1916g03 .pic — 5’ end from genomic sequence Y

idem idem fj05bl0 — Y 5’ RACE unsuccessful N

t7825b42 5/7120 fb55c01 
(spl20 a)

— Y 5’ RACE successful Y

idem idem fb93d06 
(spl20 b)

— N Can do 5’ RACE N

t8130b26 plul fc44hll 
(plul a)

— -- Can do 5’RACE N

idem idem fp32a03 
(plul b)

— -- Can do 5’ RACE N

k8710a07 nsa2 fb52h05 — -- 5’ end from ESTs Y

r8220b09 transformer 2 (3 fk31a01 — — 5’ end from ESTs Can
order

w8609b57 rho GEF 16 fp38h09 Y 5’ RACE successful but incomplete; 
5’ end from ESTs

Can
order

s8609b24 liv-1-related fcl2gl0 — Y 5’ RACE successful Can
order

p7822b53 Novel fy23a03 — Y 5’ RACE successful Y

t8130b59 Novel — — — No zebrafish sequence N

* Only one EST/cDNA per gene is indicated, which contains the most upstream coding sequence found.

0 Genomic clones are only indicated when they contain the most upstream coding sequence found and/or sequence used to design RACE primers.

* 5’-RACE was performed when sequence flanking the first codon was not found in EST or genomic databases.

— non-existent or non-applicable §Y, yes; N, no.



Functional screen in zebrafish of restricted endoderm library genes

and B, calcyphosine, sp 120 a and b, plul a and b (two paralogues of mouse spl20 and 

plul were found, which I named “a” and “b”, where “a” is the closest sequence), nsa2, 

transformer 2(3, rho GEF 16, liv-1 -related and novel p7822b53 (Table 5.1, zebrafish 

EST/cDNA column). It is not surprising that more than one zebrafish paralog of a 

single mouse gene was found in a few cases given that teleosts underwent an ancient 

duplication of their genome. When a putative orthologous zebrafish sequence was 

found using the mouse protein as a TBLASTN query, it was translated and used as a 

query in the BLASTP algorithm in order to confirm the orthology.

There are several zebrafish paralogs of mouse Claudin-6 (for a phylogenetic tree see 

Kollmar et al., 2001). The closest in sequence to mammalian Claudin-6 are zebrafish 

Claudin-a, Claudin-b and Claudin-like (there is currently some disorganisation as to the 

nomenclature of zebrafish Claudins).

The pancortin transcript present in the mouse endoderm library is not full-length and 

could represent either pancortin-1 or pancortin-3. The rodent pancortin locus contains 

two alternative promoters that result in the production of two distinct first exons (called 

Modules A and B in Danielson et al., 1994; see Nagano et al., 1998 for alternative 

nomenclature). The second exon of rodent pancortins is common to all transcripts 

(called Module M in Danielson et al., 1994; see Nagano et al., 1998 for alternative 

nomenclature) and there are two possibilities for the third exon (called Modules Y and Z 

in Danielson et al., 1994; see Nagano et al., 1998 for alternative nomenclature), which 

arises by alternative splicing. Thus, the rodent pancortin locus generates the four 

transcripts: AMY (pancortin-4), AMZ (pancortin-3), BMY (pancortin-2) and BMZ 

(pancortin-1) (Danielson et al., 1994). I endeavoured to target each of the zebrafish 

pancortin 5’ ends (A and B).

Some of the EST sequences identified included the first codon, allowing for immediate 

design of a translation-inhibition MO. This was the case for 14-3-3 8, claudin-b, 

pancortin Modules A and B, nsal, transformer 2p and rho GEF 16 (Table 5.1, Notes 

column).

For the genes for which the ESTs found did not include the first codon, or for which no 

ESTs had been found, zebrafish genomic sequence was searched with the mouse protein
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using a TBLASTN algorithm. No zebrafish sequence was found for neuronatin 2 or 

novel t8130b59. In the case of tifl-(3, genomic sequence constituted the only zebrafish 

sequence found; in two cases, pancortin Module B and calcyphosine, the search of the 

genomic database allowed the identification of putative paralogs of the mouse genes 

distinct from the ones identified in the EST database; in two other cases, ptp(r) o  and 

Iztr-1, the genomic sequence found lay upstream from the one identified with ESTs, 

although not containing the first codon, and was chosen for the design of 5’RACE 

primers (Table 5.1).

The cases where it was the genomic database that yielded sequence flanking the first 

codon were those of the alternative paralogs of the pancortin  Module B and 

calcyphosine (Table 5.1, Notes column).

For most cases where sequence flanking the first codon was not found through in silico 

methods, 5’RACE was attempted. The only cDNA for which this approach was not 

attempted was Tif-1(3, given that the only sequence found could belong to any of several 

family members. 5’RACE could have been attempted in these circumstances, where the 

different isoforms hopefully obtained would have been distinguished by sequencing. 

However, since the zebrafish genome project was evolving fast I waited for tif-113- 

specific sequence to appear, which it did in the duration of my work.

5’RACE was attempted for ptp(r) o, embigin, Iztr-1, the calcyphosine paralog identified 

by ESTs, spl20, rho GEF 16 and novel p7822b53. 5’RACEs were successful except 

for ptp(r) o  and the calcyphosine paralog identified by ESTs (Table 5.1, 5’RACE 

column). 5’RACE yielded sequence flanking the first codon of embigin, spl20, liv-1- 

related and novel p7822b53 (Table 5.1, 5’RACE column). For Iztr-1, recent ESTs 

revealed that the mouse cDNA is longer than originally thought so the 5’RACE 

zebrafish sequence obtained was incomplete. The 5’ end of the zebrafish ortholog was 

subsequently found in the EST database. For rho GEF 16, the 5’RACE sequence 

obtained was also incomplete but, used as a query for the EST database using the 

BLASTN algorithm, it also allowed the identification of the 5’end of this cDNA.

Given that the zebrafish genome project is underway at the minute, the in silico searches 

were performed regularly and up to the time when this study is being written. Some
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sequences were only found recently hence 5’RACE can now be performed where it 

could not before and some MOs that can now be ordered have not been studied 

(Table 5.1).

The cDNA sequences I identified during this investigation are presented in Appendix 3, 

along with the alignment between the predicted protein sequences of mouse and 

zebrafish orthologues/paralogs. The target sites of 5’RACE primers as well as those of 

MOs are also indicated when appropriate.

5.2.2 Expression of screened zebrafish molecules

When available, ESTs were ordered with the purpose of obtaining cDNA templates 

from which to synthesise antisense riboprobes. When neither EST nor 5’RACE cDNAs 

where not available, PCR was performed in order to obtain templates for riboprobes. 

This was the case for ptp(r) a ,  the calcyphosine and pancortin Module B paralogs 

identified in the genomic database, plul a and b paralogs and novel p7822b53.

Furthermore, PCR was used to generate templates specific for the pancortin Modules A, 

B- ESTs, B-genomic, Y and Z, as a means to assess the expression pattern of specific 

isoforms of the gene. All these PCRs were successful with the exception of the 

calcyphosine paralog identified in the genomic database. Several attempts to isolate this 

cDNA, including the use of distinct primer pairs, failed. The template used was a 

mixture of cDNA purified from zebrafish embryos/larvae of various stages, between the 

2-cell stage and 4 days. Other than technical difficulty, justifications for not isolating 

this cDNA could be that this calcyphosine isoform is not expressed at early stages of 

zebrafish development (up to 4 days; see Materials and Methods) or that the genomic 

sequence identified corresponds to a pseudogene.

The majority of genes analysed are expressed maternally. Ones that are not are the two 

isoforms of pancortin Module B, found in the EST or genomic databases, and possibly 

pancortin Module Z, sp\2Q a, sp\20  b and novel p7822b53, which were detected at 

levels just above background (data not shown). Expression of the pancortin Module B 

isoform identified in the EST database was not detected prior to shield stage.

162



Functional screen in zebrafish of restricted endoderm library genes

The vast majority of genes analysed are expressed ubiquitously or in a widespread 

manner at least up to early somite stages (data not shown), according to the definitions 

presented in Chapter 3, but by 24 hpf become restricted to a few tissues. Figure Fig. 5.1 

depicts the noteworthy expression patterns encountered and a brief description follows. 

The descriptions are based solely on the observation of whole-mount stained embryos; 

in some cases, confirmation and/or more detailed description of the tissues stained 

requires analysis of sections.

Zebrafish 14-3-3 e is maternally and ubiquitously expressed up to 24 hpf. However, at 

the 16-cell stage, a very clear intracellular mRNA localisation pattern was observed, 

where transcripts are greatly enriched close to the membrane region where contacts are 

established between the outer and the inner blastomeres (Fig. 5.1, A and B). This is not 

observed at the 8-cell stage (data not shown). In Xenopus Laevis, 14-3-3 8 mRNA has 

been reported to localise intracellularly to the animal half of vegetal cells (Bunney et al., 

2003). In the early mouse embryo, 14-3-3 s expression is also widespread but, unlike in 

fish, by 8.5 dpc, a stage comparable to zebrafish at 24 hpf, it becomes restricted to the 

forebrain, midbrain and branchial arches (Fig. 3.1, k8709a20).

Zebrafish embigin is maternal and ubiquitously expressed up to early somite stages, 

when it becomes downregulated in the trunk ectoderm (Fig. 5.1, C). Like mouse 

embigin , at late somite stages this transcript becomes restricted to the foregut 

primordium, and the head region (Fig. 5.1, D and Fig. 3.1, m8708a09).

Zebrafish Iztr-1 is maternal and ubiquitously expressed up to 24 hpf, when it becomes 

restricted to the head region, from forebrain to hindbrain (Fig. 5.1, E). This is 

analogous to the expression of mouse Iztr-1 at 8.5 dpc, although by 9.5 dpc the latter 

resolves to prominent expression specifically in the forebrain (Fig. 3.1, m8708a39). At 

24 hpf, zebrafish Iztr-1 transcripts are also found in the trunk mesoderm (Fig. 5.1, E).
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Fig. 5.1 Restricted expression patterns found in zebrafish screen. Expression 

patterns of individual genes are outlined in coloured line (either red or green); the colour 

of the outline is the same colour used to outline mouse orthologues in Fig. 3.1. In some 

cases pictures of a single clone carry on to the next row. The name of the gene whose 

expression is depicted is indicated within outlined box. Staging is indicated below each 

embryo. A, C, D, E, F, J, L, M, P, Q, U, V, W, X, AA, AB, AC, AD, AE, AF, are side 

views of the whole embryo; B is an animal view of the embryo depicted in A; G, K, R 

are frontal views of the embryos depicted in F, J, Q, respectively; H is a dorsal view of 

the head of the embryo depicted in F; S, Y, are dorsal views of the hindbrain of the 

embryos depicted in Q, X, respectively; I, N, T are dorsal views of the spinal cord of 

the embryos depicted in F, M, Q, respectively; Z is a dorsal view of the tail of the 

embryo depicted in X. Arrows in A and B point at 14-3-3 e mRNA enrichment in 

membrane region that establishes contact between the outer and inner blastomeres; 

arrow in C points at embigin mRNA downregulation in the ectoderm at early somite 

stage; arrows in I, M, N, Q, T, point at pancortin Module A, Module B (genomic) and 

Module Z mRNA enrichment in a subset of neurons/neuronal progenitors in the spinal 

cord; arrow in J  points at pancortin Module B (EST) expression in the blood islands; 

arrows in X, Z, AA, point at plul a and plu l b expression in the pronephric ducts; 

arrows in S point at pancortin Module Z expression in cranial ganglia; arrows in Y 

point at plul a expression in the otic vesicles; arrow in AB points at transformer 2 p in 

the ventral aspect of somites; arrow in AE points at exclusion of rho GEF 16 mRNA 

from the ectoderm at early somite stage.

164



Functional screen in zebrafish of restricted endoderm library genes

14-3-3 e

24 hpf

pancortin Module A

>f

24 hpf
Fig. 5.1 (Continued on next page)
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(Fig. 5.1 cont.; continued on next page)
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(Fig. 5.1 cont.; continued on next page)
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(Fig. 5.1 cont.)
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The expression of zebrafish pancortins was analysed by using probes to specific mRNA 

modules, which can be alternatively spliced to generate several distinct transcripts. A 

riboprobe for module M was not used since this is common to mouse pancortins from 1 

to 4. Furthermore, two distinct probes were used for module B, one derived from an 

EST and one obtained by PCR with primers designed from genomic sequence -  Module 

B (EST) and Module B (genomic), respectively. Zygotic expression of the latter 

differed from that of all other pancortin modules in that is was not ubiquitous at sphere 

stage, being expressed solely in inner vegetally-located cells (Fig. 5.2, L). All modules 

are restrictedly expressed by 24 hpf with the main site of expression being the brain. 

Module Y is already restricted to the anterior of the embryo by early somite stages 

(Fig. 5.1, O). Within the brain, module B (EST) is mainly confined to the forebrain 

(Fig. 5.1, J) whereas the others are more widespread (Fig. 5.1, F, M, P, Q). Modules A, 

B (EST) and Z have stronger expression in the ventral neural tube than in the dorsal 

neural tube (Fig. 5.1, G, K, R), although modules B (EST) and Z are also expressed in a 

subset of neurons present in the dorsal spinal cord (Fig. 5 .1 ,1, Q, T). This is also the 

case for module B (genomic) (Fig. 5.1, M, N). Additional sites of expression of these 

transcripts include the trunk mesenchyme, the blood islands for module B (EST) 

(Fig. 5.1, J) and a few of the cranial ganglia, for module Z (Fig. 5.1, S). The mouse 

riboprobe used hybridises to modules M and Z not allowing for a direct comparison 

between the expression of each module in fish and mouse. The expression of zebrafish 

pancortin module Z is the one that most resembles that of mouse pancortins -1 and/or 

-3, with the expression in the cranial ganglia (Fig. 5.1, S and Fig. 3.1, s8129b58).

Zebrafish calcyphosine (EST) is maternal and ubiquitously expressed up to late somite 

stages, when it becomes predominant in the foregut primordium and the brain (Fig. 5.1, 

U). Unlike in the mouse (Fig. 3.1, m8708a22), calcyphosine transcripts were not found 

to be upregulated in the fish organizer (data not shown).

Two paralogs of mouse sp\2Q (hnrpu) were found in zebrafish, sp 120 a and b. None 

appears to be maternally expressed but both are zygotically expressed ubiquitously up to 

24 hpf. At this stage, both s/?120 a and sp 120 b become restricted to the brain, with 

s/7120 b displaying higher levels of expression than sp 120 a (Fig. 5.1, V, W). This 

expression is similar to that of mouse s/?120 at 8.5 dpc (Fig. 3.1, t7825b42).
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Two paralogs of mouse plul were found in zebrafish, plul a and b. Both are maternal 

and ubiquitously expressed up to 24 hpf, when both transcripts become confined to the 

brain, foregut primordium and pronephric ducts (Fig. 5.1, X, Z, AA). Overall, plul b 

appears to be expressed at lower levels than plul a. Within the brain, plul b is more 

restricted than plul a, being expressed predominantly in the midbrain. In addition, 

plul a is expressed at high levels in the otic vesicles (Fig. 5.1, Y). Like the zebrafish 

paralogs, mouse plul is expressed in a widespread manner in the early embryo-proper 

and becomes enhanced in the brain by late somite stages (Fig. 3.1, t8130b26). Mouse 

plul expression was not detected in the pronephros, however.

Zebrafish transformer 2 |3 is maternal and ubiquitously expressed up to late somite 

stages, when it becomes restricted mainly to the forebrain (there is weak expression 

elsewhere in the neural tube) and to the ventral aspect of the somites (Fig. 5.1, AB). 

This differs from mouse transformer 2 p, which was detected in extraembryonic 

lineages of the early embryo (Fig. 3.1, r8220b09).

Zebrafish rho GEF 16 is maternal and ubiquitously expressed up to early somite stages, 

when it becomes downregulated in the ectoderm (Fig. 5.1, AC). By late somite stages 

transcripts are found in the ventral brain, from fore- to hindbrain, as well as in the 

foregut primordium and trunk mesenchyme (Fig. 5.1, AD). This is also the case for 

mouse rho GEF 16 (Fig. 3.1, w8609b57). The mouse gene, however, has very specific 

expression in the notochord (Fig. 3.1, w8609b57), which was not observed for the fish 

counterpart.

Zebrafish liv-l-related is maternal and ubiquitously expressed up to 24 hpf, when it 

becomes strongly restricted to the brain and foregut primordium (Fig. 5.1, AE). 

Expression of this gene in the brain at late somite stages is much stronger in fish than in 

mouse (Fig. 5.1, AE and Fig. 3.1, s8609b24).

Zebrafish novel gene p7822b53 is zygotically ubiquitously expressed up to 24 hpf, 

when it becomes strongly restricted to the brain (Fig. 5.1, AF). Unlike the mouse 

orthologue (Fig. 3.1, p7822b53), the zebrafish gene is not upregulated in the organizer 

(data not shown).
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Zebrafish claudin b and claudin-like genes were found to be ubiquitously expressed at 

all stages examined (data not shown). The early embryonic expression of zebrafish 

ptp(r) a  has been reported elsewhere (van der Sar et al., 2001).

5.2.3 Early phenotypes of zebrafish morphants screened

The MOs injected into zebrafish embryos and whose phenotype was assessed 

morphologically for up to 1-2 days were those for 14-3-3 e, embigin, claudin-b, 

pancortins containing module A or the module B found in the genomic database, the 

calcyphosine isoform identified in the genomic database, sp\20, nsa2 and novel 

p7822b53 (Table 5.1). Of these, only the module B pancortin MO and the calcyphosine 

MO produced no morphologically discernible phenotype by 24 h. The nsa2 phenotype 

was studied in some detail and is analysed in the next chapter. I now present the other 

phenotypes uncovered during this investigation.

Around 50% of zebrafish embryos morphant for 14-3-3 e present a YSL that is more 

irregular and that extends further vegetally from the blastoderm than in controls. In a 

lateral view, YSL nuclei are normally lined up, roughly parallel to the blastoderm 

leading edge (Fig. 5.2, A), and on a dorsal view they are further away from the leading 

edge (Fig. 5.2, B). In 14-3-3 s morphants, in both lateral and dorsal views, YSL nuclei 

are often less linearly aligned and are further from the leading edge than in controls 

(Fig. 5.2, G, H). Still, most 14-3-3 e morphants undergo epiboly at a normal rate. By 

early somite stages, 50% of the morphants have an elongated yolk cell and embryo 

relative to controls, which have a round yolk cell and circular embryos (Fig. 5.2, C, I). 

At 26 hpf most morphants are shorter, and overall delayed in development, present a 

wavy notochord, irregular somites, and strong oedema in the heart. Fig. 5.2, J -  L 

depicts a severe 14-3-3 e phenotype at 26 hpf. At 2 days of development all 14-3-3 8 

morphants display a clear motility defect whereby their twitches resemble tremors 

rather than tail flicks (data not shown). Also at this stage of development, a 14-3-3 8 

morphants display randomised heart looping (data not shown). This issue is being 

investigated further.

14-3-3 proteins are phosphoserine/threonine binding proteins that exist in both plants 

and animals and that have been implicated in a plethora of signalling events and
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Fig. 5.2 Early phenotype of 14-3-3 e zebrafish morphants. A -  F, zebrafish embryos injected with 10 ng Control MO; G -  L, zebrafish 

embryos injected with 10 ng 14-3-3 8 MO. A, B, G, H, embryos at 60% epiboly; C, I, early somite stage embryos; D -  F, J  -  L, 26 hpf embryos. 

A, C, D, G, I, J  are side views; B, H are dorsal views of the embryos depicted in A and G, respectively; E, K are dorsal views of the head of the 

embryos depicted in D and J, respectively; F, L are dorsal views of the trunk of the embryos depicted in D and J, respectively. Black arrowheads, 

YSL nuclei; white arrowhead, oedematous heart.
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biological processes, namely cell division and apoptosis (reviewed in Skoulakis and 

Davis, 1998; Fu et al., 2000; Tzivion et al., 2001; Yaffe, 2002). The literature is vast 

and the epsilon isoform, analysed here, as well as the others are ascribed pleiotropic 

roles. There are, however, a few very recent studies that should be mentioned in the 

context of the results presented here since they provide clues that can be followed up 

towards a deeper characterisation of the phenotype of 14-3-3 s-depleted fish. Mice 

deficient in 14-3-3 e have defects in brain development and neuronal migration (Toyo- 

oka et al., 2003). A first follow up on the motor phenotype displayed by the morphants 

could be an assessment of motor-neuron migration and/or axonal projections. The 

Drosophila orthologue of 14-3-3 s (also known as Par-5) has been shown to cooperate 

with Par-1 in the polarisation of the fly oocyte, which leads to the establishment of the 

antero-posterior axis of the embryo (Benton et a l, 2002). This could be particularly 

relevant towards understanding the left-right reversal phenotype of 14-3-3 e morphants 

given that very recent evidence points at a role for 14-3-3 e in the establishment of 

vertebrate laterality much earlier than previously suspected. Overexpression of 

Xenopus laevis 14-3-3 s leads to trunk laterality reversal (heterotaxia) and this was 

shown to act upstream of the earliest known left-right asymmetric gene in Xenopus, 

Xnr-l (Bunney et al., 2003). Surprisingly, antibodies raised specifically against the 

epsilon isoform revealed an asymmetric distribution of the protein in the two-cell stage 

embryo, where 14-3-3 e protein is found in one blastomere and not the other (Bunney et 

al., 2003). Nonetheless, the plane of the first cleavage in both frog and fish does not 

usually correlate with the future left-right axis of the embryo. Only a very small 

percentage of embryos injected in one blastomere at the two-cell stage displays a 

correlation between the plane of first cleavage and the future left-right axis of the 

embryo, such that the injected material is seen only on one half of the embryo at later 

stages.

At 24 hpf, zebrafish embryos morphant for embigin are considerably shorter than 

controls (Fig. 5.3, A, B). This is at least partly due to undulation of the morphant 

notochord (Fig., 5.3, B). Furthermore, at this stage there is extensive cell death in the 

morphant brain, as observed by tissue opaqueness / greyness in the area (Fig. 5.3, B), 

which is never observed in controls. Embigin is a highly glycosylated transmembrane 

protein, member of the immunoglobulin superfamily of proteins, that has been 

implicated in cell-substratum adhesion (Huang et al., 1993). There are very few
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functional studies of this protein. Our data suggest it is required for cell survival in the 

region of the 24 hpf embryo which expresses the transcript most abundantly.

Fig. 5.3 Early phenotype of embigin zebrafish morphants. A, control embryo 

at 24 hpf; B, morphant embryo at 24 hpf. Both embryos are shown in side views with 

anterior to the left.

Zebrafish claudin b morphants present a morphological phenotype as early as when 

controls are at 30% epiboly. At this time, the morphant blastoderm is still sitting on top 

of a flat yolk cell, with no sign of the yolk bulging upward nor of blastoderm epiboly 

(Fig. 5.4, A, B). By the time control embryos are at shield stage, the yolk cell of 

morphants does bulge slightly towards the animal pole but less so than a control at 30% 

epiboly (Fig. 5.4, C, D). At this time, the morphant blastoderm shows sign of radial 

intercalation in that it is thinner and has a larger surface area than a few hours before, 

but it only contacts the yolk cell around the periphery and blastoderm epiboly is barely 

detectable (Fig. 5.4, D). At this stage, in contrast to controls, morphant embryos are 

radially symmetrical (data not shown). As epiboly progresses, extremely slowly in 

claudin b morphants, radial symmetry is broken in the morphants and the dorsal side of 

the embryos becomes recognisable as thicker due to greater cell internalisation than in
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Fig. 5.4 Early phenotype of claudin b zebrafish morphants. All embryos are 

depicted in side views; C -  I, K, L, dorsal is to the right; J, anterior is to the left. 

A, control at 30% epiboly; B, claudin b morphant pictured at the same time as A; C, 

control at shield stage; D, claudin b morphant pictured at the same time as C; E, control 

at 60% epiboly; F, claudin b morphant pictured at the same time as E; G, control at 

75% epiboly; H, I two claudin b morphants pictured at the same time as G; J, control 

embryo at the two-somite stage; K -  N, four claudin b morphants pictured at the same 

time as J. Arrows point at gap between yolk cell and blastoderm in morphants. 

Dashed lines outline the blastoderm of two morphants that has detached from the 

majority of the yolk by 1 lhpf. All embryos were cultured in lx Danieau’s solution.
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the rest of the margin (Fig. 5.4, E -  I). Throughout these stages, the morphant 

blastoderm only contacts the yolk cell around the periphery and a fluid-filled space is 

clearly observable between the centre of the blastoderm and the yolk (Fig. 5.4, D, F, H, 

I, K, L). By the time controls are at the 2-somite stage, that is, at around 11 hpf, 

approximately half of the claudin b morphants have segregated the blastoderm from the 

majority of the yolk; two distinct masses become visible within a single chorion 

(Fig. 5.4, M, N). All claudin  b morphants die by 24 hpf. The above 

descriptions / phenotypes pertain to claudin b morphants reared in lx Danieau’s 

solution; the phenotype / survival time of these morphants are even more 

severe / shorter when embryos are reared in Embryo Water (data not shown).

Claudins are transmembrane proteins that are located at the tight junctions of epithelial 

and endothelial tissues. They are part of a scaffolding complex that links the tight 

junction components to the actin cytoskeleton. There are at least 18 Claudins in humans 

and many display restricted expression patterns, which is presumed to underlie 

differences in permeability among distinct epithelia and endothelia (reviewed in 

Heiskala et al., 2001). Despite being ubiquitously expressed in the early zebrafish 

embryo, the phenotype of Claudin b depletion is suggestive of a primordial role for this 

protein in regulating contact / adhesion between the blastoderm and the yolk cell, more 

than between blastoderm cells. In the most severely affected embryos, where 

blastoderm and yolk become segregated, blastoderm cells maintain contacts and round 

up in a ball (Fig. 5.4, M, N).

Depletion of module A pancortins in zebrafish results in epiboly delay, as early as when 

controls are at 40% epiboly. At this stage, the yolk cell of morphants domes up less 

than that of controls and the morphant blastoderm has undergone less spreading and 

thinning over the yolk than that of controls (Fig. 5.5, A, B). By the time controls are at 

shield stage, that is, when the shield becomes recognisable as a thickening on the dorsal 

side of the embryo (Fig. 5.5, C, D), morphants are still a little delayed in their epiboly, 

do not yet present an unequivocal shield, and present an undulating blastoderm (Fig. 

5.5, E, F). A little later, when controls are at approximately 60% epiboly, the dorsal 

side of morphants becomes identifiable, although epiboly is still delayed and the 

blastoderm is still irregular in appearance (Fig., 5.5, G, I). An animal view of 

morphant embryos at this stage shows very irregular positioning of the blastoderm cells,
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where some bulge out more than others, in contrast to controls embryos, where cells 

outline a smooth surface (Fig. 5.5, H, J). By early somite stages, morphant embryos 

have a grossly normal appearance, although with some delay in somitogenesis 

(approximately 1 somite in delay, that is, 20 min) and less antero-posterior extension 

(Fig. 5.5, K, M). A closer look at the brains of these embryos reveals signs of cell death 

in morphants: the brains look slightly grey and cell blebbing is observed (Fig. 5.5, L, 

N). At 24 hpf, a very severe phenotype is observed in module A pancortin morphants. 

The most obvious features of the phenotype consist of extensive cell death throughout 

the morphant brain, apparent by black tissue coloration, and very short body axis 

compares to controls (Fig. 5.5, Q -  X). There is also often cell death throughout the 

neural tube and gut (Fig. 5.5, Q, U, W) and in a few less affected embryos it can be seen 

that the somites are U rather than chevron shaped (Fig. 5.5, S).

Fig. 5.5  Early phenotype of Module A pancortin zebrafish morphants. A, 
C -  D, G -  H, K -  L, O -  P, control embryos; B, E -  F, I -  J, M -  N, Q -  X, module A 

pancortin morphants; Picture O in this figure is the same as picture A in Fig. 5.3 since 

these embigin and module A pancortin experiments were done in parallel. A, control 

embryo at 40% epiboly; B, morphant embryo depicted at the same time as A; C -  D, 

control embryo at shield stage; E -  F, morphant embryo depicted at the same time as C 

-  D; G -  H, control embryo at 60% epiboly; I -  J, morphant embryo depicted at the 

same time as G -  H; K -  N, embryos at the 1 -  2 somite stage; O -  X, embryos at 24 

hpf. A, B, C, E, G, I, K, M, O, Q, S, U, W, are side views; D, F, H, J, are animal 

views of embryos in C, E, G, I, respectively; L, N, P, R, T, V, X, are dorsal views of 

the brain of embryos in K, M, O, Q, S, U, W, respectively; in C -  D, G -  J, dorsal is to 

the right; in K -  X, anterior is to the left. Red arrows in K and M point at anterior and 

posterior limits of the embryos depicted; black arrowhead in N points at darker 

coloration of morphant brain, compared to control; white arrowheads in N point at cell 

blebbing in brain; black arrows in Q, U, W point at cell death in the neural tube; white 
arrows in Q, U, W point at cell death in the gut region.
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Pancortins belong to the olfactomedin family of proteins, where olfactomedin is a 

glycoprotein abundantly present in the olfactory epithelium mucous, mostly in a 

homodimer form (Snyder et al., 1991). Some pancortins are extracellular matrix 

proteins (this is the case for those containing module Y) while others contain and 

endoplasmic reticulum localisation signal (this is the case for those containing module 

Z). While the BMZ isoform has been reported to localise to the Golgi apparatus of rat 

kidney cells (Kondo et al., 2000), it has been reported to be secreted in chick embryos 

(Moreno and Bronner-Fraser, 2001). There have been few functional studies of this 

family of proteins. Overexpression of BMZ / Noelin-1 in the chick causes excess neural 

crest migration (Barembaum et al., 2000) and is able to induce the neurogenic genes 

Xngnr-1 and XneuroD in Xenopus animal caps (Moreno and Bronner-Fraser, 2001). No 

loss-of-function experiment has been reported for this family of proteins but our own 

results implicate it in neuronal survival.

Zebrafish sp\2Q a morphants display a morphologically detectable phenotype by early 

somite stages. At these stages, brain development looks delayed relative to controls 

(Fig., 5.6, B, J) and the body axis is positioned with a curvature atop the yolk such that 

the embryos have more yolk to one side than to the other instead of being positioned on 

the yolk in a bilateral symmetric way like controls (Fig. 5.6, C, K). By 28 hpf the 

antero-posterior axis of morphants is shorter than that of controls, the tail is more

Fig. 5.6 Early phenotype of spl20 a zebrafish morphants. A -  H, control 

embryos; I -  P, sp 120 a morphants. A -  C, I -  K, embryos at the 6-somite stage; D -  F, 

L -  N, embryos at 28 hpf; G, H, O, P, 2 days old embryos. A, D, G, I, L, O are side 

views with anterior to the right; B, E, J, M are dorsal views of the heads of the embryos 

depicted in A, D, I and L, respectively, with anterior to the right; F, H, N, P are frontal 

views of the embryos depicted in D, G, L, O, respectively, with anterior to the right; C, 

K are ventral views of the embryos depicted in A and I, respectively, with anterior to 

the left. Dashed lines in C and K illustrate the antero-posterior orientation of the 

embryos depicted; arrows in E and M point at the anterior end of the telencephalon; 

arrowhead in G points at haemoglobin-containing red blood cells in control embryo.
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curved downwards than that of controls and the morphant notochord is wavy, unlike in 

controls (Fig. 5.6, D, L). At this stage, the morphant brain and eyes are smaller and 

look undeveloped compared to that of controls, namely with the retina being less 

pigmented (Fig. 5.6, E, F, M, N). Furthermore, the sp\20 morphant telencephalon is 

protuberant (Fig. 5.6, E, M, arrow). By 30 hpf, few blood cells are visible in these 

morphants (data not shown). At 2 days of development, the excessive body curvature 

and notochord waviness of morphants have recovered to a wild-type appearance 

(Fig. 5.6, G, O) and blood cells are seen circulating throughout the embryo (data not 

shown). However, at this stage spl20 morphants are clearly smaller than controls in all 

dimensions (Fig. 5.6, G, H, O, P) and blood development is at least delayed, since no 

signs of hemoglobin are visible, unlike in controls (Fig. 5.6, G arrowhead). 

Furthermore, morphants have impaired yolk extension and ragged fin folds (Fig. 5.6, G, 

H). Spl20 is a nuclear scaffold protein that binds the matrix attachment region (MAR) 

stretches of DNA (Tsutsui et al., 1993). To our knowledge, ours is the only functional 

approach to studying this protein in the context of a whole organism.

At early segmentation stages, zebrafish morphant for the novel gene p7822b53 present a 

protuberant telencephalon (Fig. 5.7, A, H) but by 28 hpf telencephalon protuberance is 

no longer visible in morphants (data not shown). At 28 hpf, the antero-posterior axis of 

morphants is slightly shorter than that of controls, and this might be attributable to what

Fig. 5.7 Early phenotype of novel gene ‘p7822b53’ zebrafish morphants.
A -  G, control embryos; H -  N, p7822b53 morphants; Pictures E and F in this figure 

are the same as pictures G and H in Figure 5.6, since these ^pl20 a and novelp7822b53 

experiments were done in parallel. A, H, embryos at the 6-somite stage; B -  D, I -  K, 

embryos at 28 hpf; E -  G, L -  N, 2 days old embryos. B, E, I, L, are side views with 

anterior to the right; A, H, are dorsal views of the head, with anterior to the right; C -  

D, F -  G, J -  K, M -  N, are frontal views of the embryos depicted in B, E, I, L, 

respectively, with anterior to the right. White arrowheads in A and H point at the 

anterior end of the telencephalon; arrows in C and J point at optic recesses; black 

arrowheads in D, G, K, N, point at heart region: heart tube in D; looped heart tube in 

G, absence of heart tube in K, looping heart tube in N.
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appears to be a compressed tail tip (Fig. 5.7, B, I). In contrast to controls, the morphant 

retina is not yet pigmented at this stage, and the optic recesses are clearly wider in 

morphants than in controls (Fig. 5.7, C, J). By 28 hpf, the heart tube is beginning to 

form in control embryos but not in p7822b53 morphants (Fig. 5.7, D, K). This could 

partly explain the observation of greatly reduced circulation in morphants as compared 

to controls at this stage, both in terms of number and speed of blood cells (data not 

shown). By 2 days of development, a heart tube has formed in morphants but it is 

developmentally delayed with respect to that of controls. While the morphant heart is 

starting to loop, that of control has already undergone looping (Fig. 5.7, G, N). In 

contrast to what is observed in controls, between 24 and 48 hpf of p7822b53 morphant 

development, blood cells pumped in one direction are seen to fall back to where they 

were pumped from, suggesting impairment in vessel valve function (data not shown). 

At 2 days of development, morphants are slightly smaller than controls in all 

dimensions (Fig. 5.7, E, F, L, M). The protein encoded by this gene presents no known 

motifs.

In this small-scale screen, injection o i l  19 MOs targeting zebrafish transcripts resulted 

in morphologically discernible phenotypes. Due to time restrictions, the phenotypes 

described were necessarily superficially analysed. This was the nature of our screen: to 

use MOs as a quick means of functionally screening proteins, from which to select 

one(s) to study in further detail. With this as an aim, this screen was successful. A few 

interesting phenotypes could be picked up in this way, and possibly more if a few 

staining analyses were performed on the morphants. By far the most time-consuming 

steps in this project were the screening of the incomplete zebrafish genome and 

transcriptome, both by in silico and molecular methods. Once the zebrafish genome is 

completed, in the near future, studies like this one will be greatly facilitated.
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Chapter 6
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6.1 Introduction to the functional analysis of zebrafish nsal

6.1.1 Nsa2 is required for ribosome biogenesis
6.1.2 Ribosome biogenesis in brief
6.1.3 Mutations in ribosomal proteins lead to the Minute phenotype in flies
6.1.4 Minute growth rates
6.1.5 Some Minute phenotypes arise by maternal effect
6.1.6 Minute cell proliferation and cell size
6.1.7 Minute morphological defects
6.1.8 Competition between Minute and wild-type cells

6.2 Results of the functional analysis of zebrafish nsal

6.2.1 Nsa2 is highly conserved among eukaryotes
6.2.2 In zebrafish as in mouse, nsal is mainly expressed in endodermal and mesodermal 

derivatives
6.2.3 Depletion of zebrafish Nsa2 slows DEL epiboly
6.2.4 Embryos lacking nsal have patterning defects
6.2.5 The epiboly phenotype of nsal is analogous to that of Minute ribosomal proteins
6.2.6 Loss of Nsa2 and Minute Rps produce similar morphological defects
6.2.7 Is the fly orthologue of nsal a Minutel
6.2.8 Phenotypes of nsal morphant cells

6.2.8.1 Cells morphant for nsal undergo apoptosis
6.2.8.2 TEM study of nsal morphant cells of the epiboly-stage zebrafish embryo

6.3 Discussion of the functional analysis of zebrafish nsal

6.1 Introduction to the functional analysis of zebrafish nsal

Depletion of the Nop7 associated protein 2 (Nsa2), causes a gastrulation phenotype in 

fish. Mutations producing gastrulation defects are rarely observed in zebrafish 

mutagenesis screens (Driever etal., 1996; Haffter and Nusslein-Volhard, 1996; Golling 

et al., 2002). As my main interest in the mouse screen was to identify genes important 

for early development, I focused my efforts on understanding how Nsa2 depletion leads 

to the gastrulation defects observed.

6.1.1 Nsa2 is required for ribosome biogenesis

Mammalian orthologues of Nsa2 are present in the sequence databases with names that 

reflect the ways researchers have encountered the protein. The human protein has been
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called TINP1, for TGF ^-induced nuclear protein 1, or HCLG1, for hairy cell leukaemia 

gene 1, given that it lies adjacent to a chromosome breakpoint found in this disease (Wu 

et al., 1999); the mouse protein has been called Lnr42, for L-NAME-related protein 42, 

where L-NAME is an arginine analogue that blocks nitric oxide synthase. The only 

functional analysis of this protein published concerns the yeast orthologue, which has 

been named Nsa2, for Nop7 associated protein 2 (Hampichamchai et al., 2001), where 

Nop7 is a nucleolar protein required for the biogenesis of the 60S (large) ribosomal 

subunit (Adams et al., 2002). I am using the designation nsa2 for all the orthologues of 

this gene and Nsa2 for the proteins they encode.

Yeast nsal is an essential gene (Winzeler et al., 1999) and Nsa2 has been implicated in 

the biogenesis of the 60S eukaryotic ribosomal particles. A yeast mutant strain lacking 

Nsa2 has fewer free 60S ribosomal subunits and accumulates 40S subunits stalled at 

initiation codons, presumably due to the absence of sufficient functional 60S subunits to 

proceed with translation (Hampichamchai et al., 2001). Nsa2 is nuclear, although it is 

not specifically nucleolar as are many proteins involved in ribosome biogenesis. Given 

the evolutionary conservation of Nsa2 in eukaryotes, it is likely that Nsa2 is also 

essential for 60S ribosomal subunit formation in vertebrates.

6.1.2 Ribosome biogenesis in brief

Proliferating eukaryotic cells expend 80% of their energy generating the protein 

synthesis apparatus (reviewed in Schmidt, 1999). How much a cell invests in 

generating a functional ribosome has only just been appreciated. In the yeast 

Saccharomyces cerevisiae, systematic gene deletion and the use of the tandem affinity 

purification protocol (Rigaut et al., 1999) have identified dozens of proteins involved in 

the process (reviewed in Warner, 2001; Fatica and Tollervey, 2002). Nearly all of these 

proteins have mammalian counterparts (reviewed in Warner, 2001). Among them, 

approximately 80 are ribosomal proteins (Rps), part of the mature, functional, ribosome, 

and twice as many, including Nsa2, are non-Rps, associating transiently with immature 

ribosomal particles (reviewed in Venema and Tollervey, 1999; Fatica and Tollervey, 

2002).

Ribosome synthesis occurs mainly in the nucleolus, where rRNA genes are transcribed.
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The proportion of the nucleus occupied by the nucleolus is a good indicator of the level 

of protein synthesis of a cell and varies greatly reaching up to 25 % in highly 

synthesising cells (reviewed in Alberts et al., 2002). Nevertheless, there are late 

maturation steps that occur in the nucleoplasm and cytoplasm. Nsa2 is nuclear but not 

specifically nucleolar, consistent with a proposed role in late 60S subunit maturation 

(Hampichamchai et a l, 2001; reviewed in Fatica and Tollervey, 2002).

The known non-Rps involved in ribosome biogenesis possess several activities. For 

example, the exosome, which contains at least 11 proteins, has a 3’-»5’ exoribonuclease 

activity; an RNA helicase is composed of at least 16 proteins; other proteins covalently 

modify rRNA and assemble the particles (reviewed in Venema and Tollervey, 1999; 

Tanner and Linder, 2001; Venema and Tollervey, 1999; Warner, 2001; Fatica and 

Tollervey, 2002). In addition, many rRNA modifications are performed by numerous 

small nucleolar RNAs (snoRNAs) of which there are over 100 and which in turn 

associate with specific proteins (snoRNPs) (reviewed in Venema and Tollervey, 1999).

Only recently has the complexity and highly ordered nature of ribosome synthesis been 

recognised. Mutational analysis of non-Rp components is an area of intense research. 

Systematic mutations should reveal the role of each component and tell us how 

ribosome synthesis is regulated. In crude terms, most of the RNA helicases are essential 

(reviewed in Venema and Tollervey, 1999) but among other non-Rps recently identified 

there are both essential and non-essential proteins (Hampichamchai et al., 2001).

6.1.3 Mutations in ribosomal proteins lead to the Minute phenotype in 
flies

In Drosophila, mutations in 17 of the 53 identified Rps (The FlyBase Consortium, 

2003) give rise to the Minute phenotype, characterised by frequent dominant small body 

size of adults (from which the name of the phenotype is derived), dominant slowed 

larval development, dominant slowed cell cycle, dominant short and thin bristles, and 

recessive lethality at around the time of egg hatching or early first-instar larva (Schultz, 

1929; reviewed in Kay and Jacobs-Lorena, 1987 and Lambertsson, 1998). In addition, 

many Minutes display other dominant morphological phenotypes, such as reduced 

fertility, reduced viability, rough eyes and etched tergites (reviewed in Kay and Jacobs 

Lorena, 1987; Lambertsson, 1998). Also, a few atypical Minutes are homozygous
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viable (Lambertsson, 1998).

Overall, Minute phenotypes are nearly identical although they differ in strength 

(reviewed in Lindsley and Zimm, 1992; Lambertsson, 1998). In general, Minutes are 

non-additive, showing double or triple heterozygous phenotypes that are no more severe 

than single heterozygotes. This suggests that the Minute genes encode functionally 

similar products (Schultz, 1929, reviewed in Kay and Jacobs-Lorena, 1987; 

Lambertsson, 1998). There are approximately 55 Minute loci and we still do not know 

the molecular nature of most of the mutations (reviewed in Lambertsson, 1998).

All Minute loci identified consist of mutations in Rps (Kongsuwan et al., 1985; Watson 

et al., 1992; Hart et al., 1993; Melnick et al., 1993; Andersson et al., 1994; Cramton and 

Laski, 1994; McKim et al., 1996; Schmidt et al., 1996; Saeboe-Larssen and 

Lambertsson, 1996; Saeboe-Larssen et al., 1997; Reynaud et al., 1997; van Beest et al., 

1998; Torok et al., 1999; Kronhamn and Rasmuson-Lestander, 1999; The FlyBase 

Consortium, 2003) but several Minute-like phenotypes have been characterised that 

consist of mutations in other genes. For example, rRNA deficiencies in the mutants 

mini (min) and bobbed (bb) produce a similar phenotype, the severity of which depends 

on the number of rRNA repeats deleted (reviewed in Lambertsson, 1998) and so do 

mutations in two enzymes of the polyamine biosynthetic pathway (Larsson and 

Rasmuson-Lestander, 1997; Larsson and Rasmuson-Lestander, 1998). In all cases, 

however, there is the common outcome of translation impairment. It is therefore a 

reasonable notion that essential genes involved in ribosome biogenesis are Minute 

candidates (Kay and Jacobs-Lorena, 1987).

There are at least 53 Rps identified in Drosophila (The FlyBase Consortium, 2003). 

Out of the 36 not already identified as Minute loci, there are mutant alleles for only 

eight. Mutant alleles for four of these Rps have been described as recessive-lethal, one 

is male and female sterile, and three have no published phenotypic information. It is 

plausible that detailed phenotypic analysis of these mutants might reveal them to be 

Minute loci. Many Rps map cytologically at or near the sites of uncloned Minute loci 

(reviewed in Lambertsson, 1998), although this could be a consequence of the large 

number of Rps. The fact that most Minute loci are deficiencies could explain the 

disparity between the number of Rps (~80 in all eukaryotes) and the number of Minute
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loci. Several Minute deficiencies probably encompass more than one Rp, or more than 

one protein capable of producing a Minute phenotype when mutated, not all of which 

have even been recognised in Drosophila. This has hampered the identification of all 

Minute loci through complementation and/or rescue experiments. Also, it is likely that 

many Minute phenotypes have been overlooked, categorized simply as “recessive- 

lethal” phenotypes.

There is at least one Rp that does not produce a Minute phenotype when depleted. The 

P-element mutation fs(3)02729 disrupts the RpL15 gene, rendering homozygous 

females nearly sterile (reviewed in Lambertsson, 1998). Two other loci, rpS14a and 

rpS14b, which are nearly identical and localised in tandem in the Drosophila genome, 

may be responsible for the M(1)7C Minute phenotype. A deletion that removes the two 

genes, however, does not display any visible phenotype when heterozygous and is lethal 

when homozygous (Dorer et al., 1991).

In plants, four mutations have been identified in Rp-coding genes. Unlike Drosophila, 

three of these mutations are recessive, but one does show heterozygous growth 

retardation as well as floral and vascular defects in addition to homozygous embryonic 

lethality (Van Lijsebettens et al., 1994; Revenkova et al., 1999; Ito et al., 2000; Weijers 

et al., 2001).

6.1.4 Minute growth rates

Most Minute mutants develop slower at all stages than wild-type Drosophila. For 

example, M(1)7C embryos hatch 2 -  3, 4 and 6 - 8  days later than wild-type embryos, 

depending on whether they are reared at 29°C, 25°C or 17°C, respectively (Andersson 

and Lambertsson, 1990). Several homozygous Minutes present an embryonic 

phenotype that consists of slower development of the midgut, with yolk frequently 

remaining in its lumen, followed by hatching of considerably smaller than normal larvae 

(Farnsworth, 1957b; Farnsworth, 1957a; reviewed in Kay and Jacobs-Lorena, 1987). 

Larval development takes 4 days / 96 h at 25 °C in wild-type Drosophila. To reach an 

identical stage to wild-type larvae, Minute larvae can take several additional hours or 

days (Andersson et al., 1994). M(2)58F1 larvae reach pupation on average 9.9 h later 

than wild-types for males, and 13.3 h later for females (Brehme, 1939); M(3)95A
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heterozygous for a moderate allele of rpS3, which causes rpS3 mRNA levels to be 

reduced by 30%, have a prolonged larval development by ~16 h whereas heterozygotes 

for a strong allele, which causes rpS3 mRNA levels to be reduced by 40%, have a 

prolonged larval development by ~54 h; when the moderate allele, of M(3)95A is 

homozygous, rpS3 mRNA levels are reduced by 60% and larval development is 

prolonged by up to 80 h (Farnsworth, 1957a; Saeboe-Larssen et al., 1998). Hence, 

levels of rpS3 mRNA and delay in larval development are strongly correlated. The 

pupal phase of M(3)95A mutants lasts 12 - 21 h longer than wild-type (Brehme, 1939).

6.1.5 Some Minute phenotypes arise by maternal effect

Most Minute phenotypes arise by zygotic effect. In several cases, however, Minute 

females but not Minute males show impaired fertility (for example, Schmidt et al., 

1996; reviewed in Lindsley and Zimm, 1992) or barely produce Minute progeny (for 

example, Andersson and Lambertsson, 1990). When progeny are produced, mutant 

phenotypes are observed in both wild-type and mutant offspring. These include smaller 

eggs, abnormal egg shape, non-hatching and late embryonic lethality, abdominal 

segmentation defects including fusion and deletion, fused tergites and missing or 

defective legs and halteres (Farnsworth, 1957a; Kongsuwan et al., 1985; Boring et al., 

1989; Andersson and Lambertsson, 1990).

6.1.6 Minute cell proliferation and cell size

Minute mutant cells proliferate slower than wild-type cells (Morata and Ripoll, 1975). 

At least in some of the mutants, the ratio of Minute larval developmental time to that of 

non-Minute siblings is similar to the ratio of Minute cell proliferation rate to that of non- 

Minute cells in the wing discs (Morata and Ripoll, 1975). Thus, it is possible that a 

large component of the deceleration in development of Minute mutants is due to 

reduced cell proliferation rate (Morata and Ripoll, 1975).

For several Minute mutations, adult mutants reach the same size as their wild-type 

counterparts. This is paralleled at the cellular level where in most cases Minute cells are 

the same size as wild-type cells (Bryant and Simpson, 1984; Neufeld et al., 1998). This 

must mean that (slower) cell growth and (slower) cell division are well coupled in these 

flies. In some cases, however, Minute adults are smaller than wild-type (M(2)21AB,
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M(2)58FI, M(3)S35, rpS3). Several experiments suggest that this is caused by a 

decrease in cell size rather than cell number (Brehme, 1941a; Brehme, 1941b; reviewed 

in Farnsworth, 1957b; Lindsley and Zimm, 1992; Lambertsson, 1998). Flies deficient 

in RpS6 kinase (S6K) also show a severely reduced body size, which is attributed to 

smaller, by ~30%, rather than fewer cells (Montagne et al., 1999). Mice deficient in 

S6K are smaller than wild-type, especially during embryogenesis but this size difference 

is largely overcome by adulthood (Shima et al, 1998; reviewed in Kozma, 2002). In 

S6K'1' mutant mice, pancreatic p cells are reduced in size but not in number (Pende et 

al., 2000).

In mammalian cells RpS6 phosphorylation by S6K is induced by mitotic factors, 

whereas dephosphorylation occurs when proliferation is arrested (reviewed in Sturgill 

and Wu, 1991). RpS6 phosphorylation can alter translation patterns (Thomas and 

Luther, 1981; Palen and Traugh, 1987) and is thought to increase the translation of 

mRNAs containing terminal oligopyrimidine tracts (5’-TOPs) (reviewed in Thomas and 

Hall, 1997; Edgar, 1999). These 5’-TOPs are ubiquitous in the mRNAs coding for Rps, 

are present in many translation factors and are rare in other mRNAs. Therefore, RpS6 

phosphorylation favours the production of the translation apparatus (Meyuhas et al., 

1996; reviewed in Edgar, 1999; Meyuhas, 2000).

Paradoxically, RpS6 is involved in both the promotion and the inhibition of 

proliferation. The fly rpS6 gene was originally named aberrant immune response 8 

{air8) because, in addition to strong growth retardation of hemizygotes, larvae display 

large melanotic tumours that result from increased cell proliferation in some 

hematopoietic cells. This phenotype is not seen in other Minute mutants and suggests 

that RpS6 may function as a tumour suppressor in addition to its role in protein 

synthesis.

In addition to proliferation, RpS6 plays a role in the control of cell size. The 

hematopoietic organs of larvae carrying the hen alleles of rpS6 have abnormally large 

cells as well as a much greater number of cells (Stewart and Denell, 1993). Similarly, 

in mice with a conditional null mutation of rpS6, livers regenerate to normal size upon 

partial hepatectomy by cell growth rather than by proliferation as in wild-type livers 

(Volarevic et al., 2000). Mutant liver cells show decreased proliferation that is thought
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not to be a direct consequence of decreased translation given that the translationally- 

regulated proteins p21CIP1 and Cyclin D1 show no difference in levels relative to wild- 

type cells (Volarevic et al., 2000). In addition, RpS6 mutant liver cells are able to 

synthesise proteins and grow extensively (Volarevic et al., 2000). Therefore, the 

conditional mutation seems to impart a specific failure in a checkpoint that allows cell 

cycle progression. The failure in cell cycle progression has been attributed to a block in 

cyclin A and cyclin E expression (Volarevic et al., 2000), essential for progression 

between G1 and S phase (Girard et al, 1991; Ohtsubo et al., 1995).

A role for ribosomal dysfunction in cancer has recently been put forward through the 

study of Dyskeratosis Congenita (DKC), a rare fatal genetic syndrome characterised by 

premature ageing, severe anaemia due to bone marrow failure, nail dyskeratosis, skin 

hyperpigmentation and cancer (Ruggero et al., 2003). DKC is caused by mutations in 

the DKC1 gene (dyskerin), which is a pseudouridine synthase, an enzyme that mediates 

post-transcriptional modifications of rRNAs by converting uridine residues into pseudo­

uridines, and a component of telomerase. Although dyskerin is involved in telomere 

regulation, many of the phenotypes of DKC1-null mice appear despite telomere length 

(Ruggero et al., 2003). DKC1 mutant mice develop tumours during their lifetime in 

50% of cases, suggesting that DKC1 is a tumour-suppressor. Cells derived from DKC1 

mutant mice are hypersensitive to drugs that inhibit translation and undergo apoptosis 

much more readily than wild-type cells.

6.1.7 Minute morphological defects

Tissue-specific phenotypes observed in Minute mutants are generally explained by an 

exceptional dependence of the tissue on protein synthesis, as with the small bristle 

phenotype and impaired fertility. Alternatively, the given locus may have a non- 

ribosomal role in the affected tissues. Several Rps, such as RpS6, are known to have 

extra-ribosomal functions (reviewed in Wool, 1996). Generally, the extra-ribosomal 

function is related to their ability to bind RNA or DNA but there are notable exceptions. 

For example, rat P2 is also an iron-binding protein (Furukawa et al., 1992), and 

Xenopus laevis S8, also known as p27, when phosphorylated, becomes associated with 

the oocyte peripheral membrane as well as with vesicles formed from the nuclear 

envelope and endoplasmic reticulum during mitosis (Boman et al., 1992).
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Furthermore, patterning defects are to be expected if the normal translation rate of a cell 

is tampered with. The kinetics of translation initiation depends upon the tertiary 

structure of the mRNA near the initiation codon (Lodish, 1970) as well as the primary 

structure of the mRNA near this codon (Steitz, 1969). Translation initiation rate can 

differ more than twenty-fold among distinct mRNAs (Lodish, 1968; Steitz, 1969; 

Lodish and Robertson, 1969; Lodish, 1970; Steitz, 1973). If one component required 

for translation initiation becomes limiting, the effect is first noticeable on the mRNAs 

with lower rate of translation initiation (Lodish, 1974). Thus, translation inhibition will 

affect distinct proteins differentially. Transcription, processing and degradation of RNA 

involves a large number of proteins so will undoubtedly be affected by inhibiting 

translation. For example, inhibition of translation in yeast reduces rRNA transcription 

by 80%, mRNA transcription by 25% and tRNA transcription by 20% (Shulman et al., 

1977). Inhibition of translation alters the expression profile of a cell rather than equally 

reducing expression levels.

Loss of RpS17 leads to a matemal-effect segmentation defect of larvae, explained by an 

anomalous pattern of the pair-rule protein Fushi tarazu (Ftz) at embryonic stages 

(Boring et al., 1989). The primary larval defect consists of single pair segment fusions 

between the denticle belts of abdominal segments A4 and A5 (occasionally also A6 and 

A7 fusions) and the anomalous Ftz pattern features narrower than wild-type posterior 

stripes and inter-stripe domains (Boring et al., 1989). Reduction of protein synthesis 

causes the anomalous Ftz pattern and segmentation defect. It was estimated that protein 

synthesis levels were lowered by 30% in the embryos produced by mutant mothers and 

when this was mimicked by cycloheximide administration to embryos, both the Ftz 

pattern and segmentation phenotypes were reproduced (Boring et al., 1989). 

Cycloheximide decreases the half-life of Ftz protein (Edgar et al., 1987) but increases 

the half-life of ftz mRNA (Edgar et al., 1986). In addition, short-lived repressors in the 

inter-stripe domains, such as Hairy, control ftz  expression (Edgar et al., 1986; Carroll 

and Scott, 1986; Howard and Ingham, 1986; Ish-Horowicz and Pinchin, 1987; Carroll et 

al., 1988). Although the influence of protein synthesis inhibition on Hairy levels and 

pattern is unknown, it is sensible that reduction of the rate of production of a rapidly 

degraded transcriptional regulator might significantly affect its target genes. The issue 

is complex and it reflects how patterning and basic cellular functions have to be
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coordinated. If the same molecules controlled both, their coordination would be 

guaranteed (Martin-Castellanos and Edgar, 2002).

6.1.8 Competition between Minute and wild-type cells

The differences in proliferation rates between Minute and wild-type cells have been 

exploited to generate large wild-type clones in Minute backgrounds, which was crucial 

to prove the existence of clonal boundaries between developmental compartments in 

Drosophila (Lawrence et al., 1979). When heterozygous Minute clones are generated in 

wild-type flies, they are out-competed by the faster growing wild-type cells and are 

eventually eliminated (Morata and Ripoll, 1975). Heterozygous Minute cells are only 

lost in the presence of non-Minute cells. If heterozygous Minute clones are generated in 

a homozygous Minute background they grow to large sizes as a result of their growth 

advantage with respect to the surrounding cells. The elimination of Minute clones in a 

non-Minute background was recently shown to require the function of brinker (brk) 

(Moreno et al., 2002). The gene brk is normally repressed by Decapentaplegic (Dpp) 

signalling and codes for a transcriptional repressor of Dpp signalling (Minami et al., 

1999; Jazwinska et al, 1999; Campbell and Tomlinson, 1999). Dpp is a member of the 

TGF|3 super-family of proteins. Expression of brk is upregulated in heterozygous 

Minute cells, activates the c-Jun amino-terminal kinase pathway, and induces apoptosis 

(Moreno et al, 2002). It has been proposed brk is upregulated in heterozygous Minute 

cells because they are less able to receive or transduce Dpp signals (Moreno et al., 

2002).

6.2 Results of the functional analysis of zebrafish nsal

6.2.1 Nsa2 is highly conserved among eukaryotes

All known eukaryotic genomes encode Nsa2 orthologues. These present a high degree 

of identity and similarity (Fig. 6.1), suggesting that they exert the same function(s) in all 

eukaryotes. In addition, the prokaryotic family of S8E ribosomal proteins display -20% 

identity to Nsa2.
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Fig. 6.1 Putative Nsa2 proteins are present throughout the eukaryota. ■ identity; similarity.
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6.2.2 In zebrafish as in mouse, nsal is mainly expressed in endodermal 

and mesodermal derivatives

In both the early mouse and fish embryos, nsal is widely expressed. There are regions 

of the embryo that express higher levels than others, as seen by whole-mount in situ 

hybridisation. In the mouse, nsal is expressed throughout the epiblast and the 

extraembryonic ectoderm at 6.5 dpc. At 7.5 dpc it continues to be expressed throughout 

the internal cell layers of the whole conceptus. At 8.5 dpc expression is strongest in the 

first branchial arch and in the neural tube, especially in the brain. Low-level expression 

throughout the lateral mesoderm is also detected. The pattern is largely unchanged by

9.5 dpc. The CNS expression is strongest in the forebrain (Fig. 3.1, k8710a07). In the 

zebrafish, there is strong and ubiquitous maternal expression of nsal (Fig. 6.2 A). After 

MBT, nsal is still strongly expressed in all cells of the embryo (Fig. 6.2 B -  F) but by 

somite stages it is down-regulated in the spinal cord, trunk expression being detected 

mainly in endodermal and mesodermal tissues (Fig. 6.2 E and G). Like in the mouse, 

nsal expression is highest in the brain (Fig. 6.2, G and FI).

Fig. 6.2 Expression of nsal during early zebrafish development. A, side view 

of 4-cell stage embryo; B, side view of sphere stage embryo; C, side view of 90% 

epiboly embryo (dorsal to the right); D, vegetal view of 90% epiboly embryo; E, dorsal- 

anterior view of embryo at 90% epiboly; F, side view of tailbud stage embryo (anterior 

to the left); G, side view of 15-somite stage embryo (anterior to the left); H, dorsal- 

anterior view of 15-somite stage embryo.
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6.2.3 Depletion of zebrafish Nsa2 slows DEL epiboly

I used different MOs to target zebrafish nsal mRNA: MOl and M02. MOl was 

designed to target what I thought was the start of translation. However, when I 

compared the sequence of putative Nsa2 proteins across many eukaryotic species I 

realised the existence of an error in the mouse sequence from which I had extrapolated 

where the first codon should lie. Therefore, MOl does not target the first codon of the 

zebrafish mRNA but a downstream methionine codon (Fig. 6.3, yellow box). I 

designed M02 to target the 5’UTR of nsal mRNA (Fig. 6.3, orange box). MOl 

resulted in the strongest phenotype and unless otherwise stated, embryos morphant for 

nsal were always generated by injection of MOl.

TACGACTCACTATAGGGGCTCTAAAGAAGAGGCTCTGAGTGAAAAACATCGCGAGCTCGAG

CCACGAATTAAACCATCAAAATATCAGAAATAAACACCGATCGGCGGATTAAACAACACCT

GGTAGCTCCATAAACACTTTAACAACACAGACTTCATC\TGCCGCAGAACGAGCACATCGA

GTTACACCGTAAGCGGCATGGCTACCGTCTGGACCACCACGAGAAGAAGAGGAAGAAGGAG

AGCCGTGAAGCCCACGAGCGCTCGCATAAAGCCAGGAAGATGATAGGCCTCAAAGCCAAAC

TCTACCACAAGCAAAGACACGCTGAGAAGATCCAGATGAAGAAGACGATTAAGATGCACGA

ACAGAGGAAGAGCAAACAGAAGGATGACGATAAAACACCAGAAGGGGCGGTGCCTGCTTA

CCTGCTGGACCGAGAGGGCCAATCACGTGCCAAAGTTCTGTCCAATATGATCAAACAGAAG

AGGAAAGAGAAAGCCGGAAAGTGGGAGGTTCCTTTACCGAAGGTTCGAGCTCAGGGTGAAA

CCGAGGTTCTGAAAGTCATCCGAACAGGAAAGAGACAGAAAAAGGCCTGGAAGAGAATGG

TGACCAAAGTCTGTTTCGTAGGAGACGGTTTCACCCGCAAACCGCCCAAATATGAGCGCTTC

ATCAGACCTATGGGTTTGCGGTTTAACAAGGCACACGTCACTCACCCTGAACTGAAGGCCAC

ATTCTGTTTGCCCATCCTGGGTGTGAAGAAGAACCCGTCCTCCTCGCTGTACACAACACTCG

GGGTCATCACGAAGGGAACGGTCATCGAGGTCAACGTCAGCGAGCTCGGATTGGTCACACA

GGGCGGAAAGGTCATCTGGGGTAAATACGCCCAGGTGACGAATAACCCAGAAAATGATGGC

TGTATTAATGCCGTGTTGCTGGTTTAACGGAGACCCTGAAAGGTTTATTATTGAACTGTGCCC 

CCGAGTACAGCTGGAAAGTGCTTTTCTYTGGAAAACCCCCATCATCATCGTCATTATCCAGG 

GA ATATTGA AATTGC A AA AG A AGATTTGA AGACCTCTGAT GG AGTTTTGTTTC ACCTTT GC A 

TTCGGATTCACGTGGATCAGAAATAAAGTGCTGTTTATTTTCAA

Fig. 6.3 Zebrafish nsal cDNA sequence and regions targeted by MOs in this

investigation. _______  ORF; MOl target sequence; M02

target sequence.
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Zebrafish embryos injected with nsal MOl display uncoupling of DEL epiboly from 

that of the EVL and YSL (Fig. 6.4) and delay in DEL epiboly (Fig. 6.5). At high 

blastoderm stage, nsal morphants are indistinguishable from control embryos (Fig. 6.5, 

A and B) but as early as dome stage, a DEL epiboly delay is observed in all nsal 

morphants (n > 500) (Fig. 6.5, C and D). As epiboly progresses, the difference in DEL 

epiboly between controls and nsal morphants becomes more apparent (Fig. 6.5, E -  L). 

In large-scale zebrafish mutagenesis screens mutants were found whose DEL epiboly 

arrests at approximately 70% and is uncoupled from EVL and YSL epiboly.

Fig. 6.4 Zebrafish embryos morphant for nsal have uncoupled EVL, DEL 

and YSL epiboly. Live picture of nsal zebrafish morphant embryo at a stage when 

controls are at tailbud stage; side view (dorsal to the right). Black arrow points at DEL 

leading edge; white arrow points at EVL leading edge; red arrow points at row of YSL 

nuclei. See Fig. 6.5 for control embryos at several extents of epiboly, where this 

uncoupling is never observed.

Two other phenotypes become apparent in nsal morphant embryos: a frequent 

phenotype consists of rough appearance of the morphant blastoderm at approximately 

50% epiboly (Fig. 6.5, F), in contrast to the smooth blastoderm of controls; less 

frequently, a gap appears between nsal morphant blastoderms and the YSL, in contrast 

to controls, where this is never observed (data not shown).
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Fig. 6.5 Zebrafish embryos morphant for nsal show DEL epiboly delay 

relative to controls. Live pictures of tightly-staged control (A, C, E, G, I, K) and nsal 

morphant (B, D, F, H, J, L) zebrafish embryos. A, high blastoderm stage; B, nsal 

morphant pictured at the same time as A; C, dome stage; D, nsal morphant pictured at 

the same time as C; E, 50% epiboly; F, nsal morphant pictured at the same time as E; 

G, 60% epiboly; H, nsal morphant pictured at the same time as G; I, 70% epiboly; J, 

nsal morphant pictured at the same time as I; K, 85% epiboly; L, nsal morphant 

pictured at the same time as K. After shield stage, dorsal is depicted to the right.
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At late epiboly stages, the DEL margin is seen lagging behind the YSL nuclei and the 

EVL margin lags behind that of the DEL (Fig. 6.4). The DEL epiboly phenotype can be 

described graphically. The black graph in Fig. 6.6 was taken from Kane and Adams, 

2002 and data concerning the nsal morphants, in red, was overlaid on it. The DEL 

epiboly phenotype of zebrafish nsal morphants is distinct from that of the epiboly 

mutants in that the epiboly of the latter arrests at approximately 70% whereas that of 

nsal morphants usually carries to completion (Fig. 6.6).
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Fig. 6.6 Progression of DEL epiboly of zebrafish embryos morphant for nsal 

compared with that of epiboly mutants. Red open circles, embryos injected with 

nsal MO; red squares, sibling embryos injected with control MO; black squares, wild- 

type embryos; black open circles, half-baked {hab) mutant embryos. Data for the latter 

two sets was inferred from Kane et al., 1996. Results in red are expressed as average ± 

standard deviation of 12 embryos from one representative experiment.

To test whether the requirement for Nsa2 lay in the YSL, the lineage known to play an 

active role in epiboly, or in the blastoderm and EVL, thought to be passively towed by 

the Y SL, I injected control and nsal MO specifically into the Y SL of embryos at 4 hpf.

2 0 0



Functional analysis of zebrafish nsal

The effect on the speed of DEL epiboly is shown graphically in Fig. 6.7. Embryos 

morphant for nsal specifically in the YSL have slowed epiboly compared with controls 

but not as slow as that of embryos morphant for nsal in every cell (Fig. 6.7), suggesting 

that Nsa2 function is required for normal epiboly in the YSL as well as in at least in one 

of the other two layers, DEL and EVL.
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Fig. 6.7 Progression of DEL epiboly of zebrafish embryos morphant for nsal 

specifically in the YSL compared with that of completely morphant embryos. Red

open circles, embryos injected with nsal MO; red squares, sibling embryos injected 

with control MO; blue open circles, embryos with YSL injected with nsal MO; blue 

squares, sibling embryos with YSL injected with control MO. Results are expressed as 

average ± standard deviation of 12 embryos from one representative experiment.

6.2.4 Embryos lacking nsal have patterning defects

In addition to slower epiboly, nsal morphant embryos develop with a variety of 

distorted shapes at late gastrulation (n > 500) (Fig. 6.8, C -  J). The yolk cell is usually 

elongated relative to controls (Fig. 6.8, C -  E; H -  J) and the relatively normal 

internalisation coupled with the epiboly delay often results in accumulation of unusually 

large masses of the internal germ layers in the head region (Fig. 6.8, F, G). The
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chordamesoderm is not straight as it normally would be, as if buckling under 

compression (Fig. 6.8, H).

H

Fig. 6.8 Zebrafish embryos morphant for nsal present a variety of distorted 

shapes at late gastrulation stages. A, control embryo at bud stage; B, control embryo 

at the 3 somite stage; C -  J, nsal morphants pictured at several times between controls 

being at bud and the 3 somite stage. All pictures are side views (anterior to the top) 

except for H, which is a dorsal view (anterior to the top). Arrow in H points at 

chordamesoderm.

Given the morphological patterning defects, I tested whether there were underlying 

defects in the expression of molecular markers. Since there are not many antibodies 

available for vertebrate whole-mount immunohistochemistry and because transcription 

may be reduced as a consequence of impaired translation (Shulman et al., 1977), I 

examined the mRNA expression of a few regional markers of early development in 

control and nsal morphant embryos (n > 50).
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In general, both levels and patterns of expression differ between control and nsal 

morphant embryos fixed at the same time. The differences, however, can often be 

accounted for by delayed development in nsa2 morphants. Thus, a comparison across 

stages frequently reveals similar patterns of gene expression. This is the case for the 

presumptive chordamesoderm marker flh, which is expressed around the blastoderm 

margin of the pregastrula zebrafish embryo, enhanced on the future dorsal side, then in 

the organizer, followed by expression in the notochord (Talbot et al., 1995); the 

mesodermal marker fg f  8, expressed in the gastrula margin, the dorsal organizer and the 

midbrain-hindbrain boundary (Furthauer et al., 1997); the paraxial mesoderm marker 

paraxial protocadherin C (PapC , Yamamoto et al., 1998); paxlb , a marker of 

prospective midbrain (that then refines to the midbrain-hindrain boundary), of the otic 

placodes and spinal cord interneurons (Krauss et al., 1991); and hatching gland-\ 

(hggl), an early hatching gland marker, a structure that is derived from the prechordal 

plate (Thisse et al., 1994) (data not shown).

When comparing across stages so as to compare embryos with equivalent DEL epiboly, 

there are cases where the levels and domains are slightly lower and/or smaller in nsal 

morphants than in controls. For example, gsc, which is expressed in the organizer 

hypoblast and prechordal plate (Stachel et al., 1993), is reduced in both levels and 

number of expressing cells in nsa2 morphants at all stages analysed (Fig. 6.9). 

Consistent with this observation, another prechordal plate marker gene, dbxla. / hlx-1 

(Fjose et al., 1994), is reduced in nsal morphants compared to controls (data not 

shown).

Upregulation of a few marker genes was also observed. Up to late epiboly, the levels of 

axial mesoderm marker axial/hnfift (Strahle et a l, 1993) are upregulated in nsal 

morphants relative to controls (Fig. 6.10) as are those of the ventral epiblast marker 

evel (Joly et al., 1993; data not shown). Expression of the Nodal-responsive gene 

bhikhari, expressed in early mesendodermal cells (Vogel and Gerster, 1999) extends 

further towards the animal pole in morphants than in controls (Fig. 6.11). The zebrafish 

bmplb / swr gene contains two domains of expression in the zebrafish gastrula, a 

ventro-lateral epiblast domain and a small patch of cells in the organizer (Nikaido et al., 

1997; Martinez-Barbera et a l, 1997; Kishimoto et al., 1997). The first of these domains
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Fig. 6.9 Expression of gsc is reduced in nsal morphant embryos relative to 

controls. Whole-mount in situ hybridisation of zebrafish embryos with gsc riboprobe. 

A, C, E, G, I, K, M, O are side views (dorsal to the right), and B, D, F, H, J, L, N, P are 

dorsal views. A -  B, control embryo at dome stage; C -  D, nsal morphant pictured at 

same time as A -  B; E -  F, control embryo at shield stage; G -  H, nsal morphant 

pictured at same time as E -  F; I - J ,  control embryos at 75% epiboly; K -  L, nsal 

morphant pictured at same time as I - J ;  M - N ,  control embryos 90% epiboly; O -  P, 

nsal morphant pictured at same time as M -  N.
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Fig. 6.10 Expression of axial is enhanced in nsal morphant embryos relative to 

controls. Whole-mount in situ hybridisation of zebrafish embryos with axial riboprobe. 

A, C, E, G, 1, K, M, O are side views (dorsal to the right), B and D are animal views 

(dorsal to the right), and F, H, J, L, N, P are dorsal views. A -  B, control embryos at 

dome stage; C -  D, nsal morphant pictured at same time as A -  B; E - F ,  control 

embryos at shield stage; G -  H, nsal morphant pictured at same time as E - F ;  I - J ,  

control embryos at 75% epiboly; K -  L, nsal morphant pictured at same time as I -  J; 

M -  N, control embryos at 90% epiboly; O -  P, nsal morphant pictured at same time as 

M - N .
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Fig. 6.11 Expression of bhikhari extends further animally in nsal morphant 

embryos than in controls. Whole-mount in situ hybridisation of zebrafish embryos 

with bhikhari riboprobe. All pictures are side views (dorsal to the right). A, control

embryos at dome stage; B, nsal morphant pictured at same time as A; C, control

embryos at shield stage; D, nsal morphant pictured at same time as C; E, control

embryos at 60% epiboly; F, nsal morphant pictured at same time as E; G, control

embryos at 90% epiboly; F, nsal morphant pictured at same time as G.
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is expanded and more intense in nsal morphants while the dorsal domain is normal to 

reduced in nsal morphants when compared to stage-matched controls (Fig. 6.12).

Finally, there are differences in expression pattern that reflect the disjunction of 

processes that are normally coupled. Expression of no tail (ntl) I brachyury, an early 

mesodermal marker expressed in the blastoderm margin cells prior to involution and in 

the axial mesoderm and tail bud (Schulte-Merker et al., 1992), suggests that cell 

internalisation ends before DEL epiboly is complete in nsa2 morphants (Fig. 6.13). Up 

to the stage when controls are at approximately 90% epiboly, the expression of ntl in 

nsal morphants is similar to that of controls at earlier stages (Fig. 6.13, A -  H, K -  L). 

However, while ntl is still expressed around the margin of 90% epiboly controls 

(Fig. 6.13,1 -  J), nsal morphants with approximately 70% DEL epiboly (when controls 

are at bud stage) do not express ntl at the margin and display only axial expression of 

this gene (Fig. 6.13, O -  P). This is consistent with the compressed appearance of the 

axial mesoderm and the notochord, frequently observed in nsal morphants (Fig. 6.8, H; 

Fig. 6.16, R).

6.2.5 The epiboly phenotype of n sa l  is analogous to that of M inute  

ribosomal proteins

To test whether the phenotype of nsal morphants could be explained by impaired 

ribosome function, I disrupted expression of two ribosomal proteins. Loss-of-function 

of orthologous proteins in Drosophila results in Minute phenotypes. RpS5 is a 

constituent of the small ribosomal subunit and results in a weak Minute phenotype; 

RpL19 is a constituent of the large ribosomal subunit and results in a strong Minute 

phenotype (Morata and Ripoll, 1975). The effect of Rp depletion on the speed of DEL 

epiboly is shown graphically in Fig. 6.14. Zebrafish embryos morphant for RpS5 have a 

subtle delay in DEL epiboly. In contrast, abrogation of RpL19 causes the rate of 

epiboly to be reduced to one-half of that of control embryos and is indistinguishable 

from loss of Nsa2 (Fig. 6.14).
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Fig. 6.12 The ventral domain of swr expression is upregulated in early nsal morphants whereas the organizer domain of expression is 

not. Whole-mount in situ hybridisation of zebrafish embryos with swr riboprobe. A, C, E, H, K, N, are side views (dorsal to the right); B, D, F, I, 

L, O, are animal views (dorsal to the right); G, J, M, P, are dorsal views. A -  B, control embryo at dome stage; C -  D, nsal morphant pictured at 

same time as A -  B; E -  G, control embryos at 60% epiboly; H -  J, nsa2 morphant pictured at same time as E -  G; K -  M, control embryos at 75% 

epiboly; N -  P, nsal morphant pictured at same time as K -  M.
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Fig. 6.13 DEL epiboly is more delayed than cell internalisation in nsal 

morphants. Whole-mount in situ hybridisation of zebrafish embryos with ntl riboprobe. 

A, C, E, G, I, K, M, O are side views (dorsal to the right), and B, D, F, H, J, L, N, P are 

dorsal views. A -  B, control embryo at shield stage; C -  D, nsal morphant pictured at 

same time as A -  B; E -  F, control embryo at 60% epiboly; G -  H, nsal morphant 

pictured at same time as E -  F; I - J ,  control embryos at 90% epiboly; K -  L, nsal 

morphant pictured at same time as I -  J; M -  N, control embryos bud stage; O -  P, nsal 

morphant pictured at same time as M -  N.
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ig. 6.14 Progression of DEL epiboly of zebrafish embryos morphant for 

ribosomal proteins compared with that of nsa l morphants. Red open circles, 

embryos injected with nsal MO; red squares, sibling embryos injected with control 

MO; green open circles, embryos injected with RpL\9 MO; green full circles embryos, 

injected with RpS5 MO; green squares, sibling embryos injected with control MO. Red 

squares are control for nsal MO and green squares are control for Rp MOs. Results are 

expressed as average ± standard deviation of 12 embryos from one representative 

experiment.

As a control I tested whether loss of another essential protein, involved in a process 

other than translation, would produce an epiboly phenotype. Previous work in the lab 

showed that the sneezy locus encodes the Coatomer a  subunit (Copa) and that the 

sneezy mutation can be recapitulated by copa MO injection (Coutinho et ah, 2003). 

Coatomer is an essential vesicular coating system involved in retrograde transport from 

the Golgi to the endoplasmic reticulum (reviewed in Cosson and Letoumeur, 1997). 

The effect of copa MO injection on the speed of DEL epiboly is shown graphically in 

Fig. 6.15. Depletion of Copa does not affect the rate of epiboly (Fig. 6.15).
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Fig. 6.15 Progression of DEL epiboly of zebrafish embryos morphant for 

cop a  compared with that of nsal morphants. Red open circles, embryos injected 

with nsal MO; red squares, sibling embryos injected with control MO; blue open 

circles, embryos injected with cop a  MO; blue squares, sibling embryos injected with 

control MO. Red squares are control for nsal MO and blue squares are control for cop 

a  MO. Results are expressed as average ± standard deviation of 12 embryos from one 

representative experiment.

6.2.6 Loss of Nsa2 and Minute Rps produce similar morphological defects

If nsal were to be a vertebrate Minute locus it should share loss-of-function phenotypes 

with Rp loci such as RpS5 and RpL\9. RpL\9 morphants display all the morphological 

features characteristic of nsal morphants (n > 100) whereas RpS5 morphants display 

some of them (n > 100). Similarly, the Drosophila RpS5 Minute phenotype is less 

severe than the RpL\9 phenotype. By 30% epiboly, the blastoderm of nsal and RpL\9 

morphants often has a rough appearance (Fig. 6.16, B and D) whereas the blastoderm of 

RpS5 morphants is indistinguishable from controls (Fig. 6.16, A and C). This is more 

apparent by ~50% epiboly (Fig. 6.16, E -  H). From the stage when DEL epiboly is at 

~60%, uncoupling between DEL and EVL epiboly becomes apparent in both nsal and 

RpL\9 , but not RpS5, morphants (Fig. 6.16, I, I’, J, J ’). Like nsal morphants, both 

Minute morphants have an elongated morphology by late gastrulation (Fig. 6.16, L -  N),
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Fig. 6.16 Zebrafish embryos morphant for nsal, /?/?S5 and tfpL19 present 

analogous morphological phenotypes. A, E, K, O, P, Q, control embryos; B, F, I, I’,

L, R, S, T, embryos morphant for nsal; C, G, M, U, V, W, embryos morphant for 

RpS5\ D, H, J, J ’, N, X, Y, Z, embryos morphant for RpL\9. A, side view of control 

embryo at 30% epiboly; B -  D, side views of morphants pictured at the same time as A; 

E, side view (dorsal to the right) of control embryo at shield stage; F -  H, side views 

(dorsal to the right) of morphants pictured at the same time as E; I, J, side views (dorsal 

to the right) of morphant embryos where DEL epiboly is 60% -  surface focus; I*, J ’, 

side views (dorsal to the right) of same morphant embryos as in I and I’, respectively -  

optical sections; K, side view (anterior to the top) of control embryo at the 3 somite- 

stage; L, M, side views (anterior to the top) of morphant embryos pictured at the same 

time as K; N, side view (anterior to the top) of morphant pictured when controls were at
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(Fig. 6.16 cont.)

the 7 somite-stage; O -  Q, control embryo at 28 hpf; O, side view (anterior to the left); 

P, frontal view; Q, dorsal view of forebrain; R -  T, nsal morphant at 28 hpf; R, side 

view (anterior to the left); S, frontal view; T, dorsal view of forebrain; U -  W, RpS5 

morphant at 28 hpf; U, side view (anterior to the left); V, frontal view; W, dorsal view 

of forebrain; X -  Z, RpL 19 morphant at 28 hpf; X, side view (anterior to the left); Y, 

frontal view; Z, dorsal view of forebrain. In I, 1% J, J ’, black arrows point at DEL 

leading edge and white arrows point at EVL leading edge. In O, R, U, X, arrowheads 

point at yolk extension or its absence.
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although RpL\9 morphants usually adopt this shape later than the other two (Fig. 6.16, 

K -  N). Later, all three morphants have wavy notochords and U-shaped somites 

(Fig. 6.16, R, U, X), significantly reduced or absent yolk extensions (arrowheads in 

Fig. 6.16, O, R, U, X) delayed and deficient head patterning as well as massive cell 

death in the CNS, seen as darkened regions in morphant embryos (Fig. 6.16, R -  Z). All 

three morphants display enhanced cell death in the optic cups (Fig. 6.15, S, T, V, W, Y, 

Z), suggesting that this region is particularly sensitive to impaired protein synthesis. On 

the second day of development, survivors of all three morphants are considerably 

smaller, in all dimensions, than controls (Fig. 6.16, O -  Z).

Given that the Drosophila Minute phenotypes are usually haploinsuficient (reviewed in 

Lambertsson, 1998), I used a half dose of MO to, testing whether this would also 

produce reduced body size in morphants. Zebrafish embryos injected with 5 ng of nsal 

MO are smaller than controls at 1 day of development (Fig. 6.17, C -  D). The same is 

observed when 10 ng of the less efficient nsal M02 (Fig. 6.3) were used (data not 

shown).

Fig. 6.17 Zebrafish embryos injected with 5 ng of nsal, RpS5 or RpL19 MO 

are smaller than controls. A -  B, control embryos at 26 hpf; C -  D, control embryos 

at 48 hpf; E -  F, embryos injected with 5 ng of nsal MOl, at 26 hpf; G -  H, embryos 

injected with 5 ng of nsal MOl, at 48 hpf; I -  J, embryos injected with 5 ng of RpL\9 

MO, at 26 hpf; K -  L, embryos injected with 5 ng of Rpb\9  MO, at 48 hpf; M -  N, 

embryos injected with 5 ng of RpS5 MO, at 26 hpf; O -  P, embryos injected with 5 ng 

of RpS5 MO, at 48 hpf. A, C, E, G, I, K, M O are dorsal-anterior views; B, D, F, H, J, 

L, N, P are side views (anterior to the left). All pictures are at the same magnification.
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6.2.7 Is the fly orthologue of nsal a Minute?

The epiboly phenotype of nsal morphants is strikingly similar to that of a strong Minute 

morphant (RpL19). I therefore wanted to test whether loss-of-function of the fly 

orthologue of nsal would produce a Drosophila Minute phenotype. The fly orthologue 

of nsal (Fig. 6.1), also known as Ipl59 , lies in the region to which an uncloned Minute, 

M(2)31A, has been mapped cytogenetically (Fig. 6.18). This is a very gene-rich region 

of the fly genome (~100 genes within 170 kb) and contains at least two other candidate 

Minute genes, coding for mRpS7 and RpS27A.

m R pSl R pSU A

31E7 32C5

nsal!Ip259

Df(2L)J39

Df(2L)J4

Fig. 6.18 Region of Drosophila melanogaster genome to which the Minute 

mutation M(2)31A has been mapped. M(2)31A has been mapped cytogenetically to 

zone 31A1 -  31E7, depicted in yellow. There are two deficiencies in this region which 

uncover the Minute phenotype, Df(2L)J39 and Df(2L)J4, depicted in dark grey. The 

intersection of all three sections is shadowed in green. This intersection region spans 

170 kb and contains approximately 100 genes. Three of these, which are good 

candidates for being mutated in M(2)31A are highlighted: mRpS7 and RpSUA  encode 

ribosomal proteins; nsal/Ip259 encodes a protein involved in the biogenesis of the 60S 

ribosome subunit.

I searched for mRpSl, RpSU A  and nsal/lplS9  mutant alleles for complementation 

with the M(2)31A Minute mutation. Unfortunately, there are no mutant alleles of
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mRpSl. There are, three mutant alleles for RpS27A, two of which are specific for this 

gene (/ty?S27A04820 and RpS27Amfs31) and one (R/?S27AP) that could also affect the 

expression of nsa2/Ip259 (Fig. 6.19). The latter mutant allele is the only one available 

for nsa2IIp259 (7p259p). This mutation is a P-element insertion 7 bp upstream of the 

5’UTR common to both RpS27A and nsa2/Ip259 (Fig. 6.19) and is allelic to 

R/?S27Amfs31. Its effect on nsa2 transcription, however, has not been assessed. I 

performed complementation tests between R /7S27A 04820, R/?S 2 7 A1”1831, 

RpS27Aplnsa2pIp259ip and M(2)31A to address whether the Minute phenotype produced 

by M(2)31A could be explained by loss of RpS27A or Nsa2/Ip259 (Table 6.1).

RpS27A

nsa2/Ip259

Fig. 6.19 Genomic locus of Drosophila melanogaster RpS27A and nsa2Hp259.

RpS27A and nsa2IIp259 share the same 5’ UTR (larger grey box) but no coding 

sequence. Nsa2/Ip259 is encoded in an exon (red) that lies within the first intron of the 

RpS27A  gene. The coding sequence for RpS27A resides in two exons (green). There 

are two mutations in this locus that specifically disrupt RpS27A (represented by ^ a n d  

“EMS”, which represent the P-element insertion and ethyl methane-sulfonate mutation, 

respectively) and one that consists of a P-element insertion 7 bp upstream of the 5’UTR 

common to the RpS27A and nsa2/Ip259 genes, which possibly disrupts both. The sites 

of P-element insertion are depicted in the approximately correct position whereas the 

site of EMS mutation has not been defined but is depicted just for clarity.

As expected, M(2)31A over M(2)31A results in lethality, and so does RpS27A04S2a over 

R/7S27A 04820. RpS27Amfs31 is a hypomorphic mutation since homozygous R/?S27Amfs31 

flies are viable. Homozygous RpS27Amfs31 flies do, however, exhibit a Minute 

phenotype. As expected, /ty?S27A04820 and RpS27Amfs31 fail to complement. RpS27A0487a 

and RpS27Amfs31 complement the M(2)31A Minute, indicating that the M(2)31A
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Table 6.1 Com plem entation test between R p S l l A04820, RpS27Amfs31, 

RpS27 AFInsalFIIp2S9p and M(2)31A in Drosophila melanogaster

M(2)31A /?/?S27Amfs31 RpS27 A04820 RPS27Ap/nsa2p/

M(2)31A Lethal
Hp2S9

RpS27Amfs31 Complement Homozygous
Minute

RpS27A04820 Complement Fail to 
complement

Lethal

RpS27Aplnsalpl
/Ip259p

Complement Fail to
complement*

Fail to 
complement

Lethal

* Mottus et al., 1997

phenotype is not due to disruption of RpS27A. As expected, RpS27 Aplnsa2p /Ip259p 

fails to complement RPS27A04820. However, it too complements M(2)31A. Therefore, if 

the RpS21AF/nsa2p/Ip259p mutation does affect nsal expression, it seems that the 

M(2)31A phenotype is not caused by a mutation in nsa2. To test whether nsa l 

expression is affected in RpS21Ap/nsa2pIIp259p embryos, we will perform RT-PCR and 

Western blot analysis using an antibody raised against the protein (Mottus et al., 1997).

6.2.8 Phenotypes of nsal morphant cells

6.2.8.1 Cells morphant for nsal undergo apoptosis

Loss of n sa l  in zebrafish leads to massive CNS cell death, especially during 

somitogenesis stages. To test whether nsa2 morphant cells undergo apoptosis, I 

performed TUNEL assays on nsa2 morphant zebrafish embryos. At 24 hpf there is 

considerably more TUNEL staining in surviving nsa2 morphants than in controls 

(n > 12) (Fig. 6.20). Control embryos have a few stained cells scattered throughout the 

embryo, especially in the head and tail tip regions (Fig. 6.20, A -  B) whereas nsal 

morphant embryos show heavy staining throughout (Fig. 6.20, C -  F). More specific 

methods for apoptosis detection can be used to further assess whether nsal morphant 

cells are indeed dying in this way (for example, staining with anti-cleaved caspase-3 

antibody).
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Fig. 6.20 Cells morphant for nsal die by apoptosis. TUNEL staining of 24 hpf 

embryos. A -  B, control embryos; C -  D, E -  F, two distinct nsal morphant embryos. 

A, C, E are dorsal-anterior views of the embryos in B, D, F, respectively, which are 

shown in side views (anterior to the left).
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6.2.8.2 TEM study of nsa l morphant cells of the epiboly-stage 

zebrafish embryo

Having observed an apparent detachment of blastoderm cells from the yolk-cell in nsal 

morphants, I wanted to examine cell-layer interaction at the ultrastructural level. In 

addition, several aspects of cellular physiology, such as the number and arrangement of 

ribosomes, might be directly assessed by TEM. 12 morphant and 12 control embryos 

were processed for TEM. The results described below pertain to close examination of 

sections performed on 2 morphant and 2 control embryos. Number of embryos should 

be increased and phenotypes quantified in order to confirm reproducibility of these 

observations.

A profusion of cell debris is visible in the intercellular spaces of nsal morphant 

embryos, whereas virtually none are visible in controls. This effect is greatest in the 

animal region of the embryo, where cell debris were frequently attached to the 

membranes of living cells and of the YSL (Figs. 6.21 and 6.22), which is unusual, even 

in other pathological circumstances where abundant cell lysis takes place (Ms Elizabeth 

Hirst, personal communication). This suggests that the plasma membranes of living 

nsal morphant cells have altered composition relative to controls.

Contacts between DEL cells and the YSL were not observed in the nsal morphant 

embryo animal region whereas in the control they were (Fig. 6.22, B). The YSL of 

control embryos contains a large number of membranous protrusions and a layer of 

mitochondria (Fig. 6.22, B), suggesting that this structure is highly dynamic. 

(Fig. 6.22, B). In nsal morphants, YSL mitochondria are frequently degenerated, as 

judged by their fragmented and/or reduced cristae (Fig. 6.22, C). In addition, an 

increased number of vesicles is observed in nsal morphant YSL compared to control 

YSL (Fig. 6.22, C).

At epiboly stages, the DEL cells of the zebrafish embryo present a gradient of 

orderliness and compactness, which are both enhanced in the lateral regions of the 

embryo, especially at the margin. The regular arrangement of DEL cells and their close 

contacts between themselves in the lateral region of the embryo is shown in Fig.

6.23, B. In nsal morphant embryos, the orderly arrangement and large membrane
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DEL

Fig. 6.21 Zebrafish cells morphant for nsal lise and cell debris attach to 

plasma membrane of living cells. A, Schematic of zebrafish embryo at approximately 

85% epiboly, with region depicted in pictures B and C highlighted (red rectangle). 

B, TEM of control embryo at 85% epiboly; C, TEM of nsal morphant embryo fixed at 

the same time as B. B and C are at the same magnification. In C, black arrowheads 

point at morphant cell debris in the intercellular space; white arrowheads point at 

morphant cell debris attached to plasma membrane of living cells; black arrows point 

at cytoplasmic debris still inside living cells; white arrows point at constriction in 

living cell presumably trying to exocytose large vacuole and cytoplasmic debris.
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Fig. 6.22 Zebrafish nsal morphant cell debris attach to plasma membrane of 

the YSL, impairing contact between the DEL and the YSL. A, Schematic of 

zebrafish embryo at approximately 85% epiboly, with region depicted in pictures B and 

C highlighted (red rectangle). B, TEM of control embryo at 85% epiboly; C, TEM of 

nsal morphant embryo fixed at the same time as B. C is at 1.5x the magnification of B. 

In B, black arrows point at contact between control DEL cell and YSL and white 

arrows point at YSL mitochondria; In C, white arrowheads point at morphant cell 

debris attached to plasma membrane of YSL, black arrowheads point at degenerate 

mitochondria and red arrows point at a few of numerous large vesicles close to plasma 

membrane.
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DEL<

EVL

Fig. 6.23 Zebrafish cells morphant for nsal are less orderly arranged in the 

lateral regions of the embryo and have larger intercellular spaces than controls. A,

Schematic of zebrafish embryo at approximately 85% epiboly, with region depicted in 

pictures B and C highlighted (red rectangle). B, TEM of control embryo at 85% 

epiboly; C, TEM of nsal morphant embryo fixed at the same time as B. B and C are at 

the same magnification. In C, black arrowheads point at morphant cell debris in the 

intercellular space; white arrowheads point at morphant cell debris attached to plasma 

membranes; black arrows point at large vacuoles found inside morphant cells; white 

arrows point at constriction in living cell presumably trying to exocytose large vacuole 

and cytoplasmic debris.
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contacts between DEL cells are disrupted, with large gaps and debris between cells (Fig.

6.23, C).

Less apparent cell lysis is observed at the margin than in other regions of epiboly-stage 

nsal morphant embryos. The strength of the nsal cellular phenotype appears to 

decrease in an animal-to-vegetal direction. Nonetheless, nsal morphant cells at the 

leading edge are distinct from controls in that they are more vacuolated (Fig. 6.24, B 

and C). Apparent vacuole exocytosis is observed in nsal morphant cells in the leading 

edge as well as the remainder of the embryo (Fig. 6.24, C).

High magnification of the DEL cells shows greater detail of intracellular components. 

Fig. 6.25 illustrates two further features that distinguish nsal morphant cells from 

controls. First, the ribosomal rosettes, characteristic of embryonic tissues, appear less 

organised in morphant cells than in controls (Fig. 6.25, C). This would be in 

accordance with the accumulation of excess 40S ribosomal particles relative to the 60S, 

whose biogenesis is presumably held up by Nsa2 depletion. Second, nsal morphant 

membranes are thicker and less well defined than in controls (Fig. 6.25, C). While such 

membrane appearance can occasionally be observed in controls as a result of the plane 

of section, the higher frequency in nsal morphant sections suggests it is a genuine 

morphant phenotype. Finally, the external surface of the yolk is smoothened in nsal 

morphants when compared to controls, where numerous membrane protrusions are 

observed (Fig. 6.26, B and C).

6.3 Discussion of the functional analysis of zebrafish nsal

Depletion of Nsa2 from zebrafish embryos results in a severe phenotype that is manifest 

as early as dome stage, when nsal morphant embryos present an epiboly delay relative 

to controls. This phenotype is more than a simple developmental delay as by late 

gastrulation stages embryos are frequently abnormally elongated and present a variety 

of distorted shapes. Most nsal morphants die by 24 hpf and the remainder die a few 

hours later.

As Nsa2 is presumably involved in the biogenesis of 60S ribosome subunits 

(Hampichamchai et al., 2001), the phenotype of nsal morphant zebrafish is likely to be
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>EVL

DEL\

V

Fig. 6.24 Close to the leading edge of epiboly, less cell lysis of nsal morphant 

cells is observed relative to other regions of the embryo but cells are highly 

vacuolated. A, Schematic of zebrafish embryo at approximately 85% epiboly, with 

region depicted in pictures B and C highlighted (red rectangle). B, TEM of control 

embryo at 85% epiboly; C, TEM of nsal morphant embryo fixed at the same time as B. 

B and C are at the same magnification. In C, black arrows point at large vacuoles 

found inside morphant cells; white arrows point at constriction in living cell 

presumably trying to exocytose large vacuole and cytoplasmic debris.
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Fig. 6.25 Not only the plasma membranes but also the intracellular 

membranes of nsal morphant DEL cells have altered appearance relative to 

controls. A, Schematic of zebrafish embryo at approximately 85% epiboly, with region 

depicted in pictures B and C highlighted (red rectangle). B, TEM of control embryo at 

85% epiboly; C, TEM of nsal morphant embryo fixed at the same time as B. B and C 

are at the same magnification. In B and C, white arrows point at ribosomal rosettes; in 

C, black arrows point at membranes with wider and fuzzier appearance than controls.
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Fig. 6.26 The surface layer of the yolk cell, over which cells migrate during 

epiboly, is thinner and smoother in nsal morphants than in controls. A, Schematic 

of zebrafish embryo at approximately 85% epiboly, with region depicted in pictures B 

and C highlighted (red rectangle). B, TEM of control embryo at 85% epiboly; C, TEM 

of nsal morphant embryo fixed at the same time as B. B and C are at the same 

magnification. In B, black arrows point at a few of numerous specialisations found in 

the yolk cell plasma membrane of controls but not of nsal morphants. YG, yolk 

granule.
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explained by impaired translation in all cells. The phenotype is not as severe as that of 

64- or 128-cell stage embryos treated with 50 p,g/ml of the translation inhibitor 

cycloheximide, where cleavage is usually arrested by the third cell cycle after treatment 

(Poulain and Lepage, 2002). However, the epiboly and morphogenetic phenotypes of 

nsal morphants can be mimicked by treatment of sphere-stage embryos with 2 -  

5 [xg/ml cycloheximide (data not shown; a single clutch of embryos treated with the 

same amount of cycloheximide displays variable phenotypes, among which are the 

characteristic nsal morphant traits). While it cannot be ruled out that even the strongest 

MO (MOl, Fig. 6.3) is not completely blocking Nsa2 protein synthesis, a stronger effect 

is expected of cycloheximide compared to that of completely blocking translation of a 

factor required for ribosome biogenesis. Cycloheximide inhibits translation directly by 

inhibiting the translocation reaction on ribosomes, whereas depletion of a factor 

required for ribosome biogenesis will lead to a gradual decrease in the functional 

ribosome pool, which in turn will affect different RNAs with distinct kinetics.

Supporting the notion that the nsal defects are due to impaired translation, the same 

phenotypes are obtained, with varying severity, by targeting RpL19 and RpS5 with 

MOs. We consider this an indication that all these MOs, plus the weaker nsal MO 

(M02), are acting specifically on the targets they were designed for.

At a cellular level, reduced translation results in altered membrane composition, from 

the plasma membrane to intracellular membranes, including the mitochondrial cristae, 

which degenerate; intracellular lysis, which leads to excess vacuolation as well as to a 

greater number of secondary lysosomes (data not shown); and the pulverisation of 

ribosomal rosettes. At a supra-cellular level, cell-cell contacts are hindered due to 

excess extracellular space, caused by cell lysis, and possibly also due to the attachment 

of cellular debris to the plasma membranes of living cells and the YSL. These 

phenotypes are most severe in the animal region of the epiboly-stage zebrafish embryo 

and decrease in an animal-to-vegetal direction. Furthermore, the yolk cell surface to 

which EVL cells attach and onto which DEL cells migrate during epiboly is devoid of 

the protrusions found in the control.

In yeast, when Nsa2 is placed under the control of a galactose-inducible promoter and 

shifted from a galactose-containing medium to a glucose-containing one, cells stop
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dividing after approximately 25 h (Hampichamchai et al., 2001) as observed in other 

yeast nucleolar protein mutants in similar experiments (Sun and Woolford, 1994). In 

this time, wild-type yeast undergo approximately 10 cell divisions so the pool of 60S 

ribosomes is enough for several cell divisions prior to reaching inviable levels. After 

cleavage stages, the cell cycle of the zebrafish blastomeres lengthens substantially 

(Kane et al., 1992). By approximately sphere stage, DEL cells undergo their fourteenth 

cell cycle, which takes ~1.5 h. By extrapolation, there are probably less than 10 cell 

division cycles between sphere-stage and the 36 hpf embryo in zebrafish.

Given the number of Rps and the number of proteins involved in ribosome biogenesis, 

the lack of redundancy, apparent in single mutant phenotypes, is remarkable. Moreover, 

the incidence of haploinsufficient phenotypes suggests that their levels are tightly 

regulated. Upregulation of many Rps has been detected in several cancers (for example, 

Yow et al., 1988; Chester et al., 1989; Sharp et al., 1990; Mafune et al., 1991; Pogue- 

Geile et al., 1991; Barnard et al., 1992; Henry et al., 1993; Kondoh et al., 2001; Cheng 

et al., 2002; Nadano et al., 2002; Karan et al., 2002; Li et al., 2002), which could be a 

consequence but also a cause or requirement for uncontrolled cell division. One could 

imagine that the levels of all Rps or proteins involved in ribosome biogenesis are 

subject to strict regulation. Alternatively, it might be sufficient to tightly regulate only a 

few components in order to obtain the desired level of translation in a cell, allowing the 

others to exist in excess. The difference in severity between the RpS5 and the RpLl9 

morphant phenotype could be due to a longer half-life of the RpS5 protein relative to 

RpL19 and/or by higher levels of maternal RpS5 relative to maternal RpL19. 

Nonetheless, given that the adult fly Minute phenotypes differ in severity in the same 

way suggests that RpL19 levels are more limiting for ribosome function that those of 

RpS5 and are probably more tightly regulated in the normal situation. Cellular and 

supracellular physiology are more permissive to variation in the levels of some Rps than 

others, even if they are cooperatively required for protein synthesis.

It would be interesting to quantify transcription and translation levels in nsal and Rp 

morphants, as well as in embryos treated with cycloheximide. This could demonstrate 

the distinct effect of translation impairment on individual mRNAs. A qualitative way to 

address this issue would be to inject zebrafish embryos with either cDNA or mRNA 

coding for luciferase or GFP into morphants, and assess the effect of the MO on 

transcription or translation, respectively, over time by the intensity of fluorescence.
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This could be refined so as to compare the effect on proteins and mRNAs with different 

half-lives, since some unstable forms of GFP have been engineered and mRNA 

stabilising or destabilising elements could be easily built-in. For proper quantification 

of transcription, RT-PCR could easily be performed on many different transcripts but 

assessment of protein production in the absence of antibodies would not be as feasible. 

Relevant patterning molecules could be assessed in this way, as well as candidate 

molecules that might underlie the altered membrane phenotypes of nsal morphants.

Given the cell-essential function of Nsa2 and that of Rps, the regulative capacity of 

embryos morphant for these proteins is astonishing. Despite the several phenotypes 

described (especially apparent during gastrulation and early segmentation stages), these 

morphants display a relatively normal, albeit smaller, body shape (see Fig. 6.17), shortly 

before undergoing massive apoptosis and dying. A certain degree of recovery of nsal 

morphants is already observed by EM between the 50% and 80% DEL epiboly stages, 

where the latter present less severe cellular phenotype (data not shown). The nsal 

morphant embryo uses the resources available (reduced protein synthesis, reduced 

number of cells) to generate a relatively proportionate body. Future studies of 

invertebrate and now vertebrate Minutes might provide a handle on the understudied 

problem of organism size regulation. The existence of mutations in mouse Rps and, 

very recently, in zebrafish RpS5 (Golling et al., 2002) should aid the study of the 

vertebrate Minute phenotype.

Other issues, possibly related to that of organism size and developmental regulation, 

that merit investigation are how cell proliferation and cell size are affected by depletion 

of Nsa2 or Rps and whether in vertebrates like in the fly imaginal discs there is cell 

competition between Minute and non-Minute cells (Moreno et al., 2002). The 

invertebrate Dpp signalling pathway bears most resemblance to the vertebrate BMP 

signalling pathway. However, there is no vertebrate brinker-like gene, as judged from 

the genomes sequenced so far, and there is no molecular evidence for vertebrate cell 

competition of the kind in operation in Drosophila.

I attempted to compare the proliferation rate of nsal and control cells in zebrafish by 

performing single-cell transplants between morphant donors and control hosts and vice-
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versa. In order to make comparisons between undifferentiated cells, given that each 

differentiated cell type might cycle at different rates or stop cycling altogether when 

terminally differentiated, I assessed transplants performed at the sphere stage, at the 

90% epiboly-stage. However, during this developmental time-window there are only 

two-three cell divisions so a single cell gives rise to 6-8 progeny (data not shown). This 

is too small a number to measure differences in cell division rates and so I have not 

pursued these studies further. I plan to derive primary cultures from MO-injected 

embryos in order to compare cell proliferation rate, cell size and cell competition, 

between nsal morphant and control cells, in a system where I should have access to 

large numbers of uniform cells.

231



Functional analysis of zebrafish n s a l

References

232



References

Aanstad, P. and Whitaker, M. (1999) “Predictability of dorso-ventral asymmetry in 

the cleavage stage zebrafish embryo: an analysis using lithium sensitivity as a dorso- 

ventral marker”, Mech Dev, 88(1), 33-41.

Abdelilah, S., Solnica-Krezel, L., Stainier, D. Y. and Driever, W. (1994) "Implications 

for dorsoventral axis determination from the zebrafish mutation janus.PG - 468-71", 

Nature 370(6489).

Acampora, D., Mazan, S., Lallemand, Y., Avantaggiato, V., Maury, M. and Simeone, 

A. (1995) "Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a 

defective anterior neuroectoderm specification during gastrulation", Development 121, 

3279-90.

Adams, C. C., Jakovljevic, J., Roman, J., Hampichamchai, P. and Woolford, J. L., Jr. 

(2002) "Saccharomyces cerevisiae nucleolar protein Nop7p is necessary for biogenesis 

of 60S ribosomal subunits", Rna 8(2), 150-65.

Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, 

P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., Galle, R. F., George, R. A., Lewis, S. E., 

Richards, S., Ashbumer, M., Henderson, S. N., Sutton, G. G., Wortman, J. R., Yandell, 

M. D., Zhang, Q., Chen, L. X., Brandon, R. C., Rogers, Y. H., Blazej, R. G., Champe, 

M., Pfeiffer, B. D., Wan, K. H., Doyle, C., Baxter, E. G., Helt, G., Nelson, C. R., Gabor, 

G. L., Abril, J. F., Agbayani, A., An, H. J., Andrews-Pfannkoch, C., Baldwin, D., 

Ballew, R. M., Basu, A., Baxendale, J., Bayraktaroglu, L., Beasley, E. M., Beeson, K. 

Y., Benos, P. V., Berman, B. P., Bhandari, D., Bolshakov, S., Borkova, D., Botchan, M. 

R., Bouck, J., Brokstein, P., Brottier, P., Burtis, K. C., Busam, D. A., Butler, H., Cadieu, 

E., Center, A., Chandra, I., Cherry, J. M., Cawley, S., Dahlke, C., Davenport, L. B., 

Davies, P., de Pablos, B., Delcher, A., Deng, Z., Mays, A. D., Dew, I., Dietz, S. M., 

Dodson, K., Doup, L. E., Downes, M., Dugan-Rocha, S., Dunkov, B. C., Dunn, P., 

Durbin, K. J., Evangelista, C. C., Ferraz, C., Ferriera, S., Fleischmann, W., Fosler, C., 

Gabrielian, A. E., Garg, N. S., Gelbart, W. M., Glasser, K., Glodek, A., Gong, F., 

Gorrell, J. H., Gu, Z., Guan, P., Harris, M., Harris, N. L., Harvey, D., Heiman, T. J., 

Hernandez, J. R., Houck, J., Hostin, D., Houston, K. A., Howland, T. J., Wei, M. H., 

Ibegwam, C., Jalali, M., Kalush, F., Karpen, G. H., Ke, Z., Kennison, J. A., Ketchum, 

K. A., Kimmel, B. E., Kodira, C. D., Kraft, C., Kravitz, S., Kulp, D., Lai, Z., Lasko, P., 

Lei, Y., Levitsky, A. A., Li, J., Li, Z., Liang, Y., Lin, X., Liu, X., Mattei, B., McIntosh, 

T. C., McLeod, M. P., McPherson, D., Merkulov, G., Milshina, N. V., Mobarry, C., 

Morris, J., Moshrefi, A., Mount, S. M., Moy, M., Murphy, B., Murphy, L., Muzny, D.

233



References

M., Nelson, D. L., Nelson, D. R., Nelson, K. A., Nixon, K., Nusskem, D. R., Pacleb, J. 

M., Palazzolo, M., Pittman, G. S., Pan, S., Pollard, J., Puri, V., Reese, M. G., Reinert, 

K., Remington, K., Saunders, R. D., Scheeler, F., Shen, H., Shue, B. C., Siden-Kiamos,

I., Simpson, M., Skupski, M. P., Smith, T., Spier, E., Spradling, A. C., Stapleton, M., 

Strong, R., Sun, E., Svirskas, R., Tector, C., Turner, R., Venter, E., Wang, A. H., Wang, 

X., Wang, Z. Y., Wassarman, D. A., Weinstock, G. M., Weissenbach, J., Williams, S. 

M., WoodageT, Worley, K. C., Wu, D., Yang, S., Yao, Q. A., Ye, J., Yeh, R. F., Zaveri, 

J. S., Zhan, M., Zhang, G., Zhao, Q., Zheng, L., Zheng, X. H., Zhong, F. N., Zhong, W., 

Zhou, X., Zhu, S., Zhu, X., Smith, H. O., Gibbs, R. A., Myers, E. W., Rubin, G. M. and 

Venter, J. C. (2000) "The genome sequence of Drosophila melanogaster", Science 

287(5461), 2185-95.

Agathon, A., Thisse, B. and Thisse, C. (2001) “Morpholino knock-down of antivinl 

and antivin2 upregulates nodal signaling”, Genesis 30(3), 178-82.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002) 

Molecular Biology of the Cell. New York, Garland Science.

Alexander, J., Rothenberg, M., Henry, G. L. and Stainier, D. Y. (1999) "casanova 

plays an early and essential role in endoderm formation in zebrafish", Dev Biol 215(2), 

343-57.

Alexander, J. and Stainier, D. Y. (1999) "A molecular pathway leading to endoderm 

formation in zebrafish", Curr Biol 9(20), 1147-57.

Alliston, T. N., Gonzalez-Robayna, I. J., Buse, P., Firestone, G. L. and Richards, J. S. 

(2000) "Expression and localization of serum/glucocorticoid-induced kinase in the rat 

ovary: relation to follicular growth and differentiation", Endocrinology 141(1), 385-95. 

Alliston, T. N., Maiyar, A. C., Buse, P., Firestone, G. L. and Richards, J. S. (1997) 

"Follicle stimulating hormone-regulated expression of serum/glucocorticoid-inducible 

kinase in rat ovarian granulosa cells: a functional role for the Spl family in promoter 

activity", Mol Endocrinol 11(13), 1934-49.

Altmann, C. R. and Brivanlou, A. H. (2001) “Neural patterning in the vertebrate 

embryo”, Int Rev Cytol 203:447-82.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and 

Lipman, D. J. (1997) "Gapped BLAST and PSI-BLAST: a new generation of protein 

database search programs", Nucleic Acids Res 25(17), 3389-402.

Alvarez de la Rosa, D., Zhang, P., Naray-Fejes-Toth, A., Fejes-Toth, G. and Canessa,

C. M. (1999) "The serum and glucocorticoid kinase Sgk increases the abundance of

234



References

epithelial sodium channels in the plasma membrane of Xenopus oocytes", J Biol Chem 

274(53), 37834-9.

Amaravadi, L. S., Neff, A. W., Sleeman, J. P. and Smith, R. C. (1997) "Autonomous 

neural axis formation by ectopic expression of the protooncogene c-ski", Dev Biol 

192(2), 392-404.

Ancel, P. and Vintemberger, P. (1948) "Recherches sur le determinisme de la 

symetrie bilaterale dans l'oeuf des Amphibiens", Bull Biol Fr Belg 31 (Suppl), 1-182. 

Andersson, S. and Lambertsson, A. (1990) "Characterization of a novel Minute locus 

in Drosophila melanogaster. a putative ribosomal protein gene", Heredity 65 ( Pt 1), 

51-7.

Andersson, S., Saeboe-Larssen, S., Lambertsson, A., Merriam, J. and Jacobs-Lorena, 

M. (1994) "A Drosophila third chromosome Minute locus encodes a ribosomal protein", 

Genetics 137(2), 513-20.

Ang, S.-L., Conlon, R. A., Jin, O. and Rossant, J. (1994) “Positive and negative signals 

from mesoderm regulate the expression of mouse Otx2 in ectoderm explants”, 

Development 120(10), 2979-89

Ang, S.-L. and Rossant, J. (1994) “HNF-3 beta is essential for node and notochord 

formation in mouse development” Cell, 78(4), 561-74.

Aoki, T. O., Mathieu, J., Saint-Etienne, L., Rebagliati, M. R., Peyrieras, N. and Rosa, F. 

M. (2002) "Regulation of nodal signalling and mesendoderm formation by TARAM-A, 

a TGFbeta-related type I receptor", Dev Biol 241(2), 273-88.

Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J. M., Dehal, P., Christoffels, 

A., Rash, S., Hoon, S., Smit, A., Gelpke, M. D., Roach, J., Oh, T., Ho, I. Y., Wong, M., 

Detter, C., Verhoef, F., Predki, P., Tay, A., Lucas, S., Richardson, P., Smith, S. F., 

Clark, M. S., Edwards, Y. J., Doggett, N., Zharkikh, A., Tavtigian, S. V., Pruss, D., 

Bamstead, M., Evans, C., Baden, H., Powell, J., Glusman, G., Rowen, L., Hood, L., 

Tan, Y. H., Elgar, G., Hawkins, T., Venkatesh, B., Rokhsar, D. and Brenner, S. (2002) 

"Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes", 

Science 297(5585), 1301-10.

Arceci, R. J., King, A. A., Simon, M. C., Orkin, S. H. and Wilson, D. B. (1993) 

"Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor 

expressed in endodermally derived tissues and heart", Mol Cell Biol 13(4), 2235-46. 

Arendt, D. and Nubler-Jung, K. (1999) "Rearranging gastrulation in the name of 

yolk: evolution of gastrulation in yolk-rich amniote eggs", Mech Dev 81(1-2), 3-22. 

Bachiller, D., Klingensmith, J., Kemp, C., Belo, J. A., Anderson, R. M., May, S. R,

235



References

McMahon, J. A., McMahon, A. P., Harland, R. M., Rossant, J. and De Robertis, E. M. 

(2000) “The organizer factors Chordin and Noggin are required for mouse forebrain 

development”, Nature 403(6770), 658-61.

Bachvarova, R. F. (1999) "Establishment of antero-posterior polarity in avian 

embryos", Curr Opin Genet Dev 9(4), 411-6.

Balakier, H. and Pedersen, R. A. (1982) "Allocation of cells to inner cell mass and 

trophectoderm lineages in preimplantation mouse embryos", Dev Biol 90(2), 352-62. 

Ballabio, A. (1993) "The rise and fall of positional cloning?" Nat Genet 3(4), 277-9. 

Baltimore, D. (2001) “Our genome unveiled”, Nature, 409(6822), 814-6.

Barembaum, M., Moreno, T. A., LaBonne, C., Sechrist, J. and Bronner-Fraser, M. 

(2000) “Noelin-1 is a secreted glycoprotein involved in generation of the neural crest”, 

Nat Cell Biol 2(4), 219-25.

Barnard, G. F., Staniunas, R. J., Bao, S., Mafune, K., Steele, G. D., Jr., Gollan, J. L. 

and Chen, L. B. (1992) "Increased expression of human ribosomal phosphoprotein P0 

messenger RNA in hepatocellular carcinoma and colon carcinoma", Cancer Res 52(11), 

3067-72.

Batt, J., Asa, S., Fladd, C. and Rotin, D. (2002) "Pituitary, pancreatic and gut 

neuroendocrine defects in protein tyrosine phosphatase-sigma-deficient mice", Mol 

Endocrinol 16(1), 155-69.

Beddington, R. S. (1994) "Induction of a second neural axis by the mouse node", 

Development 120(3), 613-20.

Beddington, R. S. and Robertson, E. J. (1989) "An assessment of the developmental 

potential of embryonic stem cells in the midgestation mouse embryo", Development 

105(4), 733-7.

Beddington, R. S. and Robertson, E. J. (1998) "Anterior patterning in mouse", Trends 

Genet 14(7), 277-84.

Beddington, R. S. and Robertson, E. J. (1999) "Axis development and early 

asymmetry in mammals", Cell 96(2), 195-209.

Behrens, J., von Kries, J., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R. and 

Birchmeier, W. (1996) "Functional interaction of b-catenin with the transcription factor 

LEF-1", Nature 382, 638-42.

Bell, L. M., Leong, M. L., Kim, B., Wang, E., Park, J., Hemmings, B. A. and Firestone,

G. L. (2000) "Hyperosmotic stress stimulates promoter activity and regulates cellular 

utilization of the serum- and glucocorticoid-inducible protein kinase (Sgk) by a p38 

MAPK-dependent pathway", J Biol Chem 275(33), 25262-72.

236



References

Bellairs, R. (1993) "Fertilization and early embryonic development in poultry", Poult 

Sci 72(5), 874-81.

Bellairs, R. and Osmond, M. (1998) The Atlas of Chick Development. San Diego, 

CA, Academic Press.

Belo, J. A., Bachiller, D., Agius, E., Kemp, C., Borges, A. C., Marques, S., Piccolo, S. 

and De Robertis, E. M. (2000) "Cerberus-like is a secreted BMP and nodal antagonist 

not essential for mouse development", Genesis 26(4), 265-70.

Belo, J. A., Bouwmeester, T., Leyns, L., Kertesz, N., Gallo, M., Follettie, M. and De 

Robertis, E. M. (1997) "Cerberus-like is a secreted factor with neutralizing activity 

expressed in the anterior primitive endoderm of the mouse gastrula", Mech Dev 68(1-2), 

45-57.

Benton, R., Palacios, I. M., St Johnston, D. (2002) “Drosophila 14-3-3/PAR-5 is an 

essential mediator of PAR-1 function in axis formation” Dev Cell 3(5), 659-71.

Biondi, R. M., Kieloch, A., Currie, R. A., Deak, M. and Alessi, D. R. (2001) "The PIF- 

binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB", 

EMBO 7 20(16), 4380-90.

Bisgrove, B. W., Essner, J. J. and Yost, H. J. (1999) "Regulation of midline 

development by antagonism of lefty and nodal signaling", Development 126(14), 3253- 

62.

Black, S. D. and Gerhart, J. C. (1986) "High-frequency twinning of Xenopus laevis 

embryos from eggs centrifuged before first cleavage", Dev Biol 116(1), 228-40.

Blum, M., Gaunt, S. J., Cho, K. W., Steinbeisser, H., Blumberg, B., Bittner, D. and De 

Robertis, E. M. (1992) "Gastrulation in the mouse: the role of the homeobox gene 

goosecoid\ Cell 69(7), 1097-106.

Blumberg, B., Bolado, J. Jr, Moreno, T. A., Kintner, C., Evans, R. M. and Papalopulu, 

N. (1997) “An essential role for retinoid signaling in anteroposterior neural patterning”, 

Development, 124(2), 373-9.

Boehmer, C., Wilhelm, V., Palmada, M., Wallisch, S., Henke, G., Brinkmeier, H., 

Cohen, P., Pieske, B. and Lang, F. (2003) "Serum and glucocorticoid inducible kinases 

in the regulation of the cardiac sodium channel SCN5A", Cardiovasc Res 57(4), 1079- 

84.

Bollag, R. J., Waldman, A. S. and Liskay, R. M. (1989) "Homologous recombination in 

mammalian cells", Annu Rev Genet 23, 199-225.

237



References

Boman, A. L., Delannoy, M. R. and Wilson, K. L. (1992) "GTP hydrolysis is required 

for vesicle fusion during nuclear envelope assembly in vitro", J Cell Biol 116(2), 281- 

94.

Boring, L. F., Sinervo, B. and Schubiger, G. (1989) "Experimental phenocopy of a 

Minute maternal-effect mutation alters blastoderm determination in embryos of 

Drosophila melanogaster", Dev Biol 132(2), 343-54.

Bouwmeester, T., Kim, S., Sasai, Y., Lu, B. and De Robertis, E. M. (1996) "Cerberus 

is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's 

organizer", Nature 382(6592), 595-601.

Brand, M., Heisenberg, C. P., Warga, R. M., Pelegri, F., Karlstrom, R. O., Beuchle, D., 

Picker, A., Jiang, Y. J., Furutani-Seiki, M., van Eeden, F. J., Granato, M., Haffter, P., 

Hammerschmidt, M., Kane, D. A., Kelsh, R. N., Mullins, M. C., Odenthal, J. and 

Nusslein-Volhard, C. (1996) "Mutations affecting development of the midline and 

general body shape during zebrafish embryogenesis", Development 123, 129-42. 

Branford, W. W. and Yost, H. J. (2002) "Lefty-dependent inhibition of nodal- and 

wnt-responsive organizer gene expression is essential for normal gastrulation", Curr 

Biol 12(24), 2136-41.

Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. and Kimelman, D. (1997) "A 

beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis 

specification in Xenopus", Genes Dev 11(18), 2359-70.

Brannon, M. and Kimelman, D. (1996) "Activation of Siamois by the Wnt pathway", 

Dev Biol 180(1), 344-7.

Brazil, D. P. and Hemmings, B. A. (2001) "Ten years of protein kinase B signalling: a 

hard Akt to follow", Trends Biochem Sci 26(11), 657-64.

Brehme, K. S. (1939) "A study of the effect on development of "Minute" mutations in 

Drosophila melanogaster", Genetics 24, 131-61.

Brehme, K. S. (1941a) "Development of the Minute phenotype in Drosophila 

melanogaster. A comparative study of three Minute mutants", J Exp Zool 88, 135-60. 

Brehme, K. S. (1941b) "The growth of transplanted Minute and wild-type optic discs in 

Drosophila melanogaster", Growth 5, 183-95.

Brennan, F. E. and Fuller, P. J. (2000) "Rapid upregulation of serum and 

glucocorticoid-regulated kinase (sgk) gene expression by corticosteroids in vivo", Mol 

Cell Endocrinol 166(2), 129-36.

238



References

Brennan, J., Lu, C. C., Norris, D. P., Rodriguez, T. A., Beddington, R. S. and 

Robertson, E. J. (2001) "Nodal signalling in the epiblast patterns the early mouse 

embryo", Nature 411(6840), 965-9.

Brickley, D. R., Mikosz, C. A., Hagan, C. R. and Conzen, S. D. (2002) "Ubiquitin 

modification of serum and glucocorticoid-induced protein kinase-1 (SGK-1)", J Biol 

Chem 277(45), 43064-70.

Brunet, A., Park, J., Tran, H., Hu, L. S., Hemmings, B. A. and Greenberg, M. E. (2001) 

"Protein kinase SGK mediates survival signals by phosphorylating the forkhead 

transcription factor FKHRL1 (FOX03a)", Mol Cell Biol 21(3), 952-65.

Bryant, P. J. and Simpson, P. (1984) "Intrinsic and extrinsic control of growth in 

developing organs", Q Rev Biol 59(4), 387-415.

Buck, A., Kispert, A. and Kohlhase, J. (2001) "Embryonic expression of the murine 

homologue of SALL1, the gene mutated in Townes-Brocks syndrome", Mech Dev 

104(1-2), 143-6.

Bunney, T. D., De Boer, A. H. and Levin, M. (2003) “Fusicoccin signaling reveals 

14-3-3 protein function as a novel step in left-right patterning during amphibian 

embryogenesis”, Development 130(20), 4847-58.

Burmeister, M., Novak, J., Liang, M.-Y., Basu, S., Ploder, L., Hawes, N. L., Vidgen,

D., Hoover, F., Goldman, D., Kalnins, V. I., Roderick, T. H., Taylor, B. A., Hankin, M.

H. and Mclnnes, R. R. (1996) "Ocular retardation mouse caused by ChxlO homeobox 

null allele: impaired retinal progenitor proliferation and bipolar cell differentiation", 

Nature Genet 12, 376-84.

Buse, P., Tran, S. H., Luther, E., Phu, P. T., Aponte, G. W. and Firestone, G. L. (1999) 

"Cell cycle and hormonal control of nuclear-cytoplasmic localization of the serum- and 

glucocorticoid-inducible protein kinase, Sgk, in mammary tumor cells. A novel 

convergence point of anti-proliferative and proliferative cell signaling pathways", J Biol 

Chem 274(11), 7253-63.

Busjahn, A., Aydin, A., Uhlmann, R., Krasko, C., Bahring, S., Szelestei, T., Feng, Y., 

Dahm, S., Sharma, A. M., Luft, F. C. and Lang, F. (2002) "Serum- and glucocorticoid- 

regulated kinase (SGK1) gene and blood pressure", Hypertension 40(3), 256-60. 

Callebaut, M. (1987) "Ooplasmic localization and segregation in quail germs: fate of 

the four ooplasms", Arch Biol (Bruxelles) 98,441-73.

Callebaut, M. (1993a) "Development of quail germs during and after gravitationally 

oriented bilateral axialization", Eur Arch Biol 104,135-40.

239



References

Callebaut, M. (1993b) "Unequal caudocephalic ooplasmic uptake and eccentric 

formation of the subgerminal space below unincubated quail blastoderms presenting a 

Roller's sickle", Belg JZool 123, 107-12.

Callebaut, M. and Van Nueten, E. (1994) "Rauber's (Roller's) sickle: the early 

gastrulation organizer of the avian blastoderm", EurJ Morphol 32(1), 35-48.

Campbell, G. and Tomlinson, A. (1999) "Transducing the Dpp morphogen gradient in 

the wing of Drosophila: regulation of Dpp targets by brinker", Cell 96(4), 553-62. 

Cantley, L. C. (2002) "The phosphoinositide 3-kinase pathway", Science 296(5573), 

1655-7.

Carlton, J. M., Angiuoli, S. V., Suh, B. B., Rooij, T. W., Pertea, M., Silva, J. C., 

Ermolaeva, M. D., Allen, J. E., Selengut, J. D., Roo, H. L., Peterson, J. D., Pop, M., 

Rosack, D. S., Shumway, M. F., Bidwell, S. L., Shallom, S. J., van Aken, S. E., 

Riedmuller, S. B., Feldblyum, T. V., Cho, J. R., Quackenbush, J., Sedegah, M., Shoaibi, 

A., Cummings, L. M., Florens, L., Yates, J. R., Raine, J. D., Sinden, R. E., Harris, M. 

A., Cunningham, D. A., Preiser, P. R., Bergman, L. W., Vaidya, A. B., van Lin, L. H., 

Janse, C. J., Waters, A. P., Smith, H. O., White, O. R., Salzberg, S. L., Venter, J. C., 

Fraser, C. M., Hoffman, S. L., Gardner, M. J. and Carucci, D. J. (2002) "Genome 

sequence and comparative analysis of the model rodent malaria parasite Plasmodium 

yoelii yoelii", Nature 419(6906), 512-9.

Carmany-Rampey, A. and Schier, A. F. (2001) “Single-cell internalization during 

zebrafish gastrulation”, CurrBiol 11(16), 1261-5.

Carnac, G., Rodjabachian, L., Gurdon, J. B. and Lemaire, P. (1996) "The homeobox 

gene Siamois is a target of the Wnt dorsalisation pathway and triggers organizer activity 

in the absence of mesoderm", Development 122(10), 3055-65.

Carreira-Barbosa, F., Concha, M. L., Takeuchi, M., Ueno, N., Wilson, S. W. and 

Tada, M. (2003) “Prickle 1 regulates cell movements during gastrulation and neuronal 

migration in zebrafish”, Development, 130,4037-46.

Carroll, S. B., Laughon, A. and Thalley, B. S. (1988) "Expression, function, and 

regulation of the hairy segmentation protein in the Drosophila embryo", Genes Dev 

2(7), 883-90.

Carroll, S. B. and Scott, M. P. (1986) "Zygotically active genes that affect the spatial 

expression of the fushi tarazu segmentation gene during early D rosophila  

embryogenesis", Cell 45(1), 113-26.

240



References

Casamayor, A., Torrance, P. D., Kobayashi, T., Thomer, J. and Alessi, D. R. (1999) 

"Functional counterparts of mammalian protein kinases PDK1 and SGK in budding 

yeast", Curr Biol 9(4), 186-97.

Casellas, R. and Brivanlou, A. H. (1998) "Xenopus Smad7 inhibits both the activin 

and BMP pathways and acts as a neural inducer", Dev Biol 198(1), 1-12.

Cebria, F., Kobayashi, C., Umesono, Y., Nakazawa, M., Mineta, K., Ikeo, K., 

Gojobori, T., Itoh, M., Taira, M., Sanchez Alvarado, A. and Agata, K. (2002) “FGFR- 

related gene nou-darake restricts brain tissues to the head region of planarians”, Nature, 

419(6907), 620-4.

Chang, C. and Hemmati-Brivanlou, A. (2000) "A post-mid-blastula transition 

requirement for TGFbeta signaling in early endodermal specification", Mech Dev 90(2), 

227-35.

Chang, C., Wilson, P. A., Mathews, L. S. and Hemmati-Brivanlou, A. (1997) "A 

Xenopus type I activin receptor mediates mesodermal but not neural specification 

during embryogenesis", Development 124(4), 827-37.

Chapman, D. L. and Papaioannou, V. E. (1998) "Three neural tubes in mouse 

embryos with mutations in the T-box gene Tbx6'\ Nature 391(6668), 695-7.

Chapman, S. C., Schubert, F. R., Schoenwolf, G. C. and Lumsden, A. (2003) "Anterior 

identity is established in chick epiblast by hypoblast and anterior definitive endoderm", 

Development 130, 5091-101.

Chen, P., Lee, K. S. and Levin, D. E. (1993) "A pair of putative protein kinase genes 

(YPKl and YPK2) is required for cell growth in Saccharomyces cerevisiae", Mol Gen 

Genet 236(2-3), 443-7.

Chen, S. Y., Bhargava, A., Mastroberardino, L., Meijer, O. C., Wang, J., Buse, P., 

Firestone, G. L., Verrey, F. and Pearce, D. (1999) "Epithelial sodium channel regulated 

by aldosterone-induced protein sgk", Proc Natl Acad Sci USA 96(5), 2514-9.

Chen, W. S., Xu, P. Z., Gottlob, K., Chen, M. L., Sokol, K., Shiyanova, T., Roninson,

I., Weng, W., Suzuki, R., Tobe, K., Kadowaki, T. and Hay, N. (2001) "Growth 

retardation and increased apoptosis in mice with homozygous disruption of the Aktl 

gene", Genes Dev 15(17), 2203-8.

Chen, X., Rubock, M. J. and Whitman, M. (1996) "A transcriptional partner for MAD 

proteins in TGF-beta signalling", Nature 383(6602), 691-6.

Chen, Y. and Schier, A. F. (2001) "The zebrafish Nodal signal squint functions as a 

morphogen”, Nature 411(6837), 607-10.

241



References

Cheng, Q., Lau, W. M., Chew, S. H., Ho, T. H., Tay, S. K. and Hui, K. M. (2002) 

"Identification of molecular markers for the early detection of human squamous cell 

carcinoma of the uterine cervix", Br J Cancer 86(2), 274-81.

Chester, K. A., Robson, L., Begent, R. H., Talbot, I. C., Pringle, J. H., Primrose, L., 

Macpherson, A. J., Boxer, G., Southall, P. and Malcolm, A. D. (1989) "Identification of 

a human ribosomal protein mRNA with increased expression in colorectal tumours", 

Biochim Biophys Acta 1009(3), 297-300.

Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B., 3rd, 

Kaestner, K. H., Bartolomei, M. S., Shulman, G. I. and Birnbaum, M. J. (2001a) 

"Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein 

kinase Akt2 (PKB beta)", Science 292(5522), 1728-31.

Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. and Birnbaum, M. J. (2001b) 

"Aktl/PKBalpha is required for normal growth but dispensable for maintenance of 

glucose homeostasis in mice", J Biol Chem 276(42), 38349-52.

Cho, K. W., Blumberg, B., Steinbeisser, H. and De Robertis, E. M. (1991) "Molecular 

nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid", 

Cell 67(6), 1111-20.

Christiansen, J. H., Coles, E. G., Robinson, V., Pasini, A. and Wilkinson, D. G. (2001) 

"Screening from a subtracted embryonic chick hindbrain cDNA library: identification of 

genes expressed during hindbrain, midbrain and cranial neural crest development", 

MechDev 102((l-2)), 119-33.

Chun, J., Kwon, T., Lee, E., Suh, P. G., Choi, E. J. and Sun Kang, S. (2002) "The 

Na(+)/H(+) exchanger regulatory factor 2 mediates phosphorylation of serum- and 

glucocorticoid-induced protein kinase 1 by 3-phosphoinositide-dependent protein 

kinase 1", Biochem Biophys Res Commun 298(2), 207-15.

Clapp, C. M. (1891) "Some points in the development of the toad-fish", J Morphol 5, 

494-501.

Clements, D., Friday, R. V. and Woodland, H. R. (1999) "Mode of action of VegT in 

mesoderm and endoderm formation", Development 126(21), 4903-11.

Conlon, F. L., Lyons, K. M., Takaesu, N., Barth, K. S., Kispert, A., Herrmann, B. and 

Robertson, E. J. (1994) "A primary requirement for nodal in the formation and 

maintenance of the primitive streak in the mouse", Development 120(7), 1919-28. 

Conlon, R. A. (1995) “Retinoic acid and pattern formation in vertebrates”, Trends 

Genet, ll(8):314-9.

242



References

Cooper, M. S. and D’Amico, L. A. (1996) “A cluster of noninvoluting endocytic cells 

at the margin of the zebrafish blastoderm marks the site of embryonic shield formation”, 

Dev Biol 180(1), 184-98.

Cooper, M. S. and D’Amico, L. A. (2001) “Morphogenetic Domains in the Yolk 

Syncytial Layer of Axiating Zebrafish Embryos”, Dev Dyn 222, 611-24.

Coutinho, P., Parsons, M. J., Thomas, K. A., Hirst, E. M. A., Saude, L., Campos, I. and 

Stemple, D. L. (2003) "Coatomer mRNA is Regulated by Coatomer Function via 

Negative Feedback", submitted.

Cosson, P. and Letourneur, F. (1997) “Coatomer (COPI)-coated vesicles: role in 

intracellular transport and protein sorting” Curr Opin Cell Biol 9,484-7.

Cowling, R. T. and Birnboim, H. C. (2000) "Expression of serum- and glucocorticoid- 

regulated kinase (sgk) mRNA is up-regulated by GM-CSF and other proinflammatory 

mediators in human granulocytes", JLeukoc Biol 67(2), 240-8.

Cox, W. G. and Hemmati-Brivanlou, A. (1995) “Caudalization of neural fate by 

tissue recombination and bFGF”, Development, 121(12), 4349-58.

Cramton, S. E. and Laski, F. A. (1994) "string of pearls encodes Drosophila 

ribosomal protein S2, has Minute-like characteristics, and is required during oogenesis", 

Genetics 137(4), 1039-48.

Crossley, P. H. and Martin, G. R. (1995) “The mouse Fgf8 gene encodes a family of 

polypeptides and is expressed in regions that direct outgrowth and patterning in the 

developing embryo”, Development, 121,439-51.

Cui, Y., Brown, J. D., Moon, R. T. and Christian, J. L. (1995) "Xwnt-8b: a maternally 

expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis", 

Development 121(7), 2177-86.

Dale, L., Matthews, G. and Colman, A. (1993) "Secretion and mesoderm-inducing 

activity of the TGF-beta-related domain of Xenopus Vgl", EMBO J  12(12), 4471-80. 

Dale, L., Matthews, G., Tabe, L. and Colman, A. (1989) "Developmental expression of 

the protein product of Vgl, a localized maternal mRNA in the frog Xenopus laevis", 

EMBOJ 8(4), 1057-65.

Dale, L. and Slack, J. M. (1987) “Fate map for the 32-cell stage of Xenopus laevis”, 

Development. 99(4), 527-51.

Daniels, D. L., Eklof Spink, K. and Weis, W. I. (2001) "beta-catenin: molecular 

plasticity and drug design", Trends Biochem Sci 26(11), 672-8.

Danielson, P. E., Forss-Petter, S., Battenberg, E. L., deLecea, L., Bloom, F. E. and 

Sutcliffe, J. G. (1994) "Four structurally distinct neuron-specific olfactomedin-related

243



References

glycoproteins produced by differential promoter utilization and alternative mRNA 

splicing from a single gene", JNeurosci Res 38(4), 468-78.

Datto, M. B., Frederick, J. P., Pan, L., Borton, A. J., Zhuang, Y. and Wang, X. F. 

(1999) "Targeted disruption of Smad3 reveals an essential role in transforming growth 

factor beta-mediated signal transduction", Mol Cell Biol 19(4), 2495-504.

David, N. B. and Rosa, F. (2001) “Cell autonomous commitment to an endodermal 

fate and behaviour by activation of Nodal signalling”, Development 128(20), 3937-47. 

Davies, T. J. and Gardner, R. L. (2002) "The plane of first cleavage is not related to 

the distribution of sperm components in the mouse", Hum Reprod 17(9), 2368-79. 

Debonneville, C., Flores, S. Y., Kamynina, E., Plant, P. J., Tauxe, C., Thomas, M. A., 

Munster, C., Chraibi, A., Pratt, J. H., Horisberger, J. D., Pearce, D., Loffing, J. and 

Staub, O. (2001) "Phosphorylation of Nedd4-2 by Sgkl regulates epithelial Na(+) 

channel cell surface expression", EMBO J  20(24), 7052-9.

Dehal, P., Satou, Y., Campbell, R. K., Chapman, J., Degnan, B., De Tomaso, A., 

Davidson, B., Di Gregorio, A., Gelpke, M., Goodstein, D. M., Harafuji, N., Hastings, K. 

E., Ho, I., Hotta, K., Huang, W., Kawashima, T., Lemaire, P., Martinez, D., 

Meinertzhagen, I. A., Necula, S., Nonaka, M., Putnam, N., Rash, S., Saiga, H., Satake, 

M., Terry, A., Yamada, L., Wang, H. G., Awazu, S., Azumi, K., Boore, J., Branno, M., 

Chin-Bow, S., DeSantis, R., Doyle, S., Francino, P., Keys, D. N., Haga, S., Hayashi, H., 

Hino, K., Imai, K. S., Inaba, K., Kano, S., Kobayashi, K., Kobayashi, M., Lee, B. I., 

Makabe, K. W., Manohar, C., Matassi, G., Medina, M., Mochizuki, Y., Mount, S., 

Morishita, T., Miura, S., Nakayama, A., Nishizaka, S., Nomoto, H., Ohta, F., Oishi, K., 

Rigoutsos, I., Sano, M., Sasaki, A., Sasakura, Y., Shoguchi, E., Shin-i, T., Spagnuolo, 

A., Stainier, D., Suzuki, M. M., Tassy, O., Takatori, N., Tokuoka, M., Yagi, K., 

Yoshizaki, F., Wada, S., Zhang, C., Hyatt, P. D., Larimer, F., Detter, C., Doggett, N., 

Glavina, T., Hawkins, T., Richardson, P., Lucas, S., Kohara, Y., Levine, M., Satoh, N. 

and Rokhsar, D. S. (2002) "The draft genome of Ciona intestinalis: insights into 

chordate and vertebrate origins", Science 298(5601), 2157-67.

deHart, A. K., Schnell, J. D., Allen, D. A. and Hicke, L. (2002) "The conserved Pkh- 

Ypk kinase cascade is required for endocytosis in yeast", J Cell Biol 156(2), 241-8. 

Delmolino, L. M. and Castellot, J. J., Jr. (1997) "Heparin suppresses sgk, an early 

response gene in proliferating vascular smooth muscle cells", J  Cell Physiol 173(3), 

371-9.

DeRobertis, E. M. and Sasai, Y. (1996) "A common plan for dorsoventral patterning 

in Bilateria", Nature 380(6569), 37-40.

244



References

Derynck, R., Zhang, Y. and Feng, X. H. (1998) "Smads: transcriptional activators of 

TGF-beta responses", Cell 95(6), 737-40.

Dick, A., Hild, M., Bauer, H., Imai, Y., Maifeld, H., Schier, A. F., Talbot, W. S., 

Bouwmeester, T. and Hammerschmidt, M. (2000) "Essential role of Bmp7 (snailhouse) 

and its prodomain in dorsoventral patterning of the zebrafish embryo", Development 

127(2), 343-54.

Dickmeis, T., Mourrain, P., Saint-Etienne, L., Fischer, N., Aanstad, P., Clark, M., 

Strahle, U. and Rosa, F. (2001) "A crucial component of the endoderm formation 

pathway, CASANOVA, is encoded by a novel sox-related gene", Genes Dev 15(12), 

1487-92.

Ding, J., Yang, L., Yan, Y. T., Chen, A., Desai, N., Wynshaw-Boris, A. and Shen, M. 

M. (1998) "Cripto is required for correct orientation of the antero-posterior axis in the 

mouse embryo", Nature 395(6703), 702-7.

Domingos, P. M., Itasaki, N., Jones, C. M., Mercurio, S., Sargent, M. G., Smith, J. C. 

and Krumlauf, R. (2001) “The Wnt/beta-catenin pathway posteriorizes neural tissue in 

Xenopus by an indirect mechanism requiring FGF signalling” Dev Biol, 239(1), 148-60. 

Dominguez, I. and Green, J. B. (2000) "Dorsal downregulation of GSK3beta by a 

non-Wnt-like mechanism is an early molecular consequence of cortical rotation in early 

Xenopus embryos", Development 127(4), 861-8.

Dominguez, I., Itoh, K. and Sokol, S. Y. (1995) "Role of glycogen synthase kinase 3 

beta as a negative regulator of dorsoventral axis formation in Xenopus embryos", Proc 

Natl Acad Sci USA 92(18), 8498-502.

Donohue, P. J., Alberts, G. F., Guo, Y. and Winkles, J. A. (1995) "Identification by 

targeted differential display of an immediate early gene encoding a putative 

serine/threonine kinase", J Biol Chem 270(17), 10351-7.

Dorer, D. R., Anane-Firempong, A. and Christensen, A. C. (1991) "Ribosomal protein 

S14 is not responsible for the Minute phenotype associated with the M(1)7C locus in 

Drosophila melanogaster", Mol Gen Genet 230(1-2), 8-11.

Draper, B. W., Morcos, P. A. and Kimmel, C. B. (2001) "Inhibition of zebrafish fgf8 

pre-mRNA splicing with morpholino oligos: a quantifiable method for gene 

knockdown", Genesis 30(3), 154-6.

Driever, W., Solnica-Krezel, L., Schier, A. F., Neuhauss, S. C., Malicki, J., Stemple, D. 

L., Stainier, D. Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J. and Boggs, C. 

(1996) "A genetic screen for mutations affecting embryogenesis in zebrafish", 

Development 123, 37-46.

245



References

Du, S. J., Purcell, S. M., Christian, J. L., McGrew, L. L. and Moon, R. T. (1995) 

"Identification of distinct classes and functional domains of Wnts through expression of 

wild-type and chimeric proteins in Xenopus embryos", Mol Cell Biol 15(5), 2625-34. 

Ducibella, T. and Anderson, E. (1975) "Cell shape and membrane changes in the 

eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst", Dev Biol 

47(1), 45-58.

Dufort, D., Schwartz, L., Harpal, K. and Rossant, J. (1998) "The transcription factor 

HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis", 

Development 125(16), 3015-25.

Dyson, S. and Gurdon, J. B. (1997) "Activin signalling has a necessary function in 

Xenopus early development", Curr Biol 7(1), 81-4.

Edgar, B. A. (1999) "From small flies come big discoveries about size control", Nat 

Cell Biol 1(8), E191-3.

Edgar, B. A., Odell, G. M. and Schubiger, G. (1987) "Cytoarchitecture and the 

patterning of fushi tarazu expression in the Drosophila blastoderm", Genes Dev 1(10), 

1226-37.

Edgar, B. A., Weir, M. P., Schubiger, G. and Komberg, T. (1986) "Repression and 

turnover pattern fushi tarazu RNA in the early Drosophila embryo", Cell 47(5), 747-54. 

Elchebly, M., Wagner, J., Kennedy, T. E., Lanctot, C., Michaliszyn, E., Itie, A., 

Drouin, J. and Tremblay, M. L. (1999) "Neuroendocrine dysplasia in mice lacking 

protein tyrosine phosphatase sigma", Nat Genet 21(3), 330-3.

Elinson, R. P. and Rowning, B. (1988) "A transient array of parallel microtubules in 

frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral 

axis.PG", Dev Biol 128(1).

Embark, H. M., Bohmer, C., Vallon, V., Luft, F. and Lang, F. (2003) "Regulation of 

KCNE1-dependent K(+) current by the serum and glucocorticoid-inducible kinase 

(SGK) isoforms", Pflugers Arch 445(5), 601-6.

Episkopou, V., Arkell, R., Timmons, P. M., Walsh, J. J., Andrew, R. L. and Swan, D. 

(2001) "Induction of the mammalian node requires Arkadia function in the 

extraembryonic lineages", Nature 410(6830), 825-30.

Evsikov, S. V., Morozova, L. M. and Solombko, A. P. (1994) "Role of ooplasmic 

segregation in mammalian development", Roux's Arch Dev Biol 203, 199-204. 

Eyal-Giladi, H. (1997) "Establishment of the axis in chordates: facts and speculations", 

Development 124(12), 2285-96.

246



References

Eyal-Giladi, H. and Kochav, S. (1976) "From cleavage to primitive streak formation: 

a complementary normal table and a new look at the first stages of the development of 

the chick. I. General morphology", Dev Biol 49(2), 321-37.

Fagotto, F., Guger, K. and Gumbiner, B. M. (1997) "Induction of the primary 

dorsalizing center in Xenopus by the Wnt/GSK/beta-catenin signaling pathway, but not 

by Vgl, Activin or Noggin", Development 124(2), 453-60.

Fainsod, A., Deissler, K., Yelin, R. Marom, K., Epstein, M., Pillemer, G., Steinbeisser, 

H. and Blum, M. (1997) “The dorsalizing and neural inducing gene follistatin is an 

antagonist of BMP-4”, Mech Dev 63, 39-50.

Faletti, C. J., Perrotti, N., Taylor, S. I. and Blazer-Yost, B. L. (2002) "sgk: an essential 

convergence point for peptide and steroid hormone regulation of ENaC-mediated Na+ 

transport", Am J Physiol Cell Physiol 282(3), C494-500.

Fan, M. J. and Sokol, S. Y. (1997) "A role for Siamois in Spemann organizer 

formation", Development 124(13), 2581-9.

Fan, Q. W., Kadomatsu, K., Uchimura, K. and Muramatsu, T. (1998) "Embigin/basigin 

subgroup of the immunoglobulin superfamily: different modes of expression during 

mouse embryogenesis and correlated expression with carbohydrate antigenic markers", 

Dev Growth Differ 40(3), 277-86.

Farman, N., Boulkroun, S. and Courtois-Coutry, N. (2002) "Sgk: an old enzyme 

revisited", /  Clin Invest 110(9), 1233-4.

Farnsworth, M. W. (1957a) "Effects of the homozygous first, second and third 

chromosome Minutes on the development of Drosophila melanogaster", Genetics 42, 

19-27.

Farnsworth, M. W. (1957b) "Effects of the homozygous Minute-DJ deficiency on the 

development of Drosophila melanogaster", Genetics 42, 7-19.

Fatica, A. and Tollervey, D. (2002) "Making ribosomes", Curr Opin Cell Biol 14(3), 

313-8.

Fekany, K., Yamanaka, Y., Leung, T., Sirotkin, H. I., Topczewski, J., Gates, M. A., 

Hibi, M., Renucci, A., Stemple, D., Radbill, A., Schier, A. F., Driever, W., Hirano, T., 

Talbot, W. S. and Solnica-Krezel, L. (1999) "The zebrafish bozozok locus encodes 

Dharma, a homeodomain protein essential for induction of gastrula organizer and 

dorsoanterior embryonic structures", Development 126(7), 1427-38.

Fekany-Lee, K., Gonzalez, E., Miller-Bertoglio, V. and Solnica-Krezel, L. (2000) "The 

homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish

247



References

through negative regulation of BMP2/4 and Wnt pathways", Development 127(11), 

2333-45.

Feldman, B., Concha, M. L., Saude, L., Parsons, M. J., Adams, R. J., Wilson, S. W. 

and Stemple, D. L. (2002) "Lefty antagonism of squint is essential for normal 

gastrulation", Curr Biol 12(24), 2129-35.

Feldman, B., Gates, M. A., Egan, E. S., Dougan, S. T., Rennebeck, G., Sirotkin, H. I., 

Schier, A. F. and Talbot, W. S. (1998) "Zebrafish organizer development and germ- 

layer formation require nodal-related signals", Nature 395(6698), 181-5.

Filosa, S., Rivera-Perez, J. A., Gomez, A. P., Gansmuller, A., Sasaki, H., Behringer, R. 

R. and Ang, S.-L. (1997) “Goosecoid and HNF-3beta genetically interact to regulate 

neural tube patterning during mouse embryogenesis”, Development 124, 2843-54.

Fine, L. G., Holley, R. W., Nasri, H. and Badie-Dezfooly, B. (1985) "BSC-1 growth 

inhibitor transforms a mitogenic stimulus into a hypertrophic stimulus for renal 

proximal tubular cells: relationship to Na+/H+ antiport activity", Proc Natl Acad Sci 

USA 82(18), 6163-6.

Firestone, G. L., Giampaolo, J. R. and O'Keeffe, B. A. (2003) "Stimulus-Dependent 

Regulation of Serum and Glucocorticoid Inducible Protein Kinase (SGK) Transcription, 

Subcellular Localization and Enzymatic Activity", Cell Physiol Biochem 13(1), 1-12. 

Fisher, J. P., Hope, S. A. and Hooper, M. L. (1989) "Factors influencing the 

differentiation of embryonal carcinoma and embryo-derived stem cells", Exp Cell Res 

182(2), 403-14.

Fjose, A., Izpisua-Belmonte, J. C., Fromental-Ramain, C. and Duboule, D. (1994) 

"Expression of the zebrafish gene hlx-l in the prechordal plate and during CNS 

development", Development 120(1), 71-81.

Fleming, T. P. (1987) "A quantitative analysis of cell allocation to trophectoderm and 

inner cell mass in the mouse blastocyst", Dev Biol 119(2), 520-31.

Foley, A. C., Skromne, I. and Stern, C. D. (2000) "Reconciling different models of 

forebrain induction and patterning: a dual role for the hypoblast", Development 127(17), 

3839-54.

Foley, A. C. and Stern, C. D. (2001) "Evolution of vertebrate forebrain development: 

how many different mechanisms?", J Anat 199, 35-52.

Fruttiger, M. (2002) "Development of the mouse retinal vasculature: angiogenesis 

versus vasculogenesis", Invest Ophthalmol Vis Sci 43(2), 522-7.

Fu, H., Subramanian, R. R. and Masters, S. C. (2000), “14-3-3 proteins: Structure, 

Function, and Regulation”, Annu Rev Pharmacol Toxicol, 40, 617-47.

248



References

Fujimori, T., Kurotaki, Y., Miyazaki, J. and Nabeshima, Y. (2003) “Analysis of cell 

lineage in two- and four-cell mouse embryos”, Development, 130(21), 5113-22. 

Fujisue, M., Kobayakawa, Y. and Yamana, K. (1993) "Occurrence of dorsal axis- 

inducing activity around the vegetal pole of an uncleaved Xenopus egg and 

displacement to the equatorial region by cortical rotation", Development 118, 163-70. 

Funayama, N., Fagotto, F., McCrea, P. and Gumbiner, B. M. (1995) "Embryonic axis 

induction by the armadillo repeat domain of beta-catenin: evidence for intracellular 

signaling", J Cell Biol 128(5), 959-68.

Fiirthauer, M., Thisse, C. and Thisse, B. (1997) "A role for FGF-8 in the dorsoventral 

patterning of the zebrafish gastrula" Development 124(21), 4253-64.

Furukawa, T., Kozac, C. A. and Cepko, C. L. (1997) "rax, a novel paired-type 

homeobox gene, shows expression in the anterior neural fold and developing retina", 

Proc Natl Acad Sci USA 94, 3088-93.

Furukawa, T., Uchiumi, T., Tokunaga, R. and Taketani, S. (1992) "Ribosomal protein 

P2, a novel iron-binding protein", Arch Biochem Biophys 298(1), 182-6.

Gaio, U., Schweickert, A., Fischer, A., Gairatt, A. N., Muller, T., Ozcelik, C., Lankes, 

W., Strehle, M., Britsch, S., Blum, M. and Birchmeier, C. (1999) "A role of the cryptic 

gene in the correct establishment of the left-right axis", Curr Biol 9(22), 1339-42. 

Gamper, N., Fillon, S., Feng, Y., Friedrich, B., Lang, P. A., Henke, G., Huber, S. M., 

Kobayashi, T., Cohen, P. and Lang, F. (2002a) "K(+) channel activation by all three 

isoforms of serum- and glucocorticoid-dependent protein kinase SGK", Pflugers Arch 

445(1), 60-6.

Gamper, N., Fillon, S., Huber, S. M., Feng, Y., Kobayashi, T., Cohen, P. and Lang, F. 

(2002b) "IGF-l up-regulates K+ channels via PI3-kinase, PDK1 and SGK1", Pflugers 

Arch 443(4), 625-34.

Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. 

M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., 

Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M. S., Nene, V., Shallom, S. 

J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., 

Mather, M. W., Vaidya, A. B., Martin, D. M., Fairlamb, A. H., Fraunholz, M. J., Roos, 

D. S., Ralph, S. A., McFadden, G. I., Cummings, L. M., Subramanian, G. M., Mungall, 

C., Venter, J. C., Carucci, D. J., Hoffman, S. L., Newbold, C., Davis, R. W., Fraser, C. 

M. and Barrell, B. (2002) "Genome sequence of the human malaria parasite 

Plasmodium falciparum", Nature 419(6906), 498-511.

249



References

Gardner, R. L. (1990) Location and orientation of implantation. New York, Serono 

Symposia Publications, Raven Press.

Gardner, R. L. (1997) "The early blastocyst is bilaterally symmetrical and its axis of 

symmetry is aligned with the animal-vegetal axis of the zygote in the mouse", 

Development 124(2), 289-301.

Gardner, R. L. (1999a) "Polarity in early mammalian development", Curr Opin Genet 

Dev 9(4), 417-21.

Gardner, R. L. (1999b) "Scrambled or bisected mouse eggs and the basis of patterning 

in mammals", Bioessays 21(4), 271-4.

Gardner, R. L. (2001) "Specification of embryonic axes begins before cleavage in 

normal mouse development", Development 128(6), 839-47.

Garner, W. and McLaren, A. (1974) "Cell distribution in chimaeric mouse embryos 

before implantation", J Embryol Exp Morphol 32(2), 495-503.

Gawantka, V., Pollet, N., Delius, H., Vingron, M., Pfister, R., Nitsch, R., Blumenstock,

C. and Niehrs, C. (1998) "Gene expression screening in Xenopus identifies molecular 

pathways, predicts gene function and provides a global view of embryonic patterning", 

Mech Dev 77(2), 95-141.

Gerhart, J., Danilchik, M., Doniach, T., Roberts, S., Rowning, B. and Stewart, R. 

(1989) "Cortical rotation of the Xenopus egg: consequences for the anteroposterior 

pattern of embryonic dorsal development", Development 107 Suppl, 37-51.

Gerhart, J. and Kirschner, M. (1997) Cells, embrvos and evolution. Malden, MA, 

Blackwell Science, Inc.

Gilbert, S. F. (2000) Developmental Biology. Sunderland, MA, Sinauer Associates Inc. 

Gilbert, S. F. and Raunio, A. M. (1997) Embryology. Constructing the Organism. 

Sunderland, MA, Sinauer Associates Inc.

Gimlich, R. L. and Cooke, J. (1983) "Cell lineage and the induction of second nervous 

systems in amphibian development", Nature 306(5942), 471-3.

Girard, F., Strausfeld, U., Fernandez, A. and Lamb, N. J. (1991) "Cyclin A is required 

for the onset of DNA replication in mammalian fibroblasts", Cell 67(6), 1169-79. 

Gitton, Y., Dahmane, N., Baik, S., Ruiz i Altaba, A., Neidhardt, L., Scholze, M., 

Herrmann, B. G., Kahlem, P., Benkahla, A., Schrinner, S., Yildirimman, R., Herwig, R., 

Lehrach, H. and Yaspo, M. L. (2002) "A gene expression map of human chromosome 

21 orthologues in the mouse", Nature 420(6915), 586-90.

Godsave, S. F. and Slack, J. M. (1991) “Single cell analysis of mesoderm formation in 

the Xenopus embryo”, Development 111, 523-30.

250



References

Golling, G., Amsterdam, A., Sun, Z., Antonelli, M., Maldonado, E., Chen, W., Burgess,

S., Haldi, M., Artzt, K., Farrington, S., Lin, S. Y., Nissen, R. M. and Hopkins, N. (2002) 

"Insertional mutagenesis in zebrafish rapidly identifies genes essential for early 

vertebrate development", Nat Genet 31(2), 135-40.

Gonzalez-Nicolini, V. and McGinty, J. F. (2002) "Gene expression profile from the 

striatum of amphetamine-treated rats: a cDNA array and in situ hybridisation 

histochemical study", Brain Res Gene Expr Patterns 1(3-4), 193-8.

Gonzalez-Robayna, L J., Alliston, T. N., Buse, P., Firestone, G. L. and Richards, J. S. 

(1999) "Functional and subcellular changes in the A-kinase-signaling pathway: relation 

to aromatase and Sgk expression during the transition of granulosa cells to luteal cells", 

Mol Endocrinol 13(8), 1318-37.

Gonzalez-Robayna, I. J., Falender, A. E., Ochsner, S., Firestone, G. L. and Richards, 

J. S. (2000) "Follicle-Stimulating hormone (FSH) stimulates phosphorylation and 

activation of protein kinase B (PKB/Akt) and serum and glucocorticoid- Induced kinase 

(Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells", Mol 

Endocrinol 14(8), 1283-300.

Graham, C. F. (1971) "The design of the mouse blastocyst", Symp Soc Exp Biol 25, 

371-8.

Graham, C. F. and Deussen, Z. A. (1978) "Features of cell lineage in preimplantation 

mouse development", J Embryol Exp Morphol 48, 53-72.

Griffin, K. J., Amacher, S. L., Kimmel, C. B. and Kimelman, D. (1998) "Molecular 

identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by 

T-box genes", Development 125(17), 3379-88.

Gritsman, K., Zhang, J., Cheng, S., Heckscher, E., Talbot, W. S. and Schier, A. F. 

(1999) "The EGF-CFC protein one-eyed pinhead is essential for nodal signaling", Cell 

97(1), 121-32.

Grose, R., Harris, B. S., Cooper, L., Topilko, P. and Martin, P. (2002) "Immediate early 

genes krox-24 and krox-20 are rapidly up-regulated after wounding in the embryonic 

and adult mouse", Dev Dyn 223(3), 371-8.

Grunz, H. and Tacke, L. (1989) “Neural differentiation of Xenopus laevis ectoderm 

takes place after disaggregation and delayed reaggregation without inducer”, Cell Diff 

Dev 28,211-8.

Gu, Z., Nomura, M., Simpson, B. B., Lei, H., Feijen, A., van den Eijnden-van Raaij, J., 

Donahoe, P. K. and Li, E. (1998) "The type I activin receptor ActRIB is required for 

egg cylinder organization and gastrulation in the mouse", Genes Dev 12(6), 844-57.

251



References

Habas, R., Dawid, I. B. and He, X. (2003) “Coactivation of Rac and Rho by 

Wnt/Frizzled signaling is required for vertebrate gastrulation” Genes Dev 17(2), 295- 

309.

Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K. and Kemler, R. 

(1995) "Lack of beta-catenin affects mouse development at gastrulation", Development 

121(11), 3529-37.

Haffter, P. and Nusslein-Volhard, C. (1996) "Large scale genetics in a small 

vertebrate, the zebrafish", IntJ Dev Biol 40(1), 221-7.

Haft, C. R., de la Luz Sierra, M., Barr, V. A., Haft, D. H. and Taylor, S. I. (1998) 

"Identification of a family of sorting nexin molecules and characterization of their 

association with receptors", Mol Cell Biol 18(12), 7278-87.

Hamburger, V. and Hamilton, H. L. (1992) "A series of normal stages in the 

development of the chick embryo. 1951", Dev Dyn 195(4), 231-72.

Hamburger, V. (1988) The heritage of experimental embryology: Hans Spemann and 

the organizer. Oxford University Press, Oxford.

Hanks, S. K., Quinn, A. M. and Hunter, T. (1988) "The protein kinase family: 

conserved features and deduced phylogeny of the catalytic domains", Science 

241(4861), 42-52.

Harland, R. and Gerhart, J. (1997) "Formation and function of Spemann's organizer", 

Annu Rev Cell Dev Biol 13, 611-67.

Harnpicharnchai, P., Jakovljevic, J., Horsey, E., Miles, T., Roman, J., Rout, M., 

Meagher, D., Imai, B., Guo, Y., Brame, C. J., Shabanowitz, J., Hunt, D. F. and 

Woolford, J. L., Jr. (2001) "Composition and functional characterization of yeast 66S 

ribosome assembly intermediates", Mol Cell 8(3), 505-15.

Harrison, S. M., Dunwoodie, S. L., Arkell, R. M., Lehrach, H. and Beddington, R. S.

(1995) "Isolation of novel tissue-specific genes from cDNA libraries representing the 

individual tissue constituents of the gastrulating mouse embryo", Development 121(8), 

2479-89.

Hart, A. H., Hartley, L., Sourris, K., Stadler, E. S., Li, R., Stanley, E. G., Tam, P. P., 

Elefanty, A. G. and Robb, L. (2002) "Mixll is required for axial mesendoderm 

morphogenesis and patterning in the murine embryo", Development 129(15), 3597-608. 

Hart, K., Klein, T. and Wilcox, M. (1993) "A Minute encoding a ribosomal protein 

enhances wing morphogenesis mutants", Mech Dev 43(2-3), 101-10.

252



References

Hashimoto, H., Itoh, M., Yamanaka, Y., Yamashita, S., Shimizu, T., Solnica-Krezel, 

L., Hibi, M. and Hirano, T. (2000) "Zebrafish Dkkl functions in forebrain specification 

and axial mesendoderm formation", Dev Biol 217(1), 138-52.

Hasty, P., Rivera-Perez, J. and Bradley, A. (1992) "The role and fate of DNA ends for 

homologous recombination in embryonic stem cells", Mol Cell Biol 12(6), 2464-74. 

Hatta, K., Kimmel, C. B., Ho, R. K. and Walker, C. (1991) "The cyclops mutation 

blocks specification of the floor plate of the zebrafish central nervous system", Nature 

350(6316), 339-41.

Hatta, K. and Takahashi, Y. (1996) "Secondary axis induction by heterospecific 

organizers in zebrafish", Dev Dyn 205(2), 183-95.

Hawley, S. H. B., Wunnenberg-Stapleton, K., Hashimoto, C. Laurent, M. N., Watabe, 

T. Blumberg, B. W. and Cho, K. W. (1995) “Disruption of BMP signals in embryonic 

Xenopus ectoderm leads to direct neural induction”, Genes Dev 9, 2923-35.

Hayashi, M., Tapping, R. I., Chao, T. H., Lo, J. F., King, C. C., Yang, Y. and Lee, J. D. 

(2001) "BMK1 mediates growth factor-induced cell proliferation through direct cellular 

activation of serum and glucocorticoid-inducible kinase",J Biol Chem 276(12), 8631-4. 

He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. 

J., Vogelstein, B. and Kinzler, K. W. (1998) "Identification of c-MYC as a target of the 

APC pathway", Science 281(5382), 1509-12.

He, X., Saint-Jeannet, J. P., Woodgett, J. R., Varmus, H. E. and Dawid, I. B. (1995) 

"Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos", Nature 

374(6523), 617-22.

Heasman, J. (1997) "Patterning the Xenopus blastula", Development 124(21), 4179-91. 

Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., 

McCrea, P., Kintner, C., Noro, C. Y. and Wylie, C. (1994) "Overexpression of 

cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in 

early Xenopus embryos", Cell 79(5), 791-803.

Heasman, J., Kofron, M. and Wylie, C. (2000) "Beta-catenin signaling activity 

dissected in the early Xenopus embryo: a novel antisense approach", Dev Biol 222(1), 

124-34.

Heasman, J., Wessely, O., Langland, R., Craig, E. J. and Kessler, D. S. (2001) 

"Vegetal localization of maternal mRNAs is disrupted by VegT depletion", Dev Biol 

240(2), 377-86.

Heisenberg, C. P., Houart, C., Take-Uchi, M., Rauch, G. J., Young, N., Coutinho, P., 

Masai, I., Caneparo, L., Concha, M. L., Geisler, R., Dale, T. C., Wilson, S. W. and

253



References

Stemple, D. L. (2001) "A mutation in the Gsk3-binding domain of zebrafish 

Masterblind/Axinl leads to a fate transformation of telencephalon and eyes to 

diencephalon", Genes Dev 15(11), 1427-34.

Heisenberg, C. P. and Nusslein-Volhard, C. (1997) "The function of silberblick in the 

positioning of the eye anlage in the zebrafish embryo", Dev Biol 184(1), 85-94. 

Heisenberg, C. P. and Tada, M. (2002) "Wnt signalling: a moving picture emerges 

from van gogh", Curr Biol 12(4), R126-8.

Heisenberg, C. P., Tada, M., Rauch, G. J., Saude, L., Concha, M. L., Geisler, R., 

Stemple, D. L., Smith, J. C. and Wilson, S. W. (2000) "Silberblick/Wntll mediates 

convergent extension movements during zebrafish gastrulation", Nature 405(6782), 76- 

81.

Heiskala, M., Peterson, P. A. and Yang, Y. (2001) “The roles of claudin superfamily 

proteins in paracellular transport”, Traffic 2(2), 93-8.

Helde, K. A., Wilson, E. T., Cretekos, C. J. and Grunwald, D. J. (1994) "Contribution 

of early cells to the fate map of the zebrafish gastrula", Science 265(5171), 517-20. 

Hemmati-Brivanlou, A., Kelly, O. G. and Melton, D. A. (1994) “Follistatin, an 

antagonist of activin, is expressed in the Spemann organizer and displays direct 

neuralizing activity”, Cell 77, 283-95.

Hemmati-Brivanlou, A. and Melton, D. A. (1992) "A truncated activin receptor 

inhibits mesoderm induction and formation of axial structures in Xenopus embryos", 

Nature 359(6396), 609-14.

Hemmati-Brivanlou, A. and Melton, D. A. (1994) "Inhibition of activin receptor 

signaling promotes neuralization in Xenopus", Cell 77(2), 273-81.

Hemmati-Brivanlou, A. and Melton, D. A. (1997) "Vertebrate embryonic cells will 

become nerve cells unless told otherwise", Cell 88,13-7.

Hemmati-Brivanlou, A. and Thomsen, G. H. (1995) "Ventral mesodermal patterning 

in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4", Dev 

Genet 17(1), 78-89.

Hendzel, M. J., Wei, Y., Mancini, M. A., Van Hooser, A., Ranalli, T., Brinkley, B. R., 

Bazett-Jones, D. P. and Allis, C. D. (1997) "Mitosis-specific phosphorylation of histone 

H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in 

an ordered fashion coincident with mitotic chromosome condensation", Chromosoma 

106(6), 348-60.

Henry, G. L. and Melton, D. A. (1998) "Mixer, a homeobox gene required for 

endoderm development", Science 281(5373), 91-6.

254



References

Henry, J. L., Coggin, D. L. and King, C. R. (1993) "High-level expression of the 

ribosomal protein L I9 in human breast tumors that overexpress erbB-2", Cancer Res 

53(6), 1403-8.

Hildebrand, J. D. and Soriano, P. (1999) "Shroom, a PDZ domain-containing actin- 

binding protein, is required for neural tube morphogenesis in mice", Cell 99(5), 485-97. 

Hillman, B., Sherman, M. I. and Graham, C. F. (1972) "The effect of spatial 

rearrangement on cell determination during mouse development", J Embryol Exp 

Morphol 28, 263-78.

Hoadley, L. (1928) "On the localization of the developmental potencies in the embryo 

of Fundulus heteroclitus", J Exp Zool 227, 7-44.

Hogan, H., Beddington, R., Costantini, F. and Lacy, E. (1994) Manipulating the mouse 

embrvo: A laboratory manual. New York, Cold Spring Harbor Laboratory Press. 

Hollister, R. D., Page, K. J. and Hyman, B. T. (1997) "Distribution of the messenger 

RNA for the extracellularly regulated kinases 1, 2 and 3 in rat brain: effects of 

excitotoxic hippocampal lesions", Neuroscience 79(4), 111 1-9.

Holowacz, T. and Elinson, R. P. (1993) "Cortical cytoplasm, which induces dorsal 

axis formation in Xenopus, is inactivated by UV irradiation of the oocyte", Development 

119(1), 277-85.

Hoodless, P. A., Pye, M., Chazaud, C., Labbe, E., Attisano, L., Rossant, J. and Wrana, 

J. L. (2001) "FoxHl (Fast) functions to specify the anterior primitive streak in the 

mouse", Genes Dev 15(10), 1257-71.

Horb, M. E. and Slack, J. M. (2001) “Endoderm specification and differentiation in 

Xenopus embryos”, Dev Biol 236(2):330-43.

Horb, M. E. and Thomsen, G. H. (1997) "A vegetally localized T-box transcription 

factor in Xenopus eggs specifies mesoderm and endoderm and is essential for 

embryonic mesoderm formation", Development 124(9), 1689-98.

Horster, M. F., Braun, G. S. and Huber, S. M. (1999) "Embryonic renal epithelia: 

induction, nephrogenesis, and cell differentiation", Physiol Rev 79(4), 1157-91.

Howard, E. W., Newman, L. A., Oleksyn, D. W., Angerer, R. C. and Angerer, L. M. 

(2001) "SpKrl: a direct target of beta-catenin regulation required for endoderm 

differentiation in sea urchin embryos", Development 128(3), 365-75.

Howard, K. and Ingham, P. (1986) "Regulatory interactions between the segmentation 

genes fushi tarazu, hairy, and engrailed in the Drosophila blastoderm", Cell 44(6), 949- 

57.

255



References

Huang, H. C., Murtaugh, L. C., Vize, P. D. and Whitman, M. (1995) "Identification of 

a potential regulator of early transcriptional responses to mesoderm inducers in the frog 

embryo", EMBO J  14(23), 5965-73.

Huang, R. P., Ozawa, M., Kadomatsu, K. and Muramatsu, T. (1993) “Embigin, a 

member of the omminoglobulin superfamily expressed in embryonic cells, enhances 

cell-substratum adhesion”, Dev Biol 155(2), 307-14.

Huang, W., Lee, S. L., Amason, S. S. and Sjoquist, M. (1996) "Dehydration natriuresis 

in male rats is mediated by oxytocin", Am J Physiol 270(2 Pt 2), R427-33.

Huber, G. C. (1915) "The development of the albino rat, Mus norvegicus. I. From the 

pronuclear stage to the stage of the mesoderm anlage: End of the first to the end of the 

9th day", JMorphol 26, 247-358.

Huber, O., Korn, R., McLaughlin, J., Ohsugi, M., Herrmann, B. G. and Kemler, R.

(1996) "Nuclear localization of beta-catenin by interaction with transcription factor 

LEF-1", Mech Dev 59(1), 3-10.

Huber, S. M., Friedrich, B., Klingel, K., Lenka, N., Hescheler, J. and Lang, F. (2001) 

"Protein and mRNA expression of serum and glucocorticoid-dependent kinase 1 in 

metanephrogenesis", Dev Dyn 221(4), 464-9.

Hudziak, R. M., Barofsky, E., Barofsky, D. F., Weller, D. L., Huang, S. B. and Weller,

D. D. (1996) "Resistance of morpholino phosphorodiamidate oligomers to enzymatic 

degradation", Antisense Nucleic Acid Drug Dev 6(4), 267-72.

Huelsken, J. and Birchmeier, W. (2001) "New aspects of Wnt signaling pathways in 

higher vertebrates", Curr Opin Genet Dev 11(5), 547-53.

Huelsken, J., Vogel, R., Brinkmann, V., Erdmann, B., Birchmeier, C. and Birchmeier, 

W. (2000) "Requirement for beta-catenin in antero-posterior axis formation in mice", J  

Cell Biol 148(3), 567-78.

Hug, B., Walter, V. and Grunwald, D. J. (1997) "tbx6, a Brachyury-related gene 

expressed by ventral mesendodermal precursors in the zebrafish embryo", Dev Biol 

183(1), 61-73.

Hyde, C. E. and Old, R. W. (2000) "Regulation of the early expression of the Xenopus 

nodal-related 1 gene, Xnrl", Development 127(6), 1221-9.

Imai, S., Okayama, N., Shimizu, M. and Itoh, M. (2003) "Increased intracellular 

calcium activates serum and glucocorticoid-inducible kinase 1 (SGK1) through a 

calmodulin-calcium calmodulin dependent kinase kinase pathway in Chinese hamster 

ovary cells", Life Sci 72(20), 2199-209.

256



References

Imaizumi, K., Tsuda, M., Wanaka, A., Tohyama, M. and Takagi, T. (1994) 

"Differential expression of sgk mRNA, a member of the Ser/Thr protein kinase gene 

family, in rat brain after CNS injury", Brain Res Mol Brain Res 26(1-2), 189-96. 

International Human Genome Sequencing Consortium (2001) "Initial sequencing 

and analysis of the human genome", Nature 409, 860-921.

Ish-Horowicz, D. and Pinchin, S. M. (1987) "Pattern abnormalities induced by ectopic 

expression of the Drosophila gene hairy are associated with repression of ftz 

transcription", Cell 51(3), 405-15.

Itani, O. A., Auerbach, S. D., Husted, R. F., Volk, K. A., Ageloff, S., Knepper, M. A., 

Stokes, J. B. and Thomas, C. P. (2002a) "Glucocorticoid-stimulated lung epithelial 

Na(+) transport is associated with regulated ENaC and sgkl expression", Am J Physiol 

Lung Cell Mol Physiol 282(4), L631-41.

Itani, O. A., Liu, K. Z., Cornish, K. L., Campbell, J. R. and Thomas, C. P. (2002b) 

"Glucocorticoids stimulate human sgk 1 gene expression by activation of a GRE in its 5'- 

flanking region", Am J Physiol Endocrinol Metab 283(5), E971-9.

Ito, T., Kim, G. T. and Shinozaki, K. (2000) "Disruption of an Arabidopsis cytoplasmic 

ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes 

aberrant growth and development", Plant J  22(3), 257-64.

Izpisua-Belmonte, J. C., De Robertis, E. M., Storey, K. G. and Stem, C. D. (1993) 

"The homeobox gene goosecoid and the origin of organizer cells in the early chick 

blastoderm", Cell 74(4), 645-59.

Jazwinska, A., Kirov, N., Wieschaus, E., Roth, S. and Rushlow, C. (1999) "The 

Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation", 

Cell 96(4), 563-73.

Jesuthasan, S. and Stable, U. (1997) "Dynamic microtubules and specification of the 

zebrafish embryonic axis", CurrBiol 7(1), 31-42.

Johnson, M. H., Chisholm, J. C., Fleming, T. P. and Houliston, E. (1986) "A role for 

cytoplasmic determinants in the development of the mouse early embryo?" J  Embryol 

Exp Morphol 97 Suppl, 97-121.

Johnson, M. H. and Ziomek, C. A. (1983) "Cell interactions influence the fate of 

mouse blastomeres undergoing the transition from the 16- to the 32-cell stage", Dev 

Biol 95(1), 211-8.

Johnson, W. H., Loskutoff, N. M., Plante, Y. and Betteridge, K. J. (1995) “Production 

of four identical calves by separation of blastomeres from an in vitro derived four-cell 

embryo”, VetRec 137, 15-6.

257



References

Joly, J. S., Joly, C., Schulte-Merker, S., Boulekbache, H. and Condamine, H. (1993) 

"The ventral and posterior expression of the zebrafish homeobox gene evel is perturbed 

in dorsalized and mutant embryos", Development 119(4), 1261-75.

Jones, C. M., Broadbent, J., Thomas, P. Q., Smith, J. C. and Beddington, R. S. P.

(1999) "An anterior signalling centre in Xenopus revealed by expression of the 

homeobox gene XHex", Curr Biol 9(17), 946-54.

Joseph, E. M. and Melton, D. A. (1998) "Mutant Vgl ligands disrupt endoderm and 

mesoderm formation in Xenopus embryos", Development 125(14), 2677-85.

Kageura, H. (1990) "Spatial distribution of the capacity to initiate a secondary embryo 

in the 32-cell embryo of Xenopus laevis", Dev Biol 142(2), 432-8.

Kageura, H. (1995) "Three regions of the 32-cell embryo of Xenopus laevis essential 

for formation of a complete tadpole", Dev Biol 170(2), 376-86.

Kageura, H. (1997) "Activation of dorsal development by contact between the cortical 

dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis", 

Development 124(8), 1543-51.

Kamynina, E. and Staub, O. (2002) "Concerted action of ENaC, Nedd4-2, and Sgkl 

in transepithelial Na(+) transport", Am J Physiol Renal Physiol 283(3), F377-87. 

Kanai-Azuma, M., Kanai, Y., Gad, J. M., Tajima, Y., Taya, C., Kurohmaru, M., Sanai, 

Y., Yonekawa, H., Yazaki, K., Tam, P. P. and Hayashi, Y. (2002) "Depletion of 

definitive gut endoderm in 5'oxl7-null mutant mice", Development 129(10), 2367-79. 

Kane, D. A. and Adams, R. J. (2002) Life at the edge: epiboly and involution in the 

zebrafish, Pattern formation in zebrafish. Solnica-Krezel, L., Berlin, Springer, 40, 117-

35.

Kane, D. A., Hammerschmidt, M., Mullins, M. C., Maischein, H. M., Brand, M., van 

Eeden, F. J., Furutani-Seiki, M., Granato, M., Haffter, P., Heisenberg, C. P., Jiang, Y. 

J., Kelsh, R. N., Odenthal, J., Warga, R. M. and Nusslein-Volhard, C. (1996) “The 

zebrafish epiboly mutants”, Development 123, 47-55.

Kane, D. A. and Kimmel, C. B. (1993) "The zebrafish midblastula transition", 

Development 119(2), 447-56.

Kane, D. A., Warga, R. M. and Kimmel, C. B. (1992) "Mitotic domains in the early 

embryo of the zebrafish", Nature 360(6406), 735-7.

Karan, D., Kelly, D. L., Rizzino, A., Lin, M. F. and Batra, S. K. (2002) "Expression 

profile of differentially-regulated genes during progression of androgen-independent 

growth in human prostate cancer cells", Carcinogenesis 23(6), 967-75.

258



References

Kato, Y., Tapping, R. I., Huang, S., Watson, M. H., Ulevitch, R. J. and Lee, J. D.

(1998) "Bmkl/Erk5 is required for cell proliferation induced by epidermal growth 

factor", Nature 395(6703), 713-6.

Kaufman, M. H. (1992) The atlas of mouse development. Academic Press, London, 

United Kingdom.

Kay, M. A. and Jacobs-Lorena, M. (1987) "Developmental genetics of ribosome 

synthesis in Drosophila", Trends Genet 3(12), 347-51.

Keller, G., Kennedy, M., Papayannopoulou, T. and Wiles, M. V. (1993) 

"Hematopoietic commitment during embryonic stem cell differentiation in culture", Mol 

Cell Biol 13(1), 473-86.

Keller, G. M. (1995) “Zn vitro differentiation of embryonic stem cells”, Curr Opin Cell 

Biol 7, 862-9.

Keller, R. E. (1980) "The cellular basis of epiboly: an SEM study of deep-cell 

rearrangement during gastrulation in Xenopus laevis", J Embryol Exp Morphol 60, 201- 

34.

Keller, R. E. (1981) "An experimental analysis of the role of bottle cells and the deep 

marginal zone in gastrulation of Xenopus laevis", J Exp Zool 216(1), 81-101.

Kelley, C., Blumberg, H., Zon, L. I. and Evans, T. (1993) "GATA-4 is a novel 

transcription factor expressed in endocardium of the developing heart", Development 

118(3), 817-27.

Kelly, G. M., Erezyilmaz, D. F. and Moon, R. T. (1995) "Induction of a secondary 

embryonic axis in zebrafish occurs following the overexpression of beta-catenin", Mech 

Dev 53(2), 261-73.

Kelly, S. J., Mulnard, J. G. and Graham, C. F. (1978) "Cell division and cell allocation 

in early mouse development", J Embryol Exp Morphol 48, 37-51.

Kengaku, M. and Okamoto, H. (1993) “Basic fibroblast growth factor induces 

differentiation of neural tube and neural crest lineages of cultured ectoderm cells from 

Xenopus gastrula”, Development, 119(4), 1067-78.

Kengaku, M. and Okamoto, H. (1995) “bFGF as a possible morphogen for the 

anteroposterior axis of the central nervous system in Xenopus”, Development, 121(9), 

3121-30.

Kessler, D. S. (1997) "Siamois is required for formation of Spemann's organizer", Proc 

Natl Acad Sci USA 94(24), 13017-22.

Kessler, D. S. and Melton, D. A. (1995) "Induction of dorsal mesoderm by soluble, 

mature Vgl protein", Development 121(7), 2155-64.

259



References

Kettleborough, R. (2002) The isolation and characterisation of the novel gene C5. 

Ph.D. Thesis presented to the Department of Anatomy and Developmental Biology, 

University College London, London, United Kingdom.

Khaner, O. (1995) "The rotated hypoblast of the chicken embryo does not initiate an 

ectopic axis in the epiblast", Proc Natl Acad Sci USA 92(23), 10733-7.

Kikkawa, M., Takano, K. and Shinagawa, A. (1996) "Location and behavior of dorsal 

determinants during first cell cycle in Xenopus eggs", Development 122(12), 3687-96. 

Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B. 

and Stainier, D. Y. (2001) "casanova encodes a novel Sox-related protein necessary and 

sufficient for early endoderm formation in zebrafish", Genes Dev 15(12), 1493-505. 

Kikuchi, Y., Trinh, L. A., Reiter, J. F., Alexander, J., Yelon, D. and Stainier, D. Y.

(2000) "The zebrafish bonnie and clyde gene encodes a Mix family homeodomain 

protein that regulates the generation of endodermal precursors", Genes Dev 14(10), 

1279-89.

Kim, C. H., Oda, T., Itoh, M., Jiang, D., Artinger, K. B., Chandrasekharappa, S. C., 

Driever, W. and Chitnis, A. B. (2000) "Repressor activity of Headless/Tcf3 is essential 

for vertebrate head formation", Nature 407(6806), 913-6.

Kimelman, D. and Griffin, K. J. (1998) "Mesoderm induction: a postmodern view", 

Cell 94(4), 419-21.

Kimelman, D. and Kirschner, M. (1987) "Synergistic induction of mesoderm by FGF 

and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus 

embryo", Cell 51(5), 869-77.

Kimelman, D. and Pierce, S. B. (1996) "Regulation of dorsal-ventral axis formation in 

Xenopus by intercellular and intracellular signalling", Biochem Soc Symp 62, 13-23. 

Kimelman, D. and Schier, A. F. (2002) "Mesoderm induction and patterning", Results 

Probl Cell Differ 40, 15-27.

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995) 

"Stages of embryonic development of the zebrafish", Dev Dyn 203(3), 253-310. 

Kimmel, C. B. and Law, R. D. (1985a) "Cell lineage of zebrafish blastomeres. I. 

Cleavage pattern and cytoplasmic bridges between cells", Dev Biol 108(1), 78-85. 

Kimmel, C. B. and Law, R. D. (1985b) "Cell lineage of zebrafish blastomeres. II. 

Formation of the yolk syncytial layer", Dev Biol 108(1), 86-93.

Kimmel, C. B. and Law, R. D. (1985c) "Cell lineage of zebrafish blastomeres. III. 

Clonal analyses of the blastula and gastrula stages", Dev Biol 108(1), 94-101.

Kimmel, C. B. and Warga, R. M. (1987) "Indeterminate cell lineage of the zebrafish

260



References

embryo", Dev Biol 124(1), 269-80.

Kimmel, C. B., Warga, R. M. and Schilling, T. F. (1990) “Origin and organisation of 

the zebrafish fate map”, Development 108, 581-94.

Kintner, C. R. and Dodd, J. (1991) "Hensen's node induces neural tissue in Xenopus 

ectoderm. Implications for the action of the organizer in neural induction", Development 

113(4), 1495-505.

Kirschner, M., Gerhart, J. C., Hara, K. and Ubbels, G. A. (1980) "Initiation of the cell 

cycle and establishment of bilateral symmetry in Xenopus eggs", Symp Soc Develop 

Biol 38, 187-215.

Kishimoto, Y., Lee, K. H., Zon, L., Hammerschmidt, M. and Schulte-Merker, S. (1997) 

"The molecular nature of zebrafish swirl: BMP2 function is essential during early 

dorsoventral patterning", Development 124(22), 4457-66.

Klingel, K., Wamtges, S., Bock, J., Wagner, C. A., Sauter, M., Waldegger, S., Kandolf, 

R. and Lang, F. (2000) "Expression of cell volume-regulated kinase h-sgk in pancreatic 

tissue", Am J Physiol Gastrointest Liver Physiol 279(5), G998-G1002.

Klingensmith, J., Ang, S.-L., Bachiller, D. and Rossant, J. (1999) “Neural induction 

and patterning in the mouse in the absence of the Node and its derivatives”, Dev Biol, 

216, 535-49.

Knoetgen, H., Teichmann, U., Wittier, L., Viebahn, C. and Kessel, M. (2000) "Anterior 

neural induction by nodes from rabbits and mice", Dev Biol 225(2), 370-80.

Knoetgen, EL, Viebahn, C. and Kessel, M. (1999) "Head induction in the chick by 

primitive endoderm of mammalian, but not avian origin", Development 126(4), 815-25. 

Kobayashi, T. and Cohen, P. (1999) "Activation of serum- and glucocorticoid- 

regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is 

mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2", 

Biochem J  339 ( Pt 2), 319-28.

Kobayashi, T., Deak, M., Morrice, N. and Cohen, P. (1999) "Characterization of the 

structure and regulation of two novel isoforms of serum- and glucocorticoid-induced 

protein kinase", Biochem J 344 Pt 1, 189-97.

Kochav, S. and Eyal-Giladi, H. (1971) "Bilateral symmetry in chick embryo 

determination by gravity", Science 171(975), 1027-9.

Kodjabachian, L. and Lemaire, P. (1998) "Embryonic induction: is the Nieuwkoop 

centre a useful concept?" Curr Biol 8(25), R918-21.

Kofron, M., Demel, T., Xanthos, J., Lohr, J., Sun, B., Sive, H., Osada, S., Wright, C., 

Wylie, C. and Heasman, J. (1999) "Mesoderm induction in Xenopus is a zygotic event

261



References

regulated by maternal VegT via TGFbeta growth factors", Development 126(24), 5759- 

70.

Kohlhase, J., Wischermann, A., Reichenbach, H., Froster, U. and Engel, W. (1998) 

"Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks 

syndrome", Nat Genet 18(1), 81-3.

Kollmar, R., Nakamura, S. K., Kappler, J. A. and Hudspeth, A. J. (2001) "Expression 

and phylogeny of claudins in vertebrate primordia", Proc Natl Acad Sci USA 98(18), 

10196-201.

Kondo, D., Yamamoto, T., Yaoita, E., Danielson, P. E., Kobayashi, H., Ohshiro, K., 

Funaki, H., Koyama, Y., Fujinaka, H., Kawasaki, K., Sutcliffe, J. G., Arakawa, M. and 

Kihara, I. (2000) “Localization of olfactomedin-related glycoprotein isoform (BMZ) in 

the golgi apparatus of glomerular podocytes in rat kidneys”, J Am Soc Nephrol 11(5), 

803-13.

Kondoh, N., Shuda, M., Tanaka, K., Wakatsuki, T., Hada, A. and Yamamoto, M.

(2001) "Enhanced expression of S8, L12, L23a, L27 and L30 ribosomal protein mRNAs 

in human hepatocellular carcinoma", Anticancer Res 21 (4A), 2429-33.

Kongsuwan, K., Yu, Q., Vincent, A., Frisardi, M. C., Rosbash, M., Lengyel, J. A. and 

Merriam, J. (1985) "A Drosophila Minute gene encodes a ribosomal protein", Nature 

317(6037), 555-8.

Koos, D. S. and Ho, R. K. (1998) "The nieuwkoid gene characterizes and mediates a 

Nieuwkoop-center-like activity in the zebrafish", Curr Biol 8(22), 1199-206.

Koos, D. S. and Ho, R. K. (1999) "The nieuwkoid!dharma homeobox gene is essential 

for bmp2b repression in the zebrafish pregastrula", Dev Biol 215(2), 190-207.

Kos, R., Reedy, M. V., Johnson, R. L. and Erickson, C. A. (2001) "The winged-helix 

transcription factor FoxD3 is important for establishing the neural crest lineage and 

repressing melanogenesis in avian embryos", Development 128(8), 1467-79.

Koshida, S., Shinya, M., Mizuno, T., Kuroiwa, A. and Takeda, H. (1998) “Initial 

anteroposterior pattern of the zebrafish central nervous system is determined by 

differential competence of the epiblast”, Development, 125, 1957-66.

Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R. and Grosveld, F. (1999) 

"The transcription factor GATA6 is essential for early extraembryonic development", 

Development 126(9), 723-32.

Kozak, M. (1987) “At least six nucleotides preceding the AUG initiator codon enhance 

translation in mammalian cells”, J Mol Biol 196(4), 947-50.

262



References

Kozma, S. C. and Thomas, G. (2002) "Regulation of cell size in growth, development 

and human disease: PI3K, PKB and S6K", Bioessays 24(1), 65-71.

Krauss, S., Johansen, T., Korzh, V. and Fjose, A. (1991) "Expression of the zebrafish 

paired box genepax[zf-b] during early neurogenesis", Development 113(4), 1193-206. 

Kronhamn, J. and Rasmuson-Lestander, A. (1999) "Genetic organization of the ci- 

M-pan region on chromosome IV in Drosophila melanogaster'\ Genome 42(6), 1144-9. 

Kudoh, T., Concha, M. L., Houart, C., Dawid, I. B. and Wilson, S. W. (2003) 

“Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective 

neural and epidermal domains”, Development, in press.

Kudoh, T., Tsang, M., Hukriede, N. A., Chen, X., Dedekian, M., Clarke, C. J., Kiang, 

A., Schultz, S., Epstein, J. A., Toyama, R. and Dawid, I. B. (2001) "A gene expression 

screen in zebrafish embryogenesis", Genome Res 11(12), 1979-87.

Kumar, J. M., Brooks, D. P., Olson, B. A. and Laping, N. J. (1999) "Sgk, a putative 

serine/threonine kinase, is differentially expressed in the kidney of diabetic mice and 

humans", J Am Soc Nephrol 10(12), 2488-94.

Kuo, C. T., Morrisey, E. E., Anandappa, R., Sigrist, K., Lu, M. M., Parmacek, M. S., 

Soudais, C. and Leiden, J. M. (1997) "GATA4 transcription factor is required for 

ventral morphogenesis and heart tube formation", Genes Dev 11(8), 1048-60.

Labbe, E., Silvestri, C., Hoodless, P. A., Wrana, J. L. and Attisano, L. (1998) "Smad2 

and Smad3 positively and negatively regulate TGF beta-dependent transcription 

through the forkhead DNA-binding protein FAST2", Mol Cell 2(1), 109-20.

Lamb, T. M. and Harland, R. (1995) “Fibroblast growth factor is a direct neural 

inducer, which combined with noggin generates antero-posterior neural pattern”, 

Development 121, 3627-36.

Lamb, T. M., Knecht, A. K., Smith, W. C., Stachel, S. E., Economides, A. N., Stahl, 

N., Yancopolous, G. D. and Harland, R. (1993) “Neural induction by the secreted 

polypeptide noggin”, Science 262, 713-8.

Lambertsson, A. (1998) "The Minute genes in Drosophila and their molecular 

functions", Adv Genet 38, 69-134.

Landesman, Y. and Sokol, S. Y. (1997) "Xwnt-2b is a novel axis-inducing Xenopus 

Wnt, which is expressed in embryonic brain", Mech Dev 63(2), 199-209.

Lang, F., Klingel, K., Wagner, C. A., Stegen, C., Wamtges, S., Friedrich, B., 

Lanzendorfer, M., Melzig, J., Moschen, I., Steuer, S., Waldegger, S., Sauter, M., 

Paulmichl, M., Gerke, V., Risler, T., Gamba, G., Capasso, G., Kandolf, R., Hebert, S. 

C., Massry, S. G. and Broer, S. (2000) "Deranged transcriptional regulation of cell-

263



References

volume-sensitive kinase hSGK in diabetic nephropathy", Proc Natl Acad Sci USA 

97(14), 8157-62.

Larabell, C. A., Torres, M., Rowning, B. A., Yost, C., Miller, J. R., Wu, M., 

Kimelman, D. and Moon, R. T. (1997) "Establishment of the dorso-ventral axis in 

Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated 

by the Wnt signaling pathway", J Cell Biol 136(5), 1123-36.

Larsson, J. and Rasmuson-Lestander, A. (1997) "Cloning, mapping and mutational 

analysis of the S-adenosylmethionine decarboxylase gene in Drosophila melanogaster", 

Mol Gen Genet 256(6), 652-60.

Larsson, J. and Rasmuson-Lestander, A. (1998) "Somatic and germline clone 

analysis in mutants of the S-adenosylmethionine synthetase encoding gene in 

Drosophila melanogaster", FEBS Lett 427(1), 119-23.

Launay, C., Fromentoux, V., Shi, D. L. and Boucaut, J. C. (1996) “A truncated FGF 

receptor blocks neural induction by endogenous Xenopus inducers”, Development 

122(3), 869-80.

Laurent, M. N., Blitz, I. L., Hashimoto, C., Rothbacher, U. and Cho, K. W. (1997) 

"The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in 

establishment of Spemann's organizer", Development 124(23), 4905-16.

Laverriere, A. C., MacNeill, C., Mueller, C., Poelmann, R. E., Burch, J. B. and Evans, 

T. (1994) "GATA-4/5/6, a subfamily of three transcription factors transcribed in 

developing heart and gut", J Biol Chem 269(37), 23177-84.

Lawrence, P. A., Struhl, G. and Morata, G. (1979) "Bristle patterns and compartment 

boundaries in the tarsi of Drosophila", J Embryol Exp Morphol 51, 195-208.

Lawson, A. and Schoenwolf, G. C. (2001a) "Cell populations and morphogenetic 

movements underlying formation of the avian primitive streak and organizer", Genesis 

29(4), 188-95.

Lawson, A. and Schoenwolf, G. C. (2001b) "New insights into critical events of avian 

gastrulation", AnatRec 262(3), 238-52.

Le Menuet, D., Isnard, R., Bichara, M., Viengchareun, S., Muffat-Joly, M., Walker, F., 

Zennaro, M. C. and Lombes, M. (2001) "Alteration of cardiac and renal functions in 

transgenic mice overexpressing human mineralocorticoid receptor", J Biol Chem 

276(42), 38911-20.

Lee, E., Lein, E. S. and Firestone, G. L. (2001) "Tissue-specific expression of the 

transcriptionally regulated serum and glucocorticoid-inducible protein kinase (Sgk) 

during mouse embryogenesis", Mech Dev 103(1-2), 177-81.

264



References

Lemaire, P., Garrett, N. and Gurdon, J. B. (1995) "Expression cloning of Siamois, a 

Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to 

induce a complete secondary axis", Cell 81(1), 85-94.

Leong, M. L., Maiyar, A. C., Kim, B., O'Keeffe, B. A. and Firestone, G. L. (2003) 

"Expression of the Serum- and Glucocorticoid-inducible Protein Kinase, Sgk, Is a Cell 

Survival Response to Multiple Types of Environmental Stress Stimuli in Mammary 

Epithelial Cells", J Biol Chem 278(8), 5871-82.

Lewis, E. B. (1978) “A gene complex controlling segmentation in Drosophila”, Nature 

276, 565-70.

Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. and De Robertis, E. M. (1997) 

"Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer", 

CellS8(6), 747-56.

Li, B., Ouyang, B., Pan, H., Reissmann, P. T., Slamon, D. J., Arceci, R., Lu, L. and Dai, 

W. (1996) "Prk, a cytokine-inducible human protein serine/threonine kinase whose 

expression appears to be down-regulated in lung carcinomas", J Biol Chem 271(32), 

19402-8.

Li, B., Sun, M., He, B., Yu, J., Zhang, Y. D. and Zhang, Y. L. (2002b) "Identification of 

differentially expressed genes in human uterine leiomyomas using differential display", 

Cell Res 12(1), 39-45.

Li, L., Keverne, E. B., Aparicio, S. A., Ishino, F., Barton, S. C. and Surani, M. A. 

(1999) "Regulation of maternal behavior and offspring growth by paternally expressed 

Peg3", Science 284(5412), 330-3.

Lindsley, D. J. and Zimm, G. G. (1992) The Genome of Drosophila melanogaster. 

San Diego, CA, Academic Press.

Ling, H., Vamvakas, S., Busch, G., Dammrich, J., Schramm, L., Lang, F. and Heidland, 

A. (1995) "Suppressing role of transforming growth factor-beta 1 on cathepsin activity 

in cultured kidney tubule cells", Am J Physiol 269(6 Pt 2), F911-7.

Liu, D., Yang, X. and Songyang, Z. (2000) "Identification of CISK, a new member of 

the SGK kinase family that promotes IL-3-dependent survival", Curr Biol 10(19), 1233- 

6 .

Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U., Behringer, R. R. and Bradley, A. 

(1999) "Requirement for Wnt3 in vertebrate axis formation", Nat Genet 22(4), 361-5. 

Lodish, H. F. (1968) "Bacteriophage f2 RNA: control of translation and gene order", 

Nature 220(165), 345-50.

Lodish, H. F. (1970) "Secondary structure of bacteriophage f2 ribonucleic acid and the

265



References

initiation of in vitro protein biosynthesis", J Mol Biol 50(3), 689-702.

Lodish, H. F. and Robertson, H. D. (1969) "Regulation of in vitro translation of 

bacteriophage f2 RNA", Cold Spring Harb Symp Quant Biol 34, 655-73.

Loffing, J., Zecevic, M., Feraille, E., Kaissling, B., Asher, C., Rossier, B. C., Firestone, 

G. L., Pearce, D. and Verrey, F. (2001) "Aldosterone induces rapid apical translocation 

of ENaC in early portion of renal collecting system: possible role of SGK", Am J  

Physiol Renal Physiol 280(4), F675-82.

Long, W. L. (1983) "The role of the yolk syncytial layer in determination of the plane 

of bilateral symmetry in the rainbow trout, Salmo gairdneri Richardson", J Exp Zool 

228, 91-7.

Lowe, M. and Kreis, T. E. (1996) "In vivo assembly of coatomer, the COP-I coat 

precursor", J Biol Chem 271(48), 30725-30.

Lustig, K. D., Kroll, K. L., Sun, E. E. and Kirschner, M. W. (1996) "Expression 

cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and 

blastopore lip formation", Development 122(12), 4001-12.

Mafune, K., Wong, J. M., Staniunas, R. J., Lu, M. L., Ravikumar, T. S., Chen, L. B. 

and Steele, G. D., Jr. (1991) "Ubiquitin hybrid protein gene expression during human 

colon cancer progression", Arch Surg 126(4), 462-6.

Maiyar, A. C., Huang, A. J., Phu, P. T., Cha, H. H. and Firestone, G. L. (1996) "p53 

stimulates promoter activity of the sgk. serum/glucocorticoid-inducible serine/threonine 

protein kinase gene in rodent mammary epithelial cells", J Biol Chem 271(21), 12414- 

22.

Maiyar, A. C., Leong, M. L. and Firestone, G. L. (2003) "Importin-alpha Mediates the 

Regulated Nuclear Targeting of Serum- and Glucocorticoid-inducible Protein Kinase 

(Sgk) by Recognition of a Nuclear Localization Signal in the Kinase Central Domain", 

Mol Biol Cell 14(3), 1221-39.

Maiyar, A. C., Phu, P. T., Huang, A. J. and Firestone, G. L. (1997) "Repression of 

glucocorticoid receptor transactivation and DNA binding of a glucocorticoid response 

element within the serum/glucocorticoid-inducible protein kinase (sgk) gene promoter 

by the p53 tumor suppressor protein", Mol Endocrinol 11(3), 312-29.

Maizels, E. T., Cottom, J., Jones, J. C. and Hunzicker-Dunn, M. (1998) "Follicle 

stimulating hormone (FSH) activates the p38 mitogen-activated protein kinase pathway, 

inducing small heat shock protein phosphorylation and cell rounding in immature rat 

ovarian granulosa cells", Endocrinology 139(7), 3353-6.

266



References

Mansour, S. L., Thomas, K. R. and Capecchi, M. R. (1988) "Disruption of the proto­

oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting 

mutations to non-selectable genes", Nature 336(6197), 348-52.

Martin, P. and Cockroft, D. L. (1999) “Culture of postimplantation mouse embryos”, 

Methods in Molecular Biology. Mason, I., Totowa, N. J., Humana Press Inc., 97 

(Molecular Embryology: Methods and Protocols), 7-22.

Martin-Castellanos, C. and Edgar, B. A. (2002) "A characterization of the effects of 

Dpp signaling on cell growth and proliferation in the Drosophila wing", Development 

129(4), 1003-13.

Martinez-Barbera, J. P. and Beddington, R. S. P. (2001) "Getting your head around 

Hex and Hesxl: Forebrain formation in mouse", Int J Dev Biol 45(1 (Spec. No.)), 327-

36.

M artinez-Barbera, J. P., Clements, M., Thomas, P., Rodriguez, T., Meloy, D., 

Kioussis, D. and Beddington, R. S. (2000) "The homeobox gene hex is required in 

definitive endodermal tissues for normal forebrain, liver and thyroid formation", 

Development 127(11), 2433-45.

Martinez-Barbera, J. P., Toresson, H., Da Rocha, S. and Krauss, S. (1997) "Cloning 

and expression of three members of the zebrafish Bmp family: Z?mp2a, Bmplb and 

Bmp4" Gene 198(1-2),

Massague, J. and Wotton, D. (2000) "Transcriptional control by the TGF-beta/Smad 

signaling system", EMBO J  19(8), 1745-54.

Matzuk, M. M., Kumar, T. R. and Bradley, A. (1995a) "Different phenotypes for mice 

deficient in either activins or activin receptor type II", Nature 374(6520), 356-60. 

Matzuk, M. M., Kumar, T. R., Vassalli, A., Bickenbach, J. R., Roop, D. R., Jaenisch, 

R. and Bradley, A. (1995b) "Functional analysis of activins during mammalian 

development", Nature 374(6520), 354-6.

McDowell, N. and Gurdon, J. B. (1999) “Activin as a morphogen in Xenopus 

mesoderm induction”, Semin Cell Dev Biol 10(3), 311-7.

McConnell, J. E., Armstrong, J. F., Hodges, P. E. and Bard, J. B. (1995) "The mouse 

14-3-3 epsilon isoform, a kinase regulator whose expression pattern is modulated in 

mesenchyme and neuronal differentiation", Dev Biol 169(1), 218-28.

McGrew, L. L., Lai, C. J. and Moon, R. T. (1995) “Specification of the anteroposterior 

neural axis through synergistic interaction of the Wnt signaling cascade with noggin and 

follistatin”, Dev Biol, 172(1), 337-42.

McKendry, R., Hsu, S. C., Harland, R. M. and Grosschedl, R. (1997) "LEF-1/TCF

267



References

proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 

promoter", Dev Biol 192(2), 420-31.

McKim, K. S., Dahmus, J. B. and Hawley, R. S. (1996) "Cloning of the Drosophila 

melanogaster meiotic recombination gene mei-218: a genetic and molecular analysis of 

interval 15E", Genetics 144(1), 215-28.

McMahon, A. P. and Moon, R. T. (1989) "Ectopic expression of the proto-oncogene 

int-1 in Xenopus embryos leads to duplication of the embryonic axis", Cell 58(6), 1075- 

84.

McMahon, J. A., Takada, S., Zimmerman, L. B., Fan, C. M., Harland, R. M. and 

MacMahon, A. P. (1998) “Noggin-mediated antagonism of BMP signaling is required 

fro growth and patterning of the neural tube and somite”, Genes Dev 12,1438-52. 

Melby, A. E., Beach, C., Mullins, M. and Kimelman, D. (2000) "Patterning the early 

zebrafish by the opposing actions of bozozok and vox/vent'\ Dev Biol 224(2), 275-85. 

Mellitzer, G., Hallonet, M., Chen, L. and Ang, S. L. (2002) "Spatial and temporal 

'knock down' of gene expression by electroporation of double-stranded RNA and 

morpholinos into early postimplantation mouse embryos", Mech Dev 118(1-2), 57-63. 

Melnick, M. B., Noll, E. and Perrimon, N. (1993) "The Drosophila stubarista 

phenotype is associated with a dosage effect of the putative ribosome-associated protein 

D-p40 on spineless", Genetics 135(2), 553-64.

Melton, D. A. (1987) "Translocation of a localized maternal mRNA to the vegetal pole 

of Xenopus oocytes", Nature 328(6125), 80-2.

Meno, C., Gritsman, K., Ohishi, S., Ohfuji, Y., Heckscher, E., Mochida, K., Shimono, 

A., Kondoh, H., Talbot, W. S., Robertson, E. J., Schier, A. F. and Hamada, H. (1999) 

"Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during 

vertebrate gastrulation", Mol Cell 4(3), 287-98.

Meno, C., Shimono, A., Saijoh, Y., Yashiro, K., Mochida, K., Ohishi, S., Noji, S., 

Kondoh, H. and Hamada, H. (1998) "lefty-1 is required for left-right determination as a 

regulator of lefty-2 and nodal", Cell 94(3), 287-97.

Meyuhas, O. (2000) "Synthesis of the translational apparatus is regulated at the 

translational level", Eur J Biochem 267(21), 6321-30.

Meyuhas, O., Avni, D. and S., S. (1996), Translational Control. Sonenberg, N., Cold 

Spring Harbor, Cold Spring Harbor Press, 363-88.

Mikosz, C. A., Brickley, D. R., Sharkey, M. S., Moran, T. W. and Conzen, S. D. (2001) 

"Glucocorticoid receptor-mediated protection from apoptosis is associated with

268



References

induction of the serine/threonine survival kinase gene, sgk-1", J Biol Chem 276(20), 

16649-54.

Miller, J. R. and Moon, R. T. (1996) "Signal transduction through beta-catenin and 

specification of cell fate during embryogenesis", Genes Dev 10(20), 2527-39.

Miller, J. R., Rowning, B. A., Larabell, C. A., Yang-Snyder, J. A., Bates, R. L. and 

Moon, R. T. (1999) "Establishment of the dorsal-ventral axis in Xenopus embryos 

coincides with the dorsal enrichment of dishevelled that is dependent on cortical 

rotation", J Cell Biol 146(2), 427-37.

Minami, M., Kinoshita, N., Kamoshida, Y., Tanimoto, H. and Tabata, T. (1999) 

"brinker is a target of Dpp in Drosophila that negatively regulates Dpp-dependent 

genes", Nature 398(6724), 242-6.

Mizuno, H. and Nishida, E. (2001) "The ERK MAP kinase pathway mediates 

induction of SGK (serum- and glucocorticoid-inducible kinase) by growth factors", 

Genes Cells 6(3), 261-8.

Mizuno, T., Shinya, M. and Takeda, H. (1999a) "Cell and tissue transplantation in 

zebrafish embryos", Methods Mol Biol 127, 15-28.

Mizuno, T., Yamaha, E., Kuroiwa, A. and Takeda, H. (1999b) "Removal of vegetal 

yolk causes dorsal deficencies and impairs dorsal-inducing ability of the yolk cell in 

zebrafish.PG - 51-63", Mech Dev 81(1-2).

Mizuno, T., Yamaha, E., Wakahara, M., Kuroiwa, A. and Takeda, H. (1996) 

"Mesoderm induction in zebrafish", Nature 383, 131-2.

Mizuno, T., Yamaha, E. and Yamazaki, F. (1997) "Localized axis determinant in the 

early cleavage embryo of the goldfish, Carassius auratus'\ Dev Genes Evol 206, 389- 

96.

Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B. K., Hubbard, S. 

R. and Schlessinger, J. (1997) “Structures of the tyrosine kinase domain of fibroblast 

growth factor receptor in complex with inhibitors”, Science, 276(5314), 955-60. 

Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J., Godsave,

S., Korinek, V., Roose, J., Destree, O. and Clevers, H. (1996) "XTcf-3 transcription 

factor mediates beta-catenin-induced axis formation in Xenopus embryos", Cell 86(3), 

391-9.

Molkentin, J. D., Lin, Q., Duncan, S. A. and Olson, E. N. (1997) "Requirement of the 

transcription factor GATA4 for heart tube formation and ventral morphogenesis", 

Genes Dev 11(8), 1061-72.

Molkentin, J, D., Tymitz, K. M., Richardson, J. A. and Olson, E. N. (2000)

269



References

"Abnormalities of the genitourinary tract in female mice lacking GATA5", Mol Cell 

Biol 20(14), 5256-60.

Montagne, J., Stewart, M. J., Stocker, H., Hafen, E., Kozma, S. C. and Thomas, G. 

(1999)"Drosophila S6 kinase: a regulator of cell size", Science 285(5436), 2126-9. 

Montero, J. A., Kilian, B., Chan, J., Bayliss, P. E., Heisenberg, C. P. (2003) 

“Phosphoinositide 3-kinase is required for process outgrowth and cell polarization of 

gastrulating mesendodermal cells”, Curr Biol, 13(15), 1279-89.

Moon, R. T., Brown, J. D., Yang-Snyder, J. A. and Miller, J. R. (1997) "Structurally 

related receptors and antagonists compete for secreted Wnt ligands", Cell 88(6), 725-8. 

Moon, R. T. and Kimelman, D. (1998) "From cortical rotation to organizer gene 

expression: toward a molecular explanation of axis specification in Xenopus", Bioessays 

20(7), 536-45.

Moran, T., Gray, S., Mikosz, C. and Conzen, S. (2000) “The glucocorticoid receptor 

mediates a survival signal in human mammary epithelial cells”, Cancer Res 60(4), 867- 

72.

Morata, G. and Ripoll, P. (1975) "Minutes: mutants of Drosophila autonomously 

affecting cell division rate", Dev Biol 42(2), 211-21.

Moreno, E., Basler, K. and Morata, G. (2002) "Cells compete for decapentaplegic 

survival factor to prevent apoptosis in Drosophila wing development", Nature 

416(6882), 755-9.

Moreno, T. A. and Bronner-Fraser, M. (2001) “The secreted glycoprotein Noelin-1 

promotes neurogenesis in Xenopus”, Dev Biol 240(2), 340-60.

Moreno, T. A. and Bronner-Fraser, M. (2002) "Neural expression of mouse Noelin- 

1/2 and comparison with other vertebrates", Mech Dev 119(1), 121.

Morgan, T. H. (1895) "The formation of the fish embryo", J Morphol 10,419-72. 

Morrisey, E. E., Ip, H. S., Lu, M. M. and Parmacek, M. S. (1996) "GATA-6: a zinc 

finger transcription factor that is expressed in multiple cell lineages derived from lateral 

mesoderm", Dev Biol 177(1), 309-22.

Morrisey, E. E., Ip, H. S., Tang, Z., Lu, M. M. and Parmacek, M. S. (1997) "GATA-5: 

a transcriptional activator expressed in a novel temporally and spatially-restricted 

pattern during embryonic development", Dev Biol 183(1), 21-36.

Morrisey, E. E., Tang, Z., Sigrist, K., Lu, M. M., Jiang, F., Ip, H. S. and Parmacek, M. 

S. (1998) "GATA6 regulates HNF4 and is required for differentiation of visceral 

endoderm in the mouse embryo", Genes Dev 12(22), 3579-90.

270



References

Mortensen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A. and Seidman, 

J. G. (1992) "Production of homozygous mutant ES cells with a single targeting 

construct", Mol Cell Biol 12, 2391-5.

Mouse Genome Sequencing Consortium (2002) "Initial sequencing and comparative 

analysis of the mouse genome", Nature 420, 520-62.

Moustakas, A., Souchelnytskyi, S. and Heldin, C. H. (2001) "Smad regulation in TGF- 

beta signal transduction", J Cell Sci 114(Pt 24), 4359-69.

M ulnard, J. G. and Puissant, F. (1984) "Development of mouse embryos after 

ultracentrifugation at the pronuclei stage", Arch Biol 97, 301-15.

Nadano, D., Notsu, T., Matsuda, T. and Sato, T. (2002) "A human gene encoding a 

protein homologous to ribosomal protein L39 is normally expressed in the testis and 

derepressed in multiple cancer cells", Biochim Biophys Acta 1577(3), 430-6.

Nagano, T., Nakamura, A., Mori, Y., Maeda, M., Takami, T., Shiosaka, S., Takagi, H. 

and Sato, M. (1998) "Differentially expressed olfactomedin-related glycoproteins 

(Pancortins) in the brain", Brain Res Mol Brain Res 53(1-2), 13-23.

Nakayama, T., Snyder, M. A., Grewal, S. S., Tsuneizumi, K., Tabata, T. and Christian, 

J. L. (1998)"Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during 

vertebrate embryonic patterning", Development 125(5), 857-67.

Naray-Fejes-Toth, A., Canessa, C., Cleaveland, E. S., Aldrich, G. and Fejes-Toth, G.

(1999) "sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on 

epithelial Na+ channels", J Biol Chem 274(24), 16973-8.

Nasevicius, A. and Ekker, S. C. (2000) "Effective targeted gene 'knockdown' in 

zebrafish", Nat Genet 26(2), 216-20.

Neidhardt, L., Gasca, S., Wertz, K., Obermayr, F., Worpenberg, S., Lehrach, H. and 

Herrmann, B. G. (2000) "Large-scale screen for genes controlling mammalian 

embryogenesis, using high-throughput gene expression analysis in mouse embryos", 

Mech Dev 98(1-2), 77-94.

Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. and Edgar, B. A. (1998) 

"Coordination of growth and cell division in the Drosophila wing", Cell 93(7), 1183-93. 

Newport, J. and Kirschner, M. (1982a) "A major developmental transition in early 

Xenopus embryos: I. characterization and timing of cellular changes at the midblastula 

stage", Cell 30(3), 675-86.

Newport, J. and Kirschner, M. (1982b) "A major developmental transition in early 

Xenopus embryos: II. Control of the onset of transcription", Cell 30(3), 687-96.

271



References

Niehrs, C. and Pollet, N. (1999) "Synexpression groups in eukaryotes", Nature 

402(6761), 483-7.

Nieuwkoop, P. D. (1973) "The organization center of the amphibian embryo: its origin, 

spatial organization, and morphogenetic action", Adv Morphog 10,1-39.

Nikaido, M., Tada, M., Saji, T and Ueno, N. (1997) “Conservation of BMP signaling in 

zebrafish mesoderm patterning”, Mech Dev 61 (1), 75-88.

Nishinakamura, R., Matsumoto, Y., Nakao, K., Nakamura, K., Sato, A., Copeland, N.

G., Gilbert, D. J., Jenkins, N. A., Scully, S., Lacey, D. L., Katsuki, M., Asashima, M. 

and Yokota, T. (2001) "Murine homolog of SALL1 is essential for ureteric bud invasion 

in kidney development", Development 128(16), 3105-15.

Nishinakamura, R., Matsumoto, Y., Uochi, T., Asashima, M. and Yokota, T. (1997) 

"Xenopus FK 506-binding protein homolog induces a secondary axis in frog embryos, 

which is inhibited by coexisting BMP 4 signaling", Biochem Biophys Res Commun 

239(2), 585-91.

Nomura, M. and Li, E. (1998) "Smad2 role in mesoderm formation, left-right 

patterning and craniofacial development", Nature 393(6687), 786-90. 

Nusslein-Volhard, C. and Wieschaus, E. (1980) "Mutations affecting segment number 

and polarity in Drosophila", Nature 287(5785), 795-801.

Ober, E. A. and Schulte-Merker, S. (1999) "Signals from the yolk cell induce 

mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish.PG - 

167-81", Dev Biol 215(2).

Oh, S. P. and Li, E. (1997) "The signaling pathway mediated by the type IIB activin 

receptor controls axial patterning and lateral asymmetry in the mouse", Genes Dev 

11(14), 1812-26.

Oh, S. P., Yeo, C. Y., Lee, Y., Schrewe, H., Whitman, M. and Li, E. (2002) “Activin 

type IIA and IIB receptors mediate Gdf 11 signaling in axial vertebral patterning”, 

Genes Dev 16(21), 2749-54.

Ohtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M. and Pagano, M. (1995) 

"Human cyclin E, a nuclear protein essential for the Gl-to-S phase transition", Mol Cell 

Biol 15(5), 2612-24.

Onichtchouk, D., Glinka, A. and Niehrs, C. (1998) “Requirement for Xvent-1 and 

Xvent-2 gene function in dorsalventral patterning of Xenopus mesoderm”, Development 

125, 1447-56.

Oppenheimer, J. M. (1936a) "Processes of localization in developing Fundulus", J  Exp 

Zool 73, 405-44.

272



References

Oppenheimer, J. M. (1936b) "Structures developed in amphibians by implantation of 

living fish organizer", Proc Soc Exp Med 34,461-3.

Oppenheimer, J. M. (1936c) "Transplantation experiments on developing teleosts 

(.Fundulus and Perea)", J Exp Zool 72, 377-91.

Osada, S. I. and Wright, C. V. (1999) "Xenopus nodal-related signaling is essential for 

mesendodermal patterning during early embryogenesis", Development 126(14), 3229- 

40.

Palen, E. and Traugh, J. A. (1987) "Phosphorylation of ribosomal protein S6 by 

cAMP-dependent protein kinase and mitogen-stimulated S6 kinase differentially alters 

translation of globin mRNA", J Biol Chem 262(8), 3518-23.

Palmeirim, I., Henrique, D., Ish-Horowicz, D. and Pourquie, O. (1997) "Avian hairy 

gene expression identifies a molecular clock linked to vertebrate segmentation and 

somitogenesis", Cell 91(5), 639-48.

Pandolfi, P. P., Roth, M. E., Karis, A., Leonard, M. W., Dzierzak, E., Grosveld, F. G., 

Engel, J. D. and Lindenbaum, M. H. (1995) "Targeted disruption of the GATA3 gene 

causes severe abnormalities in the nervous system and in fetal liver haematopoiesis", 

Nat Genet 11(1), 40-4.

Park, J., Leong, M. L., Buse, P., Maiyar, A. C., Firestone, G. L. and Hemmings, B. A. 

(1999) "Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase- 

stimulated signaling pathway", EMBO J  18(11), 3024-33.

Pearce, J. J. and Evans, M. J. (1999) "Mml, a mouse Mix-like gene expressed in the 

primitive streak", Mech Dev 87(1-2), 189-92.

Pende, M., Kozma, S. C., Jaquet, M., Oorschot, V., Burcelin, R., Le Marchand-Brustel, 

Y., Klumperman, J., Thorens, B. and Thomas, G. (2000) "Hypoinsulinaemia, glucose 

intolerance and diminished beta-cell size in S6K1-deficient mice", Nature 408(6815), 

994-7.

Perea-Gomez, A., Lawson, K. A., Rhinn, M., Zakin, L., Brulet, P., Mazan, S. and Ang, 

S.-L. (2001a) “Otx2 is required for visceral endoderm movement and for the restriction 

of posterior signals in the epiblast of the mouse embryo”, Development 128(5), 753-65. 

Perea-Gomez, A., Rhinn, M., and Ang, S.-L. (2001b) “Role of the anterior visceral 

endoderm in restricting posterior signals in the mouse embryo”, In tJ  Dev Biol 45, 311- 

20. Perrotti, N., He, R. A., Phillips, S. A., Haft, C. R. and Taylor, S. I. (2001) 

"Activation of serum- and glucocorticoid-induced protein kinase (Sgk) by cyclic AMP 

and insulin", J Biol Chem 276(12), 9406-12.

273



References

Peterson, R. T. and Schreiber, S. L. (1999) "Kinase phosphorylation: Keeping it all in 

the family", Curr Biol 9(14), R521-4.

Fetters, R. M. and M arkert, C. L. (1980) "Production and reproductive performance 

of hexaparental and octaparental mice", JHered 71(2), 70-4.

Pevny, L., Lin, C. S., D'Agati, V., Simon, M. C., Orkin, S. H. and Costantini, F. (1995) 

"Development of hematopoietic cells lacking transcription factor GATA-1", 

Development 121(1), 163-72.

Pevny, L., Simon, M. C., Robertson, E., Klein, W. H., Tsai, S. F., D'Agati, V., Orkin, S.

H. and Costantini, F. (1991) "Erythroid differentiation in chimaeric mice blocked by a 

targeted mutation in the gene for transcription factor GATA-1", Nature 349(6306), 257- 

60.

Peyrieras, N., Strahle, U. and Rosa, F. (1998) "Conversion of zebrafish blastomeres to 

an endodermal fate by TGF-beta-related signaling", Curr Biol 8(13), 783-6.

Piccolo, S., Agius, E., Leyns, L., Bhattacharyya, S., Grunz, H., Bouwmeester, T. and 

De Robertis, E. M. (1999) "The head inducer Cerberus is a multifunctional antagonist of 

Nodal, BMP and Wnt signals", Nature 397(6721), 707-10.

Piccolo, S., Sasai, Y., Lu, B. and De Robertis, E. M. (1996) “Dorsoventral patterning in 

Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4”, Cell 86, 

589-98.

Pierce, K. E., Michalopoulos, J., Kiessling, A. A., Seibel, M. M. and Zilberstein, M.

(1997) "Preimplantation development of mouse and human embryos biopsied at 

cleavage stages using a modified displacement technique", Hum Reprod 12(2), 351-6. 

Pierce, S. B. and Kimelman, D. (1995) "Regulation of Spemann organizer formation 

by the intracellular kinase Xgsk-3", Development 121(3), 755-65.

Piotrowska, K., Wianny, F., Pedersen, R. A. and Zernicka-Goetz, M. (2001) 

"Blastomeres arising from the first cleavage division have distinguishable fates in 

normal mouse development", Development 128(19), 3739-48.

Piotrowska, K. and Zernicka-Goetz, M. (2001) "Role for sperm in spatial patterning 

of the early mouse embryo", Nature 409(6819), 517-21.

Plusa, B., Grabarek, J. B., Piotrowska, K., Glover, D. M. and Zernicka-Goetz, M. 

(2002a) "Site of the previous meiotic division defines cleavage orientation in the mouse 

embryo", Nat Cell Biol 4(10), 811-5.

Plusa, B., Piotrowska, K. and Zernicka-Goetz, M. (2002b) "Sperm entry position 

provides a surface marker for the first cleavage plane of the mouse zygote", Genesis 

32(3), 193-8.

274



References

Pogue-Geile, K., Geiser, J. R., Shu, M., Miller, C., Wool, I. G., Meisler, A. I. and 

Pipas, J. M. (1991) "Ribosomal protein genes are overexpressed in colorectal cancer: 

isolation of a cDNA clone encoding the human S3 ribosomal protein", Mol Cell Biol 

11(8), 3842-9.

Pogoda, H. M., Solnica-Krezel, L., Driever, W. and Meyer, D. (2000) "The zebrafish 

forkhead transcription factor FoxHl/Fasti is a modulator of nodal signaling required for 

organizer formation", Curr Biol 10(17), 1041-9.

Polakis, P. (1999) "The oncogenic activation of beta-catenin", Curr Opin Genet Dev 

9(1), 15-21.

Poulain, M. and Lepage, T. (2002) "Mezzo, a paired-like homeobox protein is an 

immediate target of Nodal signalling and regulates endoderm specification in 

zebrafish", Development 129(21), 4901-14.

Psychoyos, D. and Stern, C. D. (1996) “Fates and migratory routes of primitive streak 

cells in the chick embryo” Development 122(5), 1523-34.

Rana, A. (2003) Targeted deletion of mouse dvnein 2 light intermediate chain disrupts 

formation of the body axes. Ph.D. Thesis presented to the Department of Anatomy and 

Developmental Biology University College London, London, United Kingdom.

Rands, G. F. (1986) "Size regulation in the mouse embryo. I. The development of 

quadruple aggregates", J Embryol Exp Morphol 94, 139-48.

Reiter, J. F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N. and 

Stainier, D. Y. (1999) "Gata5 is required for the development of the heart and endoderm 

in zebrafish", Genes Dev 13(22), 2983-95.

Reiter, J. F., Kikuchi, Y. and Stainier, D. Y. (2001) "Multiple roles for Gata5 in 

zebrafish endoderm formation", Development 128(1), 125-35.

Renucci, A., Lemarchandel, V. and Rosa, F. (1996) "An activated form of type I 

serine/threonine kinase receptor TARAM-A reveals a specific signalling pathway 

involved in fish head organizer formation", Development 122(12), 3735-43.

Revenkova, E., Masson, J., Koncz, C., Afsar, K., Jakovleva, L. and Paszkowski, J.

(1999) "Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA 

degradation triggered by genotoxic stress", EMBO J  18(2), 490-9.

Reymond, A., Marigo, V., Yaylaoglu, M. B., Leoni, A., Ucla, C., Scamuffa, N., 

Caccioppoli, C., Dermitzakis, E. T., Lyle, R., Banfi, S., Eichele, G., Antonarakis, S. E. 

and Ballabio, A. (2002) "Human chromosome 21 gene expression atlas in the mouse", 

Nature 420(6915), 582-6.

275



References

Reynaud, E., Bolshakov, V. N., Barajas, V., Kafatos, F. C. and Zurita, M. (1997) 

"Antisense suppression of the putative ribosomal protein S3 A gene disrupts ovarian 

development in Drosophila melanogaster", Mol Gen Genet 256(4), 462-7.

Rhinn, M., Dierich, A., Shawlot, W., Behringer, R. R., Le Meur, M. and Ang, S. L.

(1998) "Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain 

and midbrain induction and specification", Development 125(5), 845-56.

Rhumbler, L. (1902) “Zur Mechanik des Gastrulationsvorganges, insbesondere der 

Invagination. Eine entwicklungsmechanische Studie”, Wilhelm Roux’ Arch 

Entwicklungsmech Org, 14, 401-76.

Richards, J. S. (1994) "Hormonal control of gene expression in the ovary", Endocr Rev 

15(6), 725-51.

Richardson, M. K., Hanken, J., Gooneratne, M. L., Pieau, C., Raynaud, A., Selwood, 

L. and Wright, G. M. (1997) “There is no conserved embryonic stage in the vertebrates: 

implications for current theories of evolution and development”, Anat Embryol 

196(2):91-106.

Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Seraphin, B. (1999) "A 

generic protein purification method for protein complex characterization and proteome 

exploration", Nat Biotechnol 17(10), 1030-2.

Risau, W. and Flamme, I. (1995) "Vasculogenesis", Annu Rev Cell Dev Biol 11, 73- 

91.

Robb, L., Hartley, L., Begley, C. G., Brodnicki, T. C., Copeland, N. G., Gilbert, D. J., 

Jenkins, N. A. and Elefanty, A. G. (2000) "Cloning, expression analysis, and 

chromosomal localization of murine and human homologues of a Xenopus mix gene", 

DevDyn 219(4), 497-504.

Robertson, E. J. (1987), Teratocarcinomas and Embryonic Stem Cells: A Practical 

Approach. Robertson, E. J., Oxford and Washington D.C., IRL Press, p. 71.

Roeser, T., Stein, S. and Kessel, M. (1999) "Nuclear beta-catenin and the development 

of bilateral symmetry in normal and LiCl-exposed chick embryos", Development 

126(13), 2955-65.

Rosen, B. and Beddington, R. S. P. (1993) "Whole-mount in situ hybridisation in the 

mouse embryo: gene expression in three dimensions", Trends in Genetics 9, 162-7. 

Rosenquist, T. A. and Martin, G. R. (1995) "Visceral endoderm-1 (VE-1): an antigen 

marker that distinguishes anterior from posterior embryonic visceral endoderm in the 

early post-implantation mouse embryo", Mech Dev 49(1-2), 117-21.

276



References

Rossant, J. (1976) "Postimplantation development of blastomeres isolated from 4- and 

8-cell mouse eggs' \ J  Embryol Exp Morphol 36(2), 283-90.

Rowning, B. A., Wells, J., Wu, M., Gerhart, J. C., Moon, R. T. and Larabell, C. A.

(1997) "Microtubule-mediated transport of organelles and localization of beta-catenin to 

the future dorsal side of Xenopus eggs", Proc Natl Acad Sci USA 94(4), 1224-9. 

Rozansky, D. J., Wang, J., Doan, N., Purdy, T., Faulk, T., Bhargava, A., Dawson, K. 

and Pearce, D. (2002) "Hypotonic induction of SGK1 and Nan- transport in A6 cells", 

Am J Physiol Renal Physiol 283(1), F105-13.

Rozen, S. and Skaletsky, H. J. (2000) “Primer3 on the WWW for general users and for 

biologist programmers”, in Krawetz, S. and Misener, S., eds., Bioinformatics Methods 

and Protocols: Methods in Molecular Biology, Humana Press, Totowa, NJ, pp 365-386. 

Ruggero, D., Grisendi, S., Piazza, F., Rego, E., Mari, F., Rao, P. H., Cordon-Cardo, C. 

and Pandolfi, P. P. (2003) "Dyskeratosis congenita and cancer in mice deficient in 

ribosomal RNA modification", Science 299(5604), 259-62.

Ruiz i Altaba, A., Placzek, M., Baldassare, M., Dodd, J. and Jessell, T. M. (1995) 

"Early stages of notochord and floor plate development in the chick embryo defined by 

normal and induced expression of HNF-3 beta", Dev Biol 170(2), 299-313.

Russ, A. P., Wattler, S., Colledge, W. H., Aparicio, S. A., Carlton, M. B., Pearce, J. J., 

Barton, S. C., Surani, M. A., Ryan, K., Nehls, M. C., Wilson, V. and Evans, M. J.

(2000) "Eomesodermin is required for mouse trophoblast development and mesoderm 

formation", Nature 404(6773), 95-9.

Ruvinsky, I., Silver, L. M. and Ho, R. K. (1998) "Characterization of the zebrafish 

tbx 16 gene and evolution of the vertebrate T-box family", Dev Genes Evol 208(2), 94-9. 

Ryan, K., Garrett, N., Mitchell, A. and Gurdon, J. B. (1996) "Eomesodermin, a key 

early gene in Xenopus mesoderm differentiation", Cell 87(6), 989-1000.

Ryu, S. L., Fujii, R., Yamanaka, Y., Shimizu, T., Yabe, T., Hirata, T., Hibi, M. and 

Hirano, T. (2001) "Regulation of dharma/bozozok by the Wnt pathway", Dev Biol 

231(2), 397-409.

Saeboe-Larssen, S. and Lambertsson, A. (1996) "A novel Drosophila Minute locus 

encodes ribosomal protein S13", Genetics 143(2), 877-85.

Saeboe-Larssen, S., Lyamouri, M., Merriam, J., Oksvold, M. P. and Lambertsson, A.

(1998) "Ribosomal protein insufficiency and the Minute syndrome in Drosophila: a 

dose-response relationship", Genetics 148(3), 1215-24.

Saeboe-Larssen, S., Urbanczyk Mohebi, B. and Lambertsson, A. (1997) "The 

Drosophila ribosomal protein L14-encoding gene, identified by a novel Minute

277



References

mutation in a dense cluster of previously undescribed genes in cytogenetic region 66D", 

Mol Gen Genet 255(2), 141-51.

Sakaguchi, T., Kuroiwa, A. and Takeda, H. (2001) "A novel sox gene, 226D7, acts 

downstream of Nodal signaling to specify endoderm precursors in zebrafish", Mech Dev 

107(1-2), 25-38.

Sakaguchi, T., Mizuno, T. and Takeda, H. (2002) Formation and patterning roles of the 

yolk syncytial layer, Pattern formation in zebrafish. Solnica-Krezel, L., Berlin, 

Springer, 40, 1-14.

Sakai, M. (1996) "The vegetal determinants required for the Spemann organizer move 

equatorially during the first cell cycle", Development 122(7), 2207-14.

Salamov, A. A. and Solovyev, V. V. (2000) “Ab initio Gene Finding in Drosophila 

Genomic DNA”, Genome Res 10 (4), 516-22.

Sampath, K., Rubinstein, A. L., Cheng, A. M., Liang, J. O., Fekany, K., Solnica- 

Krezel, L., Korzh, V., Halpern, M. E. and Wright, C. V. (1998) "Induction of the 

zebrafish ventral brain and floorplate requires cyclops/nodal signalling", Nature 

395(6698), 185-9.

Sander, K. (1983) The evolution of patterning mechanisms: gleanings from insect 

embryogenesis and spermatogenesis, Development and Evolution. Goodwin., B. C., 

Holder, N. and Wylie C. C., Cambridge, Cambridge University Press, 124-37.

Sasai, Y. and De Robertis, E. M. (1997) “Ectodermal patterning in vertebrate 

embryos” Dev Biol, 182(1), 5-20.

Sasai, Y., Lu, B., Piccolo, S. and De Robertis, E. M. (1996) "Endoderm induction by 

the organizer-secreted factors chordin and noggin in Xenopus animal caps", EMBO J 

15(17), 4547-55.

Sasai, Y., Lu, B., Steinbeisser, H. and De Robertis, E. M. (1995) “Regulation of neural 

induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus”, Nature 

376, 333-6.

Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K. and De Robertis, E. M. 

(1994) “Xenopus chordin: a novel dorsalizing factor activated by organizer-specific 

homeobox genes”, Cell, 79(5), 779-90.

Sasaki, H. and Hogan, B. L. (1993) “Differential expression of multiple fork head 

related genes during gastrulation and axial pattern formation in the mouse embryo”, 

Development 118(1), 47-59.

Sato, S. M. and Sargent, T. M. (1989) “Development of neural inducing capacity in 

dissociated Xenopus embryos”, Dev Biol 134, 263-6.

278



References

Saude, L., Woolley, K., Martin, P., Driever, W. and Stemple, D. (2000) "Axis inducing 

activity and cell fates of the zebrafish organizer", Development 127, 3407-17.

Sawicki, J. A., Magnuson, T. and Epstein, C. J. (1982) "Evidence for the expression of 

the paternal genome in the two-cell mouse embryo", Nature 294,450-1.

Scharf, S. R. and Gerhart, J. C. (1980) "Determination of the dorsal-ventral axis in 

eggs of Xenopus laevis: complete rescue of uv-impaired eggs by oblique orientation 

before first cleavage", Dev Biol 79(1), 181-98.

Scharf, S. R., Lieberman, M. B. and Cande, W. Z. (1986) "Determination of 

dorsoventral polarity in the Xenopus egg requires microtubules.PG - 345-8", Prog Clin 

Biol Res 217B.

Scharf, S. R., Rowning, B., Wu, M. and Gerhart, J. C. (1989) "Hyperdorsoanterior 

embryos from Xenopus eggs treated with D20", Dev Biol 134(1), 175-88.

Schier, A. F. (2001) "Axis formation and patterning in zebrafish", Curr Opin Genet 

Dev 11(4), 393-404.

Schier, A. F., Neuhauss, S. C., Helde, K. A., Talbot, W. S. and Driever, W. (1997) 

"The one-eyed pinhead gene functions in mesoderm and endoderm formation in 

zebrafish and interacts with no tail", Development 124(2), 327-42.

Schmidt, A., Hollmann, M. and Schafer, U. (1996) "A newly identified Minute locus, 

M(2)32D, encodes the ribosomal protein L9 in Drosophila melanogaster", Mol Gen 

Genet 251(3), 381-7.

Schmidt, E. V. (1999) "The role of c-myc in cellular growth control", Oncogene 

18(19), 2988-96.

Schneider, S., Steinbeisser, H., Warga, R. M. and Hausen, P. (1996) "Beta-catenin 

translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos", 

Mech Dev 57(2), 191-8.

Schoenwolf, G. C., Garcia-Martinez, V. and Dias, M. S. (1992) “Mesoderm movement 

and fate during avian gastrulation and neurulation”, Dev Dyn 193, 235-48. 

Schulte-Merker, S., Ho, R. K., Herrmann, B. G. and Nusslein-Volhard, C. (1992) "The 

protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei 

of the germ ring and the notochord of the early embryo", Development 116(4), 1021-32. 

Schulte-Merker, S., Lee, K. J., McMahon, A. P. and Hammerschmidt, M. (1997) "The 

zebrafish organizer requires chordino", Nature 387(6636), 862-3.

Schulte-Merker, S., Smith, J. C. and Dale, L. (1994) "Effects of truncated activin and 

FGF receptors and of follistatin on the inducing activities of BVgl and activin: does 

activin play a role in mesoderm induction?" EMBO J  13(15), 3533-41.

279



References

Schultz, J. (1929) "The M inute  reaction in the development of Drosophila 

melanogaster", Genetics 14, 366-419.

Seleiro, E. A., Connolly, D. J. and Cooke, J. (1996) "Early developmental expression 

and experimental axis determination by the chicken Vg\ gene", Curr Biol 6(11), 1476- 

86.

Setiawan, I., Henke, G., Feng, Y., Bohmer, C., Vasilets, L. A., Schwarz, W. and Lang, 

F. (2002) "Stimulation of Xenopus oocyte Na(+),K(+)ATPase by the serum and 

glucocorticoid-dependent kinase sgkl", Pflugers Arch 444(3), 426-31.

Shah, S. B., Skromne, I., Hume, C. R., Kessler, D. S., Lee, K. J., Stem, C. D. and 

Dodd, J. (1997) "Misexpression of chick Vg\ in the marginal zone induces primitive 

streak formation", Development 124(24), 5127-38.

Sharma, K., Jin, Y., Guo, J. and Ziyadeh, F. N. (1996) "Neutralization of TGF-beta by 

anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular 

matrix gene expression in STZ-induced diabetic mice", Diabetes 45(4), 522-30.

Sharp, M. G., Adams, S. M., Elvin, P., Walker, R. A., Brammar, W. J. and Varley, J. 

M. (1990) "A sequence previously identified as metastasis-related encodes an acidic 

ribosomal phosphoprotein, P2", Br J Cancer 61(1), 83-8.

Shawlot, W. and Behringer, R. R. (1995) "Requirement for Liml in head-organizer 

function", Nature 374(6521), 425-30.

Shawlot, W., Min Deng, J., Wakamiya, M. and Behringer, R. R. (2000) "The cerberus- 

related gene, Cerr 1, is not essential for mouse head formation", Genesis 26(4), 253-8. . 

Shawlot, W., Wakamiya, M., Kwan, K. M., Kania, A., Jessell, T. M. and Behringer, R. 

R. (1999) "Liml is required in both primitive streak-derived tissues and visceral 

endoderm for head formation in the mouse", Development 126(22), 4925-32.

Shelly, C. and Herrera, R. (2002) "Activation of SGK1 by HGF, Racl and integrin- 

mediated cell adhesion in MDCK cells: PI-3K-dependent and -independent pathways", 

J Cell Sci 115(Pt 9), 1985-93.

Shen, M. M., Wang, H. and Leder, P. (1997) "A differential display strategy identifies 

Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during 

mouse gastrulation", Development 124(2), 429-42.

Sheppard, K. E. and Autelitano, D. J. (2002) "llBeta-hydroxysteroid dehydrogenase 

1 transforms 11-dehydrocorticosterone into transcriptionally active glucocorticoid in 

neonatal rat heart", Endocrinology 143(1), 198-204.

280



References

Shigaev, A., Asher, C., Latter, H., Garty, H. and Reuveny, E. (2000) "Regulation of sgk 

by aldosterone and its effects on the epithelial Na(+) channel", Am J Physiol Renal 

Physiol 278(4), F613-9.

Shih, J. and Fraser, S. E. (1996) "Characterizing the zebrafish organizer: 

microsurgical analysis at the early-shield stage", Development 122(4), 1313-22.

Shima, H., Pende, M., Chen, Y., Fumagalli, S., Thomas, G. and Kozma, S. C. (1998) 

“Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new 

functional S6 kinase”, EMBO J  17(22), 6649-59.

Shimizu, T., Yamanaka, Y., Ryu, S. L., Hashimoto, H., Yabe, T., Hirata, T., Bae, Y. 

K., Hibi, M. and Hirano, T. (2000) "Cooperative roles of Bozozok/Dharma and Nodal- 

related proteins in the formation of the dorsal organizer in zebrafish", Mech Dev 91(1- 

2), 293-303.

Shimono, A. and Behringer, R. R. (1999) "Isolation of novel cDNAs by subtractions 

between the anterior mesendoderm of single mouse gastrula stage embryos", Dev Biol 

209(2), 369-80.

Shivdasani, R. A. (2002) "Molecular regulation of vertebrate early endoderm 

development", Dev Biol 249(2), 191-203.

Shivdasani, R. A., Fujiwara, Y., McDevitt, M. A. and Orkin, S. H. (1997) "A lineage- 

selective knockout establishes the critical role of transcription factor GATA-1 in 

megakaryocyte growth and platelet development", EMBO J  16(13), 3965-73.

Shulman, R. W., Sripati, C. E. and Warner, J. R. (1977) "Noncoordinated transcription 

in the absence of protein synthesis in yeast", J Biol Chem 252(4), 1344-9.

Siddall, L. S., Barcroft, L. C. and Watson, A. J. (2002) "Targeting gene expression in 

the preimplantation mouse embryo using morpholino antisense oligonucleotides", Mol 

ReprodDev 63(4), 413-21.

Simeone, A., Acampora, D., Mallamaci, A., Stomaiuolo, A., D'Apice, M. R., Nigro, V. 

and Boncinelli, E. (1993) “A vertebrate gene related to orthodenticle contains a 

homeodomain of the bicoid class and demarcates anterior neuroectoderm in the 

gastrulating mouse embryo”, EMBO J  12(7), 2735-47.

Simmons, D. L., Neel, B. G., Stevens, R., Evett, G. and Erikson, R. L. (1992) 

"Identification of an early-growth-response gene encoding a novel putative protein 

kinase", Mol Cell Biol 12(9), 4164-9.

Simpson, E. H., Johnson, D. K., Hunsicker, P., Suffolk, R., Jordan, S. A. and Jackson,

I. J. (1999) "The mouse Cer 1 (<Cerberus related or homologue) gene is not required for 

anterior pattern formation", Dev Biol 213(1), 202-6.
281



References

Sirard, C., de la Pompa, J. L., Elia, A., Itie, A., Mirtsos, C., Cheung, A., Hahn, S., 

Wakeham, A., Schwartz, L., Kern, S. E., Rossant, J. and Mak, T. W. (1998) "The tumor 

suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior 

development of the mouse embryo", Genes Dev 12(1), 107-19.

Sirotkin, H. I., Dougan, S. T., Schier, A. F. and Talbot, W. S. (2000a) "bozozok and 

squint act in parallel to specify dorsal mesoderm and anterior neuroectoderm in 

zebrafish", Development 127(12), 2583-92.

Sirotkin, H. L, Gates, M. A., Kelly, P. D., Schier, A. F. and Talbot, W. S. (2000b) 

"Fasti is required for the development of dorsal axial structures in zebrafish", Curr Biol 

10(17), 1051-4.

Sive, H. L., Grainger, R. M. and M., H. R. (2000) Earlv development of Xenopus 

laevis: a laboratory manual. New York, Cold Spring Harbor Laboratory Press. 

Skoulakis, E. M. and Davis, R. L. (1998) “14-3-3 proteins in neuronal development 

and function”, Mol Neurobiol, 16(3), 269-84.

Skromne, I. and Stern, C. D. (2001) "Interactions between Wnt and Vgl signalling 

pathways initiate primitive streak formation in the chick embryo", Development 

128(15), 2915-27.

Slack, J. M., Darlington, B. G., Heath, J. K. and Godsave, S. F. (1987) "Mesoderm 

induction in early Xenopus embryos by heparin-binding growth factors", Nature 

326(6109), 197-200.

Smith, J. C., Price, B. M., Van Nimmen, K. and Huylebroeck, D. (1990) "Identification 

of a potent Xenopus mesoderm-inducing factor as a homologue of activin A", Nature 

345(6277), 729-31.

Smith, J. C. and Slack, J. M. (1983) "Dorsalization and neural induction: properties of 

the organizer in Xenopus laevis", J Embryol Exp Morphol 78, 299-317.

Smith, L. J. (1980) "Embryonic axis orientation in the mouse and its correlation with 

blastocyst relationships to the uterus. Part 1. Relationships between 82 hours and 4 1/4 

days", J Embryol Exp Morphol 55, 257-77.

Smith, W. C. and Harland, R. M. (1991) "Injected Xwnt-8 RNA acts early in Xenopus 

embryos to promote formation of a vegetal dorsalizing center", Cell 67(4), 753-65. 

Smith, W. C. and Harland, R. M. (1992) "Expression cloning of noggin, a new 

dorsalizing factor localized to the Spemann organizer in Xenopus embryos", Cell 70(5), 

829-40.

282



References

Snyder, D. A., Rivers, A. M., Yokoe, H., Menco, B. P. and Anholt, R. R. (1991) 

“Olfactomedin: purification, characterization, and localization of a novel olfactory 

glycoprotein” Biochemistry 30(38), 9143-53.

Snyder, P. M., Olson, D. R. and Thomas, B. C. (2002) "Serum and glucocorticoid- 

regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel", 

J Biol Chem 277(1), 5-8.

Sokol, S., Christian, J. L., Moon, R. T. and Melton, D. A. (1991) "Injected Wnt RNA 

induces a complete body axis in Xenopus embryos", Cell 67(4), 741-52.

Sokol, S. Y. (1996) "Analysis of Dishevelled signalling pathways during Xenopus 

development", Curr Biol 6(11), 1456-67.

Sokol, S. Y., Klingensmith, J., Perrimon, N. and Itoh, K. (1995) "Dorsalizing and 

neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of 

dishevelled", Development 121(10), 3487.

Solnica-Krezel, L. and Cooper, M. S. (2002) Cellular and genetic mechanisms of 

convergence and extension, Pattern formation in zebrafish. Solnica-Krezel, L., Berlin, 

Springer, 40, 136-65.

Solnica-Krezel, L. and Driever, W. (1994) "Microtubule arrays of the zebrafish yolk 

cell: organization and function during epiboly", Development 120(9), 2443-55. 

Solnica-Krezel, L. and Driever, W. (2001) "The role of the homeodomain protein 

Bozozok in zebrafish axis formation", IntJDev Biol 45(1 Spec No), 299-310. 

Solnica-Krezel, L., Stemple, D. L. and Driever, W. (1995) "Transparent things: cell 

fates and cell movements during early embryogenesis of zebrafish", Bioessays 17(11), 

931-9.

Solnica-Krezel, L., Stemple, D. L., Mountcastle-Shah, E., Rangini, Z., Neuhauss, S. C., 

Malicki, J., Schier, A. F., Stainier, D. Y., Zwartkruis, F., Abdelilah, S. and Driever, W. 

(1996) "Mutations affecting cell fates and cellular rearrangements during gastrulation in 

zebrafish", Development 123, 67-80.

Song, J., Oh, S. P., Schrewe, H., Nomura, M., Lei, H., Okano, M., Gridley, T. and Li, 

E. (1999) "The type II activin receptors are essential for egg cylinder growth, 

gastrulation, and rostral head development in mice", Dev Biol 213(1), 157-69.

Spemann, H. (1931) "Uber den anteil von implantat und wirtskeim an der orientierung 

und beschaffenheit der induzierten embryonalanlage", Rowe's Arch Entw Mech Org 123, 

399-517.

283



References

Spemann, H. and Mangold, H. (1924) "Uber Induktion von Embryonalanlagen durch 

Implantation artfremder Organisatoren", W Roux Arch Entwicklungsmech Organ 100, 

599-638. (Reprinted in Int. J. Dev. Biol., 45,13-38 (2001).

Spratt, N. T. and Haas, H. (1960) "Integrative mechanisms in development of the 

early chick blastoderm. I. Regulative potentiality of separated parts", J Exp Zool 33, 97- 

137.

Srinivas, S., Rodriguez, T. A., Clements, M., Smith, J. C. and Beddington, R. S. (2004) 

“Active cell migration drives the unilateral movements of the anterior visceral 

endoderm”, Development, 131(5), 1157-64.

Stachel, S. E., Grunwald, D. J. and Myers, P. Z. (1993) “Lithium perturbation and 

goosecoid expression identify a dorsal specification pathway in the pregastrula 

zebrafish” Development 117, 1261-74.

Stein, D., Foster, E., Huang, S. B., Weller, D. and Summerton, J. (1997) "A specificity 

comparison of four antisense types: morpholino, 2'-0-methyl RNA, DNA, and 

phosphorothioate DNA", Antisense Nucleic Acid Drug Dev 7(3), 151-7.

Steitz, J. A. (1969) "Polypeptide chain initiation: nucleotide sequences of the three 

ribosomal binding sites in bacteriophage R17 RNA", Nature 224(223), 957-64.

Steitz, J. A. (1973) "Discriminatory ribosome rebinding of isolated regions of protein 

synthesis initiation from the ribonucleic acid of bacteriophage R17", Proc Natl Acad Sci 

USA 70(9), 2605-9.

Stennard, F., Carnac, G. and Gurdon, J. B. (1996) "The Xenopus T-box gene, 

Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm 

formation", Development 122(12), 4179-88.

Stern, C. D. (1990) "The marginal zone and its contribution to the hypoblast and 

primitive streak of the chick embryo", Development 109(3), 667-82.

Stern, C. D. and Canning, D. R. (1990) "Origin of cells giving rise to mesoderm and 

endoderm in chick embryo", Nature 343(6255), 273-5.

Stewart, M. J. and Denell, R. (1993) "Mutations in the Drosophila gene encoding 

ribosomal protein S6 cause tissue overgrowth", Mol Cell Biol 13(4), 2524-35.

Storey, K. G., Crossley, J. M., De Robertis, E. M., Norris, W. E. and Stem, C. D.

(1992) “Neural induction and regionalisation in the chick embryo”, Development 

114(3), 729-41.

Storz, P. and Toker, A. (2002) "3'-phosphoinositide-dependent kinase-1 (PDK-1) in PI 

3-kinase signaling", Front Biosci 7, d886-902.

284



References

Strahle, U. and Jesuthasan, S. (1993) "Ultraviolet irradiation impairs epiboly in 

zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly", 

Development 119(3), 909-19.

Strahle, U., Blader, P. Henrique, D. and Ingham, P. W. (1993) “Axial, a zebrafish gene 

expressed along the developing body axis, shows altered expression in cyclops mutant 

embryos” Genes Dev 7, 1436-46.

Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. and Stern, C. D. (2000) 

“Initiation of neural induction by FGF signalling before gastrulation”, Nature 

406(6791), 74-8.

Streit, A., Lee, K. J., Woo, I., Roberts, C., Jessell, T. M. and Stem, C. D. (1998) 

"Chordin regulates primitive streak development and the stability of induced neural 

cells, but is not sufficient for neural induction in the chick embryo", Development 

125(3), 507-19.

Sturgill, T. W. and Wu, J. (1991) "Recent progress in characterization of protein 

kinase cascades for phosphorylation of ribosomal protein S6", Biochim Biophys Acta 

1092(3), 350-7.

Su, L. K., Vogelstein, B. and Kinzler, K. W. (1993) "Association of the APC tumor 

suppressor protein with catenins", Science 262(5140), 1734-7.

Summerton, J. (1999) "Morpholino antisense oligomers: the case for an RNase H- 

independent structural type", Biochim Biophys Acta 1489(1), 141-58.

Summerton, J. and Weller, D. (1997) "Morpholino antisense oligomers: design, 

preparation, and properties", Antisense Nucleic Acid Drug Dev 7(3), 187-95.

Sumoy, L., Kiefer, J. and Kimelman, D. (1999) "Conservation of intracellular Wnt 

signaling components in dorsal-ventral axis formation in zebrafish", Dev Genes Evol 

209(1), 48-58.

Sun, C. and Woolford, J. L., Jr. (1994) "The yeast NOP4 gene product is an essential 

nucleolar protein required for pre-rRNA processing and accumulation of 60S ribosomal 

subunits", EMBO J  13(13), 3127-35.

Sun, Y., Taniguchi, R., Tanoue, D., Yamaji, T., Takematsu, H., Mori, K., Fujita, T., 

Kawasaki, T. and Kozutsumi, Y. (2000) "Sli2 (Ypkl), a homologue of mammalian 

protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling 

pathway of yeast", Mol Cell Biol 20(12), 4411-9.

Sun, X., Meyers, E. N., Lewandoski, M. and Martin G. R. (1999) “Targeted disruption 

of Fgf8 causes failure of cell migration in the gastrulating mouse embryo”, Genes Dev, 

13(14), 1834-46.

285



References

Surani, M. A. and Barton, S. C. (1984) "Spatial distribution of blastomeres is 

dependent on cell division order and interactions in mouse morulae", Dev Biol 102(2), 

335-43.

Suzuki, A., Kanedo, E. Ueno, N. and Hemmati-Brivanlou, A. (1997) “Regulation of 

epidermal induction by BMP2 and BMP7 signalling”, Dev Biol 189,112-22.

Suzuki, A., Shioda, N. and Ueno, N. (1995) “Bone morphogenetic protein acts as a 

ventral mesoderm modifier in early Xenopus embryos”, Dev Growth Differ 37, 581-88. 

Tada, M., Concha, M. L. and Heisenberg, C. P. (2002) "Non-canonical Wnt signalling 

and regulation of gastrulation movements", Semin Cell Dev Biol 13(3), 251-60.

Tada, M. and Smith, J. C. (2000) "Xwntl 1 is a target of Xenopus Brachyury: 

regulation of gastrulation movements via Dishevelled, but not through the canonical 

Wnt pathway", Development 127(10), 2227-38.

Talbot, W. S., Trevarrow, B., Halpem, M. E., Melby, A. E., Farr, G., Postlethwait, J.

H., Jowett, T., Kimmel, C. B. and Kimelman, D. (1995) "A homeobox gene essential 

for zebrafish notochord development", Nature 378(6553), 150-7.

Tam, P. P. and Beddington, R. S. (1987) “The formation of mesodermal tissues in the 

mouse embryo during gastrulation and early organogenesis”, Development 99(1), 109- 

26.

Tam, P. P. and Quinlan, G. A. (1996) "Mapping vertebrate embryos", Curr Biol 6(2), 

104-6.

Tam, P. P. and Steiner, K. A. (1999) "Anterior patterning by synergistic activity of the 

early gastrula organizer and the anterior germ layer tissues of the mouse embryo", 

Development 126(22), 5171-9.

Tam, P. P., Steiner, K. A., Zhou, S. X. and Quinlan, G. A. (1997) "Lineage and 

functional analyses of the mouse organizer", Cold Spring Harbor Symposia on 

Quantitative Biology 62, 135-44.

Tannahill, D. and Melton, D. A. (1989) "Localized synthesis of the Vgl protein 

during early Xenopus development", Development 106(4), 775-85.

Tanner, N. K. and Linder, P. (2001) "DExD/H box RNA helicases: from generic 

motors to specific dissociation functions", Mol Cell 8(2), 251-62.

Tarkowski, A. K. (1959) "Experiments on the development of isolated blastomeres of 

mouse eggs", Nature 184, 1286-7.

Tarkowski, A. K. and Wroblewska, J. (1967) "Development of blastomeres of mouse 

eggs isolated at the 4- and 8-cell stage", J Embryol Exp Morphol 18(1), 155-80.

286



References

Tetsu, O. and McCormick, F. (1999) "Beta-catenin regulates expression of cyclin D1 

in colon carcinoma cells", Nature 398(6726), 422-6.

The C. elegans genome consortium (1998) "Genome sequence of the nematode C. 

elegans: a platform for investigating biology. The C. elegans Sequencing Consortium", 

Science 282(5396), 2012-8.

The FANTOM Consortium and the RIKEN Genome Exploration Research Group 

Phase I & II Team (2002) "Analysis of the mouse transcriptome based on functional 

annotation of 60,770 full-length cDNAs", Nature 420(6915), 563-73.

The FlyBase Consortium (2003) "The FlyBase database of the Drosophila genome 

projects and community literature", Nucleic Acids Res 31, 172-5. http://flvbase.org/. 

Thisse, B., Wright, C. V. and Thisse, C. (2000) "Activin- and Nodal-related factors 

control antero-posterior patterning of the zebrafish embryo", Nature 403(6768), 425-8. 

Thisse, C. and Thisse, B. (1998) "High resolution whole-mount in situ hybridisation", 

Zebrafish Sci Mon 5, 8-9.

Thisse, C. and Thisse, B. (1999) "Antivin, a novel and divergent member of the 

TGFbeta superfamily, negatively regulates mesoderm induction", Development 126(2), 

229-40.

Thisse, C., Thisse, B., Halpern, M. E. and Postlethwait, J. H. (1994) "Goosecoid 

expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops 

gastrulas", Dev Biol 164(2), 420-9.

Thomas, G. and Hall, M. N. (1997) "TOR signalling and control of cell growth", Curr 

Opin Cell Biol 9(6), 782-7.

Thomas, G. and Luther, H. (1981) "Transcriptional and translational control of 

cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells", Proc Natl 

Acad Sci USA 78(9), 5712-6.

Thomas, P. and Beddington, R. (1996) "Anterior primitive endoderm may be 

responsible for patterning the anterior neural plate in the mouse embryo", Current 

Biology 6(11), 1487-96.

Thomas, P., Brickman, J. M., Popperl, H., Krumlauf, R. and Beddington, R. S. (1997) 

"Axis duplication and anterior identity in the mouse embryo", Cold Spring Harbor 

Symposia on Quantitative Biology 62, 115-25.

Thomas, P., Brown, A. and Beddington, R. S. P. (1998) "Hex: a homeobox gene 

revealing peri-implantation asymmetry in the mouse embryo and an early transient 

marker of endothelial cell precursors", Development 125, 85-94.

287

http://flvbase.org/


References

Thomsen, G., Woolf, T., Whitman, M., Sokol, S., Vaughan, J., Vale, W. and Melton,

D. A. (1990) "Activins are expressed early in Xenopus embryogenesis and can induce 

axial mesoderm and anterior structures", Cell 63(3), 485-93.

Thomsen, G. H. and Melton, D. A. (1993) "Processed Vgl protein is an axial 

mesoderm inducer in Xenopus", Cell 74(3), 433-41.

Ting, C. N., Olson, M. C., Barton, K. P. and Leiden, J. M. (1996) "Transcription factor 

GATA-3 is required for development of the T-cell lineage", Nature 384(6608), 474-8. 

Tojo, H. and Ogita, Z. (1984) "An improved method for destroying mouse blastomeres 

electrically inside the zona pellucida and the in vitro development of the surviving 

blastomeres", J Exp Zool 229(3), 475-80.

Torok, I., Herrmann-Horle, D., Kiss, I., Tick, G., Speer, G., Schmitt, R. and Mechler,

B. M. (1999) "Down-regulation of RpS21, a putative translation initiation factor 

interacting with P40, produces viable minute imagos and larval lethality with 

overgrown hematopoietic organs and imaginal discs", Mol Cell Biol 19(3), 2308-21. 

Torres, R. M. and Kuhn, R. (1995) The Cologne Guide to Gene Targeting. Cologne. 

Toyo-oka, K., Shionoya, A., Gambello, M. J., Cardoso, C., Leventer, R., Ward, H. L., 

Ayala, R., Tsai, L. H., Dobyns, W., Ledbetter, D., Hirotsune, S. and Wynshaw-Boris, A. 

(2003) “14-3-3epsilon is important for neuronal migration by binding to NUDEL: a 

molecular explanation for Miller-Dieker syndrome”, Nat Genet 34(3), 274-85. 

Trinkaus, J. P. (1951) "A study of the mechanism of epiboly in the egg of Fundulus 

heteroclitus", J Exp Zool 118, 269-320.

Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J. and van der Kooy, D. 

(2001) “Direct neural fate specification from embryonic stem cells: a primitive 

mammalian neural stem cell stage acquired through a default mechanism”, Neuron 

30(1), 65-78.

Tsai, F. Y., Keller, G., Kuo, F. C., Weiss, M., Chen, J., Rosenblatt, M., Alt, F. W. and 

Orkin, S. H. (1994) "An early haematopoietic defect in mice lacking the transcription 

factor GATA-2", Nature 371(6494), 221-6.

Tsai, K. J., Chen, S. K., Ma, Y. L., Hsu, W. L. and Lee, E. H. (2002) "Sgk, a primary 

glucocorticoid-induced gene, facilitates memory consolidation of spatial learning in 

rats", Proc Natl Acad Sci USA 99(6), 3990-5.

Tsutsui, K., Tsutsui, K., Okada, S., Watarai, S., Seki, S., Yasuda, T. and Shohmori, T.

(1993) “Identification and characterization of a nuclear scaffold protein that binds the 

matrix attachment region DNA”, J Biol Chem 268(17), 12886-94.

288



References

Tung, T. C., Chan, C. Y. and Tung, Y. F. Y. (1945) "Experiments on the 

developmental potencies of blastoderms and fragments of teleostean eggs separated 

latitudinally", Proc Zool Soc Lond 115, 175-89.

Tzivion, G., Shen, Y. H. and Zhu, J. (2001) “14-3-3 proteins: bringing new definitions 

to scaffolding”, Oncogene, 20(44), 6331-8.

Ubbels, G. A. (1977) "Symmetrization of the fertilized egg of Xenopus laevis (studied 

by cytological, cytochemical, and ultrastructural methods)", Mem Soc Zool France, 

Symp L Gallien 41, 103-16.

Uchiyama, H., Kobayashi, T., Yamashita, A., Ohno, S. and Yabe, S. (2001) "Cloning 

and characterization of the T-box gene Tbx6 in Xenopus laevis", Dev Growth Differ 

43(6), 657-69.

Ulrich, F., Concha, M. L., Heid, P. J., Voss, E., Witzel., S., Roehl, H., Tada, M., 

Wilson, S. W., Adams, R. J., Soil, D. R., Heisenberg, C.-P. (2003) “Slb/Wntll controls 

hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation”, 

Development, in press.

van Beest, M., Mortin, M. and Clevers, H. (1998) "Drosophila RpS3a, a novel Minute 

gene situated between the segment polarity genescubitus interruptus and dTCF", 

Nucleic Acids Res 26(19), 4471-5.

van den Eijnden-Van Raaij, A. J., van Zoelent, E. J., van Nimmen K., Koster C.H., 

Snoek G.T., Durston A.J. and D., H. (1990) "Activin-like factor from a Xenopus laevis 

cell line responsible for mesoderm induction." Nature 345(6277), 732-4. 

van der Sar, A., Betist, M., de Fockert, J., Overvoorde, J., Zivkovic, D. and den 

Hertog, J. (2001) "Expression of receptor protein-tyrosine phosphatase alpha, sigma and 

LAR during development of the zebrafish embryo", Mech Dev 109(2), 423-6.

Van Lijsebettens, M., Vanderhaeghen, R., De Block, M., Bauw, G., Villarroel, R. and 

Van Montagu, M. (1994) "An S18 ribosomal protein gene copy at the Arabidopsis PFL 

locus affects plant development by its specific expression in meristems", EMBO J  

13(14), 3378-88.

Varlet, I., Collignon, J. and Robertson, E. J. (1997) "nodal expression in the primitive 

endoderm is required for specification of the anterior axis during mouse gastrulation", 

Development 124(5), 1033-44.

Venema, J. and Tollervey, D. (1999) "Ribosome synthesis in Saccharomyces 

cerevisiae", Annu Rev Genet 33, 261-311.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., 

Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D., Amanatides, P.,

289



References

Ballew, R. M., Huson, D. H., Wortman, J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., 

Chen, L., Skupski, M., Subramanian, G., Thomas, P. D., Zhang, J., Gabor Miklos, G. 

L., Nelson, C., Broder, S., Clark, A. G., Nadeau, J., McKusick, V. A., Zinder, N., 

Levine, A. J., Roberts, R. J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., 

Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpem, A., Hannenhalli, S., 

Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., 

Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran,

I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., 

Evangelista, C., Gabrielian, A. E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., 

Heiman, T. J., Higgins, M. E., Ji, R. R., Ke, Z., Ketchum, K. A., Lai, Z., Lei, Y., Li, Z., 

Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G. V., Milshina, N., Moore, H. M., Naik, A. 

K., Narayan, V. A., Neelam, B., Nusskem, D., Rusch, D. B., Salzberg, S., Shao, W., 

Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, 

C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., 

Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter,

C., Cravchik, A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., 

Bamstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M. L., 

Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K., Doup, L., 

Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C., Heiner, C., 

Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., 

Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S., McIntosh, T., 

McMullen, I., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., 

Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y. H., Romblad, D., Ruhfel,

B., Scott, R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., 

Tint, N. N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., 

Windsor, S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J. F., Guigo, R., 

Campbell, M. J., Sjolander, K. V., Karlak, B., Kejariwal, A., Mi, H., Lazareva, B., 

Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato, S., Bafna, V., 

Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., 

Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y. H., 

Coyne, M., Dahlke, C., Mays, A., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., 

Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., 

Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., 

Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., 

Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N.,

, 290



References

Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simpson, 

M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M., Wen, M., 

Wu, D., Wu, M., Xia, A., Zandieh, A. and Zhu, X. (2001) "The sequence of the human 

genome", Science 291(5507), 1304-51.

Vincent, J. P. and Gerhart, J. C. (1987) "Subcortical rotation in Xenopus eggs: an 

early step in embryonic axis specification", Dev Biol 123(2), 526-39.

Vincent, J. P., Oster, G. F. and Gerhart, J. C. (1986) "Kinematics of gray crescent 

formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the 

egg surface", Dev Biol 113(2), 484-500.

Vintemberger, P. and Clavert, J. (1960) "Sur le determinisme de la symetrie bilaterale 

chez les Oiseaux. XIII. Les facteurs de l'orientation de l'embryon par rapport a l'axe de 

l'oeuf et la regie de von Baer, a la lumiere de nos experiences d'orientation dirigee sur 

l'oeuf de Poule extrait de l'uterus", Comptes Rendus Societe de Biologie, Paris 154(5), 

1072-6.

Virbasius, J. V., Song, X., Pomerleau, D. P., Zhan, Y., Zhou, G. W. and Czech, M. P. 

(2001) "Activation of the Akt-related cytokine-independent survival kinase requires 

interaction of its phox domain with endosomal phosphatidylinositol 3-phosphate", Proc 

Natl Acad Sci USA 98(23), 12908-13.

Vittet, D., Prandini, M. H., Berthier, R., Schweitzer, A., Martin-Sisteron, H., Uzan, G. 

and Dejana, E. (1996) "Embryonic stem cells differentiate in vitro to endothelial cells 

through successive maturation steps", Blood 88(9), 3424-31.

Vogel, A. M. and Gerster, T. (1999) "Promoter activity of the zebrafish bhikhari 

retroelement requires an intact activin signaling pathway" Mech Dev 85(1-2), 133-46. 

Volarevic, S., Stewart, M. J., Ledermann, B., Zilberman, F., Terracciano, L., Montini,

E., Grompe, M., Kozma, S. C. and Thomas, G. (2000) "Proliferation, but not growth, 

blocked by conditional deletion of 40S ribosomal protein S6", Science 288(5473), 2045- 

7.

Vuagniaux, G., Vallet, V., Jaeger, N. F., Hummler, E. and Rossier, B. C. (2002) 

"Synergistic activation of ENaC by three membrane-bound channel-activating serine 

proteases (mCAPl, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated 

kinase (Sgkl) in Xenopus Oocytes", J Gen Physiol 120(2), 191-201.

Wacker, S., Herrmann, K. and Berking, S. (1994) "The orientation of the dorsal-ventral 

axis of zebrafish is influenced by gravitation", Roux's Arch Dev Biol 203, 281-3. 

Waddington, C. H. (1932) "Experiments on the development of chick and duck 

embryos, cultivated in vitro", Phil Trans R Soc London (B) 211,179-230.

291



References

Wagner, C. A., Broer, A., Albers, A., Gamper, N., Lang, F. and Broer, S. (2000) "The 

heterodimeric amino acid transporter 4F2hc/LATl is associated in Xenopus oocytes 

with a non-selective cation channel that is regulated by the serine/threonine kinase sgk- 

1", J Physiol 526 Pt 1, 35-46.

Wagner, C. A., Ott, M., Klingel, K., Beck, S., Melzig, J., Friedrich, B., Wild, K. N., 

Broer, S., Moschen, I., Albers, A., Waldegger, S., Tummler, B., Egan, M. E., Geibel, J. 

P., Kandolf, R. and Lang, F. (2001) "Effects of the serine/threonine kinase SGK1 on the 

epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis", Cell 

Physiol Biochem 11(4), 209-18.

Wakamiya, M., Rivera-Perez, J. A., Baldini, A. and Behringer, R. R. (1997) 

"Goosecoid and goosecoid-related genes in mouse embryogenesis", Cold Spring Harb 

Symp Quant Biol 62, 145-9.

Walbot, V. and Holder, N. (1987) Developmental Biology. Random House Inc., New 

York.

Waldegger, S., Barth, P., Forrest, J. N., Jr., Greger, R. and Lang, F. (1998) "Cloning of 

sgk serine-threonine protein kinase from shark rectal gland - a gene induced by 

hypertonicity and secretagogues", Pflugers Arch 436(4), 575-80.

Waldegger, S., Barth, P., Raber, G. and Lang, F. (1997) "Cloning and characterization 

of a putative human serine/threonine protein kinase transcriptionally modified during 

anisotonic and isotonic alterations of cell volume", Proc Natl Acad Sci USA 94(9), 

4440-5.

Waldegger, S., Gabrysch, S., Barth, P., Fillon, S. and Lang, F. (2000) "h-sgk serine- 

threonine protein kinase as transcriptional target of p3 8/MAP kinase pathway in HepG2 

human hepatoma cells", Cell Physiol Biochem 10(4), 203-8.

Waldegger, S., Klingel, K., Barth, P., Sauter, M., Rfer, M. L., Kandolf, R. and Lang, F.

(1999) "h-sgk Serine-Threonine Protein Kinase Gene as Transcriptional Target of 

Transforming Growth Factor b in Human Intestine", Gastroenterology 116(5), 1081-8. 

W aldrip, W. R., Bikoff, E. K., Hoodless, P. A., Wrana, J. L. and Robertson, E. J.

(1998) "Smad2 signaling in extraembryonic tissues determines antero-posterior polarity 

of the early mouse embryo", Cell 92(6), 797-808.

Wallace, M. J., Batt, J., Fladd, C. A., Henderson, J. T., Skames, W. and Rotin, D.

(1999) "Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor 

tyrosine phosphatase PTPsigma", Nat Genet 21(3), 334-8.

292



References

Wallingford, J. B., Fraser, S. E. and Harland, R. M. (2002) "Convergent extension: the 

molecular control of polarized cell movement during embryonic development", Dev 

Cell 2(6), 695-706.

Wang, S., Krinks, M., Lin, K., Luyten, F. P. and Moos, M., Jr. (1997) "Frzb, a secreted 

protein expressed in the Spemann organizer, binds and inhibits Wnt-8", Cell 88(6), 757- 

66.

W arga, R. M. and Kimmel, C. B. (1990) "Cell movements during epiboly and 

gastrulation in zebrafish", Development 108(4), 569-80.

Warga, R. M. and Nusslein-Volhard, C. (1999) "Origin and development of the 

zebrafish endoderm", Development 126(4), 827-38.

Warga, R. M. and Stainier, D. Y. (2002) "The guts of endoderm formation", Results 

Probl Cell Differ 40, 28-47.

Warner, J. R. (2001) "Nascent ribosomes", Cell 107(2), 133-6.

Warntges, S., Friedrich, B., Henke, G., Duranton, C., Lang, P. A., Waldegger, S., 

Meyermann, R., Kuhl, D., Speckmann, E. J., Obermuller, N., Witzgall, R., Mack, A. F., 

Wagner, H. J., Wagner, A., Broer, S. and Lang, F. (2002) "Cerebral localization and 

regulation of the cell volume-sensitive serum- and glucocorticoid-dependent kinase 

SGK1", Pflugers Arch 443(4), 617-24.

Watson, K. L., Konrad, K. D., Woods, D. F. and Bryant, P. J. (1992) "Drosophila 

homolog of the human S6 ribosomal protein is required for tumor suppression in the 

hematopoietic system", Proc Natl Acad Sci USA 89(23), 11302-6.

Weber, R. J., Pedersen, R. A., Wianny, F., Evans, M. J. and Zemicka-Goetz, M. (1999) 

"Polarity of the mouse embryo is anticipated before implantation", Development 

126(24), 5591-8.

W ebster, M. K., Goya, L. and Firestone, G. L. (1993a) "Immediate-early 

transcriptional regulation and rapid mRNA turnover of a putative serine/threonine 

protein kinase", J Biol Chem 268(16), 11482-5.

Webster, M. K., Goya, L., Ge, Y., Maiyar, A. C. and Firestone, G. L. (1993b) 

"Characterization of sgk, a novel member of the serine/threonine protein kinase gene 

family which is transcriptionally induced by glucocorticoids and serum", Mol Cell Biol 

13(4), 2031-40.

Weijers, D., Franke-van Dijk, M., Vencken, R. J., Quint, A., Hooykaas, P. and 

Offringa, R. (2001) "An Arabidopsis Minute-like phenotype caused by a semi-dominant 

mutation in a RIBOSOMAL PROTEIN S5 gene", Development 128(21), 4289-99.

293



References

Weinstein, D. C. and Hemmati-Brivanlou, A. (1999) “Neural induction”, Annu Rev 

Cell Dev Biol 15,411-33.

Weinstein, D. C., Ruiz i Altaba, A., Chen, W. S., Hoodless, P., Prezioso, V. R., Jessell, 

T. M., Darnell, J. E. Jr. (1994) “The winged-helix transcription factor HNF-3 beta is 

required for notochord development in the mouse embryo” Cell, 78(4), 575-88. 

Weinstein, M., Yang, X., Li, C., Xu, X., Gotay, J. and Deng, C. X. (1998) "Failure of 

egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor 

suppressor smad2", Proc Natl Acad Sci USA 95(16), 9378-83.

Wetts, R. and Fraser, S. E. (1989) “Slow intermixing of cells during Xenopus 

embryogenesis contributes to the consistency of the blastomere fate map”, Development 

105(1), 9-15.

W hitman, M. (2001) "Nodal signaling in early vertebrate embryos: themes and 

variations", Dev Cell 1(5), 605-17.

Wijnholds, J., Chowdhury, K., Wehr, R. and Gruss, P. (1995) "Segment-specific 

expression of the neuronatin gene during early hindbrain development", Dev Biol 

171(1), 73-84.

Wiles, M.V. and Johansson, B. M. (1999) “Embryonic stem cell development in a 

chemically defined medium”, Exp Cell Res 247(1), 241-8.

Wilkinson, D. G., Bhatt, S. and Herrmann B. G. (1990) “Expression pattern of the 

mouse T gene and its role in mesoderm formation” Nature 343(6259), 657-9. 

Wilkinson, D. G. (1992) Whole-mount in situ hybridisation of vertebrate embryos, In 

Situ Hybridisation. Wilkinson, D. G., Oxford, IRL Press, 75-83.

Wilson, I. B., Bolton, E. and Cuttler, R. H. (1972) "Preimplantation differentiation in 

the mouse egg as revealed by microinjection of vital markers", J Embryol Exp Morphol 

27(2), 467-9.

Wilson, P. A. and Hemmati-Brivanlou, A. (1995) “Induction of epidermis and 

inhibition of neural fate by Bmp-4”, Nature 376, 331-3.

Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. and Edlund, T. (2000) “An early 

requirement for FGF signalling in the acquisition of neural cell fate in the chick 

embryo”, Curr Biol 10(8), 421-9.

Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., 

Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., 

Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., 

Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Davis, R. W. and et al.

294



References

(1999) "Functional characterization of the S. cerevisiae genome by gene deletion and 

parallel analysis", Science 285(5429), 901-6.

Withington, S., Beddington, R. and Cooke, J. (2001) “Foregut endoderm is required at 

head process stages for anteriormost neural patterning in chick”, Development, 128, 

309-20.

Wittbrodt, J. and Rosa, F. M. (1994) "Disruption of mesoderm and axis formation in 

fish by ectopic expression of activin variants: the role of maternal activin", Genes Dev 

8(12), 1448-62.

Wolpert, L., Beddington, R., Brockes, J., Jessell, T., Lawrence, P. and Meyerowitz, E.

(1998) Principles of Development. New York, Oxford Univ. Press Inc..

Woo, K. and Fraser, S. E. (1997) “Specification of the zebrafish nervous system by 

nonaxial signals”, Science, 277(5323), 254-7.

Wool, I. G. (1996) "Extraribosomal functions of ribosomal proteins", Trends Biochem 

Sci 21(5), 164-5.

Wu, X., Ivanova, G., Merup, M., Jansson, M., Stellan, B., Grander, D., Zabarovsky, E., 

Gahrton, G. and Einhom, S. (1999) "Molecular analysis of the human chromosome 

5ql3.3 region in patients with hairy cell leukemia and identification of tumor 

suppressor gene candidates", Genomics 60(2), 161-71.

Wulff, P., Vallon, V., Huang, D. Y., Volkl, H., Yu, F., Richter, K., Jansen, M., Schlunz, 

M., Klingel, K., Loffing, J., Kauselmann, G., Bosl, M. R., Lang, F. and Kuhl, D. (2002) 

"Impaired renal Na(+) retention in the sgkl-knockout mouse", J Clin Invest 110(9), 

1263-8.

Wylie, C., Kofron, M., Payne, C., Anderson, R., Hosobuchi, M., Joseph, E. and 

Heasman, J. (1996) "Maternal beta-catenin establishes a 'dorsal signal' in early Xenopus 

embryos", Development 122(10), 2987-96.

Wylie, C. C. (1972) "The appearance and quantitation of cytoplasmic ribonucleic acid 

in the early chick embryo", J Embryol Exp Morphol 28(2), 367-84.

Xanthos, J. B., Kofron, M., Wylie, C. and Heasman, J. (2001) "Maternal VegT is the 

initiator of a molecular network specifying endoderm in Xenopus laevis", Development 

128(2), 167-80.

Xu, J., Liu, D., Gill, G. and Songyang, Z. (2001) "Regulation of cytokine-independent 

survival kinase (CISK) by the Phox homology domain and phosphoinositides", J Cell 

Biol 154(4), 699-705.

295



References

Xu, R. H., Kim, J., Taira, M., Zhan, S., Sredni, D. and Kung, H. F. (1995) “A 

dominant-negative bone morphogenetic protein 4 receptor causes neuralization in 

Xenopus ectoderm”, Biochem Biophys Res Commun 212, 212-9.

Yaffe, M. B. (2002) “How do 14-3-3 proteins work? -  Gatekeeper phosphorylation and 

the molecular anvil hypothesis”, FEBS Letters, 513, 53-7.

Yamaha, E., Mizuno, T., Hasebe, Y., Takeda, H. and Yamazaki, F. (1998) "Dorsal 

specification in blastoderm at the blastula stage in the goldfish, Carassius auratus.PG - 

267-75", Dev Growth Differ 40(3).

Yamamoto, A., Amacher, S. L., Kim, S. H., Geissert, D., Kimmel, C. B. and De 

Robertis, E.M. (1998) "Zebrafish paraxial protocadherin is a downstream target of 

spadetail involved in morphogenesis of gastrula mesoderm" Development 125(17), 

3389-97.

Yamanaka, Y., Mizuno, T., Sasai, Y., Kishi, M., Takeda, H., Kim, C. H., Hibi, M. and 

Hirano, T. (1998) "A novel homeobox gene, dharma, can induce the organizer in a non- 

cell-autonomous manner", Genes Dev 12(15), 2345-53.

Yamashita, H., ten Dijke, P., Huylebroeck, D., Sampath, T. K., Andries, M., Smith, J.

C., Heldin, C. H. and Miyazono, K. (1995) "Osteogenic protein-1 binds to activin type 

II receptors and induces certain activin-like effects", J Cell Biol 130(1), 217-26. 

Yamashita S., Miyagi, C., Carmany-Rampey, A., Shimizu, T., Fujii, R., Schier, A. F., 

Hirano, T. (2002) “Stat3 Controls Cell Movements during Zebrafish Gastrulation”, Dev 

Cell 2(3), 363-75.

Yasuo, H. and Lemaire, P. (1999) "A two-step model for the fate determination of 

presumptive endodermal blastomeres in Xenopus embryos", Curr Biol 9(16), 869-79. 

Yatskievych, T. A., Pascoe, S. and Antin, P. B. (1999) "Expression of the homebox 

gene Hex during early stages of chick embryo development", Mech Dev 80(1), 107-9. 

Yeo, C. and Whitman, M. (2001) "Nodal signals to Smads through Cripto-dependent 

and Cripto-independent mechanisms", Mol Cell 7(5), 949-57.

Yeo, C. Y., Chen, X. and Whitman, M. (1999) "The role of FAST-1 and Smads in 

transcriptional regulation by activin during early Xenopus embryogenesis", /  Biol Chem 

274(37), 26584-90.

Yeo, S.Y., Little, M. H., Yamada, T., Miyashita, T., Halloran, M. C., Kuwada, J. Y., 

Huh, T. L., Okamoto, H. (2001) “Overexpression of a slit homologue impairs 

convergent extension of the mesoderm and causes cyclopia in embryonic zebrafish” 

Dev Biol, 230(1), 1-17.

296



References

Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. and Smith, A. (2003) “Conversion 

of

embryonic stem cells into neuroectodermal precursors in adherent monoculture”, Nat 

Biotechnol 21(2), 183-6.

Yoo, D., Kim, B. Y., Campo, C. K., Nance, L., King, A., Maouyo, D. and Welling, P. 

A. (2003) "Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the 

aldosterone-induced kinase, SGK-1 and PKA", J Biol Chem. 278(25), 23066-75.

Yow, H. K., Wong, J. M., Chen, H. S., Lee, C. G., Davis, S., Steele, G. D., Jr. and 

Chen, L. B. (1988) "Increased mRNA expression of a laminin-binding protein in human 

colon carcinoma: complete sequence of a full-length cDNA encoding the protein", Proc 

Natl Acad Sci USA 85(17), 6394-8.

Yuge, M., Kobayakawa, Y., Fujisue, M. and Yamana, K. (1990) "A cytoplasmic 

determinant for dorsal axis formation in an early embryo of Xenopus laevis", 

Development 110(4), 1051-6.

Yun, C. C., Chen, Y. and Lang, F. (2002) "Glucocorticoid activation of Na(+)/H(+) 

exchanger isoform 3 revisited. The roles of SGK1 and NHERF2", J Biol Chem 277(10), 

7676-83.

Zeng, L., Fagotto, F., Zhang, T., Hsu, W., Vasicek, T. J., Perry, W. L., 3rd, Lee, J. J., 

Tilghman, S. M., Gumbiner, B. M. and Costantini, F. (1997) "The mouse Fused locus 

encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis 

formation", Cell 90(1), 181-92.

Zernicka-Goetz, M. (1998) "Fertile offspring derived from mammalian eggs lacking 

either animal or vegetal poles.PG - 4803-8", Development 125(23).

Zhang, B. H., Tang, E. D., Zhu, T., Greenberg, M. E., Vojtek, A. B. and Guan, K. L.

(2001) "Serum- and glucocorticoid-inducible kinase SGK phosphorylates and 

negatively regulates B-Raf", J Biol Chem 276(34), 31620-6.

Zhang, J., Houston, D. W., King, M. L., Payne, C., Wylie, C. and Heasman, J. (1998a) 

"The role of maternal VegT in establishing the primary germ layers in Xenopus 

embryos", Cell 94(4), 515-24.

Zhang, J. and King, M. L. (1996) "Xenopus VegT RNA is localized to the vegetal 

cortex during oogenesis and encodes a novel T-box transcription factor involved in 

mesodermal patterning", Development 122(12), 4119-29.

Zhang, J., Talbot, W. S. and Schier, A. F. (1998b) "Positional cloning identifies 

zebrafish one-eyed pinhead as a permissive EGF-related ligand required during 

gastrulation", Cell 92(2), 241-51.

297



References

Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. and Kuehn, M. R. (1993) "Nodal is a 

novel TGF-beta-like gene expressed in the mouse node during gastrulation", Nature 

361(6412), 543-7.

Zhu, Y., Richardson, J. A., Parada, L. F. and Graff, J. M. (1998) "Smad3 mutant mice 

develop metastatic colorectal cancer", Cell 94(6), 703-14.

Zimmerman, L. B., De Jesus-Escobar, J. M. and Harland, R. M. (1996) “The Spemann 

organizer signal noggin binds and inactivates bone morphogenetic protein 4”, Cell 86, 

599-606.

Ziomek, C. A., Johnson, M. H. and Handyside, A. H. (1982) "The developmental 

potential of mouse 16-cell blastomeres", J Exp Zool 221(3), 345-55.

Zorn, A. M., Butler, K. and Gurdon, J. B. (1999) "Anterior endomesoderm 

specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways", Dev 

Biol 209(2), 282-9.

298



Appendices



Appendix 1 Widespread and ubiquitous mouse endoderm library clones

Table A.1 Identity of endoderm library cDNAs with widespread or ubiquitous expression

Sequence ID Frequency Expression Representative ID Description

r8224b38 1 W ENSMUST00000001452 Tcp-1

k8220b04 1 W Potentially novel

k8311b33 1 w Potentially novel

r8316a43 4 w TC451582

t8708a52 w
t8708a58 w
k8417b60 4 w ENSMUSG00000032294 Pyruvate kinase, M2 isozyme (EC 2.7.1.40)

t8219b01 1 w Potentially novel

r8220b48 4 w TC461859

r8316a38 1 w ENSMU S G00000029538 Splicing factor, arginine/serine rich 9 (25 kDa)

r8319a26 1 w Potentially novel

r8710a01 1 w ENSMU S G00000022400 Ring-box protein 1

m8708a53 1 w ENSMUSG00000001424 Staphylococcal nuclease domain-containing protein 1; p i00 co-activator

t8708al3 w
m8220b33 2 w ENSMU S G00000001416 T-complex protein 1, gamma subunit (Tcp-1-gamma)



k8225b50 1 W ENSMUSGOOOOOOO1847

m8708a04 1

k8225b28 3

W

W

ENSMUSG00000002812 

ENSMUSG00000002835

r8313b48

s8408b38

k8710a21

s8408b20

v8130bl5

w8609b47

s7827b59

r8220b44

r8220b07

r8313bl9

k8417b21

v8130b56

r8316a38

v8130b42

p8129b33

t8609b46

W

W

W

w
w
w
w
w
w
w
w
w
w
w
w
w

ENSMUSGOOOOOO18235 

EN SMU SG00000020372 

ENSMUSG00000022400 

ENSMUSG00000022570 

ENSMUSG00000023286 

ENSMU S G00000024392 

ENSMUSG00000024844 

EN SMUSG00000026726 

ENSMUSG00000027129 

ENSMUSG00000027170 

ENSMUSG00000027405 

ENSMUSG00000029063 

ENSMUSG00000029538 

ENSMUSG00000031591 

ENSMUSG00000031996 

ENSMUSG00000032582

Ras-related C3 Botulinum toxin substrate 1 (p21-Racl) / Ras-like protein 

Tc25

Flightless I (Drosophila) homolog

Chromatin assembly factor 1 subunit a (Chromatin assembly factor I p i50 

subunit)

Putative transcription factor Alf-4

Guanine nucleotide-binding protein, beta subunit-like protein 12.3 

Ring-box 1

GDP-fucose synthetase (FX protein) (Red cell NADP(H)-binding protein) 

Ubiquitin conjugating enzyme 6

Large proline-rich protein Bat3 (Hla-b-associated transcript 3)

Barrier-to-autointegration factor (breakpoint cluster region protein 1) 

Cubilin (fragment)

Hypothetical 26.3 kDa protein 

Similar to dendritic cell protein 

Nucleolar protein Nop56

Putative inorganic polyphosphate/ATP-NAD kinase (EC 2.7.1.23)

Splicing factor, arginine/serine rich 9 (25 kDa)

Acid ceramidase precursor (EC 3.5.1.23) (Acylsphingosine deacylase) 

Amyloid-like protein 2 precursor (CDEI-box binding protein) (CDE-BP) 

RNA binding motif protein 6



k8225b47 2 W ENSMU S G00000034256

r8220bl8 3 W ENSMUSG00000035320

t8609b35 1 w ENSMUSG00000037149

t8130b25 2 w ENSMUSG00000039231

k8311bl8 2 w TC506388

v8130b63 1 w TC451697

t8219b23 1 w TC501496

t8219b03 1 w TC532000

p8224a64 1 w TC537418

m8220b34 1 w ENSMUSG00000016921

k8224bl3 2 w ENSMUSG00000021037

r8319a64 3 w ENSMUSG00000021676

k8710a08 1 w ENSMUSG00000033285

t8609b43 1 w ENSMUSG00000034673

r8319a50 1 w ENSMUSG00000035073

w8609b44 1 w ENSMUSG00000039923

r8224b43 2 w ENSMUSG00000032361

k8225bl9 2 w BB533367

Forkhead box protein J1, (Hepatocyte nuclear factor 3 forkhead homolog 

4)
Tumor necrosis factor receptor superfamily, member 19/20 

Similar to DEAD/H (asp-glu-ala-asp/his) box polypeptide 1 

Similar to suppressor of variegation 3-9 homolog 1 

Rho family GTPase RhoA; Aplysia Ras-related homolog A2 

Similarity (11%) to mouse Nedd-4 protein (EC 6.3.2.-)

Similarity (26%) to thyroid hormone receptor-associated protein complex 

component TRAP 150 1

Similarity (53%) to Poly(A) polymerase alpha (EC 2.7.7.19)

Similarity (67%) to Echinoderm microtubule-associated protein-like 1 

Splicing factor, arginine/serine rich 5 pre mRNA splicing factor srp40 

family

cl4orf3 protein family member 

Ras GTPase activating like protein 

WD repeat protein

Pre b cell leukemia transcription factor (homeobox-containing)

Zinc finger protein

80 kDa nuclear cap binding protein

Transcription factor-like protein, MORF-related gene



k8130b51 1 W

t8219b05 1 W

k8225bll 2 W

k8220b21 1 W

r8313bl5 1 W

p8224a33 3 W

t8130b57 1 W

m8708a05 1 W

r8224b37 1 W

k8225bl2 1 W

r8316a46 1 U

r8319a47 2 U

k8225b31 1 U

k8417b28 1 U

s8408b07 4 U

t8219b06 1 U

s8130b40 1 U

m8220b56 1 U

p8224a38 1 U

s8408b52 2 U

t8609b21 1 U

ENSMUSG00000022350

ENSMUSG00000028863

ENSMUSG00000039322

ENSMUSG00000040771

TC478679

TC481831

TC482831

TC487192

TC514478

TC521606

ENSMUSGOOOOOOO1833 

ENSMUSG00000003687 

ENSMUSG00000003759 

ENSMUSG00000003779 

ENSMUSG00000003814 

ENSMUSG00000004897 

ENSMUSG00000020236 

ENSMUSG00000021953 

ENSMUSG00000021998 

ENSMU S G00000024006 

ENSMUSG00000024474

Septin 7 (CdclO protein homolog)

Elongation factor 1-gamma (ef-1-gamma)

Seta binding protein 1

Rab kinesin-6 (Rab 6-interacting kinesin-like protein) 

Calreticulin precursor (crp55) (Calregulin) 

Hepatoma-derived growth factor (HDGF)

Similar to cg2245 gene product

cDNA sequence AF134346; 1-threonine 3-dehydrogenase 

1-plastin (Lymphocyte cytosolic protein 1)

Similar to serine threonine protein kinase 

Red protein (Rer protein)



v8608b25 1 U

r8220b21 1 U

m8220b54 2 U

v8130b46 1 U

p8224a43 1 U

t7825b20 1 U

p7822b59 3 U

k8224b04 1 U

m8220b46 1 U

k8220b58 1 U

k8709al5 1 U

v8130b60 1 U

r8223b47 1 U

t8130b48 U

k8225b43 1 U

t8219bl4 1 U

r8316a20 2 U

k8225b03 1 U

r8707a46 1 U

k8224b30 3 U

ENSMUSG00000028438 

ENSMUSG00000028964 

ENSMU S G00000029062 

ENSMUSG00000030654 

ENSMUSG00000030796

ENSMUSG00000035078

ENSMUSG00000040731

ENSMUSG00000041059

TC467769

TC511443

TC531846

TC446791

TC448255

TC457725

ENSMUSG00000021484 

ENSMUSG00000023010 

ENSMUSG00000026965 

ENSMUSG00000027828 

ENSMUSG00000031843 

ENSMUSG00000035618

Kinesin superfamily protein 24 (fragment)

DJ-1 protein; RNA-binding protein regulatory subunit 

Cell division cycle 2 homolog (S. pombe)-l\ke 2 

Arl-6 interacting protein-1 (aip-1) (Tbx2 protein)

Transcriptional enhancer factor Tef-4 (embryonic TEA domain- 

containing factor)

Myotubularin-related protein 3 (fragment)

Eukaryotic translation initiation factor 4h (eif-4h)

High mobility group protein HMG-y 

p53-regulated Dda3

Cdv-3b, Carnitine deficiency-associated protein, cdv3b

Ras-related GTP-binding protein 4b

Similar to Human Dj222el3.3 (novel protein)

Similar (12%) to Human Kiaa0423

Similar to putative Human prostate cancer tumor suppressor 

Vesicular integral membrane protein, Vip36, precursor-family 

Bax inhibitor 1 bi 1 testis enhanced gene family 

Anaphase promoting complex subunit 2 family 

Translocon associated protein 

M phase phosphoprotein

Nuclease sensitive element binding protein 1, Y box binding protein



k8417b20 1 U
m8220b58 1 U
k8311b01 1 u
k8225b27 1 u
r8223b48 1 u
v8608b33 1 u
k8417bl5 1 u
r8223b37 1 u
v8608b22 1 u
w8408bl0 1 u
t7821b51 1 u
r8710a50 u
t8708a28 u
v8130bl2 1 u
r8220bl6 1 u
k8220b25 1 u
p8610bl7 3 u
v8130b02 3 u
k8130b38 2 u
p8224a40 1 u
v8130b61 2 u

ENSMUSG00000037197 

EN SMU S G00000040914 

ENSMU SG00000042097 

AL023012 

AL023075

ENSMU S G00000000759

EN SMUSG00000032902

ENSMUSG00000002486 

ENSMU S G00000020608 

ENSMUSG00000021486 

ENSMUSG00000021905 

ENSMUSG00000025421 

ENSMUSG00000031756 

ENSMUSG00000037278

Splicing factor 

WD repeat protein 

Zinc finger protein

Potentially novel 

Potentially novel 

Potentially novel

Potentially novel

Potentially novel



w8609bl4 1 U ENSMUSG00000037677

r8220b40 1 U ENSMUSG00000039575

t8219bl6 1 U ENSMUSG00000042307

p8224a36 1 U TC447493

t8130b60 1 u TC456825

t8130b62 1 u TC469437

k8225b01 1 u TC472673

r8319a55 1 u TC481995

k8130b43 1 u TC497372

k8220b41 1 u TC497498

r8710a27 1 u TC501233

r8313b62 2 u ENSMUSG00000003660

r8710a06 1 X ENSMUSG00000018581 Dynein, axon, heavy chain 11; situs inversus viscerum

v8130b28 X ENSMUSG00000042720 Reduced expression 3

m8220b60 1 X TC473104

k8220b27 1 X TC526797

k8220b28 1 X TC522924

cDNAs are categorised according to their expression patterns: Widespread (W), Ubiquitous (U) and not detected (X). Within each of these categories, cDNA clones 

are further grouped as: known genes’, similar to known genes, containing known protein domains, and not annotated. Headings represent (i) the sequence 

identification number; (ii) the number of times the sequence was isolated; (iii) the ENSEMBL gene number of the cDNA or its TIGR Cluster number; (iv) gene 

family.



Appendix 2

Appendix 2 Protocol for differentiation of ES cells into 

endothelial cells 

Foreword

The endothelial-specific conditions defined in Vittet et al., 1996 were combined with 

the protocol for ES cell differentiation into hematopoietic lineages established by Dr. G. 

Keller (Keller et al., 1993). The resultant protocol presented here is adequate for 

feeder-independent ES cells and is accomplished via the formation of embryoid bodies.

Iscove’s Modified Dulbecco’s Medium (IMDM) is used for blood stem cell cultures. 

Culturing embryoid bodies (EBs) in this medium increases the frequency of appearance 

of blood islands relative to that obtained in the more common Dulbecco’s Modified 

Eagle Medium (DMEM) (Doetschman et al., 1985).

All FCS batches should be tested for their ability to support normal ES cell growth at 

clonal densities (Robertson, 1987). The selected ES Quality (ESQ) batches should then 

be tested for their capacity in supporting EB formation and consequent cell 

differentiation (ESQD). Approximately 1/4 of FCS batches support excellent 

hematopoietic differentiation (Wiles, 1993).

All water used must be ultrapure and sterile. Use autoclaved Millipore water, which can 

be stored at 4 °C.

Media and solutions

2x IMDM (500 ml)

Add 500 ml of water to IMDM powder provided for 11.

Sterilise in tissue-culture hood by filtering through 0.20 pm pore membrane.

Save 250 ml to prepare 2% methylcellulose (MC)-IMDM and aliquot the rest into 50 ml 

aliquots. Store aliquots at -  20 °C.

Used for preparing 2 % MC-IMDM and IMDM ES.
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IMDM ES (100 ml)

50 ml 2x IMDM 

35 ml water 

0.3024 g NaHC03

12.4 pi fresh 1/10 dilution of monothioglycerol (MTG) in water (MTG is very viscous 

so pipette at least 100 pi)

Sterilise in tissue-culture hood by filtering through 0.20 pm pore membrane and add 

LIF so that final concentration is 103 U/ml, and 15 ml ESQ.

Used for last ES cell passage prior to differentiation.

IMDM (100 ml)

Similar to IMDM ES except, importantly, with no LIF.

Used for washing and counting cells prior to differentiation as well as for medium 

change prior to seeding in differentiation medium.

2% MC-IMDM (500 ml)

Weigh autoclaved Schott bottle containing magnetic stirrer.

Rinse with water to remove any residual detergent.

Add 235 ml water and boil on hotplate for 5-10 min.

Slowly add 10 g MC while stirring.

Let it come to a boil 3 times without letting it boil over. Swirl vigorously between boils 

until no lumps are found in the slurry.

Sterilise by boiling another 10-12 min. Meanwhile prepare fresh 2x IMDM.

To 250 ml fresh 2x IMDM add 3.024 g NaHC03 and 124 pi fresh 1/10 MTG in water. 

Sterilise in tissue-culture hood by filtering through 0.20 pm pore membrane and aliquot 

into 50 ml aliquots. If stored at 4 °C, aliquots can be used for at least 1 month; if stored 

at -20 °C, aliquots can be used for longer.

Allow slurry to cool below 40 °C and add 250 ml of 2x IMDM.

Stir rapidly for a few min in order to mix and remove any lumps. At this stage the 

medium will still appear cloudy and moderately thin.

Weigh everything again. Weight of media should be very close to 500 g; adjust it to 

500 g with water.

Leave medium at 4 °C O/N.

Remove 1-2 ml of medium and incubate at 37 °C for several days to check for
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contamination, and aliquot the rest into a maximum of 13.5 ml / 50 ml tube (volume 

adequate for 12 cultures of 1 ml each). This stock solution is extremely thick so use a 

syringe fitted with a 16 or 18-G blunt-ended needle for all its manipulations.

Store at -20 °C. Only following a freezing and thawing cycle will the medium appear as 

a transparent viscous liquid.

MC medium should not be refrozen. Working stocks can be maintained at 4 °C for 1 

month.

Used to make MC-IMDM.

MC-IMDM -  make FRESH (100 ml)

MC-IMDM is composed of 1% MC-IMDM, 15% ESQ and 450 pM MTG.

Dilute fresh 26 pi MTG / 2 ml IMDM.

Mix 42.5 ml 2% MC-IMDM, 42.5 ml 2x IMDM, 15 ml ESQD and 300 pi diluted MTG. 

Used for plating ES cells for differentiation.

Differentiation factors stock solutions

Prepare 7.5% BSA carrier solution by dissolving 0.75 g BSA in 10 ml sterile PBS. 

Sterilise in tissue-culture hood by filtering through 0.20 pm pore low protein binding 

membrane.

Reconstitute vascular endothelial growth factor (VEGF), erythropoietin (EPO), human 

basic FGF (hbFGF) and interleukin 6 (IL-6) lyophilates/solutions as following:

VEGF (Peprotech 100-20): Recommended stock is 100 pg/ml in water. Add 100 pi 

water to 10 g vial.

EPO (Roche 1 276 964): No recommended stock concentration but solvent suggested is 

PBS containing BSA. Add 9 ml PBS and 133.3 pi 7.5% BSA carrier solution to 500 U 

vial. Stock will be 50 U/ml.

hbFGF-2 (R&D 233-FB-025): Recommended stock is 10 pg/ml in PBS, 0.1 % BSA, 1 

mM DTT. Add 2.5 ml sterile PBS, 33.3 pi 7.5% BSA carrier solution and 25 pi sterile 

100 mM DTT to 25 pg vial. Can be stored at 4 °C for 1 month or at -70 °C to -20 °C 

for 3 months.

IL-6 (R&D 406-ML-005): Recommended stock is 1 pg/ml in PBS, 0.1% BSA. Add 5 

ml sterile PBS and 66.7 pi 7.5% BSA carrier solution to 5 pg vial. Can be stored at 

4 °C for 1 month or at -70 °C to -20 °C for 3 months.

Aliquot all stocks and store at -20 °C. Avoid repeated freeze-thawing of stocks.
\
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Used to supplement MC-IMCM in order to make Endothelial Differentiation 

medium. 

Endothelial Differentiation medium

MC-IMDM supplemented with the following angiogenic growth factors:

50 ng/ml VEGF => Dilute stock 2000x =*> 40 pi stock / 80 ml medium

2 U/ml EPO => Dilute stock 25x => 3.2 ml stock / 80 ml medium

100 ng/ml hbFGF-2 => Dilute stock lOOx => 800 pi stock / 80 ml medium

10 ng/ml IL-6 => Dilute stock lOOx =s> 800 pi stock / 80 ml medium

Add factors to MC-IMDM, vortex vigorously, spin down quickly and allow 10-15 min

for air bubbles to dissipate.

Trypsin/EDTA

0.25% Trypsin, 1 mM Na^DTA in PBS (pH 7.5)

Testing ESQ capacity to support EB differentiation

Seed ES cells in MC-IMDM. The criteria for assessing desirable ESQ promotion of EB 

differentiation are:

1) EBs should be observed after 3 days;

2) After 10 days, at least 40% of EBs should show overt globinisation, meaning they 

will be distinctly red.

Differentiation parameters decline after approximately Day 11 (blood cell parameters do 

so earlier than those of endothelial cells) (Wang et al., 1992).

Protocol for differentiating ES into endothelial cells

Day -2

Two days prior to differentiation initiation, split ES cells into IMDM ES medium. This 

one passage into IMDM prior to differentiation should greatly enhance the efficiency of 

the subsequent differentiation. Plate 2 dilutions (for example, 1/10 and 1/20), aiming 

for 25 -  50 % confluence in 2 days.

ES cells grow much faster in IMDM as compared to DMEM. Make sure they are in 

good condition before starting the differentiation: few or no dead cells, media should
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not be too acidic, few if any differentiated cells.

Day 0

Remove old medium with suction pump and replace it with new IMDM.

Incubate cells in new medium for for 1-3 h (this medium change prior to change into 

differentiation medium enhances the consistency of results).

Remove medium and wash cells once with 1.5 ml of Trypsin/EDTA.

Remove this Trypsin/EDTA and add an additional 1 ml of new Trypsin/EDTA. Make 

sure it covers the bottom of the flask and let it act for 5 min at RT (or 37 °C).

Confirm under the microscope that a single-cell suspension is obtained.

Add 10 ml of IMDM and transfer the cell suspension to a 14 ml screw cap tube.

Spin at 150 x g for 5 min at 4 °C and wash cells twice in EMDM:

Carefully remove supernatant with suction pump and resuspend cells in 1 ml of IMDM. 

Add 5 ml more of IMDM and spin again.

Repeat the wash and resuspend the cells in 1.0 ml of IMDM.

Count cells in a hemocytometer and determine their viability, which should be greater 

than 95%:

Dilute cells 5x by mixing 160 p,l Trypan Blue with 40 pi cell suspension, vortex and 

count (around 200 cells should be counted for a statistically accurate determination of 

cell concentration): no. cells / ml = average no. of cells / square x 5 x 104.

Prepare at least 1.2 times the desired amount of Differentiation Medium:

2 ml medium is used / 35-mm dish; the no. dishes / experiment is 2 x 15 (duplicates for 

15 days) = 30. Prepare 80 ml.

To a 50 ml tube add 1.2 times the number of cells necessary to obtain the desired final 

concentration for all dishes (1.25 or 2.5 x 103 cells / dish). The desired result is 50 -  

100 EBs / dish. As a first step it may be necessary to perform a dose curve to determine 

the optimal number of cells required: score the number of EBs obtained, which should 

be directly proportional to the number of cells plated.

Using a syringe fitted with a blunt-ended 16-G needle, add the Differentiation Medium 

to the cells, vortex vigorously, spin down quickly and allow 10-15 min for air bubbles 

to dissipate. It is important to add the cells first.

Plate cells in 35-mm bacterial grade petri dishes: 2 ml / dish. Swirl dish gently to 

ensure that the suspension is evenly distributed on the bottom of the dish without 

touching the lid.
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Place the dishes in a clean plastic box together with a 35-mm dish containing autoclaved 

water and incubate without further feeding for the time required (3-11 days) at 37 °C, 

5 % C02.

Days 1 -1 1

Collect the EB-containing medium from culture dishes into 15 ml Falcon tubes.

Wash dish with 1 ml of PBS and add this to the tube to ensure all EBs are collected.

Mix and let EBs settle for 10 -15 min.

Carefully remove supernatant and proceed to next analysis (for example, quick-freeze 

and store at -  80 °C for subsequent RNA purification.
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Appendix 3 cDNA and protein sequences of zebrafish 

orthologues of selected restricted mouse endoderm genes

When possible, full-length sequence of the zebrafish cDNA was assembled in silico 

through EST alignment, my own sequencing of the insert of ordered ESTs and/or 

5’ RACE sequence. Sequences thus assembled are surely expressed. However, in some 

cases, expressed sequence was complemented by genomic sequence in an attempt to 

assemble the complete cDNA and protein sequences.

The ORF is indicated on each of the cDNAs, as well as the region of the mRNA 

targeted by a MO, used for functional analysis of the corresponding proteins in 

zebrafish embryonic development. Only cDNAs not available in the public databases 

are shown. Incomplete cDNA sequences obtained for zebrafish sp 120 b, plul a and b, 

rho GEF 16 and liv- 1-related are not shown. In the cases where 5’ RACE was used to 

obtain 5* sequence, the region where RACE was initiated is also indicated. Protein 

sequences were obtained by translating the assembled cDNAs. The following code was 

used to highlight the relevant regions on the sequences presented:

1 ORF outline

MO target sequence

5’ RACE primers (shown in sense strand)

|  Identical amino acid residues 

; Similar amino acid residues
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Zebrafish sgk-1 cDNA a M01

GCGGTCGGTCCGGATTCCCGGGATGTTTTGGTCTCGGGCCCAGAGTGGAAAACTACAG CC AT

M02

GACAATCCAAACGGAGACGAGCGTTTCAGCTCCAGACTTGACCTACTCTAAAACAAGAGGA

CTAGTAGCTAATCTGAGTGCTTTTATGAAGCAGAGAAAGATGGGACTGAATGACTTCATCCA

GAAGCTTTCTGCAAACTCCTATGCATGCAAGCATCCTGAGGTTCAGTCCATCCTAAACCTGA

CACCACCACAAGATGTGGAGCTAATGAACAGCAACCCTTCCCCTCCGCCAAGTCCCTCTCAG

CAGATCAACCTCGGCCCTTCCTCAAACCCCACCGCCAAACCATCAGACTTCGACTTTCTGAA

AGTCATCGGAAAGGGTAGCTTCGGCAAGGTTCTCCTGGCACGMCACCGGAGCGATGAGAAG

TTTTATGCTGTGAAGGTGCTTCAGAAGAAAGCCATCTTAAAGAAAAAAGAGGAGAAACACA

TTATGTCAGAGCGCAAYGTGTTACTGAAGAATGTCAAGCATCCATTCCTTGTGGGCCTGCAT

T ACTCTTTCC AGACCACTGATAAACTCT ACTTCGTACTGGACTACATCAATGGAGGAGAGCT

GTTTTATCACTTGCAAAGAGAGCGATGCTTTCTGGAGCCGCGCGCTCGCTTCTATGCAGCAG

AGATTGCCAGTGCTTTGGGTTACCTGCATTCACTGAACATCGTCTATCGAGACCTGAAGCCC

GAGAACATTCTGCTGGATTCTCAAGGGCACATCATCTTGACTGACTTTGGCCTGTGCAAAGA

GAACATCGAGCCCAATGGAACGACGTCAACCTTCTGTGGGACGCCAGAGTATTTGGCACCG

GAGGTGTTACACAAGCAGCCGTATGACCGAACGGTGGACTGGTGGTGTTTGGGCGCAGTGC

TGTATGAAATGTTATATGGCCTGCCTCCGTTCTACAGTCGTAACACAGCAGAGATGTACGAT

AACATTTTGAACAAGCCACTGCAGCTGAAACCGAACATCTCCAACGCTGCCAGACACCTGCT

GGAGGGCCTGCTGCAAAAAGACAGAACCAAAAGGCTGGGCTTCACTGATGACTITACTGAA

ATCAAGAACCACATGTTCTTCTCTCCCATCAACTGGGACGATCTGAATGCCAAGAAGCTTAC

GCCACCATTCAACCCCAATGTGACGGGGCCTAACGACTTGCGACACTTTGACCCTGAGTTCA

CCGATGAGCCAGTGCCGAATTCAATCGGCTGCTCGCCGGACAGCGCTCTGGTCACGTCCAGC

ATCACTGAAGCGACCGAGGCTTTCCTGGGCTTCTCTTACGCCCCTGCTATGGACTCCTACCTG

TAGCCCATTCCCTAGAAACGCCATCCCATGGACTCCTACCTGTAGCTCATTTACCAGGGAAA

TGCTGTCCCATGGAATCTCACCTGTAGTGCATCACTATGAGAAAAGCAAACCCCGTCTCATT

TCCCTGCCTCCAGATCGGGGGCATTTGCACATGGCGTACGGCAGCTCGAAAGGCCTTTATTG

AAAGGCCTGAGTTTTACACGTTAAAGAAGAAGACTCTTCCTCTTCATCCAAATGCACGATTT

CTCCTCCGCTTTCACCCTGGGTTGTGACAGATGGGGAAAAAGAGAGAGAAGATTGATGCTG

ATGGACGTTTATGTACTAGATTTATTTCAAAGCTTACTTGCGTTTCATTTTTTAGACATCATA

GTTTTGGATGGATTGAATGCTTGTTTGTGGGTGCGTGTGTGTGTATGTGCCTTCATTTTAACA

CCCCTGTTCAAATGTTTGTTTAGTCTAAATCATGTGATCTGGCATGTCAGTCCATGTCAGGTA

TAAACAGTCAACGTGACACTAAAACCACTAAAATATATCAGCATCTGATGTmTGTGACCT

CnTAATGCTTTTTTTTYCCTTGTTTATGACTTGAGCAGAAGGTGCTAGAAGGATGTGCTGCT

AATGTGTGTAGAAATGCTCACTTTAGTCTTCCAGCCTCCTTGGATGTACAGTAATCCAGAAA

CGGGCCAGTCrGTCTCAGCAACACATTCCATTGAACAAGACTGTATGGTTATTTAAGTTTGT

ATATTTTGAGGTCTTCrGTGTTAGTnTAATGTATATGGAACAAAAACTTAAAAGGGTATGCT

TATATGTAACTATAAATGTACTGTAAAATTGTAAAATGTTTGAATTATGTGACCTTGTTTGGT

TCGCAATAAAACTTTATGGTTATTTTTCCCCTAAAAAAAAAAA
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Zebrafish sgk-1 cDNA b

CGT GCCGCACCCGACAGCCTGGCAT CTCAGTCCAGTAGTGCGCTTCAACAAGCGGTTTAGAA 

CGGGAGATCAGCGCGCTCTGAAGGAATACACTCCTCCTGTGGATTTAWACTTCTTAAAYAA

GTGqATGGGAGTTACTCAGGCTGGATGTGATTTGACATACTGCAAGATGAGAGGAATCGTGTC

TGTTCTTGCCGCTTTTATTAAAGAAAGGAAGATGGGCTTGAACGACTTCATCCAAAGGCTTG

TCTCCAACCCTCCCATCTGTCAACATGCTGATGTTGGTTCCTTTCTAAAAATTGATGAGAACC

AGAATGAGGAACTGGATGAGAATCTTCTGTGTTTGACCCATCCTAGGAGCTCTTTGGCTGAG

GAGACTCAGATCAAACCCTCAGATTTTGACTACTTAAAGATCATCGGCAAGGGGAGCTTTGG

GAAGGTTCTGdTGCGCGGCACAAGGAAAACGAACTCTACTATGCrGTGAAGGTGCTTCAGA

AGAAAATCATTATGAAAAAGAAAGAGCAAAAGCATATCATGGCAGAAAGGAGTGTACTAAT

GAAAAATATCAAACATCCATTCCTGGTGGGTCTGCACTACTCTTTCCAAACCACAGACAAAC

TGTATTTCGTGCrASACTACGTCAATGGAGGCGAGCTGTTTTACCACCrCCATCGTGAGAGA

GTGTTTTTGGAGCCCAGACCGAGGTTTTATGCTGCTGAAATCTCTAGTGCACTTGGTTACCTT

CACTCTCTGCACATAGTTTACAGAGACTGGAAGCCAGAGAACATCCTCTTGGACTCTCAAGG

CCACATTGTGCTGACACATTTCCGTCTATGCAAAGAGGGACTGCATCCCAACGGCTCAACCA

CTACATTTTGTGGAACTCCTGAGTACCTAGCACCCGAAGTACTCCAGAAACAGGCCTATGAT

CGTACAGTAGACTGGTGGTGTCTGGGATCAGTACTGTTTGAGATGCTGTATGGACTGCCTCC

ATTCTACAGTCGCAACACAGCCGAGATGTACAACAACATTCTACACAAGCCTCTTGTTCTGA

AGCCTAATGTGTCCAATGCTGGCCGTGACCTGCTAGAGGGCTTGCTGCACAAAGACCGTACC

AAGAGACTGGGGTCCAAGGATGATTTTTTGGAATTGAAGTTTCACAGCTTCTTCTCTCCCATC

AACTGGGACGATCTCATGGCCAAAAGGATTGTGCCTCCATTCGTTCCTACAGTGACTGGTCC

TACTGACCTCCGGCACnTGATCCAGAGTTCACCCACCrrCCTGTGTCGACCTCTCTATGCAA

CACCGATAACCTGCACGTGACCAGCAGCGTGCGAGAAGCAGCCGGAGCGTTCCCTGGTTTTT

CCTACGGTCCrCCATCrGATGCCTTCCAGrAATGGCACCTTCCAAGACACCTTCCATTCCAGC

ATCAGTAGAAGCAATGTGACAGAAGTAGGACCACAAGACGGGACACrTAGCTCTTCCAATT

TATnTGATGTACGACCTCACAGCACAAATGGACACTCGTGCATGTCTGAGATGAATGCGGA

ACACTGTAGGAAAGAGACTACAATAAAAACTTCCAGAAAACGTGAATTGTGTGCCAACGGA

TGCAGAGGACCTGAGCTCATCGAAGAAAGAGCTTAGAAGTGCCTRAGAGATTATTTGTGGG

GGAAACAAACAAGCAAATTTCTATAAAACAGACAATGGTTTGCCCGAGTTATGAAGATGGC

ACCAGCTATTGGGCGAAATGCCTTCTGTGATCGTTACATTTGATCAACTTGTCATTGAATGAT

GTnTGTTTAATTGTATTTTTCATGCATCGTTGCACAGTGAAGGTGAAGGATCAAGAAAAGT

ACAAAATATATGGATAGTCATTAAAAAAGGGGGTTGTTATGTCATCAACCCCCATCACAGGA

TACACAGGCTGTCCGACrCAAATATCAATACATTTTTAGAGCATATGTTTAATATCTTCCTCC

TATTGACAAATGTTAATTTAATAACTGCATTATTTATCATTTTAGTGTGGTTT GAATGAA CTC

TTCTWAAARCTTTGTGAACGGTAGTAAGACATTAGGTTTATATTAGAAGACAAACTAGTTTA

GATAACGCAACCAAAAGGATnTATCTGTGACTATTTGTCTGAATCAGTAGAAGACATCCTG

TGTTCCrCCTAAAATGAATGTTTTGTCTTACAAGTACTTTCrTTCCTTTTCmTCTCCAATGC

CAGCACTTTTACAAAATATGCCAGACACTGTGTTTCTTGGAAAGTCATGTTCTTTTTGTCATA

CAGGTAGTGAGATTGATGTATATnTATACATTGTTGTTATCrGAAGCGACTGTTGTACACTG

CAAAAACAGCATGTTGATTAGATTGTACTGAAACCATTTGCATCATGTACAGACGTTATATA

TATAGTAGCCCAGAAGGAACCGTGTCTTTATTTTGTTCAAATTGTGCCTGTTCAGCTAATTTA
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TGTATGTTGTGATACATTTCCACATGTGTCTATCATTCCTGTCTGTATCATTGTGGGTTGGAC

AGGGATATGGAATGCrGTGCAATAGAAATGATGACTTGGGTACGATGTGAACAGTTTGTCAT

CATTGGGACGAATGAGCGGTATCGGCTTAATGAAGGAGAGAGGTTTGGATGCCCTCATGAA

A AGC ATCCCTATTTT A ACTGTAAT AT ATTTC AT ATC ATTGGACCA ATA ATGTGCTATACGTCG

TTCTTTAGATAACTACGAACATGGCAATATGGATAAAGTTTATTTTCTTCCATTTTCGGAAGT

CATTCACATATATGGTTTTATATnTTCCATGTATATTTATTTACATGTCACATATATTACCTC

TAATGATCAGAGTGTTAAATTCATAGAATGATGAAATGTTGGACAATGATCTATATGAATGC

TAATAAATATTTAATAATAAAAAA

Zebrafish 14-3-3t cDNA

TTGTTCGCGCAGGGCCTGCCGGTGAACTCACACTCCTCCTTTACTCCCAATCGCTCACGAAAC

ACGCTCCTGCGCGCTCTCCAAC ATGGGTGACCGGGAGGATTTGGTGTACCAAGCCAAACTCG

CCGAGCAGGCAGAGAGATATGACGAAATGGTCGACTCCATGAAGAAAGTGGCTGGGATGGA

TGTTGAGCTAACGGTGGAGGAGAGAAACCTGCTCTCAGTGGCTTACAAGAACGTTATTGGG

GCGAGA AGAGCATCCTGGAGGAT A ATCAGT AGT ATTGAGC AGA AAGAGGAGAATA AGGGT

GGAGAGGACAAACTGAAAATGATTCGGGAATACAGGCAAACGGTTGAGAATGAGTTGAAAT

CAATCTGCAATGACATCCTTGATGTATTGGACAAGCATTTAATCCCAGCTGCAAATTCAGGA

GAATCCAAGGTCTTCTACTACAAAATGAAGGGCGATTACCACAGGTATCTCGCTGAGTTTGC

CACAGGAAACGACAGGAAGGAGGCTGCAGAAAACAGTTTGGTTGCTTACAAAGCTGCTAGT

GATATTGCAATGACAGACCTTCAGCCCACACACCCTATTCGCTTGGGTCTGGCTCTTAACTTC

TCTGTATTCTATTATGAAATCCTCAACTCTCCGGACCGTGCGTGCAGGTTGGCAAAGGCCjGC

ATTTGACGATGCTATCGCTGAACTGGACACATTGAGTGAAGAAAGCTACAAGGACTCGACG

CTCATCATGCAATTGTTACGTGATAACCTGACACTATGGACTTCAGATATGCAGGGAGATGG
t g a g g a a c a g a a t a a a g a g g c g c t g c a a g a t g t g g a g g a t g a a a a c c a a t g a g a c a a c a c  

CGCCAAT ATGAGACTCCACCCCACCCCCCTCCCCTT
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Zebrafish and mouse 14-3-3e protein alignment

At musculus M  D  
D. rerio M G

D R E D L V Y Q A K L A E Q A E R Y D E M V E S M K K V A G M D V E L T V E
D R E D L V Y Q A K L A E Q A E R Y D E M V D S M K K V A G M D V E L T V E

At musculus 
D. rerio

E  R  N  L  L  S 
E  R  N  L  L  S

V  A  Y  K  N  V
V  A  Y  K  N  V

I G A R R A S W R I  
I G A R R A S W R I

I S S I E Q K E E N K G G E D K L K  
I S S  I E Q K E E N K G G E D K L K

At musculus M I R E Y R Q M V E T E L K L 1 c c D I L D V L D K H L I P A A N T G E S K V F
D. rerio M  I R  E  Y  R  Q T V E N  E L  K S I c N D I L D V  L D K H L I P  A A  N S G E S K V F

At musculus Y  Y  K  M K  G D  Y  H R  Y  L A  E F A T G N D R K E A A  E  N  S L V  A  Y  K  A A  S D  I A  M
D. rerio Y  Y  K  M K  G D  Y  H  R  Y  L A  E F A T G N D R K E A A  E  N  S L V  A  Y  K  A  A S D  I A M

At musculus T E  L P P T  H  P I R L  G L A  L  N F  S V  F Y  Y  E I L  N  S P D R A C  R L A  K A A F D
D. rerio T D  L Q P T  H  P I R L  G L A  L  N F  S V  F Y  Y  E I L  N  S P D R A C R L A K A A F D

At musculus D  A  I A  E L D  T  L  S E E S Y  K  D  S T  L I M Q L L R D N L T L W T S D  M  Q G D  G E
D. rerio D  A  I A  E L  D  T  L  S E E S Y  K  D  S T L I M Q L L R D N L T L W T S D  M  Q G D  G  E

At musculus 
D. rerio

E Q N K E A L Q D V E D E N Q
E Q N K E A L Q D V E D E N Q

Zebrafish gp-70/embigin cDNA

ACTTGCATAACTATCTCCAATTGGTTAACCCTCTTCATGCCCATCCTCAAACGTTCTGTTTTA

ATCAGAATTGCTTTCAGAAGCTCAGCAACACAGCARGAGGAGCTGAAAGCGAACACCAGTC

CTGCTAAGTCACC ATGGCTGCAGTGAGGAGAGGCTGTCCCTGTGGACCTGCTTCACCTCAGT

CCTCCAGTACAACACTGCAGGCAGACATGGCGAAATACATGGCTAAAACTGTCCTGCTGCTG

CTCTTCTGTCAGGGGATCCACGCAGATACTACAACTTCTCCAGAGTCTGATCCTGTAGTTACA

ACTCGGAAAGCTGCACCCAAAGGTCAAGGTCAGGTCATTATTGAAGAGYTTRCAATCCTGAC

ACCCCAATATATTGAGCTCTTATGCAACCTCACCGATATACCAAACAACCCTCCATACATGA

CTGGCTATTGGACTAAAGRTGGAAAAGAAATCGAAAACTCTGAAGAAACTATAAAYAGAAA

CAATGCACAGTATATCCTTAAAAAGACTTTCAGCATACAGGCCAGAGATCTGGGAAATTATT

CGTGTGTCTTCAGAGAAAATGATGCACGAGTGACGTTTGTTTTACAAGTTCCTGTGATGAAG

GATTCAGTTGTACTGGTGTGTAAACT

CAAGGCTA AC AACACY GAAAAGGAGCTCATC
GACAAAO

A ATGTT ACCGCGGACCCTCTRAAGT AC AAGATCCTTCTGAATGGAA ATGA A ACCA AACTGAC

AGTGCTGAATCTGACCGAGGCrCAGTCTGGAAAGTACATCTGCAGTGCTGAGnTGACATTA

AAGCCAGCGAGTCTCAGGTGGAGCTGAAGGTGCTGTCGTACACTGAGCCTCTCAAACCCTTC

GTGGCCATCGTGGCTGAAGTCCTGCTGCTCGTCACGCTCATCTGTttGTGGkAGAAATGCAGC

AAACCCAAACACAGCAGCTCTACTGCAGATGATGTGTACTCTGAACATACCAGCAAACTCAC

TCCATtGATtGAGAaGCAATGGAGTtGGATAACAACACAACAAGACAAAGAAAGCTGGAGCAC

TGAGATCTCTTCTGTTTTC AGGAGCAGC ACTGA ACACATTGCCTTT AT AGTCTGGCTGCA ATC

ACATAATGAGCAArAATGTnTGCTAAACCTGTTCAGCAATATAACATATATTTACTGTATAT

TCAATATTTACATTCTCAATATTAAGTACTGAAAGTATGAGGAATGTTTTCCAAGCCTCCAGT
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ATAGTGTTACTGAGATCAGTTCAAGTCTGACATTTTTCTGTTTCAGTCACATGTTTATTnTAA

TCATTTGAATTCTCATGCATATTTATTnTATTCTAATGGAGAAGCTGTCTAAAATACCCTTG

TAAGTGCTTCnTTATCACrcnTATTAATCTGTGTTAATGTAATCAAGACACTGCAGAGTAT

AATAAAATATATTATTCACATTAAAAAA

Zebrafish and mouse Gp-70 / Embigin protein alignment

M. musculus M  R S H T O  L  R A L V  A P O Y P L  L L L C L L A A T R  P D  P  A  E O D P T D P T F
D. rerio M A A V R  R  O C P C O P A S P Q S S S T T L Q A D  M  A  K Y  M  A K T V L L L L F

Ml musculus 
D. rerio

T S L  P  V  R E E  M M  A  K Y S N L S L K S C N I S V T E K S N V S  V E E N  V I L
C  Q O  I H  A D T T T S P E S D P V V T T R K A A P K G Q O Q V I  I E  E X  X I L

M musculus K P S H V E  L K |  V Y f
D. rerio P Q Y I E  L L |c  N  L T

V T W K K ,  D D E P L E T T Q D F N  
O Y l T K i X O K E  I  E N S  - - E E

Ml musculus 
D. rerio I N  R N  N

T L T S Q Y R F I V  F N  S K Q L  G K Y  S C  V  F G E K E  L R G T F N  I H

A Q Y 1 L K K T F S I Q A  R D L  G N Y  S C V  F R E N D  A R V T F V  L Q

M musculus V  P Q S S W  E K •  I | S  L I A  Y V G  D  S T V  L K C V  C Q D C L P L N  W T W  Y M G N
D. rerio V P V M K D  K R D 1t  P V V  S Y I G D  S V V  L V C K L K H M  P N T W N  W  Y K A N

M musculus E T A Q V  P I D  A  H S
D. rerio N T E K E L | N  V  T A

N  E  K  Y  I I N  O S 
D P L K Y K I L L

H A N E T R  L K I K H  L L E E D O G S Y
N G N E T K  L T V  L N  L T E A  Q S G K Y

Ml musculus w c R  A T F Q L G E S E e | 3  N E L v V  L S F L V P L  K P F L A  I L  A E V  I L L V
D. rerio I C S A E F D I K A S E S I 3  v E L K V  L s Y T E P L  K P F V A  I V  A E V  L L L V

Ml musculus A I I L L
D. rerio T L I C L C S K P K H S S S T A D

E  V  Y - T H K  K K N C . P D A G
D  V  Y S E H T S K L T P L  I E

K  E  F E Q  
K  Q W  S W

M musculus 
D. rerio

I E Q L K s D D S N G I E  N  N  V P R Y R  K T D S A  D Q
I  T T Q Q D K E S W S T E I S S V F R S S T E H I A F  I V W L Q S H N E Q
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Zebrafish Iztr-1 cDNA

CGAGCCTGTTGGCCTCTGGACGTTAGTGTGTCGGCTCCTCCCTAGACGTCTATGGCTTATACA

C AGCAGCTW GAAGA A ATGTTGTGGA ATT GTT ATT A ACGT ACATTTC ATA AT ATT ATTT C AGT

TTTATAATATCAGCGAGTTAAAATTGAAAAATTACGACTGMWATTATGCGATTGGATTATTG

CAAACCGTAGCARATGATAAATACACTTGTTGGTAACGTTAGGTCGTCAGATTTAAAGGTAM

CGCTAAGATTGTAAACACTAATCTTTWAGKCAATATGATTTAGAATCTTGATGATCCCGAAG

CAAATCAAACGTCTAGAAAACATGGAAGTACATTAATATTCGTCGTAAACCTGGCTCTTTAG

TAGGACAAAGCCACCTCGGATGTAAATTGA ATGTCATGGTTTCCTGGAGCCATGTCTTGTAA

GTCTAAAGTGGCTCCCAGTGTGGATTnGACCACAGCTGCTCTGACAGTGTTGAATATCTAA

CACTCAACTTCGGGCCTTTCGAGACTGTCCACCGCTGGAGAAGGCTGCCGCCGTGCGATGAG

TTTGTGGGTGCAAGGCGTAGCAAGCATACCGTTGTGGCATACAGGGATGCCATATATGTCTT

TGGAGGAGACAATGGCAAGAACATGCTTAATGACCTGTTGCGGTTTGACGTGAAGGATTGCT

CATGGTGTCGGGCGTTTACTACTGGCACCCCACCAGCGCCGAGATATCACCACTCTGCWGTT

GTGTATGGAAGCAGCATGTTTGTGTTTGGTGGCTACACTGGAGACATCTATTCAAACTCTAA

CTTAAAAAACAAGAACGACCTTTTTGAGTACAAGTTTGCCACCGGACAGTGGACAGAATGG

AAAGTGGAAGGACGTTTGGTAGCCAGATCAGCTCATGGAGCCACGGT1TACAATGACAAAC

TCTGGATmTGCTGGATATGATGGAAATGCCAGGCTGAATGATATGTGGACCATCGGTCTT

CAGGATCGTGAACAGGCATATTGGGAAGAGATTGAACAAAGTGGTGAAATCCCACCCTCCT

GTTGTAACTTCCCAGTAGCCGTATGCTGGGATAAGATGYTTGTCTTCTCCGGCCAAAGTGGA

GCCAAGATTACCAACAACCTGTTTCAGTTTGAATTCAAAGGCCACATATGGACACGTATCCC

GACAGAGCACCTGCTGCGTGGCTCACCTCCACCCCCTCAAAGACGCTACGGACACACTATGG

TGGCGTTTGACCGTCACCTGTATGTGTTTGGAGGGGCAGCAGACAACACTCTGCCCAATGAA

CTGCACTGCTACGACGTAGACTCGCAGACATGGGAGGTCATCCAGCCCAGCACAGACAGCG

GGAGGAACAGTTGACAATAATGT ACGC AGTGGAGAAATGT ACAGATTCCAGTTTTCTTGTT A

TCCAAAGTGCACCCTTCATGAGGACTATGGCAAACTGTGGGAGAACCGTCAGTTCTGTGATG

TCGAGTTTATCTTGGGGGAGAGGGAGGAGAAGGTCCTGGGTCATATTGCCATAGTAACGGCT

CGCTGTAAGTGGCTCCGTAAGAAGATTCTACAAGCAAGAGATAGACAGAAACAGAAGAGTA

AACTGGAATGTAATGAGGARAGTGATGAGTCTGGTTCAGGCAGTCAGAAGGACTGCTCTGG

AAGGTCCTCAAGGGGTCCTCCTTTATTAGAAGTGTCAATCAGAGAAGCAGACGCTCAACCAT

TTGAGGTTTTGATGCAGTTTCTGTACACAGACAAGATACAGTACCCACGTAGAGGTCATGTC

CAGGATGTGCTGTTGATAATGGACGTTTATAAACTTGCTCTGAGTTTTAAACTGTCCAGACTG

GAGCÂ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^GTGGATCTGCAGAACGTCCTGAGTGTGTG
TGAAAATGCAGACAAACTTCAGCTGGACCAGCTCAAGGAACATTGTCTGAACTTCGTGGTGA

AGGAAAGTCACTTTAACCAGGTGATCATGACTAAAGAGTTTGAACACCTGTCCACTCCGCTC

ATTGTGGAGATCGTGAGACGCAAACAGCAGCCACCTCCCAGAGTCTATTCAGATCAGCCGGT

GGACATAGGCACATCTCTGGTGCAGGACATGAAGGCTTATCTGGAAGGGGCGGGGCATGAG

TTCTGTGACATCATCCTTTTGCTAGATGGTCATCCACGTCCTGCTCATAAGGCCATACTGGCT

GCTCGCTCCAGTTATTTTGAGGCCATGTTTCGCTCCTTCATGCCAGAGGATGGGCAGGTGAA

C ATTTCT ATAGGAGAGATGGTTCCTAGT ACACAGGCCTTTGAGTCC ATGCTGCGYT AC ATTT
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ACTATGGGGACGTCGACATGCCTCCAGAGGACTCACTATACCTCTTTGCTGCACCTTATTACT

ATGGTTTCTCCAACAACAGACTGCAGGCTTACTGCAAGCAAAATCTGGAGATGAACGTTACT

GTAGAGAATGTCTTGCAGATCTTGGAAGCGGCTGATAAAACTCAAGCTCTGGACATGAAGA

AACACTGCCTGCATATTATAGTGCATCAGTTCACCAAGGTTTCCAAGCTCCCCAACCTGCGA

TCGCrCAGCCAACCGCTGCTGTTGGACATCATTGACTCGCTGGCATCCCACATATCAGACAA

ACAGTGCACTGAGATGAGCTCrGATATTfrAGACTCTCCTTCCCTTTCACGTCCCATCCTATCT

TTTATGAGC lTl'ITC ll'AATTTATGCTTCCACTCCATATCCTTCCCTTTTCATCCAGCACCTCC

TCCCAACCTATTTAATCCrGCTYCACACCCGTCTACAATGAGATTGAGTCTACAATGAGATTR

AGTCATCACTAGATnTATTTACCCAATTGTTTGTAAAAAATGCTGCTTGTACATTTTAATGA

AGCTTCGATTTGTTGCATTTGCAGATAGTTTTGCGTACATCAAATCACTTGACGGCCTAAGTA

TAATTAGGCATGTGTCCCAGACtGTAATGAAAAGTGGTGTTTTCAAAGCTTTCATATAAAAAC

CCAAAGAAAACAATTGATGTAGTCGACTCTTCTGTATATATAATCTATTCCACTTTTGTGCTT

AACTAAAAGCATTGCAACAACTAGTACAAATATGATCATCCAACATCTATAAATAACrmT

TTTTACTCTACATACATTAAATAGAATATCAAATATTGATTTYGGCGATTTAAAAATGACCTG

GACGTGACrTTCTGCACTTTACGAATACATCAGTAAATATTTATACCTGAACCGTAGTGACTC

TATGCTGCTGTTGTTATCCrGATTTATGTCAGTGTTTGCCATTATGTAATAATATAGTTATATG

AGCAGATAATCACAGCAACAGTCAATGTTAAGACTCGTGTATGCTTTACTGTAATTGTTGAG

CAGTGTTCTGTTGGCCCTGTGGGCACTATGCCTTAATAAACTGTCCACCATCAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAGGGCGGCCGCrCTAGAGTATCCCTCGAGGGGCCCAA

GCTTACGCGTACCCAGCTTTTCTTGTACGAAGTGGTCCCTATAGGAG
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Zebrafish and mouse Lztr-1 protein alignment

musculus M A G S G l G P  I G S G A L T G G V  
rerio M S V F P | ............................. A M S C

R S K V A P S  V D F D H S C S  D S  V E Y L T L  
K S K V A P S  V D F D H S C S  D S  V E Y L T L

musculus
rerio

N F G P F E T V H R W R R L P P C D E F V G A R R S K H T V V A Y K D A  I Y V F  
N F G P F E T V H R W R R L P P C D E F V G A R R S K H T V V A Y R D A  I Y V F

musculus
rerio

Q  O D N a  K T M L N  D L L  it  F  D V K D C 3  W C R A F T  T G T P  P A P R Y H H S  A 
G G D N G K N M L N D L L R F D V K D C S W C R A F T T G T P P A P R Y H H S A

musculus
rerio

V V Y G S  S M F V F G G Y T G D I Y S N S N L K N K N  
V V Y G S  S M F V F G G Y T G D I  Y S N S N L K N K N

D L F 
D L F

E Y K F  A T G Q W T  
E Y K F  A T G Q W T

musculus
rerio

E W K I E G R L 
E W K V E G R L

V A R S A H G A T V Y S  
V A R S  A H G A T  V Y N

D K L W  1 F 
D K L W I F

A G Y 
A G Y

D G N  A R L N D M W  
D G N A R L N D M W

musculus
rerio

T I G L Q D R E L T  C W E E V A Q S G E  I P P S C C N  
T I G L Q D R E Q A Y V E  B I E Q S G E I P P S C C N

F P V 
F P V

A V C 
A V C

R D K M F V F
W D K MX V F

musculus
rerio

S G Q 9 G A K  I T N N L F  Q F  E F K  D K T W T  R I 
S G Q S G A K  I T N N L F Q F E F K G H  1 W T R  I P T

L R G S P P P P Q R
L R G S P P P P Q R

musculus
rerio

R Y G H T M V A F  D R H L Y V F G G A A D N T  L P N E  
R Y G H T M V A F  D R H L Y V F G G A A D N T  L P N E

L H C Y D V D F  
L H C

D V D  
Y D V D S

Q T W E V  
Q T W E V

musculus
rerio

V Q P S  S D S  E V G G A E M P E R A S  S S E D A S T L T S  E E R S  S F K K S  R D  
I Q P I T  O ! ...............................................   . . . ............................

musculus
rorio

B L P S G R L  F H A A A V I S D A M Y I F
E M P S G R L F H A A A V I H D A M Y  I F

musculus G G T V D N N 1 R S G E M Y R F Q F S C Y P K C T L H E D Y G R L W E G R Q F C  
rerio G G T V D N N V R S G E M Y R F Q F S C Y P K C T L H E D Y G K L W E N R Q F C

D V E F V L G E K E E
D V E F I L G E R E E

C V Q O H V A  1 V T A R S  R W L R R K  I V Q A Q E W L A Q  
K V L G H  I A I V T  A R C K W L R K K  I L Q A R D R Q K Q

musculus
rerio

K L E E  B  G A L  
K S K L E C N E

A P K l E A P G -  - - - P A V G R A  
E S D| E S G S G S  Q K D C S G R S

R - - 
S R G

P P L L 
P P L L

R V A I R E A E 
E V S I R E A D

musculus A R P F E V L M Q F L Y T D K I K Y P R K G H V E D V L L  I M D V Y K L A L S  F 
rerio A Q P F E V L M Q F L Y T D K  I Q Y P R R G H V Q D V L L  I M D V Y K L A L S  F

Q L C R L E Q L C R Q Y  I E A S  V D L Q N V L V V C E s 3| A R L Q L G Q L K E H
K L S  R L E Q L C V Q Y  I E A S  V D L Q N V L S V C E n | I d k l q l d q l k e h

musculus C L N P I V K E S H F N Q V I M 
rerio C L N F V V K E S H F N Q V  I M

K E F E R L S S P L I  V E I V R R K Q Q P P P  
K E F E H L S T P L I V E I V R R K Q Q P P P

musculus R T P 
rerio R V Y

S D Q P V D I G T S  L I Q D M K A Y L E G A G  
S D Q P V D  I G T S  L V Q D M K A Y L E G A G

E F C D I 
E F C D I

L L L D G Q P
L L L D g H P

musculus | P A H K A I L A A R S S Y F E A M F R S F M P E D G Q V N I S  I G E M V P S R  
rerio R P  A H K A  I L A A R S  S Y F  E A M F  R S  F M P  E D G Q V N  I S I G E M V P S T

musculus
rerio

Q A F E S M L R Y  I Y Y G E V N J U P P E D S L Y L F A A P Y Y Y G F  
Q A F E S M L R Y  I Y Y G D V D M P  P E D S  L Y L F A A P Y Y Y G F

N N R L Q 
N N R L Q

musculus A Y C I t  ■ ■  Yj T v  Q N V L Q I  L E A A D K  T Q A L D M K R H C L H  I I V
rerio A Y C K Q N L E M N V T V E N V L Q I  L E A A D K T Q A L D M K K H C L H  I I V

M. musculus H Q F T K V S K L P T L R L L S Q Q  
D. rerio H Q F T K V S K L P N L R S L S Q P

L L L D I  I D S  L A S H  I S D K Q C A E L G  
L L L D I  I D S L A S H  I S D K Q C T E M S

M. musculus A D I 
D. rerio S D I
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Zebrafish claudin b cDNA

CCACCAACCAACCAACAAGGAAAACGAAAAAGCVTGGCATCAACCGGCCTACAGATGCTGG

GCATCGCCCTGGCCATCTTTGGGTGGATCGGAGTCATTGTGCTCTGCGCACTCCCCATGTGG

AAAGTCACAGCCTTCATCGGCGCCAACATTGTCACTTCACAGACATCCTGGGAAGGAATTTG

GATGAGCTGCGTGGTTCAAAGCACCGGACAGATGCAGTGTAAGGTCTACGACTCCATGCTG

GCTCTCTCCTCAGATATTCAAGCCGCTCGAGCTCTCACCGTCATCTCCATCGTGATCGGAGTC

ATGGGAATCATGCTGTCGATGGCTGGTGGAAAATGCACCAACTGCATCGAGGAGGAGAGCT

CCAAAGCCAAGGTTGGGATCACGGCAGGTGTGATTTTCATCATCTCTGGGGTGCTATGTCTG

GTCCCGGTGTGCTGGACGGCTAACGCTATCATCCAGGACTTCTACAACCCGCTAGTGGTCCA

GGCACAGAAGAGGGAGATTGGAGCGTCACTGTACATCGGCTGGGGTGCCTCAGCTCTGTTG

ATCATTGGTGGAAGTCTGCTCTGTTGCCACTGCCCCGAAAAATCAGACAGCGGAAAATACAC

AGCTAAATACAACGCAACCCCTCGCTCTGAAGCCTCTGCACCCTCCGGAAAGAACTTTGTGr

AAATGATCAACTCAGGAAAATGGACTCTACAATGTTTACGGTCTTAGTTTGTTGGACATTGA

TTACCAATATATATGCAAAACAAACAAAGAAAATGGGGAACCACGTTTGAAACAGCCTCTG 

C AGTTA A AGGAGGTTA ACCT GA AA ATT ATTTTTGOTAAGTTT GGTCAAATGTT CTTTT GT AC 

CGTGGTCATTATAAAAGTGTTCACmTGTATGTTTTCAAGTATGATTTTGTAAATATTAGCA 

TTTTTGTACAGCCTA AGT ACAGGTnTTCTACAACTTTGTACAGGTTT ATTTCTTGATAT ATGT 

TTAAAGGAATTAATAAATAAATACATTTTGTTAATATC

Zebrafish Claudin b and Claudin-like, and mouse Claudin-6 protein alignment

M. musculus Claudin-6 K tA  S  
D. rerio Claudin b 
D. rerio Claudin-like

T  G L Q I L G 
M A S  T G L Q M L G  I A L A  

M S  T G L Q L L G T T L G T

I V L T L L G W V N A  
F G W I G V  
L G  W  L G I I

L V S
I V I , ]  I IS

C A L P M W K V T A F  I G N S  I 
C A L P M W K V T A F  I G A N  I 
C A I  P L W R V T A F  I G N N  I

M. musculus Claudin-6 
D. rerio Claudin b 
D. rerio Claudin-like

V V A Q M V W E G L W M S  
V T S  Q T S W E G  I W M S

C V  V  Q S T G Q M Q C K  V Y D  S L L A L P <3 D  L  Q A  A
C V  V Q S T G Q M Q C K  V  Y D  S M  L A  L S 5; D I  Q A A

V T A Q T M W E G L W M S C V  V Q S T G Q M Q C K V Y D  S M  L A L A <3 D  L  Q A  S

M. musculus Claudin-6 
D. rerio Claudin b 
D. rerio Claudin-like

R A L  C V V T L L  I  V L L G L L V Y L A G A K C T T  C V B D  
R A L T V I  S I V I G V M G  I M L S M A G G K C T N C  I E E  
R A I L V I  S A I V G L I  A M F  A S  F A G G K C T N C L  A D

R N S K S R L
E S S K A K V
N S A K A L V

M. musculus Claudin-6 S G I  I F  V  I S G V  L  T L  I P  V  C W T  A H  S I I Q D F Y N P L V A D A Q K R E L
D. rerio Claudin b A G V I F I  I S G V L C L V P V C W T A N A I  I Q D F Y N P L V V Q A Q K R E  I
0. rerio Claudin-like G G V A F I  I A G  I L G L V P P  S W T A N T  I I R D F Y N P L V A E A Q K R E F

M. musculus Claudin-6 
D. rerio Claudin b 
D. rerio Claudin-like

G A S  L Y L G W A A S  
G A S  L Y  I G W G A S  
G A A I F I C W G A A

L L L L G G G L L C C A C S S G G T Q G P R H Y M A C Y  
L L 1 1 G  G S L  L C 
L L V I G G G L L C - - R - G R Y

M. musculus Claudin-6 
D. rerio Claudin b 
D. rerio Claudin-like

S V P H S R G 
T P R S E A  
P A S  Q N  G

S A P S
R E R I - E Y  V

3 2 2



Appendix 3

Zebrafish pancortin cDNAs shown as modules A, B, M, Y, Z

(Isoforms AMY, BMY, AMY, BMZ are present in the mouse but several more

modules and isoforms exist in mouse as well as in fish)

Module A

CTGCGTGACGCTCATCTAACGGGGACGGGAGACGTCGGGAGGCGGAGAGACACACGGGAG

AAACCGCGACGAGGCACCGCGCGCGAGATGCCCAGAGAAGGCTGCGCGAGACCGACTTGTG

TTTCTCTGTCATTCCGTTGCTGAGAGGAGAGAGAAACGAGAGGGAGAGATAGAGAGAGAGA

GATACCGGGGACAGAGGAGAGCGAGGAGTGAGCACCGAGCACCGACGAGCGGCTCTGACC

GAGGCACCGGACCGAATCTGCATGCCCGAGCGAGCGGCGGCGCGAG ATGCAGCGCGTGCAC 

AAGCTCTTGAGTCTCATCGTGCTGGTGCTGATGGGCACGGAACTCACGCAA

Module B from genomic sequence

ACACCAGACGGGACCAGCGCGCGAGCAGACTGCTCGGTTTTCATTACTTCAAACACACCGG

ACTCCGTTGAACCTCAAGATGAGCACCCTGAGACCGTTCGAACCGGGACCTTTAGTGGAGAT

GATGCGGATGATGGAGATGCACGAGGCGCGCACGGGCAGCGATGCTTGCCGTTACGGTTCC

CCGATGGCTTTTGTAGAATGAGAGTTTGGGTAAGCGCGCAGAC ATGTC GGTGCCTTT GCT G A

AGATCGGTGTGGTGCTCAGCACCATGGCCATGATCACCAACTGGATGTCCCAGACTCTGCCA

TCACTAGTGGGACTCAACACCACCAAACTGACCGCGGCGCAGGGCGGCTATCCGGACCGGA

GTATAGGA

Module B from ESTs

TGGACTCTGTGTGTGTGAACTCCTCCATCTCTCTGTCAGGGTGTGTGTGTGTTTGGACTATCC

TCCTCCATCTCTCCGTCAGATCAGCGTGTGTGTGTGTGTGTGTGTGTGGTC ATGAGTGCTGCT

CTGCTGAAGCrCGGGGCGGTGTTGAGCACTATGGTCCTCATCAGTAACTGGATGTCCCAGAA

TCTGCCGGCGCTGGTGGGACTGGACCAACACACCGCTGCACCCGGCACCTCCGAGAAGATC

ATCAGC
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Module M

GTTTTACCCGCTAACCCAGAGGAGTCCTGGCAAGTGTACAGCTCGGCTCAGGACAGCGAGG

GCAGATGTGTGTGTACAGTCGTGGCACCTCAGCAGACCATGTGCTCGAGAGATGCCCGCACC

AAACAACTGCGCCAACTACTGGAGAAGGTGCAAAACATGACGCAATCAATCCAAGTATTGG

ACCAGCGGACCCAGAGGGACCTGCAGTACGTGGTAAAGATGGAGGATCAACTCCGTGGCCT

GGAGACCAAATTCAGACAGGTGGAAGAGAACCACAAACAAAACATCGCCAAGCAATACAA

G

Module Y

GGcjrAACTATAAAGACATGATAGGAGAGCCAGAGGCCAGAAGAAGCAGGTCTAACCCACG

ATTGGCrGAAGTGGGCGTCAGTCACGCTGTTTATGTCACGATTCTCATATTCTATACGACATT

AGCTGTAAGAAACACCCTCCCCCCCCnTCCTTACCAACCACCAATCAGATCrCCTCCTGCAT

GCTACTCTAAAGAATTATTATTGTTACGTTTTATTTATATGAACTACATTATTAAGTTCCATT

GATATATATTGCTATTATTATTATTAGTAGTATTTCTACCATTATTATTCTCATCTTTGCTAGT

ATTGCTTAAGTTTTTTTTTATGATTTGTCACTATGAATCTCATGTTTTTGAAGTAATATGCGTT

TACTTTGGAAGTCAAGAATTCAATCTTAACATCACATTGTTGTATGTGAGTTGTAATTTCAGC

ATGTGTCCCTTTCTGCTGTTGCATTCTAAACGATAAACTAATAAAGTCTTTTCCCCA ATTGTT

AAAAAAAAAAAAAAAAA

Module Z

GGCATAAAGGCAAAAATGGCAGAGCTGCGTCCGCTAATCCCCGTCCTGGAGGAGTACAAAG

CTGACGCTCGACTGGTCCAGCAGTTTAAGGAGGAGGTGCAGAATCTGACTGCGAGTCTCGGC

CTCCTCGAGCAGGAGATGGGAGCTTATGACTATGATGACCTGCACrCCCGCGTGGTCAGTCT

GGAGGAGCGGCTGCGAGCATGCATGCAGAAACrCGCATGTGGTAAACTGACCGGCATTAGT

GATGCAATCACTATTAAAACATCCGGGTCCCGCTTCGGATCCTGGATGACGGATCCrCrCGC

TCCTGAAGGAGACACTAGGGTGTGGTACATGGACGGTTATCATAACAACCGATTTGTGCGGG

AGTACAAATCCATGGCGGACTTCATGACGTCGGACAACTTCACGTCCCACCGGCTCCCGCAC

CCCTGGTCTGGAACGGGTCAGGTGGTCTACAACGGCTCCATCrACTTCAACAAGTTCCAGAG

CAACATGATGATCAAGTTCGACrTCAAAACCTCCACCATGAGTAAATCCCAGCGACTGGACA

ACGCCGGCrTCAGCAACACCTACCACTACGCTTGGGGCGGACACTCCGACATCGACCTCATG

GTCGACGAGGGCGGGCTGTGGGCCGTCTATGCCACCAATCAGAACGCGGGAAACATCGTCA

TCAGCAAGCTCCACCCAATCACCCTGCACATCATCCAGTCCTGGACCACCAATCATCCGAGG

CGCAGTGCTGGGGAGTCCTTTATGATTTGCGGGACGCTGTACGTGACCAACGGCTACTCGGG

AGGGACAAAAGTCTACTACGCCTACCACACCAACTCCTCCACATATGAGTACATCGATATCG

TTCTGCAAAACAAGTACTCGCATATCTCCATGTTGGACTATAACCCGCGGGATCGAGCACTG

TATGCTTGGAATAACGGACATCAGGTCCTGTACAACGTTACGCI111YCATGTCATCCGCTCG

GAGCAGCTG TAAACGCTGAGGATTTCATTTGGAGCTTCAAAAAAATAAATAAAAATGGAAC 

AAGACCATCCrTTGGAATGTCrTTCAACAGATTGTTACACAAAAAAAAAAAAAAAA
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Zebrafish and mouse Pancortin protein alignments shown as modules A, B, M, Y, Z

Module A

M musculus U Q P  A R K L L S L L V L L V M G T E L T  Q  
D. rerio M Q R V H K L L S  L  I V L V L M G T E L T  Q

Module B from genomic sequence

M. musculus M  S V  P L L  K  I G V  V L S T M  A M  I T N  W  M  S Q T L  P  S L V  G L  N  T T R L S A A
D. rerio M  S V  P L L  K  I G V  V  L S T  M  A M  I T N  W  M  S Q T L  P  S L V  G L  N  T T K L T A A

M. musculus S G G T L D  R  S T G
D. rerio Q G G Y P D  R  S I G

Module B from ESTs

M. musculus M  S V  P L  L  K  I G V  - V L  S T M  A M  I T N  W  M  S Q T L  P S L  V G L N T T R L S  A A

D. rerio M  S A A L  L  K  L G A V  L  S T  M  V L  I S N  W  M  S Q N  L  P A  L  V  G L  D  Q H  - - - T A

M. musculus S G G T L D  R
D. rerio A P G T S E K

S T  G  
I I S

Module M

M. musculus 
D. rerio

M. musculus 
D. rerio

V L P T N P  E E S W Q V Y S  S 
V L P A N P E E S W Q V Y S  S

A Q D S E G R C I C T V V A P Q Q T M C S  
A Q D S  E G R C V C T V V A P Q Q T M C S

R  D  A  R  
R  D  A  R

T K Q L R Q L L E K V Q N M S  Q S  
T K Q L R Q L L E K V Q N M T  Q S

I E V L D R R T  Q R D L Q Y V  
I Q V L D Q R T  Q R D L Q Y V

E
V

K  M  E  
K  M  E

N  | Q M  K  
D Q L R

M. musculus 
D. rerio

G  L  E T K F  
G  L  E T  K F

K Q V  E  E  
R  Q V  E E

S
N

H K Q H L A R Q F K  
H K Q N I A K Q Y K

Module Y

M. musculus 
D. rerio
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Module Z

M. musculus A I K A K I
1 °

E  L R  P L I P V  L E E Y  K A  D A K L V
D. rerio G I K A  K  N| A E  L R P L I P V  L E E Y  K A  D A R L V

Q F K E E V Q N L T S  V  
Q F K E E V Q N L T  A S

M. musculus N E L  Q  E E
D. rerio G L L  Q Q E

I O  
M G

R  V  S N  
R  V  V S

L E E R L R A C M Q K L A C G K L T G
L E E R L R A C M Q K L A C G K L T G

M. musculus I S D P V T V  K T S G  S R F G S W  M  T D  P L A P E  G D  N R V  W  Y  M  D  G Y  H N  N R
D. rerio I S D A  I T I K T S G  S R F G S W  M  T D  P L A P E  G D  T R V  W  Y  M  D  G Y  H N  N R

M. musculus F V  R  E Y  K  S I
! v

D  F M N  T D  N F T S H R  L P H P  W  S G T G Q V V Y N G S I Y F
D. rerio F V  R  E Y  K  S I* A D  F M T  S D  N F T S H R  L P H P  W  S G T G Q V V Y N G S I Y F

M musculus N K F Q S H I  I I R F D L K  T E A  I L K  T R S L  D Y A  G  Y N N M Y H Y A W G G H
D. rerio N K F Q S N M I  I K F D F K  T S T M S K  S Q R L  D N A  G F S N T Y H Y A W G G H

M. musculus 
D. rerio

S D  I D L M V D E N G L W A V Y A T N Q N A G N  I V I  S K L  
S D I  D L M V D E G G L W A V Y A T N Q N A G N  I V I  S K L

D P V S L Q I L Q T  
H P  I T L  H I I Q S

M. musculus 
D. rerio

W  N T S Y P K  R  S A  G E A F  I I C  G T L Y V  T N  G Y S G G T K V H Y  A  Y  Q T N  A
W  T T N  H P R  R  S A G E S F  M  I C  G T L Y V  T N  G Y S G  G T K V Y Y  A  Y  H T  N  S

M. musculus S T Y  E  Y  I D  I P  F Q N K Y S H  I S M L D Y N P K D R A L Y A W N N G H Q T L  Y
D. rerio S T  Y  E  Y  I D  I V  L Q N K Y S H  I S M L D Y N P  R D R A L Y  A W N N G H Q V L  Y

M. musculus 
D. rerio

N  V  T  L  F  H  V  
N  V  T  L  F  H V

R  S D  E L  
R  S E Q L

Zebrafish calcyphosine cDNA

From genomic sequence (putative first exon):

TAGAGGATCCCAAAACAACTTGTCAGAAAATCTGTATGAAAGTCACTGACAAGCATACCAA

ACTACACTCAAGTGAAGCAATACATrGTTTCTAATTGATACAACCAAGAACATGAAAGCAGT

AGCTTTATATrrCTCTATCATTTAAAAATGGTATTGTCATTTAAAGAGCTTCATGTGATTGTA

GTTCnTCCCTCATAAAGTAGAGTTTGTCATGACTCTCrTCTTAGCGmTGACCAGTAGACA

GCAGATGTGTATATACATTTGAATAAAACCCATGCATATGTTATCTTGTCAGCTTTAGATCAG

ATAGGTGGAGG ATGGCAGGTACATCGCGACATAATCGAGAAATGATGATCAATGCCAAAAA 

GCAGCTGGCTGAGTGTTCAGACCCCATTGAGCGTCTGCGGCTGCAGTGTTTGTCCCGAGGGT 

GTGCGGGCATCAAGGGACTGGGCAGGT
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From ESTs (ORF beginning missing):

GCAGACGCTTTGCAGGATCTCCGACAGCAGTGCCTCAGCCGAGGAGCCGCGGGAATCAAGG

GTCTTGGAAGGATGTTTCGCAGTATGGACGACGACGGCAGTAAATCTCTCGACTTCCAGGAG

TTTGTCAGAGGTCTGCAGGATTATGGCGTGTCTGTGGGGAGAGATCAAGCGCAGCAGATCTT

CGCCATGATGGACAAAGATGGAAGTGGCAGCATCAACTTCGACGAGTTTCTGGAGAAATTA

AGACCACCCATGTCGAGCACACGGATGCAGGTCATCAGACAGGCTTTCCAGAAGTTTGATA

AGAGCGGAGACGGCGTCGTGACCGTGGAGGATCTGCAGGGTGTTTACAACAGCAAACATCA

CCCCAAATACAAGAGCGGCGAGTGGACAGAAACACAAGTCTTCCACTCTTTCCTCGACAGCT

TTGACTCTCCGCATGACAAAGATGGAAAGGTGACCCTGGAGGAGTTTGTGAATTACTACAGC

GGCGTCAGCGCTTCTGTCGACAGTGACGAGTACTTCATCTCCATGATGAAGAGCGCATGGAA

GCTC TAGGCmTCATTTGTCATTAGAAATCAGATTGGAACCTGCAATATTTACATGTAGAA 

ATCATGTCTCATTAAAGGTCTTTGATTTAAAAAAAAAAAAAAAAAGGGCGGCCGCTCTAGA 

GGATCCAAGCTTACGTACGCGTGCATGCGACGTCATAGCTCTTGG

Zebrafish and mouse Calcyphosine protein alignment

M A G T  A R H D R E M A  I Q S K K K L S  T A T D P  I E R L R L Q C L A R G S  A G
A D A L Q D L R Q Q  C L  l i d  A  A O  

C S D P  I E R L R L Q C L S  R G C A G

M. musculus
D. rerio (from ESTs) ___________________ ________  _____________________
D. rerio (from genomic) M A G T  S R H N R E M M I N A K K Q L A E

M. musculus 
D. rerio (from ESTs)
D. rerio (from genomic)

I K G L G R V F R  
I K G L G R M F R  
I K G L G R

I M D D N N N
s M D D D G S

R T L D F K E F L K G L N D Y A | f V M E K E E A
K S L D F Q E F V R G L Q D Y G | f  S V G R D Q A

M. musculus E E L I| Q R F D R D G S G T I D  II n E F L L T
D. rerio (from ESTs) Q Q I Ii  A  M  M D K D G S G S I N  II d E F L E K

L R P P M S 
L R P P M S

R A R K E V I M K A F
S T R M Q V I R Q A F

M. musculus 
D. rerio (from ESTs)

D K T G D G V I T I E D L  
D K S G D G V V T V E

D L R 
D  L Q

Q N G E W T E E Q V F R
K S G E W T E T Q V F H

M. musculus K F L D N F D  S P Y D K D G L V T P E E F M N Y Y A G V S A S I D  T D V Y F I
D. rerio (from ESTs) S F L D S F D  S P H D K D G K V T L E E F V N Y Y S G V S A S V D  S D E Y F I

M. musculus M i < T  T A W K  L
D. rerio (from ESTs) MN I K  S A W K L
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Zebrafish s/?120 a / hnrpu a cDNA

TGAATTGTTTTGCCGGTGGACAGACGCAGAATCACCGCGGCTGTGTGCAACTCACAGAAGCG 

AAGCGGCCGTCGGCTCCCCTGCATTGCTATATTCAAACAACCGAGTCTCTCTGnTTTATTAG 

ACCA1 C l ACGCTAAATCGACAAOATGAGTGAAATCA ACGTGA A AA AGCTTAAGGTGAACGA

1TCATG

GAGCGTCTGCAGGCCGCGCTCGACGCAGAGGCCCAGGCCCAAGAGGAAGAAACGACCGCG

CCAGGGACTACAGAAGGAAACGATGCCGATGGAAACGGCGTTGCAGCCGAACAAGAAGGT

ACGGGTGAAGAAGAGCCGGAGGGGGAAAACATGGAGGCCGAGGAGCAGAATGGGGAAGG

AGATGAAGCCGCCAGTCAGGACGACGAAATGGGAGAGGAGGAGGAGGAGGAGGACGACGA

CGCCGGGGAGGAAATAGACAAAGCCTTAGACGATGAAGATGATGAAGAAGACGATATCATT

GACAAAATCGACGTTGAAGACGGGGATGCGGACAAAGACAGCAGTGCTGATCAGAAGAAT

AAGAAGGGTGTTAAGAGACGCCGAGAGGATCATGGAAGGGGCTACTTTGAATTTATTGAAG

AAAGCAAATACAGCCGGACCAAGTCTCCTCAGCCGCCTTTGGAGGAAGTGGATGAAGAGTT

TGATGACACCCTGGTCTGCTTGGATCCATACAATTGTGACCTTCACTTCAAAGTGTCCCGGA

ACCGTTACAGTGCCTCCTCTCTTACCATGGAGAGTTTTGCTCACCTTTGGGCAGGTGGCCGTG

CATCTTATGGTGTAAACAAGGGCAAAGTCTGCTTTGAAATGAAGGTCACTGAGAAAACCCC

AATCAAGCATTTAAACAGCAAAATCATGGACTTCCATGATGTCCATATTGGCTGGTCTCTGG

CTAATGGGTGTCTGTCACTAGGTGAGGAGGAGTTTTCTTACTCCTATTCTGACAAAGGGAAG

AAGGCrTCAAACTGTGTGACTGAAGACTACGGGGAGGGCTTTGATGAAAATGATGTCATCG

GCTGCTTCATTAATTTCGAGGCTGATGAAGTGGAGATTTCCTTTTCTAAAAATGGCAATGAC

CTTGGTGTGGCTTTCAAGGTCAATAAGGAGTCGTTGGCTGACAGAGCCCTGTTCCCCCATGT

TCTTTGTCACAACTGTACTGTTGAGTTCAATTTTGGTCAGAACGAGACTCCGTTCrTCCCTAA

GTTGGAGGACTTCACCTTCATGCAGCAGATTCCTCTGGAAGAGCGTATCAGAGGACCCAAAG

GACCTGTGGCCAAGAAAGACTGCGAGGTGATTGTCATGGTCGGCCTTCCTGGATCTGGAAAA

ACTACCTGGGTAGTTAAACATGTTGAAGAAAACCCTGGGAAGTACAACATCCTCAGCACCA

ACACHGTCTTGGAGAAATTGATGATTAACAGCGTAAAGAGGCAAAATAAAGACATAACAAA

ACTCATGGCCATTTCCCAGCGTGTTCCmTTACCTGGGCAAGTTGATTGAAAlTGCTGCCCG

CAAAAAAAGACACTATATTTTGGACCAGACGAACGTCTCTTCAGCAGCCCAAAGAAGGAAG

ATGTGTCTGTTTGCTGGTTTCCAGCGCAAAGCCGTGGTGGTCTTTCCCACAGATGAGAACTTA

AAGGAGAGAGCGCAGAAGAAGGCAGAAGCGGATGGTAAAGATATACCCGAGCACGCCCTA

CTCAAAATGAAAGCTCTCTACACGCTTCCAGAACAAGGGGACTGCTTTTCAGAGGTCACCTA

TGTTGAGCTGCAGAAGGACGAGGCCTCCAAGCTTTTGGAGAAGTACAAGGAAGAGAGTAAG

AATGCTTTGCCTCCAGAGAAGAAGCCCAACCAGGGACCCCCAACTCCCAAACGGGGATCCC

GCCGAGGMAGAGGGCAAAAGAACCAGTTCAACAGGAGTGGTGGTGGTGGTGGTGGTGGTG

GTCAAGGCAACCGTGGAGGCAGGGGTGGATTCCAGCCCCGAGGAAACTACAGAGCGTTGCT

TGCACCACCTCGTGTGAGCGGATTTGATCGTCGCCCGCGGGGTTACATTCTGCCACCTCCAC

CACCACCACCAGTCTACCGAGGTTATCCTAGCAGAGACGGTTACAACAGAGGAGGGTCTGG
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TGGAATGCAGAGTAGAGGAATGTCTCCACGCGGTGGACAAATGAGGGGCAACATGGCCAGC

AGAGGTGGTGGAATGAGCCGTGGAGGACATGCCAACAGAGGAGGAAACATGCACCGCGGA

GGTGGACAAGGTGGTCCCAACCACAGAGGACACTACCAGCAGAAATTCCACGGCAGAGGAG

GCCACCAGCAGAATCGTGGAGGATATGGCAACAAGAACGGCTCTTTTGCCCAAGCCTTCAA

CCAGAGCTGGCAACAAGGGTTCTGGAACCAGAAGCCATGGAATCAACAGTACCATCCAGGA

TATTA1TGAATGCACATTTGTATTAAAGACTCGTGGCCTGTGGTGTGCAGCCACTGAAAAAA

AAAAAAAAAAACCATCCACTnTATGGTCCTTGTTTAAAATAATTmTTAAAAAGATAGTC

CATTTTTAAATAWGAGAAGCAAGTGGCAAACAAACATTCCGCCTCTGAAGTAAACAGTCTA

CGTTCAACGGATGTGTGATGGCrTCACGCrCAGATTTnTCGTAGAAAGGTTTTCCTTCCCCr

TTTATnTCTATCACAGCTTTGATTGATATTGTTCTATCACTGCATTTCTCTTGTGCGAGTGAT

GCnTRAATTTCAGGGTTGTGCATTTTTATTCTGTAAAATGTCAri'rrrrriACACAATGTAAA

TTATTATTTTATTATTTGTCAAGATTTTnTGTGCAAGACTTGTGTTCTAGTGTGAAAGAATCC

ATATATAGTCmTTGAGGCmTGTCATTAATCATTAATGCAGCAACTTCATGTTTAGTGCA

GGAGTGAAAATATTGTTCTCGATTTTTACnTTTACTGTTTGTTTAAGCCCAGACTGTAACGG

TTACTTCATAGGTTTGCAATAAATGACGTGCTTGCmTCTAAAAAAAAAAA
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Zebrafish Spl20 a and mouse Spl20 / Hnrpu protein alignment
S P V N V K K L K  

1 E I N V K K L K
M. musculus 
D. rerio (a)

MSS 1  I* K E E L K K R R  L S D K G  L K A D L M D R L Q A 
E L K D E L K K R Q L S  D K G  L K  A E L  M E  R L Q A

U. musculus 
D. rerio (a)

A L D N E A G G R P A  M E  P G N G S  L D L  
A L  D A E  A Q A Q -  E  E | | j T  T A P  G T  T E

G G D A A G R S | J A G L E Q E A A A G
G N D A D G N | 1  V A A E Q E G T G  ■

M. musculus 
D. rerio (a)

T  E D D E E E 
E E E

E  G  I S A L 
P ........................

D G D Q M E 
E G E N M E

L G B E  N G A A G A A D A G A M E E E  
A E B Q N  G E G D E A A S  Q D D

E  A 
E  M

M. musculus 
D. rerio (a)

A S  E D E  N G 
G E E E E  E E

D D 
D D

Q G F Q E C . E D E L G D E E
D A G E B I D K A  L D D E D

E G A G D E 
D E

N G H G E Q Q S Q P H

M. musculus 
D. rerio (a)

S A Q Q Q P  S Q Q R G A G K E A A G K S  S A P T  S L F  A V T  V A P  P G A R Q G  Q 
E | D D ........................................  l | l  D K  I D V E D  G D

M. musculus 
D. rerio (a)

I A G G D G K T E Q K G G D K K R G V K R P R E D H G R G Y F E Y  I E E N K Y
A D K D S  S A D Q K N  - K K G Y K R R R E D H G R G Y F  E F  I E E S K Y

M. musculus 
D. rerio (a)

S R A K S  P Q P  P V E B E D B H  F O O T  V V C  L D T 
S R T K S  P Q P P L E E V D E E F D D T L V C L D P

Y N C D  L H F K 1 S R  D A L  
Y N C D L H F K V S  R N R Y

M. musculus S A S S L T M E S F A F L W A G G R A S Y G V S K G K V C F E  M K V T E K 1 P V
D. rerio (a) S A S S L T M E S F A H L W A G G R A S Y G V N K G K V C F E M K V T E  K T P I

U. musculus R H L Y T K D I D I H E V R 1 G W S L T T S G M L L G E E E F S  Y G Y S L K G
D. rerio (a) 1C H L N S K I M D F H D V H I G W S L A N G C L S L G E E E F S  Y S Y S D K G

M. musculus K T C N t i E T E D Y G E K F D E N D V 1 T C F A N F E T D E V E L S Y A K N G Q
D. rerio (a) K A S N C| v T E D Y G E G F D E N D V I G C F I N F E A D E V E I S F S K N G N

M. musculus 
D. rerio (a)

D L G V A F K 1  S K E V L A D R  
D L G V A F K V N K E S L A D R

K E K P YL F P H V L C H N C A V E F N F G Q  
A L F P H V L C H N C T V E F N F G Q N E T P F

M. musculus F P I P E D C
D. rerio (a) F P K L E D F

T F  1 Q N V P L E D R V R G P K G P  
T F M Q Q I  P L E E R  I R G P K G P

E E 
V A

K K D C E V V M M I  G L P  
K K D C E V I  V M V G L P

M. musculus G A G K T T W V T K H A A E N P G K Y N I L G T N T I M D K M M V
D. rerio (a) G S G K T T W V V K H V E E N P G K Y H  I L S T N T V L E K L M 1

A G F K K Q M  
N S V| K R Q N

M. musculus 
D. rerio (a)

A D T G 
K D I T

K L 
K L

N T L L Q R A P Q C L G K  
M A I S Q R V P F Y L G K

I E I A A R K K R N F  I L D Q T N V S  A 
1 E I A A R K K R H Y  I L D Q T N V S  S

M. musculus 
0. rerio (a)

A A Q R R K M C L F A G F Q R K A V V V C P K D E D Y
a a q r r k m c l f a g f q r k a v v v f | t d e n l

K Q R T Q K K A E
K E R A Q K K A E

V E G K
A D G K

M. musculus 
D. rerio (a)

: G N F T L P E V A E C F D E I T Y V E L Q K E E A Q K L L
I A L Y T L P E Q G D C F S  E V T Y V E L Q K D E A S K L L

U. musculus 
D. rerio (a)

B Q 1 J K E E S K K A L P P E K K Q N T G S - -  K K S N K N K S G K N Q F N R
E K Y K E E S K N A L P P E K K P N Q G P P T P K R G S  R R G R G Q K N Q F N R

M. musculus - G G G ................................................ H R G - R G G F N M R G G N F R G G A P G N R G G Y N R R
D. rerio (a) S G G G G G O G G Q G N R G G R G G F Q P  R G N Y R A L L A P P R V S G F D R R

M. musculus G N - - - - - - - ....................... M ’B Q R G C | g  - - G G S G G  I G  - • Y P Y P R
D. rerio (a) P R G  Y 1 L P P P P P P P V Y R G Y P S R D l | Y  N R G G S G G M Q S R G M S P R

M. musculus 
D. rerio (a)

I p  v f  p  o ....................................................
G G Q M R G N M A S  R G G G M S

R G G 
R G G

Y S N R G  N Y N R G G  
H A N R G G N M H R G G

M. musculus 
D. rerio (a)

N Y N (I n  f  r  g  r  g ■ N N R G t  K N Q S - Q G Y N Q  W Q Q G j Q F W
H IP QflI K  F H G R G 16x

\
o

G | | g N K N G S F A Q A F N Q S W Q Q G F W

M. musculus 
D. rerio (a)

G Q K P W S  Q H Y H Q  
N Q K P W N Q Q Y H P

G Y Y 
G Y Y
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Appendix 3

Zebrafish transformer-2 p cDNA

CATTTACAGACGTCTGGTTTGTGTGTGCGTTTGAGCACTAATTGTGTGTTGTCCTAATCATTT

CTCTTGCATTGTAATTATTGCAGCATATTACAAACTAAACAAAAATGAGTGACGCCGAGAAG

GAATTCGTGGAGCGGGAGTCTCGTTCAGCCTCTAGGAGCGCAAGTCCTAGAGGATCTGCCAA

GTCCGGCAGTCGCTCAGCYGAACGCTCGCCTGCTCATTCCAAAGAGAGGTCCCATCATTCCC

GCTCAAARTCCCGCTCGCGCTCCCGTTCCAAGACCAGGTCTCGTTCCCATCGAAGTTCTCGA

AGACATTACAGTCGATCACGTTCACGCTCTTATTCTCGCCGAAGACGTTCRCGCAGCCGCTC

ATACAGCAGTGAATATCACCGCCGCCGCAGCAGTCACAGTCACTCTCCCATGTCCAACCGCA

GACGACATATTGGTGACCGGGCAAATCCAGACCCAAACTGCTGCCTGGGAGTGTTCGGATTG

AGCCTGTACACCACAGAGAGAGACCTGAGGGAGGTCTTCTCTAAATATGGCCCTCTGAGTGA

TGTGTGCATTGTGTACGACCAGCAGTCACGGCGCTCCAGGGGTTTTGCTTTTGTCTACTTTGA

GAACAGAGAAGATTCAAAAGAGGCWAAAGAGCGTGCAAATGGTATGGAGCTTGATGGCCG

AAGAATCAGRGTAGACTaCrCCATTACCAAGAGGCCACACaCACCTACTCCTGGAATATATAT

GGGCAGACCAACATATGGTGGTGGGCCAAGTGTAAGCCGTCGGCGGGATAGCTATGATCGA

GGGTATGAACGTGGATATGATCGCTATGAAGACAGAGACTACTACAACAACAGGAGAAGAT

CCCCGTCTCCTTACTACAGCCGAGGACCGTACAGGTCAAGATCACGCTCTCGCTCTTACTCTC

CTCGTCATTAlTGAAGTGAAGTTCAGCTCCTCrCTTGAAGATGACTACAATATTGTTGATGAC

GTAGATGTTTATTTCTGGTGGCATGAGTCTCGATGTACTnTCCTTCGATTTTCTTGCCTAAAG
GTTTCATGTGTCTTTGACTGATCTGGATGTTTCATTAGTGGGATGAATATTTTTGCACTGTTGT

TGAGTITITGTTCATTTTTTTTTTTTTTCGTTCCCGATCTGATGCTAAACTTGCGTTTGTTTTAT

AATATGATGAAGTGTTCGGCTCACATCCCCGTATGCTTTTTCGCATTTAAGCTTAGCAGTGGT

CTTGCAATAAACTGCTTTAtACCTCC
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Appendix 3

Zebrafish and mouse Transformer-2 p protein alignment

M musculus M  S D S G E  Q N Y G E  R  E  S R  S A S R  S
D. rerio M  S D - A E  K E F V E  R  E  S R  S A S R  S

G S A H  G S G K S - - A R H T P A  R
A s P R  G S A K S G S R  S A E R S P A  H

M musculus S R S K E D  S R R S R S K S R S R  S E S R S R S R R S s R  R  H Y T R S R  S R S
D. rerio S K E R S H  H S R S K s R s R s R  S K T R S R S H R S s R R H Y S R S R S R s

M musculus S H R R - S R S R S Y S R D Y R R R H S - H S H S P M  S T R R R H V G N R A N P
D. rerio S R R R R S R S R  S Y S S E Y H R R R s s H s H S P M  S N R R R H I G D R A N P

M musculus D  P  N C  C  L  G V F  G L  S L  Y  T  T E R  D  L  R  E V  F S K Y  G  P  I A  D  V S I V Y  D  Q  Q
D. rerio D  P  N C  C  L  G V F  G L  S L  Y  T  T E R  D  L  R  E V  F S K Y G P L S D V C  I V Y  D  Q  Q

M musculus S R  R  S R  G  F A  F V Y  F E  N V D  D  A  K E A  K  E R  A  N  G  M  E L D  G R  R  I R V  D  F S
D. rerio S R  R  S R  G  F A  F V  Y  F E  N R E  D  S K E A  K  E R  A  N  G  M  E L D  G R  R  I R V  D  Y s

M musculus I T K R P H T P T P G I Y M G R P T Y G S - - - - S R R R D Y Y D  R G  Y D R G Y
D. rerio I T K R P H T P T P G I Y M G R P T Y G G G P S V S R R R D S Y D R G  Y E R G Y

M m usculus
D. rerio

D D  R  D Y Y  S R  S Y R G G
D R  - - Y E  D  R  D Y Y N  N

G G G G G G W R A A Q D R D Q I Y R R R S P S P Y Y  S
R R R S P S P Y  Y  S

M musculus R  G G Y  R S R S R S R  S Y S p R  R  Y
D. rerio R  G P Y  R S R S R s R  S Y s p R  H  Y
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Appendix 3

Zebrafish “novel p7822b53” cDNA

GGACACTGACATGGACTGAAGGAGTAGAAAGTAATGACAGGCCTCTAACACACAGGAGCAG

CAGAGCCACGTAAACGTGCGATGACGTCACTGCGAAGAAATGTGCTGTTTACTTCCTGGGCT

TCACTTCACTTTCACAAGCAGTCTTCTGCrGATCCAGTGAGCCATTCATCTGCYATTGTGGTG

A A GC AGCTTTAG ATTGA AGGT GT QAT GGATT CT GGT GA GGATGGA GGTT GT GTTGGAGGTCC
y / / / / / / / / / / / / / / / / / /

ATCAGGGGATGAAAACTACnCCAGGGCTACACCTTCACTGATCGCTCCCA"

"ATGGACTTGTGCCTGGAGGACGGGCTGTTTGCAGACGTCATTGTGACT

GTGGACAGTAAAGAG1 rCAAAGCAGCTTCTTCAG

GTCCATGTTCACCTCAAACCTCAGAGAGGCTTATGACCGTAATATTGAGCTGAAGGACGTCA

GTGCAACTGTCTTCCAGTCACTGGTGGACrACATCTACCATGGGATGATCAAGCTGAGGGTT

GAAGATCTGCAGGACACCTATGAAATGGCCGATATGTATCAGCTCACCGCTCTGTTTGAGGA

GTGCTCCCGCTTTCTGTCACGGACTGTGGATGTTAGGAACTGCCTTCAGGTGATGTGGTTGGC

GGACAGACACAGTGACCAGGAGGTGTATACAGCTGCCAAGCACTGTGCAAAGATACACCTG

GTTCAGCTGCACCAGACAGATGAGTTTCTGAATTTGCCATTGTGCCTTCTCATGGACATCATT

AAAGATGGTGTGCCAAGCTCACAAAATCCAACCGCAGCTATTGAATCTTGGATCAATCACAA

CAAAGTGGAGCGAGAGGAGTATTCTGATATGCTTCTTGACAGCCTAAAGGAAATTGGTGAA

AAAGTGCACATATACCTAATTGGAAAGGAAGACACACGCACACACTCACTAGCAGTGTCTC

TTCATTGTGATGAGGACCACGCCATTAGTGTGAGCGGCCAGAACAGTCTGTGCCACCAGATC

ACGGCTGCCTGCAAACATGGGGCGGATCTATATGTTGTAGGAGGCTCCATACCGCGACGCAT

GTGGAAATGCAACATGCACACGATGGACTGGGAACGCTGCGCCCCTCTGCCCCGGGACCGT

CTCCACCACACGCTAGTGTCCGTGTCCACAGAGGACGCCATATACTCATTGGGAGGCAAAAC

CCTTCAGGACACTCTCTCAAACGCCGTCATTTGCTACACCGTAAAGGACAACATATGGAAAG

AGACCACTCAGCTAGACACGGCAGTATCAGGTGCAGCCGGAGTCAATTTGGGAGGTACCAT

TTACCnTTGGGTGGAGAAGAAAATGACATGGACTTCTTTACCAAGCCTTCTCGCCTTATACA

GTGCTTTGAGACTGCCACCCAGAGGTGCCAGACCAAGCCCTACATGCTGCCTTTTGCTGGAT

GCATGCATGCCACCGCTCATAAGGACCTTATTTTTGTGGTGGCAGAGGGCGACTCTTTGGTG

TGTTATAACCCACTGCTGGACAGTTTCACGAGGTTGCGCTTCCCTGAAGTTTGGAGCTGTGTG

CCATCnTATGGAAAGTGGCCAGCTGC AATGGGTGCATTTATGTTTTTAGGGACA AATGCA A

GAAAGGCGATGCGAACACTTTGAAGTTGAACCCTGCCACATCTGTGGTCTCTGTAATCAAGG

GAATCAAAATCCTGCTCACGAACTGGCAGTTCGTACTGGCCjrGAGATGTTTGATGTAATGCA 

TGGGACCATAATAAATGTACT
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Zebrafish and mouse “novel p7822b53” protein alignment

D. rerio M D  S O - - E D O O C V  G O P - - - - - S O D E N Y F Q G Y  T F It D  R
ML musculus M K  O O  I A D  S W  Q R E K L  A T M  E S P E  E P O A  S M D E N Y F V  N Y  T F K D  R

D. rerio S H  S S R  V V K S I M D L C L E D O L  F  A  D  V I V T V D S K E F Q L H R L V L S
ML musculus S H  S o R  V A  Q O I M K L C L E E E L  F  A  D  V T I S V E G R E F Q L H R L V L S

D. rerio 
ML musculus

A  Q S S F F R S M F T S N L R E A Y  D  R N I E L  K  D  V  S A  T V  F  Q S L  V  D  Y  I Y
A  Q  S C F F R S M F T S N L K E A H N R V I V L  Q D  V  S E  S V  F  Q L L  V  D  Y  I Y

D. rerio H O M  I K L R V E  D  L  Q D T Y E M A D M Y  Q L T A  L  F E E C S R  F L S R  T V D V
M. musculus H O T V  K L R A D  E  L  Q E I Y E V S D M Y Q L T S L  F E E C S R  F L A R T V Q V

D. rerio R  
ML musculus O

H  L  
H  L

T  D
E L Y T A A K H C A K

N C L Q V M W L A D R H  S D  
N C L Q V M W L A D R H S  D

D. rerio N L  P L  C L  L M D  I I K D O V P S S Q N P T A A  I E  S W  I N H N  K V E R E E Y S
M. musculus H L  P H  H L  L T D  I I S D G V P C S  Q N P T E  A  I E  A  W  I N F N  K E E R E A  F  A

D. rerio D  M L L  D S L  K E I O E K V  H  I Y L I O  K E D  T R  T H S L A V  S L  H C D E D H A
M.  musculus E  S L R  T S L  K E I O E N V H I Y L I G K E S S R  T H  S L A V  s L  H C A E D D  S

D. rerio 
ML musculus

S V S O Q N S  L C H Q  I T  A A C K H O  
S V S O Q N S  L C H Q I  T A A C K H O

D  L Y V  V  G G S I P R  R  M W  K C N
D  L Y V  V  G G  S I P R  R  M W  K  C N

M  H
N  A

D. rerio 
ML musculus

T  M  D  W  E  
T  V D  W  E

R
W

C A P L P R D R L H H T L V S  V  
C A P L P R D R L Q H T L V S  V

S T E  
P G  K

D A  I Y S  L G G K T L Q D T L  
D A  I Y S  L G G K T L Q D T L

D. rerio 
M. musculus

S N  A  V  I C  | Y T V  K D  N  I W K E T  T Q L  D  T A  V  S G A  A  G V N  L  G G T I Y  L  L  G
S N  A  V  I Y  Y  R V  G D  N  V W T E T T Q L  E V A V  S G A  A  G A N  L  N  G I I Y  L  L  G

D. rerio G  E  E  N D  M  D  F F  T K  P  S R L I Q  C F  E  T A T Q R  C  Q T K  P Y  M  L  P F A  G C M H
ML musculus G E  E  N D  L D  F F  T  K P  S R  L I Q C F  D  T E T D  K  C H  V K  P Y  V  L  P F  A  G R M H

D. rerio A T A H  K D  L  I F V  V  A  E  G D  S L V  C  Y  N  P L L D  S F T R  L R F P E V W  S C V P

ML musculus A A V H  K D  L  V  F I V  A  E  G D  S L V  C  Y  N  P L L D  S F T R  L C L P E A w  s S A P

D. rerio S L  W  K  V A  S C  N  G C  I Y V  F R D  K
ML musculus S L  W  K  I A  S C  N  G S I Y V  F R D  R

K K O  D  A  N L K  L N P A T S V V  S V I K
Y K  L D P A T S A V  T V T R

D. rerio 
ML musculus

I L  L  T N  
V  L  L  T  N

Q F  
Q F

V  L  A
V  L  A
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A radiation hybrid transcript map of the mouse genom e
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Expressed-sequence tag (EST) maps are an adjunct to sequence- 
based analytical methods of gene detection and localization for 
those species for which such data are available, and provide 
anchors for high-density homology and orthology mapping in 
species for which large-scale sequencing has yet to be done1. 
Species for which radiation hybrid-based transcript maps have 
been established include human2, rat3-5, mouse6, dog7, cat8 and

zebrafish9,10. We have established a comprehensive first-gener- 
ation-placement radiation hybrid map of the mouse consisting 
of 5,904 mapped markers (3,993 ESTs and 1,911 sequence- 
tagged sites (STSs)). The mapped ESTs, which often originate 
from small-EST clusters, are enriched for genes expressed dur­
ing early mouse embryogenesis and are probably different 
from those localized in humans. We have confirmed by in situ 
hybridization that even singleton ESTs, which are usually not 
retained for mapping studies, may represent bona fide tran­
scribed sequences. Our studies on mouse chromosomes 12 and 
14 orthologous to human chromosome 14 show the power of 
our radiation hybrid map as a predictive tool for orthology 
mapping in humans.
To ensure the mapping of novel embryonic transcripts, we 
sequenced the Beddington endoderm cDNA library derived from 
a 7.5-days post coitum  (dpc) gastrulating embryo. Some 4,000 
EST sequences from this library and 200 sequences from a previ­
ously analyzed embryonic library11,12 were examined by cluster­
ing homologous sequences into groups corresponding to putative 
single genes and determining their expression profile by computa­
tional analysis. Approximately 18% were novel; after clustering, 
108 sequences remained as unique single sequences (singletons). 
Although singletons are often considered to be DNA contami­
nants and omitted from EST mapping programs, they may be 
transcripts expressed at low levels, or transcripts that are poorly 
represented in the nucleotide database because they are specific to 
a cell type or are poor substrates for reverse transcriptase. To 
address the biological significance of these singletons, we gener­
ated probes for in situ hybridization from six of the EST-sequence

Fig. 1 Whole-mount in situ hybridization: singletons represent bona fide gene 
transcripts. Whole-mount RNA in situ hybridization of mouse embryos (lateral 
view) using probes generated from ESTs (a,b) AL022911 (c) AL023051 (d.e) 
AL033345, and (f,g) AL034928. Singletons represent bona fide transcripts, a. At 
7.5 dpc, AL022911 transcripts are localized to the head process, b, At 9.5 dpc, 
they are found in the otic vesicle, the branchial arches and isolated cells in the 
midbrain, ventral to the heart and adjacent to the neural tube, c. At 7.5 dpc 
(left), AL023051 transcripts are restricted to the visceral endoderm, and at 9.5 
dpc (right) to its descendant, the yolk sac. d, At 7.5 dpc, AL03334 transcripts are 
restricted to the nascent mesoderm and primitive streak, e, At 9.5 dpc, they are 
localized to the midbrain, dorsal neural tube, pharyngeal pouches and pre- 
somitic mesoderm, f, EST genes with restricted patterns of expression 7-7.5-dpc 
embryos show widespread but non-ubiquitous localization of AL034928 tran­
scripts. Embryos developed for a short time show expression in the anterior vis­
ceral endoderm (arrow), whereas those developed for longer (bottom) show 
the extent of gene expression, g. At 9.5 dpc, AL034928 transcript localization is 
widespread but is absent from the heart, yolk sac and neuroepithelium.

1 Genoscope, Centre National de Sequengage and CNRS UMR 8030, CP 5706, 91057 Evry Cedex, France. 2Unite de Genitique Moleculaire Murine, Institut
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Chr

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18 
19 
X

Mb

216.00
208.50
179.70
176.70
170.40
165.90
155.70 
149.10
143.70
144.90 
141.60
146.40
131.40 
133.80
121.50 
114.00
115.50
116.40 
81.90

186.90

to t  3,000.00

cR

5.579.80
6.003.00
5.066.70
5.398.00
4.886.00
5.234.30
4.296.50
4.366.50
4.290.40
2.514.30
5.185.80
2.255.20
3.864.30
3.624.00
2.797.80
3.594.20
5.175.70
2.979.70
2.523.40
3.682.30

83,317.90

cDNAs and examined their 
expression in the early embryo.
Three of the ESTs (AL023051,
AL033345, AL022911) show 
highly restricted patterns of 
hybridization, one (AL034928) 
is relatively widespread in its 
expression and two (AL023012,
AL023075) show ubiquitous 
hybridization (Fig. 1). These 
findings suggest that many of 
the singletons that remain after 
clustering are likely to be bona 
fide cDNAs. In situ hybridiza­
tion of a larger sample of 350 
cDNAs from the embryonic 
libraries shows that 80% have 
widespread or ubiquitous pat­
terns of expression in the 7.5- 
dpc embryo.

For high-throughput radia­
tion hybrid marker typing in a 
96-well plate format, we 
selected 90 radiation hybrids 
from the original panel of 94 
(ref. 13) to permit inclusion of 
appropriate control DNAs. We 
selected more than 2,800 SSLP
markers for the framework map from the MIT (96 meiosis F2 
intercross) and EUCIB (1,000 progeny backcross) mouse genetic 
maps14,15, of which 2,230 yielded valid panel typings. The 
observed average marker retention frequency of 30.5% is consis­
tent with previously published results for the T31 radiation 
hybrid panel6-13-16.

The X chromosome shows the lowest retention frequency 
(expected because the male donor cell line that was irradiated 
contained a single copy of the X chromosome) and chromosome 
19, the smallest chromosome, shows the highest (Table 1). Con­
struction of the framework map resulted in a series of extended 
framework maps that comprise 1,238 markers.

We produced comprehensive EST placement maps by mapping 
chromosome-assigned ESTs and STSs against the framework- 
map intervals by multipoint maximum likelihood analysis. This 
resulted in a placement map o f3,446 markers. We also produced a 
map using the traveling-salesman problem (TSP) approach. 
Chromosome maps produced in this way generally contained 
fewer markers, as the reordering algorithm caused the more error- 
prone markers to be discarded from the map. The maps produced 
with the two approaches, however, are highly consistent (Fig. 2), 
indicating that data quality and not algorithmic approach is the 
critical factor in producing high-quality maps. Of the markers on 
the maximum likelihood map (Fig. 2) with odds higher than 
1:1,000 that are also on the TSP map, 87% show the same relative 
order on both maps. Typically, about 80% of other chromosomes 
also show the same relative order. Overall, using our build criteria, 
we were unable to assign about 7% of validated vector scores to a 
chromosome, and among the markers assigned, we were unable 
to precisely localize 15%. Of the assigned markers, we found that 
40% were localized to both ends of the chromosomes, and elimi­
nated these as potentially error-prone vector scores. This build 
contains 1,803 ESTs and 1,643 STSs. Many of the mapped ESTs 
included in the comprehensive map are derived from small EST 
sequence clusters, compatible with their being derived from genes 
that have both a restricted transcriptional profile and low copy 
number in the cell (data not shown).

Table 1 • Summary of radiation hybrid map data

kb/cR

38.71
34.73 
35.47
32.73 
34.88 
31.69 
36.24 
34.15 
33.49 
57.63
27.31
64.92 
34.00
36.92 
43.43
31.72
22.32 
39.06 
32.46 
50.76

Fw HOM LOM cRperM ark Av. re t

73
92
72
76
68
81
57 
64
49
58
72 
44 
48
56 
53 
51
57 
44
50
73

148
208
154
151
132
117
129
113
109 
83

190
75

108
110 
109 
137 
139 
100 
113 
119

36.01 1,238 2,544

87
103

51
58

103
102

58
92
60

9
13
3
4

30 
12
9

11
3

31 
63

902

23.74
19.30 
24.72 
25.83 
20.79
23.90 
22.98
21.30 
25.39 
27.33 
25.55
28.91
34.50 
25.89 
23.12 
24.62
34.50 
28.93 
17.52 
20.23

24.18

0.29
0.28
0.33
0.27
0.28
0.27
0.27
0.31
0.30
0.32
0.31
0.35
0.31
0.28
0.32
0.34
0.33
0.32
0.38
0.23

0.30
Av. ret, average retention rate; chr, chromosome; cRperMark, average number of centiray per marker; HOM, high- 
ordered marker (framework markers and markers whose first placement interval is at least 1,000 times more likely than 
the second placement interval); kb, kilobase; LOM, low-ordered marker (markers whose first placement interval is less 
than 1,000 times more likely than the second placement interval); Mb, megabase; tot, total.

Since the first build of the comprehensive placement maps 
reported here, a further 2,190 ESTs and 268 STSs have been 
localized on the placement map using a mapping criterion that 
requires the two top-ranking intervals to be adjacent if the odds 
of the top ranking interval are less than 1,000:1 compared to the 
second placement interval. If the slightly more stringent require­
ments used in the first-release build had been used, some 2,384 
additional placements would have been obtained. The locations 
of these new ESTs relative to the framework map are available at 
http://www.genoscope.cns.fr. In all, 5,904 markers (3,993 ESTs

Table 2 • Chromosome distribution of EST markers in first 
placement map (Feb. 1, 2001)

Total ESTs Total m arkers
Chr Feb 2001 Feb 2001

1 262 391
2 352 500
3 228 332
4 265 367
5 321 410
6 202 336
7 245 333
8 243 330
9 268 357

10 111 188
11 258 356
12 102 161
13 116 185
14 131 222
15 166 257
16 144 229
17 186 271
18 106 172
19 153 227
X 134 280

to ta l 3,993 5,904
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plus 1,911 WI-MIT markers) have been localized as o f the 1 Feb­
ruary 2001 map build, of which 4,032 are high-confidence 
markers that allow the precise positioning o f any newly typed 
marker (Table 2).

Figure 3 shows an example of this map built for mouse chro­
mosome 2. In order to validate our EST localizations and esti­
mate the potential error rates, we tested a subset of ESTs 
localizing to chromosomes 3, 6 and 12 against a corresponding 
monochromosomal hybrid17. Of the 145 ESTs tested, 94% (136) 
gave unambiguous positive results on the corresponding mono- 
chromosomal hybrid. This rate is close to that found for the 
human Genebridge 4 panel18 and confirms that the criteria we 
have adopted for assignment are appropriate.

Our radiation hybrid framework map was constructed in a dif­
ferent manner from the WI-MIT radiation hybrid map and 
would appear to be a useful update to the previously published 
mouse radiation hybrid framework map6. The concatenation 
step in particular should improve the accuracy of the framework 
map. The 1,066 markers common to both maps will facilitate 
comparison between them, increasing the value of the overall 
EST dataset. Assuming an average retention frequency of 30% 
and a mean size of the radiation-induced fragments of 5-10 Mb, 
the theoretical resolution limit that can be achieved with our 90 
hybrid lines is about 300 kb, corresponding to the mapping of 
some 10,000 uniformly distributed markers. It is likely that the 
resolution obtained using the non-redundant set of markers 
mapped by the joint efforts of the WI-MIT group19 and the EU 
consortium will therefore approach that of the T31 panel.

We initially attempted a global cross-species orthology 
search based on BLAST analysis between the mapped mouse 
and human EST-cluster consensus sequences. This approach 
confirmed 63 known regions of homology and defined 17 
putative new regions of homology that were, however, sup­
ported only by single clusters (data not shown). We did a pilot 
comparative human/mouse gene localization study in which 
EST markers that we had radiation hybrid mapped were com­
pared with sequence data from human chromosome 14. This 
chromosome shows conserved gene orthology with mouse 
chromosomes 12 and 14 (ref. 20). Conversely, a 15-cM region 
between the centromere and the Tpo marker of mouse chro­
mosome 12 is orthologous to human chromosome 2p, whereas 
a genetic segment extending from 15 cM from the centromere 
to around 23 cM is orthologous to parts o f human chromo­
some 7. The rest of the chromosome is thought to be ortholo­
gous with human 14q. Mouse chromosome 14 has previously 
been shown to have conserved linkages or conserved ortholo- 
gies involving human chromosomes 3, 8, 10, 13 and 14 as well 
as the X and Y chromosomes. Our approach combined infor­
mation from the following sources: (i) the genomic sequence 
corresponding to a clone-tiling path covering 99% of human 
chromosome 14; (ii) consensus sequences for the EST clusters 
produced at the EBI and for which a representative had been 
RH-mapped; (iii) orthologous relationships between human 
and mouse genes computed at the Jackson Laboratory 
(http://www.jax.org) and (iv) orthologous relationships pre­
dicted at the National Center for Biotechnology Information 
from sequence alignment using the megablast algorithm 
between the mouse and human UniGene sets 
(http://www.ncbi.nlm.nih.gov/Homology/). Because our ini­
tial attempts at aligning single short-pass mouse EST 
sequences against human chromosome 14 genomic sequences

Fig. 2 Placement maps for chromosome 5. Comparison of maps established using 
the maxlik program28 (right-hand bar) and the traveling-salesman program (TSP) 
approach (middle bar), as well as the MIT genetic map (left-hand bar).
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ba

Fig. 3 Comprehensive radiation hybrid map of mouse chromosome 2. Left-hand bar: genetic localizations taken from the MIT genetic map. Right-hand bar: position on 
the radiation hybrid map. a. Top corresponds to the centromere of chromosome 2. b. Bottom corresponds to the telomere of chromosome 2.

nature genetics • volum e 29 • October 2001 197



letter

11 .034

12 .0 79

61

79

13 .662

1 4 .77

1 5 .3 5 6

1 5 .7 3 6

16 .1 52

16 .6 95
16 .9 4 6

299
306

368

399
409

We used the correspondence between the mouse and human 
Unigene sets available through NCBI’s Homologene project 
(http://www.ncbi.nlm.nih.gov/Homology/) to provide further 
cross-species links. Using these combined approaches, we 
anchored 100 ESTs onto the sequence map o f human chromo­
some 14. The orthology relationships between ESTs mapped 
on mouse chromosome 12 and human chromosome 14 are 
shown in Fig. 4. Using this map, we were able to localize ESTs 
that had been assigned to mouse chromosome 12, but whose 
localization remained ambiguous (under the criteria that both 
the highest and next highest allocations must be in neighbor­
ing intervals), with greater confidence by reference to the 
orthology and linkage relationships based on the sequence of 
human chromosome 14.

We have constructed a radiation hybrid map of the mouse 
genome that contains some 6,000 markers, of which over 4,000 are 
ordered at high odds. ESTs extracted from this map should be use­
ful in identifying the many mutants being generated by phenotype- 
driven ENU mutagenesis. For example, the 500 new ENU-induced 
mouse mutants reported by Nolan and colleagues21, of which 30 
were initially mapped, or the 182 mutants identified by de Angelis 
and colleagues22 can be tackled most efficiently at the gene level 
using a candidate-gene approach. The usefulness of our radiation 
hybrid map as a predictive tool for candidate-gene cloning is indi­
cated by our studies of the Delta3 gene and pudgy mutations11,23. 
Likewise, mapped ESTs will be useful for characterizing the genetic 
basis underlying quantitative traits once these have been refined by 
congenic/and or BAC transgenesis studies. This map is an impor­
tant resource for cross-referencing of mammalian genomes, posi­
tional cloning of mouse genes through candidate gene approaches, 
and anchoring and orientation of current draff sequencing efforts.

2 0 .9 1 1
2 1 .1 3 3

556
565
576

Methods
Radiation hybrids. We obtained DNAs corresponding to the T31 radiation 
hybrid panel13 from Research Genetics. A list of the subset of 90 hybrids 
used in our experiments is available at www.genoscope.cns.fr.

614
622

2 2 .2 8 9

Fig. 4 Orthologous relationships between mouse ESTs mapping to mouse chro­
mosome 12 and human chromosome 14, showing positions on the radiation 
hybrid map of mouse chromosome 12 (left-hand bar) and human chromosome 
14 (right-hand bars). The numbers on the right identify the relevant human 
BAC on the minimal-tiling path31.

using tblastx were considered unreliable, we derived longer 
transcript sequences for each EST from either the EGI or Uni- 
Gene EST cluster databases. We then either directly aligned the 
longest mouse transcript or consensus sequence against the 
human chromosome 14 genomic sequence using the blastn 
and tblastx algorithms, or used this transcript to retrieve puta­
tive orthologs in the human UniGene set, which we then 
aligned against the genomic sequence by blastn analysis. To 
increase the number o f potential points o f orthology, we inte­
grated previously known orthologs genetically mapped in the 
mouse but absent from the set of radiation hybrid-mapped 
ESTs in the first build o f our placement radiation hybrid map. 
We indirectly localized these orthologous relationships on the 
radiation hybrid map by identifying, from the genetic coordi­
nates on the Mouse Genome Informatics integrated genetic 
map, the closest marker that was both radiation hybrid 
mapped and genetically mapped, and assigning the radiation 
hybrid map position of this marker to the orthologous gene.

Sequencing of cDNA clones. We sequenced the 7.5-dpc endoderm library 
of Beddington and colleagues12 using standard methods. We submitted 
approximately 4,000 clones that yielded high-quality sequence data to the 
EMBL database and subjected them to cluster analysis (see below); their 
accession numbers are listed at www.genoscope.cns.fr.

C luster analysis. To identify and group transcribed sequences derived 
from a single gene, we processed EST sequences extracted from the EMBL 
database to remove or mask redundant repetitive sequences, contaminat­
ing vector sequences and low-quality sequences that could confound the 
analysis, then carried out cluster analysis on the basis of sequence homolo­
gy using the JESAM packages24 and tools available at http:// 
corba.ebi.ac.uk/EST/egi.html. This was done at the European Bioinformat­
ics Institute (EBI). Each cluster of homologous and aligned sequences, and 
the consensus sequence derived from them, corresponds— subject to cer­
tain im portant caveats— to an individual gene24.

SSLP m arker development. We selected STS markers from the MIT and 
EUCIB mouse genetic m ap14,15. We obtained EST markers either from our 
internal sequencing program or from cDNA sequences obtained from the 
dbEST EBI site after clustering24. We used endoderm-derived sequences sys­
tematically for EST derivation if they corresponded to unallocated 
sequences; otherwise, we derived ESTs from clusters in the database com­
posed of two or more sequences of which at least 30% were derived from 
early-embryonic libraries (that is, earlier than 10.5 dpc). The list of retained 
libraries can be consulted on the genoscope.server. We modified these crite­
ria in the case of the mouse urogenital ridge (NMUR library 144; see the 
library browser at http://www.ncbi.nlm.nih.gov/UniGene/) and the mouse 
eight-cell-stage embryo (library 150), in that we sometimes used sequence 
clusters from these libraries without regard for the overall proportion of
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embryonic-derived sequences and some singleton sequences were selected. 
We selected primer sequences using the Primer 3 program 
(http://www.genome.wi.mit.edu/ genome_software/other/primer3.html). 
We tested both STS and EST markers for their specificity against mouse, 
Chinese hamster and human DNAs before typing them on the radiation 
hybrid panel. We carried out all tests in duplicate. All primer sequences have 
been submitted to RHdb (ref. 25 and http://www.ebi.ac.uk/RHdb) and are 
available on the RHdb and Genoscope websites.

R ad ia tion  h y b r id  assays. We carried out polymerase chain reaction (PCR) 
amplification of EST fragments from radiation hybrid DNAs in 96-well 
plates containing the 90 radiation hybrid, control mouse and Chinese 
hamster DNAs in duplicate. PCR conditions and gel electrophoresis were 
as described at www.genoscope.cns.fr. We analyzed PCR products by 
agarose gel electrophoresis, detected them by ethidium bromide staining, 
and used a semi-automated method to score for the presence or absence of 
PCR products o f the expected size by comparison with molecular stan­
dards. The data were recorded as a string of 0 (no amplification of a mouse 
fragment), 1 (amplification of a mouse fragment) or 2 (ambiguous or 
unknown) vector scores corresponding to the radiation hybrid DNA order. 
All loci were scored in duplicate.

F ram ew ork  m ap  c o n stru c tio n . In constructing the framework map, we 
started with the 1,066 genetic markers typed in common at the Genoscope 
and at the W hitehead Institute-Massachusetts Institute of Technology6. 
Because o f differences in the scoring methods used by the two centers, we 
considered the typing of a radiation hybrid at each center as two indepen­
dent assays and joined the vectors (radiation hybrid scores) into a single 
vector string (concatenated Genoscope-WI-MIT) to increase the overall 
marker information content and map accuracy. Vectors from both centers 
were concatenated only if the original vectors contained fewer than 5 unre­
solved positions and if the marker retention rate was between 14% and 
47% (with the exception of chromosomes 11 and 19, for which the ranges 
were 14-60% and 14-55%, respectively). We removed markers that were 
too close to each other (as measured by the num ber of obligate chromoso­
mal breaks) and ordered the remaining markers by analogy to the well- 
studied traveling-salesman problem (TSP), for which powerful 
computational tools are available26,27. We translated the radiation hybrid 
problem into 5 slightly differing versions of the TSP problem that were 
characterized by m inor variations of the objective function. We solved 
these TSP instances with the Lin-Kernighan (LK) heuristic from the 
‘CONCORDE’ package27 (http://www.caam.rice.edu/keck/concorde.html) 
and compared the resulting marker orders to identify segments conserved 
in all solutions. We then checked the relative ordering of these conserved 
segments for consistency against the WI-MIT genetic m ap15. The initial 
framework maps resulting from this process contained 814 markers. We 
used these markers and 1,369 additional genetic markers that had been 
typed at the Genoscope to produce extended framework maps. We con­
verted typing data corresponding to the pooled 2,183 genetic markers into 
TSP instances and solved these using the concorde LK heuristic to obtain 
temporary comprehensive maps. We then determined the most likely 
framework interval for each of the 1,369 non-framework markers using a 
maximum likelihood criterion, and recorded the associated lod score. We 
submitted this information, along with the previously computed frame­
work maps, to a global reordering algorithm26 that reorders and consoli­
dates the comprehensive maps. We discarded markers with order 
discordancies under different TSP solutions by applying the algorithm of 
the longest-common-subsequence problem (LCSP)28. This yielded 
extended framework maps comprising 1,821 genetic markers.

Because the TSP transformations are strictly valid only for haploid, 
error-free data, we re-evaluated the map likelihoods and inter-marker dis­
tances with the radiation hybrid maxlik program29 under a diploid model. 
We then applied a pruning routine to the extended framework maps, both 
to ensure that adjacent markers were not too close to each other and to 
favor the inclusion of markers with the highest associated lod scores. We 
discarded 752 markers in this pruning step.

To further extend the new framework maps, we mapped ESTs and non­
framework genetic markers typed at Genoscope against the framework 
maps by m ultipoint maximum-likelihood analysis. We considered addi­
tional markers for inclusion into intervals defined by adjacent framework 
markers separated by a breakage probability of 0.5 or more. We retained 
two types o f markers for this step: 86 STS markers assigned to such inter­
vals with a lod score of at least 2, and showing a placement consistent with

both the genetic map and the WI-MIT radiation hybrid map6; and 79 ESTs 
that mapped to these intervals and for which all alternative placement 
intervals were at least 1,000 times less likely. When more than one candi­
date framework marker was available for a given interval, we applied the 
following integrating criteria: first, we sorted candidate markers were 
according to the average difference between their retention rate and that of 
the adjacent framework marker ones; second, among markers with small 
retention-rate differences, we selected the marker with the smallest num ­
ber of ambiguous positions in its typing vector.

P lacem en t m ap  c o n stru c tio n . We used both framework markers and 
genetic markers discarded in the pruning step as reference markers for the 
chromosomal assignation of ESTs. We considered an EST assigned if it was 
linked to at least 2 reference markers on a given chromosome with a two- 
point lod score of 7 or more and showed no linkage above this threshold 
with a reference marker for another chromosome. The use of a very dense 
map of reference markers and the imposition of a positive threshold cut-off 
to at least two reference markers markedly reduces the chances of detecting 
such linkage purely by chance. Once ESTs had been assigned to chromo­
somes, we mapped them  against the framework intervals by multipoint 
maximum likelihood analysis29. We ordered markers binned into the same 
interval according to the radiation hybrid distance from the upper frame­
work marker. For each marker, we recorded all placement intervals for 
which the odds were higher than 1:1,000 with the top-ranking placement 
interval; we considered markers for which these intervals were not adjacent 
to be unreliable, and removed these from the map. We discarded 640 mark­
ers through this process, leaving 3,446 markers on the first build of the 
placement maps.

W h o le -m o u n t R NA  in situ  h y b r id iza tio n . We collected mouse embryos 
from 5.5—9.5 dpc and carried out whole-mount RNA in situ hybridization 
on these embryos12. We linearized pSPORTI-cDNA plasmid DNA with 
Sail and generated antisense digoxygenin-labeled riboprobes using SP6 
RNA polymerase30.

V alid a tio n  o f  EST lo c a liz a t io n s . We used the m onochromosomal mouse 
x hum an hybrids SN llC 5-3/scl.3 , N12C1 and N2C1 to confirm EST 
localizations to chromosomes 3, 6 and 12, respectively17. We used 
genomic DNA from the hybrids for PCR screening of ESTs. We systemat­
ically included hum an DNA as a PCR control. The observed confirma­
tion rate is likely to be a minimal estimate, because ESTs that produced a 
PCR product on the corresponding m onochromosomal hybrid that was 
different in size from that expected were not scored as being positive, 
even though these size differences could reflect the fact that control DNA 
of the mouse parent of the hybrids was not available to us and was 
replaced by 129/Sv DNA.
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Characterizing Embryonic Gene Expression 
Patterns in the Mouse Using Nonredundant 
Sequence-Based Selection
Rita Sousa-Nunes,1'10 Amer Ahmed Rana,1,10,7 Ross Kettleborough,1,10 
Joshua M. Brickman,1'8 Melanie Clements,1 Alistair Forrest,2 Sean Grimmond,2 
Philip Avner,3 James C. Smith,4'11 Sally L. Dunwoodie,1,5'6'11 
and Rosa S.P. Beddington1,9
1 Division o f Mammalian Development, National Institute for Medical Research, The Ridgeway, London NW 7 1AA, United 
Kingdom; 2Institute o f Molecular Bioscience, University o f Queensland, 4072 Australia; 3Unite Genetique Moleculaire Murine, 
Institut Pasteur, 75015 Paris, France; 4 Wellcome Trust/Cancer Research UK institute and Department o f Zoology, University o f 
Cambridge, Cambridge CB2 1QR, United Kingdom; 5Developmental Biology Program, Victor Chang Cardiac Research Institute, 
Darlinghurst, 2010, Australia; 6Department o f Biotechnology and Biomolecular Sciences, University o f New South Wales, 
Kensington, NSW 2033, Australia

This artide  investigates the expression patterns of 160 genes that are expressed during early mouse development. The 
cDNAs were isolated from 7.5 d postcoitum (dpc) endoderm , a region that comprises visceral endoderm (VE), 
definitive endoderm, and the node-tissues that are required for the initial steps of axial specification and tissue 
patterning in the mouse. To avoid examining the same gene more than once, and to exclude potentially ubiquitously 
expressed housekeeping genes, cDNA sequence was derived from 1978 clones of the Endoderm library. These yielded 
1440 distinct cDNAs, of which 123 proved to be novel in the mouse. In situ hybridization analysis was carried out on 
160 of the cDNAs, and of these, 29 (18%) proved to have restricted expression patterns.

[Supplemental material is available online at www.genome.org.]

The genomic sequences of many animals are now known, includ­
ing C. elegans, human, mouse, and Drosophila (The C. elegans 
genome consortium 1998; Adams et al. 2000; Lander et al. 2001; 
Venter et al. 2001; Aparicio et al. 2002; Carlton et al. 2002; Dehal 
et al. 2002; Gardner et al. 2002; Waterston et al. 2002), and the 
sequences of others will be available very soon. The task now  
facing biologists is to discover the functions of the genes that 
have been identified through these sequencing projects. For 
some organisms, such as C. elegans, it is possible to adopt a sys­
tematic approach to ablating gene function (Fraser et al. 2000; 
Kamath et al. 2003). For vertebrates, and especially mammals, a 
systematic approach of this sort is a daunting prospect, but a 
widespread analysis of gene function is nevertheless essential for 
a proper understanding of development and disease.

The most tractable mammalian species for such an analysis 
is the mouse, in which it is possible to mutate gene function 
randomly, by using 7-irradiation, chemical mutagenesis or gene 
traps (Stanford et al. 2001), or a directed fashion by means of 
h o m o lo g o u s recom b in a tion  in  em b ryon ic stem  cells  
(Doetschman et al. 1987; Thomas and Capecchi 1987). Mutagen­
esis has proved a very useful approach, but it is limited in some

Present addresses: 7W ellcome Trust/Cancer Research UK Institute, 
Cambridge CB2 1QR, UK; in s t itu te  for Stem Cell Research, The Uni­
versity o f Edinburgh, Edinburgh EH9 3JQ, UK. 
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10These authors contributed equally to  the work described.
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8501.
Article and publication are a t h ttp ://w w w .genom e.o rg /cg i/do i/10 .1101 / 
gr.1362303. Article published online before print in November 2003.

respects because redundancy or compensation may mask func­
tional requirements and because early lethality may conceal later 
roles of some genes. The necessity to maintain large numbers of 
mutant strains also presents practical difficulties.

Homologous recombination overcomes these problems by 
allowing the ablation of specific genes at particular times in de­
velopment and in a tissue-specific manner. It is not yet feasible, 
however, to contemplate targeting the entire proteome in this 
way, so it is necessary to decide which genes to target first. Work 
from several species indicates that one criterion might be based 
on gene expression patterns. In situ hybridization analyses of 
random clones from unmodified, normalized, or subtracted 
cDNA libraries has identified many genes with restricted expres­
sion patterns that hint at particular embryonic functions (Gawa- 
ntka et al. 1998; Neidhardt et al. 2000; Christiansen et al. 2001; 
Kudoh et al. 2001). In addition, the results have allowed the 
definition of "synexpression groups," the members of which are 
expressed in similar patterns and may be regulated in similar 
ways and act in the same molecular pathways (Gawantka et al. 
1998; Niehrs and Pollet 1999).

In this article we refine this approach by using sequence 
comparisons to reduce cDNA library complexity and to remove 
unwanted molecules (see below). We use a cDNA library con­
structed from 7.5 d postcoitum (dpc) endoderm (Harrison et al. 
1995), a region that comprises VE, definitive endoderm, and the 
node-tissues that are required for the initial steps of axial speci­
fication and tissue patterning in the mouse embryo (Beddington 
and Robertson 1999; Lu et al. 2001; Hamada et al. 2002). This 
Endoderm library, together with four others (whole Embryonic Re­
gion, Ectoderm, Mesoderm, and Primitive Streak), has already proved 
its worth in subtractive and differential hybridization experi-
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Table 1. Summary of Endoderm Sequence Analysis

cDNA clones selected for sequencing 3072
Successful single pass sequence 2635
Masked sequences >199 base pairs in length 1978
Sequences m atching ENSEMBL genes 1355
Sequences m atching TIGR-TC EST clusters only 496
Novel sequences 127
N onredundant clones matching mouse ESTs 1317
N onredundant novel clones 123

ments that have identified regionally expressed genes that are 
required for normal development (Harrison et al. 1995, 2000; 
Dunwoodie et al. 1997, 1998, 2002; Dunwoodie and Beddington 
2002; Martinez Barbera et al. 2002).

Analysis of 1978 sequences derived from the endoderm li­
brary identified 1440 different cDNAs, of which 123 proved to be 
novel in the mouse. In situ hybridization analysis was carried out 
on 160 of the cDNAs, and of these, 18% proved to have restricted 
expression. This work provides valuable information about the 
repertoire of gene expression in the endoderm of the mouse em­
bryo and may supply pointers as to which genes merit further 
investigation concerning their roles in development and disease 
(Anderson and Beddington 1997).

RESULTS

Sequence Analyses
cDNA clones (3072) were selected at random from the Endoderm 
library, and 2635 sequence tags were generated by single-pass 3'

sequencing (Avner et al. 2001). Repetitive and poor-quality se­
quence was masked, and any sequence tag of <199 nucleotides 
after masking was discarded. Analysis of the remaining 1978 se­
quences is presented in Table 1. Each sequence was compared by 
using BLASTN with mouse expressed sequence tag (EST) clusters 
(TIGR Tentative Consensus sequences or TCs version 8.0, June 1, 
2002; http://www.tigr.org/tdb/tgi/m gi) and with predicted 
mouse transcripts in ENSEMBL (version 8.3c. 1, July 12, 2002; 
http://www.ensembl.org/Mus_musculus/). Sequence matches 
were considered significant if alignment of >50 nucleotides was 
observed and the significance value was less than e -30. All re­
maining sequences were considered novel.

Of the 1978 sequences, 1851 clones matched a defined EST 
(TIGR-TC) cluster, an ENSEMBL gene or transcript, or both. The 
remaining 127 clones matched neither data set and are classified 
as novel. Clustering of the 1851 sequences that matched the 
TIGR-TC or EMSEMBL databases generated a non-redundant set 
of 1317 known cDNAs. The 127 novel sequences were compared 
with each other by using BLASTN, using significance limits simi­
lar to those described above. This procedure reduced the number 
of novel cDNAs to 123. All sequences described in this article are 
available in GenBank, and cDNAs can be obtained from the UK 
Human Genome Mapping Project Resource Centre (http:// 
w w w .h g m p .m rc .a c .u k /g en eserv ice /rea g en ts /p ro d u c ts / 
cdna_resources/index.shtml).

Expression Analysis
Of the 1978 cDNAs described above, 160 were chosen for expres­
sion analysis. Clones were selected so as to exclude housekeeping 
genes and genes previously studied in a developmental context,

Table 2. Sequence Analysis of cDNA Clones With Restricted Expression

Sequence ID Frequency Representative ID Description

t8219b01 1
t7822b10 2 ENSMUSG00000013236 Protein-tyrosine phosphatase, receptor-type (Ptpt9; EC 3.1.3.48)
r8220b29 1 TC469486
s8609b60 2 ENSMUSG00000019970 Serum and glucocorticoid-regulated kinase (Sgk; EC 2.7.1)
m8708a09 4 ENSMUSG00000021728 Embigin precursor, also known as Teratocarcinoma glycoprotein 70 (GP-70)
v8130b53 9 TC461859 Solute carrier family 2 (facilitated glucose transporter) m em ber 3 (Slc2a3)
t7825b42 3 TC511260 Sp120 (Hnrpu)
s8609b24 1 ENSMUSG00000039878 Similar to LIV-1, estrogen-regulated
r8316a33 1 ENSMUSG00000024253 Dynein 2 light intermediate chain (mD2LIC)
v8130b25 1 ENSMUSG00000028162
r8707a53 3 ENSMUSG00000023906 Claudin-6
m8708a22 1 ENSMUSG00000039676 Calcyphosine
p7822b53 1 ENSMUSG00000005505 Weakly similar to ring canal protein; contains BTB/POZ domain
t8130b59 1 TC503400
t8417b56 1 ENSMUSG0000002764 Neuronatin, also known as Peg5 (isoform 2)
t8219b25 1 TC488224 Similar (16%) to KIAA0802 protein (Homo sapiens)
w8609b57 1 ENSMUSG00000029032 Neuroblastoma; similar to Rho GEF 16;
t7822b19 1 ENSMUSG00000021681 Paternally expressed gene 3 (Peg3)
k8709a24 1 ENSMUSG00000031665 Sal-like 1 (Salll)
r8220b09 1 TC501397 Silica-induced gene 41 (Silg41); similar to arg/ser-rich splicing factor (transform ed)
t8130b26 1 ENSMUSG00000042142 Rb-binding protein 2 (Rb-BP2); also known as Plu-1
m 8708a39 1 ENSMUSG00000022761 Leucine-zipper-like transcriptional regulator 1 (Lztrl)
s8129b58 1 ENSMUSG00000026833 Pancortins 1 and /or 3
k8220b03 1 ENSMUSG00000029381 Shroom (actin binding protein) (Shrm)
r8220b57 1 ENSMUSG00000005566 Transcription intermediary factor 1-(3 (Tif1-(3)
r8319a44 2 14-3-3 protein a
k8709a20 2 ENSMUSG00000020849 14-3-3 protein e (protein kinase C inhibitor protein-1)
k8710a07 1 ENSMUSG00000021667 Nop seven associated protein 2 (Nsa2p); also known as Lnr42, TINP1 or HCLG1
t8219b26 1 ENSMUSG00000032376 Ubiquitin-specific protease 3 (Ubp7)

The table shows 29 cDNAs with restricted patterns of expression. The clones are shown in the same order as in Figure 1, with the first three being 
members of the visceral endoderm  synexpression group. Headings represent (1) the sequence identification number, (2) the num ber of times the 
sequence was isolated, (3) the ENSEMBL gene num ber of the cDNA or its TIGR Cluster number, and (4) gene name or family. Genes for which no 
description is appended bear no resemblance to any other in the databases.
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Figure 1 Images of the expression patterns of all the "restricted" genes (beginning with the  three genes in the synexpression group), two of the 
widespread cDNAs, and one ubiquitously expressed sequence. Images representing individual clones are enclosed by black lines; sequence identifiers 
and other information are indicated on the figures. A more detailed description of the expression patterns, together with explanations of the annota­
tions, is provided in the Appendix. The restricted genes are listed in the same order as in Table 2.

but to include completely novel sequences, previously unknown 
sequences that had also been identified in other organisms, 
cDNAs encoding putative transcriptional regulators, splicing fac­

tors, signaling molecules, cell-cycle regulators, cytoskeletal pro­
teins, and cDNAs encoding homologs of proteins implicated in 
human disease (for examples, see Table 2).
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G e n e  E x p r e s s i o n  P a t t e r n s  in t h e  M o u s e

Table 3. Coexpression Groups

Coexpression group Clones

Visceral endoderm s8609b60, m 8708a09, v8130b53,
t7825b42 ,s8609b24 , v8130b25

Node v81 30b25, r8316a33, m8708a22,
p7822b53 ,t81  30b59

Gut endoderm v8130b25, r8707a53

The three coexpression groups are based on the constituent tissues of 
the 7.5-dpc mouse embryo. Only genes with restricted expression 
pattens are included.

Expression patterns were categorized subjectively as "ubiq­
uitous" (64; 40%) if similar levels of expression were observed in 
all tissues, as "widespread" (57; 36%) if expression was observed 
in several but not all tissues (frequently with different levels in 
different tissues), as "restricted" (29; 18%) if transcripts were lo­
calized to just a few regions in at least one of the stages examined, 
and as "undetectable" (10; 6%). The expression patterns of all the 
restricted cDNAs and of one ubiquitous and two widespread 
clones are illustrated in Figure 1 and described in the Appendix. 
Details of the restricted cDNAs are summarized in Table 2, which 
lists the clones in the same order as in Figure 1, with the first 
three being members of the visceral endoderm synexpression 
group (see below). A Supplement to Table 2 (available online at 
www.genome.org) lists the cDNAs with widespread and ubiqui­
tous expression.

Of the 29 restricted expression patterns identified, 22 are 
expressed in the tissues from which the library was made, of 
which three (t8219b01, t7822bl0, and r8220b29) are exclusively 
expressed in these tissues. Seven genes were not expressed at 
detectable levels in the source tissues (w8609b57, r8220b09, 
t8130b26, m8708a39, r8220b57, r8319a44, t8219b26). Examina­
tion of the restricted expression patterns revealed just one group 
of genes with a similar expression pattern at all stages examined 
(6.5-9.5 dpc). This synexpression group (Niehrs and Pollet 1999) 
comprises the three clones, t8219b01, t7822bl0, and r8220b29, 
that are expressed exclusively in the tissues from which the En­
doderm library was constructed. All three are expressed in VE at
6.5 and 7.5 dpc and in the yolk sac at 8.5 and 9.5 dpc (Fig. 1). Of 
the three, only t7822bl0 has been described previously. It en­

codes a receptor-type protein tyrosine phosphatase termed Ptpt9, 
the loss of function of which causes abnormalities of the central 
and peripheral nervous systems and of the neuroendocrine sys­
tem (Elchebly et al. 1999; Wallace et al. 1999; Batt et al. 2002). 
We do not know whether the three genes have related functions, 
because no known motifs have been identified in t8219b01 or 
r8220b29. Ptpt9 maps to chromosome 17 (54.5Mb), whereas 
t8219b01 maps to chromosome 8 (60.6Mb) and r8220b29 to 
chromosome 5 (127.4Mb). The coordinated expression of the 
three genes is therefore unlikely to be a consequence of their 
genomic organization.

In addition to this single synexpression group, we have also 
identified three "coexpression groups," all members of which are 
expressed in the same tissue at a particular stage of development 
and therefore may cooperate in the specification of that tissue in 
which they are expressed. Members of a coexpression group may 
also be expressed in other regions, and their expression patterns 
at earlier and later stages may also diverge. In defining these 
groups, we omit the ubiquitously expressed and widespread 
clones (which are likely to have housekeeping functions), and 
focus particularly on the signaling centers in the 7.5-dpc embryo 
from which the Endoderm library was derived. Thus, Table 3 lists 
the clones expressed in the VE coexpression group (the largest) 
and the node and definitive endoderm coexpression groups.

DISCUSSION

Endoderm cDNA Sequence Analysis
At 7.5 dpc, the endoderm that surrounds the embryonic region of 
the mouse conceptus, from which the endoderm library is de­
rived, is a single layer of -700 cells (Snow 1977). This tissue com­
prises the node (which is required to establish the anterior- 
posterior, dorso-ventral, and left-right axes of the embryo), VE 
(which is important for nutrient exchange and for initiating an­
terior patterning), and the definitive endoderm (which is also 
involved in anterior patterning; Anderson and Beddington 1997; 
Beddington and Robertson 1999; Bielinska et al. 1999; Lu et al. 
2001; Hamada et al. 2002). The node, VE, and definitive endo­
derm go on to form the notochord and floor plate of the neural 
tube, yolk sac endoderm, and gut endoderm (GE) respectively.

Although the mouse genome has been almost completely 
sequenced (Waterston et al. 2002), our data indicate that tran­
script identification is incomplete. Indeed, sequencing of just

Table 4 . Frequency of Selection of Restricted cDNAs in Different Expression Screens

Number of Restricted
Reference Species Stages screened cDNA library Library type clones screened cDNAs

This study Mouse 6.5-9 .5  dpc 7.5-dpc endoderm Parent 160 18%
Neidhardt e t al. 2000 Mouse 9.5 dpc 9.5-dpc embryo Parent 989 6%
Neidhardt e t al. 2000 Mouse 9.5 dpc 9.5-dpc embryo Subtracted 3737 7%
Neidhardt et al. 2000 Mouse 9.5 dpc 9.5-dpc embryo Normalized 622 18%
Reymond et al. 2002 Mouse 9.5 dpc Orthologues of human 

chrom osom e 21 genes
—; 158 21%

Reymond et al. 2002 Mouse 10.5 dpc idem : — : 158 28%
Reymond et al. 2002 Mouse 14.5 dpc 

(sections)
idem — 158 42%

Gitton et al. 2002 Mouse 9.5 dpc idem — 158 21%
Christiansen et al. 2001 Chick HH* 9-12 Hindbrain HH* 1 0 -1 1a Subtracted 445 8%
Kudoh et al. 2001 Zebrafish Shield, 3 somites, Early somitogenesis Normalized 2765 13%

15 somites, 24 hpf embryo
25% bGawantka et al. 1998 X. laevis Stages 10+, 13, 30 Neurula stage embryo Parent 1765

aStage according to  Hamburger and Hamilton (1951).
bThis figure is reduced to 16% if one considers only unique cDNAs with a restricted expression pattern.

Genom e Research 2615
www.genome.org

http://www.genome.org
http://www.genome.org


S o u s a - N u n e s  e t  al .

1978 clones of the Endoderm library has identified no fewer 
than 123 novel cDNAs. Therefore, our work provides a valuable 
source of ESTs, which will be useful in functional genomic 
projects and expression profiling. Further sequencing of the li­
brary will be required to draw conclusions about the complexity 
of gene expression in the endoderm, but we note that two-thirds 
of the 1978 sequences analyzed were represented only once, 
indicating that many more transcripts remain to be isolated 
from the original 5.8 x  10s independent clones (Harrison et al. 
1995).

Endoderm cDNA Expression Analysis
In this article we have studied the expression patterns of 160 
cDNAs derived from a mouse endoderm cDNA library. Our 
screen differs from related screens (Gawantka et al. 1998; 
Neidhardt et al. 2000; Christiansen et al. 2001; Kudoh et al. 2001) 
because cDNAs were sequenced and clustered before carrying out 
expression analyses. This ensured that each transcript was stud­
ied only once, an important issue when analyzing mouse devel­
opment because obtaining mouse embryos at the appropriate 
stages is more costly and time-consuming than doing the same in 
chicken, frog, or fish.

Many transcripts proved to have ubiquitous or widespread 
expression patterns, but the expression of 29 (18%) was restricted 
to particular tissues at least in one of the time points examined. 
Such cDNAs are of interest because they may provide useful mo­
lecular markers for those tissues and because their expres­
sion patterns may provide hints as to their developmental func­
tions.

A sequence-based approach such as that taken here may 
assist in the identification of cDNAs with restricted expression 
patterns. In addressing this point, it is difficult to make direct 
comparisons with other screens because definitions of "re­
stricted" may vary, because other screens have used different spe­
cies at different stages, and because of the way in which cDNA 
clones were selected. Nevertheless, screens that have selected 
cDNAs at random, whether using parent libraries or even sub­
tracted cDNA libraries, have tended to obtain lower proportions 
of restricted expression patterns than those described in this ar­
ticle (Table 4; Neidhardt et al. 2000; Christiansen et al. 2001; 
Kudoh et al. 2001). In contrast, a screen making use of a library 
normalized by colony hybridization rather than by sequence 
analysis (Neidhardt et al. 2000) obtained a very similar propor­
tion to that reported here, emphasizing the importance of nor­
malization in screens of this sort, especially when material might 
be limiting. We opted to use of the parent cDNA library rather 
than a subtracted version so as to avoid the loss of rare clones. 
Interestingly, a similar percentage of restricted patterns at 9.5 dpc 
was obtained in an expression analysis of murine orthologs of all 
genes on human chromosome 21 (Gitton et al. 2002; Reymond 
et al. 2002).

One benefit of a screen such as this is that it enables the 
definition of sets of coregulated genes, or "synexpression groups" 
(Niehrs and Pollet 1999) as well as coexpression groups. In de­
fining such groups, we omit widespread and ubiquitous clones so 
as to exclude "housekeeping" genes. As described above, we 
found a single synexpression group, which comprises genes ex­
pressed in the VE at 6.5 and 7.5 dpc and in the yolk sac at 8.5 and
9.5 dpc. In addition, we defined coexpression groups for VE, 
node, and GE. Each coexpression group contains the genes that 
are expressed in the tissue in question at 7.5 dpc (Table 3), with 
the VE group containing six clones; the node group, five clones; 
and the definitive gut group, two clones. Members of a coexpres­
sion group may cooperate in the specification or function of the 
tissue in question.

METHODS

Endoderm cDNA Sequence Analysis
Clones from the Endoderm library were randomly picked and 
gridded into 384-well plates (Genetix Ltd) using an automated 
colony picker (Meier-Ewert et al. 1993). They were sequenced 
from the 3' end, vector sequence was removed, and repeats and 
regions of poor quality were masked by using PHRED (http:// 
www.phrap.org/phrap.docs/phred.html). Sequences containing 
<200 nucleotides were not analyzed further. Sequence data have 
been submitted to the EMBL database.

BLASTN (NCBI: ftp://ftp.ncbi.nih.gov/blast/executables/) 
was used to compare each sequence with two publicly available 
mouse gene data sets: the ENSEMBL gene predictions for mouse 
(version 8.3c. 1, July 12, 2002; http://w w w .ensem bl.org/ 
Mus_musculus) and the TIGR Gene Index (TIGR-Tentative Con­
sensus sequences or TCs version 8.0, June 1, 2002; http://www. 
tigr.org/tdb/tgi/mgi/). Alignments were inspected manually, and 
possible homology or novelty was further investigated by using 
BLASTP (NCBI: ftp://ftp.ncbi.nih.gov/blast/executables/). Se­
quences that failed to match an ENSEMBL gene or a TIGR TC 
were considered as potentially novel. To determine redundancy 
within the clone set, sequences that mapped to the same 
ENSEMBL predicted gene were considered redundant. Similarly, 
sequences that lacked an ENSEMBL mapping but shared the same 
TIGR TC were considered redundant. Sequences that failed to 
map to an ENSEMBL prediction or a TIGR TC were considered 
nonredundant.

RNA In Situ Hybridization
Mouse embryos were collected from CBA/Ca x  C57B110 or 
C57BL6 x C57BL6 matings at 6.5, 7.5, 8.5, and 9.5 dpc. Extra- 
embryonic membranes were removed in M2 medium (Hogan et 
al. 1994) containing 10% fetal calf serum. Embryos were fixed 
overnight in 4% paraformaldehyde (PFA) in phosphate buffered 
saline (PBS) at 4°C, after which they were dehydrated in increas­
ing concentrations of methanol in PBS and stored in 100% 
methanol at -  20°C until use. Antisense RNA probes were gen­
erated as described (Harrison et al. 1995) and whole-mount RNA 
in situ hybridization (WISH) was performed according to the 
method of Wilkinson (1992). Hybridization conditions were 
those of Rosen and Beddington (1993), except that embryo pow­
der was omitted from the procedure, and treatment with 10 mg/ 
mL proteinase K was 5 min for embryos at 6.5 to 7.5 dpc and 12 
min for embryos at 8.5 to 9.5 dpc. Embryos were processed in 
12-well plates (Costar) in 12-pm mesh nets for embryos at <7.5 
dpc, and 74-pm mesh nets for embryos at >8.5 dpc. At least three 
embryos of each stage were examined for each probe, and re­
stricted expression patterns were confirmed by an independent 
set of hybridizations. After stopping the staining reaction, em­
bryos were postfixed in 4% PFA, 0.1% glutaraldehyde in PBS for 
1 h at room temperature and stored in 0.4% PFA at 4°C. Photo­
graphs were taken by using a dissecting microscope (Nikon) and 
tungsten film (Kodak 64T). Images were digitized by using a Po­
laroid SprintScan 35 scanner.
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APPENDIX

Expression Patterns of "Restricted" cDNAs 

t82l9b01
At the mid streak stage, expression of clone t8219b01 is detected 
in the VE. Expression at later stages is restricted to the visceral 
yolk sac (VYS).

t7822bl0
At 6.0 dpc, Ptpt9 expression is restricted to the VE and later to the 
VYS. Loss of function of this gene has been reported to cause 
abnormalities of the central and peripheral nervous systems and 
of the neuroendocrine system (Elchebly et al. 1999; Wallace et al. 
1999; Batt et al. 2002).

r8220b29
At the mid streak stage, clone r8220b29 expression is detected in 
the VE (7.5 dpc). Expression at later stages (9.0 dpc) is restricted 
to the VYS.

s8609b60
At the onset of gastrulation, Sgk is strongly expressed in the VE 
overlying the nascent mesodermal wings and, more weakly, in 
the mesoderm itself. Transcripts are also detected in the VE over- 
lying the extra-embryonic ectoderm. As gastrulation proceeds, 
the latter domain of expression becomes more robust, and in the 
embryo proper, it is strongest in the regions juxtaposing the 
primitive streak. At 8.5 and 9.5 dpc, Sgk transcripts are found in 
the vasculature as well as in the eye and branchial arches. Loss of 
function of this gene reduces the ability of mice to reduce Na+ 
excretion when subjected to dietary NaCl restriction (Wulff et al. 
2002). The expression pattern of Sgk has been described by Lee 
and colleagues (2001).

m8708a09
At 6.5 dpc, Embigin is strongly expressed in the VE at the junction 
between extra-embryonic and embryonic portions of the concep- 
tus. By 7.5 dpc, expression occurs throughout the VE and, more 
weakly, in the definitive endoderm. At head-fold stages, Embigin 
transcription occurs in anterior definitive endoderm, with strong 
expression also detectable in the VE. At 8.5 dpc, transcripts are 
present in the forebrain neuroepithelium, the foregut diverticu­
lum, and the yolk sac. By 9.5 dpc, expression is strong in fore­
brain neuroepithelium (especially in the dorsal midline) and also 
occurs in the mid- and hindbrain. Transcripts are also detectable 
in branchial arches and the nephrogenic cord. The early expres­
sion pattern of this gene has been described by Shimono and 
Behringer (1999); later stages, by Fan and colleagues (1998).

v8!30bS3
At the late gastrula stage, strong expression of Slc2a3 is detected 
in the VE (7.5 dpc). Later, expression is seen in the surface ecto­
derm (8.5 and 9.0 dpc) and the VYS. As development proceeds, 
expression in surface ectoderm persists but decreases anteriorly. 
Expression in the yolk sac is still detectable at 9.5 and 10.5 dpc 
(data not shown).

t7825b42
At egg cylinder stages, mouse Spl20  is most strongly expressed in 
the extra-embryonic half of the conceptus, with only weak ex­
pression in the embryonic half, mostly in the primitive streak. At

8.5 and 9.5 dpc, robust expression is seen in the tailbud and 
presomitic mesoderm, when transcripts are also present in ven­
tral forebrain, branchial arches, and the limb buds.

s8609b24
At egg cylinder stages, expression of s8609b24  occurs in the VE 
overlying the extra-embryonic portion of the conceptus and the 
most proximal region of the epiblast. At 6.5 dpc, VE expression 
covers most of the conceptus, although it is weaker distally and 
completely absent from the most proximal region. At 7.5 dpc, 
expression persists in the progeny of the VE cells, coming to lie 
over the extra-embryonic ectoderm; transcripts are still absent 
from the most proximal VE. By 8.5 dpc, expression is confined to 
the yolk sac, but at 9.5 dpc, there is widespread, albeit weak, 
expression in the embryo proper, particularly in the forebrain, 
anterior midbrain, branchial arches, and gut.

r8316a33
mD2LIC expression is first detected in the node at the mid to late 
streak stage. Expression persists in the node at the late neural 
plate/early head-fold stage, but is reduced by the eight-somite 
stage when widespread expression is detectable throughout the 
embryo (data not shown). This widespread expression persists 
and becomes stronger in the 25-somite stage embryo. By 11 dpc, 
expression is detected in GE and the heart (data not shown).

v8!30b25
At 6.5 dpc, expression of v8130b25 is restricted to the VE over- 
lying the embryonic and extra-embryonic ectoderm. By 7.5 dpc, 
expression is observed in the node, and at 8.5 dpc, this gene is 
strongly expressed in the VYS, GE, and developing blood cells. By
9.5 dpc, expression is associated with the vasculature, heart, 
branchial arch, and brain.

r8707aS3
Expression of Claudin-6 is detectable in the forebrain, in the VYS, 
and throughout the GE from 9.0 dpc. At 9.0 dpc, expression in 
the forebrain is predominantly ventral, whereas at 9.5 dpc, it is 
mainly dorsal.

m8708a22
Calcyphosine is weakly expressed in extra-embryonic ectoderm at
6.5 dpc (data not shown). At 7.0 dpc, expression occurs through­
out the extra-embryonic ectoderm and the epiblast, with maxi­
mal expression in the node. During elongation of the streak, 
highest expression is seen in the node. At 8.5 and 9.5 dpc, ex­
pression is ubiquitous.

p7822bS3
Expression of p7822bS3 is restricted to the node of the gastrulat- 
ing embryo.

t8130bS9
Expression of clone t8130b59 is detectable in the node at 7.5 dpc 
and in the branchial arches and otic vesicles at 9.5 dpc.

t84!7bS6
At 6.5 dpc, Neuronatin is expressed weakly in the embryonic half 
of the conceptus. By 7.0 dpc, transcripts are present throughout 
the mesoderm and ectoderm, and maximal expression is then 
seen in the posterior head-folds (arrows). At 8.5 to 9.5 dpc, Neu­
ronatin expression is detectable in the ventral forebrain, bran­
chial arches, and foregut diverticulum. Forebrain expression is 
more widespread at this time, and expression also occurs 
throughout the trunk mesoderm. Expression of neuronatin at 8.5 
and 9.5 dpc has also been described by Wijnholds et al. (1995), 
who detected expression in rhombomeres 3 and 5 of the hind­
brain.

t82l9b25
Before gastrulation, weak transcription of t8219b2S  occurs 
throughout the epiblast, and this widespread embryonic expres­
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sion persists until the late head-fold stage (8.0 dpc). By 8.5 to 9.0 
dpc, expression is detected in the diencephalon and midbrain, 
with weaker expression in the hindbrain and spinal cord. At 9.5 
dpc, expression occurs in the roofplate and first branchial arch, 
with elevated expression detected in the hindbrain and anterior 
spinal cord.

w8609b57
At the onset of gastrulation, Neuroblastoma is strongly expressed 
in a single domain comprising the most proximal region of the 
egg cylinder and a proximo-distal stripe within the ectoplacental 
cone (arrow). This domain persists during head-fold stages, when 
the gene becomes weakly expressed throughout the VE and more 
strongly in the head-fold pocket, and notochord (7.5 dpc; arrow). 
At 8.5 dpc, expression is strong in notochord and ventral fore­
brain, with weak activation in the foregut diverticulum. By 9.5 
dpc, epithelial expression extends from the ventral forebrain to 
the fourth branchial arch, with transcription also occurring in 
the otic vesicle.

t7822bl9
At 6.5 dpc, Peg3 expression occurs in the anterior VE (long arrow) 
and the primitive streak (short arrow). By 7.5 dpc, expression is 
widespread in embryonic mesoderm and allantois. Loss of func­
tion of Peg3 causes growth retardation and an impairment of 
maternal behavior that frequently results in death of the off­
spring (Li et al. 1999).

k8709a24
At egg cylinder stages, Salll is expressed in the anterior and, more 
weakly, in the posterior epiblast. At head-fold stages, transcripts 
become restricted to anterior neural folds, and at 8.5 dpc, this 
expression resolves into ventral neural plate and neural groove. 
Weak expression is also seen in the branchial arch region and 
posterior trunk. At 9.5 dpc, Salll is expressed in the ventral fore­
brain, anterior midbrain, the midbrain/hindbrain boundary, 
branchial arch ectoderm, posterior trunk, and, most promi­
nently, mesonephros and presomitic mesoderm and somites. 
SALL1 is implicated in Townes-Brocks syndrome (Kohlhase et al. 
1998), and loss of function of Salll indicates that the gene is 
required for ureteric bud invasion during kidney development 
(Nishinakamura et al. 2001). Expression of Salll at 7.5, 8.5, and
9.5 dpc has been reported by Buck and colleagues (2001).

r8220b09
Expression of Silg41 occurs in the extra-embryonic ectoderm be­
fore and at the onset of gastrulation, at 6.0 to 6.5 dpc.

18l30b26
Rb-BP2 expression is restricted to the embryonic ectoderm from 
6.0-7.5 dpc. By 7.75 dpc, transcripts are strongly detectable in 
the anterior definitive endoderm as well as in the chorion and 
allantois. By 8.5 dpc, expression is restricted to the forebrain.

m8708a39
At 6.5 dpc, Lztr-1 is expressed in the epiblast and in extraembry- 
onic ectoderm and/or endoderm adjacent to the ectoplacental 
cone (arrow). At 7.5 dpc, although expression is widespread in 
the embryonic region, it is stronger posteriorly and down- 
regulated in the node. At head-fold stages, Lztr-1 expression is 
most prominent in the neural folds and nascent neural tube. At
9.5 dpc, expression is high in the forebrain, branchial arches, and 
limb buds.

s8\29bS8
At the onset of gastrulation, Pancortin-1 and/or -3 is expressed at 
the junction between embryonic and extra-embryonic portions 
of the conceptus, with higher levels anteriorly. As gastrulation 
proceeds, expression occurs in the amnion and chorion and be­
comes widespread within the embryo proper. During somatogen- 
esis (8.5 dpc), expression becomes restricted to rhombomere 4 
(arrow), to the junction between the diencephalon and mesen­

cephalon, and to anterior and posterior portions of trunk mes­
enchyme. At 9.5 dpc, spotty expression is detectable in the mid­
brain in the earliest differentiating neurons. Expression also oc­
curs in the olfactory placodes and in some cranial ganglia. 
Expression in the limb buds is initially widespread but becomes 
restricted to posterior regions as development proceeds. Expres­
sion of the closely related genes Noelin 1 and 2  at 10.5 dpc has 
been described by Moreno and Bronner-Fraser (2002). The ex­
pression pattern they describe is similar, although not identical, 
to that described in this article at 9.5 dpc.

k8220b03
At 7.5 dpc, Shrm expression is detected throughout all embryonic 
tissues. Particularly strong expression occurs in the rostral region 
of presomitic mesoderm and later in the most posterior somites. 
Weaker expression is detected in the neural epithelium at 8.5 
dpc. Somitic expression persists in older embryos, particularly in 
cells giving rise to ventral sclerotome. At 9.5 dpc, there is weak 
expression in the brain. Loss-of-function experiments indicate 
that Shroom, an actin-binding protein, is required for neural 
tube morphogenesis (Hildebrand and Soriano 1999).

r8220bS7
Expression of Tif-1 (3 is restricted to the advancing primitive 
streak at 7.5 dpc, and later at 9.0 dpc, it is strongest in the tailbud, 
presomitic mesoderm, nascent somites, branchial arches, and 
limb buds.

r83!9a44
Expression of 14-3-3 a is detected at the onset of gastrulation (6.5 
dpc) and up to late streak stages (7.5 dpc) in the extra-embryonic 
ectoderm and ectoplacental cone. At the onset of gastrulation, 
transcripts are localized to the apical surface of cells (arrow). At 
somites stages (8.5, 9.5 dpc), expression occurs in surface ecto­
derm precursors along the distal edges of the neural folds and 
then, briefly, in a thin line above the neural tube. Expression is 
observed in branchial arches.

k8709a20
14-3-3 e is ubiquitously expressed at 6.5 dpc but is then down- 
regulated such that by 7.5 dpc, transcripts are barely detectable. 
At 8.5 dpc, weak expression occurs in the forebrain and heart. At
9.5 dpc, forebrain expression is prominent, together with strong 
expression in the midbrain and branchial arches. These observa­
tions complement work by McConnell and colleagues (1995), 
which has analyzed expression of 14-3-3 e from 8.5 dpc and 
found that expression is high in neural tissue by 12.5 dpc.

k8710a07
Nsa2p is expressed throughout the epiblast and extraembryonic 
ectoderm at 6.5 dpc. At 7.5 dpc, it continues to be expressed in all 
internal cell layers of the conceptus. By 8.5 and 9.5 dpc, expres­
sion is strongest in the branchial arches, neural tube, and, par­
ticularly, the forebrain. Low-level expression also occurs 
throughout the lateral mesoderm.

t82l9b26
Expression of Ubp7 is detected in the extra-embryonic ectoderm 
at the onset of gastrulation (6.5 dpc) and in the primitive streak 
and emerging mesoderm during gastrulation (7.5 dpc). At 7.75 
and 9.5 dpc, widespread expression occurs in some mesodermal 
derivatives.

p8224a43
An example of a "widespread" cDNA. Expression is ubiquitous 
but occurs at different levels in different tissues.

t8!30b2S
An example of a "widespread" cDNA. Expression is ubiquitous 
but occurs at different levels in different tissues.
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mitboi
An example of a "ubiquitous" cDNA Expression is completely
ubiquitous in both embryonic and extra-embryonic tissues.
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