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Abstract

Polymeric biomaterials used for applications such as coronary and vascular 

bypass grafting have demonstrated poor patency due to their surface 

thrombogenicity, initiation of chronic inflammation and unfavourable host tissue 

responses.

The aim of this thesis has been to develop a peptide which would 

demonstrate an inhibitory effect on blood coagulation and/or improved endothelial 

cell adhesion. Employing the RGD (Arginine-Glycine-Aspartate) peptide as a base, 

GRGD, GRGDS and GRGD(AhxGRGD)3 were produced. In order to allow 

incorporation of the peptide into the polymer matrix the corresponding lauric acid 

(LA) conjugated peptides were synthesised. In  vitro determination of blood clotting 

time and tissue factor activity was utilised to determine the optimum peptide 

concentration for an anti-thrombogenic effect. Cytotoxicity and cell adhesion were 

assessed on endothelial cells. The results obtained suggest that LA-GRGD offered 

the best anti-thrombogenic effect whilst LA-GRGDS had the most improved cell 

adhesive effect. These two peptides were then used to investigate the surface 

modification of poly(carbonate-urea)urethane (PCU).

The PCU surface was modified by passive peptide coating or peptide 

incorporation into the polymer matrix. Cell adhesion and activity studies showed 

that the incorporated LA-GRGDS peptide produced a significant (P<0.05) 

improvement. Biocompatibility studies demonstrated no adverse effects with 

respect to either platelet adhesion or haemolysis. The inhibition of platelet factor 4 

obtained with coated GRGD, GRGDS and incorporated LA-GRGD was comparable 

to that obtained with heparin coating. An in vitro flow study showed that 

significantly (P<0.005) more incorporated peptide (42.6%) was retained on the 

surface of the polymer after 8 hours flow compared to coated (20%).

In conclusion the direct incorporation of an LA conjugated peptide into the 

matrix of the polymer was successful with the peptide retaining its activity. This 

process of incorporation by solvent casting is attractive from a commercial 

viewpoint and shows the potential for future development and use in a clinical 

situation to produce a surface modified PCU polymer.
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RGDV Arg-Gly-Asp-Val

SEM Scanning electron microscopy

TEG Thrombelastography

TEG-r Thrombelastograph reaction time

TF Tissue factor

TFA Trifluoroacetic acid

TIA's Transient ischemic attacks

TPA Tissue plasminogen activator

TXA2 Thromboxane A2

UFH Unfractionated heparin

vWF von Willebrand factor
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1.1 Introduction

Cardiovascular disease (CVD) is the number one killer in Europe, 

accounting for nearly half of all deaths. In the majority of European countries, 

approximately 40 percent of people who die before the age of 74 are killed by 

cardiovascular disease [1]. Based on current disease trends and the growing 

number of elderly people in the European population, CVD is expected to 

continue to be the major killer disease in Europe in the foreseeable future.

Atherosclerosis, commonly referred to as "hardening of the arteries", is 

responsible for most cardiovascular disease [2]. Atherosclerosis is the build up 

of fatty materials (plaque) on the inside of the arteries. The inner surface of 

arteries can be made rough by fatty deposits or plaques and blood flow through 

them can become reduced. As blood passes more slowly through these rough, 

narrowed arteries, blood clots are more likely to form. In some cases, blood 

clots or thrombi can become so large that they block an artery completely. 

Narrowing, loss of elasticity or blockage of an artery can have serious effects on 

the part of the body that depends on that artery for a steady supply of blood. 

Such effects include claudication (due to poor circulation to the leg muscles), 

angina (due to poor circulation to the heart muscle or coronary arteries), and 

narrowing or blockage of the arteries that supply the brain with blood which can 

result in a stroke or transient ischemic attacks (TIAs).

The common procedures used to treat a narrowing or blocked artery are 

angioplasty and bypass surgery. Angioplasty uses a catheter with a small 

inflatable balloon to open a narrowed or partially blocked artery. The balloon is 

pushed into the area of the blockage, and then inflated to squeeze the plaque 

back against the artery's wall. After repeated inflations have completely cleared 

the artery, a stent is pushed to the site of blockage and left there to keep the 

artery from closing up again. Bypass surgery is performed to treat a potentially 

occluded artery by creating a new route along which the blood can flow. Since 

its introduction in the early 1950s, bypass surgery has become one of the most
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common surgeries performed in the western world. The procedure can improve 

the quality of life and even add years to it, especially when combined with a 

healthy lifestyle.

The ideal source of material for bypass surgery is autologous veins or 

arteries which have been shown to have a high success rate [3, 4]. However in 

many patients adequate autologous vein is lacking leading to the necessity of 

using synthetic or prosthetic materials instead [5, 6]. Although metal, glass and 

rubber have been tried as blood conduits, the greatest attention has been 

devoted to various polymers [7]. Many polymers have the advantage of being 

essentially inert within the human body and they have the additional advantages 

of durability, flexibility and moldability. Although plastics are ideal from many 

standpoints for the construction of prosthetic devices, their thrombogenic 

characteristics significantly limit their use as long-term implants. The first 

polymer utilised as a synthetic graft to bridge arterial defects in humans was 

made of polyethylene terephthalate (Dacron™) in 1954. Expanded 

polytetrafluoroethylene (ePTFE) is the other material commonly used for 

synthetic grafts currently in clinical practice. Both Dacron™ and ePTFE are rigid 

which can result in a compliance mismatch at the anastomosis. Polyurethane 

polymers have been popularly used in biomedical applications due to their 

mechanical properties such as compliance, strength, durability and tolerance 

within the body [8, 9]. The clinical use of polyurethanes has been limited 

currently due to their tendency to suffer from biodegradation [10]. The recent 

development of a novel stress-free compliant poly(carbonate-urea)urethane 

(PCU), with similar compliance to lower limb arteries, has demonstrated an 

improved resistance to chemical and environmental degradation that may 

overcome these limitations [11, 12].

At the present time thrombosis on prosthetic surfaces and also 

compliance mismatch between polymeric graft and native vessel is considered 

to be a major hindrance to the continued progress and ultimate solution of the 

use of prosthetic replacements for vascular vessels. Vascular prostheses have



been used with high success rates in large artery substitutions. However grafts 

in small calibre vessels (<6mm diameter) for replacement of artery or vein

segments suffer from high failure rates and lack long-term functionality [13,

14].

Rudolf Virchow (1845) first suggested the important factors leading to 

thrombosis on prosthetic surfaces are: 1) hypercoagulable blood factors 2) 

stasis of flow and 3) loss of the normal vascular lining. Any one of these factors 

alone usually will not produce thrombosis; however, any two of the factors 

together will ordinarily lead to thrombus formation (Figure 1.1). Prosthetic 

vascular graft, in small calibre vessels will definitely provide the latter two

factors and the surgical trauma required to replace or bypass a vessel may

provide the first factor.

The search for more effective small diameter vascular grafts has 

increased greatly in recent years. It is assumed that the low procoagulant 

activity and significant antithrombotic activity of endothelial cells lining the 

lumen of a normal vascular vessel contribute to the maintenance of blood 

fluidity [15]. It may be that no prosthetic material devoid of endothelial cells will 

ever be satisfactory for small-diameter vascular prostheses since it cannot 

provide a hypothetical critical minimal level of antithrombotic activity in a low 

flow situation. However, since large-diameter grafts do successfully replace 

large segments, research continues on the design of prosthetic materials that 

will have reduced thrombogenecity relative to current material or an anti- 

thrombogenic (blood compatible) surface.

A variety of devices can be successfully accepted by most patients 

through the administration of systemic anticoagulants such as heparin and 

warfarin. However, the risk of complications or drug intolerance related to these 

anticoagulants is ever present, and only adds to the inherent risk of device

associated complications. Some patients cannot tolerate any pharmaceutical 

regimen used to counteract the clotting that can be caused by synthetic 

materials, and are therefore ineligible to receive certain blood-contacting
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devices. For these reasons, research into blood-compatible materials has been 

increasingly pursued

Another process to improve blood compatibility is to covalently bind 

agents known to inhibit blood coagulation and/or platelet adhesion to the 

surface of the polymer. The first successful step taken towards this study was 

by Gott in 1963 [16]. His surface modification of a polymer by chemically 

binding a drug (heparin) known to inhibit blood coagulation has received much 

attention. Since then many discoveries have been made demonstrating that 

surface modification can improve the blood compatibility of prosthetic materials 

in vitro experiments.

Tissue engineering is another approach which has extensively been 

studied by several research groups to improve blood compatibility of synthetic 

materials. An initial attempt at tissue engineering a blood vessel substitute 

involved seeding the lumen of a synthetic graft with endothelial cells (ECs). 

Seeding involves extracting autologous ECs and then lining these cells onto the 

graft lumen. Herring together with Mansfield[12] and co-workers, suggested 

that this would provide a more biocompatible surface and thereby decrease 

thrombosis and intimal hyperplasia (IH) [17, 18]. Herring and co-workers then 

showed clinical evidence in humans that when a graft was seeded, an extensive 

lining of endothelial cells was possible in addition endothelial cell seeding that 

also results in fewer graft-based infections [19, 20].
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The Aim o f this research was:

To develop an anticoagulant peptide for surface modification of a PCU polymer, 

validate the peptide effect and investigate the potential of the surface modified 

polymer combined with the peptide to enhance blood compatibility.
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CHAPTER TWO:

ANTICOAGULANT AND ANTIPLATELET AGENTS: 
USAGE AND CURRENT APPLICATIONS IN SURFACE 

MODIFICATION OF BIOMATERIALS USED IN  
CARDIOVASCULAR TISSUE ENGINEERING: A REVIEW
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2.1 Introduction

This chapter is a background study and literature review on usage and 

current application of antiplatelet and anticoagulant agents in the surface 

modification of biomaterials [21]. Primarily the current status of antiplatelet and 

anticoagulant agents is highlighted from a clinical perspective, their current and 

potential clinical usages and their modes of respective action during the 

coagulation cascade process. It is then focused on these agents' roles in 

improving the blood-compatibility of biomaterials as used in cardiovascular 

applications.

Diseases of the cardiovascular system remain the leading cause of morbidity 

and mortality worldwide. Cardiovascular diseases include myocardial infarction, 

stroke, and peripheral vascular diseases. The traditional strategies of prevention 

and treatment of these cardiovascular diseases are classified as medical or 

surgical. The commonly used and routinely available agents for antiplatelet and 

anticoagulation therapy are aspirin and heparin.

Over the past several years, controlled trials totalling more than 100,000 

subjects have shown that antiplatelet therapy mainly aspirin, reduces the risk of 

vascular death by about one sixth and the risk of non-fatal myocardial infarction 

and stroke by about one third in 'high risk' subjects with clinical vascular disease 

[22]. Unfractionated heparin (UFH) has also been one of the established 

anticoagulant therapy of choice for prevention and treatment of thrombotic 

disorders for many years. However, in the past several years, newer 

anticoagulants and antiplatelets such as the direct thrombin inhibitors, 

thienopyridines and intravenous platelet glycoprotein Ilb/IIIa (GPIIb/IIIa) 

inhibitors have been found to be important adjunctive therapy for reduction of 

vascular death and non-fatal myocardial infraction (MI) [3, 23-25].

A significant proportion of high-risk patients with arterial occlusive diseases 

undergo open surgery with coronary and peripheral occlusions being bypass 

grafted. Vascular grafts are used to bypass or replace occluded (narrowed)
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arteries, both coronary and peripheral [26-28]. The ideal biological replacement 

for blood vessel should be able to properly function, repair, remodel and grow.

Venous autographs, which are usually taken from patient's saphenous vein, 

are used to replace small to medium sized arteries [3, 4, 29]. These vein grafts 

have a high success rate, however about one third of the patients in need of a 

vascular graft have poor saphenous veins, usually because of peripheral 

vascular disease (PVD), too small, or non-existent because they have already 

been removed for another bypass or vessel replacement [5, 30]. For these 

patients artificial or prosthetic grafts are used [6, 31]. Currently artificial grafts 

include treated natural tissue, laboratory-engineered tissue, synthetic polymer 

fabrics and synthetic grafts such as polyethylene-terephthalate (Dacron) and 

expanded polytetraflouroethylene (ePTFE).

Dacron and ePTFE are the two commonly used vascular prosthetic graft 

materials. These prostheses have been used with high success rates in large 

artery substitutions, but grafts in small calibre vessels (<6mm diameter) suffer 

from high failure rates, lacking long-term functionality. The inherent 

thrombogenicity of the graft material and the development of stenotic lesions or 

intimal hyperplasia around the anastomosis mainly due to a compliance 

mismatch between the graft and the native blood vessel [32-34] are the main 

reasons behind the graft failure.

In order to reduce surface thrombogenicity of such prosthetic materials 

numerous research groups including ours have been investigating a wide variety 

of approaches. These include surface modification and tissue engineering or cell 

seeding of the prosthetic material [35-41]. Cell seeding is a process of lining 

ECs to the lumen of any cardiovascular device. ECs lining the lumen of a normal 

vascular vessel prevent platelet adhesion and blood coagulation or formation of 

thrombosis [42]. Flence to encourage the growth of a layer of endothelial cells 

over the device surface has been an alternative method to prevent 

thrombogenicity and improve blood compatibility.
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Different surface modification agents such as the anticoagulant agent 

heparin or the anti-adherent agent polyethylene oxide (PEO) have been used. In 

a number of laboratory and clinical studies heparin-coated biomaterial devices 

have been shown to enhance various aspects of blood compatibility. Heparin- 

coated cardiopulmonary bypass circuit reduces platelet adhesion, platelet and 

complement activation [43-47]. However, heparin coating can degrade (or 

leech) [48] over time and is therefore not suitable for use on long-term blood- 

contacting devices such as pacemaker leads or heart valves. PEO prevents 

platelet attachment also repels other cells [49], making these coatings 

inappropriate for devices such as vascular grafts or coronary stents, onto which 

cell overgrowth is desired.

The anticoagulant agent dipyridamole and the direct thrombin inhibitor 

recombinant hirudin (r-hirudin) have been successfully coupled to synthetic 

graft surfaces. Dipyridamole treated polyurethane grafting has reduced 

thrombogenicity and platelet adhesion in vitro [50] but provided no beneficial 

evidence in vivo. Covalently bound r-hirudin to Dacron or polyurethane has also 

inhibited thrombin and reduced thrombogenicity in vitro [51-53].

2.2 The clinical uses of antiplatelet and anticoagulant agents

2.2.1 Thrombogenesis

In normal healthy non-disrupted vascular endothelium platelets and blood 

coagulation factors are not activated. Endothelial cells synthesize several 

inhibitors of thrombosis; plasminogen activators, thrombomodulin and heparan 

[54]. These molecules modulate coagulation and promote fibrinolysis. The 

matrix of the vessel wall contains thrombogenic elements including adhesive 

proteins, such as collagen and von Willebrand factor (vWF) (both of which 

promote platelet adhesion), and tissue factor (TF) that triggers blood 

coagulation cascade (Figure 2.1) [55].
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Thrombosis however, may occur if the haemostatic stimulus becomes 

unregulated for example if the capacity of the inhibitory pathway is impaired, or 

more commonly, the capacity of the natural anticoagulant mechanism is 

overwhelmed by the intensity of the stimulus [56]. One example being acute 

stroke [57]. Important predisposing conditions to thrombosis are low flow state, 

disturbed flow [58]and altered endothelial coverage (ulceration or 

endarterectomy). Injury of the vessel wall plays a major role in vascular 

thrombosis [59]. However, it is more important in the pathogenesis of arterial 

thrombosis than its venous counterpart.

Arterial thrombi are predominantly composed of platelets, a scanty amount 

of fibrin, and a few red blood cells, hence the term "white thrombi." Because of 

the high platelet composition of these thrombi, antiplatelet agents, rather than 

anticoagulants, have been used in the treatment and prevention of arterial 

thrombosis [60]. However, venous thrombi are mainly composed of red blood 

cells in a fibrin mesh, hence the term "red thrombi" [58] and anticoagulant 

agents are used in the treatment of venous thrombosis.

When a blood vessel injury occurs (Figure 2.2), a critical event in platelet 

aggregation is the expression of surface membrane receptor GPIIb/IIIa that has 

the capacity to bind fibrinogen as well as vWF, fibronectin, and vitronectin [61]. 

Fibrinogen appears to be the most important in aggregation by virtue of its 

divalent structure that allows it to form a bridge from platelet to platelet, 

thereby mediating aggregation [62]. While vWF and collagen can interact with 

resting platelets, fibrinogen forms a high-affinity bond only with the integrin 

GPIIb/IIIa on activated platelets.

Many agonists, such as thrombin, adenosine diphosphate (ADP) [63], 

collagen, and arachidonic acid, have the ability to induce platelet aggregation 

and secretion [64]. Specific receptors exist on the platelet surface for these 

agonists.
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Figure 2.1 The blood coagulation cascade with sites of action of the 
anticoagulant drugs. The classic coagulation system is divided into extrinsic and 
intrinsic pathways. An intrinsic system that is activated by coagulation factors 
that is already present in the blood and an extrinsic system that is initiated 
outside of blood vessels in the presence of injury to a vessel. In the extrinsic 
system, factor VII, which is present in whole blood, is converted into its 
activated form factor Vila, by binding to (TF). The TF/VIIa complex formed then 
converts factor X into its activated form Xa. In turn this forms a complex with 
factor Va and so brings about cleavage of prothrombin in order to form 
thrombin. Thrombin can then cleave fibrinogen to form fibrin, which polymerises 
to form fibrin sheets.
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2.2.2 . P latelet inhibiting agents

The relevance of antiplatelet drugs has been firmly established by clinical 

trials and experience with drugs such as aspirin. There are several drugs that 

are used to inhibit platelet aggregation. Of the classes of agents below, aspirin, 

dipyridamole, and the thienopyridines are the only oral antiplatelet agents 

currently approved by the Food and Drug Administration for use in-patients. 

Nonsteroidal anti-inflammatory drugs (NSAIDs) come in both oral and 

intravenous (IV) forms. The GP Ilb/IIIa agents are currently only available in IV 

forms. The ideal antiplatelet drug routinely used for management of 

cardiovascular disease must be orally effective, rapidly acting, non-toxic, 

reasonable antithrombotic efficiency, and minimal side effects in particular 

bleeding [65].
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Figure 2.2 The mechanism of platelets in response to injury of blood vessel 
with sites of action of antiplatelet drugs. When a blood vessel injury occurs, 
platelets exhibit a sequence of events. These events include 1) adhesion of 
platelets to the injury site, 2) spreading of adherent platelets over the exposed 
subendothelial surface, 3) secretion of platelet granule constituents, 4) platelet 
aggregation, and 5) thrombus formation.
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2.2 .2 .1  Cydooxygenose inhibitors: Aspirin and aspirin-like drug

As a general class nonsteroidal anti-inflammatory drugs (NSAIDs), typically 

acetyl salicyclic acid (Aspirin™), indomethacin, and ibuprofen, interferes with 

the binding of arachidonic acid in the cyclooxygenase active site of the enzyme. 

Aspirin (Figure 2.3) is the most widely used inhibitor of platelet function. It 

interferes with platelet aggregation by inhibiting the synthesis of thromboxane 

A2 (TXA2) through the irreversible acetylation of cyclooxygenase [66]. Other 

NSAIDs compete reversibly with arachidonic acid for binding to the 

cyclooxygenase site.

o

o

Figure 2.3 Chemical structure of Aspirin

2.2.2 .2 ADP receptor blockers: thienopyridine derivatives

Ticlopidine (Ticlid™) and its more recently developed analog clopidogrel 

(Plavix™), are thienopyridine derivatives. They inhibit the binding of ADP to its 

platelet receptor (Figure 2.2); this ADP receptor blockade leads to direct 

inhibition of the binding of fibrinogen to the glycoprotein Ilb/IIIa complex [67, 

68]. Ticlopidine may also interfere with vWF, resulting in less binding of vWF 

factor to platelet receptors.

Ticlopidine and clopidogrel (Figure 2.4) can both be administered orally. Both 

agents are inactive in vitro, requiring breakdown to an unidentified active
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metabolite or metabolites to achieve in vivo activity [69]. Activation seems to 

occur in the liver, and the active metabolites are primarily excreted renally.

Ticlopidine has been reported to improve the long- term patency of 

saphenous vein bypass graft in patients with PVD [70]. It is used often 

concurrently with aspirin to prevent thrombosis in patients who have had 

coronary artery stents implanted [71]. Ticlopidine has a number of potentially 

serious side effects; it has been associated with a low rate of severe 

neutropenia, which requires the monitoring of white cell counts during the first 

few weeks of treatment [72].

Treatment with clopidogrol has resulted in a slightly greater reduction in 

endpoint of patients with PVD. Because it apparently has fewer side effects than 

ticlopidine, clopidegrol has been substituted increasingly for ticlopidine to 

prevent subacute thrombosis in intracoronary stents [73-75]. Combined 

clopidogrel and aspirin are frequently used in the prevention of subacute 

thrombosis following coronary stent implantation, and appear to be a safe and 

effective therapy [76-78]. Further, clopidogrel is associated with a reduction in 

gastrointestinal haemorrhage, making it a valuable therapeutic alternative to 

aspirin in oral, long-term prevention of atherothrombotic vascular occlusion 

[69].

(a) (b)

Figure 2.4 Chemical structure of thienopyridine derivatives a) Clopidegrol and 
b) Ticlopidine
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2 .2 .2 .3  Adenosine uptake inhibitor: dipyridam ole

The pyrimidopyrimidine derivative dipyridamole (Persantine™) is a 

phosphdiesterase inhibitor that has been used as an antiplatelet agent, almost 

always concurrently with either aspirin or warfarin.

Elevation of intracellular cyclic adenosine monophosphate (cAMP) levels by 

agents that activate adenylate cyclase or that inhibit the cyclic 

phosphodiesterases results in inhibition of platelet responses [64]. Dipyridamole 

(Figure 2.5), a weak phosphodiesterase inhibitor, appears not to inhibit 

aggregation responses to collagen, epinephrine, and ADP at usual doses but has 

a synergistic effect with aspirin in preventing platelet aggregation in 

thromboembolic disorders (Table 2.1). Its phosphodiesterase inhibitory activity 

potentiates the effect of adenosine on platelets. As a result, dipyridamole may 

have an effect on the initial phase of platelet adhesion as well as platelet 

aggregation [59].

Dipyridamole used concurrently with aspirin has increased coronary blood 

flow and graft patency following coronary bypass surgery [79-81]. It was as 

effective in reducing smooth muscle cell proliferation as the combination of 

aspirin and dipyridamole [82].

h2cho

•ch2

h ,c
OH

OH

Figure 2.5 Chemical structure of Dipyridamole
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2 .2 .2 .4  P latelet glycoprotein I lb / I I Ia  -  inhibitors

Ligand binding to GP Ilb/IIIa receptor on activated platelets is a pre-request 

for platelet aggregation and formation of a platelet thrombosis [83, 84]. Thus 

the GP Ilb/IIIa receptor has been a target for the development of drugs to 

inhibit platelet-mediated thrombus formation (Figure 2.2). Several intravenous 

medications directed specifically at this receptor (called platelet GP Ilb/IIIa 

receptor antagonists) have emerged. These include the human-murine chimeric 

monoclonal antibody Fab fragment abciximab, the peptide antagonist 

eptifibatide and the peptidomimetics tirofiban (Table 2.1).

2.2.2.4.1 Abcixim ab - Abciximab (c7E3 Fab, Reopro™) is the Fab fragment 

of a human-murine chimeric monoclonal antibody that inhibits agonist- 

stimulated fibrinogen binding of GP Ilb/IIIa receptor and in vitro platelet 

aggregation [85]. It was the first agent of this class to demonstrate clinical 

effectiveness (Table 2.1) [86]. Several of the specific properties of abciximab, 

such as its long half-life, lack of receptor-blocking specificity, and some 

tendency for antigenicity, have prompted the development of alternative GP 

Ilb/IIIa inhibitprs with distinct pharmacological profiles [87].

Primarily, the drug inhibits platelet aggregation, but it may also have 

anticoagulant activity and other beneficial effects, such as inhibiting migration 

and promoting apoptosis of smooth muscle cells [88]. The drug is used in 

conjunction with heparin and aspirin to prevent ischaemic complications 

associated with percutaneous coronary revascularisation in-patients with 

coronary heart disease [89]. Large and well designed clinical studies have 

shown abciximab, as an adjunct to aspirin and heparin, to reduce by around 

one-third to one-half, the incidence of ischaemic complications within 30 days of 

percutaneous coronary revascularisation [90].
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2.2.2.4.2 E ptifiban  - Eptifiban (Integrelin™) is a synthetic cyclic 

heptapeptide based on the Lys-Gly-Asp (KGD) motif of the snake venom 

disintegrin barbourin. It has shown high specificity and high affinity for 

GPIIb/IIIa and a short half-life [91]. Eptifiban (Figure 2.6) affords rapid, 

competitive and reversible platelet inhibition when administered with 

concomitant aspirin and heparin in-patients undergoing elective percutaneous 

coronary intervention [88]. A large, multicentre study designed to assess the 

use of eptifiban on patients undergoing coronary intervention supported the 

notion that the drug does not increase the risk of bleeding [92]. During coronary 

bypass surgery, eptifibatide did significantly decrease the incidence of 

perioperative MI.

Figure 2.6 Chemical structure of Eptifiban

(Image adapted from www.pharmazeutische-zeitung.de)

2 .2 .2 .4 3  T irofiban  - Tirofiban (Aggrastat™) is a tyrosine derivative that 

inhibits fibrinogen binding to GP Ila/IIIb. This particular drug is an Arg-Gly-Asp 

(RGD)-based peptidomimetic that effectively blocks the surface glycoprotein

NH;
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GPIIb/IIIa receptor reducing thrombin generation and subsequently platelet 

aggregation and secretion [93, 94]. The drug is used intravenously 

administered, together with heparin for coronary applications (unstable angina, 

non-Q-wave MI, and angioplasty) but not in-patients who have hypertension or 

have had haemorrhagic stroke or suffered trauma. The use of tirofiban (Figure 

2.7) with heparin has resulted in a significant decrease in the composite 

endpoints of death, MI and refractory ischemia [44, 95, 96]. However, the 

benefit has been short term for patients with acute coronary syndromes. The 

most common complication with this drug is excessive bleeding and in ~5% of 

such patients pelvic pain and slowing of the heart rate together with dizziness.

Figure 2.7 Chemical structure of Tirofiban

(Image adapted from www.pharmazeutische-zeitung.de)

2.2.3 Anticoagulant agents

Anticoagulant drugs represent a wide group of natural agents, recombinant 

agents' equivalent to some of the naturally occurring proteins and synthetic 

agents. This group of drugs is characterized by marked structural and functional 

heterogeneity. The coagulation cascade reaction result in the formation of 

thrombin and subsequently fibrin. The thrombogenic effects of thrombin can be
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inhibited by inactivation of the enzyme or by preventing thrombin generation 

from precursor coagulation proteins (Figure 2.1). Agents can inactivate thrombin 

indirectly, by activating naturally occurring thrombin inhibitors or directly by 

binding to thrombin and preventing it from interacting with its substrates.

2.2.3.1 Coumarin derivatives

The coumarin compounds in common clinical uses are warfarin (Coumadin), 

acenocoumarol and phenprocoumon. These oral anticoagulants induce their 

anticoagulant effect by inhibiting the hepatic synthesis of 4 vitamin K- 

dependent coagulation proteins: factors II (prothrombin), VII, IX and X that act 

sequentially to produce thrombin (Figure 2.1) [97, 98].

Warfarin (Figure 2.8) is used to prevent and treat patients with venous 

thrombosis and pulmonary embolism (Table 2). It is also used to treat and 

prevent dangerous blood clotting in-patients with atrial fibrillation and in some 

cases, to prevent stroke. Since warfarin is an oral anticoagulant, it is used for 

long term anticoagulation therapy. However it has several disadvantages in use. 

It interacts with a wide range of drugs, which inhibit or induce liver metabolism, 

reduce binding to serum proteins, affect vitamin K dependent factors or 

absorption of warfarin. Furthermore, risk of haemorrhage is significantly 

increased in elderly patients and with concurrent administration of aspirin [99].

OH

Figure 2.8 Chemical structure of Warfarin
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2.2.3.2 Heparin

Heparin (Figure 2.9) is a family of glycosaminoglycans of various molecular 

weights. A specific pentasaccharide in the heparin molecule is the crucial 

structural element for the high-affinity binding of heparin to ATIII, and thus for 

heparin anticoagulant activity. Heparin is an indirect thrombin inhibitor. ATIII is 

the molecular target of heparin and when it is activated it binds either thrombin 

(activated factor II) or activated factor X (Figure 2.1).

Low molecular weight heparins (LMWH) are produced by enzymatic or 

chemical degradation of unfractionated heparin (UFH), and consist of smaller 

polysaccharide chains with higher ratios of anti-Xa: anti-IIa activity than UFH 

(Table 2.2) [91].

o = s - oI
OH

OH
HO

A '
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Figure 2.9 Chemical structure of Heparin (n = number of polysaccharide 
chains)

UFH has been the established therapy for prevention and treatment of 

thrombotic disorders for many years. Although safe and effective, there are 

substantial problems, including the need for regular laboratory monitoring, wide 

differences in responses between patients and the small risk of a potentially life- 

threatening, heparin-induced thrombocytopenia (HIT). LMWH differ from those
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of UFH, because they have greater bio-availability after subcutaneous 

administration (about 100%), longer half-life, dose-independent clearance and 

more predictable anticoagulant response due to these factors as well as less 

binding to plasma proteins and vascular cells. At a higher dose these drugs are 

used to treat active thrombotic disease and at lower dose to prevent 

thrombosis. The LMWHs, dalteparin, enoxaparin, and tinzaparin were evaluated 

in unstable angina and have been found to be safe and effective alternative to 

heparin therapy or aspirin alone for patients with unstable coronary artery 

disease [70, 88, 100]. Recent trials have shown, however, that differences exist 

in safety and efficacy between different LMWHs [101, 102].

Although heparin (UFH and LMWH) can inhibit thrombin function, it has a 

number of drawbacks as a therapeutic agent. Heparin requires ATIII as a 

cofactor for anticoagulation. In addition, heparin has no affinity for clot-bound 

thrombin and thus is ineffective in dissolving pre-existing clots [103]. A small 

but important percentage of patients (1-10%) develop HIT, a potentially severe 

complication that can lead to limb amputation or death.

2.2.3 .3 Hirudin and its derivatives

Natural hirudin is not a single entity but rather a generic name for a group of 

structurally similar single-chain polypeptides ('hirudins') of a length of 65 or 66 

amino acids. Initially it is isolated from the salivary glands of the medicinal 

leech, Hirudo medicinalis [104, 105], and it is now available through 

recombinant DNA technology (r-hirudins, including lepirudin and desirudin) 

(Table 2.2)

Anticoagulant action of hirudin is the result of potent, direct and specific 

inhibition of the enzymatically active site of thrombin. Hirudin inhibits free and 

fibrin (clot)-bound thrombin (Figure 2.1). Several recent trials have evaluated 

the safety and efficacy of hirudin when given in the setting of acute MI, 

unstable angina, or percutaneous transluminal coronary angioplasty.
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The data from organisation to assess strategies for ischemic syndromes 

(OASIS-2) suggest that r-hirudin is superior to heparin in preventing 

cardiovascular death, myocardial infarction, and refractory angina with an 

acceptable safety profile in patients with unstable angina or acute MI without ST 

elevation [56].

Hirudin unlike heparin, the anticoagulant action is not dependent on 

circulating ATIII or heparin cofactor II. Thus, r-hirudin can be used effectively in 

ATIII- and heparin cofactor-deficient patients. In addition, anti-heparin proteins 

do not inactivate hirudin, e.g. platelet factor 4, which neutralize the anti

coagulant activity of heparin. Other benefits of hirudin include a more uniform 

anticoagulant effect, much weaker allergenicity and a relative lack of effect on 

the endothelium.

2.2.3 .4 Bivalirudin

Bivalirudin (Hirulog™) is a 20 amino-acid peptide containing the two active 

sites of hirudin separated by a (Gly) 4 bridge. It is a direct-acting irreversible 

thrombin inhibitor (Figure 2.1), which can inactivate both soluble and clot-bound 

thrombin. When bound to thrombin, all effects of thrombin are inhibited, 

including activation of platelets, cleavage of fibrinogen, and activation of the 

positive amplification reactions of thrombin XI. Advantages over heparin include 

activity against clot-bound thrombin, more predictable anticoagulation, and no 

inhibition by components of the platelet release reaction.

Drug-drug interaction studies have found no clinically relevant interactions 

between bivalirudin and ticlopidine, abciximab, tirofiban or eptifiban. Bivalirudin 

is well tolerated by patients previously receiving LMWH and switching from 

heparin to bivalirudin reduces ischemic and bleeding event.

In patients undergoing percutaneous coronary interventions, bivalirudin has 

been associated with equivalent efficacy but lower bleeding rates than UFH 

[106, 107]. During coronary angioplasty for unstable angina, bivalirudin has 

reduced ischemic complications and bleeding after angioplasty [108].
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2.2 .3 .5 Argatroban

Argatroban is a direct thrombin inhibitor that reversibly binds to the thrombin 

active site. It is derived from L-arginine and is capable of inhibiting the action of 

both free and clot-associated thrombin and it does not interact with heparin- 

induced antibodies.

Argatroban is the first synthetic direct thrombin inhibitor approved for the 

prevention and treatment of thrombosis in patients with HIT (Table 2.2). 

Argatroban anticoagulation, compared with historical control subjects, improved 

clinical outcomes in patients who had HIT, without increasing bleeding risk 

[109].

The safety and efficacy of the drug as an adjunctive treatment is tolerated 

well in patients with acute MI compared to heparin [110]. It is indicated that 

argatroban is an effective and safe drug for the treatment of acute cerebral 

thrombosis [111] and easy to monitor and control with little potential for 

underdosing or overdosing, regardless of age, gender, or renal function [112]. 

Argatroban, as compared with heparin, appeared to enhance reperfusion with 

tissue plasminogen activator (TPA) in patients with acute MI, particularly in 

those patients with delayed presentation and the incidences of major bleeding 

and adverse clinical outcome were reduced[113].

41



Antiplatelet
agents

Date
approved

Dose Ligand Mode of action Indication

Salicyclic acid 
(Aspirin™)

1988 75-300mg daily COX Irreversibly inhibit enzyme 
COX to block the formation 
of thromboxane A2

Primary 8i secondary prevention of 
thrombosis in patients with established 
vascular disease

Dipyridamole
(Persantine™)

1997 300-600mg daily 
in 3-4 divided doses

Phosphodiest
erase

Inhibit phosphodiesterase 
enzyme result in increase 
intracellular cAMP

Secondary prevention of stroke, for 
maintenance of patency of coronary 
bypass grafts

Abciximab
(Reopro™)

1994 0.25mg/Kg IV bolus 
0.125pg/Kg/min IV

GPIIb/IIIa Blocks receptor GPIIb/IIIa 
from binding to fibrinogen & 
inhibit platelet recruitment

Prevention of cardiac ischemic 
complications in patients undergoing PCI 
and with unstable angina

Tirofiban
(Aggrastat™)

1998 0.4pg/kg/min IV for 
30min, then 
O.lpg/kg/min

GPIIb/IIIa Blocks receptor GPIIb/IIIa 
from binding to fibrinogen 8i 
inhibit platelet recruitment

Treatment of acute coronary syndrome

Eptifibatide
(Integrilin™)

1998 0.18mg/Kg IV bolus 
2pg/Kg/min IV

GPIIb/IIIa Blocks receptor GPIIb/IIIa 
from binding to fibrinogen & 
inhibit platelet recruitment

Treatment of acute coronary syndrome 
(unstable angina and non-Q-wave MI)

Ticlopidine
(Ticlid™)

1991 250mg twice daily ADP-induced
GPIIb/IIIa
complex

Inhibits platelet aggregation 
induced by thrombin, 
collagen, arachidonic acid & 
platelet activating factor

Secondary prevention of thrombosis 
(MI, stroke & vascular death) in patients 
with established vascular disease

Clopidogrel
(Plavix™)

1997 75mg once daily ADP-
receptor
GPIIb/IIIa

Inhibit ADP & thrombin 
induced platelet aggregation.

Prevention of atherosclerotic events 
in patients with history of ischemic stroke, 
MI

Table 2.1 Antiplatelet agents clinically used their mode of action and indication.
Dates approved FDA and drugs doses from BNF
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Anticoagulant Agents MW (Da) Half-
life

(hour)

Mode of action Dose Indication

Warfarin (Coumadin™) 308 6 Inhibit synthesis of vitamin-K dependent 2.5-10 mg daily Treatment of venous thrombosis and
coagulation factors, factor II, VII, IX and prevention of venous
X thromboembolism in patients with MI

Heparin (UFH) 15,000* 1-2 Binds to 8i activates AT-III to inhibit 5000-10000U IV bolus, Prevention & treatment of arterial 8i
factor Ha and Xa followed 15-25U/Kg/h venous thrombosis, prophylaxis in

general surgery
LMWHs 5,000* 4-6 Activates AT-III to inhibit factor Ha 8i Xa

2000-4000U daily Treatment of DVT, Unstable angina 8i
Enoxaparin (Lovenox™) MI

2500-5000U daily Prophylaxis of postoperative DVT &
Dalteparin (Fragmin™) pulmonary embolism. Prophylaxis of

3000U daily postoperative DVT
Certoparin
(Alphaparin™)

7000* 1-2 Direct thrombin inhibitor that reversibly 0.4mg/kg bolus For the prophylaxis of postoperative
Hirudin and its binds to thrombin active site DVT in
derivatives patients undergoing hip replacement

6980 1.3 0.15mg/kg/hr IV

Lepirudin (Refludan™)
Bivalirudin (Hirulog™) 2180 0.5 Direct thrombin inhibitor that irreversibly l.Omg/kg bolus Treatment of thromboembolic diseases

binds to thrombin active site followed 2.5mg/kg/h in patients with HIT
daily

Argatroban 527 0.5-1 Direct thrombin inhibitor that reversibly 2pg/kg/min Prevention of unstable angina, MI, and
binds to thrombin active site PCI

Table 2.2 Anticoagulant agents clinically used, their mode action and indication. 
Drug doses from BNF
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2.3 Current applications of Antiplatelet and 
Anticoagulant Agents in surface modification of 
biomaterials

2.3.1 Biologically active coatings

The heparinisation of biomaterials was first reported in 1963[16]. As 

heparin has a strongly anionic, ionic bonding is readily achieved on surfaces 

pre-treated with a cationic substance such as colloidal graphite. A general 

disadvantage of this method has been the rapid release of heparin upon 

exposure to blood or plasma[114]. Despite this a number of studies on 

heparin-coated biomaterial devices have been shown to enhance various 

aspects of blood compatibility. Several coating techniques including covalent 

immobilisation (Table 3) have been investigated and commercialized by 

various companies.

The two most commonly used heparin-coated systems are the 

Carmeda Bioactive Surface® and Duraflo II®. Heparin coating using the 

Carmeda Bioactive Surface uses the so-called "End-point immobilization". 

This involves covalent binding of heparin to the substrate resulting in a 

chemical modification[115]. The reaction in heparin occurs only at one end 

so that the overall structure particularly on the antithrombogenic site is not 

changed. This enables the heparin molecule to be tied to the surface only at 

one end and the remainder is free and still relatively bioactive. Duraflo II 

heparin coating is an ionically bound benzalkonium-chloride complex which 

enables relatively firm connections with the surface compared to Carmeda. 

Other techniques for heparin coating include the Bioline® (Jostra), AOThel®, 

Corline® and 3M methods. The Bioline coating method employs natural 

surface substances such as polypeptides to bind the heparin to the polymer. 

As a result stable bonding of the heparin molecule is achieved by formation 

of covalent bonds and ionic interactions between the heparin molecule and 

the immobilized polypeptide[116]. The recent and newly developed heparin- 

coated technique from the 3M company is processed in a similar way to the 

Carmeda Bioactive coatings. It involves a covalent binding of an oxidized
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heparin to a layer of coated biomaterial. Currently this procedure is still 

under preclinical evaluation and awaiting clinical introduction in the near 

future.
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Name and Approved Date Coating techniques Clinical Uses
Carmeda Bioactive Surface® (Carmeda), 1983 Covalent binding of heparin "End-point 

immobilization"
Vascular graft, coronary stent, oxygenation systems 
and extracorporeal device.

Duraflo II®  (Baxter), 1988 Ionic binding of heparin-benzalkonium- chloride 
complex

Aortocoronary bypass operations

BioLine coating® (Jostra), 1992 Covalent and ionic binding of heparin to an 
immobilized polypeptide

All components of extracorporeal device including 
silicon

AOThel® (Artificial Organ Technology), 1997 LMWH All components of extracorporeal device and 
oxygenator,

Corline system AB® (corline), 1997 Covalent binding of macromolecular heparin 
conjugate to an inert polyamine chain

Glass, metal and synthetic polymers,

3M, under pre-clinical evaluation Covalent binding of oxidized heparin by the addition 
of cyanoborohydride, to a layers of coated surface

Metal surfaces and polymers

Table 2.3 Heparin coating techniques approved for clinical purpose and their uses. 
Keys: LMWH, Coating with certified low molecular weight heparin.
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2.3.1.1 Extra corporeal circuits

In  vitro, heparin-coated extracorporeal circuits (ECC) reduce formation of 

C3 complement activation products and soluble C5b-9 complexes[117, 118], 

granulocyte activation[119] and reduce leucocyte activation and 

adhesion[120]. The Carmeda Bioactive heparin coated ECC has significantly 

reduced platelet adhesion[121], platelet, granulocyte and complement 

activation. In addition post operative blood loss during cardiopulmonary 

bypass has been reduced significantly[122-124]. The heparin-coated (Duraflo 

II) cardiopulmonary bypass circuit combined with full systemic heparinisation 

was found to limit both pro-inflammatory responses and anti-inflammatory 

responses to cardiopulmonary bypass (CPB) and ischaemia[45, 125-127]. 

This may significantly contribute to a reduction in myocardial ischaemia- 

reperfusion damage that has been subsequently observed. It also showed 

significant reduction of C3 and C4 complement activation[45-47] with 

reduced systemic heparin[128] and the formation of kallikrein-Cl-inhibitor 

complexes (contact system activation) during cardiac operations[129] 

compared with the control group.

An in vitro study of heparin coated Duraflo II circuit showed higher 

plasma heparin concentration than the Carmeda Bioactive Surface indicating 

unstable heparin bonding this resulting in leaching of the coating[48]. 

However a comparison of the Carmeda Bioactive heparin-coated system and 

the Duraflo II heparin-coated system showed no clinical differences after 

coronary artery bypass operations in combination with reduced systemic 

anticoagulation[44].

In low-risk coronary artery bypass surgery the heparin-coated circuit, 

Bioline has significantly reduced inflammatory responses such as neutrophil 

and complement activation and pro-inflammatory cytokine production. 

However it did not affect platelet activation, coagulation or the fibrinolyis 

cascade under full systemic heparinization. As a result, no improved clinical 

outcome was observed[116]. The AOThel coating method uses LMWH 

instead of UFH. The clinical and coagulatory effects of AOThel coated ECC 

have been studied randomly in patients undergoing cardiopulmonary bypass

47



graft. Thrombin generation was elevated significantly and platelet activation 

decreased. Significantly less post-operative bleeding and a correspondingly 

lesser need for blood replacement occured only if AOThel coated ECC use 

was combined with low doses of systemic heparin[130] being administered.

The Corline heparin surface is produced by means of a uniform 

macromolecular heparin conjugate. This conjugate consists of multiple 

heparin molecules, which are covalently bound by specific linkers to an inert 

polyamine chain. The conjugate binds to those surfaces of the medical 

device that come into contact with blood[131]. Corline-coated ECC systems 

have been in clinical use, however it is still to early to comment on their 

clinical outcomes.

2.3 .1 .2  Stents

For the past several years intravascular stents have been in use to 

manage acute occlusion and restenosis after coronary angioplasty[132]. A 

restenosis rate of 30-50% after balloon angioplasty has been reduced to a 

current rate of 10-30% after stenting. One limitation of stent implantation, 

however, is acute or subacute thrombotic occlusion. Research has shown 

that successful therapy with antiplatelet drugs reduced stent thrombosis or 

occlusion rates to 0.8-1.9%[133, 134]. In addition the application of bio

compatible coating of stents was introduced to prevent thrombosis.

It has been hypothesised that heparin coating of stents lowers the stent 

thrombosis rate, minimizes the adhesion and activation of platelets and 

granulocytes, and decreases the activation of coagulation and complement. 

Experimental studies have demonstated the ability of heparin coating stents 

(such as Palmaz-Schatz, Duraflo II) to reduce platelet adhesion[135-137]. 

Correspondingly, clinical trials with heparin-coated stents showed a lower 

rate of subacute thrombosis[138, 139]. However, comparison of the Corline 

heparin coated stent versus uncoated stent, showed no influence on clinical 

outcome and stent thrombosis or restonosis to the uncoated version of the 

stent[48].
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The same techniques that have been applied to improve the blood 

compatibility of vascular grafts have also been shown to enhance the quality 

of stents. In addition to heparin coating, Phosphorylcholine-based polymer 

(Biodiv Ysio™) and carbofilm (Sorin Carbostent™) coated stents provided 

high biocompatibility and were developed to further reduce the risk of stent 

thrombosis[ 140-143].

2.3 .1 .3  Bypass grafts

Synthetic conduits (especially those of <5mm diameter) used for blood 

vessel replacement have certain disadvantages which greatly limit their 

application for long-term usage as discussed earlier. Extensive research has 

been carried out to overcome these problems. Covalent bonding or 

immobilisation of heparin improved thromboresistance of polyethyleneimine 

in vitrd[llS]. When heparin-bonded Dacron was used for a femoral-popliteal 

bypass graft in human, improved patency was achieved compared to 

uncoated ePTFE[144].

It has been shown in a number of in vitro studies that a heparinised matrix 

loaded with basic fibroblast growth factor (bFGF) improves proliferation of 

human umbilical cord vein endothelial cell (HUVEC). This proliferation will 

probably lead to a more rapid formation of a confluent monolayer of ECs on 

a bypass graft surface in wVo[145-147]. In a canine model ePTFE coated 

with fibrin glue containing fibroblast growth factor type 1 (FGF-1) and 

heparin improved retention of seeded ECs[148] and showed significantly less 

platelet deposition than uncoated ePTFE[149, 150]. However, this decrease 

in platelet deposition was suggested to be due to the fibrin glue rather than 

the heparin[148] itself.

Biochemical experiments in vitro have indicated reduced thrombogenicity 

and lowered adhesion of blood platelets after the dipyridamole treatment of 

a polyurethane vascular graft (Chronoflex)[50, 70]. In  vivo experiments, in 

goat and sheep models have not provide evidence for a beneficial effect of 

the dipyridamole coating. Moreover covalent immobilisation of dipyridamole 

to polyurethane graft via photo-modification showed a virtually undisturbed
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lumen, on which a confluent layer of endothelial-like cells was 

observed[151] further studies also demonstrated improved 

thromboresistance [152].

The direct thrombin inhibitor, r-hirudin has also been studied in vitro for 

surface modification of biomaterials. Whole blood sample containing hirudin 

showed about 50% reduction in platelet deposition to tetrafluoroethylene- 

propylene co-polymer during low-stress shear flow[153]. It has been found 

that increasing Angstrom distance between a compound and the biomaterial 

surface increased biological activities[ 154]. Based on this foundation, one 

such approach has been the covalent binding of r-hirudin to an intermediate 

'basecoat' compound, bovine serum albumin (BSA)[52, 53]. Binding sites 

for r-hirudin were generated on BSA via the cross-linker sulphosucinimidyl 4- 

(N-maleimidomethyl) cyclohexane-l-carboxylate [sulpho-SMCC] that was 

reacted in various molar ratios (1:50) with BSA. These complexes, BSA-SMCC 

were then covalently linked to a sodium hydroxide-hydrolysed Dacron 

surface[53] or polyurethane surface containing surface bound carboxylic acid 

groups[52]. Both studies demonstrated that in vitro, r-hirudin could be 

covalently bound to a biomaterial surface while maintaining its ability to bind 

and inhibit thrombin. In  vivo assessment of the Dacron surfaces with 

covalently bound r-hirudin, showed no gross thrombus and a thin 

pseudointima of platelets and plasma proteins. In contrast, the control 

patches without r-hirudin had a thick pseudointima composed of fibrin-rich 

thrombus. It was found that covalently bound r-hirudin to Dacron patches, 

helped its biological activity as well as preventing thrombus formation on the 

graft surface[51].

Extensive research over the last decade has been performed on the 

incorporation of adhesion promoting peptides onto biomaterial surfaces. 

Since the identification of the RGD peptide sequence as mediating the 

attachment of cells to several plasma and ECM proteins, including fibronectin 

and vitronectin, researchers have been incorporating RGD-containing 

peptides onto biomaterials to promote cell attachment.

An RGD-containing peptide, GRGD, in solution inhibited fibrinogen binding 

to ECs and fibrinogen-induced ECs migration[155]. When this peptide was
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photochemically grafted onto the surface of polyethylene glycol modified 

polyurethane (PU-PEG) to form PU-PEG-GRGD, it improved ECs adhesion and 

growth on the surface. The enhancement efficiency was well correlated with 

GRGD content[156]. It has also been shown that coating an ePTFE graft 

surface with RGD-containing synthetic peptides significantly improved ECs 

seeding of ePTFE grafts[157]. Other studies have shown that covalent 

bonding of RGD-containing peptides based on cell-adhesive regions of 

fibronectin, Arg-Gly-Asp-Ser (RGDS) and vitronectin, Arg-Gly-Asp-Val (RGDV) 

to a polyurethane graft backbone via amide bonds enhanced cell adhesion 

and spreading[158]. Another study showed that a Gly-Arg-Gly-Asp-Val-Tyr 

(GRGDVY) grafted substrate supported a larger number of adherent cells and 

a higher extent of cell spreading than a Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY) - 

grafted substrate[159]. Recently covalent immobilization of RGD and heparin 

onto the surface of a poly(carbonate-urea)urethane (MyoLink™) graft have 

been shown to result in a significant improvement of cell retention of ECs 

after seeding[37, 160, 161].

Percutaneous trans-luminal angioplasty (PTCA) has become a very 

commonly practiced clinical procedure to treat diseased vessels. During PTCA 

guide wires and catheters are required in order to deliver the required stent. 

However, a high restenosis rate (30-50%)[162] post 6 months remains a 

serious problem despite a variety of therapeutic schemes being 

implemented[163]. The chronic complications include IH and mural 

thrombosis[164]. The systemic administration of anti-thrombotic drugs post 

PTCA has been widely advocated clinically and has reduced the restenosis 

rates, but it is associated with systemic toxic effects and haemorrhage[165]. 

Local delivery of anti-platelet and anti-thrombogenic has become a means of 

therapeutic manipulation of the angioplastic site[166].

Richey and co-workers[167] attached argatroban to two anionic 

monomers to high-density polyethylene balloon catheters, acrylic acid at 

70pg/cm2 and 2(dimethylamino)ethyl methacrylate at 48|ng/cm2 by UV 

polymerisation. Surface grafting was verified by contact angle, X-ray 

photoelectron spectroscopy and zeta potential measurements. In the rabbit 

common carotid artery animal model 280nmol/g tissue argatroban were
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found within the ballooned arterial segment immediately after angioplasty, 

followed by a decrease after blood flow was restored[167]. Hydrogels have 

been used to attach nadroparin, a low molecular weight heparin to balloon 

catheters, and in a pig iliac artery model it was found that 98IU were 

delivered to the angioplasty site and distal vessel[168]. A trend towards 

decreased platelet deposition was observed but statistical significance was 

not achieved (p=0.1563), coupled with medial SMC proliferation in nine of 

ten pigs (p=0.0137). In addition heparin (40000U/ml) was attached in a 

hydrogel to balloon catheters and it was found in a small clinical trial (n=33) 

that a mean primary patency of (p=0.0174) was obtained at 143 days. 

However, it was concluded that local delivery of heparin did not lead to a 

significant reduction in restenosis[169].

The Carmeda process has been used to covalently attach heparin to the 

surface of balloon catheters and in a rat jugular vein animal model it was 

found that patency lasted 30 days, with fewer lesions at the site of 

angioplasty being observed and lower levels of bacteremia. It was concluded 

that covalent coating of heparin significantly prolonged patency compared to 

either ionic or hydrogel type coatings[170]. In the HEPACOAT (Hepacoat and 

an antithrombotic regimen of aspirin alone) study of two hundred patients 

were the Carmeda covalently coated balloon catheter was used the primary 

end point of stent thrombosis at 30 days occurred in 2 of 200 patients (1%) 

and it was concluded that the procedure was safe in patients with de novo or 

restenotic lesions in native coronary arteries and that the heparin coating 

provided additional protection against stent thrombosis[171].

The guide-wires used in PTCA have also been coated a recent study by 

Hanssen and colleagues showed that copolymers of N-vinyl-2-pyrrollidinone 

and n-butylmethacrylate a type of hydrogel when incorporated with heparin 

the release obeyed first-order kinetics and lasted >50m in a goat animal 

model and left them virtually clear of thrombus[172].
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2.4 Usage in development of antithrombogenic 
elastomers for novel scaffolds in tissue engineering

Scaffolds play a prominent role in tissue engineered cardiovascular 

devices since they provide a three dimensional framework for cells to attach, 

proliferate and lay down ECM. They also provide initial mechanical stability, 

support tissue and may serve as carriers for cells, growth factors and other 

biomolecular signals[173]. Biodegradable materials used as scaffolding for 

tissue engineering fall into two main categories. The first category includes 

natural ECM molecules such as collagen[174], chitosan[175], gelatine[176] 

and alginate[177]. Secondly there are the synthetic materials, examples of 

which include poly(ethylene glycol), dextran, poly(vinyl alcohol), polylactide, 

polyester and polyacrylamide. Natural ECM molecules have the potential 

advantage over the synthetic materials of inducing specific cell interactions. 

However, they are not easily available in large amounts and are mechanically 

weak which limits their biomedical applications[178]. On the other hand 

synthetic materials are more reproducible in their manufacture and 

microstructure. In addition their degradation rate can be manipulated and 

controlled.

An ideal scaffold should bio-absorb in vivo at a pre-defined rate so that the 

three-dimensional space occupied by the initial scaffold is replaced by 

generated host. Thus the materials used in their fabrication serve as 

temporal conduits whilst simultaneously allowing the complex interactions 

between the arterial wall, host macrophges and biomaterial to occur. A 

variety of natural and synthetic derived hydrogels have shown great promise 

as scaffold for tissue engineering (providing growth factor and drug 

incorporation and entrapment of viable cells). Hydrogels are formed by 

modifying the mechanical and physical properties of the polymers. By 

introducing various chemical crosslinkers[179, 180] (i.e. glutaraldehyde, 

formaldehyde, carbo-diimide) by crosslinking with physical treatments[181] 

(i.e. UV irradiation, freeze-drying, heating), and by blending it with other 

polymers[182-185] (i.e. hyaluronic acid (HA), poly(lactic acid) (PLA),
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poly(glycolic acid), (PGA), poly(lactic-co-glycolic acid) PLGA), chitosan and 

PEO).

Adhesion proteins (fibronectin, collagen, albumin and fibrin), their peptide 

motifs (RGD peptides), growth factors and polysaccharides and other closely 

related anticoagulant-platelet agents (heparin, hirudin and salicyclic acid) 

have been covalently bound to biomaterial surfaces. Matsuda and 

Magoshi[186] derivatised heparin with a styryl or methacryloyl group by 

condensation with either 4-vinylaniline or -benzoic acid. The vinylated 

heparin was then copolymerised with styrenated gelatin and diacrylated 

poly(ethylene glycol) (PEG) and photo-cured this resulting in a tubular 

scaffold. Mizutani[187] used coumarin to end-cap tetra-branched copolymers 

of e-caprolactone and trimethylene carbonate with pentaerythritol or four- 

branched PEG as the initiator after, which UV irradiation resulted in photo

cured solid biodegradable polymers. The group of Erdmann[188] synthesised 

a degradable poly(anhydride-ester) by melt condensation polymerisation of 

an acetylated monomer to, which was attached salicyclic acid. It was found 

that at pH7 the salicyclic acid was released with 50% content by day 20 and 

polymer degradation being complete by 90 days. It was found that these 

polymeric materials resulted in reduced inflammatory reaction and so had 

possibilities as scaffolds for engineering purposes.

The coating of adsorbed silyl-heparin, benzyl-bis(dimethylsilylmethyl) 

oxycarbamoyl-heparin[189]has been shown to be a good system to attach to 

polymer surfaces and allow local delivery of growth factors such as basic 

fibroblast growth factor (bFGF). After only 4 days capillary tube formation 

was observed in human ECs. In a similar study bFGF was immobilised and 

shown to increase the proliferative potential of ECs when immobilised onto 

albumin-heparin-poly(acrylic acid) constructs. Using UV irradiation this was 

attached to a polyurethane surface[190]. This growth factor has also been 

immobilised in heparin, poly(lactic-co-glycolic acid), alginate scaffolds[191, 

192]and when implanted in a rat animal model shown to increase matrix 

revascularisation, whereby at day 10 capillary density was 45+/-3/mm2 and 

it increased to 7045+/-3/mm2 by day 21. It was concluded these scaffolds 

showed promise as scaffolds for tissue engineering.
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It has been shown that the immobilization of r-hirudin with glutaraldehde 

as a coupling agent improves the blood contacting properties of the 

biodegradable polymer poly (D-L -lactide-co-glycolide) RG756[193]. The 

polymer surface was first activated by incubation with glutarldehyde in 

distilled water, followed by incubation with r-hirudin in phosphate buffered 

saline. The results of this in vitro study indicated that the effect of hirudin 

was limited by the fact that the amount of hirudin directly bound to thrombin 

reached saturation and therefore was unable to bind more in contrast to 

heparin which acted as an indirect thrombin inhibitor. On the contrary, 

hirudin immobilization may lead to a passivation of the surface, which is 

restricted by thrombin generation on the artificial surface.

NSAIDS have also been used as starting materials for the development of 

three-dimensional engineered scaffolds[192]. Liquid acrylate-endcapped 

poly(E-caprolactone-co-trimethylene carbonate) was prepared the acrylate 

group allowing the subsequent terminal capping attachment of the NSAID 

indomethacin. This polymer was then converted into 3D constructs using 

stereo-lithography and UV irradiation together with a computer aided design 

programme. On implantation in a rat animal model histological haematoxylin 

and eosin (H&E) and periodic acid-schiff (PAS) staining showed that the slow 

diffusion of the NSAID into the surrounding tissue significantly reduced the 

foreign body inflammatory reaction. It was concluded this approach showed 

great promise as a scaffold for biomaterial and engineering 

applications[192].

A summary of investigations into the surface modification of 

cardiovascular polymers is included in Table 2.4 showing the type of 

modification carried out, the polymer type, if the polymer was seeded with 

cells or not and providing references to the appropriate publications. The 

data showed that the surface modification will enhance cell adhesion and 

product compatibility.
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Table  2 .4  Overview of employed surface modification techniques for cardiovascular polymers application.

Keys: Argatroban (ARG), Carotid artery (CA), Fibrin glue (FG), Hirudin (rHir), Monomethoxy poly(ethylene glycol) (MPEG), Plasminogen 
Activator Inhibitor-1 (PAI-1), poly(dimethyl siloxane) (PDMS), Polyethylene (PE), Poly (ethylene oxide) (PEO), Poly(lactic acid) (PLA), poly(L- 
lysine) (PLL), Prostaglandin E-l(PGEl), Prostoglandin Inhibitor 2 (PGI2), tissue-Plasminogen Activator (t-PA), Decrease/inhibited (4), 
Increase/enhanced (T).

Year Pub. Moeities Polymer SM technique Test/cells Outcome
1983[115] Heparin Polyethyleneimi

ne
Covalent immobilisation. In vitro Improved thromboresistance compared to 

control.
1988[194] Fibronectin PTFE Coating Canine Jugular 

vein ECs
T ECs coverage & platelet reactivity of 
SM group at 2 weeks patency not 
adversely affected

1990[195] PTFE Ammonia plasma modified surface In vitro Bovine 
ECs

ECs attachment to after 24 hrs on control 
and SM surfaces were 36% and 92%

1991[196] ePTFE Surface hydroxylation using aluminum 
deposition and removal with sodium 
hydroxide

In vitro (14 days) 
Rat ECs

1 Hydrophobicity of ePTFE & T cell 
adhesion with SM

1992[159] GRGDSY& 
GRGDVY

PU Covalent immobilisation by surface 
carboxylation or via amide bond

In vitro HUVECs Both supported cell adhesion and 
spreading

1992[197] RGD& GRGDSY Poly(tetramethyl 
ene oxide)- 
based PU

Covalent immobilisation by surface 
carboxylation or via amide bond

In vitro RGD-containing was successfully grafted 
onto the polymer & confirmed by 
Sakaguchi assay and amino acid analysis.

1995[149] Heparin with FG & 
FGF-1

ePTFE Surface coating Canine (Bilateral 
aortoiliac)

Platelet deposition I  on coated group 
(p<0.05) after 120 min. of flow circulation

1996[157] Fibronectin & 
RGD

ePTFE Surface coating In vitro human 
vein ECs

f  ECs attachment & retention with SM 
after shear stress

1997[50] Dipyridamole PU Covalent immobilisation via photo
modification (UV)

In vitro Dipyridamole retains its inhibitory activity 
with respect to activation and aggregation 
of blood platelets with SM



1997[53] rHir Dacron Covalent immobilisation via carboxylic 
acid groups

In vitro Improved thrombin inhibition in SM

1997[193] rHir Poly(D-L-lactide-
co-glycolide)

Covalent immobilisation via 
glutaraldehyde

In vitro (30 min 
with blood)

SM I  clotting time, platelet adhesion and 
activation

1997[150] Heparin, with FG 
& FGF-1

Surface coating Canine (Carotid 
balloon injury)

SM with FG/FGF-l/heparin i  by 45% 
platelet deposition on balloon injured 
canine carotid arteries after 2 hours. No 
difference at 30 days patency

1998[52] rHir PCU Covalent immobilisation via carboxylic 
acid groups

In vitro Improved thrombin inhibition in SM

1998[198] ePTFE Ammonia plasma modified surface In vitro Bovine 
ECs

SM enhanced the ECs lining under both 
constant and pulsatile flow conditions and 
ECs monolayer on SM graft surface was 
observed

1998[199] Heparin Dacron & PTFE Surface-binding In vitro Fibrinogen levels in SM group t  compared 
with control > 30min human blood. No 
difference between SM PTFE 8i Dacron

1999[51] rHir Dacron Covalent immobilisation via carboxylic 
acid groups

Canine (thoracic 
aorta)

rHir maintained its biologic activity as well 
as preventing thrombus formation on the 
graft surface post 2 hrs implantation

1999[200] MPEG PU based on 
PDMS

Covalent immobilisation by allophanate 
and esterification reactions

In vitro I  Platelet adhesions with PDMS-based 
PUs incorporation of MPEG 1 platelet 
adhesion

1999[201] PEO Silastic, PE, 
glass 81 ePTFE

Covalent immobilisation by gamma- 
irradiation

In vitro/Ex-vivo 
(Canine)

I  Platelet deposition by 35% & I  
fibrinogen adsorption by 70-95% in 
Silastic, polyethylene and glass but only 
30% in ePTFE

2000[167] ARG PE balloon 
catheter

Ionic binding to UV modified surface Rabbit (Carotid 
artery)

Local delivery of ARG (280 nmol/g tissue) 
was achieved immediately after 
angioplasty.

57



2000[202] L-lactide PU Plasma glow modification & 
immobilisation of bio-active molecule

In vitro HUVECs t  Surface hydrophilicity and cell 
attachment with SM I  Platelet adhesion 
with SM

2000[203] PEO Nitinol stent /  
Dacron /  ePTFE

Covalent immobilisation by gamma- 
irradiation

In vitro/In vivo 
(Canine)

1 Fibrinogen adsorption by 70-95% with 
SM in vitro
I  Thrombus formation by 85% on metallic 
stent in vivo

2000[204] PEG PTFE Covalent immobilisation by photo
modification (UV) or coupling of 
hydroxyl groups

In vitro t  Surface hydrophilicity with SM

2000[205] PGE1, heparin or
phosphatidyl
choline

PTFE/Teflon /  
Dacron

Plasma glow modification & 
immobilisation of bio-active molecule

In vitro Fibrinogen adsorption and platelet 
adhesion on modified grafts were 
significantly I  in both static and pulsatile 
flow.

2001[151] Dipyridamole PU (5mm 
diameter)

Covalent immobilisation via photo
modification (UV)

Goat(CA)& 
sheep (CA)

Graft patency improved in goat (3/8) but 
not sheep in which deterioration of the 
polyurethane material was observed

2001[79] Heparin Dacron & ePTFE Bonding Human
(Femoropopliteal
bypass)

Improve patency over 50% with SM after 
a mean follow-up of 42 months

2001[156] GRGD PU Covalent immobilisation via 
photochemical immobilisation of PEG

In vitro HUVECs ECs were well adhered 8i growing on the 
SM
Cells showed T viability with increasing 
GRGD

2001[206] Fibronectin , 
Collagen & Gelatin

PTFE Ammonia plasma modified surface In vitro HUVECs All SM showed similar secretions of PGI2 
and >1 levels of PAI-1 secretion. Secreted 
t-PA activity t  with SM

2001[207] GRGDS PLA Covalent immobilisation via PLL In vitro Bovine 
ECs

t  ECs spreading with SM

2001[143] Phosphorylcholine Stainless steel Coating Porcine (Coronary 
artery)

No significant difference in patency at 28 
days
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2002[208] Gelatin, Albumin 
& RGD

PU Covalent Immobilisation by cleavage 
of the mesyl end groups via PEO 
coupling

In vitro HUVECs t  Cell adhesion & proliferation with 
Gelatin & RGD

2002[209] PTFE /  Dacron Ammonia plasma modified surface In vitro HUVECs t  Adhesion and growth of ECs. SM did not 
exhibit a direct inflammatory effect in 
terms of monocyte adhesion

2002[210] PTFE /  Dacron Ammonia plasma modified surface In vitro HUVECs T Cell adhesion in SM after 1 day with 
PTFE but not Dacron

2002[211] Protein
conjugated to 
PEG

Hydrogel Covalent immobilisation by photo 
polymerization

In vitro 
Fibroblasts

Protein demonstrated integrin-binding 
capability based on the RGD.
In addition heparin bound strongly to the 
protein's anti-thrombin Ill-based region 
and supported 3D outgrowth of human 
fibroblasts.

2002[160] Heparin, RGD PCU Chemically bonded onto polymer at 
graft manufacture & extrusion using a 
modified eerie ion technique with two 
spacer arms

In vitro HUVECs SM groups significantly improved ECs 
retention to flow shear stress (P<0.01)

2003[212] Sulfobetaine PU Immobilisation by treatment with 
hexamethylene diisocyanate in 
toluene at 50° C in the presence of di- 
n-butyl tin dilaurate as a catalyst

In vitro T Surface hydrophilicity & I  platelet 
adhesion.

2003[213] Sulfonated
polyrotaxane

PU Blending followed by solution casting In vitro t  Surface hydrophilicity, I  platelet 
activation, proteins & bacteria with SM

2003[214] PEO conjugated 
with amino acids 
& RGD

PU Non-covalent introduction by physical 
blending

In vitro HUVECs Lysine & arginine demonstrated similar 
performance in cell adhesion and 
proliferation (at 96hrs) to that of RGD

2003[215] Silyl-heparin ePTFE Adsorption onto a carbon coated 
surface

Canine (Bilateral 
aortoiliac)

Short lived (2hrs) improvement in 
thromboresistance. Patency in 7-days was 
87.5% for heparin coated & 50% for 
control grafts
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2003[216] PTFE Photochemical (UV) modification by UV 
at wavelength of 172 nm

In vitro (3-8 days) 
ECs

T Cell densities with SM & T cell adhesion 
& proliferation with irradiation time

2003[152] Dipyridamole with 
hydrophilic spacer 
chain

PU Covalent immobilisation via photo
modification (UV)

In vitro Improved thromboresistance in SM group
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2.5 Conclusions

Interest in surface modification is growing and the techniques 

involved have applications in a wide variety of areas. The enhancement of 

surface properties has rapidly become an essential element in the 

developmental process for biomedical devices and scaffolds for tissue 

engineering. This is especially true of devices used for cardiovascular 

applications where the blood response to these artificial materials, including 

thrombosis and platelet deposition, continues to limit the long-term efficacy 

of these implants by causing vessel restenosis or wall reclosure. The surface 

modification of these materials is an attempt to increase the working life 

span of these implants by increasing the biocompatibility of the materials.

A wide variety of agents which prevent thrombosis or improve 

biocompatibility have been investigated. Several research groups have 

attempted to use antiplatelet and anticoagulant agents for surface 

modification purposes. However, the chemical and pharmacokinetic 

properties of these agents limit their uses for surface modification. For 

example, antiplatelet agents such as the thienipyridine derivatives require 

breakdown in the liver to become an active metabolite and induce 

antiplatelet action. This can also be the case for anticoagulant agents like the 

coumarin derivatives, which also induce their anticoagulation effects by 

inhibiting the hepatic synthesis of coagulation factors in the liver. To date 

heparin-coated devices are the only ones used in surgical practice. Although 

heparin can inhibit thrombin function, it has a number of drawbacks. Heparin 

requires antithrombin III as a cofactor for anticoagulation. In addition, 

heparin has no affinity for clot-bound thrombin and thus is ineffective in 

dissolving pre-existing clots. Finally heparin can degrade and be washed off 

over time when immobilized on material surfaces and therefore is not 

suitable for use on long-term blood-contacting devices. There is still scope 

for much further investigation in this area.

Endothelial cell seeding or tissue engineering is attracting growing 

interest and will have uses across a wide range of applications. In the case of
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blood-compatible bio-mimetic coatings, a key objective is to encourage the 

growth of a layer of ECs over the device surface and prevent platelet 

attachment and blood coagulation. Comprehensive research has been 

performed on the incorporation of ECs adhesion promoting peptides into 

biomaterial surfaces; such as including RGD-containing peptides and ECM 

proteins including fibronectin and vitronectin.

In conclusion it can be said that no single approach, either through 

the use of antiplatelet or anticoagulant therapies or for surface modification 

or through cell seeding is likely to satisfactorily solve the problem of the lack 

of long term patency of blood-contacting biomaterials. However a 

combination of the various approaches may prove more successful in the 

future.
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CHAPTER THREE: 

MATERIALS AND METHODS
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3.1. Cell Culture

3.1.1 Endothelial cell extraction from human um bilical cord

Human umbilical vein endothelial cells (HUVECs) were harvested from 

human umbilical cord vein [217]. All procedures were carried out using 

aseptic techniques in a flow hood. Human umbilical cords were obtained 

from the labour ward of the Royal Free Hospital, Hampstead and stored in 

40ml of collecting medium consisting of 29.8ml basic medium, 10ml foetal 

bovine serum (Invitrogen, Paisley, U.K.) and 0.2ml gentamycin (Sigma 

Chemical Company, Dorset, U.K.). The basic medium was obtained from a 

stock solution made up from 500ml M199 medium (Invitrogen, Paisley, U.K.), 

15ml of 7.5% sodium bicarbonate solution and 5ml penicillin/streptomycin 

solution consisting of penicillin 10,000U/ml and streptomycin lOmg/ml 

(Invitrogen, Paisley, U.K.). Cords were collected within 24 hours of delivery 

and used if free of clamp marks or needle holes. Each end of the umbilical 

vein was cannulated with 4cm lengths of nasogastric tubing and then 

secured with sterile silk ties. The cord was flushed several times with warm 

PBS to remove all clotted blood prior to instillation of 25ml of warm, filtered 

collagenase solution (consisting of 12.5mg collagenase A) suspended in 25ml 

of basic medium). Both ends of the vein were clamped and the cord 

incubated at 37°C for 10 minutes. The cord was massaged gently prior to 

collecting the collagenase/cell suspension into a 50ml centrifuge tube. The 

collagenase/cell suspension was then neutralised by the addition of an equal 

volume of complete medium obtained from stock made up of 157ml basic 

medium (40ml Foetal bovine serum and 3.6ml of 200mM L-glutamine 

solution (Invitrogen, Paisley, U.K.). The cell suspension was centrifuged at 

300g for 7 minutes after which the supernatant medium was removed and 

the cell pellet resuspended in 6ml of warm complete medium. The cell 

suspension was then transferred to a 25cm2 tissue culture flask and 

incubated at 37°C/5%C02. 24-hours later, the flasks were gently washed 

with 8ml PBS to remove red blood cells and fed with 6ml of complete 

medium. The flask was viewed daily under high power transilluminated
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microscopy and the presence of EC's verified by confirmation of their 

characteristic cobblestone morphology. Once a confluent monolayer was 

achieved cultures were passaged by removing the cell culture medium, 

washing with 8ml PBS and then adding 3ml of 10% trypsin solution 

(Invitrogen, Paisley, U.K.). The flask was then incubated for 3 minutes prior 

to gentle tapping in order to loosen all the cells. The trypsin was then 

neutralised by the addition of 10ml complete medium. The cell suspension 

was spun at 300g for 7 minutes before discarding the supernatant, 

resuspending the cell pellet in 10ml complete medium, and placing in a 

gelatine coated 75cm2 flask. Cultures were passaged every 2-3 days at a 

ratio of 1:2 and fed every other day.

3.2 Assessment of cell metabolism and survival

3.2.1 A/am ar Blue™ assay

Alamar Blue™ (AB; Serotec Ltd., Kidlington, U.K.) is an assay 

designed to measure quantitatively cell metabolism and viability by 

incorporating resazurin and resarufin as colorimetric oxidation reduction 

indicators that change in colour in response to chemical reduction resulting 

from cell metabolism. The data may be collected with either fluorescence 

based or absorbance-based instruments. In this study absorbance was 

monitored at 570nm and 630nm. Resazurin has a much higher 

electrochemical potential than the carriers on the cell membrane, and on 

contact with the membrane, it is reduced to resarufin. Resazurin acts as an 

intermediate electron acceptor in the electron-transport chain between the 

final reduction of 0 2 and cytochrome oxidase by substituting for molecular 

oxygen as an electron acceptor.

The rate of bio-reduction is related to the level of redox potential on 

the cell membrane, which in turn characterises the constitutive part of the 

metabolic activity of a given cell type. AB has certain properties that make 

this assay attractive. It is soluble in culture media, stable in solution, and
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minimally toxic to cells and produces changes that are easy to measure. AB 

has been used as a measure of cell viability in tumor neurosis factor hyper

sensitive cell lines [218], studies of apoptotic neuronal death [219], and 

studies of lymphocyte proliferation [220].

Various approaches to the assessment of EC viability have been 

undertaken. Foremost are methodologies looking for known morphological 

factors, including ultra structural studies that require substantial effort, skilled 

personnel, and often expensive equipment but during the extensive 

processing required do not yield quantifiable results and destroy the sample 

[221]. The assessments of EC membrane integrity with dye uptake and vital 

stains has been used as an indirect measure of viability, but they are 

terminal assays that destroy the cell or interfere with its function [222-224]. 

Continuous monitoring of EC viability is achievable by the measurement of 

glucose uptake and lactic acid release into an incubation medium, but such 

methodologies are labour intensive and relatively insensitive [225]. The 

reduction of colourless tetrazolium salts by mitochondrial succinate 

deyhdrogenase activity into an intensively colored formazan product uses 

hazardous reagents and requires washing, fixing, and extraction steps that 

destroy the cell [226-228]. Furthermore, the insoluble, intracellular crystals 

that disrupt the cellular membrane result in an extracellular precipitate 

attached to the polymeric substrate that on polyurethanes remains bound to 

the substrate even after extraction by detergent, thus affecting the outcome 

of this particular assay [229]. [3H]-thymidine incorporation has been used as 

a measure of viability and cell metabolism in EC [230] but radioisotopes have 

many disadvantages, including the terminal nature of the measurement, 

labour-intensive handling and disposal (along with expense), and excessive 

processing time with 3H-thymidine incorporation.

AB is not a new assay because it was first developed to determine 

how susceptible microorganisms are to various growth-inhibition products 

and has been used to examine bacterial antibiotic susceptibility [231] and 

yeast antifungal receptivity[232] and to analyze the cytotoxicity of drugs and 

chemotherapeutic agents in mouse fibroblasts, macrophages, and human 

tumour cells [233]. AB allows a continuous assessment of the metabolism
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and viability of seeded cells, is simple to perform, and does not destroy the 

cells [217]. Limitations of AB are few. If prolonged incubation times are used 

(>24 h), reversal of the reduction process occurs via a secondary redox step, 

resulting in a colourless solution, particularly when very high cell 

concentrations are used. Microbial contamination would also reduce AB, thus 

yielding erroneous results, but this would affect any other assay of ECs as 

well.

AB was added to cell culture medium at a concentration of 10%. At 

each AB assay time point wells were washed with 1 ml phosphate buffered 

saline (PBS) and 1 ml of the AB/medium mixture added to each well. After 4 

hours a lOOpI sample of the AB/medium mixture was removed and the 

absorbance at 570 nm and 630 nm measured in a 96-well plate (Helena 

Biosciences, Sunderland, U.K.) using a Multiscan MS UV visible 

spectrophotometer (Labsystems, Somewhere, U.K.). The absorbance at 630 

nm (background) was subtracted from that at 570 nm and results expressed 

as a percentage of the control (untreated) value. Four wells per treatment at 

each time point were measured and each experiment repeated four times.

3.3 Assessment of peptide purity and characterisation

3.3.1 High performance liquid chromatography (HPLC)

RGD-containing peptides were prepared manually using a solid-phase 

peptide synthesis and were assessed with reverse-phase HPLC for their 

purity and fourier transform infrared spectroscopy for characterisation. HPLC 

is a versatile form of chromatography used in a wide variety of applications 

to separate individual compounds of a particular class of molecule on the 

basis of size, polarity, solubility or adsorption characteristics. It is a very 

sensitive technique which can detect small differences in either absorbance 

or fluorescence as the elutate from the HPLC column passes through an 

appropriate detector.

The purity of each peptide was assessed by reverse-phase HPLC. The 

peptide sample (lmg/ml) was re-suspended in 0.1% TFA in water and
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injected into a Cib (semi-preparative) TSK ODS 120T column (Pharmacia, 

Uppsala, Sweden) equilibrated in 100% buffer A (HPLC grade water 

containing 0.1% TFA) and 0% buffer B [90% (v/v) HPLC grade acetonitrile 

(Rathburn Scotland, UK) in water containing 0.1% TFA]. The peptide was 

purified on a linear gradient of buffer B (from 0% to 70% in 30 minutes) at a 

flow rate of 2.5 ml/minute. Sample peaks were detected 

spectrophotometrically by monitoring the absorbance of the eluent at 220nm 

using a Varian 5000 Liquid Chromatograph (Waters Limited, Hertfordshire, U.K.) 

equipped with a variable wavelength UV detector.

3.3 .2  Fourier transform infrared (FTIR ) spectroscopy

Infrared spectroscopy is a well-established method for investigating 

the secondary structure of proteins. The energy vibrations between chemical 

bonds (for example stretching, rotating and twisting) can be linked to the 

corresponding infrared (IR) regions of electromagnetic spectra. Vibrations 

may be localised to particular groups or bonds, examples of which include 

the O-H group or the C=0 bond. In most cases vibrational modes are not 

caused by a single bond but are coupled to neighbouring bonds as well. In 

the case of proteins IR spectra are characterised by amide modes (bands) 

which represent set absorption regions. In the infra red region nine 

absorption bands, known as A, B and I to VII are produced by proteins. The 

most useful band for studying proteins is the amide I (~ 1630-1690 cm'1) as 

it is closely correlated with protein secondary structure. This band is seen 

around 1650-1660 cm'1 for an a-helical conformation and at 1630-1640 cm'1 

in the case of a p-sheet confirmation. Due to the fact that water absorbs 

strongly in the 1640 cm'1 region it is necessary to utilise a 2H20  solution, 

which does not cause such interference, when carrying out conformational 

studies.

FTIR spectra were obtained using a Perkin-Elmer 1750 FTIR 

spectrometer equipped with a fast recovery TGS detector and Perkin-Elmer 

7300 computer for data acquisition and analysis. Samples were placed in a 

Beckman FH-01 CFT micro-cell Fitted with CaF2 windows and a 50pm Teflon
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spacer for measurements in 2H20. Temperature control of 30°C was achieved 

by means of a cell jacket of circulating water. The spectrometer was 

continuously purged with dry air to eliminate water vapour absorptions from 

the spectral region of interest. A sample shuttle was employed to permit the 

sample to be signal- averaged with the background. Measurements in 2H20 

at 30°C were recorded at a peptide concentration of lOmg/ml and 200 scans 

were signal averaged.

All spectra were recorded at a resolution of 4 cm'1. Aqueous buffer 

spectra were recorded under identical conditions as the sample spectra. 

Absorption spectra were obtained by digitally subtracting the solvent 

spectrum from the corresponding sample spectrum. Where appropriate, 

water vapour contributions were subtracted from the absorption spectrum 

using a previously recorded water vapour spectrum. Second derivatives were 

calculated over a 13 data-point range (13 cm'1) using the Perkin-Elmer 

DERIV function to assign features of the composite amide I band to 

structural features present in the polypeptides.

3.3 .3  Mass Spectrom etry

Mass spectroscopy by Fast-atom-bombardment mass analysis (FAB-MS) (VG- 

70SE positive ion) was carried out by the UCL Mass Spectrometry Service 

(Department of Chemistry, University College, London U.K.) on the peptides 

synthesised.

3.4. Assessment of whole blood coagulation

3.4.1 Thrombelastography (TEG)

Thrombelastography (TEG) has been used in many clinical settings 

since its introduction in 1948 and has been shown to be a reliable technique 

for diagnosis and monitoring treatment of various blood disorders. The TEG 

measurements correlate well with the coagulation profile (Zuckerman et al 

1981)[234] and have the advantage of being a rapid technique which
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requires small blood volumes. Most blood clotting tests do not provide 

sufficient information regarding the quality of the clot formed or the speed 

and intensity of fibrin formation. A number of thrombelastographic patterns 

have been correlated with abnormal blood clotting states such as clinical 

thrombotic and haemorrhagic conditions.

TEG is carried out using venous blood rather than capillary blood with 

the first few millilitres being discarded to reduce any effect due to tissue 

thromboplastin which may be released on venepuncture. The blood or 

plasma sample is placed in a pre-warmed cuvette fitted into a moving device 

which is oscillated over an angle of 4 degrees 45 minutes (1/12 radian) 

around a vertical axis in a 10 second cycle. A piston which is freely 

suspended by a fine torsion wire and connected to a pen recorder chart, is 

lowered into the blood, resulting in a uniform clearance of 1 mm between 

the piston and cuvette. The blood is then covered with a thin layer of liquid 

paraffin to prevent drying and a resulting pH change due to atmospheric 

oxygen.

Initially the blood in the cuvette is in a fluid state and therefore the 

piston remains stationary, producing a straight line on the thrombelastogram 

(Figure 3.1). As the blood clots fibrin strands are formed between the 

surface of the piston and the cuvette. The motion of the cuvette is coupled 

to the piston causing it to oscillate along with the cuvette. The motion of the 

piston is transmitted to the torsion wire which results in a deflection of the 

pen recorder. During the course of coagulation the shear elasticity of the 

fibre strands increases and the rotation of the cuvette enables the elasticity 

of the clot to be measured without detaching the fibrin strand. As fibrin 

formation and the elasticity of the coagulum progress the deflection of the 

pen recorder increases progressively, providing a graphic representation of 

the fibrin build up and subsequent fibrinolysis. This technique can therefore 

be used to follow the entire process of blood coagulation from the initial fluid 

state, through the gradual increase in clot strength and polymerisation of the 

fibrin strands to the dissolution of the clot following fibrinolysis.
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CTEG Model # 3000

Figure 3.1 Thrombelastograph coagulation analyser

3.4 .2  In te rp re ta tio n  o f the throm beiastogram

The output from the TEG records the elasticity of the blood clot (Figure 

3.2). A number of important parameters can be measured and quantified 

which reflect the nature of the coagulum produced. In the TEG the reaction 

time denoted ' r '  (TEG-r) is measured from the start mark (recalcification 

point for a citrated sample) until an amplitude of 2mm is obtained. During 

this time there is no resistance in the blood and so the piston remains 

motionless. The r-time corresponds to the time taken for the formation of 

the first fibrin strands, and is therefore indicative of the enzymatic sequence 

of events which occur in the blood coagulation cascade prior to fibrinogen 

conversion to fibrin. The time from the measurement of r (the beginning of 

the clot formation) until a fixed level of clot firmness is reached (amplitude 

20mm) is the k-time. It is a measure of the speed or clot kinetics to reach a 

certain level of clot strength. Angle (a) is closely related to k-time. The angle 

is more comprehensive than the k-time, since there are hypocoagulable 

conditions in which the final level of clot firmness does not reach an 

amplitude of 20mm. The maximum strength or stiffness of the developed 

clot is described as ' ma' (Maximum Amplitude).
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In general, the shape of the curve (k, a and ma) is determined by 

fibrinogen and platelet activity whereas the r-time is highly dependent on the 

functional aspects of the clotting factors.
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Thrombosis

MA

Time (min)

Figure 3.2 A typical TEG analysis tracing;
Where

R = Initial fibrin formation (a period of time from initiation of the test to the 
initial fibrin formation
K = Dynamic clot formation (a measure of time from beginning of clot 
formation until the amplitude of TEG reaches 20mm) 
a = The acceleration of fibrin build up & cross linking (an angle between the 
line in the middle of the TEG(r) tracing and the line tangential to the "body" 
of the TEG® tracing)
MA = Maximum amplitude (reflect strength of a clot which is dependent on 
number and function of platelets and its interaction with fibrin)
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3.4 3  Measurement o f procoagulant activity

The procoagulant activity of blood or plasma can be determined by the 

one-stage prothrombin time assay (Figure 3.3). The one-stage prothrombin 

time assay relies upon the initiation of the extrinsic pathway of coagulation. 

Tissue factor in the presence of calcium and phospholipids, acts as a cofactor 

for factor VII to facilitate the activation of factor X and subsequent 

coagulation factors. This culminates in the formation of a clot. An unknown 

quantity of tissue factor activity in a sample can be determined through 

examination of the time taken to produce a clot. The higher the 

concentration of tissue factor present within a sample the less time is taken 

for clot formation.

r

Figure 3.3 Coagulation analyser

3.4 .3 One stage pro throm bin  tim e assay

The one-stage prothrombin time assay was performed on a Cascade - M- 

coagulometer (Helena Laboratories). The assay was carried out at 37°C using 

50 nM recombinant tissue factor (TF) in 12.5 mM CaCI2 to which standard 

plasma was added (2:1 ratio), and the clotting time was measured using a
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coagulometer (Figure 3.4). Clotting was initiated by the addition of lOOpI 

reconstituted plasma, containing clotting factors in their inactive form, thus 

initiating the extrinsic pathway of coagulation through the formation of the 

tissue factor Vila complex. Clot formation was detected via a change in 

optical density of the sample, and a reading of clotting time supplied.

From the time taken for clot formation to occur, tissue factor activity was 

quantified by reference to recombinant tissue factor standard, which at a 

concentration of 1000 units/ml clotted plasma in 14 sec. A standard curve 

was constructed using recombinant tissue factor diluted with distilled water, 

and expressed log tissue factor concentration (units/ml) versus log clotting 

time (seconds) (Figure 3.4). The concentration of tissue factor was 

calculated using straight line regression constants. The tissue factor activity 

was then calculated from a standard curve prepared previously, and the 

percentage of inhibition due to the moiety being tested was calculated as:

Inhibition{%) =  IO O jc  ^  ^ r 

Where A is activity and subscript / and rare initial and residual respectively
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Figure 3.4 A representative tissue factor activity standard curve.

The standard curve was constructed using (0.5 -  50 units/ml) recombinant 

tissue factor, and expressed as log tissue factor concentration (units/ml) 

versus log clotting time (seconds).
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3.5 Data analysis and statistical methods

Results were analysed using the statistical software package 

GraphPad Prism. Students t-test or one way Anova and pair-wise multiple 

comparison procedures (student Newman Keuls method) were used during 

the data analysis. Data are presented as mean ± SD or mean ± SEM. p< 

0.05 was considered as statistically significant.
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CHAPTER FOUR:

EXTRACTION OF CELLS FOR 
SEEDING VASCULAR BYPASS GRAFTS

78



4.1 Introduction

The vascular endothelium is versatile and multifunctional with many 

synthetic and metabolic properties. These include the regulation of thrombus 

and platelet adhesion as well as modulation of vascular tone and blood flow. 

EC secrete and express numerous growth factors, extracellular matrix 

products, anti-thrombotic and pro-coagulant factors. ECs are intimately 

involved in maintaining a non-thrombogenic blood-tissue interface[235, 236]. 

The absence of an intact EC lining therefore predisposes prosthetic grafts to 

platelet deposition, thrombosis and graft failure. As a result, investigators 

have developed methods to promote the endothelialisation of vascular grafts 

prior to implantation by transplantation of ECs in vitro, a process called EC 

seeding.

Seeding of EC onto the lumen of prosthetic bypass grafts has been 

attempted with the aim of improving their biocompatibility and patency 

[237]. Seeding of grafts has followed two strategies, single and two-stage. 

Single-stage seeding refers to EC extraction and seeding all within the 

timeframe of a typical bypass operation [36]. This avoids the need for cell 

culture and reduces operative time. Two-stage seeding involves cell 

extraction typically from an autologous vein, culture until adequate cell 

numbers are available, and seeding in a rotating device until confluence is 

reached on the lumenal surface at which time the graft is implanted. To date 

only two-stage seeding has been carried out successfully in large clinical 

trials. There are however difficulties with taking a two-stage seeding 

approach. Firstly the patient is required to undergo two surgical procedures 

with a relatively long wait between them to obtain sufficient cells to seed the 

graft. This makes the procedure unsuitable for patients with critical 

ischaemia. Secondly in around 30% of patients the cells extracted in the first 

stage of the procedure are not suitable for use due to either poor cellular 

proliferation resulting in an inadequate number to seed the graft or the 

development of infection in the cell cultures [238]. For these reasons single- 

stage seeding of prosthetic vascular grafts remains the ultimate aim for
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cardiac and vascular surgeons and further investigation to achieve this goal 

continues.

4.1.1 Sources o f endothelium fo r seeding

Early investigators used animal tissue such as bovine, porcine or 

canine endothelium as their source of ECs [239]. In order to make the 

transition from laboratory research to clinical practice it is necessary to 

obtain a source of cells from the patients themselves. In humans there is 

increasing evidence to show that cells of the same type from different tissues 

are morphologically, biochemically and functionally diverse. These findings of 

endothelial heterogenecity have resulted in debate regarding which type and 

source of EC are suitable for in vitro and in vivo studies and it has become 

accepted that this is a major consideration in tissue engineering. As a result 

of this numerous sources of cells have been investigated, including non- 

essential vessels such as the saphenous vein or umbilical vein and omentum 

or subcutaneous adipose tissue [81, 240, 241].

Herring and co-workers first reported the use of venous-derived 

endothelium for subsequent transplantation. The yield of cells from a suitable 

piece of saphenous vein segment was approximately 1 x 104 cells [17, 242]. 

This amount of cells would only provide a sparse coating of cells in a single- 

stage seeding procedure, requiring an extensive cell proliferation post- 

seeding to achieve a monolayer. In addition blood flow-induced shear stress 

could also result in the loss of a large number of seeded cells [243]. Thus 

whilst venous-derived endothelium may be suitable for a two-stage seeding 

process the need to explore different EC sources with higher cell yields 

remains to achieve successful single-stage seeding.

In 1986 Jarrell et al reported methods for the isolation of autologous 

microvessel EC from adipose tissue using enzymatic digestion similar to the 

methods for autologous vein [241]. The ECs could then be separated from 

the adipocytes by density gradient centrifugation.

Another potential source of EC investigated for use in single-stage 

seeding is subcutaneous fat. Published results in this area have been varied
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as some groups have claimed that no EC could be extracted from 

subcutaneous fat using a conventional collagenase digestion process whilst 

others have claimed that up to 80% of the cells extracted are EC using the 

same technique [244-246]

Omentum has also been utilised as a cell source. The cells extracted 

have been characterised as mesothelial cells (MC). Both EC and MC have a 

similar function producing substances such as tissue-type plasminogen 

activator (tPA) and urokinase plasminogen activator [247, 248]. In animal 

experiments most trials involving the seeding of grafts using cells derived 

from omentum have shown good results[249-253], except those reported by 

Verhagen and co-workers[254]. Based on this work the possible use of MC 

isolated from peritoneal lavage has been considered. Peritoneal lavage is a 

simple technique with a minimal morbidity for the patient. Ivarsson and co

workers reported that it was possible to extract between 3 x 106 and 8 x 106 

cells from around 500ml of lavage fluid [255].

4.1 .2  Isolation o f autologous human endothelial cells.

Two techniques have been developed in order to harvest ECs from 

autologous veins such as the long saphenous vein. Firstly, mechanical 

scraping [256] and secondly enzymatic digestion using collagenase or trypsin 

[250]. Mechanical scraping uses an abrasive action to remove EC from the 

vascular wall which leads to significant EC damage, the possibility of 

contamination with smooth muscle cells[250] and provides a poor harvest of 

EC[250]. Enzymatic digestion using collagenase or trypsin to remove the 

endothelium avoids the problem of mechanical damage to the cells and 

provides much improved EC recovery. Digestion is also suitable for use with 

tissue samples such as omentum and subcutaneous fat and has been applied 

to them. However in the case of subcutaneous fat and omentum, 

contamination with other cell types has been a significant problem [238].

Many groups have suggested that the only way to obtain a pure 

culture of EC from subcutaneous fat or omentum would be to use purification 

techniques such as Percoll gradient centrifugation, filtration or magnetic
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beads [36]. This is because it is believed that collagenase digestion of fat 

leads to the extraction of a mixed population of EC, MC, fibroblasts and 

smooth muscle cells. Percoll gradient centrifugation and filtration techniques 

have the disadvantage that they reduce the number of EC extracted. In 

addition Percoll is also thought to be detrimental to the subsequent 

proliferation of the extracted EC[36].

The use of magnetic beads to isolate ECs from contaminants has been 

suggested as a more suitable method of purification, particularly where large 

numbers of cells are involved. In this method the magnetic beads are coated 

with an antibody specific for the cells required. These beads are then mixed 

with the cell suspension resulting in the beads binding to all the cells 

expressing the correct antigen. The cell suspension is then passed through a 

magnetic field, which traps the magnetic beads and therefore the positive 

cells allowing the negative cell fraction to pass through. By removing the 

magnetic field the positively selected cells can then be collected.

Magnetic beads coated with platelet endothelial cell-adhesion molecules 

(PECAM; CD31) and Dynabeads have been used for extraction of EC for 

subsequent culture and cell characterisation but have never been used for 

seeding in a clinical situation. The effect of these microbeads on EC 

behaviour is however poorly understood.

4.1 .3  Characterisation o f endothelial cells

Mature ECs in culture have a very distinctive and well described 

cobblestone appearance upon confluence. Typically, they appear as flat, 1- 

2pm thick, cells about 10-20pm in diameter with a central nucleus. ECs also 

exhibit contact inhibition and can be seen growing in patches or clusters in 

sparsely seeded cultures.

Immunohistochemistry is one of the most widely used tools for 

characterising cell types by using antibodies specific to the cell of interest. 

However, one significant difficulty of this technique has been the relative lack 

of a dependable marker for endothelial cells. Two of the most commonly 

used antibodies are vWF and CD31. vWF has been routinely used for
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endothelial identification in adult cells. It is particularly useful for venous- 

derived endothelial cells possessing large numbers of Weibel-Palade bodies, 

cytoplasmic inclusions containing high concentrations of vWF which results in 

a characteristic punctate cytoplasmic staining. However not all ECs possess 

Weibel-Palade bodies or express vWF[257]. Microvascular endothelium for 

example contains relatively few Weibel-Palade bodies and can therefore 

produce a negative reaction when stained for vWF. CD31 is expressed at the 

cell/cell junction of confluent endothelium resulting in positive staining 

around the periphery of the cell. Again although characteristic of ECs positive 

staining is not guaranteed in all cases[257].

The aims o f this section o f the study were:

I) To extract EC from subcutaneous fat using three different techniques:

firstly conventional collagenase digestion and culture, secondly 

removal of fibroblasts using CDw90 beads followed by culture and 

finally the use of CD31 beads to positively extract EC.

II) To assess the impact of the source of MC and to consider the

feasibility of extracting cells from peritoneal lavage for use in tissue 

engineering.

III) To investigate the effect of Dynabeads™ on cell population and

metabolism.

IV) To study the process of seeding the extracted cells on to a

cardiovascular bypass graft, compliant poly(carbonate-urea)urethane 

and assess cell metabolism and proliferation.
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4.2 Materials and Methods

4.2.1 Endothelial cell extraction from subcutaneous fa t

Subcutaneous fat was removed from patients undergoing abdominal 

aortic surgery after informed consent. Fat removed from the patient was 

weighed, washed with phosphate buffered saline and finely minced in a petri 

dish with a scalpel until a fine paste was achieved. This was incubated with 

collagenase A (Roche Diagnostics, Lewes, U.K.) at 2mg/ml at 37°C for 25 

minutes. At the end of the incubation period, the enzyme was neutralised 

with complete medium: 157 ml M199 medium, 40 ml fetal calf serum, 4.8 ml 

sodium bicarbonate 7.5% solution (Invitrogen, Paisley, U.K.), 5 ml L- 

glutamine (200mM) and 1.57 ml penicillin/streptomycin (5,000 units penicillin 

and 5 mg streptomycin/ml) (Sigma Chemical Company, Dorset, U.K.) and 

centrifuged at 300g for 7 minutes. The upper layer of fat was discarded and 

the mixture centrifuged at 650g for a further 7 minutes. The supernatant 

was removed and the cell pellet resuspended in 10 ml complete medium. A 

cell count was performed and the cell suspension divided into two equal 

portions. One portion was plated in a 25cm2 flask and incubated at 37°C/ 5% 

CO2 in an air humidified chamber.

The other portion was subjected to either cell purification by a negative 

isolation technique with dynabeads using a modification of a method used 

previously for endometrial tissue [258] or a positive isolation technique using 

CD31 beads to positively remove endothelial cells (EC) using a modification 

of the method employed previously by Hewett and co-workers [244] as 

described below:

4.2.1.1 Removal o f fibroblasts (negative cell isolation)

Dynabeads Pan Mouse IgG (Dynal, Wirral, U.K.) were resuspended 

thoroughly and the required number of beads pipetted into a 50 ml 

centrifuge tube. The centrifuge tube was placed in a magnetic device (MD)
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(Dynal, Wirral, U.K.) and the fluid removed from the tube. The tube was then 

removed from the MD and the Dynabeads resuspended in 1 to 2 ml PBS.

The DM Pan Mouse IgG beads were then coupled to Thy-1 (CDw90) 

mouse anti-human monoclonal antibody (Serotec, Kidlington, U.K.) at a 

concentration of 0.1-lpg antibody/107 beads. The antibody/bead mixture 

was incubated on a roller for 30 minutes at 2-8°C. The excess antibody was 

then washed off and the coated beads resuspended in PBS.

The coated dynabeads were added to the cell suspension at a 

concentration of 4 beads per target cell. The cell/bead mixture was 

incubated for 10-30 minutes at 2-8°C with tilting and rotation. The MD was 

then used to remove dynabead positive cells which were then cultured as 

were the dynabead negative cells remaining.

4.2 .1 .2  Removal o f endothelial cells (positive cell isolation)

CD31 coated dynabeads (Dynal Ltd, Wirral, U.K.) were washed and mixed 

with the cell suspension at a concentration of 4 beads/cell. This mixture was 

incubated at 2-8°C for 30 minutes. The CD31 positive cells were removed 

using the MD. The cells were cultured at 37°C in complete medium which 

was changed every 48-72 hours.

4.2 .2  Mesothelial cell extraction from human lavage

Patients undergoing elective open abdominal aortic surgery were suitable 

for the study. Ethical approval was obtained from the local ethical committee 

and informed consent was taken of all patients taking part.

In all patients, the abdomen was opened using a standard midline 

laparotomy incision. Once the peritoneum was opened, 1 litre of warm saline 

was used for the lavage. The abdomen was gently shaken and the lavage 

fluid was collected after 2 minutes with a 50 ml syringe until no further fluid 

extraction was possible. The isolation of cells was similar to the method 

employed by Ivarsson and co-workers [255]. Briefly, the collected fluid was 

transferred into 50ml centrifuge tubes and centrifuged at 650g at 20°C for 10
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minutes. The supernatant was discarded and the cell pellet counted. As a 

control, in three of the patients a small amount of subcutaneous fat was also 

removed. Cells were extracted after mincing and digestion with collagenase 

A at 4mg/ml for 30 minutes at 37°C [259]. The cells were extracted by 

centrifugation and cultured as per our standard protocol.

4.2 .3  Effect o f m agnetic beads on endothelial cell metabolism

HUVECs were cultured as described above and used at 3rd passage. On 

the day of experiment, HUVECs were trypsinised and a portion of the cells 

was incubated with CD31 coated beads at 2-8°C on a roller for 30 minutes. 

The HUVECs with attached dynabeads (D+ve EC) were removed using a 

magnetic particle counter and counted at 48, 72, 120 and 144 hours to 

assess cell metabolism whilst cells not attached to the beads were discarded. 

Control was an equal number of HUVECs. Experiments were repeated four 

times.

4.2 .4  Assessment o f cells extracted from subcutaneous fa t and  

peritoneal lavage

Equal numbers of D+ve EC and HUVECs were cultured overnight in 

gelatin coated 24 well plates as described in chapter 3 (Section 3.1.1). After 

24 hours of incubation, AB was added and this was further changed every 48 

hours. Cells were trypsinised after 48, 72, 120 and 144 hours from initial 

plating and a cell count performed. Cells were counted using standard 

techniques with a haemocytometer. To assess the cell metabolism and 

viability the AB assay was applied as described above. As a control 

AB/medium added to empty wells was measured.
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4 .2 .5  Cell seeding o f compliant poly(carbonate-urea)urethane 

bypass g raft

The compliant poly(carbonate-urea)urethane (PCU) graft was cut flat and 

segments mounted in cryovials. The graft was coated with fibronectin 

engineered protein polymer (FEPP) (Sigma, Dorset, U.K.) to improve cell 

adherence. To seed cells extracted from subcutaneous fat onto vascular graft 

firstly the graft was coated with the FEPP solution at 37°C. After 24 hours the 

excess solution was washed off with PBS and the graft was ready for use. 

The cells still coated with the beads were seeded onto the graft for 1 hour 

and then washed with PBS three times to remove any non-adherent cells. 

The seeded graft was then cultured in complete medium with AB (10%) 

(Serotec, Kidlington, U.K.) for 72 hours. Every 24 hours a 50pl sample of the 

AB/medium mixture from the graft was removed and measured as above.

To assess the effect of dynabeads on EC metabolism, experiments were 

also performed after one hour seeding of the cells on to a prosthetic graft 

made of PCU. Cryogenic vials (2ml; Nalgene, New York, U.S.A) were used in 

which the ends were removed to obtain a long graduated cylinder. A 

standardized (1cm x 1cm) sample of PCU graft was then stretched over the 

other end of the cylinder and screwed down firmly using the screw cap fixing 

the graft firmly in place and not allowing any cell suspension to leak out. The 

graft material therefore formed a flat floor on which EC could be seeded. To 

enable use of the system in a CO2 incubator for a period of days seeding 

chambers were placed in a 24 well tissue culture plate (Marathon, London, 

U.K.) with another placed on top to allow gases to perfuse readily and 

prevent contamination. Graft segments were then seeded with dynabead 

coated EC (at a bead: cell ratio of 50: 1) and normal HUVEC at a cell density 

of 2xl05 cells/cm2. The cryovials were then washed three times with PBS, 

the washings collected and cell retention calculated from the number of cells 

lost in the washings. AB/medium was then added into the cryovials and 

readings were taken at 4, 24, 48 and 72 hours as previously.
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4.3 Results

4.3.1 Endothelial cell extraction from subcutaneous fa t

Subcutaneous fat was removed from patients undergoing abdominal 

aortic surgery. 7 patients took part in this study. The average age of the 

patients was 68.6±3.8 years (63-71). The number of cells extracted per 

gram of fat was 0.75 x 105 ± 0.49xl05 cells (0.26 x l05-1.08xl05 cells/gram).

The percentage of cells which were removed using the CDw90 beads 

(negative cell isolation by removal of fibroblasts) ranged from 9-75% (Table

4.1). On culture the cells extracted using the conventional technique, the 

cells positive for CDw90 and the cells negative for CDw90 all grew to 

confluence and resembled either smooth muscle cells or fibroblasts in 

morphology (Figure 4.1). On staining, the cells stained positively for 

fibroblast antibody whilst there was negative staining for CD31, actin and 

vWF (Figure 4.1).

The cells extracted using CD31 (positive cell isolation of EC) were 

confluent and resembled the typically cobblestone appearance of EC (Figure

4.1). These cells stained positively for vWF.

4.3 .2  Single stage seeding o f extracted cells onto PCU g ra ft

SEM confirmed cells still adhered to the graft 72 hours after seeding 

(Figure 4.1). The seeded cells were viable as confirmed by the Alamar blue™ 

viability assay with cell metabolism of 214.6% ± 6.6% compared to 

unseeded graft segments. The results of the Alamar blue™ assay are 

presented as a percentage as the assay is measured in arbitrary units.

4.3 .3  Mesothelial cell extraction from lavage

10 patients (9 males) took part. The average age of the patients was 

71.7±1.4 years. All the patients at the time of surgery were either non



smokers or ex-smokers. 5 patients had renal impairment defined as a blood 

creatinine level higher than the normal values taken at a pre-operative visit. 

Peripheral vascular disease was defined as either symptomatic disease or 

ankle brachial pressure less than 0.9 similar to previously published papers.

The results of the cell yields are summarised in Table 4.2. The average 

volume of fluid collected was 622±40 ml (400-750 ml). The average cell 

count for all the patients was 5898 ± 1384 cells/100 ml of peritoneal fluid 

collected.

The mesothelial cells were only viable for up to 6 days after extraction 

whilst the subcutaneous fat extracted cells were easily grown to confluence.
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Age

(years)

Cells

(no/gm )

CDw90+ve cells 

(% )
71 0.46x10s 13.1

63 1.08x10s 17.0

68 1.42x10s 19.2

73 0.50x10s 20.0

68 0.26x10s 8.9

71 0.16x10s 75.1

72 0.80x10s 58.4

Table 4.1 CDw90 positive cell extraction from subcutaneous fat
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Age (years) Sex PMH TLV (ml) TCC (xlO5) Cells (no/100ml)
63 M IHD, COAD 730 0.61 8470

68 M PVD, IHD, RI 450 0.50 1120

69 M IHD, CVA, RI 600 0.08 1333

71 M IHD 700 0.76 10900

71 M IHD, RI 530 0.24 4528

72 F IHD, CVA 730 0.65 9000

74 M IHD 750 0.22 2933

75 M IHD, PC, RI 400 0.80 2000

77 M IHD, RI 600 0.30 5000

77 M IHD 730 1.00 13700

Table 4.2 Profile and cell extraction in patients undergoing abdominal aortic 
surgery.

Keys'. CVA, cerebrovascular accident; COAD, chronic obstructive airway 
disease; IHD, ischaemic heart disease; PC, prostate cancer; PVD, peripheral 
vascular disease, RI; renal impairment, PMH: past medical history, TCC, total 
cell count; TLV, total lavage volume.
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E

Figure 4 .1  CDw90 ceils stained with mouse anti-fibroblast antibody (A) and mouse 
anti-vWF antibody (B) (Both magnification x40). Cells extracted from subcutaneous 
fat showing long spindle shaped cells (C) and cells extracted using CD31 beads 
showing typical cobblestone appearance (D) (Both magnification x20). Scanning 
electron microscopy of single stage seeding of CD31 coated cell extracted from 
subcutaneous fat at on PCU graft material (E) and (F) at magnification x220 (E) and 
x820 (F). Scale bar = 10 urn.
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4 .3 .4  Assessment o f Dynabead cytotoxicity

The total number of EC attached to Dynabeads™ is summarised in Figure 

4.2. It is shown that as the number of magnetic beads increases so does the 

proportion of EC attached to the beads with 4 beads having cell attachment 

of 64%± 3.83 whilst the corresponding result for 50 beads was 83%±5.3. 

There was no significant difference in attachment of EC between the 4 beads 

per cell and 10 beads per cell, between 10 beads per cell and 50 beads per 

cell but there was a statistically significant difference between the 4 beads 

per cell and 50 beads per cell (p<0.05).

The % cell population from the original plating for the D+ve EC for each 

time period post culture is summarised in Table 4.3. The results are given as 

a percentage by comparing D+ve EC to the normal EC. The results show that 

by the end of the 6th day the % of D+ve EC in culture compared to controls 

was 30.7 when 50 beads per cell was used whilst this Figure was 41.3 and

59.2 for 10 and 4 beads respectively. This shows that using 4 beads per cell 

leads to nearly twice as many available cells compared to 50 beads per cell. 

The cell viability assay using Alamar blue™ results are summarised in Table 

4.4. The corresponding Alamar Blue results for 50 beads per cell at 6 days 

was 43.7% whilst for the normal cells it was 72.1%. Figure 4.3 shows 

D+veEC cells at (a) 24 and (b) 96 hours post culture showing fewer cells in 

culture with prolonged culture time.

4 .3 .5  Assessment o f D + ve EC seeded on PCU g raft

The cell retention for (50beads/cell) D+ve EC and normal EC was not 

statistically significant (unpaired t-test, p=0.3087). The Alamar blue viability 

assay results are summarised in Table 4.5 showing that there was 

significantly less cellular metabolism in D+ve cells. Figure 4.1 shows a 

scanning electron microscopy picture of D+ve EC coated onto PCU graft 

showing cells still attached to the graft 72 hours after seeding.
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a)

Figure 4.3 A typical image of cell with Dynabeads™ (50 beads/cell) at (a) 

24hours and (b) 96hours post culture as culture time increases.
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CDC TPC (hours) %  of D+ve EC compared to normal EC p value

50 48 82.0 ± 11.4 0.224

72 66.3 ± 11.0 0.005

120 61.0 ± 6.5 0.001

144 30.7 ± 2.6 <0.001

10 48 54.4 ± 5.9 0.001

72 70.4 ± 15.2 0.097

120 54.5 ± 7.4 0.007

144 41.3 ± 9.8 0.005

4 48 76.2 ± 12.8 0.064

72 72.5 ± 9.5 0.037

120 78.1 ± 20.7 0.082

144 59.2 ± 7.3 0.026

Table 4.3 Cell population with Dynabeads. The results are given as a 

percentage (%) of control cells. Data are Mean ± SEM. Keys: D+ve EC (cell 

coated with Dynabeads™); normal EC (cells without Dynabeads™); TPC (time 

post culture); CDC (concentration of Dynabeads™ per endothelial cell). 

p< 0.05 was considered statistically significant compared to normal EC.
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CDC TPC (hours) D+ve EC p value

50 48 77.8±3.7 0.004

72 87.3±1.4 0.002

120 50.9+2.5 <0.001

144 43.7+1.2 <0.001

10 48 61.7+3.8 <0.001

72 60.9+1.8 <0.001

120 58.2+1.0 <0.001

144 61.8+1.4 <0.001

4 48 84.1+6.7 0.169

72 76.6+4.7 0.0001

120 77.3+3.2 <0.001

144 72.1.±4.3 <0.001

Table 4.4 Alamar blue viability assay results. Results are in percentage cell 

metabolism compared to the control. Data are Mean ± SEM. Keys: D+ve EC 

(cell coated with Dynabeads™); TPC (time post culture); CDC (concentration 

of Dynabeads™ per endothelial cell). p< 0.05 was considered statistically 

significant compared to normal ECs without Dynabeads™.
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Time(hours) % D +ve EC metabolism compared to 
control

p value

4 82.3 ± 3.4 0.0001

24 62.5 ± 3.9 <0.0001

48 70.6 ± 2.8 <0.0001

72 71.1 ± 3.6 <0.0001

Table 4.5 Alamar blue cell viability results after seeding on grafts. 

Results are given in % compared to controls and as Mean ± SEM. 

Keys: D+ve EC; Dynabeads™ coated endothelial cells
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4.4 Discussion

Finding a suitable source of EC and the purification of EC once extracted 

is still a vitally important challenge for research scientists. In this study,

peritoneal lavage and subcutaneous fat were investigated as a potential

source of cells. Since MC from peritoneal lavage have been shown to release 

similar antithrombogenic substances to EC, the suggestion has been made 

that they could provide an ideal source for tissue engineering[255]. The 

major advantages of employing peritoneal lavage as a cell source are that it 

requires only minimally invasive surgery and no enzymatic digestion is 

needed to extract the cells.

In our study, the number of MC extracted from peritoneal lavage was

much lower compared to Ivarrson and co-workers. There are a number of 

factors that may explain this. In the Ivarrson study the age or the past 

medical history of the patients who underwent the lavage was not specified. 

This has a major influence on the extraction of the cells and their subsequent 

proliferation[260]. In order to ascertain if this was a potential reason for the 

lower number of cells extracted the authors of the study were contacted and 

confirmed that they undertook their work on patients undergoing colorectal 

surgery and as such were not typical vascular patients (personal 

communication). We used patients undergoing abdominal aortic surgery with 

evidence of atherosclerotic disease including ischemic heart disease, 

peripheral vascular disease, carotid artery disease and renal impairment. 

These patients fit the typical profile of patients who require peripheral 

vascular bypass. The effect of using older patients with other co-morbidities 

may well have affected the ability to extract cells and account for the lower 

number of cells extracted. This was particularly evident in patients with 

abnormal serum creatinine levels where fewer cells were extracted compared 

to patients with normal creatinine; due to the small numbers of patients 

further data and investigation is required to confirm our observations.

A report by van Westreenen and co-workers showed that different lavage 

fluids could have a detrimental effect on MC survival. This study suggested
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that normal saline would kill 20% of MC though this was the safest of all the 

lavage fluids tested[261].

The second potential source of EC investigated in this study was 

subcutaneous fat. Many authors have reported large harvests of pure EC 

from fat using conventional enzymatic techniques whilst others have only 

had success using cell purification techniques similar to those used in this 

study. EC were extracted from subcutaneous fat using three different 

techniques: firstly conventional collagenase digestion and culture, secondly 

removal of fibroblasts using CDw90 beads followed by culture (negative cell 

extraction) and finally the use of CD31 beads to positively extract EC (Figure

4.1). One factor which can affect the success of EC extraction is the source 

of the enzyme used, enzyme obtained from different manufacturers may not 

all behave in the same manner and there may be further differences in 

activity between batches of enzyme from the same manufacturer. To 

investigate this two different collagenases (Sigma Chemical Co. Ltd, Poole, 

U.K. and Roche Diagnostics, Lewes, U.K.) at concentrations of 2 and 4 mg/ml 

were utilised to extract EC in a preliminary experiment and showed no 

obvious differences between the EC extracted. This preliminary experiment 

was only done in two patients because of the difficulty in obtaining limited 

human samples and it was then decided to use one brand of collagenase 

(Roche Diagnostics, Lewes, U.K.) in the rest of the study. However the 

numbers of cells extracted were similar to previously published reports so it 

is unlikely that the variety of collagenase employed was responsible for the 

low number of EC and high numbers of fibroblasts obtained.

In previous work, Arts and co-workers have used magnetic beads to 

remove both fibroblasts and smooth muscle cells for cell purification[262]. 

Our experience with CDw90 beads has shown that fibroblasts can be 

removed but the results are inconsistent and currently this is not a reliable 

technique for clinical use. EC extracted with CD31 beads produced cells 

which had the typical cobblestone appearance of EC and stained positively 

for vWF. Therefore for use in a clinical situation we would recommend the 

use of the more reliable CD31 magnetic beads for positive EC extraction.
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When using magnetic beads it has been suggested that large numbers of 

beads are required to ensure that as many as possible of the available EC 

have been extracted. However it has been previously suggested that utilising 

a large number of magnetic beads may cause toxic effects to EC[263]. In 

order to investigate if this was the case the effect of Dynabeads™ at varying 

concentrations on cell population and metabolism was investigated using 

HUVECs. The recommended number of beads to extract cells is 4 beads /cell 

but this results in only 64% of all possible cells being attached to the beads. 

When this is increased to 10 beads per cell only 73% of the cells were 

attached whilst by greatly increasing the bead to cell ratio to 50, 83% of the 

cells were attached to the beads (Table 4.2).

The results on table 4.3 and table 4.4 have also demonstrated that by 

using higher numbers of beads more cells can be extracted. However there is 

a decrease in cellular proliferation especially associated with the use of 

higher numbers of beads with increased culture time. This is particularly 

evident by day 6 showing that the toxic effect of Dynabeads™ increases with 

increasing time. The reasons for this are unclear and further investigation is 

needed to determine if this is just a physical effect of the presence of the 

beads or a functional effect which can be looked at by measurement of 

parameters of cell function such as secretion of vWF.

These results have shown that using a large number of beads to improve 

cell extraction, whilst producing a larger pool of cells initially for use, results 

in reduced cell population and metabolism. Thus it is necessary to strike a 

balance between maximising cell extraction and ensuring that cell survival 

and proliferation occurs. In the future it may be worthwhile investigating the 

use of either detachable beads or smaller beads (such as Miltinyi) to see if 

they have a similar significant detrimental effect to the results obtained in 

this study.

This study highlights the problems faced by researchers in attempting to 

extract cells for tissue engineering for typical vascular patients. MC extracted 

from peritoneal lavage remain a potential alternative source for cells for 

tissue engineering but due to the limited number of cells extracted from 

patients with vascular problems probably only in non-vascular patients. With

102



regard to extracting cells from subcutaneous fat it can be concluded that for 

single-stage seeding successful harvesting will require the use of magnetic 

beads with the drawback that using such beads in high concentrations is 

detrimental to EC proliferation and metabolism whilst using lower number of 

magnetic beads will reduce the number of EC extracted.
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CHAPTER FIVE

DEVELOPMENT AND CHARACTERISATION OF NEW
PEPTIDES
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5.1 Introduction

Among the numerous biological molecules in the living tissues, 

extracellular matrix (ECM) proteins that bind to integrin receptors have 

attracted tremendous attention and resources in the research environment. 

ECM proteins are macromolecules; large molecules that are assembled from 

simple subunits or monomers. Each protein has a unique structure, and as a 

consequence of that structure, it has a unique shape and function in any 

given set of environmental conditions. The physical and chemical properties 

are determined by the nature of the constituent amino acid side chains and 

by the polyamide peptide backbone itself. In order to comprehend protein 

structure and function in detail, the composition and properties of individual 

amino acids must be examined.

5.1 .1 Amino acids

Amino acids Arginine (R), Glycine(G) and Aspartic acid (D) as a 

tripeptide sequence RGD is known to be the active site of adhesive proteins 

of the ECM. As their name suggests, amino acids are organic acids, which 

also contain an amino group. These biologically important amino acids 

belong to the group called a-amino acids. As indicated by the general 

formula of amino acid (Figure 5.1), any distinctive properties of a particular 

amino acid must be dependent on the nature of the R-group attached to its 

a-carbon. Since there is considerable diversity among the naturally occurring 

amino acids it is convenient to classify them according to the characteristics 

of their R groups or side chain [264].

Amino acids vary in their structure, size and electric charge and these 

also influence their solubility in water. Amino acids with polar R groups are 

generally water soluble, and their hydroxyl (-OH) or sulfhydryl (-SH) groups 

often play a key functional role in the proteins of which they form a part. The 

polar R groups of these amino acids do not ionize in the physiological pH 

range.
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N-terminus Side C-terminus or
or a-amino chain Carboxyl
group group

Figure 5.1 General chemical formula of amino acids

The amino acids can generally be grouped into hydrophobic and 

hydrophilic residues (Table 5.1). The hydrophilic residues can be categorised 

conveniently into three groups: 1) amino acids with neutral or polar side 

chains such as serine, 2) acidic side chains, such as aspartic acid and 

glutamic acid, and 3) basic side chains such as arginine.

Glycine is the simplest amino acid, which has just a hydrogen atom at 

its side chain. Due to the small size of its side chain, glycine permits the 

peptide backbone a great deal of conformational flexibility and doesn't fit into 

any of the above categories. When present as a residue in the chain it is 

neutral and can be accommodated into polar or non-polar environments.

a-carbon

[2n CH

R

C

I

O !

OH
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Amino acid R-group Property M W

II II
M l ,  1 1

\  -  S -  CH. -  CH. - CH. — C -  COOH

^  '
M l  M l ,

Arginine (Arg) R

Basic side chain Hydrophilic 174

ii

1
H _  C l 1 ~  C — C(X)H 

M l,

Glycine (G ly ) G

Non-polar Hydrophobic 75

i i

C -  CH. - ( ' -  C(X)H 
/  ‘ 1

M l ,

Aspartic acid (Asp) D

Acidic side chain Hydrophilic 133

i i

i
IK) -  CII, -  C ~  C(X)H

1
M l , Neutral side chain Hydrophilic 105

Serin (Ser) S

Table 5.1 Structure, functional group (R-group), property and molecular 
weight (MW) of amino acids Arginine, Glycine, Aspartic acid and Serine.
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5 .1 .2  6-Am inohexanoic acid

Aminohexanoic acid (MW= 131.2) is an amino acid derivative with an 

amino (NH2) group at one end and a carboxyl (-COOH) group at the other 

end. It acts as a fibrinolysis inhibitor with a mechanism of action that is 

thought to be inhibition of plasminogen activators. Aminohexanoic acid 

(Figure 5.2) is found to have penetrated through an extra vascular and 

intravascular body compartments and into red blood cells and other tissue 

cells, when introduced intravenously. It is used to help maintain homeostasis 

when fibrinolysis leads to bleeding. It is used medically to reduce or prevent 

bleeding [265, 266].

IK) c h .  c n 2 c h 2

\  /  \  /  \  /  \
C CH. CH. N il:

Figure 5.2 Chemical structure of 6-Aminohexanoic acid

5 .1 .3  Laurie acid

Laurie acid (also called Dodecanoic acid) is aliphatic carboxylic acid 

with 11 hydrocarbon lengths at one end of the chain joined to a terminal 

carboxyl (-COOH) group at the other end. The general formula of lauric acid 

is CH3-(CH2)io-COOH (Figure 5.3). As one of the medium-length long-chain 

fatty acids, lauric acid is part of the class of organic compounds known as 

lipids, which are vital in the construction of cellular membranes and act as a 

source of food under starvation conditions. It is insoluble in water and has a 

melting point of 40-44°C. Lauric acid is also believed to possess antimicrobial 

properties and is frequently exploited by pharmaceutical companies.
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CH. CH. CH. CH. CH. C
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II,C CH. CH. CH . CH. CH. OH

Figure 5.3 Chemical structure of Lauric acid

5.2 Peptide synthesis: The solid phase

Merrifield in 1963 first described solid-phase peptide synthesis. The 

essential feature, which distinguishes solid-phase synthesis from the 

solution-phase technique, is the use of a solid resin support [267]. The resin 

support is often a polystyrene suspension polymer cross-linked with 1% of 

divinylbenzene as a cross-linking agent. Solid-phase peptide synthesis 

strategies retain the proven solution-phase chemistry while adding a covalent 

attachment step that links the peptide chain to an insoluble polymeric 

support (Merrifield in 1963). The chain elongation is initiated in the carboxyl 

—► amino direction where the carboxyl residue of the selected sequence is 

attached to the support either directly or by means of an appropriate 

"handle". For peptide synthesis to proceed successfully, without unwanted 

side reactions, the supports and amino acid derivatives must be protected at 

the reactive N°-amino groups and side chain functionalities. The carboxyl 

group of each amino acid is unprotected and must be activated prior to 

coupling.
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The carboxyl group of each incoming amino acid is activated by one of 

several strategies and couples with the N°-amino group of the proceeding 

amino acid. The N°-amino group of the incoming amino acid is temporarily 

protected to prohibit peptide bond formation at that site. The "temporarily" 

protecting group of the N°-amino group is removed (deprotected) at the 

beginning of the next synthesis cycle.

In addition, reactive side-chains on the amino acids are protected with 

"permanent" protecting groups. Repeating the synthesis cycle extends the 

polypeptide chain. Excess reagents at high concentrations are used to drive 

the reaction as close to completion as possible. This generates the maximum 

possible yield with high quality final products.

When the peptide has fully assembled, the "permanent" side chain 

protecting groups are removed and the peptide is cleaved from the solid 

support, using conditions compatible with the labile residues.

5.2.1 Am ino-protecting groups

In the early stages of peptide synthesis, it was realised that urethane 

derivatives were particularly suitable for the protection of amino groups. 

These derivatives were easily prepared and chemically stable. The urethane 

nitrogen atom is usually inert to the subsequent peptide synthesis reaction 

conditions. The Fmoc group (ring-subtituted benzyl urethane) is labile to 

bases and thus makes the Fmoc group ideal for temporary protection.

5 .2 .2  Carboxy-protecting groups

Amino acid benzyl-CC^CFbCeHs and t-butyl-C02CMe3 ester are more 

popular in peptide synthesis since their cleavage conditions were analogous 

to the corresponding urethanes used for amino protection.
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5 .2 .3  Side chain protecting  groups

Most of the amino acids commonly encountered in proteins contain 

functional side chains. The need for protecting these side chains depends 

upon the severity of the reaction conditions. Since in solid phase synthesis 

the reaction conditions tend to be rather severe, side chain protection is 

almost always required. It is also convenient in solid phase synthesis if the 

majority or all of the permanent protecting groups are cleaved 

simultaneously in a single step at the end of the synthesis.

5 .2 .4  Peptide-resin bond

The most important step in solid phase synthesis is the chemical 

linkage of the growing peptide to the resin support. It has to be easily 

formed, stable to repeat cycles of acrylation and deprotection reactions and 

yet easily cleaved at the end of the synthesis without damage to newly 

formed peptide bonds.

5 .2 .5  Formation o f the peptide bond

A peptide bond is formed when the amino group of one amino acid 

reacts with the carboxyl group of a second amino acid, eliminating a water 

molecule and resulting in a peptide (amide) bond. In order to form a peptide 

bond between two amino acids it is necessary to activate the carboxyl group 

of one of the amino acids. Simply alkyl esters of protected amino acids 

undergo aminolysis at too slow a rate to be generally useful for peptide bond 

synthesis. Phenyl esters are more reactive, and when electronegative 

substituents are present in the aromatic ring it makes them even more 

reactive.

1-Hydroxybenzotriazole (acylation catalyst) is commonly used as a 

catalyst in these reactions. In this study pentafluorophenyl ester of Fmoc 

amino acids were used. Pentafluorophenyl esters are efficient acylating 

agents and their chemical structures provide little opportunity for side 

reactions. They are cleaved cleanly and rapidly by solutions of secondary
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bases in DMF, conditions that leave even particularly sensitive £-butyl 

derivatives entirely unaffected. Hence selectivity between amino acid side 

chain deprotection reactions is obtained.

The aim s o f this study were:

I) To develop an RGD-containing peptide with an anti-thrombotic 

effect and endothelial cell adhesion property using solid phase 

peptide synthesis.

II) To modify the peptide developed to enhance its activity and 

suitability for surface modification application of polycarbonate 

urea)urethane polymer.

III) To characterise the peptides developed.
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5.3 METHODS AND MATERIALS

5.3.1 Solid phase peptide synthesis

The synthesis of GRGD, GRGDS, LA-GRGD, LA-GRGDS, repeat 

GRGD(AhxGRGD)3 and repeat LA-GRGD(AhxGRGD)3 was carried out 

manually by a stepwise solid phase method on a Rink-amide resin. Briefly to 

synthesise a peptide the first amino acid was coupled to the resin followed 

by the sequential coupling of the remaining F-moc amino acids with side 

chain protected groups as appropriate. On completion the peptide was then 

detached from the resin. In the case of LA-conjugated peptides the same 

process was followed by conjugation of lauric acid prior to detachment of the 

peptide. Rink-amide resin and F-moc amino acids were supplied by 

Novabiochem, Beeston, U.K. and all other chemicals by Rathburn, 

Walkerburn, Scotland.

Procedure I: Fmoc deprotection.

0.5g Fmoc-protected resin was deprotected by suspending in 10ml of 20% 

piperidine in DMF and agitating with N2 for 5 minutes twice at room 

temperature. The resin was then washed five times with dimethylformamide 

(DMF; 10ml).

Procedure I I :  Coupling with HBTU/HOBt.

A reaction solution was prepared consisting of 2.5 equivalents of the initial 

Fmoc-amino acid, an equivalent amount of 2-(lH-Benzotriazole-l-yl)-l,3,3- 

tetramethyluronium hexafluorophosphate(HBTU) and 1-hydroxybenzotriazole 

(HOBt), and 1M N,N-diisopropylethylamine (1.6ml in lOmls DMF). This 

mixture was then added to the deprotected resin, allowed to couple for 30 to 

40 minutes at room temperature, then washed with DMF under vacuum.
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Procedure I I I :  Deprotection o f Fmoc-amino acid coupled to resin

The N-terminal of the Fmoc-amino acid coupled to the resin was subjected to 

two deprotection cycles with 10ml of 20% piperidine in DMF and agitated for 

5 minutes. It was then thoroughly washed five times with 10ml DMF for 

lminute each.

This process of deprotection and coupling was then repeated to add the 

remaining Fmoc-amino acids resulting in a peptide-resin complex.

Procedure IV : coupling o f aminohexanoic acid to GRGD-resin complex

Aminohexanoic acid (Ahx) was also deprotected and coupled to the GRGD- 

resin complex as above. A further GRGD sequence was then added using the 

process above and this procedure continued until four repeat GRGD 

sequences had been synthesised.

Procedure V: Conjugation o f Lauric acid to the peptide-resin complex.

In the case of the preparation of LA-conjugated peptides, LA (153mg) was 

coupled to the peptide-resin complex using the same deprotection and 

coupling process above.

Procedure V I: Detachment and deprotection o f peptide and LA-conjugated 

peptide from the solid phase.

The resin was washed with dichloromethane (DCM) and vacuum dried. 10% 

trifluoroacetic acid (TFA) in DCM was added and agitated for 60 minutes. 

Every 20 minutes the filtrate was collected. The TFA and DCM were removed 

from the combined filtrates by rotary evaporation until an oily mixture 

remained. To this oily mixture 50ml 95% TFA in H20 (containing 5% 

scavengers (1,2 ethanedithiol (EDT), phenol and thioanisole)) was added 

followed by incubation at room temperature for 5 hours for complete 

deprotection. The TFA and scavengers were removed by rotary evaporation
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and cold diethyl ether was added to precipitate the peptide and remove any 

residual scavengers. The precipitated peptide was further rinsed with diethyl 

ether and centrifuged to obtain a pellet which was dried under vacuum. An 

example of the solid phase peptide synthesis scheme is shown in Figure 5.4 

for LA-GRGDS with the other peptides synthesised in a similar manner.
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Adding of first amino acid

H2N—  Ser—  

Deprotection followed by coupling Aspartic acid

H2n— Asp —CONH—Ser—

Addition o f remaining amino acids

H2N— Gly — CONH— Arg —  CONH — Gly—  CONH — Asp — CONH — Ser—

Conjugation o f lauric acid 

LA —  CONH— Gly —  CONH — Arg — CONH — Gly—  CONH “ Asp — CONH — Ser—

Final deprotection &  cleavage from resin

GRGDS (Hydrophilic head)

L A -G R G D S

Amide bond

\AMM v

LA (Hydrophobic tail)

Figure 5.4 Typical solid phase peptide synthesis scheme: example shown 
for LA-GRGDS.
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5 .3 .2  Characterisation and analysis o f peptides

High performance liquid chromatography (HPLC) analysis with a 

Varian 5000 Liquid Chromatograph equipped with a variable wavelength UV 

detector using a C18 column with 0.1% (v/v) aqueous TFA at a flow rate of 

lml/min and measuring the extinction at 220nm of the eluate was used to 

determine peptide purity. Mass spectroscopy by Fast-atom-bombardment 

mass analysis (FAB-MS) (VG-70SE positive ion) was used to evaluate LA- 

GRGD and LA-GRGDS and to characterise the coupling of LA to native GRGD 

and GRGDS. FTIR absorption spectra of GRGDS and LA-GRGDS in 2H20  PBS 

(pD7.4) were also obtained using a Perkin-Elmer 1750 FTIR Spectrometer 

equipped with a fast recovery TGS detector and a Perkin-Elmer 7300 

computer for data acquisition and analysis.
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5.4 Results

Hydrophilic GRGD, GRGDS and repeat GRGDAhx and their 

corresponding lauric acid (LA) conjugated peptides listed on Table 5.2 were 

produced via a solid phase peptide synthesis. The yield of peptide obtained 

from a typical synthesis was approximately 150mg.

Peptide

Synthesised
Peptide Sequence

GRGD Gly-Arg-Gly-Asp

LA-GRGD LA- Gly-Arg-Gly-Asp

GRGDS Gly-Arg-Gly-Asp-Ser

LA-GRGDS LA- Gly-Arg-Gly-Asp-Ser

Repeat GRGDAhx Gly-Arg-Gly-Asp-(Ahx-Gly-Arg-Gly-Asp)3

Repeat LA-GRGDAhx LA-Gly-Arg-Gly-Asp- (Ahx-Gly-Arg-Gly-Asp)3

Table 5. 2 Amino acid sequence for peptide preparation by solid phase 
synthesis.

5.4.1 HPLC analysis o f peptides

The purity of the peptides synthesised was analysed by using reverse- 

phase HPLC which revealed the presence of a well-resolved single major 

peak as shown in Figures 5.5, 5.6 and 5.7.
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Figure 5.5 HPLC profile of (A) GRGD and (B) LA-GRGD.

HPLC chromatography obtained from the extinction at 220nm of the eluate in 

0.1% (v/v) aqueous TFA at a flow rate of lml/min from 300A pore-size, C18 

column.
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Figure 5.6 HPLC profile of peptides (A) GRGDS and (B) LA-GRGDS.

HPLC chromatography obtained from the extinction at 220nm of the eluate 

in 0.1% (v/v) aqueous TFA at a flow rate of lml/min from 300A pore-size, 

C18 column.
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Figure 5.7 HPLC profile of peptides (A) GRGD(AhxGRGD)3 and (B) LA- 
GRGD(AhxGRGD)3.

HPLC chromatography obtained from the extinction at 220nm of the eluate in 

0.1% (v/v) aqueous TFA at a flow rate of lml/min from 300A pore-size, C18 

column.
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5 .4 .2  Mass Spectrom etry

The effectiveness of the conjugation of LA to GRGD and GRGDS was 

confirmed by Fast-atom-bombardment mass analysis (FAB-MS) (VG-70SE 

positive ion). The value determined by FAB-MS for LA-GRGD was 585 which 

was in agreement with the predicted molecular weight of 585 (Figure 5.8). In 

the case of LA-GRGDS the determined value was 672 which was again in 

agreement with the predicted molecular weight of 672 (Figure 5.9).

Although FAB-MS produces very accurate analysis of a wide range of 

synthetic peptides, a major limitation was its upper mass limit. Hence due to 

their high molecular weigh, it was impossible to evaluate the LA- 

GRGD(AhxGRGD)3 peptide.
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5 .4 .3  F7IR  analysis

FTIR absorption spectrum of GRGD, LA-GRGD, GRGDS, LA-GRGDS, 

GRGD(AhxGRGD)3 and LA-GRGD(AhxGRGD)3 in 2H20 PBS (pD 7.4) are shown in 

Figure 5.10, 5.11, 5.12, 5.13 5.14 and 5.15 respectively. The amide I band 

maximum for GRGD, LA-GRGD, GRGDS and LA-GRGDS was observed at 1650 

cm'1. The 1650cm'1 band is assigned to a-helical structure and demonstrates the 

formation of a protein-like secondary structure. Despite the conjugation of LA to 

the GRGD and GRGDS, the peptides remain stable and maintain their structure. 

The amide I band maximum for GRGD(AhxGRGD)3 and LA-GRGD(AhxGRGD)3 

was found to be 1643.

The amide I vibration, which is principally C=0 stretching, can vary 

according to the nature of the hydrogen bonding found in a-helical and p-sheet 

structures. As a result, the frequency of the amide I band can be applied to 

distinguish between the secondary structures, which occur in proteins and 

peptides. Bands in the spectral range 1620-1640 cm'1 are attributed to the p- 

sheet accompanied by minor component bands at 1680-1690 cm'1. This 

vibration in absorption may be attributed to the protein water interactions which 

is minimal in hydrophobic membrane environment and hence in increase in the 

amide I maximum.
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Figure 5.10 FTIR spectrum of GRGD in 2H20 PBS (pD 7.4) at 30°C
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Figure 5.11 FTIR spectrum of LA-GRGD in 2H20 PBS (pD 7.4) at 30°C
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Figure 5.12 FTIR spectrum of GRGDS in 2H20 PBS (pD 7.4) at 30°C.
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Figure 5.13 FTIR spectrum of LA-GRGDS in 2H20 PBS (pD 7.4) at 30°C
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Figure 5.14 FTIR spectrum of GRGD(AhxGRGD)3 in 2H20 PBS (pD 7.4) at 30°C
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Figure 5.15 FTIR spectrum of LA-GRGD(AhxGRGD)3 in 2H20 PBS (pD 7.4) at 
30°C.
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5.5 Discussion

The theory behind designing peptidomimetic agents is based on a 

knowledge of the amino acids as the basic building blocks that constitute the 

protein. These provide the crucial functional groups to establish interaction with 

the active site of the receptor and result in a functioning protein. Therefore in 

this study, the amino acids arginine, glycine and aspartic acid are used as 

building blocks for the synthesis of different RGD-containing peptides.

As described previously (CHAPTER 2) the tri-peptide Arg-Gly-Asp (RGD) 

sequence is known to be the active sequence of adhesive proteins of the 

extracellular matrix (ECM) [268-270] that binds to integrin receptors. However 

RGD tri-peptides are small peptides that lack a defined structure, which is 

necessary for their recognition by receptors. Hence to ensure adequate binding 

of the peptide segment to the cell surface receptors and to prolong the 

degradation time, the RGD tri-peptide was lengthened to include two additional 

amino acids (Glycine and Serine) from the fibronectin sequence.

A variety of RGD-containing peptides have been developed previously to 

improve the bio-compatibility properties of cardiovascular devices. In this 

context, the aim of this work is to develop RGD-derivative peptides which 

demonstrate an anti-thrombotic and EC adhesion effect (targeting the dnbp3 and 

avP3 integrins) when immobilised onto the surface of a PCU polymer. The RGD- 

containing peptides are functionalised in order to provide stable linking to the 

polymer via a functional (amino) group.

One method of achieving this aim is to conjugate the RGD-containing 

peptide to a fatty acid such as LA. This conjugation of the peptide to LA is 

crucial to allow its solubility in organic solvents. Ordinarily RGD peptides do not 

readily dissolve in the organic solvents used to dissolve the polymer itself during 

the commercial synthesis process due to their hydrophilic nature and thus are 

unsuitable for incorporation into the polymer during production. The difficulty
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can be potentially overcome by employing the conjugation of LA to the RGD 

peptide to provide an amphiphilic property to the hydrophilic RGD peptide.

It has been suggested that larger molecules are more likely to interact 

with surfaces as they are able to contact the surface at more sites. Conjugating 

many copies of a ligand to a single-polymer backbone has also been proven to 

be a successful method for increasing ligand affinity and specificity through 

multivalent interactions. Previously several researchers have developed 

multimeric compounds in which the RGD sequence is locally enriched and can 

bind polyvalently to the cells to enhance the affinity of the receptor-ligand 

interactions [271-274]. Maynard et al synthesised a polynorbones polymer with 

multidentate ligands by the conjugation of a synergistic peptide Pro-His-Ser-Arg- 

Asn (PHSRN) in addition to GRGDS to the polymer backbone. Since PHSRN 

enhances cell binding to the RGD domain in fibronectin, a copolymer substituted 

with both GRGDS and PHSRN should exhibit a higher competitive inhibitory 

activity than a polymer containing only GRGDS. The results presented in the 

study showed that the copolymer substituted with GRGDS and PHSRN ligands 

was the most potent inhibitor of cell adhesion when compared to the 

homopolymer containing only the GRGDS ligand [272].

The increased affinity of RGD ligands due to multivalent interactions has 

also been demonstrated by Kok et al [275]. Multivalent derivatives of a cyclic 

RGD-peptide were prepared by covalent attachment of the peptide to the side 

chain amino groups of a HuMab protein. EC adhesion assays and radiobinding 

studies into the affinity of these derivatives to the avP3/avP5 integrins 

demonstrated that the RGD-peptide-protein conjugates inhibited avp3-mediated 

EC adhesion and that the amount of RGD-peptide coupled per protein affected 

the affinity of the RGD-peptide-protein conjugates to EC compared to the free 

peptide. Based on this work in this study repeat GRGD peptide sequences have 

been synthesised to enhance and prolong the peptide activity by incorporating 

an amino acid derivative, aminohexanoic acid (Ahx) into the peptide structure.
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The Ahx acts as a spacer between the GRGD sequences and may also provide 

an additional function as an anti-fibrinolytic agent [265, 266].

Solid phase peptide synthesis was used to produce all the RGD- 

containing peptides and their corresponding LA conjugated peptides by 

attaching a LA to an RGD-containing peptide via an amide bond (Table 5.2). 

Following synthesis the peptides produced were characterised using HPLC, FTIR 

and mass spectrometery. The HPLC analysis demonstrated the peptides 

homogenecity revealing the presence of a well resolved single major peak in 

each chromatogram. The FTIR absorbance results confirmed the formation of a 

protein-like secondary structure with all the peptides showing an amide I band 

maximum in the range of 1615-1695 cm'1. GRGD, LA-GRGD, GRGDS and LA- 

GRGDS showed an amide I band maximum at 1650 cm'1 band which is assigned 

to a-helical structure. Both repeat GRGD peptides and LA-GRGD demonstrated 

an amide I band maximum at 1643 cm'1. Mass spectrometry analysis confirms 

that the solid phase peptide synthesis was successful and that the successful 

conjugation of LA to the peptides GRGD and GRGDS had been achieved.

In conclusion the results presented in this study show that the synthesis 

of the RGD-containing peptides GRGD, GRGDS and repeat GRGD peptides was 

achieved by utilising a solid phase peptide synthesis process. The synthesis of 

the corresponding LA conjugation peptides has also been demonstrated to be 

successful. Finally the results of this study also show that the conjugation of LA 

to the various peptides produced no effect on the structure or stability of the 

original RGD-containing peptide.
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CHAPTER SIX 

EVALUATION OF NEW PEPTIDES
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6.1 Introduction

This study was designed to evaluate the anticoagulation effect of RGD- 

derivative peptides prepared using solid phase peptide synthesis (Chapter 5) 

upon tissue factor activity (in control plasma and fresh whole blood), to define 

the likely cytotoxic concentrations on EC metabolism and also assess their EC 

binding effect. As previously discussed, these peptides were developed and 

synthesised for surface modification application of a poly(carbonate- 

urea)urethane (PCU) polymer. In this department, a variety of research 

including this study, has been performed to improve the surface anti-thrombotic 

property of PCU to be used for small diameter vascular grafts [35, 38, 39, 161, 

276]. The surface modification using RGD-derivative peptides is aimed to reduce 

surface thrombosis by inhibiting blood coagulation and enhance EC adhesion to 

provide an endothelial layer. Therefore it is important to investigate peptide 

anticoagulant activity using plasma and whole blood. It is also necessary to 

evaluate the optimal concentration and cytotoxic concentration of these 

peptides. To assess the peptides effect on EC metabolism and EC adhesion, EC 

extracted from human umbilical vein (HUVEC) were used.

6.1.1 Measurement o f procoagulant activity

The one-stage prothrombin time assay is a simple and quick technique 

which can be used to evaluate the effect of different agents and varying 

concentrations on inhibition of plasma coagulation. Prothrombin time analyses 

prolonged clotting time of plasma by an agent which possesses an inhibitory 

effect on the coagulation cascade. A prolonged clotting time may result from the 

inhibition of one or more of the following, proaccelerin (V), proconvertin (VII), 

Stuart factor (X), prothrombin (II) or fibrinogen (I). The one-stage prothrombin 

time assay relies upon the initiation of the extrinsic pathway of coagulation. 

Tissue factor in the presence of calcium and phospholipids, acts as a cofactor
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for factor VII to facilitate the activation of factor X and subsequent coagulation 

factors. This culminates in the formation of a clot. An unknown quantity of 

tissue factor activity in a sample can be determined through examination of the 

time taken to produce a clot. The higher the concentration of tissue factor 

present within a sample the less time is taken for clot formation.

6.1.2 Assessment o f whole blood coagulation (thrombelastograph 

analysis)

Thrombelastography (TEG) is used to measure the clotting time of whole 

blood. TEG has been used in many clinical settings since its introduction in 1948 

and has been shown to be a reliable technique for diagnosis and monitoring 

treatment of various blood disorders. The TEG measurements correlate well with 

the coagulation profile[234]and have the advantage of being a rapid technique 

which requires small blood volumes. The time it takes for whole blood to clot is 

a measure of the efficiency of all stages of the intrinsic clotting pathway. A 

prolonged clotting time of whole blood may result from the inhibition of platelet 

activation and inhibition of one or more of the following clotting factors XII, XI, 

IX, X, II or I.

The output from the TEG records the elasticity of the blood clot (Figure 3.3). 

A number of important parameters can be measured and quantified which 

reflect the nature of the coagulum produced. In the TEG the reaction time 

denoted ' r' (TEG-r) is measured from the start mark (re-calcification point for a 

citrated sample) until an amplitude of 2mm is obtained. During this time there is 

no resistance in the blood and so the piston remains motionless. The r-time 

corresponds to the time taken for the formation of the first fibrin strands, and is 

therefore indicative of the enzymatic sequence of events which occur in the 

blood coagulation cascade prior to fibrinogen conversion to fibrin. The time from 

the measurement of r (the beginning of the clot formation) until a fixed level of 

clot firmness is reached (amplitude 20mm) is the k-time. It is a measure of the
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speed or clot kinetics to reach a certain level of clot strength. Angle (a) is 

closely related to k-time. The angle is more comprehensive than the k-time, 

since there are hypocoagulable conditions in which the final level of clot 

firmness does not reach an amplitude of 20mm. The maximum strength or 

stiffness of the developed clot is described as ' ma' (Maximum Amplitude).

In general, the shape of the curve (k,a and ma) is determined by fibrinogen 

and platelet activity whereas the r-time is highly dependent on the functional 

aspects of the clotting factors.

6.1.3 Assessment o f cell metabolism and cytotoxicity

Alamar blue™ (AB) is an assay designed to measure quantitatively cell 

metabolism, cytotoxicity, and viability by incorporating resazurin and resarufin 

as colorimetric oxidation reduction indicators that change in colour in response 

to chemical reduction resulting from cell metabolism. The data may be collected 

with either fluorescence based or absorbance-based instruments. AB has 

particular properties that make this assay attractive to be used in this study. It 

is soluble in culture media, stable in solution, minimally toxic to cells and 

produces changes that are easy to measure. AB has the advantage of allowing a 

continuous assessment of metabolism and viability of seeded cells. It is simple 

to perform, and does not destroy the cells [217]. Limitations of AB are few. If 

prolonged incubation times are used (>24 h), reversal of the reduction process 

occurs via a secondary redox step, resulting in a colourless solution, particularly 

when very high cell concentrations are used.

138



6.2 Method and Materials

6.2.1 Moieties

RGD-containing peptides prepared by solid phase peptide synthesis 

(CHAPTER 5), GRGD, LA-GRGD, GRGDS, LA-GRGDS, GRGD(AhxGRGD)3, LA- 

GRGD(AhxGRGD)3 were to give lOOOpg/ml concentration and diluted to 1:10, 

1:20, 1:100, 1:200, 1:1000.

6.2.1.1 Fibronectin engineered protein polymer

Fibronectin engineered protein polymer (FEPP) contains a multiple repeated 

sequence of VTGRGDSPAS incorporating the GRGD sequence (Sigma Chemical 

Company, Poole, UK). FEPP (MW= approximately 72,000) was prepared to give 

lOOOpg/ml and further diluted to 1: 10, 1: 20, 1: 100, 1: 200 1: 1000, and 

1:10,000.

6.2.1.2 Heparin

Heparin (MW= approximately 15,000, Monoparin ®, 1000 units/ml) from CP 

Pharaceuticals Ltd (Wrexham, UK) was used. The stock concentration was 

diluted with phosphate buffer saline (PBS) (from Sigma Poole, Dorset, UK) to l: 

1000, 1:2000, 1:10,000, and 1:100,000.

6.2.1.3 Laurie acid

A stock solution of Laurie acid (LA) (Sigma Chemical Company, Poole, U.K. 

MW= 200) at lOOOpg/ml was prepared and further diluted to 1: 10, 1: 20, 1: 

100, 1: 200 1: 1000, and 1:10,000.
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6.2 .2  Thromboelastograph analysis

The action of peptides was assessed in fresh whole blood using a 

computerised thromboelastograph (TEG) coagulation analyser (Launch 

diagnostics, UK). TEG was carried out using venous blood with the first few 

millilitres discarded to reduce any effect due to tissue thromboplastin which may 

be released on venepuncture. The blood sample was placed in a pre-warmed 

cuvette. A piston which is freely suspended by a fine torsion wire and connected 

to a pen recorder chart, is lowered into the blood resulting in a uniform 

clearance of 1 mm between the piston and cuvette. The blood is then covered 

with a thin layer of liquid paraffin to prevent drying and a resulting pH change 

due to atmospheric oxygen.

Selected blood donors were normal healthy volunteers, who had taken no 

medication known to influence platelet function or blood coagulation for 14 days 

prior to blood donation. Their TEG parameter values were within the normal 

range.

Fresh venous whole blood was taken from 10 volunteers by venepuncture 

with a 21 gauge butterfly needle (M Abbott, Medical system) from an uncuffed 

arm vein using the syringe technique. The first 2ml were discarded to eliminate 

the effects of tissue thromboplastine released on venepuncture. 18ml of blood 

was collected into a second syringe or blood tube with 3.8% sodium citrate 

(1:10, v/v, at pH 7.4) (Sarstedt, Leicester, UK). The citrated blood was 

incubated at room temperature for 30 min. 20pl 0.2 M of calcium chloride 

(Medicell, London, UK) was used to initiate the coagulation and 50 nM 

recombinant tissue factor (Gamidore, Abingdon, Oxfordshire, UK) was added to 

activate the clot. Experiments were repeated four times.

6.2.3 Prothrombin tim e assay

The one-stage prothrombin time (PT) assay was performed on a Cascade - 

M- coagulometer (Helena Laboratories). The assay was carried out at 37°C using
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50 nM recombinant tissue factor (TF) in 12.5 mM CaCh to which standard 

plasma was added (2:1 ratio), and the clotting time was measured using a 

coagulometer. Clotting was initiated by the addition of lOOpI reconstituted 

plasma (Sigma Chemical Company, Dorset, U.K.) containing clotting factors in 

their inactive form, thus initiating the extrinsic pathway of coagulation through 

the formation of the tissue factor Vila complex. Clot formation was detected via 

a change in optical density of the sample, and a reading of clotting time 

supplied.

From the time taken for clot formation to occur, tissue factor activity was 

quantified by reference to recombinant tissue factor standard, which at a 

concentration of 1000 units/ml clotted plasma in 14 sec. A standard curve was 

constructed using recombinant tissue factor diluted with distilled water, and 

expressed log tissue factor concentration (units/ml) versus log clotting time 

(seconds) (Figure 3.5). The concentration of tissue factor was calculated using 

straight line regression constants. The tissue factor activity was then calculated 

from a standard curve prepared. Experiments were repeated four times.

The percentage of inhibition due to the moiety was calculated as:

A — A
In h ib itio n (% )  = lOOx ——— -

Where A is activity and subscript / and rare initial and residual respectively

6.2.4 Assessment o f cell metabolism and cytotoxicity

Cytotoxicity of all the RGD-containing peptides, LA and heparin to EC 

metabolism and survival was assessed using AB assay (Serotec Ltd., Kidlington,
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Oxford). AB is a reagent which is incorporated and metabolised by EC [217]. AB 

was added to cells grown in 24-well plates at a final concentration of 10% for 4 

hours. 50-100 pi of the AB/medium mixture was then added to 96-well plate 

and measured using a Multiscan MS spectrophotometer (Labsystems, Finland) at 

wavelengths of 530 nm and 630 nm. EC metabolism and cytotoxicity was 

defined in terms of optical density units reflecting the absorbance values. Five 

wells per treatment at each time point were measured. Experiments were 

repeated four times.

6.2.5 Assessment o f cell binding

The binding effect of RGD-containing peptides, LA and heparin to ECs was 

assessed in solution. All peptide including heparin were individually added at a 

concentration of lOpg/ml or lOU/ml to 2 x 105 trypsinised ECs and mixed gently. 

As a control 2 x 105 untreated EC were used. The cells were then plated in 24- 

well plates and incubated overnight. Following this the EC were washed with 

PBS to remove cells bound to moeties. 10% AB was added to the cells 

remaining in 24-well plate and absorbance was measured after 4 hours as 

above. Experiments were repeated four times.

EC binding was calculated as:

C - T
Binding(%) = 1 0 0  x  — ——

Where Cand Tare the absorbance value of the control and peptide 

respectively.
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6.3 Result

6.3.1 Pro-coagulant activity and inhibition o f tissue factor

The comparative effect of all synthesised RGD peptides, fibronectin 

engineered protein polymer (FEPP), the standard anticoagulant drug heparin 

and the thrombin inhibitor hirudin on the pro-coagulant activity is shown in 

Table 6.1. All the moieties inhibited the pro-coagulant activity of TF to different 

degrees at a different concentration following 2 minute incubation at 37°C. The 

standard anticoagulant heparin inhibited tissue factor activity by >90% at 1 

U/ml concentration. Similar effects were noted with FEPP and the lauric acid 

conjugated GRGD (LA-GRGD) at lOOpg/ml and 200pg/ml respectively. GRGD, 

GRGDS and the repeated sequence of GRGD, GRGD(AhxGRGD)3 showed <50% 

inhibition of tissue factor at lOOOpg/ml concentration. Like LA-GRGD, the lauric 

acid conjugated GRGDS also demonstrated better (57.4%) inhibition of tissue 

factor than the corresponding non-conjugated GRGDS (37.3%). The inhibitory 

effect of the agents was found to be concentration dependent. LA alone had no 

effect on pro-coagulant activity and TF (results not shown).

6.3.2 In itia l fibrin formation

The effect of all RGD peptides, FEPP and heparin on the initial fibrin 

formation (TEG-r time) is shown in Table 6.1. At 1 U/ml, heparin exhibited a 

relatively stronger inhibitory effect compared to hirudin, FEPP and all the RGD- 

derivative peptides developed. Heparin increased the TEG-r time by 87.5 ± 7.8 

min. At lOU/ml hirudin increased the TEG-r time by only 40.6 ± 7.7min. At 

lOpg/ml, FEPP showed a comparable increase to heparin in TEG-r time (73.7 ±

8.4 min). LA-GRGD increased the TEG-r time by only 8.2 ± 3.3 min. All the rest 

of RGD-peptides, GRGD, GRGDS, LA-GRGDS and the repeated sequence of 

GRGD demonstrated no effect on the initial fibrin formation of whole blood. LA 

alone had no effect on the TEG-r time (results not shown).
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Moieties Concentration % Inhibition (TEG-r)(min)

Heparin 0.01 U/ml 
0.1 U/ml 
0.5 U/ml 
1 U/ml

-11.8 ± 8.2 
17.5 ± 18.0 
88.1 ± 8.3 
97.4 ± 1.6

-0.6 ± 1.2 
4.3 ± 1.6

73.5 ± 16.1
87.5 ± 7.8

FEPP 0.1 pg/ml 
10 pg/ml 
50 pg/ml 
100 pg/ml

-24.8 ± 23.1 
-3.0 ± 17.9 
55.1 ± 15.7 
91.5 ± 5.3

-0.6 ± 0.9 
1.3 ± 1.1 
6.2 ± 3.7 

73.7 ± 8.4

Hirudin 0.1 U/ml 
1 U/ml 
5 U/ml 
10 U/ml

-24.8 ± 23.1 
18.8 ± 11.3 
74.5 ± 6.9 
90.3 ± 3.9

-0.2 ± 1.0 
4.7 ± 1.3 
18.9 ± 4.0 
40.6 ± 7.7

LA-GRGD 10 pg/ml 
50 pg/ml 
100 pg/ml 
200 pg/ml

18.7 ± 12.6 
31.2 ± 2.7 
39.6 ± 8.9 
90.5 ± 11.3

1.4 ± 1.3
4.4 ± 1.4 
6.2 ± 1.1 
8.2 ± 3.3

GRGD 50 pg/ml 
100 pg/ml 
500 pg/ml 
1000 pg/ml

33.46 ± 3.0 
31.54 ± 4.2 
31.01 ± 5.9 
37.32 ± 4.9

0.23 ± 2.0 
0.1 ±  1.8 

-0.53 ±  0.4 
-0.7 ±  0.2

GRGDS 50 pg/ml 
100 pg/ml 
500 pg/ml 
1000 pg/ml

-0.2 ±  1.0 
4.7 ±  1.3 
18.9 ±  4.0 
40.6 ±  7.7

-13.0 ±  8.3 
-16.0 ±  10.0 
-21.0 ±  3.3 
-5.9 ±  7.05

LA-GRGDS 50 pg/ml 
100 pg/ml 
500 pg/ml 
1000 pg/ml

2.8 ± 4.5 
1.31 ± 6.6
26.3 ± 2.8
57.4 ± 7.1

-0.3 ± 0.8 
-0.3 ± 1.0 

-0.95 ± 0.3 
-0.43 ± 0.6

GRGD(AhxGRGD)3 50 pg/ml 
100 pg/ml 
500 pg/ml 
1000 pg/ml

6.95 ± 6.8 
6.17 ±3 . 5

44.1 ± 23.3
44.1 ± 21.3

0.33 ± 0.3 
0.75 ±  0.4 
-0.18 ±  0.4 
-0.45 ±  0.8

LA-GRGD(AhxGRGD)3 50 pg/ml 
100 pg/ml 
500 pg/ml 
1000 pg/ml

7.66 ±  3.2 
7.35 ±  8.5
12.1 ±  11.4
16.1 ±  9.8

-1.5 ±  1.7 
-1.78 ±  0.6 
-1.0 ±  0.3 

-1.15 ±  0.4

Table 6.1 The effect of Heparin, Hirudin, FEPP, GRGD, GRGDS, LA-GRGD, LA-GRGDS, 
GRGD(AhxGRGD)3 and LA-GRGD(AhxGRGD)3 on tissue factor activity and on the initial 
fibrin formation (TEG-r). The data are presented as the Mean ± SD.
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6 .3 .3  Endothelial cell m etabolism  and cytotoxicity

The standard anticoagulant drug heparin and hirudin showed no cytotoxic 

effect on EC metabolism and viability at all concentrations tested (Figure 6.1 

and Figure 6.2). There was steady progress in cell metabolism up to day 3 with 

concentration ranging from 0.1 to 100 U/ml (P<0.005) compared to control 

(Figure 2). At day three the highest metabolic activity was observed at a 

concentration of 10 U/ml. All the synthetic RGD-derivative peptides including 

FEPP had no significant cytotoxic effect on cell metabolism and viability at 

concentrations ranging from O.lpg/ml to 50pg/ml, but at higher concentrations 

(lOOpg/ml and lOOOpg/ml) had a detrimental effect (Figures 6.2, 6.4, 6.5, 6.6, 

6.7, 6.8 and 6.9). LA showed on cytotoxic effect (results not shown).

6.3.4 Endothelial cell binding

The binding effect of RGD-derivative peptides and heparin to EC is shown 

in Figure 6.10. A concentration of lOpg/ml FEPP showed a highly significant 

binding effect (P<0.001) to EC (57.8%) compared to heparin (23.8%), LA- 

GRGD (25.8%), GRGD (23.5%), LA-GRGDS (27.3%), GRGDS (28.3%), LA- 

GRGD(AhxGRGD)3 (13.0%), and GRGD(AhxGRGD)3 (16.0%). LA-GRGD 

(25.8%), LA-GRGDS (27.3%) and GRGDS (28.3%) showed an increase in % of 

EC binding, but not significantly different compared to heparin (23.8%). Both 

the repeat sequence of GRGD showed significantly less EC binding (P<0.05) 

than all the RGD-derivatives. LA had no effect on cell binding (results not 

shown).
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Figure 6.1  Effect of Heparin on survival and metabolism of endothelial cells. Data are 
presented as mean ± SEM. AB = Alamar Blue absorbance and is % of control.
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Figure 6 .2  Effect of Hirudin on survival and metabolism of endothelial cells. Data are
presented as mean ±  SEM. AB = Alamar Blue absorbance and is %  of control.
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Figure 6 .3  Effect of FEPP on survival and metabolism of endothelial cells. Data are 
presented as mean ±  SEM. AB = Alamar Blue absorbance and is % of control.
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Figure 6 .4  Effect of LA-GRGD on survival and metabolism of endothelial cells. Data are
presented as mean ±  SEM. AB = Alamar Blue absorbance and is %  of control.
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Figure 6 .5  Effect of GRGD on survival and metabolism of endothelial cells. Data are 
presented as mean ± SEM. AB = Alamar Blue absorbance and is % of control.
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Figure 6 .6  Effect of LA-GRGDS on survival and metabolism of endothelial cells. Data
are presented as mean ±  SEM. AB = Alamar Blue absorbance and is %  of control.
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Figure 6 .7  Effect of GRGDS on survival and metabolism of endothelial cells. Data are 
presented as mean ± SEM. AB = Alamar Blue absorbance and is % of control.
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Figure 6 .8  Effect of repeat LA-GRGD(AhxGRGD)3 on survival and metabolism of
endothelial cells. Data are presented as mean ±  SEM. AB = Alamar Blue absorbance
and is %  of control.

149



^  175 

*  150 

®  125
SO

©  100 tvm „

C u ltu re  T im e  (D a y )

100 1000

Figure 6 .9  Effect of GRGD(AhxGRGD)3 on survival and metabolism of endothelial cells. 
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6.4 Discussion

In order to evaluate the effectiveness of the peptide moeties described in 

Chapter 5, a variety of techniques was employed. To determine the anti

coagulant properties of the peptides a PT assay and a TEG analysis were carried 

out. An Alamar blue™ assay was carried out to investigate the effect of the 

peptides on cell binding. Finally to demonstrate any adverse cytotoxicity, EC 

were exposed to a variety of doses of peptides for a period of days. In order to 

provide a suitable comparison for the results obtained in these studies heparin, 

hirudin and FEPP were also investigated as these have been used in previous 

studies by our group [161, 277].

Since the identification of the tripeptide RGD sequence as an active site 

of ECM proteins such as fibronectin, RGD has provided a starting point for 

rational modification to produce a number of variations on the RGD peptide. 

These modifications were performed in an attempt to enhance the anti

thrombotic and cell adhesive properties of the peptide and also to lengthen the 

degradation time in vivc[278-280].One approach to modifying the RGD peptide 

is to add extra amino acids to the peptide sequence as it has been 

demonstrated that this can have an important effect on the peptide activity, in 

particular at the C-terminus[280]. It has been found that the tetra-peptide 

GRGD (the RGD peptide with an extra glycine amino acid added) inhibited 

Fibrinogen binding to EC and fibrinogen-induced EC migration [155]. It has also 

been reported that the introduction of the amino acid serine (S) to the RGD 

moiety (RGDS) enhanced the inhibition of fibrinogen to platelets and platelet 

aggregation[279, 281-283]. It has also been suggested that significant GPIIb- 

Illa  specificity can be achieved either by substitution of Arg by Lys or by 

substituted Lys side chains into the RGD recognition sequence [284].

In this study the standard anti-coagulant drug heparin, which is 

commonly used both in research and therapeutically, was used as a comparison 

for the peptides synthesised. At lU/ml TF activity was inhibited by >90% and
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the TEG-r time by 87.5±7.8 minutes. Heparin also produced a 23.8% cell 

binding effect. At lU/ml no cytotoxic effect was observed on EC, and indeed this 

dose produced a significant increase in cell metabolism and proliferation at day- 

2 and day-3. Hirudin also produced a >90% inhibition of TF activity at lOU/ml 

but only increased TEG-r time by 40.6±7.7 minutes. Again no cytotoxic effects 

were observed at this dose.

Of the peptides synthesised in this study GRGD produced a 33% 

inhibition of TF activity at 50pg/ml but had no effect on TEG-r time. The cell 

binding effect of GRGD was 28.3% which is comparable to heparin. LA-GRGD 

had a 31.2±2.7% inhibition of TF activity and again had no effect on TEG-r 

time. LA-GRGD produced a 25.8% cell binding effect, again comparable to 

heparin. Thus it can be seen that the conjugation of LA to GRGD had no 

significant effect when compared to GRGD at 50pg/ml. At this dose GRGD or LA- 

GRGD both showed no cytotoxic effect to EC. GRGDS and LA-GRGDS did not 

exihibit any effect on TF activity or TEG-r time at 50pg/ml but did retain an 

effect on cell binding at 28.3% and 27.3% respectively.

A further potential development of RGD-containing peptides is to produce 

a peptide in which the RGD sequence is repeated a number of times. In theory 

this should provide a method for increasing the ligand binding efficiency via 

multivalent interactions. Several researchers have developed RGD-containing 

peptides in which the RGD sequence is locally enriched and can bind 

polyvalently to cells resulting in an improved effectiveness [271-274]. 

GRGD(AhxGRGD)3 and LA-GRGD(AhxGRGD)3 peptides were developed in an 

effort to enhance the affinity of the receptor ligand interactions due to 

multivalent interaction. When compared to GRGD there was a 4-fold loss of TF 

activity and 2-fold loss of cell binding effect in the case of both 

GRGD(AhxGRGD)3 and LA-GRGD(AhxGRGD)3. In contrast fibronection 

engineered protein polymer (FEPP) with multi copies of the RGD attachment 

ligand of human fibronectin interspaced between repeated structural peptide
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units which is prepared by polymerisation, has been shown to improve cell 

adhesion in previous studies [161, 285].

In this study FEPP demonstrated an anti-coagulant effect comparable 

with that of heparin at high concentrations. At lOOpg/ml, FEPP inhibited >90% 

of the TF activity and prolonged the TEG-r time by 73.7 ± 8.4 minutes. However 

at this concentration a cytotoxic effect was seen on EC. A non-cytotoxic dose of 

50pg/ml reduced TF inhibition to 55.1% and had no effect on TEG-r time. The 

cell binding result demonstrated that FEPP showed a significant increase 

(P<0.001) in binding effect to EC (60%) compared to heparin (22%) and all the 

RGD peptides synthesised. Such an improvement in cell binding was not 

observed in the two repeat-RGD peptides synthesised in this study. 

GRGD(AhxGRGD)3 and LA-GRGD(AhxGRGD)3 both showed no significant effect 

on TF activity or TEG-r time at 50pg/ml. Unlike FEPP there was no improvement 

in cell binding compared to either GRGD or GRGDS. One potential reason for 

this is that the linear structure of the repeated RGD peptides as a result of their 

synthesis by solid phase peptide synthesis may have reduced their 

effectiveness. This effect has been investigated by the use of disintegrins, a 

group of polypeptides from snake venom containing the RGD sequence due to 

their ability to bind to integrin receptors and inhibit integrin-ligand interactions 

in a competitive manner. It has been postulated that the conformation of the 

RGD amino acid sequence within the disintegrin structure accounts for the fact 

that they are up to 1000 times more potent than linear RGD-containing 

peptides. Consistent with this hypothesis are the observations that snake 

venom-derived peptides are rich in disulfide bridges and that their inhibitory 

activity is greatly diminished upon disulfide reduction [286, 287].

In an attempt to make use of this discovery the incorporation of the RGD 

recognition sequence into a disulfide-containing, cyclic octapeptide ring system 

demonstrated that this could increase the affinity of these modified analogue 

compared to the corresponding unmodified RGD-containing peptide as 

measured by the inhibition of attachment of normal rat kidney cells to
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vitronectin[288]. In another study snake venom-derived peptides were 

compared with the corresponding linear or cyclic RGD-containing peptides. Both 

linear or cyclic RGD-containing peptides lacked significant specificity for GPIIb- 

IIIa[278] when compared to the snake venom-derived peptide.

In many cases an improvement in the inhibition of TF activity was 

achieved at high peptide concentrations, but these high concentrations proved 

to have detrimental cytotoxic effects. This may be due to a mechanism 

suggested by Buckley et al. who discovered that short hexapeptides containing 

an L-argininylglycyl-L-aspartic acid motif were found to induce apoptosis in an 

analysed cell line. According to the mechanism proposed by the authors, RGD 

peptides enter the cell and convert procaspase 3 into the reactive form of the 

enzyme by intramolecular interaction. Since caspase 3 is an effector caspase 

that mediates the proteolysis of proteins essential for cell survival, the RGD 

peptides may directly initiate apoptosis [289].

In summary it can be shown that from the results obtained GRGD and 

LA-GRGD produced the most favourable overall effect of all the peptides 

synthesised inhibiting TF activity and affecting cell binding. GRGDS and LA- 

GRGDS enhanced cell binding alone but had no inhibitory effect on TF activity. 

The repeat-RGD peptides GRGD(AhxGRGD)3 and LA-GRGD(AhxGRGD)3 had only 

a limited effect on cell binding and no inhibitory effect on TF activity. In 

conclusion it was decided to employ GRGD, LA-GRGD, GRGDS and LA-GRGDS 

for surface modification studies and to proceed no further with the repeat-RGD 

peptides due to their relatively poor performance with regard to inhibiting TF 

activity and enhancing cell binding.
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CHAPTER SEVEN

SURFACE MODIFICATION OF POLY(CARBONATE- 
UREA)URETHANE POLYMER USING RGD-CONTAINING

PEPTIDE
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7.1 Introduction

Polyurethanes comprise a large family of polymers. The presence of a 

repeating urethane [-NH(C0)0-] group in the polymer chain is the characteristic 

feature of this family of polymers, which are highly divergent in terms of their 

physical properties. PUs have been popularly used in cardiovascular and other 

biomedical applications firstly due to the broad variety of compositions which 

can be synthesised and secondly their different mechanical properties such as 

elasticity, strength, durability, compliance and acceptance or tolerance in the 

body during the healing process[8, 290, 291]. Medical polyurethanes generally 

consist of two linked polymeric components: a "hard" segment consisting of the 

aromatic or aliphatic urethane and a "soft" segment of poly(ester), poly(ether) 

or poly(carbonate). The polyurethane is generated by the reaction of the soft 

segment, or macroglycol, with an isocyanate prior to extension of the polymeric 

chain with a chain extender. The ratio of macroglycol to chain 

extender/isocyanate determines the relative hardness and elasticity of the 

urethane. The material itself can be formed into shape by solution or melt 

processes and can be spun, cast into porous or solid structures and extruded; as 

such a broad variety of polyurethane compositions can be synthesised and this 

has lead to their application as conduits for bypass grafts and as replacement 

valves, pacemaker connectors and scaffolds for tissue engineering^, 292-295].

The clinical use of polyurethanes has been limited to date due to the 

tendency of the soft segment to suffer from biodegradation by hydrolytic or 

oxidative mechanisms [10]. Grafts using a poly(ester) soft segment 

polyurethane have tended to degrade rapidly by hydrolysis [296]. Poly(ether) 

soft segment grafts have been shown to be susceptible to oxidative degradation 

[297-299]. The development of a graft based on a poly(carbonate) soft segment 

which does not suffer from such problems has been carried out by our group in 

collaboration with an industrial concern. This PCU graft has been subjected to in 

vitro degradation studies using glass wool, hydrogen peroxide and cobalt
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chloride [12] and by hydrolytic, peroxidative and blood-based methods [11, 

300] which resulted in only minor degradation of the material. These in vitro 

findings were confirmed by an in vivo study involving implantation of graft into 

the aorta-iliac position of dogs and demonstrated the retention of compliance 

and patency for up to 3 years with only minimal hydrolysis [301]. The PCU 

graft is produced by coagulation at low temperature resulting in a honeycomb 

structure and displays similar compliance to lower limb arteries [302] and has 

been shown to be suitable for EC seeding [303].

The surface composition and structure of the PU selected plays an 

important role in determining the biocompatibility of the polymer. One persistent 

problem which limits the usage of PU is their generally poor compatibility with 

blood. Another difficulty which has limited use is the generally unsatisfactory cell 

adherence and proliferation when seeded on PU[161, 304]. In order to 

overcome these problems surface modification of the PU has been attempted to 

overcome the thrombogenic nature of the PU surface and improve its suitability 

for cell seeding.

A number of methods have been developed to promote endothelialisation 

and tissue repair on PU materials. These include modification of the chemical 

structure, surface modification by UV irradiation or plasma treatment [202, 305- 

307] and coating or grafting adhesive proteins that mediate cellular attachment 

[166, 208, 308, 309].

To enhance EC adhesion, survival, and proliferation on the polymeric 

matrices attempts have been made to optimise the cell-polymer interaction. The 

main focus of such modifications has been on RGD and its derivatives. RGD is 

the minimal sequence in fibrinogen which leads to recognition and binding to 

the glycoprotein Ilb /IIIa  (GPIIa/IIIb) platelet receptor during aggregation. This 

sequence has also been shown to promote endothelial cell (EC) and smooth 

muscle cell adhesion[160, 161, 214]. There are two broad methods for utilising 

such derivatives, firstly to immobilise the derivative on the surface of the PU 

using methods such as chemical bonding[159, 160, 208]or photochemical
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immobilisation[156] and secondly to incorporate them within the PU in order to 

permit gradual release out of the polymeric matrix[214].

Examples of the first approach include studies such as photochemically 

grafting the RGD-containing peptide GRGD onto the surface of a polyethylene 

glycol modified polyurethane (PU-PEG) to form PU-PEG-GRGD. This improved 

EC adhesion and growth on the surface and the enhancement efficiency was 

well correlated with GRGD content[156]. Other studies showed that covalent 

bonding of RGD-containing peptides based on the cell-adhesive regions of 

fibronectin (Arg-Gly-Asp-Ser (RGDS) and vitronectin (Arg-Gly-Asp-Val (RGDV)) 

to a PU graft backbone via amide bonds enhanced cell adhesion and 

spreading[197]. Another study showed that a Gly-Arg-Gly-Asp-Val-Tyr 

(GRGDVY) grafted substrate supported a larger number of adherent cells and a 

higher extent of cell spreading than a Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY) - 

grafted substrate[159]. Recently covalent immobilization of RGD and heparin 

onto the surface of a poly(carbonate-urea)urethane graft has been shown to 

result in a significant improvement of cell retention in EC seeding[37, 160, 161].

However this general methodology has several drawbacks from a 

commercial viewpoint. These include the multi-step nature of the process and 

the expensive synthetic routes required. An example of these difficulties was 

shown by the study of Massia and colleagues[310] who grafted RGD with 

dextran which resulted in high levels of bioactivity but affected long-term 

polymer stability due to the harsh oxidation procedures required. Furthermore in 

some cases the covalently coated polymer surfaces may exhibit low levels of 

RGD bioactivity.

In order to produce an incorporated surface-modified polymer which 

contains RGD derivatives the most commercially viable procedure is to employ 

the solvent casting method[311]. Previously the solvent casting method could 

not be used for preparing polymers enclosing RGD derivatives, since RGD 

derivatives do not readily dissolve in the organic solvents used to dissolve the 

polymer itself during the synthesis. The recent development of amphiphilic RGD
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derivatives which allow dissolution in both water and organic solvents and 

facilitate use of a solvent casting process should allow such derivatives to be 

readily loaded into the matrix of the polymer.

In Chapter-5 and Chapter-6 the synthesis and evaluation of amphiphilic 

RGD derivatives which demonstrated potential for use as a controlled release 

system and retained the anti-thrombogenic and cell binding qualities required 

were described [312]. The aim of this study was to investigate if these 

amphiphilic RGD derivative peptides retain their activity when immobilised onto 

a poly(carbonate-urea)urethane (PCU) surface. LA-GRGD, LA-GRGDS and the 

corresponding non-conjugated GRGD and GRGDS were used for this study. 

Peptides were immobilised onto surface by incorporation into polymer using a 

solvent that could dissolve both the polymer and the peptide with the solvent 

leaving by evaporation. This method was used on the basis that the addition of 

amphiphilic peptides to the polymer may result in the more hydrophilic portion 

being expressed on the polymer surface, anchored by the more hydrophobic 

end entangled in the polymer surface. This would be simple to produce with no 

major chemical changes to the polymer production process and result in peptide 

immobilised on the polymer surface which should increase the stability of the 

peptide.
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7.2 Materials and Methods

7.2.1 Preparation o f m odified pofy(carbonate-urea)urethane film s

PCU polymer was synthesised from methylene diisocyanate, 

polycarbonate diol, a pre-polymer and chain extended into polymer by ethylene 

diamine in dimethylacetamide (DMAC) in molar ratios of 2:1:0.97.

The PCU polymer was modified by two different methods. Firstly to 

produce coated Films 3ml of polymer solution was poured into a glass dish 

(10cm diameter). A film was obtained upon casting the solution at 55-65°C for 

18 hrs in a circulating air oven. 5ml of lOOpg/ml solution of peptide (GRGD or 

GRGDS) in PBS was added to each dish and left for 6 hours to coat. The solution 

was then removed and the coated polymer rinsed with three times with 5ml 

PBS.

Secondly incorporation of LA-GRGD and LA-GRGDS was achieved by 

adding 2mg of the peptide dissolved in 1ml DMAC to 19ml of polymer solution. 

The solution was mixed well and left to stand at room temperature for 1 hour 

and then 3ml poured to a glass dish and cast as above. Control films were 

produced as above by using polymer solution alone. By using the casting 

method to produce films a clear film was produced unlike with the extrusion 

method of production which results in an opaque film. This allows the seeded 

cast Films to be examined by phase contrast microscopy in addition to the use of 

techniques such as scanning electron microscopy (SEM) and fluorescent 

confocal microscopy unlike extruded Films which can only be examined by SEM.

7 .2 .2  Assessment o f peptide stability a fter exposure to flow

Surface modified PCU films (5cm2) with LA-GRGD were prepared as 

above. A flow system was used to assess the stability of peptide coated and 

peptide incorporated polymer. Briefly, the model consisted of a pump, flow
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waveform conditioner, hollow-fiber oxygenator, outflow resistance, transonic 

medical flowmeter system and a Millar Mikro-tip catheter transducer. The films 

were subjected to flow of phosphate buffered saline at 33ml/minute for lhr, 

2hrs and 8hrs. A mean shear stress of 7.51 ± 0.3 dyne per cm2 was applied. 

PCU films were then prepared into 1cm2 segments and placed into a 24 well 

tissue culture plate for protein analysis using a BSA protein assay (Sigma 

Chemical Company, Dorset, U.K.). 400pl of dye was added to the wells/films 

and incubated at 37°C for 15 minutes. Following incubation films were removed 

from the wells and the absorbance of the remaining solution measured at 

550nm. Percentage concentration remaining after exposure to flow was then 

calculated from a standard curve (0-800pg/ml, data not shown).

C o n ce n tra tio n (% )  = 100 — [ ( — '■-------— ).v 10 0 1

Where C is concentration and subscript / and r  are initial and residual 

concentrations respectively.

7.2 .3  Polym er seeding and assessment o f cell metabolism

PCU modified films were sterilised by incubation in 70% ethanol solution for 

lmin, followed by two rinsing steps of sterile water and PBS. HUVEC at passage 

three were then seeded at a density of 2 x 105 cells in 5ml of culture medium 

per dish and incubated at 37°C in an atmosphere of 5% C02 and 95% air. EC 

metabolism was assessed using an AB assay as described in Chapter 3.2. 10% 

AB was added to each dish and absorbance was measured at 24, 48 and 72 

hours. Experiments were repeated four times.
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7 .2 .4  Assessm ent o f ce ll m orphology

7.2.4.1 Totudine Blue

HUVECs at P3 stage were seeded onto polymer films as above and 

incubated for 24 hours. Briefly, after fixation with 10% buffered formaline and 

4% formaldehyde for 10 minutes at room temperature, seeded polymer were 

rinsed with distilled water once. Cells were then incubated with the 200pl 

Toludine Blue (Sigma; 0.1% in PBS) for 5minutes and rinsed with distilled H20 

three times. Seeded polymers were examined using a phase contrast 

microscope.

7.2 .4 .2  Electron microscopy

HUVECs at P3 stage were seeded onto polymer films as above and 

incubated for 24 hours. Polymer films were removed and SEM performed. Films 

were Fixed in 1.5% glutaraldehde (VWR International, Lutterworth, U.K.) for a 

minimum of 2 hours, washed with PBS and post-fixed using 1% osmium 

tetraoxide /1.5% potassium ferricyanide (VWR International, Lutterworth, U.K.) 

for Vh hours. The specimens were then washed with distilled water and 

dehydrated through high performance liquid chromatography (HPLC) graded 

acetone (VWR International, Lutterworth, U.K.) ranging from 30 to 100% for a 

period of 30 minutes. Then they were transferred to tetramethylsilane (VWR 

International, Lutterworth, U.K.) for 10 minutes and then allowed to air dry. The 

grafts were attached to aluminium stubs with double-sided sticky tabs (TAAB 

Laboratories, Reading, U.K.) and coated with gold using an SC500 (EMScope) 

sputter coater. The stubs were examined and photographed using a Philips 501 

scanning electron microscope.
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7 .2 .4 .3  Im m unohistochem istry

One of the most widely used endothelial cell marker for studying 

angiogenesis and neovascularization is von Willebrand Factor (Factor VIII 

related antigen), von Willebrand Factor synthesised by endothelial cells, causes 

adhesion of platelets to injured vessel walls and functions as a carrier and 

stabilizer for coagulation of Factor VIII. Anti-von Willebrand Factor antibody 

reacts specifically with the endothelial cells of blood vessels and is a useful 

marker for the identification of endothelial lineage of tumours.

Immunohistochemistry was performed to assess the EC seeded onto PCU 

polymer films using standard procedures. HUVECs (2 x 105 cell per well) at 

passage 3 were cultured onto coverslips in 24 well tissue culture plate at for 24 

hours. Complete medium was removed and wells were washed twice with PBS. 

After fixation in ice-cold acetone for 15 minutes, nonspecific binding was 

blocked with 5% normal goat serum (in PBS for 20 minutes). The cells were 

then incubated with the primary rabbit polyclonal antibody anti-von Willebrand 

Factor (DAKO; 1:50 in PBS containing 0.1% Triton X-100) overnight at 4°C. 

After washing in PBS, cells were then incubated with the biotinylated secondary 

goat anti-mouse antibody IgG (Sigma; 1:200) followed by the avidin- 

streptavidin FITC complex (Sigma; 1:75), each for 90 min at room temperature. 

Films were mounted with Vectashield (Vector Laboratories Ltd, Peterborough, 

U.K.) and examined using a confocal microscope equipped with appropriate 

filters for fluorescein.
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7.3 Results

7.3.1 Polym er seeding and cell metabolism

EC metabolism on peptide coated and peptide incorporated PCU after 

24hrs, 48hrs and 72hrs is shown in Figure 7.1. At 24 hrs post-seeding the 

GRGDS coated surface, EC had a significantly higher activity (p<0.05) compared 

to control, incorporated LA-GRGD and incorporated LA-GRGDS values. All 

peptide coated and incorporated treatments increased EC activity compared to 

control after 48 hrs and 72 hrs. In the case of the incorporated LA-GRGDS 

peptide this increase was significant (p<0.05) at both time points. In general, 

the incorporation of LA-GRGDS showed a higher cell activity compared to all LA- 

GRGD incorporated, GRGD and GRGDS coated polymers.

7.3 .2  Peptide stab ility  a fte r exposure to flow

The percentage of LA-GRGD peptide concentration remaining after 

exposure to flow for lhr, 2hrs and 8hrs is shown in Figure 7.2. Over the time 

course of the experiment the amount of peptide remaining on the coated films 

fell significantly at each time point. In the case of the incorporated peptide films 

the amount of peptide remaining fell significantly between 1 and 4 hours post

flow (p<0.05) following which there was no significant change between 4 hours 

and 8 hours. By 8 hours post-flow there was significantly (p<0.005) more 

peptide remaining on the incorporated films (42.6%) compared to the coated 

films (20%).
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Figure 7.1 Cell metabolism of EC on poly(carbonate-urea) urethane films: 

unmodified PCU (control); GRGD, GRGDS coated and LA-GRGD and LA- 

GRGDS incorporated. Data are presented as mean ± SEM.
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Figure 7.2 Comparison of percentage of initial peptide concentration for 

coated LA-GRGD and incorporated LA-GRGD after 1, 4 and 8 hours exposure 

to flow. Data are presented as mean ± SEM.
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7 .3 .3  C ell m orphology

Morphology of ECs seeded onto the surface of modified and unmodified 

PCU polymer was investigated using three different techniques: firstly toludine 

blue staining (Figure 7.3), a rapidly obtained general view of the cell population, 

secondly scanning electron microscopy (SEM) which shows the ultrastructure of 

the cells (Figure 7.4) and finally immunohistochemistry for von Willebrand 

Factor which is a specific marker for EC (Figure 7.4).

The morphological appearance of EC stained with toludine blue can be 

seen in (Figure 7.3). It is a commonly used technique which stains the nuclei of 

cells dark blue and the background light blue. This technique was employed due 

to the rapid nature of the staining and the low background signal produced 

when applied to the cast PCU films. Cells seeded onto peptide treated PCU 

polymer showed a similar morphological appearance to those on the unmodified 

PCU polymer and to cells seeded onto a polystyrene tissue culture plate.

The ultrastructure of EC examined by SEM is shown in (Figure 7.4). 

Similarly cells on the modified PCU polymer showed no evident change in 

morphological appearance compared to those on the unmodified PCU polymer 

and showed the typical appearance of cobblestone morphology and rounded 

morphology in all PCU surfaces. The morphology of EC seeded to RGD- 

containing peptides appear the same as EC seeded to fibronectin coated glass 

slides and vascular graft demonstrated by Curti et al [246].

Confocal microscopy view of ECs seeded on polymer is shown in Figure 

7.5. Immunocytochemical analysis of human endothelial cell adhesion on 

surface modified PCU polymer demonstrated that the cells were expressing the 

specific EC marker vWF.
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Figure 7.3 Phase-contrast microscopy showing toludine blue stained ECs 

seeded on PCU polymer surface at day 1 (a) Unmodified or native (b) GRGD 

coated (c) LA-GRGD incorporated (d) GRGDS coated (e) LA-GRGDS 

incorporated polymers (Magnification x 40).
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7.4 Discussion

Previous studies have demonstrated that prosthetic graft materials exhibit 

a uniformly poor surface for the retention of EC which have been seeded onto 

them by both single- and two-stage seeding processes[36]. It has also been 

shown that primary human cell cultures show slower cell division and spreading 

across both graft surfaces and in tissue culture than animal cell lines due to low 

cell attachment, even under the optimal experimental conditions of tissue 

culture[313, 314].

These problems are exacerbated by the fact that the availability of 

autologous venous endothelium for transplantation onto prosthetic vascular 

implants is limited resulting in the need to explore alternative sources of EC 

such as omentum[250, 251], subcutaneous fat [262, 285], peritoneal lavage 

[249, 285] or fat obtained by liposuction.

As a result of the above in order to achieve the maximum EC coverage 

possible from a limited source of cells for seeding it is vital to optimise the 

conditions for seeding EC and this has been extensively investigated by many 

different groups. Over the last two decades it is has been recognised that the 

extracellular matrix (ECM) plays an integral role in cellular function. Based on 

this theory one focus of the attempt to optimise EC attachment to vascular 

prosthesis has been to surface modify the prosthesis to improve cellular 

attachment and retention as the choice of graft coating material will influence 

not only cell attachment but also cellular activity.

In an attempt to increase cell attachment to prosthetic vascular graft 

materials researchers have utilised soluble components of ECM such as 

fibronectin, collagen and laminin. These all increased cell density and cell 

attachment rates significantly. Despite the apparent improvement in cell seeding 

achieved by the use of these proteins there are some drawbacks to their usage. 

These cell adhesion proteins are complex proteins which are difficult to produce 

for use in a clinical situation and as a result tend to be expensive to employ.
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The use of RGD peptides is attractive commercially, as they are simple to 

produce due to their shorter amino acid sequence and hence cheaper to employ 

than more complex protein coatings with considerably longer sequences (such 

as fibronectin). Researchers have used different techniques to immobilise RGD- 

peptides onto the surface of vascular graft prosthesis. Here in our department 

covalent bonding and passive coating have been used previously to immobilise 

RGD-peptides onto PCU polymers. As mentioned previously there are difficulties 

inherent in the commercial synthesis method required to produce covalently 

bonded RGD-peptides on vascular prosthesis. When this is combined with 

findings which suggest that such coatings may be leached from the graft 

relatively easily the need to develop an alternative technique in which the RGD- 

peptides are incorporated is apparent.

In this study the two of the RGD peptides described earlier (LA-GRGD 

and LA-GRGDS) were used to modify a PCU polymer by direct incorporation 

(blending) into the polymer solution. This incorporation was made possible by 

the conjugation of a LA- group to GRGD and GRGDS resulting in amphiphilic 

peptides suitable for incorporation. As a comparison, the same unconjugated 

peptides were used for passive coating of the polymer. The effectiveness of the 

surface modification was investigated by seeding HUVEC onto modified PCU 

films then monitoring cell metabolism by utilising an Alamar Blue™ assay and 

examining cell morphology via phase contrast, confocal and scanning electron 

microscopy.

24 hours after seeding and also coating the graft surface with GRGDS 

produced a significant increase in EC metabolism compared to the other 

treatments investigated. At later stages (48 and 72 hours) incorporating LA- 

GRGDS into the PCU resulted in a significant increase in cell metabolism, with 

the other treatments showing higher values than the control (unmodified) 

samples. It has been previously shown that adhesive interactions play a critical 

role in directing the migration, proliferation and differentiation of cells[315] and 

that cell migration rates depend in a very sensitive manner on the strength of
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cell adhesion [316, 317]. The longer term improved effect (>24hrs) with the LA- 

GRGDS modified polymer in this study may be due to stronger cell adhesion 

kinetics and increased cell population in a similar manner. This could also 

explain the improvement in cell metabolism when LA-GRGDS is incorporated 

into the matrix of the polymer compared to the coated PCU. A further reason for 

this difference may be that the coating has been leached from the graft by 

repeated media changes. This possibility is supported by the data obtained from 

the peptide stability study which demonstrated a significant loss of peptide from 

PCU films coated with LA-GRGD compared to those in which the LA-GRGD was 

incorporated after exposure to flow for 8 hours suggesting that a loss of peptide 

activity could well result from repeated media changes in the case of coated 

polymer films.

Previous studies on cell morphology of EC seeded onto vascular grafts 

have utilized scanning electron microscopy as the major investigative tool. This 

is an expensive, complex and time consuming technique which may result in 

significant changes to the cells and/or polymer during the tissue processing 

necessary to examine a sample under SEM. The reason for this is that the 

materials and methods used to produce vascular grafts result in a graft which is 

opaque to light and thus unsuitable for examination by phase contrast 

microscopy. By producing the PCU discs by casting which results in a clear film 

this problem is overcome and it is possible to examine EC seeded onto the films 

directly by phase contrast microscopy and also to stain them with commonly 

used histological stains. In this study toludine blue, a commonly used technique 

which stains the nuclei of cells dark blue and the background light blue, was 

employed due to the rapid nature of the staining and the low background signal 

produced when applied to the cast PCU films. It has been previously described 

that following seeding, endothelial cells initially attached to the graft with 

rounded morphology, later developing a more flattened phenotype responsible 

for the 'cobblestone' appearance of the mature endothelial monolayer[246].
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In conclusion it can be seen from the results obtained that incorporating 

LA-conjugated GRGD and GRGDS into PCU produced a comparable effect to 

coating PCU with the same peptides, and indeed in the case of LA-GRGDS 

improved cell metabolism in the longer term (48 and 72 hours). In addition, 

incorporation of the peptide into the polymer may result in an improvement in 

the time the peptide remains effective when compared to simply coating onto 

the surface of the polymer as demonstrated by the significant improvement in 

peptide retention when exposed to flow. As a result of this the RGD derivatives 

developed in this study have potential as a surface modification system in which 

the peptides cell binding activity is retained whilst allowing its solubility into 

solvents used in the manufacture of polymers for bypass grafts. This study 

demonstrates that LA conjugated RGD derivatives may have wide applicability 

for polymer formulation via the commercially used solvent casting methodology 

for use in coronary, vascular and dialysis bypass grafts, scaffold polymer based 

tissue regeneration and tissue engineering.
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CHAPTER EIGHT

IN - VITRO BLOOD COMPATIBILITY ASSESSMENT OF 
SURFACE MODIFIED POLYMER
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8.1 Introduction

One of the greatest challenges in biomaterial science is the development 

of improved blood compatibility. Several strategies have been developed in an 

attempt to overcome this problem. Bio-inert coatings and hydrogels aim at low 

protein adsorption and cell adhesion to reduce any activation of coagulation or 

complement cascade reactions in the blood [203]. Biological molecules have 

been immobilised to trigger anticoagulant, fibrinolytic or anti-inflammatoric 

reactions[131]. Further, biodegradable scaffolds have been developed to 

support the regeneration of blood contacting functional tissue [318]. In order to 

estimate the effectiveness of these varying strategies reliable and standardised 

methods for blood compatibility testing are required. There is currently no single 

standard test generally accepted to measure blood compatibility. A variety of 

techniques have been utilised in an effort to provide a direct correlation of the 

events occurring during contact of blood with a polymer. These procedures 

employ selected and relevant indicators of blood-material interactions.

The in vitro blood compatibility assessment of polymers involves 

haematological studies on blood exposed to materials under defined conditions. 

Although many assays on blood can theoretically be performed, acceptance of 

test procedures proposed so far has been limited due to several factors in the 

blood/biomaterial interaction affecting the assays used in haematological 

studies. This is mainly due to the high degree of complexity of the reaction 

paths in the blood and the interrelation of different activation cascades [319, 

320].

The first in vitro parameter investigated for the characterization of the 

hemocompatibility of materials was investigated by Lee and White in 1913. They 

looked at the clotting time of whole blood[321]. A test tube was coated with the 

test material and freshly drawn blood added. The tube was then tilted back and 

forth until the blood clotted. The varying time taken for this to occur provided a 

comparison between the different test materials. Many modifications of this
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initial test have been made but no test yet developed has entirely overcome 

problems associated with tissue trauma at the time of venopuncture and the 

turbulence of blood flow during sample mixing.

An initial simple test which can be carried out to assess blood 

compatibility is haemolysis testing. This is a widely used primary testing 

technique for the in vitro assessment of blood compatibility of foreign materials. 

This technique measures the capacity of the polymer surface to cause red blood 

cells to rupture. Haemolysis testing has been used for the evaluation of blood 

contacting foreign materials in a variety of areas such as extracorporeal 

membrane oxygenators[322], biodegradable scaffolds[323] cardiopulmonary 

bypass circuit[324], vascular grafts[325] and drug delivery systems[326].

One of the most common assessments of the biocompatibility of 

biomaterials carried out is to measure platelet adhesion, which is often used as 

an index of blood compatibility. This is a well-established method which has 

been used to compare the biocompatibility of different blood contacting devices 

and to assess the effect of surface modification on the biocompatibility of 

materials. Goodman et al carried out platelet adhesion experiments with 

surfaces of differing thrombogenicity and showed that the adhesion and 

morphology or shape change of platelets on a sample surface in vitro is strongly 

linked to the ex vivo thrombogenicity of materials [327].

Several researchers have established fundamental aspects of the 

behaviour of blood or blood components in vitro. Vroman, in his pioneering 

work, emphasised the relevance of protein displacement phenomena at the solid 

surface for the macroscopically observed effects of blood clotting [328, 329].

When blood comes into contact with a foreign material several proteolytic 

enzyme systems in the plasma become activated. The most relevant system 

activated as a consequence of interaction between blood and vascular prosthetic 

materials in a clinical situation is the coagulation cascade[47, 48, 128, 330].

Activation of the coagulation cascade is dependent upon activation of 

both platelets and of the plasma coagulation system. The plasma coagulation
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system is activated either by the intrinsic or extrinsic pathway as described in 

Chapter 2. Furthermore there is an interaction at several levels between platelet 

activation and plasma coagulation and both are necessary for the development 

of surface thrombosis.

Platelet response to a foreign surface is important in understanding the 

thrombogenecity of the material (Figure 8.1). The platelet release reaction is an 

essential part of the process of platelet aggregation during haemostasis and 

thrombus formation. Platelet Factor 4 (PF4) is believed to be released from a 

sub-population of a-granules together with (3-thromboglobulin (BTG) [331-333]. 

Platelets respond to various stimuli by becoming activated. Once activated, 

platelets release a-granules (for example PF4 and BTG) which contain potent 

coagulation accelerators into the surrounding media. In addition activation 

exposes coagulation accelerating phospholipids on the platelet surface[334, 

335].

The platelet release reaction is directly associated with platelet adhesion 

and aggregation, which are preliminary events leading to thrombus formation 

and the primary cause of thrombosis following contact of blood with a foreign 

material. The release reaction of a-granules from platelets during blood-polymer 

interactions was examined by Bowry and Courtney in 1984 [336] by measuring 

BTG levels in order to determine blood compatibility of polypropylene, poly(vinyl 

chloride), silicone rubber and siliconised glass. This study showed that 

polypropylene tubes caused a reduced release of BTG compared to those made 

of silicone rubber. In addition siliconised glass induced less BTG release than 

poly(vinyl chloride). Another study by Kuragano et al [337] looked at BTG and 

PF4 levels as markers of platelet activation and release to assess and compare 

the biocompatibility of cellulose triacetate and polysulfone dialysis membranes. 

This study showed that there was no significant change in platelet counts 

(measuring platelet adhesion), BTG or PF4 levels between the two membranes 

investigated.
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In this study the effectiveness of both surface modification techniques 

(passive coating and incorporation) on blood compatibility of the modified 

poly(carbonate urea)urethane polymer was investigated. Whole blood 

haemolysis, measurement of adsorbed platelets and the determination of a 

platelet activation product (PF4) have been selected to investigate the blood 

compatibility of the surface modified polymer.

P l a t e l e t  A d h e s i o n

P l a t e l e t  a g g r e g a t i o n

R e l e a s e  o f  a  g r a n u l e s
R e l e a s e  o f  P F 4  
R e l e a s e  o f  (3 T G

C i r c u l a t i n g  P l a t e l e t s

T h r o m b u s  f o r m a t i o n

C o n t a c t  w i t h  a r t i f i c i a l  s u r f a c e
S t i m u l a t e  G P I I b / I I I a  
r e c e p t o r

B o u n d - G P l I b / I I I a  f  
F r e e - G P I I b / l I I a  j

Figure 8.1 Platelet responses associated with blood contact with an artificial 

surface (from Kuragano et a! [337]).
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8.2 Materials and Methods

8.2 .1 Inh ib ition  o f P late let Factor 4  (PF4 ).

An IMUCLONE® Platelet Factor 4 (PF4) ELISA assay (American Diagnostica 

Inc., Connecticut, U.S.A.) was used to assess the blood compatibility of modified 

PCU Films. 300pl of platelet poor plasma was added to each polymer film in a 

tissue culture plate. The plate was then placed on a shaker and incubated at 

room temperature by gentle mixing. After 30 minutes duplicate lOOpI plasma 

samples were then removed and measured using an ELISA plate reader at a 

wavelength of 450nm. PF4 (ng/ml) was then measured using a standard curve 

and the % inhibition of PF4 was calculated as:

In h ib it io n (% ) =  100 x —— —
A.

Where A is activity and the subscripts c and m are control (unmodified) and 

modified respectively.

8 .2 .2  P late let adhesion.

Whole blood was collected from healthy human donors in sodium citrate 

(3.8%) tubes to prevent coagulation. Platelet rich plasma (PRP) was obtained by 

centrifuging the citrated blood at 1500rpm for 20 minutes. Platelet density was 

then adjusted to 7xl03 platelets/pl. PCU films were cut into 1cm2 sections, 

placed in 1.5ml microcentrifuge tubes, and 1ml of PRP added. PRP incubated 

without film was used as a reference. Poly-L-lysine-coated (0.1% in pure water, 

Sigma Chemical Company, Dorset, U.K.) PCU films were used as a positive 

control. All tubes were then incubated at 37°C for 3 hours with gentle mixing.



After incubation PCU films were removed from the tubes and the platelets 

remaining counted using a Bayer Advia 120 Haematology System counter. 

Platelet adhesion was calculated as follows:

C - T
P la te le t Aclhesion(% ) =  lOOx----------

Where Cis the reference count and 7"is the test count.

8 .2 .3  Haemolysis assay.

The haemolytic effect of the material was investigated using an in vitro 

haemolysis assay[338]. A fresh venous blood sample was collected from a 

human volunteer in an EDTA tube. PCU films were cut into 1cm2 sections and 

placed in 1.5ml microcentrifuge tubes. A 1ml aliquot of diluted blood (0.2ml in 

10ml 0.9% sodium chloride (Baxter Healthcare Ltd, Norfolk, England)) was then 

added to each tube. 0.2ml blood in 10ml pure water was used as a positive 

control. All tubes were then incubated at 37°C for 3 hours with gentle mixing. 

After incubation PCU films were removed from the tubes and all tubes were 

centrifuged for 10 minutes at 1000# The absorbance of the resulting 

supernatant solutions was measured using a spectrophotometer at 550nm. Each 

experiment was repeated four times.
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8.3 Results

8.3.1 Inh ib ition  o f P late let Factor 4

The effect on PF4 inhibition following surface modification of PCU by 

coating with peptide, incorporating peptide and coating with heparin is shown in 

Figure 8.2. Polymer coated with GRGD (lOOpg/ml) produced the highest 

inhibition in PF4 release (11.3%). Heparin (lU/ml) inhibited PF4 release by 

9.5% compared to LA-GRGD (lOOpg/ml) incorporated polymer and GRGDS 

(lOOpg/ml) coated polymer which showed a comparable inhibition in PF4 

release (10.0% and 10.3% respectively). LA-GRGDS incorporated polymer 

inhibited the PF4 by only 4.1% and coated LA-GRGDS showed a significantly 

lower inhibition of PF4 (0.54%) compared to heparin coated. There was no 

statistically significant difference in inhibition of PF4 release between heparin 

and any of the other surface modification techniques.

8 .3 .2  P late let adhesion

The percentage of platelets adhering following a three hour incubation 

with unmodified (native) PCU polymer, poly-L-lysine coated polymer (in order to 

provide a positive control to which platelets should adhere), GRGD coated 

polymer; LA-GRGD incorporated polymer, GRGDS coated polymer, LA-GRGDS 

coated and LA-GRGDS incorporated polymer are shown in Figure 8.3. Polymer 

coating with poly-L-lysine resulted in a significantly increased number of 

platelets adhering to the surface (34%) compared to the unmodified polymer. 

No statistical significance was observed between any of the other modifications 

and the unmodified polymer.
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8 .3 .3  Haem olysis assay

The results of the haemolysis investigation are shown in Figure 8.4. No 

statistical difference was observed between the unmodified PCU polymer and 

any of the surface modified PCU polymers. The finding that the unmodified PCU, 

peptide coated PCU and peptide incorporated PCU polymers have a haemolysis 

that is similar to the negative control (saline) and considerably lower than the 

positive control shows that the native PCU polymer does not cause significant 

haemolysis and that the different surface modifications carried out to the native 

polymer had no significant effect on this property.
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Figure 8.2 Inhibition of Platelet Factor 4 (PF4) on poly (carbonate-urea) 

urethane films: Fleparin coated (C); GRGD coated (C); LA-GRGD incorporated 

(I); GRGDS coated (C); LA-GRGDS incorporated (I) and LA-GRGDS coated (C).

Data are presented as mean ± SEM. * p>0.05 vs. Fleparin (not significant).

+ p<0.05 vs. Fleparin (significant).
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Figure 8.3 Percentage of platelet adhesion on poly (carbonate-urea) urethane 

films: Poly-L-lysine coated (C); GRGD coated (C); LA-GRGD incorporated (I); 

GRGDS coated (C); LA-GRGDS coated (C) and LA-GRGDS incorporated (I).

Data are presented as mean ± SEM.
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Figure 8.4 Haemolysis assay on poly (carbonate-urea) urethane polymer films: 

Positive Control, PCU (unmodified); GRGD coated (C); LA-GRGD incorporated 

(I); GRGDS coated (C); LA-GRGDS coated (C) and LA-GRGDS incorporated (I).

Data are presented as mean ± SEM
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8.4 Discussion

Several researchers have modified the RGD peptide for a variety of 

different purposes. One example of such modification was the production of an 

RGD peptide containing nitric oxide (RGD-NO peptide) which was designed to 

produce a vasorelaxation effect action in addition to the antithrombotic effect of 

RGD itself. In  vitro platelet adhesion studies and in vivo platelet thrombus 

formation studies in rats demonstrated that the RGD-NO peptide produced an 

increased antithrombotic effect compared to RGD alone. The RGD-NO peptide 

also caused relaxation of rat aortic rings [339]. Another approach which has 

been taken to modify RGD is to attempt to improve the intestinal mucosal 

membrane permeability of RGD in order to utilise it as an orally active 

antithrombogenic agent. The modification made in this case was to synthesise a 

coumarin-based cyclic peptidomimetic RGD which was shown to have a five- to 

six fold increase in permeability when studied using in vitro cell culture models 

compared to the corresponding unmodified RGD peptide [340]. The use of a 

carbolinecarboxyl group conjugated to RGD has been investigated as a way of 

improving and enhancing the potency of the anti-aggregation effect of RGD and 

to prolong the peptide [341].

A study by the group of Moon 2001 [342] synthesised a heparin-DOCA 

conjugate with an amphiphilic property suitable for incorporation with 

polyurethane in a co-solvent. This was used to produce a heparin-release 

system using the solvent casting method. The anti-thrombogenicity of the film 

was measured and showed that loading heparin-DOCA above 7.5% prevented 

platelet adhesion and fibrin clot formation. The objective of this study correlates 

with ours and furthermore indicates that conjugating a hydrophilic agent 

(heparin) with amphiphilic properties which can be incorporated with 

polyurethane in an achievable manner and still retain its activity.

We have previously reported that LA conjugated GRGD (LA-GRGD) in 

solution demonstrated an antithrombotic and cell-binding effect. The
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conjugation of LA had no effect to the inhibition of coagulation, cytotoxicity or 

cell attachment of the GRGD peptide alone [312]. When LA-GRGD, LA-GRGDS 

and their corresponding non-conjugated GRGD and GRGDS were immobilised 

onto the PCU surface they retained their cell attachment activity (Chapter-6).

Hence in this study, the effect on blood compatibility of LA-GRGD, LA- 

GRGDS, GRGD and GRGDS immobilised onto a PCU surface was investigated 

using measurement of whole blood haemolysis, the assessment of adsorbed 

platelets and estimation of platelet activation factor (PF4). Two different 

methodologies were employed to modify the PCU surface: passive coating with 

peptides onto the PCU surface and incorporation of them by solvent casting. 

Coating of the peptides was achieved by incubating a lOOpg/ml peptide solution 

with the polymer material for 24 hours. In order to incorporate them the 

peptides were immobilised onto the surface by incorporation into the polymer 

material using a solvent that could dissolve both the polymer and the peptide, 

with the solvent being removed by evaporation. This method was used on the 

basis that the addition of amphiphilic peptides to polymer may result in the 

more hydrophilic portion being expressed on the polymer surface, anchored by 

the more hydrophobic end which is entangled in the polymer surface.

The results obtained in this study (Figure 8.3 and Figure 8.4) 

demonstrated that peptides immobilised on PCU polymer by incorporation 

showed an effect comparable to that of the coating technique. The platelet 

adhesion and haemolysis studies demonstrated that none of the modified PCU 

Films caused adverse effects with respect to either platelet adhesion or 

haemolysis. The inhibition of PF4 obtained with coated GRGD, GRGDS and 

incorporated LA-GRGD was comparable to that obtained with heparin coating 

(lU/ml), while incorporated LA-GRGDS resulted in a lower level of inhibition 

which was not significantly different. However, coating LA-GRGDS had 

significantly (P<0.05) lower inhibition compared to heparin (Figure 8.2).

From this study it can be concluded that the direct incorporation of LA 

conjugated peptide into the matrix of the polymer was achieved successfully
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with the peptide retaining its activity. Interestingly, incorporated LA-GRGD 

demonstrated a comparable inhibition of PF4 to heparin which correlated with 

our previous results[312]. LA-GRGDS incorporation showed the best endothelial 

cell adhesion whereas LA-GRGD showed the best antiplatelet activation effect.
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CHAPTER NINE 

SUMMARY
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9.1 SUMMARY

At present t thrombosis on prosthetic surfaces and compliance mismatch 

between polymeric graft and native vessel is considered to be a major hindrance 

to the continued progress and ultimate solution in the use of prosthetic 

replacements for blood vessels. In order to reduce the surface thrombogenicity 

of such prosthetic materials numerous research groups have been investigating 

a wide variety of approaches. These include surface modification and tissue 

engineering or cell seeding of the prosthetic material [35-41]. ECs lining the 

lumen of a normal vessel prevent platelet adhesion and blood coagulation or the 

formation of thrombosis [42]. Hence to encourage the growth of a layer of 

endothelial cells over the device surface has been additional approach to 

prevent thrombogenecity and improve blood compatibility.

Previously in our Department in collaboration with an industrial partner a 

polyurethane polymer with a poly(carbonate) soft segment has been produced 

using a low-temperature cast coagulation method in order to prevent stress 

formation in the material. The rational behind this development was that the 

polymer produced demonstrated improved visco-elastic properties and 

resistance to chemical degradation and biodegradation compared to other 

synthetic materials such as PTFE or Dacron. In addition, it allowed the 

production of a wide variety of polymer compositions which could therefore be 

tailored to specific applications [11, 12, 292, 300, 301]. However PCU like PTFE 

and Dacron suffers from causing surface thrombosis which limits its clinical 

application [161, 303].

The aims of this thesis were to develop an anticoagulant peptide for 

surface modification of the PCU polymer, validate the peptide effect and 

investigate the potential of the surface modified polymer combined with the 

peptide to enhance blood compatibility. In order to investigate potential sources 

of EC or MC for utilising in grafts seeding procedures and for testing the 

efficiency of surface modification, a preliminary study was carried out into the
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extraction and isolation of EC from a variety of tissues. Whilst it was possible to 

obtain MC from peritoneal lavage, a technique which was promising due to the 

relative ease with which samples could be obtained, the number of cells 

extracted proved to be insufficient for further studies. When using subcutaneous 

fat sufficient cells could be obtained via enzymatic digestion of the fat followed 

by purification using magnetic beads, as has been shown by other groups 

previously. However further studies carried out into the use of magnetic beads 

suggest that in order to obtain a high proportion of the potential EC population 

a high ratio of beads to cells must be employed. The use of such high ratios of 

beads can cause detrimental effects to cell population and metabolism later on 

in the culture process [21]. This combined with the relative difficulty involved in 

obtaining samples of subcutaneous fat resulted in the use of EC isolated from 

human umbilical cord vein for the studies on the effectiveness of surface 

modification of PCU.

As a starting point for the development of a suitable peptide for surface 

modification the tri-peptide RGD was chosen. RGD has been shown to reduce 

surface thrombosis by inhibiting blood coagulation and enhancing EC adhesion 

to provide an endothelial layer. RGD has been extensively used in research 

studies but to date has not been used in a clinical situation. Research has 

concentrated on either coating or chemical modification to immobilise RGD on 

the polymer surface. Whilst this is achievable it has the disadvantage that from 

a manufacturing viewpoint these processes are difficult to scale up. Another 

potential drawback to such methods, especially coating, is that the peptide may 

be washed off the graft over time reducing its effectiveness. These problems 

could potentially be overcome if it was possible to incorporate the RGD peptide 

in the polymer material. Incorporation of the peptide would require only minor 

modification to the current manufacturing process and may result in a longer 

lasting effect. However it is not possible to incorporate simple RGD into a 

polymer base due to the hydrophilic nature of the peptide.
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By developing lauric acid conjugated RGD-containing peptides which 

provide a hydrophobic tail to the hydrophilic RGD-head (as described in Figure 

5.4) and thus show amphiphilic properties the difficulties encountered to date 

with incorporating RGD-based peptides may be overcome. The LA acts as a 

spacer and influences the solubility of the LA-peptide conjugate, allowing it to 

dissolve in both water and an organic solvent (DMAC). Unlike other hydrophilic 

RGD peptides this amphiphilic nature demonstrated by LA-GRGD and LA-GRGDS 

makes them highly suitable for incorporation into the matrix of a 

poly(carbonate-urea)urethane polymer.

Solid phase peptide synthesis was employed to synthesise the RGD- 

containing peptides GRGD, GRGDS and the multi repeated GRGD 

(GRGD(AhxGRGD)3) in addition to their corresponding LA-conjugated peptides 

LA-GRGD, LA-GRGDS and LA-GRGD(AhxGRGD)3 successfully. Further study 

demonstrated that the conjugation of the LA to the peptides showed no effect 

on the structure or stability of the original RGD peptides they were based on. 

Characterisation by HPLC, FTIR and mass spectroscopy was also carried out. 

HPLC analysis demonstrated that the peptides synthesised were homogenous, 

revealing the presence of a single well resolved major peak on the 

chromatogram for each peptide. Investigation by FTIR confirmed the formation 

of a protein-like secondary structure for each peptide, all of which showed an 

amide I band maximum in the range of 1615-1695 cm'1. Mass spectrometry 

analysis confirmed that solid phase peptide synthesis was successful and that 

the successful conjugation of LA to the peptides GRGD and GRGDS had been 

achieved.

To evaluate the effectiveness of these peptide moeties, techniques such 

as the prothrombin time assay and a thrombelastography analysis were carried 

out to determine the anti-coagulant properties of the peptides. An Alamar 

Blue™ assay was carried out to indicate their cell binding effect on EC and to 

investigate any potentially adverse cytotoxicity effect on EC. Both GRGD and LA- 

conjugated GRGD retained 33% and 31% inhibition of TF respectively at a
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concentration of 50|jg/ml. At this concentration cell viability was unaffected. 

Investigation of the cell binding effect of LA-GRGD indicated that LA- 

GRGD(28.6%) retained its cell binding activity and showed no significant 

difference to the non-conjugated GRGD (25.8%) peptide and thus the 

conjugation of LA has not had an influence on the bio-activity of GRGD. LA- 

GRGDS, like LA-GRGD, also retained its activity and demonstrated no-significant 

difference in cell binding effect (30%) to the non-conjugated GRGDS (31.1%). 

At this concentration (50pg/ml) neither peptide had an effect on TF inhibition or 

blood coagulation. Again the conjugation of LA to the peptide showed no 

influence on this activity.

Both LA-GRGD and LA-GRGDS were immobilised onto surface by 

incorporation into polymer using a solvent which was able to dissolve both the 

polymer and the peptide, with the solvent leaving upon evaporation. This 

method was used on the basis that the addition of amphiphilic peptides to 

polymer may result in the more hydrophilic portion being expressed on the 

polymer surface, anchored by the more hydrophobic end entangled in the 

polymer surface (figure 9.1). From a commercial viewpoint this would be simple 

to produce with no major chemical changes to the polymer production process 

with the additional advantage that to have the peptide immobilised on the 

polymer surface should increase the stability of the peptide.
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E n d o t h e l i a l  C e l l
I n c o r p o r a t e d  m o e t i e s  ( e . g .  L A - G R G D ,  L A - G R G D S )  
E l a s t i c  B a s e m e n t  L a y e r

Figure 9.1 Schematic representation of in vitro reconstruction of a surface 

modified vascular wall. The modified graft has a hierarchical arterial structure 

consisting of a monolayer of endothelial cells, incorporated moieties (e.g. LA- 

GRGD) and an outer elastic basement layer.
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When surface modified PCU polymer films were exposed to flow, the 

amount of peptide remaining on the coated surface fell significantly (P<0.005) 

over the time course of the experiment compared to peptide incorporated 

surface. After 8 hours exposure to in-vitro flow, there was significantly 

(P<0.005) greater peptide concentration remaining on the incorporated films 

(42.6%) compared to the coated PCU films (20%). This finding suggests that 

peptide incorporation into the matrix of the polymer may provide an advantage 

over the simple surface coating technique in prolonging the life of the peptide 

when polymer is subjected to a physiological flow.

The effectiveness of these surface modifications was investigated by 

seeding HUVEC onto modified PCU films and using as a comparison the non- 

conjugated peptides which were used for passive coating of the polymer then 

monitoring cell metabolism by utilising an Alamar Blue™ assay and examining 

cell morphology via phase contrast, confocal and scanning electron microscopy. 

Incorporating LA-conjugated LA-GRGD and LA-GRGDS into PCU polymer 

produced a comparable effect to coating PCU with the same peptides, and 

indeed in the case of LA-GRGDS provided improved cell metabolism in the 

longer term (48 and 72 hours).

In order to further investigate the effects of such surface modifications 

the blood compatibility of LA-GRGD, LA-GRGDS, GRGD and GRGDS immobilised 

onto PCU surface was evaluated using measurement of platelet activation factor 

(PF4) and the assessment of adsorbed platelets and whole blood haemolysis. 

The inhibition of PF4 obtained with coated GRGD, GRGDS and incorporated LA- 

GRGD was comparable to that obtained with heparin coating (lU/ml), while 

incorporated LA-GRGDS resulted in a lower level of inhibition which was not 

significantly different. However, coating LA-GRGDS had significantly (P<0.05) 

lower inhibition as compared to heparin. The platelet adhesion and haemolysis 

studies demonstrated that none of the modified PCU films resulted in any 

adverse effect with respect to either platelet adhesion or haemolysis.
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As a result of this the RGD derivatives developed in this study have potential 

as a surface modification system in which the peptides cell binding activity is 

retained whilst allowing its solubility into solvents used in the manufacture of 

polymers for bypass grafts. This study has demonstrated that LA conjugated to 

an RGD derivative may have wide applicability for polymer formulation via 

commercially used solvent casting methodology for use in coronary, vascular 

and dialysis bypass grafts, scaffold polymer based tissue regeneration and tissue 

engineering.
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