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ABSTRACT

Introduction

During the past decade, proof of the principle that somatostatin receptors can be 

successfully used for in vivo targeting of neuroendocrine tumours (NETs) has been 

provided. These tumours are imaged with u lIndium-pentetreotide and treated with 

90Yttrium labelled somatostatin analogues. The aim of this study was to assess (a) the 

biodistribution and residency of 90Y labelled agents using the brehmsstrahlung 

imaging technique (b) the tumour response to various treatment modalities using a 

simplified scintigraphic method [Functional SPECT tumour volume (STV)].

Material and methods

1) 19 patients with NETs were imaged with n lIn-pentetreotide and 14 of them 

underwent treatment with 90Y-lanreotide. The rest underwent treatment with90Y-SMT. 

All the patients were imaged 24 hours post-therapy. Brehmsstrahlung images obtained 

post therapies were used to assess the 90Y-lanreotide biodistribution in 14 patients and 

the 5 patients treated with 90Y-SMT, comparing them withu lIn-pentetreotide.

2) In 42 patients with NETs a retrospective analysis was performed of the m In- 

pentetreotide imaging and CT scan in patients treated with different therapies. A 

simplified scintigraphic method using H1In-pentetreotide SPECT liver imaging was 

used to monitor changes in tumour response and to determine how this correlates with 

CT scan and clinical response.

Results

1) 90Y-lanreotide and 90Y-SMT (with amino acids) have much lower uptake in the 

kidney (pO.OOO and <0.041 respectively) than in In-pentetreotide.
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2) 22/42 patients had a good clinical response. A mean fall in total functional STV of 

37% was seen in patients with symptomatic relief and a mean increase of 72 % was 

seen in patients with no symptomatic relief. STV predicted the clinical outcome in 34 

patients (81%) and CT predicted the outcome in 21 (50%) patients.

Conclusion

There was a difference in biodistribution between in In-pentetreotide and 90Y- 

lanreotide/ 90Y-SMT, especially in the kidneys, which may explain why there is 

minimal renal toxicity reported with 90 Y-lanreotide/ 90Y-SMT therapies.

Finally, the assessment of functional STV is more useful in monitoring the tumour 

response after treatment than CT. The changes in functional volumes after therapy 

correlate well with clinical response.
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CLAIMS TO ORIGINALITY

The work in this thesis describes the first use of (a) 90Yttrium imaging 

(brehmsstrahlung) to assess the biodistribution of somatostatin analogues and (b) a 

new technique to assess the tumour response in patients with neuroendocrine tumours. 

This work was planned and executed by myself and advised by Dr. J. R. Buscombe 

and Dr. A. J. W. Hilson, Dept of Nuclear Medicine, Royal Free Hospital, London.

A more detailed description of the work is given below.

Chapter 2. 3 and 4 gives a clinical review of current concepts in diagnosis and 

treatment of neuroendocrine tumours with conventional and nuclear medicine 

techniques.

Chapter 5 describes brehmsstrahlung imaging experiments conducted. This work was 

carried out with the supervision of Dr. John C Dickson, Physicist and Ms Laura 

Gandon, Trainee Physicist at the Department of Nuclear Medicine, Royal Free 

Hospital, London.

Chapter 6 describes for the first time, the use of m In-pentetreotide and 90Yttrium 

labelled somatostatin analogues (brehmsstrahlung) imaging to

(a) Assess the biodistribution of somatostatin analogues (pentetreotide and 

lanreotide). This work formed part of my MSc in Nuclear Medicine (University of 

London, 2001).

(b) Use of H1In-pentetreotide and 90Yttrium labelled somatostatin analogues 

(brehmsstrahlung) imaging to assess the biodistribution of ln In-pentetreotide and 90Y- 

SMT.

(c) 90Yttrium labelled somatostatin analogues (brehmsstrahlung) imaging to assess the 

biodistribution of SMT at 4 and 24 hours.
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(d) Assess the role of Brehmsstrahlung imaging in the prediction of bone marrow 

toxicity in patients with neuroendocrine tumours after targeted therapy with 90Y- 

lanreotide. All the above mentioned work was designed and worked by myself. 

Chapter 7 describes for the first time a method - Functional SPECT tumour volume 

(STV) to assess tumour response using m In-pentetreotide SPECT imaging in patients 

treated for neuroendocrine tumours. This work was designed and executed by myself.
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Chapter 1

Introduction

The practice of oncology is undergoing significant advances. There has been 

significant growth in our understanding of cancer at the molecular level. Better 

diagnostic modalities and newer therapeutic agents have improved the management of 

cancer patients. Nuclear medicine imaging has been exciting and rewarding in the 

diagnosis, staging, assessment of treatment response and finally in the detection of 

relapse or residual disease. Nuclear medicine therapy uses unsealed radioactive 

sources for the selective delivery of radiation to tumours or target organs (Chatal et al, 

1999). The determining factor in the choice of any therapy is the balance of prolonged 

survival and symptom relief versus adverse side effects.

The increasing importance of radionuclide therapy with new radiopharmaceuticals 

labelled with beta- and alpha-emitters, targeted to specific cells, has created the need 

for a thorough dosimetric analysis (Thierens et al, 2001). Presently radioactive dose- 

response data available for targeted radionuclide therapy is limited. The assessment of 

biodistribution of the radiopharmaceutical is important because absorbed radiation 

dose is measured in tumour that are large enough to accumulate and retain a 

quantifiable amount of the radioactivity administered. But in reality a patient will 

have cancer at different sites ranging from few cells to a large tumour. Many 

researchers have shown that as the tumour size decreases the dose delivered to the 

tumour also decreases, because the electrons carry their energy outside the tumour 

limits.

Carcinoid tumours develop in the Kulchitsky enterochromaffin cells in the crypts of 

Lieberkuhn and are characterized by the presence of neurosecretory granules. About
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85% of carcinoid tumours are found in the gastrointestinal tract, 10% in the lung 

mostly as bronchial carcinoids, and the rest in various organs such as the larynx, 

thymus, kidney, ovary, prostate, and skin (Wallace et al, 1996). Carcinoid tumours 

express somatostatin receptors (87%) (Reubi et al, 1993), which are also found in 

other tumours (endocrine pancreatic tumours, paragangliomas, meningiomas, pituitary 

tumours, neuroblastomas, and medullary carcinomas including their metastases) 

(Lamberts et al, 1990; Reubi et al, 1990). Because somatostatin analogs bind to these 

receptors on many endocrine tumours, it was a logical step to try to detect these 

tumours by scintigraphy using radiolabeled somatostatin analogs. It has been shown 

that somatostatin receptor positive tumours can detected by this method (Krenning et 

al, 1989), and various radiolabelled somatostatin analogues are used in the diagnosis 

and treatment of neuroendocrine tumours.

In the last few years newer exciting radiolabelled compounds have been used in the 

treatment of various cancers including neuroendocrine tumours. Presently many more 

radiopharmaceuticals are in various phases of clinical trials. But the knowledge and 

understanding of the biodistribution of the radiopharmaceutical in different organs in 

the body is vital for evaluation of risk and benefits of any therapeutic method. This 

can serve as a basis to predict therapy effectiveness, optimise drug selection, and 

select the appropriate drug dose, in order to provide the safest, most effective 

treatment for each patient.

Once treatment begins, we also need a simple, realistic and valuable method to 

monitor the treatment response. Tradionally, tumour markers and conventional 

radiological imaging have been used for this purpose, but currently there is no single 

method, which is accurate and reliable to assess the treatment response. With the 

advent of PET and PET-CT the assessment of biological tumour response is quite
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close to reality. But how many departments will be lucky enough to have the "state of 

the art" imaging modality is a serious question.

Finally, the combination of new imaging methods, hopefully, will provide expected 

levels of resolution and quantitative accuracy, which will increase the impact of the 

treatment planning scenario in radionuclide therapy. The main aim of this study is (a) 

to determine a method of demonstrating the biodistribution of beta-emitting targeted 

radionuclide therapy and to establish their use in diagnosis, treatment and follow up of 

patients with neuroendocrine tumours, and (b) to develop a method to assess the 

tumour volume (treatment response) after various treatments.
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Chapter 2

Neuroendocrine system and tumours

2.1 History: Neuroendocrine tumour concept

Friedich Feyter (1938), using classical histological staining methods, reported the 

presence of variety of a population of rather pale cells (Helle Zellen) distributed 

widely throughout the body, particularly in the intestine (Langley, 1994) (Table 2.1). 

With the increasing application of histochemistry and electron microscopy in the late 

1950s and 1960s, Everson Pearse was led to conclude that a number of cells, with the 

common function of producing polypeptide hormones, shared a variety of ultra 

structural and cytochemical characteristics. He formulated the “neuroendocrine 

concept” by grouping these cells together under the acronym APUD, Amine- 

Precursor Uptake Decarboxylase (Langley, 1994). He went a step further and 

considered that these cells constituted a novel third branch of the nervous system, 

which complement the autonomic and somatic nervous system. He also showed that 

these cells could act together with the autonomic nervous system to control the 

function of internal organs. When the peptidergic nerves were included in the novel 

concept of the diffuse neuroendocrine system by Polak in 1979 (Langley, 1994), 

Pearse extrapolated this idea by suggesting that all cells constituting this system 

shared a common embryonic origin, namely the neural crest. However, in spite of this 

phenomenal and remarkable vision, the neuroendocrine concept did not get wide and 

unanimous approval, as it had to face a rival idea, the paraneuron concept by Fujita in 

1977 (Langley, 1994).
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Progress in electron microscopic techniques permitted a number of ultra-structural 

features common to these cells to be defined (Table 2.2).

The number of cell types in the APUD series was only 14 in 1968, but the number has 

now risen to 40 (Pearse, 1980). A neural origin has been confirmed in only seven 

members of these 40 (Langley, 1994).

Year History

1869 Neuroendocrine cells first described in pancreas by Paul 
Langerhans

1870 Neuroendocrine cells were described in the gut mucosa of 
several species by Heidenhain

1897 Neuroendocrine cells were described again by Kultschitsky
1902 Secretin, the first gastrointestinal hormone described by Bayliss 

and Starling
1907 The term Carcinoid introduced by Obemdorfer
1914 Silver staining granules in chromaffin cells by Gosset and 

Masson
Origin of carcinoids from argentaffin cells was proposed by 
Masson

1930 31 yr old patient with a phenomenal flush of the face was 
presented by Cassidy

1938 Number of gut cells were brought together under the system- 
"Helle Zellen" by Friedrich Feyrter

1952 5-hydroxytryptamine was identified in the extracts of the 
mucosa of the gastrointestinal tract by Erspamer and Asero

1952 to 1954 Association of clinical symptoms with carcinoid tumours was 
recognised

1953 Occurrence of 5-hydroxytryptamine in a carcinoid of appendix 
was described by Lembeck

1969 APUD concept by Pearse
1973 Discovery of somatostatin
1977 Paraneuron concept by Fujita,
1980 WHO classification of endocrine tumours applied the term 

carcinoid to all tumours of the diffuse neuroendocrine system

Table 2.1 Important years in the history of neuroendocine concept (Kloppel et al, 
1994)
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The apparent differences in the concept of APUD cell series, in particular the absence 

of certain cell types, led Fujita to present a rival concept called the paraneuron 

concept, less than ten years after the publication of Pearse’s novel idea (Table 2.3). 

Fujita considered that specific cytochemical properties such as the APUD criteria, that 

is, the presence or absence of specific enzymes involved in amine metabolism, were 

not crucial and proposed a list of broader but more functional properties to define 

these cells (Langley, 1994). Because of their more general nature, these were accepted 

at the time. The major weakness, however was that there was no clear-cut distinction 

between paraneurons and the genuine neurons. Because of its lack of precision in 

distinguishing between neurons and paraneurons, this concept has not been widely 

accepted.

• High levels of smooth endoplasmic reticulum in the form of vesicles.

• Low levels of rough endoplasmic reticulum

• Electron dense, fixation-labile mitochondria

• High content of free ribosome’s

• Prominent microtubules, centrosomes

• Tendency to produce fine protein micro fibrils

• Membrane-bound secretion vesicles________________________________

Table 2.2 APUD Cells -  Ultra structural Features as described by Pearse (Langley, 
1994)
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A Para-neuron is

• A cell that is able to produce-substances identical with, or 
related to, neurotransmitters or suspected neurotransmitters

• A cell that is able to produce protein/polypeptide substances 
that may possess hormonal actions

• A cell that possesses synaptic vesicle-like and/or neurosecretion 
like granules.

• A cell that is recepto-secretory in function. It releases secretions 
in response to adequate stimuli acting upon its receptor site on 
the cell membrane

• A cell whose origin is common with neurons, that is, 
neuroectoderm.

Table 2.3 Fujita’s Para-neuron criteria (Langley, 1994)

2.2 Neuroendocrine tumours (carcinoid tumours)

There has been some confusion in the terminology of these tumours. Some authors 

restrict the term carcinoid to intestinal endocrine tumours, where as others include a 

variety of neuroendocrine tumours. According to the WHO classification of 1980, 

carcinoids were defined as tumours of the diffuse neuroendocrine system that are 

either benign or else neoplasm’s with a more favoured prognosis than carcinomas. In 

the revised classification (Capella et al, 1994) of “neuroendocrine tumours of lung, 

pancreas and gut” the term carcinoid was replaced by the term “neuroendocrine 

tumour” to designate the totality of neoplasm with neuroendocrine features (Capella 

et al, 1994; Creutzfeldt, 1996). In this chapter term neuroendocrine tumours and 

carcinoid tumours are used synonymously.
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Neuroendocrine tumours are a rare type of cancer that can arise in different parts of 

the body. These are malignant tumours derived from neoplastic proliferation of cells 

of the diffuse neuroendocrine system (Gilligan et al, 1995). The exact incidence of 

carcinoid tumours is unknown since it differs considerably in different populations 

and with different study types. Overall, the estimated incidence is 1.5 per 100,000 of 

the population (Newton et al, 1994). They are well known for producing various 

hormonal syndromes and for their indolent clinical course in most patients; although 

some of these tumours do not produce hormones of clinical significance. These slow- 

growing tumours produce non-specific symptoms making diagnosis a challenge.

Carcinoid tumours are the most common neuroendocrine tumours in the 

gastrointestinal tract and between 10% and 30% of these tumours are gastric in origin 

(Sjoblom et al, 1988). Carcinoids may be classified according to their embryological 

origins as foregut, midgut, or hindgut (Solicia et al, 1981). Typically, carcinoids arise 

from Kulchitsky or enterochromaffin cells. They often present as diagnostic dilemmas 

due to obscure or non-specific symptomatology. The ability of carcinoid tumours to 

cause clinical symptoms by secretion of hormones or biogenic amines is best 

recognised in the form of the carcinoid syndrome. Although generally slow-growing, 

a significant proportion demonstrates aggressive tumour growth and may be difficult 

to manage (McStay et al, 2002). In spite of many diagnostic and therapeutic options 

available, careful selection and multidisciplinary approach of patients is perhaps the 

most important factor in prolonging survival (Caplin et al, 1998 i, 2).
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2.3 Epidemiology

Neuroendocrine tumours constitute approximately 2% of all malignant tumours of the 

gastrointestinal system (Moertel, 1987). These tumours are particularly rare in 

paediatric patients. The exact incidence of carcinoid tumours is unknown since it 

differs considerably in different populations and with different study types. Overall, 

the estimated incidence is 1.5 per 100,000 of the population (Newton et al, 1994).

2.4 Aetiology

The precise aetiology of neuroendocrine tumours is not well understood. Insight into 

the molecular biology of these tumours can be gained by studying a subset of tumours 

that occurs as part of the multiple endocrine neoplasia type I (MEN I) syndrome. In 

1954, Wermer recognized that a neoplastic disorder involving the anterior pituitary 

gland, parathyroid, and pancreatic islet cells was familial and transmitted in an 

autosomal dominant fashion (Larsson et al, 1994). Larsson and his group have 

reported linkage of the MEN I gene to the muscle phosphorylase locus on 

chromosome l lq l3  (Larsson et al, 1988). Using another gene known to be localized 

to l lq l3  (INT2), Bale et al found similar linkage of the MEN I gene with this gene 

locus (Bale et al, 1989). Radford et al investigated DNA isolated from tumours and 

somatic tissues in 12 patients with MEN I and found loss of heterozygosity markers 

mapped to chromosome band 1 lq l3  in 9 (82%) of 11 informative tumours. There was 

no allelic loss from other chromosomes. Such a high incidence of chromosomal 

deletion involving l lq l3  suggests that this region is important in the oncogenesis of 

neuroendocrine tumours.
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2.5 Tumour biology

Carcinoid tumours are derived from so-called APUD-cells (Amine Precursor Uptake 

and Decarboxylation). These specialized cells accumulate amine precursors (DOPA, 

5-hydroxytryptophan) and decarboxylate them to produce biogenic amines 

(catecholamine or serotonin). They also produce peptides stored with the amines in 

secretory granules (Wilander et al, 1989; Solcia et al, 1989). The APUD-concept is 

currently abandoned, but it continues to provide a convenient framework for 

explaining the multi-potential capacity of these cells to produce various hormones and 

amines (Oberg, 1998 2).

The exact aetiology of carcinoid tumourigenesis is unknown, although experimental 

studies indicate that the nuclear oncogenes N-myc and c-jun are involved (Sagara et 

al, 1995). The HER-2/neu proto-oncogene is reported to be over expressed in a 

proportion of carcinoid tumours (Wiedenmann et al, 1994). Putative tumour 

suppressor genes have been mapped to chromosome 9 and 16 in mice (Dietrich et al, 

1994), but p53 gene mutations, or over expression of p53 protein, has not been 

implicated in the development of carcinoid tumours in humans (Lohmann et al, 1993; 

Wang et al, 1995; O'Dowd et al, 1995). Malignancy of carcinoid tumours is only 

clearly determined by the documentation of lymph node or liver metastases. Routine 

histopathology is unable to reliably predict tumour aggressiveness. Malignancy is 

suggested by a size greater than 2 cm in most locations except the ileum where nearly 

all tumours metastasise. Moyana et al examined a series of gastrointestinal carcinoid 

tumour to evaluate the prognostic potential of histological grade plus 

immunohistochemistry for MIB-1, p53, and bcl-2 expression (Moyana et al, 2000; 

Ganim et al, 2000). MEB-1 antibody reacts with the Ki-67 nuclear protein associated 

with cell proliferation. The mutated form of the transcription factor for p53 is unable
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to stop cell replication, and bcl-2 blocks apoptosis. They also found an independent 

correlation between increased levels of MIB-1 and p53 and metastatic spread, but not 

for bcl-2 .

2.6 Neuroendocrine markers

2.6.1 Cytoplasmic Constituents

Neuron-specific enolase, a glycolytic enzyme found in the cytosol, is the best known 

marker of cells with neuroendocrine differentiation. However, this marker is non­

specific, as it stains positive on fibroadenomas of the breast, renal-cell carcinoma, and 

certain malignant lymphomas. Its positivity is therefore not considered to be 

diagnostic, and consequently, this reagent is also known as non-specific esterase 

(Kloppel et al, 1994).

2.6.2 Secretory Vesicle Membrane Constituents

Synaptophysin is an integral membrane glycoprotein that is involved in calcium 

binding and occurs in presynaptic vesicles of neurons and small vesicles of normal 

and neoplastic neuroendocrine cells (Wiedenmann et al, 1989).

2.6.3 Granule Contents:

Chromogranins A, B, and C are acidic proteins that serve as powerful universal 

markers for neuroendocrine tissues and tumours. Chromogranins are a family of 

soluble proteins located in large (dense-core) secretory granules. The most frequently 

used marker for neuroendocrine tumour is chromogranin A (Kloppel, 1990).
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2.6.4 Plasma membrane constituents

These include receptors for peptides or neurotransmitters (somatostatin, glutamate, 

and gamma-amino butyric acid), and neural cell adhesion molecules (NCAMs), the 

most important of which appear to be NCAM and L-l (Langley, 1994). Somatostatin 

receptors are present in 82% of carcinoid tumours and in 67% to 100% of islet-cell 

tumours (Reubi et al, 1994). Moreover, most metastases of primary somatostatin 

receptor-positive tumours are also positive for this peptide. Somatostatin inhibits 

peptide hormone secretion of most neuroendocrine cells by a mechanism that involves 

the suppression of secretory pathways that are dependent on cyclic adenosine 

monophosphate and the disruption of the second messenger function of intracellular 

calcium (Scherubl et al, 1993). Somatostatin receptor status correlates highly with the 

ability of long-acting somatostatin analogs, such as octreotide, to inhibit in vivo 

hormone secretion (Reubi et al, 1990). The presence of these receptors enables in 

vivo imaging of tumours using 1HIndium-labeled octreotide. Somatostatin analogs are 

thus used in both imaging and treatment of neuroendocrine tumours.

2.6.5 Growth factors and antigens

The expression of growth factors and the presence of nuclear antigens, although not 

unique to neuroendocrine tumours, are of particular interest. Ki-67 is a monoclonal 

antibody against a nuclear antigen present in proliferating cells (Gerdes et al, 1983). 

Patients who have tumours with a high index for Ki-67 were found to have a 

significantly shorter survival than those whose tumours are low in Ki-67 content 

(Chaudhry, 1992 2). Various growth factors have been studied, including platelet- 

derived growth factors, transforming growth factors-alpha and -beta (TGF-alpha and - 

beta), fibroblast growth factors, and epidermal growth factors, and the data suggest 

that platelet-derived growth factors may be involved in the autocrine stimulation of
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neuroendocrine tumour cells and stimulation of stromal cell growth through paracrine 

or autocrine mechanisms (Chaudhry, 1992 i, 2; Chaudhry, 1993). Different types of 

neuroendocrine cells share many specific properties and express several proteins in 

common, but the expression of any one-marker protein is not an absolute criterion. 

Thus, there is no “universal” marker.

2.7 Pathology

Macroscopically, the carcinoid tumours appear as solid and yellow-tan, reflecting 

their high lipid content. On histology, the tumours are glandular, trabecular, or form 

rosettes in their pattern of growth. The tumour cells are all quite similar, with a faint 

pink granular cytoplasm and round nuclei with few mitoses. These cells have been 

termed as chromaffin cells because they stain with potassium chromate. They are also 

termed argentaffin cells as they take up and reduce silver. Some tumour cells take up 

silver but are unable to reduce the silver and are termed agryrophilic (DeLellis et al, 

1984). Argyrophilic and argentaffin cells have the ability to take up and 

decarboxylase amine precursors; originally, these cells are thought to be derived from 

neural-crest cells, but this is not the case. The confusion arose as both neural-crest 

cells and neuroendocrine-tumour cells were able to synthesise closely related amine 

products and peptides. Electron microscopy is quite helpful but not diagnostic in the 

assessment of carcinoid cells, since granules may vary in their size, shape, and density 

(Black et al, 1968). The hormonal content of these granules, which can be measured 

by immunohistochemistry, confirms the diagnosis of carcinoid tumours. The ability of 

carcinoid cells to synthesise 5-hydroxytryptamine from dietary tryptophan is 

pathognomonic of this tumour (Norheim et al, 1986). The breakdown product, 5- 

hydroxyindoleacetic acid, is classically associated with carcinoid tumours, but there 

are many hormone products that may be present within cells and released into the
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circulation. These peptides include prostaglandins, substance P, kinins, somatostatin, 

corticotropin, gastrin, and neuron-specific enolase. In some instances, more than one 

hormone may be found within a single cell. Tumour cells not only make various 

peptides, but also express many types of peptide receptors on the cell membrane. The 

membrane receptors enable the tumour cells to respond to several growth factors, and, 

combined with genetic instability, probably contribute to the multifocal nature of 

carcinoid tumours (Caplin et al, 1998 1, 2). Neuroendocrine cells differ from neurons 

in that axons and specialized nerve terminals are absent in the former, and 

consequently, their mode of transmission is endocrine or paracrine rather than 

synaptic. The neuroendocrine cells normally form either small organs, distinct cell 

clusters within other tissues, or a network of cells dispersed in the lung and gut 

mucosa (Langley, 1994; Kloppel et al, 1994).

Carcinoid tumours are associated with multiple endocrine neoplasia type 1 (MEN-1) 

in about 10% of cases (Lehy et al, 1989). MEN-1 candidate genes have been mapped 

to the long arm of chromosome 11, (Larsson et al, 1988) and the MEN-1 gene was 

identified by positional cloning (Chandrasekharappa et al, 1997).

2.8 Characterisation of somatostatin and receptor subtypes

Somatostatin (SS) is a cyclic 14-amino acid peptide, which is widely distributed in the 

body (brain, pituitary, endocrine and exocrine pancreas, gut, kidney and lymphoid 

tissue) (Table 2.4) and has multiple sites of action (Reubi et al, 1994). Somatostatin is 

thought to regulate endocrine and exocrine secretion. Somatostatin also possesses 

antiproliferative properties and acts as a neurotransmitter or a neuromodulator in the 

central nervous system (Bruns et al, 1996). These effects are mediated by G protein- 

coupled receptors, of which at least five types have been cloned (sstri-5) (Table 2.5).
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All receptors identified so far bind somatostatin-14 and somatostatin-28 with high 

affinity (Bruns et al, 1996).

All five receptors mediate inhibition of adenyl cyclase. The sstr2 receptor is 

apparently the predominant subtype expressed in somatostatin receptor-positive 

tumours (Bruns et al, 1996). The SS-receptors (SSR) are also found in non- 

neuroendocrine primary tumours and metastases, such as colon carcinomas and 

lymphomas. They are also found in non-tumoural pathologies such as inflammatory 

bowel disease (Reubi et al, 1994). These SS-receptors sub-serve two functions, first to 

recognise the ligand and bind to it with high affinity and specificity, and second to 

generate a transmembrane signal that evokes a biological response. Large numbers of 

SSR are found on most tumours with amine precursor uptake and decarboxylation 

characteristics and neuroendocrine properties, such as carcinoids, paragangliomas, 

phaeochromocytomas, medullary thyroid cancers and endocrine pancreatic tumours. 

In addition, large numbers of binding sites with high affinity for SS are also found on 

breast and brain tumours, as well as on various cells of the immune system (Reubi et 

al, 1988 and 1990; Lamberts et al, 1991; Papotti et al, 1989; Hofland et al, 1999). 

Octreotide binds with high affinity to somatostatin receptor subtype 2 (sst2) and 5 

(ssts), to a lesser degree sst3, while no binding to ssti and sst4 occurs. Other SS 

analogues that are in clinical use, such as lanreotide and vapreotide, as well as the 

hexapeptide MK678, bind to three of the five SS-R subtypes, also displaying high 

affinity for sst2 and ssts and moderate affinity for sst3 (Patel et al, 1997).
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Anterior pituitary gland 

Adenomas (GH, TSH)

Adrenal medulla

Pheochromocytoma,
neuroblastoma,
ganglioneuromas

Activated leukocytes

Autoimmune disease, 
granulomas, lymphomas

Skin

Merkel cell carcinomas and 
melanomas

Glial cells

Well differentiated 
glia-derived tumours

GI endocrine cells

Carcinoid and Differenciated 
neuroendocrine carcinomas

Pancreatic islet cells 

Islet cell tumours

Leptomeninx

Meningiomas

Thyroid cells

Papillary, follicular, medullary 
carcinomas

Bronchopulmonary nodules

Small cell lung cancer, 
neuroendocrine and 
intermediate cell 
carcinomas

Paraganglia

Paragangliomas

Miscellaneous sites

Neuroendocrine tumours of 
ovary, cervix, endometrium, 
breast, kidney, paranasal 
sinuses and salivary glands

Table 2.4 Expression of somatostatin receptors on various neuroendocrine tumour 
cells (Lamberts et al, 1991)

Somatostatin receptor 
subtypes ( sst)

Effects

sst subtype I Mediate anti-proliferative effects
sst subtype 2 Mediates both anti-secretory and anti­

proliferative action
sst subtype 3 Mediate anti-proliferative and pro-apoptotic 

effects
sst subtype 4 Not well understood
sst subtype 5 Mediate inhibition of GH and cell 

proliferation.

Table 2.5 The effects associated with somatostatin receptor subtypes (Patel et al, 
1999; Froidevaux et al, 2002; Lewis et al, 2003)
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2.9 Classification

Williams and Sandler in the early 1960s proposed a classification system based on the 

anatomical site of origin of the carcinoid tumour (Williams et al 1963; Klo'ppel et al, 

1996).

The tumours were classified into

1. Foregut: respiratory tract, thymus, pancreas, stomach, duodenum, upper jejunum.

2. Midgut: lower jejunum, ileum, appendix, caecum and right colon.

3. Hindgut: transverse and descending colon, sigmoid, rectum, ovaries and uterus.

The foregut carcinoids are generally argentaffin-negative but argyrophilic, contain 

low levels of serotonin (5-HT) and small cytoplasmic granules; occasionally they 

secrete 5-hydroxytryptophan (5-HTP) or adrenocorticotropic hormone (ACTH) and 

other hormones, and have the potential to metastasise to bone. Foregut carcinoids may 

also occur in the MEN-1 syndrome (Zeiger et al, 1992).

Midgut carcinoids are argentaffin-positive, have a high 5-HT content and larger 

cytoplasmic granules. They rarely secrete 5-HTP or ACTH, but do release 5-HT and 

tachykinins and cause metastases of liver and classic carcinoid syndrome. They rarely 

metastasise to bone (Williams et al, 1963).

Hindgut carcinoid tumours are argentaffin-negative, but often argyrophilic; they 

rarely contain 5-HT and possess round variable density cytoplasmic granules. They 

rarely ever secrete 5-HTP or ACTH, but can contain numerous gastrointestinal 

hormones, although they rarely cause the classic carcinoid syndrome. They rarely 

metastasise to bone.
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2.9.1 Carcinoid tumours of the bronchus

These tumours are very similar to intestinal carcinoids, and are not related to 

smoking. Symptoms may be from mechanical obstruction. They may be a direct 

source of ectopic-hormone secretion, including corticotrophin, and such patients may 

present with Cushing's syndrome. Carcinoid tumours of the bronchus may also secrete 

antidiuretic hormone and, infrequently, growth-hormone releasing hormone. Surgical 

resection is the treatment of choice for bronchial carcinoids whenever possible 

(Dusmet et al, 1996).

2.9.2 Carcinoid tumours of the stomach

These are predominantly associated with the enterochromaffin-like cells of the 

stomach (Gilligan et al, 1995). Three types of gastric carcinoid are recognised. Type I 

is associated with chronic atrophic gastritis, type A (Gastric atrophy including atrophy 

secondary to pernicious anaemia) which results in hypergastrinaemia. Type-II 

tumours usually develop in patients with MEN-1 and Zollinger-Ellison syndrome 

(Lehy et al, 1989) and although relatively benign, have a slightly greater potential to 

metastasise than type-I tumours. Type-III tumours are sporadic and the most 

aggressive (Rindi et al, 1993), with greater metastatic potential. In patients with 

carcinoid tumours larger in diameter than 2 cm associated with gastrin production, 

antrectomy and local resection is the best option. For those with sporadic gastric 

tumours, local resection is undertaken.

2.9.3 Carcinoid tumours of the ileum and small intestine

Most small-bowel carcinoids occur in the terminal ileum. Tumours larger in diameter 

than 2 cm are more likely to cause symptoms and are also more likely to metastasise
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especially if invasive. The treatment for non-metastatic and metastatic small-bowel 

carcinoids is resection with adjuvant therapy for the latter group (Caplin et al, 1998 i).

2.9.4 Carcinoid tumours of the colon

Most colonic carcinoids are found in the right colon (Rothmund et al, 1994) and these 

patients present with abdominal pain and weight loss, though some present late with 

liver metastases. Tumours are detected by colonoscopy and those smaller in diameter 

than 2 cm on a pedicle may be removed by polypectomy; otherwise, local resection is 

required (Caplin et al, 1998 i).

2.9.5 Carcinoid tumours of the rectum

These tumours are usually small, do not produce symptoms, and are often found 

incidentally by endoscopy. Unless the tumours are deeply invasive, they rarely 

metastasise (Rothmund et al, 1994) and local excision is the treatment of choice 

(Caplin et al, 1998 i).

2.9.6 Carcinoid tumours of the appendix

These tumours are usually found incidentally and are slow-growing, benign tumours. 

Most carcinoid tumours occur in the distal appendix and hence do not cause any 

difficulties. The management of patients with carcinoids of the appendix is removal of 

appendix and right hemicolectomy (Caplin et al, 1998 i).

2.9.7 Carcinoid syndrome

The most common systemic syndrome caused by carcinoid tumours is the carcinoid 

syndrome (Table 2.6). It occurs when hormonal tumour products reach the systemic 

circulation. During the “first pass,” the liver is able to remove from the blood stream
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even large amounts of a primary tumour’s hormonal products before they reach the 

systemic circulation. This usually implies the presence of disease that has venous 

drainage in the systemic circulation in such a way as to circumvent the liver and its 

“first-pass” effect. Such is the case with metastatic disease in the liver itself or 

primary disease in the bronchi. Hepatic metastasis is the most frequently associated 

condition in patients with carcinoid syndrome. Because tumours of the jejunum, 

ileum, appendix, and ascending colon are the most common and frequently 

metastasize, they account for about 80% of the carcinoids that cause the carcinoid 

syndrome (Norton et al, 1993).

Clinical
features

Frequency Characteristics Mediators

Flushing 90% With foregut 
tumours-prolonged 
purple hue, 
predominantly on 
the face and neck 

Mid gut tumours- 
short lived and 
pink-red

5-hyroxytryptamine, 
histamine, kalleikrien, 
substance -P , 
prostaglandins

Abdominal
pain

40% Long history Tumour obstruction, 
hepatomegaly, 
intestinal ischemia

Diarrhoea 70% Secretory 5-hyroxytryptamine 
,histamine, gastrin, 
vasoactive intestinal 
peptide, prostaglandins

Wheezing 15% 5-hyroxytryptamine,
Histamine

Heart disease Right-30 %, 
Left-10%

Substance-P, Neurokinin- 
A, 5-hyroxytryptamine

Telangiectasia 25% Face Unknown
Pellagra 5% Dermatitis, 

diarrhoea, dementia
Niacin deficiency

Table 2.6 Characteristics of carcinoid syndrome (Kaplan et al, 1991; Moertel, 1992; 
Caplin et al, 1998 ij2)
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2.10 Standard Diagnostic Modalities

Carcinoid tumours show varying tumour biology, patients often present with-distinct 

clinical symptoms. Certain investigations (Table 2.7), aid the clinician in the 

diagnosis o f carcinoid tumours.

Biochemical Pathological Imaging Others

Urinary Biopsy/FNAC Chest X  ray Intra-arterial
excretion o f 5- stimulation with

HIAA Surgical pathology Endosonography secretin (for
gastrinomas)

Chromogranin Endoscopic biopsy Ultrasonography
concentration Intra operative

Echocardiography gamma detecting
Blood serotonin probes
concentration CT scans

MR1 Intra-arterial
Gut hormone stimulation with

Peptide Nuclear Medicine calcium (for
" mTc-MDP Bone scan insulinomas)
123 mlBG
111 In-pentetreotide
" mTc (V) DMSA Portal venous
" mTc-Depreotide sampling
" mTc-vapreotide
PET imaging

Table 2.7 Diagnostic modalities in detecting neuroendocrine tumours.

2.10.1 Histopathology

The histopathological diagnosis of carcinoids is based on silver, argyrophil staining 

which is a general marker for neuroendocrine differentiation, and argentaffin staining 

to demonstrate content o f serotonin (Fig 2.1-2.4). However, these two methods have 

recently been mostly replaced by immunohistochemistry using antibodies against
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chromogranin A and synaptophysin. In order to show the content of serotonin, 

specific antibodies are used (Oberg, 1998). Almost all well-differentiated 

neuroendocrine gastrointestinal tumors show positive staining for chromogranin A, 

except for some insulin-producing tumours which may be stained by chromogranin B 

antibodies. Synaptophysin shows similar sensitivity, but these antibodies have to be 

used on frozen sections rather than formalin-fixed material, which limit their clinical 

use. Staining for Neuron-specific enolase has been used routinely in many laboratories 

for staining of neuroendocrine tumours, but it is not quite specific and should 

therefore be combined with chromogranin A immunocytochemistry (Oberg, 1998; 

Wilander et al, 1989; Solcia et al, 1989). A correct histopathological diagnosis is the 

prerequisite for therapeutic considerations.

Fig 2.1 Grimelius silver staining showing the granules (Bax et al, Image courtesy AP 
Dillon)
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Fig 2.2 Haematoxylin & eosin (H&E) staining showing granules (Bax et al, Image 
courtesy AP Dillon)

Fig 2.3 Neuron specific enolase (NSE) to categorise cells of neuroendocrine origin 
(Bax et al, Image courtesy AP Dillon)

Fig 2.4 Immunostained cells for the Ki67 proliferate marker (Bax et al, Image 
courtesy AP Dillon)
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2.10.2 Biochemical Diagnosis

2.11.2.1 There have been numerous investigations into identifying serum factors that 

may aid in the diagnosis and management of patients with carcinoid tumours 

(Feldman et al, 1986; Stridsberg et al, 1995). Most research has focused on 

neurotensin, substance P, 5HIAA and the chromogranins (A, B and C) since these 

factors are usually found within tumour cells and assist in histochemical diagnosis. 

Measurement of 24 h urine 5-hydroxyindoleacetic acid by high-performance liquid 

chromatography is highly specific (Stridsberg et al, 1995). Fruits such as bananas and 

avocados, and certain cough medications, can cause false-positive results whereas 

other drugs such as levodopa, aspirin, and phenothiazines can cause false-negative 

results, and this is especially highlighted by the non-specific colorimetric method for 

measurement of 5-hydroxyindoleacetic acid.

2.10.2.2 Chromogranins (Cg) are found in neural and neuroendocrine cells, but not 

endocrine tissues in general. While the full physiological role of chromogranins is not 

known, several cleavage products have been identified lending credence to the 

hypothesis that the chromogranins are primarily pro-hormones (Eriksson et al, 2OOO2). 

However, use of these factors as markers for carcinoid disease is limited by specificity 

since pancreatic neuroendocrine tumours may also have elevated levels. False positive 

elevations may occur with liver or kidney failure, inflammatory bowel disease, 

atrophic gastritis, or the chronic use of proton pump inhibitors (Eriksson et al, 2OOO2). 

There appears to be a direct correlation between tumour burden and serum 

chromogranin A (CgA) levels (Jenson et al, 1997) and a rising serum level of 

chromogranin A (CgA) can precede radiographic evidence of recurrence (Bajetta et 

al, 1999).
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2.10.3 Conventional Imaging

There is great variability in the detection rate of the primary carcinoid tumour, and 

this is often dependent on its location.

2.10.3.1 Chest X-ray

Chest radiography is usually the first imaging modality to detect bronchial carcinoids 

and is performed to investigate non-specific respiratory complaints. Since the tumours 

are slow growing, they may compress airways and induce an obstructive pneumonia 

or atelectasis and may appear as opacities with notched margins (Nessi et al 1991).

2.10.3.2 Ultrasonography/ Doppler sonography

Abdominal ultrasound is frequently used as a first-line investigation in the diagnosis 

of GEP tumours but is relatively insensitive in the detection of GEP tumours. In one 

series, abdominal ultrasound detected only 15% of gastrinomas from 1 to 3 cm in size 

(London JF et al, 1991). Echo-enhanced power Doppler sonography is a non-invasive 

procedure that has been increasingly used for the differential diagnosis of pancreatic 

tumours. It has high sensitivity (94%) and high specificity (96%) for the 

differentiation of neuroendocrine lesions from other pancreatic tumours (Rickes et al, 

2003).

2.10.3.3 Endosonography

Endosonography (EUS) is a sensitive method to image neuroendocrine tumours 

located in the pancreas and in the gastrointestinal wall (Zimmer et al, 1994 i, 2). 

Foregut NETs are frequently smaller than 2cm in diameter and mainly located in the
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Pancreas or the gastric and duodenal wall. These NETs can be visualised in great 

detail with high resolution. Small pathological structures of 2-3mm in size can be 

detected by EUS. Endoscopic ultrasound has been reported to be very sensitive in 

detecting endocrine pancreatic tumours, even when CT or transabdominal ultrasound 

fails to show the tumour (Rosch et al, 1992). Various studies indicate that NETs of 

the pancreas can be localised by EUS in about 80-100% of cases (Rosch et al, 1992; 

Glover et al, 1992; Lightdale et al, 1991; Palazzo et al, 1992; Yamada et al, 1991; 

Zimmer et al, 1994 i, 2). Combination of Somatostatin receptor scintigraphy and EUS 

increases the sensitivity even further (Zimmer et al, 1994 1,2).

2.10.3.4 Echocardiography

Regurgitation and stenosis of the tricuspid and pulmonary valve, leading to right heart 

failure, are the most common cardiac manifestations of the carcinoid heart disease. 

Echocardiography is quite useful in carcinoid heart disease, which is frequently 

encountered in mid-gut type of carcinoid tumours (Lundin et al, 1994). The 

characteristic pattern is involvement of mural and valvular endocardium with a 

plaque-like or diffuse distribution. The most frequent echocardiographic 

abnormalities in patients with carcinoid syndrome are functional and morphological 

abnormalities involving the tricuspid valve. Tricuspid regurgitation is seen in nearly 

80% of these patients (Lundin et al, 1994). Echocardiographic findings are important 

for timing of valve replacement. Echocardiography is easily performed and it is 

suitable for screening and follow-up of patients with malignant carcinoid disease 

(Lundin et al, 1994).
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2.10.3.5 Computerised Tomography (CT)

CT is relatively more sensitive for detecting insulinomas and less sensitive for 

detecting gastrinomas. The information obtained from the CT scan varies according to 

the type of scanner used. For CT scanning to be useful for the detection of NETs, 

advanced dynamic scanning techniques with rapid contrast injection are required. 

Contrast enhancement of the peritumour vessels permits identification of tumour 

involvement of the adjacent arterial and venous structures, and also identifies tumours 

greater than 2 cm in diameter and metastases of regional lymph nodes or in the liver 

(Fig 2.5). Approximately 30-75% of solitary gastrinomas may be detected at CT 

scanning (Wank et al, 1987) (Table 2.8 and 2.9). However, a major drawback of both 

CT scanning and MR imaging is that only suspected specific anatomical sites such as 

the abdomen or chest are usually imaged (Shi et al, 1998). CT scans can also be used 

to precisely guide a biopsy needle into a suspected metastasis. The main disadvantage 

of this technique is that whole body imaging is both time-consuming and expensive to 

perform.

Fig 2.5 CT of liver showing multiple carcinoid metastases in the liver

G Gnanasegaran MD 48



2.10.3.6 Magnetic resonance imaging (MRI)

MRI has been shown to be effective for detecting tumours in both the liver and 

pancreas and is more sensitive than a CT scan (Shi et al, 1998; Reinig et al, 1987; 

Chezmar et al, 1991). MRI of the liver is a valuable tool for the diagnosis and follow- 

up of patients with metastatic carcinoid (Kvols, 1994). The boundaries of hepatic 

metastases are sometimes better visualized with MRI of the liver than dynamic 

contrast-enhanced CT scans. Liver metastases are usually seen as homogeneous 

lesions of medium intensity on T2-weighted images. Occasionally necrosis and 

hemorrhage may also be identified within the metastases (Kvols, 1994).

However, these techniques also have limitations for localizing and staging tumours. 

The pancreas is one of the most difficult abdominal organs to visualize, even by MR 

imaging. Although pancreatic endocrine tumours have significantly longer T1 and T2 

relaxation times compared to normal pancreas tissue, the potential advantage of the 

improved tissue contrast of MR imaging has been overshadowed by the presence of 

motion artifacts. As a consequence, small pancreatic endocrine tumours are not 

detected, and the sensitivity is less than 50 % (Steiner et al, 1989). Since pancreatic 

endocrine tumours are frequently vascular, contrast agents such as gadolinium-DTPA 

can improve imaging. The disadvantage of MRI is availability and cost.

2.10.3.7 Angiography

Neuroendocrine tumours are seen on arteriography as diffusely enhancing masses 

without tumour vessels and without arteriovenous shunting. The sensitivity of 

angiography was 68% for extra pancreatic and 86% for hepatic lesions. Hepatic 

metastasis is easier to demonstrate arteriographically because of the absence of 

overlying bowel (Doppman et al, 1999). Angiography is of value for pre-operative

G Gnanasegaran MD 49



and pre-embolisation vascular mapping, and localising small pancreatic apudomas 

(Aspestrand et al, 1993). It is an invasive test and should be considered in the clinical 

context of its effect on management (Aspestrand et al, 1993). The role of angiography 

for diagnosis is very minimal.

2.10.3.8 Other methods

Other methods that are also used to localise GEP tumours include intraoperative 

Ultrasound, intraoperative transillumination, portal venous sampling, intra-arterial 

stimulation with calcium (for insulinomas) and intra-arterial stimulation with secretin 

(for gastrinomas). These techniques can be useful for detecting occult tumours. For 

ethical reasons relating to their invasive nature, however, these methods have not been 

used in large studies of unselected patients with GEP tumours (OctreoScan, Medicare 

sevices Advisory Committee, 1999).

Sensitivity EUS US CT MRI SRS
Total 88% 32% 36% 24% 52%
<2cm 88% 6% 12% 0% 35%
>2cm 87% 87% 87% 75% 87%
Pancreas 94% 41% 47% 29% 47%
Extra-pancreatic 75% 12% 12% 12% 62%

Table 2.8 Comparison of sensitivities of different imaging procedures in detecting 
primary Nets depending on size and site (Kaltsas et al, 2001 i, 2)
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Sensitivity US CT MRI SRS
Primary tumour 
localisation

46% 64% 42% 80%

Metastases 83% 88% 79% 90%

Table 2.9 Comparison of ultrasonography and somatostatin receptor imaging 
computed tomography in the detection carcinoid tumours (Eriksson et al, 2002).

2.11 Nuclear Medicine Imaging

Many neuroendocrine tumours can be visualised successfully with 123I- MIBG, 111 In- 

pentetreotide and PET imaging (Chapter 3). These agents are taken up by normal 

tissues and by the neuroendocrine tumours by different mechanisms.

2.12 Standard Treatment Options

Successful treatment of malignant carcinoid tumours requires a multimodality 

approach. Therapeutic strategy of neuroendocrine tumours is complex, due to their 

heterogeneity and to the fact that although generally slow growing, a significant 

proportion demonstrates aggressive tumour growth (Ducreux et al, 2002). 

Chemotherapy was considered the standard for treatment of neuroendocrine tumours 

during the 1970s and 1980s. During the 1980s both alfa-interferon and somatostatin 

analogue therapies were developed and significantly improved the clinical 

management of malignant neuroendocrine tumours (Oberg et al, 1998 i). 

Somatostatin analogues are the mainstay of symptomatic medical treatment of 

carcinoid syndrome.

There are various treatment options available for the management of carcinoid 

tumours (Table 2.10). Surgery should always be considered in the treatment of
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neuroendocrine GEP tumours. It may be more effective if performed in earlier stages 

of the disease process.

TREATMENT OF NEUROENDOCRINE TUMOURS

SURGICAL MANAGEMENT

Cytoreductive Hepatic Surgery

Surgical Management of Carcinoid Heart

Disease

Vascular occlusion therapy 

Liver transplantation for Hepatic 

metastases

MEDICAL MANAGEMENT
Life style

Chemotherapy

Interferon

5-hydroxy tryptamine receptor antagonists 

Inhibitors o f 5-hydroxytryptamine release

RADIOTHERAPY

Control o f local symptoms

RADIONUCLIDE THERAPY 
131 mIBG

luIn-(DTPA) octreotide

90y-d o t a t o c

90Y-lanreotide 

177Lu-octreotate

Table 2.10 Therapeutic modalities

2.12.1 Symptomatic

2.13.1.1 Life-style

Patients should be aware of precipitating factors such as alcohol, spicy foods, and 

strenuous exercise may trigger symptoms and these should be avoided (Caplin et al, 

1998 ,).
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2.12.1.2 Inhibitors of 5-hydroxytryptamine releases

5-hydroxytryptamine receptor antagonists have been used with limited success. 

Methysergide (Melmon et al, 1965) lost favour because of the incidence of 

retroperitoneal fibrosis. Ketanserin and cyproheptadine (Moertel et al, 1991) have 

been shown to provide some control of symptoms.

Other antagonists such as ondansetron (Platt et al, 1992) may be even more effective, 

but await controlled trials. Octreotide, a somatostatin analogue, is the best therapy for 

controlling symptoms. It reduces flushing in more than 70% of patients and diarrhoea 

in more than 60% (Arnold et al, 1995). Additionally, in a minority of patients, there 

are several reports, including prospective trials, of an inhibitory effect of octreotide on 

tumour growth (Arnold et al, 1996).

2.12.2 Surgical treatment

Surgical removal of carcinoid tumours is often curative when the disease is detected 

at an early stage (Table 2.11). Surgery may also provide significant palliation for 

selected patients with metastatic disease (Kvols et al, 1994).

2.12.2.1 Cytoreductive hepatic surgery

Debulking surgery for metastatic carcinoid tumours is quite appealing as these 

tumours usually have an indolent course and may produce incapacitating symptoms 

from excess hormone production (Kvols et al, 1994). Palliative surgery should be 

considered only when at least 90% of tumour bulk could be safely excised.
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2.12.2.2 Surgical management of carcinoid heart disease

Carcinoid heart disease should be suspected in patients with the carcinoid syndrome 

when they develop signs or symptoms of right-sided failure and such patients should 

be diagnosed before valvular dysfunction leads to diastolic overload and decrease of 

functional aerobic capacity (Kvols et al, 1994). Only a minority of patients with 

carcinoid heart disease require cardiac surgery. The patients most likely to benefit 

from cardiac surgery are those with worsening cardiac status but with an indolent 

course with relatively stable metastases (Kvols et al, 1994).

Carcinoid tumours of the appendix The management of carcinoids of 
the appendix are surgical. If the 
base of the appendix is involved, a 
right hemicolectomy should be 
considered.

Carcinoid tumours of the ileum and 
small intestine

The treatment for non-metastatic 
and metastatic small-bowel 
carcinoids is resection (adjuvant 
therapy for the latter group)

Carcinoid tumours of the stomach Carcinoid tumours >2 cm associated 
with gastrin production, 
antrectomy and local resection is 
the best option.
Sporadic gastric tumour: local 
resection and clearance of 
metastatic lymph nodes (if 
applicable)

Carcinoid tumours of the colon Polypectomy or local resection

Carcinoid tumours of the rectum Local excision

Carcinoid tumours of the bronchus Surgical resection

Table 2.11 Local surgical management of neuroendocrine tumours (Caplin et al, 
19980
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2.12.2.3 Liver transplantation

Liver transplantation has become routine treatment for a large number of end stage 

liver diseases. Liver metastases of neuroendocrine tumours are still thought to be an 

appropriate indication for liver transplantation with their slow growth rate and 

comparatively low-grade malignancy (London NJ et al, 1991; Gores, 1993). There are 

other factors which have to be considered and assessed critically before going further, 

such as the degree of radicality of the surgical procedure.

Not only should all macroscopic tumours be removed, but the margins of resection 

should be proven to be within the healthy tissue. However the number of patients with 

neuroendocrine tumour metastases only in the liver is comparatively low. The best 

indication for transplantation seems to be patients with metastases restricted to the 

liver who are unresponsive to adjuvant therapy after aggressive surgical resection, 

including excision of the primary lesion and reduction of hepatic metastases.

In such highly selective patients, liver transplantation remains a high-risk operation, 

but it can yield long-term survival (Dousset et al, 1995). In selected patients, liver 

transplantation for non-resectable neuroendocrine hepatic metastases may provide not 

only long-term palliation but also cure. In view of the shortage of donor organs, liver 

grafting for neuroendocrine metastases should be considered solely in patients without 

evidence of extra-hepatic tumour manifestation and in whom all other treatment 

methods are no longer effective (Lang et al, 1997).

2.12.3 Medical Management

Medical treatment includes chemotherapy and biotherapy. Chemotherapy is 

particularly useful for patients with more aggressive pancreatic tumours with high 

proliferation capacity, whereas alpha interferon is beneficial in classical midgut
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carcinoids with low proliferation capacity. In experienced hands, hepatic artery 

embolisation is an effective treatment for hepatic metastasis.

2.12.3.1 Interferon therapy

Alpha-interferon is used in the treatment of carcinoid tumours because of its ability 

to stimulate natural killer cell function and to control secretion, clinical symptoms and 

tumour growth (Oberg et al, 1983). The anti-tumour effects of alpha-interferon 

include anti-proliferation, apoptosis, differentiation, and cytotoxic/cytostatic effects 

(Oberg et al, 1991). Alpha-interferon also clearly demonstrates an

immunomodulatory effect by increased expression of class I antigens on tumour cells 

and induction of autoimmunity (Oberg et al, 1991; Ronnblom et al, 1991). Another 

effect of alpha-interferon is induction of fibrosis within liver metastasis. With time, 

the number of tumour cells decreases, and are replaced by fibroblasts, without any 

change in the tumour size, and therefore not recognised by conventional radiology 

methods (Andersson et al, 1990). The antiproliferative effect of alpha-interferon is 

mainly due to a block of the cell cycle in the G0/G1 phase with very low numbers of 

S-phase cells detectable after alpha-interferon administration (Chaudhry et al, 1992 2). 

There are some dose-related adverse effects in the alpha-interferon therapy such as 

weight loss, flu-like symptoms, anaemia, fatigue, leukopenia, hepatotoxicity, 

thrombocytopenia and increased blood lipids. The treatment with alpha-interferon is 

life-long and it is important to realise that the therapy is not curative but can control 

the disease for an extended period of time and improve quality of life.
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2.12.3.2 Somatostatin and Somatostatin analogues

2.12.3.2a Somatostatin (SS) is a small regulatory peptide (Fig 2.6); it was isolated in 

the ovine hypothalamic gland in 1973 as a growth hormone (GH) release-inhibiting 

factor (Brazeau et al, 1973). SS is widely distributed in the human body and is found 

not only in the hypothalamus but also in various parts of the gastrointestinal tract, 

indicating that inhibition of GH is not its only function (Lucey et al, 1986). Apart 

from its function as a neurotransmitter in the central nervous system, it also has 

inhibitory effects on the secretion of hormones by the pancreatic islets (insulin, 

glucagon) and on exocrine pancreatic function. SS also inhibits normal gastrin 

production, and consequently gastric acid and pepsin production. A number of 

observations have suggested an antiproliferative effect of SS and its stable analogues 

(Schally et al, 1988; Kvols et al, 1986; Lamberts et al, 1991). Somatostatin has 

represented a real breakthrough in the treatment of patients with neuroendocrine 

gastroenteropancreatic neoplasms (Anthony et al, 1999). Symptomatic carcinoid 

syndrome and various pancreatic endocrine tumours with symptomatic syndromes are 

well controlled with somatostatin analogues. Somatostatin (SS) and its octapeptide 

analogues exert their effects through interaction with somatostatin receptor (sst) 

subtypes 1 to 5 (ssti-5) (de Herder et al, 2002). Natural somatostatins (SS14, SS28) 

bind with high affinity to all 5 human somatostatin receptor subtypes, ssti-5. However, 

the therapeutic use of somatostatin peptides is limited by the, rapid proteolytic 

degradation in plasma.

A number of short synthetic somatostatin analogs with improved metabolic stability 

have been synthesized in the past but Sandostatin (octreotide) and Somatuline 

(lanreotide) are the only two synthetic somatostatin analogs approved for clinical use
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(Bruns et al, 1996; Bruns et al, 2002; Hoyer et al, 1994; Bauer et al, 1982; Murphy et

al, 1987).

Ala-Gly-Cjys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cp

Fig 2.6 Structure of somatostatin (Fichna et al, 2003)

2.12.3.2b Octreotide is a synthetic octapeptide analog of somatostatin. Its major 

effects include inhibition of the release of pituitary growth hormone and, under 

certain conditions, prolactin. Octreotide also suppresses the secretion of serotonin and 

the endocrine secretions of the pancreas, stomach, and intestine (including gastrin, 

vasoactive intestinal peptide, insulin, glucagon, secretin, motilin, and pancreatic 

polypeptide). Octreotide also has a direct antiproliferative action, probably by 

blocking the action of epidermal growth factor (EGF) (CCO Formulary 2000). 

Octreotide acetate is a long-acting octapeptide with pharmacologic actions mimicking 

those of the natural hormone somatostatin (Novartis data sheet, 1999) (Fig 2.7). 

Octreotide has an apparent half-life of 1.7 hours. The duration of action of 

Sandostatin (octreotide acetate) is variable but extends up to 12 hours depending upon 

the type of tumor. About 32% of the dose is excreted unchanged into the urine 

(Novartis data sheet, 1999). Octreotide has been successfully used in patients with 

functioning tumours. Long-term therapy with the mainly sst2-specific, long-acting SS 

analogs octreotide and lanreotide suppresses GH release by GH-secreting pituitary 

adenomas, and this control of hormone release also normalizes IGF-I levels in two- 

thirds of patients with acromegaly (Lamberts, 2002 1,2).
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D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-(ol)

Fig 2.7 Structure of Octreotide (Fichna et al, 2003)

Other than instant clinical improvement, notable tumor shrinkage also occurs in most 

patients, based on a decrease in the size of individual pituitary tumour cells, which no 

longer synthesize and secrete hormone. In addition, the proliferation marker Ki-67 is 

lowered in octreotide-treated GH-secreting tumours, but there is no change in the 

apoptotic index (Losau et al, 2001).

In most patients with metastatic carcinoid disease and islet cell tumours, octreotide 

therapy also improves clinical symptoms. Control of diarrhea and flushing attacks, 

caused by an overproduction of serotonin or tachykinin(s), was reported in 70-90% of 

patients with metastatic carcinoid tumors (Lamberts et al, 2002 i, 2). Diarrhea, 

dehydration and hypokalemia in patients with tumours secreting vasoactive intestinal 

peptide, and peptic ulceration, hypoglycemic attacks and necrolytic skin lesions in 

patients with tumours secreting gastrin, insulin and glucagon, respectively, were also 

well controlled in 50-80% of patients treated with octreotide (Lamberts et al, 1996). 

Results from studies also suggest a temporary stabilization of (metastatic) tumour 

growth during SS analog therapy in one- to two-thirds of patients with carcinoids 

and/or islet cell tumors (Arnold et al, 2000; Shojamanesh et al, 2002).

The observed prolonged survival in octreotide-treated patients with these metastasized 

gastroenteropancreatic (GEP) tumours seems to be related, at least in part, to this 

temporary inhibition of tumour growth, but might also be attributed to the 

improvement in the quality of life of these patients (Lamberts et al, 2002 1,2).
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The acceptance of the use of SS analogs such as octreotide and lanreotide by the 

patients further improved as monthly long-acting depot formulations of these 

compounds became available. Recently, significant improvement in the management 

of the disease has been demonstrated with long-acting repeatable (LAR) octreotide. 

This new formulation requires only one monthly intramuscular injection, and shows 

better acceptability and patient compliance to therapy (Dogliotti et al, 2001).

The availability of long-acting molecules has permitted the exploration of high-dose 

therapy in increasing tumour shrinkage and prolonging survival (Dogliotti et al,

2001). Octreotide acetate may be administered subcutaneously or intravenously. 

Subcutaneous injection is the usual route of administration of Sandostatin (Novartis 

Pharmaceuticals, 1999).

2.12.3.2c Lanreotide is similar to the natural chemical Somatostatin (Fig 2.8). 

Somatostatin itself is chemically very unstable and is broken down within minutes of 

its release in the body. Lanreotide, by comparison, is extremely stable and 

consequently much longer acting. It is for this reason that lanreotide is preferred for 

medicinal use. The recommended initial dose of lanreotide LA is one 30mg injection 

(2ml) given intramuscularly every 14 days.

D-2-NaI -Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2

Fig 2.8 Structure of lanreotide (Fichna et al, 2003)
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2.12.4 Chemotherapy

Chemotherapy has been used for many years in the treatment of carcinoid tumours. 

The efficacy of chemotherapy in neuroendocrine tumours (NET) depends on primary 

site and histological differentiation. Many reports have suggested a superior activity 

of chemotherapy for pancreatic NET than for metastatic carcinoid tumours (Rougier 

et al, 2000). Chemotherapy has been particularly active in patients with rapidly 

proliferating neuroendocrine tumours such as endocrine pancreatic tumours and lung 

carcinoids. So far a combination of stretozotocin and 5-flurouracil or doxirubicin 

seems to be the most successful. Streptozotocin-based combinations including 5- 

flourouracil and doxorubicin have generated partial remissions in 40%-60% of 

patients giving a median survival of about two years in patients with advanced 

disease. Cisplatinum plus etoposide has demonstrated significant anti-tumour effects 

in anaplastic endocrine pancreatic tumours and lung carcinoids. However, in low 

proliferating tumours such as classical midgut carcinoids the response rates with the 

same combinations of cytotoxic agents have only generated short-lasting responses in 

fewer than 10% of patients. In some of these patients, biological treatment has been of 

benefit (Oberg, 2001).

2.12.5 Radiotherapy for neuroendocrine tumours

Radiotherapy has a role only for regionally advanced or metastatic disease. Carcinoid 

and islet tumours grow in a region with complex anatomy, containing various 

sensitive tissues and organs such as the kidneys, liver, stomach, small intestine and 

the spinal cord (Bernhard et al, 1994). Adequate care has to be taken not to exceed the 

tolerance doses for irradiation of these sensitive organs kidneys (20Gy), liver (25Gy) 

and stomach (45Gy) (Bernhard et al, 1994). Exceeding these doses will result in high-
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risk complications like tissue necrosis, ulceration, perforation and neurological 

effects. But radiation therapy has a potential to arrest tumour growth and hormone 

secretion. Radiotherapy also causes pain relief and improvement of compression 

symptoms caused by bone and spinal metastases (Bernhard et al, 1994).

2.12.6 Radio-frequency ablation of liver tumours

Radio-frequency thermal ablation is receiving increasing attention as an alternative to 

standard surgical therapies for the treatment of liver neoplasms. Radio-frequency 

thermal ablation (RFA) of liver tumours is undertaken by both radiologists and 

surgeons using different techniques for a variety of indications. RFA of hepatic 

malignancies can be carried out using a percutaneous, laparoscopic, or open approach. 

Local control appears superior for tumours less than 4 cm when an open surgical 

approach is used (Kuvshinoff et al, 2002). Radio-frequency ablation treatment for 

carcinoid metastases refractory to hepatic artery embolisation may represent a useful 

adjunct for symptomatic control, decreased octreotide dependence, and slowing of 

disease progression (Wessels et al, 2001).

2.12.7 Radionuclide therapy

The expression of neuroendocrine peptide receptors on carcinoid tumours, and their 

avid uptake o f 11 ̂ -labelled octreotide and 123Iodine-labelled MIBG for scintigraphic 

scanning, has led to the development of receptor-targeted therapy (Chapter 4).
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2.12.8 Hepatic arterial chemoembolisation

The introduction of hepatic artery embolisation for treatment of hepatic metastases 

from carcinoid and other neuroendocrine tumors has demonstrated excellent palliation 

and cytoreduction in patients with unresectable tumors (Brown et al, 1999; Clouse et 

al, 1994; Gates et al, 1999; Lunderquist et al, 1982; Marlink et al, 1990 and 

Wangberg et al, 1993). Ethiodized oil is less morbid than embolisation with 

particulate matter alone and is more convenient, less costly, and less morbid than the 

effects of systemic chemotherapy (Clouse et al, 1994). Vascular occlusion therapy 

results in prolonged control of symptoms, biochemical response, and also tumour 

regression.

2.13 Prognosis

2.13.1 Foregut carcinoids

Foregut tumours rarely cause carcinoid syndrome, so the treatment usually is directed 

to the primary tumour. The 5-year survival after resection of patients with type I 

gastric carcinoids is more than 98%. Type 2 gastric carcinoid usually has a benign 

course. The 5-year survival in patients having type 3 or sporadic gastric carcinoids is 

only 20 % (Vinik et al, 1989; Neary et al, 1997; Akerstrom et al, 1996). The 

prognosis of patients with bronchial neuroendocrine tumours varied with the degree 

of malignancy; the 5-year survival rate ranged from 87% for patients with typical 

carcinoids (Skuladottir et al, 2002).
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2.13.2 Appendiceal carcinoid tumours

Appendiceal carcinoids are the most common type of carcinoid tumours, making up 

36%. Carcinoid syndrome is rare and the overall 5-year survival rate approaches 99% 

(Stinner et al, 1996; Neary et al, 1997).

2.13.3 Small-bowel carcinoid tumours

Carcinoid syndrome is common among patients having these tumours. The overall 5- 

year survival rate of small-bowel carcinoids is 50% to 60%. Disease confined to the 

bowel is associated with a 75% survival rate, whereas regional disease and liver 

metastases carry 60% and 35% 5-year survival rates respectively (Stinner et al, 1996).

2.13.4 Hindgut carcinoid tumours

Colonic carcinoids are rare, and rarely present with carcinoid syndrome. Standard 

colonic resection for all sizes of colonic carcinoid tumours is the treatment of choice. 

These tumours tend to behave as adenocarcinomas, with a 5-year patient survival 

ranging from 20% to 50%, depending on the stage of the tumour (Neary et al, 1997; 

Memon et al, 1997; Stinner et al, 1996). Rectal carcinoids are the third most common 

carcinoid tumour and make up to 3% of rectal tumours. Like appendiceal carcinoids, 

they have a favorable size-dependent prognosis (5-year survival rate, 70% to 85%).

2.13.5 Advanced metastatic carcinoid tumours

The most common cause of carcinoid syndrome is metastatic liver disease arising 

from a small-bowel carcinoid tumour. When carcinoid tumours from other 

embryological sites metastasize to the liver, the prognosis is uniformly dismal. 

Historical data has provided a baseline, suggesting a 5-year survival rate of less than
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20% for patients with carcinoid liver metastases (Godwin et al, 1975) compared with 

other cancers. However, progression tends to be slow and it has been found that the 

“debulking” the tumour and thereby lessening production of syndrome-producing 

amines can improve both quality and length of life. In a large series of studies from 

the Mayo clinic (Que et al, 1995) of 70 patients with resected neuroendocrine liver 

metastases, 50 were found to have carcinoid disease, operative mortality was 2.7% 

and 4-year survival was 73%. Of the 57 patients who had hormone-related symptoms 

preoperatively, actual symptom-free survival at 4 years was 30%.

2.14 Future

2.14.1 Transfection of somatostatin receptors (SSR)

New developments in molecular biology have made it possible to transfect R-negative 

tumour cells with an SSR gene. There has been a new approach using sst2 gene 

transfer in the treatment of pancreatic cancer (Slooter et al, 2001; Rauly et al, 1996). 

By inducing the SSR on the tumour cells, antitumour effects are obtained which might 

be attributed to several mechanisms. Firstly, an autocrine negative feedback loop in 

which transfected tumour cells start to produce SS, which binds in an autocrine 

manner to the induced SSR, may provide an inhibitory effect on tumour cell growth. 

Secondly, the binding of SS to sst2 may upregulate p27, a tumour suppressor gene, 

which leads to cell cycle arrest in the G0-G1 phase, and subsequently causes 

apoptosis. Local and distant bystander effects have also been noted (Rochaix et al, 

1999). The local bystander effect might be attributed in part to apoptosis. When type 

sst2-positive cells undergo apoptosis, these cells release apoptotic vesicles and 

enzymes, which in turn may kill neighbouring cells. The distant bystander effect is be 

explained by a paracrine effect. SS can upregulate the expression of ssti on parental
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tumour cells, thereby rendering them sensitive to the antiproliferative effect of SS. All 

the above mentioned mechanisms may contribute to successful treatment of certain 

types of cancers with gene therapy. Another reason why transfection of tumour cells 

with an SSR gene may be beneficial involves radionuclide therapy (Slooter et al, 

1999). By inducing the SSR on SSR-negative tumours, treatment with radionuclides 

should be possible. Moreover, transfection of SSR-positive tumours with an SSR gene 

can increase the homogeneity of distribution of tumour cells expressing the SSR and 

thereby increase the efficacy of therapy; at present this strategy is currently being 

investigated. Transfecting tumour cells with SSRs in combination with radionuclide 

therapy are a new modality in the treatment of cancer; however, it is experimental and 

its full potential remains to be elucidated in the near future. (Slooter et al, 2001).

2.14.2 Newer somatostatin analogue: SOM-230: A universal ligand

The incorporation of structural elements of somatostatin-14 in a stable 

cyclohexapeptide template in the form of modified unnatural amino acids resulted in 

the identification of the novel cyclohexapeptide SOM-230 (Bruns et al, 2002).

It is a promising new metabolically stable cylohexapeptide with broad SRIF receptor 

binding and is currently under investigation in phase I clinical trials (Bruns et al, 

2002). SOM-230 exhibits a very different binding pro-file to human somatostatin 

receptors hsstl-5. It binds with a high affinity to sstl, sst2, sst3 and ssts, and with a 

lower affinity to sst4. When compared with Sandostatin and Somatuline, SOM-230 

exhibits a 20 to 30 times higher binding affinity to sstl, and a 40 to 100 times higher 

binding affinity to ssts, respectively. Interestingly, SOM-230 demonstrates one of the 

highest binding affinities to ssts ever reported for an SRIF analog, which is even two 

times higher than that measured for SRIF-14. SOM-230 has very potent inhibitory
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effects on GH and IGF-I release. SOM-230 has a very long plasma half-life of nearly 

24 hours (Bruns et al, 2002). Therefore, SOM-230 is a promising development 

candidate with several potential advantages over currently used SRIF analogs. SOM- 

23 0 may also, at last, give an answer to the long-standing question, whether the sstj- 

and ssts- mediated anti-tumour effects (cell cycle inhibition, induction of apoptosis) 

have a clinically beneficial effect not only in patients with inoperable carcinoids and 

islet cell tumours, but also in patients with otherwise non treatable somatostatin 

receptor-positive breast, prostate and colonic cancers (Lamberts et al, 20021).

2.14.3 Vascular-targeting agent

Dependence of tumour cells on a functional blood vessel system for survival, 

proliferation, and metastatic dissemination leads to a fascinating concept called 

vascular-targeted anticancer therapy. There is a possibility of indirectly inhibiting 

tumour growth and survival by interfering with neo-vessel formation or function 

(Carmeliet et al, 2000; Benezra et al, 2001; Micheletti et al, 2003). Unlike anti- 

angiogenic agents, aimed at preventing vessel formation, the vascular-targeting agents 

aim to compromise the integrity and functionality of already existing tumour vessels, 

leading to shutdown of the tumour vascular system and consequent tumour cell death 

(Chaplin et al, 1999). Vascular targeting is made possible by the structural, 

phenotypic, and functional differences between vessels in tumour and normal tissues 

(Brown et al, 1998; Ruoslahti et al, 2000; St Croix, 2000). The tubulin-binding agent 

ZD6126 is a novel vascular-targeting agent in clinical development for the treatment 

of solid tumours (Micheletti et al, 2003). The colchicine derivative ZD6126 is a 

water-soluble phosphate pro-drug. It is converted in vivo into V-acetylcolchinol 

(ZD6126 phenol), which binds to the colchicine-binding site on tubulin, and causes
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disruption of microtubules. In animal models, ZD6126 selectively induces tumour 

vascular damage and massive tumour necrosis at well-tolerated doses (Blakey et al,

2002). ZD6126 is currently in early phase clinical trial (Micheletti et al, 2003).

2.15 Discussion

Diagnosis of neuroendocrine tumours is challenging and interesting. Today there are 

various diagnostic modalities available for diagnosis starting from biochemical 

markers (5-HIAA, Chromogranin A and B, tachykinins, pancreastatin and subunits of 

HCG) histopathology (silver staining, argyrophil and argentaffin staining) and 

imaging modalities. But all these modalities have advantages and drawbacks related 

to their sensitivity and specificity. Conventional radiological techniques such as CT 

scan, MRI, and angiography are well-established tools for the identification of NETs. 

But these modalities are helpful in only in certain types of neuroendocrine tumours 

depending on their size and site. Nuclear medicine with its diagnostic and therapeutic 

potential had made significant impact in the diagnosis and treatment of these tumours 

(Chapter 3 and 4). Today increasing number of investigative procedures and 

therapeutic options are available to diagnose and treat these complex neuroendocrine 

tumours. To treat these tumours effectively we need a multidisciplinary 

neuroendocrine team. A general consensus on the best evidence-based management of 

a patient needs to be discussed and agreed. If a patient requires surgery the 

appropriate surgeon should be consulted. All scintigraphic and radiological scans 

should be reviewed in a joint meeting with an interventional radiologist and nuclear 

medicine physicians. We should have protocols for serial haematological, 

biochemical, urinary, and radiological assessment. These protocols enable formal
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assessment of therapeutic response and audit of management, as well as the 

opportunity to carry out controlled trials.

2.16 Conclusion

Patients with neuroendocrine tumours are uncommon, and optimum management 

should therefore be done in centres of expertise with a multimodality approach. 

Endocrinologist, medical/surgical oncologist, interventional radiologist and nuclear 

medicine experts should take part in the assessment and care of these patients. This 

will help to provide the much needed multidisciplinary approach in diagnosis and 

treatment.
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Chapter 3

Nuclear Medicine imaging in neuroendocrine tumours

3.1 Introduction

Cancer diagnosis is one of the clinical dilemmas every physician faces in spite of 

advances in diagnostic modalities. Most of the techniques have very good sensitivity 

but very few have good specificity. In general, the smaller the tumour at the time of 

diagnosis, the better the prognosis. Accurate early detection of the tumour gives us a 

chance to plan and treat appropriately.

Neuroendocrine tumours offer a new diagnostic and therapeutic challenge. These 

patients can be evaluated by anatomical imaging studies, such as computed 

tomography (CT) or magnetic resonance imaging (MRI), and the functional status of 

these tumours are assessed using physiological imaging by scintigraphy. 

Neuroendocrine tumours can be visualized by several nuclear medicine modalities 

based on different mechanisms of cellular uptake (Table 3.1). The most widely used

19 3  •radiopharmaceutical is Iodine-metaiodobenzylguanidine ( I-mEBG) and Indium- 

pentetreotide (H1In-pentetreotide). Recently positron-emmiting agents have been used 

for imaging neuroendocrine tumours.

3. 2 Radionuclides

The selection of an appropriate radionuclide is very important in developing any 

diagnostic or a therapeutic radiopharmaceutical. Important factors should be 

considered, which include half-life of the radioactive nuclide, mode of decay, cost 

and availability (Table 3.2).
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Radionuclide half-life is a critical factor. For diagnostic imaging the half-life of a 

radionuclide must be long enough to facilitate the accumulation in the target tissue, 

while allowing clearance through the non-target organs.

Radiopharmaceutical Mechanism of uptake
1HIn-Pentetreotide Somatostatin receptor level uptake and localises 

primarily on the tumour cells of neuroendocrine 
origin.

l2il -metaiodobenzylguanidine Primarily an active uptake-1 mechanism in the 
cell membrane. It localises in the catecholamine 
storage granules and adrenergic nerve endings.

F-fluoro-2-deoxy-D-glucose 
(18F-FDG)

Increase in glycolytic metabolism accounts for 
an increase of the FDG uptake

“ C-labeled 5-HTP Metabolic pathway converting 5-HTP (5- 
hydroxy-tryptophan) to 5-HT

Table 3.1 Radiopharmaceuticals for imaging neuroendocrine tumours

3.2.1 Technetium [,,mTc]

" mTc is used in most of the nuclear medicine diagnostic procedures. It has ideal 

properties for gamma camera imaging. It has a half-life of 6 hours which is long 

enough to synthesize the " mTc-labeled radiopharmaceuticals and perform imaging 

studies. " mTc emits a 140 keV gamma-ray with 89% abundance which is close to 

optimum for imaging. " mTc is readily available at low costs from its parent nuclide 

99M o (/o.5 = 66 h) from a 99Mo/99mTc generator (Fichna et al, 2003; Sattelberger et al, 

1999).

3.2.2 Iodine [123 I]

123I has a half-life of 13 hours. It has the most favorable physical properties of any 

radioisotope of iodine. 123I decays by electron capture with the emission of gamma
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photons of 159 keV and has no beta particles. Disadvantages of 123I are its limited 

availability, cost and short half-life.

3.2.3 Indium [U1ln]

1HIn has a half-life of 67 hours which makes it an ideal isotope for labelling peptides 

and immunoglobulins, where imaging is performed over several days. U1ln nuclide 

decays by electron capture with emission of gamma-photons of 173 and 247 keV 

(89% and 95% abundance, respectively), which is used in gamma-scintigraphy. m In 

is often used as an equivalent for 90Y in scintigraphic imaging in humans for 

dosimetry studies, since 90Y does not emit gamma-rays (Fischman et al, 1993).

Technetium [99mTc] Main emissions
Gamma or X BetatEmax) Electrons Alpha
E % E % E % E %

El 18 6 120 9
E2 21 1 138 1
E3 141 89
% omitted 1 1

Iodine f12311 Main emi ssions
Gamma orX Beta (Emax) Electrons Alpha
E % E % E % E %

El 27 71 127 14
E2 159 83 154 2
E3 529 1 158 <1
% omitted 17 4

Indium [U1ln] Main emissions
Gamma orX Beta (Emax) Electrons Alpha
E % E % E % E %

El 23 69 145 9
E2 171 90 219 5
E3 245 94
% omitted 15 2

Table 3.2 Showing main emissions from the diagnostic radionuclides (Delacroix, 
1998)
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3.3 Radiopharmaceuticals

3.3.1 Radiopharmaceuticals are drugs containing atoms of some radioactive elements. 

They are designed for diagnostic or therapeutic purposes, to deliver small doses of 

ionizing radiation to the disease sites in the body. Therapeutic radiopharmaceuticals, 

unlike classical chemotherapeutics, may act against malignant cells with high 

specificity (Fichna et al, 2003). In the past decade significant progress has been made 

in the development of peptide-based target-specific radiopharmaceuticals for imaging 

and radionuclide targeted therapy. The peptide that has attracted the greatest interest 

as an imaging agent is somatostatin (SS). Somatostatin is a tetra-decapeptide that 

regulates the secretion of numerous hormones. In addition, receptors for somatostatin 

are expressed on a variety of human tumours and that fact has become a basic 

principle for the use of somatostatin analogues in radiochemistry, tumour imaging and 

treatment (Lamberts et al, 1988; Lamberts et al, 1991; Thakur et al, 1997; de Jong et 

al, 1999). Presently somatostatin analogues that are more resistant to biological 

degradation are available. The cyclic octapeptide, octreotide (Anderson et al, 2001) is 

a good replacement for somatostatin in the clinical application, since it shows similar 

bioactivity, it has a relatively high metabolic stability and its pharmacokinetic 

properties are better. Octreotide is less susceptible to enzymatic degradation in vivo 

due to the incorporation of the N-terminal D-Phe and the C-terminal amino alcohol, 

Thr (ol), into its molecule (Lewis et al, 1999, Bauer et al, 1982). The pharmacophoric 

group in octreotide is a sequence of four amino acids: -Phe3-D-Trp4-Lys5-Thr6-, which 

organized into a beta-tum conformation by a disulfide bond, formed between cysteine 

residues at the N- and C-terminus of the peptide backbone (Signore, 1995). Many 

octreotide analogues have been synthesized and some of them have proved to be 

useful as targeting molecules (Bakker et al, 1990).
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3.3.2 Synthesis of target specific radiolabeled peptides for diagnostic 

neuroendocrine imaging

Once we have an ideal radionuclide and a targeting molecule, we need good labelling 

methods to bring them together. Peptides are labelled with a variety of radionuclides 

for specific, diagnostic or therapeutic applications. This is commonly done, by using 

both conventional and novel chelating moieties. High specific-activity peptides are 

prepared and used to minimize unwanted physiologic effects (Weiner et al, 2001). 

These radiolabeled peptides have revolutionised the diagnosis and treatment of 

neuroendocrine tumours. Peptides can be synthesized easily and inexpensively, they 

have fast clearance and rapid tissue penetration, and they are less likely to be 

immunogenic than antibodies. Most peptides have a high affinity for characteristic 

receptor molecules that are overexpressed on malignant mammalian cells (Weiner et 

al, 2001). Peptides can be labelled in different ways and each method has some 

advantages and disadvantages over the other (Table 3. 3).
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Labelling
method

Principle Targeting
molecule

Advantages Disadvantages

Direct
labelling

Radionuclide 
binds directly to 
active groups 
present in the 
targeting molecule

High
molecular
weight
molecules

Easy to 
perform

1 .Chemistry is 
unknown
2. unknown 
geometry of 
radionuclide- 
targeting 
molecule 
complex
3. Posible 
damage to 
targeting 
molecule during 
labelling 
process.

Chelate
methods
Pre­
labelling

Labelling of 
BFCA followed by 
conjugation with 
the targeting 
molecule

Small peptides 1 .Relatively 
easy to control
2.Well defined 
chemistry
3.Targeting 
molecule 
functional 
groups 
remains 
unlabeled

1 .Time
consuming
2. complicated
purification of
obtained
radiopharmaceut
ical

Chelate
methods
Post-
labelling

Conjugation of 
BFCA to targeting 
molecule followed 
by labelling of 
conjugate

Small peptides 1 .Most popular 
method
2.Well defined 
chemistry
3.possible use 
of classical 
solid phase or 
solution 
methods of 
peptide 
synthesis

1. Possible 
damage to 
targeting 
molecule during 
labelling process

Table 3.3 Overview of peptide Labelling Methods (Fischman et al, 1993; Liu et al, 
1997; Eisenwiener et al, 2000; Baidoo et al, 1998; Thakur et al, 1995 and Fichna et al 
2003)
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3.4 Bifunctional Chelating Agents (BFCAs)

BFCAs are used to connect a radionuclide and a targeting molecule to form a 

radiopharmaceutical. An ideal BFCA should coordinate with radionuclide with a high 

yield, to form a relatively stable complex. The agent must comply with the nature and 

oxidation state of a radionuclide and should prevent any accidental changes in its 

redox potential (Fichna et al, 2003). It is important to carefully choose a proper 

BFCA, as the conjugation with targeting molecule requires specific conditions: pH, 

temperature, reaction time. The stereochemistry of a BFCA is important when 

synthesizing radiopharmaceuticals for targeting specific receptors. (Fichna et al,

2003).

3.4.1 DTPA

DTPA (diethylenetriaminopentaacetic acid) belongs to the group of 

polyaminocarboxy chelates (Fichna et al, 2003). It is a strong chelating group, mostly 

linked with 1HIn, a trivalent radionuclide. It can also be attached to larger proteins like 

albumins and antibodies (Meares et al, 1986; McMurry et al, 1998; Hnatowich et al, 

1983) as well as to small peptides, like somatostatin analogues (Bakker et al, 1991, 

Krejcarek et al, 1977). A great obstacle in the efficient radiolabeling of DTPA 

conjugates is the presence of trace metals in the preparation, which compete with 

radionuclides in the process of labelling. For that reason a significant, 40- to 70-fold 

molar excess of peptide conjugate and ultra-pure radionuclide derivative of the 

highest possible specific activity are required (Bakker et al, 1991). Many research 

groups put much effort into the synthesis of kinetically stable DTPA-peptide 

conjugates that form complexes with 90Y (Brechbiel et al, 1991). Substitutions, 

particularly in the carbon atoms of the DTPA backbone, sterically hinder the opening 

of the chelate ring that must occur during radionuclide complex dissociation and
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00mincrease the m vivo stability of the radiopharmacutical. Tc is less suitable for the 

labelling of DTPA-peptide conjugates, as this radionuclide, even at high 

concentrations, has low affinity and poor selectivity to the binding sites of this BFCA 

(Blok etal, 1999).

3.4.2 DOTA

DOTA (1, 4, 7, 10-tetraazacyclododecane-N, N’, N ” , N ” ’-tetraacetic acid) and its 

derivatives is a good alternative for DTPA. They play an important role in clinical 

applications, as they form very stable complexes with a variety of trivalent 

radionuclides, such as 66Ga (gallium), 67Ga (gallium), 68Ga (gallium), 86Y(yttrium), 

90Y(yttrium), U1ln (indium), 149Pm (promethium), 177Lu (lutetium) (de Jong et al, 

1997, Virgolini et al, 1998; Otte et al, 1997; DeNardo et al, 1995; DeNardo et al, 

1998; McMurry et al, 1992). Two different approaches for DOTA conjugation with 

peptides have been developed. In the first approach one of the four carboxy groups in 

DOTA is activated to facilitate the reaction with primary amines in the peptide and 

form a stable amide bond linkage. In the second approach DOTA derivatives with 

additional side chains are used. The conjugation of all DOTA derivatives to a peptide 

is performed through an amino group of a peptide. DOTA and derivatives are 

successfully conjugated to a number of somatostatin analogues (Otte et al, 1997; 

Virgolini et al, 1998; Keire et al, 2001; Otte et al, 1998; Smith-Jones et al, 1998; 

Heppeler et al, 1998; Stolz et al, 1998). DOTA conjugates are especially suitable for 

radionuclide therapy, as they can be radiolabeled with 67Ga (75), 90Y (DeNardo et al, 

1995; Smith-Jones et al, 1998) and 1HIn (Virgolini et al, 1998). However, 90Y 

conjugates the chelate situated closer to the peptide, so that the labeled conjugate is 

more rigid and less flexible, which makes binding with the receptor more difficult.
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3.4.3 TETA

TETA (1, 4, 8, 11-tetraazacyclotetradecane-l, 4, 8, 11-tetraacetic acid) is one of the 

most studied chelating agents for copper (64Cu )in peptide targeted radiotherapy. 

TETA has been successfully used as a BFCA with somatostatin analogues (Anderson 

et al, 1999).

3.4.4 HYNIC

HYNIC (2-hydrazinonicotinic acid) has been used as a BFCA for radiolabeling of 

different groups of molecules, such as y-globulins (Abrams et al, 1990, Schwartz et 

al, 1991) chemotactic peptides (Babich et al, 1993; Babich et al, 1995) and 

somatostatin analogues (Krois et al, 1996; Bangard et al, 1998; Decristoforo et al, 

1999; Decristoforo et al, 2000). The structural organization of HYNIC determines its 

application, as it can only occupy one or two coordination sites of the radionuclide. 

That is the reason why a coligand such as tricine or EDDA (ethylenediaminodiacetic 

acid) should be also coordinated to complete the coordination sphere of a radionuclide 

(Edwards et al, 1997; Liu et al, 1998). The conjugation of co-ligands helps in 

modifying the properties of obtained radiopharmaceutical, such as hydrophilicity or 

pharmacokinetics. However, the requirement for the use of coligands makes the 

chemistry of the synthesis more complicated, and multiple possible products and side- 

products can be obtained. HYNIC is often used as a BFCA for somatostatin 

analogues. The desired amide bond formation should occur between the carboxy 

group of HYNIC and the N-terminal amino group of a peptide. However, in 

somatostatin analogues the presence of lysine makes it difficult to obtain a mono­

substituted product. The available methods of HYNIC-octreotide conjugation have 

been compared and none of them seemed efficient (Krois et al, 1996).
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3.5 Somatostatin receptor scintigraphy (SRS)

Peptide receptor scintigraphy is a sensitive and specific technique to show in vivo the 

presence and abundance of somatostatin receptors on various tumours. With this 

technique primary tumours and metastases of neuroendocrine cancers as well as of 

many other cancer types can be localised (Krenning et al, 1999). The high level 

expression of somatostatin receptors (SSTR) on various tumour cells has provided the 

molecular basis for successful use of radiolabeled somatostatin analogs as tumour 

tracers in nuclear medicine. The vast majority of human tumours seem to over express 

the one or the other of five distinct Somatostatin receptors sub-types (Table 3.4). 

Whereas neuroendocrine tumours frequently over express sub-types 2, intestinal 

adenocarcinomas seem to over-express more often sub-types 3 or sub-types 4, or both 

of these subtypes (Virgolini et al, 2001).

3.5.1123I Tyr-3 octreotide

In 1987, researchers from the University Hospital Dijkzigt Rotterdam introduced I- 

123-labeled Tyr-3 octreotide. Using this agent, neuroendocrine tumours were 

visualized, in vivo, based upon the identification of somatostatin receptors (Lamberts 

et al, 1990, Krenning et al, 1989; Kvols et al, 1993). However, disadvantages of this 

particular agent included limited availability, the expense and short half-life of 1-123, 

difficult labelling chemistry, and high abdominal background of radioactivity, due to 

the principle clearance of this agent through the liver.

3.5.2 11!In- pentetreotide

To overcome the difficulties associated with 1-123 Tyr3-octreotide, a second 

radiolabeled analog of octreotide was developed, which was formulated by
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conjugating diethylene triamine penta-acetic acid (DTPA) to the basic octreotide 

molecule, which allowed radiolabeling by chelation with 1HIndium (Krenning et al, 

1993). This radiopharmaceutical was known as OctreoScan. Visualization of SSR- 

positive neuroendocrine tumours, with [m In-diethylenetriaminopenta-acetic acid 

(DTPA)] pentetreotide (Octreoscan, Mallinckrodt Medical BV, Petten, Netherlands) 

has been used for more than 10 years (Krenning et al, 1989, 1995). Various tumours 

with somatostatin receptors can be imaged with m In-pentetreotide. Successful 

scanning depends on receptor-mediated internalization of (in In-DTPA) octreotide, 

which results in degradation to the final radiolabeled metabolite lu In-DTPA-D-Phe in 

the lysosomes (Duncan et al, 1997). This metabolite is not capable of passing through 

the lysosomal or other cell membrane(s) and will, therefore, stay in the lysosomes, 

causing the long intracellular retention time of 1HIn (Duncan et al, 1997). This 

internalization process of (U1ln-DTPA) octreotide is essential for successful 

scintigraphy and radionuclide therapy of tumours, because various radionuclides that 

are suitable for radiotherapy (e.g., those emitting conversion and Auger electrons such 

as m In) are only effective over a short distance of only a few nanometres to 

micrometers from their target, the nuclear DNA. 11 ̂ -labeled  (DTPA) octreotide has 

an appropriate distribution profile in humans and long biologic half-life for U1ln in 

tumour tissue, for scintigraphy and radionuclide therapy (Kwekkeboom et al, 2000). 

The efficacy of SRS using 11 ̂ -labeled  (DTPA) octreotide in patients with 

histologically or biochemically proven endocrine pancreatic tumours or carcinoids 

was evaluated in a European multicentre trial (Krenning et al, 1995).

The highest success rates were observed with glucagonomas (100 %), vipomas (88 

%), gastrinomas (73 %), 'non-functioning' islet cell tumours (82 %) and carcinoids (87 

%). Insulinomas were detected in only 46 % of cases (owing to the low incidence of
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sst2 on insulinoma cells) (Table 3.5). The low sensitivity in this study found for some 

tumours could be related to important differences in scanning procedures, such as the 

amount of radioligand administered, the duration o f the acquisition and the use of 

single photon emission computed tomography (SPECT) (Valkema et al, 1996; 

Krenning et al, 1995; Slooter et al, 2001).

Neuroendocrine with somatostatin 
receptors

Non-neuroendocrine with 
somatostatin receptors

• Adrenal medullary tumours 
(pheochromocytoma, 
neuroblastoma, and 
ganglioneuroma)

• Gastroenteropancreatic 
tumours (e.g., gastrinoma, 
insulinoma, glucagonoma, 
vasoactive intestinal 
polypeptide secreting 
tumour [VIPoma], and non­
functioning
gastroenteropancreatic
tumours).

• Carcinoid tumours.
• Medullary thyroid 

carcinoma.
• Melanoma.
• Merkel cell tumour of the 

skin.
• Paraganglioma.
• Pituitary adenomas.

Small cell lung carcinoma

• Astrocytomas.
• Benign and malignant bone 

tumours.
• Breast carcinoma.
• Differentiated thyroid 

carcinoma (papillary, 
follicular, and Hiirthle cell).

• Lymphoma (Hodgkin’s and 
non-Hodgkin).

• Meningioma.
• Non-small cell lung 

carcinoma.
• Prostate carcinoma.
• Renal cell carcinoma.
• Sarcomas.
• Autoimmune diseases (e.g., 

rheumatoid arthritis, 
Graves’ disease, and 
Graves’ ophthalmopathy).

• Bacterial pneumonia.
• Cerebrovascular accident.
• Fibrous dysplasia.
• Granulomas (e.g., 

tuberculosis and sarcoid).
• Radiation pneumonitis.

Table 3.4 Indications for m In-pentetreotide imaging (Helena et al, 2001)
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Neuroendocrine tumours m In-pentetreotide sensitivity
Islet cell tumours (gastrinomas, 
insulinomas, vasoactive 
intestinal polypeptide-secreting 
tumours, and glucagonomas)

75%-100% (except for Insulinoma, 
50%-60%)

Pheochromocytomas, 
neuroblastomas, and 
paragangliomas

>85%

Medullary thyroid carcinoma 65%-70%
Carcinoid 86%-95%
Small cell lung cancer 80%-100%

Table 3.5 m In-pentetreotide sensitivity in various neuroendocrine tumours (Helena et 
al, 2001; Krenning et al, 1995)

3.5.3 Principle of imaging

m Indium-pentetreotide is a ( lu In-DTPA-D-Phe-) conjugate of octreotide, a 

somatostatin analog that binds to somatostatin receptors (predominantly somatostatin 

receptor subtypes sst2 and ssts). This octapeptide concentrates in neuroendocrine and 

some non-neuroendocrine tumors containing somatostatin receptors (Fig 3.1, 3.2).

3.5.4 Imaging protocol: 11 indium is labelled with pentetreotide (Octreo scan, Tyco 

Healthcare, Petten, Netherlands). Approximately 120-150 MBq is injected 

intravenously. Whole body imaging and SPECT of liver or any other abnormal sites 

detected on the planar imaging are performed 24 hours later (Table 3.6).
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Study Whole body 
somatostatin imaging

SPECT imaging

Radiopharmaceutical In-pentetreotide 111 In-pentetreotide
Activity
administered

120-150 MBq 120-150 MBq

Patient preparation None None
Patient positioning Supine, arms to side 

using the arm rest
Supine, arms to side 
using the arm rest

Collimator Medium energy 
general purpose

Medium energy general 
purpose

Energy and window 170+250 keV with 
15% window offset

170+250 keVwith 15% 
window offset

Table 3.6 Somatostatin imaging protocol used at the Royal Free Hospital
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Fig 3.1 Whole body in Indium-pentetreotide scan showing multiple somatostatin 
receptor positive tumours all over the body
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Tumour

Tumour

Octreoscan Liver SPECT

Fig 3.2 Octreoscan liver SPECT demonstrating multiple lesions in the liver

3.5.5 Normal distribution and artefacts: Normal scintigraphic features include 

visualization of the thyroid, spleen, liver, kidneys, and in part of the patient’s pituitary 

(Table 3.7). In addition, the urinary bladder and the bowel (to a variable degree) are 

often visualized .The visualization of the pituitary, thyroid, and spleen occurs because 

of receptor binding (Kwekkeboom et al, 2000). Uptake in the kidneys is for the most 

part from reabsorption of the radiolabeled peptide in the renal tubular cells after 

glomerular filtration, although somatostatin receptors have been demonstrated in 

human renal tubular cells and vasa recta (Reubi et al, 1993). There is a predominant 

renal clearance of the somatostatin analog, although hepatobiliary clearance into the 

bowel also occurs, which necessitates later images and SPECT to facilitate the 

interpretation of abdominal image.
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Potential causes of a false-positive 
interpretation

Potential causes of a false-negative 
interpretation

1. Accumulation o f11 In- 
pentetreotide in the nasal and 
pulmonary hilar areas can be seen 
with respiratory infections.

2. Diffuse pulmonary or pleural 
accumulation o f 1,1 In-pentetreotide 
can be observed after radiation 
therapy to the lung or bleomycin 
therapy.

3. The tracer may accumulate at 
recent surgical and colostomy sites.

4. Accumulation of the tracer in 
normal structures (pituitary, 
thyroid, liver, spleen, kidneys, 
bowel, gallbladder, ureters, bladder, 
or stimulated adrenal glands) must 
be kept in mind.

5. Caution must be used to avoid 
interpreting physiologic gallbladder 
activity as hepatic metastasis.

1. Presence of unlabeled 
somatostatin, either as a result of 
octreotide therapy or because 
production of somatostatin by the 
tumour itself may lower tumour 
detectability; however, there are also 
literature reports of improved 
tumour-to-background ratio after 
pre-treatment with nonradioactive 
octreotide.

2. Different somatostatin receptor 
subtypes have different affinities for 
the radioligand; variable tumour 
differentiation/receptor expression 
also influences tumour detectability. 
This is a consideration, especially 
with insulinomas and medullary 
thyroid carcinomas.

3. Liver metastases of 
neuroendocrine tumours may 
appear isointense because of a 
similar degree of tracer 
accumulation by the normal liver. 
Correlation with anatomic imaging 
or subtraction scintigraphy with 
sulphur colloid may be considered.

Table 3.7 Potential causes for false-positive and false-negative interpretation in U1ln- 
pentetreotide imaging (Helena et al, 2001).
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3.6 Meta-iodobenzylguanidine (mIBG) scintigraphy

3.6.1 The guanethidine analog mIBG and its molecular structure share some 

characteristics with the adrenergic hormone-neurotransmitter, norepinephrine (Sisson 

et al, 1986). Norepinephrine is synthesized by normal adrenergic neurons and cells in 

the adrenal medulla, is stored in adrenergic granules, and is secreted by exocytosis. 

Some of the norepinephrine that is secreted is taken up by the same adrenergic cells 

and stored again in granules. During this uptake process, mIBG can enter the 

metabolic pathway of norepinephrine. The scintigraphic distribution of mIBG would 

be expected to occur in organs with adrenergic innervations, and in organs that 

process catecholamines for excretion, such as the liver and urinary bladder (Hanson et 

al, 2001). In day-to-day practice, 123I-labeled mEBG is used for diagnosis and 131I- 

labeled mEBG for therapy (Fig 3.3, Table 3.8).

3.6.2 Normal distribution

In early images heart and lungs are seen. The salivary glands, liver, spleen and urinary 

bladder are seen throughout the scanning period. Colonic activity may be seen in 20% 

of the patients. Normal adrenals may be seen in 16% of patients at 48 hours with13,I- 

labeled mIBG images. 123I-labeled mIBG shows a somewhat different pattern, with 

the adrenals seen in more than 30% of patients because of greater photon flux 

afforded by the administration of higher activity. In adults the uterus, spleen, lacrimal 

glands and neck muscles may be demonstrated with 123I~mIBG (Beierwaltes, 1991; 

Elgazzar et al, 1995).
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3.6.3 Imaging protocol

Study Whole body imaging SPECT imaging
Radiopharmaceutical '"1-mIBG lijI-mIBG
Activity
administered

120 MBq 120 MBq

Patient preparation Thyroid blockade with 
potassium iodide tablets 
60mg twice daily for 3days 
(start one day before the 
injection date)

Thyroid blockade with 
potassium iodide tablets 
60mg twice daily for 3days 
(start one day before the 
in jection date)

Patient positioning Supine, arms to side using 
the arm rest

Supine, arms to side using 
the arm rest

Collimator Low energy general 
purpose

Low energy general 
purpose

Energy and window 159 keV and 15% window 159 keV and 15% window

Table 3.8 Imaging protocol of mIBG whole body and SPECT protocol

r
n>

Fig 3.3 I23mIBG SPECT (transverse section) showing multiple lesions in the liver
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3.7 "mTc-MDP Bone scan

The bone scan is commonly used for the detection of bone metastases (Fig 3.4). 

However recent reports indicate that octreoscan detects more lesions than bone scan, 

so the role of bone scans in neuroendocrine tumours may be limited (Gibril et al, 

1998) (Fig 3.5).

Post LAO

99mTc-MDP Bone scan

Fig 3.4 " mTc-MDP Bone scan showing multiple metastases in the bones
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A nt

Fig 3.5 111In-pentetreotide scans showing multiple metastases in the same patient with 
carcinoid tumour
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3.8 Pentavalent " mTc-dimercaptosuccinic acid [99Tcm-(V) DMSA]

Pentavalent " mTc-dimercaptosuccinic acid [99mTc-(V) DMSA] has established uses in 

the detection and diagnosis of medullary thyroid carcinoma (MTC), osteosarcoma, 

amyloidosis and many soft tissue tumours (Leah et al, 1999). It is not only helpful for 

the diagnosis of primary tumours but also for residual tumour and metastasis of

1 1 1  O O m —medullary carcinoma of thyroid. However In-pentetreotide is superior to Tc- (V) 

DMSA for the detection of tumour foci in patients with MTC (Arslan et al, 2001).

3.9 99mTc- depreotide scintigraphy (NEOSPECT)

Tc-depreotide is a peptide analogue of a somatostatin and preferentially binds to 

somatostatin receptors 2, 3, and 5 (Grewal et al, 2002) Its ability to form complexes 

with 99m technetium results in higher resolution images and lower cost in comparison 

to octreotide scintigraphy. The somatostatin receptor is relatively over-expressed in 

pulmonary neoplastic tissue when compared to most benign tissue processes (Fig 3.6). 

A somatostatin analog-technetium ligand (99mTc-depreotide) has shown significant 

promise in the rapid, convenient, accurate and cost effective characterization of 

pulmonary nodules (Blum et al, 2002). The sensitivity and diagnostic accuracy 

compare favourably with that reported for FDG-PET (Blum et al, 2000).

3 .10991,1 Tc -Vapreotide (RC-160)

RC-160, a somatostatin analogue with enhanced binding affinity to somatostatin 

receptors subtypes 4 has been labelled with " mTc (Decristoforo et al, 1999). It seems 

to be an important alternative to H1In labelled pentetreotide for the targeting of
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somatostatin receptor positive tumours. However there is very little data available 

regarding its efficacy over the routinely used 11'in labelled pentetreotide.

Fig 3.6 " mTc- depreotide scintigraphy of lung showing lesion in the lung 

3.11 Positron em ission tom ography (PET)

The first routinely used PET tracer in oncology, (18) F-labeled deoxyglucose (FDG), 

was successfully used for diagnosis of cancer, reflecting increased expression of 

glucose transporter in cancerous tissue (Eriksson et al, 2002 i). Positron emission 

tomography (PET) is an imaging method that identifies tumour based on uptake of 

radiolabeled tracers that are dependent on metabolic activity or pathways. Generally 

tumours have higher than normal rate of glycolysis. However, since carcinoid 

tumours are indolent and slow growing, they have a low metabolic rate and are not 

usually visualized with this tracer (Erasmus et al, 1998).

Serotonin (5-HT) synthesis occurs in all carcinoid tumours, but is also carried out by 

other neuroendocrine tumours with much less consistency. The metabolic pathway
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converting 5-HTP (5-hydroxy-L-tryptophan) to 5-HT can be used for PET imaging. 

u C-5-HTP is specifically trapped by serotonin-producing tumours. Non-specific 

accumulation of tracer in the renal pelvis can cause a streaky artefact (Eriksson et al, 

2002 i). This renal excretion is caused by peripheral decarboxylation of 5-HTP by 

amino acid decarboxylase and is blocked by concomitant administration of oral 

carbidopa (Orlefors et al, 1998). With PET it is also possible to quantify the metabolic 

rate of the tumour and its response to therapy which is reflected as rate of tracer 

uptake (Orlefors et al, 1998; Sundin et al, 2000). Since SRS is unable to visualize 

tumour in the 10% of carcinoid tumours that do mot express somatostatin receptors, a 

PET scan with n C-5-HTP may prove to be a superior method to visualize carcinoid 

tumours, but to date no studies have directly compared SRS and PET.

3.12 Discussion

123mIBG and SRS with u lIn-pentetreotide have made a tremendous impact in 

management of neuroendocrine tumours. The overall sensitivity of SRS in localising 

neuroendocrine tumours is high and the majority o f  pancreatic endocrine tumours can 

be localised by SRS (Kwekkeboom et al, 2002). Scintigraphy with 1HIn-pentetreotide 

in general detects more metastatic lesions than 123I-mIBG in patients with

1 93neuroendocrine tumours. In occasional patiemts’ scintigraphy with I-mIBG 

demonstrated lesions not evident with H1In-pentetreotide (Kaltsas et al, 20012). In 

patients with a strong suspicion of a neuroendocrine tumour and in whom all imaging 

modalities were negative, scintigraphy with m In-pentetreotide identified more lesions 

than 123I-mIBG, although the detection rate was stiHl low (Kaltsas et al, 20012).

Inspite of all these advances in the sensitivity o f  imaging modalities, we are still 

lagging behind specificity. This is not only true in neuroendocrine tumours but also in
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other tumours. The diagnostic scenario of NETs is changing rapidly and there is need 

for multidisciplinary approach to improve the sensitivity and specificity in imaging 

neuroendocrine tumours.

3.13 Conclusion

H1In- pentetreotide is a radiopharmaceutical with a great potential for the visualization 

of somatostatin receptor-positive tumours. The overall sensitivity of SRI to localize 

neuroendocrine tumours is high. In several neuroendocrine tumour types, inclusion of 

SRI in the localization or staging procedure may be very beneficial and effective in 

terms of cost, patient management, or quality of life.
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Chapter 4

R adionuclide therapy in N euroendocrine Tum ours

4.1 Introduction

Nuclear medicine therapy is based on the deposition of therapeutic doses of ionising 

radiation in tumours or organ tissues. In principle, to achieve the desired therapeutic 

effect, a particular radionuclide should exhibit adequate physical, chemical and 

biological properties (Vucina et al, 2001). Radionuclide therapy delivers continuous 

irradiation at relatively low dose rates (Flower, 1998). The dose rate varies during 

therapy, decreasing at a rate which generally depends on two factors (a) the physical 

half-life of the radionuclide and (b) the biological clearance of the labelled product 

(Flower, 1998).

The therapeutic strategy in neuroendocrine tumours is complex, both due to their 

heterogeneity and to the fact that, although generally slow-growing, a significant 

proportion demonstrates aggressive tumour growth. Presently, there are various 

radiopharmaceuticals available for treating patients with neuroendocrine tumours (de 

Jong et al, 2002 i) (Table 4.1).

 -------------------------------------------------------------------------------------------------------------
I-mIBG (Meta-iodobenzylguanidine)

( " ‘in-dicthylenetriaminepentaacetic acid (DTPA)]-pentetreotide 

[9UY-dodecanetetraaceticacid (DOTA), TyrJ] octreotide (9UY-DOTATOC)

[90 Y-DOT A] -lanreotide 

[177Lu-DOTA, TyrJ] octreotate

Table 4.1 Radionuclide therapeutic agents
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4.2 General principles of radionuclide therapy

There has been a significant effort in radionuclide therapy to improve tumour 

targeting together with simultaneous reduction of physiological organ uptake. New 

routes of administration of radiopharmaceuticals (intratumoral, intra-arterial) have 

enhanced the treatment of malignancies. Another significant tendency in radionuclide 

therapy is its evolution from monotherapy towards a combined application with other 

anticancer modalities (Valdes Olmos et al, 2001). The accurate assessment of bio­

distribution and radiation dose delivered during radionuclide therapy is difficult and 

challenging. The therapeutic outcome depends on various complex factors of the 

radionuclide used (Table 4.2).

4.2.1 Choice of radionuclide

The choice of radionuclide depends on the range of principle radiation emitted, size of 

the tumour, availability and cost. The radionuclides are usually grouped according to 

the range of principle radiation emitted (Flower, 1998).

Alpha (a) emitters have a short range (50-90/xm) and traverse up to 10 cell diameters 

from the point of radioactive decay (Humm, 1986; Flower, 1998). The therapeutic 

potential of a emitters lies in the energy loss within their short path. The alpha (a) 

emitters deposit 400 times more energy per unit distance than beta (p) radiation. The 

high linear energy transfer (80-100 keV//xm) deposit approximately 1.0 MeV upon 

traversing the diameter of a cell nucleus. This is sufficient to break the double 

stranded DNA, with little subsequent chance of repair (Humm, 1986).

Beta (p) emitters have a wide range from less than 200/zm to greater than 1mm. The 

beta range is important in relation to the size of the tumour to be treated.
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Radionuclides that decay by internal conversion and electron capture are also used in 

radionuclide therapy. Many of these have a very short range (<10A) and they can 

cause significant radiobiological damage only if  the emission take place very close to 

the cellular DNA (Humm, 1986).

4.2.2 Radiopharmaceutical uptake and retention

The uptake of the radiopharmaceutical at the tumour site is affected by various factors 

such as changes in blood supply, interstitial pressure, permeability and increase in the 

extra-vascular space (Ackery, 1998). The efficacy of radionuclide therapy will be 

lowered if  the blood flow to the affected area is reduced. This is because less 

radiopharmaceutical is available to the viable cells; the functional integrity of tumour 

cells decreases so the demand for the metabolic substrate decreases and finally the 

hypoxic state of the cells reduces the sensitivity of the affected tissue to the radiation 

effects. The amount of radiopharmaceutical taken up at the tumour site and its 

retention at the tumour site is very important in the assessment of cumulative 

absorbed radiation dose to organ or the tumour to be treated (Ackery, 1998). In 

radionuclide therapy planning, the physical half-life of the radionuclide label should 

be studied very carefully as a short acting agent will not take full advantage of its 

residence time at the tumour site, where as a radionuclide label of a long physical half 

life will give unnecessary dose to normal tissues (Ackery, 1998). In practice no 

radiopharmaceutical is entirely selective and other tissue will generally compete for 

its uptake, thereby reducing the final concentration at the required tumour site 

(Ackery, 1998).
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Choice of radionuclide

Uptake and retention of radiopharmaceutical 

Chemical conjugation/labelling 

Radiation dosimetry 

Radiation related toxicity

Table 4.2 Common factors affecting the therapeutic outcome

4.2.3 Chemical conjugation/labelling

Combination of radionuclide with a tissue or tumour specific pharmaceutical is a very 

complex process. Direct labelling is possible only in very few circumstances (Ackery, 

1998). Most of the time a conjugating molecule (usually a chelate) needs to be 

attached to the pharmaceutical. But the problem is, attachment of a chelate could alter 

the behaviour and bio-distribution of the radiopharmaceutical. This may lead to 

reduced concentration in tumour/target tissue. Chelates which bind with radio-metals 

in-vitro may release them in-vivo, giving unwanted and increased radiation burden 

from free radionuclide. The radioconjugates are subject to high radiation fluxes and 

may undergo self-irradiation radiolysis. Decomposition into a variety of radiolabeled 

sub-species can be minimised by dilution or freezing the radiopharmaceutical 

solution, thereby preventing the release of free radionuclide (Giap et al, 1995). Finally 

the timing between synthesis of the radiopharmaceutical and injecting them into the 

patient is a very important factor.
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4.2.4 Radiation dosimetry

It is practically very difficult to calculate precisely the magnitude and biodistribution 

of the internal dose delivered from unsealed sources. In view of the large inherent 

uncertainties individual patient dosimetry is not always performed (Flower, 1998). 

For targeted radionuclide therapy, the level of activity to be administered is often 

determined from whole-body dosimetry performed on a pre-therapy tracer study. The 

largest potential source of error in this method is due to inconsistent or inaccurate 

activity retention measurements (Flux et al, 2002). However, with recent advances in 

imaging and counting techniques, internal dose estimations are becoming more 

common and challenging.

4.2.5 Assessment of Radiation related toxicity

The assessment of radiation related toxicity is very important. The bone marrow stem 

cells are the critical sites in most of radionuclide therapies and it takes 4-6 weeks to 

recover from their initial damage. Normal tissues are always at risk if they lie close to 

the tumour site (Ackery, 1998).

To avoid these complications utmost care should be taken to analyse all the above 

mentioned factors before planning radionuclide therapy.
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4.3 Radionuclides

4.3.1 Iodine [I311]

1 ' I  1

I is a beta-emitting radionuclide with a physical half-life of 8.04 days, a principal 

gamma ray of 364 KeV (81% abundance) and beta particles with a maximum energy 

of 0.61 MeV and an average energy of 0.192 (Table 4.3).

4.3.2 Yttrium [86Y ,9#Y]

or

There are two radionuclides of yttrium used in the radiopharmaceutical labelling. Y 

(A).5 = 14.7 h) is a p+emitting radionuclide, often used as an equivalent for 90Y in PET 

imaging. 90Y (*0.5 = 64 hours) is a p' emitter, which is the most frequently used 

radionuclide for targeted radionuclide therapy. 90Y is obtained in high-specific 

activity from 90Sr (Herzog et al, 1993; Wester et al, 1997; Rosch et al, 1999; Fichna 

et al, 2003).

4.3.3 Lutetium [177Lu]

The more frequently used radionuclide of lutetium is 177Lu (£0.5 = 160.8 h) which is a 

short range beta and a gamma-emitter (Firestone et al, 1996). It has the physical 

characteristics similar to 131I (113 and 208 keV gamma photons) and forms stable 

complexes with chelating agents such as DOTA. It has an average energy of 148 keV 

and a maximum range of 1.5mm

G Gnanasegaran MD 100



Iodine [1J1 I] Main emissions
Gamma orX Beta (Emax) Electrons Alpha
E % E % E % E %

El 284 6 248 2 46 4
E2 365 82 334 7 330 2
E3 637 7 606 90
% omitted 11 1 2

Yttrium f 90Y] Main emission
Gamma orX Beta (Emax) Electrons Alpha
E % E % E % E %

El 523 <1
E2 2284 100
E3
% omitted 0

Table 4.3 Showing main emissions from the therapeutic radionuclides (Delacroix, 
1998)

4.4 R adionuclide therapy and N euroendocrine Tum ours

One of the interesting concepts in radiation oncology today is the delivery of high 

radiation dose to the tumour, while sparing the surrounding and normal tissues. NETs 

have the possession of neuroamine uptake mechanisms or they express specific 

receptors at the cell membrane (Lamberts et al, 1991). When a p-emitting 

radioisotope is coupled to mIBG or an SMS analogue, it may specifically target 

tumour cells and deliver an effective radiation dose to the involved cell and 

neighbouring tissue to within a few millimetres or so, thus selectively sparing non­

tumour tissue (Lamberts et al, 1991). The avid uptake of m In-labelled pentetreotide 

and 123I-labelled mIBG by the NETs in scintigraphic scanning, led to the development 

of receptor-targeted therapy. Various radiopharmaceuticals have moved from the 

laboratories to the patient, which has changed the therapeutic scenario.
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4.4.1 Meta-iodobenzylguanidine (mIBG) therapy

4.4.1.1 Meta-iodobenzylguanidine is a meta isomer of the guanethidine derivative 

iodobenzylguanidine (EANM Radionuclide Therapy Committee guidelines). Eligible 

patients will have mIBG positive tumours, documented by quantitative tracer 

scintigraphy. It is essential that all known tumour sites are mIBG positive. The 

administered activity range is between 3.7-11.2 GBq (EANM Radionuclide Therapy 

Committee guidelines). Thyroid blockade with potassium iodate is essential prior to 

administration to prevent thyroidal uptake of free radio-iodine. Unlike patients with 

metastatic catecholamine-secreting tumours, experience with 131I-mIBG for carcinoid 

tumours is limited. A global experience of the treatment of 52 patients was reported in 

1994, where an objective tumour response was recorded in 15% and symptomatic 

responses in 65% (Hoefiiagel, 1994).

4.4.1.2 Side effects and drawbacks: Nausea and vomiting may occur during the first 

two days post-therapy. Temporary myelosupression typically occurs 4-6 weeks post­

therapy. Bone marrow depression is more likely in patients who have bone marrow 

involvement at the time o f 1311-mIBG therapy.
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I I

Fig 4.1 Post-therapy m I-mIBG scan confirming excellent uptake of therapy dose in 
tumour site

G Gnanasegaran MD 103



4.4.2 Radiolabeled Somatostatin analogue therapy

Radiolabelled Somatostatin analogue therapy is gaining much-needed recognition in 

the treatment of neuroendocine tumours. Clinical studies are being performed using 

different agents. Results from pre-clinical and clinical multicenter studies have shown 

encouraging results (Table 4.4). In most radionuclide therapies, bone marrow toxicity 

is dose limiting but after radionuclide targeted therapy using Somatostatin analogues 

labelled with B-emitters such as 90Y and 177Lu, the kidney is the dose-limiting organ 

because of high tubular reuptake of the peptide analogs after glomerular filtration and 

retention of the radionuclides in the tubular cells (de Jong et al, 2002 i).

4.4.2.1 m In-DTPA-pentetreotide

4.4.2.1a lu In-pentetreotide is known to be internalised by the NET cell (Andersson 

et al, 1996); therefore, if given in sufficient activities, 1HIn-pentetreotide, which 

produces an Auger electron with a range of about 80-200 nm, could have a 

therapeutic effect.

Recent studies have shown that H1In-pentetreotide can be given in activities of up to 5 

GBq with minimal toxicity (McCarthy, 1998; Caplin et al, 2000). Many research 

groups used multiple doses of (lu In-DTPA) octreotide, up to 160 GBq, to treat 

patients with somatostatin receptor-positive tumours (Kwekkeboom et al, 2000). The 

therapeutic effects included partial and minor remissions in a few patients and, 

mostly, stabilization of previously progressive tumours. In a series of patients, 

Buscombe et al reported that 31% of the patients had an objective response from the 

treatment of their disease with high-activity n iIn-pentetreotide, and 44% had a period 

of tumour stability, with no growth in tumour size for at least 6 months after the end 

of treatment. Therefore, in this study at least 75% of patients showed some benefit
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from the treatment (Buscombe et al, 2003). This finding compares well with the 

results of de Jong where about 67% of patients showed either stability or a response 

(de Jong et al, 1999).

4.4.2.1b Side effects and drawbacks: Toxicity generally consisted of mild bone 

marrow toxicity, but a myelodysplastic syndrome or leukaemia developed in few 

patients who received >100 GBq. In view of this, a 100 GBq dose was considered the 

maximal tolerable dose of (m In-DTPA) pentetreotide (de Jong et al, 2002 i, 2). The 

major drawback of H1In is the short range of the therapeutic Auger electrons emitted. 

The radiation emitted from a receptor-positive tumour cell cannot kill neighbouring 

receptor-negative cells in tumours with receptor heterogeneity, because the path 

length of the Auger electrons is less than a cell diameter. Also the cost is very high. 

Presently very few centres use 11 ̂ -octreotide to treat their patients.

4.4.2.2 90Y-DOTATOC

4.4.2.2a It is an effective radiopharmaceutical for treating patients with 

neuroendocrine gastroenteropancreatic and bronchial tumours. The results of the 

initial phase II study reported by Waldherr et al are encouraging. They treated patients 

with 4 intravenous injections of a total of 6,000 MBq/m2 90Y-DOTATOC, 

administered at intervals of 6 wk, and all patients had renal protection through co­

infusion of amino acid infusion. The overall response rate was 24%. In the later phase 

of the trial the patients were treated with higher doses of 90Y-DOTATOC (7.4 

GBq/m in 4 equal injections at intervals of 6 wk, with renal protection using 

Hartmann-HEPA 8%) (Waldherr et al, 2002). An objective response occured in 23% 

of the patients (WHO criteria), complete remission in 5%, partial remission in 18%, 

stable disease in 69%, and progressive disease in 8%. An overall 63% clinical benefit 

in terms of clinical symptoms was obtained. These promising tumour responses after
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therapy are essentially similar to those found in other 90Y-DOTATOC studies, despite 

differences in therapy regimens (Paganelli et al, 2001; Valkema et al, 2001).

4.4.2.2b Side effects and drawbacks: Renal toxicity, thrombocytopenia, liver 

toxicity was observed in some patients. Nausea and vomiting were observed in 

patients treated with amino acids (de Jong et al, 2002 i). The radiation dose that can 

be administered safely to the kidneys during these therapies remains to be established. 

There is no real consensus regarding amino acid infusions for reducing the renal 

toxicity. Also disadvantage is 90Y is a pure B-emitter isotope; 90Y-DOTATOC cannot 

provide quantitative imaging outside the body.

4.4.2.3 90Y-DOTA-lanreotide (MAURITIUS)

4.4.2.3a 90Y-DOTA-lanreotide is a universal Somatostatin (SST) receptor subtype 

ligand that binds to a large variety of human tumours (Smith-Jones et al, 1999). In the 

MAURITIUS (Multicenter Analysis of a Universal Receptor Imaging and Treatment 

Initiative, a European Study) trial cumulative treatment doses up to 8584 MBq 90Y- 

DOTA-lanreotide were given as short-term intravenous infusion. Preliminary 

treatment results in 154 patients indicate stable tumour disease in 41% (63 of 154) of 

patients and regressive tumour disease in 14% (22 of 154) of tumour patients with 

different tumour entities expressing Somatostatin receptors (Virgolini et al, 2002). 

4.4.2.3b Side effects and drawbacks: No severe acute or chronic haematological 

toxicity, change in renal or liver function parameters caused by 90Y-DOTA-lanreotide 

treatment were reported for patients in the MAURITIUS trial (Virgolini et al, 2002).
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4.4.2.4 (177Lu-DOTA, Tyr3) octreotate
1

4.4.2.4a ( Lu-DOTA, Tyr3) octreotate is recently developed peptide (in which the

C-terminal threoninol is replaced with threonine), and has been used for the treatment 

of neuroendocrine tumours (Kwekkeboom et al, 2001). This agent seems show the 

highest tumour uptake of all tested octreotide analogues so far, not only in rats but 

also in patients with neuroendocrine tumours (de Jong et al, 2001). The interim results 

show that (177Lu-DOTA, Tyr3)-octreotate is also most promising for PRRT of 

somatostatin receptor-positive tumours. Amino acids are co-infused to reduce the 

kidney dose to less than 23 Gy. By CT assessment, minor tumour shrinkage was 

reported in 6% of 18 patients; partial remission, in 39%; tumour progression in 11%; 

and no change, in 44% (de Jong et al, 2002 2).

4.4.2.4b Side effects and drawbacks: Mild nausea, vomiting, and mild abdominal 

discomfort were present in some patients (de Jong et al, 2002). Tumour response is 

dependent on tumour size (de Jong et al, 2002 2). 177Lu would be optimal for small 

tumours, whereas 90Y would be better for large tumours. In patients with tumours of 

more than one size, combinations of radionuclides might be used (de Jong et al, 2002 

2). Since only a small group was treated with 177Lu, more patients need to be treated to 

evaluate the clinical outcome.

4.4.3 131I- Lipiodol therapy

Many patients with disseminated neuroendocrine tumours have metastases limited to 

their livers. These tumours may be very symptomatic as in the case of the carcinoid 

syndrome where there is over production of serotonin. Though slow growing, these 

tumours are malignant and can grow to sufficient size to block the portal vein and
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inferior vena cava causing portal hypertension. They can disrupt the liver synthetic

function as a result of their bulk and this can lead to liver failure and death.

There is a wide experience in treating hepatocellular cancer (HCC) using 1-131

iodinated poppy seed oil (131I-Lipiodol, CIS-Schering, Saclay, France). The technique

1̂1involves injecting 500-1000 MBq of I-Lipiodol directly into the hepatic artery

under angiographic control. The group from Rennes, our group and those from Hong

Kong have found evidence for efficacy with little evidence for toxicity (Roul et al,

1997). We know from triple phase CT imaging that neuroendocrine tumours in the

liver have a good vascular supply like an HCC and unlike colonic cancer metastases

1̂1in the liver. Therefore it was logical to attempt the use of I- Lipiodol in unbeatable 

symptomatic and growing neuroendocrine tumours within the liver. 131I Lipiodol has 

also been used in an adjuvant setting to treat patients with 0.9 GBq 131I Lipiodol 

6 weeks after surgical resection. The reason for this is that as the post-surgical liver

starts to regenerate, small microscopic daughter tumours can be stimulated to grow. If

1^1these were pre-cleared by I Lipiodol then there would be a lower chance of 

recurrence. It has been shown that at 24 months after administration o f 13 *1 Lipiodol a 

significant 50% increase occurs in both the disease free interval and overall survival
1 - J 1

in those receiving I Lipiodol compared to age matched controls (Lau et al, 1999). 

Within the angiography suite the right and left hepatic artery is identified via a 

femoral artery puncture. Once this has been identified 800-1000 MBq of 131I- 

Lipiodol was infused in about 5 minutes using a 5 French catheter into the hepatic 

artery. Care is taken to avoid reflux up the gastro-duodenal artery. To ensure this did 

not occur, the I- Lipiodol was infused under fluoroscopic control. If the tumour was 

predominately on the right the right hepatic artery was catheterised, if on the left the 

left hepatic artery. If bilateral, the catheter was placed at the junction of the two
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arteries. Before sending the patient home, whole body imaging was performed to

determine the level of retention of 1311- Lipiodol in the tumour. Shunting into the

1 ̂  1lungs is a concern and images are performed at 48-96 h after administration of the I 

Lipiodol for assessment. If shunting of 15% or more has occurred the right lung may 

have received about 12 cGy. This normally causes no problems but repeated radio- 

lipiodol treatment is not recommended (Buscombe et al, 2002).
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Radio
pharmaceuticals

inIndium-
pentetreotide

wYttrium-
pentetreotide

90Yttrium-
lanreotide

177Lutitium-
octreotate

Type of radiation Auger electrons

t\n  =  67 hours

high-energy 13- 
emitter (>lmm)
t \ r i= 64 hours

high-energy 13- 
emitter (>lmm) 
t\i2 = 64 hours

low-energy 13- and 7  
(<200pm)
t\n=  160.8 hours

Chelator DTPA DOTA DOTA DOTA
Dose up to 5 GBq/cycle 1 to 4.4 GBq/cycle 1.2 GBq/cycle 3.7-7.4 GBq/cycle
Amino acid co­
infusion

NO YES NO YES

Reported 
response rates

70% had benefit for 
6 months after 
treatment, and 31% 
had sustained benefit 
at 18 months.

Objective response 
in 23% .complete 
remission in 5%, 
partial remission in 
18%, stable disease 
in 69%, and 
progressive disease 
in 8%.
Overall clinical 
benefit was 63%.

Stable tumour 
disease in 35% 
and regressive 
tumour disease in 
10%

Minor tumour 
shrinkage in 6%, 
partial remission in 
39%, tumour 
progression in 11% 
and no change in 
44%.

Side-effects Minimal bone 
marrow toxicity has 
been reported.

1. Renal toxicity, 
thrombocytopenia, 
liver toxicity is 
reported in some 
patients.
2. Nausea and 
vomiting were 
reported in patients 
treated with amino 
acids.

1. No renal, 
haematological or 
liver toxicity was 
reported were 
reported in the 
MAURITIUS 
trial.

1. Mild nausea, 
vomiting, and mild 
abdominal discomfort 
has been reported.

Advantages 1.Imaging can be 
performed 
2. Binds to SS 
receptor 2 and 5 with 
high affinity

1. Better for large 
tumours
2. Binds to SS 
receptor 2 and 5 
with high affinity

1. Binds to SS 
receptors 2, 3,4, 
and 5 with high 
affinity.
2. Better for large 
tumours

1. Highest tumour 
uptake of all SS 
analogues
2. Octreotate has 
nine-fold higher 
affinity for the SS 
receptor 2 as 
compared with 
octreotide.
3. Imaging can be 
performed

Disadvantages 1. Short path length 
of Auger electrons
2. Bind to SS 
receptor 3 with 
moderate affinity 
does not bind to 
receptor 1 and 4
3. Presently very few 

centres use 11 In-
pentetreotide to treat 

their patients.

1. Quantitative 
imaging cannot be 
performed
2. Bind to SS 
receptor 3 with 
moderate affinity 
does not bind to 
receptor 1 and 4

1. Quantitative 
imaging cannot 
be performed
2. Binds to 
receptor 1 with 
lower affinity

1. Tumour response is 
dependent on tumour 
size.
2. 177Lu would be 
optimal only for 
small tumours
3. So far only a small 
group has been 
treated with 177Lu

Table 4.4 Summary of targeted therapy with radiolabeled somatostatin analogues 
[(Kwekkeboom et al, 2000; Buscombe et al, 2003 ; de Jong et al, 1999; de Jong et 
al, 2002 i>2; Waldherr et al, 2002; Paganelli et al, 2001; Valkema et al, 2001 )
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4.5 Controversies in radiolabeled somatostatin analogue therapy

Even though many radionuclide peptides have reached the clinical/ treatment phase, 

we need more clinical data to assess the real therapeutic outcome to move higher up 

in the treatment algorithm. Another major drawback is that no general consensus 

exists between various groups regarding optimisation of treatment factors. In most 

radionuclide therapies, bone marrow toxicity is dose limiting. In Peptide receptor 

radionuclide therapy, the bone marrow is also at risk, but after Peptide receptor 

radionuclide therapy using somatostatin analogs labelled with 6-emitters such as 90Y

1 77and Lu, the radiosensitive kidney is the dose-limiting organ because of high tubular 

reuptake of the peptide analogs after glomerular filtration and retention of the 

radionuclides in the tubular cells (de Jong et al, 2002 i). Since there is no clear-cut 

method of accessing the risk to the kidneys, thereby toxicity and dose limits to the 

kidneys are complicated.

Serial images after injection of 111 MBq u lIn-DOTATOC has been used to calculate 

the radiation dose to the kidneys (Waldherr et al, 2002). A drawback of this method 

is that small structural modifications in somatostatin analogs, for example, chelator 

substitution or metal replacement, can considerably affect the somatostatin receptor 

binding affinity (Reubi et al, 2000, de Jong et al, 2002 i). On the other hand, the 

major part of the reuptake process in the kidney is not somatostatin receptor mediated, 

probably resulting in a comparable kidney residence time for m In- and 90Y-labeled 

DOTATOC. To reduce radiation exposure to the kidney, different groups have tested 

several regimens of amino acid co-infusion, but these solutions have some 

disadvantages, in particular their hyperosmolarity and their propensity to cause 

vomiting and metabolic changes. There was also some question regarding the type of 

amino acids and the dose to be administered. Most centres use arginine and lysine, but
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still there is no universal consensus regarding this issue. A few studies have reported 

D-lysine in preference to L-lysine for the reduction of renal uptake of radioactivity 

during scintigraphy and therapy because of its lower toxicity and because it should 

not interfere with the natural amino acid metabolic balance (Bernard et al, 1997) 

Presently co-infusion of Lysine and Arginine is advocated , which seems to result in 

a significant inhibition of renal radioactivity in therapy, allowing higher treatment 

doses and thus resulting in higher tumour radiation doses (Rolleman et al, 2003 ).

4.6 CONCLUSION

Use of combinations of radionuclides would be of greatest interest to obtain the 

widest range of tumour curability. The problem of balancing benefits (clinical 

response to radionuclide therapy) and risks (renal radiotoxicity) is significant; 

therefore, careful assessment of biodistribution, dosimetry and toxicity is important, 

preferably on an individualised basis. There should also be a method to monitor and 

assess the treatment response. Finally every patient ideally should receive a "tailor- 

made" therapy based on his or her particular tumour biology profile.
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Chapter 5

90Yttrium brehmsstrahlung imaging

5.1 Introduction

Patient specific radiation dosimetry requires quantitative imaging of the 

pharmacokinetics and biodistribution of the radionuclides. 90Yttrium (90Y), a pure 

beta-emitter is an attractive radionuclide for targeted radionuclide therapy. It has 

gained considerable attraction in targeted radionuclide therapy because of its long 

range beta emission. Furthermore it lessens radiation safety concerns since it does not

onemit gamma radiations. Treatment of neuroendocrine tumours with Y labelled 

somatostatin analogues is popular.

Imaging 90Y could be relevant for the assessment of the therapeutic plan and outcome 

in patients undergoing therapy, because it would allow the treatment plan to be 

modified on the basis of localisation and biodistribution of the radiopharmaceuticals. 

The beta particles emitted from 90Y interact with the tissue to produce 

brehmsstrahlung radiation. Brehmsstrahlung means "braking radiation" and is 

retained from the original German to describe the radiation which is emitted when 

electrons are de-accelerated or "braked" when they pass near nuclei in their path. 

Delerated charges give off electromagnetic radiation, and when the energy of the 

bombarding electrons is high enough, that radiation is in the x-ray region of the 

electromagnetic spectrum. Brehmsstrahlung is characterised by a continuous 

distribution of radiation, which becomes more intense and shifts toward higher 

frequencies when the energy of the bombarding electrons is increased.

Conventional gamma photon imaging methods cannot be easily applied to imaging of 

90Y-bremsstrahlung because of its continuous energy spectrum (Shen et al, 1994).
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Furthermore, quantitation of 90Y by brehmsstrahlung imaging is difficult because of 

the poor image quality that results from septal penetration and scatter secondary to the 

broad brehmsstrahlung energies (Shen et al, 1994). The choice of collimation and 

energy window are complex as broad spectrums of energies from brehmsstrahlung are 

present. However, brehmsstrahlung emissions can be utilized to acquire an image of 

beta sources using a gamma camera (Shen et al, 1994).

The absence of gamma emissions from 90Y for imaging has led researchers to use 

in In, a radionuclide with similar chemical properties and good imaging photons, as a 

tracer for the assessment of pharmacokinetics and radiation dosimetry of 90Y (Shen et 

al, 1994). Although the chemical properties of 90Y and m In are identical, n lIn may 

not predict the behaviour of 90Y with complete accuracy. There are studies reported 

regarding the use of brehmsstrahlung imaging in patients undergoing radiation 

synovectomies for rheumatoid arthritis and more recently to assess the 

pharmacokinetics and radiation dosimetry of the 90Y-labeled antibody (Smith et al, 

1988; Shen et al, 1994). In the past there have been efforts to obtain radiation 

dosimetric data by imaging brehmstrahlung from pure beta emitting radionuclides 

using different type of collimation. Clarke et al used long bore high energy 

collimators (57-285 keV window) for imaging 32P (Clarke et al, 1992) and Siegel et al
Q Q

used a medium energy (ME) collimator (53-148 keV) for imaging Sr (Siegel et al, 

1992). However, due to enhanced photon scattering and penetration through the 

collimator septa the images obtained by brehmstrahlung experience greater blurring.

In our initial experiment (Gnanasegaran, 2001) the energy and windows were 

determined empirically after acquiring the energy spectrum from a patient, using a 

high energy collimator. The brehmstrahlung spectrum was seen as a continuous 

spectrum with more photons present in the lower part of the spectrum. A peak of
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75keV was just discemable. It was decided for our experiments that optimum energy 

would be 75 keV with ± 50% window offset. Broad energy windows employed were 

empirically determined. We later used them in the assessment of biodistribution of 

radiolabelled somatostatin analogues (Chapter 6). But from the experience of others 

(Shen et al, 1994, Clarke et al, 1992; Siegel et al, 1992) and ours (Gnanasegaran, 

2001) the choice of collimation and energy window requires a practical compromise 

between the sensitivity and spatial resolution for specific requirements and 

circumstances. We used a HEGP collimator empirically after imaging a phantom with 

all the 3 types of collimators (LEHR, MEGP and HEGP) (Fig 5.1). With this basic 

background from our previous experience we went further to investigate lesion 

detectability and uniformity of response by examining the contrast and uniformity in 

brehmsstrahlung imaging using a Williams phantom filled with 90Y. The experiment 

was split into 2 areas (a) to investigate the effect of different energy and windowing 

(b) to investigate the effect of different thickness of scattering material.

LEHR
(Low energy high 
resolution collimator)

MEGP
(Medium energy general 
purpose collimator)

HEGP
(High energy general 
purpose collimator)

Fig 5.1 Showing Williams phantom images using different collimators
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5. 2 Experiment 1

5.2.1 Aim

To investigate the effect of scattering material and different energy windows in 

brehmsstrahlung imaging using Williams phantom filled with 90Y.

5.2.2 Material and methods
The experiments were conducted after filling the Williams phantom with 256 MBq of 

90Yttrium (Fig 5.2). The Internal dimensions of the phantom are 20 x 13 x 1 cm 

(excluding the curvature). The phantom consists of 8 cylindrical lesions of different 

sizes. The differently sized lesions are solid perspex cylinders, which represents zero 

activity (cold lesions).

The images were acquired on a Prism 2000XP dual head gamma camera (Picker 

International, Inc. Cleveland Ohio, USA). The head was rotated to 180° with the 

sensitive face directed vertically upwards. Tissue equivalent blocks (scatter material) 

were placed directly onto the centre face of the camera face (Fig 5.3).

5.2.2a Using a high energy collimator, the phantom was imaged at 0cm with different 

width energy windows and different central energy (Table 5.1). All acquisitions were 

terminated after 500,000 counts (Fig 5.4). An assessment of lesion detectability and 

uniformity of response was performed. Contrast and uniformity (coefficient of 

variation) was determined by equations (5.1 and 5.2) respectively.

Contrast = Mean count in the background RQI -Minimum count value in lesion ROI X 100
Mean count in the background ROI

Equation 5.1 Contrast measurements
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S.D (standard deviation)
Coefficient of variation (CoV) = -----------------------------------X 100

Mean

Equation 5.2 Coefficient of variation

Internal dimensions: 20 x 13 x 1 cm 
(excluding the curvature)
Lesion diameter (cm): 1: 4.0

2: 2.5
3: 2.0
4: 3.0
5: 0.7
6: 1.0
7: 1.5
8 : 1.2

Fig 5.2 Diagrammatic representation of Williams’s phantom with internal dimension 
of the 8 lesions (coloured yellow).
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Williams Phantom

Scattering Blocks

Gamma Camera Head

Fig 5.3 Diagrammatic representation of imaging Williams’s phantom using a gamma 
camera (experiment arrangement)

Energy keV Windows Collimator
90 60 HEGP
85 60 HEGP
80 60 HEGP
75 60 HEGP
90 50 HEGP
85 50 HEGP
80 50 HEGP
75 50 HEGP
90 40 HEGP
85 40 HEGP
80 40 HEGP
75 40 HEGP

Table 5.1 Williams phantom was imaged with several different energy windows for a 
fixed count rate of 500,000 counts using high energy collimators.
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Visual analyses of the images were done by four blinded observers and In-house DDL 

code (Version 5.5) (DDL Research system Inc, Boulder, CO, USA) was used for the 

quantitative analyses of the final images. Firstly a large ROI was drawn over the 

phantom to mask out all the background. Irregular ROI were drawn over the lesions 

visible (Minimum pixel) to assess the minimum pixel and remove the lesions for 

uniformity measurements. The ROIs were drawn over all the lesions. The minimum 

pixel values in these regions were used, since determining the ROI over the lesions 

was difficult for lesion with poor resolution. With the same computer software, we 

were able to get the mean pixel value and the standard deviation pixel value of the 

area within the mask, but excluding the lesions used, to calculate uniformity. The 

same procedure was repeated for all the images acquired. Equation 5.2 was used in 

the calculation of uniformity to reduce the error as the single pixel calculation such as 

that from the integral uniformity has a greater degree of error for this application.
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HEGP 75/60 HEGP 75/50 HEGP 75/40

HEGP 80/60 HEGP 80/50 HEGP 80/40

HEGP 85/60 HEGP 85/50 HEGP 85/40

HEGP 90/60 HEGP 90/50 HEGP 90/40

Fig 5.4 Images of Williams’s phantom at different central energy and window width 
(Example: HEGP 90/60=High Energy General Purpose Collimator at central energy 
90keV with energy width 60%)
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5.2.2b In order to investigate how the image quality would change with increased 

scattering material. The Williams’s phantom was positioned in the centre of the FOV 

(field of view). Using a high energy collimator (90 keV, 60% window), measurements 

of contrast and uniformity were taken with several different thicknesses of scattering 

blocks. Varying thicknesses (1, 2, 4, 6, 8, 10 and 15 centimetre) of Perspex were 

placed between the phantom and the camera face (Fig 3). Using a high energy general 

purpose (HEGP) collimator the image was acquired for a fixed count of 500,000 

counts using a matrix of 256 x 256 (Fig 5.5).

10cm

15cm

Fig 5.5 Imaging of 90Y filled Williams’s phantom with various depth of scattering 
material (90/60 = centred at energy 90keV with energy width 60)
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5.2.3 Results

5.2.3a Contrast with different energy and windows

The average number of lesions visualised by 4 observers varied with central energy 

and window width (Fig 5.6). The contrast results for each lesion and window are 

shown in figure 5.7, 5.8, 5.9. To assess the best energy window with relation to 

contrast, for each lesion, we ranked the best energy window (1) to the worst energy 

window (12). The median ranking for each lesion was calculated for 3 window widths 

(60%, 50%, and 40%) and four central energies (75, 80, 85, 90 keV). A summary of 

the median ranking for each lesion and window width and central energy are given in 

the table 5.2. The results of visual analysis and quantitative analysis agree and show 

that for the energy windows investigated there is no optimal window in terms of 

contrast.

8 1 
7 J

6 I 

5 I 

4 I

3 I

2 I

1 1 
0 J

Fig 5.6 Shows the average number of lesions detected by four observers at different 
window and energies.

75/40 80/40 85/40 90/40 75/50 80/50 85/50 90/50 75/60 80/60 85/60 90/60
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Central Energy Lesion 1 Lesion 2 Lesion 3 Lesion 4
75keV 2 10 4 7
80keV 8 3 10 9
85keV 9 5 6 5
90keV 7 8 7 4
Window width Lesion 1 Lesion 2 Lesion 3 Lesion 4
40% 4.5 6.5 6 6
50% 9 6.5 4.5 4.5
60% 8 6.5 8.5 8.5

Table 5.2 Median ranking for each lesion was calculated for 3 window widths and 
four central energies

Contrast (60% Window)

100

CR1 CR4 CR2 CR3
Lesion

Fig 5.7 Showing contrast of 4 lesions imaged with 60% window with different energy
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100

80

| 60 
8 4°

20

0

Fig 5.8 Showing contrast of 4 lesions imaged with 50% window with different energy

Contrast( 40% Window)

■ 90
■ 85 
□ 80 
□ 75

CR1 CR4 CR2 CR3
Lesion

Fig 5.9 Showing contrast of 4 lesions imaged with 40% window with different energy

«2 60

Contrast (50% Window)

— i—

Lesion
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5.2.3b Contrast in relation to depth

In the experiment to assess the image contrast over varying depth using the scatter 

materials, we could see that the there is degradation (downward trend) of the image 

with increasing depth even for the biggest lesion in the phantom (Fig 5.5, 5.10, 5.11).

Fig 5.10 Number of lesions detected over varying depths on visual analysis

Contrast with distance

B S P
■ M B

Distance

Fig 5.11 Showing degradation of contrast with increase in scattering material
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5.2.3c Uniformity

The figure 5.12 and table 5.3 shows that how uniformity varies with different energy 

and window settings. The best uniformity is with smallest value, which is in this case 

is with energy centred at 75 keV with 60% window width. The figure 5.13 shows the 

changes in uniformity with increasing scatter.

■ 60% 
■ 50% 
□ 40%

75 80 85 90

Energy

Fig 5.12 Shows uniformity with varying window and energy

Energy Window Collimator CoV
90 60 HEGP 24.33
85 60 HEGP 22.01
80 60 HEGP 21.51
75 60 HEGP 21.46
90 50 HEGP 22.22
85 50 HEGP 29.69
80 50 HEGP 23.81
75 50 HEGP 24.4
90 40 HEGP 25.69
85 40 HEGP 26.67
80 40 HEGP 25.86
75 40 HEGP 24.80

Table 5.3 Shows uniformity with varying window and energy
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15
>  o o

10 

5 

0
1CM 2CM 4CM 6CM 8CM 10CM 15CM

Depth

Fig 5.13 Showing changes in uniformity with depth

5.2.4 Discussion

onImaging with Y is relevant in therapy planning because the plan can be modified if 

there is instability of the radiopharmaceutical. In the past imaging of brehmsstrahlung 

has been reported by other researchers using gamma cameras (Smith et al, 1988; 

Clarke et al, 1992; Siegel et al, 1992; Shen et al, 1994).

Our initial clinical experiments were conducted using a High Energy General Purpose 

collimator (HEGP) because it has better resolution and signal to noise ratio than other 

collimators (Shen et al, 1994). We empirically centred the energy at 75 keV with a 

50% window off-set for our post therapy imaging.

In the assessment of contrast using different central energy and window widths. The 

lesions were visually analysed by 4 blinded observers, over all 6 lesions were visible 

ranging in size from 1.2-4 cm in diameter. These lesions were visible with varying 

contrast. Visual assessment and quantitative assessment of contrast were in
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agreement; suggesting that in terms of contrast there is no optimal energy window in 

the range investigated.

We also saw a downward trend in the visualisation of the lesions while using 

scattering material i.e. the lesion outline or the margins were clearly defined with 

minimal scatter (1cm), where as with increasing scatter material (max of 15cm) the 

lesion margins were more poorly defined (Fig 5.5). None of the lesions below 1.2 

cm was visualised by the 4 observers even with the minimum scatter of 1cm. 

Quantitative assessment of contrast supports this observation. This is clinically 

relevant even though we looked at the cold lesions in our experiments, in our 

observation we could not see lesions less than 3cm in diameter with 15cm scatter. At 

the more clinically relevant depth of 10cm no lesion less than 2cm diameter were 

seen. In a clinical situation, this means that organs will be well defined, but lesions at 

increasing depth will not be clearly seen.

Uniformity of response is an important parameter for quantification. In my 

experiments uniformity varies with energy and depth. Visual analysis shows no 

significant difference in uniformity with different central energy and window widths. 

Quantitatively the optimal uniformities were found at lower central energies and 

higher window widths with optimal window of 60% width. On assessment of 

uniformity over increasing scatter the optimal uniformity is obtained at 1cm depth 

(Fig 5.13).

The physics of brehmsstrahlung imaging is complex and still not fully understood 

(Gandon, 2003) and the argument about optimal imaging is still ongoing. For example 

Shen et al, with their extensive research reported that spatial resolution and signal to 

noise ratio of the medium energy (ME) collimators were lower than the high energy 

(HE) collimators, but the sensitivity of ME collimator was two times greater than the
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HE collimator thereby confirming the advantage of using ME collimators. Clarke et al 

proposed that HE collimators with empirically selected broad energy window were 

sufficient for imaging patients with therapy doses of 90Y and 32P.

The difficulties here are that the characteristics of collimators such as HEGP 

collimators differ quite greatly from manufacturer to manufacturer making the 

generalised agreement of an optimal collimator problematic. Our experiments have 

shown that MEGP collimator has too much septal penetration (Gandon, 2003). Other 

influences in detector design and their resulting character will also make it difficult to 

optimise imaging parameters for all systems. Finally patient factors such as patient 

weight could also affect optimal imaging parameters.

The final quality of image in nuclear medicine is determined by various factors, 

including resolution, sensitivity and the amount of scatter and the uniformity of 

response across the detector. As of today many researchers have given different 

views, the choice of collimator, energy and window is complex and practical 

compromise has to be made for specific circumstances. In our experiments there was 

no optimal window for contrast, however in terms of uniformity of response imaging 

using HEGP with energy centred at 75 keV with 60% window width would be 

optimal.

5.2.5 Conclusion

Contrast of the image is most important because it allows visualisation of the lesion 

and uniformity is related to the consistency and accuracy of the image. Our 

experiments suggest that although there is no optimal window in terms of contrast in 

the range we have assessed, in terms of uniformity of the window 75 keV with 60% 

window is optimal.
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To apply these methods clinically, a more realistic model for localised variations of 

brehmsstrahlung generation in tissue and for related photon transport mechanisms is 

required. Even then evaluation of radiation dosimetry could be difficult as it lacks 

primary photon emission. But with the present experiments we have found that it is 

possible to access the general biodistribution of the 90Y labelled compounds. Further 

more we were able to confirm in patients that we are targeting the right organs. In 

terms of dosimetry, further experiments are required to assess the viability of these 

methods.

5.2.6 Future plan

(a) To acquire planar and SPECT images under the proposed imaging protocol and 

test the accuracy as to whether it is possible to quantify the injected 90Y activity. 

Initial experiments are presently in progress using an anthropometric phantom.

(b) To acquire planar images using wider windows with increasing energy following 

the preliminary experiments conducted by (Gandon, 2003).
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Chapter 6

niIndium-pentetreotide and Brehmsstrahlung Imaging in the 
assessment of biodistribution and bone marrow toxicity of 

radiolabelled somatostatin analogues

6.1 Introduction

The value of radionuclide therapy is largely determined by the predictability of the 

patterns of biodistribution of the radiopharmaceutical. Radio-labelled receptor binding 

peptides have emerged as an important class of radiopharmaceuticals and these 

peptides transmit their biological function by binding to their specific receptor on the 

target cell. This specific receptor-binding property is exploited when the radiolabelled 

peptide is used as a radiopharmaceutical. The high-binding affinity for its receptor 

facilitates retention of the peptide in receptor-expressing tissues, whereas its relatively 

small size facilitates rapid clearance from the blood and other non-target tissues. 

lu In and 90Y radiolabeled somatostatin analogues are commonly used in the treatment 

of neuroendocrine tumours. After administration, a large amount of the compound is 

excreted via the urinary tract, while a variable part is trapped in the tumours. 

Unfortunately, the compound may also be trapped in critical tissues such as kidney or 

bone marrow. As a consequence, a method for assessment of individual 

biodistribution and pharmacokinetics is required to predict the maximum dose that 

can be safely injected into patients (Walrand et al, 2003).

The absence of gamma emissions from 90Y for imaging has led researchers to use 

in In, a radionuclide with similar chemical properties and good imaging photons, as a 

tracer for the assessment of pharmacokinetics and radiation dosimetry of 90Y (Shen et 

al, 1994). However, it may be that a diagnostic radiolabelled somatostatin analogue 

such as lu In-pentetreotide will have a biodistribution, which is similar enough to
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allow for this agent to predict the biodistribution of a therapeutic radiolabelled 

somatostatin analogues, 90Y-lanreotide and 90Y-SMT.

6. 2 Experiment 1 

6.2.1 Aim

The aim of this study was to compare the biodistribution of 1HIn-pentetreotide and 

90Y-lanreotide and secondly to determine whether this biodistribution was close 

enough to allow m In-pentetreotide to be used to predict toxicity and for 90 Y- 

lanreotide treatment.

6.2.2 Material and methods 

6.2.2a Inclusion criteria

Fourteen patients with somatostatin receptor-positive neuroendocrine tumours were 

included in this study, 6 males and 8 females (30-79years) (Table 6.1). All the 

patients were referred to the Nuclear Medicine Department from the Neuroendocrine 

Tumour Clinic of Royal Free Hospital, London. Of the 14 patients, 12 patients had 

carcinoid tumour 1 patient had medullary carcinoma of thyroid and 1 patient had 

small cell lung carcinoma. All had been assessed as unsuitable for surgery, 

chemotherapy or 131I-mEBG therapy and had been offered 90Y-lanreotide therapy for 

symptom control or control of growing tumour.

6.2.2b Preparation of agents

The H1In-pentetreotide was labelled according to manufacturer’s instructions and was 

released for injection if the thin layer chromatography showed labelling efficiency of 

greater than 95%.

The 90Y-lanreotide was produced by dissolving lOOmcg of DOTA lanreotide peptide 

residue (Biomedica, Vienna, Austria) in 0.4ml of 1M ammonium acetate buffer using

G Gnanasegaran MD 132



a low metal shedding needle for fluid transfer (to avoid transfer of other trace 

elements). After mixing at room temperature for 3-5 minutes, the solution was added 

to the vial containing 1.2 GBq of 90Y-chloride (Amersham Health, Amersham Berks, 

UK) and the vial placed in a water bath containing boiling water for 10 minutes. 

Before administration the product was filtered through a 0.2 micron low-protein- 

binding filter. The labelling efficiency was checked to be above 95% by both HPLC 

and thin layer chromatography before it was administered.

Patient Age in years Sex Diagnosis
1 CK 67 F Non secretory-carcinoid tumour
2 CS 52 M Secretory-carcinoid tumour
3 SP 50 M Secretory-carcinoid tumour
4 MC 47 F Non secretory-carcinoid tumour
5 SH 45 M Non secretory-carcinoid tumour
6 JB 77 F Non secretory-carcinoid tumour
7 EB 43 F Non secretory-carcinoid tumour
8 SS 56 F Non secretory-carcinoid tumour

9 LM 79 F Medullary carcinoma of thyroid
10 MR 57 F Secretory-carcinoid tumour
11 LC 57 F Small cell lung carcinoma
12 BP 62 M Non secretory-carcinoid tumour
13 DV 59 M Secretory carcinoid tumour
14 MQ 30 M Non secretory-carcinoid tumour

Table 6.1 Patients with somatostatin receptor-positive neuroendocrine tumours

6.2.2c Imaging

The patients were assessed for the presence of somatostatin receptors by the use of 

commercially available in In-pentetreotide (Octreoscan, Tyco Healthcare, Petten 

Netherlands). For analysis of the biodistribution of 1HIn-pentetreotide, whole body 

imaging at 24 hours post injection of 120 MBq 11‘in-pentetreotide (maximum allowed 

in the U.K) was used (Fig 6.1.1). Imaging was performed on a two headed gamma 

camera fitted with medium energy collimators (Phillips-Marconi Prism 2000,
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Cleveland, Ohio). Anterior and posterior views were obtained into a 256 X 256 matrix 

at a scanning rate of 20 minute/metre and peak energies of 170 and 250 keV with 15% 

window.

Within 8 weeks of this scan all 14 patients received 1-1.2 GBq 90Y-lanreotide 

followed by whole-body brehmsstrahlung imaging 24 hours later (Table 6.2). All the 

images were acquired using the same gamma camera, fitted with high-energy 

collimators, with a 75 keV photopeak and 50% windows (Gnanasegaran, 2001) (Fig 

6.1 and 6.2). The same matrix size and acquisition time were used as in the m In- 

pentetreotide imaging.

In view of the limited resolution of the brehmsstrahlung imaging it was not possible to 

identify all tumour sites and many of the patients had multiple small tumours. Total 

tumour uptake was therefore not calculated as part of this study.

Study Whole body 
somatostatin imaging

90Y brehmsstrahlung

Radiopharmaceutical In- pentetreotide 90Y-lanreotide
Activity
administered

120 MBq 1-1.2 GBq

Patient preparation None None
Patient positioning Supine, arms to side 

using the arm rest
Supine, arms to side 
Using the arm rest

Collimator Medium energy general 
purpose
170 + 250 keV with 
15% window

High energy general 
purpose

75 keV with 50% 
windows

Table 6.2 Whole body imaging protocol for11‘in- pentetreotide and 90Y-lanreotide
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Fig 6.1 Anterior and posterior 24 hour post injection whole body images showing a 
similar distribution of n ,In pentetreotide and 90Y-lanreotide in tumour around the 
liver. However, note the uptake of the 90Y-lanreotide is less in the kidneys, bladder 
and colon.
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Fig 6.2 Brehmsstrahlung Spectrum 

6.2.2d Biodistribution and dosimetry

The whole body 11 ̂ -pentetreotide and the 90Y-lanreotide (brehmsstrahlung) images 

were then used for the calculation of the biodistribution of each radio-labelled 

somatostatin. Irregular regions of interest (ROI) were drawn over the m In- 

pentetreotide images in all the patients. The ROIs were drawn, manually, on the 

anterior whole body image over the liver, spleen (except in one patient who had 

undergone splenectomy), heart, bone marrow (spine), and the kidneys. These regions 

were then stored and applied to the posterior image after “flipping” the images (Fig 

6.3). The organ sites were defined by the appearances o f that organ on the 1HIn- 

pentetreotide scan. The whole body uptake was calculated using a geometric mean 

(Formula 6.1) and then the geometric mean uptake was calculated for the liver, 

spleen, heart, bone marrow, left kidney and the right kidney by counting the activity 

from the anterior and posterior images (Formula 6.2) (Table 6.3). The whole 

procedure was then repeated for the 90Y-lanreotide images using the same regions as 

those applied in the n iIn-pentetreotide images (Table 6.4) and the geometric mean
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was used. The absorption correction for the brehmsstrahlung has not yet been defined 

and verified and therefore a depth correction technique could not be employed.

Geometric mean = W Anterior counts X Posterior counts

Formula 6.1 Calculation of Geometric mean

Counts (geometric mean) of organ
Organ uptake % =   X 100

Counts (geometric mean) of whole body

Formula 6.2 Calculation of organ uptake as percentage of whole body uptake
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Fig 6.3 Anterior and posterior whole body image of H1In-pentetreotide and 90Y- 
lanreotide image showing regions drawn for calculation of percentage o f whole body 
uptake in various organs
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Liver Spleen Heart Bone marrow Kidney
1CK 10.5 2.9 1.5 2.2 12.9
2CS 6.5 3.9 1.3 2.7 18.6
3SP 24.3 7 1.2 2.1 11.2
4MC 23.1 8 1.1 3.4 18.9
5SH 10.6 1.2 1.1 2.8 25
6JB 21 12.5 2.4 3.5 7.6
7EB 8.9 1.6 1.8 1.9 4.9
8SS 12.7 Splenectomy 0.9 2 13

9LM 19.5 21 1.9 4.5 27.5
10MR 68 2.2 0.5 1.5 6.6
11LC 26 4.2 0.8 3.5 10
12BP 53.4 4.3 1.9 1.4 13.1
13DV 23.7 6.3 1.4 2.6 14.1
14MQ 18.7 5.9 0.5 0.9 7.7

Table 6.3 Percentage of uptake in different organs with n ,In-pentetreotide

Liver Spleen Heart Bone marrow Kidney
1CK 8.7 2.6 2.4 2.1 4.4
2CS 9.8 2.7 1.9 1.8 3.5
3SP 14.6 2.7 1.6 2.5 5
4MC 10.1 4.2 2.1 3 5.7
5SH 6.2 3.5 2 2.3 5
6JB 13.8 4.7 3.8 2.4 6.9
7EB 6.3 2.9 2.1 2.5 3.9
8SS 7.6 Splenectomy 1.8 2.2 4.8
9LM 7.4 2.5 1.9 2.7 5.2
10MR 21 3.5 1.3 3 3.9
11LC 7.2 2.3 1.5 1.2 5.5
12BP 10.6 3.8 1.9 3.4 5.6
13DV 10.3 3.2 2 2.4 4.9
14MQ 4.3 0.8 0.6 0.6 1.3

onTable 6.4 Percentage of uptake in different organs with Y-lanreotide
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6.2.2e Statistical analysis

Using a two-tailed paired student t test the difference in uptake was calculated for 

11 ̂ -pentetreotide and 90Y-lanreotide in each of the different organs measured. 

Statistical significance was assumed when p<0.05 (Table 6.5, 6.6, 6.7). These 

statistics were calculated using SPSS v 6.0 (SPSS, Chicago, II, USA).

6.2.3 Results

Whilst the distribution of the two agents was generally similar (Fig 6.1) there was a 

significant difference in uptake for 11 ̂ -pentetreotide and 90Y-lanreotide in some 

organs (Fig 6.4). For 11 ̂ -pentetreotide the liver uptake was significantly higher than 

for 90Y-lanreotide (p=0.004, Table 6.8). The 11 ̂ -pentetreotide uptake in the kidneys 

showed a much higher uptake than for 90Y-lanreotide (p = 0.000, Table 6.8) (Fig 6.5), 

with the mean renal uptake of 11 ̂ -pentetreotide being more than double that seen 

with 90Y-lanreotide. In the spleen and bone marrow there was no significant 

difference in the uptake of the two agents. The uptake in the heart, which represents 

remaining circulating activity of the radio-peptide at 24 hours, was higher with 90Y- 

lanreotide than with 11 ̂ -pentetreotide but this was not significant (Table 6.8).
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N Correlation Sig.
Pair 1 I LIVER &Y LIVER 14 .7 .005
Pair 2 I SPLEEN & Y SPLEEN 13 .1 .84
Pair 3 I HEART &Y HEART 14 .8 .001
Pair 4 I MARROW &Y MARROW 14 .1 .73
Pair 5 I L KID & Y L KID 14 .2 .45

Table 6.6 Paired Samples Correlations of H1In-pentetreotide and 90Y-lanreotid

Mean N Std. Deviation Std. Error Mean

Pair 1
ILIVER 23.4 14 17.3 4.6

YLIVER 9.8 14 4.3 1.1

Pair 2
I_SPLEEN 6.2 13 5.4 1.5

Y_SPLEEN 3 13 .98 .3

Pair 3
IHEART 1.3 14 .5 .1

YHEART 1.9 14 .7 ,9

Pair 4
IMARROW 2.5 14 1 .3

Y_MARROW 2.3 14 .7 .2

Pair 5
I_L_KID 13.6 14 6.7 1.8

Y L K ID 4.7 14 1.3 .3

Table 6.5 Paired sample statistics of m In-pentetreotide and 90Y-lanreotide

G Gnanasegaran MD 141



Paired
Differences

t df Sig. (2- 
tailed)

Mean Std.
Deviation

Std. Error 
Mean

95% 
Confidence 

Interval of the 
Difference

Lower Upper
Pair

1
I LIVER- 
Y_LIVER

13.5 14.5 3.9 5.1 21.9 3.5 13 .004

Pair
2

I SPLEEN- 
Y_SPLEEN

3.2 5.4 1.5 -6.7E-02 6.5 2.1 12 .054

Pair
3

I HEART- 
Y_HEART

-.6 .4 .1 -.8 -.38 -5.6 13 .000

Pair
4

I MARROW - 
Y_M ARROW

.2 1.1 .3 -.4 .9 .7 13 .5

Pair
5

I L KID - 
Y_L_KID

8.9 6.9 1.7 5.1 12.7 5 13 .000

Table 6.7 Paired Samples test of m In-pentetreotide and 90Y-lanreotide

Organs p value
Liver (n=14) 0.004
Spleen (n=13) 0.054
Heart (n=14) 0.000
Bone marrow (n=14) 0.5
Kidneys (n=14) 0.000

Table 6.8 Shows the p values for each organ

Organs p value
Liver (n=12) 0.000
Spleen (n= ll) 0.05
Heart (n=12) 0.000
Bone marrow (n=12) 0.06
Kidneys(n=12) 0.000

Table 6.9 Shows the p values for each organ without patients 10 and 12
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6.3 Experiment 2

6.3.1 Aim

The aim of this study was to compare the biodistribution of m In-pentetreotide and 

90Y-SMT

6.3.2 Material and methods 

6.3.2a Inclusion criteria

Five patients with somatostatin receptor-positive neuroendocrine tumours were 

included in this study, 3 males and 2 females (46-63 years) (Table 6.9). All the 

patients were referred to the Nuclear Medicine Department from the Neuroendocrine 

Tumour Clinic of Royal Free Hospital, London. 3 patients had carcinoid tumour and 

2 patients had Insulinoma. All had been assessed as unsuitable for surgery, 

chemotherapy or m I-mIBG therapy and had been offered 90Y-SMT therapy for 

symptom control or control of growing tumour.

Patient Age in years Sex Diagnosis
IR A 61 M Insulinoma
2 MR 57 F Secretory-carcinoid tumour
3 FN 46 M Secretory-carcinoid tumour
4 LC 62 F Secretory-carcinoid tumour
5 MA 63 M Insulinoma

Table 6.10 Patients with somatostatin receptor-positive neuroendocrine tumours 

6.3.2b Imaging

The patients were assessed for the presence of somatostatin receptors by the use of 

commercially available n iIn-pentetreotide (Octreoscan, Tyco Healthcare, Petten 

Netherlands). For analysis of the biodistribution of 1HIn-pentetreotide, whole body 

imaging at 24 hours post injection of 120 MBq m In-pentetreotide was used (Fig 6.6)
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(Table 6.10). Imaging was performed on a two headed gamma camera fitted with 

medium energy collimators (Phillips-Marconi Prism 2000, Cleveland, Ohio). Anterior 

and posterior views were obtained into a 256 X 256 matrix at a scanning rate of 20 

minute/metre and peak energies of 170 and 250 keV with 15% window.

Within 8 weeks of this scan all 5 patients received 4 GBq 90Y-SMT (amino acid 

infusion was administered before and during infusion) followed by whole-body 

brehmsstrahlung imaging 24 hours later. All the images were acquired using the same 

gamma camera fitted with high-energy collimators; with a 75 keV photo peak and 

50% windows. The same matrix size and acquisition time were used as in the in In- 

pentetreotide imaging.

Study Whole body 
somatostatin imaging

yuY brehmsstrahlung

Radiopharmaceutical 111 In-pen tetreotide ’"Y-SMT
Activity administered 120 MBq 4 GBq
Patient preparation None None
Patient positioning Supine, arms to side 

using the arm rest
Supine, arms to side 
Using the arm rest

Collimator /energy Medium energy general 
purpose
170 + 250 keVwith 15% 
window

High energy general 
Purpose

75 keV with 50% windows

Table 6.11 Whole body imaging protocol form In- pentetreotide and 90Y-SMT
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6.3.2c Biodistribution and dosimetry

The whole body m In-pentetreotide and the 90Y-SMT (brehmsstrahlung) images were 

then used for the calculation of the bio-distribution of radiolabelled somatostatin (Fig 

6.7) (Table 6.11 and 6.12). The biodistribution and statistical analysis were performed 

as done in study 6.2.

111-In Liver Spleen Heart Bone marrow Kidneys
1 RA 20 4.5 0.7 4.3 17.8
2 MR 17 10 0.8 3 10
3 FN 24.8 7.2 0.5 2 10.7
4 LC 21 14 0.5 4.2 12
5 MA 35 1.1 0.5 1.8 8

Table 6.12 Percentage of uptake in different organs with in In-pentetreotide

90-Y Liver Spleen Heart Bone marrow Kidneys
1 RA 20.3 2.4 1.4 2.8 4
2 MR 17.4 2.8 1.2 2.9 6
3 FN 13.3 8.6 1.1 4.6 8
4 LC 12 3.7 1.2 2.7 7
5 MA 10.5 4.2 1.2 4 6.6

Table 6.13 Percentage of uptake in different organs with 90Yttrium-SMT

6.3.3 Results

Whilst the distribution of the two agents was generally similar (Fig 6.6) there was a 

difference in uptake for lllIn-pentetreotide and 90Y-SMT in some organs (Fig 6.8). 

For 11 'in-pentetreotide the liver uptake was higher than for 90Y-SMT.
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Fig 6.6 Demonstrates the distribution of m In-pentetreotide and 90Y-SMT
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Fig 6.7 Anterior and posterior whole body image of H1In pentetreotide and 90Y-SMT 
image showing regions drawn for calculation of percentage of whole body uptake in 
various organs
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The in In-pentetreotide activity in the kidneys showed a much higher uptake than for 

90Y-SMT p=0.041 (Table 6.13) (Fig 6.8), with the mean renal uptake of 1HIn- 

pentetreotide being more than double that seen with 90Y-SMT. In the spleen and bone 

marrow there was no difference in the uptake of the two agents. The uptake in the 

heart, which represents remaining circulating activity of the radio-peptide at 24 hours, 

was higher with 90Y-SMT than with m In-pentetreotide but this was not significant.

25

a>

Q.=>

—
j —

_ i  = * =

1 Y-SMT 

■ In-pentetreotide

Livsr Spleen Heart Bone M kidneys 

Organs

Fig 6.8 Distribution of 90Y-SMT and 111 In-pentetreotide in various organsl l l i

Organs p value
Liver (n=5) 0.004
Spleen (n=5) 0.095
Heart (n=5) 0.02
Bone marrow (n=5) 0.532
Kidneys (n=5) 0.041

Table 6.14 shows the p values in different organs
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6.4 Experiment 3

6.4.1 Aim

onThe aim of this study was to compare the biodistribution of Y-SMT at 4 hrs and 24 

hours.

6.4.2 Material and methods 

6.4.2a Inclusion criteria

Two patients (lmale & 1 female) with Somatostatin receptor-positive neuroendocrine 

tumours were included in this study (Table 6.14). They had been offered 90Y-SMT 

therapy for symptom control or control of growing tumour.

Sex-age Tumour type Therapy
Patient 1 F/45 Carcinoid ,0 Y-SMT
Patient 2 M/63 Insulinoma ,u Y-SMT

Table 6.15 Patients with somatostatin receptor-positive neuroendocrine tumours 

6.4.2b Imaging

Both the patients received 4 GBq 90Y-SMT (amino acid infusion was administered 

before and during infusion) followed by whole-body brehmsstrahlung imaging at 4 

hour and 24 hours later (Table 6.10). All the images were acquired using the same 

gamma camera used in the previous studies (6.2 & 6.3) fitted with high-energy 

collimators; with a 75 keV photo peak and 50% windows.
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6.4.2c Biodistribution and dosimetry

The whole body 90Y-SMT (brehmsstrahlung) images at 4 hours and 24 hours were 

then used for the calculation of the bio-distribution of radiolabelled somatostatin. 

Irregular regions of interest (ROI) were drawn over the 90Y-SMT images. The ROIs 

were drawn, manually, on the anterior whole body image over the liver, spleen heart, 

bone marrow (spine), and the kidneys. These regions were then stored and applied to 

the posterior image after “flipping” the images. The whole body activity was 

calculated using a geometric mean (Formula 6.1) and then the geometric mean uptake 

was calculated for the liver, spleen, heart, bone marrow, left kidney and the right 

kidney by counting the uptake from the anterior and posterior images (Formula 6.2).

6.4.3 Results

Whilst the distribution of the 90 Y-SMT was generally similar at 4 hours and 24 hours 

(Fig 6.9) there was a difference in uptake during these times. The initial 4-hour uptake 

of 90Y-SMT in liver, spleen, bone marrow and kidney’s was lower than the 24 hours 

uptake. The uptake in the heart did not change during 4 hours and 24 hours (Table 

6.14) (Fig 6.15).
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Fig 6.9 Whole body images showing distribution of 90Y-SMT at 4 & 24 hours
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Liver Spleen Heart BM Kidney’s
Patient 1 4 hours 4.9 1.7 1.3 2.7 1.8

24 hours 8.3 4.02 1.6 5 3.8
Patient 2 4 hours 12.6 5.9 1 6.7 4.8

24 hours 12.7 1.9 1.4 8.4 5.1

Table 6.16 Percentage of uptake in different organs with 90Y-SMT at 4 & 24 hours
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Fig 6.10 Shows Distribution of 90Y-SMT at 4 & 24 hours in various organs
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6.5 Experiment 4

6.5.1 Aim

The aim of our study was to determine if brehmsstrahlung imaging was useful in 

predicting bone marrow toxicity after 90Y-lanreotide.

6.5.2 Material and methods 

6.5.2a Inclusion criteria:

12 patients (6 males & 6 females) with biopsy proven neuroendocrine tumours were 

included in the study (Table 6.16). All the patients had serial blood tests for urea, 

creatinine, platelets, and at regular intervals pre and post treatment. 6 patients were 

suffering from grade 3 & 4 bone marrow toxicity was compared with 6 further 

patients in whom no toxicity occurred. The factors compared included; previous 

chemotherapy, known bone metastases of NET and the % spinal bone marrow at 24 

hours post therapy as determined by brehmsstrahlung imaging.

Patient Age Sex Diagnosis

BJ 77 years Female Carcinoid tumour ©
BE 62years Female Carcinoid tumour©
CK 67years Female Carcinoid tumour©
FB 65years Male Carcinoid tumour
HS 45years Male Carcinoid tumour©
SS 56years Female Carcinoid tumour©
HM 59years Male Carcinoid tumour©
ME 56years Male Carcinoid tumour©
LM 78years Female Medullary carcinoma thyroid
HR 62years Male Carcinoid tumour
VC 30years Male Carcinoid tumour
CS 54years Female Carcinoid tumour

Table 6.17 Patients with somatostatin receptor-positive neuroendocrine tumours (© 
patients with bone metastases)
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6.5.2b Brehmsstrahlung imaging and analysis

All the patients had 90Y-lanreotide whole-body brehmsstrahlung imaging 24 hours 

post therapy. All the images were acquired using the gamma camera, fitted with high- 

energy collimators, with a 75 keV photo-peak and 50% windows. The 90Y-lanreotide 

(brehmsstrahlung) images were then used for the calculation of the bio-distribution of 

radiolabelled somatostatin in the bone marrow. Irregular regions of interest (ROI) 

were drawn manually, over the anterior whole body image over the bone marrow 

(spine). These regions were then stored and applied to the posterior image after 

“flipping” the images (Fig 6.11). The whole body activity was calculated using a 

geometric mean and then the geometric mean activity was calculated for the bone 

marrow, by counting the activity from the anterior and posterior images (Formula 6.1 

and 6.2) (Table 6.17).

6.5.2a Blood tests

All the patients had regular blood tests for urea, creatinine, platelets and white blood 

cells (WBC) at 3months interval to assess their general well being and also to check 

their platelet counts prior therapy and post therapy. These laboratory values were 

obtained from March 2000 - December 2002.

6.5.3 Results

Urea: In the toxicity group 2 out of the 6 patients and in the non-toxicity group 2 out 

of the 6 patients had raised urea levels.

Serum creatinine: In the toxicity group 4 out of the 6 patients and in the non-toxicity 

group 1 out of the 6 patients had raised creatinine levels.

Platelets: In the toxicity group 6 out of the 6 patients had reduced platelet counts and 

in the non-toxicity group 1 out of the 6 patients had reduced platelet counts (Fig 6.12).

G Gnanasegaran MD 155



There was no difference in the mean % bone marrow activity at 24 hours (2.83% in 

toxicity versus 2.93% in control group). However 4 out 6 in the toxicity group had 

received prior chemotherapy compared with only 1 in the non-toxicity group. 

Likewise 5 out 6 with toxicity had bone metastases compared with 2 out 6 with no 

toxicity (Table 6.18)

Name PLAT pre PLAT post Bone marrow counts % 
whole at 24 hours

BJ 369 18 2.5
BE 249 17 2.5
CK 84 84 2.2
FB 300 96 3.8
HS 236 77 2.3
SS 311 41 3.7
HM 228 134 2.2
ME 240 106 3.4
LM 290 191 2.5
HR 471 213 3.0
VC 398 402 3.3
CS 299 260 3.2

onTable 6.18 Platelet count and the bone marrow activity of patients treated with Y- 
lanreotide.
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Fig 6.11 Bone marrow uptake was calculated by Geometric mean (by taking counts 
from the anterior and posterior images)
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Fig 6.12 Graph showing the platelet counts for a period of 20 months in patients
treated with °Y-lanreotide. [Patient k b j) , i  (BE), 8 (cs), 9 (c k ). io (fb ), i i (h s), 12 (lm>, 13 (m e), 16 (ss),
19 (VC), 21 (HM), 22 (HR)].

6.6 Discussion

The results of this study show that there is a similar biodistribution of the three- 

Somatostatin analogues m In-pentetreotide, 90Y-lanreotide and 90Y-SMT. This is not 

surprising as the three molecules are similar with minor differences in their peptide 

chain. The differences, which were found, may however be clinically significant in 

that unlike n iIn-pentetreotide, 90Y-lanreotide and 90Y-SMT (with amino acid 

infusion) have much lower uptake in the kidneys. This is important, as the renal 

uptake of 90Y labelled products is one of the dose-limiting factors (Virgolini et al, 

2000; Waldherr et al, 2002; Virgolini et al, 2001; de Jong et al, 2002i). For example it 

has been calculated that an activity of 4 GBq of 90Y-DOTA octreotide, a 90Y-labelled 

analogue of m In-pentetreotide, would give a radiation dose to the kidneys of about
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30mSv, which is just below the accepted toxic dose. Despite this there has been 

evidence of toxicity in patients treated with this level of activity (Cybulla et al, 2001). 

Using a rough estimate of dosimetry based on the work of Cremonesi et al (1999 ) our 

data suggests that the radiation dose to the kidneys of 4 GBq of 90Y-lanreotide would 

be about 40% of the radiation dose from 1!1In-pentetreotide , (though this would have 

to be confirmed with more formal dosimetry). This would explain why, when using 

90Y-lanreotide for treatment, little toxicity has been seen in the kidneys and the dose 

limiting toxicity has tended to be within the bone marrow (Buscombe et al, 2001 ). 

Different somatostatin receptor subtypes have different affinities for the radioligand; 

variable tumour differentiation/receptor expression also influences biodistribution. 

Ideally one should have compared m In-lanreotide with 90Y-lanreotide, because 

biologically octreotide and lanreotide are different and the chelators used to label 

them are also different (Table 6.19).

It had been originally planned to use in In-labelled lanreotide to assess patients for 

therapy but it was found that the resulting product was highly unstable in-vitro 

resulting in rapid disassociation of the ln In from the lanreotide (Croasdale, personal 

communication).

Octreotide Lanreotide
Octreotide is a synthetic cyclic 
octapeptide, i. e. six of its eight amino 
acids are connected by a disulphide 
bond to form a ring

The structure of lanreotide is closely 
related to octreotide: having the same 
number of amino acids, but D-Phe is 
replaced by D-Naph, Phe by Tyr and Thr 
by Val.

Binds to somatostatin receptors 2 and 5 
with high affinity, to receptor 2 with 
moderate affinity and does not bind to 
receptor 1 and 4

Binds to somatostatin receptors 2,3,4 and 
5 with high affinity, to receptor 1 with 
lower affinity

Half-life of octreotide is approximately 
1.7 hours. The effects of octreotide are 
variable but can last for up to 12 hours

Half-life of lanreotide is approximately 
2.5 hours and mean residence time is 
around 0.68 hours.

Table 6.19 Difference between octreotide and lanreotide (Virgolini et al, 2002)
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The group in Vienna and UK were able to label them (Virgolini et al, 1998, 2002, 

Britton et al, 2000).

Therefore, though not ideal, the role of the H1In-pentetreotide was to demonstrate that 

a given tumour was receptor positive, allowing therapy. It would have been useful if 

this study had shown the same tumour uptake of 90Y-lanreotide as seen in the lu In- 

pentetreotide images, but the resolution of the brehmsstrahlung images was not 

sufficient for this to be achieved with present gamma camera systems and the 

activities which were used. We know that 40% of patients treated with 90Y-lanreotide 

have some tumour response, implying that targeting not only occurs but also is 

sufficient to affect tumour outcome (Virgolini et al, 2002).

Another area of error in this experiment could be the use of manual region of interest 

(ROI) over the organs, which might introduce errors in the final values. The most 

common pitfall in drawing ROI are (a) Intra-observer variability (estimated position 

of the boundary of organs), (b) ROI could be over or underestimated as it is drawn 

over the brehmsstrahlung images where the images are not well defined, (c)When the 

organs are closely situated there is a possibility of overlapping of the ROI (example: 

ROI around Liver and the right kidney) , (d) Organ ROI over the brehmsstrahlung 

images are based on Indium-pentetreotide images, (e) Lighting arrangement in the 

processing/reconstruction room and (f) If we are taking two or three ROIs, in a 

similar region, the anatomical ROI may probably overlap the functional ROI.

Other areas of error in these calculations are that with brehmsstrahlung imaging 

several parameters are as yet unknown. The activity can be calculated from the counts 

recorded over the organ by drawing a region of interest (ROI), provided after 

correction for back ground and scatter attenuation have been applied. Finally if the
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attenuation coefficients of the tissue traversed are known, an attenuation correction 

can be applied.

As the energies imaged in brehmsstrahlung imaging are so wide (unlike the discrete 

energies of the gamma emissions from isotopes such as 1HIn), it is not possible 

accurately to identify a correction co-efficient for attenuation which could be used to 

obtain depth-corrected organ counts. Likewise, background subtraction may have a 

differing effect on the results for the two types of radiation. Due to all these 

difficulties quantitation was not performed as percentage of injected dose. Further 

phantom-based work is needed to determine how these issues may be resolved.

The main concern in 90Y-labelled peptide therapy is renal toxicity. Traditionally 

methods to reduce renal radiation dose from 90Y-labelled somatostatin analogues, 

such as 90Y-SMT have included the use of amino-acid infusions before, during and 

after the infusion of the radiopeptide. In our experience this often causes severe 

nausea and vomiting which is resistant to most anti-nausea drugs. However, this 

strategy does reduce kidney radiation dose, allowing increased injected activities of 

90Y labelled somatostatin analogues to be used (Chinol et al, 2002). The expected 

reduction in renal activity of 90Y labelled somatostatin analogues can be as great as 

20-30% if such an amino acid infusion is used (Cremonesi et al, 1999; de Jong et al, 

2002 i). To obtain this reduction nearly 60% of the patients had some unwanted 

symptoms such as severe nausea and vomiting. The results of this study with 90Y- 

lanreotide suggest a different strategy which avoids the use of intravenous peptide 

infusions and that it may be possible to obtain a reduction in radiation dose to the 

kidneys with 90Y labelled peptides by changing the design of the peptide and 

monitoring its biodistribution using techniques such as brehmsstrahlung imaging. For 

example, the bio-distribution results obtained from this study confirm the possibility
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of delivering high doses of 90Y-lantreotide for the treatment of neuroendocrine 

tumours with little or no renal toxicity.

In my study to determine if distribution of neuroendocrine tumours in the bone or of 

subsequent 90Y-lanreotide predicts myelotoxicity, the principle finding is that patients 

with bone metastases or previous chemotherapy are prone to develop myelotoxicity, 

which was seen in all our 6 patients with bone metastases or previous chemotherapy. 

Radionuclide therapy based on patient-specific dosimetry offers the potential for 

optimising the dose delivered to the target tumour through utilization of measured 

radiopharmaceutical kinetics specific to the individual. The administered activity may 

be tailored for the patient such that the highest possible radiation dose may be given 

to the tumour while limiting the dose to critical organs and tissues below any 

designated threshold for negative biological effects (Stabin et al, 1999). Usually pre­

treatment quantitative dosimetry work-up using diagnostic ("tracer") activities of the 

therapy radiopharmaceutical serves to identify those cancer patients for whom the 

treatment is likely to be most effective while eliminating those for whom it would be 

unsuccessful. These considerations seem to be of particular importance in that the low 

uptake in tumour regions (low target to non-target uptake ratios) may constrain the 

treatment protocol (Erdi et al, 1996). For targeted radionuclide therapy, the level of 

activity to be administered is often determined from whole-body dosimetry performed 

on a pre-therapy tracer study. The largest potential source of error in this method is 

inconsistent or inaccurate activity retention measurements. It is also shown that any 

errors present in the dosimetry calculations following the tracer study will propagate 

to errors in predictions made for the therapy study according to the ratio of the 

respective effective half-lives (Stabin et al, 1999).
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6.7 Conclusion

There is difference in biodistribution between lllIn-pentetreotide, 90Y- lanreotide and 

90Y-SMT, as imaged with this method, especially in the kidneys, which may explain 

why there is minimal or no renal toxicity reported with 90 Y-lanreotide and 90Y-SMT 

(with amino acid) therapies. Clinically, additional factors than just marrow dose (e.g., 

previous myelotoxic therapy, bone marrow involvement by metastatic malignancy) 

seem to affect the resulting myelotoxicity. If the use of brehmsstrahlung imaging can 

be refined, more truly quantitative measurements of uptake and retention may be 

possible leading to using these methods to determine dosimetry. However, even with 

these results it would appear possible to design radiolabeled peptides, which will have 

minimal renal activity and thus reduce the radiation dose to this critical organ.
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Chapter 7

Assessment of tumour volume in patients treated for 
Neuroendocrine Tumours

7.1 Introduction

Disseminated neuroendocrine tumours tend to present when there is disease within the 

liver, as this often leads to a characteristic and diagnostic endocrine syndrome such as 

carcinoid (Caplin et al, 1998). Patients with non-secreting neuroendocrine tumours 

may present with a mass effect of their tumour, resulting in symptoms such as portal 

vein blockage, ascites and liver failure. Chemotherapy generally is of little use in 

most of the neuroendocrine tumours with response rates of less than 15% (Kaltsas et 

al, 2002). There may, however, be better response rates in tumours of pancreatic and 

foregut origin where a combination of high dose 5FU and streptozocin can result in 

response rates of up to 50% (Cheng et al, 1999). As the diagnosis in most patients is 

only made after the disease has become advanced the aim of therapy becomes 

symptom control and not curative. Other forms of treatment are the use of 

radiotargeted therapy, for example with 131I-mIBG or radiolabelled somatostatin 

analogues, which have been shown to improve symptoms in about 70-80% of patients 

(de Jong et al, 2002). However, only a small proportion of patients show any 

significant difference in tumour size as measured by CT (WHO or RECIST criteria) 

(Therasse et al, 2002). In addition to these systemic treatments, neuroendocrine 

tumours are generally hypervascular, so that trans-arterial embolisation can be used 

for the treatment of liver metastases. The effect of this can then be enhanced by the 

addition of chemotherapy or radionuclide agents (Schell et al, 2002). However, even 

when there is a clear reduction in symptoms, and endocrine markers such as 5- 

hydroxyindolacetic acid (5HIAA) production are reduced, CT imaging may fail to
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show much change in tumour size (Schell et al, 2002). Therefore, though the size of 

the mass lesion remains unchanged, the amount of functional tumour may have 

decreased.

Tumour response following cancer therapy is traditionally evaluated with the help of 

clinical evaluation, tumour markers, conventional imaging (US, CT, MRI) (Fig 7.1) 

and also using nuclear medicine procedures (Planar, SPECT, PET) (Fig 7.2).

Tumour response assessment with conventional imaging modalities such as CT has its 

own problems. Tumour response after non-operative cancer therapy is usually 

evaluated by bi-dimensional measurement of maximum tumour diameters on 

computed tomography (CT) scans, based on the World Health Organization’s (WHO) 

criteria (Miller et al, 1981) (Table 7.1). Assessment of response in irradiated tissue is 

sometimes assessed with difficulty, mostly due to the treatment-related fibrosis 

obscuring measured tumour and also due to displacement of tumour and normal 

structures caused by scarring (Table 7.2).

The recently proposed RECIST (Response Evaluation Criteria In Solid Tumours) 

(Therasse et al, 2000; Werner et al, 2001) raises the question whether a simple one­

dimensional tumour measurement is equivalent to the more complicated 

bidimensional measurements with regard to tumour response assessment. RECIST is 

based on the assumption that "tumours are spherical and that responding patients have 

equivalent percentage reductions in the measures of length, width and depth of the 

tumour, which makes no difference in defining a partial response based on changes in 

largest dimension or the product of perpendicular diameters (Gehan et al, 2000).

An early non-invasive indicator of tumour response to therapy and the ability to 

predict clinical outcome may potentially enhance disease management. Currently, 

however, tumour response to therapy is often delayed, potentially compromising
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disease management. Tumour response will be governed by repair, repopulation, 

reoxygenation and redistribution, as well as by mechanisms peculiar to targeted 

radiotherapy (Wessels et al, 2000). Tumour response assessment is very important 

because early change of treatment protocol to a more effective one may increase the 

period of failure-free survival and eventually cure. Early tumour response will also 

help us to change or modify the treatment before resistant or partially resistant clones 

become dominant.

Fortunately the majority of neuroendocrine tumours show uptake of m Indium (m In) 

pentetreotide. Therefore it should be possible to assess the functional response to 

treatment by sequential m In-pentetreotide imaging.

WHO RECIST
Complete 

response (CR)
Complete disappearance 

of whole disease
Complete resolution of 

all target lesions
Partial response 

(PR)
At least 50% reduction 

in tumour size
At least 30% reduction 

in tumour size
No change (NC) Neither (PR) nor (PD) Neither (PR) nor (PD)

Progressive 
disease (PD)

Greater than 25% increase 
in size of at least one lesion 

(or new lesion)

Greater than 20 % 
increase in size

Table 7.1 CT criteria for tumour response (Miller et al, 1981; Therasse et al, 2000; 
Sohaib et al, 2000)
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1. CT is not suitable for tumour response evaluation because it does not 
establish, the presence or absence of viable tumour in a mass

2. Even if CT shows that mass has regressed, it does not provide 
information about the presence of tumour cells that can cause relapse

3. Using the size of a mass as a criterion for response is questionable

4. Limited accuracy and reproducibility for small tumours (due to a 
combination of partial volume effect and measurement error)

5. 3D measurements are time consuming to perform

Table 7.2 Limitations of Tumour response assessment using CT scan (Sohaib et al>
2000)

Fig 7.1 CT scan of abdomen in arterial phase (left), showing metastases in liver (paler 
areas) and CT scan of abdomen in venous phase, showing metastases in liver (darker 
areas) (Picture from Bax NDS et al)
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Fig 7.2 Example of use of m In-pentetreotide whole body images for tumour response 
assessment.
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7.2 Experiment 1

7.2.1 Aim

The aim of this study was to develop a semi-quantitative method using m In- 

pentetreotide SPECT liver imaging to monitor change in functional activity using 

SPECT Tumour Volume (STV) and determine how this correlates with clinical 

response.

7.2.2 Material and methods 

7.2.2a Inclusion criteria

A retrospective analysis was performed of the in In-pentetreotide imaging performed 

in 42 patients, 18 males and 24 females (Age: 30-80 years) with biopsy-proven 

neuroendocrine tumours in the liver. Imaging was performed within the 13 weeks 

prior to commencement of therapy and 13 months after the termination of that 

particular therapy usually after 6 cycles of chemotherapy or 3 cycles of radiotargeted 

therapy. The type of treatments used and tumour type are tabulated in Table 7.3. All 

patients had assessment of symptoms using a 10-point questionnaire, developed in- 

house and designed specifically for neuroendocrine tumours. This would include 

questions such as flushing, bowel function, wheezing and other neuroendocrine 

tumour related symptoms. General health was assessed using direct questioning and a 

self-administered symptom-grading questionnaire.
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Age in years /Sex Tumour type Treatment
WM M/62 Carcinoid Chemotherapy
RM F/53 Carcinoid Embolisation
WG M/33 Carcinoid Embolisation
JJ F/47 Carcinoid Embolisation
HC M/75 Glucogonoma Embolisation
CH F/51 Carcinoid Embolisation
HR F/62 Carcinoid Embolisation
DR F/53 Carcinoid Embolisation
SN F/45 Carcinoid Embolisation
CP F/37 Carcinoid Chemotherapy
FA F/60 Carcinoid Y-90 therapy
MH M/55 Carcinoid Chemotherapy
BB F/51 Carcinoid Embolisation
RC M/58 Carcinoid Embolisation
KM F/72 Carcinoid Y-90 therapy
SP M/52 NET of unknown type Chemotherapy
LE F/65 Carcinoid Chemotherapy
NR M/47 Carcinoid Chemotherapy
LP F/67 Carcinoid Chemotherapy
TW F/53 Carcinoid Chemotherapy
TA M/73 Carcinoid Chemotherapy
PM F/48 Carcinoid Chemotherapy
AS M/71 NET of unknown type Embolisation
LH M/68 Carcinoid Embolisation
BP M/62 Carcinoid Embolisation
GC F/49 Carcinoid Embolisation
PB M/63 Carcinoid Embolisation
SO M/40 NET of unknown type Embolisation
EK F/45 Carcinoid Chemotherapy
ss M/78 Carcinoid Chemotherapy
DE F/59 Gastrinoma Chemotherapy
CC F/30 NET of unknown type Chemotherapy
PT F/63 Carcinoid Chemotherapy
BH F/69 Carcinoid Chemotherapy
PH M/80 Carcinoid Chemotherapy
AR M/60 Insulinoma Chemotherapy
WD F/41 Carcinoid Embolisation
BS F/43 Carcinoid Chemotherapy
CS M/38 Carcinoid Chemotherapy
RL F/40 Gastrinoma Chemotherapy
PY M/53 Carcinoid Chemotherapy
LN F/42 Carcinoid Chemotherapy

Table 7.3 List of patients with tumour type and the type of treatments used.
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7.2.2b 11 indium  pentetreotide imaging

The 11 ̂ -pentetreotide images were acquired on a Prism 2000XP gamma camera 

(Picker International, Inc. Cleveland Ohio, USA), interfaced to a Odyssey FX 

computer. The liver SPECT images were acquired 24 hours after intravenous injection 

of 120 MBq lllIn- pentetreotide (Tyco Healthcare, Gosport UK), using a two headed 

gamma camera equipped with medium-energy general- purpose collimators (MEGP) 

(Table 7.4). The ln In pentetreotide SPECT images of the liver were obtained with a 

360 degrees circular orbit, 64 projections, 64 x 64 matrix, and peak energies of 170 + 

250 keV with 15% windows. Attenuation correction was not applied. The functional 

STV was calculated from the transverse SPECT images (Fig 7.3). Each SPECT slice 

was displayed using a 10-point scale (Fig 7.4). When drawing tumour regions of 

interest, care was taken to exclude activity in normal structures such as spleen, 

kidneys and large bowel. The area of the neuroendocrine tumour with maximum 

activity was set at 100% and then irregular regions of interest drawn around all the 

tumours in every size expressing 50% or more of the maximum tumour activity as 

assessed using the 10-point colour scale. The total functional STV was then calculated 

by summing the number of pixels within the regions of interest drawn around tumour 

in each of the slices in which tumour occurred and multiplying this total by the slice 

thickness of 0.93cm (resulting in each voxel having a volume of 0.93cm x 0.93cm x 

0.93cm = 0.804cm3).
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Study SPECT imaging
Radiopharmaceutical 111 In- pentetreotide
Activity administered 120 MBq
Patient preparation None
Patient positioning Supine, arms to side using the arm rest
Collimator Medium energy general purpose
Peak energies 170 + 250 keV with 15% window
Orbit, Projection and Matrix 360° cicular, 64 projections, 64 x 64 matrix

Table 7.4 SPECT imaging protocol at the Royal Free Hospital

Fig 7.3 Transverse SPECT slices of liver display the tumour activity
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Fig 7.4 Three consecutive SPECT slices in phase display the regions of interest (ROI) 
s are drawn around the uptake outside of normal physiological uptake with is >50% 
maximum tumour activity

7.2.2c CT scan

Triple phase spiral CT scans with 5mm slicing of liver and upper abdomen were 

acquired after rapid intravenous administration of a low-ionic contrast medium. CT 

scans were performed in all the patients within 3 months pre-treatment and within 6 

months post-treatment. CT scans were read by experienced cross-sectional 

radiologists and reported as regression, stable or progressive disease using RECIST 

criteria of response (Tsuchida et al, 2001; Padhani et al, 2001).

7.2.2d Clinical Evaluation

The clinical outcome of the patients was assessed in terms of symptomatic 

improvement, using the questionnaires described shown in appendix 1. Also any 

change in analgesia usage was assessed. Regular (4-6 week) physical examination 

was also performed to determine if there was any change of liver size on palpation 

and the presence, absence or change in volume of ascites was noted. A significant 

change in the patient’s symptoms was taken as the prime determinant of response, 

with the other data providing secondary support data. When there was a disagreement
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between symptomatology and other data the patient’s own assessment of their well­

being was paramount.

7.2.3 Results

There was a good correlation when the total functional STV was compared with 

clinical response (Table 7.5). In total, 22 patients had a good clinical response, 

including 11 patients who received chemotherapy, 9 who had embolisation and 2 

patients received 90Y-lanreotide infusions. The smallest change in total functional 

STV in this group of responders was a 1% reduction; the largest measured was a drop 

of 126%. The mean fall was 37%; of those with symptomatic relief, a drop of 10% or 

more was seen in 18 patients and a fall of 25% or greater in 12 patients. Of the 20 

patients with no clinical response, 12 had received chemotherapy and 8 embolisation. 

All patients with a worsening clinical evaluation had an increase in total functional 

STV of between 3 % - 254% with a mean increase in total functional volume of 72 %. 

A change of 25% or greater increase in total functional STV was seen in 12 of these 

patients, and an increase of 10% or more was seen in all 16 of the patients.

Changes in CT, as assessed by the RECIST criteria, did not correlate well with 

changes in clinical outcome. Of the 22 patients with good response, CT showed a 

significant size reduction in 8 patients, no change in the remaining 13 patients and 

increased in one patient. In 4 of these patients there was also no change in total 

functional STV. In the 20 patients in whom there was no clinical response or in 

whom clinical symptoms worsened, the CT showed an increase in tumour size in 7 

patients, no change in 12 and it was reduced in one, though in this patient the total 

functional STV increased by 61%. In total the CT was able to predict response in 

only 21 (50%) patients (Fig 7.5a, 7.5b, 7.6).
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Patient Treatment Tumour
volume

CT scans Clinical
evaluation

CT/STV
Concordance

Symptoms/
STV
Concordance

CT/
symptoms

Concordance

1 WM Chemotherapy o  8% No change Better YES NO NO
2 RM Embolisation ft 61% Reduction Worse NO YES NO
3 WG Embolisation ft 65% Increased Worse YES YES YES
4 JJ Embolisation ft 13% Reduction Better YES YES YES
5 HC Embolisation <=>1% No change Better YES NO NO
6 CH Embolisation ft 13% No change Worse* NO YES NO
7 HR Embolisation ft 10% Reduction Better YES YES YES
8 DR Embolisation ft 52% Reduction Better YES YES YES
9 SN Embolisation 0  7% No change Better YES NO NO
10 CP Chemotherapy ft 77% Increased Worse YES YES YES
11 FA Y-90 therapy ft 52% No change Better NO YES NO
12 MH Chemotherapy ft 48% Reduction Better YES YES YES
13 BB Embolisation ft 39% No change Better NO YES NO
14 RC Embolisation ft 58% No change Worse NO YES NO
15 KM Y-90 therapy 0  8% No change Better YES NO NO
16 SP Chemotherapy ft 145% Increased Worse YES YES YES
17 LE Chemotherapy ft 39% Reduction Better YES YES YES
18 NR Chemotherapy ft 103% No change Worse NO YES NO
19 LP Chemotherapy ft 254% No change Worse NO YES NO
20 TO Chemotherapy ft 18% No change Better NO YES NO
21 TA Chemotherapy ft 46% Reduction Better YES YES YES
22 PM Chemotherapy ft 16% No change Better NO YES NO
23 AS Embolisation ft60% No change Better NO YES NO
24 LH Embolisation ft41% No change Worse NO YES NO
25 BP Embolisation ft45% Increased Worse YES YES YES
26 GC Embolisation ft22% No change No change NO NO YES
27 PB Embolisation ft35% No change Better NO YES NO
28 SO Embolisation 0 3 % No change No change YES YES YES
29 EK Chemotherapy ftl7% Increased Better NO YES NO
30 SS Chemotherapy ft209% Increased worse YES YES YES
31 DE Chemotherapy ft22% No change Better NO YES NO
32 CC Chemotherapy olO% No change No change YES YES YES
33 PT Chemotherapy ft50% Increased Worse YES YES YES
34 BH Chemotherapy ft80% Reduction Better YES YES YES
35 PH Chemotherapy ft22% No change No change YES NO YES
36 AR Chemotherapy ft 43% Reduction Better YES YES YES
37 WD Embolisation ft 126% No change Better NO YES NO
38 BS Chemotherapy ft25% No change No change NO NO YES
39 CS Chemotherapy ft 85% No change Better NO YES NO
40 RL Chemotherapy ft 185% Increased Worse NO YES NO
41 PY Chemotherapy ft46% No change No change NO NO YES
42 LN Chemotherapy 03 % No change No change YES YES YES

Table7.5 Summary o f results o f  CT, 11'in pentetreotide SPECT and clinical response in patients treated 
for disseminated neuroendocrine tumour (ft=reduced, fMncreased, <=>=stable/no change) *Died.
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Fig 7.5a CT image of patient pre chemo-embolisation, note the dark areas are necrotic 
tissue and not tumour, which cannot be clearly seen. Post therapy (Fig 7.5b) there 
appears to be an extension of the necrotic area but it is still difficult to see the tumour

7.6a 7.6b

Fig 7.6a u lIn-pentetreotide SPECT image of the same patient with the liver tumour 
delineated in both lobes of the liver (before therapy), (Fig 7.6b) after therapy there has 
been significant reduction in the functioning tissue.
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7.3 E xperim ent 2

7.3.1 Aim

The aim of this study was to assess the change in functional SPECT tumour volume 

in
(STV) using In-pentetreotide SPECT in foregut neuroendocrine patients treated 

with chemotherapy or chemoembolisation.

7.3.2 Material and methods 

7.3.2a Inclusion criteria

30 patients with liver tumours in the liver were treated with chemoembolisation (15 

patients) and chemotherapy with Streptozocin (15 patients). Patients from both the 

groups had m In-pentereotide SPECT pre and post treatment. The type of treatments 

used is tabulated in Table 7.6

Name Chemotherapy Name Chemoembolisation
MH Chemotherapy GW Chemoembolisation
SS Chemotherapy LH Chemoembolisation
PC Chemotherapy HC Chemoembolisation
PT Chemotherapy HC Chemoembolisation
PH Chemotherapy HR Chemoembolisation
DE Chemotherapy SN Chemoembolisation
EK Chemotherapy RH Chemoembolisation
CM Chemotherapy GC Chemoembolisation
CC Chemotherapy JJ Chemoembolisation
AR Chemotherapy BP Chemoembolisation

MW Chemotherapy BB Chemoembolisation
WM Chemotherapy DR Chemoembolisation
BH Chemotherapy RD Chemoembolisation
PY Chemotherapy RC Chemoembolisation
WG Chemotherapy AS Chemoembolisation

Table 7.6 Type of treatments used in the 30 patients
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7.3.2b n lIndium pentetreotide imaging

The 11 ̂ -pentetreotide images were acquired on a Prism 2000XP gamma camera 

(Picker International, Inc. Cleveland Ohio, USA), interfaced to Odyssey FX 

computer. The liver SPECT images were acquired 24 hours after intravenous injection 

of 120 MBq m In- pentetreotide (Tyco Healthcare, Gosport UK), using a two headed 

gamma camera equipped with medium-energy general- purpose collimators (MEGP) 

(Table 7.7). The in In pentetreotide SPECT images of the liver were obtained with a 

360 degrees circular orbit, 64 projections, 64 x 64 matrix, and peak energies of 170 + 

250 keV with 15% window. Attenuation correction was not applied. The functional 

STV was calculated from the transverse SPECT images (Fig 7.3). Each SPECT slice 

was displayed using a 10-point display. When drawing tumour regions of interest, 

care was taken to exclude activity in normal structures such as spleen, kidneys and 

large bowel. The area of the neuroendocrine tumour with the maximum activity was 

set at 100% and then irregular regions of interest drawn around all the tumours in 

every size expressing 50% or more of the maximum tumour activity as assessed using 

the 10-point colour display. The total functional STV was then calculated by adding 

the number of pixels within the regions of interest drawn around the tumour seen in 

each of the slices in which tumour occurred and multiplying this total by the slice 

thickness of 0.93cm (resulting in each voxel having a volume of 0.93cm x 0.93cm x 

0.93cm = 0.804cm3).
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Study SPECT imaging
Radiopharmaceutical In-pentetreotide
Activity administered 120 MBq
Patient preparation None
Patient positioning Supine, arms to side using the arm rest
Collimator Medium energy general purpose
Peak energies 170 + 250 keV with 15% window
Orbit, Projection and Matrix 360° circular, 64 projections, 64 x 64 matrix

Table 7.7 SPECT imaging protocol at the Royal Free Hospital 

7.3.3 Results

In patients who had chemotherapy, functional STV increased in 7 patients (mean 

increase 141%), it decreased in 6 patients (mean decrease 71%) and remained 

unchanged in 2 patients. In patients who had chemoembolisation, functional STV 

increased in 3 patients (mean increase 40%), decreased in 7 patients (mean decrease 

42%) (Fig 7.7) and remained unchanged in 5 patients. The percentages difference in 

increase and decrease between the two groups was 84% and 37% respectively. 

Patients treated with chemoembolisation had better response rates than those treated 

with chemotherapy (p<0.05) (Fig 7.8 and Table 7.8).
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Fig 7.7A and B Transverse SPECT images showing a patient with tumour in the liver 
pre chemoembolisation and absence of tumour post chemoembolisation.
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Name Chemo Name C-embo
MH 481% GW 65%
SS 209% LH 41%
PC 189% HC 13%
PT 50% HR <10%
PH 22% CH <10%
DE 22% SN <10%
EK 17% RH <10%
CM <10% GC <10%
CC <10% JJ -13%
AR -43% BP -20%

MW -53% BB -39%
WM -71% DR -51%
BH -80% RD -52%
PY -82% RC -58%
WG -95% AS -60%

Table 7.8 Change in functional SPECT tumour volume in patients treated with 
chemotherapy and chemoembolisation.
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Tumour volume changes

■  Chemotherapy
■  Chemoembolization

Fig 7.8 Percentage change in functional STV in patients with foregut neuroendocrine 
tumour treated with chemotherapy and chemoembolisation.
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7.4 Discussion

In this study we could see a correlation between changes in functional STV and 

clinical response. However, we must accept that much of the data used to determine 

whether clinical response had occurred depended on the subjective reporting of the 

patient, which leaves the results open to a degree of bias. However, as the aim of 

treatment was tumour control and palliation, there is some validity in using the 

patient’s assessment of their own disease as the prime assessment of clinical response. 

There is some evidence for this in that 9 patients, who had no change in CT, reported 

an improvement in symptoms and showed a fall in total functional STV. It appears, 

therefore, that the anatomical measurement of lesions using CT is a very poor 

predictor of clinical response. This is not unknown in patients with advanced disease 

where changes in CT have not reflected clinical response (Kimura et al, 2002). It may 

also be argued that we should only have assessed patients who received a single type 

of treatment (for example chemotherapy). However, this did not reflect our clinical 

practice and we felt it was important to test response to a variety of treatments. 

Further studies can be performed to assess the utility of functional volumes for a 

particular treatment modality, but early examination of this data suggest that treatment 

type was not a factor in deciding response in the clinical evaluation or total functional 

STV, It was also felt that we needed to have an approach that would be robust enough 

to be used without reference to the patient’s treatment. We did note, however, that 

there was some discordance in patients receiving chemotherapy in that functional 

STV reduction was not followed by a clinical improvement. This could be due to the 

high levels of morbidity associated with this form of therapy (Rougier et al, 2000). 

The idea of functional response is not new and has been used widely in PET in a 

series of tumours (Sakamoto et al, 1998). This, however, is a first attempt to devise a
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simplified but reproducible method that can be used with SPECT. Possible errors 

include the use of 50% of highest activity of the tumour, which may change between 

scans, and the effect of the non-homogenous uptake o f 11 ̂ -pentetreotide in normal 

liver. It would be difficult to determine a more accurate method as the use of a 

reference area such as the kidney or spleen might be affected by chemotherapy. To 

obtain more accurate results, it would be necessary to use an approach based on 

methods of absolute quantification or some measures of relative uptake (Sakamoto et 

al, 1998). Unfortunately, many of these tumours do not take up 18F-FDG and 

alternative tracers need be sought (Orlefors et al, 1998). The optimal time interval 

between completion of therapy and performance of such measurements is not well 

defined. Finally even if we are using the commonly used Standardised uptake value 

(SUV) to assess the tumour response, there are numerous factors affecting the 

quantitative PET scan SUV like body composition, length of uptake period, recent 

physical activity, plasma glucose and insulin levels, renal function. These factors are 

also important for precise and accurate comparison of serial SUV’s (Hunter et al, 

1996; Hamberg et al, 1994).

Despite these shortcomings, this simplified method of measuring the functional STV 

has a better correlation with clinical symptomology in patients with neuroendocrine 

tumours than traditional dependence on CT measures alone.

What is clear is that an increase in functional STV which may be as great as 254% 

had a close correlation with a worsening clinical picture even though only 7/20 (35%) 

of these patients had an increase in tumour size on CT suggesting that tumour 

function may be the deciding factor in well being and symptomology in these patients.
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The validation of the functional volume of the tumour was difficult as the study was 

performed within a tertiary referral centre. It was not possible to review CT scans 

performed on different machines with different protocols in a consistent way. It may 

be possible to consider this at a later stage where a standard CT protocol is used at a 

single centre.

In our second study, using only the functional STV, we compared the outcome in 

patients treated with chemotherapy and chemoembolisation for foregut 

neuroendocrine tumours.

Traditionally, patients with foregut neuroendocrine tumours seem to have good 

response to chemotherapy. However in our study we noted that those treated with 

chemoembolisation responded better (stable/improvement), in comparison to 

chemotherapy. To compare and confirm the clinical outcome in patients treated with 

chemotherapy and chemoembolisation more number of foregut tumour patients 

should be assessed.

7.5 Conclusion

Quantitative analysis is important in tumour imaging and treatment. The assessment 

of functional STV is more useful in monitoring the tumour response after treatment 

than CT. The changes in functional volumes after therapy correlate well with clinical 

response. It is a simplified technique which is clinically feasible and requires no extra 

effort or cost. Semi quantitative STV appears to provide information on treatment in a 

more reliable way than CT and this simplified method have a promising role in 

clinical use.
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Chapter 8

Discussion

During the last decade our knowledge and understanding of neuroendocrine tumours 

has increased. There has been a considerable advance in the treatment of 

neuroendocrine tumours. The contribution of nuclear medicine towards diagnosis and 

treatment is commendable. One of the key challenges in targeted radionuclide therapy 

is to optimise drug administration and determine in advance which patients will 

benefit most. The assessment of biodistribution of the radiopharmaceutical could help 

us to characterise its distribution to the tumour and normal organs.

In my experiments there was no optimal window/photo peak for images; however in 

terms of uniformity of response, imaging using a HEGP collimator with an energy 

window centred at 75keV and a 60% window appears to be optimal. There is an 

argument for using a phantom with hot lesions instead of cold lesions to assess 

uniformity and contrast. However during my initial experiments (Gnanasegaran,

2001), I was unclear about the discharging structure of the scatter; therefore I wanted 

to eliminate the sources of scatter within the lesion.

In practice lesion detectability depends on spatial resolution, uniformity and the 

relative distribution of target and the background. It could be argued that it is 

irrelevant whether the relative distribution is positive (hot lesions) or negative (cold 

lesions). In general the spatial resolution, uniformity and the relative distribution of 

target to background is adequate, then it should be able to detect positive and negative 

distribution. However in nuclear medicine as we commonly perform hot-spot 

imaging, further phantom experiments with positive (hot) lesions could be performed.
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To apply these methods clinically, a more realistic model for localised variations of 

brehmsstrahlung generation in tissue and for related photon transport mechanisms is 

required. Even then evaluation of radiation dosimetry could be difficult as it lacks a 

primary photon emission.

The results of the study in Chapter 6 show that there is a similar biodistribution of the 

three-Somatostatin analogues 11 ̂ -pentetreotide, 90Y-lanreotide and 90Y-SMT. 90Y 

brehmsstrahlung imaging detected lower uptake of lanreotide and 90Y-lanreotide and 

90Y-SMT (with amino acid infusion) in the kidneys. This is interesting and important 

because renal activity of 90Y labelled products is one of the dose-limiting factors 

(Virgolini et al, 2000; Waldherr et al 2002; Virgolini et al, 2001). This would explain 

why, when using 90Y-lanreotide for treatment, little toxicity has been seen in the 

kidneys and the dose limiting toxicity has tended to be within the bone marrow 

(Buscombe et al, 2001).

Even though I was unable to perform formal dosimetry of these three compounds. I 

could satisfactorily determine the targeting (localisation) of the radioloabelled 

somatostatin analogues at the tumour sites, which gave us the confidence and proof 

that we are targeting the right organ or site. The results could have been more 

realistic if I had performed the experiments comparing 11 ̂ -lanreotide with 90 Y- 

lanreotide, because biologically octreotide and lanreotide are different and the 

chelators used to label them are also different.

In my study to determine bone marrow toxicity using brehmsstrahlung images. The 

patients with bone metastases or previous chemotherapy are at risk for myelotoxicity, 

which was seen in all 6 patients in this category, but I was unable to predict the bone 

marrow toxicity using brehmsstrahlung images. There may be other areas of error in
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these calculations, as with brehmsstrahlung imaging several parameters are as yet less 

understood and unknown or it may not be related only to bone marrow radiation dose. 

An early non-invasive indicator of tumour response to therapy and the ability to 

predict clinical outcome may potentially enhance disease management. Accurate and 

reproducible measurements on images are needed for evaluating tumour response to 

therapy in clinical practice. The idea of functional response is not new and has been 

used widely with PET in a series of tumours (Sakamoto et al, 1998). Currently, 

however, tumour response to therapy is often delayed, potentially compromising 

disease management. In this study (chapter 7) I devised a simplified, reproducible and 

cost-effective technique to assess the tumour response using the functional SPECT 

tumour volume (STV). There was a good correlation when the total functional STV 

was compared with clinical response. STV predicted the clinical outcome in 34/42 

patients (81%) and CT predicted the outcome in 21/42 (50%) patients.

I proceeded to assess patients with foregut neuroendocrine tumours who were treated 

with chemotherapy and chemoembolisation, and my results showed that people 

treated with chemoembolisation fared better than the chemotherapy group. Presently 

this technique can be applied to assess treatment responses and it is less time- 

consuming and easy to perform compared to the existing modalities like CT which 

has many limitations.

Significant technological advances have taken place in CT. Hypervascular neoplasm’s 

like carcinoids and other tumours are difficult to image by conventional CT because 

they are iso-dense to the liver during peak hepatic enhancement. The liver normally 

receives approximately 80% of its blood supply from the portal venous circulation. 

After rapid administration of intravenous contrast material, the major abdominal 

arteries (including the celiac axis and its branches) enhance rapidly, after
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approximately 20 seconds. Subsequently, at approximately 40 seconds, the portal 

venous system becomes opacified, and peak liver enhancement occurs at 60 to 100 

seconds (Baron, 1994 i, 2; Krasny et al, 1996), later than most other visceral organs 

because of the slower portal venous circulation. Most hepatic neoplasm’s, being fed 

by the hepatic arterial blood supply, appear hypo-dense to the liver after contrast 

administration, and are most conspicuous during peak liver enhancement, at 60 to 100 

seconds. Within a few minutes after contrast material infusion, most hepatic lesions 

have reached an equilibrium state of contrast enhancement with the surrounding liver 

and may be rendered invisible. Conventional CT therefore, because it requires 90 to 

120 seconds to cover the entire liver, is suboptimal for lesion detection (Krasny et al, 

1996). With the advent of rapid Helical CT, volumetric acquisition of image can be 

performed. There are several reports that structures with different peak contrast 

enhancement, such as liver and pancreas may be imaged more accurately during their 

optimal enhancement time windows (Krasny et al, 1996). Helical CT may be more 

useful for their detection with a two-phase scanning protocol, where an additional set 

of images is acquired through the liver during the early arterial phase. This technique 

allows visualization of tumour arterial enhancement before the liver itself is 

significantly enhanced (Baron, 1994). Despite the technologic advances of helical CT, 

it is important to understand that not all clinical applications can take advantage of the 

additional capability the technique offers. Current limitations of spiral technology 

include x-ray tube heating constraints, markedly increased demand on computing 

power and memory capacity, and the absolute dependence on a patient’s ability to 

breath hold in order to take full advantage of the helical data (Krasny et al, 1996). 

Functional SPECT tumour volume (STV) does not face all these dilemmas, with 

respect to contrast and organ enhancement time etc. However possible errors include
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the use of 50% of highest activity of the tumour, which may change between scans, 

the effect of the non-homogenous uptake of in In-penetetreotide in normal liver. It 

would be difficult to determine a more accurate method, as the use of a reference area 

such as the kidney or spleen might be affected by chemotherapy.

Although assessment of tumour response is extremely helpful in determining the best 

form of treatment, the responsibility for critical judgment and execution rests with the 

clinician in-charge to treat patients effectively, No computer software can correct the 

clinician’s errors of clinical judgment, misunderstanding of physical concepts, or 

inadequate treatment delivery.

In the past and present there have been misconceptions about the role of nuclear 

medicine in neuroendocrine tumours, but despite all these challenges, radionuclide 

imaging and targeted radionuclide therapy in nuclear medicine is still a useful option. 

We should refocus to use the simpler available techniques more effectively to make 

the benefits noticeable. What we clearly need is newer techniques with increasing 

specificity without loosing sensitivity. These newer modalities should contribute not 

only towards diagnosis but also in staging, follow up and assessing tumour response 

at a very early stage. Because of the relative rarity of neuroendocrine tumours it is 

important to conduct prospective trials for the various forms of treatment.
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Conclusion

Chapter 9

• 90Y brehmsstrahlung imaging is a useful technique for assessing the 

biodistribution of 90Y labelled somatostatin analogues. The 90Y 

brehmsstrahlung imaging was not precise enough for accurate dosimetry and 

also in determining toxicity on a patient by patient basis.

• Functional SPECT tumour volume (STV) is a useful technique to monitor and 

evaluate the treatment response in patients with neuroendocrine tumours. The 

assessment does not involve an extra scan, radiation burden or cost. Presently 

this technique is limited to the neuroendocrine tumour metastases in liver.

• Functional SPECT tumour volume (STV) is useful in the assessment of 

efficacy of various treatment modalities.

Finally, the effective treatment of patient with neuroendocrine tumours involves 

an integrated approach from clinicians, laboratory and imaging results (Fig 9.1). 

This in turn will help us in selecting effective treatment strategies. The treating 

team should not only have clear insights into the benefits and limitations of all the 

available therapeutic modalities, but must also have a clear understanding of the 

molecular or sub-cellular aspects of the disease process. Using brehmsstrahlung 

imaging for the assessment of biodistribution of radiolabelled somatostatin 

analogues and using 11 ̂ -pentetreotide imaging to assess the functional SPECT 

tumour volume will help us in better understanding of conventional and targeted 

radionuclide therapy in neuroendocrine tumours.
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Future work

• Experiments to find the optimal collimator, central energy and window width, 

uniformity and resolution needs to done with phantoms having hot lesions.

• To acquire planar and SPECT images under the proposed imaging protocol 

and test the accuracy as to whether it is possible to quantify the injected 90Y 

activity. Initial experiments are presently in progress using an anthropometric 

phantom

• To acquire planar images using wider windows with increasing energy 

following the preliminary experiments conducted by (Gandon, 2003).

• The resolution of the brehmsstrahlung images was not sufficient so it was not 

possible to show the same tumour uptake of 90Y-lanreotide as seen in the n lIn- 

pentetreotide images with present gamma camera systems. Assessment of 

biodistribution using positron emission tomography (PET) tracer 86Y- 

DOTATOC, which is chemically identical to the therapeutic agent, would be 

helpful.

• Assessment of biodistribution by using same analogue (n ̂ -lanreotide and 

90Y-lanreotide.

• Functional SPECT tumour volume (STV) results will be compared with 

tumours markers and clinical response.

• Functional SPECT tumour volume (STV) will be used in the assessment of 

efficacy of individual treatment modalities and follow-up of patients.
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Glossary (Nuclear Medicine)

Nuclear Medicine: That branch of medicine which uses unsealed sources of 

radioisotopes for either diagnosis or therapy.

Radiopharmaceutical: A particular chemical with a pharmacological action 

containing a radioactive atom.

Radioisotope: Radioactive atoms which decay releasing energy as ionising radiation 

which have the same chemical property but different molecular weight. All 

radioisotopes of an element will have the same number of protons but a different 

number of neutrons.

Radionuclide: A specific radioisotope with particular characteristics. For example 

both " mTechnetium and "Technetium are both the same radioisotope but the 

metastable form is denoted by an m superscript is a different radionuclide than the 

more stable form.

Activity: Measure of radioactivity given to a patient measured as the number of 

radioactive disintegrations per second (Becquerel-Bq).

Half life: Time taken for a radionuclide to decay to half of its initial activity.

y (gamma) ray: Non particulate form of ionising radiation coming from the nucleus 

of a radionuclide.

p (beta) ray: a high-speed electron or positron emitted by a nucleus during 

radioactive decay or nuclear fission

X-rays: A type of radiation of higher frequency (or energy) that visible light but 

lower that gamma rays. Usually produced by fast electrons going through matter or by 

the de-excitation of excited atom.
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Gamma camera: Instrument used to detect gamma rays and produce an image.

Scintigraphy: The process of producing an image with a gamma camera from a 

patient injected with radiopharmaceutical.

Photo-peak: Each radionuclide emits radiation of characteristic energy (energies). 

When detected by a detecting system this photo-peak is measured in kilo electron 

volts (keV).

Scintigraphy: The process of producing an image with a gamma camera from a 

patient injected with a radiopharmaceutical.

Absorbed radiation dose: Estimate of how much energy has been given to an 

irradiated tissue measured in joules per kilogram of tissue (Sieverts Sv).

Brehmsstrahlung: X-rays produced when fast electrons pass through matter. The 

brehmsstrahlung (German for "slowing-down radiation") energy varies from 0 to the 

energy of the electron.

Becquerel: SI unit of activity or nuclear transition rate equal to one per second (Bq).

Bifunctional chelate: Complexing agent with two sites for complexation.

Bioconjugate: An agent (usually a chelate used to conjugate radionuclide to an 

antibody

Chelation: In molecular or complex ion structure, the formation or presence of bonds 

(or other attractive forces) from two or more separate binding sites within the same 

ligand to a single central atom. C.

Dose: A general term denoting the quantity of radiation (energy) absorbed. For 

special purposes, it must be appropriately qualified, c. q. absorbed, maximum 

permissible, mean lethal.
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Absorbed dose: The energy imparted to matter by ionizing radiation in a suitable 

small element of volume divided by the mass of that element of volume.

Effective dose equivalent: The absorbed dose multiplied by the quality factor and the 

product of all other modifying factors N, aimed at expressing on a common scale, for 

different types of radiations and distributions of absorbed dose, the biological effects 

associated with an exposure.

Ligand: A substance or part of a substance that binds to a specific receptor

Isotopes: Nuclides having the same atomic number but different mass numbers.

Conversion electron: An alternate process to x-ray emission during the de-excitation 

of an excited atom.

Adminstration of Radioactive Substances Advisory Committee (ARSAC):

A subcommittee within the department of health responsible for regulation of the 

medical use of radionuclides.

Skewness

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A 

distribution, or data set, is symmetric if it looks the same to the left and right of the 

center point.

Kurtosis

Kurtosis is a measure of whether the data are peaked or flat relative to a normal 

distribution. That is, data sets with high kurtosis tend to have a distinct peak near the 

mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to 

have a flat top near the mean rather than a sharp peak. A uniform distribution would 

be the extreme case.
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Appendix 1

NET PATIENT PRO FO RM A

NAME AND D.O.B:
DATE:

Please could you complete this questionnaire prior to seeine the doctor.

Please score the following on a scale o f 1-10 by 
ticking the relevant box.
1= very bad 10=excellent

1 2 3 4 5 6 7 8 9 10
Flushing

Wheezing
Shortness of 

Breath
Palpitations
Abdominal

Pain
Itching

Other pain

• How many episodes of flushing do you have per day and how often does each one last?

• How often are your bowels open?

• Is your bowel movement:
Normal Loose Constipated V ariable
(Please circle one)

•  Have you lost weight in the last 4 weeks?

• Is your appetite:
Normal Reduced Increased 
(Please circle one)

• Sinoe you last saw the doctor do you feel?
Same B etter W orse
(Please circle one)

• Please list your medications below:

NET Patient Clinical Evaluation proforma
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Appendix 2
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Test for Normality before application of Student t test (SPSS)"rrrIn-pentetreotide and 
90Y-lanreotide [The Student t test is generally bell shaped, but with smaller 
samples sizes shows increased variability (flatter)in other words, the distribution 
is less peaked than normal distribution and with thicker tails].
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Observation Skewness Kurtosis Test
Statistic

Conclusion

In-liver 1.591114 4.6313025 0.29391 Strong evidence against normality

Y-liver 1.2571589 4.2989276 0.2137615 Suggestive evidence against normality

In-spleen 1.7261676 5.4204644 0.2124664 Little evidence against normality

Y-spleen -0.4553929 3.510768 0.1409426 No evidences against normality

In-Heart 0.2708324 2.3343857 0.1071845 No evidences against normality

Y-Heart 0.9772382 5.6201183 0.2518883 Strong evidence against normality

In-Bone marrow 0.3275483 2.4689782 0.1241806 No evidences against normality
Y- Bone 
marrow -0.8625415 3.5015999 0.1770936 No evidences against normality
In-kidney

0.745485 2.6339566 0.1866957 No evidences against normality
Y-kidney

-1.0079207 4.5845268 0.1790653 No evidences against normality

Lilliefors Test for Normality before application of Student t test (SPSS) [ H1In- 
pentetreotide and 90Y-lanreotide]
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Test for Normality before application of Student t test (SPSS) ln In-pentetreotide and 
90Y-SMT
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Observation Skewness Kurtosis Test Statistic Conclusion

In-liver 0.9507712 2.531286 0.2591974 No evidences against normality

Y-liver 0.4163053 1.6351435 0.2505063 No evidences against normality

In-spleen 0.0971516 0.140382 1.854492 No evidences against normality

Y-spleen 1.2029858 2.8598532 0.3251061 Suggestive evidence against normality

In-Heart 0.5929271 1.5625 0.3854022 Strong evidence against normality

Y-Heart 0.8675276 2.7291667 0.3808717 Sufficient evidence against normality

In-Bone marrow 0.0335974 1.2710808 0.2603394 No evidences against normality
Y- Bone marrow 0.5705038 1.5668252 0.3442591 Sufficient evidence against normality
In-kidney 0.9374335 2.625262 0.2639243 No evidences against normality
Y-kidney 2.3737382 2.3737382 0.2049504 No evidences against normality

Lilliefors Test for Normality before application of Student t test (SPSS) n iIn- 
pentetreotide and 90Y-SMT
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Wilcoxon Signed Ranks Test

lnIn-pentetreotide and 90Y-lanreotide

Ranks

1 ■ ■ ■ ■ ■ ■  - N Mean Rank Sum of Ranks
Y_LIVER - IJJVER Negative Ranks 13(a) 7.85 102.00

Positive Ranks 1(b) 3.00 3.00
Ties 0(c)
Total 14

Y SPLEEN - Negative Ranks 10(d) 7.50 75.00
LSPLEEN Positive Ranks 3(e) 5.33 16.00

Ties 0(f)
Total 13

Y_HEART- Negative Ranks 10(g) 8.80 88.00
l_M ARROW Positive Ranks 4(h) 4.25 17.00

Ties 0(i)
Total 14

Y MARROW - Negative Ranks 90) 7.28 65.50
I.MARROW Positive Ranks 5(k) 7.90 39.50

Ties 00)
Total 14

Y_L_KID - 1_L_KID Negative Ranks 14(m) 7.50 105.00
Positive Ranks 0(n) .00 .00
Ties 0(o)
Total 14

a Y_LIVER < IJ.IVER 
b Y_LIVER > l_LIVER 
c Y_LIVER = l_LIVER 
d Y_SPLEEN < l_SPLEEN 
e Y_SPLEEN > l_SPLEEN 
f Y_SPLEEN = l_SPLEEN 
g Y_HEART < I MARROW 
h Y_HEART > l_MARROW 
i Y HEART = l_MARROW 
j Y_MARROW < l_MARROW 
k Y MARROW > l_MARROW 
I Y_MARROW = l_MARROW 
m Y_L_KID < l_L_KID 
n Y_L_KID > l_L_KID 
o Y L KID = I L KID

Test Statistics (b)

Y LIVER - 
I LIVER

Y SPLEEN- 
I SPLEEN

Y HEART- 
I MARROW

Y MARROW- 
I MARROW

Y L KID - 
I L KID

Z
Asymp. Sig. (2-tailed)

-3.107(a)
.002

-2.062(a)
.039

-2.235(a)
.025

-.816(a)
.414

-3.296(a)
.001

a Based on positive ranks, 
b Wilcoxon Signed Ranks Test
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Wilcoxon Signed Ranks Test

inIn-pentetreotide and 90Y-SMT

Ranks
1 N Mean Rank Sum of Ranks

SJJVER - l_LIVER Negative Ranks 5(a) 3.00 15.00
Positive Ranks 0(b) .00 .00
Ties 0(c)
Total 5

S SPLEEN - Negative Ranks 4(d) 3.25 13.00
LSPLEEN Positive Ranks 1(e) 2.00 2.00

Ties 0(f)
Total 5

S HEART - Negative Ranks 0(g) .00 .00
l_HEART Positive Ranks 5(h) 3.00 15.00

Ties 0(i)
Total 5

S MARROW - Negative Ranks 10) 5.00 5.00
l_MARROW Positive Ranks 4(k) 2.50 10.00

Ties 0(l)
Total

5

S_L_KI - 1_L_Kl Negative Ranks 5(m) 3.00 15.00
Positive Ranks 0(n) .00 .00
Ties 0(o)
Total 5

a SJJVER < IJJVER 
b SJJVER > IJJVER 
c SJJVER = IJ-IVER 
d S SPLEEN < I SPLEEN 
e S_SPLEEN > l_SPLEEN 
f S_SPLEEN = l_SPLEEN 
g S_HEART < I HEART 
h S.HEART > l_HEART 
i S_HEART = l_HEART 
j S_MARROW < I MARROW 
k S_MARROW > l_MARROW 
I S_MARROW = l_MARROW 
m S_L_KI < l_L Kl
n S_L Kl > I L Kl
o S L Kl = I L Kl

Test Statistics(c)

S LIVER - 
I LIVER

S SPLEEN- 
I SPLEEN

S HEART- 
I HEART

S MARROW- 
I MARROW

S L Kl- 
I L Kl

z
Asymp. Sig. (2-tailed)

-2.023(a)
.043

-1.483(a)
.138

-2.023(b)
.043

-.677(b)
.498

-2.032(a)
.042

a Based on positive ranks, 
b Based on negative ranks, 
c Wilcoxon Signed Ranks Test
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In-liver -0.2255579 1.5020962 0.1779793 No evidences against normality

Y-liver 0.5845481 2.5334362 0.1663974 No evidences against normality

In-spleen 1.5018276 4.5768807 0.2289256 Little evidence against normality

Y-spleen

In-Heart

-0.1842244

0.491136

3.3296606

2.7605617

0.1723132

0.1132239

No evidences against normality 

No evidences against normality

Y-Heart 0.2622459 5.1931709 0.8323853 Sufficient evidence against normality

In-Bone marrow 0.1008937 2.7527583 0.1197642 No evidences against normality

Y- Bone marrow -1.1685178 3.6392757 0.2238698 Suggestive evidence against normality

In-kidney 0.6112421 2.3540075 0.1775989 No evidences against normality

Y-kidney -0.8121505 3.9834008 0.1429417 No evidences against normality

Test for Normality before application of Student t test (SPSS) n iIn-pentetreotide and 
90Y-lanreotide (excluding patients 10 and 12)
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