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Abstract

Bioinformatics methods have become central to analysing and organising the 

sequence data continually produced by new and existing sequencing projects. The field 

of bioinformatics covers both the static aspects of organising and presenting these raw 

data, by compiling existing knowledge into accessible databases, ontologies, and 

libraries; and the more dynamic aspects of knowledge discovery informatics for 

interpreting and mining existing data. The aim of this thesis is to utilise such methods to 

analyse the herpesvirus-host relationship.

In Chapter 2 comparative host and herpesvirus genome analysis is used to 

compare the sequences of all currently sequenced herpesvirus open reading frames to 

the conceptually translated human genome with the aim of identifying herpesvirus- 

human (host) sequence homologues. Collating in one search all currently known host 

homologues provides the first complete assessment of herpesvirus-host homologues. 

This search identified 55 previously identified herpesvirus-host homologues, and 4 

previously unknown herpesvirus-host homologues.

The work performed in Chapter 2 highlighted the need for consistent annotation 

of genomes and gene products to allow greater comparative genomics. It is not feasible 

to manually curate large numbers of genes whose relationships to each other are not 

immediately clear. Therefore, Chapters 3 and 4 focus upon the use of the Gene 

Ontology; a resource that is made publicly available for the purpose of annotating gene 

products with unified vocabulary derived from a structured directed acyclic graph. The 

Gene Ontology was extended to allow host-pathogen interaction annotation by a) 

adding 187 new terms relating specifically to virus function and structure (Chapter 3), 

and b) using both the new and existing terms to annotate the entire Human Herpesvirus 

1 genome using references from the available literature (Chapter 4).

Finally, Chapter 5 examines the utility of the Gene Ontology when analysing 

such large-scale host and herpesvirus gene expression datasets as produced 

experimentally by DNA microarray studies. Using such automated annotation methods 

a cluster of 12 proteins were identified that increase mitochondrial function in HUVEC 

cells 24 hours post HCMV infection. A cluster of nine proteins that function in the 

MAPK pathway were also identified using the Gene Ontology that provide evidence for 

HCMV inhibition of the MAPK pathway.

2



TABLE OF CONTENTS

ABSTRACT 2

LIST OF FIGURES 7

LIST OF TABLES 9

LIST OF ABBREVIATIONS 10

1.0 INTRODUCTION 12

1.1 Viral Bioinformatics 12

1.2 The Search for Homology 12
1.2.1 Homology, Homoplasy, Orthology, Paralogy, and Xenology 13

1.3 Sequence Alignment 14
1.3.1 Pairwise Alignments Algorithms 14

1.3.1.1 Needleman-Wunsch Algorithm 14
1.3.1.2 Smith-Waterman Algorithm 15

1.3.2 Substitution Matrices 17
1.3.2.1 Dayhoff Mutation Data (MD) Amino Acid Substitution Matrices 17
1.3.2.2 Blocks Substitution Matrices (BLOSUM) 19

1.3.3 Multiple Alignments 19
1.3.3.1 Position Specific Scoring Matrices (PSSMs) 20

1.3.4 Scoring Functions 21

1.4 Data Sources 21
1.4.1 Primary Sequence Database: GenBank 23
1.4.2 Compilation Sequence Databases 23

1.4.2.1 SWISS-PROT/TrEMBL 23
1.4.2.2 InterPro 24

1.4.3 Genome Sequencing Projects 25
1.4.4 Viral Databases 25

1.4.4.1 Secondary Sequence Database: VIDA -  (Virus DAtabase) 25
1.4.4.1.1 Homologous Protein Families (HPF) 26

1.5 Gene and Genome Annotation 32

1.6 Herpesviridae 33
1.6.1 Genome Configuration 33
1.6.2 Herpesvirus Life Cycle 33
1.6.3 Herpesviruses and Their Host Genomes 35
1.6.4 Herpesvirus Subfamilies 35

1.6.4.1 Alphaherpesvirinae 36
1.6.4.2 Betaherpesvirinae 36
1.6.4.3 Gammaherpesvirinae 36

1.6.5 Human Herpesviruses 36

3



1.7 Aims 38

2.0 IDENTIFICATION OF NEW HERPESVIRUS GENE 
HOMOLOGUES IN THE HUMAN GENOME 39

2.1 Introduction 39
2.1.1 The BLAST Suite 41

2.1.1.1 BLAST 41
2.1.1.2 Gapped-BLAST 43
2.1.1.3 PSI-BLAST 43
2.1.1.4 IMPALA 45

2.1.2 Scoring Functions 46
2.1.2.1 BLAST Statistics 46

2.1.3 The Human Genome Project 47

2.2 Methods 49
2.2.1 Initial data sets 49
2.2.2 Construction of motif position specific scoring matrices 49
2.2.3 Construction of a herpesvirus protein dataset at the 95% identity level 50
2.2.4 Singleton Proteins 50
2.2.5 Database searches and sequence analysis 52

2.3 Results 54
2.3.1 Validating the Results 54

2.3.1.1 ENSEMBLHits 54
2.3.1.2 Initial Results 56
2.3.1.3 Search Statistics 58
2.3.1.4 IMPALA versus BLASTP 61

2.3.2 Herpesvirus proteins with human homologues 62
2.3.2.1 Human Xenologous proteins of human herpesvirus proteins 68

2.3.3 Identification of new virus-human homologues 73
2.3.3.1 HHV-5 US21 73
2.3.3.2 HHV-5 UL1 75
2.3.3.3 GaHV-1 UL45 78
2.3.3.4 HHV-8 K3/K5 81

2.4 Conclusion 85

3.0 NEW VIRAL ADDITIONS TO THE GENE ONTOLOGY 88

3.1 Introduction 88
3.1.1 The Gene Ontology 88
3.1.2 Adding new virus-related terms to the gene ontology 90

3.2 Methods 93
3.2.1 New Viral GO Terms 93
3.2.2 Visualisation 93
3.2.3 Data Availability 93

3.3 Results 94
3.3.1 Assigning New GO Terms (placing them in the ontologies) 94

3.3.1.1 Accuracies 94

4



3.3.1.2 Redundancy 95
3.3.1.3 Overlapping 95
3.3.1.4 Placement Errors 96
3.3.1.5 Maintaining the true path rule 102
3.3.1.6 Use of sensu 102
3.3.1.7 Refining terms 107

3.4 Conclusion 112

4.0 ANNOTATION OF HERPESVIRUS GENE PRODUCTS 
USING THE GENE ONTOLOGY 113

4.1 Introduction 113
4.1.1 Annotating HHV-1 with Gene Ontology terms 113
4.1.2 Human Herpesvirus 1 (HHV-1; Herpes Simplex Virus 1, HSV-1) 114

4.2 Methods 115
4.2.1 HSV-1 annotation dataset 115
4.2.2 GO FINDER 115
4.2.3 Literature Based Curation 116
4.2.4 GO Term Assignments 116
4.2.5 Data Availability 116

4.3 Results 118
4.3.1 Annotating HHV-1 using GO terms 118

4.3.1.1 GO FINDER 118
4.3.1.2 Manual Annotation 128
4.3.1.3 Using the ‘Unknown’ GO Term 129
4.3.1.4 Evidence Codes 129

4.3.2 Conferring GO annotations to other Herpesviruses using VIDA’s
HPF structure 138

4.3.2.1 Annotating Herpesviruses with GO Numbers by sequence
homology using VIDA 138

4.4 Conclusion 141

5.0 ANALYSIS OF HOST-VIRUS INTERACTION MICROARRAY 
DATA USING THE GENE ONTOLOGY 143

5.1 Introduction 143
5.1.1 Microarrays 143
5.1.2 Human Herpesvirus 1 (HHV-5; Human Cytomegalovirus, HCMV) 144
5.1.3 Mapping Microarray Data onto the Gene Ontologies 145

5.2 Methods 146
5.2.1 HHV-1 Microarray Data Presentation 146
5.2.2 Statistical Preparation of Microarray Data 146

5.2.2.1 Data Source 146
5.2.2.2 Assigning GO Numbers to Array Genes 147
5.2.2.3 Log Transforming Data 147
5.2.2.4 Filling Missing Data Points 147
5.2.2.5 CLUSTER and TREEVIEW 148

5



5.2.2.6 Normalising the Data 148
5.2.2.7 Organising the Data in Self-Organising Maps (SOMs) 149
5.2.2.8 Hierarchical Clustering of Data 149

5.2.3 Biological Pathway Visualisation 150

5.3 Results 151
5.3.1 Using GO * s DAG framework to analyse microarray data 151

5.3.1.1 Time dependent expression of HSV-1 using the Gene Ontology 151
5.3.1.2 Expanding Microarray Data Analysis 152
5.3.1.3 Contradictions in the Microarray Data 153

5.3.2 Re-annotation of Existing Analysed Microarray Data with GO 
Numbers 157

5.3.2.1 Existing Clusters 157
5.3.2.1.1 Mitochondrial Genes 157

5.3.2.2 DAG Structure Defined Clusters 163
5.3.2.2.1 Apoptosis Genes 163

5.3.2.3 Using Additional Resources in Combination with GO 164
5.3.2.3.1 LocusLink and KEGG 164

5.3.2.4 GO Term Defined Clusters 170
5.3.2.4.1 Chemotaxis/MAPK Genes 170

5.4 Conclusion 180

6.0 DISCUSSION 183

7.0 APPENDIX A: NEW(*) AND EXISTING VIRAL GENE 
ONTOLOGY TERMS 186

8.0 APPENDIX B: EVIDENCE CODES AND REFERENCES 
FOR HHV-1 GENE PRODUCT ANNOTATIONS 203

9.0 BIBLIOGRAPHY 217

6



LIST OF FIGURES

FIGURE 1.1 MULTIPLE LOCAL ALIGNMENTS 16

FIGURE 1.2 PAM250 SUBSTITUTION MATRIX 18

FIGURE 1.3 BLOSUM62 SUBSTITUTION MATRIX 18

FIGURE 1.4 A POSITION SPECIFIC SCORING MATRIX (PSSM) 22

FIGURE 1.5 AN OVERVIEW OF THE VIDA ALGORITHM 29

FIGURE 1.6 BUILDING HOMOLOGOUS PROTEIN FAMILIES 29

FIGURE 1.7 BUILDING VIDA 30

FIGURE 1.8 AN ONLINE VIEW OF AN HPF 31

FIGURE 2.1 A SCHEMATIC REPRESENTATION OF N-REPS 51

FIGURE 2.2 A SUMMARY OF THE HUMAN-HERPESVIRUS HOMOLOGUE

SEARCH 53

FIGURE 2.3 AN EXAMPLE OF ENSEMBL PROTEINS FROM BLASTP

OUTPUT 55

FIGURE 2.4 DISTRIBUTIONOF BSHs FOUND PER METHOD 63

FIGURE 2.5 HUMAN HERPESVIRUS PROTEINS WITH HUMAN

HOMOLOGUES 69

FIGURE 2.6 BSH DISTRIBUTION BETWEEN THE THREE HUMAN

HERPESVIRUS SUBFAMILIES 70

FIGURE 2.7 THE HHV-5 US12 FAMILY ALIGNMENT TO THREE

POTENTIAL HUMAN HOMOLOGUES 76

FIGURE 2.8 ALIGNMENT OF HHV-5 UL1 TO MEMBERS OF THE CEA

FAMILY 77

FIGURE 2.9 ALIGNMENT OF GaHV-1/2 UL45 WITH RCMV, HUMAN AND

GaHV-2 EQUIVALENTS 80

FIGURE 2.10 THE SPATIAL DIFFERENCES BETWEEN RING, PHD/LAP,

AND BKS FINGER MOTIFS 83

FIGURE 2.11 THE ALIGNMENT AND POSITIONING OF THE BKS MOTIF

IN VIRAL AND HUMAN PROTEINS 84

FIGURE 3.1 THE STRUCTURE OF THE GENE ONTOLOGY AND ITS

TERMS 92

FIGURE 3.2 ACCURACY, REDUNDANCY, PLACEMENT, & OVERLAP

WITHIN THE GENE ONTOLOGY 98-101

FIGURE 3.3 EXAMPLES OF TRUE PATH RULE VIOLATIONS 104-105

7



FIGURE 3.4 EXAMPLE OF SENSU USAGE IN VIRAL TERMS 106

FIGURE 3.5 SUBSECTIONS OF THE BIOLOGICAL PROCESS DAGs WITH

INTEGRATED VIRAL TERMS 108-111

FIGURE 4.1 GO FINDER 117

FIGURE 4.2 THE PARENT-CHILD RELATIONSHIP OF INTERPRO

FAMILIES 121

FIGURE 4.3 NUMBER OF HERPESVIRUS ORFs ANNOTATED BY

HOMOLOGY 139

FIGURE 5.1 GRAPHICAL REPRESENTATION OF DAG WITH TIME

DEPENDENT GENE PRODUCT ANNOTATIONS 154-156

FIGURE 5.2 EXAMPLES OF PROBE ANNOTATION 158

FIGURE 5.3 EXPRESSION OF MITOCHONDRIAL GENES INCREASED IN

TOLEDO INFECTED HUVEC 158

FIGURE 5.4 EXPRESSION OF MITOCHONDRIAL GENES INCREASED IN 

TOLEDO INFECTED HUVEC WITH GO TERM 

ANNOTATIONS 159

FIGURE 5.5 ADDITIONAL GENES FOUND WITH INCREASED EXPRESSION 

AFTER INFECTION WITH TOLEDO IN HUVEC 160-161

FIGURE 5.6 APOPTOSIS-RELATED TERMS ORGANISED WITHIN THE

BIOLOGICAL PROCESS DAG 165

FIGURE 5.7 GENES ANNOTATED TO APOPTOSIS GO TERMS FROM THE

VIRUSES ARRAY DATA 166-167

FIGURE 5.8 THE APOPTOSIS CLUSTER GENES SUPERIMPOSED UPON

THE KEGG APOPTOSIS PATHWAY 168-169

FIGURE 5.9 GENES INVOLVED IN CHEMOTAXIS 171

FIGURE 5.10 GENES INVOLVED IN THE MAPK PATHWAY 172

FIGURE 5.11 THE MAPK SIGNALING PATHWAYS 175-176

FIGURE 5.12 EXPRESSION LEVELS OF PROTEINS INVOLVED IN THE

MAPK PATHWAYS 176-177

FIGURE 5.13 SCHEMATIC REPRESENTATION OF CELLULAR

TRANSCRIPTION FACTOR BINDING SITES IN THE HCMV- 

I.E. PROMOTER ENHANCER REGION 179

FIGURE 5.14 GENE CLUSTERS DETERMINED BY CHARACTERISTICS

NOT FOUND IN THE GENE ONTOLOGY 182

8



LIST OF TABLES

TABLE 1.1 COMPLETE GENOMES/ORGANELLES IN NCBI ENTREZ

GENOMES 28

TABLE 1.2 SELECTION OF VIRUS DATA DATABASES 28

TABLE 1.3 HUMAN HERPESVIRUSES AND THEIR DISEASE

ASSOCIATIONS 37

TABLE 2.1 INITIAL VIDA STATISTICS 57

TABLE 2.2 RAW DATA SEARCH STATISTICS 59

TABLE 2.3 BREAKDOWN OF RAW HITS BY SUBFAMILY COMPOSITION 59 

TABLE 2.4 BIOLOGICALLY SIGNIFICANT HITS STATISTICS 63

TABLE 2.5 HERPESVIRUS-HUMAN XENOLOGUES 65-67

TABLE 4.1 GOFINDER BASED ANNOTATION STATISTICS 120

TABLE 4.2 GO FINDER RESULTS 122-127

TABLE 4.3 HSV-1 GENOME GO ANNOTATION 130-136

TABLE 4.4 GENE ONTOLOGY EVIDENCE CODES 137

TABLE 4.5 PERCENTAGES OF COMPLETE HERPESVIRUS GENOMES

ANNOTATED WITH GO TERMS 140

TABLE 6.1 PREVIOUS AND FUTURE WORK RELATING TO THIS

THESIS 185

9



LIST OF ABBREVIATIONS

AIHV alcelaphine herpesvirus
ATF activating transcription factor
BCL-2 B-cell lymphoma protein-2
BKS bovine, KSHV, swinepox
BLAST basic local alignment search tool
BLASTP BLAST for proteins
BLOSUM blocks substitution matrix
BoHV bovine herpesvirus
BRCA1 breast cancer protein 1
BSH biologically significant hit
CATH class, architecture, topology, homologous superfamily
CCHV channel catfish herpesvirus
CEA carcinoembryonic antigen
CeHV cercopithecine herpesvirus
CLN ceroid liporfuscinosis
CNS central nervous system
CRD carbohydrate recognition domain
CRE cAMP responsive element
CREB CRE binding
CVS Concurrent Versions System
CXCR4 chemokine (C-X-C motif) receptor 4
DAG Directed Acyclic Graph
DDBJ DNA Data Bank of Japan
DUSP (aka MKP) dual specificity phosphatase
dUTP Z-deoxyuridine 5’-triphosphate
EBI European Bioinformatics Institute
EBV Epstein-Barr virus
EC enzyme classification
EHV equine herpesvirus
EMBL European Molecular Biology Laboratory
ERK extracellular-signal regulated kinase
EST expressed sequence tag
FADD FAS associated death domain
FAS fatty acid synthase
FGARAT formylglycineamide ribonucleotide aminotransferase
FTP file transfer protocol
GaHV gallid herpesvirus
GO Gene Ontology
GPS1 G protein pathway suppressor 1
GXD Gene Expression Database
HCCS holocytochrome c-type synthetase
HCMV human cytomegalovirus
HHV human herpesvirus
HMM hidden markov model
HPF Homologous Protein Family
HSP high-scoring segment pair
HSV herpes simplex virus
HUVEC human umbilical vein endothelial cell
HVS saimiriine herpesvirus
ICAM intracellular adhesion molecule

10



ICTV International Committee for Taxonomy of Viruses
IE immediate early
JNK Jun N-terminal kinase
KEGG Kyoto Encyclopedia of Genes and Genomes
KNN K nearest neighbour
KSHV Kaposi's sarcoma herpesvirus
MAPK mitogen activated protein kinase
MCMV murine cytomegalovirus
MDM mutation data matrix
MeHV meleagrid herpesvirus
MEKK/MAPKKK mitogen activated protein kinase kinase kinase
MGD Mouse Genome Database
MHC major histocompatibility complex
MHV murine herpesvirus
MKK/MEK/MAPKK mitogen activated protein kinase kinase
MRP mitochondrial ribosomal protein
MSP maximal seqment pair
NADH nicotinamide adenine dinucleotide
NCBI National Center for Biotechnology Information
NFkB nuclear factor of kappa light polypeptide gene enhancer in B-cells
NK natural killer
NLM National Library of Medicine
OMIM Online Mendelian Inheritance in Man
ORF open reading frame
PAM point accepted mutation
PML promyelocytic leukemia
PSG pregnancy-specific glycoprotein
PSI-BLAST position specific iterated BLAST
PSSM position specific scoring matrix
PTM post-translational modification
RaHV ranid herpesvirus
RCMV rat cytomegalovirus
SaHV salmonid herpesvirus
SGD Saccharomyces Genome Database
SMART simple modular architecture research tool
SOM self-organising map
TAIR The Aribidopsis Information Resource
TK thymidine kinase
TNFR tumour necrosis factor receptor
TRAF TNFR associated factor
TrEMBL translated EMBL
UL unique long
US unique short
vFLIP viral FLICE Inhibitory protein
VIDA virus database
vlL-10 viral interleukin 10
VZV Varicella-Zoster virus
XML extensible markup language

11



1.0 Introduction

1.1 Viral Bioinformatics

Virology has often been a driving force behind advances in biological understanding: 

for example, virology was the first discipline to become post-genomic with the full 

sequence of bacteriophage MS2 becoming available in 1976 (Fiers, Contreras et al. 

1976), and the sequence of Simian Virus 40 being completed in 1978 (Fiers, Contreras 

et al. 1978). Since then 1278 viral genome sequences have been discerned (Entrez Viral 

Genomes: 30 April 2004), of which 32 are herpesviruses, including all eight human 

herpesviruses (Arrand, Rymo et al. 1981; McGeoch, Dolan et al. 1985; Chee, Bankier et 

al. 1990; Russo, Bohenzky et al. 1996; Dargan, Jamieson et al. 1997; Dolan, Jamieson 

et al. 1998; Davison, Dolan et al. 2003); (Davison and Scott 1986; Gompels, Nicholas et 

al. 1995) (NC_000898; NC001716). Deposited viral genome sequences are also 

updated and corrections to existing records are made, often with new insights. Such was 

the case with the recent comparison of wild-type human herpesvirus 5 (human 

cytomegalovirus; HCMV) with the close relative chimpanzee cytomegalovirus 

(Davison, Dolan et al. 2003). This study discounted 51 previously putative HCMV 

proteins, modified 24 and proposed 10 novel genes. Such co-linear base-by-base 

genome comparison, even with genomes of relatively small sizes, was previously 

impossible without the use of computers. Therefore, even this level of computer based 

analysis produces defined changes in virology knowledge.

1.2 The Search for Homology

Searching for sequence or structural based homology is one of the areas of research that 

is most efficiently accomplished using bioinformatics tools. Homology is a measure of 

similarity linking ancestral conservation of structure, sequence and function. By 

searching for homology between two proteins, relationships between 

sequences/structures can be determined, and function inferred.
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1.2.1 Homology, Homoplasy, Orthology, Paralogy, and Xenology

Sequence similarity searches of databases with a defined sequence are designed to 

identify sequence relatives and thereby infer homology. Many sequence alignment 

programs are currently available such as BLAST (Altschul, Gish et al. 1990), PSI- 

BLAST (Altschul, Madden et al. 1997), or IMPALA (Schaffer, Wolf et al. 1999), to 

search reference databases such as GenBank (Karsch-Mizrachi and Ouellette 2001).

Homology has become a ubiquitous definition when studying two or more sequences in 

reference to each other; and as a term, is often used inappropriately to indicate that two 

sequences share similar characteristics. However, two sequences can only be 

homologous if they both inherited their shared characteristics from the same common 

ancestor(Page and Holmes 1998).

Alternatively, homoplasy describes the independent acquisition of similar features by 

two unrelated sequences, otherwise known as convergent evolution. Homology is often 

misused because it is difficult to determine whether two similar sequences are 

homologous or homoplasious without prior knowledge of their common ancestor. Thus, 

homology is inferred when the two sequences are closely related, whereas two 

sequences that appear more distantly related, yet share common characteristics at the 

sequence level, are difficult to categorise.

There are three subcategories of homology, depending upon inheritence. Orthology is 

homology shared by two genes that resulted from a speciation event. Paralogy is the 

result of gene duplication after speciation, the two resulting genes being paralogous, 

The hemoglobin gene family is a classic example of paralogy (Gribaldo, Casane et al.

2003).

The final type of homology that is often seen in viral context, is xenology. This 

describes homology acquired by horizontal gene transfer. Thus, the viral oncogene, v- 

src, that was acquired from an avian ancestor, shares xenology with the avian 

equivalent, c-src.
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In virology, homology detection has been used to infer functional properties of related 

viral genes to host genes and of host function to viral genes (Holzerlandt, Orengo et al. 

2002).

1.3 Sequence Alignment

A protein is encoded by sequences of amino acids, their order effecting its molecular 

structure and function. Those amino acids vital to function are conserved creating 

recognisable unique patterns or motifs of amino acids that can be directly related to 

protein function. These motif patterns can be searched for within a sequence database 

using a query sequence as a template. There are a variety of programs available that can 

search for individual protein matches (pairwise alignments), multiple protein matches 

(multiple alignments), functional domain homology (local alignment) or protein 

homology (global alignment); each is equipped with a variety of algorithms to deal with 

such issues as amino acid insertion, deletion, or substitution.

1.3.1 Pairwise Alignments Algorithms

Two proteins can share homology across their entire length. This is a ‘global’ alignment 

and is usually indicative of a shared evolutionary history, as well as shared function, 

(i.e. homology). More commonly, regions of similarity within two sequences are 

detected. This ‘local’ alignment is indicative of two proteins that have similar functions 

(such as kinase activity) limited to areas or ‘domains’ of the protein sequence. 

Algorithms have been designed to look for global alignments (Needleman-Wunsch) and 

local alignments (Smith-Waterman) between two sequences.

1.3.1.1 Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm (Needleman and Wunsch 1970) is an algorithm that 

finds the optimal global alignment between two sequences by searching for the 

maximum number of residues from one sequence that can be matched to another while 

allowing for all possible deletions/insertions. Introducing a gap penalty (a penalty 

induced by the insertion of a gap into the alignment) into the scoring system inhibits 

arbitrary gap insertions. The two sequences (of lengths x and y) are aligned in a two- 

dimensional matrix with the beginning of the alignment being represented by cell (1,1)

14



and end of the alignment being represented by cell (x, y), signifying a global alignment. 

Scores are accumulated along the diagonals of the grid. All alignment algorithms can be 

used with a residue scoring substitution matrix (see below). The advantage of dynamic 

algorithms, such as the Needleman-Wunsch, is they calculate all possible permutations 

in order to guarantee that the alignment found is indeed optimal.

The disadvantage of this method is that it cannot detect local areas of similarity between 

multidomain proteins where only a subset of domains match. Three-dimensional 

structural analysis of proteins reveals the domain nature of proteins and suggests protein 

domains are an evolutionary unit (Ponting and Russell 2002; Teichmann 2002; Vogel, 

Berzuini et al. 2004). Such evolution of domains by processes of domain shuffling or 

swapping highlights a need for methods that identify regions of local similarity within 

and between proteins.

1.3.1.2 Smith-Waterman Algorithm

Smith and Waterman devised an algorithm that looks for regions of local sequence 

similarity between two sequences by reducing the accumulated score through long 

regions of dissimilarity to a negative score (Smith and Waterman 1981). Like 

Needleman-Wunsch, the Smith-Waterman algorithm uses a two-dimensional matrix, 

but in this case each cell potentially represents the beginning or end of a region of local 

alignment. In order to emphasize regions of similarity, matches are positively scored 

and accumulated through the matrix along diagonals, mismatches are given a negative 

score. Thus if any cell’s score becomes negative, it is replaced with a default 0, 

indicating the end of an alignment. The advantage of this algorithm is that accumulation 

of scores can be calculated for every cell in the matrix to detect more than one region of 

local sequence similarity between two multidomain proteins (Figure 1.1).
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Sequence B

domain

Sequence A

Figure 1.1 Multiple Local Alignments. Local alignment algorithms can be used to discover 
more than one region o f local similarity between multidomained sequences. Sequence A and B 
share two regions o f similarity (in red and yellow) which are found by tracing back all high 
scoring cells through the matrix until a 0 is met.
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1.3.2 Substitution Matrices

Aligning two sequences (as described above) uses a scoring function that looks only for 

occurrences of residue identity (i.e. matching two identical sequences at similar 

positions). In reality, substitutions of one amino acid for a similar amino acid result in 

occurrences of residue similarity. Evolutionary pressures allow those substitutions that 

do not adversely affect the function of the protein to occur far more readily than those 

that do. Thus, the probability of a certain amino acid substitution occurring within a 

sequence is a direct result of its phenotypic affect upon the protein, and the genetic code 

itself (Higgins and Taylor 2000). These probabilities can be incorporated into 

substitution matrices that weight specific amino acid substitutions with scores that 

reflect their probability of occurrence in nature. The two most popular substitution 

matrices are the MD or PAM, and BLOSUM matrices.

1.3.2.1 Dayhoff Mutation Data (MD) Amino Acid Substitution Matrices

The mutation data matrix (MDM) is based upon the evolutionary unit of time the Point 

Accepted Mutation (PAM) (Dayhoff, Schwartz et al. 1978). One PAM is the amount of 

evolutionary time it would take to change, on average, 1% of the residues in a protein. 

To estimate the relatedness of two proteins, Dayhoff used the common ancestor method 

by taking two 85% identical present day sequences and deducing the sequence of the 

common ancestor by building phylogenetic trees and inferring the most likely ancestor 

at each node. This allows the calculation of the number of PAMs (substitutions) per 

sequence pair of either: the two present day sequences, or one present day sequence and 

its ancestor. Each substitution is counted twice as it can never really be known whether 

residue 1 mutated to residue 2 or vice versa. PAM matrices are symmetrical (ie Leucine 

(L)-> Valine (V) is given the same score as Valine (V)-> Leucine (L) as similarity is 

considered a symmetrical concept (Valdar and Jones 2003).

The PAM 1 matrix, therefore, indicates how likely one amino acid will be substituted to 

another over the period of 1 PAM. It is easy to calculate the scores for PAM (n) 

matrices by simply raising each score to the power of (n); this is necessary to compare 

sequences that do not share much sequence similarity (ie are quite distantly
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C S T P A G N D E Q H R K M I L V F w Y
c 12
s 0 2
T -2 1 3
P -3 1 0 6
A -2 1 1 1 2
G -3 1 0 -1 1 5
N -4 1 0 -1 0 0 2
D -5 0 0 -1 0 1 2 4
E -5 0 0 -1 0 0 1 3 4

Q -5 -1 -1 0 0 -1 1 2 2 4
H -3 -1 -1 0 -1 -2 2 1 1 3 6
R -4 0 -1 0 -2 -3 0 -1 -1 1 2 6
K -5 0 0 -1 -1 -2 1 0 0 1 0 3 5
M -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6
1 -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5
L -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 6
V -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4
F -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9
W 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 17
Y -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 10

Figure 1.2 PAM 250 Substitution M atrix. This substitution matrix can be used when aligning two 
sequences that share as little as 20% sequence homology. A positive score indicates a more likely 
replacement, a negative score a less likely replacement. Probability o f  such a replacement increases 
with score. The scores from each amino acid pair are summed together to produce a final score for the 
alignment. The higher the score the better the alignment.

C s T P A G N D E Q H R K M I L V F W Y
c 9
s -1 4
T -1 1 4
P -3 -1 1 7
A 0 1 -1 -1 4
G -3 0 1 -2 0 6
N -3 1 0 -2 -2 0 6
D -3 0 1 -1 _2 -1 1 6
E -4 0 0 -1 -1 -2 0 2 5

Q -3 0 0 -1 -1 -2 0 0 2 5
H -3 -1 0 -2 -2 -2 1 1 0 0 8
R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5
K -3 0 0 -1 -1 -2 0 -1 1 1 -1 2 5
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5
I -1 -2 -2 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4
L -1 -2 -2 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4
V -1 -2 -2 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6
W -2 -3 -3 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 11
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 2 7

Figure 1.3 BLOSUM 62 Substitution M atrix. The m ost com m only used BLOSUM  matrix based 
upon blocks o f  protein family multiple alignments that share an average o f  62% sequence 
homology. The scores from each am ino acid pair are summed together to produce a final score for 
the alignment. The higher the score the better the alignment.
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related). The PAM 250 (Figure 1.2) matrix is frequently used in alignment algorithms as 

its scores can be applied to sequences that share as little as 20% similarity, i.e. 

sequences that are separated by 250 PAMs (250 substitutions per 100 amino acids).

1.3.2.2 Blocks Substitution Matrices (BLOSUM)

Henikoff and Henikoff developed the BLOcks Substitution Matrices (BLOSUM) in 

order to create more empirically scored matrices (Henikoff and Henikoff 1992). Unlike 

the MDMs, BLOSUM matrices do not rely upon an evolutionary model to derive 

substitution rates. Instead, BLOSUM matrices are derived from families of proteins 

that share a known function and thus sequence motifs (Blocks). This is achieved by 

counting the number of amino acid substitutions found in the Blocks taken from the 

BLOCKS database (Henikoff, Henikoff et al. 1999; Henikoff, Greene et al. 2000). The 

BLOCKS database is constructed by searching for regions of high amino acid 

conservation within protein family multiple alignments; these regions are stored as 

Blocks in the database. Each block is distinguished by the average percentage sequence 

identity shared between its members. Thus, the BLOSUM 62 (Figure 1.3) matrix is 

derived from a multiple alignment of sequences that share 62% sequence identity, 

giving the matrices an evolutionary context; it is the most commonly used of the 

BLOSUM matrices. Unlike the MDMs, it is not possible to multiply the BLOSUM (n) 

matrix to obtain the BLOSUM (x) matrix. Each matrix must be derived from a multiple 

alignment of sequences that share a defined percentage of residue identity.

1.3.3 Multiple Alignments

Pairwise alignments using algorithms such as the Smith-Waterman or the Needleman- 

Wunsch can only find homology between two sequences that are relatively well 

conserved at either a local or global level. When sequence similarity drops to below 

approximately 25% in proteins it becomes difficult to distinguish true negatives from 

distantly related family members (Orengo 2003). However, distantly related members 

of a protein family often retain certain structural or funtional features in their sequence 

that are evolutionarily significant, and explain their presence in the same protein family. 

Multiply-aligning a number of sequences simultaneously and statistically scoring their 

shared similarities can build a descriptive two-dimensional definition of a protein 

family. These definitions can then be used to identify more distantly related proteins.
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One such multiple alignment method is the Position Specific Scoring Matrix (PSSM). 

Whereas Blocks based BLOSUM matrices condense the information within many 

multiple alignments into a given scoring matrix, PSSMs build a scoring matrix per 

multiple sequence alignment.

1.3.3.1 Position Specific Scoring Matrices (PSSMs)

A PSSM records the frequency and position of conserved residues within a multiple 

sequence alignment (Figure 1.4). A PSSM can be built from a multiple alignment of 

related sequences, usually found through a series of pairwise alignment matches, or as 

the result of a multiple alignment program.

A two-dimensional matrix: the length of the sequences by the number of sequences in 

the group, is built from the multiple alignment. Each position in the matrix records 

either an amino acid or a gap character. Gaps are often considered as a 21st letter of the 

amino acid alphabet to aid in the computation of statistics. A PSSM records the 

likelihood of a particular residue occurring at a particular position in the sequence. This 

can be calculated and weighted in conjunction with a substitution matrix, but is also 

dependent upon conditions such as: whether all of the residues in a column are identical, 

or if not, the number of independent observations that occur in each column (ie the 

number of different amino acids that occur in the column). Independent observations are 

based upon the assumption that each unique amino acid present in a column is the result 

of a point mutation at that position during the family’s evolution. Each PSSM method 

differs slightly, but most will also take into account the global sequence similarity of 

each sequence to the others, in order to avoid a biased score matrix.

The PSSM scoring matrix that results (known as the PSSM) is of the dimensions: length 

of query sequence by number of amino acids + gap character (i.e. 21). Thus, instead of 

using a similarity matrix which simply records the probability of residue A being 

replaced by residue B over time (such as BLOSUM62), a PSSM calculates the 

probability of residue A being replaced by residue B at position N in a given multiple 

sequence alignment (1 protein family) over time.
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1.3.4 Scoring Functions

When searching a database with an alignment program each result is accompanied by a 

score indicating its statistical significance. Every alignment program uses its own 

scoring function, and these will be described on a program by program basis.

1.4 Data Sources

With the increase in production of biological sequence data comes an increase in the 

necessity for efficient storage and search facilities. Avoiding redundancy and providing 

public access to such data are two important aspects that need to be considered when 

developing and maintaining storage facilities.

Available primary research data is stored in a variety of databases that range from 

literature resources such as Pubmed (NCBI), to biological sequence data stores such as 

GenBank (Karsch-Mizrachi and Ouellette 2001), EMBL (Kulikova, Aldebert et al. 

2004), DDBJ (Miyazaki, Sugawara et al. 2004). Three principal methods exist for 

organising biological sequence data into primary, secondary or compilation databases. 

Primary databases store primary sequence information for nucleic and/or amino acid 

sequences. They receive their sequences from a number of sources from individual 

submitters to genome sequencing projects. Many primary databases perform low level 

curation, for example by classifying their entries according to their reliability (eg. 

annotated sequences vs. conceptual translations). Secondary databases analyse and 

organise primary sequence data using their own algorithms. There are a large number of 

secondary databases already in existence, the reliability of each database depending 

upon the methods used to build it, its quality of annotation, and the frequency of its 

sequence updates. Compilation databases collate data from a number of different 

primary and secondary sources for convenient user access.
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..AKGHITQTPITYITPY. . . .. FA... species 1

..AKGDLTMTPLYGITPY___ . FA... species 2

..AKGYITQTPKERITPY I .FA... species 3

..AKGGITMTPP . . . TPY___ . FA... species 4

..AKGSLTMTPRIPITPY___ .FA.. species 5

..AKGHITQTPIREITPY. . . ..FA.. species 5

amino acid
TOTAL:

sequence 
position number

G A P

>- IN SE R T IO N

Figure 1.4 A Position Specific Scoring Matrix (PSSM). The multiple alignment above can also be 
represented in a simple PSSM by recording the frequency o f  residue occurrence at each position in the 
alignment. By looking at the totals o f  each position (to the right o f the matrix) the positions o f  the gap in 
species 4 (highlighted in green), and the insertion in species 3 (highlighted in blue) can be identified. This is 
merely a simple representation o f  a PSSM; PSSM calculations most often include scores for each position 
based upon some form o f similarity matrix and gap penalties.
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1.4.1 Primary Sequence Database: GenBank

GenBank (Karsch-Mizrachi and Ouellette 2001), is a publicly accessible primary 

database that stores nucleic and amino acid sequences with accompanying 

bibliographical and biological annotation. It is maintained by the NCBI, a division of 

the National Library of Medicine, on the National Institute of Health campus in the 

USA. GenBank, in conjunction with DDBJ (DNA Data Bank of Japan) and EMBL 

(European Molecular Biology Laboratory; accessible from the British outstation EBI: 

European Bioinformatics Institute) maintains the largest repositories of biological 

sequence data in the world. The three databases consolidate daily by exchanging new 

sequence submissions thereby keeping all three synonymous and up-to-date.

The bulk of GenBank is populated from EST projects, but also by public submission 

from authors, individual labs, large sequence projects, genome survey sequencing 

(GSS), the US Patents and Trademarks Office (USPTO), and other high-throughput data 

produced by various sequencing centres.

GenBank is composed of 39 billion nucleotide bases from 33.7 million different 

sequences, approximately 33% of which are of human origin (25% of all sequences of 

human ESTs) (release 141, 15 April 2004). There are currently over 130,000 species 

represented in GenBank and new species sequences are being added at a rate of 1100 

per month.

1.4.2 Compilation Sequence Databases

1.4.2.1 SWISS-PROT/TrEMBL

The SWISS-PROT protein database (Boeckmann, Bairoch et al. 2003) is maintained by 

the Swiss Institute of Bioinformatics (ExPASy) and the EBI, and is a compilation 

database that draws together amino acid sequence information with experimental results 

and information from the literature to provide a comprehensive overview of all relevant 

data relating to a protein entry. Unlike many compilation databases that are publicly 

available, SWISS-PROT supplies high quality manual annotation for each entry, using 

standardised nomenclature officiated by international committees where possible and 

controlled vocabularies elsewhere. In addition to compiling data into easily
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decipherable records, SWISS-PROT provides direct links to specialised databases, 

including cross-references to such resources as the originating DNA sequences from 

GenBank/EMBL/DDBJ, 2D and 3D protein structure databases, a variety of protein 

domain and family characterisation databases, species-specific projects, variant and 

disease databases and post-translational modification (PTM) databases (Boeckmann, 

Bairoch et al. 2003). SWISS-PROT accommodates all species but focuses upon the 

human genome and other model organisms. SWISS-PROT contains over 149,914 

sequence entries with information cross-referenced from 66 different databases (release 

43.2, 24 April 2004).

It is difficult for a manual curation databases such as SWISS-PROT to keep pace with 

the high volume of sequence data being produced, therefore, the TrEMBL (translation 

of EMBL) has been developed as a computationally annotated counterpart to SWISS- 

PROT. It is derived from translations of all coding sequences in EMBL that are not 

already in SWISS-PROT, and like SWISS-PROT, then computationally maps to 

additional online resources. TrEMBL also includes new protein sequences from 

publication and sequences submitted by the public and currently contains over 

1,065,889 sequences (release 26.2).

1.4.2.2 InterPro

The Integrated Documentation Resource of Protein Families, Domains, and Functional 

Sites (InterPro) (Mulder, Apweiler et al. 2003) is maintained by the European 

Bioinformatics Institute. InterPro is a compilation database that brings together into a 

single resource the information from ten protein signature databases: SWISS-PROT 

(Boeckmann, Bairoch et al. 2003), PRINTS (Attwood, Bradley et al. 2003), TrEMBL 

(Boeckmann, Bairoch et al. 2003), Pfam (Bateman, Coin et al. 2004), PROSITE (Hulo, 

Sigrist et al. 2004), ProDom (Servant, Bru et al. 2002), SMART (Letunic, Copley et al.

2004), TIGRFAMs (Haft, Selengut et al. 2003), PIR SuperFamily (Huang, Barker et al. 

2003), and SUPERFAMILY (Gough, Karplus et al. 2001). InterPro contains 

information about protein families, conserved sequence domains, repeats and 

translational modification sites, providing an interface for protein pattern analysis.

InterPro contains approximately 10709 entries, with over 2411 domains, 8035 families, 

197 repeats, 26 active sites, 20 binding sites, and 20 post-translational modifications
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(release 7.2, 29 March 2004). Updates are scheduled every two months. The database 

is built by processing flat files from source databases and merging the information to 

form InterPro records. Overlapping domains, signatures, profiles or families are 

integrated into one entry and given a unique accession number (taking the form: 

IPR123456) (Mulder, Apweiler et al. 2003). Proteins that have no identifiable 

counterparts in other source databases are assigned their own InterPro entries and 

accession number.

1.4.3 Genome Sequencing Projects

Genome sequencing projects are providing an increasing number of complete genome 

and organelle sequences to public repositories, with virus genome sequences comprising 

49% of the total (Table 1.1). As complete host genome sequences become available, 

such as the human genome, completed in April 2003 (NIH-Newsroom 2003), further 

research into the host-virus relationship can be undertaken.

1.4.4 Viral Databases

The large amount of viral data available has seen an increase in the number of websites 

and databases that specialise in their organisation (Table 1.2). These databases are a 

combination of secondary and compilation resources, providing access to sequence data 

using their own algorithms and content formats. Resources that supply viral data 

accompanied by initial sequence analysis can provide useful bases from which to 

conduct further virus research.

1.4.4.1 Secondary Sequence Database: VIDA -  (Virus DAtabase)

VIDA is a secondary database that processes animal virus open reading frames (ORFs) 

from GenBank for a given virus family and organises them by homology into 

homologous protein families (HPFs). The current release, VIDA 2.0, is populated with 

all viral open reading frames in GenBank release 130 (last VIDA update: 19 August, 

2002) from Arteriviridae, Coronaviridae, Herpesviridae, Papillomaviridae, and 

Poxviridae. Users can search pre-compiled libraries for proteins of interest, by HPF 

number, virus name, protein function (or functional class as designated by VIDA), 

GenBank number, free text, or by using their input query sequence. Links to the
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complete genome sequences for Arteriviruses, Coronaviruses, Herpesviruses, and 

Poxviruses are provided where available. VIDA is populated by a defined algorithm 

(Figure 1.5). Viral data are parsed from GenBank records, which are filtered to extract 

only the open reading frames (ORFs) from a given virus family. HPFs are constructed 

using the PSCBuilder algorithm and additional data pertaining to the viral genomes and 

ORFs are acquired from external databases: CATH (a Protein Structure Classification 

Database) and the ICTV (International Committee of the Taxonomy of Viruses). Each 

HPF is then represented by a table, which includes links to SWISS-PROT, TrEMBL, 

and each ORF’s complete genome record where appropriate (Figure 1.8).

1.4.4.1.1 Homologous Protein Families (HPF)

The HPF (Figure 1.6) results from the VIDA algorithm. HPFs are constructed using 

MKDOM/XDOM (Gouzy, Eugene et al. 1997; Gouzy, Corpet et al. 1999), which 

identifies conserved amino acid motifs within a protein using the local multiple 

alignment program BLASTP (Altschul, Gish et al. 1990). Once these motifs are 

identified in all ORFs from a given virus family (for example, Herpesviruses), the ORFs 

are clustered into protein families according to shared motifs (Figure 1.7) by the VIDA 

specific program PSCBuilder. The HPF is the lowest common grouping possible within 

VIDA as subgroups within HPFs are not formed. HPFs can be defined by more than 

one motif as long as all members of the family contain the same defining motifs. Each 

HPF is annotated with a functional description and functional class derived from a 

combination of GenBank records and manual curation and can contain proteins from 

any or all of a virus family’s subtaxonomies (i.e. subfamily).

In some instances, no homology to other ORFs within the chosen virus family can be 

found. These ‘singleton’ proteins are still included in the database and displayed in an 

identical fashion to the other HPFs, but contain only a single protein entry.

An example of an HPF (family 308) that has three members all involved in gene 

expression regulation is shown in Figure 1.8. The functional descriptions in VIDA 

include a representative gene name, in this case, immediate early regulatory protein, 

HHV-1 US1. Along with links to each ORF’s FASTA format sequence and SWISS- 

PROT/TrEMBL entries, each HPF includes a link to the conserved motif alignment(s)
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that define each HPF (Figure 1.8b). This alignment can be retrieved in FASTA 

sequence format (Figure 1.8c). In some instances HPFs contain several proteins from 

the same virus species. This is due to the existence of proteins from different strains or 

to the presence of more than one copy of the gene in the virus genome. Those sequences 

retrieved from GenBank that share 100% sequence identity are noted and only one is 

included in the HPF table, a link beneath the table indicates the details of the other 

redundant sequences. Some virus genes have determined 3D structures, which are also 

linked to the HPF table.
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Table 1.1 Complete Genomes/Organelles in NCBI Entrez Genomes1,2
Organism Type Number of Complete Genomes
Eukaryota Genome 20

Organelles3 556
Plastids 35
Plasmids 14

Nucleomorph Genome 1
Archaea Genome 18

Plasmids 23
Bacteria Genome 154

Plasmids 501

Viruses 1287
1 Source: http://www.ncbi.nlm.nih.gov/entrcz/Querv.fcgi?db=Genome 
230 April 2004
3Mitochondria & Chloroplasts

Table 1.2 Selection of Virus Data Databases1
Database Contents Location Reference

HIV Database

Influenza
Sequence
Database

Hepatitis C 
Virus Database

IAH Virus 
Pages

VIRGO (Viral
Genome
Office)

VIDA (Virus 
Database)

Viroid and 
viroid-like 
Sequence 
Database

Sequences, alignments, 
immunology, drug 
resistence,vaccines

Sequences, 3-D  tools

Sequences, sequence analysis 
tools

Sequences, alignments, 
documentation (Animal 
Pathogenic Viruses)
Complete genom es and protein 
sequences, orthologous clusters 
(Poxviruses, Herpesviruses) 
Homologous protein families, 
alignments (Herpesviruses, 
Poxviruses, Papillomaviruses, 
Coronaviruses, Arteriviruses) 
Sequence, RNA secondary 
structure prediction

Los Alamos 
National 
Laboratory, 
USA
Los Alamos
National
Laboratory,
USA
Roseau
National
Hepatites,
France
Institute for
Animal Health,
UK
University o f
Victoria,
Canada

University 
College 
London, UK

Universite de
Sherbrooke,
Canada

(Kantor, Machekano et al. 2001)

(Macken, Lu et al. 2001)

http://hepatitis.ibpc.fr

http://www.iah.bbsrc.ac.uk/virus/

(Hiscock and Upton 2000)

(Alba, Lee et al. 2001)

(Lafontaine, Mercure et al. 1997)

'Adapted from (Kellam and Alba 2002)

28

http://www.ncbi.nlm.nih.gov/entrcz/Querv.fcgi?db=Genome
http://hepatitis.ibpc.fr
http://www.iah.bbsrc.ac.uk/virus/


S tru c tu ra l re la tives

S earch  C A TH  
dom ain  profiles 
w ith  IM PA LAE x trac tio n  tools 

keyw ord p a rs in g  
E n trez  a t N C B I

V isualisa tion  tools 
w eb pages, query  
facilities

C o n stru c tio n  o f 
hom ologous 
p ro te in  fam ilies 
(H P F s)

X D O M , pro te in  
c lu stering

Pro tein  functiona l 
an d  taxonom ical 
classification

M anual function  
an n o ta tio n , 
taxonom y by IC TV

Sequence
source
G enB ank

v iru s
p ro te in
sequences

D ata-
en rich ed
H PFs

Figure 1.5 An overview of the VIDA algorithm. VIDA, as a secondary 
database retrieves its source data from a primary database, GenBank, and 
performs further computational processes on the new data. VIDA also integrates 
further details from other databases to maximise the quality o f  its annotation.

m s e  w Homologous 
Protein Family 1

Function 1

Homologous 
Protein Family 2

Function 2

Figure 1.6 Building homologous protein families. Once MKDOM has identified all 
conserved regions for all relevant ORFs, PSCBuilder (Mar Alba) groups the proteins 
into HPFs according to conserved shared motifs. HPFs can be defined by more than 
one conserved motif, but each member o f the family must contain all defining motifs 
as in the case o f  Homologous Protein Family 2 above which is defined by two 
conserved motifs.
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HPFs:

3 singletons

MKDOM/ 
XDOM

VIDA

Figure 1.7 Building VIDA. Viral sequences from GenBank (1) are 
processed using two programs MKDOM and XDOM, which identify 
all conserved domains within a set o f  sequences and order the 
proteins according to their domain composition (2). PSCBUILDER 
then groups these proteins into Homologous Protein Families (HPFs) 
according to the maximum number o f  domains shared (3) (all 
members o f  a family must contain at least one instance o f  each HPF 
conserved region(s) but may contain more domains not shared by 
other members). Each HPF is defined by at least one conserved 
region, but can be defined by more (4); those proteins that are not 
allocated to HPFs (defined by having at least 2 member proteins) are 
classed as singletons within the database. Collectively these HPFs 
populate VIDA (5).
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VIDAH erpesviridae hom o lo g o u s pro tein  fam ilies 3,
Family 308 

protein 3

Function: immediate early regulatory protein, HHV-1 US1

fasta protein swissprottrembi length conserved  
region 1 virus subfamily virus name gene name

EMBL
(with
links)

1.aLlfil5Z3S4 Q8V72B 373 71-372 Aljjhaherpesvirinae cercopithecine 
herpesvirus 1 US1 AB0744.32

? m 1RRRFH4 P39474 413 118-412 Alphahemesvirinae
human
herpesvirus 2/ 
simplex 2

unk ZB6Q99

3.ai 59559 P04485 420 122-419 Alphaherpesvifinae
human
herpesvirus 1/ 
simplex 1

unk X14112

Get all complete protein seq u en ces

S ee  other protein entries with identical seq u en ce

New search

Sequence alignm en t:

gi_18157354(71-372) 
g i_1869884(118-412) 
g lIS 9 5 5 9 (122-419)

RPRQIRIHIRLV3SPDRRAGWEPES RGTRSS PGAEAPPPEG-HPRSERRAP 121
KSKRPRIVLRLTSS PDRRAGWFPEWRSDRPIRAAQ P Q AP A- S IP GIAHAHRRSARQ AQ 176 
RPKRARWLRLTSSPDRRDGTirPKHGRV-RSTRETQPRAPTPSAPSPHAHLRRSyRQAQ 180

I g i_181S7354(71-372) 
gi_1869884(118-412) 
g l_59559(122-419)

PARSER VE LD L P YHRRSIHQHFR L LRRS AD PHGAAHR LRRLIRD SYLHGYTRRRLE P GHB 181 I
HRS GAA8TLD LHYIRQCVHQ L FRILRAAPK P PGSABRLRHL VRD CYLHGTCRTRLGPRTS 236
RRS SARHTPD LGTHRQC IRQ L FRVLRVARD PHG3AHR LRHL IRD CYLHGYCRARLAPRTW 240

gi_181573S4(71-372) 
g i  1869884(118-412) 
g i  59559(122-419)

SHHLOVGGGR-APRLRHVIEGWSDVGDEGG-1LAL P P S PREHHGV ACDHGHTD S SDD DD 239
(»LLQISGGTBDVRLRHAIREVEAHFEPAAEPVCELPCISARRTGPECDVGSLFI¥  292
CRLLQV3GGTVGKHLRCTTREVEARPDATAEPVCKLPCLETRRYGPECDL3ILEIH  296

g i  18157354(71-372) 
gi_1869884(118-412) 
gx 59559(122-419)

RLGL3DPDTIDDSDATLESDAEGATPSGSEDPHTPSGTAAIGAPRGVATD&ASAADAPRS 299
-GGSTSDDEI------------- SDATD--------- 3DDTLA-SH3DTEGGP3PAGREFPE3ASGG-A 336
-LSATSDDEI------------- SDATD LEAAGSDHTLA-SQSDTEDAPSPVTLETPE PR—G-S 343

gi_18157354(71-372) 
g i_1869884(118-412) 
g i_59559(122-419)

LTSRLEKEFAAFDVTSDEGSQPVLSSVYADTSSAERRRADSPGPRREKDTP GSCRRH 356
lAARLECEFGTFDtlTSEEGSQPVLSAWADTSSAERSGLPAPGACRATEAPEREDGCRKH 396 
LAVRLED E FGZ FDBTP QEGS Q P¥L SAWADTSSVERP GP 3D S GAGR1AEDRKC LD GCRKH 403

gl_18157354(71-372) 
gi_1869884(118-412) 
gi_59S59(122-419)

RFPTTC PTPCGfTITLR 372 
RfPAACPTPCGHITLR 412 
RFSTACPYPCSDTFLR 419

You can  a ls o  g e t  th e se  sequences

>gl_I8I57354(7i-372)
RPRQIRIHIRLVSSPDRRAGW rPESRGTRSSPGAEAPPPEGHPRSERRAPRARNEPBELDLPYHRRSINQHFRLLRRSADPHGAANRLRRLI 
RD SYLHGYTRRRLE PGIWSHHL QVG&GRAFRLRHVIE GWSDVGDE GGI LAL P P S PREHHGVACDHGHTD SSDDDDRL&LSD PDTIDD SDATL 
E SDAEGATP S GSED PHTP 3 GTAANGAPR GVATD GAS AAD APRS LTSRLEKE FAAFDVTSDE GS Q PWL S S W A D TS S AERRRAD 3 P G PRREKDT 
PGSCRRHRFPTTCPYPCGHTFLR 
>gi_1869884(118-412)
KSKRPRIHLRLTS S PDRRAGW FPE VWRSDRP IRAAQ P QAP AS L P G I AHAHRRS AR QAQMRS GAAWTLD LHYIRQ CVNQ L F R I LRAAPHP P GS 
AMR LRHL VRD CYLHGYCRTRLGPRTHGRLLQISGGTHDVRLRNAIRrVEAHFEPAAEPVCELPCLHARRYGPECDVGHLETNGGSTSDDEISD 
ATDSDDTLASHSDTEGGPSPAGRENPESASGGAIAARLECErGTFDWTSEEGSQPWLSAWADTSSAERSGLPAPGACRATEAPERED GCRKH 
RFPAACPYPCGHTTLR 
>gi_59559 (122-419)
RPKRARVNLRLTSSPDRRDGVirPKHGRVRSTRETQPRAPTPSAPSPHAHLRRSVRQAQRRSSARWTPDLGYHRQCIHQLFRVLRVARDPHGS 
ANR LRHL IRD  CYLHGYCRARLAPRTHCRLLQVSGGTHGHHLRimREVEARPDATAEPVCKLPCLETRRYGPECDLSHLEIHLSATSDDEISD 
ATDLEAAGSDHTLASQSDTEDAPSPVTLETPEPRGSLAVRLEDEFGEFDBTPQEGSQPWLSAWADTSSVERPGPSDSGAGRAAEDRKCLDGC 
RKHRrSTACPYPCSDTELR c

Figure 1.8 An online view o f an HPF. a) Each HPF lists the functional class in which it is placed 
(by VIDA curators) along with the general function o f the member proteins and an example protein. 
Each member protein is listed with links to its fasta sequence, SWISS-PROT/TrEMBL entry, and 
complete genome entry (where available). Beneath the HPF table are links to protein sequences that 
were not included in the HPF due to redundancy at the 100% sequence identity level with an existing 
member; a complete fasta formatted list o f  all member proteins; and where available, a link to any 
protein structures associated with the HPF. b) An alignment o f the conserved regions that define the 
HPF can be obtained; including a fasta format version (c).
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1.5 Gene and Genome Annotation

Using sequence alignment to confer knowledge from one protein to another can only be 

accomplished if there is sufficient structural/functional knowledge available about one 

of the two proteins. Thus, high-quality sequence data annotation is important for 

bioinformatics research, to ensure that the information conferred is appropriate, and to 

avoid the perpetuation of incomplete or inaccurate annotations. Bioinformatics is also 

capable of handling large datasets, containing information from multiple genes, 

pathways, organisms and species. In order to process these data most efficiently, 

uniform methods of annotation are necessary to ensure that data are organised and 

cross-comparable.

Such machine-readable annotation requires defined and delimited vocabularies, and 

controlled use of the vocabularies. A number of ontologies and vocabularies have been 

developed that aim to unify annotation. Databanks and Encyclopedias such as the 

ENZYME data bank (Bairoch 2000), or the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Kanehisa, Goto et al. 2004) collate and organise gene products and genomes, 

and assign, in the case of the ENZYME data bank, EC (Enzyme Classification) numbers 

to each enzyme function. These EC numbers can be applied to enzymes from any 

species, allowing genes from different species with the same enzymatic function to be 

annotated and easily compared. Similarly, the Gene Ontology (Harris, Clark et al. 

2004); (Ashbumer, Ball et al. 2000; Consortium 2001) organises three annotation 

ontologies that structure biological processes, molecular functions, and cellular 

components (locations) to allow gene products from any species to be appropriately 

annotated. The descriptional terms within the Gene Ontology are organised in an 

hierarchical manner into Directed Acyclic Graphs (DAGs), similar to trees, that allow 

for relationships between gene products to be studied.

The ability to handle large datasets has allowed the study of genomics to embrace 

technology that can capture the gene expression pattern (transcriptomics), or the protein 

content (proteomics) of a cell at a given moment in time. The development of 

microarrays allows for thousands of gene expression levels to be studied 

simultaneously. Some array studies simply characterise expression profiles, looking at 

the entire expression profile and listing genes that have been up- or downregulated at 

certain timepoints in the genome’s replication cycle. It is also perfectly valid to study
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only subdivisions of the dataset by using clustering methods to group together genes 

with similar expression patterns. Integration of functional genomics data with gene and 

protein functional meta data will undoubtedly increase the utility of microarrays.

1.6 Herpesviridae

The Herpesviridae virus family consists of large, enveloped, DNA virus members. 

Believed to co-evolve with their hosts, they appear to be ubiquitous, as most vertebrate 

animal species examined thus far have evidence of infection by at least one herpesvirus; 

130 species have been identified to date (International Committee on Taxonomy of 

Viruses; ICTV). Herpesvirus family members have a viral core comprised of a linear, 

double-stranded DNA genome, surrounded by an icosadeltahedral capsid approximately 

100-1 lOnm in diameter comprising 162 capsomers. The capsid is in turn encompassed 

by an amorphorous material called the tegument, which contains a number of viral 

proteins. A host derived trilaminar-membrane envelope, embedded with glycoproteins, 

encloses the entire structure (Epstein 1962).

1.6.1 Genome Configuration

While linear in the virion, the herpesvirus genome immediately forms a closed circular 

viral-episome upon entry to the host cell nucleus. The herpesvirus genome codes for 

approximately 70-120 open reading frames (ORFs), except in the case of 

cytomegaloviruses where the genomes can encode for up to 220 ORFs. There are 26 

genes (known as the herpesvirus core genes) that are conserved across all members of 

the herpesvirus family. These are contained within seven core genome blocks (blocks 

A-G) that are found in various orders and orientations in each herpesvirus species. 

Within the seven blocks, which contain between 2-12 genes, the order, function and 

polarity of the genes is conserved. While varying between subfamilies, the block order 

(and therefore gene order) is usually conserved at the level of the genera (Roizman and 

Pellet 2001).

1.6.2 Herpesvirus Life Cycle

Herpesviruses are differentiated from other viruses by their ability to remain latent in 

their natural hosts. When the virus enters latency, its genome adopts an episomal
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configuration, and the period is characterised by a lack of infectious viral progeny. The 

latent genome, however, can be reactivated to produce infectious progeny at any time 

although it is not clear what triggers reactivation.

When reactivation occurs, the virus enters into the lytic cycle; the production of 

infectious progeny eventually leading to the destruction of the infected cell. During the 

lytic cycle, herpesvirus replication is recogniseable by the synthesis of viral DNA and 

capsids in the host cell nucleus. Capsids are then enveloped as they bud through the 

nuclear membrane (Vlazny, Kwong et al. 1982), although the immature particle is 

reported to undergo de-envelopment as it travels through the outer nuclear membrane 

and re-envelopment in the cytoplasm as it egresses the cell (Skepper, Whiteley et al. 

2001).

It is clear that most viral ORFs are important in the activation and maintenance of the 

lytic replication cycle, however, a subset of viral ORFs are expressed and function 

predominantly during the latent cycle. Herpesviruses also, like other large DNA 

enveloped viruses (Poxviridae), encode their own enzymes responsible for protein 

processing, DNA synthesis, and nucleic acid metabolism. Numbers (and types) of 

enzymes may vary between species, but their presence in the genome sets herpesviruses 

apart from many other virus families (Roizman and Pellet 2001).
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1.6.3 Herpesviruses and Their Host Genomes

Many of the genes encoded by herpesviruses are enzymes involved in nucleotide 

repair/metabolism, DNA synthesis, and protein processing, however, a number of 

proteins encoded by herpesvirus genomes are involved in host-virus interactions. 

Herpesviruses often attempt to overcome complex immune responses by interfering or 

mimicking host response pathways to effect viral immune evasion (Ploegh 1998). A 

number of homologues shared between herpesviruses and their designated hosts have 

already been discovered (Damania and Desrosiers 2001; Hughes 2002) (McGeoch 

2001) (Raftery, Muller et al. 2000) (Davis-Poynter, Degli-Esposti et al. 1999) (Davis- 

Poynter and Farrell 1996). These genes are thought to have been acquired by 

herpesviruses from their hosts over the course of herpesvirus evolution for the purpose 

of genome replication and immune evasion, the prevalence of homologues among 

herpesvirus subfamilies indicating the approximate evolutionary time of acquisition. It 

has been estimated that immune evasion genes compose >50% of large DNA virus 

genomes (herpesviruses and poxviruses) (Alcami and Koszinowski 2000). Once 

acquired, these genes perform a wide range of functions including interfering with 

cellular and humoral host immune responses, infected cell apoptosis, and interferon, 

chemokine and cytokine activity. This is in addition to the regulatory control over 

cellular transcription and translation machinery exacted by the virus.

1.6.4 Herpesvirus Subfamilies

The herpesvirus family is divided into three subfamilies based upon biological 

properties determined before comprehensive genomic information was available. These 

subfamilies are further divided into genera according to more subtle genome 

differences. The three subfamilies, Alphaherpesvirinae, Betaherpesvirinae, and 

Gammaherpesvirinae, are defined by their differences in cellular tropism (for lytic and 

latent cycles), replication cycle length and efficiency, and disease manifestation 

(Armstrong, Pereira et al. 1961; Asher, Heller et al. 1969; Arvanitakis, Geras-Raaka et 

al. 1997). There also exist a number of herpesviruses isolated from ectothermic (cold

blooded) animals that have been classified within the family due to their highly 

conserved virion structure similarities; however, within the family they remain 

unclassified as further genomic similarities have yet to be established.
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1.6.4.1 Alphaherpesvirinae

The Alphaherpesviruses are characterised by their variable host range, and latent 

infection occurring primarily in the sensory ganglia. They have short reproductive 

(lytic) cycles in vitro, and thus spread rapidly in culture, efficiently destroying infected 

cells. Genera: simplex viruses, Varicellovirus, Marek’s disease-like virus, and infectious 

laryngotracheitis-like virus.

1.6.4.2 Betaherpesvirinae

The betaherpesviruses have a more restricted host range and longer reproductive cycle 

ex vivo, leading to a slower progress in culture. Latency can be maintained in cells from 

secretory glands, kidneys, lymphoreticular cells, and other tissues. Infected cells 

frequently become enlarged and form cytomegalia. Genera: cytomegalovirus, 

muromegalovirus, and roseolovirus.

1.6.4.3 Gammaherpesvirinae

The gammaherpesviruses have variable reproductive cycles in lymphocytes and in some 

instances also replicate in epithelial, endothelial, and fibroblastic cells. Usually T or B 

lymphocyte specific, latent virus infection can frequently be found in lymphoid tissues. 

Gammaherpesviruses are associated with lymphoproliferative disease and tumors in 

immunocompromised hosts. Genera: lymphocryptovirus, and rhadinovirus.

1.6.5 Human Herpesviruses

To date, eight human herpesviruses have been discovered (Table 1.3), three alpha 

herpesviruses, three betaherpesviruses, and two gammaherpesviruses.
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Table 1.3 Human herpesviruses and their Disease Associations
Sub
family

Genus ICTV
name

Medical Name Disease

alpha Simplex virus 

Simplex virus 

Varicello-virus

H H V -lf

HHV-2

HHV-3

Herpes-simplex virus 
(HSV-1)
Herpes-simplex virus 
(HSV-2)
Varicella-Zoster virus 
(VZV)

Oropharangeal herpes (cold sores) 
Genital herpes 
Genital herpes

Varicella (chickenpox)
Zoster (shingles)

beta Cytomegalo
virus
Roseolo-virus
Roseolo-virus
Roseolo-virus

HHV-5

HHV-6A
HHV-6B
HHV-7

Human cytomegalovirus 
(HCMV)

CMV-mononucleosis 
CMV disease
Exanthem subitum (sixth disease) 
Exanthem subitum (sixth disease) 
Exanthem subitum (sixth disease)

gam m a Lymphocrypto
-virus

Rhadino-virus

HHV-4

HHV-8

Epstein-Barr virus (EBV)

Kaposi’s sarcoma- 
associated herpesvirus 
(KSHV)

Infectious mononucleosis 
Nasopharyngeal carcinoma 
Burkitt’s lymphoma 
Classical Hodgkin’s lymphoma 
Kaposi’s sarcoma 
Primary effusion lymphoma 
Multicentric Castleman’s disease

fHHV: human herpesvirus



1.7 Aims

As sequencing projects provide increasing numbers of complete genomes it is important 

to take advantage of the available information and conduct searches for viral-host 

homology. In order to be able to efficiently administer and analyse the large amount of 

data these searches manipulate, it is necessary to have consistent annotation to allow 

cross-comparison between different species. Such annotation could then be used to 

conduct further analysis upon existing host-viral interaction data. The aims of this thesis 

are to: 1) find and catalogue host-herpesvirus homologues in an entire host genome; 2) 

provide consistent and concise annotation of an entire viral genome; and 3) to use such 

an annotation system to study host-pathogen interaction microarray data.
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2.0 Identification of new herpesvirus gene homologues 
in the human genome

2.1 Introduction

Large DNA viruses, such as herpesviruses, may contain up to a few hundred open 

reading frames (ORFs) and among the proteins they encode it is possible to distinguish 

between those that have essential viral functions, such as genome replication and capsid 

assembly, and those that are involved in direct interaction with the host, effecting 

immune evasion, cell proliferation, and apoptosis control (Ploegh 1998). Many of the 

latter genes are likely to have been acquired from the host, to mimic or block the 

corresponding normal cellular functions (Moore, Boshoff et al. 1996; Alcami and 

Koszinowski 2000; McFadden and Murphy 2000). Identifying and understanding the 

functions of such ’acquired’ viral proteins, should lead to a greater understanding of the 

co-ordinate range of host pathogen interactions and could lead to the development of 

therapeutic strategies to combat persistent herpesvirus infection.

Herpesviruses persist and replicate their genomes in the nucleus, and over the course of 

their evolution have acquired host genes (Chaston and Lidbury 2001), possibly by 

retrotransposition (Brunovskis and Kung 1995). Most of these acquired genes are 

located in regions outside the five gene blocks common to all herpesvirus genomes. 

Previous work has identified a set of 26 open reading frames that are conserved across 

all herpesviruses (McGeoch and Davison 1999; Alba, Das et al. 2001a). The remaining 

herpesvirus genes are either present in all members of a virus subfamily, a subset of 

viruses in a subfamily, or are unique to a particular virus. Many of these potentially 

important proteins, however, remain functionally ill-defined.

One approach for the identification of virus proteins that interfere with the host system 

is to search for homologous ORFs (xenologues) in the host genome. Until recently, the 

fraction of host genome sequence data available for analysis, and the quality of 

annotation of such data, has limited the identification of such homologues. The 

publication of the draft of the human genome and conceptual translated products 

(IHGSC 2001) enables us to conduct, for the first time, a comprehensive assessment of 

homologous proteins between a host vertebrate genome and viral ORFs.
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Herpesviruses have co-evolved with their hosts, and many of their genes were acquired 

from common ancestors before speciation events led to a diversification in herpesvirus 

host range. Those such as DNA polymerase, and uracil DNA-glycosylase, are found in 

every member of the family, and were therefore acquired early in herpesvirus evolution. 

Others, such as the the chemokine receptors in HHV-5 (UL33, UL78), and MCMV 

(M33, M78), and vIL-10 in HHV-4 (BCRF-1), CeHV-8 (cercopithecine herpesvirus 8; 

UL111A), and EHV-2 (IL-10 gene) demonstrate acquisition after subfamily division 

and speciation have occurred, perhaps in separate acquisition events (Spriggs 1996; 

Dairaghi, Greaves et al. 1998; Alcami and Koszinowski 2000; Kotenko, Saccani et al. 

2000; Lalani, Barrett et al. 2000; Tortorella, Gewurz et al. 2000) (Hughes 2002).

The prevalence of these acquired genes among a number of herpesvirus species, and 

their often identifiable sequence similarity using various sequence similarity methods 

(Montague and Hutchison 2000; Alba, Das et al. 2001a) indicates that many of them 

are viral orthologues of each other. It should, therefore, be possible to search one 

representative host genome, such as the human genome, to find evidence of xenology 

across all herpesviruses (including non-human herpesviruses) that resulted from a 

horizontal gene transfer between a common host ancestor and a common virus ancestor. 

This indicates that it would be reasonable to search the human genome not only with 

human herpesvirus ORFs, but also those of other host specificity. Given the size and 

complexity of the human genome compared to the relative simplicity of the virus, such 

a search may well yield new information about ORFs from different herpesviruses; 

likewise, it could be possible to aid annotation of the newly sequenced human genome 

using knowledge from other studied herpesvirus species where gene products have a 

defined function.

There are two methods particularly applicable to mass analysis of sequence databases. 

The first involves searching of individual protein sequences against a database using 

pairwise sequence comparison algorithms. Viral proteins, however, are subject to high 

mutation rates and that may cloud or mask true homology. A second, more sensitive 

approach is to search databases with amino acid sequence motifs that are conserved 

between related proteins. Motifs can be defined as regions of amino acid sequence that 

are more highly conserved than the rest of the protein due to functional constraints. An 

accurate representation of such motifs can be obtained by constructing Position Specific
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Scoring Matrices (PSSMs) that store the frequency of occurrence of different amino 

acids that comprise the motif.

The most rigorous methodology, therefore, is to use both methods, for a number of 

reasons. First, as pairwise comparisons have been used to discover most, if not all, of 

the known sequence-based viral-host homologues, the method should act as a good 

positive control: the minimum number of homologues this method is expected to yield 

would be all currently recognised human herpesvirus-human sequence-based 

homologues. Pairwise comparisons, however, examine the similarity of two sequences 

to each other, therefore, the probability that a pairwise alignment has achieved a 

significant score by chance increases with the length of either protein and the size of the 

database(s) being searched. Thus, the results from this method are expected to include 

far more false positives than those yielded from the more rigid PSSM method. By using 

both methods, the validity and accuracy of each method can be compared, possibly 

highlighting one method as superior for large global homology searches with divergent 

viral protein sequences.

2.1.1 The BLAST Suite

A suite of programs based upon the original BLAST program can be used to align two 

sequences of nucleic or amino acid (BLASTn or BLASTp); create PSSMs (PSI- 

BLAST) by iteratively aligning a chosen sequence against a selected database of 

sequences, taking advantage of the more sensitive nature of multiple alignments; or 

compare a chosen sequence against a database of PSSMs built using PSI-BLAST 

(IMPALA). All programs are available at the NCBI for searching GenBank online, or 

for downloading and using against a user defined database.

2.1.1.1 BLAST

BLAST forms the basis for all other BLAST suite programs. BLAST (Basic Local 

Alignment Search Tool) is a local alignment tool based upon the Smith-Waterman 

Algorithm (Altschul and Koonin 1998). BLAST initially had the advantage of speed 

over other methods. This was largely due to the heuristic nature of BLAST, which 

resulted in a reduction of computational time for identifying ‘high scoring* local 

alignments at the expense of the completeness of the search. Another advantage of
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BLAST over its predecessors was that it allowed for the analysis of the program’s 

performance, i.e. the alignments generated could be statistically ranked. It had not been 

previously possible to statistically verify the reliability of alignments produced by 

similar programs. BLAST can be used for both protein and DNA alignment and 

database searches. For these reasons, and the simplicity of use, BLAST is extensively 

used today.

The BLAST algorithm uses a measure of Smith-Waterman based local alignment: the 

Maximal Segment Pair (MSP) (Altschul, Gish et al. 1990). An MSP is defined as the 

highest scoring pair of identical length, ungapped segments chosen from two aligned 

sequences; in essence, the best local ungapped alignment. MSPs are detected by first 

identifying lengths of aligned sequence between two sequences, for example, the query 

sequence and one sequence from a database that score above a minimal threshold ‘T’ 

(known as ‘words’). These words are then extended in either direction to see if  they can 

qualify as MSPs (i.e. score above a second threshold score ‘S’). The boundaries of the 

MSP are not fixed to allow the score to be maximised; thus, the MSPs can be of any 

length, the final length being determined by the necessity of a gap insertion at either 

end. Scores are derived for the MSP using similarity matrices; for example, default 

BLAST parameters use the PAM-120 similarity matrix for amino acid alignments.

BLAST returns pairwise alignments for all high scoring segment pairs (HSPs) that score 

above a threshold score S, from the query sequence search against the database. BLAST 

is, therefore, designed to not only look for the MSP of the search, but for any locally 

maximal sequence segment (i.e. sequence segments that score above the cutoff S that 

cannot be improved by lengthening or shortening both segments) (Altschul, Gish et al. 

1990). This allows the program to identify multiple occurrences of similarity such as 

matches to multiple incidences of the same domain, or matches to the multiple different 

domains in the query sequence.

As with other similarity programs, the length of time it takes to calculate the MSP 

scores is directly proportional to the product of the length of the query sequence and the 

number of residues in the database, i.e. the more residues to be aligned, the longer the 

search will take.
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2.1.1.2 Gapped-BLAST

The disadvantage of the original BLAST program was its inability to generate gapped 

alignments. Thus, Gapped-BLAST was developed to improve the accuracy of pairwise 

alignments generated by the program. Based upon the original BLAST algorithm, 

Gapped-BLAST uses a ‘two-hit’ method to generate gapped alignments. Before the 

extension of words occurs to find MSPs that score > ‘S’, two words must be found 

within the Smith-Waterman 2D matrix that are on the same diagonal within a distance 

of ‘A ’ from each other (i.e. not overlapping). In theory, the value of ‘T’ from the 

original BLAST should be lowered to increase sensitivity. Although this would not 

compromise run time -  as the number of extensions that are made using gapped BLAST 

is lower than BLAST as only word pairs are extended and not all HSPs -  this is not 

necessary as explained later. Once all word pairs are found, extension occurs in both 

directions to find all regions (words) of homology.

Unlike the original BLAST program, once a word with a score over ‘T’ is found, the 

entire matched sequence is searched for similarity to the query sequence and the entire 

sequence returned as one alignment; i.e., if  global similarity exists it is reported as such, 

otherwise the two sequences are returned as a local alignment. This is in contrast to 

BLAST, which returned each MSP found as a separate alignment -  if  two proteins 

shared global alignment across 3 domains, three separate local alignments would be 

reported, not one global alignment. Therefore, if only one word pair that scores above T 

needs to be found per database sequence (as the remaining MSPs would be 

automatically searched for after identification of the first), the value of T need not be 

decreased, as mentioned earlier. If the completeness of the search is no longer 

compromised by a higher value of T, this results in a faster run time environment.

2.1.13 PSI-BLAST

BLAST takes as input a query sequence and an appropriate substitution matrix (such as 

PAM 120). The program PSI-BLAST (Position Specific Iterated-BLAST) (Altschul, 

Madden et al. 1997) is an adapted version of BLAST that takes as input a position- 

specific score matrix. PSI-BLAST functions by creating a position-specific scoring 

matrix from an initial BLAST search of a database with a query sequence. This matrix
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is used to more sensitively search the same database to find more distantly related 

sequences than would otherwise have been possible by a simple pairwise search.

The results from the first iteration (i) can be used as input for the second iteration (i+1) 

an infinite number of times, or until no further statistically significant sequences are 

found within the database. New significantly matched sequences to the given matrix are 

used to recalculate the PSSM which is then used in the next iterative round of database 

searching. More distantly related sequences can be identified by collecting sequences in 

a matrix after each iteration, because o f the greater variation of residue conservation 

recorded in the matrix. Because PSI-BLAST uses gapped-BLAST to perform its initial 

pairwise searches of the database, PSI-BLAST also looks for local alignments within 

the database.

Matrices are built using each of the results that scored beneath a certain cut-off (0.01 E- 

value is default; see Statistics below) from an initial gapped-BLAST search of a 

database. The query sequence is used as a template and the two-dimensional matrix is 

the size of: the length of the query by the number of significant database sequences 

found. Any sequences that are identical to the query are removed and only one sequence 

is retained from groups of sequences that share more than 98% identity across their 

length.

In order to maintain a matrix that is always the same size as the query sequence, any 

column that requires the insertion of a gap character is ignored. Thus, each of the 

columns may contain different totals of residues. This is due to either the presence of 

gaps in the database sequences (or insertions in the query sequence), or because the 

algorithm is based upon local alignment, and will not necessarily find high scoring 

residue matches for the entire length of the query. Position-specific gap scores are not 

calculated for each PSSM, so the gap scores from the original gapped BLAST search 

are used for each iteration instead.

Once the matrix is constructed each sequence is weighted to avoid any bias towards a 

certain pattern due to the over-representation of similar sequences that might otherwise 

bias away from more divergent sequences that are not as numerously represented in the 

matrix. This is the only adjustment made to the matrix before the score matrix is 

calculated and distinguishes PSI-BLAST from other true multiple alignment algorithms.
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For example, other methods may perform a number of further calculations, such as gap 

score determination, before calculating final scores.

One disadvantage this method has is that, due to its iterative nature, PSI-BLAST can 

amplify any errors that BLAST encounters, such as false positives due to query 

compositional bias (Altschul and Koonin 1998). Therefore, PSI-BLAST masks out 

these regions of the query sequence using the SEG program before performing a 

database search. PSI-BLAST was developed as an alternative to other more complicated 

multiple alignment tools, and aimed for speed and simplicity though automation of the 

entire process. By using multiple query sequences, a library of PSSMs can be built, and 

retained, for future querying.

2.1.1.4 IMPALA

Databases or collections of PSSMs can represent extensive sequence variation 

information for carefully grouped sets of proteins. These databases, when searched for 

similarity with a query sequence, allow statistical matching of protein group-specific 

conserved and divergent amino acid positions, rather than simple pairwise alignments 

using generalised substitution matrices.

The IMPALA (Schaffer, Wolf et al. 1999) algorithm can be used to search a database of 

PSSMs (of the type constructed by PSI-BLAST) with a single query sequence. In 

addition, IMPALA provides a more refined analysis of the matches, and by using the 

Smith-Waterman algorithm, guarantees an optimal alignment. Due to the nature of a 

PSSM library (which has non-similar proteins removed during its creation), an 

IMPALA query also takes less time to complete than either a PSI-BLAST or a BLAST 

search would against an entire non-redundant database.

The IMPALA program works by seeking an optimal alignment between the query 

sequence and each PSSM in the library using the Smith-Waterman alignment (extended 

for gap costs (Gotoh 1982)). If an alignment between a query sequence and a PSSM 

proves to have local alignment with a significant score, then any additional local 

alignments between the two are sought. This is done using the multiple match extension 

of the Smith-Waterman algorithm (Waterman and Eggert 1987) and searching in either 

direction along the sequences from the site of initial significance. If an alignment of the
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query sequence to a PSSM scores beneath a user-defined threshold, then the alignment 

is reported. Each PSSM has a consensus sequence that is used to present the results of 

the search in a pairwise alignment similar to BLAST or PSI-BLAST.

2.1.2 Scoring Functions

The reliability of the results from any algorithm is dependent upon the probability of its 

significance. This is a measure of the possibility that a similar result could be obtained 

by running random simulations of the program. By calculating the probability of an 

alignment being a ‘true’ hit, the program can verify its accuracy. The calculation of an 

alignment score is dependent upon the residue composition and the size of both the 

query sequence and the database being searched. An increase in residue bias or size of 

database increases the possibility of random alignments being identified by the 

algorithm being scored.

2.1.2.1 BLAST Statistics

All BLAST programs display the results of a query as a list with each hit having 

statistical validation in the form of a score (measured in bits) and an E-value. Beneath 

the list of hits is the graphical representation of all the alignments in the lists. The Score 

(bits) is the score of the HSP normalised to account for the particular scoring system 

used. Normalisation occurs to allow the score to be statistically comparable to the 

scores from other alignments within the search. The E value looks at the probability of a 

match occurring by chance, thus E represents the number of HSPs with a score > S that 

are expected to occur by chance in a database of a similar size to the one being 

searched. The E-value of an alignment is calculated as a function of the normalised 

score, the residue composition and lengths of the query sequence and search database. 

Each of the four BLAST algorithms listed here calculates the E value in a slightly 

different way.

The basic BLAST program uses the adjusted lengths of each sequence in the database, 

while using the actual residue composition of each query sequence, and an average 

residue composition of the database to calculate E. Gapped-BLAST calculates a random 

simulation using two theoretical proteins before the query is run. This random
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simulation uses a standard residue composition that does not necessarily reflect the 

composition of either the query sequence or the database.

PSI-BLAST calculates two simulated comparisons: of a given PSSM against a query of 

average residue composition, and of two protein sequences of standard residue 

composition using a standard substitution matrix. The PSSM is then re-scored 

accordingly so that the two comparisons have similar scores, and the gap scores 

calculated for the pairwise sequence comparison can be conferred upon the PSSM. 

Using the method above, PSI-BLAST rescales a PSSM only once and assumes that the 

proteins in the database have an average residue composition.

IMPALA initially uses the same scaling method as PSI-BLAST by assuming the query 

has a standard residue composition; however, when a significant query-PSSM 

alignment is found the PSSM is rescaled based upon the actual residue composition of 

the query and the pairwise alignment between the two is recalculated. This makes its 

statistical analysis of produced alignments more reliable.

2.1.3 The Human Genome Project

The final version of the human genome (completed: 14th April, 2003) contains the 

sequence for 99% of its euchromatic regions; the entire sequence is highly accurate 

(99.999%), and highly continguous. The only regions that aren’t currently sequenced 

are contained in less than 400 defined gaps that are found in areas of the genome that 

cannot be accurately sequenced with the technology available to date (NIH-Newsroom 

2003).

Although substantially sequenced, the exact number of genes encoded by the human 

genome is still unknown; latest estimates by gene-prediction programs suggest as few as 

24,500 genes are present (Pennisi 2003). There are two peptide translation projects 

publicly available that differ in their protein prediction methods: the Human Genome 

Resources (NCBI) and the Ensembl Project (EMBL-EBIAVellcome Trust Sanger 

Institute). Ensembl bases its gene predictions on experimental evidence from Swiss-Prot 

(Boeckmann, Bairoch et al. 2003), SPTrEMBL (Boeckmann, Bairoch et al. 2003), 

RefSeq (Wheeler, Church et al. 2004), and cDNA entries from EMBL (Kulikova, 

Aldebert et al. 2004). Transcripts that map to existing human genes are named ‘known
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genes’, those based on similarity to closely related species are termed ‘novel genes’. 

The NCBI initially aligns reference sequences from RefSeq to the genome sequence. 

The heuristic gene prediction program Gnomon (NCBI) is then used to annotate those 

regions not transcribed by RefSeq alignments.
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2.2 Methods

2.2.1 Initial data sets

All complete herpesvirus open reading frames (ORFs) from GenBank release 124 were 

available through the viral database VIDA (Alba, Lee et al. 2001). A total of 393 

homologous multi-protein families (HPFs) and 494 singleton proteins were used in the 

analysis. This comprises all herpesvirus ORFs from VIDA including all eight human 

herpesviruses. A total of 4740 herpesvirus ORFs that include strain variant ORF 

sequences with <100% sequence identity, of which 4054 were non-redundant proteins, 

were used in this study.

The conceptual protein translations of two human genome databases were searched in 

this study: the collection of human genome gene products sequence build 23 at the 

National Centre for Biotechnology Information (NCBI), and the Ensembl Project beta 

release at the European Bioinformatics Institute (EBI). Both databases were 

downloaded by anonymous FTP and stored locally. The two databases were also 

concatenated into a single library and low-complexity protein segments masked using 

the SEG program with default parameters (Wootton and Federehen 1993).

2.2.2 Construction of motif position specific scoring matrices

Herpesvirus homologous protein families (HPFs) containing two or more proteins are 

defined by one or more amino acid motifs conserved across all members of the family 

(Alba, Lee et al. 2001). The large majority of HPFs are identified by a single motif (371 

out of 393). However, there are 11 HPFs that contain 2 conserved motifs, 8 HPFs that 

contain 3 conserved motifs and 3 HPFs that share 4 motifs (see Figure 2.2). The motifs, 

in the form of multiple amino acid sequence alignments, were used to construct PSSMs 

using the programme PSI-BLAST (Altschul, Madden et al. 1997). Taking into account 

that some families contain more than one motif, we constructed a total of 429 PSSMs to 

be used in conjunction with the multiple alignment programme IMPALA.
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2.2.3 Construction of a herpesvirus protein dataset at the 95% identity level

To complement the PSSM search method and to allow singleton herpesvirus proteins to 

be analysed, a dataset was derived for use by pairwise database search methods. A 

dataset of all individual herpesvirus proteins with < 95% sequence identity was 

constructed for use with the pairwise alignment program BLAST. This dataset was 

constructed to save computational time by avoiding searching with nearly identical 

proteins, as proteins that share > 95% sequence identity would not provide different 

results. These representative proteins (termed an N95-rep) were selected by computing 

the global amino acid identity between all non-redundant herpesvirus proteins and 

grouping these proteins into subsets that shared at least 35%, 60%, 90% and 95% 

sequence identity using the programmes HOMOL and SEQCLUSTER respectively 

(Orengo, Michie et al. 1997) (Figure 2.1). The total protein population (black circle) is 

subdivided into groups of proteins that share 35% sequence identity, then into groups 

that share 60% (green circles), 90% (yellow circles), and finally 95% identity (red 

circles). An ORF was then selected at random from each 95% subset and used to 

perform pairwise sequence similarity searches of the human protein databases. For 

example, nine proteins from HPF 13 (protein kinase, HHV-1 UL13) were selected that 

represent (at the 95% sequence identity level) the thirty-three proteins in the HPF. In 

other words, the HPF 13 could be subdivided into 9 subsets (of varying number) that 

have >95% sequence identity from which 9 representative sequences are selected, one 

from each subset. A total of 3986 N95-reps were derived.

2.2.4 Singleton Proteins

There exist a number of proteins in VIDA that do not share sufficient homology with 

any other herpesvirus protein to be placed in an HPF. These proteins are termed 

singleton proteins and exist as individual records within VIDA. In these cases the 

proteins cannot be defined by conserved motifs, and there are no multiple alignments 

from which to derive PSSMs. In this context, therefore, they are represented as N95- 

reps, although there are no other ORFs in their 95% sequence identity subgroup.
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Figure 2.1 A Schematic Representation o f N-reps. The black encompassing circle 
represents the total data set (4054 herpesvirus ORFs). Within the data set the proteins are 
divided into groups o f 35% shared sequence identity (ID) (in blue), 60% (green), 90% 
(yellow), and 95% (red). One representative protein is then chosen at the 95% homology 
level to represent that group in future work.
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2.2.5 Database searches and sequence analysis

The IMP ALA program (Schaffer, Wolf et al. 1999) was used to perform searches using 

the two separate, unconcatenated human genome libraries against the 429 PSSMs 

derived from the motifs in VIDA. An E-value cut-off score of 0.01 and default 

parameters were used. The collection of N95-reps (which include all 494 singleton 

protein sequences) were searched using the programs BLASTP (Altschul, Gish et al. 

1990) and PSI-BLAST (Altschul, Madden et al. 1997) against the concatenated Human 

Genome library, with default parameters and an E-value cut-off of 0.01. The total 

procedure is summarised in Figure 2.2.

All significant database hits were examined and curated manually based on detailed 

sequence alignments, conserved domain regions, functional annotation and reference to 

the literature. The manual inspection of putative homologues led to the removal of some 

of the initial hits, which appeared to be due to amino acid compositional bias (i.e. 

proteins such as collagen whose sequence is comprised of a high percentage of proline 

and glycine) rather than true homology. Where appropriate, additional proteins from 

different organisms were retrieved from GenBank for further multiple sequence 

alignment construction. These alignments were produced by the program MULTALIN 

(Corpet 1988) and, where necessary, manually edited using JALVIEW 

(http ://www2. ebi. ac ,uk/~michele/i alvi ew/contents .htmlA followed by visualisation 

using BOXSHADE (http://bioweb.pasteur.fr/seqanal/interfaces/boxshade.html/). 

Analysis of novel homologous families also included searching the domain database at 

the NCBI, which is linked to the Pfam (Bateman, Coin et al. 2004) and SMART 

(Letunic, Copley et al. 2004) domain databases.
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Figure 2.2 A Summary of the Human-Herpesvirus Homologue Search. The 4054 non- 
redundant herpesvirus open reading frames (ORFs) were organised into Homologous Protein 
Families (HPFs) defined by at least one shared sequence motif per family. Each m otif formed the 
basis o f  a Position Specific Scoring Matrix (PSSM), which was then used to search the Human 
Genome Conceptual Protein Translation using IMPALA. All 4054 herpesvirus proteins were also 
compared sequentially using the programs HOMOL and SEQCLUSTER, which allowed for the 
selection o f a representative protein (N95-reps) per cluster o f  proteins that shared at least 95% 
sequence identity. These N95-reps were used to search the Human Genome Conceptual 
Translation using the programs PSI-BLAST and BLASTP.
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2.3 Results

2.3.1 Validating the Results

The raw data generated from both database search strategies were extensive and needed 

to be filtered for true ‘hits’ before further investigation to validate the matches was 

possible. A script NO HIT FILTER (C++) was written to extract the N95-reps that 

showed significant scores to human proteins from the N95-reps that failed to match any 

human protein and was used for BLASTP and PSI-BLAST results. The program 

BLASTPPARSER (C++) was written to parse the results files from the BLASTP 

search by GI numbers, collating these with their HPF name and function, and the first 

match in the BLASTP results list. A suite of programmes known as FILTER 

(PERL/C++), was produced to filter out the human proteins that comprise each PSSM 

built by iterative rounds of PSI-BLAST (FILTER can also parse proteins from the viral 

PSSMs used when searching redundant databases). IMPALA results required no 

additional parsing before analysis was conducted. The new results files were then 

manually selected based upon e-value, with the e-value range of selected hits to 

investigate being 0.009 to e-149.

2.3.1.1 ENSEMBLHits

The EMSEMBL human protein translation release used for this study had the 

disadvantage of coded annotation for each open reading frame (Figure 2.3). It was 

possible in most cases to make informed assumptions as to the nature of the ENSEMBL 

hit, i.e. the functions of proteins A and B (Figure 2.3) are easily deduced from the 

information provided by the NCBI human protein translation. Sequence A is most 

probably a ribosomal protein S6 kinase, and sequence B a phosphorylase kinase. Thus, 

it was possible to tentatively conclude that the viral search protein GL3374481 was a 

protein kinase. Further research, however, would be required to verify this annotation, 

and to determine the exact kinase mechanism used by the viral protein. There were 

certain viral proteins that found matches only within the ENSEMBL human protein 

database. The functions of those matches with significant scores could not be 

ascertained from ENSEMBL’s annotation, therefore, those matches were
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Query= gi|3374481:01:120-377 
(258 letters)

Sequences producing significant alignments:
Score E 
(bits) Value

B

ENSPOOOOO159945 Gene:ENSG00000074600 Clone:AC009974 Contig:A. 
gi|10863933 ribosomal protein S6 kinase, 90kD, polypeptide 2; Ri... 
gi|l 1418908 ribosomal protein S6 kinase, 90kD, polypeptide 2 [Ho... 
gi|4759050 ribosomal protein S6 kinase, 90kD, polypeptide 3 [Horn... 
gi|4506733 ribosomal protein S6 kinase, 90kD, polypeptide 1; Rib... 
gi|7706401 prostate derived STE20-like kinase PSK [Homo sapiens]... 
gi|4759208 thousand and one amino acid protein kinase [Homo sapi... 
gi|4505785 phosphorylase kinase, gamma 2 (testis); Phosphorylase... 
gi|l 1420349 phosphorylase kinase, gamma 2 (testis) [Homo sapiens... 
ENSP00000219830 Gene:ENSG00000103543 Clone:AC013570 Contig:A. 
gi|9910476 p21-activated protein kinase 6 [Homo sapiens]_NCBI_hu... 
gi|l 1432010 p21-activated protein kinase 6 [Homo sapiens]_NCBI_h...

3e-16 
6e-16 
6e-16 
8e-16 
2e-15 
le-14 
le-14 
le-14 
le-14 
le-14 
2e-14 
2e-14

Figure 2 3  An exam ple o f ENSEMBL proteins from BLASTP output. The ENSEMBL 
human genome project proteins were not well annotated. Thus, in the case o f  A, it is necessary 
to query the sequence o f  ENSPOOOOO 159945 against GenBank or the NCBI human genome 
project in order to determine its name and function ( if  known); in the case o f  B, it can be 
hypothesized that ENSP00000219830 is a phosphorylase kinase, gamma2 (testis) given its 
identical score and e-value with NCBI proteins. Overall viral protein GI:3374481 could be 
putatively annotated as a protein kinase.
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identified by searching non-redundant GenBank with the ENSEMBL sequence using 

BLASTP. All ENSEMBL proteins identified using this method matched records in 

GenBank with E-values of 0.

2.3.1.2 Initial Results

The initial analysis of VIDA herpesvirus protein and HPF statistics used for the 

xenologue searches are outlined in Table 2.1. A total of 14 complete human-herpesvirus 

genomes were included in this study (including strain variants), plus a number of 

human-herpesvirus ORFs that have been individually sequenced.

The 228 HPFs/singletons with known annotated viral functions were used as positive 

controls for the analysis. It is not expected, however, to find human homologues for all 

228 for a number of reasons:

a) not all HPFs have functions that have correlating homologues (or even 

homoplasts) in their hosts’ genomes, i.e. these are virus specific functions;

b) not all HPFs have functions that have been elucidated (or can be discerned) by 

sequence similarity i.e. these are experimentally derived;

c) not all HPFs contain open reading frames from human herpesviruses. This 

decreases the chances of a match being found between members of these HPFs 

and proteins within the human genome.

d) not all herpesviruses infect hosts which are closely related to humans. They 

therefore, may encode functions acquired from their respective hosts, or are 

designed to combat host specific responses not found in humans.

There are 622 HPFs/singletons of unknown function, therefore our hypothesis and 

previous data suggest that, should any of these significantly match proteins in the 

human genome, the HPF/singleton can be initially annotated with a function, or 

functional group, depending on the quality of annotation of the corresponding host- 

homologue. Likewise, should any viral proteins of known function significantly align to 

a host protein of unknown origin, functional annotation can again be conferred.
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Table 2.1 Initial VIDA Statistics

VIDA Statistics Total
total number o f  herpesvirus ORFs in database 4740*

of which non-redundant 4054

inclusive complete genomes 35

Alphaherpesviridae (of which human) 14(4)

Betaherpesviridae (of which human) 8(6)

Gammaherpesviridae (of which human) 12(4)

Unclassified 1

total genomes (partial/complete) in VIDA 52

total number o f  HPFs and Singletons 887

number o f  unknowns** 622/887 (70.1%)

number o f  singletons 494/887 (55.7%)
* including strain variants and redundancies 

**HPF/singletons with unknown function



2.3.1.3 Search Statistics

Table 2.2 summarises the raw data statistics following parsing by BLASTPPARSER, 

N O H ITFILTER , and FILTER gathered before each raw hit was analysed for 

accuracy. Due to the similarity in results format, PSI-BLAST data and statistics are 

considered synonymous with BLASTP results. Raw Data consists of each HPF and 

singleton that matched a human ORF below an E-value of 0.009 using either of the two 

search methods (BLASTP and IMPALA) regardless of its biological integrity 

(collectively termed ‘raw hits’). A total of 135 raw hits out of a possible 887 (15.2%) 

matched at least one human ORF from the human genome. Raw hits were allocated to 

one of six result groupings (Table 2.3):

1. True hits: recognised (already documented) viral-cellular homologues;

2. Non-hits: matches due to random amino acid sequence devoid of functional 

motif or active site structure;

3. Repeat hits: matches biased by high individual peptide sequence repeats;

4. Domain Hits: matches that correctly identify functional domains (such as 7 

transmembrane domains or immunoglobulin domains) within search proteins 

(i.e. identify regions of local similarity);

5. ID hits: matches of known viral proteins to unknown human proteins that 

allow for the possible annotation of the human ORF.

6. New hits: matches of known human proteins to unknown viral proteins that 

allow for the possible annotation of the viral ORF.
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Table 2.2 Raw Data Search Statistics

Raw Data Total %

Number o f  HPFs/singletons (hereafter termed ‘raw hits’) that matched a human 
ORF in both searches* (out o f  total HPFs; see table 1) 135/887 15.2

Number o f  raw hits o f  known viral function 81/135 60

Number o f  raw hits o f  unknown viral function 56/135 41.5

Number o f  raw hits using BLASTP 89/135 65.9

Number o f  raw hits using IMPALA 92/135 68.1

Number o f  raw hits found by both methods (BLASTP and IMPALA) 43/135 31.9

Number o f  raw hits with human-herpesvirus proteins 70/135 51.9

♦Both Searches: IMPALA of HPF PSSMs & BLASTP of N95-reps

Table 2.3 Breakdown of Raw Hits by Subfamily Composition

Subfamily
composition

Raw
Hits
Total

True Hits* (%Non- 
of total) Hits

Repeat
Hits

Domain
Hits

ID
Hits*

New
Hits*

yP<x 10 5 (9.3) 3 2

yP 3 3 (5.6)

ya 4 2 (3.7) 1 l

a/unclassified 1 1 (1.9)

a 30 6(11.1) 11 8 3 2

P 31 8 (14.8) 5 14 1 1 2

Y 42 21 (38.9) 5 13 2 l

unclassified 14 8 (14.8) 5 1

TOTAL 135 54 30 37 8 2 4
♦Significant hits can be further subdivided into True hits, ID hits, and New hits.
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The quality of these raw hits is not yet determined by undertaking further analysis, 

therefore, this number does not have biological significance. The raw hit scores for the 

two different methods do not initially indicate a method-based bias. BLASTP found 

89/135 (65.9%), while IMPALA found 92/135 (68.1%), however, only an approximate 

50% of the raw hits from the two methods overlap, suggesting that each method is able 

to detect subtly different sequence similarities. These data also indicate that only by 

using both methods can the full extent of sequence similarity be assessed. This 

hypothesis, however, can only be verified by further analysis of the total 135 raw hits 

for biological significance based upon the following criteria: a) accuracy of the initial 

sequence alignment made by BLASTP or IMPALA, b) percentage of sequence 

similarity (including location/function of conserved residues), and c) any existing 

laboratory data available to confirm significance from the literature.

Hits were determined to be biologically significant by alignment of the human protein 

hit to the viral representative and analysis of conserved domains in both. Table 2.4 

outlines the biologically significant hit (BSH) statistics gathered from the analysis of the 

raw hits. A total of 60 hits from the 135 raw hits were assigned biological significance 

(43.7%). These BSHs can be further divided into those hits involving viral proteins of 

known function (54/81 [66.7%]; defined as true hits, see Table 2.3), viral proteins of 

unknown function (4/56 [7.1%]; defined as new hits, see Table 2.3), and human proteins 

of unknown function (2/59 [3.4%]; defined as Identifying (ID) hits, see Table 2.3). 

Having analysed the significance of each hit, the comparison of the two methods, 

BLASTP and IMPALA, reveals that the combined use of both methods yields highest 

coverage of the searched databases, with the two methods yielding 86.7% (BLASTP) 

and 70% (IMPALA) of the BSH results, but only 34/60 BSHs (56.7%) were identified 

by both methods (Figure 2.4). This confirms that whilst both methods can identify a 

consistent set of BSHs, each method also identifies additional BSHs justifying their use 

in this study.

Over half of the BSHs identified match proteins from human-herpesviruses (33/60, 

55%), therefore, 45% of the BSHs match proteins from herpesviruses of non-human 

hosts. This demonstrates the ability of this method to identify xenologues in all 

herpesviruses and not just human-herpesviruses. Xenologues, such as DNA polymerase, 

which was acquired early in herpesvirus evolution (evident from its ubiquity in the 

family), are easily identifiable in sequence similarity searches due to their highly
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conserved functional motifs. It is, therefore, not necessary to search every herpesvirus 

host genome to confirm that DNA polymerase’s presence in every herpesvirus can be 

attributed to a common ancestor. This method has demonstrated that xenologues from 

herpesviruses of varying host specificity can be found by searching one representative 

host genome.

VIDA classifies all HPFs and singletons into functional groups. Just over half of the 

BSHs found have host-interaction functions (31/60, 51.7%). The remainder of the hits 

(29/60) are functionally classified into the following groups: DNA replication, 

Nucleotide metabolism/repair, Enzymatic, Gene expression regulation, Glycoprotein, 

and Unknown. This is not surprising and reflects the observed tendency of 

herpesviruses to acquire host genes into their own genomes to manipulate their host’s 

immune system (Alcami and Koszinowski 2000).

Table 2.3 breaks down raw hits according to their herpesvirus subfamily composition. 

HPFs can contain herpesvirus proteins from species in one or more of the three 

subfamilies, or from one of the unclassified herpesvirus species in VIDA. HPFs with 

members from multiple subfamilies demonstrate fewer BSHs 11/135 (8.1%) than 

HPFs/singletons from single subfamilies 49/135 (36.3%), indicating that many of the 

homologues that exist in herpesvirus genomes were acquired after subfamily 

divergence. Collectively, the Gammaherpesviruses exhibit the most homologues, 

followed by the betaherpesviruses, and finally the alphaherpesviruses.

2.3.1.4 IMPALA versus BLASTP

As shown, neither search method can be identified as outperforming the other for this 

type of search (Figure 2.4). As expected, most of the hits (33/59, 56.7%) were found by 

both methods. BLASTP appeared better at detecting non-human herpesvirus homologue 

hits, finding eleven non-human herpesvirus homologues, compared to IMPALA’s two, 

although interestingly, both methods detected similar number of the human-herpesvirus 

homologue hits (BLASTP: 27/33; IMPALA 26/33). This observation most likely 

reflects the relative sensitivity and specificity of each method. By forcing the formation 

of PSSMs using a motif region from a predefined group of proteins (HPFs), the 

resulting matrices can only encode as much motif variation as exists in its the 

herpesvirus proteins contained in the HPF. This can possibly reduce the sensitivity of
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the PSSMs to more distantly related proteins whose motifs are too dissimilar to the 

herpesvirus proteins in the HPF. In these cases, a pairwise alignment program, such as 

BLASTP, could detect more distant relatives due to the less stringent nature of pairwise 

comparison. In addition, BLASTP uses each full-length herpesvirus protein and may 

detect regions of sequence similarity outside the HPF motif; although the ability of 

BLASTP to detect sequences that are more distantly related is accompanied by the 

increased tendency of BLASTP over IMPALA to identify false positives. Overall, 

BLASTP (52/60, 86.7%) identified 10 more homologues than IMPALA (42/60, 70%).

2.3.2 Herpesvirus proteins with human homologues

Careful examination of putative host/virus sequence homologues showed that 39 

herpesvirus HPFs and 20 singleton proteins had significant sequence similarity to 

human gene products (Table 2.5). One of the singleton proteins, HHV-5 US21, of 

unknown function, matched a human protein of known function, as well as two human 

proteins of unknown function, making it both a ‘new hit’ and an ‘ID hit’ bringing the 

total number of BSHs to 60. The 39 HPFs contain 483 proteins giving a total of 483+20 

herpesvirus proteins that match a human sequence. This represented 12.4% of all 

herpesvirus ORFs in GenBank. Sequence similarity between herpesvirus and human 

proteins is clearly related to functional similarity, where function is known, based upon 

previous experimental data.
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Figure 2.4 Distribution of BSHs 
Found per Method. Each circle 
represents one o f  the methods 
(IMPALA was run against each 
human genome library separately; 
whereas the two were concatenated 
for the BLASTP search). The 
numbers indicate the number of 
BSHs found by each method; the 
numbers in brackets is the number 
o f BSHs that contain human- 
herpeviruses found by each method.

BLASTP vs  
NCB1+ 
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Table 2.4 Biologically Significant Hits Statistics

Biologically Significant Hits Total %
Number o f  biologically significant hits (BSHs; out o f total number o f  raw hits; see 
table 2a)
Number o f BSHs o f known viral function (out o f total number o f  raw hits o f known 
function; see table 2a)
Number o f  BSHs o f unknown viral function (out o f total number o f  raw hits of 
unknown viral function; see table 2a)
Number o f BSHs that matched human ORF(s) o f unknown function (out o f  total 
number o f  BSHs)

Number o f BSHs using BLASTP 

Number o f BSHs using IMPALA

Number o f BSHs found by both methods (BLASTP and IMPALA)

Number o f BSHs with human-herpesvirus proteins (out o f total BSHs)

Number o f BSHs with host-virus interaction functions (out o f  total BSHs)

Number o f BSHs with host-virus interaction functions that contain human- 
herpsevirus proteins___________________________________________________________

60/135 43.7

54/81 66.7

4/56 7.1

2/60 3.3

52/60 86.7

42/60 70

34/60 56.7

33/60 55

31/60 51.7

19/33 57.6
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Viral xenologues continue to participate in similar enzymatic functions (such as DNA 

and protein binding, kinase activity, chemoattraction) to their homologue counterparts, 

although their goal, pathway, and regulation are often not identical. The human 

herpesvirus 8 viral cyclin, for example, participates in the cell cycle as a cyclin D 

homologue but unlike the host cyclin D is not negatively regulated (Swanton, Mann et 

al. 1997). Likewise, cellular chemokine receptors invoke a second messenger system 

when bound to by a soluble chemokine (New and Wong 2003; Thomsen, Nansen et al. 

2003). Viral chemokine receptor equivalents, however, usually serve one of two 

functions when present on the cell surface: either to deplete the surrounding area of host 

chemokines, or to redirect the cellular response by initiating an alternative secondary 

messaging system (Dairaghi, Greaves et al. 1998; Alcami and Koszinowski 2000; 

Lalani, Barrett et al. 2000). Therefore, the virus maintains accurate function o f some 

enzymes but expresses them when the virus requires their function by removing 

transcriptional control and mutating regulatory mechanisms of some proteins.

Thus, it is not unusual that approximately 54% of the combined HPF and singleton hits 

corresponded to proteins classified in VIDA as being involved in 'host-virus interaction', 

primarily effecting immune and/or apoptosis controls. Of the remaining homologues, 

32% have functions that can be generally termed ‘metabolic’: being 'enzymes' or 

involved in 'DNA replication' or 'nucleotide repair/metabolism'. These are notably more 

highly conserved, probably due to their earlier acquisition in herpesvirus evolution. 

Homologues to capsid constituents or capsid assembly proteins were not detected. This 

is not necessarily surprising as these are specific viral functions that have no obvious 

equivalents in cellular organisms.

In addition, approximately 42% of the HPFs and singletons that showed homology to 

human proteins did not contain any human herpesvirus ORF members. Many of these 

viral xenologues have been shown to share functional homology with their host 

equivalents through experimentation verifying that the method outlined in this chapter 

can be used to annotate gene products from non-human herpesviruses for which the 

relevant host genome sequence information is still unavailable.
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T able 2.5 Herpesvirus-H um an X enologues. 1 HPF: homologous protein family number, S: 
singleton. HPF details can be visualised by searching VIDA by HPF number at 
http://www.biochem.ucl.ac.uk/bsm/virus database/VIDA.html (Herpesviridae link). 2 a: 
alphaherpesvirus; b: betaherpesvirus; g: gammaherpesvirus; o: o t h e r ; in d ic a t e s  that only a subset 
o f  subfamily members are represented. For singletons, virus abbreviation and gene name is given: 
CCHV: channel catfish herpesvirus; SaHV-1: salmonid herpesvirus 1; RaHV-1: ranid herpesvirus 1; 
BoHV-4: bovine herpesvirus 4; HHV-8: human herpesvirus 8; EHV-2: equine herpesvirus 2; HVS-2: 
saimiriine herpesvirus 2; MeHV-1: meleagrid herpesvirus 1; HHV-5: human herpesvirus 5; HHV-4: 
human herpesvirus 4; RCMV: rat cytomegalovirus; AIHV-1: alcelaphine herpesvirus 1; GaHV-1: 
gallid herpesvirus 1 . 3 GenBank: GenBank protein accession number (GI number). Only the human 
protein that hit with the lowest E-value is shown.
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Table 2.5 Herpesvirus-Human Xenologues
Function Class Viral Function (VIDA) HPF1 Virus2 GenBank3 Human Function

DNA nnlvmpfflQp 1 a,b,g 8393995 polymerase (DNA-directed), alpha
D N A  Replication

i/i uviyuividov
293 0 15303524 polymerase (DN A  directed), delta 1

helicase/primase 16 A,b,g 5523990 DNA helicase
uracil-DNA glycosylase 8 a,b,g 6224979 uracil-DNA glycosylase
ribonucleotide reduct, large sub. 24 a,b,g 4506749 ribonucleotide reductase M l polypeptide
ribonucleotide reduct, small sub. 33 a,g 4557845 ribonucleotide reductase M2 polypeptide

Nucleotide thymidylate synthase 92 a -,g - 15297069 thymidylate synthetase11 UvivvUUv
renflir/metahnlism dihydrofolate reductase 141 g-,b- 15297069 dihydrofolate reductase1 vU(Ul/ iUv UiUvliuiil

HT TTP nvronli ocnli ji cp S CCHV ORF49 4503423 dUTP pyrophosphataseuu j. x uyiuuiiuoui.uiia.ov
S SaHV-1 ORF49 14756895 dUTP pyrophosphatase

thymidine kinase S CCHV ORF5 11430716 thymidine kinase 2, mitochondrial
D N A  methyltransferase S RaHV-1 54 21 4503351 DNA (cytosine-5-)-methyltransferase 1

29 a,b,g- 14746991 serine/threonine-protein kinase PRP4
UtrtOCfl 40 a,o 4505649 protein kinase cdc2-related PCTAIRE-2pruicin Klllaov

214 0 9994197 G protein-coupled receptor kinase 7
Enzyme S RaHV-1 54_2 14741902 CamKI-like protein kinase

phospholipase-like protein 328 a- 5174497 endothelial cell-derived lipase precursor
b -1,6-N-acetylglucosaminyltransf. S BoHV-4 ORF3-4 11431963 glucosaminyl (N-acetyl) transferase 3
serine protease S CCHV ORF47 4505577 paired basic amino acid cleaving system 4

Gene Expression transcriptional activator 74 a 5174653 ring finger protein (C3H2C3 type) 6
Regulation bZIP domain 174 a- 4504809 jun B proto-oncogene

Glvcnnrotein glycoprotein OX-2 like 242 g- 730246 OX-2 membrane glycoprotein precursor\J 1 Y VvUi vIrvlii
glycoprotein OX-2 like 194 b- 730246 OX-2 membrane glycoprotein precursor

Host-Virus TNFR receptor homologue 13 HHV-5, UL144 4507571 tumor necrosis factor receptor, member 14
Interaction virion-assoc. host shutoff factor 48 a 14738228 flap structure-specific endonuclease 1

89 g- 4504723 interferon regulatory factor 2
viral interferon regulatory factor 243 g- 13629153 interferon consensus seq. binding prot. 1

S HHV-8 vIRF-3 4505287 interferon regulatory factor 4
27 b,g- 13643500 chemokine (C-C motif) receptor 2

G protein-coupled receptor 248 b- 4758468 G protein-coupled receptor 50
S EHV-2, ORF74 4502639 chemokine (C-C motif) receptor 5

complement binding protein 10 g- 10835143 decay accelerating factor for complement
viral cyclin 102 g- 14767736 cyclin D1
viral interleukin 10 140 g- 10835141 interleukin 10



Unknown

viral interleukin 6 315 g-
viral interleukin 17 S HVS-2 ORF13

161 g-
vBcl-2 259 g-

S MeHV-1 ORF1
MHC I downregulation 150 g-

viral FLICE-inhibitory protein
256
S

g-
EHV-2 E8

CxC chemokine vIL8 531 a-
vMIP-I 225 g-
alpha chemokine 321 b-
beta-chemokine 387 b-
vMIP-III S HHV-8K4.1
signal transduction protein 316 g-
CARD-like apoptotic protein 355 g-
U-PAR antigen CD59 352 g-
natural killer (NK) cell decoy pr. S HHV-5 UL18
colony-stimulating factor 1 S HHV-4BARF1
C-type lectin-like protein S RCMV lectin
semaphorin homolog S AIHV-1 A3
MHC1 heavy chain S RCMV R144
unknown 258 a-
Unknown S GaHV-1 UL45
Unknown S HHV-5 UL1
Unknown S HHV-5 US21

10834984 interleukin 6 (interferon, beta 2)
4504651 interleukin 17
4502363 BCL2-antagonist/killer 1
4557355 B-cell lymphoma protein 2 alpha
11433559 BCL2-like 10 (apoptosis facilitator)
8923613 hypothetical protein FLJ20668
14731507 CASP8 and FADD-like apoptosis regulator
4505229 Fas (TNFRSF6)-associated via death domain
10834978 interleukin 8
5174671 small inducible cytokine subf. A, member 26
4885589 small inducible cytokine subf. B, member 9B
5174671 small inducible cytokine subf. A, memer 26
13628199 small inducible cytokine subf. A, member 17
12056967 Fc fragment o f  IgG, receptor for (CD16)
4502379 CARD-like apoptotic protein
13639271 CD59 antigen p i 8-20
5031745 major histocompatibility complex, class I, E
4885123 CD80 antigen
4504883 killer cell lectin-like receptor subf. C, member 2
4504237 sema domain, Ig domain, GPI memb. anchor
9665232 major histocompatibility complex, class I______
4504883 killer cell lectin-like receptor subf. C, member 2
4504883 killer cell lectin-like receptor subf. C, member 2
14764567 pregnancy specific beta-1-glycoprotein 5
6912468______Lifeguard_______________________________ '
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2.3.2.1 Human Xenologous proteins of human herpesvirus proteins

This analysis provides an estimate of the number of xenologous proteins between the 

eight different human herpesviruses and the translated products from the human 

genome. A total of 33 different human herpesvirus proteins, including HPFs and 

singletons, showed significant homology to human proteins (Figure 2.5). This probably 

represents only a minimum estimate for a number of reasons. First, some proteins may 

still be functionally homologous but not show significant sequence similarity, because 

of the high rate of viral sequence divergence. These may be detectable when searching 

using different parameter set for IMPALA or BLASTP, or when using alternative 

alignment methods such as Hidden Markov Models (HMMs). Alternatively, searching 

by protein structure matching or experimental determination of viral gene function may 

elucidate other xenologues, such as the cellular survivin xenolog KSHV K7 (Wang, 

Sharp et al. 2002). Second, the total number of genes in the human genome is still 

uncertain. Thus, new genes that are homologous to viral ORFs may yet be discovered, 

and currently recognised putative genes may turn out to be pseudogenes. Nevertheless, 

this study provides the first detailed catalogue of all putative herpesvirus protein 

homologues in the host genome.

If the total number of human homologues relative to the total viral genome gene content 

in the different human herpesviruses is examined differences in subfamily homolog 

accumulation become apparent (Figure 2.6). The distribution of xenologs is 11-16% of 

the genes in human alphaherpesviruses, 11% in the betaherpesviruses, 10%-30% of the 

genes in gammaherpesviruses. As HHV-5 has a significantly larger genome than its 

fellow-subfamily members, the percentage indicates that more homologues were 

discovered for HHV-5 than the rest of the betaherpesvirus subfamily.

6 8



□

£53

£53

mm
□

□  □ □

i 11 i 
□  □

unknown HHV-5 US21/US12fam ily (136), US12, US16, U S19, US21 

unknown HHV-5 UL1

viral FLIC&nhibitory protein, HHV-8 K13 (256) 

vMIPsi HHV8 K6 (225), HHV8 K4.1 

vBd-2, HHV-8 ORF16 (161)
MHC-1 downregulation, HHV8 K3/K5 (150) 

viral cyclin, HHV-8 ORF72 (102) 

complementbinding protein, HHV-8 ORF4 (10) 

viral interleukin 6, HHV-8 K2 (273) 
interferon regulatory protein 3, HHV8 vlRF3 

interferon regulatory protein, HHV8 vlRF1 (89) 

colony-stimulatingfactor 1, HHV4 BARF1 

vBcl-2, HHV-4 BHRF1 (259) 

viral interleukin 10, HHV4 BCFR1 

natural killer (NK) cell decoy, HHV-5 UL18 

beta chem okine HHV8 K4.1 (387) 

alpha chem okine HHV-5 UL47 (321)
TNFR receptor hom ologue, HH\6 UL144 (13)

G protein-coupled receptor, HHV8 ORF74 (27)
G proteirvcoupled receptor, HHV6 U51 (248) 

virion-associated host shutoff factor, HHV1UL41 

glycoproteinOX-2 like, HHV8 K14 (242) 

glycoprotein OX-2 like, HHV6 U85 (194) 

transcriptional activatoq HHV-1 RL2 (74) 

protein kinase HHV-1 U S3 (40) 

protein kinase HHV-1 UL3 (29) 

dihydrofolatereductase HHV8 ORF2 (141) 

thym idylatesynthase HHV8 ORF70 (92) 
ribonucleotidereductase small subunit HHV-1 UL40 (33) 

ribonucleotidereductase large subunit HHV1 UL39 (24) 

uracil-DNA g lycosy lase  HHV1 UL2 (8) 

helicasefprimase, HHV1 UL5 (16)
DNA polym erase HHV-1 UL30 (1)
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Figure 2.5 Human herpesvirus proteins with human homologues. Labels show the 
virus protein function, the name o f a member o f  the HPF (homologous protein family) or 
singleton, and, for HPFs, the corresponding number in brackets. All the annotations and 
HPF numbers are taken from VIDA. The graph is color coded according to functional 
class: light green: DNA replication; dark blue: nucleotide repair/metabolism; light blue: 
enzyme; purple: gene expression regulation; yellow: glycoprotein; red: host-virus 
interaction; black: unknown. Diagonal lines within a box indicate 2 gene copies (per viral 
genome), vertical lines indicate 3 copies, and horizontal lines indicate 10 copies.
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Figure 2.6 BSH distribution between the three Human Herpesvirus 
Subfamilies. The distribution o f  the 52 biologically significant hits that are 
classified in one o f  the three subfamilies. The num ber in brackets indicates 
the number o f  hits containing human herpesvirus proteins. A further eight 
BSHs are to unclassified herpesvirus proteins. One hit contained members 
from the alphaherpesvirus subfamily and unclassified proteins and is counted 
here as an alphaherpesvirus BSH.



The number of homologues discovered differed between the three subfamilies, directly 

reflecting the differences in host-virus interaction between members of each subfamily. 

The alphaherpesviruses have the smallest number of homologues. They exhibit a 

limited cellular tropism remaining latent in neurones, which exist in the immune 

privileged CNS and exhibit less anti-immune function. Thus, the alphaherpesviruses 

appear to require fewer proteins to inhibit apoptosis and cellular defense mechanisms. 

However, they do require core viral replication proteins such as transcriptional activator 

(HHV-1 RL1), thymidylate synthase (HHV-3 gene 13), and an additional protein kinase 

(HHV-1 US3), as the neuron no longer actively replicates its genome.

The beta- and gammaherpesviruses, on the other hand, have a larger number of 

homologues. HHV-5’s cellular tropism, in contrast to the alphaherpesviruses, is much 

more varied. HHV-5 has been isolated from numerous tissues including liver, brain, 

thyroid, myeloid cells and leukocytes (Pass 2001). HHV-8 has been associated with a 

number of diseases including Kaposi’s sarcoma, multicentric Castleman’s disease, and 

primary effusion lymphoma (PEL) (Moore and Chang 2001). Both HHV-5 and HHV-8 

infect cells of the immune system, and are more frequently targeted by host responses, 

thereby explaining their necessity for a larger number of proteins that can interact with 

their host environment. It is interesting to note that while HHV-4, HHV-6, and HHV-7 

also infect cells of the immune system, they have fewer xenologues than HHV-5 and 

HHV-8 (Figure 2.5).

The five virus-host xenologues shared between the three human herpesvirus subfamilies 

are those found in most herpesviruses. Four of these are known to be present in all 

human herpesviruses, namely: DNA dependent DNA polymerase, helicase/primase, 

uracil-DNA glycosylase and ribonucleotide reductase large subunit, and these were all 

correctly identified by our methods. An additional protein family, protein kinase HHV-1 

UL13, is present in all human herpesvirus except in HHV-4, suggesting it was lost from 

this genome during HHV-4 evolution.

It is known that the gammaherpesviruses share a common evolutionary branch with the 

betaherpesviruses and that the alphaherpesviruses form a separate lineage (McGeoch 

and Davison 1999; Alba, Das et al. 2001a). It is interesting, therefore, that one of the 

human homologues, ribonucleotide reductase small subunit, is found in the alpha- and 

gammaherpesviruses, but not in the betaherpesviruses. This could be due to a loss in the
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latter lineage after the divergence of the three subfamilies. However, while the small 

subunit is encoded next to the large subunit in both HHV-1 and HHV-8 (both encoded 

at the end of genome block A), their orientations and positions within the genome 

blocks are varied, indicating that an independent acquisition event is also a strong 

possibility.

The HPFs have been used previously to construct phylogenetic trees of herpesvirus 

lineage (Alba, Das et al. 2001a). In this work there are two virus-human xenologues of 

particular interest as they appear in disparate positions in the herpesvirus evolutionary 

tree: thymidylate synthase in HHV-3 (varicella zoster virus) and in HHV-8 (Kaposi’s 

sarcoma associated herpesvirus) and, dihydrofolate reductase in HHV-5 (human 

cytomegalovirus) and HHV-8. These could be explained by either independent 

acquisition of these genes from the host genome by each virus, or multiple gene loss 

events in different herpesvirus lineages. The second is a plausible explanation for genes 

such as protein kinase (HHV-1, UL13) where the gene is missing from only one of the 

eight human herpesviruses, but not in this situation where the gene appears at almost 

random positions in two disparate genomes. A third possibility is horizontal transfer 

between virus genomes, which, in the case of dihydrofolate reductase, could reasonably 

have occurred between HHV-5 and HHV-8 during co-infection as HHV-5 has been 

shown to enhance HHV-8 lytic infection in endothelial and keratinocytes (Vieira, 

O'Heam et al. 2001). This theory is less likely, however, for HHV-3 and HHV-8 (in the 

case of thymidylate synthase) whose cellular tropisms differ quite drastically.

Sequence similarity alone revealed a minimum estimate of human homologues in 

different human herpesvirus genomes to be about 9-16% of virus genes, with the 

exception of human herpesvirus 8, which is approximately 30% of viral genes. The 

reason for a higher percentage of homologues in this virus, and in gammaherpesviruses 

in general, is unclear. Most of the herpesvirus/human homologues identified correspond 

to proteins involved in immune modulation and apoptotic control. These proteins are 

normally specific to one or a few viruses and they often show a complex distribution 

across the herpesvirus phylogeny tree indicating a lack of evolutionary pattern of 

acquisition. They are, therefore, likely to contribute to the virus’s adaptation to different 

hosts or different cellular tropisms on an ‘as and when needed’ acquisition basis. This is 

in contrast to a more stable group of homologues, composed of proteins involved in
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DNA replication and nucleotide metabolism, components of the well-conserved virus 

(and host) DNA genome replication machinery.

For proteins with viral structural functions, such as capsid constituents and capsid 

assembly proteins, which make a large proportion of herpesvirus genome coding 

capacity (20% of the genes of HHV-1), no resemblance to any human protein could be 

found. This is perhaps not surprising, as these have ‘viral-only" functions. Recently, 

however, another method of formulating functional hypotheses of viral proteins, in 

silico protein structure prediction using threading techniques, has been applied to 

herpesvirus proteins. This was performed for all proteins of HHV-5, yielding complete 

structural identifications for 36 viral proteins, only eight of which were previously 

known (Novotny, Rigoutsos et al. 2001). These included some HHV-5 structural 

proteins indicating a possibility that viral derivations from the host may extend much 

further than currently estimated, although, the relationship between structural homology 

and functional similarity indicates that function cannot always be conferred upon 

structural homologues (Todd, Orengo et al. 2001).

2.3.3 Identification of new virus-human homologues

Of special interest for this study was the identification of human homologues for 

herpesvirus protein families and singletons of unknown function. The new homologues 

may provide putative functional annotations for several herpesvirus and/or human 

proteins. New herpesvirus/human protein homologues were found for the US 12 (Unique 

Short) human cytomegalovirus protein family, the UL1 (Unique Long) human 

cytomegalovirus protein, the gallid/meleagrid herpesvirus UL45 protein family and, the 

K3/K5 human herpesvirus 8 family (Table 2.5).

2.3.3.1 HHV-5 US21

HHV-5 US21 is a distant member of a larger HHV-5 protein family, the US 12 protein 

family, encompassing gene products US 12 to US21 (Chee, Satchwell et al. 1990a). 

US21 showed significant overall sequence similarity to three human proteins: lifeguard, 

CGI-119 and PP1201. Other members of the US12 protein family, including an HPF 

which groups 6 of them in VIDA, did not initially hit any human proteins but multiple 

sequence alignments revealed the extent of amino acid similarity between all these
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proteins (Figure 2.7). All of the members in the US 12 family shown in Figure 2.7 have 

been shown to be non-essential for in vitro HCMV AD 169 replication (Yu, Silva et al. 

2003), and for in vitro HCMV Towne strain replication in fibroblasts (Dunn, Chou et al. 

2003), except for US 13 deletion mutants which were observed to cause moderate 

growth defects by Dunn et al. The herpesvirus and human proteins also contain a 

putative seven transmembrane domain, UPF0005, from the Pfam database. Pfam is a 

secondary databases that constructs protein families using Hidden Markov Models 

(HMMs) (Bateman, Bimey et al. 2000).

Lifeguard is the human homologue of the rat protein neuromembrane protein 35 

(Schweitzer, Taylor et al. 1998), proposed to protect against Fas-mediated apoptosis 

(Somia, Schmitt et al. 1999) without interfering with Fas associated death domain 

(FADD) binding to fatty acid synthase (FAS), or the tumour necrosis factor a  (TNFa) 

apoptotic signal; therefore, the related HHV-5 proteins may also have an anti-apoptotic 

role. Viral-FLIPs (FLICE inhibitory protein) that interfere with Fas-mediated caspase-8 

(FLICE) activated apoptosis have already been described in gammaherpesviruses 

(Belanger, Gravel et al. 2001), and the UL36 gene in HCMV has been designated a 

viral inhibitor of caspase-8-induced apoptosis (vICA) (Skaletskaya, Bartle et al. 2001), 

although the two (viral-FLICE and vICA) demonstrate little sequence similarity. From 

our analysis HHV-5 potentially encodes a number of anti-Fas apoptosis homologues, 

distinct from vICA, and the gammaherpesvirus FLIP homologues. Interestingly, in the 

cowpox virus, a member of the poxviridae family, a gene termed SRI, of unknown 

function but similar to the CGI-119 protein, was also identified (Shchelkunov, Safronov 

et al. 1998).

This hit is of dual interest as it allows the oportunity to functionally annotate not only 

viral ORFs using knowledge gathered from their human homologues, but also newly 

discovered human proteins based upon search results. This ‘backward’ annotation from 

‘usurper’ to ‘usurped’ has occurred before, with the initial discovery of viral FLICE 

inhibitory protein (vFLIP), present in several gammaherpesviruses including HHV-8. 

vFLIP was initially identified using a flexible motif search profile (Bucher, Karplus et 

al. 1996) constructed from death-effector domains from human and murine FADD, 

FLICE and Mch4 (Thome, Schneider et al. 1997). This was followed by the subsequent 

identification of cellular equivalents using a similar bioinformatics method, based upon
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a profile constructed from six known members of the vFLIP family (Irmler, Thome et 

al. 1997). Both identifications were confirmed with experimental evidence.

2.3.3.2 HHV-5UL1

Homology was found between the HHV-5 UL1 gene product, a member of the RL11 

family, and the CEA/PSG human protein family. The region of sequence similarity 

covers about two thirds of the UL1 protein and the N-terminal region of PSG and CEA 

subgroup proteins (Figure 2.8). UL1 was also shown to be non-essential for in vitro 

HCMV AD 169 replication in fibroblasts, along with the other members of the RL11 

family (Yu, Silva et al. 2003); Dunn et al also found the majority of the RL11 family to 

be non-essential for in vitro replication of HCMV Towne strain in fibroblasts, apart 

from UL11 (deletion mutant caused moderately defective replication), UL9 (enhanced 

replication), and UL1, for which no deletion mutant was tested.

HHV-5 UL1 showed particular similarity to the pregnancy-specific glycoprotein 5 

(PSpG-5) and other members of the human carcinoembryonic antigen (CEA) protein 

family. The CEA (carcinoembryonic antigen) family is a member of the immuglobulin 

superfamily and contains three subgroups: the CEA subfamily, the pregnancy-specific 

glycoprotein (PSG) subfamily, and a remaining subfamily composed of six proteins 

(Teglund, Olsen et al. 1994). Known functions for the CEA family include involvement 

in cell adhesion, signal transduction, and possible innate immunity (Hammarstrom 

1999). They are also utilised as clinical tumour markers since their discovery in tumour 

tissue in 1965 by Gold and Freedman (Maxwell 1999). Analysis of the CEA and PSG 

subfamilies indicates that the CEA subgroup are cell surface membrane proteins, while 

the PSG subgroup members are secreted from the cell.
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Figure 2.7 The HHV-5 US12 Family alignment to three potential 
human homologues. The herpesvirus protein family US12, including 
US21, which is in the same family, but is represented by a separate HPF, 
aligned with two new human proteins all o f which show homology to the 
third human protein LFG (lifeguard) protein. All sequences contain the 
Pfam family UPF0005 (marked) as described. Proteins are labelled with 
GenBank identification number (GI) and a short description. Amino acids 
shaded red share identity across 50% or more o f  the alignment.
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Figure 2.8 Alignment of HHV-5 UL1 to Members of the CEA Family. The alignment 
shows HHV-5 UL1, two PSG proteins (PSPG 5 and 13) and one member o f the CEA 
subfamily (NCA, non-reacting antigen). Proteins are labelled with GenBank identification 
number (GI) and a short description. Amino acids shaded red share identity across 50% or 
more o f  the alignment; amino acids shaded pink share alternative 50% identity.
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The 11 members of the PSG subgroup still have no known function, their expression 

predominantly occurring in the syncytiotrophoblast during pregnancy (Zhou, Baranov et 

al. 1997) possibly regulating immune system responses, although cDNA clones have 

been isolated from other tissues including fetal liver, salivary glands, testis, and myeloid 

cells (Hammarstrom 1999). HHV-5 infection, which is usually benign in 

immunocompetent individuals, can have catastrophic consequences during pregnancy 

(Fisher, Genbacev et al. 2000). Infection of the placenta has a 30 to 40% risk of 

intrauterine virus transmission to the foetus. Similarity of UL1 to pregnancy-specific 

glycoproteins (PSG) could subsequently be related to the pathology of HHV-5 during 

pregnancy, or to general immune modulation in the host, although there is a marked 

lack of HHV-5 infection of the syncytiotrophblast, the primary PSG expressor 

(Wagener and Ergun 2000).

2.3.3.3 GaHV-1 UL45

The protein family represented by UL45 in gallid (includes Marek’s disease 

herpesvirus) and meleagrid herpesviruses shows homology to human C-type (calcium- 

dependent) lectin domain containing natural killer (NK) cell receptor proteins. Two 

other herpesvirus proteins, from rat cytomegalovirus (RCMV) and from a different 

gallid herpesvirus strain (GenBank accession Y14300), also demonstrate significant 

sequence similarity to C-type lectin domain containing NK cell receptors (Figure 2.9). 

The presence of C-type lectin domain in the RCMV protein was recently reported 

(Voigt, Sandford et al. 2001); now clearly this potential functionality extends to 

homologues in avian herpesviruses. Interestingly, proteins with C-type lectin-like 

domains are also found in the poxviruses (Bugert and Darai 2000).

NK cell receptors interact with HLA class I antigens and facilitate triggering or 

inhibition of natural killer cell-mediated cytotoxicity (Biassoni, Cantoni et al. 2001). C- 

type lectins contain a carbohydrate recognition domain (CRD), which includes four 

conserved cysteine residues forming two di-sulphide bonds and is responsible for 

carbohydrate ligand recognition activity in cell surface lectins (Day 1994; Cebo, 

Vergoten et al. 2002). These conserved cysteines are also present in the herpesvirus C- 

type lectin-like homologues.

The accuracy of this hit demonstrates that this method can be used to identify functional 

homologues between disparate virus-host pairings. In this case, none of the viral genes
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come from human herpesviruses. The functional homology, however, has been 

demonstrated experimentally, in the case of RCMV, thereby increasing the probable 

accuracy of these host and viral xenologues findings. Clearly the presence of homology 

between the human genome and avian and rat herpesviruses suggests that either a) there 

also exist C-type lectins in human herpesviruses that have yet to be identified (perhaps 

by other experimental means that do not rely upon sequence similarity); b) human 

herpesvirus equivalents existed but have since been lost through evolution; or c) that the 

avian and rat herpesviruses independently acquired similar C-type lectin proteins from 

their respective hosts at some point during their co-evolution. When the completed host 

genomes for these viruses become available it will be possible to try and find, through 

similar methods, their direct homologues.
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Figure 2.9 Alignment of GaHV-1/2 UL45 with RCMV, human and GaHV-2 equivalents. A
representative from each o f  the herpesvirus protein families found to contain C-type lectin domains 
and two natural killer receptors (NKG2-A). The four conserved cysteines, important for di-sulphide 
bond formation in the CRD, are indicated. Proteins are labelled with GenBank identification 
number (GI) and a short description. Amino acids shaded red share identity across 50% or more of 
the alignment.
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2.3.3.4 HHV-8 K3/K5

RING finger motifs bind zinc, but are distinct from other zinc-binding motifs, and are 

found in a wide variety of proteins in species ranging from the piroplasmic protozoa 

Babesia microti, and Arabidopsis thaliana, to viruses, yeast, and humans (Saurin, 

Borden et al. 1996). Proteins that contain RING finger motifs range in function from 

transcription factors (ICPO, HSV1), to photomorphogenesis (COP1, Arabidopsis 

thaliana). It is also interesting to note that a number of proto-oncogenes and oncogenes 

also contain RING finger motifs such as BRCA1 (breast cancer gene 1), human PML 

(cause of acute promyelocytic leukemia), and the human proto-oncogene CBL (Interpro 

family IPR001841). RING fingers are referred to as C3HC4 (3 cysteines, 1 histidine, 4 

cysteines) motifs (Figure 2.10a), in contrast to the related C4HC3 (4 cysteines, 1 

histidine, 3 cysteines) (Figure 2.10b) of the PHD/LAP finger motif.

PHD/LAP fingers are RING finger variants found in similar ranges of species and 

function. A highly conserved PHD/LAP finger has been identified in the proteins K5 

and K3 from HHV8, IE1 in BHV-4 (bovine herpesvirus), and ORF12 in MHV-68 

(murine gamma herpesvirus). These proteins are grouped together in VIDA as HPF 

150. An additional gene, ORF 12 in saimiriine herpesvirus 2 (HVS-2), a singleton in 

VIDA that also contains the PHD/LAP finger motif, should also be considered a 

member of the family (Nicholas, Ruvolo et al. 1997). Figure 2.10c demonstrates the 

spatial difference between PHD/LAP fingers and the K5/K3 finger, which led Nicholas 

et al to classify the herpesvirus finger as a subclass of PHD/LAP finger known as the 

BKS (BHV-4, KSHV, and swinepox) subfamily (Nicholas, Ruvolo et al. 1997).

While this BKS motif has been found in a number of different species, most of these 

peptides have no known function; the mechanisms used by RING/PHD/LAP/BKS 

fingers during protein-protein interaction are also as yet unknown. The only function 

associated with this motif is in yeast. The ssm4 coiled-coil protein is believed to contain 

a microtubule-binding motif at its N-terminus (Yamashita, Watanabe et al. 1997), which 

is essential for its association with microtubules during meiotic division.

We identified six unannotated human proteins, including three identified by pairwise 

searches (Jenner and Boshoff 2002), that contain this highly conserved BKS finger 

motif (Figure 2.11). In four of the human peptides, the motif can be found at the N-
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terminus, as in its viral counterparts. In the fifth human protein (gi:7243179; 

KIAA1399) the motif is in the middle of the peptide, and in the sixth (gi: 12383066; 

similar to axotrophin) the motif is embedded in the C-terminus, as it is in murine 

axotrophin (not shown; gi: 10181210).

Members of this family have been demonstrated to downregulate cell surface molecules. 

K3, K5 (HHV-8) and ORF 12 (MHV68) downregulate major histocompatability 

complex (MHC) class I proteins by ubiquitination to facilitate endocytosis (K3: HLA- 

A, -B, -C, -E; K5: HLA-A, -B) (Lorenzo, Jung et al. 2002; Means, Ishido et al. 2002), 

or by binding to the proteins in the endoplasmic reticulum (ORF 12: H-2D) (Boname 

and Stevenson 2001), before targeting the internalised proteins for degradation. In 

addition to HLA-A and -B, K5 also reduces the levels of intercellular adhesion 

molecule 1 (ICAM1) and the costimulatory molecule B7-2 (Ishido, Wang et al. 2000; 

Coscoy, Sanchez et al. 2001). This is one of the first positive indications of a function 

for the BKS motif, coupled with the fact that the BKS motif has not been found 

previously in mammals, indicates a possible function for the host protein.
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a. RING

C-2x-C-(9-39)x-C-( 1 -3)x-H-(2-3)x-C-2x-C-(4-48)x-C-2x-C 
C3 H C4

b. PHD/LAP finger motif

C-2x-C-(4-11 )x-C-2x-C-4x-H-2x-C-(9-14)x-C-2x-C 
C4 H C3

c. BKS

C-2x-C-( 10-15)x-C-x-C-7x-H-2x-C-3x-W-(8-21 )x-C-2x-C 
C4 H C3

Figure 2.10 The Spatial Differences between RING, PHD/LAP, and BKS Finger 
Motifs, a) The RING zinc finger m otif defined by its C3HC4 configuration in contrast 
to b) the PHD/LAP zinc finger m otif defined by C4HC3; and c) the BKS zinc finger 
motif which is also C4HC3, designating it to the PHD/LAP family, but in its own class 
due to the less rigid configuration that includes a conserved tryptophan between the 5th 
and 6th cysteine. C=cysteine; H=histidine; W=tryptophan; x=any amino acid; 0- 
9=number o f  residues.

finger motif

finger motif
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Figure 2.11 The Alignment and Positioning of the BKS Motif in Viral and Human Proteins, a)
K3/K5 herpesvirus protein family with six human homologues. Cysteine/histidine conserved residues in 
the BKS m otif are indicated. Proteins are labelled with their GenBank identification number (GI) and a 
short description. Amino acids shaded red share identity across 50% or more o f the alignment, b) The 
position o f  the BKS m otif is indicated in red along each protein; each protein is labelled with its GI 
number and its total length in brackets.



2.4 Conclusion

The publication of the human genome has provided the opportunity to analyse host- 

parasite interactions using new methods. Herpesviruses capture genes from their host 

and use them during their infection cycle. This work has analysed virus-host protein 

homology using consistent cross-comparative methods for herpesvirus proteins and 

gene products of the human genome. The study has allowed us to derive a global picture 

of cellular functions captured by herpesviruses.

There are a variety of pairwise and multiple alignment tools available for use in such 

studies. Those used here, BLASTP, PSI-BLAST, and IMPALA (all members of the 

BLAST family of programs) were chosen for their speed and automation. This is of 

particular concern when analysing large datasets. Using members of the same program 

family assures the possibility of cross-program results comparison, as the statistical 

methods used to measure significance are related.

We have detected sequence homology to human proteins for approximately 12.5% of all 

known herpesvirus proteins. The question remains whether the remaining 87.5% can be 

considered exclusively viral. It is likely that a fraction may still be functional 

homologues with global sequence similarity too limited to be detectable by the methods 

used here. In addition, our methods will not detect very small sequence motifs such as 

phosphorylation and protein binding sites. Therefore, viral proteins such as HHV8 K15, 

which contains a tumour necrosis factor receptor associated factor (TRAF) binding 

domain (Glenn, Rainbow et al. 1999), or EBV LMP-2A, which contains 

immunoreceptor tyrosine-based activation motif (ITAM) sequences (Fruehling and 

Longnecker 1997), are not detected here, although these proteins are known to provide 

signals/functions similar to their related human counterparts in a given cellular context. 

Attempts have been made to identify these motifs in HHV-5 (Rigoutsos, Novotny et al.

2003). This is difficult to do, as short sequences segments are too readily detected in 

large datasets. Their short length produces results with high statistical scores, but with 

an increased rate of false positives. The subsequent alignments produced by Rigoutsos 

et al were tenuous and full of gaps indicating a lack of functional significance in the 

results (Rigoutsos, Novotny et al. 2003).
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A further confounding factor for detection of viral homologues is the rapid evolution of 

some viral sequences. It has been estimated that herpesvirus proteins typically evolve 

one or two orders of magnitude more rapidly than host proteins (McGeoch and Cook 

1994), and this may quickly mask any common sequence identifiable ancestry of two 

proteins. For example, one known human/herpesvirus homologue, thymidine kinase 

(TK), is present in all known herpesviruses but, due to very limited sequence similarity, 

could not be identified using our methods; although a human TK mitochondrial 

homologue of the channel catfish herpesvirus (CCHV) TK protein was detected. Human 

homologues of the MHV-68 serpin (serine protease inhibitor), M l, were similarly not 

identified using sequence similarity searches.

The relative number of homologues between herpesviruses and the human genome may 

also increase as the prediction methods and number of human gene products from the 

human genome become more accurate. This is highlighted by an initial failure to detect 

the sequence based homology between human and herpesvirus a-N- 

formylglycineamide ribonucleotide aminotransferase (FGARAT). Neither of the human 

predicted protein datasets contained FGARAT even though a human FGARAT gene 

was recently reported (Patterson, Bleskan et al. 1999). Additional homologues for non

human herpesviruses may also be identified when their host genome sequences becomes 

available.

The reverse of this argument applies equally to herpesvirus proteins. Many of the open 

reading frames in the herpesvirus genomes are only conceptual translations from the 

virus genome sequence and are, therefore, predicted hypothetical proteins. Most of the 

hypothetical proteins are singletons, only 4% of which showed homology to human 

proteins, in contrast to 10% of the herpesvirus HPFs. The lack of supporting 

information surrounding such conceptual translations are highlighted by Davison et al, 

in their recent overhaul of the wild-type HHV-5 genome. By comparing the wild-type 

HHV-5 genome with the chimpanzee equivalent (CCMV), they were able to discount 

51 hypothetical proteins, reinterpret 24 proteins, and propose 10 novel ORFs (Davison, 

Dolan et al. 2003). Therefore, careful re-analysis of sequenced herpesvirus genomes 

may identify more authentic viral proteins.

The analysis of the expression of all open reading frames using methods such as DNA 

array-based profiling (Chambers, Angulo et al. 1999; Stingley, Ramirez et al. 2000;
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Hill, Lukiw et al. 2001; Jenner, Alba et al. 2001; Moses, Jarvis et al. 2002; Poison, 

Wang et al. 2002; Wagner, Ramirez et al. 2002; Jones and Arvin 2003) will establish if 

these potential products are expressed during the virus cycle. Overall, the continued, 

virus-focused searching of constantly growing protein databases using cross

comparable methods is likely to increase our understanding of the relationship between 

virus and host.

There also appears to be a direct correlation between genome size (in case of HHV5) 

and number of host homologues (HHV8) and the flexibility of infection in terms of cell 

tropism and host-virus interaction/avoidance. Beta- and gammaherpesviruses infect 

lymphocytes and encode a number of proteins that prevent apoptosis and antigen 

presentation, possibly to avoid viral detection and immune elimination. The human 

alphaherpesviruses, on the other hand, encode fewer host-interaction homologues than 

their beta- and gammaherpesvirus counterparts. Alphaherpesviruses infect neurones 

present in the immune privileged CNS and, therefore, potentially do not face such a 

vigorous immune responses as met by beta- and gammaherpesviruses. They do encode a 

number of additional homologues not found in the other two subfamilies, such as 

kinases and transactivators, likely to assist alphaherpesvirus genome replication in a 

cellular environment otherwise unsuited to DNA replication. This, however, is not an 

absolute rule. Many alphaherpesvirus proteins have extensive immune evasion 

capabilities. For example, the HHV-1 protein kinase US3 has been recently found to 

inhibit apoptosis by phosphoylation of the protein Bad, a member of the bcl-2 family 

(Cartier, Komai et al. 2003).
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3.0 New viral additions to the Gene Ontology

3.1 Introduction

3.1.1 The Gene Ontology

As available sequence data increases, it is important that consistent annotation and 

organisation of information does not fall behind. Cross comparison between species is 

particularly vulnerable to misinterpretation if there is no universal understanding of 

functional definition for homologous gene functions. The importance of creating and 

maintaining a universally accepted terminology is magnified when the gene product title 

and gene product function, while often sharing the same name, are confused with each 

other. Additionally, confusion is increasingly common when there are multiple names 

for the same gene product or multiple, unrelated genes sharing the same name (Pearson 

2001). It is for this reason that the Gene Ontology (GO) Consortium (Consortium 2001) 

developed a universal vocabulary (ontology) of biological process, cellular component, 

and functional definitions. The aim of the ontology is to provide a shared, structured 

vocabulary adequate for the annotation of molecular characteristics across organisms 

(Ashbumer, Ball et al. 2000).

The GO Consortium was established in 1998 as a collaboration between three 

independent model organism databases: FlyBase (Drosophila) (Consortium 2003), SGD 

(the Saccharomyces Genome Database) (Ball, Dolinski et al. 2000), and MGI (the 

integrated database comprising Mouse Genome Database (MGD) (Bult, Blake et al.

2004), and the Gene Expression Database (GXD) (Hill, Begley et al. 2004). In 2000, 

two more model organism databases joined: The Arabidopsis Information Resource 

(TAIR) (Garcia-Hemandez, Berardini et al. 2002), and the Caenorhabditis elegans 

group, WormBase (Harris, Chen et al. 2004). The collaborators provide three services: 

a) the creation and maintenance of the ontologies, b) the association of genes and gene 

products from the contributing databases, and c) the development of tools to aid usage 

of the ontologies and their continued maintenance and growth.

The Gene Ontology project is divided into three species-independent ontologies: 

molecular function, biological process, and cellular component. The molecular function
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ontology describes protein functions at the biochemical level without designating their 

time, place, or context. The biological process ontology links functions together in an 

ordered assembly. There is still no designation of time, place or specific context, thus 

biological processes do not represent biological pathways. In contrast, the third 

ontology, cellular component, does outline the place or structure in a cell where a 

particular gene product can be found. This ontology will refer to the site where a gene 

product is active, so ‘place’ can refer to a location such as the cell membrane, or a 

structure such as a proteasome (Ashbumer, Ball et al. 2000).

Biological process and molecular functions are often confused; to help differentiate, 

biological processes usually have more than one distinct step (examples of processes 

are: molecular transport, metabolism, translation or replication). Molecular function 

terms, on the other hand, often end with the words ‘activity’ or ‘binding’ (examples are: 

DNA polymerase activity, or DNA binding). The necessity for these words at the end of 

enzymatic activity such as DNA polymerase is to help distinguish between the physical 

gene product that performs such a function (and is therefore named after it), and the 

name of the function it performs, as these two also are often confused. Therefore, the 

protein known as ‘DNA polymerase’ has (among others) the function ‘DNA polymerase 

activity’, which is a term name found in the molecular function ontology.

Each of these ontologies is represented by directed acyclic graphs (DAGs). As in a strict 

hierarchy, each parent can have multiple children (more specific terms), but in a DAG 

each child can also have more than one parent (more general terms) (Figure 3.1a). The 

relationship between a child and a parent can be either of the “is a” type, where the child 

is an instance of the parent, or of the “part o f ’ type, where the child is a component of 

the parent (Figure 3.1b). The advantage of the DAG structure is that a child can have 

different relationships with each of its different parents (Consortium 2001), allowing for 

a more realistic depiction of biological systems than the classic hierarchy.

The DAGs must also follow the “True Path Rule” (Consortium 2001): the path from 

each child to each parent must be true to the top level parent/s. Should any new child 

not follow the rule, a new node in the DAG must be constructed (or removed) and the 

links reformed such that the new paths are true.
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Each level or term of the DAG is designated a number and this number is then conferred 

upon any gene products associated with that level (term) of the ontology (Figure 3.1b). 

Each term is also accompanied by a definition that should apply to all gene products at 

that level, and information concerning any synonyms.

The GO Consortium makes very clear what should not be expected of GO. The Gene 

Ontology is an ordered description of the behaviour of gene products in a cellular 

context. It is not, therefore, a gene product database, and terms within the ontologies do 

not describe individual gene products -  but functions, processes, or components that can 

be conducted, partaken in, or comprised of gene products. It therefore is not a unifying 

solution, it does not dictate a minimum standard or nomenclature that should be 

universally adopted. Finally, GO does not attempt to describe all aspects of gene 

products. Details of domains, 3D structure, protein-protein interactions, splicing 

parameters, disease associations, tissue or cellular tropisms, or developmental stages are 

not included in GO. Many of the above listed, however, can be found in other 

ontologies that are currently being developed simultaneously with GO.

GO can be accessed from its website and browsed online, downloaded by anonymous 

FTP, or accessed by CVS (Concurrent Versions System). Files are available in three 

different formats: flat file (updated daily), XML, and MySQL (both updated monthly).

3.1.2 Adding new virus-related terms to the gene ontology

Analysis of host-viral interaction, especially with high throughput methods such as 

DNA microarrays, can be achieved without a formalised method of regulated gene 

annotation. The Gene Ontology, however, provides the ideal framework necessary to 

compare two different species at the genomic level, utilising a common language and 

allowing comprehensive analysis to be conducted more easily. For this to be possible, 

though, both species require their gene products to be annotated with the appropriate 

GO numbers.

The current custom of the Gene Ontology consortium is to include terms in the various 

ontologies that apply to more than one taxonomic Kingdom. Occasionally, however, the 

same term has two different meanings in two different species. When this occurs, the 

term ‘sensu’ is utilised to distinguish between definitions, as in the example:
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G0:0016065:humoral defense mechanism (sensu Invertebrata), and 

G0:0016064:humoral defense mechanism (sensu Vertebrata). Unfortunately, this 

annotation technique is not always sufficient to distinguish viral from organism-based 

definitions. While a few can be shared, such as DNA polymerase and protein kinase, 

there are a large number of viral gene products that do not share functions, processes or 

components with other taxonomical groups of organisms, for example, 

G0:0046773:viral inhibition of host cell protein biosynthesis shutoff, or 

G0:0046740:viral spread within host, cell to cell.

An initial set of viral terms was available within GO, but these required extensive 

consistency checking and placement to make them usable by virologists. This was 

undertaken here and any necessary new terms were also created. These terms, in 

accordance with GO guidelines, are fully integrated into the existing GO DAGs and can 

be accessed alongside cellular terms at http://www.geneontology.org .
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Figure 3.1 The Structure of the Gene Ontology and its Terms, a) The Gene Ontology is organised 
into Directed Acyclic Graphs (DAGs) characterised by the fact that parents have multiple children (as 
with any hierarchy) but children can also have multiple parents such as the term DNA helicase. Terms 
are then annotated to gene products to aid in unifying annotation between species. This picture was 
taken from the Gene Ontology website at www.geneontology.org. b) Each term in the DAG is 
identified by its name, accession number and definition. It can have either a ‘part-of relationship, or an 
‘is-a’ relationship, relationship with each o f  its parents.
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3.2 Methods

3.2.1 New Viral GO Terms

Examination of GO revealed that there were a number of instances where it was 

necessary to create new viral GO terms. All terms were created in accordance with GO 

guidelines available from www.geneontology.org/. New terms were devised by 

documenting and breaking down into component parts the various stages of viral 

infections using standard references and expert opinion. Each component was defined as 

a specific, new GO term and annotated with a definition and supporting reference, 

where available. The presence of synonymous terms was determined manually. Where 

possible, Fields Virology (Knipe, Howley et al. 2001) and VIDA GenBank derived 

annotations were used for new GO term assignments. All terms, definitions and 

references are curated manually by the Gene Ontology Consortium before a unique GO 

accession number is assigned to each term and they are integrated into the existing Gene 

Ontology DAGs.

3.2.2 Visualisation

Schematic diagrams of DAGs are retrieved from the QuickGO browser, available from 

http://www.ebi.ac.uk/ego/. The DAGs in Figure 3.5 were manually produced. Figure 3.3 

DAGs are produced by the AmiGO brower, available from www.geneontology.org/.

3.23 Data Availability

All new viral terms, definitions, and references are listed in Appendix A, and have been 

integrated into the ontologies, which are accessible by searching the database at 

www.geneontology.org using any of the available search engines.
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3.3 Results

3.3.1 Assigning New GO Terms (placing them in the ontologies)

Gene Ontology guidelines for creating new terms require each term to be named, 

defined and referenced. Each term is then curated by the Consortium before being added 

to the existing ontologies. The current ontologies are not complete; rather, new terms 

are constantly being created. When adding to an existing ontology it is important that 

accuracy, redundancy, overlap, and placement are all taken into consideration. Because 

of the enormity of the project the Gene Ontology is not without inconsistencies and nor 

is it static, with such inconsistencies being constantly corrected and terms updated or 

revised. Figure 3.2 demonstrates the necessity for such close attention to detail, which is 

especially important when using the ontology to decipher host-pathogen relations, as 

many terms will refer directly to various interactions involving products from both 

species. Before assignments can be made the term and its definition must be universally 

understood.

3.3.1.1 Accuracies

The need for accuracy is exemplified by the initial viral term G0:0019054:virus-host 

cell process manipulation, (Figure 3.2a), whose original definition is “defined cellular 

processes that are disturbed by viral products”. This definition implies that host 

products should be annotated to this term and to any of its child terms, however, both of 

the two child terms clearly relate to viral products that interfere with host processes 

(Figure 3.2b), G0:0019056:viral pertubation of host cell transcription and 

G0:0019057:viral pertubation of host cell mRNA translation. Indeed, a viral 

product that manipulates host processes, such as HHV-1 UL41 (virion host shut-off 

protein), should be assigned to a child of this GO term, however, it is not a defined 

cellular process. A more accurate definition for the parent term would be: The 

manipulation o f  host cell processes by viral products. Thus, the term 

G0:0019054:virus-host cell process manipulation, whose original definition was 

misleading was changed to: Alteration o f  defined cellular processes that viruses target 

during replication, a more accurate description. This illustrates the necessity for 

accurate, semantic use of language in GO term creation to prevent annotation 

inaccuracies.
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3.3.1.2 Redundancy

Given the hierarchical levels of the DAGs, redundancy was not commonly found. 

Some examples were initially identified for further investigation, as in Figure 3.2b. The 

term G0:0019048:virus-host interaction, is defined as: interactions directly with the 

host cell macromolecular machinery, to allow virus replication. This can be interpreted 

as encompassing every viral gene presently known to function during the viral life 

cycle, as viral replication cannot occur without interaction with cellular macromolecular 

machinery. This creates confusion when a viral product of unknown function is being 

annotated. The product could be assigned G0:0000004:unknown, but could also be 

more informatively annotated with the general term G0:0019048:virus-host 

interaction. The need for the term G0:0019048 at the given DAG level becomes 

apparent as it is the only logical step between higher, less specific terms, such as: 

G0:0030383:host-pathogen interaction, and its children G0:0019049:viral-host 

defense evasion, and G0:0019054:virus-host cell process manipulation. Therefore, 

the term G0:0019048 is not necessarily designed for annotation use, but primarily to 

structure the DAGs. The definition is all encompassing, however, because children 

terms have more specific definitions, and their placement is logical beneath the general 

parent term. Therefore, the correct annotation for an ORF involved in unknown viral 

processes would be GO:0000004:unknown, until more information is known and the 

ORF can be more accurately described, but the term G0:0019048 is not redundant.

3.3.1.3 Overlapping

Examination of the existing Gene Ontology identified some overlapping terms (Figure 

3.2c). The terms ‘cytoplasm’ and ‘nucleus’ are two examples of terms easily named, 

defined, and placed within the cellular component ontology. The creation of the terms 

G0:0042025:host cell nucleus, and G0:0030430:host cytoplasm, clearly overlaps 

with the pre-existing terms. There are three immediate concerns that arise from this 

duality. First, should new terms relating to both healthy and infected cell cytoplasms be 

placed appropriately as children of both terms (G0:0005623:cell and 

G0:0018995:host)? While there are certain cellular reactions, and thus certain gene 

products, that would only function during infection, these discrepancies in product 

function can be recorded by creating appropriate biological process and molecular
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function terms. Second, since ‘nucleus’ and ‘cytoplasm’ have been designated separate 

GO numbers to distinguish between ‘cell’ and ‘host’, new terms would have to be 

created to represent every structure in the cell. Third, the term G0:0018995:host and 

all of its children have been placed as children of the G0:0005576:extracellular term. 

It would, therefore, be inaccurate to place any virus-related GO terms within the ‘host’ 

term DAG as that would place them in the extracellular compartment -  an inappropriate 

assignation for any viral gene product operating inside the cell.

This apparent ‘overlap’ in the ontologies, however, serves a necessary purpose. The 

existence of 'host' terms in the Gene Ontology, is used to distinguish between cellular 

based pathogens that, as an integral part of their life cycles, are internalised by other 

cells (i.e. Plasmodium falciparum). Indeed, the term G0:0018995:host has been 

defined as Any organism in which another organism, especially a parasite or symbiot, 

spends part or all o f  its life cycle and from which it obtains nourishment and/or 

protection. Therefore, some of these pathogenic gene products may function in the 

pathogen's nucleus (G0:0005634:nucleus), and others in the host cell's nucleus 

(G0:0042025:host cell nucleus), thus requiring the two terms in order to distinguish 

between the two cells. As this dichotomy cannot occur during the viral life cycle, the 

terms relating to a cell (GO:00055623:cell and all its children) and not those relating to 

a host cell (G0:0018995:host and all its children) were used when integrating new 

virus-related GO terms (and eventually to annotate viral products). This procedure was 

agreed with the GO Consortium for two reasons: i) The DAG beneath 

G0:00055623:cell is more complete in it's complexity and depth of terms, and ii) this 

structure creates a distinction, allowing for the annotation of cellular based intracellular 

pathogens.

3.3.1.4 Placement E rrors

Some examples of placement errors were identified in the existing viral terms (Figure 

3.2d) such as G0:0019036:viral transcriptional complex, which was originally 

assigned as a child of G0:0042025:host cell nucleus. This error constitutes a true-path 

rule violation (see below) as transcription, whether viral or cellular, cannot occur 

extracellularly. In a similar example, G0:0030430:host cytoplasm (Figure 3.2c) was 

originally a child of G0:0042025:host cell nucleus, instead of being its sibling. These
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placements were easily adjusted in accordance with current GO guidelines because the 

fluid nature of the ontologies allows for the modification of the DAGs when necessary.

Finally, certain distinctions between cellular and viral functions were made where, 

despite the presence of similarity in function/process, there was a clear distinction 

between the two that sufficiently warranted a new GO term. This was the case for terms 

such as G0:0019039:viral-cell fusion molecule, and G0:0019083:viral 

transcription. The process of cell membrane fusion involves a number of cell surface 

proteins; however, the process of viral-induced cell membrane fusion will also involve a 

number of fusion proteins of viral origin, which therefore require distinction. The 

process of cellular transcription and viral transcription are also distinct processes during 

viral infection, which in the case of viral transcription, can be controlled by viral 

specific processes. In this situation it is important to distinguish which processes of 

transcribing a viral gene are unique and linked to viral infection, especially when the 

viral and cellular process compete.
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Term: viral host cell p rocess manipulation 
A ccess io n : G0:0019054
Definition: Defined cellular processes that viruses target 
during replication.

Figure 3.2 Accuracy, Redundancy, Placement, & Overlap within the Gene 
Ontology. There are a number o f  potential problems within an Ontology that must be 
constantly considered when creating new terms such as a) Accuracy o f  term names 
and definitions; b) Redundancy o f  new terms with respect to existing terms; c) 
Placement o f  new terms; and d) Overlapping o f  old and new terms. These were all 
addressed during creation o f  viral GO terms.
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3.3.1.5 Maintaining the true path rule

The “True Path Rule” is integral to GO and states that the path from each lower level 

node (‘child’) up to the top level node (‘parent’) must be true, i.e. every intermediate 

parent must make sense in the context of the process, function, or component in 

question. It is important when placing terms in the ontology that this rule is not violated. 

Violations can occur through placement error, where a term is not logically, or correctly 

placed within the ontologies (Figure 3.3a). In the case of the term 

G0:0019038:provirus, which has been placed correctly beneath G0:0019015:viral 

genome, with an “IS-A” relationship, the violation occurs in the next few parents, 

which are not true: the viral genome is not always a part of the nucleocapsid, and by 

definition cannot always be extracellular. In particular, the provirus is only ever found 

in the nucleus of a host-cell, as it is the term given to integrated viral DNA, it is never 

found in the nucleocapsid or extracellularly. This, therefore, constitutes a true-path rule 

violation. Violations can also occur when a term is placed in multiple positions within 

the ontology as it is possible that one of the placements would not be accurate for an 

open reading frame assigned to that GO term (Figure 3.3b). The term 

G0:0007323:pheromone processing, for instance, was originally found in three 

different places with the biological process ontology and any gene assigned to this term 

would find that the term follows the True Path Rule for the first and third placements 

only (as child to G0:0019236:pheromone response, and G0:0016485:protein 

processing) (Figure 3.3b). The problem occurs, however, with the second placement 

beneath G0:0007322:mating (sensu Saccharomyces), as any assignment of this term 

to a species other than Saccharomyces would immediately violate the True Path Rule. 

Both of these situations were rectified by altering the shape of the DAGs and removing 

inappropriate placements (Figure 3.3c). In addition, the term G0:0007323 has evolved 

in name and definition to further avoid confusion.

3.3.1.6 Use of sensu

The use of the terminology ‘sensu’ in the case of the term G0:0005618:cell wall, is an 

example of a situation where the term ‘cell wall’ has a number of different meanings 

across a wide variety of species. Thus, ‘sensu’ is used to distinguish each ‘cell wall’ 

term according to its specific definition; each definition relating to a different species. In
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this case there exist five different cell wall terms: G0:0009274:cell wall (sensu 

Bacteria), with two children gram negative (G0:0009276) and gram positive 

(G0:0009275), G0:0009277:cell wall (sensu Fungi), and G0:0009505:cell wall 

(sensu Magnoliophyta), each term has its own number and its own definition. The use 

of sensu is a particular concern when annotating viral gene products as there are a 

number of homologous gene products which may share the same name between virus 

and host, but whose function or structure is sufficiently different to warrant an 

alternative term.

Within viruses, there are certain terminology distinctions that need to be made in order 

to refine the Gene Ontology. An example of such a situation is the creation of the term 

GO:0046728:viral capsid (sensu Retroviridae) (Figure 3.4). This was done to allow 

viral annotators to distinguish between the viral capsid that immediately surrounds the 

viral genome (G0:0019028:viral capsid) and the capsid that surrounds the 

nucleocapsid (as is the case in retroviruses). The nucleocapsid is defined as the capsid 

structure that immediately surrounds the viral genome in viruses that have more than 

one capsid. The new sensu term was placed in the ontology as another child of the term 

G0:0019028:viral capsid, and the term G0:0019013:viral nucleocapsid, previously a 

direct child of G0:0019012:virion> was moved to be a child of G0:0046728:viral 

capsid (sensu Retroviridae), reflecting that its relevance to viral annotation relies upon 

the existence of an additional capsid surrounding the viral genome (Figure 3.4).
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a. Term: provirus
Accession :G O :001903 8 
Synonyms: None.
Definition: The name given to  a  viral genome after it has been integrated into the host genome; 
particularly applies to  retroviruses and is a required part o f  the retroviral replication cycle.

BGO:OOQ3673 : Gene Ontology (31411)
E  ® G Q :0008150 : biological process (23834)
B® GO :0005575 : cellular component (14569)

B ®GQ:0005576 : extracellular (1086)
B ® G O :0019012: virion (1)

E ®GO:0019Q13 : nucleocapsid (1)
B® GO:0019015 : viral genome (1)

S  i>GQ:0019Q38: provirusd)

b. T erm : pheromone processing 
Accession :GO.-0007323 
Synonym s: None.
D efinition: None.

B G 0:0003673  : G ene Ontology (3141U
B ®GO:000815Q : biological process (23834)

B  (£00:0007154 : cell communication (4746)
B (£0 0 :0 0 0 9 6 0 5  : response to external stimulus (1883)

E® G O :0009581 : perception o f  external stimulus (731)
B <500:0009628  : response to abiotic stimulus (703)

E  ®GO:0009582 : perception o f abiotic stimulus (473)
B  (10 0 :0 0 0 9 5 9 3  : perception o f  chemical substance (249) 

E  ®GO:0007606 : chemosensory perception (247)
B (XQQiQQ 19236; pheromone response (41)

B  ®G O :0007323 : pherom one processing (4) 
B  (10 0 :0 0 0 7 6 0 0  : sensoiv perception (455)

B  (10 0 :0 0 0 7 6 0 6  : chemosensory perception (247)
B 00 0 :0 0 0 8 1 5 1 :  cell growth and/or maintenance (16039)

B  00 0 :0 0 0 6 9 4 7  : cell-cell fusion (203)
B'-iQp;0Q07322; mat ins, (sensu Saccharomyces.) (20!) 

B 0GO:OOO7323 : pherom one processing (4)
B  0 0 0 ^ )0 0 8 1 5 2  : metabolism (11351)

E 00 0 :0 0 0 6 4 1 1  : protein metabolism and modification (4481)
B  (100:0006464 : protein modification (1094)

B  00 0 :0 0 1 6 4 8 5  : protein processing (18)
B  SG 0:0007323 : pherom one processing (4)

Figure 3.3 Exam ples o f T ru e  P ath  Rule Violations, a) an example o f placement error 
leading to the term G 0:0019038 :p rov irus violating the true path rule; b) the term 
G 0:0007323:pherom one processing is found in three different places in the DAGs, 
however, not all placements are appropriate for every gene product that could be assigned to 
this term; c) both the violation and potential violation in a) and b) were easily rectified by 
rearranging the DAG, in the case o f  a) and b), and by amending the original term in the case 
o f the term G 0:0007323.
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c.

□ G O :0003673 : G ene O n to logy  (120591) #
B ® GO:000815Q : b io log ica l p rocess (72641) 
[±]® G O :0005575 : ce llu la r co m p o n en t (59242)

B 0X 30:0005623 : cell (47332)
B ® G Q :0005622  : in tracellu la r (37859)

B  ® G Q :0005694 : ch rom osom e (980) 
E (gG O :0019Q 38 : p rovirus (64) % 

E ( DGO:0019012 : v irion  (123)
B ® G Q :0019015 : v iral genom e (64)

E  r?)G Q :0019038  : p rovirus (64) #

T erm : peptide pherom one maturation 
A ccession : 0007323
S ynon ym s: a-factor processing (proteolytic) 

alpha-factor maturation 
G 0 :0 0 0 7 3 2 4  
G 0 :0 0 0 7 3 2 6  
G 0 :0046613  
pherom one processing
pherom one processing (sensu Saccharom yces)

D efin ition:T h e generation o f  a mature, active peptide pherom one 
via processes unique to its processing and m odification.

□ G O :0003673 : G ene O n to logy  (120591) #
B ® G O:000815Q : b io log ical p rocess (72641)

E ®GO:OOQ7582 : physio log ical p rocesses (50629)
B ( DGO:OOQ8152 : m etabo lism  (31946)

B ® G Q :0019538 : p ro tein  m etabolism  (10712)
B  ® G Q :0006464 : protein  m odifica tion  (3410)

B ( D G O :0016485 : protein  p rocessing  (103)
B  (j:GO:OOQ7323 : peptide p h erom on e m atu ration  (14) #
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Term: viral capsid 
Accession: G0:0019028 
Synonyms: None.
Definition: The protein coat that surrounds 
the infective nucleic acid in som e virus 
particles. It comprises numerous regularly 
arranged subunits, or capsom eres.

0003673
Gene.Ontology

1
Parent terms

| ISA

Selected terms (5)
000517! 

cellular_component 1| PART OF A

Primary term

0019012
virion

(JQ19028 
viral capsid

0046728 004672 7 0019029 0046798
viral capsid (sensu 

Retroviridae)
cap some re helical viral capsid viral poital complex

0019013
viral nucleocapsid Term: viral capsid (sensu Retroviridae)

Accession: G0:0046728 
Synonyms: None.
Definition: The protein coat that surrounds the infective nucleic acid in 
retrovirus particles; the structure is complex, and specific structures and 
functions are associated with different elements of the capsid.

F igure 3.4 Exam ple of sensu Usage in viral term s. When the same term 
has two different meanings between species the word 'sensu' is used to 
determine the sense in which the term is intended; here it is used to 
distinguish between the viral capsid that directly surrounds the viral genome 
(G 0 :0 0 19028), and the capsid found in retroviral virions that surrounds a 
nucleocapsid, which in turn directly surrounds the viral genome.
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3.3.1.7 Refining terms

When new terms are added to the existing GO certain knockon effects result in a 

number of terms that require altering in order to preserve DAG structure. These 

adjustments include moving term placements within the ontologies as new terms are 

inserted into the existing DAGs, altering or adding definitions as the ontologies are 

refined, and in a few cases changing the term name to reflect alterations to the DAGs. 

All new terms assigned to the ontologies were carefully checked for True Path Rule 

violations. In addition, any existing terms that were encountered that violated the rule 

were adjusted by either: removal of the term from the incorrect placement, movement of 

the term to a more appropriate placement, or creation of a new term using the 

terminology ‘sensu’ to distinguish between the different definitions of the terms.

In total, 92 new terms relating to viral function, process, and component were created 

and incorporated into the ontologies to complement the 95 pre-existing terms, thereby 

comprising a total of 187 virus-related gene ontology terms (Appendix A). This process 

was undertaken with respect to all the annotation and placement criteria described in 

this chapter. Integration of the terms into the existing DAGs (Figure 3.5) was 

accomplished, often utilising the acyclic structure of DAGs to give certain terms more 

than one parent (i.e. G0:0046773:viral inhibition of host cell protein biosynthesis 

shutoff is a child of both G0:0019049:viral-host defense evasion, and 

G0:0019054:virus host-cell process manipulation.) (Figure 3.5d). All of the terms 

can also be seen incorporated into the ontologies by using an online browser at 

www.geneontology.org.
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Biological Process
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maintenance

Viral life 
cycle

Cell 
c u n  iuni cation

j_ . _  Biological 
process unknown

Figure 3.5 Subsections of the Biological Process DAGs with integrated  
viral term s (above and opposite). All new GO terms are integrated into 
the existing DAGs. a) shows how the three sections fit together within the 
ontology; terms are depicted here fully integrated into the b) cell growth 
and/or maintenance, c) viral life cycle, and d) cell communication sections 
o f  the existing biological process ontologies.
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3.4 Conclusion

The development and maintenance of scientific databases, repositories, and ontologies 

does not necessarily produce conclusive scientific insight and ‘evidence’; however, it 

does produce results upon which further research can be based (Guettler, Jackson et al. 

2003; Lord, Stevens et al. 2003; McCarter, Mitreva et al. 2003; Palmer, O'Shaughnessy 

et al. 2003). Since its conception in 1998, the Gene Ontology has become the focus of a 

number of new studies (Schug, Diskin et al. 2002; Jensen, Gupta et al. 2003; King, 

Foulger et al. 2003; Lagreid, Hvidsten et al. 2003), numerous primary and secondary 

databases and analysis tools have integrated GO into their systems as a base 

requirement for annotation (Biswas, O'Rourke et al. 2002; Hodges, Carrico et al. 2002; 

Camon, Magrane et al. 2003; Dennis, Sherman et al. 2003; Doniger, Salomonis et al. 

2003; Garavelli 2003; Rhee, Beavis et al. 2003; Sprague, Clements et al. 2003; 

Tulipano, Millar et al. 2003), and a number of secondary tools have been independently 

developed to make GO more accessible to the biological science community (Tanoue, 

Yoshikawa et al. 2002; Berriz, White et al. 2003; Yeh, Karp et al. 2003; Zeeberg, Feng 

et al. 2003).

The fluidity of the ontologies allows them to adapt to the addition of new terms, the 

alteration of existing terms, and thus, the constant restructuring of the DAGs. There is 

also no rigidity or inflexibility when using GO, as any biological discrepancies can be 

immediately addressed. The ontologies, which were originally designed for cellular 

organisms, have shown the ability to accommodate terms that were created specifically 

for plant organisms (Arabidopsis thaliana), intracellular parasites (Plasmodium 

falciparum), and, from the work here, viruses. However, before any research can be 

conducted that is based upon the new viral additions to the Gene Ontology, it is 

necessary to annotate individual viral gene products with GO terms.
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4.0 Annotation of herpesvirus gene products using the 
Gene Ontology

4.1 Introduction

4.1.1 Annotating HHV-1 with Gene Ontology terms

The Gene Ontology provides a network of terms that, when annotated to gene products 

from different biological systems, can provide a global view of system interactions 

within and between organisms. There are three stages to maximising usage of GO’s 

resources: creation of terms (where necessary) to annotate to a chosen organism(s), 

annotation of all available gene products from the organism, and analysis of research 

results using new annotations. The first stage encompasses Chapter 3, the second two 

stages, Chapters 4 and 5 of this thesis.

The completion of a basic viral ontologies framework allows for the assignation of GO 

numbers to viral gene products. The first step in this process, however, was to determine 

which viral Open Reading Frames (ORFs) have already been assigned GO numbers by 

other resources, such as InterPro, before then assigning the remaining ORFs with the 

appropriate terms. GO annotations, like the ontologies, are not static: they are easily 

changed in accordance with the emergence of new data.

To fully examine the practicality of the newly created viral GO terms, Human 

Herpesvirus 1 (HHV-1; Herpes Simplex Virus, HSV-1) was annotated. HHV-1 is a 

widely studied virus and is thus an ideal candidate for such a project. As HHV-1 is 

highly characterised, the homologous protein families built by VIDA (Alba, Lee et al. 

2001) could then be used to automatically annotate a number of less well studied 

viruses with GO terms. The annotation of viruses, and their hosts, with GO terms opens 

the possibility of integrating viral-host gene function analysis utilising the expression 

data from microarrays (Chapter 5), and other high through-put functional genomics 

methods.
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4.1.2 Human Herpesvirus 1 (HHV-1; Herpes Simplex Virus 1, HSV-1)

Human Herpesvirus 1, or Herpes Simplex Virus 1, is an alphaherpesvirus whose DNA 

genome is approximately 152kbp in size. The HHV-1 genome encodes for

approximately 90 transcriptional units, of which at least 84 encode proteins (Roizman 

and Knipe 2001). HHV-1 infection occurs most commonly in oral mucosal tissue after 

direct contact with infectious agent. Primary infection includes replication at the site of 

infection, but also the infection of sensory neurons that supply the area. The virus is 

then transported via retrograde axonal transport to the dorsal root ganglion where 

latency is established.

HHV-1 is uniquely characterised by its neurovirulence, as it not only infects neurones 

from peripheral sites, but also is able to replicate in the non-dividing neuronal cell. 

When the virus is reactivated, it replicates and travels back to the site of initial infection 

(and surrounding area) by axonal transport and replicates in the epithelial tissue at the 

peripheral site. HHV-1 has been linked to such diseases as oropharyngeal herpes, 

recurrent labialis, encephalitis, keratitis, and mucocutaneous diseases in

immunocompromised hosts.
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4.2 Methods

4.2.1 HSV-1 annotation dataset

The complete list of ORFs (open reading frames) from HSV-1 was obtained from VIDA 

(Virus DAtabase) (Alba, Lee et al. 2001). VIDA 1.0 was used, which is derived from 

GenBank release 124.0. ORFs in VIDA are identified by their GI numbers (as assigned 

by GenBank at the NCBI), and their SWISS-PROT or TrEMBL number (as assigned by 

SWISS-PROT) (Boeckmann, Bairoch et al. 2003). Existing functional information 

pertaining to the HPF of each HSV-1 ORF was also extracted from VIDA. A total of 

4054 non-redundant, non-fragmented herpesvirus ORFs representing 887 

HPFs/Singletons and 237 HHV-1 ORFs (including strain variants) were used.

4.2.2 GO FINDER

The only existing compilation database to include GO annotations and viral ORFs, at 

the time of this work, was InterPro (Mulder, Apweiler et al. 2003). An algorithm, GO 

FINDER, was designed to match ORFs from VIDA to InterPro families, and to extract 

any pre-existing GO annotations. To complete this step for herpesviruses, the 

herpesvirus ORFs (identified by their GI numbers) must be linked via SWISS-PROT to 

their IPR (InterPro) family numbers, some of which have been assigned GO numbers. 

All of this information is then collated into a table (Figure 4.1).

The information from five different files was collated and corresponding entries 

extracted. The first three files: Herpesviridae_124_functions_updated.txt,

Herpesviridae_124_mkpsc_updated.txt, and Herpesviridae_124_gene_table.txt are 

subsidiary flatfiles produced when updating VIDA with new releases of GenBank. Each 

contains lists of information pertaining to the ORFs being incorporated into VIDA. The 

last two files, protein2ipr.dat and ipro2go can be downloaded by anonymous FTP from 

InterPro and parsed down to the essential information using the scripts SWPRO_EDIT 

and IPRO EDIT. After obtaining existing GO annotations from InterPro, herpesviruses 

ORFs were then mapped onto their HPFs in VIDA to aid in computational annotation of 

other, related herpesvirus ORFs. These computational first pass annotations identified 

by GO FINDER were used as a general guideline, with every GO assignment being
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subsequently manually curated and reconfirmed according to the most up-to-date 

information from the Gene Ontology, available literature, and VIDA.

4.2.3 Literature Based Curation

Each ORF in the HSV-1 genome was individually researched in the literature. Papers 

dating from the original HSV-1 full-length genome sequencing publication (McGeoch, 

Dolan et al. 1985; McGeoch, Dolan et al. 1986; McGeoch, Dalrymple et al. 1988; Perry 

and McGeoch 1988) were considered. Papers were searched for functional information, 

based upon laboratory confirmation, in accordance with Gene Ontology assignment 

criteria.

4.2.4 GO Term Assignments

Each HSV-1 ORF was assigned one GO number per function/location. There is no limit 

to the number of GO numbers each ORF can be designated, thereby allowing annotation 

of multifunctional proteins. As GO is not time specific, some viral terms also have more 

than one location GO number according to their movement in the cell during viral 

infection. Each term assignment is accompanied by a documented evidence code 

(Appendix B), as outlined by the Gene Ontology Consortium, giving weight to the 

assignment.

4.2.5 Data Availability

The complete HSV-1 GO term annotations (Table 4.2) can also be viewed at the VIDA 

website: http://www.biochem.ucl.ac.uk/bsm/virus database/Table2 VIDA linked.html. 

and can be accessed at the Gene Ontology website: www.geneontology.org via CVS, 

FTP and HTTP. All terms have been integrated into the ontologies and can be accessed 

by searching the database at www.geneontology.org using any of the available search 

engines.
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File Name

k
SWPRO_EDIT 

1PRO EDIT

GO-FINDER

H erpesviridae_124_functions_updated.txt 

H erpesviridae_124_m kpsc_updated.txt 

Herpesviridae_124_gene_jtable.txt 

Protein2ipr.dat1”1 

Interpro2go am

Information
HPF num ber to HPF Function Group  

GI num ber to HPF num ber 

GI num ber to SW ISS-PRO T num ber 

SW ISS-PR O T num bers to IPR num bers  

IPR num bers to GO num bers

Output S
Table 1. GO Finder M apping Results by HPF

H P F  N O . H P F  F U N C T IO N  G R O I  P H P F  F U N C T IO N A L  D E S C R IP T IO N  G I M  M B E R  S W P N O . IPR  N O . G O  N U M B E R (S )

22 4  M em b r a n e /G ly c o p r o te in  G ly c o p r o te in  E G I:5 7 6 4 5 4 8  Q 9 P Y C 0  IP R 0 0 3 4 0 3  G O :m e m b r a n e ; G 0 : 0 0 1 6 0 2 0

Figure 4.1. GO FINDER. GO FINDER collates the information required from the five files 
listed above and outputs them in a summarised table organised by VIDA HPF numbers. Two 
smaller programmes, S W P R O E D IT  and IPRO EDIT, are run prior to GO FINDER in order 
to parse Protein2ipr.dat and Interpro2go thereby decreasing GO FINDER'S runtime. A full 
version o f  the resulting table is included in the text (Table 4.2).
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4.3 Results

4.3.1 Annotating HHV-1 using GO terms

4.3.1.1 GO FINDER

Automated GO annotation of as many of the 4504 herpesvirus proteins as possible was 

performed by the program GO FINDER. By extracting and collating the necessary 

information from five input files (see Methods) provided by VIDA and InterPro, 37.1% 

of HSV-1 ORFs, and 32.3% of all herpesvirus ORFs, were assigned GO numbers 

(Table 4.1). The latter number is determined by inheriting GO assignments to all 

members of an HPF from which at least one ORF has been previously annotated. All 

annotations determined using GO FINDER are still subject to further manual 

confirmation from the literature.

Table 4.2 summarises the results from the program GO FINDER. The table is 

organized by the HPF number to which each corresponding ORF belongs; these results 

do not include those GI’s that did not have corresponding GO annotations. A number of 

HPFs are represented by more than one line in the table, demonstrating that within one 

HPF there are ORFs that have been assigned different GO numbers by InterPro. HPF27, 

for example, contains 7-transmembrane G-protein coupled receptors (GPCR), two of 

which were assigned different GO numbers due to their being members of different 

InterPro families (IPR000276:Rhodopsin-like GPCR superfamily and 

IPR000355:Chemokine receptor; Figure 4.2a). The two InterPro families have a 

parent-child relationship indicating that all of the members of HPF27 can be annotated 

with GO numbers pertaining to the rhodopsin-like GPCR superfamily (IPR000276), but 

some may also be annotated with the GO numbers pertaining to chemokine receptors 

(IPR000355). Therefore, the functional annotation of HPF27 as ‘G-protein coupled 

receptors’ is accurate.

Similarly, three members of HPF29 are also placed in three different, but related, 

InterPro families (IPR000719:Protein kinase, IPR001245:Tyrosine protein kinase, 

and IPR002290:Serine/threonine protein kinase; Figure 4.2b). Again, all of the

proteins in HPF29 can be annotated with GO numbers associated with the parent family 

protein kinase (IPR000719); however, only those within HPF29 whose specific kinase
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mechanism has been identified can be further annotated with the information from the 

two child families (IPR001245 and IPR002290).

GO FINDER also found instances of HPFs that are assigned different functional groups 

in VIDA, such as HPF27 and HPF711 (‘host-virus interaction’ and ‘unknown*), but are 

assigned identical GO numbers. This possibly indicates that results have been published 

concerning the function of ORFs in HPF 711 (‘unknown’) since the building of VIDA 

2.0 using GenBank release 124.

Many of the unknown ORFs from VIDA have been automatically assigned to the term 

G0:0008166:viral replication. This annotation is an artefact from before the creation 

of numerous GO terms relating to viral function. Previously, the Gene Ontology 

contained only the one term relating to viruses causing it to be annotated to all viral 

proteins. This has been rectified (Chapter 3), and the term G0:0008166 has since been 

made obsolete in GO, but is still present in InterPro annotation.

Because of the inferred annotation process through database cross-referencing, and 

because some errors were immediately obvious, all HSV-1 ORFs were then manually 

annotated from the literature. This was also necessary to annotate the remaining 63% of 

HSV-1 ORFs that were not annotated by GO FINDER.
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Table 4.1 GO FINDER Based Annotation Statistics.

VIDA GO
Finder
Results

%
Annotated

Homologous Protein Families 985 99 10.1

Number of Herpesvirus ORFs 4504 1456 323

Number of HSV-1 ORFs 237f 88 37.1

t Includes strain variant ORFs
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a.

b.

-{•j:K lP R 0 0 0 2 7 6  : Rhodopsin-iike G PCR superfamily

+ J IP R 000025  : Melatonin receptor 

| lP R 0 0 0 T 7 4  : lnterleukin-8 receptor 

+H lP R 0 0 0 2 0 4  : Orexin receptor 

" | | lP R 0 Q 0 2 4 8  : Angiotensin II receptor

-F )— IP R 000355  : Chem okine receptor

- H — IPR000719 : Protein kinase

IPR000333 : Activin type II receptor 

+MIPRQ01245 : Tyrosine protein kinase

- H - IPR002290 : Serine/threonine protein kinase

F igure  4.2 T h e  p aren t-ch ild  re lationship  o f In te rP ro  fam ilies, a) The tree indicates a 
parent-child relationship between the two InterPro families ( IP R 0 0 0 2 7 6  and IP R 0 0 0 3 5 5 )  
assigned to HPF27. b) The tree indicates a parent-child relationship between IP R 0 0 0 7 I9  and 
families IP R 0 0 1 2 4 5  and IP R 002290 , all three have been assigned to ORFs from HPF29. 
Tree taken from InterPro resources.
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Table 4.2 GO FINDER Results
HPF
NO.1

HPF FUNCTION 
GROUP

GI NUMBER2 SWP
NO.5

IPR NO.4 GO NUMBER(S)

1 DNA Replication Gl:59530 P04293 IPR002064 GO:DNA binding; G0:0003677 
GO:DNA-directed DNA polymerase ; G0:0003887 
GO:3'-5' exonuclease; G0:0008408 
GO:DNA replication ; G0:0006260

2 Nucleotide and nucleic 
acid metabolism

G1:7384849 Q9IR31 IPR001889 GO:thymidine kinase; G0:0004797

GO:ATP binding ; G0:0005524 
GO:TMP biosynthesis; G0:0006230

5 DNA Replication Gl:7385024 Q9J3N7 IPR003450 GO:DNA replication origin binding ; G0:0003688 
GO:ATP binding; G0:0005524 
GO:viral replication ; G0:0008166

5 DNA Replication Gl:10180713 Q9E6Q7 IPR003593 GO:nucleotide binding; G0:0000166
8 Nucleotide and nucleic 

acid metabolism
Gl:405185 P52447 IPR003249 GO:uracil-DNA glycosylase; G0:0004844 

GO:DNA repair; G0:0006281
9 Glycoprotein Gl:804969 Q65587 IPR003600 GO:defense/immunity protein; G0:0003793 

GO:immune response; G0:0006955
11 Nucleotide and nucleic 

acid metabolism
Gl:695210 Q66641 IPR001616 GO:DNA binding; G0:0003677 

GO:exonuclease ; G0:0004527
13 other G1:6456008 Q9PWY0 IPR001368 GO:receptor; G0:0004872
14 Virus structural_protein G1:221900 P23984 IPR001847 GO:serine-type endopeptidase; G0:0004252 

GO:proteolysis and peptidolysis ; G0:0006508
15 DNA Replication Gl:60018 P09246 IPR000635 GO:single-stranded DNA binding ; G0:0003697 

GO:DNA replication; G0:0006260 
GO:nucleus; G0:0005634

16 DNA Replication Gl:7385028 Q9J3N5 IPR003840 GO:helicase; G0:0004386 
GO:ATP binding ; G0:0005524 
GO:viral replication; G0:0008166

18 other Gl:330792 P28969 IPR003499 GO:DNA packaging ; G0:0006323
20 Glycoprotein Gl:405175 P52449 IPR000785 GO:molecular_function unknown ; G0:0005554 

GO:membrane: G0:0016020
22 other Gl:971317 Q65567 IPR003499 GO:DNA packaging ; G0:0006323
24 Nucleotide and nucleic 

acid metabolism
G1:437736 P50643 IPR000788 GO:ribonucleoside-diphosphate reductase ; 

G0:0004748
GO:DNA replication; G0:0006260 
GO:ribonucleoside-diphosphate reductase ; 
G0:0005971

26 Glycoprotein Gl:459194 Q65530 IPR003404 GO:membrane; G0:0016020
27 other G1:5929959 Q9QEV2 IPR000276 GO:G-protein coupled receptor; G0:0004930



GO:membrane; G0:0016020
27 other G1:8671563 Q9IP69 IPR000355 GO:chemokine receptor; G0:0004950 

GO:membrane; G0:0016020
29 other Gl:1209026 Q67670 IPR001245 GO:protein tyrosine kinase ; G0:0004713 

GO:ATP binding; G0:0005524 
GO:protein phosphorylation; G0:0006468

29 other Gl:1718289 P88924 IPR000719 GO:protein kinase; G0:0004672 
GO:ATP binding ; G0:0005524 
GO:protein phosphorylation; G0:0006468

29 other Gl:1869835 P89436 IPR002290 GO:protein serine/threonine kinase ; G0:0004674 
GO:ATP binding; G0:0005524 
GO:protein phosphorylation ; GO-.0006468

33 Nucleotide and nucleic 
acid metabolism

Gl:703073 Q69279 IPR000358 GO:ribonucleoside-diphosphate reductase ; 
G0:0004748
GO:deoxyribonucleoside diphosphate metabolism ; 
G0:0009186

36 Glycoprotein Gl:540201 Q69472 IPR002567 GO:cell adhesion molecule ; G0:0005194 
GO:cell adhesion; G0:0007155 
GO:membrane; G0:0016020

40 other Gl:331282 Q00095 IPR000719 GO:protein kinase; G0:0004672 
GO:ATP binding; G0:0005524 
GO.protein phosphorylation: G0:0006468

40 other Gl:331281 Q00094 IPR002290 GO:protein serine/threonine kinase ; G0:0004674 
GO:ATP binding ; G0:0005524 
GO:protein phosphorylation ; G0:0006468

43 Nucleotide and nucleic 
acid metabolism

Gl:1718307 P88942 IPR001428 GO:pseudouridylate synthase; G0:0004730 

GO:tRNA metabolism; G0:0006399
44 Virus structural, protein Gl:1718332 P88964 IPR000728 GO:enzyme; G0:0003824
48 other Gl:1483517 Q82171 IPR002927 GO:transcription regulation; G0:0006355
51 Nucleotide and nucleic 

acid metabolism
Gl:695210 Q66641 IPR001616 GO:DNA binding ; G0:0003677 

GO:exonuclease; G0:0004527
52 Transcription Gl:330320 Q69113 IPR003174 GO:DNA binding; G0:0003677 

GO:transcription activating factor; G0:0003710 
GO:transcription regulation ; G0:0006355

55 Unknown Gl:9800360 Q9DW56 IPR003360 GO:viral replication ; G0:0008166
59 DNA Replication Gl:7673121 Q9IBW5 IPR003450 GO:DNA replication origin binding ; G0:0003688 

GO:ATP binding ; G0:0005524 
GO:viral replication; G0:0008166

59 DNA Replication Gl:10180713 Q9E6Q7 IPR003593 GO:nucleotide binding; G0:0000166
82 Unknown G1:2647982 039921 IPR003360 GO:viral replication ; G0:0008166
85 other Gl:2149636 012000 IPR000276 GO:G-protein coupled receptor; G0:0004930 

GO:membrane; G0:0016020
89 other G1:4494967 Q9WRN9 IPR001346 GO:transcription factor; G0:0003700



GO:transcription regulation ; G0:0006355 
GO:nucleus ; GQ:0005634____________

92 Nucleotide and nucleic 
acid metabolism

Gl:695245 Q89940 IPR000398 GO:thymidylate synthase; G0:0004799 

GO:dTMP biosynthesis ; G0:0006231
95 other Gl:59182 Q89558 IPR001204 GO:inorganic phosphate transporter; G0:0005315 

GO:phosphate transport; G0:0006817 
GO:membrane; G0:0016020

99 Unknown Gl:2746235 057302 IPR003360 GO:viral replication ; G0:0008166
104 DNA Replication Gl:1869865 P89463 IPR003202 GO:DNA binding ; G0:0003677 

GO:DNA replication ; G0:0006260
107 Virus structural_protein Gl:2370241 040637 IPR001847 GO:serine-type endopeptidase; G0:0004252 

GO:proteolysis and peptidolysis; G0:0006508
109 Transcription Gl:4377600 Q69551 IPR003360 GO:viral replication ; G0:0008166
121 Unknown Gl:1780954 P09701 IPR003360 GO:viral replication; G0:0008166
140 other G1:7542407 Q9J4B8 IPR000098 GO:cytokine; G0:0005125 

GO:immune response ; G0:0006955
141 Nucleotide and nucleic 

acid metabolism
Gl:60322 P09503 IPR001796 GO:dihydrofolate reductase; G0:0004146

GO:glycine biosynthesis; G0:0006545 
GO:nucleotide biosynthesis ; G0:0009165

145 Transcription Gl:5733532 Q9QJ47 IPR003360 GO:viral replication; G0:0008166
146 Nucleotide and nucleic 

acid metabolism
G1:235434 P30007 IPR001428 GO:pseudouridylate synthase; G0:0004730 

GO.tRNA metabolism ; G0:0006399
156 Unknown Gl:2746235 057302 IPR003360 GO.viral replication; G0:0008166
159 Unknown Gl:2647982 039921 IPR003360 GO:viral replication ; G0:0008166
167 other Gl:529230 Q69087 IPR001847 GO:serine-type endopeptidase; G0:0004252 

GO:proteolysis and peptidolysis ; G0:0006508
171 Virus structural_protein Gl:5733553 Q9QJ30 IPR001847 GO:serine-type endopeptidase; G0:0004252 

GO:proteolysis and peptidolysis ; G0:0006508
172 Unknown Gl:330827 P28936 IPR001847 GO:serine-type endopeptidase; G0:0004252 

GO:proteolysis and peptidolysis ; G0:0006508
174 Transcription Gl:1185442 Q67633 IPR001871 GO:transcription factor; G0:0003700 

GO:transcription regulation ; G0:0006355
176 Transcription Gl:7158288 Q9JE49 IPR001083 GO:transcription factor; G0:0003700 

GO:transcription regulation ; G0:0006355 
GO:nucleus; G0:0005634

177 Unknown Gl:221458 Q01350 IPR003360 GO:viral replication; G0:0008166
185 Unknown Gl:1139610 P52523 IPR003360 GO:viral replication; G0:0008166
191 Glycoprotein G1:4996008 Q9WT44 IPR003600 GO.defense/immunity protein ; G0:0003793 

GO:lmmune response; G0:0006955
194 Glycoprotein Gl:1139686 Q69512 IPR003600 GO:defense/immunity protein; G0:0003793 

GO:immune response; G0:0006955



195 other Gl:7107124 Q9J7C4 IPR000098 GOxytokine; G0:0005125 
GO:immune response; G0:0006955

214 other G1:331224 P15443 IPR002290 GO:protein serine/threonine kinase ; G0:0004674 
GO:ATP binding; G0:0005524 
GO:protein phosphorylation; G0:0006468

219 Unknown Gl:2746316 056303 IPR003360 GO:viral replication; G0:0008166
224 Glycoprotein Gl:5764548 Q9PYC0 IPR003404 GO:membrane ; G0:0016020
225 other Gl:7330003 Q9J2M1 IPR001811 GO:chemokine; G0:0008009 

GO:immune response ; G0:0006955
226 Virus structural_protein GM419024 Q83417 IPR001847 GO:serine-type endopeptidase; G0:0004252 

GO:proteolysis and peptidolysis ; G0:0006508
231 Unknown G1:6552718 Q9Q6Z7 IPR000276 GO:G-protein coupled receptor; G0:0004930 

GO:membrane; G0:0016020
238 other Gl:1167494 P16046 IPR001847 GO:serine-type endopeptidase; G0:0004252 

GO:proteolysis and peptidolysis ; G0:0006508
242 Glycoprotein G1:2246507 040948 IPR003599 GO:defense/immunity protein ; G0:0003793 

GO:immune response; G0:0006955
243 other Gl:7330050 Q9J2J5 IPR001346 GO.transcription factor; G0:0003700 

GO:transcription regulation ; G0:0006355 
GO:nucleus; G0:0005634

248 other Gl:854030 P52382 IPR000276 GO:G-protein coupled receptor; G0:0004930 
GO:membrane; (30:0016020

250 Unknown Gl:469956 Q69581 IPR000634 GO:amino acid metabolism ; G0:0006520
253 Unknown Gl:853967 Q89660 IPR000564 GO:iron-sulfur electron transfer carrier; G0:0008042 

GO:electron transport; G0.0006118
257 Transcription G1:808657 Q69127 IPR001871 GO:transcription factor; G0:0003700 

GO:transcription regulation ; G0:0006355
273 Unknown Gl:9800260 Q9DWF5 IPR003360 GO:viral replication ; G0:0008166
287 Unknown Gl:4219031 Q9YQZ6 IPR002064 GO:DNA binding ; G0:0003677 

GO:DNA-directed DNA polymerase ; G0:0003887 
GO:3'-5' exonuclease; G0:0008408 
GO:DNA replication ; <30:0006260

293 DNA replication Gl:4219031 Q9YQZ6 IPR002064 GO:DNA binding ; G0:0003677 
GO:DNA-directed DNA polymerase ; G0:0003887 
GO:3'-5' exonuclease; G0:0008408 
GO:DNA replication ; G0:0006260

315 other Gl:1562494 Q98823 IPR003573 GO:cytokine; G0:0005125 
GO:immune response; G0:0006955

315 other Gl:2246551 040918 IPR003574 GO:interleukin-6 receptor ligand ; G0:0005138 
GO:immune response; G0:0006955

316 other G1:4494908 Q9WRU4 IPR003006 GO:immunoglobulin; G0:0003823
317 Unknown Gl:4996078 Q9WSZ6 IPR001257 GO:viral replication; G0:0008166
321 Unknown Gl:1167932 Q68399 IPR001811 GO:chemokine; G0:0008009



GO:immune resp on se; GQ:0006955
324 Virus structural_protein Gl:7673137 Q9IBU9 IPR001847 GO:serine-type endopeptidase; G0:0004252 
__________________________________________________________________GO:proteolysis and peptidolysis ; G0:0006508
328 other Gl:11095831 Q9E1J0 IPR000379 GO:enzyme; G0:0003824
344 Unknown Gl:1167926 Q68393 IPR003599 GO:defense/immunity protein ; G0:0003793 

GO:immune response; G0:0006955
345 Virus structural_protein G1:535659 Q69223 IPR001847 GO:serine-type endopeptidase; G0:0004252 

GO:proteolysis and peptidolysis ; G0:0006508
367 Unknown Gl:695174 Q66607 IPR003599 GO:defense/immunity protein ; G0:0003793 

GO:immune response; G0:0006955
370 other Gl:1778606 P88968 IPR001811 GO:chemokine; G0:0008009 

GO:immune response; G0:0006955
387 other Gl:606851 Q83145 IPR001811 GO:chemokine; G0:0008009 

GO:immune response; G0:0006955
402 Glycoprotein Gl:6435841 Q9QC01 IPR003599 GO:defense/immunity protein ; G0:0003793 

GO:immune response; G0:0006955
424 other Gl:695246 Q66673 IPR000276 GO:G-protein coupled receptor; G0:0004930 

GO:membrane ; G0:0016020
473 Unknown Gl:4219046 Q9YQY1 IPR001525 GO:DNA binding ; G0:0003677

GO:DNA (cytosine-5-)-methyltransferase ;
G0:0003886
GO:DNA methylation ; G0:0006306

486 other Gl:4877816 Q9XR29 IPR003600 GO:defense/immunity protein ; G0:0003793 
GO:immune response; G0:0006955

496 other Gl:3152729 071294 IPR001346 GO:transcription factor; G0:0003700 
GO:transcription regulation ; G0.0006355 
GO:nucleus ; G0:0005634

520 Unknown Gl:331280 Q00103 IPR000822 GO:transcription factor; G0:0003700 
GO:transcription regulation ; G0:0006355 
GO:nucleus ; G0:0005634

531 other Gl:3873223 Q9YVA9 IPR002473 GO:cytokine; G0:0005125 
GO:immune response ; G0:0006955

539 other Gl:331257 Q00139 IPR002884 GO:subtilase; G0:0004289 
GO:proteolysis and peptidolysis ; G0:0006508

569 Nucleotide and nucleic 
acid metabolism

Gl:331259 P28893 IPR001428 GO:pseudouridylate synthase ; G0:0004730 

GO:tRNA metabolism ; G0:0006399
573 Unknown G1:4219027 Q9YR00 IPR000719 GO:protein kinase; G0:0004672 

GO:protein phosphorylation; G0:0006468 
GO:ATP binding ; G0:0005524

587 other Gl:59457 P08560 IPR003600 GO:defense/immunity protein ; G0:0003793 
GO:immune response; G0:0006955

595 Unknown G1:2625047 039237 IPR003573 GO:cytokine; G0:0005125 
GO:immune response; G0:0006955



616 Unknown Gl:2558898 038018 IPR001428 GO:pseudouridylate synthase; G0:0004730 
GO:tRNA metabolism; G0:0006399

626 Unknown G1:330546 P24909 IPR003360 GO:viral replication; G0:0008166
711 Unknown Gl:1780855 P16751 IPR000276 GO:G-protein coupled receptor; G0:0004930 

GO:membrane; G0:0016020
732 Glycoprotein Gl:330353 P03218 IPR003599 GO:defense/immunity protein; G0:0003793 

GO:immune response; G0:0006955
734 other GM334917 P03228 IPR003600 GO:defense/immunity protein ; G0:0003793 

GO:immune response; G0:0006955
755 other Gl:8096689 Q9IZK2 IPR003406 GO:acetylglucosaminyltransferase; G0:0008375 

GO:membrane; G0:0016020
762 Unknown G1:59629 P16760 IPR003360 GO:viral replication; G0:0008166
868 Unknown Gl:808657 Q69127 IPR001871 GO:transcription factor; G0:0003700 

GO:transcription regulation ; G0:0006355
1. Homologous protein family 
(HPF) number
2. GenBank Identifier (Gl) 
number
3. SWISS-PROT number
4. Interpro number



4.3.1.2 Manual Annotation

The GO FINDER results were used only as initial guidelines for annotation of HSV-1 

gene products. Annotation of the genome was achieved by manually mining the 

literature for relevant information pertaining to each ORF. While providing a useful 

base from which to proceed, GO FINDER results could not solely be used in individual 

gene product annotation as they are based upon the annotation of families of proteins: 

both the HPFs in VIDA and the IPRs in InterPro. When annotating individual gene 

products it is important not to limit their functional descriptions to those of their family. 

As seen with HPF27 and HPF29, there can exist within one family certain distinctions 

(such as tyrosine vs. serine/threonine kinase mechanisms) that would make it necessary 

to annotate different members with different, more specific, GO terms. It is also 

preferable to utilise, where necessary, the newly created virus related GO terms in this 

exercise, which are not incorporated into GO FINDER’s results as they were not 

available for annotation by InterPro at the time.

All HSV-1 ORFs have been annotated using existing viral, cellular, and newly created 

viral GO terms (Table 4.3). Each ORF has at least three GO numbers: one from each of 

the ontologies: biological process, molecular function, cellular component, even if  the 

term is ‘unknown’ (i.e. UL7). Where the literature indicated that a viral ORF 

functioned in different cellular compartments, the ORF was annotated with all relevant 

terms, as often there was insufficient evidence available to determine the exact 

functional location. In the case of multifunctional proteins, however, the protein may 

have more than one site of functional activation. In these cases, multiple general 

annotations may not prove to be incorrect. Nevertheless, the dynamic nature of GO 

allows all annotations to be altered as new knowledge emerges concerning each ORF.

The annotations in Table 4.3 are conservative; if an attribute was not found mentioned 

in the literature, it was not annotated to the gene product. This is to avoid incorrect 

‘assumptions’ being perpetuated through GO annotation. Therefore, DNA polymerase 

(UL30) was not annotated with the GO term GO:0003677:DNA binding as the two 

were not mentioned together in the literature, although it is commonly accepted that 

DNA polymerase binds to DNA in order to function.

128



4.3.1.3 Using the ‘Unknown’ GO Term

The GO Consortium is very clear about the usage of the three ‘unknown’ GO terms 

(G0:0008372:cellular component unknown, G0:0005554:molecular function 

unknown, G0:0000004:biological function unknown). Annotation of an ORF with 

the ‘unknown’ term in any of the ontologies must only occur after the literature (and 

any other resources) has been researched and it becomes clear that the 

function/process/location of the ORF is unknown not only to the annotator, but to the 

scientific community at large. This is to ensure that all gene product assignments to the 

‘unknown’ terms are truly unknown, establishing a base threshold of knowledge up 

from which to work. Therefore, all terms in Table 4.3 annotated with any of the three 

‘unknown’ terms are unknown in respect to that ontology in the literature.

4.3.1.4 Evidence Codes

The Gene Ontology annotation process includes a quality control check upon each GO 

term annotation made to a gene product. Each GO term assignment to a gene product 

must be accompanied by a reference, which may come from the literature, another 

database, or computational analysis; and an evidence code, which indicates how the 

assignment was determined (Table 4.4). As all annotation in this study was completed 

by searching the available literature, the only three evidence codes used were Traceable 

Author Statement (TAS), Non-traceable Author Statement (NAS), and No Biological 

Data Available (ND). All evidence codes and references for the annotations in Table 4.3 

can be found in Appendix B.
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Table 4.3 HSV-1 Genome GO Annotation
ORF PROTEIN

PRODUCT
BIOLOGICAL PROCESS MOLECULAR FUNCTION CELLULAR COMPONENT

RL1 ICP34.5, 
g 134.5

BP:viral inhibition of host cell protein biosynthesis shutoff ; 
0046773
BP:viral inhibition of cell cycle arrest; 0046792 
BP:phosphatase regulator; 0019208

MF:protein binding ; 0005515 CC:unknown ; 0008372

RL2 aO, ICPO BP:viral perturbation of cell cycle control; 0019055 
BP:viral inhibition of extracellular antiviral response ; 
0019053
BP:ubiquitin cycle; 0006512
BP:virus-host cell process manipulation ; 0019054
BP:viral transcription ; 0019083
BP:histone deacetylase inhibitor; 0046811

MF:protein binding; 0005515 CC:dense nuclear body ; 0046818

UL1 gL BP:virion penetration ; 0019063 
BP:viral-induced cell-cell fusion ; 0019064

MF:unknown; 0005554 CC:viral envelope; 0019031

UL2 BP:DNA repair; 0006281 MF:uracil-DNA glycosylase; 0004844 CC:nucleus ; 0005634
UL3 BP:unknown ; 0000004 MF:unknown ; 0005554 CC:dense nuclear body ; 0046818
UL4 BP:unknown ; 0000004 MF:unknown; 0005554 CC:virion ; 0019012 

CC:dense nuclear body ; 0046818
UL5 BP'.viral genome replication ; 0019079 MF:DNA helicase ; 0003678 

MF:ATPase; 0016887 
MF:DNA binding ; 0003677 
MF:ATP binding ; 0005524

CC:replication compartment; 0046809 
CC:viral replication complex ; 0019034

UL6 BP:viral DNA genome packaging ; 0019073 MF:unknown ; 0005554 CC:nucleus ; 0005634 
CC:viral portal complex ; 0046798

UL7 BP:unknown; 0000004 MF:unknown; 0005554 CC:unknown ; 0008372
UL8 BP:viral intracellular protein transport; 0019060 

BP:positive regulation of DNA replication ; 0045740
MF:protein binding; 0005515 CC:viral replication complex ; 0019034

UL8.5 BP:unknown; 0000004 MF:unknown; 0005554 CC:unknown ; 0008372
UL9 BP:viral genome replication ; 0019079 MF:ATPase; 0016887 

MF:ATP dependent DNA 
0004003
MF:DNA replication origin 
0003688

helicase ; 

binding ;

CC:replication compartment; 0046809 
CC:nucleus ; 0005634



MF:ATP binding ; 0005524 

MF:DNA binding ; 0003677

UL9.5 BP:unknown ; 0000004 MF:unknown; 0005554 CC:unknown ; 0008372
UL10 gM BP:viral spread within host, cell to cell; 0046740 MF:unknown ; 0005554 CC:plasma membrane; 0005886 

CC:viral envelope; 0019031

UL10.5 BP:unknown ; 0000004 MF:unknown; 0005554 CC:unknown ; 0008372
UL11 BP:viral capsid envelopment; 0046744 

BP:viral eg ress; 0046788 

BP:viral capsid re-envelopment; 0046745 

BP:viral intracellular protein transport; 0019060

MF:unknown; 0005554 CC:nucleus ; 0005634 

CC:dense nuclear body ; 0046818 

CC:nuclear inner membrane ; 0005637 

CC:endomembrane system ; 0012505 

CC:viral tegument; 0019033
UL12 BP:viral genome maturation ; 0019070 

BP:nuclear egress of viral procapsid ; 0046802
MF:exonuclease; 0004527 

MF:DNA binding ; 0003677 

MF:endonuclease; 0004519

CC:nucleus; 0005634

UL12.5 BP: exonucleolytic degradation of mRNA; 0000291 

BPrendonucleolytic mRNA decay; 0000294
MF:endonuclease; 0004519 

MF:exonuclease; 0004527
CC:isohedral viral capsid ; 0019030

UL13 BP:induction of apoptosis by virus ; 0019051 

BP:protein phosphorylation; 0006468
MF:protein kinase; 0004672 CC;virion ; 0019012

UL14 BP:viral spread within host, cell to cell; 0046740 MF:unknown; 0005554 CC:cytoplasm ; 0005737 

CC:virion tegument; 0019033 

CC:dense nuclear body ; 0046818
UL15 BP:viral DNA genome packaging ; 0019073 

BP:viral DNA cleavage ; 0019071
MF:ATP binding ; 0005524 CC: viral procapsid ; 0046729 

CC:nucleus ; 0005634 

CC:replication compartment; 0046809

UL16 BP:viral DNA genome packaging ; 0019073 
BP:viral DNA cleavage ; 0019071

MF:unknown; 0005554 CC:assemblon ; 0046808 

CCicytoplasm ; 0005737 

CC:nucleus ; 0005634 

CC:virion ; 0019012 

CC:replication compartment; 0046809

UL17 BP:viral DNA cleavage ; 0019071 

BP:viral DNA genome packaging ; 0019073 

BP:nuclear viral capsid transport; 0046742

MF:unknown; 0005554 CC.nucleus; 0005634  

CC:viral tegument; 0019033

UL15.5 BP:unknown; 0000004 MF:unknown ; 0005554 CC:unknown ; 0008372



UL18 VP23 BP:viral DNA cleavage ; 0019071
BP:viral DNA genome packaging ; 0019073

MF:unknown; 0005554 CC:nucleus; 0005634 

CC:isohedral viral capsid ; 0019030

UL19 VP5; ICP5 BP:unknown; 0000004 MFiunknown; 0005554 CC:nucleus; 0005634 
CC:isohedral viral capsid ; 0019030 
CCxapsom ere; 0046727

UL20 BP:viral intracellular protein traffic ; 0019060 
BP:viral eg ress; 0046788

MF:unknown; 0005554 CC:Golgi stack; 0005795 
CC:viral envelope; 0019031 
CC:nuclear membrane; 0005635 
CC:virion transport vesicle ; 0046816

UL20.5 BP:unknown; 0000004 MF:unknown; 0005554 CC:dense nuclear body; 0046818
UL21 BP:microtubule cytoskeleton organization and biogenesis ; 

0000226
BP:intracellular virion transport; 0046795 
BP:intracellular viral capsid transport; 0046801 
BP:microtubule polymerization; 0046785

MF:microtubule associated protein ; 
0005875
MF:microtubule binding; 0008017

CCxytoplasm; 0005737 

CC:viral tegument; 0019033

UL22 gH BP:viral eg ress; 0046788 
BP:viral spread within host, cell to cell; 0046740 
BP:virion penetration; 0019063 
BP:viral-induced cell-cell fusion ; 0006948

MF:unknown; 0005554 CC:viral envelope; 0019031

UL23 ICP36 BPxeactivation of latent virus ; 0019046 MF:nucleoside kinase; 0019206 CC:unknown ; 0008372
UL24 BP:unknown ; 0000004 MF:unknown; 0005554 CC:membrane; 0016020
UL25 BP:viral DNA genome packaging ; 0019073 

BP:genome retention in viral capsid ; 0046815 
BP:virion penetration ; 0019063

MF:DNA binding; 0003677 CC:nucleus; 0005634 
CC:isohedral viral capsid ; 0019030 
CCxytoplasm ; 0005737 
CC: viral procapsid ; 0046729

UL26 VP24
VP21

BP:proteolysis and peptidolysis ; 0006508
BP:viral scaffold assembly and maintenance ; 0046807

MF:serine-type endopeptidase ; 0004252 CC:nucleus; 0005634 
CC:viral scaffold ; 00464806

UL26.5 ICP35
(VP22a)

BP:nuclear localisation of viral capsid precursors ; 0046752 

BP:viral scaffold assembly and maintenance ; 0046807

MF:unknown ; 0005554 CC:nucleus; 0005634

CCxytoplasm ; 0005737 
CC:viral scaffold ; 00464806

UL27 gB, VP7 BP:viral-induced cell-cell fusion ; 0019064 MF:host cell extracellular matrix binding ; 
0046810
MF:viral-cell fusion molecule ; 0019039

CC:viral envelope; 0019031

UL27.5 BP:unknown; 0000004 MF:unknown; 0005554 CCxytoplasm ; 0005737



UL28 ICP18.5 BP:viral DNA genome packaging ; 0019073 
BP:viral DNA cleavage ; 0019071

MF:unknown ; 0005554 CC:cytoplasm ; 0005737 
CC:nucleus; 0005634

UL29 ICP8 BP:viral genome replication ; 0019079
BP:recruitment of helicase-primase complex to DNA lesions ;
0046799
BP:viral replication complex formation and maintenance ; 
0046786

MF:single-stranded DNA binding ; 0003697 CC:viral replication complex; 0019034 
CC:replication compartment; 0046809

UL30 BP:viral genome replication ; 0019079 MF:DNA-directed DNA polymerase ; 
0003887
MF:3'-5' exonuclease; 0008408

CC:replication compartment; 0046809

UL31 BP:viral DNA cleavage ; 0019071
BP:viral DNA genome packaging ; 0019073
BP:inner nuclear membrane viral budding during viral capsid 
envelopment; 0046771

MF:unknown; 0005554 CC:nucleus; 0005634

UL32 BP:viral DNA cleavage ; 0019071
BP:viral DNA genome packaging ; 0019073
BP:intranuclear viral capsid transport; 0046742

MF:unknown; 0005554 CCxytoplasm; 0005737 
CC:nucleus ; 0005634 
CCrreplication compartment; 0046809

UL33 BP:viral DNA cleavage; 0019071 
BP:viral DNA genome packaging ; 0019073

MF:unknown ; 0005554 CCxytoplasm; 0005737 
CC:replication compartment; 0046809 
CC:nucleus; 0005634

UL34 BP:inner nuclear membrane viral budding during viral capsid 
envelopment; 0046771

MF:unknown; 0005554 CC:virion ; 0019012

CC:nuclear membrane; 0005635 
CC:nuclear membrane lumen ; 0005641

UL35 VP26 BP:viral procapsid maturation ; 0046797 MF:unknown ; 0005554 CC:isohedral viral capsid ; 0019030 
CC:nucleus ; 0005634

UL36 ICP1-2 BP:viral eg ress; 0046788 
BP:viral budding; 0019078 
BPiviral uncoating; 0019061 
BP:viral particle maturation ; 0019075

MF:unknown; 0005554 CC:nucleus ; 0005634 
CCxytoplasm ; 0005737 
CC:viral tegument; 0019033

UL37 BP:nuclear membrane viral budding during viral capsid
envelopment; 0046749
BP:viral particle maturation ; 0019075
BPxytoplasmic viral capsid transport; 0046743
BP:viral eg ress; 0046788
BP:viral capsid re-envelopment; 0046745

MF:unknown; 0005554 CC:viral tegument; 0019033

CCxytoplasm ; 0005737 
CC:nucleus; 0005634

UL38 ICP32/VP19C BP:nuclear localisation of viral capsid precursors ; 0046752 
BP:viral capsid assembly; 0019069

MF:DNA binding ; 0003677 CC:isohedral viral capsid ; 0019030 
CCrnucleus ; 0005634



UL39 ICP6 BP:deoxyribonucleoside diphosphate metabolism ; 0009186

BP:viral genome replication ; 0019079

BP: passive viral induction of humoral immune response ; 
0046733
BP:autophosphorylation ; 0046777

MF:protein kinase; 0004672

MF:ribonucleoside-diphosphate reductase ; 
0004748

CC:ribonucleoside-diphosphate reductase 
complex; 0005971

UL40 BP:deoxyribonucleoside diphosphate metabolism ; 0009186 

BP:viral genome replication ; 0019079

MF:ribonucleoside-diphosphate reductase ; 
0004748

CC:ribonucleoside-diphosphate reductase 
complex; 0005971

UL41 vhs BP:transcription regulation; 0006355

BP:viral inhibition of MHC class 1 cell surface presentation ; 
0046776
BP:viral inhibition of host cytokine production ; 0046775 
BP:viral inhibition of intracellular interferon activity; 0046774 
BP:viral perturbation of polysomes ; 0046783 
BP:viral host cell process manipulation ; 0019054

MF:mRNA catabolism, endonucleolytic ; 
0000294

CC:viral tegument; 0019033 

CCxytoplasm ; 0005737

UL42 BP:viral genome replication ; 0019079 MF:DNA polymerase processivity factor ; 
0030337
MF:DNA binding ; 0003677

CC:replication compartment; 0046809

UL43 BP:unknown ; 0000004 MF:unknown; 0005554 CC:unknown; 0008372
UL43.5 BP:unknown ; 0000004 MF:unknown; 0005554 CC:assemblon; 0046808
UL44 gC, VP7.5 BP:enhancement of virulence ; 0046800

BP:viral Inhibition of host complement neutralisation ;
0046791
BP:virion attachment; 0019062

MF:unknown; 0005554 CC:viral envelope; 0019031

UL45 BP:unknown; 0000004 MF:unknown ; 0005554 CC:viral envelope; 0019031
UL46 VP11/12 BP:unknown; 0000004 MF.unknown; 0005554 CC:nuclear membrane lumen ; 0005641 

CCxytoplasm; 0005737 
CC:viral tegument; 0019033 
CC:plasma membrane; 0005886

UL47 VP13/14 BP:unknown; 0000004 MF:unknown; 0005554 CC:viral tegument; 0019033 
CC:nucleus; 0005634 
CCxytoplasm; 0005737

UL48 VP16;ICP25,
aTIF

BP:immediate early viral mRNA transcription ; 0019085 MF:transcription activator; 0016563 CC:viral tegument; 0019033

BP:regulation of viral transcription ; 0046782 MF:protein binding; 0005515 CC:nucleus; 0005634
BP:viral eg ress; 0046788 CCxytoplasm; 0005737



UL49 VP22 BP:viral spread within host, cell to cell; 0046740 MFxhromatin binding ; 0003682 CC:viral tegument; 0019033
CC:nucleus; 0005634 

CCxytoplasm ; 0005737
UL49.5 BP:unknown ; 0000004 MF:unknown ; 0005554 CC:viral envelope; 0019031
UL50 BP:tRNA metabolism; 0006399 

BP:nucleotide metabolism ; 0009117
MF:dUTPase pyrophosphatase; 0004170 CCiunknown ; 0008372

UL51 BPrunknown ; 0000004 MF:unknown ; 0005554 CC:nuclear membrane lumen ; 0005641 
CC:nucleus ; 0005634 
CC:virion ; 0019012

UL52 BP:viral genome replication ; 0019079 MF:DNA binding ; 0003677 
MF:DNA helicase; 0003678 
MF:DNA primase; 0003896

CC:viral replication complex ; 0019034 
CCxeplication compartment; 0046809

UL53 gK BP:viral eg ress; 0046788
BP:intracellular viral capsid transport; 0046801

MF:unknown ; 0005554 CC:nuclear membrane lumen ; 0005641 
CC:nucleus ; 0005634 
CCrGolgi apparatus; 0005794 
CC:endoplasmic reticulum membrane ; 
0005789
CC:viral envelope; 0019031 
CC:nuclear membrane; 0005635

UL54 a27;ICP27 BP:viral perturbation of host cell transcription ; 0019056 
BP:intronless viral mRNA-nucleus export; 0046784 
BPxegulation of viral transcription ; 0046782 
BP:negative regulation of viral genome replication ; 0045071 
BP:viral inhibition of expression of host genes with introns ; 
0046779
BP:positive regulation of viral genome replication ; 0045070 
BP:viral dispersion of host splicing factors ; 0046781 
BP:viral inhibition of host mRNA splicing ; 0046780

MF:transcription repressor; 0016564 
MF:RNA binding; 0003723

CCxytoplasm ; 0005737 
CC:nucleus; 0005634 
CCxeplication compartment; 0046809

UL55 BP:unknown; 0000004 MF:unknown; 0005554 CC:assemblon; 0046808 
CC:nucleus; 0005634

UL56 BP:reduction of virulence ; 0046803 MF:unknown; 0005554 CC:virion; 0019012 
CC:nucleus; 0005634

RS1 a4, ICP4 BP: viral transcription ; 0019083 
BPxell cycle arrest: 0007050 
BP:viral perturbation of cell cycle control; 0019055 
BPxegulation of viral transcription ; 0046782

MF:DNA binding; 0003677 
MF:transcription regulator; 0030528

CCxeplication compartment; 0046809 
CC:nucleus ; 0005634
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Us1 a22, ICP22 BP:virus induced modification of host RNA polymerase II ; 
0046793

MF:unknown ; 0005554 CC:dense nuclear body ; 0046818

CC:nucleus; 0005634 
CCrcytoplasm; 0005737

Us1.5 BP:induction of apoptosis by virus ; 0019051 MF:unknown ; 0005554 CC:unknown ; 0008372
Us2 BP:unknown ; 0000004 MF:unknown ; 0005554 CC:nucleus ; 0005634 

CC:viral tegument; 0019033
Us3 BP:protein amino acid phosphorylation ; 0006468 

BP:viral inhibition of apoptosis ; 0019050
MF:protein kinase; 0004672 CC:unknown ; 0008372

Us4 gG BP:virion attachment; 0019062 MF:unknown; 0005554 CC:viral envelope; 0019031
Us5 gJ BP:viral inhibition of apoptosis ; 0019050 MF:unknown; 0005554 CC:unknown ; 0008372
Us6 gD, VP17/18 BP:viral-induced cell-cell fusion ; 0019064 

BP:negative regulation of apoptosis ; 0043066

MF:host cell surface receptor binding ; 
0046789
MF:virion attachment, binding of host cell 
surface co-receptor; 0046814

CC:viral envelope; 0019031

Us7 gi BP:viral spread within host, cell to cell; 0046740 MF:unknown ; 0005554 CC:Golgi apparatus; 0005794 
CC:viral envelope; 0019031

Us8 gE BP:viral spread within host, cell to cell; 0046740 MF:unknown; 0005554 CC:Golgi apparatus ; 0005794 
CC:viral envelope; 0019031

Us8.5 BP:unknown ; 0000004 MF:unknown ; 0005554 CC:nucleolus; 0005730
Us9 BP:unknown ; 0000004 MF:unknown; 0005554 CC:viral tegument; 0019033 

CC:viral envelope; 0019031
Us10 BP:unknown ; 0000004 MF:unknown ; 0005554 CC:nucleus; 0005634 

CCrisohedral viral capsid ; 0019030 
CC:viral tegument; 0019033

Us11 BP:viral inhibition of intracellular anti-viral response ; 
0019052
BP:viral inhibition of host-cell protein synthesis shutoff ; 
0046773

MF:RNA binding; 0003723 CC:small ribosomal subunit; 0015935 

CC:virai tegument; 0019033 

CC:nucleolus; 0005730
Us12 a47, ICP47 BP:negative regulation of extracellular antiviral response by 

virus; 0019053
MF:receptor antagonist activity ; 0048019 CC:endoplasmic reticulum ; 0005783



Table 4.4 Gene Ontology Evidence Codes
Evidence Code Brief Description

IC Inferred by Curator

IDA Inferred by Direct Assay

IEA Inferred from Electronic Annotation

IEP Inferred from Expression Pattern

IGI Inferred from Genetic Interaction

IMP Inferred from Mutant Phenotype

IPI Inferred from Physical Interaction

ISS Inferred from Sequence or Structural Similarity

NAS Non-traceable Author Statement; used for database
entries that don't cite a paper and statements in 
papers that cannot be traced to another publication.

ND No Biological Data Available

TAS Traceable Author Statement; used for anything in
the literature where the original experiments are 
traceable through that article and anything found in 
a text book or dictionary.



4.3.2 Conferring GO annotations to other Herpesviruses using VIDA’s HPF 

structure

4.3.2.1 Annotating Herpesviruses with GO Numbers by sequence homology using 

VIDA

Having annotated the complete HSV-1 genome, it was possible to confer some of the 

more general GO annotations to other herpesvirus ORFs using sequence similarity. This 

is made easier by the existing HPF structure in VIDA. Each Homologous Protein 

Family is defined by a number of amino acid sequence motifs shared by every member 

of the family denoting potential functional similarity. It is therefore possible to confer 

GO annotations to all members of HPFs that contain one or more HSV-1 proteins. 

ORFs annotated by computational homology are initially assigned either the ISS 

(inferred from sequence or structural similarity), or the NAS (non-traceable author 

statement) evidence code. As there are different ‘levels’ of annotation possible with GO, 

in the form of evidence codes, the quality associated with any annotation is explicit. If 

new evidence regarding an annotation arises, i.e. a published ‘traceable author 

statement’, then the annotation evidence can be updated.

GO number annotations were thus computationally inferred across 81 herpesvirus HPFs 

that contain at least one annotated HSV-1 protein (Figure 4.3). These 81 HPFs comprise 

2029 herpesvirus ORFs, from 66 different herpesviruses species/strains. Table 4.5 

outlines the percentages of completely sequenced herpesvirus genomes that were 

annotated with GO numbers. Using this method, 45% of all 4504 known herpesvirus 

ORFs were annotated, corresponding to 79.6% of alphaherpesvirus ORFs, 31.6% of 

gammaherpesvirus ORFs, 20.1% of betaherpesvirus ORFs, and 6.3% of unclassified 

herpesvirus ORFs. What is immediately clear is that herpesviruses share much 

homology between species in each subfamily, as it was possible to annotate almost 80% 

of the alphaherpesvirus subfamily (Figure 4.3) based on one genome. Thus, an 

estimated further 70-80% of herpesvirus ORFs can be annotated simply by annotating 

two more genomes, namely one beta- and one gamma-herpesvirus.

138



Number o f species partially annotated 66

Number o f species not annotated 13

Total number o f  ORFs annotated 2029

F igure  4.3 N u m b e r o f H erpesvirus  O R F s  annotated by H om ology. The entire 
herpesvirus family is represented by genome down the side, divided into subfamilies: 
alpha (yellow), beta (red), gamma (blue), and unclassified (green). Along the top are 
the 81 HPFs that contain at least one HSV-1 ORF. Presence o f  an ORF in each HPF is 
denoted by a black box, thus HSV-1 is the first genome in the list, identifiable by a 
continuous line o f black boxes. The genomes o f human herpesviruses are highlighted 
by white boxes and occur in the order: HHV-1, HHV-2, HHV-3, HHV-6, HHV-7, 
HHV-6B, HHV-5, HHV-8, and HHV-4. The percentage o f each subfamily annotated 
is in listed in each subfamily.
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Table 4.5 Percentages of Complete Herpesvirus Genomes annotated with GO Terms
Herpesvirus Subfamily Complete Herpesvirus Genome % annotated

alphaherpesvirus Bovine herpesvirus type 1.1 85
Cercopithecine herpesvirus 7 90.6
Equine herpesvirus 1 70.3
Equine herpesvirus 4 78.6
Gallid herpesvirus 2 64.6
Gallid herpesvirus 3 43.8
Human herpesvirus 1 100
Human herpesvirus 2 95.9
Human herpesvirus 3 86.9
Meleagrid herpesvirus 1 74

betaherpesvirus Chimpanzee cytomegalovirus 14.6
Human herpesvirus 5 21.5
Human herpesvirus 6 21.2
Human herpesvirus 6B 27.1
Human herpesvirus 7 26.8
Mouse cytomegalovirus 1 24.4
Rat cytomegalovirus Maastricht -t
Tupaia herpesvirus 15.8

gammaherpesvirus Alcelaphine herpesvirus 1 39
Bovine herpesvirus 4 37.2
Callitrichine herpesvirus 3 41.7
Cercopithicine herpesvirus 15 34.1
Equine herpesvirus 2 38
Human herpesvirus 4 25.7
Human herpesvirus 8 17.3
Macaca mulatta rhadinovirus 17577 36.8
Macaca mulatta rhadinovirus 26-95 29.2
Murid herpesvirus 4 39.8
Saimiriine herpesvirus 2 33

unclassified Ateline herpesvirus 3 -

Ictalurid herpesvirus 1 2.5
t (-) indicates 0% of the genome was annotated.
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4.4 Conclusion

The complete HHV-1 genome (84 ORFs) was annotated with Gene Ontology terms 

describing their Biological Process (es) involvement, Molecular Function(s), and 

Cellular Component(s)/Location(s). This was done using a combination of existing 

Gene Ontology terms and newly created terms relating to the viral life cycle in the host. 

Having annotated an entire herpesvirus genome, it was possible, utilising the 

Homologous Protein Family structure of VIDA, to annotate a further 1,945 herpesvirus 

ORFs by conferring annotations to the other members of HPFs that contained one or 

more HHV-1 proteins. By using a combination of manual and automated methods, 

79.6% of all alphaherpesvirus ORFs have been assigned GO numbers. Of the 79 

herpesvirus genomes represented in VIDA by one or more ORFs, only 13 were 

sufficiently dissimilar to HHV-1 to have none of their proteins annotated with GO 

number by correspondance to an HPF. By annotating a representative genome from 

each of the other two subfamilies, beta- and gammaherpesviruses, it is estimated that 

similar coverage can be achieved in these two subfamilies using the same combination 

of techniques, thereby annotating proteins not previously characterised due to their 

dissimilarity to HHV-1.

The program GO FINDER was used initially to ascertain the number of current 

annotations that existed in the database InterPro. This search highlighted the necessity 

for creating a number of viral function specific terms, as carried out in Chapter 2, as 

InterPro’s annotations were often limited by the scope of the Gene Ontology, as was the 

case for HPFs 109 and 145 (Table 4.2). It also emphasized the benefits of a hierarchical 

family database, as some of InterPro’s initial annotations were more specific than could 

be handled by VIDA; for example, the distinction between tyrosine and serine/threonine 

protein kinases (two separate families in InterPro), within the one HPF in VIDA (HPF 

29). This made it necessary to confer only general annotations across HPFs in the last 

automated step of this annotation methodology to avoid inaccurate assignment. As each 

protein in the family is individually examined, its annotation can be enhanced by terms 

that apply more specifically to it, e.g. using G0:0004950:chemokine receptor instead 

of GO:0004930:G-protein coupled receptor in the case of certain proteins in HPF 27 

(Table 4.2).
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The process of defining the terms’ vocabulary and DAGs is separate from the process of 

assigning ORFs to different GO terms; however, the annotation of a genome often 

requires the creation of a number of new terms in order to realistically, and accurately, 

complete the task. Many of these terms may not be directly related to herpesvirus 

function, but either pertain to aspects of other viral family infections in preparation for 

future viral annotation, or, are more general parent terms that are required for accurate 

DAG structure but are not intended for direct annotation to an ORF. Any terms created 

for these reasons were included and discussed in work outlined in Chapter 3.

Annotation of gene products with Gene Ontology terms has been the basis for a number 

of further studies into gene function and identification (Schug, Diskin et al. 2002; Bono, 

Nikaido et al. 2003) (Harhay and Keele 2003; King, Foulger et al. 2003; King, Lee et al. 

2003). The necessity to characterise gene products as completely as possible has led to 

the development of intermediate tools that bridge between GO and other existing 

vocabularies (Hill, Blake et al. 2002) (Cantor, Sarkar et al. 2003), various technologies 

(Doniger, Salomonis et al. 2003) (Blaschke and Valencia 2002), and text manipulation 

approaches (Jenssen, Laegreid et al. 2001; McCray, Browne et al. 2002; Wren and 

Gamer 2004). Tools have also been developed that aim to fully automate the annotation 

process (Khan, Situ et al. 2003) (Raychaudhuri, Chang et al. 2002; Xie, Wasserman et 

al. 2002; Hennig, Groth et al. 2003), removing the manual element undertaken here, in 

order to increase the quantity of existing annotations. All of this demonstrates that 

annotating gene products is not the final phase in a static process, but the necessary 

initial step that, once completed, produces results that can be manipulated to a variety of 

purposes and should be continually updated.
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5.0 Analysis of host-virus interaction microarray data 

using the Gene Ontology

5.1 Introduction

5.1.1 Microarrays

The advantage of computational analysis of a biological system is the ability to study 

large data sets concurrently. It is finally possible to study cellular expression on the 

genomic rather than the single gene product or pathway level, thereby inferring 

interactions from expression pattern similarities and the co-ordinated functions of many 

genes.

The microarray experiment was developed to view an entire cell’s expression 

phenotype, or transcriptome. The central dogma of information flow within a cell is 

from DNA to mRNA and then to protein. While there are factors, such as differing rates 

of degradation and post-transcription/translation modification that exclude the three 

from being synonymous with each other, it is becoming widely accepted that the levels 

of mRNA within a cell at a given point of time are a good indication of its protein levels 

(Kellam and Liu 2003). The microarray determines the levels of a cell’s mRNA 

transcripts at a moment in time; the results provide a new level of cellular classification, 

the transcriptome.

There exists a wide variety of microarrays types, but they all rely upon the same 

principles of labelling RNA (as cDNA) isolated from cells and hybridising it to a slide 

or chip of gene specific PCR products or oligonucleotides. Microarray technology uses 

glass slides upon which the DNA products are robotically spotted. Arrays now routinely 

cover the predicted mRNA coding capacity of entire sequenced genomes.

For two coloured, spotted microarrays the RNA is isolated from cells and fluorescently 

labelled with either Cy3 (green fluorescent) or Cy5 (red fluorescent) using either reverse 

transcription or amino-allyl ligation (incorporation of an aminoallyl group to the cDNA 

before attaching a fluorphore). Two samples can then be compared to each other by 

being competitively hybridised to the same array, each RNA transcript binding to its
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own unique probe spotted on the array. The hybridised array is scanned with a 

fluorescent detection scanner at two wavelengths (corresponding to each of the 

fluorophores). The combined fluorescent intensity in each spot of the array is used to 

calculate the ratio of expression between the two samples.

Microarrays can be used to analyse multiple samples, such as timecourses, by using a 

common reference sample in the place of sample two in each array experiment. 

Reference RNA (usually labelled with Cy3) is a pool of RNA taken from a plentiful 

source, such as cell lines, that serves as a control across all experiments. This becomes 

statistically significant when analysing the samples as it enables standardisation across 

an array experiment, eliminating discrepancies that can occur from differences in 

labelling, detection, or binding; while absolute levels of a transcript may vary between 

samples due to these systematic errors, the reference ensures that the overall ratio will 

be the same. Once the results are normalised, the direct comparison of the multiple 

samples being studied can be undertaken.

Here we examine the use of host-herpesvirus GO in the context of HSV-1 lytic cell gene 

expression from the microarray dataset of Stingley et al (Stingley, Ramirez et al. 2000), 

and the effect of HCMV infection of host gene expression from the microarray dataset 

of Eva Gramoustianou et al. The biology of HSV-1 has been previously described 

(Chapter 4).

5.1.2 Human Herpesvirus 5 (HHV-5; Human Cytomegalovirus, HCMV)

HHV-5 infection is characterised by a slow replication cycle in vitro and a distinct focal 

cytopathic effect in culture. Cells will often enlarge and round during infection (forming 

cytomegalia in some cases) (McGeoch, Cook et al. 1995; Pass 2001). The HHV-5 

genome, as with all cytomegalovirus genomes, is much larger than other herpesviruses 

with 200-240kbp. Different strains code for different combinations of genes, with the 

average being approximately 200 open reading frames per genome, but a total of 213 

unique HHV-5 genes are currently recognised (Mocarski and Courcelle 2001). This 

was, however, recently disputed in a new study by Davison et al (Davison, Dolan et al. 

2003), which discounted 51 putative HCMV proteins, and proposed 10 new ones.
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Characteristic of HHV-5 (and all P and y herpesviruses) is the indefinite persistence in 

the host that can produce infectious progeny for months, even years, in the presence of 

an active host immune response. It is believed that the bone marrow acts as a reservoir 

of latent virus for HHV-5, as it is known to remain latent in myeloid cells that can 

develop into macrophages, dendritic cells, and granulocytes (Sinclair and Sissons 1996; 

Hahn, Jores et al. 1998; Soderberg-Naucler and Nelson 1999).

Congenital infection by HHV-5 is extremely detrimental and can be fatal to the unborn 

child, often with signs of involvement of multiple organ systems (Boppana, Pass et al. 

1992), which can include the CNS. HHV-5 is also thought to be responsible for 

approximately 8% of mononucleosis cases in children and adults (Ljungman 1996).

5.1.3 Mapping Microarray Data onto the Gene Ontologies

Our laboratory currently uses microarrays containing 5000 human genes and a number 

of HHV-5 genes to study host-virus gene expression, and cellular reaction to viral 

infection. A major barrier to extensive datamining of such microarray data is the ability 

to map multiple functional annotations. The next logical step involving GO (both virus 

and host) would be to map the genes from microarrays onto the gene ontologies. The 

only information currently available en masse about the microarray genes is their GI 

numbers; and by using GO FINDER in conjunction with the resource LocusLink 

(Wheeler, Church et al. 2004), the GO numbers of as many of the 5000 genes as 

possible can be identified. This allows the coupling of microarray expression data and 

patterns of ORF expression to organised ontologies of function, process, and 

component/structure. The utility of this approach is investigated here by re-analysis of 

HCMV induced gene expression in fibroblasts and endothelial cells.
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5.2 Methods

5.2.1 HHV-1 Microarray Data Presentation

Gene expression data for HSV-1, based on oligonucleotide microarrays, were obtained 

from the literature (Stingley, Ramirez et al. 2000). Gene expression values from 2 

hours (early transcription) and 8 hours (late transcription) post HSV-1 infection were 

used. All transcripts detected with RNA signal intensities of >8 (arb units) from the two 

time intervals were mapped onto the biological process ontology. DAGs that have 

microarray data superimposed upon them were manually produced.

5.2.2 Statistical Preparation of Microarray Data

5.2.2.1 Data Source

Fibroblasts were infected with 2 HCMV strains at a Multiplicity of Infection (MOI) of 

1. Strain AD 169 is lab-adapted and highly-passaged, strain Toledo (endothelial-tropic) 

is low-passage, similar to wild type HCMV. RNA was extracted at 1,6,12,24,48,72 and 

96h after infection and hybridised to glass slide microarrays with 5428 human probes 

(Clark, Edwards et al. 2002) and 23 HCMV probes (genes: UL18, gB, UL130, and 

UL132-UL151). Controls of uninfected cells were also undertaken to give a total of 16 

microarrays (2 controls, 14 timepoints). These experiments are referred to as the 

‘viruses ’ experiments.

In addition, two different cell types, fibroblasts and HUVECs (human umbilical vein 

endothelial cells) were infected with Toledo virus at MOI of 1. RNA was extracted at 

1,6,12,24,48,72 and 96h after infection and hybridised to the same microarray type. 

Controls of uninfected cells were also undertaken to result in a total of 16 microarrays 

(2 controls, 14 timepoints). These experiments are referred to as the '‘cells’ experiments. 

All data was kindly provided by Eva Gramoustianou.

Both the cells and the viruses timecourses utilise a common reference RNA sample in 

the Cy3 fluorophore channel to allow interarray normalisation and cross-array analyses. 

In order to ensure a signal intensity that is distinct from background noise for as many 

of the probes as possible, a combination of infected and uninfected cell types were used.
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RNA was purified from HCMV ToledoE infected endothelial cells, uninfected 

peripheral blood mononuclear cells (PBMC) and MRC-5 fibroblasts. Batches of each 

cell type were grown to ensure the same reference samples were used across all 

timecourses.

The data from these two timecourses were used for GO assignment and analysis.

5.2.2.2 Assigning GO Numbers to Array Genes

The script GO FINDER was used in conjunction with the resource LocusLink to assign 

GO numbers to 3684 of the human probes on the microarrays. HCMV probes were 

manually assigned GO numbers using the same criteria outlined for HHV-1 (Chapters 3 

and 4).

5.2.2.3 Log Transforming Data

The data provided were log2 expression ratios of sample (Cy5) divided by the reference 

(Cy3). The data are log transformed to the base 2 (log2) to allow all fold changes in 

regulation to be represented by the same magnitudes. For example, a gene upregulated 

by a factor of 2 has a log2 ratio of 1, and a downregulated gene by a factor of 2 has a 

log2 ratio o f—1, a constant gene expression (where Cy5=Cy3) has a ratio of 1 and thus a 

log2 ratio of 0 (Kellam and Liu 2003).

5.2.2.4 Filling Missing Data Points

In a microarray experiment there are frequently missing values due to one of a number 

of factors such as insufficient resolution/intensity compared to the background of the 

slide, experimental variables (such as dust or scratches on the slide), or image 

corruption. It is possible to compute values to replace those missing rather than discount 

the gene spots that are affected (Troyanskaya, Cantor et al. 2001).

A program known as KNNImpute devised by Troyanskaya (2001) calculates missing 

values within a matrix of data based upon the K-nearest-neighbour method. By selecting 

K number of genes with a similar expression profile to the gene with the missing value 

(K being set by the user), the missing value is taken to be a weighted average of the
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values present in the same experiment of those chosen genes. Each value is weighted 

according to the gene’s expression profile similarity to the gene of interest (i.e. the gene 

with the missing value). KNNImpute is extremely accurate, able to predict missing 

values in datasets with up to 20% of the data missing with only a 10% drop in accuracy, 

and can be used with matrices that have as few as six columns of data.

KNNImpute was used to calculate the missing data points from all genes that were 

missing 1 or 2 data points (87.5% or higher data present in the datasets used here). Data 

from all genes that had 0,1, or 2 datapoints missing were used to calibrate the program. 

Following KNNImpute, a total of 1629 probes (human and HCMV) were included from 

the cells experiments, and 1185 probes (human and HCMV) were included from the 

viruses experiments for further analysis.

5.2.2.5 CLUSTER and TREEVIEW

Once missing values have been computed the data are presented in a matrix with the 

genes represented as rows and each experiment (for example timepoints in a 

timecourse) represented as a column. There are a number of programs available for 

preparing microarray data for analysis. Here the programs used were CLUSTER (Eisen, 

Spellman et al. 1998), which provides a range of tools for processing data, and 

TREEVIEW, which allows clusters to be viewed graphically.

5.2.2.6 Normalising the Data

It is necessary to normalise the data after they have been log transformed. This is 

performed by CLUSTER. Normalisation allows data, such as the gene expression 

pattern of one gene across a number of experiments (between columns of a matrix), to 

be compared by removing (normalising) systematic errors produced across all the array 

data. This helps to eradicate differences that occur between experiments such as 

varying mRNA levels, or labelling and detection inefficiencies between the two 

fluorophores (Quackenbush 2001). Normalisation of the data can be achieved by 

median centring the data on a common value, usually 0. This is achieved by subtracting 

the row-wise/column-wise median value of the data from each value in the row/column. 

This method assumes that the median gene in a given experiment (and the median
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experiment for a given gene) has a ratio of one, and a log transformed ratio of 0 (Kellam 

and Liu 2003). The normalised data can then be cross compared.

5.2.2.7 Organising the Data in Self-Organising Maps (SOMs)

CLUSTER also allows simple Self-Organising Maps (SOM) to be constructed. Devised 

by Teuvo Kohonen in 1981 (Kohonen 1995), an SOM is a neural network-based 

approach to clustering that assigns genes to a series of predefined nodes according to 

their expression pattern. CLUSTER allows one-dimensional SOMs to be constructed, 

with the user determining which axis to organise (rows or columns), the number of 

nodes to be produced (usually the square root of the number of genes/experiments 

available for reorganisation), and the number of iterations to be run. By running an 

SOM for the gene axis, the genes can be roughly organised into clusters of similar 

expression patterns that are themselves ordered according to the similarity of one cluster 

to another. Each gene is then assigned a number according to the node it comprised.

5.2.2.8 Hierarchical Clustering of Data

The construction of the SOM provides a guideline for the final processing of the data by 

CLUSTER. The data are now hierarchically clustered according to similarities in gene 

expression between individual genes. The method used here was Average-Linkage 

Hierarchical Clustering and the aim is to organise all genes (in this case; it is also 

possible to do the same across experiments) into a tree structure where similarity of 

expression is represented by the length of branch connecting the genes. This is 

calculated by first finding the correlation co-efficient between every pair of genes in the 

matrix. CLUSTER uses the Pearson’s correlation co-efficient which, if plotted, would 

detail the best fit line on a scatterplot; or in vector space, describes the angle between 

two vectors that both pass through the origin. Once calculated, those gene pairs with co

efficients closest to 1 (1 correlation; 0=no correlation,-l=anti-correlation) are clustered 

together and an average vector for the two is calculated. The entire process is then 

repeated using the average vector for each cluster to derive new correlation co-efficients 

until the entire dataset is mapped in the tree. Due to the nature of the algorithm, the 

order of the genes within clusters is not recorded since an average of the cluster is taken 

for each iteration This can affect the final visualisation of the tree. To facilitate
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visualisation the node numbers assigned by the SOM are used to determine any final 

gene placement within the hierarchical clusters.

TREE VIEW allows the files from CLUSTER to be visualised. The data can be easily 

studied for changes in cellular transcription patterns over time (in a timecourse), or 

differences in response to similar stimuli between two cell lines over time. The scale 

used in TREEVIEW figures is a colour intensity bar (from red to green) representing 

positive fold-magnitude (red) expression and negative fold-magnitude expression in 

relation to the reference sample expression. The exact fold magnitudes are labelled on 

the individual figures.

5.2.3 Biological Pathway Visualisation

Biological pathway diagrams are taken, and if necessary, amended, from the pathway 

database of Kyoto Encyclopedia of Genes and Genomes (KEGG) 

http://www.genome.ad.jp/kegg/kegg2.html.
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5.3 Results

5.3.1 Using GO’s DAG framework to analyse microarray data

GO can be used in a number of ways to aide in microarray data analysis. By annotating 

entire microarrays with GO numbers, similar gene expression levels can be used in 

conjunction with the DAG structures to analyse the processes (or functions) occurring at 

different points in the time course, or even the prevalent locations of activity. For 

example, by mapping all highly expressed genes at a given timepoint against the DAGs, 

insight into which particular cellular processes are active at that time can be gained. 

Alternatively, by using the inherent DAG structure to cluster genes of similar 

function/process, patterns in expression of these genes can be explored.

5.3.1.1 Time dependent expression of HSV-1 using the Gene Ontology

We therefore analysed the data from two HSV-1 microarray experiments (2 hours and 8 

hours post infection, correlating to early and late infection respectively) (Stingley, 

Ramirez et al. 2000). These data were juxtaposed with the GO term assignment data 

(Chapter 3) and the biological process DAG in a schematic representation (Figure 5.1). 

The microarray data effectively allows the integration of a dimension of time into the 

existing GO data, revealing changing global functional patterns created by the progress 

of viral infection. By looking only at the number of GO processes viral products are 

involved in at the two time points (Figure 5.1a), it is possible to see that late infection 

(8h; grey boxes) involves many more cellular processes, than early infection (2h; white 

boxes). Looking more closely at the three main GO parents that all the viral products of 

early and late infection are children of: cell growth and/or maintenance (Figure 5.1b), 

viral life cycle (Figure 5.1c), and cell communication (Figure 5.Id), the DAG 

demonstrates quite clearly the related, yet temporally distinct roles the viral ORFs play 

over an infectious timecourse.

Cell growth and/or maintenance processes are normally involved in the activation and 

systematic clearing of proteins and amino acids, metabolism and catabolism, general 

maintenance and repair of the cell. When the cell is damaged these processes progress 

to cell cycle arrest, and eventual cell death, if repair is not possible. Early in HSV-1 

infection of the host cell, the virus co-ordinates the interruption of cellular metabolism
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and cell protein production through the degradation of host cell mRNA (UL12.5), while 

altering protein phosphorylation patterns (US3, UL13, UL39) and increasing nucleotide 

metabolism (UL39) (Figure 5.1b, white boxes). In contrast, during late infection, when 

viral genome replication occurs (Figure 5.1b, grey boxes), viral proteins active in viral 

processes such as protein biosynthesis and DNA repair and recombination are evident, 

in accordance with virion production.

Similar contrasts can be seen in the viral life cycle and sections of the DAG (Figure 

5.1c). During late infection the virus is entrenched in the process of replicating (viral 

DNA cleavage, UL17, UL31, UL32, UL33) and packaging (viral DNA genome 

packaging, UL6, UL17, UL25, UL31, UL32, UL33, UL36) its genome before egressing 

(UL36, UL48) the cell, as evident from the large number of proteins present and active 

in related processes at that time.

From examining the cell communication section of the DAG, it is apparent that an equal 

number of proteins active in both early and late infection are involved in some form of 

host defense evasion (Figure 5. Id). Although involved in a similar number of processes, 

the specific defences the virus manipulates to avoid the host’s immune system are 

different. Early infection is concerned with controlling cellular apoptosis (UL13, US3, 

US5) and inhibition of intracellular viral response (US11); while late infection shifts to 

combat extracellular immune responses (US 12, ICPO) such as the humoral immune 

response (UL39), or complement neutralization (UL44).

5.3.1.2 Expanding Microarray Data Analysis

These schematic representations of the biological process DAG of HSV-1 microarray 

data show the advantage of combining the Gene Ontology with a very limited Time 

Dependent method such as Stingley et aVs microarrays. By contrasting the two 

different time points (early vs. late infection) the progress of viral infection through a 

cell can be visualised process by process -  even in the absence of host cell expression 

data. This analysis would be greatly expanded with increased time sampling and the 

use of inhibitors of viral and cellular functions. The advantage of the DAGs, in this 

setting, is the ability to see not only which processes the virus is involved with, but also 

to identify those closely related processes not affected by the virus. By adding the 

dimension of time to the analysis certain cellular location issues can be resolved; for
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example, the proteins involved in DNA repair and recombination are found in the 

nucleus during late infection (Table 4.3). The aspect of location of protein activation is 

not addressed directly by microarray experiments; however, by mapping the expression 

data onto the cellular component DAG, it can be taken into consideration when 

analysing microarray results.

5.3.13 Contradictions in the Microarray Data

Apparent contradictions in the DAGs can also be explained from knowledge of the 

biology. The viral proteins involved in attachment and penetration of HSV-1 to 

uninfected cells, namely UL44 (gC) (Immergluck, Domowicz et al. 1998) and UL1 (gL) 

(Westra, Glazenburg et al. 1997), maintain apparent functions of attachment and entry 

of the cell during late infection according to the DAGs (Figure 5.1c). This is clearly 

untrue and is most likely due to both proteins having time and placement dependent 

functions. Both of these proteins are found in the virus particle where they are involved 

in viral entry into cells. However, UL44 (gC) also functions in virulence enhancement 

(Figure 5.1c) and viral inhibition of host complement neutralisation (Figure 5.Id) 

(Lubinski, Wang et al. 1998; Lubinski, Wang et al. 1999), and UL1 (gL) possibly 

functions in viral induced cell-cell fusion (Figure 5.1b) (Browne, Bruun et al. 2001) 

whilst intracellular. The interpretation of the time dependent gene expression data blurs 

these distinctions as the GO based annotation encapsulates all information of the 

proteins time and location independently. For example, UL44 attachment and entry 

functions may only be manifested in the viral particles, and UL1 cell fusion activity in 

infected cells in vitro most likely reflects its fusion function in virus particles. 

Therefore, the processes indicated by the DAGs are correct when viewed in complete 

biological context, but care must be taken in the initial interpretations.

Other technical problems with DNA array data can also lead to misleading 

interpretation. For example, the HSV-1 microarray used 52 probes to detect 72 

transcripts. This means a number of probes detect more than one transcript, as was the 

case with probe U.l that detected ORFs UL1 and UL2. UL1 functions early in infection 

and UL2 functions late in infection but, due to the probe detecting each transcript at 

different times, their mutual presence at both timepoints is misleading. More extensive 

microarray with probes for each gene and all splice variants where they exist would 

circumvent some of these initial shortcomings.
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Despite the observations made in this analysis, the microarray and number of time point 

samples is too limited to allow detailed mechanistic insights. To explore this further at 

the host gene level, more extensive HCMV datasets were analysed.

Figure 5.1 (opposite). G raphical representation o f DAG  with Tim e dependent G ene  
Product A nnotations, (a) An overview o f  the biological process DAG containing viral 
terms broken into three sections which are enlarged in (b), (c), and (d). Gene products in 
white boxes were expressed 2h post-HSV-1 infection; gene products in grey boxes were 
expressed 8h post-HSV-1 infection by HSV-1 D N A  microarrays (Stingley, Ramirez et al. 
2000). Terms in bold are accompanied by HSV-1 gene product annotations.
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5.3.2 Re-annotation of Existing Analysed Microarray Data with GO Numbers

Two existing microarray timecourses, viruses (infection of fibroblast cells with AD 169 

and Toledo HCMV strains) and cells (infection of fibroblasts and HUVEC cells with the 

Toledo HCMV strain) had been previously analysed manually using the existing 

annotation of each probe. This consisted of a probe number, name and, where available, 

a short description (Figure 5.2). This level of annotation often required further research 

into the function of the protein before extensive functional analysis could be 

undertaken, as in the case of Figure 5.2b. In order to cluster the data by a protein 

characteristic other than expression similarity, such as: site of activation, functional 

similarity, or process/pathway participation, further data must be collected on each 

protein. Thus, the probes from the two timecourses viruses and cells, were re-labelled 

via GO FINDER using the GO terms annotated to each probe in LocusLink. This 

allowed the existing analysis to act as control for the new GO term annotations, and for 

further GO related analysis to be undertaken.

5.3.2.1 Existing Clusters

5.3.2.1.1 Mitochondrial Genes

One of the clusters from the original analysis included a number of genes from the 

Toledo infected fibroblast and HUVEC cells timecourse that are known to increase 

mitochondrial function in the cell (Figure 5.3). These include members of the 

respiratory chain, and mitochondrial membrane transporters. It is known that the 

fibroblast reticular mitochondrial network is perturbed by AD 169 infection 

(McCormick, Smith et al. 2003). Previous analysis of the cells timecourse identified an 

increase in mitochondrial protein expression 6h post Toledo infection in HUVEC cells, 

while in contrast, fibroblast expression remained unchanged. This is possibly due to the 

lower metabolic potential of the HUVEC cells, requiring an increase in energy 

production before viral replication can be completed.
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884718 : histone stem-loop binding protein <SLBP) 

824895 : KHUW313

510858.1 : P ig ll Highly sim ilar to actin-binding pr

Figure 5.2 Examples of probe annotation. These three proteins are labelled with their 
probe number, name, and in the case o f probe 510856.1, a brief description; pr = protein. 
Expression levels are depicted as a function o f  colour: red is positive fold-magnitude 
expression and green is negative fold-magnitude expression than the median (black) level 
o f expression.

o o u u

s s
A A

O O

196189
490244
813830
40017
1469230

193106
782800
897987
797016

-4.93 ■ 15.31

: COX17
: Cytochrome b-5 
: ADP, ATP Carrier Protein 
: Cytochrome cl 
: Cytochrome c-1 
: 1.1.1 Cytochrome 
: Voltage-dependent anion channel 
: mitochondrial ATP synthase 
: Ubiquinol-cytochrome c reductase 
: NADH-ubiquinone oxidoreductase 
: Succinate dehydrogenase 1

Figure 5.3 Expression of mitochondrial genes increased in Toledo infected HUVEC
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322079 : Ceroid-lipofuscinosis (CLN3)
809876 : ATP synthase lipid-binding protein
611150 : mitochondrial ATP synthase
824068 : nuclear-encoded mitochondrial cytochrome
324885 : NOF1 (MRPL4 9)
712577 : Putative holocytochrome c-type synthetase
845519 : ATP synthase
826077 : Pyruvate dehydrogenase
51826 : Nicotinamide nucleotide NAD(P) transhydrogenase
271006 : Dihydrolipoamide S-acetyltransferase
442551 : MRPL3
307933 : NADH-ubiquinone oxidoreductase
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After reannotating this cluster with GO numbers (Figure 5.4), the cellular compartment 

term (G0:0005739:mitochondrion) is seen annotated to each member; this is expected 

as all selected proteins function in the mitochondria of the cell. As the cluster was 

originally manually identified, it is possible that there exist more probes in the cells 

timecourse that share a similar expression pattern to those above. Therefore, a search of 

the remaining data was conducted looking for additional probes that also function in the 

mitochondria, by collecting probes that were annotated with the term 

G0:0005739:mitochondrion. A total of 63 additional genes that are functionally 

related to the mitochondrion were found. Of these, 12 showed similar expression 

patterns to the original cluster of 11 genes, thereby representing over 100% expansion 

of genes identified to function in the mitochondrion that are upregulated in Toledo 

infected HUVEC (Figure 5.5).

Of the twelve new proteins discovered, four (the two ATP synthases: 611150, 845519; 

nuclear-encoded mitochondrial cytochrome: 824068; and the NADH-ubiquinone 

oxidoreductase: 307933) were members of the original cluster. A further seven proteins 

were found to function in the mitochondrion: in the mitochondrial ribosomes 

(mitochondrial ribosomal protein [MRP] L3 and L49, 324885 [MRPL49], 44255 1 

[MRPL3]), the respiratory chain (nicotinamide nucleotide transhydrogenase, 51826; and 

holocytochrome c-type synthetase [HCCS], 712577), and the Kreb’s cycle (pyruvate 

dehydrogenase, 826077; and dihydroloamide S-acetyltransferase).

This search also revealed an additional protein involved in ATP synthesis, ATP 

synthase lipid-binding protein (ATPase subunit C) (Yan, Lemer et al. 1994). Located in 

the mitochondrial membrane, it is a nonenzymatic membrane component of 

mitochondrial ATPase, and its expression in the cell is regulated by the final member of 

the cluster, CLN3. CLN3 is a chaperone protein involved in the folding and assembly 

regulation of a number of proteins in the cell including ATPase subunit C (Janes, 

Munroe et al. 1996). The CLN3 protein is of additional interest because mutations in 

this gene lead to juvenile ceroid-liporfuscinosis, or Batten disease, which is a 

progressive neurological disease caused by accelerated apoptotic cell death. Research 

into CLN3 has revealed that it has an antiapoptotic effect when over-expressed in NT2 

neuronal precursor cells. It is also found to be over-expressed in a number of human 

cancer cell lines (Rylova, Amalfitano et al. 2002). Blocking of such expression led to 

inhibited growth and viability of cancer cells and an overall increase in incidence of
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apoptosis. Therefore, induction of CLN3 may be involved in the prevention of apoptosis 

in HCMV Toledo infected HUVEC.

These new insights into the upregulation of mitochondrial genes 6 hours post-Toledo 

infection in HUVEC support the hypothesis that Toledo has to increase HUVEC 

viability by increasing mitochondria output before viral replication can occur.

5.3.2.2 DAG Structure Defined Clusters

5.3.2.2.1 Apoptosis Genes

An alternative method of utilising the GO resource is to take advantage of the DAG 

structure that is inherent to the ontologies. This provides a pre-structured view of gene 

product hierarchy before further analysis is undertaken. The process ‘apoptosis* was 

chosen as it represents a manageable subsection of the DAGs whilst providing a 

biologically significant dataset from the array results. Apoptosis features in 14 GO 

terms categorised broadly into four tiers: apoptosis (G0:0006915), regulation of 

apoptosis (G0:0042981), positive (G0:0043065) or negative (G0:0043066) regulation 

of apoptosis, and induction of (G0:0006917) or anti-apoptosis (G0:0006916) (Figure 

5.6a). Induction of apoptosis is further subdivided into eight increasingly descriptive 

terms (Figure 5.6b).

The viruses dataset was searched for genes that were annotated with any of the 

apoptosis terms in the DAG in Figure 5.6. The search yielded 31 different genes that 

induce, regulate, or are involved in apoptosis with significant expression patterns 

(Figure 5.7). From the gene expression patterns, the two viruses appear to have 

different approaches to regulating programmed cell death in the same cell type. Each 

strain affects different components of the cell cycle to control the fate of the cell.

From examining the genes regulated within the DAG structure, it becomes apparent that 

there are a number of genes that cannot be labelled to have solely ‘positive’ or 

‘negative’ control of apoptosis. There are nine genes annotated to terms above the 

‘positive’-‘negative’ split in the DAG, i.e., to GO: 0006915 : apoptosis and 

G0:0042981 : regulation of apoptosis, indicating their ability to regulate cell death in 

a positive or negative manner, according to cellular conditions, and gene expression
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levels. Likewise, of the 22 genes annotated to ‘induction’ and ‘anti-apoptosis’, two 

genes (594502 : TNFRSF6) and (1939252 : RNF7) are found annotated to both 

mutually exclusive terms.

No particular viral-strain specific pattern can be deduced from the DAGs, the two 

strains having a fairly equal representation of gene expression across the DAG. The 

only noticeable difference is that Toledo upregulates genes that can both activate or 

inhibit apoptosis (i.e. those genes above the ‘positive’-‘negative’ split), while AD 169 

upregulates those genes below the split (i.e. that either induce or inhibit apoptosis) The 

significance of this is unclear.

5.3.2.3 Using Additional Resources in Combination with GO

5.3.23.1 LocusLink and KEGG

To further explore the GO-defined apoptosis-related gene expression data, it is useful to 

visualise their interaction in a diagram. Resources, such as the Kyoto Encyclopedia of 

Genes and Genomes (KEGG; Kanehisa, Goto et al. 2004), that schematically depict 

cellular processes in pathways and metabolic cycles provide useful additional tools to 

aid in the study of large datasets such as are produced by microarray experiments 

(Figure 5.8).

The KEGG pathway database provides online depictions that are annotated with 

LocusLink IDs for each gene highlighted in the pathway, allowing for cross-reference 

between different annotation systems. By cross-referencing the LocusLink IDs of the 31 

genes identified in the GO- defined apoptosis gene cluster to the KEGG resource a 

complex picture of the different apoptosis control mechanisms employed by AD 169 and 

Toledo can be constructed (Figure 5.8).

Complementing GO with such resources allows for the microarray data to be further 

exploited. It is not possible to derive such complex depictions as Figure 5.8 without the 

participation of all three resources (GO, LocusLink, KEGG). These compilations of data 

can also serve to compensate for the lack of annotation that would otherwise 

compromise studies that rely upon only one resource or another.
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Figure 5.8 (opposite) The A poptosis C luster genes superim posed upon the KEGG  
A poptosis Pathw ay. Genes circled in blue indicate pro-apoptotic genes downregulated, and 
anti-apoptotic genes upregulated by AD 169 (downregulated by Toledo); genes circled in red 
indicate pro-apoptotic genes downregulated, and anti-apoptotic genes upregulated by Toledo 
(downregulated by A D  169); CXCR4 and DUSP6 (highlighted by *) can also both be found 
in figure 5.11.
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5.3.2.4 GO Term Defined Clusters

5.3.2.4.1 Chemotaxis/MAPK Genes

An advantage of annotating microarray data with GO terms is the added ability to 

search the data by involvement in a certain pathway, activation in a certain 

location/protein structure, or gene function. HCMV has been associated with a number 

of inflammatory and chemotactic immune responses (Streblow, Soderberg-Naucler et 

al. 1999; Cinatl, Blaheta et al. 2000; Cinatl, Kotchetkov et al. 2000; Streblow, Orloff et 

al. 2001; Prosch, Priemer et al. 2003; Moutaftsi, Brennan et al. 2004), and modulated 

chemokine expression (Lecointe, Dugas et al. 2002; Momma, Nagineni et al. 2003; 

Scholz, Vogel et al. 2004). Therefore, a search of the AD 169 and Toledo infection of 

fibroblasts ‘viruses' data was undertaken for all genes that are involved in the biological 

process of chemotaxis (G0:0006935:chemotaxis). This resulted in six genes (Figure 

5.9), four that were clearly upregulated in Toledo infected cells, and two that were 

upregulated in AD 169 infected cells.

This relatively small number of genes may be due to a lack of up-to-date annotation 

within the Gene Ontology, or to a lack of genes on the array involved in chemotaxis. It 

is difficult to draw extensive conclusions from such small gene clusters. It is evident, 

however, that within this cluster there are four genes that are involved in the Mitogen 

Activated Protein Kinase (MAPK) pathway, which are contrastingly regulated between 

viral strain infections (Figure 5.9 CXCR4, PIK3CB, and Mp38 for Toledo and p38 for 

AD 169).

A search was thus undertaken for all genes that contained the term ‘MAPK’. This 

revealed ten genes (including the four from the chemotaxis cluster) that are all members 

of the MAPK pathway (Figure 5.10). Gene 1057458 was later removed from the 

analysis as it represented a putative gene with mouse characteristics, leaving nine genes 

with contrasting expression patterns that are involved in the MAPK pathway that are 

differentially regulated.
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Figure 5.10 Genes Involved in the M APK Pathw ay. A search o f the viruses dataset 
revealed nine genes annotated with terms relating to the MAPK pathway. Gene names are 
outlined in grey boxes; synonyms are in brackets.
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The MAPK pathway is conserved in all eukaryotes and transduces a wide variety of 

external cellular signals to affect a number of cellular responses including cell growth, 

differentiation, inflammation, and apoptosis through the activation of a variety of 

transcription factors (Schaeffer and Weber 1999; Wilkinson and Millar 2000). Six 

different MAPK pathways have been described in mammalian systems (Schaeffer and 

Weber 1999), but the best characterised are the ERK, JNK, and p38 pathways (Figure 

5.11). The results of the MAPK search are more readily interpreted in terms of their 

effects on different components of the three pathways by imposing them upon a 

simplified map of the process (Figure 5.12). This allows the significance of their varied 

expression patterns to be examined in context.

Increases in ERK (Rodems and Spector 1998; Johnson, Ma et al. 2001) and p38 

(Johnson, Huong et al. 2000) activity in early HCMV infection has been attributed to 

the virus actively inhibiting cellular phosphatase activity. It has also been shown that 

stress activated p38 and JNK upregulate the HCMV-IE promoter, leading to the 

expression of IE 1-72 and IE2-86, two viral transcription factors necessary for lytic 

infection. These data could account for the initial increases in GPS1, MKP2, MKP6 

and decreases in p38 and MAPKAPK seen a few hours post infection, reflecting cellular 

responses to the activation of MAPK pathways in the cell. If MAPK pathways are 

important for lytic HCMV replication, however, this does not explain why permissive 

infection occurs in cells that are terminally differentiated and exhibit little or no MAPK 

activity (Weller 1971), and why latency is established in undifferentiated cells with 

MAPK activity present.

An alternative hypothesis is that AD 169, and in particular Toledo, needs to 

downregulate the MAPK pathways for full lytic replication. Toledo would do this by 

upregulation of PIK3CB blocking any SDF-1/CXCR4 signalling, downregulation of 

FGFR and upregulation of GPS1, which together decrease or block Ras and JNK 

activity. Additionally upregulation of MKP2 would block ERK activity and 

downregulation of MKK3 and p38 would reduce p38 activity. Similarly AD 169 

upregulation of MKP and MKP6/2 would reduce ERK and JNK activity, and 

downregulation of MKK3 would reduce p38 activity. These observations and 

hypothesis are supported by evidence that JNK, p38 and ERK inhibit HCMV-IE 

promoter expression (Sun, Harrowe et al. 2001). If the MAPK pathways inhibit IE 

promoter activity, this would explain HCMV’s mechanism of blocking any early-
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infection activated pathways to allow lytic replication. If HCMV is unable to deactivate 

these pathways this could account for HCMV’s inability to lytically replicate in non

differentiated cells where MAPK activity is high. Thus, HCMV’s reliance upon 

differentiation for reactivation from latency could be linked to the deactivation of 

MAPK activity in differentiated cells (Sissons, Bain et al. 2002).

The HCMV-IE promoter enhancer contains a number of cellular transcription factor 

binding sites (Figure 5.13) (Thomsen, Stenberg et al. 1984; Boshart, Weber et al. 1985; 

Meier and Stinski 1996) including six CRE (cAMP responsive element) sites (namely 5 

ATF/CREB, 1 AP-1) (Sambucetti, Cherrington et al. 1989). Many of the transcription 

factors that bind to these sites are upregulated by the MAPK pathways (ELK, SAP la , c- 

JUN, c-FOS, CREB, ATF2; Figures 5.11 and 5.12) and are known to increase 

transcriptional activity of promoters in the cell when activated. Thus, if  MAPK pathway 

activation increases HCMV-IE promoter activity it would be most probably via the 

CRE sites, which have been previously shown to play a role in HCMV-IE promoter 

basal activity maintenance (Hunninghake, Monick et al. 1989; Chang, Crawford et al. 

1990; Niller and Hennighausen 1990). As demonstrated by Sun, however, increased 

MAPK activity represses HCMV-IE promoter activity, and the absence of CRE sites 

does not inhibit MAPK repression of MEKK1 induced HCMV-IE promoter activity 

(Sun, Harrowe et al. 2001). This indicates that MAPK repression of promoter activity is 

probably not manifested via the CRE sites; therefore, any MAPK pathway activity 

related to HCMV infection probably does not involve any CRE site activity. It was also 

noted by Sun et al that in the absence of MEKK1 induced activity, MAPKs have little or 

no effect upon HCMV-IE promoter basal transcription. Overall, this suggests that 

MAPK activation is not necessary for HCMV lytic replication as previously reported 

(Rodems and Spector 1998; Johnson, Huong et al. 2000; Johnson, Ma et al. 2001). This 

supports the hypothesis that sustained suppression of ERK, JNK and p38 by HCMV is 

necessary for lytic replication as identified in the viruses expression data.
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Figure 5.11 The M APK  signaling pathw ays
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Figure 5.11 (Above) The M APK  signaling pathways. An overview o f  the three MAPK  
pathways; ERK, JNK and p38. Proteins present in Figure 5.10 are circled in black. MKP represents 
both MKP2 (DUSP2) and MKP6 (DUSP6).

Figure 5.12 (Below) Expression levels o f  proteins involved in the M A PK  pathways. A
simplified version o f  the MAPK pathways adapted from Figure 5.11. Expression levels for AD 169 
(blue) and Toledo (red) are displayed above their corresponding proteins.
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MEKK1 activation of the HCMV-IE promoter is not exerted via the MAPK pathway, 

and Sun et al demonstrate that MEKK1 upregulates NFkB via IKK (Figure 5.12). In the 

absence of CRE sites, MEKK1 was able to activate HCMV-IE promoter activity 

through the NFkB binding sites also present in the enhancer region of the promoter 

(Figure 5.13) (Sun, Harrowe et al. 2001). NFkB is upregulated in cells responding to 

inflammation and immune reactions; this response also triggers differentiation of 

peripheral blood monocytes into macrophages. It is at this point that reactivation from 

latency has been observed in HCMV infected monocytes (Sissons, Bain et al. 2002).

Our data, therefore, indicate that HCMV infection of fibroblasts induces a 

downregulation of the MAPK pathways ERK, JNK and p38 by Toledo and AD 169. 

This is in contrast to reports that HCMV upregulates MAPK pathways to induce 

HCMV-IE promoter activity via cellular transcription factors (Rodems and Spector 

1998; Johnson, Huong et al. 2000; Johnson, Ma et al. 2001). Our data support the 

hypothesis by Sun et al that MAPK activity in cells prevents lytic replication of HCMV 

by suppressing HCMV-IE promoter activation, forcing the virus to establish latency. 

MAPK activity is higher in undifferentiated cells such as peripheral blood mononuclear 

cells, known to harbour latent HCMV. Sun also hypothesizes that reactivation is 

triggered by increases in NFkB expression seen during cellular responses to stress, 

which coincides with differentiation in macrophages. This is supported by evidence that 

MAPK pathway activation inhibits HCMV-IE promoter activity induced by NFkB via 

MEKK1, even in the absence of CRE binding sites.
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Figure 5.13 Schematic representation of cellular transcription factor binding sites in the 
HCMV-IE promoter enhancer region. The number o f each site present in the region is listed 
with the name o f  the transcription factor/factor family that binds to it.

179



5.4 Conclusion

The quality o f bioinformatics results is always dependent upon the quality o f the 

experimental data upon which it is based. The data and subsequent analyses presented 

here are based upon a multiplicity o f infection (MOI) of 1 which only results in 

infection o f approximately 66% of the cells being analysed. Therefore, any results 

derived or concluded from such experiments must take into account that the data could 

be representing the responses of uninfected cells, infected cells, or the proximal 

response o f uninfected cells to infected cells. It cannot be assumed that any differences 

between such experiments are due solely to the viral infection variable that defines each 

timecourse experiment.

As an alternative system of annotation, however, the Gene Ontology has proven to be a 

beneficial addition to microarray analysis, providing not only a complementary system 

of annotation, as in the case of the mitochondrial genes cluster, but also an alternative 

system of clustering, able to identify unique clusters o f functional similarity easily, as in 

the case o f the MAPK genes and Apoptosis genes clusters.

The structure o f the Gene Ontology extends the range o f analytical possibilities, 

allowing clustering not only by gene function (apoptosis), but also by gene location 

(such as the mitochondrion), and involvement in different pathways (MAPK). Its 

increasing use in a variety of different web sources, such as LocusLink, allows for the 

collaboration o f  different data organisation systems -  seen in the overlay o f microarray 

data upon KEGG Encyclopedia pathways.

GO does not provide a universal answer to microarray analysis. While the use o f GO 

can aid in the automation of large dataset handling, there are types o f analysis that 

cannot be performed, or enhanced, using GO. In the existing analyses o f the datasets 

there were a number o f examples of clusters that could not have been gathered using 

GO, or a combination o f GO and additional resources.

For example, Figure 5.14a is a cluster based upon association with disease o f the eye 

suggested from the initial microarray analysis (Eva Gramoustianou). The Gene 

Ontology does not encompass disease associations; therefore, although each of the 

genes in the cluster below was annotated with the term G0:0007601:vision, this proved
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to be only a partial annotation for the cluster, and a further search of the data using the 

term proved fruitless. It may be possible, however, to derive such clusters by using the 

Gene Ontology in collaboration with such additional resources as the Disease Ontology 

(http://diseaseontology.sourceforge.netA. or the Online Mendelian Inheritance in Man™ 

(OMIM; Online Mendelian Inheritance in Man, OMIM (TM). McKusick-Nathans 

Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National 

Center for Biotechnology Information, National Library of Medicine (Bethesda, MD), 

2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omimA, the latter o f which 

is also closely associated with a number o f online resources including LocusLink.

Similarly, the cluster in Figure 5.14b has been gathered by identifying genes that are 

located at chromosome position lq21. Chromosome loci is another characteristic not 

represented in the Gene Ontology; it was, therefore, not unexpected that GO term links 

could not be found among these 10 genes to enable supplemental analysis. LocusLink is 

the prime resource for identifying chromosome locus, and is probably the best resource 

to start with when working with such clusters.

Finally, Figure 5.14c depicts a cluster comprised o f genes that regulate chromatin 

structure. This is an example where the Gene Ontology does utilise the clustering 

preference (G0:0006325:establishment and/or maintenance of chromatin 

architecture); however, the cluster was not sufficiently annotated to enable detailed 

investigation. The one variable that will hinder GO reliant analysis of any experimental 

research is a lack of annotation o f participating gene products. Each of the genes in 

Figure 5.14c was annotated with the term G0:0000785:chromatin; however, this is a 

term in the cellular component ontology and does not give any indication to function. 

This drawback in GO-oriented microarray analysis is easily overcome by annotating the 

genes in question as information concerning their function becomes available.

Use o f the Gene Ontology in combination with experimental methods is inherently 

reliant upon quality o f annotation. If used alone, poor quality o f or incorrect annotation 

could potentially hinder in-depth analysis o f results, as seen in Figure 5.14c. However, 

use o f the Gene Ontology as a method of annotation and analysis has proven beneficial 

in not only its supplementation o f existing analysis, but also in its ability to provide 

unique new viewpoints o f the data, alone and in combination with other resources.

181

http://diseaseontology.sourceforge.netA
http://www.ncbi.nlm.nih.gov/omimA


a.
S o o o o o o o S w v w w
gaaaaaaas
U l U t U t W « M < U U W  u

A A A A A A A A A AA A A c - J r r c o c ^ ^ A A A ^ i ' ^ c o c ^ ^  
e e « H c s i ^ i r - e s o o s o H e M ^ r ^ 0 s

TGF, beta-induced 
HRG4
Cone-specific cGMP 
Crystallin

ON 0 
”  4)

s?
K H  Hb. o o  u u

A A A A A A A A A A A A 
U U e « H ( M 4 | r > 0 s e « H N ^ p < A

KIAA0144 
Calqranulin 
Interleukin 6 
CAAF1 
H-vps45 
Mucin 1 
Adenosine 
HAX1

Guanine nucleotide regulatory factor 

Metaxin

CHC1

DNAS1L3

PHD finger 1 

CDC46

Mi-2 protein 

KIAA0166

Figure 5.14 Gene clusters determined by characteristics not found in the Gene 
Ontology, a) genes associated with vision impairment and disease that are essential for 
transmission o f  the visual signal b) genes located at chromosomal position lq21 and c) 
genes that are involved in the regulation o f chromatin structure.
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6.0 Discussion

Bioinformatics can be loosely divided into the two areas of static and dynamic 

informatics. Static informatics involves the organisation and presentation o f raw data in 

a variety of resources. These include, most commonly, primary and compilation 

databases, ontologies and vocabularies, post-experimental analytical tools, and, when no 

analysis upon the results has been conducted, secondary databases. The results from 

static informatics are becoming the backbone of modem biology, both in vitro and in 

silico, whether to provide post-laboratory data storage, pre-experimental datasets, or 

computed data analysis. As such, the importance o f static work increases with our 

reliance upon computational support; however, it is still often overlooked as a valid 

form o f biological research despite its universality in the field.

Dynamic informatics involves more the in silico experimentation conducted to analyse 

and interpret raw data and is usually formulated around a specific question or 

hypothesis. Dynamic informatics benefits from the speed and accessibility that modem 

computing provides, allowing data gathered from a wide variety o f experiments to be 

compared simultaneously and in larger quantities. It also encompasses complex data 

analysis and prediction that was previously impossible due to the computational 

limitations o f the human brain. While increasing in accuracy and acceptance in the 

scientific community, the results from dynamic studies usually still require laboratory 

confirmation.

Experimental research is not infallible, and bioinformatics is no exception. All research 

requires careful analysis to prevent false information being propagated as fact. 

Mistakes and dubious results are sometimes published due to careless curation or 

overconfidence in in silico methods. This was the case with the discoverers o f the first 

adenylyl cyclase in plants (Ichikawa, Suzuki et al. 1997). Homology was determined 

using sequence comparison methods; however, while the percentage similarity 

suggested a high degree o f relatedness, the alignment revealed that the plant protein 

lacked a number o f key features common to adenylyl cyclases and the paper was later 

retracted (Ichikawa, Suzuki et al. 1998). Virology is also subject to this type of error 

(Rigoutsos, Novotny et al. 2003). Experimental data, therefore, is essential in 

confirming and controlling bioinformatics research, even when large datasets are 

considered.
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The advantage of many bioinformatics methods, however, is the ability to 

computationally cross-validate large amounts of data. In Chapter 2, the identification of 

known herpesvirus-host homologues was used as a sufficient control to allow the 

probable new homologues to be reported with higher confidence. Likewise, in Chapters 

3 and 4 the processes o f adding new terms and annotating viral gene products were 

closely interlinked, with new terms being created and DAGs being rearranged where 

necessary in order to accurately annotate HHV-1. Chapter 5 utilised previous detailed 

manual analysis of microarray data as a control for computational annotation. In 

addition, these chapters not only built upon work previously done, but in many cases 

added to and enhanced previous work from static resources (Table 6.1) in a feedback 

loop.

The primary aim of this thesis was to study herpesvirus-host interaction using a range of 

bioinformatics methods. The work presented is a combination o f static and dynamic 

bioinformatics that demonstrates the equal necessity and validity o f both (Table 6.1). 

Each chapter is underpinned by previous static bioinformatics work, and can be 

expanded with more dynamic bioinformatics work. There is also a general flow from 

static (red) to dynamic (green) to experimental (blue) work.
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Table 6.1 Previous and future work relating to this thesis.*
Previous Work Thesis Future Work

Creation and 
maintenance o f  VIDA 
Conceptual gene 
prediction and —  
translation o f human 
genome

Chapter 2:
Identification o f  new 

herpesvirus gene homologues 
in the human genome.

V

fe e d b a c k  -

Confirm function o f 
new homologues 
identified.
Repeat with other 
virus families. 
Repeat with other 
host genomes. 
Repeat with same 
virus/host with most 
recent data 
available.
Update VIDA and 
Human Genome 
resources with 
results.

Creation and 
Maintenance o f the 
Gene Ontology.

Chapter 3:
New viral additions to the 

Gene Ontology.

Chapter 3

 fee d  b a c k

Chapter 4:
Annotation o f herpesvirus 

ggne products using the Gene_ 
Ontology

fe e d b a c k

Use the new terms 
to annotate a viral 
genome.
Continue to Expand 
the Gene Ontology 
with new terms.

Use annotation to 
study host-virus 
interactions. 

-Annotate more viral 
genomes.

Chapter 5:
• Chapter 3 and 4 Analysis o f  host-virus
• Microarray interaction microarray data

hybridisation and using the Gene Ontology,
initial manual result
analysis.

 ►  ►

*Red text: static informatics work 
Green text: dynamic informatics work 
Blue text: laboratory experimentation work

Confirm viral-host
interaction
identified.
Use Gene Ontology 
to analyse other 
microarray or large 
experimental dataset 
results.
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7.0 Appendix A: new(*) and existing viral gene 
ontology terms

term: (delayed) early viral mRNA transcription 
goid: GO:0019084
definition: The second round o f viral gene transcription; most genes transcribed in this round are 
necessary for genome replication. 
definition_reference: ISBN:0781702534

*term: active viral induction o f cell-mediated immune response 
goid: G0:0046737
definition: The intentional, virally-encoded stimulation o f a cell-mediated host defense response to viral 
infection.
definition_reference: ISBN:0781802976

*term: active viral induction o f  host immune response 
goid: G0:0046732
definition: The intentional, virally-encoded stimulation o f a host defense response to viral infection, 
definitionjreference: ISBN:0781802976

*term: active viral induction o f humoral immune response 
goid: G0:0046736
definition: The intentional, virally-encoded stimulation o f a host humoral defense response to viral 
infection.
definition_reference: ISBN :0781802976

*term: active viral induction o f innate immune response 
goid: G0:0046738
definition: The intentional, virally-encoded stimulation o f an innate host defense response to viral 
infection.
definitionjreference: ISBN:0781802976

term: ambisense viral genome 
goid: GO:0019027
definition: A  RNA genome that contains coding regions that are either positive sense or negative sense 
on the same RNA molecule. 
definition_reference: ISBN:0121585336

*term: assemblon 
goid: G0:0046808
definition: Antigenically dense structures located at the periphery o f nuclei, close to but not abutting 
nuclear membranes. Assemblons contain the proteins for immature-capsid assembly; they are located at 
the periphery o f a diffuse structure composed o f proteins involved in DNA synthesis, which overlaps only 
minimally with the assemblons. More than one site can be present simultaneously. 
definition_reference: PMID:8676489

*term: autophosphorylation 
goid: G0:0046777
definition: The phosphorylation by a protein o f one o f  its own residues. 
definition_reference: ISBN:0198506732

term: bipartite viral genome 
goid: G0:0019018
definition: A segmented viral genome consisting o f two sub-genomic nucleic acids but each nucleic acid 
is packaged into a different virion. 
definition_reference: ISBN :0121585336

*term: capsomere 
goid: G0:0046727
definition: Any o f the protein subunits that comprise the closed shell or coat (capsid) o f certain viruses, 
definition reference: ISBN:0198506732
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*term: cytoplasmic viral capsid transport 
goid: G0:0046743
definition: The directed movement o f  viral capsid proteins within the cytoplasm o f the host cell, 
definitionjreference: ISBN:0781718325 
definitionjreference: PMID:11581394

term: DNA viral genome 
goid: GO:0019021
definition: A viral genome composed o f deoxyribonucleic acid. 
definition_reference: ISBN:0121585336

term: dsRNA viral genome 
goid: GO:0019023
definition: A viral genome composed o f double stranded RNA. 
definition_reference: ISBN:0121585336

*term: enhancement o f virulence 
goid: G0:0046800
definition: Any process that activates or increases the severity o f  viral infection and subsequent disease. 
definition_reference: PMID: 10587354

term: Epstein-Barr Virus-induced receptor activity 
goid: G0.001625 
definition: none. 
definition_reference: none.

*term: ER membrane viral budding 
goid: G0:0046764
definition: The evagination o f the nucleocapsid from the host ER membrane system, resulting in 
envelopment o f the virus. 
definition_reference: ISBN:0072370319

*term: ER membrane viral budding during viral capsid envelopment 
goid: G0:0046751
definition: The envelopment o f  a virus, in which the nucleocapsid evaginates from the host ER 
membrane system, thus acquiring a membrane envelope. 
definition_reference: ISBN:0072370319

*term: ER membrane viral budding during viral capsid re-envelopment 
goid: G0:0046748
definition: The re-envelopment o f a virus, in which the nucleocapsid evaginates from the host ER 
membrane system, thus acquiring an additional membrane envelope. 
definition_reference: ISBN:0072370319

term: establishment o f  viral latency 
goid: GO:0019043
definition: The process by which a virus reaches a latent state. 
definition_reference: ISBN:0781702534

*term: genome retention in viral capsid 
goid: G0:0046815
definition: The processes by which the viral genome is retained within the capsid during genome 
cleavage and packaging. 
definition_reference: PMID:9696839

*term: Golgi membrane viral budding 
goid: G0:0046763
definition: The evagination o f the nucleocapsid from the host Golgi membrane system, resulting in 
envelopment o f the virus. 
definition_reference: ISBN:0072370319

*term: Golgi membrane viral budding during viral capsid envelopment
goid: G 0.0046750
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definition: The envelopment o f a virus, in which the nucleocapsid evaginates from the host Golgi
membrane system, thus acquiring a membrane envelope,
definitionreference: ISBN:0072370319

*term: Golgi membrane viral budding during viral capsid re-envelopment 
goid: G0:0046747
definition: The re-envelopment o f a virus, in which the nucleocapsid evaginates from the host Golgi 
membrane system, thus acquiring an additional membrane envelope, 
definitionreference: ISBN:0072370319

term: helical viral capsid 
goid: GO:0019029
definition: The protein coat that surrounds the infective nucleic acid in some virus particles; the subunits 
are arranged to form a protein helix with the genetic material contained within. Tobacco mosaic virus has 
such a capsid structure. 
definition_reference: ISBN:071673706X

*term: histone deacetylase inhibitor activity 
goid: G0:0046811
definition: Stops, prevents or reduces the activity o f histone deacetylase, which catalyzes o f  the removal 
o f acetyl groups from histones, proteins complexed to DNA in chromatin and chromosomes. 
definition_reference: GO:ai 
definition_reference: PMID: 10482575

*term: host cell extracellular matrix binding 
goid: G0:0046810
definition: Interacting selectively with the extracellular matrix o f a host cell. 
definition_reference: PMID:7996163

*term: host cell surface binding 
goid: G0:0046812
definition: Interacting selectively with the surface o f a host cell. 
definition_reference: GO:ai

*term: host cell surface receptor binding 
goid: G0:0046789
definition: Interacting selectively with a receptor on the host cell surface. 
definition_reference: GO:ai 
definition reference: PMID: 11511370

term: icosahedral viral capsid 
goid: GO:0019030
definition: The protein coat that surrounds the infective nucleic acid in some virus particles; the subunits 
are arranged to form an icosahedron, a solid with 20 faces and 12 vertices. Tobacco satellite necrosis 
virus has such a capsid structure. 
definition_reference: ISBN:0198506732 
definition reference: ISBN:071673706X

term: immediate early viral mRNA transcription 
goid: GO:0019085
definition: The transcriptional period o f  the earliest expressed viral genes, mainly encoding 
transcriptional regulators, 
definitionjreference: ISBN:0781702534

term: induction o f apoptosis by virus 
goid: GO:0019051
definition: Viral processes that result in the induction o f apoptosis o f  infected cells, facilitating release 
and spread o f progeny virions. 
definition_reference: ISBN:0781718325

term: initiation o f viral infection 
goid: GO:0019059
definition: Processes involved in the start o f virus infection o f cells.
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definition reference: ISBN:0781702534

*term: inner nuclear membrane viral budding during viral capsid envelopment 
goid: G0:0046771
definition: The envelopment o f a virus, in which the nucleocapsid evaginates from the host inner nuclear 
membrane system, thus acquiring a membrane envelope. 
definition_reference: ISBN:0072370319

*term: inner nuclear membrane viral budding during viral capsid re-envelopment 
goid: G0:0046769
definition: The re-envelopment o f a virus, in which the nucleocapsid evaginates from the host inner 
nuclear membrane system, thus acquiring an additional membrane envelope. 
definition_reference: ISBN:0072370319

*term: intracellular viral capsid transport 
goid: G0:0046801
definition: The directed movement o f viral capsid proteins within the host cell. 
definition_reference: GO:ai 
definition reference: PMID:9188566

*term: intracellular virion transport 
goid: G0:0046795
definition: The directed movement o f a virion within a host cell from one location to another. 
definition_reference: GO:ai 
definition reference: PMID: 11733033

*term: intronless viral mRNA-nucleus export 
goid: G0:0046784
definition: The export o f  intronless viral mRNA from the nucleus to the cytoplasm for translation. 
definition_reference: PMID: 11598019

term: late viral mRNA transcription 
goid: GO:0019086
definition: The last group o f viral genes to be transcribed during the viral life cycle; genes consist mainly 
o f  those encoding structural proteins. 
definition_reference: ISBN:0781702534

term: latent virus infection 
goid: GO:0019042
definition: A viral process characterized by (a) the lack o f efficient expression o f all the viral genes that 
are transcribed during productive infection, and (b) the activation o f a unique latent transcriptional 
progam.
definition_reference: ISBN:0781702534

term: latent virus maintenance 
goid: GO:0019044
definition: The processes required for maintaining the latent form o f  the viral genome within a cell. , 
definition reference: ISBN:0781718325

term: latent virus replication 
goid: GO:0019045
definition: The processes required for latent viral replication in a cell, 
definitionjreference: ISBN:0781702534

*term: lytic ER membrane viral budding 
goid: G0:0046757
definition: A form o f  viral release in which the nucleocapsid evaginates from the host ER membrane 
system, resulting in envelopment o f  the virus and cell lysis. 
definition_reference: ISBN.0072370319

*term: lytic Golgi membrane viral budding
goid: G0:0046758
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definition: A form o f viral release in which the nucleocapsid evaginates from the host Golgi membrane
system, resulting in envelopment o f the virus and cell lysis.
definition_reference: ISBN:0072370319

*term: lytic plasma membrane viral budding 
goid: G0:0046759
definition: A form o f viral release in which the nucleocapsid evaginates from the host nuclear membrane 
system, resulting in envelopment o f the virus and cell lysis, 
definitionjreference: ISBN:0072370319

term: lytic viral budding 
goid: GO:0019078
definition: A form o f  viral release in which the viral particles bud out through cellular membranes, 
resulting in cell lysis. It is also a form o f viral envelopment. 
definition_reference: ISBN:0781702534

*term: lytic viral exocytosis 
goid: G0:0046756
definition: The exit o f  the virion particle from the host cell by exocytosis, resulting in cell lysis. 
definition_reference: ISBN:0072370319

term: lytic viral release 
goid: GO:0019077
definition: A viral infection and replication that leads to the destruction (lysis) o f the infected cell with 
the release o f virions. 
definition_reference: GO:pk

term: multipartite viral genome 
goid: GO:0019020
definition: A segmented viral genome consisting o f  more than three sub-genomic nucleic acids but each 
nucleic acid is packaged into a different virion. 
definition_reference: ISBN:0121585336

*term: microtubule polymerization 
goid: G0:0046785
definition: The addition o f tubulin heterodimers to one or both ends o f  a microtubule. 
definition_reference: GO:ai

term: negative regulation o f antiviral response 
goid: G0:0050687
definition: Any process that stops, prevents or reduces the rate or extent o f antiviral mechanisms, thereby 
facilitating viral replication, 
definitionjreference: GO:ai

term: negative regulation o f retroviral genome replication 
goid: G0:0045869
definition: Any process that stops, prevents or reduces the rate o f  retroviral genome replication. 
definition_reference: GO:curators

term: negative regulation o f  viral genome replication 
goid: G0:0045071
definition: Any process that stops, prevents or reduces the rate o f  viral genome replication. 
definition_reference: GO.curators

*term: negative regulation o f  viral protein levels 
goid: G0:0046725
definition: Any process that reduces the levels o f  viral proteins in a cell. 
definition_reference: GO:ai

term: negative regulation o f  virion penetration 
goid: G0:0046597
definition: Any process that stops, prevents or reduces the rate o f the introduction o f vims particles into 
the cell.
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definition_reference: GO:ai

term: negative sense viral genome 
goid: GO:0019026
definition: A single stranded RNA genome with the opposite nucleotide polarity as mRNA. 
definition_reference: ISBN:0121585336

*term: non-lytic ER membrane viral budding 
goid: G0:0046762
definition: A form o f viral release in which the nucleocapsid evaginates from the host ER membrane 
system, resulting in envelopment o f the virus without triggering cell lysis. 
definition_reference: ISBN:0072370319

*term: non-lytic Golgi membrane viral budding 
goid: G0:0046760
definition: A form o f viral release in which the nucleocapsid evaginates from the host Golgi membrane 
system, resulting in envelopment o f the virus without triggering cell lysis. 
deflnition_reference: ISBN:0072370319

*term: non-lytic plasma membrane viral budding 
goid: G0:0046761
definition: A form o f viral release in which the nucleocapsid evaginates from the host plasma membrane 
system, resulting in envelopment o f the virus without triggering cell lysis. 
definition_reference: ISBN:0072370319

*term: non-lytic viral budding 
goid: G0:0046755
definition: A form o f viral release in which the viral particles bud out through cellular membranes 
without causing cell lysis. It is also a form o f viral envelopment. 
definition_reference: ISBN:0072370319

*term: non-lytic viral exocytosis 
goid: G0:0046754
definition: The exit o f the virion particle from the host cell by exocytosis, without causing cell lysis. 
def1nition_reference: ISBN:0072370319

*term: non-lytic viral release 
goid: G0:0046753
definition: The release o f  virion particles from the cell that does not result in cell lysis. 
definition_reference: ISBN:0072370319

term: non-segmented viral genome 
goid: G0:0019016
definition: A viral genome that consists o f one continuous nucleic acid molecule. 
definition_reference: GOip.kellum

*term: nuclear egress o f viral procapsid 
goid: G0:0046802
definition: The exit o f the immature viral procapsid from the nucleus o f the host cell. 
definition_reference: PMID:9601512 
definition reference: PMID:9765421

*term: nuclear localization o f viral capsid precursors 
goid: G0:0046752
definition: The process which accumulates the necessary components for assembly o f a capsid in the 
nucleus.
definition_reference: ISBN:0781718325

*term: nuclear membrane viral budding 
goid: G0:0046765
definition: The evagination o f the nucleocapsid from the host nuclear membrane system, resulting in
envelopment o f the virus.
definition reference: ISBN:0072370319
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*term: nuclear membrane viral budding during viral capsid envelopment 
goid: G0:0046749
definition: The envelopment o f a virus, in which the nucleocapsid evaginates from the host nuclear 
membrane system, thus acquiring a membrane envelope. 
definition_reference: ISBN:0072370319

*term: nuclear membrane viral budding during viral capsid re-envelopment 
goid: G0:0046746
definition: The re-envelopment o f a virus, in which the nucleocapsid evaginates from the host nuclear 
membrane system, thus acquiring an additional membrane envelope. 
definition_reference: ISBN:0072370319

*term: nuclear viral capsid transport 
goid: G0:0046742
definition: The directed movement o f viral capsid proteins within the nucleus o f the host cell. 
definition_reference: ISBN:0781718325

*term: outer nuclear membrane viral budding during viral capsid envelopment 
goid: G0:0046772
definition: The envelopment o f a virus, in which the nucleocapsid evaginates from the host outer nuclear 
membrane system, thus acquiring a membrane envelope. 
definition_reference: ISBN:0072370319

*term: outer nuclear membrane viral budding during viral capsid re-envelopment 
goid: G0:0046770
definition: The re-envelopment o f a virus, in which the nucleocapsid evaginates from the host outer 
nuclear membrane system, thus acquiring an additional membrane envelope. 
definition_reference: ISBN:0072370319

*term: passive viral induction o f cell-mediated immune response 
goid: G0:0046734
definition: The unintentional stimulation by a virus o f a cell-mediated host defense response to viral 
infection, as part o f the viral infectious cycle. 
definition_reference: ISBN:0781802976

*term: passive viral induction o f host immune response 
goid: G0:0046731
definition: The unintentional stimulation by a virus o f  a host defense response to viral infection, as part 
o f the viral infectious cycle. 
definition_reference: ISBN:0781802976

*term: passive viral induction o f humoral immune response 
goid: G0:0046733
definition: The unintentional stimulation by a virus o f a host humoral defense response to viral infection, 
as part o f  the viral infectious cycle, 
definitionjreference: ISBN :0781802976

*term: passive viral induction o f innate immune response 
goid: G0:0046735
definition: The unintentional stimulation by a virus o f an innate host defense response to viral infection, 
as part o f  the viral infectious cycle. 
definition_reference: ISBN:0781802976 
definition_reference: GOxurators

*term: plasma membrane viral budding 
goid: G0:0046766
definition: The evagination o f the nucleocapsid from the host plasma membrane system, resulting in 
envelopment o f the virus, 
definitionjreference: ISBN:0072370319

*term: plasma membrane viral budding during viral capsid envelopment
goid: G0:0046767
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definition: The envelopment o f a virus, in which the nucleocapsid evaginates from the host plasma
membrane system, thus acquiring a membrane envelope,
definition reference: ISBN:0072370319

*term: plasma membrane viral budding during viral capsid re-envelopment 
goid: G0:0046768
definition: The re-envelopment o f a virus, in which the nucleocapsid evaginates from the host plasma 
membrane system, thus acquiring an additional membrane envelope, 
definitionjreference: ISBN:0072370319

term: positive regulation o f retroviral genome replication 
goid: G0:0045870
definition: Any process that activates or increases the rate o f retroviral genome replication, 
definitionjreference: GO:curators

term: positive regulation o f viral genome replication 
goid: G0:0045070
definition: Any process that activates or increases the rate o f viral genome replication, 
definitionjreference: GO:ai

*term: positive regulation o f viral protein levels 
goid: G0:0046726
definition: Any process that increases the levels o f viral proteins in a cell. 
definition_reference: GO:ai

term: positive regulation o f viral transcription 
goid: G0:0050434
definition: Any process that activates or increases the rate o f viral transcription. 
definition_reference: GO:ai

term: positive regulation o f virion penetration 
goid: G0:0046598
definition: Any process that activates or increases the rate o f the introduction o f virus particles into the 
cell.
definition_reference: GO:ai

term: positive sense viral genome 
goid: GO:0019025
definition: A single stranded RNA genome with the same nucleotide polarity as mRNA. 
definition_reference: ISBN:0121585336

term: provirus 
goid: G0:0019038
definition: The name given to a viral genome after it has been integrated into the host genome; 
particularly applies to retroviruses and is a required part o f the retroviral replication cycle. 
definition_reference: ISBN:0121585336

term: provirus integration 
goid: GO:0019047
definition: The molecular events that lead to the integration o f a viral genome into the host genome. 
definition_reference: ISBN:0121585336

term: reactivation o f latent virus 
goid: GO:0019046
definition: The reactivation o f  a virus from a latent to a lytic state. 
definition_reference: ISBN:0781702534

*term: recruitment o f helicase-primase complex to DNA lesions 
goid: G0:0046799
definition: The recruitment o f the helicase-primase complex to viral DNA lesions during viral DNA  
repair.
definition reference: ISBN:0781718325
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*term: reduction o f  virulence 
goid: G0:0046803
definition: Any process that stops, prevents or reduces the severity o f viral infection and subsequent 
disease.
definition reference: PMID: 10982346

term: regulation o f  antiviral response 
goid: G0:0050688
definition: Any process that modulates the frequency, rate or extent o f the antiviral response o f a cell or 
organism.
definition_reference: GO:ai

term: regulation o f retroviral genome replication 
goid: G0:0045091
definition: Any process that modulates the frequency, rate or extent o f retroviral genome replication. 
definition_reference: GOicurators

term: regulation o f viral genome replication 
goid: G0:0045069
definition: Any process that modulates the frequency, rate or extent o f  viral genome replication. 
definition_reference: GO:ai

term: regulation o f viral life cycle 
goid: G0:0050792
definition: Any process that modulates the rate or extent o f the viral life cycle, the set o f processes by 
which a virus reproduces and spreads among hosts. 
definition_reference: GOicurators

*term: regulation o f  viral protein levels 
goid: G0:0046719
definition: Any process that modulates the levels o f viral proteins in a cell. 
definition_reference: GO:ai

*term: regulation o f viral transcription 
goid: G0:0046782
definition: Any process that modulates the frequency, rate or extent o f  the transcription o f the viral 
genome.
definition_reference: GO:ai

term: regulation o f virion penetration 
goid: G0:0046596
definition: Any process that modulates the frequency, rate or extent o f  the introduction o f virus particles 
into the cell.
definition_reference: GO:ai

*term: replication compartment 
goid: G0:0046809
definition: Globular nuclear domains where the transcription and replication o f  the viral genome occurs. 
More than one site can be present simultaneously, 
definitionjreference: PMID:9499108

term: retroviral genome replication 
goid: G0:0045090
definition: Any process involved in the replication o f a retroviral genome. Retroviruses use RNA as their 
nucleic acid and reverse transcriptase to copy their genome into the DNA o f the host cells chromosomes. 
definition_reference: GOicurators
definition_reference: http://cancerweb.ncl.ac.uk/omd/index.html 
definitionjreference: ISBN:0198506732

term: RNA viral genome 
goid: G 0:0019022
definition: A viral genome composed o f ribonucleic acid. This results in genome replication and 
expression o f  genetic information being inextricably linked.
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definition reference: ISBN:0121585336

term: segmented viral genome 
goid: G0:0019017
definition: A viral genome that is divided into two or more physically separate molecules o f nucleic acid 
and packaged into a single virion, 
definition reference: ISBN:0121585336

term: ssRNA viral genome 
goid: GO:0019024
definition: A viral genome composed o f single stranded RNA o f either positive or negative sense, 
definition reference: ISBN:0121585336

term: viral antireceptor activity 
goid: GO:0019041 
definition: none.
definition reference: GOicurators

term: viral assembly 
goid: GOiOO 19068
definition: A late phase o f  viral replication during which all the components necessary for the formation 
o f  a mature virion collect at a particular site in the cell and the basic structure o f the virus particle is 
formed.
definition_reference: ISBN:0121585336

term: viral assembly intermediate 
goid: GOiOO 19037
definition: Specific locations and structures in the virus infected cell involved in assembling new virions. 
definition_reference: ISBN:0781718325

term: viral assembly, maturation, egress, and release 
goid: GOiOO 19067
definition: The processes involved in the assembly, maturation, egress, and release o f progeny virions. 
definition_reference: ISBN: 1555811272

term: viral capsid 
goid: GOiOO 19028
definition: The protein coat that surrounds the infective nucleic acid in some virus particles. It comprises 
numerous regularly arranged subunits, or capsomeres. 
definition reference: ISBN:0198506732

*term: viral capsid (sensu Retroviridae) 
goid: G0i0046728
definition: The protein coat that surrounds the viral nucleocapsid, which in turn encapsulates the 
infective nucleic acid in retrovirus particles; the structure is complex, and specific structures and 
functions are associated with different elements o f the capsid. 
definition_reference: ISBN:1555811272 
definition_reference: ISBNiO 122270304

term: viral capsid assembly 
goid: GOiOO 19069
definition: The assembly o f a virus capsid from its protein subunits. 
definition_reference: ISBN:0781702534

*term: viral capsid envelopment 
goid: G0i0046744
definition: The process by which a capsid acquires a membrane envelope. 
definition_reference: ISBNi0781718325

*term: viral capsid re-envelopment 
goid: G0i0046745
definition: The process by which a capsid acquires another membrane envelope, subsequent to acquiring 
an initial membrane envelope.
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definitionjreference: ISBN:0781718325

*term: viral dispersion o f host splicing factors 
goid: G0:0046781
definition: Viral processes that disperse host splicing factors (snRNPs) to prevent host mRNA splicing, 
thus reducing host protein production, 
definition reference: ISBN:0781718325

term: viral DNA cleavage 
goid: GO:0019071
definition: The cleavage o f viral DNA into singular functional units. 
definition_reference: ISBN:0121585336

term: viral DNA genome packaging 
goid: GO:0019073
definition: The packing o f viral DNA into a capsid. 
definition_reference: ISBN:0781702534

*term: viral DNA repair 
goid: G0:0046787
definition: The process o f restoring viral DNA after damage or errors in replication. 
definition_reference: ISBN:0781718325 
*term: viral egress 
goid: G0:0046788
definition: The process o f moving the (often) incomplete virion to the cell surface in order to be released 
from the cell. Egress can involve travel through the ER or cytoplasm and will often include final 
maturation stages o f the virion, but it occurs entirely within the cell, 
definitionjreference: ISBN:0781718325 
definition_reference: Ria_Holzerlandt:ria.h@ucl.ac.uk

*term: viral entry 
goid: G0:0046718
definition: The process by which a virion enters a host cell, including virion attachment and penetration. 
definition_reference: ISBN:0781718325

term: viral envelope 
goid: GOiOO 19031
definition: The lipid bilayer and associated glycoproteins that surround many types o f  virus particle. 
definition_reference: ISBN:0781718325

term: viral envelope fusion 
goid: GO:0019064
definition: A form o f viral penetration which involves the fusion o f  the virion envelope with the cellular 
membrane.
definitionjreference: ISBN:0781702534

term: viral evasion o f host immune response 
goid: G0:0030683
definition: Avoidance by a virus o f the host immune system. 
definition_reference: GO:mah

term: viral genome 
goid: G0:0019015
definition: The whole o f the genetic information o f  a virus, contained as either DNA or RNA. 
definition_reference: ISBN:0198506732

term: viral genome expression 
goid: GO:0019080
definition: The achievement o f highly specific, quantitative, temporal and spatial control o f virus gene 
expression within the limited genetic resources o f  the viral genome. 
definition_reference: ISBN:0121585336

term: viral genome maturation
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goid: G0:0019070
definition: Viral processes that occur on newly synthesized viral genomes. 
definition_reference: GO:pk

term: viral genome packaging 
goid: GOiOO 19072
definition: The encapsulation o f the viral genome within the capsid. 
definitionjreference: ISBN:0121585336

term: viral genome replication 
goid: GO.OO 19079
definition: Any process involved directly in viral genome replication, including viral nucleotide 
metabolism.
definition_reference: ISBN:0781702534

*term: viral genome transport 
goid: G0:0046796
definition: The directed movement o f the viral genome(s) within a host cell. 
definition_reference: GO:ai 
definition reference: PMID: 11090159

term: viral host cell process manipulation 
goid: G0:0019054
definition: Alteration o f defined cellular processes that viruses target during replication. 
definition_reference: GO:pk 
definition reference: GO:mah

term: viral host defense evasion 
goid: GO:0019049
definition: The countering o f host defenses by active or passive mechanisms. 
definition_reference: ISBN: 1555811272

term: viral immortalization 
goid: GO:0019088
definition: A  virus-induced cellular transformation arising in immortalized cells, or cells capable o f  
indefinite replication, due to their ability to produce their own telomerase. 
definitionjreference: ISBN:0781702534

*term: viral induction o f host immune response 
goid: G0:0046730
definition: The induction by a virus o f an immune response in the host, 
definitionjreference: ISBN:0781802976

term: viral infectious cycle 
goid: GO:0019058
definition: A set o f processes which all viruses follow to ensure survival; includes attachment and entry 
o f the virus particle, decoding o f genome information, translation o f  viral mRNA by host ribosomes, 
genome replication, and assembly and release o f viral particles containing the genome, 
definitionjreference: ISBN: 1555811272

term: viral inhibition o f apoptosis 
goid: GO:0019050
definition: Viral processes and gene products that result in the inhibition o f apoptosis, facilitating 
prolonged cell survival during viral replication. 
definition_reference: ISBN:0781718325

*term: viral inhibition o f cell cycle arrest 
goid: G0:0046792
definition: Viral interference in host cell processes that lead cell cycle arrest, allowing cell division to 
occur.
definition_reference: PMID:9371605

*term: viral inhibition o f expression o f host genes with introns
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goid: G0:0046779
definition: Viral processes that discriminate against and subsequently inhibit host transcripts containing 
introns, thus allowing only intronless viral mRNA to be fully processed. 
definition_reference: PMID: 11598019

term: viral inhibition o f extracellular antiviral response 
goid: GO:0019053
synonyms: negative regulation o f extracellular antiviral response by virus
definition: Viral processes that result in the inhibition of extracellular (adaptive immune response) 
antiviral mechanisms, thereby facilitating viral replication. 
definition_reference: GO:pk

*term: viral inhibition o f host cell protein biosynthesis shutoff 
goid: G0:0046773
definition: Viral processes that result in the inhibition of the shutoff o f host cell protein biosynthesis that 
occurs in response to viral infection. 
definition_reference: ISBN:0781718325

*term: viral inhibition o f host complement neutralization 
goid: G0:0046791
definition: Viral processes that result in the inhibition o f complement neutralization o f the host cell. 
definition_reference: PMID: 10587354

*term: viral inhibition o f host cytokine production 
goid: G0:0046775
definition: Viral processes that result in the inhibition o f host cell cytokine production. 
definition_reference: PMID: 10859382

*term: viral inhibition o f  host mRNA splicing 
goid: G0:0046780
definition: Viral processes that inhibit the splicing o f host mRNA, thus reducing host protein production. 
definition_reference: ISBN:0781718325

term: viral inhibition o f intracellular antiviral response 
goid: GO:0019052
synonyms: negative regulation o f intracellular antiviral response by virus
definition: Viral processes that result in the inhibition o f intracellular (innate immune response) antiviral 
mechanisms, thereby facilitating viral replication. 
definition_reference: GO:pk

*term: viral inhibition o f intracellular interferon activity 
goid: G0:0046774
definition: Viral processes that result in the inhibition o f interferon activity within the host cell. 
definition_reference: PMID: 10859382

*term: viral inhibition o f MHC class I cell surface presentation 
goid: G0:0046776
definition: Viral processes that result in the inhibition o f presentation o f  MHC class I antigen-presenting 
proteins on the host cell surface. 
definition_reference: PMID: 108593 82

term: viral integration complex 
goid: G0:0019035
definition: Virus specific complex o f protein required for integrating viral genomes into the host genome. 
definition_reference: ISBN:0781718325

term: viral intracellular protein transport 
goid: GO:0019060
definition: The directed movement o f  viral proteins within the host cell. 
definition_reference: ISBN:0781702534

term: viral life cycle 
goid: G0:0016032
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definition: A set o f processes by which a virus reproduces. Usually, this is by infection of a host cell, 
replication o f the viral genome, and assembly o f progeny virus particles. In some cases the viral genetic 
material may integrate into the host genome and only subsequently, under particular circumstances, 
'complete' its life cycle; see viral infectious cycle (G0:0019058) and its children, and lysogeny 
(G0:0030069).
definitionjreference: GO:mah

term: viral nucleocapsid 
goid: G0:0019013
definition: The complete protein-nucleic acid complex that is the packaged form o f the genome in a virus 
particle.
definitionjreference: ISBN:0781702534

term: viral particle maturation 
goid: GO:0019075
definition: The assembly o f the component viral parts into an infectious virion. 
definition_reference: ISBN:0781718325

term: viral perturbation o f cell cycle regulation 
goid: GO:0019055
definition: Viral processes that modulates the rate o f the host cell cycle to facilitate virus replication. 
definition_reference: ISBN:0781718325

term: viral perturbation o f host cell mRNA translation 
goid: G0:0019057
definition: The inhibition o f transcription o f cellular protein-coding genes by host RNA polymerase II. 
definition_reference: ISBN:0781718325

term: viral perturbation o f host cell transcription 
goid: GO:0019056
definition: The inhibition, by viral gene products, o f host RNA polymerase II facilitated transcription. 
definition_reference: ISBN:0781718325

*term: viral perturbation o f host mRNA processing 
goid: G0:0046778
definition: Viral processes that interfere with the processing o f mRNA in the host cell. 
definition_reference: ISBN:0781718325

*term: viral perturbation o f polysomes 
goid: G0:0046783
definition: Viral processes that interfere with and inhibit the assembly and function o f polysomes 
(G0:0005844).
definition_reference: PMID:10438802

*term: viral portal complex 
goid: G0:0046798
definition: A multimeric ring o f proteins through which the DNA enters and exits the viral capsid. 
definition_reference: PMID: 11602732

*term: viral procapsid 
goid: G0:0046729
definition: A stable empty viral capsid produced during the assembly o f  viruses. 
definition_reference: ISBN:1555811272 
definition reference: ISBN:0072370319

*term: viral procapsid maturation 
goid: G0:0046797
definition: The period o f virion development during which the capsid components form the immature 
capsid and encapsulate the viral genome; the capsid often undergoes a number o f structural alterations 
during this period.
definition reference: PMID: 10627558 

term: viral protein biosynthesis
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goid: G0:0019081
deflnition: The formation from simpler components o f viral proteins, 
definitionreference: ISBN:0781702534

term: viral protein processing 
goid: GO:0019082
definition: The posttranslational processing o f viral proteins. 
definition_reference: ISBN:0781702534

term: viral receptor activity 
goid: G0:0001618
definition: Combining with a virus component to initiate a change in cell activity. 
definition_reference: MGIrdph

term: viral receptor mediated endocytosis 
goid: G0:0019065
definition: Endocytosis o f the virus particle resulting in the accumulation o f virus particles within the cell 
via cytoplasmic vesicles. 
definition_reference: ISBN:0781702534

term: viral regulation o f antiviral response 
goid: G0:0050690
synonyms: regulation o f antiviral response by virus
definition: Any viral process that modulates the frequency, rate or extent o f the antiviral response o f  the 
host cell or organism. 
definition_reference: GO:ai

term: viral release 
goid: GO:0019076
definition: The processes by which a virus is released from a cell. 
definition_reference: ISBN:0781702534

term: viral replication complex 
goid: GO:0019034
definition: Specific locations and structures in the virus infected cell involved in replicating the viral 
genome.
definition_reference: ISBN:0781718325

*term: viral replication complex formation and maintenance 
goid: G0:0046786
definition: The process o f organizing and assembling viral replication proteins in preparation for viral 
replication.
definition_reference: ISBN:0781718325

term: viral RNA genome packaging 
goid: GO:0019074
definition: The packaging o f viral RNA into a nucleocapsid. 
definition reference: ISBN:0781718325

*term: viral scaffold 
goid: G0:0046806
definition: A  complex o f proteins that form a scaffold around which the viral capsid is constructed. 
definition_reference: ISBN:0072370319

*term: viral scaffold assembly and maintenance 
goid: G0:0046807
definition: The assembly and maintenance of the viral scaffold (G0:0046806) around which the viral 
capsid is constructed. 
definition_reference: ISBN:0072370319

*term: viral spread within host
goid: G0:0046739
definition: The dissemination o f  infectious virion particles within an infected host.
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definition reference: ISBN:0781718325

*term: viral spread within host, cell to cell 
goid: G0:0046740
definition: The process o f viral dissemination within an infected host organism where infectious virion
particles are passed from infected to uninfected host cells.
definition_reference: ISBN:0781718325
*term: viral spread within host, tissue to tissue
goid: G0:0046741
definition: The process o f viral dissemination within an infected host organism where infectious virion 
particles are passed from infected to uninfected host tissue. 
definition_reference: ISBN:0781718325

term: viral tegument 
goid: G0:0019033
definition: A structure lying between the capsid and envelope o f a virus, varying in thickness and often
distributed asymmetrically.
definition reference: ISBN:0721662544

term: viral transcription 
goid: G0:0019083
definition: The mechanisms involved in viral gene transcription, especially referring to those with 
temporal properties unique to viral transcription. 
definition_reference: ISBN:0781702534

term: viral transcriptional complex 
goid: G0:0019036
definition: Specific locations and structures in the virus infected cell involved in transcribing the viral 
genome.
definitionjreference: ISBN:0781718325

term: viral transformation 
goid: G0:0019087
definition: Any virus-induced change in the morphological, biochemical, or growth parameters o f  a cell. 
definition_reference: ISBN :0781702534

term: viral translocation 
goid: GO:0019066
definition: The translocation o f an entire virus particle across the host cell plasma membrane. 
definition_reference: ISBN:0781702534

term: viral transmission 
goid: GO:0019089
definition: The transfer o f virions in order to create new infection. 
definition_reference: ISBN:0781702534

term: viral uncoating 
goid: GO:0019061
definition: A  general term applied to the events that occur after penetration; refers to the 'uncoating' o f  
the viral genome from the nucleocapsid core, 
definition reference: ISBN:0781702534

term: viral-cell fusion molecule activity 
goid: GO:0019039 
definition: none.
definition_reference: Pfam PF00523 
definition reference: GOicurators

term: viral-induced cell-cell fusion 
goid: G0:0006948
definition: The process o f syncytia-forming cell-cell fusion, caused by a virus, 
definition reference: ISBN:0781718325
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term: virion 
goid: G0:0019012
definition: The complete fully infectious extracellular virus particle. 
definition_reference: ISBN:0781718325

term: virion attachment 
goid: GO:0019062
definition: The processes involved in the specific binding o f a viral antireceptor to a cell surface receptor. 
definition_reference: ISBN:0781702534

*term: virion attachment, binding o f host cell surface coreceptor 
goid: G0:0046814
definition: The process during virion attachment where a virion binds to a host cell surface receptor after 
an initial binding event has occurred, resulting in the fusion o f the virion and host cell membranes and the 
initiation o f viral entry. 
definition_reference: ISBN:0879694971

*term: virion attachment, binding o f host cell surface receptor 
goid: G0:0046813
definition: The process during virion attachment where a virion binds to a host cell receptor, resulting in 
a conformational change o f the virus protein. 
definition_reference: ISBN:0879694971

*term: virion binding 
goid: G0:0046790
definition: Interacting selectively with a virion, either by binding to components o f the capsid or the viral 
envelope.
definition_reference: GO:ai

term: virion penetration 
goid: GO:0019063
definition: The processes required for the introduction o f virus particles into the cell. 
definition_reference: ISBN:0781702534

*term: virion transport 
goid: G0:0046794
definition: The directed movement o f a virion into, out of, or within a host cell, 
definitionjreference: GO:ai

*term: virion transport vesicle 
goid: G0:0046816
definition: A vesicle used to transport the partial or complete virion between cellular compartments. 
definition_reference: PMID:7933124

term: virus induced gene silencing 
goid: G0:0009616
definition: Specific posttranscriptional gene inactivation ('silencing') both o f  viral gene(s), and host 
gene(s) homologous to the viral genes. This silencing is triggered by viral infection, and occurs through a 
specific decrease in the level o f  mRNA of both host and viral genes. 
definition_reference: GO:jl

term: virus-host interaction 
goid: G0:0019048
definition: Interactions, directly with the host cell macromolecular machinery, to allow virus replication. 
definition_reference: ISBN:0781718325

*term: virus-induced modification o f  host RNA polymerase II 
goid: G0:0046793
definition: The viral induction o f  modification to the host RNA polymerase II. 
definition_reference: PMID:7637000
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8.0 Appendix B: evidence codes and references
for HHV-1 gene product annotations

Gl Number Gene Gene Product Go number Reference(s) Code
1944537 RL1 Y134.5,

ICP34.5
G0:0046773 (Roizman and Knipe 2001) TAS

1944537 RL1 Y134.5,
ICP34.5

G0:0046792 (Brown, MacLean et al. 1997) TAS

1944537 RL1 Y134.5,
ICP34.5

G0:0019208 (Roizman and Knipe 2001) TAS

1944537 RL1 Y134.5,
ICP34.5

G0:0005515 (Roizman and Knipe 2001) TAS

1944537 RL1 Y134.5,
ICP34.5

G0:0008372 ND ND

59500 RL2 a0, ICP0 G 0:0019055 (Hobbs and DeLuca 1999) TAS
59500 RL2 aO, ICP0 G0:0019053 (Eidson, Hobbs et al. 2002) TAS
59500 RL2 aO, ICPO G0:0006512 (Roizman and Knipe 2001) TAS
59500 RL2 aO, ICPO G 0:0019054 (Hobbs and DeLuca 1999) TAS
59500 RL2 aO, ICPO G0:0019083 (Roizman and Knipe 2001) TAS
59500 RL2 aO, ICPO G 0:0046811 (Hobbs and DeLuca 1999) TAS
59500 RL2 aO, ICPO G0:0005515 (Roizman and Knipe 2001) TAS
59500 RL2 aO, ICPO G0:0046818 (Roizman and Knipe 2001) TAS
59502 UL1 gL G0:0019063 (Roizman and Knipe 2001) TAS
59502 UL1 gL G0:0019064 (Roizman and Knipe 2001) TAS
59502 UL1 gL G0:0005554 ND ND
59502 UL1 gL G 0:0019031 (Roizman and Knipe 2001) TAS
59503 UL2 G0:0006281 (Sekino, Bruner et al. 2000) NAS
59503 UL2 G0:0004844 (Roizman and Knipe 2001) TAS
59503 UL2 G0:0005634 (Roizman and Knipe 2001) TAS
59504 UL3 G0:0000004 ND ND
59504 UL3 G0:0005554 ND ND
59504 UL3 G0:0046818 (Roizman and Knipe 2001) TAS
59505 UL4 G0:0000004 ND ND
59505 UL4 G0:0005554 ND ND
59505 UL4 G0:0019012 (Roizman and Knipe 2001) TAS
59505 UL4 G0:0046818 (Roizman and Knipe 2001) TAS
59507 UL5 G0:0019079 (Roizman and Knipe 2001) TAS
59507 UL5 G0:0003678 (Roizman and Knipe 2001) TAS
59507 UL5 G0:0016887 (Roizman and Knipe 2001) TAS
59507 UL5 G0:0003677 (Biswas and Weller 2001) TAS
59507 UL5 G0:0005524 (Roizman and Knipe 2001) TAS
59507 UL5 G0:0046809 (Roizman and Knipe 2001) TAS
59507 UL5 G0:0019034 (Roizman and Knipe 2001) TAS
59506 UL6 G0:0019073 (Roizman and Knipe 2001) TAS
59506 UL6 G0:0005554 ND ND
59506 UL6 G0:0005634 (Roizman and Knipe 2001) TAS
59506 UL6 G0:0046798 (Newcomb, Juhas et al. 2001) TAS
59508 UL7 G0:0000004 ND ND
59508 UL7 G0:0005554 ND ND
59508 UL7 G0:0008372 ND ND
59509 UL8 G0:0019060 (Roizman and Knipe 2001) TAS
59509 UL8 G0:0045740 (Roizman and Knipe 2001) TAS
59509 UL8 G0:0005515 (Roizman and Knipe 2001) TAS
59509 UL8 G0:0019034 (Roizman and Knipe 2001) TAS
VIDAUL8.5 UL8.5 G0:0000004 ND ND
VIDAUL8.5 UL8.5 G0:0005554 ND ND
VIDAUL8.5 UL8.5 G0:0008372 ND ND
59511 UL9 G0:0019079 (Roizman and Knipe 2001) TAS
59511 UL9 G0:0016887 (Roizman and Knipe 2001) TAS
59511 UL9 G0:0004003 (Isler and Schaffer 2001) NAS
59511 UL9 G0:0003688 (Roizman and Knipe 2001) TAS
59511 UL9 G0:0005524 (Roizman and Knipe 2001) TAS
59511 UL9 G0:0003677 (Roizman and Knipe 2001) TAS
59511 UL9 G0:0046809 (Roizman and Knipe 2001) TAS
59511 UL9 G0:0005634 (Roizman and Knipe 2001) TAS
VIDAUL9.5 UL9.5 G0:0000004 ND ND
VIDAUL9.5 UL9.5 G0:0005554 ND ND
VIDAUL9.5 UL9.5 G0:0008372 ND ND
59510 UL10 gM G0:0046740 (MacLean, Robertson et al. 

1993)
TAS

59510 UL10 gM G0:0005554 ND ND
59510 UL10 gM G0:0005886 (Roizman and Knipe 2001) TAS
59510 UL10 gM G0:0019031 (Roizman and Knipe 2001) TAS
VIDAUL10.5 UL10.5 G0:0000004 ND ND
VIDAUL10.5 UL10.5 G0:0005554 ND ND
VIDAUL10.5 UL10.5 G0:0008372 ND ND
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59512
59512
59512
59512
59512
59512
59512
59512
59512
59512

UL11
UL11
UL11
UL11
UL11
UL11
UL11
UL11
UL11
UL11

G0:0046744  
G0:0046788  
G0:0046745  
G0:0019060  
G0:0005554  
G0:0005634  
G0:0046818  
G0:0005637  
G 0:0012505 
G0:0019033

(Roizman and Knipe 2001) 
(Baines and Roizman 1992) 
(Baines and Roizman 1992) 
(Baines and Roizman 1992) 
ND
(Baines, Jacob et al. 1995) 
(Baines, Jacob et al. 1995) 
(Baines, Jacob et al. 1995) 
(Baines, Jacob et al. 1995) 
(Loomis, Bowzard et al. 2001)

TAS
TAS
TAS
TAS
ND
TAS
TAS
TAS
TAS
TAS

59513 UL12 G0:0019070 (Roizman and Knipe 2001) TAS
59513 UL12 G0:0046802 (Shao, Rapp et al. 1993) TAS
59513 UL12 G0:0004527 (Roizman and Knipe 2001) TAS
59513 UL12 G0:0003677 (Roizman and Knipe 2001) TAS
59513 UL12 G0:0004519 (Roizman and Knipe 2001) TAS
59513 UL12 G0:0005634 (Roizman and Knipe 2001) TAS
VIDAUL12.5 UL12.5 G0:0000291 (Bronstein, Weller et al. 1997) TAS
VIDAUL12.5 UL12.5 G0:0000294 (Bronstein, Weller et al. 1997) TAS
VIDAUL12.5 UL12.5 G0:0004519 (Bronstein, Weller et al. 1997) TAS
VIDAUL12.5 UL12.5 G0:0004527 (Bronstein, Weller et al. 1997) TAS
VIDAUL12.5 UL12.5 G0:0019030 (Bronstein, Weller et al. 1997) TAS
59514 UL13 G0:0019051 (Hagglund, Munger et al. 

2002)
TAS

59514 UL13 G0:0006468 (Roizman and Knipe 2001) TAS
59514 UL13 G0.0004672 (Roizman and Knipe 2001) TAS
59514 UL13 G0:0019012 (Roizman and Knipe 2001) TAS
59846 UL14 G0:0046740 (Roizman and Knipe 2001) TAS
59846 UL14 G0:0005554 ND ND
59846 UL14 G0:0005737 (Cunningham, Davison et al. 

2000)
TAS

59846 UL14 G0:0019033 (Roizman and Knipe 2001) TAS
59846 UL14 G0:0046818 (Cunningham, Davison et al. 

2000)
TAS

59501 UL15 G0:0019073 (Roizman and Knipe 2001) TAS
59501 UL15 G0:0019071 (Baines, Poon et al. 1994) TAS
59501 UL15 G0:0005524 (Yu and Weller 1998) TAS
59501 UL15 G0:0046729 (Sheaffer, Newcomb et al. 

2001)
TAS

59501 UL15 G0:0005634 (Yu and Weller 1998) TAS
59501 UL15 G0:0046809 (Yu and Weller 1998) TAS
59516 UL16 G0:0019073 (Roizman and Knipe 2001) TAS
59516 UL16 G0:0019071 (Roizman and Knipe 2001) TAS
59516 UL16 G0:0005554 ND ND
59516 UL16 G0:0046808 (Nalwanga, Rempel et al. 

1996)
TAS

59516 UL16 G0:0005737 (Nalwanga, Rempel et al. 
1996)

TAS

59516 UL16 G0:0005634 (Nalwanga, Rempel et al. 
1996)

TAS

59516 UL16 G0:0019012 (Nalwanga, Rempel et al. 
1996)

TAS

59516 UL16 G0:0046809 (Nalwanga, Rempel et al. 
1996)

TAS

59517 UL17 G0:0019071 (Roizman and Knipe 2001) TAS
59517 UL17 G0:0019073 (Roizman and Knipe 2001) TAS
59517 UL17 G0:0046742 (Roizman and Knipe 2001) TAS
59517 UL17 G0:0005554 ND ND
59517 UL17 G0:0005634 (Roizman and Knipe 2001) TAS
59517 UL17 G 0:0019033 (Roizman and Knipe 2001) TAS
VIDAUL15.5 UL15.5 G0:0000004 ND ND
VIDAUL15.5 UL15.5 G0:0005554 ND ND
VIDAUL15.5 UL15.5 G0:0008372 ND ND
59518 UL18 VP23 G 0:0019073 (Roizman and Knipe 2001) TAS
59518 UL18 VP23 G0:0019071 (Roizman and Knipe 2001) TAS
59518 UL18 VP23 G0:0005554 ND ND
59518 UL18 VP23 G0:0005634 (Roizman and Knipe 2001) TAS
59518 UL18 VP23 G0:0019030 (Roizman and Knipe 2001) TAS
59519 UL19 VP5, ICP5 G0:0000004 ND ND
59519 UL19 VP5, ICP5 G0:0005554 ND ND
59519 UL19 VP5, ICP5 G 0.0005634 (Roizman and Knipe 2001) TAS
59519 UL19 VP5, ICP5 G0:0019030 (Roizman and Knipe 2001) TAS
59519 UL19 VP5, ICP5 G0:0046727 (Roizman and Knipe 2001) TAS
59520 UL20 G0:0019060 (Baines, Ward et al. 1991) TAS
59520 UL20 G0:0046788 (Roizman and Knipe 2001) TAS
59520 UL20 G0:0005554 ND ND
59520 UL20 G0:0005795 (Roizman and Knipe 2001) TAS
59520 UL20 G0:0019031 (Roizman and Knipe 2001) TAS
59520 UL20 G0:0005635 (Roizman and Knipe 2001) TAS

204



59520 UL20 G0:0046816 (Ward, Campadelli-Fiume et 
al. 1994)

TAS

VIDAUL20.5 UL20.5 G0:0000004 ND ND
VIDAUL20.5 UL20.5 G0:0005554 ND ND
VIDAUL20.5 UL20.5 G0:0046818 (Roizman and Knipe 2001) TAS
59521 UL21 G0:0000226 (Takakuwa, Goshima et al. 

2001)
TAS

59521 UL21 G0:0046795 (Takakuwa, Goshima et al. 
2001)

TAS

59521 UL21 G0:0046801 (Takakuwa, Goshima et al. 
2001)

TAS

59521 UL21 G0:0046785 (Takakuwa, Goshima et al. 
2001)

TAS

59521 UL21 G0:0005875 (Takakuwa, Goshima et al. 
2001)

TAS

59521 UL21 G0:0008017 (Takakuwa, Goshima et al. 
2001)

TAS

59521 UL21 G0:0005737 (Takakuwa, Goshima et al. 
2001)

TAS

59521 UL21 G0:0019033 (Takakuwa, Goshima et al. 
2001)

NAS

59522 UL22 gH G0:0046740 (Roizman and Knipe 2001) TAS
59522 UL22 gH G0:0019063 (Roizman and Knipe 2001) TAS
59522 UL22 gH G0:0046788 (Roizman and Knipe 2001) TAS
59522 UL22 gH G0:0006948 (Roizman and Knipe 2001) TAS
59522 UL22 gH G0:0005554 ND ND
59522 UL22 gH G0:0019031 (Roizman and Knipe 2001) TAS
59524 UL23 ICP36 G 0:0019046 (Tenser 1991) IDA
59524 UL23 ICP36 G0:0019206 (Roizman and Knipe 2001) TAS
59524 UL23 ICP36 G0:0008372 ND ND
59523 UL24 G0:0000004 ND ND
59523 UL24 G0:0005554 ND ND
59523 UL24 G 0:0016020 (Roizman and Knipe 2001) TAS
59525 UL25 G0:0019073 (Roizman and Knipe 2001) TAS
59525 UL25 G0:0019063 (Roizman and Knipe 2001) TAS
59525 UL25 G0:0046815 (Ogasawara, Suzutani et al. 

2001)
TAS

59525 UL25 G0:0003677 (Ogasawara, Suzutani et al. 
2001)

TAS

59525 UL25 G0:0005634 (Ogasawara, Suzutani et al. 
2001)

TAS

59525 UL25 G0:0019030 (Roizman and Knipe 2001) TAS
59525 UL25 G0:0005737 (Ogasawara, Suzutani et al. 

2001)
TAS

59525 UL25 G0:0046729 (Ogasawara, Suzutani et al. 
2001)

TAS

59526 UL26 VP24 & VP21 G0:0006508 (Roizman and Knipe 2001) TAS
59526 UL26 VP24 & VP21 G0:0046807 (Roizman and Knipe 2001) TAS
59526 UL26 VP24 & VP21 G0:0004252 (Roizman and Knipe 2001) TAS
59526 UL26 VP24 & VP21 G0:0005634 (Roizman and Knipe 2001) TAS
59526 UL26 VP24 & VP21 G0:0046806 (Roizman and Knipe 2001) TAS
1944539 UL26.5 ICP35, VP22a G0:0046752 (Nicholson, Addison et al. 

1994)
TAS

1944539 UL26.5 ICP35, VP22a G0:0046807 (Roizman and Knipe 2001) TAS
1944539 UL26.5 ICP35, VP22a G0:0005554 ND ND
1944539 UL26.5 ICP35, VP22a G0:0005634 (Roizman and Knipe 2001) TAS
1944539 UL26.5 ICP35, VP22a G0:0005737 (Nicholson, Addison et al. 

1994)
TAS

1944539 UL26.5 ICP35, VP22a G0:0046806 (Roizman and Knipe 2001) TAS
59527 UL27 gB G0:0019064 (Roizman and Knipe 2001) TAS
59527 UL27 gB G0:0046810 (Spear, Shieh et al. 1992) TAS
59527 UL27 gB G0:0019039 (Cai, Person et al. 1988; 

Turner, Brnun et al. 1998) 
(Davis-Poynter, Bell et al. 
1994)

TAS

59527 UL27 gB G0:0019031 (Roizman and Knipe 2001) TAS
VIDAUL27.5 UL27.5 G0:0000004 ND ND
VIDAUL27.5 UL27.5 G0:0005554 ND ND
VIDAUL27.5 UL27.5 G0:0005737 (Chang, Menotti et al. 1998) TAS
59528 UL28 ICP18.5 G0:0019073 (Roizman and Knipe 2001) TAS
59528 UL28 ICP18.5 G0:0019071 (Roizman and Knipe 2001) TAS
59528 UL28 ICP18.5 G0:0005554 ND ND
59528 UL28 ICP18.5 G0:0005737 (Koslowski, Shaver et al. 

1997)
TAS

59528 UL28 ICP18.5 G0:0005634 (Roizman and Knipe 2001) TAS
59529 UL29 ICP8 G0:0019079 (Roizman and Knipe 2001) TAS
59529 UL29 ICP8 G0:0046799 (Boehmer 1998) TAS
59529 UL29 ICP8 G0:0046786 (Roizman and Knipe 2001) TAS
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59529
59529
59529
59530
59530
59530
59530
59531
59531
59531

59531
59531
59533
59533
59533
59533
59533
59533
59533
59532
59532
59532
59532
59532
59532
59534

59534
59534
59534
59534
59535
59535
59535
59535
59536
59536
59536
59536
59536
59536
59536
59536
59537
59537
59537
59537
59537
59537
59537
59537
59537
59538
59538
59538
59538
59538
59539
59539
59539

59539
59539
59539
59539
59540
59540
59540
59540
59541
59541
59541

59541

59541
59541

UL29
UL29
UL29

ICP8
ICP8
ICP8

G0:0003697 (Roizman and Knipe 2001) TAS
G0:0019034 (Roizman and Knipe 2001) TAS
GQ:0046809________ (Roizman and Knipe 2001)______TAS

UL30
UL30
UL30
UL30

G0:0019079 (Roizman and Knipe 2001) TAS
G0:0003887 (Roizman and Knipe 2001) TAS
G0:0008408 (Roizman and Knipe 2001) TAS
GQ:0046809________ (Roizman and Knipe 2001)______TAS

UL31
UL31
UL31

UL31
UL31

G0:0019071 (Ye, Vaughan et al. 2000) NAS
G0:0019073 (Ye, Vaughan et al. 2000) NAS
G0:0046771 (Reynolds, Ryckman et al. TAS

2001)
G0:0005554 ND ND
G0:0005634 (Roizman and Knipe 2001) TAS

UL32 G0:0019071 (Lamberti and Weller 1998) TAS
UL32 G0:0019073 (Roizman and Knipe 2001) TAS
UL32 G0:0046742 (Lamberti and Weller 1998) TAS
UL32 G0:0005554 ND ND
UL32 G0:0005737 (Lamberti and Weller 1998) TAS
UL32 G0:0005634 (Roizman and Knipe 2001) TAS
UL32 G0:0046809 (Lamberti and Weller 1998) TAS
UL33
UL33
UL33
UL33
UL33
UL33

G0:0019071 (al-Kobaisi, Rixon et al. 1991) TAS
G0:0019073 (Roizman and Knipe 2001) TAS
G0:0005554 ND ND
G0:0005737 (Reynolds, Fan et al. 2000) TAS
G0:0046809 (Reynolds, Fan et al. 2000) TAS
G0:0005634 (Roizman and Knipe 2001) TAS

UL34

UL34
UL34
UL34
UL34

G0:0046771 (Reynolds, Ryckman et al. TAS
2001)

G0:0005554 ND ND
G0:0019012 (Roizman and Knipe 2001) TAS
G0:0005635 (Ye, Vaughan et al. 2000) TAS
G0:0005641 (Ye, Vaughan et al. 2000) TAS

UL35
UL35
UL35
UL35

VP26
VP26
VP26
VP26

G0:0046797 (Chi and Wilson 2000) TAS
G0:0005554 ND ND
G 0:0019030 (Roizman and Knipe 2001) TAS
GQ:0005634_______ (Roizman and Knipe 2001)_______TAS

UL36 ICP1-2 G0:0046788 (Desai 2000) TAS
UL36 ICP1-2 G0:0019061 (Desai 2000) TAS
UL36 ICP1-2 G0:0019075 (Desai 2000) TAS
UL36 ICP1-2 G0:0019078 (Desai 2000) TAS
UL36 ICP1-2 G0:0005554 ND ND
UL36 ICP1-2 G0:0005634 (Desai 2000) TAS
UL36 ICP1-2 G 0:0019033 (Roizman and Knipe 2001) TAS
UL36 ICP1-2 G0:0005737 (Desai 2000) TAS
UL37 G0:0046749 (Desai, Sexton et al. 2001) TAS
UL37 G0:0019075 (Desai, Sexton et al. 2001) TAS
UL37 G0:0046743 (Desai, Sexton et al. 2001) TAS
UL37 G0:0046788 (Desai, Sexton et al. 2001) TAS
UL37 G0:0046745 (Desai, Sexton et al. 2001) TAS
UL37 G0:0005554 ND ND
UL37 G0:0019033 (Roizman and Knipe 2001) TAS
UL37 G0:0005737 (Roizman and Knipe 2001) TAS
UL37 G0:0005634 (Roizman and Knipe 2001) TAS
UL38 ICP32, VP19C G0:0046752 (Rixon, Addison et al. 1996) TAS
UL38 ICP32, VP19C GO.'O019069 (Roizman and Knipe 2001) TAS
UL38 ICP32, VP19C G0:0003677 (Roizman and Knipe 2001) TAS
UL38 ICP32, VP19C G0:0019030 (Newcomb, Trus et al. 1993) TAS
UL38 ICP32, VP19C G0:0005634 (Rixon, Addison et al. 1996) TAS
UL39 ICP6 G0:0009186 (Roizman and Knipe 2001) TAS
UL39 ICP6 G0:0019079 (Roizman and Knipe 2001) TAS
UL39 ICP6 G0:0046733 (Salvucd, Bonneau et al. IDA

1995)
UL39 ICP6 G0:0046777 (Roizman and Knipe 2001) TAS
UL39 ICP6 G0:0004672 (Roizman and Knipe 2001) TAS
UL39 ICP6 G0:0004748 (Roizman and Knipe 2001) TAS
UL39 ICP6 G0:0005971 (Roizman and Knipe 2001) TAS
UL40
UL40
UL40
UL40

G 0:0009186 (Roizman and Knipe 2001) TAS
G 0:0019079 (Roizman and Knipe 2001) TAS
G 0:0004748 (Roizman and Knipe 2001) TAS
GQ:0005971________ (Roizman and Knipe 2001)______TAS

UL41 vhs G0:0006355
UL41 vhs G0:0046776
UL41 vhs G0:0046775

UL41 vhs G0:0046774

UL41 vhs G0:0046783
UL41 vhs G 0:0019049

(Fenwick and Clark 1982) TAS
(Hill, Barnett et al. 1994) TAS
(Suzutani, Nagamine et al. TAS
2000)
(Suzutani, Nagamine et al. TAS
2000)
(Sydiskis and Roizman 1968) TAS
(Suzutani, Nagamine et al. TAS
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59541
59541
59541
59541
59542
59542
59542
59542
59543
59543
59543
VIDAU
VIDAU
VIDAU
59544
59544

59544

59544
59544
59545
59545
59545
19445“
19445
19445
19445
19445
19445
59547
59547
59547
59547
59547
59548

59548

59548

59548

59548

59548

59548

59548

59549
59549
59549
59549

59549

19445“
19445“
19445“

59550
59550
59550
59550
59551
59551
59551
59551
59551
59552
59552
59552
59552
59552
59552

UL41
UL41
UL41
UL41

vhs
vhs
vhs
vhs

G0:0019054
G0:0000294
G0:0019033
G0:0005737

2000)
(Roizman and Knipe 2001) 
(Elgadi and Smiley 1999) 
(Roizman and Knipe 2001)

TAS
TAS
TAS
TAS

UL42 G0:0019079 (Roizman and Knipe 2001) TAS
UL42 G0:0030337 (Roizman and Knipe 2001) TAS
UL42 G0:0003677 (Roizman and Knipe 2001) TAS
UL42 G0:0046809 (Roizman and Knipe 2001) TAS
UL43 G0:0000004 ND ND
UL43 G0:0005554 ND ND
UL43 G0:0008372 ND ND
UL43.5
UL43.5
UL43.5

G0:0000004 ND ND
G0:0005554 ND ND
GQ:0046808_______ (Roizman and Knipe 2001)______ TAS

UL44 gC, VP7.5 G0:0046800 (Lubinski, Wang et al. 1999) TAS
UL44 gC, VP7.5 G0.0046791 (Fries, Friedman etal. 1986) 

(Kostavasili, Sahu et al. 1997)
TAS

UL44 gC, VP7.5 GO:0019062 (Herold, WuDunn et al. 1991) 
(WuDunn and Spear 1989)

TAS

UL44 gC, VP7.5 G0:0005554 ND ND
UL44 gC, VP7.5 GOrO019031 (Roizman and Knipe 2001) TAS
UL45
UL45
UL45

G0:0000004
G0:0005554
G0:0019031

ND
ND

ND
ND
NAS

UL46 VP11/12 G0.0000004 ND ND
UL46 VP11/12 G0:0005554 ND ND
UL46 VP11/12 G0:0005641 (Willard 2002) TAS
UL46 VP11/12 G0:0005737 (Willard 2002) TAS
UL46 VP11/12 G0:0019033 (Roizman and Knipe 2001) TAS
UL46 VP11/12 G0:0005886 (Willard 2002) TAS
UL47 VP13/14 G0:0000004 ND ND
UL47 VP13/14 G0:0005554 ND ND
UL47 VP13/14 G0:0019033 (Roizman and Knipe 2001) TAS
UL47 VP13/14 G0:0005634 (Donnelly and Elliott 2001) TAS
UL47 VP13/14_________GQ:0005737_______ (Donnelly and Elliott 2001) TAS
UL48 VP16, ICP25, 

aTIF
G0:0019085 (Roizman and Knipe 2001) TAS

UL48 VP16, ICP25, 
aTIF

G0:0046782 (Roizman and Knipe 2001) TAS

UL48 VP16, ICP25, 
aTIF

G0:0046788 (Mossman, Sherburne et al. 
2000)

TAS

UL48 VP 16, ICP25, 
aTIF

G0:0005515 (Roizman and Knipe 2001) TAS

UL48 VP 16, ICP25, 
aTIF

G0:0016563 (Roizman and Knipe 2001) TAS

UL48 VP16, ICP25, 
aTIF

G0:0005634 (Roizman and Knipe 2001) TAS

UL48 VP16, ICP25, 
aTIF

G0:0005737 (Roizman and Knipe 2001) TAS

UL48 VP16, ICP25, 
aTIF

G0:0019033 (Roizman and Knipe 2001) TAS

UL49 VP22 G0:0046740 (Elliott and O'Hare 1997) TAS
UL49 VP22 G0:0003682 (Pomeranz and Blaho 1999) TAS
UL49 VP22 G0:0019033 (Roizman and Knipe 2001) TAS
UL49 VP22 G0:0005634 (Pomeranz and Blaho 1999) 

(Elliott and O’Hare 2000)
TAS

UL49 VP22 G0:0005737 (Pomeranz and Blaho 1999; 
Elliott and O’Hare 2000)

TAS

UL49.5
UL49.5
UL49.5

G0:0000004 ND ND
G0:0005554 ND ND
G0:0019031 (McGeoch, Dolan et al. 1986; TAS

____________________ Dolan, McKie et al. 1992)____________
UL50 dUTPase G0:0006399 (Roizman and Knipe 2001) TAS
UL50 dUTPase G 0.0009117 (Roizman and Knipe 2001) TAS
UL50 dUTPase G0:0004170 (Roizman and Knipe 2001) TAS
UL50 dUTPase G0:0008372 ND ND
UL51
UL51
UL51
UL51
UL51

G0:0000004 ND ND
G0:0005554 ND ND
G0:0005641 (Daikoku, Ikenoya et al. 1998) TAS
G0:0005634 (Daikoku, Ikenoya et al. 1998) TAS
GQ:0019012_______ (Daikoku, Ikenoya et al. 1998) TAS

UL52
UL52
UL52
UL52
UL52
UL52

G0:0019079 (Roizman and Knipe 2001) TAS
G0:0003677 (Biswas and Weller 2001) TAS
G0:0003678 (Roizman and Knipe 2001) TAS
G0:0003896 (Roizman and Knipe 2001) TAS
G0:0019034 (Roizman and Knipe 2001) TAS
GQ:0046809________ (Roizman and Knipe 2001)_____ TAS
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59553
59553

59553
59553

59553

59553
59553
59553
59553
59554
59554
59554

59554
59554

59554
59554
59554
59554
59554
59554
59554
59554
59555
59555
59555
59555
19445i
19445
19445
19445
59558
59558
59558
59558
59558
59558
59558
59558
59559
59559
59559
59559
59559
VIDAU

VIDAU
VIDAU
59560
59560
59560
59560
59561
59561
59561
59561
59562
59562
59562
59563
59563
59563
59564

59564
59564
59564
59564
59565
59565
59565

UL53 gK G0:0046788 (Roizman and Knipe 2001) TAS
UL53 gK G0:0046801 (Jayachandra, Baghian et al. 

1997)
TAS

UL53 gK G0:0005554 ND ND
UL53 gK G0:0005641 (Jayachandra, Baghian et al. 

1997)
TAS

UL53 gK G0:0005634 (Jayachandra, Baghian et al. 
1997)

TAS

UL53 gK G0:0005794 (Foster, Rybachuk et al. 2001) TAS
UL53 gK G0:0005789 (Rajcani and Kudelova 1999) TAS
UL53 gK G0:0019031 (Roizman and Knipe 2001) TAS
UL53 gK G0:0005635 (Rajcani and Kudelova 1999) TAS
UL54
UL54
UL54

a27, ICP27 
a27, ICP27 
a27, ICP27

G0:0019056
G0:0045071
G0:0046779

UL54 027, ICP27 G0:0045070
UL54 027, ICP27 G0:0046781

UL54 027, ICP27 G0:0046780
UL54 a27, ICP27 G0:0046784
UL54 027, ICP27 G0:0046782
UL54 027, ICP27 G0:0016564
UL54 027, ICP27 G0:0003723
UL54 027, ICP27 G0:0005737
UL54 027, ICP27 G0:0005634
UL54 a27, ICP27 G0:0046809

(Roizman and Knipe 2001) 
(Rice, Su et al. 1989) 
(Hardwicke and Sandri-Goldin 
1994; Hardy and Sandri- 
Goldin 1994)
(Roizman and Knipe 2001) 
(Phelan, Carmo-Fonseca et al. 
1993)
(Roizman and Knipe 2001) 
(Sandri-Goldin 1998) 
(Roizman and Knipe 2001) 
(Roizman and Knipe 2001) 
(Roizman and Knipe 2001) 
(Roizman and Knipe 2001) 
(Roizman and Knipe 2001) 
(Roizman and Knipe 2001)

TAS
TAS
TAS

TAS
TAS

TAS
TAS
TAS
TAS
TAS
TAS
TAS
TAS

UL55
UL55
UL55
UL55

G0:0000004 ND ND
G0:0005554 ND ND
G0:0046808 (Roizman and Knipe 2001) TAS
G0:0005634 (Roizman and Knipe 2001) TAS

UL56
UL56
UL56
UL56

G0:0046803 (Roizman and Knipe 2001) TAS
G0:0005554 ND ND
G0:0019012 (Roizman and Knipe 2001) TAS
GQ:0005634_______(Roizman and Knipe 2001)______ TAS

RS1 04, ICP4 G0:0019083 (Roizman and Knipe 2001) TAS
RS1 04, ICP4 G0:0007050 (Song, Yeh et al. 2001) TAS
RS1 04, ICP4 G0:0019055 (Song, Yeh et al. 2001) TAS
RS1 04, ICP4 G0:0046782 (Roizman and Knipe 2001) TAS
RS1 04, ICP4 G0:0003677 (Roizman and Knipe 2001) TAS
RS1 04, ICP4 G0:0030528 (Roizman and Knipe 2001) TAS
RS1 04, ICP4 G0:0046809 (Knipe and Smith 1986) TAS
RS1 04, ICP4 G0:0005634 (Roizman and Knipe 2001) TAS
Us1 a22, ICP22 G0:0046793 (Ogle and Roizman 1999) TAS
Us1 022, ICP22 G0:0005554 ND ND
Us1 022, ICP22 G0:0046818 (Ogle and Roizman 1999) TAS
Us1 022, ICP22 G0:0005634 (Ogle and Roizman 1999) TAS
Us1 022, ICP22 G0:0005737 (Ogle and Roizman 1999) TAS
Us1.5

Us1.5
Us1.5

G0:0019051 (Hagglund, Munger et al. TAS
2002)

G0:0005554 ND ND
G0:0008372 ND ND

Us2
Us2
Us2
Us2

G0:0000004 ND ND
G0:0005554 ND ND
G0:0005634 (Roizman and Knipe 2001) TAS
G0:0019033 (Roizman and Knipe 2001)______ TAS

Us3
Us3
Us3
Us3

G0:0006468 (Roizman and Knipe 2001) TAS
G0:0019050 (Roizman and Knipe 2001) TAS
G0:0004672 (Roizman and Knipe 2001) TAS
G0:0008372 ND ND

Us4
Us4
Us4

g c
gC

J}C_

G0:0019062 (Tran, Kissner et al. 2000) TAS
G0:0005554 ND ND
G0:0019031 (Roizman and Knipe 2001)______ TAS

Us5
Us5
Us5

gJ
gJ
gJ

G0:0019050 (Roizman and Knipe 2001) TAS
G0:0005554 ND ND
G0:0008372 ND ND

Us6

Us6
Us6
Us6
Us6

gD, VP17/18 G0:0019064

gD, VP17/18 
gD, VP17/18 
gD, VP17/18 
gD, VP17/18

G0:0043066
G0:0046789
G0:0046814
G0:0019031

(Cai, Person et al. 1988; 
Davis-Poynter, Bell et al. 
1994; Turner, Bruun et al. 
1998)
(Zhou, Galvan et al. 2000) 
(Roizman and Knipe 2001) 
(Roizman and Knipe 2001) 
(Roizman and Knipe 2001)

TAS

TAS
TAS
TAS
TAS

Us7
Us7
Us7

gi
gi
gi

G0:0046740 (Roizman and Knipe 2001) TAS
G0:0005554 ND ND
G0:0005794 (McMillan and Johnson 2001) TAS
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59565
59566
59566
59566
59566
19445-
19445'
19445'

59567
59567
59567
59567
59568
59568
59568
59568
59568
59569
59569
59569
59569
59569
59569
59570
59570

59570

Us7_____ gl_______________ GQ:0019031______ (Roizman and Knipe 2001)______ TAS
Us8 gE G0:0046740 (Roizman and Knipe 2001) TAS
Us8 gE G0:0005554 ND ND
Us8 gE G0:0005794 (McMillan and Johnson 2001) TAS
Us8_____ gE______________ GQ:0019031______ (Roizman and Knipe 2001)______ TAS
Us8.5 G0:0000004 ND ND
Us8.5 G0:0005554 ND ND
Us8.5 G0:0005730 (Georgopoulou, Kakkanas et TAS
___________________________________________al. 1995)_________________________
Us9 G0:0000004 ND ND
Us9 G0:0005554 ND ND
Us9 G0:0019033 (Roizman and Knipe 2001) TAS
Us9_______    GQ:0019031_______ (Roizman and Knipe 2001)______ TAS
Us10 G0:0000004 ND ND
Us10 G0:0005554 ND ND
Us10 G0:0005634 (Yamada, Daikoku et al. 1997) TAS
Us10 G0:0019030 (Yamada, Daikoku et al. 1997) TAS
Us10_____________________ GQ:0019033______ (Roizman and Knipe 2001)______ TAS
Us11 G0:0019052 (Cassady and Gross 2002) TAS
Us11 G0:0046773 (Roizman and Knipe 2001) TAS
Us11 G0:0003723 (Roizman and Knipe 2001) TAS
Us11 G0:0015935 (Roizman and Knipe 2001) TAS
Us11 G0:0019033 (Roizman and Knipe 2001) TAS
Us11_____________________ G0:0005730______ (Roizman and Knipe 2001)______ TAS
Us12 a47, ICP47 G0:0019053 (Roizman and Knipe 2001) TAS
Us12 a47, ICP47 G0:0048019 (Ahn, Meyer et al. 1996; TAS

Tomazin, Hill et al. 1996)
Us12 a47, ICP47_______GQ:0005783______ (Neumann, Kraas et al. 1997) TAS
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Letter

Identification of New Herpesvirus Gene 
Homoiogs in the Human Genome
Ria H olzerlandt, 1 Christine O ren go ,2 Paul Kellam , 1,4 and M. Mar Alba1,3
1 Wohl Virion Centre, Department of Immunology and Molecular Pathology, and 2Biomolecular Structure and Modelling Unit, 
Department o f Biochemistry, University College London, London W1T 4JF, United Kingdom

Viruses are intracellular parasites that use many cellular pathways during their replication. Large DNA viruses, 
such as herpesviruses, have captured a repertoire of cellular genes to  block o r mimic host immune responses, 
apoptosis regulation, and cell-cyde control mechanisms. We have conducted a systematic search for all 
Biomologs of herpesvirus proteins in the human genome using position-specific scoring matrices representing 
herpesvirus protein sequence domains, and pair-wise sequence comparisons. The analysis shows that -13% of 
the  herpesvirus proteins have clear sequence similarity to products of the human genome. Different human 
{herpesviruses vary in their numbers of human homologs, indicating distinct rates of gene acquisition in different 
(lineages. O ur analysis has identified new families of herpesvirus/human homologs from viruses including human 
herpesvirus 5 (human cytomegalovirus; HCMV) and human herpesvirus 8 (Kaposi's sarcoma-associated 
herpesvirus; KSHV), which may play important roles in host-virus interactions.

Viruses are obligate intracellular parasites and, as such, use 
many normal cellular pathways and components during their 
replication cycle. Large DNA viruses may contain up to a few 
hundred open reading frames (ORFs). Among the proteins 
they encode, we can distinguish between those that have es
sential -viral functions, such as genome replication and capsid 
assembly, and those that are involved in direct interaction 
with the host, effecting immune evasion, cell proliferation, 
and apoptosis control (Ploegh 1998; Tschopp et al. 1998). 
Many of the latter genes are likely to have been acquired from 
the host to mimic or block normal cellular functions ( Moore 
et al. 1996; Alcami and Koszinowski 2000; McFadden and 
Murphy 2000). Identifying and understanding the functions 
of such "acquired" viral proteins may lead to the develop
ment of therapeutic strategies to combat persistent viral in
fection.

An approach to the identification of virus proteins that 
interfere with the host system is to search for homologs in the 
host genome. Until recently, the fraction of host genome se
quence data available for analysis, and the quality of annota
tion of such data, has limited the identification of such ho
mologs.. The publication of the draft of the human genome 
and conceptual translated products (Lander et al. 2001) en
ables us to conduct, for the first time, a comprehensive assess
ment o f homologous proteins between a vertebrate genome 
and viral ORFs. There are two methods particularly applicable 
to mass analysis of sequence databases. The first involves 
searching of individual protein sequences against a database 
using pair-wise sequence comparison algorithms, and has pre
viously been used to identify individual virus/host homologs. 
Viral proteins, however, are subject to high mutation rates, 
and that may cloud or mask true homology. A second, more 
sensitive approach is to search databases with amino add se
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Article and  publication are at http://www.genome.org/cgi/doi/10.1101/ 
gr.334302. Article published online before print in October 2002.

quence motifs that are conserved between related proteins. 
Motifs can be defined as regions of amino add sequence that 
are more highly conserved than the rest of the protein owing 
to functional constraints. An accurate representation of such 
motifs can be obtained by construding position-spedfic scor
ing matrices (PSSMs) that store the frequency of occurrence of 
different amino adds along the motif.

In the present study, we focus on the analysis of herpes
viruses, one of the best-characterized large DNA virus families. 
Typically, each herpesvirus genome contains between 70 and 
120 ORFs, with the exception of human cytomegalovirus 
(HCMV), which codes for up to 220 ORFs. The herpesviruses 
infed a wide range of animal hosts and—on the basis of dif
ferences in genome content, organization, and cellular tro- 
pism—have been divided into three subfamilies: the alpha- 
herpesviruses, betaherpesviruses, and gammaherpesviruses. 
There are a number of herpesviruses that have yet to be cat
egorized in a herpesvirus subfamily, including channel catfish 
herpesvirus, and these are classified as "other" in this study 
(see Table 1; ICTV 2000). Eight different herpesviruses, en
compassing all three subfamilies, are known to infed hu
mans. Herpesviruses persist and replicate their genomes in the 
nucleus and acquire host genes by an ill-defined process 
(Brunovskis and Kung 1995; Chaston and Lidbury 2001). 
Most of these acquired genes are located in regions outside 
the five gene blocks common to all herpesvirus genomes. Pre
vious work by others and ourselves has identified a set of 26 
ORFs that are conserved across all herpesviruses (McGeoch 
and Davison 1999; Alba et al. 2001a). The remaining herpes
virus genes are present in all members of a virus subfamily, 
present in a subset of viruses in a subfamily, or unique to a 
particular virus. Many of these potentially important pro
teins, however, remain uncharaderized.

We have recently developed a virus database, VIDA (AIM 
et al. 2001b), in which all herpesvirus ORFs are grouped to
gether into homologous protein families (HPFs), each defined 
by one or more conserved amino add regions (motifs). To 
identify human proteins that are related to the herpesvirus 
protein families, we have construded PSSMs for all HPF- 
defining motifs and used them to perform sensitive searches
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T able 1 . Herpesvirus-Human H om ologs

Function class Viral function (VIDA) HPF1 Virus2 GenBank3 Human function

DNA replication DNA polymerase 1
293

a,b,g
o

8393995
15303524

polymerase (DNA-directed), a  
polymerase (DNA directed), 8 1

helicase/primase 16 a,b,g 5523990 DNA helicase

Nucleotide repair/ uracil-DNA glycosylase 8 a,b,g 6224979 uracil-DNA glycosylase
metabolism ribonucleotide reduct, large sub. 24 a,b,g 4506749 ribonucleotide reductase M1 

polypeptide
ribonucleotide reduct, small sub. 33 a,g 4557845 ribonucleotide reductase M2 

polypeptide
thymidylate synthase 92 a-,g- 15297069 thymidylate synthetase
dihydrofolate reductase 141 g-,b- 15297069 dihydrofolate reductase
dUTP pyrophosphatase S

S
CCHV ORF49 
SaHV-1 ORF49

4503423
14756895

dUTP pyrophosphatase 
dUTP pyrophosphatase

thymidine kinase s CCHV ORF5 11430716 thymidine kinsae 2, mitochondrial
DNA methyltransferase s RaHV-1 54_21 4503351 DNA (cytosine-5-)-methyltransferase 1

Enzyme protein kinase 29
40

214
S

a,b,g-
a,o
0
RaHV-1 54_2

14746991
4505649
9994197

14741902

serine/threonine-protein kinase PRP4 
protein kinase cdc2-related PCTAIRE-2 
G protein-coupled receptor kinase 7 
CamKI-like protein kinase

phospholipase-like protein 328 a- 5174497 endothelial cell-derived lipase 
precursor

b-1,6-N-acetylglucosaminyltransf. S BoHV-4 ORF3-4 11431963 glucosaminyl (N-acetyl) transferase 3
serine protease S CCHV ORF47 4505577 paired basic amino acid cleaving 

system 4

Gene expression transcriptional activator 74 a 5174653 ring finger protein (C3H2C3 type) 6
regulation bZIP domain 174 a- 4504809 jun B proto-oncogene

Glycoprotein glycoprotein OX-2-like 194 b- 730246 OX-2 membrane glycoprotein 
precursor

glycoprotein OX-2-like 242 g- 730246 OX-2 membrane glycoprotein 
precursor

Host-virus
interaction

TNFR receptor 13 HHV-5 UL144 4507571 tumor necrosis factor receptor, 
member 14

virion-assoc. host shutoff factor 48 a 14738228 flap structure-specific endonuclease 1
viral interferon regulatory factor 89

243

S

g-
g-
HHV-8 vlRF-3

4504723
13629153

4505287

interferon regulatory factor 2 
interferon consensus seq. binding 

prot. 1
interferon regulatory factor 4

G protein-coupled receptor 27
248
S

b,g-
b-
EHV-2, ORF 74

13643500  
4758468  
4502639

chemokine (C-C motif) receptor 2 
G protein-coupled receptor 50  
chemokine (C-C motif) receptor 5

complement binding protein 10 g- 10835143 decay accelerating factor for 
complement

viral cyclin 102 g- 14767736 cyclin D1
viral interleukin 10 140 g- 10835141 interleukin 10
viral interleukin 6 273 g- 10834984 interleukin 6 (interferon, (3 2)
viral interleukin 17 S HVS-2 ORF13 4504651 interleukin 17
vBcl-2 161

259
850

g-
g-
MeHV-1 ORF1

4502363
4557355

11433559

BCL2-antagonist-killer 1 
B-cell lymphoma protein 2 a  
BCLMike 10 (apoptosis facilitator)

MHC 1 downregulation 150 g- 8923613 hypothetical protein FLJ20668
viral FLICE-inhibitory protein 256

S

g-
EHV-2 E8

14731507

4505229

CASP8 and FADD-like apoptosis 
regulator 

Fas (TNFRSF6)-associated via death 
domain

CxC chemokine vlL8 531 a- 10834978 interleukin 8
vMIP-l 225 g- 5174671 small inducible cytokine subf. A, 

member 26
a  chemokine 321 b- 4885589 small inducible cytokine subf. B, 

member 9B
(3 chemokine 387 b- 5174671 small inducible cytokine subf. A, 

member 26
vMIP-lll S HHV-8 K4.1 4506829 small inducible cytokine subf. A, 

member 17
signal transduction protein 316 RRV, R1 12056967 Fc fragment of JgG, receptor for 

(CD16)
CARD-iike apoptotic protein 355 EHV-2, E10 4502379 CARD-like apoptotic protein
U-PAR antigen CD59 352 HVS-2, ORF 15 13639271 CD59 antigen p18-20
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H e rp es v i ru s  G e n e  H o m o l o g s  in t h e  Hu ma n G e n o m e

T a b l e  1 . ( Continued)

Function class Viral function (VIDA) HPF1 Virus2 GenBank3 Human function

natural killer (NK) cell decoy pr. S HHV-5 UL18 5031745 major histocompatibility complex, 
class 1, E

colony-stimulating factor 1 S HHV-4 BARF1 4885123 CD80 antigen
C-type lectin-like protein S RCMV lectin 4504883 killer cell lectin-like receptor subf. C, 

member 2
semaphorin homolog S AIHV-1 A3 4504237 sema domain, Ig domain, GPI memb. 

anchor
MHC1 heavy chain S RCMV R144 9665232 major histocompatibility complex, 

class 1

Unknown unknown 258 a- 4504883 killer cell lectin-like receptor subf. C, 
member 2

Unknown S GaHV-1 UL45 4504883 killer cell lectin-like receptor subf. C, 
member 2

Unknown S HHV-5 UL1 14764567 pregnancy specific beta-1- 
glycoprotein 5

Unknown S HHV-5 US21 6912468 lifeguard

’HPF: homologous protein family no. S indicates singleton. HPF details can be visualised by searching VIDA by HPF number in http:// 
www.biochem.ucl.ac.uk/bsm/virus_database/VIDA.html (Herpesviridae link).
2a indicates alphaherpesvirus; b, betaherpesvirus; g, gammaherpesvirus; o, other; — only a subset of subfamily members are represented. For 
singletons, virus abbreviation and gene name are given: CCHV, channel catfish herpesvirus; SaHV-1, salmonid herpesvirus 1; RaHV-1, ranid 
herpesvirus 1; BoHV-4, bovine herpesvirus 4; HHV-8, human herpesvirus 8; EHV-2, equine herpesvirus 2; HVS-2, saimiriine herpesvirus 2; 
MeHV-1, meleagrid herpesvirus 1; HHV-5, human herpesvirus 5; HHV-4, human herpesvirus 4; RCMV, rat cytomegalovirus; AHIV-1, alcelaphine 
herpesvirus 1; and GaHV-1, gallid herpesvirus 1.
3GenEJank protein accession no. (Gl number). Only the human protein that hit with the lowest E-vatue is shown.

o f th e  translated h u m a n  g e n o m e  products. M apping o f h o 
m o lo g s  in  th e  h u m an  g e n o m e  has been  com p lem en ted  by  
B L A ST -based  p a ir -w ise  s e q u e n c e  c o m p a r is o n  se a r c h e s  
(A ltschu l et al. 1990, 1997). Our analysis has resulted in  th e  
id en tifica tio n  o f protein  fa m ilies  or s in g le to n  proteins that 
sh o w  clear h o m o lo g y  w ith  g en e  products in  th e  h u m an  g e
n o m e , in c lu d in g  n ew  h ost-v irus h o m o lo g s  in  h u m an  herpes
v iru s (H H V ) 5 (H C M V ) a n d  H H V -8 (K aposi's sa r c o m a -  
a ssociated  herpesvirus; KSHV).

RESULTS
H erpesvirus Proteins W ith Hum an Homologs
T he id en tifica tio n  o f h erp esv iru s/h u m an  h o m o lo g s  w as u n 
dertaken  by  searching th e  set o f con cep tu a l and k n ow n  pro
te in  se q u e n c e s  d erived  from  th e  p u b lic  H um an G en o m e  
Project (Lander et al. 2 0 0 1 ) against herpesvirus p rotein  se
q u en ces  in  th e  virus database VIDA (Alba et al. 2001b ) u sin g  
tw o  d ifferent sequ en ce-sim ilarity  search m eth od s. The first 
m e th o d  w as based o n  PSSMs derived from  predefined  viral 
p rotein  m otifs in  VIDA. T he seco n d  used  BLAST-based pair
w ise  seq u en ce  com p arison s w ith  th e  co llec tio n  o f sin g leton  
viral p ro te in s and a representative set o f  viral proteins that 
share <95%  seq u en ce id en tity  (N 95-rep, see M ethods).

C areful ex a m in ation  o f  p u ta tive  h o m o lo g s  sh ow ed  that 
3 9  herpesvirus HPFs and 2 0  sin g le to n  p rote in s had  sign ificant 
se q u en ce  sim ilarity to  h u m a n  g en e  products (Table 1). This 
represented  13% o f  all h erp esv iru s ORFs in  G enB ank. Se
q u en ce sim ilarity b etw een  herpesvirus and  h u m an  proteins  
w as clearly  related to  fu n ctio n a l sim ilarity, based on  previous 
exp erim en ta l data. H ow ever, fu n ctio n a l sim ilarity is defined  
here in  a broad sense, m ea n in g  th e  viral proteins participate  
in  th e  g iv en  fu n ction al netw ork . T h is is because viral proteins 
can  ch a n g e  from  th e  precise m ech a n istic  fu n ctio n  o f  th e  h ost  
h o m o lo g  in subtle w ays after acq u isition  b y  th e  virus w h ile  
still m a in ta in in g  th e  broader fu n c t io n . For ex a m p le , th e

HHV-8 viral cy c lin  participates in  th e  cell cycle  as a cyclin  D  
h o m o lo g  but, u n lik e  th e  h ost cyclin  D, is n o t n egatively  regu
lated (Sw anton  et al. 1997). T he use o f  PSSMs to  perform  da
tabase searches w as m ore sensitive  than  u sin g  N 95-reps w ith  
BLASTP, as six  o f  th e  39  HPF h o m o lo g s  cou ld  o n ly  be detected  
b y  the  first m eth o d . O n e h o m o lo g , how ever, com p lem en t  
b in d in g  protein , cou ld  o n ly  be id en tified  u sin g  BLASTP.

A pproxim ately  54%  o f th e  com b ined  HPF and sin g leton  
h its corresponded to  proteins classified  in  VIDA as b ein g  in 
v o lved  in  h ost-v irus in teraction , prim arily effectin g  im m u n e  
and/or ap op tosis con tro ls. O f th e  rem ain ing h om o lo g s , 32%  
have fun ctio n s that can b e  generally  term ed m etab o lic  (being  
"enzym es," in v o lv ed  in  "DNA replication,"  or in vo lv ed  in  
" nucleotide repair/m etabolism "). H o m ologs to  capsid c o n 
stituents or capsid  assem bly  p rotein s w ere n o t d etected . Ap
proxim ately  42%  o f th e  HPFs and sin g le to n s that sh ow ed  h o 
m o lo g y  w ith  h u m an  p rotein s d id  n o t con ta in  an y  HHV ORF 
m em bers. T his m eth o d  can therefore be used  to  an n ota te  
g en e  products from  non-H H V s for w h ich  co m p lete  h o st g e
n o m e  seq u en ce in form ation  is still unavailable.

Identification of New V irus-H um an Homologs
O f special in terest w as th e  id en tifica tion  o f h u m a n  h o m o lo g s  
for herpesvirus protein  fam ilies and sin g le to n s o f  u n k n ow n  
fu n ctio n . T he n ew  h o m o lo g s  m ay  provide pu tative functional 
an n o ta tio n s for several herpesvirus an d /or h u m an  proteins. 
N ew  h erpesv irus/hum an p rotein  fam ilies w ere fo u n d  for th e  
U S12 (un iq u e short) HCM V protein  fam ily, th e  UL1 (un ique  
lon g) HCMV p rotein , th e  gallid /m eleagrid  herpesvirus UL45 
p rotein  fam ily, and  th e  K3/K5 HHV-8 fam ily  (Fig. 1).

HCMV US21 is a d istan t m em b er o f  a larger HCM V pro
te in  fam ily , th e  US 12 p ro te in  fam ily , en co m p a ss in g  gen e  
products U S12 to  US21 (C hee e t  al. 1990). The US21 sh ow ed  
sign ifican t overall seq u en ce sim ilarity to  three h u m an  pro
teins: lifeguard, C G I-119, and  PP1201. O ther m em bers o f  the
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Figure 1 Alignment of new herpesvirus/human homologs. Proteins are labeled with GenBank identification number (Gl) and a short description. 
Aminio acids that are shaded red share identity across a50%  of the alignment; amino acids shaded grey share similarity across ^50% of the 
alignment, (o) Herpesvirus US12 protein family members, human lifeguard protein, and two additional human proteins. The Pfam UPF0005 
domain is indicated, (b) HCMV UL1, two PSG proteins (PSBG 5 and 13), and one member of the carcinoembryonic antigen subfamily (NCA, 
nonreacting antigen), (c) A representative from each of the herpesvirus protein families found to contain C-type lectin domains and two natural 
killer receptors (NKG2-A). The four conserved cysteines, important for disulphide bond formation in the carbohydrate recognition domain, are 
indicated. (d) K3/K5 herpesvirus protein family with six human homologs. Cysteine/histidine conserved residues in the BKS (BHV-4 [bovine 
herpesvirus 4], KSHV, and swinepox) motif are indicated.

US12 protein family, including an HPF that groups six of 
th em  in VIDA, did not initially hit any hum an proteins, but 
m ultip le sequence alignm ents revealed the true extent of

am ino acid similarity betw een all these proteins (Fig. la). The 
herpesvirus and hum an proteins also matched the protein  
family dom ain UPF0005 in  the Pfam database (Bateman et al.
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200*0), a putative seven-transm em brane region dom ain. Life
guard is the hum an hom olog  o f the rat protein neurom em 
brane protein  35, proposed to  protect against Fas-mediated 
apojptosis (Somia et al. 1999).

HCMV UL1 show ed  sequence sim ilarity to the preg- 
nam cy-specific glycoprotein  5 (PSG-5) and other members of 
the hum an carcinoem bryonic antigen (CEA) protein family. 
The PSGs, a subgroup o f the CEA family, are m ainly expressed 
in  tlhe placenta and are secreted in to  the maternal circulation, 
p ossib ly  regulating im m une system  responses. The region of 
sequ en ce sim ilarity covered about two thirds of the UL1 pro
tein  and the N -term inal region of PSG and CEA subgroup 
protteins (Fig. lb ).

The protein fam ily represented by UL45 in gallid (in
cludes Marek's disease herpesvirus) and meleagrid herpesvi
ru se s  sh o w s h o m o lo g y  w ith  h u m an  C -type (ca lc iu m -  
dep en d en t) lectin  dom ain  containing natural killer (NK)-cell 
receptor proteins. Two other herpesvirus proteins, from rat 
cytom egalovirus (RCMV) and from 
a different gallid herpesvirus strain 
(G enBank accession  no. Y14300), 
a ls o  sh o w  s ig n if ic a n t  se q u en ce  
simiilarity to C-type lectin  dom ain  
co n ta in in g  NK-cell receptors. The 
presence of C-type lectin  dom ain in 
the RCMV protein was recently re
p orted  (V oigt et al. 2001) w h ich  
n o w  clearly extends to  hom ologs in 
somie avian herpesviruses. NK-cell 
receptors interact w ith  HLA (hu- 
marn leukocyte antigen) class I an
t ig en s and facilitate triggering or 
in h ib it io n  o f  NK c e ll-m e d ia te d  
cy to tox ic ity  (Biassoni et al. 2001).
C -type lectins con ta in  a carbohy
drate recogn ition  dom ain , w hich  
in c lu d es four conserved  cysteine  
resid ues form in g  tw o  d isu lp h ide  
b o n d s. These conserved cysteines 
are a lso  present in  the herpesvirus 
C -typ e lectin -lik e h o m o lo g s (Fig. 
lc ).

The K3/K5 protein  fam ily in  
VIDA contains a h ighly  conserved 
zinc finger m otif identified in the 
proteins K3 and K5 from HHV-8,
IE1 in  bovine herpesvirus 4 (BHV- 
4), amd ORF 12 in m urine herpesvi
rus 68 (M H V-68). An add itional 
gen e, ORF 12 in saim iriine herpes
v ir u s  2 (H VS-2), a s in g le to n  in  
VIDA, did n ot initially  h it any hu
m an  gene product. However, it also 
con ta ins the sam e conserved m otif 
and should therefore be considered 
a m em ber o f the fam ily (Nicholas et 
al. 1997). The m otif is know n as the 
BKS (BHV-4, KSHV, and sw inepox) 
m otif, a m em ber o f the PHD/LAP 
z in c  fin g er  c la ss  (C 4H C 3), but 
clearly differing from  PHD/LAP zinc 
fingers ow ing to its distinct spacing 
o f  th e  cyste in e/h istid in e  residues.
K3 an d  K5 from HHV-8 have been

recently discovered to down-regulate MHC class 1 m olecules 
in  infected cells (Coscoy and Ganem  2000). We identified six 
unannotated hum an proteins, including three identified by 
pair-wise searches (Jenner and Boshoff 2002), that contain  
this highly conserved BKS finger m otif (Fig. Id). In the her
pesvirus proteins, the m otif is always found in the N termi
nus, but in  on e hum an protein, it appeared in the central part 
of the peptide, whereas in  another, the counterpart of m urine 
axotrophin, at the C term inus.

Human Homologs in HHVs
Our analysis provides an estim ate o f the number of hom ologs 
between the eight different HHVs and the translated products 
from their host genom e. A total of 34 different HHV proteins, 
including HPFs and singletons, show ed significant hom ology  
w ith hum an proteins (Fig. 2). This represents a m inim um  es
timate, as som e proteins m ay still be functionally hom olo-

urn

unknown. HHV-5 US21/US12 family (138). US12. US15. US19, US21 
unknown, HHV-5 UL1
viral FUCE- inhibitory protain, HHV-8 K13 (258) 
vMlPa, HHV-8 K6 (225), HHV-8 K4.1 
vBd-2, HHV8 ORF16 (161)
MHC-1 Oownregulabon HHV8 K3/K5 (150) 
viral cydin, HHV-8 ORF72 (102) 
oompfament binding protein. HHV-8 ORF4 (10) 
viral interleukin 6. HHV8 K2 (273)
Interferon regulatory protein 3, HHV-8 viRF3 
Interferon regulatory protein 1. HHV-8 vtRF1 (89) 
colony-stimulating factor 1, HHV-4 BARF1 
vBc!-2, HHV-4 BHRF1 (259) 
viral interleukin 10. HHV4 BCFR1 
natural killer (NK) cell decoy HHV-6 UL18 
beta chemokine. HHV-8 K4.1 (387) 
alpha chemokine, HHV-5 UL47 (321)
TNFR receptor homdogue. HHV-5 UL144 (13)
G protein-coupled receptor. HHV8 ORF74 (27)
G protelrvcouplod receptor, HHV6 U51 (248) 
virion-associated host shutoff factor, HHV-1 UC41 
glycoproteinOX-2 Hke. HHV-8 K14 (242) 
glycoprotein 0X 2 Ike; HHV-6 U85 (194) 
transcriptional activator. HHV-1 RL2 (74) 
protein kinase, HHV-1 US3 (40) 
protein kinase. HHV-1 UL3 (29) 
dihydrofolate reductase. HHV-8 ORF2 (41) 
thymidylate synfoase. HHV-8 ORF70 (92) 
ribonucleotide reductase small subunit. HHV-1 UL40 (33) 
ribonucleotide reductase large subunit, HHV-1 18.39 (24) 
uradkONA glycosylase HHV-1 UL2 (8) 
heUcase/primase. HHV-1 UL5 (18)
DNA polymerase. HHV-1 UL30 (1)

6 7 4 8

alpha beta gamma

human herpesviruses

Figure 2 Human herpesvirus (HHV) proteins with human homologs. Alternative names for the HHVs 
are HHV-1, human simplex virus 1; HHV-2, human simplex virus 2; HHV-3, varicella zoster virus; HHV-4, 
Epstein-Barr virus; HHV-5, human cytomegalovirus; and HHV-8, Kaposi's sarcoma-associated herpes
virus. Labels show the virus protein function, the name of a member of the HPF (homologous protein 
family) or singleton, and, for HPFs, the corresponding number in brackets. All the annotations and HPF 
numbers are taken from VIDA. Note that in some cases more than one HPF/singleton, shown as 
separate rows in Table 1, are shown together here. This corresponds to highly divergent families. The 
graph is color coded according to functional class: light green, DNA replication; dark blue, nucleotide 
repair/metabolism; light blue, enzyme; purple, gene expression regulation; yellow, glycoprotein; red, 
host-virus interaction; and black, unknown. Diagonal lines within a box indicate two gene copies (per 
viral genome); vertical lines, three copies; and horizontal lines, 10 copies.
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g ou s but n o t  sh o w  sign ifican t seq u en ce  sim ilarity, and th e  
total n u m b er o f  g en es in  th e  h u m an  g en o m e is still uncertain  
(Lander e t  al. 2001).

Four h u m an  h o m o lo g s  are k n ow n  to  b e  present in  all 
H H V s ( i .e . ,  D N A -d e p e n d e n t  D N A  p o ly m e ra se , h e lic a s e /  
prim ase, uracil-D N A  glycosy lase, and  rib on u cleotid e reduc
tase large subunit), and th ese  w ere all correctly identified  by  
our m eth o d s . An a d d ition a l protein  fam ily, protein  kinase  
HHV-1 U L 13, is present in  all HHVs excep t in  HHV-4. It is 
k n ow n  th a t th e  gam m aherpesviruses share a co m m o n  ev o lu 
tionary  b ranch  w ith  th e  betaherpesvirus, and that the  alpha- 
herpesvirus form s a separate lin eage (M cG eoch and D avison  
1999; Alba et al. 20 0 1 a ). O n e  o f th e  h u m an  h om o lo g s , ribo
n u c le o tid e  reductase sm all su b u n it, is fou n d  in th e  alpha- and  
gam m aherpesviruses, but n o t  in  th e  betaherpesviruses, in d i
catin g  th a t it has b een  lost in  th e  latter lineage. There are 
three h u m a n  h o m o lo g s  that appear to  be alphaherpesvirus- 
specific: p rote in  k inase HHV-1 US3, transcriptional activator  
HHV-1 ICPO (infected  cell p rotein ), and h o st sh u to ff factor  
HHV-1 U L 41. T h is com p ares to  se v en  h o m o lo g s  th a t are 
betaherpesvirus specific  and  14 that are gam m aherpesvirus  
sp ec ific . O f particu lar in terest are tw o  h u m a n  h o m o lo g s  
tha t appear in  disparate p o sitio n s in  th e  herpesvirus ev o lu 
tionary  tree: th ym id y la te  syn th ase  
in  H H V -3 (varicella  zo ster  v irus) 
and  in  H H V -8 (Kaposi's sa rcom a-  
associated  herpesvirus); d ih ydrofo- H  
late red u ctase  in  H H V-5 (HCM V) 
and  H H V -8. In d ep en d en t acq u isi
tio n  o f  th e se  gen es from  th e  h o st
gen o m e, m u ltip le  g en e  loss ev en ts g
in  d ifferen t herpesvirus lineages, or 
g e n e  tr a n sfe r  b e tw e e n  v ir u s  g e 
n o m e s co u ld  exp la in  their d istribu
tio n .

T he to ta l proportion  o f  h u m an  
h o m o lo g s  in  th e  d ifferen t HHVs 
varies. U s in g  the  n um ber o f  gen e  
products in  th e  corresp on d ing  h er
pesvirus g e n o m e  G enB ank entries  
(Table 1 in  Alba et al. 2001a), th is  
p ercen tage is 11% to  16%  o f  th e  
g e n e s  in  h u m a n  a lp h a h e r p e sv i-  
ruses, 9% to  11% in  th e  h u m a n  b e
taherpesviruses, 10% o f th e  gen es  
in  H HV-4, and 30%  in  th e  HHV-8 
g en o m e. HH V-8 co n ta in s  a m ark
ed ly  h igh er  proportion  o f  h u m an  
h o m o lo g o u s  g e n e s , in d ic a t in g  a 
higher degree o f  recent g en e  trans
fer from  th e  h ost gen om e.

■□□I□

recently, appearing o n ly  in  a subset o f  viruses. From th e  59  
HPFs and sin g le to n s  th a t sh o w ed  h o m o lo g y  w ith  h u m an  pro
teins, o n ly  16 w ere present in  alphaherpesviruses, 17 in  beta
herpesviruses, and  32  in  gam m aherpesviruses. M ore than  half 
(54%) o f  th e se  h o m o lo g s  have host-virus in teraction  fun c
tions. G am m aherpesvirus g en o m es are particularly rich in  
gen es tha t h ave a h u m a n  counterpart. Therefore, a m ore de
ta iled  a n a ly sis  o f  th e  d istr ib u tio n  o f  gam m ah erp esv iru s- 
specific h u m a n  h o m o lo g s  in com p lete  gam m aherpesvirus ge
n o m e s w as undertaken  (Fig. 3).

P h y lo g en etic  reconstruction  o f  th e  fu lly  sequ en ced  gam 
m aherpesvirus su b fam ily  m em bers (M cG eoch  et al. 2000; 
M ontague and  H u tch ison  2000; Alba et al. 2001a) has estab
lished  that HHV-4 form s a separate lineage, th e  lym ph ocrytp o  
or g am m a-1-herpesviruses 1. T he rem ain ing  fu lly  sequenced  
g a m m a h e r p e sv ir u se s , w h ic h  in c lu d e  H H V -8, fo rm  th e  
rhad ino or gam m a-2-herpesviruses lineage. T he relative p osi
tio n s o f  a lce lap h in e herpesvirus 1 (AIHV-1), eq u in e  herpesvi
rus 2  (EHV-2), and  M H V -68 w ith in  th e  gam m aherpesvirus 2  
are still ill-d efin ed , a lth o u g h  recent work sh ow s that M HV-68  
is probably m ore c lo se ly  related to  th e  prim ate herpesvirus 
(Fig. 3; M cG eoch  et al. 2000; Alba et al. 2001a). The presence  
o f  h u m an  h o m o lo g s  in  th e  d ifferent g en o m es is con sisten t

colony-stimulating factor 1, HHV-4 BARF1

CARD-tke apoptotic protein, EHV-2 E10 (353)

semaphorinhomologue. AIHV-1 A3

U-PAR antigen CD59, HSV-2 ORF15 (352)

viral interleukin 17, HVS-2 ORF13

viral FUCE-lnhibitoryprofain, HHV6 K13 (256), EHV2 EB

MHC I downregNation HHV-6 K3K5 (150). HVS-2 ORF12

viral interleukin 6. HHV-6 K2 (273)

signal transduction protein, RRVR1 (316)

viral interferon regulatory protein, HHV-6 vlRFl (89), RRV R9 (243), HHV-6 VIRF3

vMIPS, HHV-8 K6 (225). HHV6 K4.1

viral cydin, HHV-8 ORF72 (102)

complement binding protein. HHV-8 ORF8 (10)

vBcl-2. HHV-6 ORF 16 (161), HHV4 BHRF1 (259)

■ ■

Dynamics of Host 
G ene A cquisition 
in the G am m aherpesviruses
H um an h o m o lo g s  that are present 
in  all or a large prop ortion  o f  th e  
herpesvirus gen om es, su ch  as DNA  
p o ly m e ra se  or uracil-D N A  g ly c o 
sylase, are likely to  have b een  ac
quired from  a d istant h o st by  an  a n 
cestral herpesvirus. O ther g en es ap
pear to  h a v e  b een  acquired m ore

Figure 3 Gammaherpesvirus-specific proteins involved in host-virus interactions that have human 
homologs. Boxes indicate the presence of a particular gene(s) in a virus genome. Numbers in boxes 
represent copies within a genom e. Labels show the virus protein function, the name of a member of 
the HPF (homologous protein family) or singleton, and, for HPFs, the corresponding number in brack
ets. All the annotations”and HPF numbers are taken from VIDA. Note that in some cases more than one 
HPF/singleton, shown as separate rows in Table 1, is shown together. This corresponds to highly 
divergent families. The HPF/singletons that are not present in Table 1 are represented as unfilled boxes. 
These are herpesvirus proteins for which we did not identify human homologs in the database searches 
but that, nevertheless, can be grouped together, by function and residue conservation, with other 
herpesvirus HPF/singletons for which we could detect human homologs. A consensus phylogenetic 
tree of the gammaherpesvirus is shown at the bottom. This was generated as described for all HPFs 
from complete herpesvirus genom es (Alba et al. 2001 a).
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within the different gammaherpesvirus groups defined by 
gene-content phylogenetics (Fig. 3); however, some of the ho
mologs show a complex distribution. For example, ORF12, a 
homodog of the K3/K5 HHV-8 genes, is also present in MHV- 
68 and HVS-2 but not in the HHV-8 closely related primate 
herpesviruses ateline herpesvirus 3 (AtHV-3) and Macaca mu
latto rhadinovirus (RRV). Therefore, the gene may have been 
lost on several occasions. Another explanation would be in
dependent acquisition from the host genome in HHV-8, 
MHV-68, and HVS-2, although the fact that the gene is in 
equivalent positions in these genomes would favor the 
former. In other homolog cases, a single event of gene acquit 
sition is easier to delineate; for example, the interferon regu
latory factor and the macrophage inflammatory protein fami
lies are only found in RRV and HHV-8; they are at the same 
loci in  both genomes and hence were presumably captured 
before host speciation by an ancestor of these two viruses.

DISCUSSION
The publication of the human genome has provided the op
portunity to analyze host-parasite interactions in a new light. 
Herpesviruses capture genes from their host and use them to 
their own advantage. In the present study, we have analyzed 
virus-host protein homology using consistent cross-compara
tive methods for herpesviruses proteins and gene products of 
the human genome. The study has allowed us to derive a 
global picture of cellular functions for which herpesviruses 
have captured and evolved their own counterparts.

Sequence similarity alone revealed a minimum estimate 
of human homologs in different HHV genomes to be -9% to 
16% of virus genes, with the exception of HHV-8, which is 
-30% of viral genes. The reason for a higher percentage of 
homologs in this virus, and in gammaherpesviruses in gen
eral, is unclear but may relate to properties of the cell types 
infected by this subfamily of herpesviruses. Most of the her
pesvirus/human homologs identified correspond to proteins 
involved in immune modulation and apoptotic control. 
These proteins are normally specific to one or a few viruses, 
and they often show a complex distribution across the her
pesvirus phylogeny tree (Fig. 3). They are, therefore, likely to 
contribute to the adaptation of the virus to different hosts or 
different cellular tropisms. This is in contrast to a more stable 
group of homologs, composed of proteins involved in DNA 
replication and nucleotide metabolism, components of the 
well-conserved virus (and host) DNA genome replication ma
chinery.

In our analysis, we have used PSSMs representing herpes
virus protein motifs to increase sensitivity over pair-wise se
quence comparison-based searches. The method has allowed 
us to identify a number of new herpesvirus/human homologs. 
The new putative functions require experimental testing but 
are of interest. The HCMV US12 protein family, composed of 
10 members, has homology with lifeguard and related human 
proteins (CGI-119). Lifeguard is known to inhibit the apop
tosis signal mediated by the Fas receptor, and therefore, the 
related HCMV proteins may also have an antiapoptotic role. 
Viral proteins that interfere with Fas-mediated apoptosis have 
already been described in gammaherpesviruses (Belanger et al. 
2001) but not in betaherpesviruses. This is surprising as 
HCMV also replicates in cells of the haematopoietic system, 
namely, monocytes/macrophages. From our analysis, HCMV 
potentially encodes a repertoire of anti-Fas apoptosis ho
mologs distinct form the gammaherpesvirus FLIP homologs.

Interestingly, in the cowpox virus, a member of the Poxviri- 
dae family, a gene termed SRI, of unknown function but simi
lar to the CGI-119 protein, was also identified (Shchelkunov 
et al. 1998).

Homology was found between the HCMV UL1 gene 
product and the CEA/PSG human protein family. Known 
functions for the CEA family include involvement in cell ad
hesion, signal transduction, and possibly innate immunity 
(Hammarstrom 1999). The PSGs, a subgroup of the CEA fam
ily, are mainly expressed in the placenta and are secreted into 
the maternal circulation, possibly regulating immune system 
responses. HCMV infection, which is usually benign in im
munocompetent individuals, can have catastrophic conse
quences during pregnancy (Fisher et al. 2000). Infection of the 
placenta has a 30% to 40% risk of intrauterine virus transmis
sion to the foetus. Similarity of UL1 to PSGs could subse
quently be related to the pathology of HCMV during preg
nancy or to general immune modulation in the host.

In the present study, we have also detected human gene 
products that contain the virus BKS ring finger domain, char
acteristic of K3 and K5 HHV-8 proteins, indicating a possible 
common origin and shared function for proteins containing 
this domain. The BKS domain has not previously been re
ported in mammals. K3 and K5 from HHV-8 have been re
cently discovered to down-regulate MHC class 1 molecules in 
infected cells (Coscoy and Ganem 2000; Coscoy et al. 2001); 
therefore, the BKS domain may be common to virus and host 
proteins involved in regulating cellular membrane proteins.

We have detected sequence homology with human pro
teins for -13% of all known herpesvirus proteins. The ques
tion remains whether the remaining 87% can be considered 
exclusively viral. It is likely that a fraction may still be func
tional homologs with global sequence similarity too limited 
to be detectable by the methods used here. In addition, our 
methods will not detect very small sequence motifs such as 
phosphorylation and protein binding sites. Therefore, viral 
proteins such as HHV8 K15, which contains a tumour necro
sis factor receptor-associated factor binding domain (Glenn et 
al. 1999), or EBV LMP-2A, which contains immunoreceptor 
tyrosine-based activation motif sequences (Fruehling and 
Longnecker 1997), are not detected here.

A further confounding factor for detection of viral ho
mologs is the rapid evolution of some viral sequences. It has 
been estimated that herpesvirus proteins typically evolve one 
or two orders of magnitude more rapidly than host proteins 
(McGeoch and Cook 1994), and this may quickly mask any 
common sequence identifiable ancestry of two proteins. For 
example, one known human/herpesvirus homolog, thymi
dine kinase, is present in all known herpesviruses. Because of 
very limited sequence similarity, however, it could not be 
identified using our methods; although a human thymidine 
kinase mitochondrial homolog of the channel catfish herpes
virus thymidine kinase protein was detected. Human ho- 
mologs of the MHV-68 serpin (serine protease inhibitor) Ml 
were similarly not identified using* sequence similarity 
searches.

For proteins with viral structural functions, such as cap
sid constituents and capsid assembly proteins, which make a 
large proportion of herpesvirus genome coding capacity (20% 
of the genes of HHV-1), no resemblance to any human pro
tein could be found. This is perhaps not surprising, as these 
have "viral-only" functions. Recently, however, another 
method of formulating functional hypotheses of viral pro
teins, in silico protein structure prediction using threading
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techniques, has been applied to herpesvirus proteins. This was 
performed for all proteins of HCMV, yielding complete struc
tural identifications for 36 viral proteins, only eight of which 
were previously known. These included some HCMV struc
tural proteins (Novotny et al. 2001).

The relative number of homologs between herpesviruses 
and the human genome may also increase as the prediction 
methods and number of human gene products from the hu
man genome becomes more accurate. This is highlighted by 
failure to detect the sequence-based homology between hu
man and herpesvirus a-JV-formylglycineamide ribonucleotide 
aminotransferase (FGARAT), or between human dUTPase and 
the dUTPase protein family found in all alpha- and gamma
herpesviruses (HPF 43). Neither of the human predicted pro
tein data sets contains FGARAT, even though a human FGA
RAT gene was recently reported (Patterson et al. 1999), and 
until recently neither contained the human homolog dUTP 
pyrophosphatase (GenBank accession no. 18583771), which 
shares homology with its human herpesvirus counterparts. 
Additional homologs for non-HHV may be identified when 
their host genome sequence becomes available. The reverse of 
this argument applies equally to herpesvirus proteins. Many 
of the ORFs in the herpesvirus genomes are only conceptual 
translations from the virus genome sequence and are, there
fore, predicted hypothetical proteins. Most of the hypotheti
cal proteins are singletons, of which only 4% showed homol
ogy with human proteins, in contrast to 10% of the herpes
virus protein families. The analysis of the expression of all 
ORFs using methods such as DNA array-based profiling 
(Chambers et al. 1999; Stingley et al. 2000; Jenner et al. 2001) 
will establish if these potential products are expressed during 
the virus cycle. Overall, the continued, virus-focused search
ing of constantly growing protein databases using cross
comparable methods is likely to increase our understanding 
of the relationship between virus and host.

M ETHODS 

Initial Data Sets
All complete herpesvirus ORFs are available in the viral data
base VIDA (Alba et al. 2001b). In VIDA, the ORFs are orga
nized into HPFs according to amino acid sequence motifs 
shared between the proteins, as determined by the XDOM 
algorithm (Gouzy et al. 1997). In some instances, HPFs con
tain several proteins from the same vims species. This is ow
ing to the existence of proteins from different strains or to the 
presence of more than one copy of the gene in the vims ge
nome. Each HPF is annotated with a functional description 
and functional class, and can contain proteins from any or all 
of the three herpesvirus subfamilies. The functional descrip
tions in VIDA include a representative gene name (e.g., "pro
tein kinase, HHV-1 UL13" is a protein kinase family that in
cludes gene UL13 product from HHV-1), and they are used 
throughout this paper to designate HPFs. When no homology 
with other herpesvirus proteins can be found, ORFs are rep
resented as singleton proteins in VIDA. A total of 393 homolo
gous multiprotein families (HPFs) and 494 singleton proteins 
were used in the analysis. This comprises all herpesvirus ORFs 
from VIDA (4054 nonredundant proteins), including all eight 
HHVs. VIDA can be accessed at http://www.biochem.ud.ac. 
uk/bsm/virus_database/VIDA.html.

The conceptual protein translations of two human ge
nome databases were searched in this study: The collection of 
human genome gene products at the National Centre for Bio
technology Information (NCBI, http://www.ncbi.nlm.nih- 
•gov/genome/guide/human/) and the Ensembl Project at the

European Bioinformatics Institute (http://www.ensembl.org/). 
Both databases were downloaded by anonymous FTP and 
stored locally. The two databases were concatenated into a 
single library, and low-complexity protein segments were 
masked using the SEG program with default parameters 
(Wootton and Federehen 1993).

Construction of Motif PSSMs
Herpesvirus HPFs containing two or more proteins are defined 
by one or more amino acid motifs conserved across all mem
bers of the family. The large majority of HPFs are identified by 
a single motif (371 out of 393). However, there are 11 HPFs 
that contain two conserved motifs, eight HPFs that contain 
three conserved motifs, and three HPFs that share four motifs. 
The motifs, in the form of multiple alignments, were used to 
construct PSSMs using the program PSI-BLAST (Altschul et al. 
1997). Taking into account that some families contain more 
than one motif, the total number of PSSMs we constructed 
was 429.

Construction of a Herpesvirus Protein Data Set 
at the 95% Identity Level
A data set of all individual herpesvirus proteins with <95% 
sequence identity was constructed. The representative pro
teins were selected by computing the global amino add iden
tity of each protein in each of the HPFs and grouping the 
proteins into subsets that shared >95% sequence identity us
ing the programs HOMOL and SEQCLUSTER, respectively 
(Orengo et al. 1997). An ORF was then selected at random 
from each 95% subset (an N95-rep) and used to perform pair
wise sequence similarity searches of the human protdn data
bases. For example, nine proteins from HPF 13 (protein ki
nase, HHV-1 UL13) were selected to represent the 33 proteins 
it comprised.

Database Searches and Sequence Analysis
The IMPALA program (Schaffer et al. 1999) was used to run 
searches against the 429 PSSMs derived from the motifs in 
VIDA. An E-value cutoff of 0.01 and default parameters were 
used. The collection of singleton protein sequences was 
searched with both BLASTP (Altschul et al. 1990) and PSI- 
BLAST (Altschul et al. 1997), with default parameters and an 
E-value cutoff of 0.01. PSI-BLAST uses iterative profile con
struction and is more computationally expensive but gener
ally more sensitive. As PSI-BLAST did not reveal any addi
tional singleton homologs, N95-reps were then searched 
against the human protein library using BLASTP with the 
same parameters as above.

All database hits were examined and curated manually 
based on sequence alignments, conserved domain regions, 
functional annotation, and reference to the literature. The 
manual inspection of putative homologs led to the removal of 
some of the initial hits, which appeared to be caused by com
positional bias rather than true homology. When appropriate, 
additional proteins from different organisms were retrieved 
from GenBank for sequence alignment construction. The 
alignments were produced by the program MULTALIN (Cor- 
pet 1988) and, when necessary, manually edited using JAL- 
VIEW (http://www2.ebi.ac.uk/~michele/jalview/contents. 
html/) and further visualized using BOXSHADE (http:// 
bioweb.pasteur.fr/seqanal/interfaces/boxshade.html/). Analy
sis of homologous families also included searching the do
main database at the NCBI, which is linked to the Pfam (Bate
man et al. 2000) and SMART (Schultz et al. 2000) domain 
databases, using reverse position-specific BLAST (RPS-BLAST; 
Altschul et al. 1997).
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Phylogenetic Tree Construction
Herpesvirus phylogenetic trees based on the gene content of 
19 complete herpesvirus genomes were previously con
structed (Alba et al. 2001a). For this type of reconstruction, 
phylogenetic profiles were obtained by considering the pro
tein families as molecular function characters for which dif
ferent viruses were positive (1) or negative (0). Maximum par
simony and distance methods (neighbor-joining) were ap
plied to  the phylogenetic profiles to construct phylogenetic 
trees. The tree shown in Figure 3 represents a consensus tree 
from such methods (Alba et al. 2001a).
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