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Abstract

HIV infection is now the fastest-growing serious health hazard in the United 

Kingdom (UK), with an estimated 53,000 infected adults at the end of 2003. Despite a 

recent increase in heterosexually acquired infections, the most prevalent clade of virus 

within the country remains subtype B, from the main group of HIV-1, which is mainly 

transmitted through sex between men. To date, very little is known about how subtype 

B successfully invaded the British population, and how the virus has subsequently 

spread and evolved. Given that molecular data on HIV-1 is becoming increasingly 

available since the introduction of routine gene sequencing for drug-resistance 

monitoring, the present thesis proposes to assess the reliability of the HIV-1 pol gene 

for molecular analyses of epidemiological relevance. Identification of transmission 

networks by phylogenetic means were primarily conducted, with the further goal to 

investigate the dynamics of HIV-1 transmission at both individual and population level 

in the UK. Evolutionary and epidemiological approaches were then combined in order 

to assess the correlates of transmission within a population of primary HIV-1 infected 

individuals within a localised risk group, exploiting both molecular and clinical data. 

Finally, the epidemic history of HIV-1 subtype B in the UK was reconstructed from 

sampled HIV-1 pol gene sequences, providing new insights into the complexity of HIV- 

1 epidemics that must be considered when developing monitoring and prevention 

initiatives. The analyses presented in these pages emphasizes the advantage of  

combining state-of-the-art epidemiological studies to phylogenetic frameworks when 

investigating the dynamics of a viral epidemic as complex as HIV-1.
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To study history one must know in advance that one is attempting something 

fundamentally impossible, yet necessary and highly important. To study history means 

submitting to chaos and nevertheless retaining faith in order and meaning. It is a very serious 

task, young man, and possibly a tragic one.

Hermann Hesse, The Glass Bead Game



Chapter I

CHAPTER I 

A Biased Introduction to HIV-1

1. Human Immunodeficiency Virus & AIDS

The first clinical evidence of a new immunodeficiency disease was reported in 

1981 in the United States, as an outbreak of opportunistic infections among 

immunocompromised gay men (Gottlieb et al. 1981). The syndrome, initially referred to 

as Gay Related Immune Deficiency (GRID), was renamed AIDS, for Acquired Immune 

Deficiency Syndrome. An association between the disease and a retroviral agent was 

proposed soon after (Barre-Sinoussi et al. 1983; Gallo et al. 1983). The pathogen, 

initially named human T-cell leukaemia virus type III (HTVL-III) (Gallo et al. 1984), is 

nowadays known as human immunodeficiency virus (HIV). From that (yet early) point, 

it became obvious that the epidemic had already grown out of proportion worldwide 

(Jaffe et al. 1983; Pape et al. 1983; Selik et al. 1984; Curran et al. 1985; Hardy et al. 

1985; Mccormick et al. 1987). Two divergent AIDS-related viruses have been 

distinguished to date, namely HIV type 1 (HIV-1) and type 2 (HIV-2), whose closest 

relatives, the simian immunodeficiency viruses (SIVs), infect other primates (Hahn et 

al. 2000; Sharp et al. 2005). While HIV-2 remains most prevalent in West Africa and 

former Portuguese colonies (Wilkins et al. 1993; Schim Van Der Loeff and Aaby.

1999), HIV-1 has spread uncontrollably in human populations and accounts nowadays 

for an overwhelming majority of the global epidemic.
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Chapter I

1.1. Organisation of HIV-1

Human immunodeficiency viruses belong to the primate lentivirus serogroup, 

genus Lentivirus, family Retroviridae. Mature virions (reviewed in Turner and 

Summers. 1999) have an average diameter of 80 to 100 nm and are enveloped by a lipid 

bilayer derived from the host-cell membrane. Surface projections are exposed evenly 

over the envelope, comprising viral surface glycoproteins (gpl20 and gp41) as well as 

cellular membrane proteins derived from the host cell. Between the membrane and a 

cone-shaped viral core lies a shell of matrix proteins (p i7). The capsid core, which 

consists of capsid proteins (p24), lies at the centre of the virus and encloses two copies 

o f the viral genome stabilized as a ribonucleoprotein complex with nucleocapsid 

proteins (p7). Essential, virally encoded enzymes (i.e. protease, reverse transcriptase 

and integrase) as well as accessory regulatory proteins (i.e. Nef, V if and Vpr) are also 

encapsidated. A schematic structure of HIV-1 is presented in Fig. 1.1.

P31 (Integrase) P66 (Reverse

Transcriptase)

Fig.1.1. Schematic representation of the HIV-1 virion

p24 (Capsid)

p15

(Protease)

Single Stranded 

Positive S e n se  RNA

gp120

p17 (Matrix) (Surface)

gp41

(Transmembrane)

Lipid Bilayer Host Cell 

Protein
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Chapter I

HIV-1 genome consists of two copies of positive sense, single stranded RNA, of 

approximately 9200 nucleotides (nt). Each RNA strand bears nine genes, encoding for 

14 viral proteins (reviewed in Frankel and Young. 1998) and nested between terminal 

repeated sequences of about 600 nt, known as long terminal repeats (LTR). A brief 

description of the genes and their products is given in Table 1.1.

The three principal genes of HIV-1 genome, namely gag, pol and env, are 

responsible for the synthesis of the structural and enzymatic proteins of the virus, 

whereas six accessory genes encode for regulatory (tat and nef) and auxiliary (vif, nef, 

vpr and vpu) factors (Ratner et al. 1985). The gag gene (for group specific antigen) 

encodes for the precursor of the internal structural proteins of HIV-1, processed to form 

mature proteins of the matrix (MA), the capsid (CA) and the nucleocapsid (NC). The 

p o l gene (for polymerase) encodes the enzymatic proteins of the virus, such as the 

reverse transcriptase (RT, DNA polymerase coupled with RNase H activity), the 

protease (PR, mediator of the Gag-Pol polyproteins cleavage and maturation) and the 

integrase (IN, responsible for the integration of the DNA provirus into the host 

genome). The env gene (for envelope) encodes the surface (SU) and transmembrane 

(TM) glycoproteins gpl20 and gp41, which form exposed structures at the surface of 

the host cell. The Tat protein (trans-activator) acts as an activating transcriptional 

protein, whereas Rev facilitates the transport of unspliced mRNAs to the cytoplasm. 

The Vif protein (virion infectivity factor) promotes the production of infectious virions 

and has recently been proven to protect HIV from human cytidine deaminase 

APOBEC3G by inducing its degradation and exclusion from virions (Sheehy et al. 

2002; Yu et al. 2003; Bishop et al. 2004). The Nef protein (negative factor) reduces the 

level of CD4 receptors on the cell surface and stimulates infected cells to divide. The 

Vpr factor (viral protein R) promotes the transport of the pre-integration complex into 

the host nucleus after reverse transcription. Finally, Vpu (viral protein U) is responsible 

for the degradation of newly synthesised CD4 receptors and aids in the assembly and 

release of the virion. The genome organisation of HIV-1 is shown in Fig. 1.2.

1.2. HIV-1 Replication Cycle

Characteristic feature of retroviruses, H IV-l’s genomic RNA is reverse 

transcribed by the RT protein into viral DNA prior to integration into the host genome.

3



Table 1.1. HIV-1 genes and their products

Gene Protein
Name Position Name Size Fonction localisation

gag 790-1186 Membrane anchoring (MA) pl7 env interaction; nuclear transport 
of viral core

virion

1186-1879 Capsid (CA) p24 core capsid virion
1921-2086 Nucleocapsid (NC) p7 RNA binding virion
2134-2292 p6 Vpr binding virion

pol 2253-2550 Protease (PR) pl5 gag/pol cleavage and maturation virion
2550-4230 Reverse transcriptase (RT) p66 reverse transcription virion
4612-5096 Integrase (IN) p31 proviral DNA integration virion

vif 5041-5619 Vif p23 virion maturation and infectivity; protection 
from human APOBEC3G

cytoplasm

vpr 5559-5850 Vpr pl0-15 nuclear localisation of preintegration 
complex; inhibition of cell division

cytoplasm; virion 
virion; nucleus

tat 5831-6045,
8379-8469

Tat pl6/pl4 viral transcriptional factor nucleolus; nucleus

rev 5970-6045,
8379-8653

Rev pl9 RNA transport; stability and utilisation 
factor

nucleolus; nucleus

vpu 6045-6310 Vpu p23 extracellular release of viral particules; 
CD4 degradation in the ER*

integral membrane protein

env 6225-7758 Surface (SU) gpl20 external glycoprotein; CD4 and 
co-receptors binding

plasma membrane; 
virion envelope

7758-8795 Transmembrane (TM) gp41 transmembrane glycoprotein plasma membrane; 
virion envelope

nef 8797-9417 Nef p27-p25 CD4 and HLA class I protein down 
regulation

plasma membrane; 
cytoplasm

Principal genes are indicated in bold
* Endoplasmic reticulum



Chapter I

HIV-1 infects CD4 bearing macrophages and T-helper lymphocytes, through a 

replication cycle involving several steps, divided into two phases. The early phase 

encompasses a succession of processes leading to the integration of the proviral DNA 

into the host cell genome. The late phase includes regulation of the viral gene 

expression, synthesis, maturation and release of viral particles.

gag vif
-1—

-------- r e v -----------
ni nef

1 2 T
| PR  R T  N T 1 SU  TM

5 ’ LTR pol vpr vpu env  3 ’ LTR

Fig. 1.2. Organisation of HIV-1 genome. Each RNA strand harbors three 

principal genes {gag, pol and env; in blue), and 6 accessory genes {vif, vpr, 

vpu, tat, rev, nef, in white), nested between long terminal repeats (LTR, 

hashed boxes). The gag gene encodes for proteins of the matrix (MA), the 

capsid (CA) and the nucleocapsid (NC); po l encodes for the reverse 

transcriptase (RT), the protease (PR) and the integrase (IN); env encodes the 

surface (SU) and transmembrane (TM) glycoproteins.

1.2.1. Early Phase of Replication

HIV infection begins with a specific interaction between the viral glycoprotein 

gpl20 and the host-cell surface molecule CD4, a protein ordinarily involved in antigen 

recognition (Dalgleish et al. 1984). A supplementary interaction with the host 

chemokine co-receptors CCR5 or CXCR4, depending on viral strains (Choe et al. 

1996), is further required to trigger membrane fusion, allowing the internalization of 

the viral core (Fig. 1.3A) (Turner and Summers. 1999). Partial uncoating o f the viral 

core follows, releasing the viral RNA into the host cell (Fig. 1.3B). The 

ribonucleoprotein complex is then released into the cell cytoplasm (Fig. 1.3C), 

initiating the conversion of the viral RNA into a double-stranded DNA copy, known as 

provirus, by the reverse transcriptase (Fig. 1.3D). The consecutive steps of the reverse 

transcription, during which several template switching occur between the two RNA 

genomes, are summarised in Fig. 1.4.
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New viral 

particles

HIV-1

particle

infected cell

\r
£ viral

proteins

f frs viral 

gen om essingle 

stranded RNA

W

double 

stranded DNA

Host genom ic Integrated viral

DNA DNA nucleus

Fig. 1.3. The HIV-1 replication cycle. HIV-1 infection begins with an interaction between HIV 

envelope proteins and both the CD4 and chemokine receptors of the cell (A), triggering 

membrane fusion (B). After entry of the virion, partial uncoating (C) and reverse transcription of 

the viral RNA (D) occur in the cytoplasm of infected cells. The subsequent double-stranded 

DNA product is transported to the nucleus, where it integrates into chromosomal DNA (E). The 

integrated viral DNA serves as a template for DNA-dependent RNA polymerase and leads to 

the production of mRNAs that are translated into viral proteins in the cytosol (F). Viral protein 

precursors and genomic RNA are transported to the inner region of plasma membrane, where 

progeny virus particles “bud” from cells (G) and are released as immature particles (H). 

Subsequent proteolysis will generate mature particles.
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Chapter I

First, negative strand DNA synthesis occurs, initiated by the binding of a tRNA,ys to the 

primer-binding site (PBS) of the viral RNA (Fig. 1.4A). A first strand transfer reaction 

precedes the negative strand elongation, during which the RNA template is degraded 

(Fig. 1.4B). Positive strand DNA synthesis is then initiated at the center and 3’ 

polypurine tract primers (cPPT and 3 ’PPT respectively) (Fig. 1.4C), followed by a 

second strand transfer and positive strand elongation (Fig. 1.4D). At that stage, the 

positive strand elongation terminates downstream of the cPPT (Fig. 1.4E), generating a 

double stranded DNA provirus ready for integration (Fig. 1.4F). This phase of the virus 

life cycle plays a crucial role in the outstanding HIV-1 genome variation and 

diversification, since processes such as mutations and recombination occur at high rate 

at this stage (see section 2.1). The provirus associated to the integrase protein then 

migrates to and enters the host cell nucleus through active transport mediated by Vpr 

and becomes permanently integrated into the cell DNA through a cascade of reactions 

catalysed by the integrase (Bukrinsky et al. 1992; Heinzinger et al. 1994). Once 

integrated, the provirus can remain latent for years or be active, synthesising the 

molecular components of the new generation of virions.

1.2.2. Late Phase of Replication

When activated, proviral DNA serves as template for the host’s DNA-dependent 

RNA polymerase II, leading to the transcription of both viral genomic RNA (latter 

encapsulated into the virion progeny), and messenger RNAs (mRNA) translated into 

structural and regulatory viral proteins in the cytosol (Fig.l.3F). The provirus’ 

transcription is regulated by the interaction of host factors with the viral promoter 

located in the 5' LTR. Transcription is also enhanced by the viral protein Tat, which 

binds to the transactivating responsive sequence (TAR), an RNA element responsible 

for viral transcription initiation and elongation from LTR promoter (Feng and Holland. 

1988; Roy et al. 1990; Feinberg et al. 1991). Unspliced or partially spliced transcripts 

are exported from the nucleus to the cytoplasm by active transport mediated by the viral 

Rev protein. Translation of the gpl60 Env precursor is undergone within the 

endoplasmic reticulum and Golgi apparatus, whereas the Gag and Gag-Pol polyproteins 

are synthesized by cytoplasmic ribosomes. Translation starts by the gag domain and 

Gag-Pol transcripts are generated via a frameshift process, which allows the termination 

codon between the two genes to be bypassed (Ratner et al. 1985; Jacks et al. 1988).

7



Chapter I

HIV-1 poly proteins Gag and Gag-Pol are produced at estimated 9:1 to 19:1 

stoichiometry ratios, depending on whether in vitro or in vivo systems are used to 

analyze the phenomenon (Park and Morrow. 1991; Parkin et al. 1992).

(A)

(B )

(C)

(-) DNA

R U5 PBS GAG POL ENV U3 R
Q 0  _  (+) RNA

r u5 I
cPPT 3'PPT

tRNA

R U5 PBS GAG POL ENV
(+) RNA

(-) DNA
pbs gag pol env

(+) DNA
(-) DNA

pbs gag pol env

(D)

ENVU3 R U5 PBS
► (+) DNA

(-) DNA
pbs gag pol env

U3 R U5
-  (+) DNA

u3 r uS

U3 R U5 PBS J l ENV U3 R U5
■ m (+) DNA

(E )  U3 r u5 pbs gag pol env u3 r u5

U3 R US PBS GAG ENV U3 R U5

(F) u3 r u5 pbs gag pol env

► (+) DNA

u3 r u5

Fig. 1.4. Mechanism of HIV-1 reverse transcription. (A) Negative strand DNA 

synthesis, initiated by the binding of a tRNAlys to the primer binding site (PBS) of the 

viral RNA (B) First strand transfer reaction, followed by negative strand elongation 

(simultaneously with the degradation of the RNA template); (C) Positive strand DNA 

synthesis, initiated at the center and 3’ polypurine tract primers (cPPT and 3 ’PPT 

respectively); (D) Second strand transfer and positive strand elongation; (E) 

Termination of the positive strand elongation downstream of the cPPT; (F) Double 

stranded DNA, termed provirus. After Rausch et Le Grice, 2004.

8



Chapter I

Viral proteins are next transported to the inner surface of the plasma membrane, where 

they accumulate and condense to form an immature virion (Fig. 1.3G). As the particle 

extrudes from the cell, it acquires a lipid coat expressing mature TM and SU envelope 

glycoproteins, causing cellular death (Fig. 1.3H). Proteolytic processing of the Gag and 

Pol proteins by encapsidated proteases concludes the maturation of the virion soon after 

it is released.

1.3. Course of HIV-1 Infection

Infection with HIV-1 is characterised by a progressive demise of CD4 

expressing T lymphocytes, macrophages and monocytes, with a subsequent loss of  

immunocompetence. After transmission, HIV-1 infection traditionally begins with an 

acute (or primary) phase, followed by an early latent phase and concluded by the 

ultimate onset of AIDS (Pantaleo et al. 1993). The traditional course of HIV-1 infection 

is illustrated in Fig. 1.5.

1.3.1. Primary Infection

The acute phase of the disease corresponds to the period that occurs after the 

detection of viral particles in blood serum and plasma, and before production of specific 

antibodies. This time interval varies between individuals, and routine HIV antibody 

testing may remain negative from 3 to 10 weeks post-exposure (Busch et al. 1995), 

however the use of antigen-antibody combined tests reduces this window (Detels et al. 

1998; Mocroft et al. 1998; Palella et al. 1998). As expected under unrestrained 

replication of the virus by adaptive immune response, high levels of viremia are 

observed during this phase, reaching levels of up to 100 million copies of HIV-1 

RNA/ml (Daar et al. 1991; Piatak et al. 1993). Concurrently, the pool of CD4+ T 

lymphocytes starts to decline (Pedersen et al. 1990; Gupta. 1993), until the CD4+ T cell 

counts drops below the level under which opportunistic infections can develop (Vento 

et al. 1993). CD4 count traditionally rebounds after primary infection (Fig. 1.5 A), yet the 

loss of HIV-specific CD4 T-cell response experienced during that phase of the disease 

is never fully recovered, even when treatment is administered (Autran et al. 1997; 

Pitcher etal. 1999).
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Fig. 1.5. Progression of HIV-1 infection. (A) During primary infection, HIV-1 actively 

replicates and disseminates in the host’s body, causing an abrupt decrease in CD4+ 

T cells. (B) As specific immune response to HIV is initiated, an asymptomatic phase 

follows, during which the number of CD4+ cells continue to decrease, while 

detectable viremia remains constant. (C) By the time CD4 count falls below the critical 

level of 200 copies/ml, the host’s immune system collapses and AIDS is declared. 

Adapted from Pantaleo et al., 1993.

1.3.2. Chronic Asymptomatic Infection

Following seroconversion, HIV-1 infection progresses into an asymptomatic 

phase during which a relative equilibrium between viral replication and the host 

immune response is reached. During that stage, specific anti-HIV-1 antibodies are 

produced, while detectable HIV-1 antigens dramatically decrease in blood serum and 

plasma (Fig.l.5B). There is usually no manifestation of clinical symptoms, and the 

‘silent’ progression of the disease may cover months to years according to the
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individuals. In fact, several types of clinical progression have been identified (reviewed 

in Haynes et al. 1996). Rapid progressors (representing about 10% of HIV-1 positive 

individuals) develop the symptoms of AIDS within 2-3 years after infection. Typical 

progressors remain in the asymptomatic phase of the disease for an average of 10 years 

after seroconversion (Bacchetti and Moss. 1989). Finally another 10% of HIV-1 

infected people, named long progressors, conserve a normal CD4 count after more than 

a decade without drug treatment. Although the phase is called "asymptomatic”, viral 

replication and CD4 cell turnover remain active, and the immune system is slowly 

weakening (Ho et al. 1995a), with an average drop of 50-90 CD4+ T cells/pL per year 

and an acceleration of this rate over time (Phillips. 1992). HIV RNA levels in plasma 

and CD4+ cell decline correlate throughout progression towards AIDS, with higher 

plasma viral loads predicting more rapid progression to AIDS and death (Mellors et al. 

1995).

1.3.3. Clinical AIDS

The onset of AIDS is conventionally defined by measurement of CD4 levels 

below 200 cells/pL (Fig.l.5C). At that point, the collapse of the host’s immune system 

allows for opportunistic infection to declare, eventually leading to death. In the absence 

of antiretroviral therapy, survival times after diagnosis of AIDS is on average 10-12 

months (Gail et al. 1997).

2. Mechanisms of HIV-1 Variation

The first evidence of retroviral variation was published as early as in 1913, when 

Rous and Murphy observed dissimilar tumours as a result of infection by chicken 

sarcoma virus no. 1 (Rous and Murphy. 1913). Since then, viral genetic plasticity has 

been extensively investigated, mainly through molecular approaches, and it is generally 

accepted that the diversity exhibited by a viral population is a reflection of the virus’ 

natural history.

In the context of AIDS, the evidence that genomic heterogeneity exists among 

different isolates rapidly followed the characterisation of the disease’s causative
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pathogen (Benn et al. 1985; Hahn et al. 1985; Wong-Staal et al. 1985). With an average 

evolution rate of nearly 2.4 x 10'3 substitutions per base pair per year (Korber et al.

2000), HIV-1 genome diversifies a million times faster than mammalian genes (Kumar 

and Subramanian. 2002). This feature makes HIV one of the fastest evolving organisms 

known to date. Such an outstanding genetic plasticity results from a complex 

combination of conflicting evolutionary forces expressed via molecular adaptation and 

random genetic drift, intimately linked to both the host and virus biology.

2.1. Causes of HIV-1 Evolution

2.1.1. Mutations

RNA viruses share high mutation rates, ranging from 10’3 to 10'5 

misincorporations per nucleotide site per round of replication (Holland et al. 1982; 

Drake et al. 1998). Hence, the introduction of insertion, deletion or base mismatches 

into the HIV-1 genome is a crucial determinant of the virus’ variability (Katz and 

Skalka. 1990). The HIV-1 reverse transcriptase has two distinct enzymatic activities: a 

RNA- or DNA-dependent DNA polymerase and a ribonuclease (RNase) H. The DNA 

polymerase activity of the molecule is responsible for the transcription of viral RNA 

while the RNase H activity involves the degradation of the RNA strand from RNA- 

DNA hybrids formed during reverse transcription. The enzyme functions as both an 

endonuclease and exonuclease in hydrolyzing its target (Schatz et al. 1990).

The HIV-1 reverse transcriptase displays a relatively poor processivity in in 

vitro studies (Bebenek et al. 1989; Bebenek et al. 1998), and, in the absence of 3’ to 5’ 

exonuclease proofreading activity, it exhibits a remarkably high error rate (Roberts et al. 

1988). Because of its inability to excise mispaired nucleotides, the molecule has a 100- 

fold lower fidelity than the cellular DNA polymerases, which possess the proofreading 

3’-exonuclease activity. Although other RTs also lack this proofreading function, HIV-1 

RT is even 10- to 100-fold more error-prone (Drake et al. 1998; Drake. 1999).

When estimated, HIV-1 mutation rates vary according to the experimental 

system used. On average, reported mutation rates are high with in vitro purified HIV-1 

RT, ranging from 3 x 10"4 to 6 x lO'4 substitutions per site per round of replication 

(Preston et al. 1988; Roberts et al. 1988; Boyer et al. 1992; Hubner et al. 1992), while 

they are 10- to 20- fold lower if estimated in single-round infection systems (Pathak and
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Temin. 1990; Mansky and Temin. 1995; Kim et al. 1996). More recently, Gao et al. 

(2004) found an overall HIV-1 mutation rate of 5.4 x 10'5 substitutions per base per 

replication cycle, using single-round infection systems on near-full-length HIV-1 

genomes.

Interestingly, the incorporation of mutations is far from being a random process. 

Early sequence analysis showed that diversity is not evenly distributed throughout the 

genome, with the greatest genetic heterogeneity found in the envelope gene (Hahn et al. 

1985; Starcich et al. 1986). Furthermore, pairwise comparisons of intra-subtype HIV-1 

protein sequences showed significant variation across the genome, with a median 

percentage of amino acid differences of 17% (range 4-30%) in Env, 15% (3-30%) in 

Tat, and 8% (2-15%) in Gag (Korber et al. 2001). Substitution bias can also be 

qualitative, as illustrated by the extreme tendency toward G to A mutations observed in 

retroviral genomes, a phenomenon known as hypermutation (Vartanian et al. 1991). It is 

only recently that the deamination of cytosine residues in nascent retroviral cDNA by 

the host cell apolipoprotein B editing complex protein (APOBEC) 3G has been 

identified as at the origin of the phenomenon (reviewed in Vartanian et al. 2003). In 

some hypermutated segments of the genome, up to 60% of guanine residues can be 

substituted (Vartanian et al. 2002), heavily contributing to the virus genetic diversity. 

Also, the effect of HIV-l’s RT prohibitive error rate is aggravated by its fast replicative 

dynamic: with a generation time approximating 2.6 days in vivo (Perelson et al. 1996a), 

the production of viral particles in an untreated HIV-1 positive individual exceeds 109 

copies per day (Ho et al. 1995b; Wei et al. 1995; Perelson et al. 1996b). Nonetheless, 

the HIV-1 RT alone is far from being a unique source of mutation. Retroviral 

replication is also mediated by cellular DNA polymerases and RNA polymerases II, 

each of which may contribute to the incorporation of mutations at later stages. Although 

the contribution of the high-fidelity DNA polymerases is unlikely to have a substantial 

impact in the mutation rate of HIV-1 genome, RNA polymerase II mediated replication 

may be a significant error-prone step (reviewed in Preston and Dougherty. 1996).

2.1.2. Recombination

Recombination is a process of genetic exchange, through which a hybrid, or 

mosaic, nucleic acid sequence is generated from two or more genetically distinct 

parental genomes. Recombination is frequent in retroviruses and accounts for at least
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10% of the circulating strains of HIV-1 (Sharp et al. 1996; Mccutchan. 2000; Peeters 

and Sharp. 2000). Recombination requires the co- or super-infection of a single host cell 

by more than one viral particle, during which one copy of each parental genome is 

encapsidated into a heterozygous virion (Hu and Temin. 1990). When infection by the 

chimera virus occurs, a recombinant genome is generated by RT switches from a 

parental genome to another (Goodrich and Duesberg. 1990). The mechanistic origin of 

recombination lies in frequent interruptions of the reverse transcriptase during 

polymerisation. This phenomenon, called “pausing,” leads occasionally to the 

dissociation of the enzyme from the primer-template complex (Bebenek et al. 1993; Wu 

et al. 1995) and is sequence specific (Harrison et al. 1998). The ability of  

RT/primer/template complexes to bind an additional single-stranded RNA molecule 

also promotes recombination-prone template switching (Peliska and Benkovic. 1992).

To date, several models have been proposed to explain the mechanism of 

recombination during reverse transcription (reviewed in Negroni and Buc. 2001). 

Amongst these, the ‘forced copy-choice’ model proposes that template switching occurs 

during the synthesis of the negative DNA strand, and is driven by breaks in the viral 

RNA, forcing the reverse transcriptase to jump from one RNA copy to another (Vogt. 

1971; Coffin. 1979). Alternatively, the ‘strand displacement assimilation’ model 

suggests that recombination occurs during the synthesis of the positive DNA strand, 

when an internal initiated fragment is displaced by upstream growing fragments and 

hybridises to parallel DNA synthesis complexes (Boone and Skalka. 1981; Junghans et 

al. 1982).

Recombination is a ubiquitous phenomenon in retroviral biology, and holds a 

major responsibility in HIV-1 molecular variability (Robertson et al. 1995a; Robertson 

et al. 1995b). Thus, the reverse transcriptase is known to be highly recombination prone, 

with an estimated 3 recombination events occurring per genome per round of replication 

(Jetzt et al. 2000; Zhuang et al. 2002). This rate, higher than the actual mutation rate of 

the virus (Jung et al. 2002), is thought to be the highest of all organisms. In practice, 

however, recombination can be difficult to detect, especially amongst closely related 

strains or genomes. The recent re-analysis of empirical datasets suggests that 

recombination is more common in HIV-1 genomes than presently thought (Posada. 

2002). If true, underestimating the frequency of recombination in HIV-1 is likely to 

have repercussions on the reliability of previous inferences about the virus’ evolutionary
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history and dynamics. This finding might also have serious implications on vaccine 

development (Gaschen et al. 2002).

2.1.3. Selection

Nucleotide misincorporation and genetic recombination alone are not sufficient 

to explain HIV-1 molecular evolution (see for instance Gao et al. 2004). Indeed, the 

evolution of the virus is a composite phenomenon also encompassing the rate at which 

genetic changes get fixed within the population. By fixation, one shall understand the 

process through which the frequency of a genetic polymorphism increases up to 100% 

in a given population. According to the theory of natural selection (Darwin. 1959), if a 

particular genetic change increases the chances of an organism to survive in a given 

environment, it will be subject to positive selective pressure. If, in contrary, a genetic 

change decreases the changes of survival of the organism, it will be subject to negative 

selective pressure and be eliminated. Under this balancing selection, advantageous 

mutations get eventually fixed in a population while deleterious ones are eliminated. A 

distinction has thus to be made between rates of mutation and rates of substitution. As 

seen earlier, the mutation rate of an organism is traditionally expressed as the number of 

substitutions per nucleotide site per round of replication. By contrast, the rate of 

substitution of an organism corresponds to the rate at which newly acquired nucleotide 

substitutions become fixed and spread within a population. Rates of substitution are 

expressed as number of nucleotide substitution per site per unit of time (i.e. day, year or 

generation). The substitution rate of a virus (or a gene) is driven by diverse evolutionary 

forces such as selective adaptation or random genetic drift, and reflects the relative 

proportion of advantageous, neutral or prejudicial mutational forces exerted on the 

genome. When looking at HIV-1 evolutionary dynamics, one needs to distinguish 

between intra- and inter-host environments.

Intra-host evolution o f HIV-1

Soon after infection, the transmitted HIV-1 particles and subsequent viral 

populations are subject to strong, non-random pressures within the host, exerted by 

dynamics such as induced immune response or antiretroviral therapy. Under such 

adverse environmental conditions, adaptation is a key determinant of HIV-1 evolution 

within the host, promoting the selection and fixation of mutations. The relative
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frequency, strength and exact location of positively selected substitutions have been 

extensively investigated in specific regions of HIV-1 genome (Seibert et al. 1995; 

Wolinsky et al. 1996; Yamaguchi-Kabata and Gojobori. 2000; Yang et al. 2000; De 

Oliveira et al. 2004; Leal et al. 2004), and a large body of evidence suggests that 

Darwinian evolution is both fast and widespread in HIV populations within infected 

individuals. This is particularly obvious in the context of immune escape (Zanotto et al. 

1999; Ross and Rodrigo. 2002) and antiretroviral drug resistance (Richman et al. 1994; 

Frost et al. 2001). Thus, fixation of adaptive changes within the envelope gene, where 

most of the amino-acid substitutions confer a strong selective advantage in evading 

immune recognition, occur every 2.5 months on average, constituting what is though to 

be the fastest adaptation rate ever recorded for a single protein-coding gene 

(Williamson. 2003). In the case of the pol gene, the emergence of resistance-conferring 

polymorphisms has been reported soon after administration o f all available 

antiretroviral drugs (Pillay et al. 2000). Despite the decreased fitness these mutations are 

associated with in the absence of therapy, most of them become fixed in the viral 

population for the adaptive benefit they confer, the occurrence of compensatory changes 

counterbalancing the loss of replicative fitness of the resistant mutants (reviewed in 

Quinones-Mateu and Arts. 2002).

Despite the strong influence of positive selection on HIV-1 evolution, stochastic 

fluctuations also drive allele fixation in HIV populations, creating a genetic drift (Leigh- 

Brown and Richman. 1997; Holmes and Zanotto. 1998; Frost et al. 2000; Shriner et al. 

2004). Mutation frequency can vary simply by chance, as the result of a random 

sampling process and regardless of the relative advantage (or disadvantage) mutations 

confer. For instance, in a population bottleneck, where the population suddenly 

contracts to a small size and then grows again to a large population, genetic drift can 

result in sudden and dramatic changes in allele frequencies (Kitrinos et al. 2005). 

Similarly, migration across the host’s compartments may produce founder effects, 

where rare mutations in the originating population get fixed in the next generation of 

virus (Poss et al. 1998). Hence changes in cellular conditions, compartmentalization, or 

migration dynamics are amongst the factors exerting a constant purifying force on viral 

population, resulting in survival of lineages on the basis of pure chance rather than 

fitness (Leigh Brown. 1997; Rouzine and Coffin. 1999; Ribeiro and Bonhoeffer. 2000).

The idea of a genetic drift implies that all mutations are treated neutrally in 

respect to fitness, and is directly influenced by the effective size of the viral population.
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By effective population size, one should understand the proportion of the total 

population size that successfully contributes to the next generation of virus (see Chapter 

II, section 4.2). Indeed, deterministic evolution has a greater impact on large 

populations, where the abundance of viral variants is subject to fitness competition, 

while in a small population, the fate of mutants is more sensitive to the influence of 

random events, independent of their fitness.

Whether intra-host effective population size of HIV-1 is large or small is still 

open to debate. The relative influence of deterministic or stochastic models of molecular 

evolution has yet to be unambiguously determined. On one hand, authors argue in favor 

of a large effective population size within a host, reaching an order of magnitude of 105 

(Coffin. 1995). On the other hand, observations seem more consistent with a smaller 

effective population size, involving an average of 1500 reproductive particles (Leigh 

Brown. 1997; Leigh-Brown and Richman. 1997). However, the two models are not 

necessary mutually exclusive and may reflect population patterns under different 

conditions of HIV-1 natural history. If HIV-1 populations may behave in a mostly 

deterministic manner under intra-host constraints, the loss in population size resulting 

from transmission may increase the impact of stochastic forces. To date, whether HIV- 

1 ’s intra-host population size is large or small is still contentious.

Inter-host evolution o f HIV-1

If HIV-1 intra-host evolution is clearly shaped by the successive gain and loss of 

advantageous and disadvantageous mutations, the virus’ evolution between hosts shows 

little evidence of being driven by positive selection. Indeed, host-to-host transmission of 

HIV-1 is traditionally accompanied by a loss of genetic diversity, through what has 

been termed a bottleneck effect (Cichutek et al. 1992; Mcneamey et al. 1992; Wolfs et 

al. 1992). Effectively, only a minor subset of the donor’s viral population will 

successfully be passed on to the recipient, and the new host population will rise from 

the limited genetic pool transmitted in that way (Wolinsky et al. 1992). The strong 

purifying selection exerted by transmission on HIV-1 intra-host populations is 

particularly obvious in the highly variable V3 loop of the envelope gene, where a 

significant loss of allelic diversity is observed in primarily infected individuals 

compared to chronically infected ones (Zhu et al. 1993). Thus, the characterization of 

homogenous populations within HIV-1 primarily infected individuals is a accurate 

indicator of recent transmission bottlenecks (Delwart et al. 2002).
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An additional feature of HIV-1 evolution during transmission is the decrease of 

population fitness following bottleneck events. After infection, the reduced diversity of 

the transmitted sub-population allows stochastic forces to fix deleterious mutations via 

genetic drift (Muller. 1934). This phenomenon, known as Muller’s Ratchet, is well 

characterised in RNA viruses (Duarte et al. 1992: Chao. 1997) and predicts that, when 

mutation rates are high and a significant proportion of mutations are deleterious, an 

irreversible ‘ratchet’ mechanism will gradually decrease the fitness of a small asexual 

population. The loss of the fittest genotypes will be irreparable unless some other 

process recreates individuals of comparable fitness, one such process being 

recombination (Muller. 1964; Felsenstein. 1974). Experimental evidence shows that 

genetic reassortments such as recombination can reduce the mutational load in a 

population and promote the clearance of accumulated deleterious effects (Chao et al. 

1997).

Although transmission bottlenecks are profoundly liable to HIV-1 evolution at 

the inter-host level, alternative stochastic determinants are at work. Amongst these, host 

behavioral factors such as difference in transmission dynamics may generate a strong 

genetic drift influencing allele fixation. For instance, an advantageous mutation arising 

within an individual with low risk behavior or partner exchange rate may fail to be 

successfully transmitted and selected for, accentuating the purifying effect induced by 

transmission on HIV populations.

2.2. Consequences of HIV-1 Evolution

2.2.1. HIV-1 Subtypes

A striking outcome of the HIV-1 fast rate of evolution is the extensive genetic 

diversification the virus went through in a few decades, enforcing the need for a 

nomenclature system, and leading to the classification of lineages on the basis of  

genetic distances and phylogenetic clustering (Robertson et al. 2000).

So far, HIV-1 encompasses three distinctive genetic groups, termed M (Main), 

O (Outgroup) and N (new or non-M, non-O), suspected to result from three independent 

cross-species introductions (Sharp et al. 2001). While groups O and N represent a small 

fraction of the HIV-1 strains identified worldwide and remain restricted to West-Central 

Africa (De Leys et al. 1990; Gurtler et al. 1996; Simon et al. 1998). The ubiquitous
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group M is responsible for a vast majority of the HIV-1 epidemic worldwide. Since 

considerable diversity was accumulated within the group M itself (Louwagie et al. 

1993), the latter was further divided into nine clades or subtypes, designated A, B, C, D, 

F, G, H, J and K. These clades are approximately equidistant in phylogenetic terms, and 

can differ from each other from up to 30% in the env region (Korber et al. 2000). In the 

light of the overall high number of HIV-1 subtypes cocirculating in the Democratic 

Republic of Congo (formerly Zaire), together with the high intrasubtype found in this 

area, it has been suggested that this region is the epicentre of HIV-1 group M (Vidal et 

al. 2000). Alternatively, although the vast majority of group O infections are restricted 

to Cameroon, recent studies have identified diversity and genetic substructure within the 

group (Roques et al. 2002; Yamaguchi et al. 2002). By contrast, only six infections by 

group N viruses have been reported to date (Simon et al. 1998; Ayouba et al. 2000; 

Roques et al. 2004). Besides, inter-subtype mosaic genomes were identified in regions 

where distinct subtypes co-circulate. These are now designated as ‘circulating 

recombinant forms’, or CRFs (Carr et al. 1998). To date, up to 15 CRFs have been 

recognised (Los Alamos HIV sequence database, http://www.hiv.lanl.gov/).

HIV-1 subtypes are unequally distributed across risk groups and geographic 

areas (see Table 1.2). For example, while most subtypes, including CRFs, circulate in 

Africa, subtype B is mainly predominant in North America and Western Europe, where 

the HIV-1 epidemic is dominated by homosexual and injecting drug use (IDU) 

transmission (Tatt et al. 2001). Inversely, subtype C is highly prevalent in populations 

where heterosexual contact is the main source of infection and represents about 50% of 

the circulating strains. Consequently, in increasing spread of non-B strains has recently 

been reported within the heterosexual population in Western Europe and North 

America, where the epidemic is dominated by subtype B (UNAIDS, www.unaids.org). 

On a global scale, the most prevalent HIV-1 clades are subtypes C (47%), A (27.2%), B 

(12.3%), D (5.3%) and CRF01_AE (3,2%) (Osmanov et al. 2002).

Whether subtypes have intrinsic biological differences is subject to debate, and 

several studies have emphasized the difficulty in discriminating between viral, host and 

societal factors (reviewed in Hu et al. 1999). Yet there is a large body of evidence 

suggesting that discrepancies exist across HIV-1 groups and subtypes with respect to 

transmissibility and pathogenesis (Blackard et al. 2001), disease progression (Wolinsky 

et al. 1992; Soto-Ramirez et al. 1996; Van Harmelen et al. 1997), co-receptor usage and
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cell tropism (Zhang et al. 1996; Tscheming et al. 1998; Peeters et al. 1999) or 

antiretroviral drugs susceptibility (Apetrei et al. 1998; Descamps et al. 1998; Wainberg. 

2004). Moreover, different substitution patterns of positively selected sites were 

reported across subtypes, with a correlation within clades despite differences in the 

strength of selection (Gaschen et al. 2002; Choisy et al. 2004). For all that, a vast 

majority of the efforts made in developing diagnostic tests, antiretroviral drugs, and 

HIV-1 vaccines were on the basis of subtype B viruses.

2.2.2. Drug Resistance

The first effective drug against HIV was azidovudine (AZT), a nucleoside 

analogue inhibiting the virus’ reverse transcriptase (Yarchoan et al. 1986). Soon after, 

came the introduction of highly active antiretroviral therapy (HAART), based on 

‘cocktails’ of nucleoside and non-nucleoside reverse transcriptase inhibitors (NRTIs and 

nNRTIs), protease inhibitors (Pis), and more recently inhibitors of viral entry into 

susceptible cells. As chain terminators, NRTIs compete with natural desoxynucleoside 

triphosphates (dNTPs) for incorporation into the synthesised DNA chain, while 

NNRTIs and Pis inhibit replication by binding to the active site of reverse transcriptase 

and protease respectively. Fusion inhibitors represent the most recent generation of anti

retroviral drugs and block the fusion of the viral envelope to the cell membrane. 

HAART has significantly reduced HIV transmission, morbidity and mortality (Palella et 

al. 1998), but has also led to the problem of drug resistance (Larder and Kemp. 1989; 

Najera et al. 1994; Ribeiro and Bonhoeffer. 2000).

Resistance to Pis and nNRTIs originates from conformational changes reducing 

the affinity between the inhibitor and the binding site of the mutated molecule. In the 

case of Pis, mutations in protease cleavage sites have also been reported to be 

responsible for resistance (Cote et al. 2001). Alternatively, resistance to NRTIs either 

come from mutations preventing the addition of nucleotide analogues to the synthesised 

DNA chain (Huang et al. 1998; Sarafianos et al. 1999), or mutations in RT increasing 

the cleanse of drug from the DNA (Arion et al. 1998). To date, 27 nucleotide positions 

in the protease gene are known to harbour mutations associated with PI resistance, and 

almost that many are involved in drug resistance in the RT gene (Shafer et al. 2000; 

Johnson et al. 2003). It is understood that both selective pressures exerted by the drug 

regimens and underlying genetic drift play an active role in the emergence of drug
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resistance mutations (Frost et al. 2000; Ibanez et al. 2000; Frost et al. 2001; Leal et al. 

2004). Nevertheless, the respective weight of deterministic and stochastic forces in the 

process has still to be clarified. While authors are in favour of a largely deterministic 

acquisition of advantageous alleles under a drug-rich environment (Rouzine and Coffin.

1999), others support a neutral model (Brown and Richman. 1997). The two hypotheses 

are far from being mutually exclusive, and epidemiological evidence suggests that drug 

resistance acquired during adaptation to sub-optimal HAART is randomly transmitted 

between individuals (Gomez-Cano et al. 1998; Pillay et al. 2000; Blower et al. 2001).

It has been shown that many mutations conferring drug resistance to reverse 

transcriptase and protease inhibitors have deleterious effects on the replicative capacity 

of the virus, so that resistant mutants have a decreased fitness compared to wild-type 

viruses in a drug-free environment (Harrigan et al. 1998; Zennou et al.l 998; Martinez- 

Picado et al. 1999). However, the benefit drug resistance-associated mutations confer 

during therapy is such that these mutants are eventually selected for and fixed within the 

viral population, the presence of compensatory mutations frequently sustaining the 

fitness loss of the mutants (Nijhuis et al. 1998; Menendez-Arias et al. 2003). As a result, 

deleterious allelic changes come fixed by the action of genetic drift while they are 

expected to recede by purifying selection. This is illustrated, for instance, by the in vivo 

fitness of HIV-1 subpopulations harboring mutations at codons 41 and 215 of reverse 

transcriptase (related to zidovudine resistance). While these clones are highly fit in the 

presence of drug, reduced fitness involving their RT function was reported for the 

mutants in an environment requiring competition with zidovudine-sensitive strains 

(Goudsmit et al. 1997; Yerly et al. 1998).

3. Epidemiology of HIV-1

HIV-l has been proven successful in exploiting various means of transmission 

adapted to key aspect of modem life, and is transmitted through three principal routes: 

unprotected sexual contact (Gottlieb et al. 1981; Royce et al. 1997), contact with 

infected blood or blood products (Des Jarlais et al. 1992; Lackritz et al. 1995; Schreiber 

et al. 1996) and prenatal transmission from mother to child (Rogers et al. 1987; Gabiano 

et al. 1992). Twenty years after its identification, almost 40 million people (range 35.9 -
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44.3 million) live with HIV worldwide. In 2004, 4.9 million (4.3 million-6.4 million) 

individuals were newly infected, annunciating the biggest increase in new infections 

ever recorded since the beginning of the epidemic. The global AIDS epidemic killed a 

total of 20 million people, 3.1 million (2.8 million-3.5 million) of whom died in the past 

year (UNAIDS, http://www.unaids.org/). A key feature of the epidemic is its 

remarkable heterogeneity within regions, countries, or niches. For instance, an estimated 

25 million people are living with HIV in sub-Saharan Africa, embodying almost two- 

thirds of all people living with HIV (UNAIDS, http://www.unaids.org/). There is 

nonetheless a vast epidemiological diversity of HIV across the African countries, with 

prevalences ranging from 2 to 20% of the adult population. By contrast, 580 000 people 

are living with HIV in Western Europe, including almost 50,000 infections diagnosed in 

the United Kingdom (Health Protection Agency’s monthly report 2004, 

http://www. hpa. org. uk/).

3.1. HIV-1 in the United Kingdom

Epidemiological studies coupled with phylogenetics has shed light on the 

introduction of HIV-1 into the Western world (Kuiken et al. 2000). In essence, it was 

hypothesised that a HIV subtype B strain was carried out of Africa and introduced into 

the North American homosexual community by a gay airline steward, ‘patient O’, 

infected in the late seventies (Auerbach et al. 1984). It is however doubtful that one 

individual alone is at the origin of the initial spread of HIV in the United States (US) of 

America, and it has been suggested that ‘patient 0’ belonged to a group of homosexual 

men involved in frequent sex tourism who died of AIDS between 1980 and 1982 

(Hooper. 2000). If the identification of the US epidemic founder effect(s) remains 

subject to conjecture, it is most certain that the virus arrived through gay sex tourism 

from Haiti, where HIV prevalence was advanced at the time the first case of AIDS was 

identified in the US (Greco. 1983; Johnson and Pape. 1989). From the United States, the 

virus presumably spread from one European country to one other, including the United 

Kingdom (UK). AIDS was first characterised in the Western world amongst men having 

sex with men, suggesting that the epidemic expanded from this risk group (Cheingsong- 

Popov et al. 1984; Van Haastrecht et al. 1992). The disease, however, affected other 

population groups, and injecting drug users are thought to have played a role in the 

spread of the virus in the early 80’s (Masur et al. 1981).
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Table. 1.2. Global distribution and predominance of HIV-1 subtypes and circulating recombiant forms (CRFs)

Group Subtype Distribution References

M A Eastern & Central Africa Nkengasong et al. 1995; Carr et al. 1999; Hu et al. 2000
B Northern & South Amercia, Western Europe, Oceania Brodine et al. 1995; Ramos et al. 1999; Kuiken et al. 2000; 

Oelrichs et al., 2000a
C Southern & Estem Africa, India Lole et al, 1999; van Harmelen et al. 1999; Hussein et al. 2000
D Central Africa Hu et al.2000; Hierholzer et al. 2002; Vidal et al.2003
F Central Africa, Southern America Triques et al. 1999; Laukkanen et al. 2000
G Central Africa Potts et al. 1993; Janssens et al. 1994; Delaporte et al. 1996
H Central Africa Murphy et al. 1993; Janssens et al. 1994; Nkengasong et al. 1994
J Central Africa Bikandou et al. 2000; Cham et al. 2000; Vidal et al. 2000
K Western Africa Triques et al. 2000; Vidal et al. 2000

CRF01 AE Western & Central Africa, South-East Asia Montavon et al. 2000; McCutchan et al. 1999; Kato et al. 2001
CRF02 AG Western & Central Africa Carr et al. 1998; Montavon et al. 2000; Carr et al. 2001a
CRF03 AB Eastern Europe Bobkov et al. 1998; Liitsola, 1998
CRF04 cpx Cyprus & Greece Gao, 1998; Nasioulas, 1999
CRF05DF Democratic Republic of Congo Laukkanen, 2000
CRF06 cpx Western Africa Montavon, 1999; Baldrich-Rubio et al. 2001
CRF07 BC China McCutchan at al. 2002; Yang et al. 2002
CRF08BC China McCutchan at al. 2002; Yang et al. 2002
CRF09 cpx Senegal Burda, 2004; McCutchan et al. 2004
CRF10 CD Tanzania Kulinska et al. 2001
CRF11 cpx Central Africa Montavonet al. 2002
CRF12 BF Southern America Carr et al., 2001b; Thomson et al. 2002;
CRF13 cpx Cameroon Wilbeetal. 2002
CRF14 BG Spain, Portugal Thomson et al. 2001; Delgado et al. 2002
CRF15 01B Thailand Tovanabutra et al. 2003

O Cameroon, Gabon, France Nkengasong et al. 1993; Zekeng et al. 1994; Gurtler et al. 1994

N Cameroon Simon, 1998
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The first case of AIDS in the UK was documented in December 1981 (Dubois et 

al. 1981). Twenty years later, 49,500 adults lived with HIV in the United Kingdom, 

including 5,542 new infections acquired that year (almost double the number identified 

in 1997) (Health Protection Agency’s monthly report 2004, http://www.hpa.org.uk/). 

Although men having sex with men (MSM) remain the acquisition group at greatest risk 

in Britain with 29,362 prevalent infections (53%) in 2003, an overwhelming increase in 

heterosexually acquired infections has been reported since 1999 (49% of new HIV 

diagnoses in 2003 were in people infected during heterosexual intercourse), probably 

acquired outside the UK (see Fig. 1.6) (UNAIDS, http:Hwww.unaids.org/). Indeed, 

three quarters of the heterosexual infections diagnosed in recent years have been in 

people originating from high prevalence countries, such as sub-Saharan Africa (Hamers 

and Downs. 2004). In contrast, the prevalence of HIV infection amongst injecting drug 

users (IDUs) remains low (Aceijas et al. 2004). If such a rise in new HIV diagnoses 

seems partly attributable to a significant increase in HIV testing in Britain, a large share 

of HIV infections still remain undiagnosed. Indeed, despite considerable efforts in 

surveillance and monitoring of the disease, an estimated 11000 infections (one third of 

people living with HIV in the UK) are believed to remain undiagnosed, and are likely to 

discover their condition only once afflicted by AIDS-related illnesses (Department of 

Health United Kingdom, http://www.publications.doh.gov.uk/). HIV-1 predominantly 

infects young adults in the UK, with 79% aged 15 to 39 years at diagnosis. Through the 

last 15 years, the main focus of infection in Britain has been in the London region, with 

nearly two thirds of the infected individuals residing in this area. With the decline in 

deaths observed since the administration of highly active antiretroviral therapy 

(HAART) and the ongoing rise of newly diagnosed infections, the prevalence of HIV-1 

in Britain is increasing. HIV infection is now the fastest-growing health hazard in 

England (Department of Health United Kingdom, http:Hwww.publications.doh.gov.uk/).

3.2. Molecular Epidemiology of HIV-1

Although epidemiology has been focussing on the occurrence, origin and spread 

of epidemics long before the causal agents of diseases were identified, the recent 

emergence of molecular techniques has given the discipline second wind. Since the first 

applications of molecular epidemiology to infectious diseases in general (Kilboume. 

1973), and HIV in particular (Smith et al. 1988), the on-going availability of sequence
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data has allowed in-depth analyses of epidemics’ features previously out of reach for 

traditional techniques. In regard to HIV-1, the comparative analysis of gene sequence 

variation has become a standard practice since the early days of the epidemic, exploiting 

bioinformatics methodologies o f increasing sophistication. Thus, molecular 

phylogenetics (see Chapter II, section 3) permitted the investigation of key determinants 

of the epidemic as diverse as the origin of emerging populations (Korber et al. 2000a; 

Salemi et al. 2001; Sharp et al. 2001), the sources and transmission patterns of localized 

outbreaks (Ou et al. 1992; Albert et al. 1994; Hayman et al. 2001), or the inference of 

the demographic histories of HIV-1 lineages (Grassly et al. 1999; Pybus et al. 1999; 

Kurbanov et al. 2003; Lemey et al. 2003; Robbins et al. 2003).
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Fig. 1.6. Number of new HIV-1 diagnoses by year of diagnosis in the UK, and 
they probable route of infection. From the HP A Annual Report, January 2004.
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Overall, molecular epidemiology has proven a powerful tool for the design and 

evaluation of preventative programs for public health monitoring, and is increasingly 

used by clinicians, molecular biologists, phylogeneticists and epidemiologists with an 

interest in HIV-1 research. Two examples of direct relevance for the work presented in 

this thesis will be developed here, namely the investigation of the origins of human 

immunodeficiency viruses and the first use of HIV-1 sequences data for forensic 

purposes.

3.2.1. Controversial Origin of HIV-1

Molecular studies permitted to unveil the mystery around the origin of both 

human immunodeficiency viruses and it is now generally accepted that the colonisation 

of the human population by HIV-1 and -2 resulted from several, independent, cross

species infections between humans and non-human primates (Hahn et al. 2000b; Sharp 

et al. 2001). Recent phylogenetic analyses indeed identified simian immunodeficiency 

viruses (SIVs) harboured by chimpanzees (Pan troglodytes) and sooty mangabays 

(Cercocebus atys) as the closest-related viruses to HIV-1 and HIV-2 respectively 

(Hirsch et al. 1989; Huet et al. 1990; Gao et al. 1999; Sharp et al. 2001). Direct 

exposure of human to primate blood during hunting and food preparation in central 

Africa are though to have favoured such cross-species transmissions (Hahn et al. 

2000a). Post-colonial changes, including population growth, migration, social upheaval, 

and increased hunting and deforestation, would have then fuelled the emergence of the 

epidemic (Pela and Platt. 1989). The so called ‘cut hunter’ theory has long been 

opposed to an alternative hypothesis named ‘polio vaccine theory’, according to which 

HIV-1 may have risen in human population as a result of contamination of the oral polio 

vaccine (OPV) administrated in Central Africa in the late 50’s (Elswood and Strieker. 

1994; Hooper. 2000; Hooper. 2001). As simian kidneys were used during the vaccine 

preparation, Hooper suggests that SIV infected chimpanzee kidneys were used for this 

purpose, promoting the transfer of viral particles into human populations. Nonetheless, 

testimony of eyewitnesses, virological data and epidemiological analyses concur to 

reject this hypothesis as false (Plotkin. 2001). More recently, molecular evidence has 

finally proven the OPV theory to be erroneous (Worobey et al. 2004). While vaccines 

were prepared from chimpanzee tissues endemic from the region of Kisangani 

(Democratic Republic of Congo), Worobey et a l showed that the virus circulating
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within Kisangani Chimpanzees (SIVcpzDRC) is phylogenetically distinct from all 

strains of HIV-1. Phylogenetic studies further suggest that HIV-1 group M emerged in 

the human population around 1930, probably in west equatorial Africa, where the 

epicentre of the pandemic appears to be (Korber et al. 2000; Sharp et al. 2000). The 

latter findings correlate with the isolation of the earliest HIV-1 sequences known to date 

from plasma sampled in Leopoldville, Belgian Congo (today’s Kinshasa, Democratic 

Republic of the Congo) in 1959 (Nahmias et al. 1986; Zhu et al. 1998).

Nevertheless, the cut hunter theory fails to find unanimous support amongst the 

scientific community. Marx et al. (2001), for instance, suggested that the probability of 

five or more zoonotic transitions (i.e. HIV-1 groups M, O, N and HIV-2 subtypes A B) 

occurring in a brief period is exceedingly small, and that increased unsterile injections 

in Africa during the period 1950-1970 is likely to have promoted serial human passage 

of SIV, generating HIV by a series of multiple genetic transitions. The timing of the 

origin of HIV-1 subtype B was also criticized for not incorporating measures of unequal 

rates of evolution amongst viral lineages (Salemi et al. 2001; Lukashov and Goudsmit. 

2002), fuelling further the controversy on the origin of HIV.

3.2.2. The Florida Dentist Case and Followers

The identification of the source of an outbreak for forensic purposes was 

amongst the first applications of HIV-1 molecular epidemiology. In the early 90’s, Ou 

et a l (1992) identified Dr David Acer, an HIV-infected dentist from Florida, USA, as 

the source of infection of five of his patients. This conclusion was reached by 

epidemiologic investigation and phylogenetic comparison of HIV-1 envelope gene 

sequences amplified from the dentist, his patients and local HIV-infected control 

individuals. The molecular relatedness of the samples led to the conclusion that five of 

the patients harboured viruses closely related to the dentist’s one, while unrelated 

viruses infected other patients. David Acer died before any criminal charges were 

brought, but the so-called Florida dentist case started a vivid controversy (Abele and 

Debry. 1992; Smith and Waterman. 1992; Debry et al. 1993; Crandall. 1995).

Phylogenetic evidence were effectively produced in a criminal court for the first 

time in 1998, as a doctor of Louisiana, USA, was accused of infecting his former lover 

by injecting her with HIV infected blood in an act of vengeance (Metzker et al.1998). 

DNA samples of the virus in the victim’s blood and that of the HIV-positive patient in
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question were found to be phylogenetically similar. On that ground, the Louisiana 

doctor was found guilty and sentenced to 50 years.

Since then, molecular epidemiology has been used in several criminal HIV 

transmission trials, including a rape case (Albert et al. 1994), reckless multiple 

transmission (Birch et al. 2000) and a sexual assault on children (Machuca et al. 2001). 

In the UK, phylogenetic evidence was produced in what was the first ever HIV 

transmission conviction in England and Wales {http://news.bbc.co.uk/). Mohammed 

Dica was found guilty of reckless, rather than deliberate, biological Grievous Bodily 

Harm against two women and was sentenced to 8 years in prison in November 2003.

Furthermore, phylogenetic analyses have been used to establish relatedness 

between HIV strains in various non-legal contexts. Reports include an outbreak of  

infection in a Scottish prison (Yirell et al. 1997; Yirell et al. 1999) as well as in a small 

heterosexual community (Hayman et al. 2001), the characterisation of transmitted drug 

resistance (Taylor et al. 2003), father-to-child horizontal transmissions (Ceballos et al. 

2004) and investigations by sanitary authorities following nosocomial transmissions 

(Holmes et al. 1993; Arnold et al. 1995; Blanchard et al. 1998; Goujon et al. 2000; 

Yerly et al. 2001a).

The Florida dentist case rapidly initiated a debate about the practicalities and 

difficulties in establishing transmission networks from the analysis of viral gene 

sequence data, particularly about the choice for the most informative genetic region on 

one hand and the choice of the best phylogenetic methodology on the other (Holmes et 

al. 1993). Ideally, full-length sequences should be used for the investigation of potential 

linkages by phylogenetic means, however practicalities preclude such an approach. The 

use of env gene sequences is often recommended (see for example Leitner et al., 1996), 

the extensive variation of which has made it attractive for such analyses. However, the 

exploitation of env is far from unproblematic. First, convergent evolution (i.e. identical 

mutational patterns in unlinked sequences) has repeatedly been observed in the V3 loop 

of the env gene (Holmes et al. 1992; Zhang et al. 1993). More importantly, the rapid 

genetic diversification of this region is likely to compromise identification of linked 

sequences in distantly sampled individuals. Indeed, both divergence and diversity of the 

HIV-1 env gene have been shown to increase linearly in early stages of infection 

(Shankarappa et al. 1999). Alternatively, the pol gene is traditionally considered as sub- 

optimal in terms of phylogenetic signal for its genetic conservation. The gag  gene 

would offer a good intermediate, yet its exploitation for molecular epidemiology
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remains anecdotal and is almost exclusively done in conjunction with env (Albert et al. 

1994; Birch et al. 2000).

The second issue to consider concerns the method of analysis. If the choice of a 

phylogenetic method for reconstructing transmissions is less sensitive than the choice of 

a genetic region (Leitner et al. 1996), the misuse of a model of evolution (see Chapter II 

section 3.4) can have major consequences on the accuracy of the reconstruction. Indeed, 

since rates of evolution differ across HIV-1 lineages, populations, or genetic regions, 

the selection of an optimal model must be a prerequisite when estimating HIV-1 

phylogenies. The systematic (and often unjustified) use of over-simplistic models of 

evolution is unfortunately frequent in HIV molecular analyses. When using such 

models, features of importance in the context of HIV-1 transmission, such as branch 

length within the reconstructed genealogy, may be underestimated (Yang et al. 1994). 

Close attention is therefore required in dealing with HIV-1 sequences for 

epidemiological, clinical or forensic purposes.

4. The Present Thesis

The work presented in this thesis aims to shed light on the dynamics o f the 

subtype B HIV-1 epidemic in the United Kingdom through the exploitation of routinely 

available molecular data. The general methods and principles used for that purpose are 

developed in Chapter II. Chapter III proposes to assess and validate the reliability of the 

HIV-1 pol gene for the characterisation of transmission networks by phylogenetic 

means. For that purpose, HIV-1 pol gene sequences were used to characterise possible 

transmission chains between patients represented within a nationwide resistance-testing 

database. The subsequent phylogenies were compared to genealogies obtained with 

more variable genetic regions of the same HIV-1 samples to confirm relatedness. 

Chapter IV applies the previous findings to the investigation HIV-1 transmission within 

a cohort of newly infected men having sex with men from a discrete geographical area, 

with a focus on the impact of primary infection in HIV-1 transmissibility. Finally, 

Chapter V focuses on the exploration of the HIV-1 epidemic history amongst gay men 

in Britain using a coalescent-based approach, estimating of the date of introduction of 

several lineages of epidemiological significance, the fluctuation of the viral population
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over time and the growth rate of the epidemic amongst the risk group. A general 

discussion of the results presented within is proposed in Chapter VI.
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CHAPTER II 

Methods & Principles

1. Study Population: the ASRU pol Database

1.1. Specimen Collection

The pol sequences used for this study were generated from plasma samples 

collected from HIV-1 infected people in the United Kingdom by the Antiviral 

Susceptibility Reference Unit (ASRU), Health Protection Agency (HPA), Heartlands 

Hospital, Birmingham, UK. The laboratory provides a service to clinics serving 

approximately 4000 treated patients (-20% of UK treated population), of which 10-20% 

are tested for resistance per year. The samples were submitted for routine genotypic 

resistance testing between 1999 and 2001, and include samples from acute infections, 

chronic but drug naive infections and from patients at the time of therapy failure. 

Clinical information on the patients was available for most samples, including the date 

of collection, geographic area, reason for analysis and viral load, as well as molecular 

information such as subtype of the virus or genotypic patterns of drug resistance.

The number of entries in the database expanded from around 2000 entries at the 

time the present body of work was initiated to reach up to 4000 sequences to date. On 

average, 10% of these sequences were classified as incident infections, an incident 

infection corresponding to a seroconversion within six months of an HIV-1 negative 

test. Follow up samples, i.e. samples collected from a same patient at different time
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points of monitoring, were available for approximately 10% of the patients represented 

in the database.

1.2. Ethics Committee Approval and Patient Consent

This research was approved by the Health Protection Agency Ethics Committee, 

allowing the submission of results generated by ASRU to non-commercial databases in 

anonymous form. Thus, clinical information such as the age group, sex or risk group of 

the patients was stored in a secure independent database in order to preserve patient 

anonymity prior to analysis. However, specific consent was requested from patients 

appearing within transmission clusters in order to document potential sexual contacts, 

whilst blinding clinicians and patients to the laboratory data. Such epidemiological 

information was only obtained from a minority of patients.

2. Bench Work

Amplification and sequencing of the pol region of plasma-derived HIV-1 was 

carried out for routine genotypic resistance testing by the Antiviral Reference Unit of 

Public Health Laboratory Service, Heartlands Hospital, Birmingham.

2.1. Extraction of HIV-1 RNA from Blood Samples

Viral RNA was extracted from 1 ml of plasma stored in EDTA at -20°C, using 

QIAamp Viral RNA Extraction kit (Qiagen) according to the manufacturer’s 

instructions. Explicitly, 200 ml of blood plasma aliquot was centrifuged for one hour at

17.000 rpm and at + 4°C. The supernatant was carefully discarded and the pellet re

suspended in 140 pi of RPMI Cell Culture Medium. The mixture was then vortexed for 

approximately 15 seconds. 560 pi of Qiagen AVL Lysis Buffer, containing carrier 

RNA, was added to the suspension, vortexed and incubated at room temperature for 10 

minutes. 560 pi of 100% ethanol was further added to the suspension and vortexed, then 

630 pi of the mixture was added to a Qiagen Spin Column and centrifuged for 1 min at

13.000 rpm. Filtrate was discarded and a further 630 pi of the suspension was added to
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the spin column for an additional centrifugation, as described above. After discard of 

the filtrate, 500 pi of AW1 Wash Buffer was added to the column and the suspension 

was centrifuged for lmin at 13,000 rpm. The previous step was then repeated with 

addition of 500 pi of AW2 Wash Buffer. The RNA was finally eluted by adding 40 pi 

of Elution Buffer to the column, which was incubated at room temperature for 1 min, 

then centrifuged for 1 min at 13,000 rpm.

2.2. Reverse Transcription (RT) of HIV-1 RNA

The reverse transcriptase reaction was carried out immediately after extraction. 

cDNA was generated from the extracted HIV genomic RNA. The reaction was 

performed by reverse transcriptase polymerase chain (RT-PCR), using commercial 

Qiagen RT-PCR amplification kit. For this purpose, 15 pi of RNA was added to 5 pi of 

5x RT buffer, 2.5 pi of each dNTP at 5 mM, 2 pi of random primers at 100 ng/pl, 0.1 pi 

RNase inhibitor, 0.5 pi of MMLV reverse transcriptase and 4.9 pi of dH20. The cycling 

conditions for the reverse transcription were 37°C for 60 min, followed by 94°C for 

10 min.

2.3. Polymerase Chain Reaction (PCR) Amplification

pol gene

The entire protease gene and the first 220 codons of RT gene of the samples 

were amplified by nested polymerase chain reaction (PCR), using the Qiagen Taq PCR 

mastermix kit. The sequence and orientation of the primers used are given in Table 2.1 

and Fig. 2.1.
To perform the primary round of the nested PCR, 5 pi of cDNA were added to 

10 pi of Qiagen mastermix, 2.5 pi of each primer and 5 pi of dH20 . For the secondary 
reaction, 5 pi of first round product were added to 50 pi of Qiagen mastermix, 20 pi of 

each primer and 10 pi of dH20 . Conditions for both first and second round reactions 

were: 15 sec at 94°C for 1 cycle, followed by 30 sec at 95°C, 30 sec at 54°C, and 45 sec 

at 72°C for 40 cycles, finally followed by 10 min at 72°C.
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Table 2.1. Primer sequences for the amplification of the protease and reverse transcriptase genes.

Primer Position* Sequence Orientation

Pout3 2019-2038 AAG GGC TGT TGG AAA TGT GG first round sense primer
Pout4 3298-3275 GTC TTT TTC TGG CAG CAG TAT AGG first round anti-sense primer
Pinl 2503-2525 AAT TGG AAG AAA TCT GTT GAG TC RT second round sense
Pin2 3276-3254 GGC TGT ACT GTC CAT TTA TCA GG RT second round anti-sense
Pin3 2604-2585 GGG CCA TCC ATT CCT GGC TT PR second round anti-sense
Pin4 2147-2167 CAG AGC CAA CAG CCC CAC CAG PR second round sense primer
Pin8 3021-3002 GCT GGT GAT CCT TTC CAT CC RT sequencing
Pin9 2864-2883 GTA ACA GTA CTG GAT GTG GG RT sequencing

Position with respect to HXB2 reference strain.

1279 bp

Pout3 Pout4

2147 2503 2604 3276

2000 2019

pin4 ^ -7  pi"3457 bp

Pinl

r=j— s a
•3298 3500

773 bp
Pin2

Fig. 2.1. Position of the primers used for the amplification of the PR and RT genes. 

First round primers are indicated in red. Second round primers for the amplification of 

the protease and reverse transcriptase genes are shown in blue and green 

respectively. Positions are given with respect to HXB2 strain.
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gag & env gene

Two fragments of 690 and 550 base pairs, partially covering the pl7/p24 region 

of the gag gene and the V3 loop region of the env gene respectively, were amplified by 

multiplex nested PCR from cDNA already used for pol gene amplification using Qiagen 

Taq PCR mastermix. Sequences of the primers used for the amplification of the gag and 

env genes are detailed in Table 2.2 and Table 2.3 respectively. Cycling conditions are 

given in Table 2.4.

Table 2.2: Primers for gag genes amplification and sequencing
Primer* Position1* Sequence Orientation

DTI 790-812 ATG GGT GCG AGA GCG TCA GTA TT first round sense primer
DT7 1818-1844 CCC TGA CAT GCT GTC ATC ATT TCT TCT first round anti-sense primer
DT3 886-908 CAT CTA GTA TGG GCA AGC AGG GA second round sense primer;

sequencing
DT6 1609-1634 ATG CTG ACA GGG CTA TAC ATT CTT AC second round anti-sense primer,

sequencing
DT4 1064-1088 TAG AGG TAA AAG ACA CCA AGG AAG C sequencing
DT5 1486-1509 CGA GTA GTT CCT GCT ATG TCA CTT CC sequencing

“from Tatt et al., 2000
b position with respect to HXB2 reference strain.

2.4. cDNA Purification

Second round PCR products were purified using the QIAquick PCR Purification 

Kit (Qiagen), as described below:

The second round PCR reaction mix was added to PB Buffer at a 1/5 volume 

ratio. The suspension was placed in a QIAquick spin column and centrifuged at

13,000 rpm for 1 minute. This step was repeated until process of the entire reaction 

volume was processed. 750 pi of PE wash buffer was then added to the solution and the 

QIAquick column centrifuged at 13,000 rpm for 1 minute. The filtrate was discarded 

and the column centrifuged again 10,000 rpm for 1 minute to ensure complete 

elimination of the wash buffer. Finally, DNA was eluted in 30 pi of distilled water by 

centrifugation at 10,000 rpm for 1 minute, after a brief incubation at room temperature.
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Table 23: Primers for env genes amplification and sequencing
Primer Position' Sequence Orientation

ED5* 6557-6582 ATG GGA TCA AAG CCT AAA GCC ATG TG first round sense primer
ED 12* 7782-7811 AGT GCT TCC TGC TGC TCC CAA GAA CCC first round anti-sense primer
ED31* 6817-6845 ACC TCA GCC ATA ACA CAA GCC TGT CCAsecond round sense primer;

sequencing
ED33* 7360-7381 TTG CAA TAG AAA AAT TCC CCT C second round anti-sense primer,

sequencing
62 lb 6945-6967 GTA CAT TGT ACT GTG CTG ACA TT sequencing
623b 6827-6846 TAC ACA AGC CTG TCC AAA GG sequencing
ES7b 7001-7020 CTG TTA AAT GGT AGC CTA GC sequencing
ES8b 7647-7667 CAC TTC TCC AAT TGT CCC TCA sequencing

‘modified from Delwart et al., 1993.
bmodified from Arnold et al., 1995.
' position with respect to HXB2 reference strain.

2.5. Agarose Gel Electrophoresis

In order to estimate the amplicons’ concentration, 2 pi of the purified product 

was visualised by agarose gel electrophoresis. In a microwave oven, 1% “Ultra Pure” 

agarose (Gibco, Life Technologies) was dissolved in lx  TBE buffer. After cooling, 

ethidium bromide was added at a final concentration of 0.5 pg/ml. Migration of the 

cDNA samples was carried on at 100 volts in loading buffer, until clear band separation. 

The amplicons were then visualised under Ultra Violet transilluminator (LKB Bromma 

Macrovue).

2.6. Sequencing

Sequencing of the amplicons was undertaken using Beckman Coulter CEQ2000 

protocols. Approximately 100 fmoles of DNA template were added to sequencing 

master mix provided by the manufacturer and primers at a concentration of 2 pmol/pl.
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Table 2.4. Thermocycler conditions for gag and env genes amplification by PCR
1st round 2d round

Number Temperature Time Number Temperature Time
of cycles (°C) (min) of cycles (°C) (min)

Step 1 1 94 0.15 1 94 0.15
Step 2 40 95 0.30 40 95 0.30

sp 54 0.30 54 0.30
bo 72 0.45 72 0.45

Step 3 1 72 10.00 1 72 10.00
Hold 1 4 1 4

Step 1 1 94 2.00 1 94 2.00
Step 2 35 94 0.15 35 94 0.15

> 50 0.30 55 0.30
1 72 1.00 72 1.00

Step 3 1 72 10.00 1 72 10.00
Hold 1 4 1 4

Cycling conditions for the sequencing reaction were:

96°C for 20 sec 

50°C for 20 sec 

60°C for 4 min 

for 30 cycles followed by holding at 4°C.

Chromatograms of the resulting forward and reverse sequences were edited and 

aligned using Sequencher software (Gene Codes, Ann Arbor, Michigan), from which a 

consensus sequence was obtained for each amplified region.

2.7. Subtyping & Drug Resistance Testing

The subtype of the samples was determined on the basis of the pol genetic 

variability by submission of the generated sequence to the Stanford HIV RT and 

Protease Sequence Database (http://hivdb.stanford.edu/). When submitted to the 

database subtyping tool, a query sequence is compared to a list of reference sequences 

representing each of the 10 known subtypes of HIV-1 Main group, as well as the most 

common circulating recombination forms known to date. The subtype of the closest
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reference sequence is then assigned to the query, as determined by calculation of 

pairwise uncorrected nucleotide distance.

A drug resistance interpretation was performed for each generated pol sequence, 

using the HIVseq program (beta version) available on the Stanford HIV RT and 

Protease Sequence Database website. HIVseq accepts user-submitted RT and protease 

sequences, compares them to the consensus subtype B reference sequence, and uses the 

differences as query parameters for interrogating the Stanford HIV Drug Resistance 

database (Shafer et al. 2000b). This test allows the prediction of genotypic drug 

resistance to 16 available drugs.

3. Molecular Evolution and Phylogenetics

According to the classical view of taxonomy, the relationship between species 

(i.e. their phylogeny) is inferred from the comparison of morphological characters 

(Linnaeus. 1758). The ‘molecular revolution’ that took place in the past decades, 

however, dramatically changed the general perception of evolution and hierarchical 

classification of organisms. The origin of molecular evolution as a science appeared 

long before the support for heredity was characterised (Watson and Crick; 1953). The 

field was in fact pioneered in the early 20th century by the work of Georges Nuttall 

(1902; 1904). Nuttall attempted to characterize a ‘blood relationship’ between 

organisms by mixing sera and anti-sera from different species. The more closely related 

the species, the stronger the cross-reaction between sera and anti-sera. Long after 

Nuttall’s work, the understanding of genetic changes driving evolution rose with the 

formulation of the synthetic theory of Neo-Darwinism (Huxley. 1942), which connected 

the discovery of the molecular units of evolution (i.e. genes) with the mechanisms of 

genetic variation (i.e. natural selection).

The idea of macromolecules carrying information only took off decades later, 

however, with the first successful sequencing of a complete protein, insulin, by 

Frederick Sanger and his colleagues (Sanger. 1959). The onset of sequencing, for which 

Sanger was awarded the 1958 Nobel Prize in chemistry, gave substantial way to 

molecular systematics and many biologists began to argue that the best way to answer
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questions about evolution was to study them at the molecular level. Hence Sanger and 

colleagues published the first ever comparison of amino acid sequences from different 

species (Brown et al. 1955), while Walter Fitch and Emanuel Margoliash (1967) 

showed in a seminal article how to use molecular information to reconstruct 

phylogenies that were remarkably similar to the ones based on more traditional 

taxonomic characters. Herein the era of molecular phylogenetics was initiated.

It is now accepted that nucleic acid sequences hold valuable phylogenetic signal. 

Closely related organisms share a high degree of agreement in their molecular structure, 

while the molecules of distantly related organisms usually show patterns of 

dissimilarity. Molecular phylogenetics exploits these evolutionary ‘footprints’ 

accumulated through time by DNA or protein sequences in order to reconstruct their 

phylogeny. Phylogenies are traditionally represented in the shape of a schematic tree, 

i.e. a phylogenetic tree, built on the basis of a sequence alignment. Historically, the 

primary interest in constructing phylogenetic trees was the pattern of evolutionary 

relationships itself. More recently, however, trees have been generated to derive 

information regarding the processes responsible for the observed pattern of evolutionary 

relationships, and the tree topology becomes the framework upon which further 

inference can be drawn. As such, phylogenetics facilitates analyses of rates of evolution 

(Drummond et al. 2003a), recombination (Posada et al. 2002), divergence of lineages 

and population demographics (Grassly and Holmes. 1999).

Although sequence comparisons can be done using either nucleotide or amino- 
acid sequences, only evolutionary changes between nucleotide sequences will be 
covered in the present chapter.

3.1. Sequence Alignments

Comparisons between two stretches of nucleic acids are only valid if the 

considered sequences are homologous in the evolutionary sense of the term. That is, if 

the two regions of interest are directly derived from a common ancestor. Hence, 

constructing a sequence alignment is a prior requirement to any molecular evolution 

analysis and must be considered carefully. Aligning two or more sequences allows the 

identification and localisation of specific evolutionary alterations, such as single
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nucleotide polymorphisms (SNP), insertions or deletions accumulated by the different 

lineages since their divergence from a shared ancestor.

A sequence alignment allows three types of base differences to be recognised: 

matches, mismatches and gaps (Fig. 2.2). A match occurs when the same base is 

encountered at a given position; a mismatch is found when at least one substitution has 

occurred since the two sequences diverged from each other; a gap indicates that a 

deletion or an insertion has occurred in one of the compared sequences.

When comparing sequences with low genetic divergence, alignments can easily 

be performed manually, with the help of sequence editing softwares such as Bioedit or 

MacClade (Maddison and Maddison. 1989; Hall. 2000). Alternatively, a plethora of 

programs implementing sequence alignments algorithms are publicly available, the 

most widely used being ClustalX (Thompson et al. 1997). ClustalX implements a 

scoring system where base matches (or mismatches) are assigned a positive score, 

whereas gaps are assigned negative scores. The severity of the gap penalty varies when 

either a gap is introduced or extended. A heuristic search is then performed to select for 

the best alignment, i.e. the alignment with the highest score.

In the present thesis gene sequences were initially aligned in-frame using 

ClustalX version 1.81. Alignments were subsequently subjected to visual inspection and 

manually improved, using the sequence editor Bioedit.

TTT GCT AGT TGT ATT TCT ACG AGC 

TTT GCT AGT T - T ATT TCT ACA AGC

I  I  I

Match Gap Mismatch

Fig. 2.2. Different types of bases impairments. A match occurs when the same 
base is encountered at a given position; a mismatch is found when at least one 
substitution occurred since the two sequences diverged from each other; a gap 
indicates that a deletion or an insertion occurred in one of the compared 
sequences.
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3.2. Phylogenetic Trees

A phylogenetic tree is a schematic representation of plausible evolutionary 

relationships existing amongst a group of sampled organisms. Within the frame of 

molecular analysis, a phylogenetic tree is directly inferred from the specific 

evolutionary patterns held by a sequence alignment.

An example of phylogenetic tree is given in Fig. 2.3, illustrating the relationship 

between four species of Hominidae. A phylogenetic tree essentially consists of nodes 

linked together by branches. Nodes represent taxonomic units and may be either internal 

or external nodes. Terminal nodes, or tips, represent known sequences of extant or 

extinct organisms, also known as Operational Taxonomic Units (OTUs). Internal nodes 

represent theoretical ancestors. They rely on no empirical records and are referred to as 

Hypothetical Taxonomic Units (HTUs). Nodes are interconnected by branches, which 

symbolise relationships between the taxa in terms of descent and ancestry. Methods are 

also available enabling the reconstruction of networks of relatedness, where ancestry is 

not restricted to a single taxon (Bandelt and Dress. 1992). The branching patterns seen 

within a phylogenetic tree can be divided in groups of two or more taxa including both 

their common ancestors and their descendents. These branches patterns are referred to 

as clades or clusters.

A phylogenetic tree can be scaled. In a scaled tree, a branch holds information 

on the extent of genetic divergence existing between the two taxa connected by it, 

expressed in number of nucleotide substitutions per site. An un-scaled tree is only 

informative in terms of shared ancestry, without displaying genetic diversity between 

taxa. Such a tree is traditionally referred to as a cladogram. Furthermore, phylogenetic 

trees are either rooted or non-rooted. In a rooted tree, the ensemble of taxa under 

comparison (i.e. the ingroup) is compared to a usually more distantly related taxon 

called a root or outgroup. The root gives a direction to the evolution pathway 

reconstructed within the tree, since it represents the common ancestor from which a 

unique path leads to any other node. An unrooted tree only specifies the relationship 

among species, without identifying a common ancestor, or directional evolution.
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Internal node

fe-y
Human

Branch

Chimpanzee

Gorilla

Orangutan

Bootstrap value Terminal node Outgroup

Fig. 2.3. Example of phylogenetic tree, illustrating the relationship between four species of 
Hominidae. Terminal nodes represent true taxonomic units (i.e. existing gene or protein 
sequences) and are labelled by orange dots. Internal nodes represent hypothetical 
ancestors, as labelled by red dots. Nodes are interconnected by branches symbolising the 
extend of genetic divergence between two units. In a phylogram, branches are scaled and 
expressed in number of nucleotide substitutions per site (see scale bar). Only horizontal 
branches have a biological significance, vertical branches being for clarity. Figures at internal 
nodes are bootstrap values supporting the corresponding branch. By convention, only values 
above 50 are indicated. The tree is rooted against a distantly related specie, or outgroup, 
here an Artiodactyl sequence. After Glazko & Nei, 2003.
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3.3. Phylogenetic Methods

Numerous methods for the inference of phylogenetic trees from sequence 

alignments have been described in the literature. All rely on implicit or explicit 

assumptions about evolutionary processes and are of various degree of complexity. 

When attempting to reconstruct a phylogeny, one should bear in mind that the process is 

far from straightforward, and despite the plethora of methods available none guarantees 

to find the true tree. Since verifying the authenticity of an inferred tree tends to be 

challenging, the idea behind phylogenetic reconstruction resides in finding the best fit to 

the unknown true phylogeny, with robust statistical support to justify the topology. The 

choice of a method is consequently to be considered with great care.

Tree-building methods are generally classified as either distance methods or 

character-based methods, according to whether the method exploits a matrix of pairwise 

genetic distances or discrete character states (such as amino acid or nucleotide 

positions) to infer a phylogeny (Fig. 2.4). The Unweighted Pair-Group method with 

Arithmetic means (UPGMA) and neighbor-joining are amongst the best know distance- 

based methods (Sokal and Michener. 1958; Saitou and Nei. 1987), whereas popular 

character state-based approaches include methods such as maximum likelihood 

(Felsenstein. 1973; Felsenstein. 1981), maximum parsimony or Bayesian inference 

(Rannala and Yang. 1996; Mau et al. 1999).

Distance Methods

Distance methods, also known as algorithmic methods, first convert aligned 

sequences into a matrix of pairwise genetic distances. For every pair of sequences in the 

alignment, a parametric distance is calculated as the fraction of positions in which the 

two sequences differ, providing a measure of dissimilarity. Distance matrix methods 

involve two steps. First, the evolutionary distance is calculated for every possible 

sequence pair in the given alignment. Secondly, the tree is inferred on the basis of the 

relationship between the distance values.

The simplest, and oldest, distance method is Unweighted Pair-Group method 

with Arithmetic means (UPGMA) (Sokal and Michener. 1958). Programs implementing 

this method first find the pair of taxa with the smallest genetic distance between them 

and define the branching between then as half of that distance. These two taxa are 

combined in a cluster, reducing the number of entries by one. A new distance matrix is
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then computed with the distance from the cluster to each of the remaining sequences. 

That process is repeated on the new matrix and reiterated until there is only one entry 

left in the matrix. An additive tree is finally built by adding up clusters and respective 

branch lengths from the root to the node of the last cluster generated. UPGMA trees are 

said to be ultrametric, i.e. all taxa are equally distant from the root. This is a 

consequence of the main assumption the method is based on, that is the existence of a 

constant molecular clock amongst lineages. According to this assumption, substitutions 

accumulate at the same rate in all lineages diverging from a common ancestor. Since a 

large body of evidence tend to prove that a global molecular clock does not exist, or 

remains circumscribed to groups of species (Page and Holmes. 1998; Li and Graur.

2000), such an assumption limits the reliability of the method. For that reason, amongst 

others, UPGMA tends not to be used anymore.

Neighbor

Joining

Distance Methods

UPGMA

Bayesian

Methods based on an exp lic it 
m odel o f evolutionMaximum

likelihood

Methods no t based on an

Maximum
Parsimony

exp lic it m odel o f evo lution

Character Based Methods

Fig. 2.4. Relationship between some common phylogenetic methods.
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Developed by Saitou and Nei in 1987 (Saitou and Nei. 1987), and latter 

modified by Studier and Keppler (Studier and Keppler. 1988), the neighbor joining 

method (NJ) remains to date the most popular distance method. Its popularity is mainly 

due to the accessibility and rapidity of its implementation. Like UPGMA, NJ employs a 

matrix of genetic distances, on the basis of which a tree is built by gradually finding 

neighbours exhibiting the minimum genetic distance. The implementation starts with a 

star-like tree with no internal branches or hierarchical structure. Internal branches are 

gradually added to that tree by considering every possible pairs of taxa and selecting the 

one pair that gives the smallest sum of branch lengths (see Fig. 2.5). The selected pair is 

then regarded as a single composite taxon and a new matrix of pairwise genetic distance 

is computed, as with UPGMA. The next pair with the smallest branch length is selected 

again and the process is repeated until all internal branches are found. The main 

difference between UPGMA and NJ methods lies on that NJ does not construct 

intermediate clusters with nodes at the mid point but directly calculates for each entry a 

‘net’ distance from all other entries in the matrix. This distance is expressed as the sum 

of all individual distances from a given taxon. These distances are corrected according 

to the model of evolution selected by the user and the pair with the lowest corrected 

distance is identified. Through a model of evolution, one should understand a set of 

parameters describing the probability of a given nucleotide changing to another residue 

over a given period of time (see section 3.4). The distance between each of the taxa in 

that pair and the node connecting them is then calculated separately, resulting in a non

additive tree, and rejecting the assumption of a constant molecular clock (unlike 

UPGMA). A new matrix is then created in which the node is substituted for the two 

taxa, and the process is reiterated until all nodes are bounded.

A vast majority of the trees found in the literature are reconstructed with the 

neighbor joining method. Unfortunately, NJ does not guarantee to find the most likely 

tree and several cases have been reported where NJ failed to reconstruct the tree with 

the minimum evolution (Hillis et al. 1996). It is nonetheless generally admitted that NJ 

provides for a good starting tree when implementing a heuristic search with computer 

intensive character-based methods such as parsimony or maximum likelihood. This 

procedure was followed for the reconstruction of the trees presented in this thesis.
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A B
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E

D

F

E

D

dAB = a + b dAC = a + x + c

dAD = a + x + d 

dEF = e + f

Fig. 2.5. Implementation of the NJ algorithm. (A) A star-like tree is used at a 

starting topology. Letters on the branches represent the genetic distance between 

the two nodes connected by that branch. (B) Internal branches are progressively 

inserted (like branch x in our example) and the total length of the tree is calculated 

by summing up the distances between each external nodes (B). Branches 

minimizing the total tree length are retained and the shortest tree selected. After Li 

and Grauer, 1999.

Maximum Parsimony

Originally developed for amino acid sequence data by Eck and Dayhoff (Eck 

and Dayhoff. 1966) and latter extended for the analysis of nucleotide sequences (Fitch. 

1977), parsimony analyses have been the predominant approach in molecular 

phylogenetics from the early 70’s to relatively recently. The idea behind parsimony 

inference is to find the tree topology for a given sequence alignment that can be explain 

with the smallest number of character changes. Starting from an initial topology, the 

maximum parsimony algorithm infers the minimum number of mutations required to 

justify all nodes of the tree at every sequence position. The process is then repeated for 

all theoretically possible tree topologies and the tree requiring the minimum number of 

evolutionary changes, called the minimum tree, is selected as the best tree. Two or more 

trees with the same number of minimum changes can potentially be found this way.
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The notion of informative sites underlies the parsimony approach. A site is 

considered informative if it allows choosing a subset of trees over another. For instance, 

if we consider a set of four sequences, there are three possible unrooted trees (Fig. 

2.6A). In the sequence alignment shown in Fig. 2.6B, sequences A and B share a 

cytosine (C) at position 2, while sequences C and D share an adenosine (A). Nucleotide 

position 2 favours tree number 2 and is therefore an informative site. The same way, 

position 6 is also informative (and favours tree number 3), since the sequences share 

different nucleotides two by two. By contrast, all other sites of the alignment remain 

uninformative.

The identification of all informative sites in an alignment is the fist step in 

parsimony inference, followed by the calculation of the minimum number of  

substitutions at each informative site. The sum of the number of changes across all 

informative sites for each possible tree will then allow designating the most 

parsimonious tree, i.e. the tree with the smallest number of nucleotide substitutions.

The main limitation of parsimony lies in its inconsistency. Simulations have 

shown that maximum parsimony leads to incorrect results with an infinite amount of 

data (Felsenstein. 1978). Particularly, species at the ends of long branches in a 

parsimony tree have a tendency to be made artificially close to each other, due to the 

high frequency of parallel changes that arrive at a same position. This phenomenon is 

called ‘long-branch attraction’ and the situation in which this inconsistency occurs is 

often referred to as the ‘Felsenstein zone’.

Another limitation of parsimony is the assumption that a minimal number of 

changes reflects a minimal evolution between two taxa. Given that all evolutionary 

changes between two sequences may not be visible (as in the case of multiple 

substitutions at a same nucleotide position), this assumption is only valid for closely 

related sequences, and the dissimilarity between two distantly related taxa might as well 

be underestimated in a parsimony tree. Also, since a small proportion of the sites in an 

alignment are truly informative, most of the sequence information may not be used and 

the inference process remains therefore sub-optimal. For these reasons parsimony was 

not used in the present study.

Maximum Likelihood

The first applications of a maximum likelihood (ML) approach to tree 

reconstruction were accomplished in the 70’s when Joe Felsenstein developed new
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algorithms for molecular data (Felsenstein. 1973; Felsenstein. 1981). The method relies 

on sophisticated statistical theory and exploits the concept of likelihood (Swofford et al. 

1996; Li. 1997). In statistics, likelihood is the probability P of observing the data D 

given the hypothesis H, and is noted

L = P ( D \ H )

In terms of phylogenetic reconstruction, D corresponds to the sequence alignment of 

interest, while H is a given phylogenetic tree. Thus the likelihood of a tree corresponds 

to the probability of that tree describing the patterns of the sequence alignment, given a 

specific model of nucleotide substitution. A maximum likelihood approach will result in 

the calculation of the likelihood of all possible unrooted trees for the specified 

alignment and selecting the one(s) associated with the highest, or maximum, likelihood. 

Since likelihood values are usually of very small order of magnitude, they are 

traditionally expressed as natural logarithms and referred to as log-likelihood.

Maximum likelihood approaches require three elements, namely a sequence 

alignment, a user-defined explicit model of nucleotide substitution and an initial tree 

topology. In order to compute the likelihood value of that tree to describing the 

alignment under the selected model of evolution, the likelihoods of observing the 

substitution patterns are calculated at each nucleotide position of the alignment, and 

then summed. This is to say, given a model of evolution, the probability P//'(D | H) that 

two sequences would have nucleotide i and j ,  respectively, at the given position is 

calculated for each possible nucleotide substitution, and for each possible pair of 

sequences in the alignment. The log likelihood of observing the sequences is then 

obtained by calculating the sum of the log likelihoods at each individual site.

The main advantage of ML is that it allows the user to specify the model of 

molecular evolution for the computation of the data. It is an advantage in that it allows 

the user to control on the assumptions made during computation. However, such a 

dependence on a model can easily turn to a disadvantage, since the application of a 

particular model of evolution can seriously bias the outcome of the search, and ML trees 

may not be reliable if the model used is not selected with care.

Moreover, maximum likelihood remains a computationally intensive method 

and implementing a ML tree rapidly becomes a time consuming process as the number 

of taxa increases. Since character-based methods in general, and ML in particular,
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search for the best fit to the data amongst all possible trees, the time of computation of 

these methods is highly dependent on the number of sequences under consideration.

A

CB

Tree 1

B

Position

Sequence A 

Sequence B 

Sequence C 

Sequence D

cD

Tree 2

A

c D

Tree 3

1 2 3 4 5 6 7 8 9

C C T C A A A T C  

C C A C A T A T C  

C A G C A T A T C  

C A C C A A A T G

Fig. 2.6. (A) When considering a set of four sequences, three possible unrooted trees 

are possible. In the sequence alignment shown in (B), sequences A and B share 

a cytosine at position 2, while sequences C and D share an adenosine. 

Nucleotide position 2 favours tree number 1 and is therefore an informative site. 

The same way, position 6 is also informative (and favours tree number 2), since 

the sequences share different nucleotides two by two. By contrast, all other 

sites of the alignment remain uninformative.
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Indeed, for three sequences, four possible unrooted trees are possible, whereas for ten 

sequences, the number of possible unrooted trees reaches 2.03 x 106. Hence, when the 

number of taxa to be compared remains small, an exhaustive search of all individual 

trees is technically feasible. Exhaustive searches provide a guarantee of finding the best 

tree since all possible options are evaluated, but this is unfortunately seldom achievable. 

When the number of possible trees is too big, evaluating each one of them becomes 

computationally unfeasible, and an exhaustive search cannot be considered. Instead, a 

heuristic strategy is applied. A heuristic search is conventionally compared to a ‘hill- 

climbing process’ through which an initial tree is generated and modified by re

arrangement, until the tree, or trees, with the most likely topology is obtained.

In order to decrease the time of computation, a popular approach of tree 

construction consists of using a NJ tree as a starting topology for a ML search (Hillis et 

al. 1996; Swofford et al. 1996).

Bayesian Analyses

Bayesian inference is a relatively new approach in the context of phylogenetics 

but its strength and accessibility makes it an increasingly popular method for tree 

searching. Like maximum likelihood, Bayesian inference incorporates an explicit model 

of sequence evolution and looks for the trees that correlate best to the sequence 

alignment under the given model. However, while maximum likelihood searches for the 

tree that, under a hypothesis (i.e. a tree topology), maximises the chance of observing 

the data (i.e. the sequence alignment), Bayesian reasoning works the problem in a 

reverse fashion and searches for the tree that maximises the chances of seeing that 

particular tree given the data and the model of evolution. In other words, maximum 

likelihood searches for the tree that maximise the probability P (Data | Tree), while 

Bayesian inference searches for the tree that maximise the probability P  (Tree | Data).

Bayesian inference relies on the use of a simple mathematical formula used for 

calculating conditional probabilities and is named after the British cleric Thomas Bayes 

who developed it during the 18th century (Bayes. 1764). According to the Bayes 

theorem, the (posterior) probability P of an hypothesis H , given the conditional event E 

is:

P(Hi | E) = P(E  | H ) P(Hj) / I jP ( E  | Hj) P(Hj)
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where P(E \ H) is the probability of observing the event E under the hypothesis H/, 

P(Hj) the prior probability of the hypothesis H, before observing event E, and SjP(E | 

Hj) P(Hj) the average probability of event E across all probable hypotheses.

Traditionally Bayesian inference is implemented by the use of the Metropolis- 

Hastings Markov Chain Monte Carlo (MCMC) methods (Metropolis et al. 1953; 

Hastings. 1970). The image of a hill-climbing process is often used to describe the 

heuristic search of MCMC algorithms, as the process is comparable to a random walk 

over the space of all possible tree combinations. Indeed, looking for the tree that, 

amongst all other trees, exhibits the highest likelihood is comparable to searching for 

the highest peak when blindly walking through a hilly environment. This ‘hill-climbing’ 

process follows several steps: A random tree T1 is selected as the current tree and 

compared to a second tree T2; if the likelihood LI of T1 is inferior to the likelihood L2 

of T2, then T2 replaces T1 as the current solution (the climber goes one step up-hill); in 

contrary if LI > L2, T1 is maintained as the current solution; the current tree is sampled 

and the whole process is reiterated a significant amount of times. The number of time a 

particular tree is ‘visited’ is proportional to its likelihood given the data, biasing the 

solutions by their likelihood score, and the program yields a set of trees that the 

algorithm has repeatedly visited (i.e. the top of the highest hill).

Like maximum likelihood, Bayesian inference allows control of the specified 

model of evolution. Moreover, the beauty of the method relies is that it allows for 

simultaneous independent searches that occasionally exchange information, increasing 

the efficiency of the computation. Also, MCMC gives a measure of statistical support 

for any sampled solution, given as the number of time a feature is represented in the 

sampled solutions. If, for instance, a clade is present in 75% of the sampled trees, there 

is a 75% chance that this clade is correct according to the assumption of our 

evolutionary model. Finally, Bayesian MCMC inference not only yields a set of best 

fitting tree topologies, but also estimates the parameters of the selected model, all at 

once. Several programs implement Bayesian phylogenetics, the most popular of these 

being MrBayes (Huelsenbeck. 2000).

3.4. Models of Molecular Evolution

We saw that many methods for phylogenetic reconstruction are dependent on an 

explicit model of molecular evolution. Modelling for evolutionary changes arose from
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the need to ‘correct’ observed genetic distances between two sequences into better 

measures of actual evolutionary distances. Indeed, the extent of observed genetic 

dissimilarity between two sequences is not linear with time, but curvilinear due to 

multiple substitutions, or multiple hits, occurring at the same site. As the number of 

substitutions increases, the chances that the same site may go through more than one 

change become higher, and failing to correct for these multiple hits may result in 

underestimating the true evolutionary distance between the two sequences.

To date, several models of evolution have been developed in order to describe 

the dynamics of nucleotide substitution between DNA sequences. These models rely on 

mathematical matrices and statistical inference techniques, reflecting with uneven 

accuracy the biological phenomena responsible for the mutational disparity found in 

molecular datasets. The relative complexity of these models is a function of the extent 

of the biological, biochemical and evolutionary knowledge they incorporate. Hence, it is 

generally admitted that more complex models give a better statistical fit to observed 

evolutionary patterns of gene sequences, and therefore lead to a better phylogenetic 

reconstruction (Goldman. 1993; Yang et al. 1994).

Three classes of parameters are implemented in the models of sequence 

evolution developed to date, namely base frequency, base exchangeability and rate 

heterogeneity among sites. Base frequency accounts for the respective frequency of the 

four bases (A, G, C and T) over all sequence sites. Allowing for certain bases to emerge 

more likely than other, when substitutions occur, is thought to reflect the compositional 

constraints nucleic acids are under, such as G-C content or secondary structures. For 

instance, the HIV-1 genome is deeply biased toward G to A transitions (Vartanian et al. 

1991; Vartanian et al. 2002). Base exchangeability describes the tendency of bases to be 

substituted for one another. For instance, transitions (substitutions between purines or 

between pyrimidines) have been proven to occur at a higher rate than transversions 

(substitutions between purines to pyrimidines or visa versa) -  see Fig.2.7. Base 

exchangeability reflects the biochemical similarity bases share and its effect on 

mutational bias.

Rate heterogeneity accounts for the difference in substitution rates across 

different taxa or DNA regions. Typically, a gamma distribution is used to describe such 

a heterogeneity in nucleotide substitution rate across sequences (Yang. 1994b). The 

range of the rate variation amongst sites is dictated by the shape parameter a  of the
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distribution (Fig. 2.8). Small values of a  will result in L-shape distributions, indicating 

extreme rate variation across the sequences, whereas higher values of a  will reflect bell- 

shape distribution, as seen when most of the sites remain invariable and few have high 

rates of substitutions. Models featuring a gamma distribution of rate heterogeneity are 

conventionally given the suffix ‘+ r \

Transitions

Transversions

Transitions

Fig.2.7. Different types of base exchangeability. Substitutions 

between purines or between pyrimidines, i.e. between 

adenosine and guanine or cytosine and thymidine, are termed 

transitions. Substitutions between purines to pyrimidines, or visa 

versa, are termed transversions.

Current models of evolution range from very simplistic to more intricate ones, 

varying on the type and number of parameters taken into account. Since it assumes an 

equal frequency of substitution for the four bases, the Jukes and Cantor one parameter 

model (JC) is the simplest model of sequence evolution (Jukes and Cantor. 1969). 

Kimura’s two parameter model (K2P) assumes that the base frequency is equal along 

sites but that transitions occur at a higher rate than transversions (Kimura. 1980), while 

Felsenstein’s F81 model assumes an equal transition/transversion rate but allows 

unequal frequency of base substitutions (Felsenstein. 1981). The HKY85 model allows 

both base frequency and transition/transversion rate to differ (Hasegawa et al. 1985).
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Finally, the general time reversible (GTR) model assumes that all six pairs of 

substitutions occur at different rate (Yang. 1994a). The relationship between several 

models of nucleotide substitutions is illustrated in Fig.2.9.

a  = 20
w
O
coxoa.
2 0.5 -
CL a  = 5

o 0.5 1 1.5 2

Substitution Rate (r)

Fig. 2.8. Substitution rate heterogeneity amongst sites according to the 

shape parameter a of a gamma distribution. For values of a <1, 

distributions are L-shaped, indicating extreme rate variation across the 

sequences. For values of a > 1, distributions are bell-shaped, distribution, 

as seen when most of the sites remain invariable. After Yang (1996).

Given the dependence of some phylogenetic methods on a model of sequence 

evolution, it is critical to accurately select the model with the best fit for a given dataset. 

The choice o f an optimal model is usually derived from the patterns of the sequence 

dataset itself, and can be achieved by statistical hypothesis testing, such as likelihood 

ratio testing. The likelihood ratio test (LRT) is a statistical assessment of the goodness- 

of-fit between two models (i.e. models of evolution) and yields a likelihood ratio 

statistic A, which corresponds to the ratio of the likelihood of the alternative hypothesis

(i.e. model 1) to the null hypothesis (i.e. model 0). Since likelihoods are of very small 

order of magnitude, likelihood scores are usually expressed as log-likelihoods:
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Fig. 2.9. Relationships amongst five models of nucleotide substitution, namely the 
Jukes-Cantor (JC), Felsenstein (F81), Kimura 2 parameters (K2P), Hasegawa- 
Kishino-Yano (HKY) and the General Reversible (REV) models. In each matrix, 
the bubble area is proportional to the rate of substitution. Red Arrows indicate the 
way models are nested within each other, allowing statistical model comparison 
by Likelihood Ratio Testing. After Whelan et al., 2001.
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A =  2 x  (lnL i-lnL 2)

where Li is the maximum likelihood of the alternative model, and L2 the maximum 

likelihood of the null model. Models compared through LRT have to be hierarchically 

nested, meaning that one must be derived, or a special case of, the other. Hence, the 

most complex model must differ from the simple one only by the addition of one or 

more parameters.

Several computer programs are available that test for the most appropriate 

evolution model given the molecular data. Amongst the most popular of these are Tree- 

Puzzle, Phylip and Modeltest coupled to Paup* (Posada and Crandall. 1998). Modeltest, 

used in the present thesis, tests the likelihood of 56 evolutionary models using a Chi- 

square distribution in order to finds the model fitting the best to the data, and estimates 

the corresponding parameters.

3.5. Robustness and bootstrapping

Since derivation o f the true phylogeny cannot be guaranteed when 

reconstructing a tree, the assessment of the robustness of the obtained topology is a 

fundamental stage of a phylogenetic analysis. It is indeed crucial to have an idea of how 

reliable a tree is, or more precisely, which parts of a tree are reliable?

One way to estimate the robustness of a reconstructed phylogeny is to perform 

bootstrapping analyses (Felsenstein. 1985). This method is a resampling process 

according to which a new sequence alignment is generated from the original one. 

Columns of nucleotide positions are randomly selected and progressively added to a 

new alignment, with repeats allowed, until the pseudoreplicate reaches the size of the 

template alignment. This process of generating new alignments is repeated a substantial 

amount of times, usually 1000 times, and trees are generated from these multiple new 

datasets. The number of time a particular branch of the original tree is found in the 

pseudo-trees will give an estimation of the reliability of it. The robustness of the branch 

is usually expressed as a bootstrap value indicated on the branch itself, representing the 

percentage of times that particular branch was present in the total number of pseudo

trees. For instance, a bootstrap value of 100 indicates that the branch associated to it 

was present in all trees, and is therefore extremely robust. By convention, only
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bootstrap scores greater than 50 are shown. Bootstrapping is a built-in feature 

implemented by most of the wildly used phylogenetic packages software, such as Paup* 

or Phylip.

4. Population Dynamics

4.1. Neutral Theory of Molecular Evolution & the Molecular Clock

The first definitive evidence supporting the neutral theory of molecular 

evolution was the discovery that synonymous substitutions occur at a much higher rate 

than non-synonymous changes (Kimura. 1968). With it arose the idea that a vast 

majority of DNA mutations may not have a functional relevance and may get fixed in a 

population simply by chance. In sharp contrast with the neo-Darwinian belief that 

natural selection is the main driving force of molecular evolution, the neutral theory of 

molecular evolution was first proposed by Motoo Kimura in the 60’s (Kimura. 1968), 

and also addressed by King and Jukes (King and Jukes. 1969). According to this theory, 

a majority of the mutations fixed in a genome confer no selective advantage (or 

disadvantage) and are lost or fixed purely by a random sampling effect, or genetic drift. 

If we accept the idea of a randomly driven molecular evolution, a critical correlate has 

to be considered, according to which sequence evolution, embodied by nucleotide or 

amino-acid substitutions, follows a constant rate, or molecular clock. Under this 

assumption, the genetic diversity between two lineages of a population is a function of 

the mutation rate and the size of the population. Furthermore, the degree of genetic 

dissimilarity between two sequences can be used to date to the time at which these 

sequences diverged from their shared ancestor.

At this stage, a distinction has to be made between rates of mutation and rates of 

substitution. The rate of mutation corresponds to the rate at which mutational errors are 

incorporated into a genome during replication. This rate is traditionally expressed as the 

number of substitutions per nucleotide site per round of replication. The rate of 

mutation of an organism is known to be dictated by the specific efficiency (or lack of 

efficiency) of its polymerases. For instance, the lack of poof-reading activity of the 

reverse transcriptase of RNA viruses largely determines the rate of mutation of these
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viruses. By contrast, the rate of substitution of an organism corresponds to the rate at 

which newly acquired nucleotide substitutions become fixed and spread within a 

population. Hence, rates of substitution are expressed as number of nucleotide 

substitutions per site per unit of time (i.e. day, year or generation). The substitution rate 

of a virus or a gene is shaped by diverse evolutionary forces such as natural selection or 

random genetic drift and can be considered as the relative proportion of advantageous, 

neutral or advantageous mutational forces.

In the context of viral evolution, it is of great importance to accurately measure 

the mutation rate of a population, given that it is a major determinant of an infectious 

agent’s adaptive capacity, and it is a key parameter for population genetics analyses and 

phylogenetics applied to population studies over time. However, there is in reality a 

large body of evidence suggesting that rates of molecular substitutions differ among 

species, genes, and even among different regions of the same gene, contradicting the 

idea of a molecular clock (see for example Li and Graur. 2000). Also, despite the 

accepted idea that negative selection is the main driving force in the evolution of RNA 

viruses (Leigh-Brown and Richman. 1997), a recent study showed that only a small 

minority of these organisms obey a strict molecular clock (Jenkins et al. 2002). 

Nonetheless, the authors showed that substitution rates estimated from large datasets 

should be reliable indicators of average rates of evolution, and models relaxing the 

molecular clock have been recently developed in order to allow molecular rates to vary 

over time and across lineages. These models make possible the estimation of an average 

rate of evolution, as well as allowing analyses requiring a clock-like environment 

(Thome et al. 1998; Huelsenbeck et al. 2000).

4.2. Population Dynamics & The Coalescent

It is a well-established fact that evolution is a progressive process responsible 

for the patterns and characteristics of a population over time. By observing these 

evolutionary changes in sampled individuals from a given population, biological issues 

can retrospectively be addressed concerning the history of that population and the 

evolutionary mechanisms responsible for the observed patterns, i.e. the dynamics of that 

population.

It was the need for approaches that allowed the inference of these historical 

features from contemporary character states that lead to the development of the
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coalescent theory. First described by Kingman (Kingman. 1982a; Kingman. 1982b), the 

coalescent was concurrently discovered by Hudson (Hudson. 1983) and Tajima 

(Tajima. 1989), then generalised by Griffiths and Tavare (Griffiths and Tavare. 1994). It 

describes a stochastic process allowing the inference of historical states of a population 

from the genealogy of individuals randomly sampled from it. Since nucleic and amino 

acid sequences are known to hold inherent information about ancestral relatedness of 

individuals, or lineages, the coalescent is particularly well suited for the analyses of 

molecular data. Under these considerations, one can estimate the changes undergone by 

a population through time and, in the context of molecular epidemiology, reconstruct 

the history of viral epidemics (Kurbanov et al. 2003; Lemey et al. 2003; Pybus et al. 

2003; Robbins et al. 2003; Twiddy et al. 2003). Concretely, the framework of the 

coalescent theory allows us to estimate specific demographic parameters such as the rate 

of nucleotide substitution jU, the current effective population size Ne or even date the 

origin of the most recent common ancestor (MRCA) of a given population, on the basis 

of the topology of a phylogenetic tree based on sample sequences.

The idea behind the coalescent theory is that, in the absence of selection, 

sampled lineages are assumed to randomly ‘choose’ their parent as we go back in time. 

Whenever two descendants ‘pick’ the same parent, their lineages is said to coalesce (see 

Fig. 2.10). The rate at which lineages coalesce depends on how many lineages are 

coalescing (the more lineages, the faster the rate), and on the size of the population (the 

more parents to choose from, the slower the rate). If we consider a sample of n gene 

sequences from a population of N, one can reconstruct the genealogy, or phylogeny tree, 

of these sequences, the root of which corresponds to the MRCA shared by the n taxa.

Looking backward in time, the number of ancestral sequences decreases as the 

lineages coalesce, until all lineages coalesce into the MRCA of the sample. Through this 

process, the probability of coalescence at the previous generation (i.e. the probability 

that two sequences in the current generation share a single ancestor in the previous 

generation) is 1/(2N), where N  is the effective population size. The probability that 

coalescence occurred t + 1 generations ago is given by the distribution 1/2N (1 -  1/2N)l. 

If we assume that the number of mutations that occurred on a sequence in a given period 

of time is a Poisson variable, the mean time of 2N generations separating the two 

sequences implies that the mean number of mutations in the two sequences is 0 = 4Np, 

where \x is the mutation rate per sequence per generation.
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B

Past Past

Present Present

Fig. 2.10. Relationship between the demographic history (A) and the genealogy (B) of 
individuals sampled from a constant-sized population. Our example represents the 
genealogy of 6 individuals (yellow dots), over 15 generations (rows). Red dots 
correspond to hypothetical common ancestors. Moving back from present to past, the 
number of lineages in each generation decreases when two individuals shared a 
common ancestor (coalescent event), and increases when sampled individuals are 
encountered (sampling event). After Drummond et al., 2003b.

In the same way that phylogenetic inference is tightly bound to the modelling of 

molecular evolution, the coalescent is highly dependent on the assumption of a 

demographic model, i.e. a mathematical function describing the evolution of the size of 

a population over time. The choice of a model will determine the set of discrete 

parameters needed to estimate in order to accurately reconstruct of the population 

history of the sampled lineages, and is a crucial prerequisite. Five possible models have 

been described in the literature (see Fig. 2.11). They are, in order o f increasing 

complexity: constant population size, exponential growth, logistic (exponential growth 

followed by constant population size) or expansion growth (constant population size
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followed by exponential growth), and finally piecewise con-exp-con (constant growths 

flanking an exponential growth phase). The details about these models, including the 

number and description of parameters involved, are shown in Table 2.5. These 

demographic models are hierarchically nested, allowing the performance of likelihood 

ratio tests in order to select the best fit for a given dataset.

Table 2.5. Demographic models and their respective parameters

Model Number of 
parameters

Type of parameter ** Equation References

Constant size 1 No N(t) = N0 Pybus, 2000
Exponential growth 2 No,r N(t) = N0e-rt Pybus, 2000
Logistic growth 3 No, r, c N(t) = N0 [(1 + c) / (1 + cen] Pybus, 2000
Expansion growth 3 N o,r,a N(t) = N0 [a + ((1 - a )  e rt)] Pybus, 2000
Constant-exponential-constant 5* No, r, a , x, y N(t) = No, if t< x

N(t) = N0e'r(t‘x), if  x < t < y
N (t) = Na, if t > y

Pybus, 2003

* although five parameters are given, only four are needed to fully specify the model.
** N0, population size at the present; r, exponential growth rate; c, logistic shape parameter; a , population size prior change, 
as a proportion o f NO; x, end o f exponential growth; y, beginning of exponential growth

Measurably evolving populations, i.e. populations from which molecular 

sequences can be collected at different time points in time with significant genetic 

differences (Drummond et al. 2003b), provide a particularly good framework for the 

application of the coalescent. Given the remarkably fast rate of evolution characterising 

HIV-1 and other RNA viruses, sequences from these organisms are particularly suitable 

for use with coalescent models. Moreover, since the importance of random genetic drift 

and neutral selection has been recently highlighted in the evolution of the virus (Leigh- 

Brown and Richman. 1997), the coalescent appears to be particularly suitable for the 

study of both between- and within-host dynamics of HIV -1.
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Fig. 2.11. Demographic models describing different patterns of population size 
evolution through time. Five demographic models are currently available, that is, in 
order of increasing complexity: constant growth, exponential growth, logistic and 
expansion growth, constant-exponential-constant growth. Each model is presented 
as the variation of the effective population size Ne over time. These models are 
nested, i.e. a model is a special case of another model in the direction indicated by
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CHAPTER III 

Identification of True Linkages on the Basis 

of the pol Gene Variability

1. Introduction

Lifestyle and sexual behaviour are major determinants of sexually transmitted 

infections, as illustrated by the dramatic spread of the HIV-1 epidemic worldwide. With 

an estimated 80% of the new HIV-1 infections diagnosed within the gay community 

since 1999, and despite the rapid rise of new HIV infections acquired through 

heterosexual intercourse, men having sex with men (MSM) remain the group at highest 

risk of acquiring HIV within the UK (Health protection Agency annual report 2003, 

http://www.hpa.org.uk). In 2003, 1735 diagnoses were attributable to sex between men, 

increasing the incidence of HIV infections in the later risk group to 3.7% per year 

(Health Protection Agency annual report 2004, http://www.hpa.org.uk/). Despite this 

escalation in HIV incidence, transmission between risk-groups remains negligible, 

resulting in certain HIV-1 subtypes being associated with specific modes of  

transmissions (Tatt et al. 2001). Subtype B, for instance, remains the most prevalent 

clade within men having sex with men (MSM) in the western world. At the light of 

these considerations, the identification and characterisation of HIV-1 transmission 

networks amongst this risk group is of profound relevance for the public health in the 

UK, and the information held by molecular data is particularly suitable for that purpose.
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Phylogenetic analyses of HIV-1 transmission events have been the focus of 

abundant studies (Balfe et al. 1990; Kleim et al. 1991; Arnold et al. 1995; Holmes et al. 

1995; Leitner et al. 1996; Yirrell et al. 1997; Hayman et al. 2001; Taylor et al. 2003). 

With increasing availability of HIV-1 sequence data, such analyses have proved 

themselves notably useful in the reconstruction of transmissions, including the 

resolution of legal issues (Rogers et al. 1993; Albert et al. 1994; Birch et al. 2000; 

Machuca et al. 2001; Metzker et al. 2002). To that respect, HIV-1 sequences were used 

for the first time in 1991 to corroborate the infection of patients attending a dental 

surgery in Florida by their practician (Ou et al. 1992). Beyond the controversy it fuelled 

(Smith and Waterman. 1992; Debry et al. 1993; Hillis and Huelsenbeck. 1994; Crandall. 

1995), the ‘Florida dentist case’ raised important issues to be considered before using 

HIV-1 gene sequences for the establishment of transmission chains (see Chapter I, 

section 3.2.2) (Holmes et al. 1993).

One of these considerations concerned the choice of a suitable genetic region. 

There is indeed a significant heterogeneity in nucleotide substitutions across the HIV-1 

genome, resulting in unequal phylogenetic signals from gene to gene (Leitner and 

Albert. 1999; Korber et al. 2000). Of course, complete genome analysis is ideally 

applied to transmission studies. However, since there are relatively few full-length 

sequences available and phylogenetic analyses are restricted by the cost of sequencing 

appropriate background material as well as computational power, the sequence length 

and genetic region o f choice need to be carefully considered together in order to 

guarantee the best estimate of phylogenetic relatedness. Most phylogenetic studies 

undertaken to date have relied on the V3 loop region of the env gene, taking advantage 

of its hypervariability (Balfe et al. 1990; Kleim et al. 1991; Chant et al. 1993). 

Alternatively, the entire env gene (Arnold et al. 1995; Hayman et al. 2001) and 

fragments of the gag gene (such as the pi 7 region) have been exploited, sometimes 

together (Arnold et al. 1995; Leitner et al. 1996; Leigh Brown et al. 1997; Hayman et al.

2001). Nonetheless it has been argued that fragments covering the V3 loop are too short 

or too variable to allow robust inferences on the genetic relatedness of specimens 

(Debry et al. 1993). Also, convergent evolution, i.e. genetic similarity in unrelated 

patients, has been reported in env, with the potential to bias phylogenetic inferences into 

false positives (Zhang et al. 1993). As for the gag  gene, the limited number of 

sequences available in public databases makes it use problematic. By contrast, the 

region spanning the protease and RT genes is routinely sequenced in the clinical context
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of genotypic drug resistance testing and a large body of data is now being generated. 

Successful attempts to determine HIV-1 subtypes on the basis of the protease and the 

RT genes have been reported, so long as the fragment used is long and variable enough 

to counterbalance the lack of genetic constraint (Kessler et al. 2001; Pasquier et al. 

2001; Yahi et al. 2001; Gale et al. 2004). However, the pol gene remains unpopular for 

phylogenetic analyses due to its extreme genetic conservation and the pol gene is 

commonly considered sub-optimal for the study of HIV-1 transmission histories (Albert 

et al. 1993; Palmer et al. 2002). Furthermore, an additional difficulty is encountered in 

the body of drug resistance related mutations when considering the pol region for the 

conduction of phylogenetic inference. It is indeed not infrequent that unrelated viruses 

harbour similar mutations associated with drug resistance after exposure to highly active 

antiretroviral treatment (HAART). Such convergent evolution could potentially bias the 

clustering o f the viral sequences compared in the tree and lead to false relatedness 

between unrelated viruses.

The present study aimed to determine whether the pol gene holds sufficient 

genetic variability to allow the useful study of potential patterns of transmissions. For 

these purposes, potential linkages were identified within the ASRU p o l sequence 

database, compared with clusters obtained from more variable genetic regions of HIV-1 

(i.e. the gag and env genes), and the influence of drug resistance related mutations in the 

process of phylogenetic reconstruction was assessed.

The work presented in this chapter was published in Hue et al. 2004.

2. Material and Methods

2.1. Study Cohort

The pol sequences used for this study were extracted from the Health Protection 

Agency Antiviral Susceptibility Reference Unit database. There were generated from 

plasma samples collected from HIV-1 infected people in the United Kingdom between 

1999 and 2003. For the purposes of the study, data were anonymised prior to analysis, 

according to the Health Protection Agency Ethics Committee’s policy. Specific consent 

was nonetheless requested from patients appearing within transmission clusters in order
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to document potential sexual contacts, whilst blinding clinicians and patients to the 

laboratory data. Despite large-scale screening, epidemiological information was only 

obtained from a minority of patients.

2.2. Gene Amplification and Sequencing

pol variability

The region spanning the protease gene and the 235 first codons of the reverse 

transcriptase were amplified from plasma-derived viruses by random primed reverse 

transcription and nested PCR at the Antiviral Reference Unit of the Health Protection 

Agency, Heartlands Hospital, Birmingham. Details of the procedure are given in 

Chapter II, section 1.3.

gag and env variability

Where cDNA was available, regions spanning the gag  and env genes were 

amplified and sequenced, as described in Chapter II, section 1.3. Thus, gag and env 

sequencing was undertaken for samples involved in clusters of pol sequences (n=23), 

sequential samples from the same individuals used as controls (n=6), and randomly 

selected samples where the pol gene was unrelated to other sequences (n = 23).

2.3. Genetic Distances

A minimum genetic diversity was expected between samples generated from 

patients involved in transmission networks. Hence, in order to characterise and identify 

sexual linkages amongst the nearly 2500 entries of the database, a pre-selection of 

closely related pol sequences was undertaken by computing pairwise genetic distances 

between all sequences, using the program Paup*. The genetic distances were calculated 

according to the general reversible time model with invariable sites and gamma 

distribution (GTR+I+G). The GTR model was selected over 57 alternative models of 

nucleotide substitution by likelihood ratio testing, using the software Modeltest and 

Paup* (see Chapter II, section 3.4). This model allows each possible substitution to 

have a different rate, with the constraint of being symmetrical, so that a substitution 

from a nucleotide i to j  has to be the same as a substitution from j  to /.
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2.4. Phylogenetic Reconstruction

The general -procedure followed for the phylogenetic reconstruction of the 

selected sequences is represented in Fig. 3.1. The methodology was consecutively 

applied to the p o l, gag and env datasets. First, in-frame multiple alignments of the 

nucleotide sequences were constructed with the program ClustalX, with gap-opening 

and -extension penalties of 10 and 0.30 respectively, then manually adjusted using the 

editing software BioEdit. Sequences that could not be unambiguously aligned or were 

of insufficient length were excluded from the study. Phylogenetic relationships between 

the sequences were reconstructed using successively the neighbor joining (NJ) and 

maximum likelihood (ML) methods. The alignment matrices were imported into the 

tree building software Paup*, and an initial neighbor-joining tree was built under the 

Hasegawa-Kishino-Yang (HKY85) model of evolution with a ratio of transversion to 

transitions of 2:1. The best fitting model of nucleotide substitution was then estimated 

on the basis o f the NJ tree topology, using a maximum likelihood ratio test to compare 

the different models implemented by Modeltest version 3.06. The parameters of the 

selected model of DNA substitution, together with the initial neighbor-joining tree, were 

finally used to perform a heuristic search for a ML tree. The trees were rooted against 

the corresponding region of an HIV-1 subtype K sequence (GenBank accession number 

AJ249239) extracted from the Los Alamos HIV-1 Database (http://www.hiv- 

web.lanl.gov/), and the robustness of the topologies was evaluated by bootstrap analysis, 

with 1000 rounds of replication. The models of nucleotide substitution used for the 

reconstruction of each ML trees are detailed in Table 3.1.

In order to assess the potential bias induced by drug resistance associated 

substitutions on the reconstruction of the samples relatedness, 46 codon positions 

known to be related to antiretroviral resistance (Shafer et al. 2000a) were then excluded 

from the previous po l sequences alignment and a maximum likelihood tree was 

implemented. Resistance mutation positions known as primary (or major) and 

secondary (or minor) were excluded. Primary mutations are known to lead to an 

alteration in drug binding by themselves, whereas secondary mutations do not have a 

significant effect on phenotype by themselves (D'aquila et al. 2003). The positions 

excluded from the pol alignment, together with the related drug resistance, are listed in 

Table 3.2. The phylogeny estimation, model testing and bootstrap procedures were 

performed with Paup*, as described above.
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Fig. 3.1. Flow diagram summarising the methodology used for the reconstruction of 

phylogenetic trees. A multiple alignment of the HIV-1 pol sequences was first generated 

using the software ClustalX. After manual improvement on the sequence editor Bioedit, the 

alignment was then used to simultaneously select the model of evolution with the best fit to 

the data (with the software Modeltest) and construct an initial Neighbor joining tree. Both 

tasks were performed with the program Paup*. The multiple alignment, model and initial 

tree were finally used in order to generate a definite maximum likelihood tree in Paup*.
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The HIV-1 nucleotide sequences used in the present study were deposited into 

GenBank (http://www.ncbi.nlm.nih.gov/) under the accession numbers AY362043- 

AY362180, AY360862-AY360910 and AY360911-AY360959. The first, second and 

third series of accession numbers correspond to the pol, gag and env sequences 

alignments respectively.

Table 3.1 Models of evolution selected for the pol, env and gag datasets

Sequence Alignment
pol pol-dr* gag env

Model selected: * * GTM+I+G GTM+I+G GTM+I+G GTM+I+G

- InL = 13116.73 10355.26 6208.02 7903.65

Substitution model:
[A-C] = 2.3700 1.9958 0.5737 1.5545
[A-G] = 8.9795 8.9787 1.6363 3.1150
[A-T] = 0.7548 0.7298 0.4937 0.7500
[C-G] = 1.5364 1.3601 0.2858 0.9318
[C-T] = 10.612 11.771 2.7136 2.3225
[G-T] = 1.0000 1.0000 1.0000 1.0000

Base frequencies:
freqA = 0.4226 0.4227 0.3887 0.3742
freqC = 0.1422 0.1525 0.2277 0.1861
freqG = 0.1950 0.2005 0.2332 0.2016
freqT = 0.2402 0.2242 0.1505 0.2380

Proportion of
invariable sites: 0.4766 0.5160 0.2005 0.2060

Gamma distribution
shape parameter: 1.0441 1.0828 0.6520 0.9436

* p o l alignment after exclusion of 46 codon positions associated with drug resistance 
** according to the Akaike Information criterion (AIC), as implemented in M odeltest 3.06

Abbreviations: GTM, general time reversible model; +1, with invariable sites; +G, with gamma 
distribution; -InL, log likelihood score; [i-j]: rate of substitution between base i and base j; freq i, 
frequency of base i in the dataset.
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Table 3.2 Drug Resistance Mutations in HIV-1 (from d'Aquila et aL 2003)

Amino acid substitutions associated with resistance to
Pi NRTi nNRTi

Mutation Prevalence 
in the data

Mutation Prevalence 
in the data

Mutation Prevalence 
in the data

L10F/V/I/R 15 M41L 19 L100I 1
K20M/R 11 E44D 2 K103N 13
L24I 0 A62V 2 V106A/M 0
D30N 0 K65R 0 V108I 0
V32I 0 D67N 3 Y181C/I 2
L33F 1 T69D 4 Y188C/L/H 2
M36I 28 K70R 3 G190A/S 3
M46I/L 0 L74V 1
I47V 0 V75I 0
G48V 0 F77L 0
I50V/L 0 Y115F 0
F53L 0 F116Y 0
I54V/M/L 1 V I181 0
L63P 68 Q151M 0
A71V/T 21 M184V/I 18
G73S/A 0 L210W 6
V77I 22 T215Y/F 15
V82A/F/T/S 0 K219Q/E 2
I84V 0
N88D/S 0
L90M 4

Primary mutations are indicated in bold

3. Results

Out of the 2500 pol sequences generated on samples dated from 1999-2003, 140 

were selected on the basis of the closest pairwise genetic distances. Thus sequences 

sharing more than 95% similarity with one or more other entries from the database were 

selected for the study. Overall, the average inter-patient genetic variation amongst the 

sequences was 5.1% (range 0-12.4%). Although several subtypes were represented 

within the subset of sequences, including subtype A, B, C, D, G and CRF01-AE, the
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vast majority were of subtype B (88%), reflecting the subtype distribution of prevalent 

infections in the UK at the time of the study.

The maximum likelihood tree derived from the selected po l sequences is 

presented in Fig. 3.2. Twelve pairs or triplets of sequential sequences from a same 

patient were used as controls. Bootstrap values higher than 50% are indicated on the 

branches, reflecting the frequency with which a given branch occurred in 1000 

bootstrap resampling. A total of 23 possible transmission clusters were identified from 

the tree topology. The criteria used to select these linkages were determined by plotting 

the supporting bootstrap score of each terminal cluster against the within-average 

branch length calculated from the ML tree topology (Fig. 3.3). Threshold criteria for the 

validation of the putative transmission chains were decided in light of the tree topology. 

Considering the extreme conservation of the pol gene, the bootstrap values supporting 

the branches were expected to be high, and the genetic distance between sequences 

involved in clusters to be low. Therefore, clusters were considered true linkage when 

fulfilling the following two conditions: 1) a bootstrap value equal or greater to 99%, and 

2) an average genetic distance (i.e. branch length) lower than 0.015 nucleotide 

substitutions per sites within the cluster. There was no significant distinction between 

intra-patient (i.e. control) and inter-patient (i.e. linked) sequences in terms of genetic 

distance. All controls conformed to these criteria, with the exception of the multiple 

sequences belonging to patient 7 and 8 , whose clusters were supported by lower 

bootstrap values (i.e. 95% and 92% respectively). The reason why these two clusters 

failed to fit in the criteria remains unclear. The relative low bootstrap score attributed to 

samples from patient 7 could be explained by the presence of an archive sequence, 

subsequently becoming the majority plasma population within the follow-up samples. 

For instance, a virus originating many years previously may emerge following a 

treatment interruption, resulting in a genetic distance between the two serial samples 

greater than expected. Unfortunately, matched gag and env sequences could not be 

generated for these samples due to PCR difficulties.

All putative transmission events involved subtype B viruses. Most of the ‘non-B 

clades’ of the ML tree were supported by high bootstrap scores, but since the bootstrap 

resampling process is known to be influenced by the number of taxonomic units 

considered in a tree (Felsenstein. 1985), the scores associated with these branches are 

likely to be artificially high due to under-representation within the dataset, and these 

clusters were excluded from the categorisation of potential clusters.
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Fig. 3.2. Maximum likelihood tree representing the phylogenetic relationships between HIV 

pol sequences extracted from the HPA resistance database. The tree was constructed 

according to the GTR+I+G model of evolution and rooted against a HIV-1 subtype K 

sequence (AJ249239K) from the Los Alamos HIV database. Bootstrap values higher than 

50% are indicated on the branches. Clusters involving potential transmission events are 

circled. Twelve pairs or triplets of multiple sequences from a same patient were used as 

control. These sequences are tagged by figures in black boxes (e.g.Q indicates multiples 

sequences from patient 1). For clarity, only branches involved in possible linkages are 

labelled.
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Fig. 3.3. (A) Average branch length within the terminal clusters of the maximum 

likelihood po l tree plotted against the bootstrap scores supporting the clusters. 

Possible transmission clusters and controls (i.e. clusters comprising intra-patient 

follow up sequences) are indicated by red and black dots respectively. (B) The cut-off 

values for the characterisation of linkages were a supporting bootstrap score higher 

than 99% and a mean genetic distance of 0.015 nucleotide substitutions per site.
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When linkages were identified, discussion with the relevant clinicians helped 

determining if  confirmation could be obtained from the patients involved. Where 

informed consent was obtained from the patient, epidemiological evidence of linkage 

between individuals were documented in order to corroborate the findings from the 

initial phylogenetic analysis and drug resistance patterns within clusters. Both primary 

and secondary mutations associated with antiretroviral resistance were considered 

(Hirsch et al. 2000; D'aquila et al. 2003). Although not essential to prove transmissions, 

such information is important to verify the approach developed in the present analysis. 

These data are listed for each cluster in Table 3.3. Where appropriate information was 

obtained, three clusters were supported by evidence of epidemiological linkage (clusters 

numbers 3, 8, 14). Similar drug resistance associated mutations (including secondary 

mutations) were observed within 14 out of 23 clusters. Four clusters appeared to 

identify transmission of viruses harbouring key resistance mutations to a drug naive 

individual (cluster numbers 6, 10, 18, 21). In 5 other clusters (cluster numbers 1,4, 11, 

12 and 16) such mutations in the drug-experienced individual were not seen in the drug 

naive partner.

Since the pol gene is under intense selective pressure by antiviral therapy, it 

might be expected that the presence of drug resistance mutations bias phylogenetic 

reconstruction. On the one hand, similar sets of mutations may lead to convergence, and 

conversely, large differences between viruses from transmission events may lead to 

divergence. For this reason, the pol sequence alignment was reassessed after exclusion 

of 46 codon positions commonly associated with drug resistance. The maximum 

likelihood tree reconstructed from the latter alignment (named pol-drm for convenience) 

was implemented according to the GTR+I+G model of nucleotide substitutions. As with 

the previous reconstruction, an HIV-1 subtype K pol sequence (GenBank accession 

number AJ249239) was used as outgroup and multiple sequences from a same patient 

were used as controls. A comparison between the pol-drm and original pol trees is 

shown in Fig. 3.4. Despite the deletion of 46 highly variable sites, the two topologies 

were congruent and the 23 putative transmission clusters identified within the pol tree 

were conserved in the pol-drm tree. Moreover, no additional clusters to those based on 

pol sequences were strongly supported by bootstrap scores. This suggests that mutations 

induced by antiretroviral therapy are unlikely to bias the reconstruction of transmission 

networks, and that unrelated virus harbouring identical drug resistance patterns are 

unlikely to cluster together within a phylogenetic pol tree, leading to false positives.
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Table 3.3. Epidemiological and drug resistance mutation information for the 23 

clusters of pol sequences.

Cluster Sequence Year of Drug history Resistance associated mutations to________________ gag/env
sampling Pis RTi linkage

1 pol 5 2000 experienced L10V, L63T G190A yes1
pol 25 2001 naive L10V, L63S none yes

pol 29 2001 naive None none n/a
2 pol 31 2001 naive None none n/a

pol PI 2001 naive None none n/a

'i pol 42 2001 naive L63P None n/a
j pol 61 2001 naive L63P None n/a

pol 13 2000 naive LlOVf, M36I none yes
4 pol 22 2001 experienced LlOVf, M36I M184V, Y188L yes

pol 30 2001 naive LlOVf, M36I T69It yes

pol 6 2000 experienced none none n/a
pol 26 2001 naive none none n/a

£ pol 39 2002 experienced M36L, L63P T69N n/a
0

pol 62 2000 naive M36L,L63P T69N n/a

7 pol 8 2000 experienced L63P none n/a
f

pol 59 1999 experienced L63P none n/a

pol 1 2000 experienced L63T none yes
8 pol 16 2001 naive L63T none yes

pol 35 2002 naive L63T none n/a

o pol 48 2001 naive L63H, A71V, V77I, I93L none n/a
y

pol 63 2001 experienced L63H, A71V, V77I, I93L none n/a

1A pol 37 2002 naive L63P M41L, T215Y yes
1U

pol 40 1998 experienced L63P M41L.T215C yes

11 pol 2 2000 naive I93L none n/a
11

pol 32 2001 experienced I93L A62V, K65R, L74V, G190S n/a

pol 4 2000 naive L10V, I93L none yes
12 pol 14 2000 naive L10V.I93L none yes

pol 60 2001 experienced L10V, L63P, A71V.I93L K103N n/a

17 pol 49 2000 naive M36I, L63P, I93L none n/a
I j pol 50 2001 experienced M36I, L63P, I93L none n/a

14 pol 17 2001 naive M36I, L63P, V77I, I93L none yes
l*r

pol 18 2001 experienced L63P, V77I, I93L none yes

Abreviations: Pis, protease inhibitors; RTIs, reverse transcriptase inhibitors; 
Primary mutations are indicated in bold 
f atypical mutation at the given codon
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Table 3.3. (continued)

Cluster Sequence Year of 
sampling

Drug history Resistance associated mutations to 
Pis RTIs

gag/env
linkage

pol 21 2001 experienced L10I, K20R, M36I, L63S, I93L none n/a
15 pol 57 2001 experienced L10I, L63C, I93L none n/a

pol 58 2000 naive L10I, K20R, L63S, A71T, I93L none n/a

pol 11 2000 naive L10I, L63C, I93L none n/a
10 pol 20 2001 experienced L10I, L63C, I93L M41L, V I181, L210W, T215Y n/a

pol 7 2000 experienced L10I, L63P, V73I, I93L none n/a
17 pol 12 1998 naive L10I, L63P, V73I, I93L none n/a

pol 23 2001 experienced LI 01, L63P, V73I, I93L L210F n/a

18
pol36 2001 naive K20R, M36I, L63A M41L, T215E f yes1 O pol41 2001 naive K20R, M36I, L63A M41L, T215E f yes

IQ pol 44 2002 experienced M36I T215D yes1 7 pol 45 2002 experienced M36I T21SD yes

20 pol 46 2002 experienced L63P T69A yes
pol 47 2002 experienced L63P T69A yes

21 pol 34 2002 experienced L10V, L63P T215D yes
pol 43 2000 naive L10V, L63P T215D yes

n pol 10 2000 naive L63P, I93L none n/aLL
pol 33 2001 naive L63P, I93L none n/a

pol 9 2001 naive L10I, L33I, L63T, A71T, I93L A98S yes
23 pol 24 2000 naive L10I, L33I, L63T, A71T, I93L A98S yes

pol 28 2000 naive L10I, L33I, L63T, A71T, I93L A98S n/a

Abbreviations: Pis, protease inhibitors; RTIs, reverse transcriptase inhibitors; 
Primaiy mutations are indicated in bold 
t  atypical mutation at the given codon

Finally the relatedness of the sequences within an identified transmission cluster 

was further confirmed by constructing maximum likelihood trees based on the env and 

gag genes of the samples. A total of 49 sequences were used for the reconstruction of 

both gag and env trees, comprising 23 out of the 53 sequences involved in possible 

linkages (where stored samples or cDNA were available), coupled to 3 pairs of controls 

and 23 background unrelated sequences. The resulting gag and env alignment lengths 

were 747 base pairs and 557 base pairs respectively. The GTR+I+G model of molecular 

evolution was found to be the most appropriate for both datasets. Maximum likelihood
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Fig. 3.4. Maximum likelihood trees constructed on the basis of pol sequences before 

(A) and after (B) exclusion of codon positions associated with drug resistance. The 

trees were reconstructed under the GTM+I+G model of evolution, and rooted against a 

HIV-1 subtype K sequence (AJ249239K). Transmission clusters are circled and 

controls (i.e. multiple sequences from a patient) are indicated by a star. Bootstrap 

values above 50% are indicated on the branches. Only branches involved in possible 

linkages are labelled.
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Fig. 3.5. Maximum likelihood trees derived from the gag (A) and env (B) regions of 
the samples, under the GTR+I+G model of nucleotide substitution. The trees are 
rooted against an HIV-1 subtype K sequence (AJ249239K) from the Los Alamos 
HIV database. Possible transmission clusters previously identified within the pol 

tree presented in Fig. 1 are circled in red. The pairs of multiple sequences from a 
same patient used as controls are indicated by figures in black boxes. Bootstrap 
values of 50% or greater are indicated on the trees.

78



Chapter III

trees constructed from the gag  and env sequences are shown in Fig. 3.5A and 3.5B 

respectively. The eleven transmission clusters characterised within the pol tree were 

conserved within the gag and env trees, all of which are supported by bootstrap scores 

of 100, with the exception of cluster (24,9) -i.e.: comprising sequences 24 and 9- in the 

gag tree (supported by a bootstrap value of 98), and the clusters (37,40) and (13,22) 

supported by a bootstrap value of 96 and 98 respectively in the env tree. Conversely, the 

gag and env trees did not identify any clusters that were not present in the pol tree.

4. Discussion

The present chapter assessed the robustness with which possible HIV-1 

transmissions could be identified from pol sequences, despite the relative conservation 

of this gene. Since the sequences used here are a convenient source of data generated for 

routine resistance testing, it is of importance to assess the degree to which they can be 

exploited for molecular epidemiological studies. The relatedness of the sequences in our 

database was reconstructed by phylogenetic analyses, on the basis of different genetic 

regions within the pol, gag and env genes. Twenty-three possible transmission clusters 

were identified within the pol ML tree topology, supported by high bootstrap values 

(>99), congruent epidemiological data and similar drug resistance patterns. All clusters 

were conserved when codon positions associated with drug resistance were removed 

from the original pol alignment. Finally, trees constructed with the env and the gag  

regions of the samples were consistent with the results obtained with the pol region and 

the same transmission clusters were identified.

It has been suggested that the p o l gene is suboptimal for reconstructing 

transmission events (Palmer et al. 2002), since the genetic distance between protease 

and RT sequences from unrelated individuals may not always be significantly different 

from the distance between related individuals. The present study compared the 

topologies of tree obtained with three HIV-1 genes known to undergo distinctive 

evolutionary dynamics (i.e. pol, gag and env), pol having the lowest and env the highest 

rate of substitution (Li et al. 1988; Korber et al. 2000). Clustering patterns were 

identical within the three phylogenetic trees, with a similar range of statistical 

significance. Consequently, these results suggest that HIV-1 pol gene holds sufficient
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intrinsic genetic variability to permit the reconstruction of transmission histories by 

phylogenetic means. Whether or not phylogenetic relationships characterised from 

protease and RT sequences should be confirmed by more variable genetic regions of 

HIV-1 is open to debate. The present work clearly indicates that congruent results are 

obtained whichever of the three principal genes of HIV-1 are considered, the trees 

obtained only differing by the length of their branches and the clustering patterns of 

distant unrelated sequences. These findings could have an immediate consequence in 

the monitoring of HIV-1 epidemiology. In view of the preponderance of HIV po l 

sequence data consequent on routine HIV resistance genotypic testing, these sequences 

could also be utilised effectively to track the presence of transmission clusters within 

the communities from which there were obtained.

It is also worth noting that most of the sequences used for the study were 

generated from plasma samples obtained within a period of 3 years. The 

characterisation of transmission patterns within a group of HIV-1 infected individuals 

might be more problematic when using sequences collected over a longer time span, 

because of within-individual evolution. Indeed, we noted a greater than average genetic 

distance in po l from sequential samples taken from control patients number 7 and 8. 

Also, when based on a single genetic region, the interpretation of inferred linkage might 

be undermined by the presence of recombination in the genomes considered. A further 

concern relates to the bottleneck represented by transmission of a single, or narrow 

spectrum o f virions, especially when appreciating that within-host compartmentalisation 

may lead to sexual transmission of genital rather than blood virus species (Taylor et al.

2003). Given that the maximum likelihood inference could not be performed on the 

whole data set, only sequences sharing more than 95% identity with at least one other 

sequence from the database were used. Such a pre-processing of the data could 

potentially have an impact on the results and favoured the presence of strongly 

supported clusters within the tree.

Although comparison with epidemiological data is important for the validation 

of the linkages characterised at the molecular level, this information remains hard to 

obtain and only 3 of the transmission clusters could be confirmed. This can mainly be 

attributed to the difficulty encountered when consent from the patients is requested. 

Furthermore, the presence of multiple sexual partners often compromises the 

characterisation of linkages between HIV-1 infected individuals and networks can be 

problematical to establish. It is important to distinguish between epidemiological and
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individual purposes for undertaking these analyses. It is essential that informed consent 

is obtained from individual patients prior to the potential identification of their source of 

infection, and that appropriate security is afforded to HIV-1 sequence databases.

Finally, a number of instances of transmitted drug resistance through this 

analysis were identified, as described elsewhere (Pillay et al. 2000b; Ammaranond et al. 

2003; Taylor et al. 2003). It is self evident that the presence of key mutations 

themselves is insufficient to virologically prove transmission. It could be suggested that 

the pol gene sequence, itself generated for purposes of resistance testing, is adequate for 

such phylogenetic studies.
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CHAPTER IV 

Correlates of Sexual Risk and HIV-1 

Transmission during Primary Infection

1. Introduction

The natural progression of an HIV-1 infection traditionally begins with an acute, 

(or primary) phase, followed by an early clinical latent phase (spanning 3 to 10 years), 

ultimately followed by the onset of AIDS. The acute phase o f the infection is 

conventionally described as the interval during which HIV epitopes can be detected in 

blood serum and plasma before the production of specific antibodies, which occurs 

approximately 30 days after infection. Nonetheless, when looking at the incidence of 

HIV-1 infections, it is difficult to distinguish between new diagnoses of chronic 

infections and recently acquired infections, and the infectiousness of acutely infected 

individuals, while of major relevance for public health, remains difficult to assess.

High plasma and genital tract viral load (VL), viral tropism, host susceptibility 

and opportunistic sexually transmitted infections (STIs) are amongst the clinical factors 

believed to increase HIV-1 infectiousness (Blaak et al. 1998; Kaufmann et al. 1998; 

Pesenti et al. 1999; Vemazza et al. 1999; Wahl et al. 1999; Pilcher et al. 2004b). 

Susceptibility to HIV-1 seems also to be influenced by genetic factors such as HLA 

type, co-receptor type, and/or gender (Long et al. 2000; Ray and Quinn. 2000; Glynn et 

al. 2001; Al Jabri. 2002; Tang et al. 2002; Trachtenberg et al. 2003; Koning et al. 2004;
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Quayle et al. 2004). Moreover, it has been hypothesised that HIV infected persons may 

be more infectious at the early stages of the disease (Yerly et al. 2001b). Both 

mathematical modelling and empirical epidemiological data seem to support this 

hypothesis. Hence, individuals with primary HIV-1 infections (PHIs) are suspected to 

be up to 1000 times more infectious than during any other stage of the disease 

(Koopman et al. 1997). Also, Jacquez et al estimated that between 25 and 47% of new 

homosexually acquired infections may be transmitted during the 2 first months of 

infection (Jacquez et al. 1994). Furthermore, it has been suggested that sexual risk 

behaviour during and after HIV seroconversion has a significant impact on the spread of 

the epidemic. Since high infectivity may precede symptoms in primary infection (Kahn 

and Walker. 1998; Pilcher et al. 2001), HIV-1 infected individuals may be unaware of 

the risk they expose partners. High-risk sexual intercourse amongst acutely infected 

men having sex with men have indeed been reported, involving alarming rates of 

partner changes, sexual concurrency and unprotected anal intercourses (Colfax et al. 

2002), suggesting that primary infections play a more important role in transmission 

from casual partners than in transmission from steady partners (Xiridou et al. 2004). As 

a consequence, rates o f transmission of resistant HIV strains, which compromise 

treatment success, are up to 20% in many countries (Little et al. 2002), including the UK 

(Pillay et al. 2000). It is therefore of clinical and epidemiological relevance to 

efficiently identify newly acquired infections and to measure the rate of transmission 

amongst primary infected individuals.

Besides, it has been suggested that risky sexual behaviour such as high rates of 

partner change and concurrent partnership, coupled with high infectivity, promote the 

emergence of superinfection (i.e. re-exposure with HIV-1 after an initial infection) 

(Blackard and Mayer. 2004). As a consequence, recurrent exposure to HIV amongst 

seropositive individuals through high-risk behaviour increases the likelihood of 

recombination (Fang et al. 2004), with implications for public health (such as the 

emergence of multi-drug resistant recombination forms). Numerous molecular tools 

enable a reliable categorization of mosaic genomes (Posada. 2002) and the identification 

of recombinant forms is relatively straightforward when the parental viruses belong to 

distinct clades of the same HIV-1 group, or are even more distantly related. However, 

detection of recombination is more challenging amongst viruses of the same clade, and 

reports of intrasubtype HIV-1 recombination are rare in the literature (De Baar et al. 

2003; Pollakis et al. 2003). If partial env and gag gene sequences are traditionally used
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for the characterisation of recombinant form when full-length sequence is not available, 

the po l gene (partially or in its integrity) offers a good alternative for subtype 

assignment since it has become increasingly available through routine resistance testing. 

Its reliability for phylogenetic reconstructions has been recently shown (Hue et al.

2004), and, with all but two circulating recombination forms exhibiting break points in 

the protease and RT genes (Kuiken et al. 2002), the pol region is now considered as 

adequate for subtype classification (Barlow et al. 2001; Yahi et al. 2001; Pandrea et al. 

2002; Njouom et al. 2003). Nonetheless, the pol gene alone has rarely been utilized for 

recombination analyses to date.

In order to understand further the impact of primary infections on the spread of 

the HIV-1 epidemic, molecular and epidemiological analyses of PHI was undertaken 

within a geographically discrete area of the UK, with a focus on newly infected MSM. 

Potential transmission clusters were identified by phylogenetic means and related to 

clinical and epidemiological data, in order to identify significant determinants of the 

HIV transmission at early stages of the disease. When large networks of transmission 

were characterised, viral genomes isolated from the individuals involved were tested for 

intra-subtype recombination, under the assumption that super-infection might have 

occurred.

The work presented in this chapter was published in Pao et al. 2005.

2. Material and Methods

2.1. Study Cohort

Subjects with primary HIV-1 infection (PHI) were recruited from a cohort of 

1235 HIV-positive individuals attending a Genitourinary Medicine Unit in Brighton, 

UK, for follow up between 1999 and 2003 (the department is the unique local provider 

for HIV and STI care). Of these, 86% were Caucasian and were 89% are male. The 

predominant route of infection within the cohort was sex between men (79%). National 

surveillance data confirms that over 90% of the diagnosed HIV infected patients 

resident in the area attend this clinic. Primary HIV infections were identified by at least 

one of the following tests:
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Previous negative HIV antibody test within 18 months

Evolving Western Blot or HIV antibody response.

Positive HIV-1 antibody test in association with a negative “detuned” HIV

antibody assay (suggestive of infection within the previous 4-6 months)

The western blot test detects antibodies to specific denaturated HIV-1 proteins, 

including the core (p i7, p24, and p55), polymerase (p31, p51, p66), and envelope 

(gp41, gpl20, gpl60) proteins (Carlson et al. 1985; Schwartz et al. 1988). The test is 

considered negative in the absence of all bands, and positive if reactivity is detected to 

gp41 and gp120/160 env bands or to either of these env bands plus the p24 gag band. 

The presence of any bands that do not meet the criteria for a positive result is considered 

an indeterminate result.

A detuned assay consists in an enzyme-linked immunosorbent assay (ELISA) 

test of low sensitivity following a standard one, in order to distinguish patients who 

have seroconverted within the past 129 days from patients who seroconverted 

sometimes beyond this point (Janssen et al. 1998; Mcfarland et al. 1999). The assay 

takes advantage of the progressive increase in HIV antibody titre during the initial phase 

of infection: a subject recently infected will have lower antibody level and will test 

negative on the less sensitive ELISA. Detuned assays were performed using the 

bioMerieux Vironostika HIV-1 assay (bioMerieux UK Ltd., Basingstoke, UK) as 

previously described (Kothe et al. 2003).

In total, 103 subjects with PHI diagnosed between 1999 and 2003 consented to 

the study and were included in the following epidemiological and phylogenetic 

analyses.

2.2. Epidemiological and Clinical Data

Markers reflecting the subjects’ clinical status were recorded at the clinics for 

each patient taking part in the study. These included CD4 cell count, CD4 percentage, 

HIV-1 viral load (VL), as well as the presence or absence o f PHI symptoms. 

Measurements o f HIV-1 viral load, or level o f plasma viral RNA, reflects the 

cumulative production of virions from the various cellular reservoirs and turnover of 

virus-producing cells in those reservoirs. Additional epidemiological information was
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obtained directly from the patients, such as the HIV acquisition risk group and details of 

the sexual behaviour (i.e. estimated frequency and nature of sexual contacts within 3 

months prior to PHI diagnosis). In addition, the presence and nature of sexually 

transmitted infections (STIs) within 3 months prior to HIV-1 diagnosis was recorded. 

Prevalence of gonorrhoea, chlamydia, non-specific urethritis, early syphilis and genital 

ulcer diseases was noted. Confidentiality and anonymity of the patients were protected 

by irreversibly unlinking clinical and laboratory identification numbers using a firewall 

system managed by the local Public Health Laboratory. The Brighton and Hove Local 

Research Ethics Committee and the Health Protection Agency Ethics Committee 

approved the present study. Written, informed consent was obtained from all 

participants.

2.3. Statistical Analyses

As appropriate, chi square tests or Fisher’s exact test were used to determine the 

significance of epidemiological and clinical differences across individuals involved or 

not in putative transmission networks. The chi square test is a non-parametric test of 

statistical significance, allowing the estimation of the degree of confidence one can have 

in accepting or rejecting a null hypothesis (Siegel and Castellan Jr. 1988). Typically, the 

hypothesis tested is whether or not two different samples are different enough in some 

characteristic to allow a generalization on the populations from which the samples are 

drawn (here, subjects involved or not in transmission clusters). The chi square test 

returns a value that has to be compared to critical values of chi square distributions for 

the appropriate degrees of freedom and the chosen probability of error threshold (e.g., p 

< 0.05). If the returned chi square value is larger than the critical value, the data present 

a statistically significant relationship between the tested variables. Since the null 

hypothesis Ho conventionally states that the relation across the data does not exist, the 

relationship does exist if Ho is rejected. In our case, the null hypothesis was that clinical 

factors found in both linked and unlinked individuals do significantly differ. The Fisher 

exact test of significance is used in place of the chi-square test in small datasets (Siegel 

and Castellan Jr. 1988). It tests the probability of getting the observed data simply by 

chance. By convention, the Fisher exact test is computed when 5 or less values are to be 

tested by category, or when the total sample size is inferior to 20. Multivariate logistic 

regressions were used to identify factors independently associated with belonging to a
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transmission cluster. Logistic regressions are traditionally used to estimate the 

probability of a certain event occurring, allowing the assessment of interaction between 

variables, and yield odds ratios. These are calculated by dividing the odds in the group 

of interest by the odds in the control group. An odds ratio of 1 implies that the event is 

equally likely in both groups. An odds ratio greater than one implies that the event is 

more likely in the first group. An odds ratio less than one implies that the event is less 

likely in the first group.

All statistical analyses were performed by Professor Caroline Sabin, Department 

of Primary Care and Population Sciences, Royal free & University College Medical 

School, London, UK, using the software SAS version 8.

2.4. Recombination Analyses

Two sets o f analyses were conducted in parallel on transmission clusters 

involving four sequences of more. On one hand, phylogenetic networks were generated 

using the split decomposition method implemented in the software Splitstree (Huson. 

1998). Phylogenetic networks originated from the idea that a tree may be an 

inappropriate evolutionary model when conflicting signals o f relatedness are 

encountered. By enabling multiple ancestries for a single taxon, networks are 

particularly appropriate for the visualisation of complex patterns of evolution such as 

recombination, where different genome partitions may support different phylogeny. 

Networks are constructed on the basis of genetic distance matrices, from which the 

branching order is determined, using the split decomposition method developed by 

Bandelt (Bandelt and Dress. 1992). A simplified illustration o f how a split 

decomposition network is implemented is given in Fig 4.1. Following this procedure, 

the network has a tree-shape, with a unique parent (i.e. internal node) for each group of 

descendant, if  no conflictual phylogenetic signal is encountered (Fig 4.1b). With less 

ideal data, the algorithm yields a network that can be interpreted as possible evidence 

for different and conflicting phylogenies (Fig. 4.1c).

On the other hand, bootscanning analyses (Salminen et al. 1995) were conducted 

using the software Simplot version 2.5 (http://sray.med.som.jhmi.edu/RaySoft/Simplot/). 

When performing such analyses, a query sequence is compared to an alignment of 

reference sequences (here, pol gene sequences) in a sliding-window fashion, i.e. for a 

successive set of overlapping sub-regions of the alignment. Within each window, the
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phylogenetic relationship between all sequences (including the query) is determined 

using bootstrap resampling. That is a NJ tree is calculated for the stretch of genome 

spanning each window, and the bootstrap value of the phylogenetic cluster including the 

query sequence in each tree is plotted along the genome as a XY plot, where the X axis 

represents the bootstrap values and the Y axis the genome position at the midpoint of 

each window. If the query sequence happen to be a recombinant form of two or more of 

the references sequences, a progressive switch of the highest bootstrap value from one 

reference to another will be observed at the recombination break points.

(a)

©
©

© © 
©

(c)
©

Fig. 4.1 Construction of a phylogenetic network, (a) Lets imagine five unlinked taxa. A 

star-like tree is used at a starting topology, (b) After calculation of the genetic 

distances between all taxa, A and B are found to be closely related and are linked 

together. The process is then reiterated for D and E. (C) As D appears to be closely 

related to C as well as E, the three taxa are linked by a network. After Bryant and 

Moulton, 2004.
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Since a minimum of four sequences are needed to perform a bootscan test, the 

search for intrasubtype recombination within the phytogeny concerned cluster 1 and 6 

only, which include 5 and 4 sequences respectively (see Fig. 4.2). Strictly speaking, 

cluster 6 involves 3 distinct patients only, two sequences being follow-up samples from 

the same individual. Moreover, 3 out of the total 4 sequences were fully identical, and 

differed from the forth one by 3 synonymous changes only. Under these conditions, the 

phylogenetic signal was too discrete to allow the analysis, and cluster 1 alone was 

investigated for intrasubtype recombination. The 5 sequences were manually aligned 

using the sequence editor Bioedit and the alignment translated into file formats accepted 

by Splitstree (i.e. modified nexus file) and Simplot (i.e. Phylip file). Genetic distances 

across the sequences were calculated in Paup* within a maximum likelihood 

framework, according to the general time reversible model of nucleotide substitution, 

with proportion of invariable sites. The whole process was repeated for two control 

alignments of 5 randomly selected pol sequences from the Brighton dataset (named 

control 1 and control 2). The details of the models used for the calculation of genetic 

distances across the 3 alignments are presented in Table 4.1.

Bootscanning analyses were performed for each alignment using a window size 

of 300 bp, sliding in 10 bp increments. The trees for each window were constructed by 

neighbor-joining (Saitou and Nei. 1987), under the Kimura’s two parameter model of 

nucleotide evolution (Kimura. 1980). The transition/transversion ratio was empirically 

determined for each alignment and was 5.17, 5.76 and 5.75 for cluster 1, control cluster 

1 and control cluster 2 respectively. Up to 1000 bootstrap replicates were generated per 

window. Bootstrapping threshold for the assignment of recombination was set on 70%, 

since bootstrap scores above that limit are thought to indicate a good significance value.

3. Results

3.1. Epidemiological Data

Amongst the 103 subjects who consented to the study, 73 (71%) had a detuned 

HIV antibody assay suggestive of infection 4 to 6 months prior testing. A total of 99 

(96.1%) were male, and the age of the cohort ranged from 21 to 67 years, with a median
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age of 36 years. In terms of risk groups, 90 of the 99 males were MSM (90.9%), while 6 

of the subjects (5.8%) reported a history of intravenous drug use (2 MSM, 2 

heterosexual males and 2 heterosexual females). Where information was available, STIs 

were diagnosed concurrently with PHI in 34 of 89 (34.3%) individuals. When reporting 

sexual practices, 61 out of the 90 MSM (68%) mentioned unprotected anal intercourse 

in the 3 months prior to diagnosis. No information was available regarding sexual 

practices in the period preceding that time point. The CD4 count was available for 101 

out of 103 patients and had an average value of 526 (range 195-1477) cells per ml. 

Median HIV viral plasma load was log 4.95 (range 2.03-6.00) copies per ml.

Table 4.1 Models of nucleotide substitutions for the Brighton datasets

Datasets
Global ML tree Cluster 1 Control 1 Control 2

Model selected: * GTR+I+G GTR+I GTR+I GTR+G

- InL = 12876.04 1416.01 1943.52 1878.7827

Substitution model:
[A-C] = 2.5800 1.0000 1.0000 1.0000
[A-G] = 9.9856 5.9039 8.4111 4.7650
[A-T] = 0.6978 1.0000 1.0000 0.2431
[C-G] = 1.3455 1.0000 1.0000 0.2431
[C-T] = 12.783 34.405 7.4351 4.7650
[G-T] = 1.0000 1.0000 1.0000 1.0000

Base frequencies:
freq A = 0.4158 0.3947 0.3970 0.3939
freqC = 0.1489 0.1551 0.1621 0.1583
freqG = 0.1939 0.2078 0.2042 0.2077
freqT = 0.2414 0.2424 0.2367 0.2402

Proportion o f
invariable sites: 0.4807 0.8942 0.6552 -

Gamma distribution
shape parameter: 1.0604 “ 0.1255

* estimated according to the Akaike Information criterion (AIC), as implemented in Modeltest 3.06

Abbreviations: ML, maximum likelihood; GTM, general time reversible model; F81, Felsenstein 81 
model; +1, with invariable sites; +G, with gamma distribution; -InL, log likelihood; [i-j]: rate of substi
tution between base i and base j; freq i, frequency o f base i in the dataset.
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A large majority of the strains were of subtype B (n=96), non-B isolates being 

distributed as follow: 2 subtype C, 1 subtype A, 2 subtype G, and 3 recombinant 

circulating forms (i.e. 1 CRF01_AE and 2 CRF02_AG). Finally, 13 of the 103 pol 

sequences used in the study (12.5%) harboured primary antiretroviral resistance- 

associated mutations. The epidemiological data across the study cohort are detailed in 

Table 4.2.

3.2. Phylogenetic analyses

From the topology of the ML phylogenetic tree presented in Fig 4.2, viruses 

from 35 of 103 individuals (34%) grouped into 15 distinct transmission chains. As 

detailed in Chapter III, section 3, the criteria used to select the putative transmission 

chains were arbitrary determined from the tree topology. Thresholds for the validation 

of true linkages were decided by plotting the bootstrap scores supporting each terminal 

cluster the within-average branch. Clusters were indicative of true linkages when 

fulfilling the following two conditions: 1) a bootstrap value equal or greater to 99%, and 

2) an average genetic distance (i.e. branch length) lower than 0.015 nucleotide 

substitutions per sites within the cluster (see Chapter IV).

3.3. Statistical Analyses

The 15 possible linkages comprised 1 cluster of 5 individuals, 2 of 3 and 12 of 2. 

All transmission chains involved male patients, 32 of which (97%) were MSM. For 

individuals within 11 out of 15 of the clusters, PHI was diagnosed within 12 months of 

each other, giving supporting evidence that transmission occurred during the primary 

phase of the infection. When comparing clinical data between linked (n=35) and 

unlinked (n=68) individuals, patients involved in transmission clusters were younger, 

with a median age o f 34 years compared to 37 years amongst unlinked subjects 

(p=0.05). As for the informed sexual practices, linked individuals reported a greater 

number of different sexual contacts within 3 months prior census, with an average of 3 

sexual partners against 2 partners amongst unlinked subjects (p=0.006), and were more 

likely to have engaged unprotected anal intercourses in the previous 3 months (87.5 vs. 

65.3%; /?=0.05). In addition, high rates of STIs at the time of PHI diagnosis were 

observed in both groups with a trend of higher prevalence in linked individuals (42.9%
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Table 4.2 Epidemiological and clinical data on the study cohort (n = 104)

Category n %

Sex o f  the patients: Male 100 96.2
Female 4 3.7

Age within the cohort: Median 36 n/a
Range (21-67) n/a

Risk group: Homosexual 91 87.5
Heterosexual 11 10.6

IDU 6 5.8
Other 4 3.8

Not known 2 1.9

Number o f  sexual activity within 3
months prior to diagnosis o f  PHI: 1 29 27.9

2 20 19.2
3 to 5 20 19.2

6 to 10 10 9.6
>10 12 11.5

Not known 13 12.9

Reported sexual intercourses within
3 months prior to diagnosis o f  PHI: Unprotected oral 62 59.6

Unprotected vaginal 8 7.7
Unprotected anal 61 58.7

Protected anal 7 6.7
Other 1 1.0

Not known 22 21.2

STD within 3 months prior to diagnosis
o f  PHI: None 56 53.8

1 23 22.1
2 7 6.7
3 4 3.8

Not known 14 13.5

Symptoms at time o f  infection: Yes 38 36.5
No 37 35.6

Not known 29 27.9

Clinical markers at diagnosis: CD4 count 526.00 n/a
CD4 % 28.50 n/a

viral load 4.92 n/a

Abbreviations :IDU,injecting drug user; PHI, primary HIV-1 infection; STD, sexualy transmitted disease.
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Fig. 4.2 Maximum likelihood tree representing the phylogenetic relationships between HIV-1 

po l sequences from the Brighton dataset. The tree was constructed according to the 

GTR+I+G model of evolution and rooted against a HIV-1 subtype K sequence (AJ249239K), 

extracted from the Los Alamos HIV database. Bootstrap values higher than 50% are indicated 

on the branches. Six pairs of follow-up sequences from the same individuals were used as 

controls of relatedness. These are indicated in blue, following a letter code, i.e. sample C1 

and C2 correspond to the first and second time point respectively sampled from patient C.
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vs. 27.9%; /t=0.13). Linked patients also had higher CD4 counts (median value of 612 

vs. 474 cells/mm3;p=0.005) and higher CD4 percentage (median value of 31% vs. 27%; 

p=0.003). Multivariate logistic regression analyses identified the CD4 percentage (odds 

ratio: 1.14, 95% confidence interval [1.04, 1.23], p=0.003) and having more than 5 

sexual partners (3.38 [1.13, 10.10], p=0.03) as the only independent predictors of 

belonging to a transmission network.

Finally, antiretroviral-associated resistance mutations were found in 6 of the 

linked individuals (17%), of which 2 (T215D mutations conferring resistance to reverse 

transcriptase inhibitors) were located in both sequences of a linkage pair (cluster 11). 

All transmission clusters involved subtype B viruses. Amongst the 15 transmission 

chains identified through the present methodology, 3 only (i.e. clusters 8, 14 and 15) 

were directly confirmed by data from the clinical notes, illustrating the difficulty to 

efficiently trace and document sexual networks. The full results of the statistical 

comparison are given in Table 4.3.

3.4. Recombination Analyses

The split graph and bootscanning plot for transmission cluster 1 are presented in 

Fig. 4.3A and B respectively. The split decomposition network exhibited clear internal 

reticulations, indicating conflicting phylogenetic signal across the sequences consistent 

with recombination. Thus the network topology seemed to indicate complex 

connections between the sequences involved in the cluster, particularly between 

sequences Ml 689, M l449 and Ml 289. The length of the internal branches, expressed as 

number of substitutions per site, tends to indicate a recent intragenetic recombination. 

The fit parameter for the network was 100%, indicating a remarkable representation of 

the data’s phylogenetic signal by the split graph. Evidence of potential recombination 

were also found in the bootscanning plot when comparing sequence M l689 to the other 

taxa of the cluster. The sequence clustered with sequence M l449 in the 5’ region of the 

gene, and with sequence M l289 in the 3’ end, with a clear-cut switch around nucleotide 

position 640. The presence of such a break point is traditionally regarded an evidence 

for recombination. Traditionally, the bootstrap threshold for the identification of 

recombination is set to 70% when performing bootscanning analyses (Salminen et al. 

1995). Despite a bootstrap score significantly higher for cluster M1689-M1289 

compared to the other clusters of the phylogeny, the bootstrap values for this cluster
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barely reached the cut-off value of 70%. By contrast, values for cluster M1689-M1289 

ranged from 75% to 85%. The mosaic profile of sequence M l689 was corroborated by 

the corrected genetic distance d  calculated between the three sequences up- and 

downstream the potential breakpoint (i.e. nucleotide position 640). Thus, sequence 

M1689 shared higher similarity with M1449 (d  = 0.00697 substitutions/sites) than with 

M1289 (d  = 0.01079 subs/sites) in the 5’end of the gene. Inversely, the sequence shared 

higher similarity with M1289 (d  = 0.00652 subs/sites) than with M1449 (d = 0.01100 

subs/sites) in the 3’end of the gene. Distances were corrected according to the general 

time reversible model of nucleotide substitution, with proportion of invariable sites (see 

Table 4.1). No discriminatory patterns were found when looking at drug resistance- 

related mutations held within cluster l ’s sequences, all of which harbored the same 

polymorphisms in both protease and RT genes.

In comparison, the patterns exhibited by control clusters 1 and 2 were more

Table 4.3 Comparision of epidemiological data between linked and unlinked patients (significant asso
ciations are indicated in bold)

Linked Unlinked p value*

Number of patients 35 68 -

Male gender 35 (100%) 64 (94.1%) 0.29

Age: median (range) 34 (23,54) 37 (21,67) 0.05

Number of contacts within 3 months
prior to PHI diagnosis: 3 (1,100) 2(1,36) 0.006

MSM risk: 32 (97%) 58 (85%) 0.09

Higher reported risk in 3 months prior to PHI diagnosis:

Unprotected oral intercourse 25 (78%) 36 (73.5%) 0.83
Unprotected anal intercourse 28 (87.5%) 32 (65.3%) 0.05
Protected anal intercourse 2 (6.3%) 5 (10.2%) 0.70

STIs within 3 months prior to PHI diagnosis:

Yes 15 (42.9%) 19 (27.9%) 0.33
No 18(51.4%) 37 (54.4%) 0.33
Not known 2 (5.7%) 12 (17.7%) 0.33

Clinical markers at diagnosis:

CD4 count: median (range) 612 (195,1477) 474 (196,1259) 0.005
CD4%: median (range) 31 (12,40) 27 (7,42) 0.003
Viral load: median (range) 4.97 (2.03,6.00) 4.94 (2.30, 6.00) 0.70

Abbreviations: PHI, primaiy HIV-1 infection; MSM,men having sex withmen; STI, sexually transmitted disease
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ambiguous, as shown in Fig. 4.4 and 4.5 respectively. Both split graphs presented minor 

reticulations at the centre of a star-like topology, with terminal branches significantly 

longer than the internal splits. These patterns are more likely to be an artefact induced 

by the conserved nature of the data than an evidence for true recombination. The 

reticulations seen in the split-trees could be, for instance, the result of insufficient 

correction for multiple hits, or insufficient mutation patterns. Neither precise 

breakpoints, nor bootstrap value above the traditional cut-off limit of 70% was apparent 

within the bootscan plots, reinforcing the idea that the reticulations at the centre of the 

networks result from intrinsic phylogenetic ‘noise’ rather than from true mosaic 

patterns.

4. Discussion

The present analysis aimed to describe via molecular and epidemiological means 

HIV-1 primary infections amongst men having sex with men in Brighton, UK, as well 

as to characterise significant determinants of transmission at early stages of the disease. 

The relatedness of the viruses infecting 103 patients attending the Brighton clinics was 

reconstructed by phylogenetic means on the basis of pol gene sequences and interpreted 

under the light of epidemiological data.

With 35 primary infected individuals involved in transmission chains (34% of 

the cohort), the present study supports the assertion that primary HIV-1 infections may 

be associated with increased risk of onward transmission. There was a significant 

positive association between early transmission and young age, high rate of unprotected 

anal intercourses and high sexual partner change. The large representation of reported 

unprotected (mainly anal) intercourses and high partner changes in the linked cohort 

corroborates epidemiological reports about the recent trends in sexual behaviours in the 

UK, where an increase in high-risk sexual practice has been registered (Johnson et al. 

2001). Nonetheless, only 31 (64.6%) of the unlinked patients reported unprotected anal 

intercourse, possibly reflecting the lack of information prior to 3 months prior 

diagnosis. There was a trend towards higher rates of STIs amongst linked individuals on 

a background of extremely high STI rates in the study population. The rising incidence 

of sexually transmitted diseases currently observed is almost certainly a consequence of
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the changing sexual attitudes in modem Britain, strongly supporting the argument for a 

improved STI surveillance, particularly of high-risk groups. In terms of disease 

progression markers, CD4 count was positively correlated with transmission, while 

plasma viral load failed to be an efficient indicator for transmissibility. This latter point 

could be explained by the discordance between blood and seminal VL, which appears to 

be a more consistent correlate of infectiousness in men (Pilcher et al. 2004b). The initial 

CD4+ cell count recorded in the cohort (i.e. 526 copies/pl) was lower than expected in 

acutely infected individuals, in whom CD4+ cells have not been strongly depleted yet 

(Pantaleo et al. 1993). This value is, however, consistent with previous measurements in 

similar studies (Weiss et al. 1992; Fidler et al. 2001; Deschamps et al. 2005). When 

looking at antiretroviral resistance motifs, one cluster out of the 15 characterised 

exhibited transmitted drug resistance-related mutations. Neither of the individuals 

involved in the transmission pair were dmg experienced but still harboured the same 

resistance mutations, illustrating the potential for secondary spread of resistance strains, 

as previously reported (Yerly et al. 2001b; Taylor et al. 2003).

Despite the high rate of potential transmission exhibited within the tree (i.e. 34% 

of the sequences involved in potential transmission), the present results require to be 

seen in the light of limitations induced by data sampling. In fact, the involvement of two 

or more subjects in a transmission chain does not exclude the possibility of a common 

source of infection, rather than transmission within clusters. Individuals currently 

involved in transmissions may have been infected through a third party who has not 

been sampled, and yet harbour viruses with remarkably high genetic similarity. In that 

case, whether or not transmission occurred within the primary phase of the transmitter’s 

infection is difficult to assess. Conversely, a fraction of the primary infections 

represented in the tree may have come from epidemiologically unlinked transmitters. 

That would result in no obvious clustering patterns within the tree, irrespective of the 

age of the transmitting infection, and the extent of linkage would be under-estimated. 

Moreover, identifying sexual partnership in a homogeneous population sub-group such 

as MSM appeared to be problematic, limiting the recognition of potential non-sampled 

transmitters. The surprisingly small number of linkages confirmed by clinical notes (3 

out of the 15 clusters identified) emphasizes the difficulty in obtaining a reliable sexual 

history from the patients, aggravated by high rates of anonymous sexual partners.

The above findings support the view that as a disease stage, primary HIV-1 

infection represents a major public health threat, and suggest that a substantial number
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of newly acquired infections may result from a limited pool of highly infectious 

sexually active individuals, unaware of their infectious condition. This is aspect of the 

epidemic prevention programs would benefit taking into account. The results presented 

in this chapter highlight the need to provide efforts in identification, counseling and 

possibly early treatment of individuals with primary HIV-1 infection. Indeed, a 

significant proportion of PHI remains undiagnosed in the community and an estimated 

31% of the HIV-1 infected adults in the UK in 2001 were unaware of their infection 

(Brown et al. 2004). So far, HIV prevention programs have been heavily focused on 

protecting susceptible individuals (Pilcher et al. 2004a). However, reducing 

infectiousness of HIV-positive subjects may be an effective strategy. An efficient 

diagnosis of individuals during PHI, timely contact tracing, management of STIs and 

possibly treatment with antiretrovirals may all be useful methods not only to improve 

individual patient care but also to interrupt chains of transmission during this unique 

and possibly crucial stage of HIV infection.

The present analysis identified unprotected anal intercourse as a behaviour risk 

positively correlated with HIV transmission at the early stages of the disease. 

Preliminary studies suggest that high-risk sexual practices increase the incidence of HIV 

superinfection, and therefore the probability for recombination to occur. Despite its 

obvious significance for public health, intrasubtype recombination has been poorly 

addressed in the literature to date, probably on account of the practical difficulty of 

identifying such events. Evidence of potential recombination between pol sequences 

was found in our dataset using two distinct methodologies, despite a weak phylogenetic 

signal. By comparison, for split decomposition graphs constructed on control clusters 

(i.e sets of 5 randomly selected sequences from the dataset), no substantial evidence for 

recombination was found, despite a negligible reticulation at the root of the tree. This 

probable ‘background noise’ induced by the high degree of conservation of the pol gene 

illustrates the obstacles encountered when conducting such analyses. The lack of 

polymorphism across the sequences, and the de facto weakness of the phylogenetic 

signal it induces, may represent the main limitation of the present analysis. Not only is 

the HIV-1 pol gene extremely conserved, but variations within a subtype might also be 

insufficient to capture evidence of recombination without ambiguity. Furthermore, an 

accumulation of point mutations, such as drug resistance-related mutations, may have 

occurred after the recombination, masking the genetic specificity of the two parental 

elements of the mosaic sequence. Finally, the number of individuals involved in the
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potential transmission chains may be insufficient to really characterise recombination. 

In conclusion, the overall degree of recombination occurring amongst transmission 

chains is likely to be underestimated, and inversely the support for recombination found 

in the sequence M l689 must be considered with caution, as it may be artificially 

induced by the quality of the molecular data, and the restricted sensitivity of existing 

tools.

Intrasubtype recombination raise serious concerns regarding the monitoring of 

disease progression, future therapeutic options or even vaccine design. Superinfection 

occurring in antiretroviral-experienced individuals could have serious consequences for 

subsequent treatment. Thus, recombination between 2 or more HIV virions with 

differing drug resistance profiles could for instance result in a multi-drug resistant 

recombinant form. The practical difficulties encountered when investigating 

intrasubtype recombination, which leads to a critical lack of data on the topic, are likely 

to have a perverse effect a global underestimation of the true rate of recombination in 

HIV-1 and its real impact on worldwide public health.
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Fig 4.3. (a) Splits graph for the pol gene sequences involved in transmission 

cluster 1. Branch lengths are expressed in nucleotide substitutions per site (b) 

Bootscanning analysis of sequences involved in cluster 1. Sequence M1689 

was used a query sequence. Bootscan was preformed with a sliding window of 

300 nucleotides (incremented by 10 nucleotides per step) and 1000 bootstrap 

replicates. Bootscan threshold for potential recombination was set to 70%, as 

indicated by the dashed horizontal line.
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Fig 4.4. (a) Splits graph for the pol gene sequences randomly selected as control 

cluster 1. Branch lengths are expressed in nucleotide substitutions per site (b) 

Bootscanning analysis of sequences used for control cluster 1. Sequence M0185 

was used a query sequence. Bootscan was preformed with a sliding window of 300 

nucleotides (incremented by 10 nucleotides per step) and 1000 bootstrap replicates. 

Bootscan threshold for potential recombination was set to 70%, as indicated by the 

dashed horizontal line.
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Fig 4.5. (a) Splits graph illustrating the genetic relationship between the pol 

gene sequences randomly selected as control cluster 2. Branch lengths are 

expressed in nucleotide substitutions per site (b) Bootscanning analysis of 

sequences used for control cluster 2. Sequence M262 was used a query 

sequence. Bootscan was preformed with a sliding window of 300 nucleotides 

(incremented by 10 nucleotides per step) and 1000 bootstrap replicates. 

Bootscan threshold for potential recombination was set to 70%, as indicated by 

the dashed horizontal line.
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c h a p t e r  v  

Epidemic History and Dynamics of HIV-1 

Subtype B in the United Kingdom

1. Introduction

Two decades after the first identification of AIDS in the United Kingdom, 

approximately 53 000 adults aged over 15 are though to live with HIV-1 in Britain, of 

whom 27% are unaware o f their infection (Health protection Agency, 

http'Jlwww.hpa.org.uk/). Amongst all the different clades characterised within the main 

group of HIV-1 (Robertson et al. 2000), subtype B remains the most prevalent within 

the UK, mainly transmitted through sex between men (Parry et al. 2001). Indeed, an 

estimated 75% of the total number of infections in Britain belong to clade B, despite a 

recent increase in heterosexually acquired infections predominantly originating in sub- 

Saharan Africa (see Fig. 1.6). This prohibitive HIV-1 prevalence, coupled with continual 

high rate of new infections recorded year after year for the past decade, makes men 

having sex with men (MSM) the acquisition group at highest risk in the UK (Murphy et 

al. 2004). However, very little is known about how subtype B successfully invaded the 

British population, and more importantly, how the virus has subsequently spread and 

evolved.

Phylogenies reconstructed from sampled viral gene sequences are known to hold 

valuable information about the past structure of a population and can therefore be used
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to understand the course of a viral epidemic over time (Holmes et al. 1995; Nee et al. 

1995). Hence the history of a pathogen population can be inferred from the genealogy 

of randomly sampled strains (as represented by a phylogenetic tree) using the coalescent 

theory o f population genetics (see Chapter II, section 4.2). By this means, one can 

reconstruct the changing number of infected individuals through time and estimate the 

demographic parameters that shape the epidemic, such as the rate of growth in the 

number of infections and the date of introduction of a lineage into a host population 

(Kuhner et al. 1995). While the coalescent framework assumes neutral evolution, the 

HIV-1 p o l gene is known to be under strong selection, both positive and negative 

(Richman et al. 1994; Rouzine and Coffin. 1999; Frost et al. 2000; Leal et al. 2004). 

However, sites under strong selective pressure only represent a small proportion of the 

sequence compared to neutral sites, and previous demographic analyses yielded similar 

demographic estimates when considering different HIV-1 genes, regardless of the 

variable selective pressures they are subject to (Lemey et al. 2003). The coalescent 

recently established itself as a state-of-the-art framework for molecular epidemiology 

and has previously been applied to the investigation of pathogens such as Plasmodium 

falciparum (Joy et al. 2003), hepatitis C virus (Pybus et al. 2003) or HIV type 1 and 2 

(Holmes et al. 1995; Grassly et al. 1999; Yusim et al. 2001; Lemey et al. 2003; Robbins 

et al. 2003) providing new insights into those epidemics.

With the introduction of the routine generation of HIV-1 gene sequences for 

drug-resistance monitoring, molecular data on HIV-1 within the UK has become 

increasingly available, and amenable to modelling techniques for the study of virus 

evolution. Hitherto, the genetic variability of the HIV-1 env or gag  genes has made 

these regions attractive for evolutionary studies, compared with genes under stronger 

evolutionary constraints such as pol. However, it has been recently demonstrated that 

the p o l gene encodes sufficient variation to conduct phylogenetic analyses and 

reconstruct transmission events, despite the potential bias conferred by emergence of 

drug resistance-associated mutations (Hue et al. 2004).

In the present chapter, the history of the HIV-1 subtype B epidemic in the UK 

was reconstructed from the demographic information contained within a large dataset of 

contemporary pol gene sequences. The complexity of the epidemic within a defined risk 

group (i.e. men having sex with men) was explored, dating the introduction of 

epidemiologically significant lineages and estimating their rates of spread. The results
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were interpreted in the light of epidemiological data so as to understand the impact of 

the variation of the viral populations over time on public heath.

The work presented in this chapter was published in Hue et al. 2005.

2. Methods

2.1. Study Population

A total of 1645 HIV-1 subtype B pol gene sequences from the United Kingdom 

(UK) were used for the study. These were generated from plasma samples collected 

from over the UK by the Health Protection Agency’s Antiviral Susceptibility Reference 

Unit, Birmingham, UK, as described in Chapter II. The samples were submitted for 

routine genotypic drug resistance testing between 1999 and 2003 and included samples 

from acute infections, chronic, drug naive infections and from patients at the time of 

therapy failure. The sequences were 952 bp long, including the full-length protease gene 

as well as the first 218 codons of the reverse transcriptase gene. Around 85% of these 

sequences were from men who had sex with men (MSM).

2.2. Phylogenetic Reconstruction

According to surveillance data, only 1 out of 3 newly diagnosed HIV infections 

in the UK has been acquired within the country (Brown et al. 2004). In the light of the 

continuous mixing of HIV-1 strains worldwide, clusters of sequences deriving from 

single independent introductions of HIV within the British population had to be 

identified by phylogenetic means in order to further study within-UK transmission. In 

other words, in order to investigate the modality of spread of the epidemic in Britain, 

the extant of sporadically introduced sequences from abroad had to be assessed and 

these excluded from the analysis. An initial neighbor-joining (NJ) tree was constructed 

with 1645 UK and 1784 worldwide subtype B p o l sequences, according to the 

Hasegawa-Kishino-Yano model of nucleotide substitution, with gamma distribution of 

rate heterogeneity. Due to the size of the alignment (n = 3429), the model was selected 

on the basis of a subset of 100 randomly selected sequences from it, using the software
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Modeltest. The size of the dataset also precluded the application of a more complex 

model for computational reasons. The evolutionary parameters used for the computation 

are detailed in Table 5.1. The non-UK sequences used in the study were extracted from 

public resources, such as GenBank (http://www.ncbi.nlm.nih.gov/) and the Los Alamos 

HIV Sequence Database (http://www.hiv.lanl.gov/). Only subtype B pol sequences for 

which the date and country of sampling are documented were used.

After identification of UK transmission clusters, sequences of non-UK origin 

were stripped out and the phylogenies of the clusters were re-estimated with the 

program Paup*, using a maximum likelihood approach (Felsenstein. 1973). The trees 

were reconstructed according to the General Time Reversible model of nucleotide 

substitution (Yang. 1994), with proportion of invariable sites and substitution rate 

heterogeneity, as estimated with the software Modeltest (Posada and Crandall. 1998). 

The detail of the selected models of evolution is given in Table 5.1. In order to give an 

evolutionary direction to the lineages, each tree was rooted against a subtype D p o l 

sequence from our dataset. The robustness of the ML topologies was statistically 

assessed for each ML trees by bootstrapping, with 1000 rounds of replication. The 

sequences involved in transmission clusters have been deposited into GenBank under 

the accession numbers AY669865 to AY670087.

2.3. Estimation of HIV-1 Subtype B pol Gene Rate of Evolution

Distances between two nodes of a phylogenetic tree are traditionally measured 

in units of substitutions per sites. Besides, assuming a constant molecular clock, the 

expected difference in the number of substitutions accumulated along to homologous 

lineages is expressed as 6 = p/, where p and t stand for the specific rate of nucleotide 

substitution (i.e. the number of substitutions per site per unit of time) and the sampling 

interval respectively. Hence, in order to scale the transmission trees into calendar years, 

the evolutionary rate of the HIV-1 subtype B pol gene had to be estimated and applied 

to the branch length. When inferring rates of evolution, the accuracy of the estimation is 

highly dependant on the time window spanned by the sampled sequences. Preliminary 

analyses determined that our UK sequence database did not hold enough temporal 

signal (i.e. 5 years of sampling) for the estimation of p. The evolution rate was therefore 

inferred from an independent dataset of 106 subtype B pol gene sequences and fixed
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Table 5.1 Models of nucleotide substitutions applied to the global tree and transmission clusters

Global tree Transmission clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Model selected:* HKY+G GTR+G GTR+I+G GTR+I+G GTR+I+G GTR+I+G GTR+I+G

- InL = 243.23 1416.01 7045.27 4567.2646 4041.1064 3911.9917 4223.3477

Substitution model:
[A-C] = 1.0000 1.0000 3.1795 2.2572 1.0000 2.8755 2.333
[A-G] = 0.8460 5.9039 9.8343 8.0336 4.6063 8.3961 11.6698
[A-T] = 1.0000 1.0000 0.9817 0.6271 0.3676 1.1073 0.8805
[C-G] = 1.0000 1.0000 1.4745 0.5368 0.3676 0.9935 1.3884
[C-T] = 0.163 34.405 9.8343 8.0336 4.6063 8.3961 11.6698
[G-T] = 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Base frequencies:
freqA = 0.3808 0.3947 0.3821 0.395 0.4002 0.3884 0.3974
freqC = 0.1784 0.1551 0.1503 0.1564 0.158 0.1615 0.1559
freqG = 0.1539 0.2078 0.2178 0.2055 0.2107 0.2099 0.2079
freqT = 0.2869 0.2424 0.2498 0.2432 0.2312 0.2402 0.2388

Proportion o f
invariable sites: - 0.8942 0.4201 0.4853 0.4752 0.3924 0.5134

Gamma distribution
shape parameter: 1.6368 - 0.6779 0.8816 0.7161 0.5843 0.7041

* estimated according to the Akaike Information criterion (AIC), as implemented in Modeltest 3.06

Abbreviations: HKY, Hasegawa-Kishino-Yano model; GTM , general time reversible model; +1, with invariable sites; +G, with gamma distribution; -InL, log likelihood; [i-j]: rate o f  substitution 
between base i and base j;  freq i, frequency o f  base i in the dataset.

107



Chapter V

as a prior probability density for Bayesian demographic analyses. The sequences used 

for this purpose were generated between 1983 and 2000 from men having sex with men 

(n = 44) and injecting drug users (IDUs; n = 62) participating in cohort studies at the 

Academic Medical Centre of Amsterdam, as shown in Fig. 5.1a (Lukashov and 

Goudsmit. 2002). The sequences were 804 bp long, spanning the entire protease gene 

(294 bp) and the first 510 bp of the RT gene. A total of 89% of the sequences harboured 

drug resistance mutations (see Fig. 5.1b). The evolution rate was estimated by Bayesian 

Markov Chain Monte Carlo inference using the program Beast (Drummond et al. 2002; 

Drummond and Rambaut. 2003), for a MCMC chain length of 10,000,000 states with 

sampling every 100th generation. GenBank accession numbers of these sequences are 

available in the original publication (Lukashov and Goudsmit. 2002).

2.4. Demographic History and Population Dynamics

The investigation of the epidemic history of the six UK clusters involved two 

steps. Firstly, five demographic models, each of which illustrate effective numbers of 

infections through time (see Fig. 2.11), were evaluated to select the model that best 

describes the epidemiological history of the UK transmission clusters. These models 

were compared by likelihood ratio test from likelihoods calculated by the program 

Genie (Pybus and Rambaut. 2002). Constant growth, exponential growth, logistic 

growth (exponential growth followed by constant population size), expansion growth 

(constant population size followed by exponential growth), and ‘con-exp-con’ growth 

(constant growth periods flanking an exponential growth phase) models were tested. 

The detail of these models is available in Pybus & Rambaut, 2002. Since Genie requires 

an input tree calculated under the assumption of a constant molecular clock, the 

program TipDate (Rambaut. 2000) was used to rescale each transmission tree under the 

Single Rate Dated Tip (SRDT) model. This model of nucleotide substitution assumes a 

constant rate o f evolution across branches but relaxes the assumption of 

contemporaneous tips (Rambaut. 2000).

Secondly, the demographic and evolutionary parameters of the epidemic, with 

their confidence intervals, were estimated by Bayesian MCMC inference for a chain 

length of 10,000,000 states with sampling every 100th generation, using the program 

Beast. The estimated parameters include the date of the most recent common ancestor 

(MCRA) of the cluster, the effective number of infections at the most recent time of

108



Chapter V

sampling Ne (i.e. the effective number of prevalent infections), and the growth rate 

during the exponential phase r. The Bayesian MCMC results were used to calculate a 

marginal posterior distribution o f the demographic model for each cluster, i.e. a 

graphical representation of the effective number of infections through time, generated 

using the program Tracer (http://evolve.zoo.ox.ac.uk/tracer/). An overview of the 

methodology used in this chapter is given in Fig. 5.2.
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Fig. 5.1 Description of the Amsterdam cohort (n = 44). (a) Relative proportion 
of sequences collected from men having sex with men (MSM) and from 
intravenous drug users (IDV) in the cohort, (b) Prevalence of resistance 
associated mutations (RAM) compared to wild type (WT) in the cohort.
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- ML
Beast tree

Rate of 
substitution TipDate

SRDT
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Sequence
Alignment

Demographic 
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History

Fig. 5.2. Summary of the methodology used for the investigation of the spread of 6 
HIV-1 lineages amongst MSM in the UK. Maximum likelihood tree topologies were 
rescaled in calendar year units with TipDate, according to a specific evolutionary 
rate estimated with Beast. The optimal demographic model was selected for each 
cluster on the basis on the rescaled topologies with the software Genie, and used 
for the estimation of the evolutionary and demographic parameters shaping the 
epidemic history of the strains, using the software Beast.
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3. Results

3.1. Introduction of HIV-1 Subtype B in the UK

The initial NJ phylogenetic tree constructed from 3429 UK and worldwide subtype B 

pol sequences is too large to display here, but a schematic representation of the 

phylogeny is presented in Fig. 5.3. Three clustering patterns were 

distinguished:sporadic UK sequences, non-UK transmission clusters, and UK 

transmission clusters. Sporadic UK sequences (i.e. those that do not group with other 

UK lineages in the tree) probably represent single, independent introductions of the 

virus without subsequent spread. Transmission clusters were identified as clades of 

sequences from the same geographical area that descend from a common ancestor, 

indicating spread o f the virus in that region. UK transmission clusters were 

differentiated from non-UK clusters on the basis of the size of the clade and the 

proportion of UK sequences within it: UK transmission clusters were defined as those 

clades with more than 25 sequences, 90% or more of which were of UK origin (Fig. 

5.4). The relative arbitrariness of these criteria was based on the authors’ experiences in 

coalescent inference. Empirical data showed that more than 20 sequences are required 

to reliably infer demographic trends (data not shown). Moreover, a bootstrap threshold 

of 90% was chosen to provide a manageable number of transmission clusters to study, 

together with undeniable confidence on the UK origin of these. We note that such 

methodology probably underestimates the number of transmission chains identified.

Most of the UK sequences represented sporadic lineages, scattered among 

sequences from other geographical areas, suggesting much geographical mixing of 

subtype B strains on a worldwide scale. Nonetheless, six UK transmission clusters were 

identified, involving 45, 61, 28, 28, 26 and 33 sequences. These transmission chains 

were distinct, indicating that at least six independent introductions of subtype B HIV-1 

have succeeded in sustaining onward transmission within the UK over time, and until 

the present. Each UK transmission chain contained an array of sequences of diverse 

origin within Britain and no significant regional pattern was observed within a given 

UK cluster. The robustness of the clusters within the overall tree could not be 

statistically evaluated due to the huge size of the dataset. Nonetheless, the six UK 

lineages showed statistical robustness when compared to subsets of worldwide 

sequences for bootstrap analyses (neighbor-joining search with 1000 replicates
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implemented in the software Paup*; data not shown). To further explore the history of 

the six successful viral lineages, sequences of non-UK origin were removed from the 

six clusters and the phylogenetic histories of the UK sequences were re-estimated using 

a maximum likelihood approach. The ML trees are displayed in Fig. 5.5.

UK Transmission cluster

Fig. 5.3. Schematic representation of the phylogeny generated from 3429 UK and 
worldwide HIV-1 subtype B pol sequences. Red circles and yellow squares represent 
UK and non-UK sequences respectively. Three branching patterns were 
distinguished: (a) non-UK transmission clusters, (b) sporadic UK infections, and (c) 
UK transmission clusters. Transmission clusters are sequences from a particular 
location that descend from a common ancestor, indicating a successful spread of the 
virus. UK transmission clusters are defined as clades that include at least 25 
sequences, 90% or more of which are of UK origin.

3.2. Estimation of HIV-1 Subtype B pol Gene Rate of Evolution

The evolution rate of the subtype B HIV-1 pol gene was calculated using an 

independent dataset of 106 sequences, sampled between 1983 and 2000 in Amsterdam 

(Lukashov and Goudsmit. 2002). Using a Bayesian MCMC framework, the average rate
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Fig. 5.4. Proportion of UK sequences per cluster within the global 
tree. UK transmission clusters were defined as those clades with 
more than 25 sequences, 90% or more of which were of UK origin, 
as indicated by the red dashed lines. The 6 UK-born lineages 
identified in this manner are labelled by red dots.

was estimated to be 2.55x10'3 substitutions per nucleotide site per year (95% confidence 

intervals: 1.74x10*3, 3.51xl0'3). The rate estimates for each codon position of the gene 

and values’ posterior distributions are given in Table 5.2 and Fig. 5.6 respectively. In 

comparison, previous attempts for estimating HIV-1 rate of evolution have typically 

relied on partial env or gag gene sequences and have ranged from 2.4 x 10‘3 to 6.7 x 10'3 

subst./site/year (see Table 5.3). Our estimate is consistent with the order o f magnitude 

of 10'3 expected for an HIV-1 gene. The ML trees o f the 6 UK clusters were thus 

rescaled on the assumption of a molecular clock with a rate of 0.0025 subst./site/year, 

and their topologies on a timescale of years are shown in Fig. 5.7.

Table 5.2. Estimated rates of evolution of the HIV-1 subtype B pol gene at the first, second and 
third codon positions, in substitution per site per year.

Mean Standard
deviation

95% HPD * 
lower

95% HPD 
upper

1 st codon position 2.28 x 1 O'3 1.46 x 10'3 1.42 x 10'3 3.29x10°
2d codon position 1.43 x 10’3 8.25 x KT6 8.91 x KT4 2.00 x 10°
3d codon position 3.93 x 10° 2.64 x 10° 2.90 x 1 O'3 5.24 x 10°

Overall rate 2.55 x 10'3 4.97 x KT4 1.74 x 10’3 3.51 x 10°

* Higher posterior density
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Fig. 5.5. Maximum likelihood trees for the 6 UK transmission clusters. The trees were 
constructed according to the GTR+I+G model of evolution and rooted against a 
subtype D HIV-1 pol sequences from the ASRU database, using the software Paup*. 
Bootstrap values above 50 are indicated on the branches.

114



Chapter V

3.3. Demographic History and Parameter Estimation

The likelihoods of the demographic models compared for the study are 

presented in Table 5.4. For each of the six clusters, a model of logistic population 

growth best fitted the demographic information contained in the tree topologies. Under 

the logistic model, the effective number o f infections Ne grows exponentially at rate r 

from time ta (time of the most recent common ancestor of the cluster) then decreases in 

growth rate towards the present. A schematic representation of the logistic model is 

given in Fig.5.8. By convention, time scale is represented with the present at the origin, 

going back into the past along the X-axis from left to right. One should bear in mind 

that Ne reflects the number of infections contributing to new infections, rather than the 

total number of prevalent infections within the transmission cluster.

14000

Codon position 1 

Codon position 2 

Codon position 312000 -
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GJ3CT
2u; 6000 -

4 0 0 0 -

2000

0.0050 0.0060 0 .00700.0000 0.0010 0.0020 0.0030 0.0040

Substitution Rate (subst./site/year)

Fig. 5.6. Bayesian posterior distributions of values for the subtype B HIV-1 pol 
gene’s substitution rate at each codon positions. The rates were estimated by 
Bayesian MCMC inference for a MCMC chain length of 10,000,000 states and 
are expressed as the number of nucleotide substitutions per site per calendar 
years.
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Table 5J. Estimated rates of evolution for HIV genes compared to other human RNA viruses

Organism Dataset (Origin) Locus n * pb 
(xl0‘3)b

95% Cl 
(x KT3)

Method used Reference

HIV-1 Subtype B (UK) partial pol gene 44 2.5 1.74,3.51 Bayesian MCMC inference Hue et al. (2005)

HIV-1 Subtype B (US) entire env 66 4.7 n/a Maximum likelihood estimation Robbins et al. (2003)
HIV-1 (international) partial gag-env 24 2.5 1.1,4.0 Maximum likelihood estimation Jenkins et al. (2002)
HIV-1 Group M (international) entire env 159 2.4 1.8,2.8 Root-to-tip linear regression Korber et al. (2000)
HIV-1 Group M (international) entire gag 66 1.9 0.9,2.7 Root-to-tip linear regression Korberetal. (2000)
HIV-1 Subtype B ( Sweden) partial env 13 6.7 4.6, 8.8 Pairwise distance linear regression Leitner & Albert (1999)
HIV-1 Subtype B ( Sweden) partial gag 13 2.7 2.2, 3.2 Pairwise distance linear regression Leitner & Albert (1999)

SARS virus (international) full length genome 6 1.9 n/a Least square method Luetal. (2004)
HIV-2 Subtype A (Guinea-Bissau) partial gag-env 33 1.3 0.9,1.8 Maximum likelihood estimation Lemeyetal. (2003)

DENV-4 (international) envelope gene 20 0.6 0.5, 0.9 Maximum likelihood estimation Twiddyetal. (2003)
DENV-4 Serotype 4 (international) envelope gene 16 0.8 0.6, 1.0 Bayesian MCMC inference Drummond et al. (2003)

HCV Subtype 4 (Egypt) partial E l gene 68 0.8 0.7,0.9 Bayesian MCMC inference Pybusetal. (2003)
HFLUV-A Type A (international) entire HA gene 5 1.2 0.5,2.1 Root-to-tip linear regression Suzuki & Nei (2002)
HFLUV-A Type A (international) entire VP gene 24 1.8 n/a Maximum likelihood estimation Jenkins et al. (2002)
Ebola virus

a ____ i____ .

(international) partial GP gene 9 3.6 n/a Root-to-tip linear regression Suzuki Y. etal. (1997)

a number of sequences used
brate of evolution, in substitution/site/year

Abbreviations: Cl, confidence intervals; HIV, Human immunodeficiency virus; SARS, severe acute respiratory syndrome; DENV, Dengue virus; HCV, Hepatitis 
C virus; HFLUVhuman influenza virus; E, envelope; HA, hemagglutinine; NP,neuraminidase; GP, glycoprotein; MCMC, Markov Chain Monte Carlo.
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Fig. 5.7. Phylogenetic trees of the six UK transmission clusters and their 
corresponding estimated epidemic histories (all shown on the same timescale). The 
trees represent the ancestral relationships of sequences belonging to each cluster, 
(a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4, (e) cluster 5, (f) cluster 6. The 
demographic histories were estimated by Bayesian MCMC inference using a model 
of logistic growth and show change in the effective number of infections through 
time (in calendar years). The red line represents the median estimate of the 
effective number of infections, whereas the yellow shaded area delimitates the 95% 
confidence limits of the estimate.

117



Chapter V

Table 5.4. Likelihoods of 5 demographic models for the 6 UK transmission clusters

Cluster Demographic model
Constant
growth

Exponential
growth

Logistic
growth

Expansion
growth

Con-ex-con
growth

1 -46.4512 -4.39049 8.60311 -14.5231 -46.1573
2 -28.4581 -0.511559 12.5016 -1.61864 -30.1872
3 -21.7921 -16.9424 -9.85277 -22.1507 -22.6473
4 -32.7492 -16.2879 -6.99797 -18.1014 -35.1909
5 -24.4751 -25.0356 -22.0138 -26.9596 -26.9596
6 -82.3527 -52.3998 -52.2074 -53.6396 -53.6299

Log likelihoods estimated with the program Genie v3.0 (Pybus & Rambaut, 2002)

The demographic parameters that determine the shape of the logistic growth 

curve were estimated by Bayesian MCMC inference (Table 5.5) and the epidemic 

histories of the six clusters were reconstructed, with appropriate confidence limits (see 

Fig. 5.7). Our estimates suggest that three of the six genealogies originated in the early 

1980s (1981 for cluster 2, 1983 for clusters 1 and 3), whereas the remaining clusters 

were introduced later in the same decade (1986 for clusters 4 and 6, 1987 for cluster 5). 

While the initial exponential growth phase clearly ended in the early 1990s for clusters 

1 to 5 (Fig. 5.7a to 5.7e), the growth rate decrease is more tentative for cluster 6 and is 

only apparent very recently (see Fig. 5.7f), such that cluster 6 appears to also fit a model 

of exponential growth. To explore this issue further, the epidemic doubling time of each 

transmission cluster at the most recent sampling time, i.e. year 2003, was estimated. The 

doubling time at the present dt was calculated according to the formula:

dt = In (2) / r

where r stands for the rate of growth of the population. The growth rate at the present 

r(to) was calculated as a function of dt and tso, the time in the past when the population 

was half of its size):

r(t0) = (In (2)/ d t)  x ( l -  (1/(1+C)))

where:
C = 1 /  (exp( (ln(2) x t50)  /  dt ) - 2 )
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These formulas were adapted from Pybus et al., 2001. The current doubling time was 

more likely to be <20 years (equal to an exponential growth rate >0.035 years'1) for 

cluster 6 in comparison to the other clusters, as shown in Table 5.6. In marked contrast, 

the exponential growth rates at the time of initiation of each cluster (r) were very 

similar, with an average of 0.80 years'1. Finally, the current effective number of 

infections Ne varied from cluster to cluster, ranging from 94 (cluster 5) to 1350 (cluster 

6) effective infections.
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Fig. 5.8. Schematic representation of the logistic model of population 
growth. According to this model, the number of infections grows 
exponentially at rate r  from time ta (time of the most recent common 
ancestor of the sampled sequences). The growth rate slows as time 
moves towards the present, such that Ne represents the effective number 
of infections at the present. Ne can be thought of as the number of 
infections contributing to new infections, rather than the total number of 
prevalent infections within the cluster.
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Table 5.5. Parametric estimates (with 95% confidence intervals) under the logistic growth demographic model

Cluster Ne 4 r  c Origin of the tree (yrs)

Cluster 1 
Cluster 2 
Cluster 3 
Cluster 4 
Cluster 5 
Cluster 6

2.55 xlO’3 (0.0017,0.0035)
2.55 x 10‘3 (0.0017,0.0035)
2.55 x 10'3 (0.0017,0.0035)
2.55 x 10’3 (0.0017,0.0035) 
2.55x1 O’3 (0.0017,0.0035)
2.55 xl0‘3 (0.0017,0.0035)

493(201, 833) 
386(190,655) 
98(42, 171)
250 (88,483)
94 (36, 85) 
1350(109, 5489)

1.08 (0.66,2.56) 
0.47 (0.30, 0.95) 
0.50 (0.19,4.62) 
1.38(0.63,2.50) 
0.68 (0.35,2.10) 
0.67 (0.37,3.85)

1983 (1978, 1988) 
1981 (1976,1987) 
1983 (1977,1988) 
1986(1982,1991) 
1987(1983,1991) 
1986(1981, 1991)

US cluster*1 6.7 x 10'3 (n/a, n/a) 4830 (1995, 26 750) 0.834 (0.72,0.945) 1968(1966,1970)

a Rate of evolution, in substitutions per site per year, independently estimated and fixed as a prior density probability 
b Effective number of infections 
c Rate of exponential growth, in years '' 
d from Robbins et al. , 2003

4. Discussion

The history of the HIV-1 subtype B epidemic within the UK was explored 

through the demographic information contained within contemporary molecular data. A 

timescale for the spread of strains presently circulating in the UK was estimated, and 

compared to epidemiological data so as to understand causes of their variation over 

time.

The present estimates suggest that subtype B viruses currently circulating within 

the UK are comprised of at least six established chains of transmission, introduced in 

the early and mid 1980’s. This demonstrates the existence of distinct, possibly non

overlapping sexual networks within the predominant MSM risk group and argues 

against the hypothesis that one initial entry of HIV-1 was responsible for the spread of 

the subtype B epidemic. It also emphasises the preponderant role of migration in the 

HIV-1 epidemic in Britain, as illustrated by the overwhelming prevalence of sporadic 

lineages (86% of the total UK samples) in the genealogy, representing the proportion of 

imported viruses imported viruses not leading to a discemable cluster. The transmission 

clusters we characterised had a similar epidemic curve and geographic distribution 

within the UK, indicating a simultaneous spread under the same demographic pressures. 

The introduction of the early founder viruses in the early 1980’s (i.e. clusters 1-3) seems 

to coincide with the explosion of new infections reported by epidemiological data at the 

time (Health Protection Agency, http://www.hpa.org.uk/). This coupling of HIV
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introduction with epidemiological changes is likely to have favoured the emergence and 

persistence of the transmission chains presently circulating amongst MSM. However, 

since the first cases of AIDS were reported in this country in 1982 (World Health 

Organisation, http://www.who.int/emc-hiv/fact_sheets/), with a likely original infection 

of these individuals at least 10 years previously, currently circulating strains may not 

represent the original lineages established within the country. If earlier strains existed 

they may have been unsuccessful in sustaining transmission chains until the present, and 

may no longer be of epidemiological significance. The absence of older strains could 

also reflect a sampling bias.

Table 5.6. The probabilities for the clusters’ doubling time at the present to be <20 years (equal to an exponential 
growth rate >0.035 years1)

Cluster 6 Cluster 5 Cluster 4 Cluster 3 Cluster 2 Cluster 1

p(r< 0.0001) 
p(0.0001 <r<0.01) 
p(r>0.01)

0.2624
0.2521
0.4855

0.3451
0.5336
0.1213

0.8801
0.1003
0.0197

0.5094
0.3443
0.1462

0.0869
0.7361
0.1771

0.9478
0.0491
0.0031

p(dj0 < 20years) 0.3630 0.0443 0.0087 0.0777 0.0393 0.0030

Abbreviations: p, probability; r, growth rate; djo, population doubling time.

For all six lineages, the exponential growth phase coincides with a significant 

augmentation of newly acquired HIV-1 infections reported within MSM and IDU in the 

UK (Health protection Agency, http://www.hpa.org.uk/). The average growth rate 

during the exponential phase was estimated to be 0.80 years'1 (ranging from 0.47 to 

1.38), approximating to a doubling time of around 1 year. This value is similar to the 

estimate of the exponential growth rate of the US epidemic (0.83 years'1, 0.72 to 0.94) 

(Robbins et al. 2003), suggesting that the two epidemics obey similar demographic 

pressure. This idea is also supported by the similarities found in terms of effective 

number of infections of the two epidemics. Despite a wide heterogeneity across the six 

UK-born transmission clusters in Ne (spanning from 94 to 1350), the average effective 

population size amongst the six viral populations reaches 445 and approximates to 2.5% 

of the infected population in Britain. This is remarkably similar to that observed in the 

US, where an estimated effective population size of 5000, with -200,000 infections in 

1995, was estimated (Robbins et al. 2003). These values represent the number of
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infections contributing to onward transmission, rather than the larger number of actual 

infections. Despite the accuracy and sensitivity of the methodology used, the time scales 

estimated here should be regarded with caution, as they are extremely sensitive to 

sampling error. Sampling time of sequences is generally only recorded to the precision 

of a year, inducing inaccuracy in time frames. Also, despite the known time of 

collection of the samples, the cumulative time a given sequence had to evolve within a 

host is hardly even known. HIV infected cells may harbour proviral DNA for a certain 

period o f time, during which the replication, and therefore the evolution, of the 

organism are suspended (Wolinsky et al. 1996; Rodrigo et al. 1999; Shankarappa et al.

1999). As a result, sequenced genes may be older than the expected according to their 

sampling date, and the time calibration consequently biased.

Since 1990, there have been important changes in Britain’s demographic 

structure, social attitude and awareness of HIV-1/AIDS (Johnson et al. 2001). Despite 

an increase in high-risk behaviour among men having sex with men (such as the number 

of sexual partners or concurrent partnerships), a significant increase in consistent 

condom use has been reported since 1990. Such a change in sexual health, coupled to 

large scaled campaigns against AIDS over the past decade, could explain the 

equilibrium reached by the effective number of prevalent infections. The effect of 

antiretroviral therapy on the parameters of the epidemic dynamic needs also to be 

considered. Although therapy is instituted primarily to reduce progression of disease, it 

may also impact on transmission through reduction of infectivity. If so, we would 

expect evidence of a plateau in the late (rather then early) 1990’s at the time that highly 

active antiretroviral therapy became widely used, as well as a down turn in the 

estimated number of new infections within the UK. In fact Health Protection Agency 

epidemiological data reports no significant changes in the incidence of HIV-1 within 

gay men since the late 1980’s, and an actual increase over the past 3 years. That 

suggests that antiviral therapy has not had a significant impact on the growth of the 

epidemic; indeed, it has been proposed that the epidemic is driven by transmissions in 

primary infection, before therapy is usually initiated (see Chapter IV). The recent 

increase in new infections is not reflected in the growth dynamics of any of the six 

populations identified by this analysis. On-going analyses of the type undertaken here 

will clarify whether the recent increase in new subtype B infections derive from 

longstanding vial lineages, or newly introduced viruses.
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In conclusion, state-of-the-art statistical methods were applied to HIV-1 

molecular data to identify some key parameters of the dynamics and growth of the 

subtype B epidemic in the UK. This demonstrated that currently circulating viruses 

within MSM entered the UK in the mid 1980’s and that a slow down of epidemic 

growth for these lineages occurred in the early 1990’s. It is often assumed that the HIV- 

1 epidemic within the UK represents smaller, independent epidemics defined by risk 

group. The existence of multiple epidemics (i.e. at least six) within MSM was 

demonstrated here, with comparable evolution over time and obeying related 

demographic constrains. The identification of these multiple lineages within the 

predominant risk group of the HIV-1 epidemic in the UK suggests that such 

heterogeneity must be considered when developing HIV monitoring and prevention 

initiatives.
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CHAPTER VI 

General Discussion

The present thesis aimed to investigate the reliability of the HIV-1 pol gene for 

the identification of transmissions networks by phylogenetic means, on the basis of 

which molecular analysis of epidemiological relevance were further conducted. 

Evolutionary and epidemiological approaches were combined in order to assess the 

correlates of transmission within a population of primary HIV-1 infected individuals 

within a localised risk group (i.e. men having sex with men in Brighton, UK), exploiting 

both HIV-1 pol genes sequences and clinical data. When large networks of transmission 

were characterised, the viral genomes involved were tested for intra-subtype 

recombination, under the assumption that super-infection might have occurred. Finally, 

the epidemic history of HIV-1 subtype B in the UK was reconstructed from sampled 

HIV-1 po l gene sequences, providing new insights into the complexity of HIV-1 

epidemics that must be considered when developing HIV monitoring and prevention 

initiatives.

The collection of analyses presented in these pages emphasizes the advantage of 

combining state-of-the-art epidemiological studies to phylogenetic frameworks when 

investigating the dynamics of a viral epidemic as complex as HIV-1. In fact, 

phylogenetics and population genetics have already played a central role. Rapid 

accumulation of DNA sequence data since the 1980s has transformed the focus of HIV- 

1 research, and phylogenetics not only shed light on the origins of the virus (Sharp et al. 

2001), but also on the evolutionary processes that shape viral genetic diversity within 

and among patients (Crandall et al. 1999), and have provided evidence in forensic cases
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of HIV transmission (Ou et al. 1992). Evolution is a forward process, causing organisms 

as well as populations to changes their characteristics over time, with significant effect 

on the biology of a pathogen. Thus, unifying the epidemiological and evolutionary 

dynamics of HIV-1 helps understanding the past and predicting the future of the AIDS 

epidemic. Understanding the host helps understanding the virus, both at the infra- or 

inter-host level. Nonetheless the use study of molecular sequences in an 

epidemiological context is not exempt from pitfalls, and the accuracy of evolutionary or 

historical estimates is sensitive to various levels of biases.

1. Violated Assumptions

Amongst these biases is the burden of assumptions. Several simplifying 

assumptions had to be made that may alter the accuracy of the estimates presented here. 

First, the number of infected hosts within a local population was assumed to be 

homogeneous and epidemiologically close. However, reports on the evolution of the 

HIV-1 epidemic clearly show a discrepancy in HIV-1 prevalence and incidence 

worldwide (UNAIDS, http://www.unaids.org/ ), as well as significant variation in rates 

of exposure between HIV-1 infected individuals (Plummer et al. 1991; Service and 

Blower. 1995). Moreover, viral lineages were exclusively sampled from individuals in 

whom viral load was detectable. Since administration of anti-retroviral therapy 

suppresses the replicative capacity of the virus (Frenkel et al. 2003), it is sensible to 

assume that the overall rate of evolution of the virus is reduced during therapy, as a 

result of both genetic bottlenecks (Martinez-Picado et al. 1999) and pharmacological 

barriers (Perno et al. 1998; Durant et al. 2000). If, as it was suggested, the 

administration of anti-retroviral therapy reduces the overall HIV-1 rate of evolution 

(Fraser et al. 2001), estimates obtained from a population of treated individuals (such as 

our pol gene sequences database) are likely to be flawed. The estimating of evolution 

rates across cohorts of drug-naive and -experienced individuals could help to assess the 

extent of this potential bias. Finally, while coalescent-based inference assumes neutral 

evolution, there is plethora of evidence according to which both positive and negative 

selective pressure is heavily exerted on HIV-1 genes (Yamaguchi-Kabata and Gojobori. 

2000; Yang et al. 2000). However, selection on HIV genes within infected individuals 

does not appear to impact on the shape of genealogies at the epidemiological (i.e. inter-
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host) level and therefore the bias in coalescent estimates would remain trivial. 

Importantly, previous coalescent analyses have yielded similar demographic estimates 

from different HIV-1 genes, which are under considerably different selection pressure 

(Lemey et al. 2003).

2. Selection Bias

Sample selection represents another obstacle of importance when conducting 

molecular epidemiology analyses. The selection of a suitable genetic region is the first 

step at which bias can be encountered, and the reliability of conclusions drawn from the 

given gene can potentially be altered when generalized to the organism scale. The study 

reported in Chapter III stresses the point that, when approaching the use of HIV-1 

sequences to characterise linkage, the key issue is for a molecular dataset to contain 

sufficient variability as defined by phylogenetic criteria, regardless of whether the 

sequence is gag, pol or env. And that genetic variability should not alone be a criterion 

to consider. Hypervariable regions, for instance, may be subject to convergent evolution 

(i.e. identical mutational patterns in unlinked sequences), such as in the V3 loop of the 

env gene (Holmes et al. 1992; Zhang et al. 1993). The rapid genetic diversification of 

this region is also likely to compromise identification of linked sequences in distantly 

sampled individuals. Indeed, both divergence and diversity of the HIV-1 env gene have 

been shown to increase linearly in early stages of infection (Shankarappa et al. 1999). 

Hence, the choice for an appropriate genetic target for such studies must not only be 

considered in light of the intrinsic variability of a given dataset, but also of the possible 

time span separating the samples under comparison. A sensible way to determine such 

criteria would be to incorporate positive controls within the sequence alignment, such as 

sequences from known transmission pairs or intra-patient follow-up samples. Close 

attention is therefore required in dealing with HIV-1 gene sequences for 

epidemiological, clinical or forensic purposes. It is nonetheless sensible to conclude 

from the results shown in Chapter III that the pol gene, widely available since the onset 

of drug resistance testing, holds sufficient genetic variation to allow phylogenetic 

analyses and offers an attractive alternative to more variable regions. It could also be 

hypothesized that hypervariable gene sequences (such as env, or to a lesser degree gag) 

are more suitable for the analysis of intra-host viral evolution, while more conserved
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regions are more informative for evolution analysis at a larger scale, i.e. amongst 

groups, populations or even species.

Equal attention is required when selecting a study cohort, both qualitatively and 

quantitatively. When investigating HIV-1 transmission clusters in Chapter VI, a 

minimum clade size of 25 was used because smaller sample sizes are unlikely to give 

reliable coalescent estimates under complex demographic models, and a minimum 

fraction of 90% UK sequences was chosen to ensure that the clusters that were 

identified represent chains of transmission that have overwhelmingly occurred in the 

UK. It is however noteworthy that this methodology probably underestimates the 

number of transmission chains identified. The use of parallel datasets may also avoid 

the potential peculiarity of a given sample and relax the sensitivity of conclusions drawn 

from a single dataset. The study of six independent HIV-1 transmission clusters in 

Chapter VI, yielding similar patterns of demographic history, added robustness to the 

conclusion drawn from their dynamics. Finally, the pol sequences exploited in this 

thesis are unlikely to have been sampled randomly with respect to geographical, social 

or ethnic origin and certain samples may have a disproportionate influence on the 

estimations. It is consequently of importance to implement rational sampling protocols, 

in order to reduce selection biases without undermining the advantage of the present 

abundance of molecular information. Developing resampling schemes into Bayesian 

analyses, or performing randomization tests of genetic diversity, could secure this issue.

3. Recombination

Another obvious limitation of the methodology used in the present thesis would 

be the sensitivity of evolutionary inference to recombination. With a rate of 

recombination per base exceeding that of mutation (Jetzt et al. 2000), it becomes crucial 

to consider the effect of recombination events when studying HIV-1 molecular 

evolution. Phylogenetic trees can be seriously affected by recombination events, thus 

rendering less reliable the estimation of population histories or event timings. In the 

presence of recombination, sequences have dissimilar phylogenetic histories in the 

different parts of their locus, infringing the assumption of a strictly bifurcating
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genealogy (i.e. where one descendant has two ancestors only), and do evolve along a set 

of correlated trees rather than a single tree (Hudson. 1983; Anisimova et al. 2003). In 

regard to the high rates of superinfection and recombination characterising HIV genes, 

bifurcating phylogenetic trees may be suboptimal when representing transmission 

dynamics. Also, since recombination leads to apparent substitution rate heterogeneity 

among sites (Worobey. 2001), mosaic sequences can compromise the reliability of 

phylogenetic reconstructions, Bayesian inference or molecular clock tests. Nonetheless, 

recombination in early internal branches is more disruptive in the genealogy of the tree 

than at the tips of the tree. In a star-like tree such as seen in the context of inter-host 

HIV-1 transmission, recombination is thus likely to have a less pronounced impact on 

estimates. On a population dynamic standpoint, recombination can also have a potential 

adverse effect and bias analyses toward the underestimation of the time of most recent 

common ancestors, the underestimation of the amount of recent divergence, or apparent 

sign of exponential growth (Shierup and Hein. 2000). A recent study, however, suggests 

that coalescent-based analyses of HIV population histories do not significantly differ 

when assuming a single or multiple genealogy for all loci (Lemey et al. 2004).

There is a need for methods that allow the incorporation of recombination in 

phylogenetic or coalescent-based analyses. Work along that line has recently started, 

Work has recently started to that respect, but the challenge is such that further 

developments are needed before a successful application in standard evolutionary 

analyses (Griffiths and Marjoram. 1996; Fearnhead and Donnelly. 2001). The 

incorporation of models of recombination into molecular evolution analyses would 

represent a robust alternative to the difficult detection of recombination in poorly 

variable genes (Taylor and Korber. 2005). Although good estimates can be obtained by 

applying population-genetic methods to DNA sequences (reviewed in Stump and 

McVean. 2003), a high-resolution measure of HIV-1 recombination rates remains an 

experimental challenge, especially in well-conserved genes such as p o l. And since 

phylogenetic approaches are becoming increasingly significant in HIV-1 research, 
understanding the recombination process would help understanding the dynamics of the 
epidemic.
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4. Who’s Next?

Extending the methodology used in Chapter V to alternative risk groups would 

provide a useful comparison of the population dynamics and evolution of HIV-1 across 

risk-groups in the UK. The mechanisms of HIV-1 transmission are so versatile that the 

establishment o f new infections across risk groups is likely to exhibit different 

dynamics. For instance, transmission networks through needle sharing are likely to be 

initiated more rapidly than through sexual contact. While transmission dynamics 

amongst IDUs are susceptible to rate of needle sharing, rates of partner exchange or 

high-risk sexual behavior are more specific determinant of transmission in the latter risk 

group (Anderson and May. 1988; Kaplan. 1989; Blower et al. 1991). Thus, studies 

showed that injection frequency was positively and highly significantly associated with 

HIV-1 env genetic diversity (Cameiro et al. 1999) and mutation rate in patients who had 

injected at least once a day during the previous 6 months was estimated to be 62% 

greater than the rate in those who had not injected at all. Furthermore, heroin and 

cocaine have been reported to enhance HIV replication in vitro (Peterson et al. 1990). It 

is therefore sensible to expect discrepancies in the dynamics of the two sub-epidemics. 

Understanding these would provide useful material for prevention and monitoring 

programs in diverse risk groups, as illustrated by the recent molecular analyses done of 

the explosive IDU epidemics in Eastern Europe (Roudinskii et al. 2004).

Alternatively, numerous studies showed that in vitro fitness and transmissibility 

varies across HIV-1 subtypes (Kunanusont et al. 1995; Hu et al. 1999; Ball et al. 2003), 

although it is poorly understood whether, if extrapolated to in vivo behaviour, it results 

from intrinsic features o f the variants enhancing transmissibility or from 

epidemiological factors. HIV-1 subtype C, for instance, accounts for more than 47% of 

the worldwide HIV-1 new infections in 2000 (Osmanov et al. 2002), and is suspected to 

represent 55% of the global number of HIV-1 infections (Esparza and Bhamarapravati.

2000). It remains unclear whether this predominance is a reflection of a founder effect 

or higher fitness conferred by genetic specificities (Oelrichs et al. 2000; Ndung'u et al.

2001). In England and Wales, subtype C accounts for the majority (32%) of new HIV-1 

diagnosis, mainly acquired in Sub-Saharan Africa through heterosexual transmission 

(Tatt et al. 2004). The number of heterosexually acquired HIV infections diagnosed in 

the UK has risen hugely over the last 15 years, and took over the rate of infection in 

men who have sex with men for the first time in 1999 (see Fig. 1.6). Considering the
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difference in epidemiological history and mode o f transmission, viruses of subtype B 

and C, both highly prevalent in the UK, are likely to show different patterns of genetic 

diversity and dynamics. Since molecular data routinely generated from subtype C 

strains is increasingly available in Britain, molecular analyses of the latter would help 

understanding the relative influence of biological and behavioral factors on the spread 

of the subtype C epidemic in the UK. For instance, the estimation of the rate of spread 

and effective population size of subtype C sequences from the UK would help 

determining the relative role of genetic drift and selection in the shape of the sub

epidemic The comparison with population dynamics of subtype C sequences from 

Asian or Sub-Saharan African countries, where epidemiological determinants differ 

form those o f the UK, would be equally informative to that respect.
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Investigation of HIV-1 transmission events by phylogenetic methods: requirement for scientific rigour
Since the first use o f molecular methods to ascertain 
HIV-1 transmission was published in 1992 [1], con
troversy in this area has been vivid [2-4]. When 
approaching the use o f HIV-1 sequences to characterize 
linkage, a key determinant is the choice for the most 
informative genetic region; in this respect, the use of the 
p o l  gene has hitherto been unpopular. We nonetheless 
demonstrated that sequences o f this genetic region, 
widely available since the onset o f drug resistance testing, 
holds sufficient genetic variation to allow phylogenetic 
analyses [5]. In an opinion paper published in response to 
our article, Sturmer and colleagues [6] not only 
challenged the reliability of phylogenies constructed on 
the basis of the protease and reverse transcriptase genes, 
but also recommended the blind use o f the V3 region of 
the envelope (env) gene. In view o f the importance of this 
issue for epidemiological studies, as well as in the clinical 
and legal arena, we would like to address their line of 
argument, in order to widen the debate. In essence, we 
maintain that the key issue is for a dataset to contain 
sufficient variability as defined by phylogenetic criteria, 
regardless of whether the sequence is gag , p o l  or env.

There is no such thing as an ultimate gene for 
evolutionary analyses o f HFV-1. Ideally, full-length 
sequences should be used for the investigation of 
potential linkages by phylogenetic means; however, 
practicalities preclude such an approach. Echoing 
previous and well-established opinions, see for example 
Leitner et al. [7], Sturmer et al. [6] recommended the use 
of env  gene sequences, the extensive variation o f which 
has made it attractive for such analyses. However, the 
exploitation of env  is far from unproblematical. First, 
convergent evolution (i.e. identical mutational patterns in 
unlinked sequences) has repeatedly been observed in the 
V3 loop of the en v  gene [8,9]. More importantly, the rapid 
genetic diversification of this region is likely to 
compromise the identification o f linked sequences in 
distantly sampled individuals. Both divergence and 
diversity of the HIV-1 en v  gene have been shown to 
increase linearly in the early stages of infection [10]. The 
latter observations may explain why one o f the possible 
transmission pairs identified in the p o l  tree published by 
Sturmer et al. [6] failed to be supported by their en v  tree. 
The choice of an appropriate genetic target for such 
studies must not only be considered in light o f the 
intrinsic variability of the dataset itself, but also o f the 
possible time span separating the samples under 
comparison. Our own data suggest that the relative 
stability of the polymerase gene may confer some benefit

in this respect. We identified the same clustering patterns 
in phylogenies independendy constructed on the basis of 
the p o l, gag  and en v  genes of the same HIV-1 samples, 
supporting the idea of sufficient intrinsic sequence 
variation in the p o l  region.

Sturmer et al. [6] supported their view by identifying 
sequences that appear linked within a phylogeny based on 
the p o l  region, but which fail to fulfil the arbitrary criteria 
of a bootstrap support greater than 70% within a tree 
based on the partial en v  gene. However, the methodo
logical underpinning of this approach is flawed. First, the 
authors produced a neighbour-joining tree [11], con
structed under the ‘Kimura two-parameters’ (K2P) model 
of nucleotide substitution [12], which is, in our view, 
unsatisfactory. If the choice of a phylogenetic method for 
reconstructing transmissions is less sensitive than the 
choice of a genetic region [7], the misuse of a model of 
evolution can have severe consequences on the accuracy 
of the reconstruction. As rates of evolution differ across 
HIV-1 lineages, populations, or genetic regions, the 
selection of an optimal model must be a prerequisite 
when estimating HIV-1 phylogenies. The systematic (and 
often unjustified) use of the K2P model of evolution is 
unfortunately frequent in HIV molecular analyses. When 
using an over-simplistic model, features of importance in 
the context of HIV-1 transmission, such as branch length, 
may be underestimated [13]. Moreover, when statistically 
testing different evolutionary models for various HIV-1 
genetic regions, Posada and Crandall [14] demonstrated 
that the K2P model was suboptimal, whichever gene was 
under study. Therefore, the criteria used to discriminate 
between potential linked and unlinked sequences must be 
adapted to the specificities of one’s dataset. These criteria 
should be empirically determined from dataset to dataset, 
and not dogmatically implemented. The unique criterion 
used by Sturmer et al. [6] (i.e. a bootstrap support above 
70%, regardless of the tree topology) is clearly insufficient 
to draw reasonable inferences regarding the true or false 
linkage of infections. Such a cut-off value must first 
consider genes evolving at a different pace, because 
bootstrap evaluation is sensitive to the degree of 
polymorphism exhibited by the sequences. Second, 
bootstrap evaluation is not on its own sufficiently 
discriminatory, and the branch length supporting 
suspected transmission pairs is another obvious pattern 
to take into account. A sensible way to determine such 
criteria would be to incorporate positive controls within 
the sequence alignment, such as sequences from known 
transmission pairs or intrapatient follow-up samples.
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Sturmer et al. [6] failed to present such controls, 
compromising the pertinence o f their findings. As 
accession numbers for several o f the sequences used 
by the group have not been provided, we have been 
unable to re-analyse their data according to the above 
criteria.

In conclusion, we agree that close attention is required in 
dealing with HIV-1 sequences for epidemiological, 
clinical or forensic purposes. Using a rigorous and 
reproducible methodology, we recendy showed that our 
dataset of pol sequences hold enough sequence variation 
to allow phylogenetic reconstruction, despite the con
servation of the gene. O ur conclusion was based on a 
stringent comparative analysis o f the respective phyloge
netic signals held by the three main genes o f HIV-1, 
namely the pol, gag and env genes.
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Successful desensitization of enfuvirtide-induced skin hypersensitivity reaction
A 38-year-old Caucasian woman was diagnosed with HIV 
in 1996 and was treated with various antiretroviral drug 
regimens, including different combinations o f nucleoside 
reverse transcriptase inhibitors (NR.TI) and protease 
inhibitors (PI), but not non-nucleoside reverse transcrip
tase inhibitors (NNRTI). She maintained her CD4 cell 
count between 500 and 600 cells/|Jil and had a consistently 
detectable HIV-RNA viral load o f10 000—30 000 copies/ 
ml plasma (HIV-Monitor; Roche, Mannheim, Germany). 
The patient developed multiple NRTI mutations (M41L, 
D67N, K70R, M184V, T215Y, K219E) and PI mutations 
(LI01, K20R, L241, L33F, M361, F53L, 154V, L63P, V82A), 
but no NNRTI mutations.

During the past year, her CD4 cell count began to 
decrease down to 300 cells/|xl and her HIV-RNA viral 
load increased gradually to 300 000 copies/ml plasma. 
We decided to initiate a new regimen consisting of 
tenofovir (300 mg once a day), epivir (150 mg twice a 
day), efavirenz (600 mg once a day) and enfuvirtide 
(90 mg twice a day). After 10 days o f treatment, 
the patient developed a confluent erythematous

maculopapular rash starting on the trunk and spreading 
to her neck, face, upper and lower extremities. At this 
point, we considered efavirenz to be the cause of the rash, 
and decided to continue treatment considering that there 
were no systemic symptoms and that a rash caused by 
efavirenz usually disappears with continuous therapy [1]. 
However, the patient’s rash worsened and her skin 
became red and itchy. After six more days, we decided to 
discontinue all antiretroviral drugs.

Two weeks later, after complete remission of the skin 
symptoms and considering the limited therapeutic 
options for this patient, we resumed the former 
treatment regimen and initiated a desensitization 
protocol to efavirenz as has previously been described
[1]. Our Institution’s Ethics Committee approval and 
the patient’s informed consent were obtained. Two 
hours post-initiation of desensitization with efavirenz, 
the patient injected a subcutaneous dose of enfuvirtide. 
Half an hour post-injection, the patient developed a 
local and generalized maculopapular rash that lasted for 
the next 10 h. Twelve hours later, she injected the next
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Objective: To study primary HIV-1 infections (PHI) using molecular and epidemiolo
gical approaches in order to assess correlates of transmission in this population.
Methods: Individuals with PHI were recruited prospectively from a discrete cohort of 
1235 individuals under follow-up in a well-defined geographical area between 1999 
and2003. PHI was diagnosed by one of the following: negative HIV antibody test within 
18 months, evolving antibody response, or application of the serological testing 
algorithm for recent H IV seroconversion. The po l gene was sequenced to identify geno
typic resistance and facilitate molecular epidemiological analysis. Clinical data were 
collected and linked in an irretrievable fashion when informed consent was obtained.

Results: A total of 103 individuals with PHI diagnosed between 1999 and 2003 were 
included in the study; 99 (96%) were male and 90 (91 %) were men who have sex with 
men. Viruses from 35 out of 103 (34%) appeared within 15 phylogenetically related 
clusters. Significant associations with clustering were: young age, high CD4 cell count, 
number of sexual contacts, and unprotected anal intercourse (UAI) in the 3 months 
before diagnosis (P <  0.05 for all). High rates of acute sexually transmitted infections 
(STI) were observed in both groups with a trend towards higher rates in those individuals 
with viruses within a cluster (42.9 versus 27.9%; P =  0.13).
Conclusion: High rates of partner change, UAI and STI are factors that facilitate onward 
transmission during PHI. More active identification of individuals during PHI, the 
management of STI and highly active antiretroviral therapy may all be useful methods to 
break transmission networks. © 2005 Uppincott Williams & Wilkins
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Introduction________________________
Worldwide, 4.2 million adults were estimated to have 
new HIV-1 infection in 2003 [1], although it is unclear 
whether these represent new diagnoses of chronic 
infection or recently acquired infections; nevertheless it 
is clear that strategies to interrupt "the sexual transmission 
of HIV-1 are key to reducing the worldwide burden of 
HIV disease. Within the UK, most new diagnoses now 
represent imported infections [2]; however, continual 
incident infections among men who have sex with men 
(MSM) are evident [3]. Taken as a single disease stage, the 
overall efficiency of sexual transmission of HIV is low, but 
numerous biological and mathematical modelling studies 
predict much higher infectiousness during primary HIV 
infection (PHI) compared with chronic HIV infection.

Biologically, the high plasma viral load seen during PHI 
[4-6], which probably parallels semen viral load [7-10], 
is strongly correlated with the risk o f sexual transmission 
[11] and therefore epidemic growth. Other factors that 
may increase transmission include sexually transmitted 
infections (STI) and host susceptibility [12,13], The 
recent finding of higher concentrations o f HIV-1 RNA in 
rectal mucosa than in blood or semen is also pertinent 
[14].

Mathematical models estimate the average probability of 
male-female transmission o f HIV-1 per unprotected 
coital act to be between 0.0005 and 0.003% during 
chronic HIV infection [15], which in itself would not 
sustain an epidemic. By contrast, when the high viral load 
of PHI is taken into account, men with average semen 
viral load, without concurrent STI, would be expected to 
infect 7-24% of susceptible female partners during the 
first 2 months o f infection (an eight to 10-fold increase 
from chronic HIV infection) [9]. According to m ale- 
male models, between 25 and 47% of new HIV infections 
may be transmitted during this period o f initial HIV 
infection [16,17], possibly within steady as opposed to 
casual relationships [18]. In addition, these individuals are 
infectious before symptoms of PHI [19], may not even 
show symptoms of disease [20] (and therefore be unaware 
of the risk they pose to partners), and often engage in 
high-risk sexual practices [21,22] with a higher number of 
sexual contacts [23].

There is also increasing evidence that any decrease in the 
per-contact risk as a result of the increased availability of 
antiretroviral therapy appears to have been counter
balanced or overwhelmed by increases in risky sexual 
behaviour [24,25]. This is reflected in the transmission of 
primary resistant HIV strains, the prevalence of which 
approaches 20% in the UK and elsewhere [26—29].

In order to understand further the role played by PHI in 
sexual transmission we carried out phylogenetic char
acterization o f PHI and collected relevant epidemiological

data regarding sexual behaviour, clinical features and 
STI.

Methods__________________________
Study recruitment
Individuals were recruited from a cohort of 1235 HIV- 
positive patients attending a single genitourinary med
icine unit for follow-up from 1999 to 2003. This 
prospective cohort included over 2100 patients with HIV 
infection, with 1235 being seen during the study period. 
O f these, 86% were Caucasian, 89% were men, and the 
predominant route of transmission was sex between men 
(79%). The department is the sole local provider of HIV 
and STI care, and national surveillance data confirm that 
over 90% of individuals with HIV infection resident in the 
area attend this institution.

Individuals with PHI were identified by one or more of 
the following: previous negative HIV antibody test within 
18 months, evolving Western blot or HIV antibody 
response, or application o f the serological testing 
algorithm for recent HIV seroconversion (STARHS) 
assay. STARHS is a dual testing strategy in which 
specimens that are confirmed anti-HIV positive after 
detection by a sensitive screening assay are tested on an 
assay that has been altered to make it less sensitive. 
Specimens that are unreactive on this less sensitive assay 
are deemed to be recent infections, whereas specimens 
that are reactive in both assays are deemed to come from 
infections that are long standing [30]. At the time of HIV 
diagnosis the majority of individuals underwent a full STI 
screen.

Clinical data collection
In those from whom written informed consent was 
obtained, information regarding clinical status was 
collected from clinic case notes: the date of diagnosis, 
CD4 cell count, CD4 cell percentage, HIV viral load, the 
presence and nature of STI in the 3 months before the 
diagnosis of PHI (gonorrhoea, chlamydia, non-specific 
urethritis, early syphilis, herpes simplex), and the absence 
or presence o f PHI symptoms. Information relating to the 
individual’s HIV acquisition risk group, sexual behaviour 
(including estimated number and nature of sexual 
contacts in the 3 months before diagnosis of PHI) was 
also recorded. These data are routinely collected for all 
new HIV-1 diagnoses within this clinic.

Serological testing algorithm for recent HIV 
seroconversion and analysis
STARHS testing was performed using the bioMerieux 
Vironostika HIV-1 assay (bioMerieux UK Ltd., Basing
stoke, UK) as previously described [31], A standardized 
optical density for each specimen was determined. 
For this study a standardized optical density of less than
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1.0 was used to identify recent infections, and this cut-off 
equates to an estimated seroconversion within the 
previous 4—6 months.

Phylogenetic analysis
The HIV pol gene was sequenced from plasma obtained at 
the time of HIV diagnosis. These sequences were used for 
phylogenetic analysis, a method previously shown by this 
group to have utility in reconstructing transmission events 
[32]. Full-length sequences from the protease gene (295 
nt) and the first 230 codons o f reverse transcriptase were 
aligned using the program Clustal X  (available from 
http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top. 
html) and then adjusted manually with the software 
BioEdit (available from http://www.mbio.ncsu.edu/ 
BioEdit/bioedithtml). Sequences that could not be 
unambiguously aligned or were of insufficient length 
were excluded from the study. Phylogenetic relationships 
between the pol sequences were reconstructed using the 
neighbour-joining followed by maximum likelihood 
methods. An initial neighbour-joining tree was built 
under the Hasegawa-Kishino-Yang (HKY85) model of 
evolution with a ratio of transversion to transitions of 2:1 
using the tree-building software Paup* (available from 
http://paup.csit.6u.edu/about.html).

The best fitting model of nucleotide substitution was 
estimated on the basis, o f the neighbour-joining tree 
topology using a maximum likelihood ratio test with 
Modeltest version 3.0 (available from http://bioag.- 
byu.edu/zoology/crandall_lab/m odeltest.htm ). The 
derived parameters of the selected model were then used 
to perform a heuristic search for a maximum likelihood 
tree with Paup”1. The construction o f the tree was done 
according to the general time reversible (GTR) model of 
evolution, with a proportion of invariable sites and 
gamma distribution. An HIV-1 subtype K sequence 
(Genbank accession number AJ249239) retrieved from 
the Los Alamos HIV database (http://hiv-web.lanl.gov/)

Table 1. Comparison of features associated with patients in the cluster

Number of patients 
Male sex
Age (years): median (range)
Number of contacts in 3 months before diagnosis: median (range) 
Homosexual risk group

Highest reported risk in the 3 months before diagnosis of PHI 
Unprotected oral intercourse 
Protected anal intercourse 
Unprotected anal intercourse 
Unprotected vaginal intercourse 
STI in 3 months before diagnosis 

Yes 
No
Not known 

CD4 cell count (cells/mm3): median (range)
CD4 cell percentage: median (range)
Viral load (logio copies/ml): median (range)

was used as an outgroup and six pairs of follow-up 
sequences from the same individuals were used as 
controls. The robustness of the neighbour-joining trees 
was evaluated by bootstrap analysis, with 1000 rounds of 
replication.

Statistical analysis
Statistical comparisons of those in a cluster with those not 
in a cluster were performed using Chi-squared tests, 
Fisher’s exact tests or Mann—Whitney U  tests, as 
appropriate. Multivariable logistic regression was used 
to identify factors independendy associated with belong
ing to a cluster. All statistical analyses were performed 
using SAS version 8 (available from http://v8doc.sas.- 
com/sashtml/). The study was approved by the Brighton 
and Hove Local Research Ethics Committee and the 
Health Protection Agency Ethics Committee. Con
fidentiality and anonymity were protected by irreversibly 
unlinking clinic and laboratory from the study ID number 
using a firewall system managed by the local public health 
laboratory. Written, informed consent was obtained from 
all participants.

Results_______________ _______________
Study population description
A total of 103 individuals with PHI diagnosed between 
1999 and 2003 were included in the epidemiological and 
phylogenetic analysis. O f these, 73 (71%) had a STARHS 
antibody test suggestive of infection within the previous 
4 -6  months. Almost all (99, 96.1%) were men and 
90 (90.9%) were MSM. All the men and two out of four 
women were Caucasian with a median age of 36 years 
(range 21-67). The median age was 36 years (range 
21-67). Six individuals (6.1%) reported a history of 
injecting drug use (two MSM, two heterosexual men and 
two heterosexual women). The median CD4 cell count

and non-cluster groups.

In cluster Not in cluster P value3

35 68
35 (100%) 64(94.1% ) 0.30
34 (23-54) 3 7 (2 1 -6 7 ) 0.05
3 (1 -100) 2 (1 -36) 0.006
32 (97.0%) 58 (85.3%) 0.10

25 (78.1%) 36 (73.5%) 0.83
2 (6.3%) 5 (10.2%) 0.70
28 (87.5%) 32 (65.3%) 0.05
O (-) 8 (16.3%) 0.02

0.31
15 (42.9%) 19 (27.9%)
18 (51.4%) 37 (54.4%)
2 (5.7%) 12 (17.7%) 0.13
612 (195-1477) 474 (196-1259) 0.005
31 (12-40) 26.5 (7 -42) 0.003
4.97 (2 .03-6 .00) 4 .94 (2 .30-6.00) 0.90

^Entries in table are n (%) unless otherwise specified.

http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top
http://www.mbio.ncsu.edu/
http://paup.csit.6u.edu/about.html
http://bioag.-
http://hiv-web.lanl.gov/
http://v8doc.sas.-


88 AIDS 2005, Vol 19 No 1

(available in 101/103) was 526 copies/ml (range 195— 
1477) and the median CD4 cell percentage (available in 
81/103) was 28 (7—42). The median HIV viral plasma 
load was log 4.95 copies/ml (2.03-6.00). Thirteen MSM 
(12.6% of total patients) were infected with viruses that 
contained primary antiretroviral resistance-associated 
mutations. STI were diagnosed concurrently with PHI 
in 34 of the 89 individuals (38.2%)_for whom information 
was available. Among the 90 MSM, 61 (68%) reported 
unprotected anal intercourse (UAI) in the 3 months 
before PHI diagnosis; no information was available 
regarding sexual practices in the period preceding this.

Cluster comparison
Viruses from 35 out o f 103 individuals (34%) appeared 
within 15 transmission clusters, comprising one cluster of 
five individuals, two of three and 12 o f two (full results 
shown in Table 1 and Fig. 1). All were men and 32 (97%) 
were MSM. For individuals within 11 out o f 15 clusters, 
the diagnosis of PHI was made within 12 months o f each 
other, giving supporting evidence that transmission 
occurred during the PHI period. Those in the cluster 
group had a higher CD4 cell count (P =  0.005), higher 
CD4 cell percentage ( P =  0.003), were younger (P =
0.05), reported a higher number o f different sexual 
contacts in the previous 3 months ( P =  0.006), and were 
more likely to have engaged in UAI in the 3 months 
before the PHI diagnosis (P =  0.05) in comparison to 
those individuals not within a cluster. High rates of STI at 
the time of PHI were observed in both groups, with a trend 
towards higher rates in those individuals with viruses in a 
cluster (42.9 versus 27.9%, P  =  0.13). Multivariable 
logistic regression analyses identified the CD4 cell 
percentage [odds ratio (OR) 1.14, 95% confidence interval 
(Cl) 1.04-1.23, P =  0.003] and having more than five 
sexual partners (O R 3.38, 95% C l 1.13—10.10, P  =  0.03) 
as the only independent predictors o f belonging to a 
cluster. Six individuals (17%) had antiretroviral-associated 
resistance mutations, o f whom two (both T215D in reverse 
transcriptase) belonged to a linkage pair.

Conclusion

In conclusion, the high rates o f clustering observed 
within our study support the assertion that PHI may be 
associated with an increased risk o f onward transmission. 
The associations we found with younger age, high rates of 
UAI, and sexual partner change identify this as a high-risk 
group for HIV transmission. There was a trend towards 
higher rates of STI in the cluster group on a background 
of extremely high STI rates in the study population, 
supporting the argument for increased STI surveillance, 
particularly of high-risk groups.

The highly significant correlation with CD4 cell counts 
may represent the early disease stage, or rapid contact

tracing and testing of sexual partners of individuals 
diagnosed with PHI. The plasma viral load at diagnosis 
was not predictive of clustering, and it is possible that the 
seminal viral load in men is a more consistent correlate of 
infectiousness, particularly in the context of genital tract 
inflammation, with plasma/genital tract discordance 
playing an important role [7-10]. The presence of the 
same antiretroviral resistance mutation in one cluster pair, 
neither of whom had received antiretroviral therapy, 
illustrates the potential for the secondary spread of such 
resistant strains, as we have previously documented
[33,34]. Our results do not exclude the possibility of a

CT

Fig. 1. M axim um  likelihood  phylogen etic  tree based on p o l 
seq u en ces from  1 03  individuals w ith primary HIV-1 infec
tion. Possible transmission clusters are circled. Linkages con
firmed by clinical data are indicated by a red cross. 
Transmission clusters were identified if the bootstrap value 
was equal or greater than 99% and the average genetic 
distance (i.e. branch length) was lower than 0.015 nucleotide 
substitutions per site. Linkages confirmed by clinical data are 
indicated by a red cross. Six pairs of multiple sequences from 
single patients were used as controls for relatedness and are 
indicated by letters (e.g. A indicates multiples sequences from 
patient A). Bootstrap values higher than 50% are indicated on 
the branches.



common source for each cluster, rather than transmission 
within clusters. However, a phylogenetic tree comprising 
viruses from these 103 primary infections, together with 
more than 2000 pol sequences from prevalent infections 
throughout the UK only identified one further potential 
linkage, and that involved a primary infection case not 
within an existing cluster (data not shown).

Only 31 of the non-cluster group (64.6%) reported UAI, 
but it should be noted that this is only in the time window 
3 months before diagnosis with PHI. Interestingly, 
routinely collected data on recent sexual contacts only 
confirmed three of the linkage pairs that were revealed in 
the phylogenetic analysis, emphasizing the high rates of 
anonymous sexual partners and the difficulty in obtaining 
a reliable sexual history.

Our results provide further evidence that the active 
management of primary infection will reduce HIV 
transmission. HIV prevention programmes have been 
heavily focused on protecting susceptible individuals, but 
accumulating biological and modelling data suggest that 
reducing the infectiousness of HIV-positive individuals 
may also be an effective strategy. A large proportion of PHI 
remains undiagnosed in the community [35,36], and these 
findings support the view that as a disease stage PHI 
represents a major public health threat. Efforts should be 
re-focused on improving rates of diagnosis of individuals 
during PHI, timely contact tracing, risk reduction, the 
management of STI, and possibly early treatment with 
antiretroviral agents in an effort to break transmission 
networks during this unique and possibly crucial stage of 
HIV infection [37]. Furthermore, consideration should be 
given in information and awareness campaigns to highlight 
the possible symptoms of PHI in groups with high rates of 
onward transmission, to encourage such individuals to 
present to appropriate healthcare providers to enable the 
timely diagnosis and management of early infection.
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HIV-1 pol gene variation is sufficient for reconstruction 
of transmissions in the era of antiretroviral therapy

Stephane Huea,b,c, Jonathan P. Clewleyc, Patricia A. Cane3 and 
Deenan Pillaya'b,c

Objectives: W e wished to assess the potential of using HIV-1 pol gene for the 
identification of transmissions events by phylogenetic means in the era of antiretroviral 
drug selective pressure.

Design: The relatedness of the viruses within a large database of po l sequences 
generated from HIV-1 infected individuals from the UK was reconstructed by phyloge
netic analyses.

Methods: A total of 140 p o l sequences were selected out of the 2500 database 
entries, on the basis of a pairwise genetic distance higher than 95%. Neighbour 
Joining and Maximum Likelihood trees were- implemented. Trees were reconstructed 
after exclusion of codon positions associated with drug resistance from the original 
pol alignment. Trees based on the corresponding env and gag genes were implemen
ted to confirm the linkages.

Results: Up to 23 transmission clusters were identified, supported by high bootstrap 
values (>  99), congruent epidemiological data and/or similar drug resistance motifs.
The topology of the tree was consistent after exclusion of the drug resistance 
associated codons. Identical topologies were obtained in trees implemented from gag 
and env genes alignments.

Conclusions: Despite its genetic conservation, the HIV-1 pol gene holds sufficient 
variability to permit the phylogenetic reconstruction of transmissions. Identical clusters 
were obtained whichever of the three principal genes is considered and no bias was 
induced by the presence of drug resistance mutations. These findings demonstrate the 
important epidemiological information inherent within routinely collected laboratory 
data, which can assist in estimating rates of recent HIV-1 transmission within a 
population. © 2 0 0 4  Lippincott Williams & Wilkins

A ID S  2004,18:719-728 

Keywords: HIV-1 transmission, pol gene, phylogenetic analyses, drug resistance

Introduction
The reasons for the extensive genetic variability of 
HIV-1 are several. The absence of proofreading activity 
of the viral reverse transcriptase (RT) [1], a fast turn
over of virions during replication [1—3], and the

genomic recombination occurring in infected cells [4] 
are amongst the factors responsible for the heterogene
ity of the HIV-1 genome. Because HIV-1 genetic 
variation plays a major role in the worldwide AIDS 
epidemic, molecular techniques have shaped the strate
gies used in HIV-1 studies such as vaccine development
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[5-7], monitoring o f antiretroviral drug resistance [8,9] 
and the reconstruction o f transmission events [10—13].

To date, phylogenetic reconstruction has been the 
favoured approach for providing evidence of HIV-1 
transmission, not only for epidemiological purposes but 
also for the resolution o f legal cases [14-16]. Hence 
the choice o f the most appropriate genetic region of 
HIV-1 for phylogenetic analysis' is a crucial issue and is 
still subject to debate [17-19], Ultimately, complete 
genome analysis would be applied to transmission stud
ies. However, as there are relatively few full-length 
sequences available and phylogenetic analyses are re
stricted by the cost of sequencing, appropriate back
ground material, and by computational power, the 
sequence length and genetic region of choice need to 
be carefully considered together in order to guarantee a 
strong phylogenetic signal. Hence most phylogenetic 
studies undertaken to date have relied on the V3 loop 
region of the env gene, and to a lesser degree on 
fragments of the gag gene [10,11,13]. Nonetheless it has 
been argued that fragments covering the V3 loop are 
too short or too variable to allow robust inferences on 
the genetic relatedness o f specimens [19]. Also the 
limited number of gag sequences in public databases 
makes use of this gene problematic.

By contrast, the region spanning the protease and R T  
genes is routinely sequenced in the clinical context of 
genotypic drug resistance testing and a large body of 
data is now being generated. Successful attempts to 
determine HIV-1 subtypes on the basis of the protease 
and the R T genes have been reported, so long as the 
fragment used is long and variable enough to counter
balance the lack of genetic constraint [20—22]. How
ever, the pol gene remains unpopular for phylogenetic 
analyses due to its extreme genetic conservation and it 
is commonly considered suboptimal for the study of 
HIV-1 transmission histories [17].

The aim of the present work was to determine whether 
the pol gene holds sufficient genetic variability to allow 
the useful study of potential patterns of transmission. 
For these purposes, we explored a database containing 
more than 2500 HIV-1 pol sequences from drug-naive 
and experienced individuals in the UK. The potential 
linkages identified were compared with clusters ob
tained from more variable genetic regions of HIV-1 
(i.e., the gag and env genes) and the influence of drug 
resistance related mutations in the process o f phyloge
netic reconstruction was assessed.

Material and methods ________________
Study population
The pol sequences used for this study were generated

from plasma samples collected from HIV-1 infected 
people in the UK by the Antiviral Susceptibility 
Reference Unit (ASRU), Health Protection Agency 
(HPA), Heartlands Hospital, Birmingham. The labora
tory provides a service to clinics serving approximately 
4000 treated patients (about 20% of the UK treated 
population), of which 10—20% are tested for resistance 
per year. The samples were submitted for routine 
genotypic resistance testing between 1999 and 2001, 
and include samples from acute infections, chronic but 
drug-naive infections and from patients at the time of 
therapy failure. Clinical information on the patients 
was available for most samples, including the date of 
collection, geographic area, reason for analysis and viral 
load, as well as molecular information such as subtype 
of the virus or genotypic patterns of drug resistance.

For the purposes o f the study, data were anonymized 
prior to analysis, and the research was approved by the 
HPA Ethics Committee. However, specific consent 
was requested from patients appearing within clusters 
in order to document potential sexual contacts, whilst 
blinding clinicians and patients to the laboratory data. 
Such epidemiological information was only obtained 
from a minority of patients.

PCR and sequencing
pol variability
The region spanning the protease gene and the 235 
first codons of the R T  gene were amplified from 
plasma virus by random primed reverse transcription 
followed by nested PCR with the Qiagen Taq PCR 
mastermix kit (Qiagen Inc., Hiden, Germany) as 
described previously [12]. The subsequent amplicons 
were sequenced using either ABI377 or Beckman 
CEQ2000 protocols.

gag and env variability
Where cDNA was available, regions spanning the gag 
and env genes were amplified and sequenced. Conse
quently gag and env sequencing was undertaken for 
samples involved in clusters of pol sequences (n =  23), 
sequential samples from the same individuals used as 
controls (n =  6), and randomly selected samples where 
the pol gene was unrelated to other sequences (n =  23).

Two fragments of 690 and 550 base pairs, covering the 
pl7/p24 region of the gag gene and the V3 loop region 
of the env gene respectively, were amplified by multi
plex nested PCR from cDNA already used for pol gene 
amplification using Qiagen Taq PCR mastermix and 
the following primers: forward outer primer for gag 
(position 790-812), 5'-ATGGGTGCGAGAGCGTC 
AGTATT-3'; reverse outer primer for gag (position 
1818-1844), 5' -CCCTGACATGCTGTCATCATTT 
CTTCT-3'; forward inner primer for gag (position 
886-908), 5'-CATCTAGTATGGGCAAGCAGGGA 
-3'; reverse inner primer for gag (position 1609-1634),
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5 '-A TG CT G AC A GG GCT AT A C A T T C T T  A C -3 '; 
forward outer primer for env (position 6557-6582), 
5'-A TG GGA TCA A AG CCTAA AG CCATG TG -3'; 
reverse outer primer for env (position 7782-7811), 
5' -AGT GCTTCCT GCT GCT CCC AAG AACCC-3'; 
forward inner primer for env (position 6817-6845), 
5 '-ACCTCAGCCATAAC ACAAG CCTGTCCA-3'; 
reverse inner primer for env (position 7360-7381), 
5'-TTGCAATAGAAAAATTCCCCTC-3'. The frag
ments were sequenced using either ABI 3100 or Beck
man CEQ2000 protocols.

Genetic distances
In order to select a subset o f closely related pol 
sequences within the database, the pairwise genetic 
distance between all sequences was computed under 
the general reversible time model [23] with invariable 
sites and gamma distribution (GTR+I+G), using the 
softwares Modeltest [24] and Paup* [25]. The G TR 
model of nucleotide substitution allows each possible 
substitution to have a different rate, with the constraint 
of being symmetrical, so that a substitution from a 
nucleotide i to j  has to be the same as a substitution 
from j  to i.

Phylogenetic reconstruction
In-frame multiple alignments o f the pol, gag and env 
nucleotide sequences were constructed with the pro
gram ClustalX [26], then manually adjusted using the 
editing software BioEdit [27]. Sequences that could not 
be unambiguously aligned or were of insufficient 
length were excluded from the study.

Phylogenetic relationships between the pol sequences 
were estimated using successively the Neighbour Join
ing (NJ) [28] and Maximum Likelihood (ML) methods 
[29]. The alignment matrices were imported into the 
tree building software Paup*, and an initial NJ tree was 
built under the Hasegawa-Kishino-Yano (HKY85) 
model of evolution [30,31] with a transversion : transi
tion ratio of 2 : 1. The best fitting model o f nucleotide 
substitution was estimated on the basis of the NJ tree 
topology using a ML ratio test to compare up to 57 
different models, as implemented by the software 
Modeltest version 3.0. The derived parameters of the 
selected model, together with the initial NJ tree, were 
then used to perform a heuristic search for a ML tree 
under the GTR+I+G model of DNA substitution. 
The robustness of the NJ trees was evaluated by 
bootstrap analysis [32], with 1000 rounds of replication. 
The protocol was repeated for the gag and env align
ments. The proportions o f invariable sites within the 
pol, gag and env alignments were 47.6%, 20.1% and 
20.6% respectively. The shape parameters o f the gam
ma distribution used for the reconstruction of the pol, 
gag and env ML trees were 1.04, 0.65 and 0.94 
respectively.

In order to assess the potential bias induced by drug 
resistance associated substitutions on the reconstruction 
of the samples’ relatedness, 46 codon positions known 
to be related to antiretroviral resistance [33,34] were 
excluded from the previous pol sequences alignment 
and a ML tree was implemented. Resistance mutation 
positions known as primary (or major) and secondary 
(or minor) were excluded. Primary mutations are 
known to lead to an alteration in drug binding by 
themselves, whereas secondary mutations do not have a 
significant effect on phenotype by themselves [34]. The 
phylogeny estimation, model testing and bootstrap 
procedures were performed with Paup*, as described 
above. The proportion of invariable sites and gamma 
distribution shape parameter used for the tree recon
struction were 51% and 1.08 respectively. The posi
tions excluded from the pol alignment and the related 
drug resistance are listed in Table 1.

. Sequence data
The nucleotide sequences used in the study were 
deposited into Genbank under the accession numbers 
AY362043-  AY362180, AY360862-AY360910 and 
AY360911-AY360959 for pol, gag and env sequences 
respectively.

Results

O f the 2500 pol sequences generated on samples dated 
from 1999 to 2003, 140 were selected on the basis of 
the closest pairwise genetic distances, each representing 
a single patient with the exception of the 12 pairs or 
triplets o f multiple sequences used as controls. Hence 
sequences sharing more than 95% similarity with one 
or more other entries from the database were selected 
for the study. Overall, the average inter-patient genetic 
variation amongst the sequences was 5.1% (range, 0— 
12.4%). Although several subtypes were represented 
within the subset of sequences, including subtype A, B, 
C, D, G and CRF01-AE, the vast majority were of 
subtype B (88%), reflecting the subtype distribution of 
prevalent infections in the UK at the time of the study. 
Each sequence was 963 base pairs long and spanned the 
entire protease gene and the first 223 codons of the 
R T  gene.

The ML tree derived from the selected pol sequences 
is presented in Fig. 1. The tree was rooted against 
an HIV-1 subtype K sequence (accession number 
AJ249239) extracted from the Los Alamos HIV-l 
Database (http://hiv-web.lanl.gov/). Twelve pairs or 
triplets of sequential sequences from a single patient 
were used as controls. Bootstrap values higher than 
50% are indicated on the branches, reflecting the 
frequency with which a given branch occurred in 1000 
bootstrap resampling.
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Table 1. Drug resistance mutations in HIV-1 [34].

Amino acid substitutions associated with resistance to

Protease inhibitor NRTI NNRTI

Prevalence in Prevalence in Prevalence in
Mutation the data Mutation the data Mutation the data

L10F/V/I/R 15 M41La 19 L100I 1
K20M/R 11 E44D 2 K103N 13
L24I 0 A62V 2 V106A/M 0
D30N 0 K65R 0 V108I 0
V32I 0 D67N 3 Y181C/I 2
133 F 1 T69D 4 Y188C/L/H 2
M36I 28 K70R 3 G190A/S 3
M46I/L 0 L74V 1
147V 0 V75I 0
G48V 0 F77L 0
I50V/L 0 Y115F 0
F53L 0 F116Y 0
I54V/M/L 1 V 1181 0
L63P 68 Q151M 0
A71V/T 21 M184V/I 18
G73S/A 0 L210W 6
V77I 22 T215Y/F 15
V82A/F/T/S 0 K219Q/E 2
I84V 0
N88D/S 0
L90M 4

’ Primary mutations are indicated in bold. NRTI, Nucleoside reverse transcriptase inhibitor; NNRTI, 
non-nucleoside reverse transcriptase inhibitor.

A total of 23 possible transmission clusters were 
identified from the tree topology shown in Fig. 1. The 
criteria used were determined by plotting the support
ing bootstrap score of each terminal cluster against the 
within-average branch length calculated from the ML 
tree topology (Fig. 2). Clusters were highly suspicious 
for true linkages when fulfilling the following two 
conditions; a bootstrap value equal or greater to 99%; 
and an average genetic distance (i.e., branch length) 
lower than 0.015 nucleotide substitutions per sites 
within the cluster. There was no significant distinction 
between intra-patient (i.e., control) and inter-patient 
(i.e., linked) sequences in terms o f genetic distance. All 
controls conformed to these criteria, with the excep
tion of the multiple sequences belonging to patients 7 
and 8, whose clusters were supported by lower boot
strap values (95% and 92% respectively). The reason 
why these two clusters failed to fit the criteria remains 
unclear. The relative low bootstrap score attributed to 
samples from patient 7 could be explained by the 
presence of an archive sequence, subsequently becom
ing the majority plasma population within the follow- 
up samples. For instance, a virus originating many years 
previously may emerge following a treatment interrup
tion. Unfortunately, matched gag and env sequences 
could not be generated for these samples.

All putative transmission events involved subtype B 
sequences. Since bootstrap scores are known to be 
influenced by the number of taxonomic units consid

ered in a tree, the robustness of the ‘non-B clade’ is 
likely to be artificially high due to under-representation 
within the dataset, and we therefore excluded these 
subtypes from our categorization of potential clusters.

Where informed consent was obtained from the patient 
involved, epidemiological evidence of linkage between 
individuals was documented in order to corroborate 
the findings from the initial phylogenetic analysis and 
drug resistance patterns within clusters. Both primary 
and secondary mutations associated with antiretroviral 
resistance were considered [9,34]. Although not essen
tial to prove transmissions, such information is impor
tant to verify the approach developed in the present 
study. These data are listed for each cluster in Table 2. 
Where appropriate information was obtained, three 
clusters were supported by evidence of epidemiological 
linkage (clusters 3, 8 and 14). Within clusters, similar 
drug resistance associated mutations (including second
ary mutations) were observed within 14 out of 23 
clusters. Four clusters appear to identify transmission of 
viruses with key resistance mutations to a drug-naive 
individual (clusters 6, 10, 18 and 21). In five other 
clusters (numbers 1, 4, 11, 12 and 16) such mutations 
in the drug-experienced individual were not repro
duced in the drug-naive partner.

Since the pol gene is under intense selective pressure by 
antiviral therapy, it might be expected that the presence 
of drug resistance mutations biases phylogenetic recon-
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Fig. 1. M aximum likelihood  tree  rep resen tin g  th e  p h y lo g en etic  relationships b e tw een  HIV-1 p o l  sequ en ces from the HPA 
resistance-testing d atab ase. The tree was constructed according to the GTR+I+G model of evolution and rooted against a HIV-1 
subtype K sequence (AJ249239K) extracted from the Los Alamos HIV database. Bootstrap values higher than 50% are indicated 
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Fig. 2. Average branch length within the terminal clusters 
of the maximum likelihood pol tree plotted against the 
bootstrap scores supporting the clusters. Grey circles indi
cate the possible transmission clusters; black circles represent 
the control clusters, i.e., comprising intra-patient follow up 
sequences. The cut-off values for the characterization of 
linkages were a supporting bootstrap score higher than 99% 
and a mean genetic distance of 0.015 nucleotide substitu
tions per site, as indicated by the dashed lines in (b).

struction. On the one hand, similar sets of mutations 
may lead to convergence, and conversely, large differ
ences between viruses from transmission events may 
lead to divergence. For this reason, the pol sequence 
tree was reassessed without drug resistance associated 
codons.

The ML tree derived from the pol alignment after 
removal of 46 codon positions most commonly asso
ciated with drug resistance is presented in Fig. 3b. The 
tree was implemented according to the GTR+I+G 
model of nucleotide substitutions. As with the previous 
reconstruction, an HIV-1 subtype K pol sequence

(accession number AJ249239) was used as an outgroup 
and multiple sequences from a same patient were used 
as controls. The comparison between the trees obtained 
from the complete pol alignment and the pol alignment 
where codon positions associated with drug resistance 
were excluded (named pol-dim  for convenience) is 
shown in Fig. 3a and b. Despite the deletion of 46 
highly variable sites, the two topologies were congru
ent and the 23 putative transmission clusters identified 
within the pol tree were conserved in the pol-drm  tree. 
Moreover no additional clusters to those based on pol 
sequences were strongly supported by bootstrap scores. 
Together, these results suggest that resistance mutations 
induced by antiretroviral therapy are unlikely to bias 
the reconstruction of the relatedness between samples. 
In other words, it is unlikely that unrelated vims 
harbouring identical drug resistance patterns will cluster 
together within a phylogenetic pol tree, leading to false 
positive linkages.

Finally the relatedness of the sequences within an 
identified transmission cluster was further confirmed by 
constructing maximum likelihood trees based on the 
env and gag genes o f the samples. A total of 49 
sequences was used for the reconstruction of both gag 
and env trees, comprising 23 out of the 53 sequences 
involved in possible linkages (where stored samples or 
cDNA were available), coupled to three pairs of 
controls and 23 background unrelated sequences. The 
resulting gag and env alignment lengths were 747 base 
pairs and 557 base pairs respectively. The GTR+I+G 
model of molecular evolution was found to be the 
most appropriate for both datasets. Maximum like
lihood trees constructed from the gag and env sequences 
are shown in Fig. 3c and d, respectively. The 11 
transmission clusters characterized within the pol tree 
were conserved within the gag and env trees, all of 
which are supported by bootstrap scores of 100, with 
the exception of cluster {24,9} (i.e., that comprising 
sequences 24 and 9 in the gag tree; supported by a 
bootstrap value of 98), and the clusters 37,40 and 13,22 
(supported by a bootstrap value of 96 and 98 respec
tively in the env tree). Conversely, the gag and env trees 
did not identify any clusters that were not present in 
the pol tree.

Discussion___________________________

We wished to assess the robustness with which possible 
HIV-1 transmissions could be identified from pol 
sequences, despite the relative conservation of this 
gene. Since the sequences used in the present study 
correspond to standard amplicons generated for routine 
resistance testing, the high availability of such fragments 
in regional databases may provide useful datasets for 
molecular epidemiological studies. The relatedness of
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Table 2. Epidemiological and drug resistance mutation information from the 23 clusters of p o l  sequences.

Cluster Sequences
Year of 

sampling Drug history

Resistance associated mutations

Protease Reverse transcriptase 
inhibitor inhibitor

gag and env 
linkage

1 pol 5 2000 Experienced L10V, L63T G190A Yes
pol 25 2001 Naive 110V, L63S None Yes

2 pol 29 2001 Naive None None n.a.
pol 31 2001 Naive None None n.a.
pol P1 2001 Naive None None n.a.

3 pol 42 2001 Naive L63P None n.a.
pol 61 2001 Naive L63P None n.a.

4 p o ll 3 2000 Naive L10Va, M3 61 None Yes
pol 22 2001 Experienced L10Va, M36I Ml 84V, Y188L Yes
pol 30 2001 Naive L10Va, M36I T69la Yes

5 pol 6 2000 Experienced None None n.a.
pol 26 2001 Naive None None n.a.

6 pol 39 2002 Experienced M36L, L63P T69N n.a.
pol 62 2000 Naive M36L, L63P T69N n.a.

7 pol 8 2000 Experienced L63P None n.a.
pol 59 1999 Experienced L63P None n.a.

8 pol 1 2000 Experienced L63T None Yes
pol 16 2001 Naive L63T None Yes
pol 35 2002 Naive L63T None n.a.

9 pol 48 2001 Naive L63H, A71V, V77I, I93L None n.a.
pol 63 2001 Experienced L63H, A71V, V77I, I93L None n.a.

10 pol 37 2002 Naive L63P M41L, T215Y Yes
pol 40 1998 Experienced L63P M41L, T215C Yes

11 pol 2 2000 Naive I93L None n.a.
pol 32 2001 Experienced I93L A62V, K65R, L74V, G190S n.a.

12 pol 4 2000 Naive L10V, I93L None Yes
pol 14 2000 Naive L10V, 193 L None Yes
pol 60 2001 Experienced L10V, L63P, A71V, I93L K103N n.a.

13 pol 49 2000 Naive M36I, L63P, I93L None n.a.
pol 50 2001 Experienced M361, L63P, 193L None n.a.

14 pol 17 ' 2001 Naive M36I, L63P, V77I, I93L None Yes
pol 18 2001 Experienced L63P, V771,193L None Yes

15 pol 21 2001 Experienced L I01, K20R, M361, L63S, I93L None n.a.
pol 57 2001 Experienced LI 01, L63C, 193L None n.a.
pol 58 2000 Naive LI 01, K20R, L63S, A71T, I93L None n.a.

16 pol 11 2000 Naive L10I, L63C, 193 L None n.a.
pol 20 2001 Experienced LI 01, L63C, 193L M41L, V118I, L210W, T215Y n.a.

17 pol 7 2000 Experienced LI 01, L63P, V731,193L None n.a.
pol 12 1998 Naive LI 01, L63P, V731,193L None n.a.
pol 23 2001 Experienced LI 01, L63P, V731,193L L210F n.a.

18 pol 36 2001 Naive K20R, M36I, L63A M41L, T215E + Yes
pol 41 2001 Naive K20R, M361, L63A M41L, T215E t Yes

19 pol 44 2002 Experienced M3 61 T215D Yes
pol 45 2002 Experienced M36I T215D Yes

20 pol 46 2002 Experienced L63P T69A Yes
pol 47 2002 Experienced L63P T69A Yes

21 pol 34 2002 Experienced L10V, L63P T215D Yes
pol 43 2000 Naive L10V, L63P T215D Yes

22 pol 10 2000 Naive L63P, I93L None n.a.
pol 33 2001 Naive L63P, I93L None n.a.

23 pol 9 2001 Naive L10I, L33I, L63T, A71T, I93L A98S Yes
pol 24 2000 Naive LI 01, L33I, L63T, A71T, I93L A98S Yes 1
pol 28 2000 Naive LI 01, L33I, L63T, A71T, I93L A98S n.a.

a Atypical mutation at the given codon. Primary mutations are indicated in bold.

the sequences in our database was reconstructed by 
phylogenetic analyses, on the basis o f different genetic 
regions within the pol, gag and env genes. Twenty-three 
possible transmission clusters were identified within the 
pol ML tree topology, supported by high bootstrap 
values (>  99), congruent epidemiological data and 
similar drug resistance patterns. All clusters were con
served when codon positions associated with drug

resistance were removed from the original pol align
ment. Finally, trees constructed with the env and the 
gag regions of the samples were consistent with the 
results obtained with the pol region and the same 
transmission clusters were identified.

It has recently been suggested that the pol gene is 
suboptimal for reconstructing transmission events [17],
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as the genetic distance between protease and R T 
sequences from unrelated individuals may not always 
be significantly different from the distance between 
related individuals. The present study compared the 
topologies of tree obtained with three HIV-1 genes 
known to undergo distinctive evolutionary dynamics 
(i.e., pol, gag and env), pol having the lowest and env the 
highest rate of substitution [35,36]. The clustering 
patterns were identical within the three phylogenetic 
trees, with a similar range o f statistical significance. 
Consequently, our results suggest that HIV-1 pol gene 
holds sufficient intrinsic genetic variability to permit 
the reconstruction of transmission histories by phyloge
netic means. Whether or not phylogenetic relationships 
characterized from protease and R T  sequences should 
be confirmed by more variable genetic regions of HIV- 
1 is open to debate. The present work clearly indicates 
that identical results are obtained whichever of the 
three genes are considered, the trees obtained only 
differing by the length o f their branches and the 
clustering patterns of distant unrelated sequences. These 
findings could have an immediate consequence in the 
monitoring of HIV-1 epidemiology. In view of the 
preponderance of HIV pol sequence data consequent 
on routine HIV resistance genotypic testing, these 
sequences could also be utilized effectively to track the 
presence of transmission clusters within the commu
nities from which there were obtained.

We note that most of the sequences used for the study 
were generated from plasma samples obtained within a 
period of 3 years. The characterization of transmission 
patterns within a group of HIV-1 infected individuals 
might be more problematic when using sequences 
collected over a longer time span, because o f within- 
individual evolution. Indeed, we noted a greater than 
average genetic distance in pol from sequential samples 
taken from control patients number 7 and 8. Also, 
when based on a single genetic region, the interpreta
tion of inferred linkage might be undermined by the 
presence of recombination in the genomes considered. 
A further concern relates to the bottleneck represented 
by transmission of a single, or narrow spectrum of 
virions, especially when appreciating that within-host 
compartmentalization may lead to sexual transmission 
of genital rather than blood virus species [12]. Given 
that the ML method could not be performed on the 
whole data set, only sequences sharing more than 95% 
identity with a least one other sequence from the 
database were used. Such a pre-processing o f the data 
could potentially have an impact on the results and 
favoured the presence of strongly supported clusters 
within the tree.

Although comparison with epidemiological data is 
important for the validation o f the linkages character
ized at the molecular level, this information remains 
hard to obtain and only three o f the transmission

clusters could be confirmed. This can be attributed 
mainly to the difficulty encountered when consent 
from the patients is requested. Furthermore, the pre
sence of multiple sexual partners often compromises 
the characterization of linkages between HIV-1 in
fected individuals and networks can be problematical to 
establish. It is important to distinguish between epi
demiological and individual purposes for undertaking 
these analyses. It is essential that informed consent is 
obtained from individual patients prior to the potential 
identification of their source of infection, and that 
appropriate security is afforded to HIV-1 sequence 
databases.

Finally, we identified a number of instances of trans
mitted drug resistance through our analyses, as de
scribed elsewhere [12,37,38]. It is self-evident that the 
presence of key mutations themselves is insufficient to 
prove transmission virologically. We now suggest that 

• the pol gene sequence, itself generated for purposes of 
resistance testing, is adequate for such phylogenetic 
studies.
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Transmission of HIV-1 during primary infection: 
relationship to sexual risk and sexually 
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Objective: To study primary HIV-1 infections (PHI) using molecular and epidemiolo
gical approaches in order to assess correlates of transmission in this population.
Methods: Individuals with PHI were recruited prospectively from a discrete cohort of 
1235 individuals under follow-up in a well-defined geographical area between 1999 
and 2003. PHI was diagnosed by one of the following: negative HIV antibody test within 
18 months, evolving antibody response, or application of the serological testing 
algorithm for recent H IV seroconversion. The pol gene was sequenced to identify geno
typic resistance and facilitate molecular epidemiological analysis. Clinical data were 
collected and linked in an irretrievable fashion when informed consent was obtained.
Results: A total of 103 individuals with PHI diagnosed between 1999 and 2003 were 
included in the study; 99 (96%) were male and 90 (91 %) were men who have sex with 
men. Viruses from 35 out of 103 (34%) appeared within 15 phylogenetically related 
clusters. Significant associations with clustering were: young age, high CD4 cell count, 
number of sexual contacts, and unprotected anal intercourse (UAI) in the 3 months 
before diagnosis (P <  0.05 for all). High rates of acute sexually transmitted infections 
(STI) were observed in both groups with a trend towards higher rates in those individuals 
with viruses within a cluster (42.9 versus 27.9%; P =  0.13).
Conclusion: High rates of partner change, UAI and STI are factors that facilitate onward 
transmission during PHI. More active identification of individuals during PHI, the 
management of STI and highly active antiretroviral therapy may all be useful methods to 
break transmission networks. © 2005 Lippincott Williams & Wilkins
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Introduction

Worldwide, 4.2 million adults were estimated to have 
new HIV-1 infection in 2003 [1], although it is unclear 
whether these represent new diagnoses of chronic 
infection or recently acquired infections; nevertheless it 
is clear that strategies to interrupt the sexual transmission 
of HIV-1 are key to reducing the worldwide burden of 
HIV disease. Within the UK, most new diagnoses now 
represent imported infections [2]; however, continual 
incident infections among men who have sex with men 
(MSM) are evident [3]. Taken as a single disease stage, the 
overall efficiency of sexual transmission of HIV is low, but 
numerous biological and mathematical modelling studies 
predict much higher infectiousness during primary HIV 
infection (PHI) compared with chronic HIV infection.

Biologically, the high plasma viral load seen during PHI 
[4—6], which probably parallels semen viral load [7—10], 
is strongly correlated with the risk of sexual transmission.
[11] and therefore epidemic growth. Other factors that 
may increase transmission include sexually transmitted 
infections (STI) and host susceptibility [12,13]. The 
recent finding of higher concentrations ofHIV-1 RNA in 
rectal mucosa than in blood or semen is also pertinent 
[14].

Mathematical models estimate the average probability of 
male-female transmission of HIV-1 per unprotected 
coital act to be between 0.0005 and 0.003% during 
chronic HIV infection [15], which in itself would not 
sustain an epidemic. By contrast, when the high viral load 
of PHI is taken into account, men with average semen 
viral load, without concurrent STI, would be expected to 
infect 7-24% of susceptible female partners during the 
first 2 months of infection (an eight to 10-fold increase 
from chronic HIV infection) [9]. According to male- 
male models, between 25 and 47% of new HIV infections 
may be transmitted during this period of initial HIV 
infection [16,17], possibly within steady as opposed to 
casual relationships [18]. In addition, these individuals are 
infectious before symptoms of PHI [19], may not even 
show symptoms of disease [20] (and therefore be unaware 
of the risk they pose to partners), and often engage in 
high-risk sexual practices [21,22] with a higher number of 
sexual contacts [23].

There is also increasing evidence that any decrease in the 
per-contact risk as a result of the increased availability of 
antiretroviral therapy appears to have been counter
balanced or overwhelmed by increases in risky sexual 
behaviour [24,25]. This is reflected in the transmission of 
primary resistant HIV strains, the prevalence of which 
approaches 20% in the UK and elsewhere [26-29].

In order to understand further the role played by PHI in 
sexual transmission we carried out phylogenetic char
acterization of PHI and collected relevant epidemiological

data regarding sexual behaviour, clinical features and 
STI.

Methods_____________________________

Study recruitment
Individuals were recruited from a cohort of 1235 HIV- 
positive patients attending a single genitourinary med
icine unit for follow-up from 1999 to 2003. This 
prospective cohort included over 2100 patients with HIV 
infection, with 1235 being seen during the study period. 
O f these, 86% were Caucasian, 89% were men, and the 
predominant route of transmission was sex between men 
(79%). The department is the sole local provider of HIV 
and STI care, and national surveillance data confirm that 
over 90% of individuals with HIV infection resident in the 
area attend this institution.

Individuals with PHI were identified by one or more of 
the following: previous negative HIV antibody test within 
18 months, evolving Western blot or HIV antibody 
response, or application of the serological testing 
algorithm for recent HIV seroconversion (STARHS) 
assay. STARHS is a dual testing strategy in which 
specimens that are confirmed anti-HIV positive after 
detection by a sensitive screening assay are tested on an 
assay that has been altered to make it less sensitive. 
Specimens that are unreactive on this less sensitive assay 
are deemed to be recent infections, whereas specimens 
that are reactive in both assays are deemed to come from 
infections that are long standing [30]. At the time of HIV 
diagnosis the majority of individuals underwent a full STI 
screen.

Clinical data collection
In those from whom written informed consent was 
obtained, information regarding clinical status was 
collected from clinic case notes: the date of diagnosis, 
CD4 cell count, CD4 cell percentage, HIV viral load, the 
presence and nature of STI in the 3 months before the 
diagnosis of PHI (gonorrhoea, chlamydia, non-specific 
urethritis, early syphilis, herpes simplex), and the absence 
or presence of PHI symptoms. Information relating to the 
individual’s HIV acquisition risk group, sexual behaviour 
(including estimated number and nature of sexual 
contacts in the 3 months before diagnosis of PHI) was 
also recorded. These data are routinely collected for all 
new HIV-1 diagnoses within this clinic.

Serological testing algorithm for recent HIV 
seroconversion and analysis
STARHS testing was performed using the bioMerieux 
Vironostika HIV-1 assay (bioMerieux UK Ltd., Basing
stoke, UK) as previously described [31]. A standardized 
optical density for each specimen was determined. 
For this study a standardized optical density of less than
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1.0 was used to identify recent infections, and this cut-off 
equates to an estimated seroconversion within the 
previous 4 -6  months.

Phylogenetic analysis
The HIV pol gene was sequenced from plasma obtained at 
the time of HIV diagnosis. These sequences were used for 
phylogenetic analysis, a method previously shown by this 
group to have utility in reconstructing transmission events 
[32]. Full-length sequences from the protease gene (295 
nt) and the first 230 codons of reverse transcriptase were 
aligned using the program Clustal X (available from 
http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top. 
html) and then adjusted manually with the software 
BioEdit (available from http://www.mbio.ncsu.edu/ 
BioEdit/bioedit.html). Sequences that could not be 
unambiguously aligned or were of insufficient length 
were excluded from the study. Phylogenetic relationships 
between the pol sequences were reconstructed using the 
neighbour-joining followed by maximum likelihood 
methods. An initial neighbour-joining tree was built 
under the Hasegawa-Kishino-Yang (HKY85) model of 
evolution with a ratio of transversion to transitions of 2:1 
using the tree-building software Paup* (available from 
http: /  /  paup. csit.fsu.edu/about. html).

The best fitting model of nucleotide substitution was 
estimated on the basis of the neighbour-joining tree 
topology using a maximum likelihood ratio test with 
Modeltest version 3.0 (available from http://bioag.- 
byu.edu/zoology/crandall_lab/modeltest.htm). The 
derived parameters of the selected model were then used 
to perform a heuristic search for a maximum likelihood 
tree with Paup*. The construction of the tree was done 
according to the general time reversible (GTR) model of 
evolution, with a proportion of invariable sites and 
gamma distribution. An HIV-1 subtype K sequence 
(Genbank accession number AJ249239) retrieved from 
the Los Alamos HIV database (http://hiv-web.lanl.gov/)

was used as an outgroup and six pairs of follow-up 
sequences from the same individuals were used as 
controls. The robustness of the neighbour-joining trees 
was evaluated by bootstrap analysis, with 1000 rounds of 
replication.

Statistical analysis
Statistical comparisons of those in a cluster with those not 
in a cluster were performed using Chi-squared tests, 
Fisher’s exact tests or Mann-Whitney U  tests, as 
appropriate. Multivariable logistic regression was used 
to identify factors independendy associated with belong
ing to a cluster. All statistical analyses were performed 
using SAS version 8 (available from http://v8doc.sas.- 
com/sashtml/). The study was approved by the Brighton 
and Hove Local Research Ethics Committee and the 
Health Protection Agency Ethics Committee. Con
fidentiality and anonymity were protected by irreversibly 
unlinking clinic and laboratory from the study ID number 
using a firewall system managed by the local public health 
laboratory. Written, informed consent was obtained from 
all participants.

Results______________ ________________

Study population description
A total of 103 individuals with PHI diagnosed between 
1999 and 2003 were included in the epidemiological and 
phylogenetic analysis. O f these, 73 (71%) had a STARHS 
antibody test suggestive of infection within the previous 
4—6 months. Almost all (99, 96.1%) were men and 
90 (90.9%) were MSM. All the men and two out of four 
women were Caucasian with a median age of 36 years 
(range 21—67). The median age was 36 years (range 
21—67). Six individuals (6.1%) reported a history of 
injecting drug use (two MSM, two heterosexual men and 
two heterosexual women). The median CD4 cell count

Table 1. Comparison of features associated with patients in the cluster and non-duster groups.

In cluster Not in cluster P value3

Number of patients 
Male sex
Age (years): median (range)
Number of contacts in 3 months before diagnosis: median (range) 
Homosexual risk group

Highest reported risk in the 3 months before diagnosis of PHI 
Unprotected oral intercourse 
Protected anal intercourse 
Unprotected anal intercourse 
Unprotected vaginal intercourse 
STI in 3 months before diagnosis 

Yes 
No
Not known

CD4 cell count (cells/mm3): median (range)
CD4 cell percentage: median (range)
Viral load (logio copies/ml): median (range)

35 68
35 (100%) 64 (94.1%) 0.30
34 (23-54) 37 (21-67) 0.05
3 (1-100) 2 (1-36) 0.006
32 (97.0%) 58 (85.3%) 0.10

25 (78.1%) 36 (73.5%) 0.83
2 (6.3%) 5 (10.2%) 0.70
28 (87.5%) 32 (65.3%) 0.05
O(-) 8 (16.3%) 0.02

0.31
15 (42.9%) 19 (27.9%)
18 (51.4%) 37 (54.4%)
2 (5.7%) 12 (17.7%) 0.13
612 (195-1477) 474 (196-1259) 0.005
31 (12-40) 26.5 (7-42) 0.003
4.97 (2.03-6.00) 4.94 (2.30-6.00) 0.90

“Entries in table are n (%) unless otherwise specified.

http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top
http://www.mbio.ncsu.edu/
http://bioag.-
http://hiv-web.lanl.gov/
http://v8doc.sas.-
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(available in 101/103) was 526 copies/ml (range 195- 
1477) and the median CD4 cell percentage (available in 
81/103) was 28 (7—42). The median HIV viral plasma 
load was log 4.95 copies/ml (2.03-6.00). Thirteen MSM 
(12.6% of total patients) were infected with viruses that 
contained primary antiretroviral resistance-associated 
mutations. STI were diagnosed concurrently with PHI 
in 34 of the 89 individuals (38.2%) for whom information 
was available. Among the 90 MSM, 61 (68%) reported 
unprotected anal intercourse (UAI) in the 3 months 
before PHI diagnosis; no information was available 
regarding sexual practices in the period preceding this.

Cluster comparison
Viruses from 35 out of 103 individuals (34%) appeared 
within 15 transmission clusters, comprising one cluster of 
five individuals, two of three and 12 of two (full results 
shown in Table 1 and Fig. 1). All were men and 32 (97%) 
were MSM. For individuals within 11 out of 15 clusters, 
the diagnosis of PHI was made within 12 months of each 
other, giving supporting evidence that transmission 
occurred during the PHI period. Those in the cluster 
group had a higher CD4 cell count (P =  0.005), higher 
CD4 cell percentage (P =  0.003), were younger (P  —
0.05), reported a higher number of different sexual 
contacts in the previous 3 months (P =  0.006), and were 
more likely to have engaged in UAI in the 3 months 
before the PHI diagnosis (P =  0.05) in comparison to 
those individuals not within a cluster. High rates of STI at 
the time of PHI were observed in both groups, with a trend 
towards higher rates in those individuals with viruses in a 
cluster (42.9 versus 27.9%, P = 0 .1 3 ). Multivariable 
logistic regression analyses identified the CD4 cell 
percentage [odds ratio (OR) 1.14, 95% confidence interval 
(Cl) 1.04-1.23, P =  0.003] and having more than five 
sexual partners (OR 3.38, 95% Cl 1.13—10.10, P =  0.03) 
as the only independent predictors of belonging to a 
cluster. Six individuals (17%) had antiretroviral-associated 
resistance mutations, of whom two (both T215D in reverse 
transcriptase) belonged to a linkage pair.

Conclusion

In conclusion, the high rates of clustering observed 
within our study support the assertion that PHI may be 
associated with an increased risk of onward transmission. 
The associations we found with younger age, high rates of 
UAI, and sexual partner change identify this as a high-risk 
group for HIV transmission. There was a trend towards 
higher rates of STI in the cluster group on a background 
of extremely high STI rates in the study population, 
supporting the argument for increased STI surveillance, 
particularly of high-risk groups.

The highly significant correlation with CD4 cell counts 
may represent the early disease stage, or rapid contact

tracing and testing of sexual partners of individuals 
diagnosed with PHI. The plasma viral load at diagnosis 
was not predictive of clustering, and it is possible that the 
seminal viral load in men is a more consistent correlate of 
infectiousness, particularly in the context of genital tract 
inflammation, with plasma/genital tract discordance 
playing an important role [7-10]. The presence of the 
same antiretroviral resistance mutation in one cluster pair, 
neither of whom had received antiretroviral therapy, 
illustrates the potential for the secondary spread of such 
resistant strains, as we have previously documented
[33,34]. Our results do not exclude the possibility of a

Outgroup K

Fig. 1. Maximum likelihood phylogenetic tree based on pol 
sequences from 103 individuals with primary HIV-1 infec
tion. Possible transmission clusters are circled. Linkages con
firmed by clinical data are indicated by a red cross. 
Transmission clusters were identified if the bootstrap value 
was equal or greater than 99% and the average genetic 
distance (i.e. branch length) was lower than 0.015 nucleotide 
substitutions per site. Linkages confirmed by clinical data are 
indicated by a red cross. Six pairs of multiple sequences from 
single patients were used as controls for relatedness and are 
indicated by letters (e.g. A indicates multiples sequences from 
patient A). Bootstrap values higher than 50% are indicated on 
the branches.
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common source for each cluster, rather than transmission 
within clusters. However, a phylogenetic tree comprising 
viruses from these 103 primary infections, together with 
more than 2000 pol sequences from prevalent infections 
throughout the UK only identified one further potential 
linkage, and that involved a primary infection case not 
within an existing cluster (data not shown).

Only 31 of the non-cluster group (64.6%) reported UAI, 
but it should be noted that this is only in the time window 
3 months before diagnosis with PHI. Interestingly, 
routinely collected data on recent sexual contacts only 
confirmed three of the linkage pairs that were revealed in 
the phylogenetic analysis, emphasizing the high rates of 
anonymous sexual partners and the difficulty in obtaining 
a reliable sexual history.

Our results provide further evidence that the active 
management of primary infection will reduce HIV 
transmission. HIV prevention programmes have been 
heavily focused on protecting susceptible individuals, but 
accumulating biological and modelling data suggest that 
reducing the infectiousness of HIV-positive individuals 
may also be an effective strategy. A large proportion of PHI 
remains undiagnosed in the community [35,36], and these 
findings support the view that as a disease stage PHI 
represents a major public health threat. Efforts should be 
re-focused on improving rates of diagnosis of individuals 
during PHI, timely contact tracing, risk reduction, the 
management of STI, and possibly early treatment with 
antiretroviral agents in an effort to break transmission 
networks during this unique and possibly crucial stage of 
HIV infection [37]. Furthermore, consideration should be 
given in information and awareness campaigns to highlight 
the possible symptoms of PHI in groups with high rates of 
onward transmission, to encourage such individuals to 
present to appropriate healthcare providers to enable the 
timely diagnosis and management of early infection.

Contributors

M.F. and D. Pillay devised the study. D. Pao, M.F. and 
G.D. recruited patients for the study. D. Pao, M.F., S.H., 
C.S. and D. Pillay wrote the manuscript. P.A.C. 
undertook sequencing and curated the sequences. S.H. 
undertook the phylogenetic analyses. G.M. undertook 
the STARHS analysis. C.S. undertook statistical analyses.

A ck now ledgem en ts_________________
The authors would like to thank the Health Protection 
Agency for funding, and the patients for agreeing to enter 
this study.

References

1. Joint United Nations Programme on HIV/AIDS, http://www. 
unaids.org, copyright 2004. Accessed 30 October 2004.

2. Health Protection Agency, http://www.hpa.org.uk, established 
2002. Accessed 30 October 2004.

3. Murphy G, Charlett A, Jordan LF, Osner N, Gill ON, Parry JV. 
HIV incidence appears constant in men who have sex with 
men despite widespread use of effective antiretroviral ther
apy. AIDS 2004, 18:265-272.

4. Kaufmann GR, Cunningham P, Kelleher AD, Zaunders J, Carr 
A, Vizzard J, et al. Patterns of viral dynamics during primary 
human immunodeficiency virus type 1 infection. /  Infect Dis 
1998, 178:1812-1815.

5. Lindback S, Karlsson AC, Mittler J, Blaxhult A, Carlsson M, 
Briheim G, et a/. Viral dynamics in primary HIV-1 infection. 
AIDS 2000, 14:2283-2291.

6. Little SJ, McLean AR, Spina CA, Richman DD, Havlir DV. Viral 
dynamics of acute HIV-1 infection. /  Exp M ed 1999,190:841- 
850.

7. Coombs RW, Speck CE, Hughes JP, Lee W, Sampoleo R, Ross 
SO, et al. Association between culturable human immunode
ficiency virus type 1 (HIV-1) in semen and HIV-1 RNA levels 
in semen and blood: evidence for compartmentalization of 
HIV-1 between semen and blood. )  Infect Dis 1998,177:320- 
330.

8. Leynaert B, Downs AM, de Vincenzi I. Heterosexual transmis
sion of human immunodeficiency virus: variability of infec- 
tivity throughout the course of infection. European Study 
Goup on Heterosexual Transmission of HIV. Am J Epidemiol 
1998, 148:88-96.

9. Pilcher CD, Tien HC, Eron JJ Jr, Vernazza PL, Leu SY, Stewart 
PW, et al. Brief but efficient: acute HIV infection and the 
sexual transmission of HIV. / Infect Dis 2004, 189:1785- 
1792.

10. Pilcher CD, Shugars DC, Fiscus SA, Miller WC, Menezes P, 
GinerJ, eta l. HIV in body fluids during primary HIV infection: 
implications for pathogenesis, treatment ana public health. 
AIDS 2001, 15:837-845.

11. Gray RH, Wawer MJ, Brookmeyer J, Sewankambo NK, 
Serwadda D, Wabwire-Mangen F, et al. Probability of HIV- 
1 transmission per coital act in monogamous, heterosexual, 
HIV-1-discordant couples in Rakai. Uganda Lancet 2001, 
357:1149-1153.

12. Galvin SR, Cohen MS. The role of sexually transmitted dis
eases in HIV transmission. Nat Rev Microbiol 2004, 2:34-42.

13. Vernazza PL, Eron JJ, Fiscus SA, Cohen MS. Sexual transmis
sion of HIV: infectiousness and prevention. AIDS 1999, 
13:155-166.

14. Zuckerman RA, Whittington WL, Celum CL, Collis TK, Luc- 
chetti AJ, Sanchez JL, et al. Higher concentration of HIV RNA 
in rectal mucosa secretions than in blood and seminal plasma, 
among men who have sex with men, independent of antire
troviral therapy. /  Infect Dis 2004, 190:156-161.

15. Chakraborty H, Sen PK, Helms RW, Vernazza PL, Fiscus SA, 
Eron JJ, et al. Viral burden in genital secretions determines 
male-to-female sexual transmission of HIV: a probabilistic 
empiric model. AIDS 2001, 15:621-627.

16. Koopman JS, Jacquez JA, Welch GW, Simon CP, Foxman B, 
Pollock SM, e t al. The role of early HIV infection in the spread 
of HIV through populations. J Acquir Immune Defic Syndr 
1997, 14:249-258.

17. Jacquez JA, Koopman JS, Simon CP, Longini IM Jr. Role of 
the primary infection in epidemics of HIV infection in gay 
cohorts. J Acquir Immune Defic Syndr 1994, 7:1169-1184.

18. Xiridou M, Geskus R, De Wit J, Coutinho R, Kretzschmar M. 
The contribution of steady and casual partnerships to 
the incidence of HIV infection among homosexual men in 
Amsterdam. AIDS 2003, 17:1029-1038.

19. Pilcher CD, Eron JJ Jr, Vernazza PL, Battegay M, Harr T, Yerly 
S, et al. Sexual transmission during the incubation period of 
primary HIV infection. JAMA 2001, 286:1713-1714.

20. Kahn JO, Walker BD. Acute human immunodeficiency virus 
type 1 infection. N  Engl J M ed  1998, 339:33-39.

21. Dodds JP, Nardone A, Mercey DE, Johnson AM. Increase in 
high-risk sexual behaviour among homosexual men, London 
1996-1998: cross sectional, questionnaire study. BMJ 2000, 
320:1510-1511.

22. ColfaxG, Buchbinder SP, Cornelisse PGA, VittinghoffE, Mayer 
K, Celum C. Sexual risk behaviours and implications for

http://www
http://www.hpa.org.uk


90 AIDS 2005, Vol 19 No 1

secondary HIV transmission during and after HIV seroconver
sion. AIDS 2002, 16:1529-1535.

23. Colfax C, Mansergh G, Vittinghoff E, Guzman R, Marks G, 
Buchbinder S. Drug use and high-risk sexual behaviour 
among circuit party participants. In: Xlllth International 
Conference on AIDS. Durban, 2000 [Abstract TuPeC3422].

24. Katz MH, Schwarcz SK, Kellogg TA, Klausner JD, Dilley JW, 
Gibson S, et al. Impact of highly active antiretroviral treat
ment on HIV seroincidence among men who have sex with 
men: San Francisco. Am J Public Health 2002, 92:388-394.

25. Clements MS, Prestage G, Grulich A, Van De Ven P, Kippax S, 
Law MG. Modeling trends in HIV incidence among homo
sexual men in Australia 1995-2006. / Acquir Immune Defic 
Syndr 2004, 35:401-406.

26. Little SJ, Holte S, Routy JP, Daar ES, Markowitz M, Collier AC, 
et al. Antiretroviral-drug resistance among patients recently 
infected with HIV. N Engl J M ed  2002, 347:385-394.

27. Duwe S, Brunn M, Altmann D, Hamouda O, Schmidt B, Walter 
H, et al. Frequency of genotypic and phenotypic drug- 
resistant HIV-1 among therapy-naive patients of the German 
seroconverter study. J Acquir Immune Defic Syndr 2001, 
26:266-273.

28. Grant RM, Hecht FM, Warmerdam M, Liu L, Liegler T, Petro- 
poulos CJ, et a I. Time trends in primary HIV-1 drug resistance 
among recently infected persons. JAMA 2002, 288:181- 
188.

29. Pillay D, Cane PA, Shirley J, Porter K. Detection of drug 
resistance associated mutations in HIV primary infection 
within the UK. AIDS 2000, 14:906-908.

30. Janssen RS, Satten GA, Stramer SL, Rawal BD, O'Brien TR, 
Weiblen BJ, et al. New testing strategy to detect early HIV-1 
infection for use in incidence estimates and for clinical and 
prevention purposes. JAMA 1998, 280:42-48. Erratum in 
JAMA 1999; 281: 1893.

31. Kothe D, Byers RH, Caudill SP, Satten GA, Janssen RS, Hannon 
WH, et al. Performance characteristics of a new less sensitive 
HIV-1 enzyme immunoassay for use in estimating HIV ser
oincidence. J Acquir Immune Defic Syndr 2003, 33:625-634.

32. Hue S, Clewley J, Cane P, Pillay D. HIV-1 p o l gene variation is 
sufficient for reconstruction of transmissions in the era of 
antiretroviral therapy. AIDS 2004, 18:719-728.

33. Yerlv S, Vora S, Rizzardi P, Chave JP, Vernazza PL, Flepp M, 
e t al. Acute HIV infection: impact on the spread of HIV and 
transmission of drug resistance. AIDS 2001, 15:2287-2292.

34. Taylor S, Cane P, Hue S, Xu L, Wrin T, Lie Y, et al. Identifica
tion of a transmission chain of HIV type 1 containing drug 
resistance-associated mutations. AIDS Res Hum Retroviruses 
2003, 19:353-361.

35. Melzer M, Brown M, Mullen J, O'Shea S, Chrystie I, Banatvala J. 
Undiagnosed symptomatic primary HIV infections in South 
London [Letter]. J Infect 2001, 42:297-298.

36. Pilcher CD, McPherson JT, Leone PA, Smurzynski M, 
Owen-O'Dowd J, Peace-Brewer AL, eta l. Real-time, universal 
screening for acute HIV infection in a routine HIV counseling 
and testing population. JAMA 2002, 288:216-221.

37. Cates W Jr, Chesney MA, Cohen MS. Primary HIV infection -  
a public health opportunity. Am } Public Health 1997, 
87:1928-1930.


