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ABSTRACT

Sacral nerve stimulation, or neuromodulation, has been shown to restore voiding in 

women with a specific type of urinary retention that is attributed to urethral sphincter 

overactivity. The therapy has gained popularity in this and other voiding dysfunctions, 

but its mechanism of action remains unexplained.

This thesis explores the effects of neuromodulation on women with urinary retention. 

It incorporates a urodynamic study of the effect of neuromodulation on bladder and 

urethral (peripheral) function, a functional brain imaging PET (Positron Emission 

Tomography) study of cerebral (central) effects, and a review of the long-term 

efficacy of the technique.

The urodynamics (including urethral pressure profilometry, cystometry, and sphincter 

electromyography) showed evidence of persistent urethral overactivity despite 

successful restoration of micturition. Together with the cystometric findings, this 

suggests that neuromodulation may facilitate voiding in this group by increasing 

detrusor contractility rather than by urethral relaxation.

Review of the sacral nerve implants performed at this centre over several years 

reveals that approximately 75% continue to void at upto 5 years after surgery, while 

considering reasons for the loss of efficacy in other patients.



The cerebral perception of bladder fullness was examined using PET scanning in a 

group of healthy female controls as well as women with retention treated by 

neuromodulation. The findings show that the brainstem activity which is present in 

healthy controls is not seen in retention patients until the neuromodulation is 

activated. The discussion addresses the respective roles of brainstem and cortical 

brain regions in the control of voiding function, and whether neuromodulation may 

‘normalize’ cerebral activity.

In conclusion, this thesis provides evidence, for the first time, of changes in brain 

activity following sacral neuromodulation in urinary retention, confirming that its 

effects may well be mediated by afferent innervation.



There are more things in heaven and earth, Horatio, than are dreamt o f  in your 
philosophy

William Shakespeare, 1601

A man will turn over half a library to make a booh
Samuel Johnson, 1775
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CHAPTER ONE 

NEURAL CONTROL OF LOWER URINARY TRACT

The control of the human lower urinary tract is responsible for both urinary storage 

and for voiding in socially appropriate circumstances. It is therefore under the 

influence of coordinated sensory and motor neural pathways, abnormalities of which 

can lead to voiding dysfunction. The control of urinary storage and voiding, and the 

respective roles of spinal pathways and brain centres are discussed.

The four main neuronal pathways supplying the lower urinary tract are: i) 

parasympathetic (S2-4) preganglionic fibres, which synapse and run to the bladder 

and urethra, ii) sympathetic (T10-12, L I-2) preganglionic fibres which synapse and 

supply the trigone and prostate smooth muscle (including pre-prostatic sphincter), iii) 

somatic fibres from Onuf s nucleus that supply the intrinsic rhabdosphincter, and iv) 

pudendal nerve (S2-4) which supplies motor and sensory innervation to the urethra 

(Mundy 1999).

The neuronal factors that enable normal voiding function are a combination of reflex 

pathways and supraspinal modulation of these reflexes. The reflexes may be 

considered as the ‘hard-wiring’ while the modulation is the ‘fine-tuning’ of the 

system.
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Spinal pathways

Urinary storage

With normal filling, bladder pressure is kept under regulatory control, a quality 

known as compliance. A bladder with normal compliance will demonstrate little 

pressure change for a significant increase in volume. Compliance may be considered 

to be a result of the bladder’s visco-elastic properties as well as its neuronal 

influences; these features are described in respective ‘myogenic’ and ‘neurogenic’ 

theories, not discussed further here.

The guarding reflex is a sacral-thoracolumbar reflex whereby during bladder filling 

low-level vesical afferent activity (through the pelvic nerve) acts on sympathetic 

efferents (hypogastric nerve), as a ‘negative feedback’ mechanism. Stimulation of p- 

adrenergic receptors in bladder smooth muscle inhibits detrusor contraction, while 

stimulation of a-adrenergic receptors allows contraction of the bladder neck and 

proximal urethra, thereby maintaining continence. The pelvic nerve afferents also 

activate pudendal motoneurones, thereby inducing contraction of the striated external 

urethral sphincter. During bladder filling there is increase in sphincter 

electromyographic activity, reflecting an increase in efferent firing in the pudendal 

nerve (Yoshimura and de Groat 1997).

Furthermore there is descending input from the pons, activating the pudendal 

motoneurones to increase urethral resistance (Holstege, Griffiths et al. 1986).
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Urinary voiding

As the bladder volume reaches the micturition threshold, vesical afferents trigger 

micturition reflexes, leading to contraction of the detrusor and relaxation of the 

urethra. The voiding reflex is a spinobulbospinal reflex by which pelvic nerve activity 

is relayed to the periaqueductal gray before reaching the pontine micturition centre 

(PMC), sometimes called Barrington’s nucleus. This on/off switching circuit then 

stimulates the parasympathetic supply to the bladder (contraction) and internal 

urethral sphincter (relaxation), as well as inhibiting the sympathetic and pudendal 

supply to the bladder outlet (urethral relaxation). The descending signal, through an 

intemeuronal pathway, also suppresses sympathetic inhibition of detrusor contraction.

This is the basic mechanism by which contraction and relaxation of the voiding 

apparatus is coordinated, and provides a framework for understanding how pathology 

can lead to different types of dysfunction. For example, a spinal cord transection 

above the lumbosacral region interrupts the normal micturition reflex, and can lead to 

detrusor-sphincter dyssynergia (DSD).

Other reflexes

A number of additional reflexes have also been described, mainly through animal 

studies.

Mechanical stimulation of the urethra by a catheter or urine flow can cause bladder 

contractions. The urethral-bladder reflex involves urethral afferent activity producing 

bladder emptying. The two components of this reflex described by Barrington include 

i) activity from a urethral somatic afferent (pudendal nerve) activating the PMC by a
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supraspinal pathway, and ii) visceral afferent activity (pelvic nerve) facilitating 

detrusor contraction through a spinal mechanism (de Groat, Fraser et al. 2001).

The striated urethral sphincter can also have a modulatory effect on detrusor 

contraction. Studies in cats and monkeys have shown that contraction of the striated 

sphincter can suppress bladder emptying, possibly by muscle proprioceptive afferents 

activating central inhibitory mechanisms (de Groat, Fraser et al. 2001). A 

manifestation of this 4procontinence mechanism’ may be observed when people 

reduce their urinary urgency by squeezing their pelvic musculature, thereby 

postponing the time to void. Others have reported these inhibitory influences 

variously as the ‘puborectalis-rectovesical inhibitory reflex’ (Shafik and El-Sibai 

2001) or the ‘perineodetrusor inhibitory/ perineobulbar detrusor inhibitory reflex’ 

(Mahony, Laferte et al. 1977).

The following chapter expands on how upregulation of this reflex may be the 

underlying cause of some women developing chronic retention. The role of sacral 

neuromodulation in restoring voiding in this patient group is discussed after this, 

addressing whether there may be a peripheral site of action. This includes studying the 

effect that this electrical therapy has on urethral sphincter function among patients 

with retention.

Supraspinal centres

As intimated earlier, a number of supraspinal centres are integral in facilitating 

urinary storage and initiation of voiding. These include the nucleus locus coeruleus 

(pontine micturition centre, or PMC), frontal lobe, periaqueductal gray (PAG),
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somatosensory cortex, and hypothalamus, medial pre-optic area and other parts of the 

limbic system.

The early work establishing the functions of these areas was based on anatomical and 

lesional studies. Classic reports by Andrew and Nathan described urinary 

incontinence among patients with frontal lobe pathology (Andrew and Nathan 1964). 

More recently, the advent of functional brain imaging has enabled elucidation of roles 

played by different areas in bladder control. The techniques of Positron Emission 

Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) have 

identified key centres in the micturition pathway, which will be described in Chapter 

5.

Another concept that will be further developed is that of a neural ‘matrix’ or 

‘network’. Comparisons can be made with our understanding of the cerebral 

processing of pain. The perception of pain is considered to be a product of a ‘matrix’, 

with a number of key brain areas being interrelated. And apart from afferent 

ascending signals, other factors can affect nociceptive processing, for example the 

effect of altered attention, a variable which can itself change the activity in the brain 

centres involved. The cerebral processing of pain is thus more complex than certain 

afferent signals reaching a ‘pain centre’ in the brain, but instead depends on the 

interaction of several centres. Further work is required to establish the pattern of 

information flow between these areas.

Similarly there are several brain regions related to the processing of sensations of 

bladder filling and desire to void. The PAG acts as a relay centre for bladder afferent
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signals, and has interconnections with higher centres to influence the timing of 

voiding. In recent years there have been a limited number of functional brain imaging 

studies of cerebral control of micturition, from which certain common patterns are 

emerging. This thesis develops these ideas using PET scanning to examine the 

processing of urinary storage in healthy female volunteers, and to compare them with 

women with a specific type of urinary retention. The mechanism of sacral 

neuromodulation, used to treat this patient group, is subsequently examined by 

recording the activity of brain centres in response to this peripheral electrical 

stimulation. There have been few brain imaging studies of the central effect of 

neuromodulation, and this is the first to focus on women with urinary retention.
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CHAPTER TWO

IDIOPATHIC URINARY RETENTION IN YOUNG WOMEN

2.1 Female urinary retention

Urinary retention or dysfunctional voiding in women is a rare but distressing 

condition which can present a challenging diagnostic conundrum. Such women may 

first be referred to a neurologist on the assumption that the condition is neurological, 

for example a problem of the spinal cord such as multiple sclerosis. Although multiple 

sclerosis can produce voiding dysfunction, investigations such as magnetic resonance 

imaging of the brain and spinal cord can now help promptly to exclude this as a cause. 

When no neuropathology is found, the patient may be assessed by a urologist to 

exclude an anatomical explanation for the symptoms. Typical assessment would 

include cystoscopy and possibly urodynamics. At this stage, the patient is sometimes 

treated by hydrodistension and/or urethral dilatation. The role of these therapeutic 

strategies in treating bladder outflow obstruction is still controversial but what is clear 

is that generally they provide only temporary relief, for up to a few months. In the 

case of some women with urinary retention, this may be due to the pathology actually 

being due to an ‘ overactivity ’ of the urethral sphincter.

In 1986, an abnormal electrical activity was detected during urethral sphincter 

electromyography (EMG) in a series of young women with urinary retention (Fowler 

and Kirby 1986). A high proportion of these patients was found to also have 

polycystic ovaries (Fowler, Christmas et al. 1988), leading to a hypothesis that the 

retention was due to an overactive sphincter, susceptible to hormonal influence.
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2.2 Pathogenesis and clinical picture

2.2.1 Pathogenesis

The abnormal EMG signal may contain both complex repetitive discharges and 

decelerating bursts. This latter type of activity produces an EMG signal which sounds 

somewhat like myotonia, a disorder characterised by a failure of muscle relaxation. 

However single fibre EMG analysis of complexes shows low jitter consistent with the 

impulse being transmitted ephaptically, directly from muscle fibre to muscle fibre. By 

using special hooked wire electrodes to record EMG activity from the external 

urethral sphincter during voiding in women with voiding dysfunction, it was 

confirmed that bursts of complex repetitive discharges coincided with poor urinary 

stream (Deindl, Vodusek et al. 1998); this supports the concept that sphincter EMG 

overactivity is associated with impaired relaxation. Furthermore, this overactivity may 

be associated with inhibitory feedback of the detrusor as discussed later.

The EMG is recorded from the striated muscle, but the female urethral sphincter 

consists of a longitudinal inner smooth muscle ring being surrounded by the outer 

striated muscle ring. Their respective contributions to the state of over-contractility is 

not known. Wiseman et al suggested that the sphincter complex was hypertrophied in 

patients with the EMG abnormality (Wiseman, Swinn et al. 2002); however, due to 

the limited resolution of ultrasound, accurate measurement of striated versus smooth 

muscle components was not possible. Other imaging modalities with higher resolution 

such as magnetic resonance imaging may prove helpful.

The development of the sphincter abnormality may be under the influence of 

oestrogens, as suggested by the high association with polycystic ovaries. It could be a 

hormone-sensitive channelopathy which manifests as overactivity in the localised 

muscle. Channelopathies are a group of diseases caused by mutations in the genes
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coding for ion channel subunits, and which may manifest as neuromuscular disorders 

due to disturbances of the membrane conducting system. They can be broadly 

classified as voltage-gated (skeletal muscle disorders, e.g. myotonia congenita, or 

central nervous system disorders, e.g.episodic ataxia) or ligand-gated (neuromuscular 

disorders, e.g. congenital myasthenia, or central nervous system disorders, e.g. 

nocturnal ffontal lobe epilepsy). The similarity between EMG signals in sphincter 

overactivity and myotonia led to speculation about channelopathy underlying the 

sphincter abnormality.

One may reasonably question whether the sphincter overactivity is not simply an 

exaggeration of the guarding reflex, during which bladder filling results in reflex 

sympathetic activation of the pudendal efferents, producing an increase in outlet 

resistance. However, as can be observed from the experiments detailed later, the 

underlying neural mechanism in this condition is likely to be more complex, since 

restoration of voiding (following neuromodulation) occurs despite ongoing urethral 

overactivity. Furthermore in the guarding reflex, the quality of the EMG signal is 

normal, albeit with increasing amount of activity.

2.2.2 Clinical picture

A typical profile is of a woman in her 20s or 30s who develops urinary retention 

without necessarily having normal sensation of bladder filling until the distended 

bladder causes suprapubic discomfort. She is then catheterised, often with a residual 

volume in excess of over 1 litre. In their questionnaire survey with responses from 91 

women with complete retention, Swinn et al (Swinn, Wiseman et al. 2002) found that 

the mean age of presentation was 27.7years, and that whereas 35% of cases developed
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retention spontaneously, two-thirds of the remainder followed an operative procedure 

(often a gynaecological operation).

Intermittent self-catheterisation was performed by 86/91 surveyed patients, many of 

whom typically described a sensation of “something gripping” when withdrawing the 

catheter. Polycystic ovaries were found in 50% of the cases as well as in the original 

series (Fowler, Christmas et al. 1988), pointing to a possible hormonal basis to the 

pathophysiology described previously.

Only 38 of the 91 patients with complete retention spontaneously recovered bladder 

function; early recognition and intervention during retention is crucial, and therefore 

awareness should be promoted among health care workers in acute settings (Williams, 

Taylor et al. 2003).

2.3 Investigations

In addition to a typical history as described, the basis for diagnosis remains the 

abnormality of the sphincter EMG. Cystometry generally shows a prolonged filling 

phase, with reduced sensations of filling; there is typically only limited detrusor 

pressure rise during the voiding phase. Other ancillary investigations described by 

Wiseman et al are the urethral pressure profile (UPP) and transvaginal ultrasound 

estimation of sphincter volume (Wiseman, Swinn et al. 2002). The maximum urethral 

closure pressure (MUCP), measured during UPP, was shown to be higher in retention 

patients and the EMG abnormality than in those with a normal EMG. There are 

currently attempts to standardise the terminology and methodology for measurement 

of urethral pressure (Lose, Griffiths et al. 2002), and its role as a clinical tool remains 

uncertain. Nevertheless, in conjunction with other tests, and in the appropriate clinical 

context, the elevated MUCP is a helpful indicator of increased urethral resistance. The
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ultrasound volume was found to be higher in patients with the EMG abnormality 

(Wiseman, Swinn et al. 2002), supporting the previous finding using transrectal 

ultrasonography (Noble, Dixon et al. 1995). This suggests that the overactivity 

produces sphincteric hypertrophy, possibly of the striated sphincter. However, a 

recent morphological study has shown no evidence of hypertrophy of urethral 

rhabdosphincter fibres (Andrich, Rickards et al. 2005). Alternative imaging 

modalities, such as magnetic resonance imaging, could allow a quantitative 

assessment of the distinct components involved, as mentioned later in this thesis, 

though it should be emphasised that this result should not be interpreted in isolation. 

There has also been a report that if psychological testing is incorporated into the 

assessment, patients with retention who are likely to fare best can be identified 

(Spinelli, Bertapelle et al. 2001). Perhaps as one might expect, improvement in 

voiding function following neuromodulation was more common in those with a 

normal psychological profile.

2.4 Management

The key principle in the management of any patient with urinary retention is to 

maintain the bladder as a low-pressure reservoir by ensuring adequate drainage. This 

is equally true for the patient population studied here.

The main plausible therapeutic methods, in order of increasing invasiveness include 

biofeedback, oral agents, catheterisation, intra-urethral injection, sacral nerve 

stimulation, urethral stent and urinary diversion surgery. Self-catheterisation has been 

traditionally offered to the patient as an alternative to a permanent drainage procedure 

(whether an indwelling catheter or a surgical solution). Although there have been 

attempts to relax the sphincter, for example using oral agents and also local injection
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of botulinum toxin, the only treatment that has been conclusively shown to restore 

voiding so far is sacral nerve stimulation.

2.4.1 Bladder retraining

Although behavioural treatments have been used for urinary incontinence since the 

1940s, there have as yet been no randomised controlled studies of these techniques in 

the treatment of women in retention. A variety of approaches could be adopted, 

including biofeedback, bladder drill and pelvic floor muscle retraining.

2.4.2 Oral agents

The stepwise medical treatment of bladder outlet obstruction in men involves the use 

of a-blockers (sometimes in conjunction with 5 a-reductase inhibitors, in case of 

significant prostatic enlargement), which allows relaxation of the sphincter 

mechanism. There are no prospective double-blind trials examining use of a-blockers 

in females, though there are a few isolated reports showing limited benefit. Kawabe 

and Niijima reported improvement in peak flow and residual volume in 4/5 cases 

using an a-blocker (Kawabe and Niijima 1987), while Kumar report 50% success in 

their series of 24 patients with what was described as ‘functional bladder neck 

obstruction’ (Kumar, Mandhani et al. 1999).

While there is a theoretical basis for the use of a p agonist such as salbutamol to relax 

the sphincter, no definite improvement in symptoms has yet been demonstrated 

(personal observation in 3 patients), possibly as a result of a concomitant inhibitory 

effect on detrusor contraction.
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The role of a neuromuscular relaxant such as diazepam is also unclear. Kaplan 

described its success in 6 patients with ‘urethral syndrome’ who had an intermittent 

voiding pattern and evidence of increased sphincter activity during voiding (using 

pelvic floor EMG) (Kaplan, Firlit et al. 1980).

Rather than try to reduce outlet resistance, an alternative strategy would be to improve 

detrusor contractility. Indeed Wheeler et al have claimed that it is detrusor failure, and 

not urethral obstruction, which leads to female urinary retention in most cases 

(Wheeler, Culkin et al. 1990). Their series classified 68 women with retention as 

having an underlying neurogenic or non-neurogenic cause, though they attributed a 

total of 15/29 subjects in the latter group as having ‘psychosocial problems’. 

However, they acknowledged that “prematurely labelling these patients as having 

psychosocial dysfunction without careful evaluation can overlook subtle 

abnormalities”, and referred to the role of needle electromyography. They attempted 

to use the cholinergic agonist bethanechol to differentiate neurogenic from non- 

neurogenic bladders without success. While other groups have also described varying 

success for detrusor acontractility (Riedl, Stephen et al. 2000), evidence for its 

efficacy in women with sphincteric overactivity is lacking.

2.4.3 Botulinum toxin

Botulinum toxin inhibits the release of acetylcholine at the presynaptic neuromuscular 

junction, and its injection thereby paralyses the motor unit innervated. Neurologists 

have used this phenomenon to treat patients with disorders of muscle overactivity 

such as strabismus, spasmodic torticollis, blepharospasm, and hemifacial spasm.
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Other applications include the treatment of sphincter of Oddi dysfunction, and the 

more widely publicised cosmetic reduction of facial wrinkles.

Since Dyskstra’s initial reports of injecting it into the external urethral sphincter to 

treat DSD (Dykstra, Sidi et al. 1988) (Dykstra and Sidi 1990), there have been 

subsequent studies reporting similar success for DSD (Schurch, Hauri et al. 1996) 

(Beleggia, Beccia et al. 1997), (Petit, Wiart et al. 1998), (Gallien, Robineau et al. 

1998). After Schurch et al published their results of successfully treating detrusor 

overactivity in 21 spinal cord injured patients with intradetrusor injections, there have 

been several reports of its impressive effectiveness for this indication.

There has been some success reported in treatment of bladder outflow obstruction in 

women with botulinum toxin injection (Phelan, Franks et al. 2001). A recent study of 

21 patients (including 13 women) with impaired bladder emptying showed improved 

ability to void after injection of 80-100 units of botulinum toxin into the external 

urethral sphincter. The cause of voiding dysfunction was reported as neurogenic 

detrusor-sphincter dyssynergia in 12 cases, pelvic floor spasticity in 8 cases, and 

detrusor acontractility due to multiple sclerosis in 1 case. A more recent smaller 

clinical study from Taiwan also found favourable results following intra-urethral 

botulinum injections in neurogenic patients (Chen and Kuo 2004).

However, an earlier study of intra-sphincteric botulinum injection of 6 women with an 

abnormal sphincter EMG did not show symptomatic benefit (even though transient 

stress incontinence was achieved in 3 patients, showing that enough botulinum had 

been given to induce sphincter weakness) (Fowler, Betts et al. 1992).
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2.4.4 Instrumentation

Either clean intermittent self-catheterisation (CISC) or permanent indwelling 

catheterisation is obviously a feasible treatment option. Both are associated with the 

risk of UTIs, and patients often report specific problems with CISC such as difficulty 

withdrawing the catheter. The prospect of an indwelling catheter is fairly 

unacceptable to most of these patients, as they are generally young and otherwise fit. 

Even the prospect of a lifetime of carrying CISC catheters is depressing for most. 

Nevertheless, this is a minimally invasive option which is available in the treatment 

armentarium.

Urethral stents and artificial sphincters are other examples of instrumentation which 

might seem to offer simple treatment concepts, but this has not been translated into 

clinical results.

2.4.5 Sacral nerve stimulation

Although electrical therapy has been used to treat bladder disorders since the 1950s, it 

was the pioneering work of Tanagho and Schmidt (Tanagho and Schmidt 1988) that 

led to development of implantable sacral nerve stimulators. These implantable pulse 

generators (IPG) [Interstim, Medtronic Inc.) consist of a battery attached to a 

stimulating electrode placed through the sacral foramen S3, delivering electrical 

current to the sacral nerve roots. Since gaining its European licence in 1994 and FDA 

approval in the United States in 1997, over 8000 stimulators have been implanted 

worldwide for a range of conditions. The indications include urgency-frequency, urge 

incontinence, and retention, as well as constipation, faecal incontinence, and pelvic 

pain more recently.
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Clinical results

Sacral neuromodulation has been shown to restore voiding function successfully in 

women with urinary retention. A multicentre trial of 177 patients with retention (74% 

female) undergoing test stimulation found that 68/177 patients qualified for IPG 

implantation, one group receiving an IPG and the others acting as a control group by 

having their implantation delayed (Jonas, Fowler et al. 2001). The 24 patients who 

received an implant continued to show symptomatic benefit for up to 18 months, with 

14/24 no longer needing catheterisation. A subset of these patients with a sphincter 

abnormality seems to respond particularly well, as also shown in 38 patients 

undergoing PNE (Swinn, Kitchen et al. 2000).

Shaker and Hassouna described the efficacy of neuromodulation in treating 20 

patients (19 female) with non-obstructive retention, with a mean follow-up of 15 

months (Shaker and Hassouna 1998). They also reported significant improvement in 

voiding function and found that most patients were unable to void without having 

sensation of the stimulation. This supports the proposition that the stimulation has a 

modulatory effect on afferent nerve pathways, as discussed later.

More recently Abosief reported the results of 20 patients (including 17 women) with 

non-obstructive urinary retention, 18 of whom were able to void with implantation of 

an IPG (Abosief, Tamaddon et al. 2002). The cause of their retention was not 

identified. Follow-up was up to 2 years, during which period they found few 

associated complications and significant improvement in symptoms.

However as for most surgical techniques, the lack of true placebo controls in these 

studies makes overall assessment of efficacy difficult. Another factor in the overall
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availability of the therapy is the expense of the equipment (current cost of implant and 

leads is approximately £6000). Nevertheless no other treatment modality has been as 

successful in restoring voiding function to date; as other electrical therapies are 

developed it will be interesting to compare respective outcomes.

The safety and tolerability of sacral neuromodulation are now accepted (as outlined 

by published NICE guidelines: http://www.nice.org.uk/cms/ip/ipcat.aspx?0=56779). 

The complications of neuromodulation that are recognised include lead migration 

(less common since development of improved fixation techniques), pain at the site of 

the IPG box or in the ipsilateral leg, infection, and lack of efficacy following IPG 

implantation despite a successful PNE. Developments in the surgical technique have 

addressed some of these problems. The question of safety in pregnancy has also been 

addressed in a recent review of 6 cases of women with neuromodulation during 

pregnancy (Wiseman, van den Hombergh et al. 2002); although no adverse effects 

were observed, the recommendation was to deactivate the stimulator when a patient is 

discovered to be pregnant.

2.4.6 Urinary diversion

If these more conservative measures do not succeed, and the patient’s quality of life is 

significantly adversely affected, then urinary diversion may be offered as a solution 

for adequate bladder drainage. This may be a continent (catheterisable) or incontinent 

diversion (ileal conduit), and discussed with their urologist. The invasive and 

irreversible nature of such a procedure is inevitably hard for some younger patients 

particularly to accept. Furthermore, these procedures can have associated
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complications such as stomal stenosis, requiring revision surgery (Blaivas, Weiss et 

al. 2005)
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CHAPTER THREE

NEUROMODULATION

3.1 Electrical therapies in voiding dysfunction

Since the discovery of the connection between electricity and muscular contraction 

during the pioneering work of Galvani and Volta, there have been significant 

advances in using electrical therapy to treat patients. Cardiac pacing and pain 

treatment were two of the earliest applications for electrical stimulation (Bemelmans, 

Mundy et al. 1999). The former involves stimulating cardiac muscle by its innervation 

in order to effect contraction, whereas the treatment of pain is more subtle, and 

involves modulation of central and peripheral nervous pathways. The principles used 

for treating lower urinary tract dysfunction with electricity may share certain features 

with those for pain.

For effective micturition, an adequate detrusor contraction must be accompanied by 

appropriate relaxation of the urethral sphincter. Historically several sites have been 

considered for the application of electrical stimulation: the bladder wall, the pelvic 

nerves, the spinal cord and the sacral nerves.

Intravesical stimulation

The first case of electrical stimulation being used for bladder emptying may have 

been in 1878 when the Danish surgeon MH Saxtorph treated patients with urinary 

retention by intravesical stimulation (Madersbacher 1990). He inserted a special 

catheter with a mounted metal electrode intraurethrally and placed a neutral electrode 

suprapubically. There were no further major efforts to treat voiding dysfunction with
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electricity until the 1950s and 1960s, when people began to address the question of 

optimal mode and site of stimulation.

Experiments by McGuire (McGuire 1955) and Boyce (Boyce, Lathem et al. 1964) in 

animal models determined the most effective positioning and size of electrodes in the 

bladder to achieve adequate emptying; however further development of these 

techniques for the human bladder did not produce satisfactory bladder evacuation.

In the 1960s Caldwell (1963) and Alexander (1968) described their use of electrical 

stimulation to treat urinary incontinence (Caldwell 1963). Caldwell placed his 

electrodes in the sphincter with the secondary coil near the iliac spine. Alexander also 

used pelvic floor stimulation to increase urethral resistance and to inhibit the detrusor.

Pelvic nerve stimulation

Bladder overactivity can be suppressed by stimulation of pudendal afferent pathways. 

Different techniques have included dorsal penile nerve (or dorsal nerve of the clitoris) 

stimulation, anal or vaginal plug electrodes, magnetic stimulation of the sacral roots, 

and even stimulation of the posterior tibial nerve (van Balken, Vergunst et al. 2004).

Spinal cord stimulation

Spinal cord stimulation to achieve micturition was successfully demonstrated by 

Nashold et al (Nashold, Friedman et al. 1971), who reported the optimal location of 

the stimulating electrodes to be S I-S3 roots. However with further development of 

this technique the problem of simultaneous contraction of detrusor and urethral 

sphincter emerged.
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Sacral nerve stimulation

In the 1970s Brindley’s group developed an implantable stimulator that used sacral 

anterior root stimulation (SARS) to empty the bladder in paralysed patients (Finetech- 

Brindley SARS, Finetech Medical Limited) (Brindley, Polkey et al. 1982) and has 

proved very successful in treatment following spinal cord injury. This implant was 

combined with deafferentation of the S2-4 sacral sensory nerve roots (posterior 

rhizotomy) to overcome sphincter dyssynergia and reflex incontinence. The side- 

effects of this rhizotomy include loss of reflex erections. Therefore there are ongoing 

attempts to suppress reflex incontinence by stimulating the posterior roots rather than 

by a rhizotomy using the so-called sacral posterior and anterior root stimulator 

implant (SPARSI) (Jezemik, Craggs et al. 2002).

Tanagho et al performed a series of experiments that led to the development of sacral 

nerve stimulator implants. This group from the University of California San Francisco 

demonstrated that stimulation of the ventral root produced effective detrusor 

contraction and that this could be achieved separately from sphincter contraction. 

Detailed anatomical studies led to the identification of S3 nerve roots as being the 

most suitable location for placement of the electrode, and there was no evidence of 

nerve damage following chronic stimulation. Since the first ITREL I device, there 

have been several modifications of the implant, to produce the latest version, Interstim 

(Medtronic, Inc.).
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3.2 Peripheral stimulation for urgency and urge-incontinence

Interestingly, as well as treating retention, sacral nerve stimulation is efficacious in 

the treatment of patients with overactive bladder, which is in fact its hitherto more 

common application (Abrams, Blaivas et al. 2003). The term neuromodulation has 

indeed been defined as “a physiologic process...in which the influence of activity in 

one neural pathway modulates the preexisting activity in another through synaptic 

interaction” (Bemelmans, Mundy et al. 1999).

Patients with detrusor overactivity (or Overactive Bladder, OAB) may have urgency- 

ffequency and urge incontinence symptoms, the prevalence of this condition being 

estimated to be as high as 17.5 million women in the United States. With greater 

awareness of the healthcare costs associated with this condition, there is now 

increasing interest in symptom control. The management of OAB is not discussed 

much further here except to outline that after conservative measures (behavioural 

feedback, dietary) the mainstay of treatment is the use of anticholinergic medications; 

traditionally, patients who were refractory to these treatments would be considered for 

bladder surgery (eg augmentation cystoplasty, urinary diversion). More recently, in 

addition to botulinum therapy, electromagnetic stimulation of pelvic and other 

peripheral sites has provided an alternative modality between medical and surgical 

treatments. These include electrical stimulation of sacral nerves, anogenital/pelvic 

innervation, posterior tibial nerves, intravesically, and magnetic stimulation of sacral 

roots.

Studying some of the mechanisms involved in these therapies may shed some light on 

the basic principles of sacral neuromodulation that could be extended to its
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application in retention. Despite success rates ranging from 50%-90% for these 

various therapies (Takahashi and Kitamura 2003), one should note that it is difficult to 

compare these with true sham controls, resulting in a general paucity of placebo- 

controlled studies.

3.2.1 Anogenital electrical stimulation

One such technique relies on the insertion of electrode plugs either intra-anally or 

intravaginally, and varying degrees of success have been reported since the original 

description by Magnus Fall’s group in the 1970s (Takahashi and Kitamura 2003). 

Reasonably favourable intermediate-term results have been described in urge 

incontinence by different groups (Eriksen, Bergmann et al. 1989) (Primus and Kramer 

1996) (Gladh, Mattsson et al. 2001), though when Bratt et al re-evaluated patients 

after 10 years, 78% of the 27 evaluable subjects reported symptoms of urge 

incontinence (Bratt, Salvesen et al. 1998). It is recognised that patients may require 

further repeat treatment sessions to maintain efficacy. Relatively few side-effects have 

been described with this therapy, which has also been applied in children (Trisnar and 

Kralji 1996) (Gladh, Mattsson et al. 2001). The mechanism of action has been 

proposed as through afferents that activate sympathetic hypogastric inhibition of the 

detrusor and central inhibition of pelvic parasympathetic motor output to the bladder 

(Lindstrom, Fall et al. 1983). This principle of stimulating the pudendal nerve forms 

the basis of stimulation of the dorsal nerve of the penis or clitoris with some success 

in patients with urge incontinence (Vodusek, Light et al. 1986).
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3.2.2 Posterior tibial nerve stimulation

Since the first description of cutaneous stimulation over the posterior tibial nerve 

(McGuire, Zhang et al. 1983), a commercially available method of stimulating this 

nerve by a percutaneously placed 34-gauge needle was developed (Stoller 2000), 

variously called SANS (Stoller Afferent Nerve Stimulator) and PTNS (Posterior 

Tibial Nerve Stimulator). Success rates of over 70% have been reported, with few 

side-effects (Klinger, Pycha et al. 2000) (Govier, Litwiller et al. 2001) (van Balken, 

Vandoninck et al. 2001). Rather than acting directly on the pudendal nerve, this 

method stimulates a common central pathway through a more peripheral afferent site. 

A urodynamic study of 44 patients treated in this way demonstrated improvement in 

first involuntary detrusor contraction and maximum bladder capacity (Amarenco, 

Sheikh Ismael et al. 2003). There has been a recent report of the role of PTNS in 

idiopathic nonobstructive urinary dysfunction (Vandoninck, van Balken et al. 2003), 

in which the authors mention that “patients reported a more accentuated awareness of 

a desire to void”, something typically seen in Fowler’s syndrome patients following 

SNS.

3.2.3 Transcutaneous electrical nerve stimulation

Electrodes are held over the dermatomes related to the neural control of micturition, 

the most common sites being over the sacral foramina (S2-3), sacral dermatomes (S2- 

3, peri-anal region), dorsal penile or clitoral nerve, suprapubic region, thigh muscles, 

common peroneal nerve and posterior tibial nerve. The results have been mixed, and 

although no major complications have been reported, the long-term efficacy is 

limited.
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3.2.4 Intravesical electrical stimulation

It is widely considered that the first case of neuromodulation for bladder dysfunction 

may have been performed by the Danish surgeon MH Saxtorph, who used intravesical 

electrical stimulation to treat urinary retention in 1873 (Madersbacher 1990). This 

modality involves introducing a catheter, with an electrode mounted on its tip, into the 

bladder transurethrally. The catheter is connected to a pressure monitor so that the 

patient can correlate sensations of urgency, and thereby learn to recognise and inhibit 

them by squeezing the pelvic floor. The practical use of this technique remains 

controversial (Kaplan 2000) (Decter 2000).

3.2.5 Magnetic stimulation

Just as an electric current induces a magnetic field, so in turn a magnetic field can 

induce changes in an electric field. Furthermore, whereas body tissues have high 

electrical impedance, they do not significantly attenuate magnetic energy. Hence 

functional magnetic stimulation (FMS) at the level of nerves can be of relatively high 

intensity without affecting skin and body tissue. There is experimental evidence that 

FMS of the sacral nerve roots can suppress detrusor overactivity (Sheriff, Shah et al. 

1996) (McFarlane, Foley et al. 1997) (Yamanishi, Yasuda et al. 2000). With the 

availability of a commercially available magnetic stimulation ‘chair’ (‘NeoControl’ 

system, Neotonus Inc, Marietta, GA) on which the subject sits fully clothed for 20 

minutes for full activation, there is increased interest in comparison of magnetic and 

electrical stimulation of the sacral roots. For example, one randomised urodynamic 

study found that while both modalities improved the maximum cystometric capacity, 

the increase was significantly greater following FMS (Yamanishi, Sakakibara et al.

2000). Another effect of FMS may be to increase the maximum urethral closure
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pressure as suggested by Fujishoro et al (Fujishoro, Takahashi et al. 2002), which may 

also allow its application in stress incontinence.

However, just as certain features of the mechanism of SNS remain unclear, so there 

would also appear to be incongruity in terms of the effect of FMS on detrusor 

contraction. We have already alluded to the suppression of unstable contractions, but 

there is also evidence that FMS can increase detrusor pressure (Rodic, Schlapfer et al. 

2002) (Brodak, Bidair et al. 1993). Bycroft et al recently concluded that the detrusor 

pressure rise seen after FMS relates to a delayed ‘rebound’ phenomenon, whereby 

detrusor pressure (hitherto suppressed by the stimulation) rose sharply after cessation 

of FMS (Bycroft, Craggs et al. 2004). Their findings supported the earlier hypothesis 

by Rodic et al that this detrusor contraction (seen only in their suprasacral spinal-cord 

injured patients) was the result of a late spinal reflex pathway, with possible 

contribution of sympathetic pathways (Rodic, Schlapfer et al. 2002). The authors 

refute the proposal by others that FMS induces voiding by direct parasympathetic 

(bladder efferent) activation. One may speculate that some of the mechanisms thus 

elucidated for FMS may be applicable for SNS, which shares a similar target for 

stimulation.

3.2.6 Sacral nerve stimulation

The efficacy of SNS in both refractory urge incontinence and urgency-frequency has 

been assessed in multicentre trials initiated in 1992. Patients in these two groups were 

recruited for randomised ‘controlled’ studies, whereby control patients underwent 

neuromodulator implantation 6 months after those in the other arm of the trial 

(Schmidt, Jonas et al. 1999) (Hassouna, Siegel et al. 2000). Therapy evaluation was
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based on voiding diaries and quality-of-life questionnaires. The 222 patients with 

urgency-frequency showed statistically significant improvements in the frequency and 

voided volumes, which were sustained at upto 24 months. In the urge incontinence 

group of 184 patients, 47% were completely dry at 6 months, while another 29% 

showed greater than 50% reduction in incontinent episodes at the 6 month stage.

In another study, Janknegt et al found that a group of 96 implanted patients with 

refractory urge incontinence showed significant improvements in the number of 

incontinent episodes at an average of 31 months (Janknegt, Hassouna et al. 2001).

Defining ‘cure’ as greater than 50% reduction in urge incontinent episodes, Bosch and 

Groen reported a cure rate 80% at 1 year. This decreased to 65% at 1.5 years, but 

remained relatively constant thereafter upto 5 years post-implantation (Bosch and 

Groen 2000).

Also, in a smaller study of patients implanted for neurogenic urge incontinence, 

symptomatic results obtained at 6 months were maintained for a mean follow-up of 44 

months (Chartier-Kastler, Bosch et al. 2000).

Electrical stimulation at the S3 level acts on mixed motor/sensory nerves, but it seems 

likely that neuromodulation has its main effect on the afferent innervation. While its 

main effect on detrusor overactivity may be by modulating local spinal reflexes (eg in 

spinal-cord injured patients), there may be supraspinal mechanisms involved also, 

such that the perception of urgency is affected also.
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Summary

Urinary urge incontinence and urgency/frequency are more prevalent than urinary 

retention in women, and consequently a wider range of electrical and magnetic 

stimulation modalities have been applied in their treatment. Broadly speaking, they 

are focussed on afferent pathways, and while sacral neuromodulation acts on mixed 

nerves, the afferent component is likely to be the most relevant for its effects on 

detrusor overactivity as well as in urinary retention.

3.2.7 Acupuncture pathways

While sacral neuromodulation is based on the stimulation of nerves emerging from 

sacral foramina, it is interesting that another therapeutic modality, acupuncture, is 

based on the positioning of stimulating needles in a similar region, albeit with ‘energy 

lines’ being the substrate for intervention. It is worth briefly examining this therapy to 

see whether any common mechanisms of action can be extrapolated.

Acupuncture has been practised for over 2000 years in traditional Chinese medicine, 

and can be dated from its description in the Nei Ching (the classic Treatise on Internal 

Medicine, 305-204BC). Its introduction to Western Europe can be traced back to the

thteachings of George Soulie de Morant in the 17 century. More recently, there has 

been greater acceptance of a scientific basis to this ancient art, with evidence of 

acupuncture increasing the cerebrospinal fluid levels of endogenous opiates 

(endorphin and enkephalin). The effects of acupuncture seem to be reversed by the 

administration of the opiate antagonist nalaxone.
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Murray and Feneley reported the effect of opioid blockade in lower urinary tract 

function in normal subjects, using intravenous naloxone (Murray and Feneley 1982). 

Their urodynamic study showed that administration of nalaxone produced a rise in 

detrusor pressure during filling, lower bladder capacity and lower urethral closure 

pressure, thus implying the involvement of endorphins in voiding function.

There are a few reports of acupuncture in urology. The most frequently described role 

for acupuncture in micturition-related problems is for patients with detrusor 

overactivity. This is also one of the key indications for sacral neuromodulation, 

though it is paradoxical how this treatment for retention can also help for bladder 

overactivity.

Philp et al found a moderate improvement in symptoms of bladder instability when 

applying acupuncture along traditional bladder meridians, but did not demonstrate any 

consistent urodynamic changes (Philp, Shah et al. 1988). A more recent study 

described the use of electroacupuncture in patients with neuropathic bladder after 

spinal cord injury (Cheng, Wong et al. 1998). They stimulated at different bladder 

‘acupoints’ including the ‘Tzu Liao’ (UB32), which corresponds to the S2 sacral 

foramen. An increase in detrusor voiding pressures was reported after 

neuromodulation, though there was no corresponding data for the control group. 

Nevertheless, they speculated on the mechanism of action in this patient group being 

through stimulation of afferent nerve fibres, hormonal changes through action on the 

hypothalamus, or possibly reflex autonomic efferent pathways. There was a further 

urodynamic study by Chang for women with frequency, urgency and dysuria, in 

which acupuncture was found to reduce detrusor contractility (assessed by

31



cystometry) and to increase external sphincter contractions (increase urethral pressure 

profile) (Chang 1988). A major weakeness in all of these studies is that there is no 

true comparison with placebo effect, a criticism that may also be levelled at sacral 

neuromodulation.

Tanaka et al recently studied the effects of acupuncture in the sacral region in 

anaesthetized Sprague-Dawley rats, with assessment of electroencephalogram 

changes (Tanaka, Koyama et al. 2002). They concluded that the therapy had direct 

effects on the sleep-arousal system centrally, though the applicability of these findings 

to humans is not known.

The efficacy of acupuncture in voiding dysfunction requires further assessment by 

way of formal clinical trials, and the basis of its possible mechanism should also be 

investigated. In particular, the concept of restoring balance may share features with 

the ‘normalization’ of neural activity by neuromodulation as we perceive it.
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CHAPTER FOUR 

SACRAL NERVE STIMULATION

4.1 Development of sacral nerve stimulation

Knowledge of several factors is required for the safe and effective use of sacral nerve 

stimulators: anatomical understanding of the nerves emerging from the sacral 

foramina, electrical properties of the stimulating equipment and the response of 

tissues to such stimuli, predictors of response, and optimisation of stimulation 

parameters.

The anatomical studies performed by Tanagho’s group on human cadavers helped 

establish the exact distribution of the sacral plexus, making it feasible to implant 

stimulators in this region. Subsequent work has allowed clinicians to distinguish 

between ‘classical’ S3 motor and sensory responses compared to stimulation at S2 or 

S4. This knowledge allows the accurate location of the stimulating electrode during 

peripheral test stimulation.

The safe development of neuromodulation also relied on the recognition that 

implantation can lead to both mechanically- and electrically-induced nerve damage. 

After even a few hours of stimulating a nerve at a dangerous amplitude and 

frequency, there can be signs of early axonal damage with histological evidence of the 

changes (Agnew, McCreery et al. 2002). There is greater risk of long-term damage, as 

one might expect, with continuous stimulation compared to intermittent stimulation. 

When patients present with signs of reduced efficacy, changes in amplitude, 

frequency, and order of active/inactive electrode can all be manipulated. However 

there is still little evidence of a protocol for such alterations.
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Despite a few studies attempting to determine which factors are predictive of response 

to neuromodulation, there are no established criteria for this. Nevertheless, ongoing 

work attempts to identify key parameters for review.

4.2 Indications for SNS

The urinary problems that have been successfully treated by sacral neuromodulation 

are urgency-frequency, urge-incontinence and urinary retention. More recently, there 

has been evidence for its efficacy in treating bowel disturbances (both chronic 

constipation and faecal incontinence), pelvic pain and possibly interstitial cystitis.

More than 8000 stimulators have been implanted worldwide for urinary problems, 

since gaining its European licence in 1994 and FDA approval in 1997. Multi-centre 

trials have provided evidence of its efficacy in urgency-frequency, urge-incontinence 

and urinary retention (Schmidt, Jonas et al. 1999) (Hassouna, Siegel et al. 2000) 

(Jonas, Fowler et al. 2001), with published long-term results available over 3 years.

The subgroup of women with retention seems to respond particularly well to this 

stimulation (Swinn, Kitchen et al. 2000). For these patients, there has been no other 

effective alternative to self-catheterisation, and therefore the therapy has a different 

role to that in bladder overactivity where there are numerous alternative 

pharmacological treatments. Despite a significant revision rate for surgery (DasGupta, 

Wiseman et al. 2004), long-term efficacy has been demonstrated for this therapy in 

this group.
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4.3 Technique of SNS

The traditional method for SNS, and that used for our study, starts with a test 

stimulation (Peripheral Nerve Evaluation, PNE) as an outpatient procedure. With the 

patient in a prone position, using local anaesthesia or sedation, a temporary 

stimulating electrode is inserted through the S3 foramen. Fluoroscopy may be used to 

assist with optimal placement. A satisfactory position is confirmed when connection 

of the electrode to its battery produces contraction of levator ani (‘bellows response’, 

so-called as it mimics bellows closing together) and induces a typical sensation of 

‘tingling’ intravaginally or perineally. The stimulating electrode is secured externally, 

attached to the battery. This is left in-situ for 4-7 days, and the patient asked to return 

with a completed voiding diary, which is then compared to the baseline diary 

parameters, notably the voided volumes and residual volumes. If the patient shows a 

satisfactory improvement in voiding function, they are then selected for implantation 

of a permanent stimulator (Implantable Pulse Generator, IPG), traditionally under 

general anaesthesia.

There have been several modifications and refinements of the technique, as follows:

a) Two-stage implant

One of the drawbacks of the traditional approach is the high drop-off rate following a 

successful PNE -  upto 40% of patients who respond well to a PNE do not continue to 

have a successful outcome with the IPG (Bosch and Groen 2000). One explanation for 

this is that the placement of the permanent electrode is unlikely to be exactly the same 

as that of the temporary electrode. Therefore, some centres have advocated placing 

the permanent electrode in S3 as the first screening stage, and if this produces a
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successful result then the electrode is attached to the IPG battery at a simple second 

operation (leaving the electrode in the same position) (Janknegt, Weil et al. 1997) 

(Scheepens, van Koeveringe et al. 2002). If the patient does not respond, then the 

electrode is removed, and the second stage not performed.

b) Bilateral versus unilateral implantation

Following work in animal models, the use of bilateral electrode placement was 

proposed (Hohenfellner, Schultz-Lampel et al. 1998). However Scheepens et al 

compared unilateral versus bilateral neuromodulation in a series of 33 patients (27 

female, 6 male), including 15 with partial or complete retention (Scheepens, de Bie et 

al. 2002), and for most patients, there was no significant difference between the 

approaches except for 2 cases with complete retention who were able to void to 

completion only with bilateral stimulation.

c) Fixation techniques

Lead migration was a problem reported by several centres in the early days of sacral 

neuromodulation, leading to modifications of the electrode (Carey, Fynes et al. 2001). 

A new ‘tined’ lead is also now available, which has special spikes (or ‘tines’) that 

secure the lead to the surrounding tissue, thereby fixing the electrode position without 

needing formal suturing of the electrode (Spinelli, Giardiello et al. 2003).

d) Minimally invasive approach

A promising recent development is the percutaneous placement of the stimulating 

electrode without requiring open dissection through the lower back (Chai and Mamo
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2001) (Spinelli, Giardiello et al. 2003). It has now been shown that the entire 

technique, including the insertion of the IPG, can be performed under local 

anaesthesia, as a day-case procedure. An important advantage of this is that the 

patient’s sensory responses can be taken into account during the initial placement of 

the stimulating lead in the test stage.

e) Buttock placement

Although the original site for placing the IPG was in a subcutaneous abdominal 

pouch, more recent reports have advocated buttock placement (Scheepens, Weil et al.

2001). This has the advantage that the patient does not have to be turned over intra- 

operatively, and thereby allows a quicker operation time.

4.4 Mechanisms for SNS

Despite the increase in number of stimulators implanted, for a variety of indications, 

the mechanism of action of neuromodulation is still not known, particularly in the 

paradoxical problems of retention and urge incontinence.

Fowler et al found the latency of anal sphincter contraction during PNE was longer 

than that compatible with a direct motor response (Fowler, Swinn et al. 2000). Several 

other sources of evidence also suggest that neuromodulation acts on the afferent 

innervation. This includes the clinical observation that the sensation of bladder 

fullness in women with retention returns sooner than the ability to void (Swinn, 

Kitchen et al. 2000) and work by Wyndaele et al which concluded that 

neuromodulation acts on afferents originating in the bladder (Wyndaele, Michielsen et
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al. 2000). Recent immunostaining studies in rats indicate that neuromodulation may 

affect the expression of neurotransmitters involved in the transmission of signals from 

the bladder (Wang and Hassouna 2000) (Zhou, Wang et al. 2002); this raises the 

possibility that the electrical stimulation restores voiding by the release of 

neurotransmitters which have a modulatory effect on the aberrant electrical pathways.

In women with retention due to sphincter overactivity, there is a question of whether 

neuromodulation has a direct relaxant effect on the sphincter or facilitates an adequate 

detrusor contraction. There is some evidence that these patients are able to void 

despite a persistently overactive sphincter. Later we illustrate this with the 

observations made by recording EMG and urodynamics before and after 

neuromodulation; in this study patients voided with an interrupted flow pattern, with 

no significant reduction in the elevated MUCP and no change in the abnormal EMG 

signal (DasGupta and Fowler 2004). However, cystometry showed that detrusor 

pressure at maximal flow was only slightly elevated. This may be explained by 

neuromodulation overcoming an inhibitory effect of the sphincter on the detrusor, and 

therefore facilitating enough of a detrusor pressure rise to enable voiding.

Recent studies have started to address the effect of neuromodulation on the brain. 

Braun et al recorded the effects of neuromodulation on electroencephalogram activity, 

and proposed that its effects on sensory cortex signified a supraspinal site of action 

(Braun, Baezner et al. 2002). Previous work by Blok et al has used functional brain 

imaging techniques to demonstrate the brain centres involved in bladder control 

(Blok, Sturms et al. 1997) (Blok, Sturms et al. 1998). Ongoing research using 

functional brain imaging technology may provide helpful insights into supraspinal
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neural processes of bladder interoception, and their responses to neuromodulation, as 

presented in abstract form (De Ridder, Sunaert et al. 2003) (Blok, Groen et al. 2003). 

This could then lead to a better understanding of our perception of bladder sensation 

and how sacral nerve stimulation can modify this perception.
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CHAPTER FIVE 

FUNCTIONAL BRAIN IMAGING

5.1 Background

The concept of localisation of function within the brain dates back to the 19th Century, 

with the science of Phrenology, demonstrated by Gall and Spurzheim. They proposed 

that the brain contained discrete areas related to moral, sexual and intellectual traits 

that could be distinguished by palpation of the skull. This crude principle underwent 

development by neurologists such as Broca, Jackson and Sherrington, who were able 

to relate specific pathology and anatomical abnormalities to regions of the brain. For 

example, Broca’s localisation of a linguistic brain centre, Penfield relating the role of 

the temporal lobe in memory, and Sherrington demonstrating the role of the motor 

cortex in primates. Much of the information on the human brain was derived from 

subjects who had sustained major head injuries or who suffered various mental 

disorders. The development of imaging technology was a major advance in that the 

study of brain function no longer relied on anatomical dissection to localise function.

More recently, there have been moves towards integration of functional systems 

rather than simply ‘localizing’ specific brain areas, and investigators are beginning to 

realise the limitations of a single approach (whether neurophysiological, brain 

imaging, molecular genetic or psychological). There is a role for brain imaging in 

establishing patterns of functional connectivity.

With the advent of computerised tomography (CT) and magnetic resonance imaging, 

it was possible to localise areas damaged in brain-injured patients non-invasively. A
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major advance came with the discovery of functional brain imaging, which has led to 

the development of the techniques of single photon emission computed tomography 

(SPECT), positron emission tomography (PET), functional magnetic resonance 

imaging (fMRI), and magnetoencephalography (MEG).

5.2 Functional brain imaging techniques

PET

Using the principle that regional cerebral blood flow (rCBF) is closely related to 

neural activity, this technique indicates the cortical area responsible for a task being 

performed. The imaging modalities of SPECT and PET both involve the use of 

radioactive nuclides. The measurement of cerebral blood flow dates from 1948 with 

the experiments of Kety and Schmidt (Kety and Schmidt 1948) who used nitrous 

oxide to measure the differences between the arterial input and venous outflow, from 

which cellular uptake could be determined. This only showed global cerebral blood 

flow, and was therefore developed by Glass and Harper in 1963 (Glass and Harper 

1963), who used the radioisotope Xe-133 to measure regional cerebral blood flow. 

With the development of CT in the 1970s, the technique of SPECT was then able to 

map the distribution of radioisotopes.

Whereas SPECT involves the emission of gamma rays, positrons are emitted in PET, 

using radionuclides such as 0-15 or F-18. The advantages of PET are better spatial 

resolution and greater sensitivity. In PET studies a cyclotron ‘labels’ specific drugs or 

compounds with radioactivity. A stable chemical isotope is loaded into a ‘target 

chamber’, where the cyclotron uses a proton beam to convert the stable material into a
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radioactive isotope; these radioactive isotopes are unstable and decay by emitting 

positrons. Different tracers include oxygen (radiolabelled carbon dioxide or water), 

carbon or fluorine. The radiotracer is then injected into the bloodstream which carries 

it to the brain, where oxygen and glucose metabolism reflect the amount of brain 

activity in different brain regions. Sensors in the PET camera detect the radioactivity 

as the compound accumulates in the brain, and an image is recreated. Analysis can be 

performed by producing a statistical parametric map based on voxel-specific 

statistical comparisons between images.

Sources of error may include the activity of the tracer/ligand, recording of the PET 

data (scatter, noise amplification, altered signal gain for higher levels of 

radioactivity), the biological kinetic model (analysis is based on healthy brain models, 

and may be affected by diseased brain tissue) and patient-related error (eg head 

movement).

fMRI

The technique of fMRI relies on the magnetic properties of blood to enable 

visualization of blood flow in the brain during different activities. It is based on the 

principle of MRI, which provides images of the distribution of protons in tissue water. 

The MR image density depends mainly on the density of water protons, and may be 

modulated by tissue properties such as biochemical composition and magnetic 

heterogeneity. In an fMRI scanner, a large cylindrical magnet creates a magnetic field 

around the subject’s head, and radio waves are sent through the magnetic field. Again 

sensors are used to construct an image. It is possible to measure blood perfusion
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during fMRI by a sensitive contrast mechanism known as blood oxygen level 

dependent (BOLD) contrast.

Advantages over PET include the ability to image the brain over a much faster 

timescale (seconds rather than over a minute), higher spatial resolution, repeatability 

and the non-invasive nature of the test.

The most common source of error is head motion; if uncorrected, a movement of as 

little as 0.5mm can cause a 40% change of signal near a contrast boundary. Other 

potential errors include thermal noise, and also mislocalisation of functional signals 

(generally minimised by smoothing during analysis and performing a preliminary 

structural scan).

MEG

Recently the technique of MEG has been developed from the technique of 

electroencephalography (EEG) which measures the electrical signals from the brain. 

In MEG the tiny magnetic signals from neuronal firing are recorded rather than the 

electrical currents, and this enables greater spatial localisation. MEG is completely 

non-invasive and passive (does not even use externally applied magnetic fields).
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5.3 Functional imaging and voiding control

Much of the current understanding of neural control of micturition stems originally 

from animal studies, such as described by Barrington. In his experiments with 

decerebrate cats he identified a pontine centre which, if ablated, resulted in urinary 

retention. This is known nowadays as either Barrington’s nucleus or the Pontine 

Micturition Centre (PMC). In the early work of Holstege’s group, it was proposed that 

there was a distinction between medial and lateral regions of the PMC, which sent 

projections to the sacral spinal cord (parasympathetic motor supply) and to Onuf s 

nucleus (somatic innervation) respectively. These were the so-called M- and L- 

regions, with corresponding facilitatory and inhibitory functions. Further research has 

questioned the validity of this simplistic pontine distinction.

Animal studies have shown bladder contractility to be affected during electrical 

stimulation of various supraspinal centres, including the hypothalamus, cingulate 

gyrus and periaqueductal grey (Gjone 1966). The work of Blok and Holstege helped 

to further delineate the pertinent anatomical connections, including the projections of 

the hypothalamus (medial preoptic area) and PAG to the PMC, and in turn the PMC 

to the sacral spinal cord (Blok and Holstege 1994). This helped to establish the 

concept that the PAG might act as a relay centre between the spinal cord and the 

pontine control centres. The medial preoptic area is part of the limbic system, and 

could contribute an ‘emotional’ component to voiding control. But although it may 

well have an ‘executive’ role (Blok and Holstege 1996), functional imaging studies 

have highlighted the greater complexity of the neural networks involved.
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Several studies have focussed on the central processes involved in micturition. An 

early SPECT study by Fukuyama et al identified areas of the brain involved in the 

voiding reflex, including pons, sensorimotor cortex, frontal cortex and supplementary 

motor cortex (Fukuyama, Matsuzaki et al. 1996).

Blok and Holstege’s imaging studies

However it was a series of PET studies by Blok et al which truly developed this area 

of investigation.

i) In 1997, they reported on PET scanning of male volunteers during micturition 

(Blok, Willemsen et al. 1997). Here they confirmed the activation of PAG, pons and 

hypothalamus during micturition. Their scans related to 4 conditions: 1) withholding 

scan (15 mins before micturition, with a full bladder), 2) micturition scan (just after 

the command to void), 3) empty scan (15 mins post micturition) and 4) empty scan 

(30 mins post micturition).

The analyses were performed as two separate groups, the first group being the 10 

subjects who voided successfully, and the second group consisting of the 7 subjects 

who were unable to micturate.

For the 10 subjects who were able to void, a comparison was made between activation 

during scans 1 (withholding) and 2 (micturition); during micturition there was 

increased activity in the PAG, hypothalamus and the PMC on the right. Compared to 

an empty bladder, micturition was also associated with activity in broadly similar 

areas (scan 2 compared to scans 3 and 4).
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A decrease in activity was also noted, such as in the anterior cingulate cortex during 

withholding (scan 1) compared to successful voiding (scan 2) and scans 3 and 4. This 

was interpreted as the general suppression of the sensory input and motor output, so 

that the urge to void was overcome during a full bladder state. The authors explained 

the decrease in activity by arguing that whereas cingulate activity is normally needed 

to facilitate a required response, in the case of urine withholding the opposite of a 

response facilitation is needed, in that the urge to void has to be inhibited. However, it 

could be argued that this suppression of urgency is in itself a response, and therefore 

if the cingulate has an executive role, it should still be activated.

Of the 7 who were unable to void during the experiment their activation patterns 

revealed activity in the ventral pons rather than the dorsomedial pontine micturition 

centre. This so-called lateral L-region was associated with closure of the external 

urethral sphincter and suppression of detrusor contractility, and its activity was 

interpreted as being related to the patients not feeling it was ‘safe’ to void. It should 

be remembered that this experiment required the subjects to have been trained in the 

act of voiding in the scanner.

ii) A study published in 1998 examined the activation patterns in 18 healthy female 

volunteers, using similar conditions of 1) full bladder, 2) micturition, 3) and 4) empty 

bladder sessions (Blok, Sturms et al. 1998).

Of the 18 volunteers, 10 were able to micturate. Broadly similar activation patterns 

were observed as in the male study, including increased activity in the PMC (as well 

as inferior frontal gyrus activity), and again a decrease in anterior cingulate activity;
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however, the increase in activity in PAG and hypothalamus was not as pronounced as 

in the male study. There was also comment on the increased activity in the right 

anterior insula during the filled bladder condition (compared to other conditions) for 

both the female volunteers and also the males in the previous study. This area is 

associated with increased sympathetic discharge, and therefore may function by 

relaxing the bladder wall, reducing the urge to void and increasing the functional 

bladder capacity.

The predominance of the right brain centres in these studies (which both included 

right-handed subjects only) supports previous findings that correlated urge 

incontinence with right-sided brain lesions (Kershen, Kalisvaart et al. 2003).

iii) Blok et al extended their PET studies to examine the effect of pelvic floor 

contraction on supraspinal response in 6 healthy female volunteers (Blok, Sturms et 

al. 1997). The 4 conditions used in their experimental paradigm were 1) rest, 2) 

repetitive pelvic floor straining, 3) sustained pelvic floor straining, and 4) sustained 

abdominal straining.

The part of the motor cortex relating to pelvic floor contractions was found to be the 

superomedial precentral gyrus. It was suggested that this area had not been clearly 

identified in the classical electrical stimulation studies by Penfold and others due to its 

rather medial location making it difficult to access during these studies. However, 

bilateral destruction of this area is found to be associated with urinary retention, and 

when combined with a spastic paralysis of the lower limbs it is known as the 

paracentral lobule syndrome (Nathan 1976). The authors also drew attention to the
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fact that this region was important in the conscious voluntary storage of urine, rather 

than directly as part of a storage reflex.

The anterior cingulate gyrus was activated during pelvic floor but not abdominal 

straining, again highlighting its role in the control of micturition generally, and pelvic 

contraction also produced activation of the cerebellum.

Nour et al: micturition in men

In 2000, Nour et al published the results of their PET study involving 12 healthy 

right-handed male volunteers (Nour, Svarer et al. 2000). The protocol had 3 

conditions: 1) empty bladder, 2) micturition, and 3) withholding of urine, and the 

subjects underwent simultaneous cystometry, which confirmed detrusor contraction 

during the micturition phase. They confirmed Blok’s earlier findings that micturition 

was associated with increased activity in the pons, inferior frontal gyrus, 

hypothalamus, and PAG, while also demonstrating activity in several other cortical 

areas (postcentral gyrus, superior frontal gyrus, thalamus, insula, and globus pallidus). 

When comparing the urine withholding (full bladder) condition with rest (empty 

bladder), no areas showed significant activation, though there was a tendency to 

activation in the left insula. There was also activation of the cerebellar vermis during 

micturition, supporting claims that the cerebellum has a facilitatory role during 

micturition.

The authors acknowledged the possible confounding effect of the urethral cystometry 

catheter, and its possible stimulation of urethral afferents.

The conclusion from this study was that there is likely to be a complex network of 

cortical and subcortical brain centres involved in the control of micturition.
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Athwal et al: urinary storage in men

While the earlier studies had focussed on the micturition phase, Athwal et al looked at 

the central effects during urinary storage (Athwal, Berkley et al. 2001). Although the 

preceding studies had included storage conditions in the protocol and susbsequent 

analyses, this study was the first to concentrate on this phase of the urinary cycle. The 

11 healthy male volunteers recruited were catheterised for this study, and filled to 6 

randomly chosen proportions of their capacity with warmed saline for a total of 12 

scans. They were asked to report their perceived urgency to void using a 0-4 scoring 

system previously shown to them (0=no sensation, 1= first sensation, 2=first urge to 

void, 3= strong urge, 4=uncomfortable urge).

Increasing bladder volumes were correlated with increased activity in the PAG, 

midline pons, mid-cingulate cortex and bilateral frontal cortex. There did not appear 

to be any relationship between brain areas activated during this passive filling and 

areas associated with urge to void A decrease in brain activity was noted in 

association with increased urge to void in the cingulate cortex, premotor cortex and 

hypothalamus. This was explained as a possible cerebral suppression of the urge to 

void in (or by) these particular areas. These authors also acknowledged the possible 

confounding influence of the urinary catheter, and accepted that despite 

counterbalancing there could have been some sensitisation to the repeated filling of 

the bladder through the catheter.
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Matsuura et al: urinary storage in men

This group published their findings from a similar study in 2002, also examining the 

central processing of bladder sensation in healthy male volunteers (Matsuura, 

Kakizaki et al. 2002). As well as bladder distension, their study looked at the effect of 

cold stimulation on brain activity, using PET scanning. The 17 subjects were divided 

into two groups (n=l 1, n=6) who underwent bladder distension or instillation of ice- 

cold water respectively, using an 8Fr urethral catheter. The two conditions for the 

distension group were 1) bladder empty and 2) urine withholding (full bladder).

The areas of activation for a full bladder were the PAG, rostral pons, cerebellum, 

anterior insula, putamen and thalamus, and anterior cingulate gyrus. Ice water 

stimulation produced significant activations of the anterior cingulate gyrus, frontal 

lobes, parietal cortex and amygdala. The two stimuli did not show overlap of 

activated brain regions, suggesting that distinct neural pathways were involved.

Zhang et al: effect of pelvic floor contraction

A recent fMRI study of 12 healthy male volunteers examined the voluntary control of 

the micturition reflex, by pelvic floor contraction in a block design study with bladder 

either full or empty (Zhang, Reitz et al. 2005). The control condition was an empty 

bladder without pelvic floor contraction (ie. rest). Activation was seen in premotor 

cortex, basal ganglia and cerebellum following pelvic contraction with a full bladder. 

The authors extended previous observation that voluntary pelvic floor contraction 

increased a strong desire to void for a short time (Reitz, Schmid et al. 2003), to 

interpret the role of these brain regions in the inhibition of micturition.
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Abstracts presented of ongoing work

Blok et al (2002): (Blok, Groen et al. 2002): Twelve patients with sacral nerve 

stimulators for urge incontinence underwent PET scanning with concurrent 

cystometry. Areas with increased activity during sacral neuromodulation were left 

frontal, left temporal and right insula, while reduced activity was seen in reticular 

formation, thalamus and cingulate gyrus. Although one interpretation of this was that 

the reduced activity related to the reduced sensation of bladder fullness, this is based 

on the presumption that reduction in activity is represented by reduced brain activity 

on scanning.

De Ridder et al (2003) (De Ridder, Sunaert et al. 2003): This abstract was submitted 

to the AUA meeting in Chicago, 2003, though the poster was not ultimately 

presented. They described an fMRI study of 14 women undergoing PNE stimulation 

(7 with retention, 7 with urge incontinence), and an on-off stimulation paradigm. The 

brain centres activated by ‘subchronic’ sacral stimulation were the PMC, PAG, 

amygdala, insula, somatosensory and prefrontal cortex.

Blok et al (2003) (Blok, Groen et al. 2003): This study of 8 patients with urge 

incontinence focussed on PET imaging at time of first activation of neuromodulation. 

The areas activated included mid cingulate, primary motor areas and lateral 

cerebellum, but not the brainstem. It was proposed that the motor and cerebellar 

activation related to the areas involved in learning behaviour, while the cingulate 

gyrus activation was a reflection of bladder sensation. Although the study described 

random switching on/off of the stimulator, there was no indication of the timing and 

whether a carry-over effect might occur.
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Griffiths et al (2003) (Griffiths, Derbyshire et al. 2003): This was the first study to 

combine fMRI with urodynamics in the investigation of voiding control. With far 

greater temporal resolution than PET scanning, this technique should help to elucidate 

the changes in bladder sensation relating to filling. The findings of previous reports 

were confirmed with the activation of anterior cingulate, insula, cerebellum and 

frontal cortex during bladder filling.

Electrophysiology: to address central processing during neuromodulation

Electrophysiological techniques have also been applied in the investigation of the 

mechanism of sacral neuromodulation. Braun et al analysed evoked potential activity 

in 10 patients with sacral nerve implants (Braun, Baezner et al. 2002). This study 

described the detection of long latency somatosensory evoked potentials (SEPs) over 

the postcentral gyrus (somatosensory cortex) following stimulation of the sacral nerve 

roots; this was proposed as evidence of supraspinally mediated site of modulation 

(suggested to be sensory cortex). However, whereas early SEPs have become a 

routine tool for neuro-urological assessment in various neurological disorders, the 

significance of long latency SEPs remains more controversial. Furthermore the patient 

group was somewhat heterogeneous as it included 4 patients with neurogenic bladder 

dysfunction and 6 with idiopathic bladder dysfunction (of which only 2 had a 

hypocontractile bladder).
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An editorial following the above report also commented on the finding that the 

evoked potential findings were reproducible in both patients who could and those who 

could not feel the neuromodulator being switched on/off. It was postulated that the 

SEP pathways were therefore independent of a cognitively mediated sensory input. 

The work of Wyndaele et al evaluated the effect of sacral nerve stimulation on 

electrosensation thresholds in the bladder, concluding that S3 stimulation sharpened 

bladder electrosensation for urgency and therefore worked on bladder afferents 

specifically (Wyndaele, Michielsen et al. 2000). The effect of stimulation was not 

associated with the clinical success of neuromodulation, with the conclusion that 

factors other than afferent pathways may also be involved, supporting the 

neurophysiological findings mentioned.

5.4 Functional imaging and other visceral stimulation

Although functional brain imaging has only been reported in a limited number of 

studies of bladder control, its application extends to the study of other visceral stimuli, 

such as gastrointestinal stimulation or visceral pain.

Gastrointestinal (GI) stimulation

Hobday et al used fMRI to identify the brain centres involved in the processing of 

anal (somatic) and rectal (visceral) sensation in healthy adults (Hobday, Aziz et al. 

2001). Rectal stimulation produced activation of somatosensory cortex, insula, 

anterior cingulate and prefrontal cortex; anal canal stimulation produced similar 

regions of activity, though there was no anterior cingulate activity, and the primary 

somatosensory activation was slightly more superior. The activation of cingulate
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cortex with rectal stimulation may signify the function of the limbic system in the 

processing of visceral stimuli. The processing of rectal sensation is relevant in bladder 

function since unlike other gut organs it has an important sensory role; the rectum is a 

visceral organ which has both unmyelinated C fibres and thinly myelinated A6 

afferents. The C-fibres are predominantly found in the muscular wall of the rectum, 

while the A8-fibres are found within the rectal mucosa. In contrast the anal canal has 

a somatic innervation from the pudendal nerve, and this study has highlighted the 

differences in its cortical representation from that of the rectum.

Derbyshire has reviewed the various brain imaging studies of visceral stimulation, 

including the above report (Derbyshire 2003). He highlights the differences between 

stimuli, whether esophageal distension, esophageal pain, rectal distension or patients 

with irritable bowel syndrome. Esophageal stimulation activated the insula most 

consistently, with other commonly involved areas including somatosensory and motor 

cortices; there was considerable variation in whether the PAG was activated or not. 

Lower GI stimuli predominantly activated the preffontal and orbitoffontal cortices as 

well as the insula, with variability in cingulate activation. Overall, esophageal 

stimulation involved a more central sensory and motor neural circuit whereas lower 

GI stimulation activated areas with projections to autonomic and affective control 

centres, such as the brainstem and amygdala. The most commonly activated area 

overall was the insula, which has a key visceral sensory role, as will be discussed 

later.
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Pain

There have been a large number of functional imaging studies investigating the 

central processing of responses to noxious stimuli. These have illustrated the range of 

central regions involved in the perception of pain, and include the midbrain, thalamus, 

cerebellum, insula, anterior cingulate, prefrontal cortex and somatosensory cortex. 

Thereby the concept of a ‘matrix’ of relevant areas rather than a single ‘pain centre’ 

has been forwarded (Rainville 2002). Furthermore there is distinction between the 

cerebral responses to somatic versus visceral pain.

PET studies have shown changes in opioid receptor binding in chronic neuropathic 

and inflammatory pain, many of these changes occurring in the perigenual anterior 

cingulate cortex and medial thalamus (which contain the highest concentration of 

opioid receptors). It has been recently discovered that placebo analgesia is, at least 

partly, mediated by endogenous opioid peptides; opiate and placebo-mediated 

analgesia seem to share a common network in the anterior cingulate cortex (Jones, 

Kulkami et al. 2003).
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CHAPTER SIX 

AIMS & OBJECTIVES

The condition of urethral sphincter overactivity producing retention in women is now 

recognised, as is its treatment by sacral nerve stimulation (SNS). However, several 

key areas remain unexplained, including the pathophysiology of the condition, the 

mechanism of the therapy (notably its effects on the lower urinary tract and possibly 

on the cortical processes involved in voiding function), and the long-term outcome of 

neuromodulation in this group.

The perspective of this thesis was from that of a urologist, and required the author’s 

acquisition of specialist skills for performing neuromodulation, conducting 

urodynamic testing and undertaking functional brain imaging. The last of these 

involved the experimental design and running of Positron Emission Tomography 

scanning, along with the analysis of the acquired data by statistical parametric 

mapping.

The main areas under investigation were:

Mechanism of action of neuromodulation

- by the urodynamic assessment of peripheral effects

- functional brain imaging to study central effects 

Examining the long-term safety and efficacy of the procedure.
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Urodynamic Assessment of effects of SNS

The diagnostic work-up for patients with Fowler’s Syndrome includes performing 

UPP, sphincter EMG and also transvaginal ultrasound measurement of sphincter 

volume. Patients have usually also had urodynamic studies prior to undergoing sacral 

neuromodulation.

Hypothesis

As described earlier, the diagnosis partly depends on finding an abnormal EMG and 

elevated MUCP, suggestive of an overactive sphincter. It is not known whether 

patients with retention are able to micturate following stimulation of the sacral nerve 

roots due to a direct relaxant effect on the sphincter or through a more complex neural 

pathway.

Urethral pressure profilometry, electromyography and cystometry may be combined 

as a representation of urethral/bladder function, and therefore we hypothesise that if 

neuromodulation produces relaxation of the sphincter, one would expect these 

parameters to fall within normal limits following nerve stimulation. Alternatively, 

neuromodulation may not affect these urodynamic parameters, which implies that its 

effect is not to directly relax the overactive sphincter

Along with tests of sphincter function, we also conducted bladder function tests using 

formal cystometry. This enabled assessment of detrusor contractility following 

neuromodulation. We have described how these patients characteristically find it 

difficult to generate an adequate detrusor contraction with their large capacity 

bladders. Cystometry provides a method for recording detrusor pressure. Our

57



hypothesis was that the restoration of voiding by neuromodulation could partly be a 

function of altered detrusor contractility.

Functional brain imaging and neuromodulation

Functional brain imaging techniques can assist our understanding of the cerebral 

processing involved in voiding function and dysfunction. Here we perform a series of 

PET scans in both healthy females and in women with retention whose condition has 

been successfully treated by neuromodulation. The principle of PET scanning has 

been described, and we use this to identify the brain centres pertinent to bladder 

function.

Previous studies have begun to address how the brain perceives sensation of bladder 

filling, but this process is not understood in women with retention, nor is it clear how 

electrical stimulation induces changes centrally. Here, for the first time, we attempt to 

establish the feasibility of using this brain imaging technology in patients with a 

sacral nerve stimulator. Then by using a block design, applicable across both the 

control subjects and patients, we can make a valid comparison of the differences in 

brain activity in these respective groups, as well as among the patients pre- and post

neuromodulation.

Established software tools allow analysis of the data, using statistical parametric 

mapping techniques. In the discussion we elaborate on the significance of these 

findings in the context of previous anatomical and functional reports and recent brain 

imaging work.
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Hypothesis

In earlier imaging studies, certain brain areas in healthy women have shown greater 

activity when the bladder is full, including the periaqueductal grey of the midbrain. 

Women in urinary retention due to Fowler’s syndrome characteristically have reduced 

sensation of bladder filling, with large capacity bladder volumes. We hypothesise that 

in healthy females the PAG is also activated with a lull compared to empty bladder; in 

contrast PAG activity may be reduced in retention patients, but possibly restored (or 

‘normalized’) in patients following neuromodulation. Higher cortical centres may also 

show differential activity between baseline and after neuromodulation in this patient 

group, reflecting the central effects of sacral nerve stimulation.

Efficacy of Neuromodulation

The role of SNS is now established in women with urinary retention. However the 

long-term safety and efficacy of the treatment has not been described. We analyse the 

outcome of a series of patients treated by SNS at our centre over a 5-year period. The 

relevance of these findings is discussed in the context of need for revision procedures 

more recent developments in the technique.
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CHAPTER SEVEN

METHODS

Ethics and Informed Consent

All of the experiments performed in this thesis followed the approval of the study by 

the local ethics committee (Joint Ethics Committee of UCLH/ NHNN Trust and the 

Institute of Neurology). The permission of this committee is detailed in Appendix A.

Subjects were provided with information sheets (Appendix B) and invited to 

participate by signing the consent form (Appendix C). For subjects undergoing PET 

scanning, a further consent form was required (Appendix C). We performed our PET 

imaging experiments under an ARSAC licence (Administration of Radioactive 

Substances Advisory Committee).

Patients were recruited among those already known to the department, based on 

referral with urinary retention. Healthy volunteers were recruited through 

advertisements placed locally in the hospital. All subjects were reimbursed for their 

time and travel.
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7.1 Urodynamic studies

We recruited 30 women (aged 19-52 years, mean 36years) with urinary retention 

attributed to sphincter overactivity, who were either undergoing test stimulation or 

had been implanted with a sacral nerve stimulator. After giving informed consent, 

they were enrolled into this arm of the study.

As part of the diagnostic work-up for such urinary retention, many of these patients 

had already undergone certain tests including cystometry, urethral pressure 

profilometry, urethral sphincter EMG and ultrasonic measurement of urethral 

sphincter volume.

The two patient groups were those undergoing a test stimulation (PNE) for a period of 

3-7 days, and those undergoing implantation or already with a sacral nerve stimulator 

(IPG). After the baseline tests, they underwent neuromodulation, which was followed 

by the urodynamic tests as detailed below.

Sphincter EMG

A standard peri-urethral approach was employed, using 2mls 1% lignocaine and a 

concentric needle electrode, as described previously (Fowler and Kirby 1985). 

Recordings were made on a Dantec Counterpoint with gain set at lOOp/div. All EMG 

recordings were performed by a single operator (CJF), with the outcome being 

described as positive, negative or equivocal. This depended on the pattern of 

abnormalities as well as their quality/quantity.
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Urethral Pressure Profile

The UPP was performed using an infusion technique with an 8Fr catheter being 

withdrawn at 2mm/s and saline being infused at 2ml/min. The patient was placed in 

an identical position for all studies (supine, with the knees bent), and the catheter was 

always orientated at 12 o’clock so that the fluid orifices were at 9 and 3 o’clock. Each 

patient had 3-5 measurements of the MUCP while being asked to relax their pelvic 

musculature, and this was repeated with the subject prompted to contract their pelvic 

muscles (as though performing a ‘stop test’); the latter test was to simulate the 

activation of a sphincter-detrusor reflex which reduces the sensation of urgency when 

bladder is full.

Transvaginal ultrasound

This test was mainly carried out as part of the initial diagnostic work-up, to estimate 

the sphincter volume. With the patient in position for a vaginal examination, an 

ultrasound probe was used to measure the volume (BK-Cheetah 2003). The value was 

then used as part of the overall assessment of urethral sphincter function. Although 

this parameter was not compared with the post-neuromodulation value, its role in 

assessment of the sphincter was used in the MRI part of the study, as discussed below.

Cvstometrogram

Cystometry was performed with the patient in the sitting position, using a 6Fr dual 

lumen bladder pressure line and a 4.5Fr rectal pressure line. The bladder was filled 

with room-temperature normal saline at 50ml/min, recording the subject’s sensations 

of desire to void (first sensation of filling, normal and strong desire to void). Bladder
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filling was discontinued when the patient described discomfort or fullness of the 

bladder.

The parameters noted in particular were the maximum cystometric capacity (MCC), 

maximum flow rate (Qmax) and detrusor pressure at maximal flow (PdetQmax). If 

the patient was unable to void, she was catheterised and this residual volume 

recorded.

Voiding diaries

A few patients undergoing implantation of the stimulator kept ffequency-volume 

charts immediately after the initial activation of the stimulator. This provided 

information on how quickly voiding function was restored.

Statistical analysis

Paired t-test analysis v/as performed to compare MUCP before and after 

neuromodulation, using a significance level of 0.05.
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7.2 Functional brain imaging

Data acquisition

The Joint Medical Ethics Committee of the National Hospital for Neurology & 

Neurosurgery and the Institute of Neurology approved the study, and the appropriate 

ARSAC licence was available. Eight healthy female volunteers (aged 40-62years) and 

eight female patients with an implanted sacral nerve stimulator (aged 39-52years) 

were recruited. All patients gave written informed consent.

The subjects were asked to fill their bladder by drinking water, and to report their 

subsequent sensations of fullness based on a validated sensation scale (Oliver, Fowler 

et al. 2003). The bladder volume was measured at different perceived levels of 

fullness by ultrasound scanning.

The subjects then underwent PET scanning, the two groups being healthy volunteers 

and patients with an implanted sacral nerve stimulator. All subjects had 12 PET scans 

with intervals of 8 minutes between successive scans. The bladder volume was 

measured by ultrasound just before each scan (Goode, Locher et al. 2000), and the 

subject asked to report their sensation of bladder fullness. PET scanning involved a 

standard oxygen-15 bolus technique (Siemens EC AT PET scanner). Images were pre- 

processed by registration, normalization and smoothing using a 12mm Gaussian 

kernel, and analysed using Statistical Parametric Mapping (SPM99b, Wellcome 

Department of Cognitive Neurology, Institute of Neurology, Queen Square).
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Each healthy control underwent a 6-scan session with the bladder empty (having 

voided just before the session), and 6 scans with the bladder full (filled by drinking 

water rapidly, and reporting a sensation of urgency); the order of having either a full 

or empty bladder was counterbalanced. During the 12 scans, subjects were asked to 

contract their pelvic musculature for 6 scans (randomised across the 2 sessions), 

prompted just prior to start of the scan. Up to 3 contractions were performed, each 

lasting for 5-10 seconds, in the interval immediately following injection of bolus (ie 

just before maximal activity of the radiolabelled contrast).

Each patient with a stimulator had 6 scans with the IPG on and 6 with the IPG 

deactivated (switched off at least 3 days before this session to minimise carry-over 

effects of neuromodulation). For each of the 6 scans, 3 were with a full bladder and 3 

with an empty bladder. The orders for stimulator activation/deactivation and bladder 

empty/full were counterbalanced. With the stimulator switched off, patients generally 

described a sensation of suprapubic discomfort or heaviness, rather than urgency, with 

an increase in bladder volume. As before, patients were prompted to contract their 

pelvic musculature for half of the scans, in a randomised order.

Data analysis

On a MATLAB framework, we used SPM-99 to analyse the PET data. SPM 

represents Statistical Parametric Mapping, and is the basis of this imaging technology. 

Rather simplistically one may consider this ‘map’ as a series of comparative statistical 

significance tests between voxels in different conditions. Each voxel is subjected to a 

standard statistical test, such as a t-test (giving rise to ‘T contrasts’), and the resulting 

statistical parameters are assembled into an image, the SPM (Figure 7a). This can then
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Figure 7a
Schematic summarising the transformation o f  imaging data into a statistical 
parametric map (adapted from Statistical Parametric Mapping, Friston K)
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be plotted in a standardised anatomical format (eg stereotactic space). Discussion of 

the basis for the statistics, namely the General Linear Model and Gaussian Random 

Field theory, is beyond the scope of this thesis, except to point out that these allow 

statistical analysis of continuous data sets as produced in images.

After processing the imaging data by registration, normalization and smoothing, the 

imaging data were entered into a 2x2 design matrix using t-contrasts (Figure 7b). The 

various conditions compared full versus empty bladder for the different subject 

groups, as well as the effects of pelvic contraction. After setting up the design matrix, 

the data were analysed with threshold corrected for pO.OOl and p<0.05. Images were 

then represented on a template MRI brain for pictorial representation. We noted the 

areas of greatest neuronal activity, recording the corresponding Talairach coordinates 

and identifiable brain centre. Other types of analysis include an effect of interest 

analysis, to help identify underlying trends, and interaction analysis to investigate 

effect of stimulation specifically.

7.3 Long-term review

We reviewed the case records of all patients implanted with a sacral nerve stimulator 

for urinary retention at our centre between 1996-2002. The length of follow-up, 

number and type of revision procedures, and complications were all noted.

7.4 Sphincter MRI

Ultrasonic measurement of sphincter volume is an ancillary investigation with 

inherent subjectivity in its estimation of possible sphincter hypertrophy; the greater
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resolution and better reproducibility of magnetic resonance imaging was therefore 

assessed in a pilot feasibility study.

Four patients with retention and four age-matched controls were recruited for three- 

dimensional imaging of the urethral sphincter using MRI. The patients had been 

diagnosed with sphincter overactivity (abnormal EMG) causing their retention, and 

were scanned prior to neuromodulation. The control subjects had no urinary 

symptoms and in general good health.

All subjects underwent a pelvic MRI scan (1.5T, Siemens Magnetom Vision). The 

MR images were converted into the MGI format (MedPhys, UCL), enabling 

volumetric measurement by voxel summation and diameter measurement on 

reformatted cross-sectional images. Total sphincter volume and volume of the inner 

components (smooth muscle and lumen) were measured and that of the outer 

component (striated muscle) derived from their difference. The transverse outer and 

inner diameters were measured in two different axes (right-left, posterior-anterior) 

and at two different levels (proximal 1/3 and middle 1/3). The measurements were 

recorded by two investigators independently.
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CHAPTER EIGHT

URODYNAMIC STUDY

A total of 30 women were recruited (aged 19-52 years, mean 36years); 21 had an IPG 

and 9 were undergoing PNE. Of these 21/30 agreed to have UPP performed before 

and after neuromodulation, and 25/30 had cystometry following successful restoration 

of voiding after neuromodulation. Furthermore 10/30 patients agreed to undergo 

EMG during stimulation.

8.1 Urethral pressure profiles

An example of a UPP produced is shown in Figure 8a, illustrating the repeated 

measurements used to calculate a mean value. Figure 8b shows the mean MUCP 

before and after neuromodulation for 21 patients (14 permanent stimulators and 7 

temporary PNE), alongside the predicted MUCP estimation. The mean pre

neuromodulation MUCP was 92.9cmH20, compared to a mean of 84.9 cmF^O after 

stimulation; no significant difference was demonstrated (p=0.06, paired t-tests). Both 

values were higher than the mean expected MUCP of 70.3 cmE^O for this population, 

as determined by the formula proposed by Edwards and Malvern (Expected MUCP = 

92-age) (Edwards and Malvern 1974).

We also calculated the MUCP for patients who were instructed to contract their pelvic 

muscles during the UPP, before and after neuromodulation. Again no difference was 

demonstrated at the 0.05 significance level between the MUCP before (105.7 cmE^O) 

and after (97.3cmH20) neuromodulation, with the pelvic muscles contracted. These 

values were higher than the respective measurements with the pelvic muscles relaxed,
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Figure 8a: Example of UPP, with mean MUCP calculated from averaging the 
respective measurements.

Pves
20cmH2O/div i t *

Time(15s/div)

Figure 8b: Mean maximum urethral closure pressure for 21 patients (1-14 IPG, 15-21 

PNE), showing expected value (92-age), MUCP before neuromodulation and MUCP 

after neuromodulation (with pelvic muscles relaxed).
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and interestingly there was again a slight trend (but no significant change) towards a 

lower value following neuromodulation.

8.2 Cystometry

Of the 25 patients (IPG 19, PNE 6) who had a cystometrogram after neuromodulation, 

19 had evaluable traces (the pressure lines fell out in 3 patients, and 3 were unable to 

pass urine with lines in-situ).

The flow pattern was variable, with most demonstrating an intermittent stream as 

exemplified by Figure 8c. This trace is a good example of how the detrusor pressure 

remains fairly constant although the stream is evidently intermittent. However other 

patients appear to void in different ways, as also shown in Figure 8c, such as the 

smoother ‘normal’ voiding pattern and the oscillating stream. The latter example 

seems to be related to the fluctuations of the detrusor pressure, which could be a 

reflection of the electrical stimulation frequency. However, this is difficult to prove, 

and is certainly not a uniform finding.

The mean MCC was 691 mis (range 416-1349mls) and the mean volume voided was 

433mls (range 170-809mls), and Table 8i is a chart of the individual voided and 

residual volumes.

Figure 8d demonstrates the maximum flow rate plotted against the pressure at 

maximal flow. When the criteria for the various suggested female normograms are 

applied these results show that after neuromodulation the urinary flow is typically 

mildly obstructed. An alternative representation of this data, plotting detrusor pressure
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Figure 8c: Example o f flow patterns, as seen after restoration o f voiding by 

neuromodulation.
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Table 8i

Patient Vol voided Residual
1 0 440
2 205 350
3 478 200
4 419 0
5 450 0
6 574 100
7 554 0
8 172 580
9 809 0
10 278 479
11 620 0
12 549 20
13 599 0
14 760 20
15 279 220
16 501 350
17 170 800
18 37 800
19 349 1000
20 409 60
21 466 0
22 593 330
23 252 620

Figure 8d Plot of flow rate versus detrusor pressure at maximal flow in patients who 
were able to void after neuromodulation; the majority fall within the criteria for 
obstructed flow.
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Figure 8e Plot of maximum flow during free void (without urethral pressure line in- 
situ) versus maximum detrusor pressure, in accordance with the measurements 
proposed by Blaivas et al. The dotted line demarcates patients with unobstructed 
voiding from those with mildly obstructed voiding.
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Table 8ii Parameters for bladder function representing different measures of bladder 
outflow obstruction ^derived from values described by Cormier et al, 2002); these are 
consistent with a picture of either obstructed (or equivocal) bladder emptying.

Mean area 

under curve 

(cmH20.sec)

Mean area 

under curve/ 

voided volume 

(cmH20.sec/ml)

Mean urethral

resistance

(cmH20/(ml/sec)2)

Mean

PdetOmax

(cmH20)

Patients post 2541.7 7.3 0.30 32.2

neuromodulation

Normative '

- unobstructed 627.0 1.6 0.12 21.8

- equivocal 1304.5 3.5 0.30 28.8

- obstructed 2510.7 8.2 1.50 37.7
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at maximal flow versus free flow rate is illustrated in Figure 8e, again confirming that 

the majority of patients were voiding in a somewhat obstructed fashion.

Other parameters for bladder outflow obstruction are shown in Table 8ii. These values 

include the area under the pressure-flow curve, which has been proposed as a 

measure of the work done by the detrusor in order to void. While it does not 

correspond exactly to contractility, the recently described criteria for obstructed 

voiding may prove helpful in interpreting ambiguous pressure-flow results. The mean 

area under curve value of 2541.7cmH20.sec in patients with voiding restored 

approximates to the value associated with obstructed voiding of 2510.7cmH20.sec. 

Similarly, when this value is adjusted for voided volume it still approaches the 

obstructed voiding value of 8.2cmH20.sec/ml. The other two parameters are slightly 

more equivocal, namely the estimation of urethral resistance and the mean detrusor 

pressure at maximal flow, though both are outside the range for unobstructed flow.

8.3 Electromyography

The characteristic features of complex repetitive discharges (CRD) and decelerating 

bursts (DB) described previously were identified in the patients undergoing sacral 

neuromodulation, as represented in Figure 8f. The identification of this abnormality is 

based on the recognition of these waveforms along with the typical sounds of 

‘helicopters’ (CRDs) and ‘whale noises’ (DBs); the latter sounds arise from a volley 

of CRDs in which the terminal components fire at a steadily decreasing rate.

Ten patients with an abnormal sphincter EMG agreed to have the EMG when 

neuromodulation had restored ability to void. The abnormal signal was still present in

76



all cases, and unaffected by whether neuromodulation was switched on or off. Ideally, 

a quantification of the ‘amount’ of sphincter overactivity would have enabled a 

statistically valid comparison between states, but was not technically feasible.
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Figure 8f Examples o f EMG traces with complex repetitive discharges.
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CHAPTER NINE

9.1 Long-term review

A total of 26 women underwent implantation of a sacral nerve stimulator at our centre 

between 1996-2002 (aged 22-52 years, mean 35 years), of whom 22 had complete 

retention and 4 had partial retention/obstructed voiding. Of these, 20 were performed 

by one surgeon, and all were by the traditional open technique. Sphincter overactivity 

was diagnosed by an abnormal sphincter EMG in 21/26 patients; the EMG was 

normal in 4 patients and not performed in 1 patient. Length of follow-up ranged from 

2-73 months (mean 37 months).

Although 25 patients (96%) had voided at some stage post-operatively, only 20 (77%) 

were voiding at the time of the review. Among those no longer voiding, 2 had their 

stimulator deactivated due to pregnancy, and the other 3 reported loss of efficacy.

Twelve patients (46%) did not require any revision surgery, but the remaining 14 

women (54%) had a total of 21 revision procedures as shown in the table below. The 

commonest problem was loss of efficacy which developed from 2 weeks to over a 

year post-operatively. Another previously reported side-effect was pain, either related 

to the site of the box or due to ipsilateral leg pain. Box discomfort was more 

commonly noted with the buttock position (4/9 patients) rather than the abdominal 

position (2/17 patients) in our series. The leg pain resembled sciatica, and required 

repositioning of the electrode if not controlled well with analgesia.

Of those patients with complete retention in whom voiding was restored, the mean 

maximum flow rate was 20.8ml/s (6.2-50.8ml/s), voided volume 385mls (96-901 mis)
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and post-void residual 75mls (0-479mls). The flow pattern ranged from a normal 

smooth flow curve to an interrupted stream.

Complication Number o f episodes
Loss of efficacy 7
Pain/discomfort (box) 6
Pain (leg) 6
Bowel disturbance 2
Infected implant 2
Lead migration 1

9.2 Sphincter MRI

A total of 4 retention patients (aged 23-41 years, mean 34 years) and 4 age-matched 

controls (aged 24-40 years, mean 34 years) were recruited. Figure 9a illustrates the 

images obtained by MRI scanning, for reconstruction into 3D format, and figure 9b 

shows the actual measurements taken. The table below includes the measurements of 

the outer and inner muscle volumes for the patients according to the two observers, 

and their comparison with the control measurements. While the sample size was too 

small to make any meaningful statistical comparison, all 4 patients had greater 

sphincter volumes than their age-matched controls, and results were broadly similar 

for both observers.
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Sphincter volume (cm ) Patient 1 Patient 2 Patient 3 Patient 4

Outer Volume 

(striated muscle)

Observer 1 2.0 2.9 1.6 2.0

Observer 2 2.4 3.2 2.5 2.2

Inner Volume 

(smooth muscle)

Observer 1 1.8 2.4 1.8 2.1

Observer 2 2.0 2.7 1.6 2.0

Total volume Observer 1 3.8 5.3 3.4 4.1

Observer 2 4.4 5.9 4.1 4.0

Controls Control 1 Control 2 Control 3 Control 4

2.9 2.5 3.3 2.3
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Figure 9a MRI images o f the urethral sphincter in sagittal, transverse and coronal 
sections, subsequently converted into 3D format.

Figure 9b Example o f  measurements made from transverse sections o f the sphincter

Outer (dark) striated muscle layer

Inner (light) smooth muscle layer



CHAPTER TEN 

FUNCTIONAL BRAIN IMAGING

10.1 Healthy controls

A total of 8 healthy controls with no history of urinary problems underwent PET 

scanning. No adverse effects of radioisotope injection were reported, and all the 

controls completed all sessions, which were counterbalanced as described.

The design matrix for the healthy controls aimed to demonstrate any differences in 

brain activity between the states of a healthy and full bladder in these subjects. A 

second issue was of determining whether pelvic floor contraction had any effects on 

brain activity.

Having a full bladder was associated with enhanced activity in brainstem regions (at 

the junction of pons and medulla) and in the midbrain (adjacent to but slightly anterior 

to the periaqueductal grey, PAG). Cortical centres activated during a full bladder state 

included anterior and posterior regions of the cingulate cortex. These are shown in 

Figures 10a and 10b.

Conversely, areas activated with an empty (as opposed to full) bladder are shown in 

Figure 10c. These are therefore areas that are deactivated in healthy controls with a 

full bladder, namely the pons and frontal cortex.

The sensation of urge was clearly distinguished between these bladder states using the 

scoring system for desire to void, as shown in Figure lOd, whereby the empty bladder 

generally correlated with a score of 0-1, and a full bladder with a score of 3-4.
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Sub-analysis of scans during which subjects contracted their pelvic floor failed to 

identify any central effects of this action. This was the same whether the bladder was 

empty or full.

10.2 Retention patients

Of the 8 patients recruited, 2 were excluded from the analysis as they did not 

complete all the scanning sessions: one suffered a relapse of polymyalgia rheumatica 

during the study, and another underwent admission to hospital for surgery during this 

time. The remaining 6 all completed the sessions as planned, enabling SPM analysis 

as above.

Stimulator off

This served as the baseline retention condition, and group analysis found the patients 

to have activity in the cingulate cortex, hypothalamus and cerebellum with a full 

compared to an empty bladder (Figure lOe). The region of cingulate activity was 

slightly posterior to previous studies. There was no brainstem activity, unlike the 

control subjects.

Stimulator on

When the stimulator was activated, the full bladder state was associated with an 

increase in activity in the brainstem, mainly in the midbrain, similar to healthy 

controls (Figure lOf), but no activation of the cingulate cortex. The effect of 

activating the stimulator was specifically addressed by an interaction analysis, 

comparing stimulator on and off in the patient group, with the bladder full. This 

confirmed activation in the midbrain and also cerebellum (Figure lOg).
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The midbrain was further examined in the Effects of Interest analysis demonstrated in 

Figure lOh. This shows the relative extent of activation of the midbrain, based on the 

region activated by the stimulator with the bladder full. The first 8 scans are those 

with the stimulator switched off, and the second 8 with the stimulator on. The scans 

are paired into full or empty conditions. The height of the bars in the bar chart reflects 

the ‘size of the (activation) effect’, and therefore the difference between the full and 

empty states is an indication of the difference in degree of activation of the midbrain 

for these states. As seen in Fig lOh, this difference is exaggerated when the stimulator 

is switched on (for example, the difference between scans 9-10 and 11-12 is far 

greater than between 1-2 and 3-4). This may represent the midbrain being a better 

discriminator of bladder fullness when the stimulator is activated in retention patients.
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Figure 10a

Brain activation in healthy female volunteers with a full bladder (compared to empty 
bladder) (p<0.001, uncorrected height threshold)

Cingulate cortex

Figure 10b

Brain activation in healthy female volunteers with a full bladder (compared to empty 
bladder) (p<0.05, corrected height threshold)
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Figure 10c Areas deactivated in healthy females with a full bladder

Pons Frontal cortex

Figure lOd Urge sensation (0-4) versus bladder volume

Urge score versus bladder volume - healthy controls
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Figure lOe Brain activation in women with Fowler’s Syndrome at baseline (with 
stimulator off) (p<0.001, uncorrected height threshold)

Cingulate cortex Frontal cortex

Preoptic area/hypothalamus

Figure 1 Of Brain activity in women with Fowler’s Syndrome and stimulator activated 
(p<0.001, uncorrected height threshold).
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Figure lOg
Interaction analysis to assess specifically the effect o f stimulation, by comparison o f 
scans with stimulator on versus o ff (with the bladder full) in retention patients

Figure lOh
Effects o f interest analysis, illustrating the discriminatory potential o f  the midbrain 
with the stimulator activated.

Scans 1-8 Stimulator off; Scans 9-16 Stimulator on 
Bladder Full (Scans 1-2, 7-8, 9-10, 15-16)
Bladder Empty (Scans 3-4, 5-6, 11-12, 13-14)
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CHAPTER ELEVEN 

BLADDER OUTLET OBSTRUCTION

11.1 Causes

There are numerous causes of acute and chronic urinary retention in women, as listed 

in the Table below; though not exhaustive, this covers the majority of aetiologies for 

retention. The neurological diseases include cerebrovascular disease, Parkinson’s 

disease, multiple sclerosis, spinal cord injury, neoplasia, Guillain-Barr6 syndrome, 

and autonomic neuropathy.

The prevalence of reported bladder outlet obstruction in women is far lower than in 

men, though estimated figures range from 2%-29% (Blaivas and Groutz 2000). There 

are several possible reasons for under-diagnosis of this condition in women. They 

complain of irritative symptoms (frequency, urgency, urge incontinence) and 

recurrent urinary tract infections (UTI) rather than classically obstructive symptoms 

(hesitancy, poor stream, straining to void) (Massey and Abrams 1988). Also, women 

void in private, with less opportunity for direct comparison with others, unlike men 

(Bass and Leach 1991). In the case of functional obstruction, a more sophisticated 

understanding of voiding dysfunction is required (Patel and Nitti 2001). And finally, 

there are no standardised urodynamic criteria for outlet obstruction in women, unlike 

in men. The clinical significance of recognising the condition is to improve symptoms 

as well as preventing recurrence of UTIs and their associated long-term sequelae. 

Furthermore, correct diagnosis can help patients avoid being mislabelled as having a 

psychological disease (Fowler 2003).
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The anatomical causes for bladder outlet obstruction (eg pelvic organ prolapse or anti

incontinence surgery) and neurological causes (eg detrusor-sphincter dyssynergia) 

will not be discussed further. Instead we will focus on functional obstruction. In the 

absence of neurological disease, inappropriate sphincter activity during voiding 

results in functional outlet obstruction, or ‘non-neurogenic neurogenic bladder’ 

(sometimes referred to as Hinman’s Syndrome). This is proposed to be a learned 

behavioural disturbance, and therefore is suitable for ‘unlearning’ or re-education by 

feedback therapies (Hinman 1986). This type of dysfunctional voiding was described 

in children and adolescents who presented with enuresis and recurrent UTIs.

A constellation of symptoms including frequency, urgency, dysuria and suprapubic 

discomfort has been called the ‘urethral syndrome’. There are numerous theories 

regarding its underlying pathophysiology, such as chronic inflammation of the 

paraurethral glands, strictures at the external urethral meatus, collagen deposition in 

the distal urethra. Despite the controversial nature of the condition, a significant 

number of urologists continue to believe in an associated obstruction at the bladder 

outlet and continue to perform urethral recalibration or dilatation in this group 

(Lemack, Foster et al. 1999). There is no clear evidence of the efficacy of this 

treatment in this group, though the subjective improvement in symptoms, albeit short

lived, is held by some as justification of its practice.

Fowler’s Syndrome

A unique cause for retention was reported by Fowler et al (Fowler, Christmas et al. 

1988), who described an abnormality of the urethral sphincter EMG, leading to a 

conclusion that the sphincter was over-contracted. Although the prevalence of this

91



particular type of EMG activity has been estimated as 8-10% in the general 

population, its expression as urinary retention is far less common (Jensen and Stien 

1996) (FitzGerald, Blazek et al. 2000). A study of asymptomatic female volunteers 

identified the presence of decelerating bursts and complex repetitive discharges in the 

urethral sphincter of young women with normal bladder emptying, and a possible 

relationship to the menstrual cycle (Kujawa, Reid et al. 2001). Raz and Smith had 

previously described an ‘external sphincter spasticity syndrome’ in women, with 

complete or partial urinary retention and elevated urethral closure pressures (Raz and 

Smith 1976). They also described the limited benefit of urethral dilatation in their 

patient series. An earlier report by Tanagho et al had found a group of children with 

recurrent UTIs to have high urethral pressure profiles secondary to external sphincter 

spasticity (Tanagho, Miller et al. 1971). There may be overlap between the types of 

functional overactivity of the sphincter described in these reports and that outlined by 

Fowler.

Pathophysiology

The underlying sphincter overactivity in Fowler’s syndrome has been attributed to 

muscle-to-muscle transmission of electrical activity. This is based on single-fibre 

EMG analysis which shows that when the complex repetitive discharges are firing 

steadily, the low jitter of component potentials is explained by direct muscle-to- 

muscle ‘ephaptic’ transmission, resulting in a continuous state of contraction of the 

sphincter. Muscle hyperactivity can be classified according to whether the 

hyperactivity originates in the muscle fibre (or motor end-plate), in the axon, or in the 

motoneuronal cell body, each with a distinct EMG pattern (Valls-Sole and Montero 

2004).
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It is postulated that the predisposition to ephaptic transmission is a hyperexcitable 

state, as seen in neurological ‘channelopathies’. A channelopathy refers to a defect in 

either a ligand- or voltage-gated ion channel. Voltage-gated channelopathies can be 

further subdivided into skeletal muscle disorders and central nervous system 

disorders. Examples of the former are periodic paralyses (eg paramyotonia) and 

myotonia. These conditions are characterised by repetitive discharges due to changes 

in membrane stability. However, whether this is applicable to the female urethral 

sphincter remains to be proved.

Finally, recent work has identified the presence of neuronal nitric oxide synthase 

(nNOS) in the urethral striated sphincter (Ho, Boija et al. 2003). The role of nitric 

oxide in normal sphincter function, and during disease, is being explored, which may 

in turn lead to effective therapies.

11.2 Assessment

The clinical history given by the patient is an important part of the assessment. 

Patients report a lack of normal sensation of bladder filling until a late stage, when 

they experience discomfort or heaviness due to a very full bladder; they are then 

unable to void at all or to empty completely. The co-occurrence of polycystic ovaries 

has been noted but not fully explained yet (Swinn, Wiseman et al. 2002). Another 

feature is that of there being difficulty withdrawing a catheter, possibly due to 

tightening of the spastic sphincter around it (Fowler 2003); interestingly Raz and 

Smith described a similar phenomenon in their earlier paper, whereby removal of 

urethral catheter had proved difficult (Raz and Smith 1976).
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Sphincter EMG

The central investigation in the diagnosis of the condition is the sphincter EMG, with 

a characteristic pattern described in the Introduction. Interpretation of this 

neurophysiological investigation requires considerable experience because of the 

nature of sphincter muscle, which tends to fire continuously unlike the pattern seen in 

skeletal muscle. Techniques such as asking the patient to perform a Valsalva 

manoeuvre or to cough can help to ‘quieten’ the voluntary activity, and thereby 

unmask any underlying spontaneous sphincteric activity. Some advocate a 

simultaneous EMG recording during voiding, though in practice this remains 

technically difficult. A hook electrode may minimise the chance of displacing the 

recording EMG signal, but the very presence of the probe makes micturition more 

artificial than the natural state. Also, the lack of quantification of the EMG signal 

makes it difficult to establish clear diagnostic guidelines, and perpetuates the 

subjective nature of this test. Nevertheless, without further technological advances in 

this field, the current recording technique serves its purposes at identifying 

abnormalities of the sphincter.

Our observations have shown that the EMG abnormality is unaffected by 

neuromodulation, which therefore does not appear to have a direct relaxant effect on 

the sphincter. This appears to be corroborated by the urodynamic findings discussed 

below, as well as the clinical finding of restored voiding with an obstructed flow 

pattern.
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MRI sphincter

The work of Wiseman et al (Wiseman, Swinn et al. 2002) has demonstrated the role 

of transvaginal ultrasound estimation of sphincter volume as an ancillary 

investigation. Although ultrasound confers certain advantages, such as being low cost, 

free of radiation risk, and easy to apply, there are also limitations with regard to 

resolution, reproducibility and type of ultrasound used. Different sonographic 

techniques have been described for imaging the female urethral sphincter, including 

transvaginal (Quinn, Beynon et al. 1988) (Khullar, Salvatore et al. 1994) (Kondo, 

Homma et al. 2001) (Umek, Obermair et al. 2001), perineal (Koelbl, Bemaschek et al. 

1988), intraurethral (Kirschner-Hermanns, Klein et al. 1994) (Frauscher, Helweg et al. 

1998) (Schaer, Schmid et al. 1998), and transrectal (Richmond and Sutherst 1989) 

(Kuo, Chang et al. 1994) approaches. But the possibility of distortion of lower urinary 

tract anatomy by an intravaginal probe should be considered, as suggested by Wise et 

al (Wise, Burton et al. 1992).

We investigated the feasibility of using MRI to estimate sphincter volume in order to 

improve accuracy of measurement. The role of MRI in imaging the urethral sphincter 

is well documented (Hricak, Secaf et al. 1991) (Klutke, Golomb et al. 1990). The 

higher resolution of this modality enables distinction between discrete tissue types, 

and as in our study, this is usually most easily seen in the T2-weighted images.

Histology of the female urethra reveals the lumen to be surrounded by an inner layer 

of longitudinal and thin circular fibres, and an outer layer of striated muscle. Our 

images confirm the circumferential surroundings of the urethra, with the dark lumen 

encircled by a bright layer (incorporating submucosa and smooth muscle) and then an
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outer dark layer of striated muscle. In our limited study of 4 patients and 4 age- 

matched controls, we illustrate the use of MRI to estimate sphincter volumes. 

Furthermore these results indicate a relative sphincter hypertrophy in retention 

patients consistent with earlier findings. Of course, further measurements are needed 

in a far larger cohort in order to validate these results.

Urodvnamic criteria

The lack of standardised urodynamic criteria for female bladder outlet obstruction has 

been briefly mentioned above. Various different criteria have been described.

Massey & Abrams suggested that two of the following 4 conditions needed to be met 

for a diagnosis of bladder outflow obstruction: Qmax<12ml/s, urethral

resistance>0.2cmH20/ml/s2, PdetQmax>50cmH20, and no significant post-void 

residual (Massey and Abrams 1988). Farrar el al proposed a cut-off of Qmax<15ml/s 

and Pdetmax>50cmH20 (Farrar, Osborne et al. 1975), while Salvatore et al’s values 

were Qmax<15ml/s and Pdetmax>60cmH20 (Salvatore, Khullar et al. 2000). 

Chassagne et al studied a group of 35 clinically obstructed women (and 124 controls), 

concluding that thresholds of Qmax<15ml/s and PdetQmax>20cmH20 had the highest 

sensitivity and specificity for predicting obstruction (Chassagne, Bernier et al. 1998). 

Cut-off values of Qmax<llml/s and PdetQmax>21 cmH20 were suggested by 

Lemack and Zimmem on the basis of their urodynamic study of 87 women with 

obstructive symptoms and 124 controls (Lemack and Zimmem 2000).

Blaivas and Groutz have recently proposed a normogram for women based on free 

Qmax (no effect of intraurethral catheter) and Pdetmax (rather than PdetQmax,
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producing a figure even in cases where the patient cannot produce a flow) (Blaivas 

and Groutz 2000). Patients with Pdetmax>57cmH20 were classified as being either 

moderately or severely obstructed; if the Pdetmax<57cmH20, then the classification is 

either mildly obstructed or unobstructed depending on the value of Qmax. According 

to these criteria, most of our patients tend to fall within the “mildly obstructed” range 

following neuromodulation. However, one criticism of this normogram is that the two 

parameters are based on two independent voids.

The importance of videourodynamics in the assessment of female bladder outlet 

obstruction has been highlighted (Nitti, Tu et al. 1999) (Blaivas, Flisser et al. 2004). 

Along with the cystometric data acquired, these authors point out that the video helps 

identify the site of obstruction as well as excluding other potential causes for 

retention. Incorporating videourodynamic studies would strengthen future studies of 

Fowler’s syndrome. Alternatively, the use of EMG during the voiding phase of 

pressure-flow studies could confirm the presence of sphincter overactivity when 

voiding is restored.

At first it may be somewhat surprising that cystometry does not show a particularly 

high detrusor pressure despite evidence of obstructive voiding. One might expect the 

PdetQmax to be higher generally to overcome the elevated urethral pressure. 

However, it is possible that the generation of even a limited detrusor pressure rise 

represents a sufficient contraction in patients with no previous detrusor contraction, 

enough to enable micturition. Nitti et al pointed out that many women are able to void 

with low detrusor pressures (less than 10-15 cmH20) and achieve bladder emptying 

with normal urinary flow rates, and that even a mild degree of urethral resistance can
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prevent voiding (Nitti, Tu et al. 1999). Hence for this functional obstruction, a modest 

increase in detrusor pressure may be adequate to overcome the urethral resistance, 

particularly in this group of patients whose baseline detrusor pressures are very low. 

The proposed mechanism for this is through modulation of presumed urethral afferent 

activity.

Another concept that has gained attention recently is that of “work done” by the 

detrusor, based on cystometric findings, calculating the area under the pressure-flow 

curve (Cormier, Ferchaud et al. 2002) or other measurements of bladder contractility 

(Kranse and van Mastrigt 2002). The area under the pressure-flow curve develops the 

parameter defined as ‘bladder work’ by Abrams et al, which was calculated as vesical 

pressure x volume voided (Abrams, Skidmore et al. 1977), and Cormier et al draw a 

parallel with the estimation of respiratory effort from the area under the curve of 

respiratory contraction. Their study categorized 85 women with lower urinary tract 

symptoms as being obstructed, unobstructed or equivocal; they proposed a table of 

quantifiable parameters and ranges for each group (including area under the curve). 

The area under the curve adjusted for voided volume may represent the voiding 

efficiency. Our estimation of the area under the curve suggests that although 

neuromodulation restores voiding, extra work has to be done by the detrusor to 

overcome the outlet resistance.

Kranse and Mastrigt also highlight the importance of accounting for bladder 

contractility in assessing female bladder outflow obstruction (Kranse and van Mastrigt 

2002). They attempted to incorporate the post-void residual, which is of clinical 

relevance, into this assessment, and comment on relating the measurement of outflow
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resistance to bladder contractility rather than simply using an absolute measure of 

outlet resistance. By including the post-void residual in the assessment, this approach 

may have an advantage over methods which measure urodynamic parameters without 

necessarily correlating with the clinical picture.

Urethral pressure profiles

The terms urethral pressure and urethral closure pressure are aimed at reflecting the 

pressure required to maintain continence. Griffiths defined urethral pressure as “fluid 

pressure needed to just open a closed (collapsed) tube” (Griffiths 1985). The urethral 

closure pressure is the difference between the intravesical and the urethral pressure.

The main application of measuring urethral pressures has been in the setting of stress 

urinary incontinence. In 1923 Bonney found that the crude measure of bladder 

pressure exceeded intraurethral pressure in women suffering from incontinence 

(Bonney 1923). Brown and Wickham described the UPP being measured by a 

catheter-mounted pressure transducer recording the urethral pressure along the length 

of the urethra, as the catheter was slowly withdrawn (Brown and Wickham 1969). 

Others have since adapted the technique further (Asmussen and Ulmsten 1976) 

(Hilton and Stanton 1983). The three main methods available are by perfusion (based 

on the fluid pressure require to just ‘hold open’ the urethra), catheter-mounted 

microtransducer, or a balloon attached to an external transducer.

However, these techniques are all subject to different artefacts. For example it is 

known that the pressure recorded is greater if the transducer faces anteriorly compared
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to posteriorly, and therefore side-holes and transducers are generally placed at the 3 

and 9 o’clock positions. Also, error can be reduced by using catheters with more side- 

holes and not particularly stiff. Balloon techniques avoid any orientational 

dependence, though in the past distension of the urethra led to over-estimation of the 

true pressure. The urethral pressure also depends on the position of the patient, and 

uniformity of recording position is essential. As a result of this variability, there are 

no standardized values that serve as a cut-off threshold for normality, as demonstrated 

in the table by Lose (Lose 2001). We have taken care to use exactly the same 

technique for all values, and the same as that used in the previous description by 

Wiseman et al (Wiseman, Swinn et al. 2002).

The MUCP is typically elevated in women with idiopathic retention (Wiseman, Swinn 

et al. 2002), and our study has shown the MUCP remains elevated even when 

neuromodulation has restored the ability to void in these patients. This supports the 

finding that the sphincter EMG abnormality persists despite successful 

neuromodulation, implying that the sphincter remains over-contracted. Hence 

neuromodulation does not appear to have a direct relaxant effect on the sphincter. 

Furthermore, no difference was found when the patients were asked to contract their 

pelvic muscles while the catheter was being withdrawn (a ‘stop-test’), so the pressure 

could not be increased any further.

There is little known about the effect of sacral neuromodulation on urethral function 

in humans. Bhadra et al performed sacral anterior nerve root stimulation in 4 adult 

female dogs, recording the effect on UPP and MUCP (Bhadra, Grunewald et al.

2001). They acknowledged the differences between the canine and human urethra, but
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used their model to specifically address the effect of electrical stimulation on urethral 

pressures and function. Overall they showed no significant differences in urethral 

closure pressure after stimulation of sacral nerve roots, even with selective stimulation 

of nerve fibres.

In addition to the MUCP and EMG findings, the cystometric data showing ‘obstructed 

voiding’ also imply that neuromodulation enables the bladder to overcome a 

persistently contracted sphincter. Upregulation of the putative ‘procontinence reflex’ 

results in urethral afferent activity inhibiting detrusor contraction. Neuromodulation 

may modify this signal, thereby allowing a degree of detrusor contraction. This 

concept of ‘unmasking’ detrusor contractility has also been reported in magnetic 

stimulation of the sacral nerve roots in healthy males and patients with complete 

spinal cord injury (Bycroft, Craggs et al. 2004).
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Cause of retention Examples

Neurological Brain lesions 
Spinal cord lesions 
Peripheral/autonomic lesions

Pharmacological Anti-depressants, anti-psychotics, anti
cholinergics, adrenergic agonists, anti- 
spasmodics

Infection/inflammation Urethritis
Vulvovaginitis

Mechanical obstruction Bladder/urethra: neoplasm, stricture, 
diverticulum, caruncle, stone, absecess 
Extra-urinary: pelvic or vaginal mass, 
retroverted uterus, constipation, pelvic 
organ prolapse
Functional: detrusor-sphincter 
dyssynergia, Fowler’s Syndrome, non- 
neurogenic neurogenic bladder

Medical Diabetes Mellitus 
Hypothyroidism 
Porphyria 
Scleroderma

Psychogenic Hysteria
Schizophrenia
Depression

Post-operative voiding dysfunction Over-correction during anti-continence 
procedures

Others Retroperitoneal masses
Post-partum
Post-operative
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CHAPTER TWELVE

PET IMAGING

12.1 Findings of PET study of cerebral response to neuromodulation

Our findings during bladder filling in healthy females broadly corroborate the results 

of previous functional imaging studies. The cingulate cortex, midbrain and pons were 

activated when the bladder was full in these subjects (compared to when their 

bladders were empty). This is similar to Athwal et al’s report of bladder filling in 

healthy male volunteers in their PET study (Athwal, Berkley et al. 2001), though 

unlike this study, we did not use an indwelling catheter, with the aim of reducing 

artefact.

These findings can be contrasted with the patient group, whose clinical symptoms are 

characterised by a large capacity bladder and a reduced sensation of filling. Different 

explanations may be proferred for this reduced sensation, including possible 

inhibitory feedback from urethral overactivity. An alternative would be for some type 

of afferent desensitisation as seen with hydrodistension, although this tends to 

produce transient symptoms as opposed to the indefinite symptoms in the retenton 

patients. In contrast to healthy controls, the patients showed no brainstem activity 

with a full versus empty bladder (but did show activity in the cerebellum and 

cingulate). The various brain areas discussed in greater detail in the following section 

include the midbrain, which may therefore be exemplifying a switch-like role in flow 

of afferent information. When the stimulator was activated in these patients, and 

capacity to void was restored, the striking finding was the activation of the midbrain, 

thus ‘normalizing’ activity to that of healthy controls.
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Different types of functional imaging studies have addressed the functional divisions 

in cerebral interoception, and the discrete areas are now discussed. It should be 

remembered, though, that such perception relies on the neural network connections as 

much as the individual brain centre functions.

12.2 Functional divisions in the cerebral perception of visceral stimuli

The recent interest and developments in functional imaging have provided an insight 

into what roles different brain centres may have in the control of bladder function. 

These are discussed both in the context of our study and with reference to other 

published data.

Midbrain

A key finding in our study was midbrain activation in the healthy controls with a full 

versus empty bladder. This activity was notably absent in the patient group until the 

stimulator was switched on, when the activity was restored. This is the first time a key 

brain region has shown such a clear response to sacral neuromodulation for urinary 

retention. Our hypothesis had been that neuromodulation ‘normalizes’ this switch 

mechanism in the patient group, and underlies the restoration of voiding capacity. 

However, although brainstem (specifically midbrain) activation is restored, the site of 

activation is marginally different for the 2 groups (healthy controls and patients with 

stimulator on), with the former being slightly more dorsal. Our findings also raise the 

possibility that midbrain activation may include centres other than solely PAG. 

Although ‘normalization’ of brainstem activity may play a central part in restoring 

voiding function, the mechanism of action of neuromodulation is likely to be more
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complex given the other differences in cortical activity induced, namely the absence 

of cingulate activity with the neuromodulator on.

The PAG is considered to act as a relay centre in the control of micturition, receiving 

afferent input from the spinal cord and thereby communicating with the PMC. 

Whereas the PMC in the rat receives afferent input from the lumbosacral spinal cord, 

in the cat there are direct projections from the sacral spinal cord to the PAG, which in 

turn projects to the PMC (Abrams, Cardozo et al. 2002). The general view now, 

supported by functional imaging evidence, is that the PAG receives information about 

the state of bladder fullness, and then facilitates initiation of micturition via the pons. 

However another view is that afferent information from pelvic viscera is integrated 

through ‘cross-talk’ between PAG and PMC, in light of reciprocal connections 

between both nuclei and parallel spinal projections to both (Valentino, Miselis et al. 

1999).

Our study shows there to be activation of the midbrain following sacral 

neuromodulation. Previous PET studies of urinary storage in men have demonstrated 

PAG activation in the full bladder state (Athwal, Berkley et al. 2001) (Matsuura, 

Kakizaki et al. 2002); in their studies of micturition, Blok et al reported on such 

activation during the urine-withholding phase in men but not women (Blok, 

Willemsen et al. 1997) (Blok, Sturms et al. 1998). The first (control) part of our study 

also showed activation in the midbrain, though slightly anterior to the PAG previously 

described in the studies mentioned. This degree of discrepancy was also 

acknowledged by Matsuura who commented on their PAG activation site being more 

ventrolateral to other reports (Matsuura, Kakizaki et al. 2002). In another study of
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micturition in men, Nour et al reported on lack of activation of the PAG for the 

condition of urine withholding versus empty bladder, and concluded that there were 

factors other than simply bladder distension that resulted in PAG activation (Nour, 

Svarer et al. 2000). In particular, their suggestion was that the PAG was subject to 

influence from other brain centres such as the hypothalamus.

Earlier work by Blok et al had established the anatomical basis underlying the role of 

the PAG (Blok, de Weerd et al. 1995) which was then evaluated using functional 

imaging techniques. Electrical stimulation of the PAG has also been shown to evoke 

complete micturition in cats (Skultety 1959) (Taniguchi, Miyata et al. 2002). In the 

latter study electrical stimulation of the PAG induced increase in detrusor pressure 

and decrease in urethral sphincter EMG activity.

The substantia nigra together with the ventral tegmental area (VTA) in anterior 

midbrain are the origin of dopaminergic projections to the striatum and cortex. 

Functionally these pathways facilitate motor behaviour (via extra pyramidal 

pathways) and drive motivational behaviours. Dysfunction of these dopaminergic 

pathways manifests as motor abnormalities (bradykinesia, dytonia -  as seen in 

Parkinson’s disease) or motivational disturbances (avolitional states, obsessionality or 

even drug-seeking behaviour). Effective micturition requires both a motivational 

aspect (desire to void) and volitional relaxation of sphincter muscular tonicity. 

Neurones in the substantia nigra and ventral tegmentum are believed to play a role in 

suprapontine bladder control (Sakakibara, Nakazawa et al. 2002) (Winge and Fowler 

2005). Further functional imaging evidence is still required to corroborate this view 

that midbrain activation may not be restricted solely to the PAG.
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A further attribute of the midbrain may be its increased discriminatory potential when 

the stimulator is switched on. The effects of interest analysis illustrated the 

exaggerated difference in activity between empty and full bladder states for the 

retention patients following neuromodulation. One may speculate that the midbrain, 

including the PAG, may be more than a simple switch, but instead it may also have a 

regulatory role depending on afferent stimuli. In the presence of sacral nerve 

stimulation, its ability to distinguish states of bladder fullness may be enhanced. It is 

difficult to see how this regulatory aspect of midbrain activity could explain the 

discrepancy in PAG activity described by Athwal et al (increased activation with 

increased bladder volume but not urge to void) (Athwal, Berkley et al. 2001), but 

raises interesting questions about the functioning of the midbrain as a relay centre.

Cingulate cortex

Broca described the cingulate cortex, the medial convolution adjacent to either side of 

the corpus callosum, as being part of the ‘limbic’ system. Further research on the 

function of the limbic system led to establishing its role in the subjective experience 

of emotions. The functional subdivisions within the cingulate cortex are still debated, 

with the anterior cingulate cortex (ACC) being distinguished from posterior cingulate 

cortex (PCC) on the basis of cytoarchitecture and connectivity. The ACC may have an 

‘executive’ role in contrast to the PCC’s more ‘evaluative’ role (Bush, Luu et al. 

2000).

The work of Ward in the 1940s described the two main functions of the ACC as the 

“most powerful of the cortical suppressor areas and also a potent autonomic effector 

region” (Luu and Posner 2003). Further attempts to parcellate the ACC have resulted
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in the concept of a cognitive dorsal ACC as distinct from an emotional perigenual 

(anterior) ACC. The dorsal ACC has strong interconnections with the lateral 

prefrontal cortex, parietal cortex, premotor cortex and supplementary motor areas; the 

connections from the perigenual ACC, in contrast, include the PAG, amygdala, 

anterior insula, and hypothalamus. However, the different functions of the ACC can 

be reconciled without necessarily following anatomical subdivisions, as demonstrated 

recently by Critchley et al in an fMRI study (Critchley, Mathias et al. 2003). They 

studied regional brain activity associated with autonomic cardiovascular control 

during cognitive and motor tasks, and concluded that the ACC has an integrative role: 

ACC activity is linked to autonomic function (eg cardiac function, via sympathetic 

output), integrating effortful cognitive and motor behaviour. Their findings supported 

the role of the ACC in “context-dependent modulation of bodily arouseil via 

autonomic activity”, with contributions from somatic and visceral afferents.

The role of the PCC is less clear, though it has been found to display increased 

activity with neuropathic pain (Hsieh, Belfrage et al. 1995) and emotional processing 

(Vogt, Abscher et al. 2000) (Maddock, Garrett et al. 2003). Micturition is interrupted 

in cats following stimulation of the PCC (Gjone 1966). Neural connections between 

genual ACC and caudal PCC exist, thus ultimately connecting the PCC with other 

cortical areas. In our study, the patients with a full bladder and the stimulator switched 

off appeared to show increased activity in the PCC as well as more anteriorly located 

cingulate cortex. The interconnections may adopt a greater significance in such 

situations.
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Both upper and lower GI stimulation are associated with cingulate activation (Aziz, 

Andersson et al. 1997) (Hobday, Aziz et al. 2001), as are urine storage (Athwal, 

Berkley et al. 2001) (Matsuura, Kakizaki et al. 2002) and micturition (Nour, Svarer et 

al. 2000). The involvement of the cingulate in voiding function has been known since 

anatomical description of lesions in this region associated with urge incontinence 

(Andrew and Nathan 1964). In their PET studies of both men and women, Blok et al 

commented on the decrease in activity of the ACC during urine withholding (Blok, 

Willemsen et al. 1997) (Blok, Sturms et al. 1998), with a resultant reduction in urge to 

void, and concluded that this decrease reflected a general suppression of the sensation 

of urge to void. Interestingly, Athwal et al found differential changes in ACC activity 

in association with increased bladder volume as opposed to urge. Whereas there was 

increased ACC activity with increasing bladder volumes in their PET study in males, 

there was increased activity in a different mid-cingulate region with decreasing desire 

to void (Athwal, Berkley et al. 2001). The authors explained this increased activity as 

related to the suppression of the urge to void, which would seem to be at odds with 

Blok’s finding that the cingulate activity decreased with subsequent reduction in 

urgency (though it was Athwal et al who formally assessed urgency using a validated 

urge score). However, the context of urine withholding was different for the two 

experiments, with Blok’s patients trained to micturate within the scanner (after the 

urine storage condition), whereas Athwal’s study was purely focussed on urinary 

storage; the contextual basis of ACC activity described by Critchley may therefore 

have implications on its function. It remains unclear, however, whether the changes in 

cingulate activity drive the reduction in urgency, or whether these changes are 

responsive to other signals that have reduced urgency in a particular context.
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Our study in healthy controls would appear to confirm Athwal’s findings in that there 

is increased cingulate activity in the full compared to empty bladder condition in 

healthy females. This is also seen in the patients in their baseline state (with 

stimulators switched off), whereby the cingulate is activated when their bladders are 

full, albeit in a slightly more caudal position. The patient group generally reported a 

sensation of suprapubic ‘fullness or discomfort’ rather than urgency, supporting the 

notion that the cingulate receives and processes afferent input based on the extent of 

bladder filling. However, one might also expect there to be cingulate activation with a 

full bladder when the stimulator is switched on; however this is not the case, a finding 

which seems to conflict with our understanding of its function. It may be that the 

stimulator’s activation o f the brainstem in these patients has a secondary effect on the 

higher cortical centres (including the cingulate), suppressing possible inhibitory 

descending cortical control.

Insula cortex

The insula is widely considered to have a visceral sensory function, and some have 

labelled it the ‘limbic sensory cortex’ in contrast to the anterior cingulate acting as the 

‘limbic motor cortex’ (Craig 2002). Electrical stimulation of the insula in animal and 

human studies has shown changes in autonomic function (heart rate, blood pressure), 

peristaltic activity and adrenaline secretion. Painful somatic sensation also 

consistently activates this region, which is the site of convergence of somatic and 

visceral sensory input. Further functional subdivisions have been outlined, with the 

anterior insula being activated during rectal stimulation while posterior insula is 

activated during esophageal stimulation (Derbyshire 2003). Whereas anterior insula
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tends to receive projections from the perigenual cingulate cortex, the posterior insula 

is connected to the more posterior mid-cingulate.

There is limited data available at present on the involvement of the insula in bladder 

control. With reference to urine storage, Blok et al’s PET study in female volunteers 

found there to be right anterior insula activation in the full bladder (compared to 

empty bladder and micturition conditions) (Blok, Sturms et al. 1998); they 

commented retrospectively on similar findings in their male study, but acknowledged 

that this activation was not significant for multiple comparisons. Urine storage was 

associated with left anterior insula activation in Matsuura’s study (Matsuura, Kakizaki 

et al. 2002). The right insula was also significantly activated by micturition (compared 

to rest) in one study (Nour, Svarer et al. 2000). No such activation was detected in any 

of the conditions in our study (in either controls or patients), reflecting the previous 

findings in Athwal’s study which did not report any insula activation (Athwal, 

Berkley et al. 2001). Whether this signifies a difference in central processing or is a 

reflection of the technique used may become apparent after further research.

Pons

As outlined earlier, the pons is believed to act as a switch in the control of micturition, 

with activation of the PMC as the signal for initiating micturition. There are excitatory 

projections from the PMC to the sacral bladder motoneurones, and also projections to 

intemeurones in the dorsal grey commissure (intermediomedial cell column), which 

in turn inhibit urethral sphincter motoneurones in Onufs nucleus. This enables 

appropriate synergistic contraction and relaxation respectively. Bilateral lesions in this 

region in cat and rat experiments abolish micturition, while electrical or chemical
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stimulation of the PMC produces a bladder contraction and coordinated relaxation of 

the urethra (Yoshimura 1999). The projections from the PMC to the sacral cord 

overlap with projections here of primary bladder afferents; this overlap could provide 

an anatomical substrate for a feed-forward mechanism to continue the voiding reflex, 

overcoming the effects of the decreasing pontine activity as the bladder empties.

Valentino et al have also proposed that this pontine region may have a role beyond 

simply micturition control (Valentino, Miselis et al. 1999). Tracer studies of its 

efferent projections, several containing the neurotransmitter corticotropin-releasing 

factor, may allude to the pontine regulation of multiple pelvic visceral functions and 

parasympathetic activity; these efferents also include projection to the PAG. This 

pontine regulation is also influenced by the afferent projections into the PMC, such as 

from the PAG and hypothalamus. Whether the direct parasympathetic input into the 

PMC seen in animal studies has a similar impact in human micturition control 

remains to be established.

In anatomical studies, Holstege’s group commented on the proposition of a distinct 

lateral region in the pontine tegmentum that is relevant for continence as opposed to 

micturition. They termed this the ‘L-region’, in contrast to the ‘M-region’; bilateral 

lesions of this pontine continence centre produce urge incontinence (Holstege, 

Griffiths et al. 1986). One model of urinary control has been that during urine storage, 

there is tonic activation of the L-region, and when appropriate signals indicate the 

bladder is full and the subject needs to void, projections from the PAG stimulate the 

M-region; there is thus a switch of activity from the L- to the M-region. As Griffiths 

points out in his subsequent review of the subject, the M-region does not receive
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afferent signals directly from the lower urinary tract but via the PAG, as well as from 

the preoptic area of the hypothalamus, structures which are subject to modulation by 

various emotional states (Griffiths 2002). Therefore the discrete divide between these 

two pontine centres may not be so apparent.

Previous PET studies have noted pontine activation (Blok, Willemsen et al. 1997) 

(Blok and Holstege 1999) (Athwal, Berkley et al. 2001) (Matsuura, Kakizaki et al. 

2002), albeit with slight differences regarding exact location. Some of these 

differences may be due to methodology as the brainstem has sometimes proven to be 

difficult to represent accurately in imaging studies. In this study, however, there was 

activation of the pons in healthy controls with an empty compared to full bladder, or 

in other words a pontine deactivation when the bladder was full. This would appear to 

be at odds with the findings of Athwal’s study in men, where activation was 

associated with increasing bladder volume. It should be noted that in our study design 

the full bladder state was generally at maximal capacity (compared to the states of 

filling in Athwal’s study), and therefore it could be that at such an extreme, higher 

cortical centres become more relevant (and active) in order to suppress the urge to 

void.

There was no activation in this region among the patient group, either before or after 

stimulation; the reason for this discrepancy is not clear. We cannot confirm therefore 

what effects sacral neuromodulation may have at a pontine level. One might have 

expected the pontine continence centre (L-region) to be activated in patients when 

they were aware of bladder fullness (ie when the activated stimulator had restored this
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sensation among the patients). An extension of this study could then explore whether 

there was activation of the PMC in patients with a stimulator during micturition.

Cerebellum

The cerebellum was traditionally thought to be important in motor control only, 

mainly based on the observation that motor problems predominate in most patients 

with cerebellar disease. However, there is increasing evidence of the modulatory role 

of this brain region, including an influence on visceral sensation and interconnections 

with other brain areas (eg cerebral cortex, hypothalamus, PAG, pons) (Dietrichs and 

Haines 2002). Brain imaging experiments have indicated a motor role for the 

cerebellum in micturition (Blok, Willemsen et al. 1997) (Nour, Svarer et al. 2000), as 

well as a sensory function during urine storage (Athwal, Berkley et al. 2001) 

(Matsuura, Kakizaki et al. 2002). Lesional studies of cerebellar function have 

previously shown effects on both urine storage and micturition (Dietrichs and Haines

2002). The work of Aziz et al also described cerebellar involvement in the processing 

of visceral sensation, during stimulation of proximal and distal oesophagus (Aziz, 

Thompson et al. 2000).

In our study we observed stronger activation in the cerebellum in patients with the 

stimulator switched on versus off (with full bladders). Unlike Athwal’s findings, there 

was little cerebellar activation in healthy controls. One may speculate that restoration 

of voiding by sacral nerve stimulation may involve the modulatory role of the 

cerebellum; although a distinct but sparse connection with the PAG has been reported 

in a cat study, the function of this pathway remains to be elucidated (Dietrichs and
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Haines 2002), further imaging studies should help advance our understanding of this 

brain region.

Hypothalamus

The hypothalamus appears to play a central role, with interconnections between a 

number of brain centres. Research in the cat has shown projections from the medial 

preoptic area (MPOA) of the hypothalamus to the PAG and PMC (Holstege, Griffiths 

et al. 1986), and there is also evidence of connection between hypothalamus and 

cerebellum (Dietrichs and Haines 2002) (Supple 1993). Ongur et al reported on the 

projection from the cingulate cortex to the hypothalamus in the macaque monkey 

(Ongur, An et al. 1998).

The images from our study show activation in the region of the hypothalamus in 

retention patients with a full bladder (with stimulator off), and no such activation after 

switching on the stimulator. Athwal et al found increased activity in the hypothalamus 

with decreasing urge to void (Athwal, Berkley et al. 2001); the retention group 

typically have reduced sensation of fullness in the baseline state, and therefore the 

activity seen in our study may correlate with the finding reported by Athwal et al. Nor 

was there increased activity during bladder filling in the study by Matsuura et al 

(Matsuura, Kakizaki et al. 2002). However, during micturition, there is evidence of 

increased activity in the hypothalamus in PET studies (Blok, Willemsen et al. 1997) 

(Nour, Svarer et al. 2000). The function of the hypothalamus may therefore be more 

related to micturition than urinary storage, and the possible neural matrix showing its 

projection to the pons (PMC) illustrates a possible pathway for this.
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Frontal cortex

In 1960 Ueki concluded that the frontal lobe has an inhibitory effect on micturition 

based on 462 neurosurgical cases (Ueki 1960). A subsequent observational study in 

38 stroke patients by Andrew and Nathan found that lesions in the anterior frontal 

lobe were associated with disturbances of micturition (Andrew and Nathan 1964), 

with further evidence for this association reported by Maurice-Williams (Maurice- 

Williams 1974). Similarly in stroke patients, urinary symptoms are reported with 

frontal lobe lesions (Sakakibara, Hattori et al. 1996), and frontal cortex 

underperfusion is associated with urge incontinence and reduced bladder sensation 

(Griffiths 1998).

Our imaging shows a lack of frontal activation in the both controls and patients when 

the bladder is full, though in the case of the controls there is increased frontal 

activation when the bladder is empty (ie deactivated when the bladder is full). If 

frontal lobe activity is associated with inhibition of micturition, then one might expect 

there to be to greater activity in the bladder full state (when the patient is suppressing 

the urge to void in the scanner); however, if this inhibitory role relates specifically to 

the act of micturition, then during urinary storage conditions (as in our study) the 

frontal lobe may be quiescent as observed.

There is therefore a discrepancy with the findings of Athwal et al, who reported 

bilateral frontal activation with increasing bladder volume, proposing a connection 

with the PAG. In their similar study, however, Matsuura et al found frontal activation 

after ice water instillation but not bladder distension. Nour et al found bilateral 

activation of the inferior frontal gyrus during micturition (compared to rest), 

confirming similar findings by Fukuyama et al and Blok et al. Their conclusion was
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that the frontal (or prefrontal) lobes might be involved in deciding whether to intitiate 

micturition. The lack of frontal activation in our storage study therefore does not 

clarify this process any further,

12.3 Functional connectivity

Most studies of the cerebral control of voiding function have concentrated so far on 

identifying the brain centres involved. This can then be interpreted within a functional 

framework based on our understanding of interoception in general. The next stage 

would be to establish a degree of functional connectivity or effective connectivity 

between brain centres. These two terms refer to the patterns of information flow

between brain centres, pertaining to different physical conditions.

The diagram in Figure 12a is a theoretical representation of how the brain centres may 

be related. It is important to highlight the difficulty in establishing a hierarchy of 

centres with limited data on connectivity, and that it is based on information from 

both urinary storage and voiding studies. Another issue not addressed is that of

laterality, which seems to vary between the limited studies available, or its

significance.

The majority of interconnections in the network diagram do not specify which brain 

centre is upstream and which downstream, as this information is still not truly 

understood. It is known that the PAG is an important relay centre for afferent neural 

input, but it would appear to be equally important as a relay centre for higher brain 

structures. The cingulate also has important connections with insula and prefrontal 

cortex, as well as more ‘downstream’ regions such as the hypothalamus and thalamus,
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Figure 12a Speculative network o f brain centres involved in urinary control
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which in turn interact with the PAG and pons. The ‘evaluative’ role of the cingulate 

may be reflected in its connections with the ‘higher’ centres, while its ‘executive’ 

influence could be mediated through downstream pathways including the PAG and 

pons; the context-dependent activation described by Critchley et al may be realised 

through these different pathways. Kershen et al attempted to simplify the functional 

subdivisions in their review by stating that the prefrontal cortex helps to decide 

whether it is appropriate to void, the hypothalamus whether it is safe to inititate 

voiding, the cingulate cortex to process the stimuli affecting desire to void; and 

thereby the PAG can stimulate the PMC to produce coordinated relaxation of the 

urethral sphincter and contraction of the detrusor (Kershen, Kalisvaart et al. 2003).

Summary of cerebral control of urinary storage

Women with urinary retention and sphincter overactivity characteristically have a 

reduced perception of bladder filling, resulting in them retaining large volumes, 

sometimes over a litre. As well as restoring the ability to void, sacral neuromodulation 

also improves the sensation of bladder fullness. We have demonstrated that this effect 

may be mediated by changes in midbrain activity, which acts as a relay centre for 

afferent signals from the lower urinary tract. The overall effect may thus include 

‘normalizing’ the activity of the brainstem towards that seen in scans of healthy 

females with a full bladder (DasGupta, Critchley et al. 2005). The activity of this 

control centre is likely to be modulated by higher cortical centres such as the cingulate 

cortex. We have shown cingulate activity in the control subjects with a full bladder
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and also in the patients with the stimulators switched off; the absence of cingulate 

activity when the stimulators are switched on indicates that the mechanism of sacral 

neuromodulation is more complex than simply ‘normalization’. Most of our 

understanding of the role of the cingulate cortex as an integrative centre concentrates 

on the ACC, whereas the cingulate activated in our study was more dorsal than 

previous studies.
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CHAPTER THIRTEEN 

MECHANISM OF NEUROMODULATION

The preceding chapters have shown that, in women with retention, neuromodulation 

does not have a direct relaxant effect on the urethral sphincter, and secondly that it 

induces changes in activity in different brain centres involved in voiding control. 

However, other functional aspects of its mechanism of action remain unexplained, 

such as the relationship with spinal cord neurotransmitters, long-term efficacy (and 

possible carry-over effect), and action on spinal level reflexes.

13.1 Neurotransmitter Effects

Neuromodulation is believed to act on afferent innervation as described above. The 

two main types of bladder afferent fibre are A5 and C-fibres. The A8 fibres are finely 

myelinated axons which act as tension receptors (mechanoceptors) sensing bladder 

fullness. The C-fibres are unmyelinated axons, some of which respond to stretch 

(volume receptors) and others to nociceptive stimuli. After exposure to irritative 

substances, such as capsaicin, the ‘silent C-fibres’ may become mechanosensitive and 

unmask new afferent pathways.

Pharmacological studies have provided information on the range of neurotransmitters 

involved in the neural pathways, whether peripherally in the bladder or urethra, or 

centrally (spinally or supraspinally). For instance, the external urethral sphincter is 

under the influence of glutamate (excitatory), GABA (inhibitory) and glycine 

(inhibitory) transmitters (Chancellor and Yoshimura 2003). These substances are 

released by neurons and intemeurones in the reflex pathways described in the

121



introduction, and the (neuro)modulation of these pathways may actually modify the 

release of these neurotransmitters.

The different transmitters studied include:

Acetylcholine

The role of cholinergic mechanisms is well established, and anti-cholinergic 

medication is the mainstay of medication to treat detrusor overactivity.

ATP

Purinergic pathways have been documented in rat, rabbit and guinea pig studies, 

though their role in human bladder control is less clear at this stage. The P2X receptor 

(P2X3 in particular) has been studied extensively and is currently under investigation 

as a possible therapeutic target in detrusor overactivity (Rapp, Lyon et al. 2005).

Adrenergic

The presence of a receptors, a l  in particular, in the urethra is a reflection of the role 

of this adrenergic subtype in maintaining urethral tone. Both hypogastric nerve 

stimulation and a-agonists produce a rise in intraurethral pressure, which is blocked 

by a 1-antagonists. In contrast, stimulation of p-receptors (mainly p2 and p3) which 

are present in human detrusor produce direct relaxation of detrusor smooth muscle.

In experiments where stimulation of sacral motor roots caused a reduction of urethral 

pressure, propanolol (p-antagonist) prevented this decrease (McGuire and Herlihy 

1978).
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Nitric oxide

There is evidence that nitric oxide (NO) is an inhibitory transmitter, enabling 

relaxation of the urethral smooth muscle during micturition. Studies in female rats 

showed that electrical stimulation of the lumbosacral (L6-S1) spinal roots elicits 

simultaneous bladder contractions and urethral relaxation (Fraser, Flood et al. 1995). 

The urethral relaxation was inhibited by NO-synthase (NOS) inhibitors, which did not 

alter the bladder responses. The inhibition was reversed by administration of L- 

arginine, a precursor of NO. Recent work by Ho et al has confirmed the presence of 

nitric oxide synthase in the human female striated urethral sphincter (Ho, Boija et al.

2003). There also seems to be a role for NO in bladder afferent activity: the inhibition 

of detrusor contraction resulting from electrical stimulation of the tibial nerve is 

reduced by NOS inhibition.

GABA

Animal studies have indicated a role for the inhibitory neurotransmitter GABA in the 

relaxation of the urethral sphincter seen during micturition. The neurons in the sacral 

spinal cord that receive the projections from Barrington’s nucleus have been shown to 

contain GABA. A subset of neurons active during micturition are GABAergic, some 

of which are in contact with external sphincter motoneurons (Jezemik, Craggs et al.

2002). GABA and glycine are sometimes co-localized in the same neurons.

C-flbre neuropeptides

A subpopulation of c-fibre afferent nerve fibres has been implicated in the 

pathogenesis of detrusor overactivity; this is distinct from the A8-fibres which provide 

afferent input in normal micturition. These c-fibres release certain neuropeptides
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including Substance P (SP), neurokinin A (NKA), vasoactive intestinal peptide (VIP) 

and calcitonin-gene related peptide (CGRP). Shaker et al investigated the effect of 

electrical sacral nerve stimulation on neuropeptide levels in spinally transacted 

Sprague Dawley rats with detrusor hyperreflexia (Shaker, Wang et al. 2000). They 

showed that the neuropeptide content of dorsal root ganglia increased after spinal 

transection, coincident with increased urinary bladder activity. Chronic SI 

electrostimulation for 3 weeks resulted in a significant decrease in neuropeptide levels 

back towards baseline levels. Although these findings relate to detrusor overactivity 

rather than retention, it is conceivable that electrical stimulation for the latter 

condition may also affect levels of neuropeptides (albeit different ones).

Another marker of afferent c-fibre activity is the product of the proto-oncogene c-fos. 

C-fos is not expressed in the spinal cord under normal physiological conditions, and is 

only activated when the sensory cells are exposed to transmembrane stimulation, 

conveyed mainly by afferent c-fibres. Wang and Hassouna performed sacral nerve 

stimulation in spinalized rats, and found reduction in c-fos gene expression as well as 

reduced hyperreflexia (Wang and Hassouna 2000). They compared their findings to 

that of Chang et al, who also described decreased c-fos expression in rat spinal cord, 

this time following electroacupuncture in rat hind legs (Chang, Huang et al. 1998).

Nerve growth factor (NGF) is a trophic factor that animal studies have shown to be 

elevated in dorsal root ganglia and the spinal cord in hyperreflexic bladders following 

spinal cord injury (Seki, Sasaki et al. 2002). This group showed that neutralization of 

NGF using intrathecal NGF antibodies reduced the spinal levels of NGF and bladder
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contractions. One can speculate as to whether electrical stimulation could also 

modulate NGF levels, and thereby affect detrusor contractility.

Transmitters acting in the spinal cord

Glutamate: Intrathecal administration of glutamatergic antagonists is known to reduce 

bladder contractions as well as urethral sphincter EMG activity in rats. There may be 

differential expression of glutamate receptors in the bladder and urethra, accounting 

for their different sensitivities to glutamate antagonists.

GABA/Glycine: These inhibitory amino acids also have effects in the spinal cord. 

Animal studies have implicated baclofen (a GABA agonist) in the suppression of 

detrusor contraction.

Serotonergic transmitters (5-HT)\ The raphe nucleus in the caudal brainstem projects 

5-HT containing neurons to the dorsal horn and lumbosacral cord. Activation of the 

raphe neurons or 5-HT receptors in the spinal cord inhibits reflex bladder contractions 

and sacral efferents to the bladder.

Adrenergic transmitters: The spinal noradrenergic system has a modulatory role, by 

inhibiting afferent inputs from the bladder and facilitating the descending part of the 

micturition reflex to increase bladder contractility.
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Opioid peptides'. These have an inhibitory action on spinal cord reflexes, again with 

different receptor subtypes acting on bladder and urethra. Their role in the mechanism 

of acupuncture is described earlier.

To summarise, a key action of glutamate is on spinal efferents enabling micturition. 

The spinal noradrenergic system (mainly a l)  inhibits bladder afferents and facilitates 

an increase in bladder contractility via the descending limb of the spinal micturition 

reflex. Neurotransmitters such as GABA, 5HT, and purines may act in the sacral 

spinal cord by modulating the bladder volume threshold.

Evidence for electrical-neurochemical mechanism

It is attractive to consider that neuromodulation has an effect on the balance (or 

imbalance) of neurotransmitters, either at the level of the bladder, spinal cord or 

supraspinally. One could then propose a mechanism by which this therapy could 

influence conditions as clinically disparate as detrusor overactivity and urinary 

retention.

We have alluded to the animal experiments showing changes in gene expression and 

neuropeptide levels following electrical stimulation. Furthermore, women with 

urinary retention do not show a response to stimulation immediately, as one might 

expect if it were simply ‘resetting a switch’ by redirecting a neuronal impulse. 

Instead, there is a lag time, after which the patient gradually experiences a return of 

bladder filling sensation, and then a return of ability to void. This period can be upto a 

few days (Swinn, Kitchen et al. 2000). Similarly, the return of symptoms to baseline
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takes a few days after the stimulator is switched off, a ‘carry-over’ effect which is 

discussed further below.

Also, we have indicated that the other forms of stimulation, whether electrical, 

magnetic or acupuncture, may have similar effects on micturition and therefore may 

involve common underlying mechanisms of action.

13.2 Long-term effects

The retrospective survey of patients implanted with a stimulator between 1996 and 

2002 showed that the vast majority still reported adequate voiding at a mean follow- 

up of 3 years. Whereas most of these patients find that their symptoms (retention or 

dysfunctional voiding) recur if stimulation is stopped (eg battery expires), a few 

patients have reported continued resolution of symptoms long after discontinuation of 

neuromodulation. A limited number of other centres have also described similar 

findings (DasGupta, Wiseman et al. 2003). However, the more common clinical 

finding in patients with detrusor overactivity is that when the stimulator is 

deactivated, the symptoms recur within a hours to days.

The concept of a ‘carry-over’ effect of neuromodulation is recognised clinically. In 

the case of anogenital stimulation for urge incontinence, it has been proposed that a 

prolonged increase in the micturition threshold volume is produced by modulating the 

synaptic transmission in the central micturition reflex pathway (Jiang and Lindstrom 

1998). Repetitive stimulation has been reported to have effects lasting several months 

in human studies (Gladh, Mattsson et al. 2001). Generally, however, neuronal
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plasticity in retention is not sufficient to allow permanent ‘resetting’ of the pathways 

as seen, for example, in electrical cardioversion. Another example of this is the use of 

deep brain stimulation in movement disorders (eg. Stimulation of thalamus for 

essential tremor, subthalamic nucleus or globus pallidus for Parkinson’s disease, and 

globus pallidus or thalamus for myotonia) (Lozano, Dostrovsky et al. 2002).

13.3 Spinal level reflexes

This thesis has not explored the possibility of neuromodulation having an effect at a 

spinal level, which is most clearly studied in patients with spinal cord injuries (and 

disconnection of cerebral and peripheral centres). Such effects could have a bearing 

on the activity seen during functional brain imaging, and complete theories of 

mechanism of action should therefore address changes observed at a spinal level.
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CHAPTER FOURTEEN 

SUMMARY

This thesis has demonstrated changes in brain activity following sacral 

neuromodulation in women with urinary retention for the first time, using PET 

functional imaging. The role of the midbrain and cortical areas such as the cingulate 

are discussed with respect to bladder interoception. The urodynamic study of women 

with retention undergoing neuromodulation reveals that the stimulation does not 

restore voiding by a direct relaxant effect. And finally, we have reported on the long

term efficacy of this technique, speculating on the ‘resetting’ of neuronal circuitry and 

restoration of the balance of neurotransmitters.

Sacral neuromodulation has gained popularity in recent years, particularly as another 

treatment option for patients with detrusor overactivity. Further research into its 

mechanism of action, possibly using functional brain imaging techniques, may 

enhance our understanding of neuromodulation and of perception of bladder sensation 

in general.
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Appendix B
The Department of Uro-Neurology

Patient Information Sheet

Brain imaging and urodvnamic study of bladder function, 
and the effects of sacral neuromodulation.

We would like to invite you to participate in a study of how sacral neuromodulation 
may affect bladder function and the brain’s perception of bladder fullness. As you 
know, a condition has been described that affects primarily young women who are 
unable to empty their bladders. This has been attributed to an abnormality of the 
urethral sphincter, at the outlet of the bladder. Until recently the only method of 
managing this condition was by “intermittent self-catheterisation”. It has subsequently 
been found that electrical stimulation of the nerves involved in bladder control 
restores normal sensation of bladder filling (previously absent) and the ability to void.

This technique of neuromodulation, or sacral nerve stimulation, also helps patients at 
the other end of the spectrum, by reducing their urinary urgency, frequency and 
leakage. It is unclear how the therapy can help such very different conditions. A 
number of patients have now had stimulators implanted for urinary retention at the 
National Hospital for Neurology & Neurosurgery, and are able to void successfully as 
a result.

A previous brain scanning study by our group focussed on brain regions activated in 
men with different degrees of bladder filling. It is important to understand the 
underlying mechanisms involved in the storage of urine in women and the effect of 
neuromodulation on these mechanisms. We are proposing to use brain scanning and 
routine bladder tests to examine these effects. We are inviting you to participate 
because you are in a unique group o f patients with a sacral nerve stimulator implanted 
successfully for an unusual condition.

Tests involved

Brain scans
We will perform a series of PET (positron emission tomography) scans; this is a safe, 
non-invasive method of scanning, where the subject lies on her back, with a large 
“polo-mint” around the head effectively taking a series of pictures. Every scan lasts 
up to 90 seconds, with 8 mins interval between each of 6 scans (the stimulator may be 
switched on/off for different scans). The entire session is repeated once. The 
technique involves a very small dose of radiation (about the same as an intravenous 
urogram, a kidney function test, but less than that for a barium enema), and is 
equivalent to living in London for two years. Further details can be found in the 
attached “Volunteer’s guide to a PET scan” booklet. Even if  you are not eligible for a 
PET scan (eg if under 40 years old), you may still be included in the trial for the 
bladder tests only.



Bladder tests
These are standard bladder function tests that are performed routinely in the 
department on an almost daily basis. These include:

- cystometry : filling the bladder with water through a fine catheter (and placing 
another pressure-recording line in the rectum), and thereby measuring pressure
changes; you will be asked to empty your bladder at the end of filling;

- urethral pressure profile : a catheter is slowly withdrawn from the bladder,
measuring the pressure at the urethra as it is pulled out.

- intravaginal ultrasound scan : a small probe is inserted into the vagina to 
visualise the urethra (similar to ultrasound for ovaries)

- needle electromyography test of the urethral sphincter (unless you have
already had this repeated since after your implant): after injection of local
anaesthetic into the urethra, a fine needle is inserted into the urethra to record 
activity in this muscle.

As a patient with an implanted stimulator, you are likely to be familiar with the above 
tests, having undergone these at an earlier date during your clinical care. They are all 
safe although there may be slight discomfort in the case of needle electromyography 
(for which we use local anaesthetic). The risk of urinary infection is minimal, so 
prophylactic antibiotics are not routinely prescribed.

Urethral sphincter MRI
If you have not yet been implanted with a stimulator, but have had the diagnostic tests 
suggesting the urethral abnormality, you may be suitable for a Magnetic Resonance 
Imaging (MRI) scan of the pelvic region, which will allow us to better visualise this 
abnormality. This is a painless, non-invasive investigation with no significant side- 
effects.

Subjects
As a patient with a sacral nerve stimulator implanted, you are eligible to take part if 
you are over the age of 40 years, have no other major medical problems, and are not 
pregnant (we will perform a pregnancy test before you are enrolled in the study). The 
whole study will require up to 4 visits to the department, 2 for bladder tests 
(cystometry, urethral pressure profile, ultrasound on day 1, sphincter EMG on day 2) 
and 2 separate sessions for brain scanning (with bladder full/empty; randomised order 
for sequence of bladder fullness for different patients).

Your participation is entirely voluntary; you are free to enter or withdraw from the 
study at any time, without giving a reason. If you choose not to enter the study, this 
will in no way affect your future medical care. All information will remain strictly 
confidential, and will only be used for medical purposes. Your medical records may 
be inspected only by competent authorities and properly authorised persons. 
Participation in this study will in no way affect your legal rights. The study has been 
reviewed by the National Hospital for Neurology and Neurosurgery and the Institute 
of Neurology Joint Research Ethics Committee.
Please contact any of the staff below if you have any queries regarding any aspect of 
the study, on the following telephone number: 

  
 

 
 



The Department of Uro-Neurology 

Healthy Volunteer Information Sheet 

Brain imaging and urodvnamic study of bladder function.

We would like to invite you to participate in a study of how bladder function is 
controlled in women, particularly during storage of urine, and how the brain 
processes the sensation of bladder fullness. Previous studies by our group and in other 
centres have concentrated on activation of brain regions in healthy men. It is 
important now to examine the mechanisms involved in women, as some women may 
have specific abnormalities o f their bladder function. For this, we need the help of 
selected female volunteers with normal urinary function. The study will involve 
scanning the brain and also a series of bladder tests, as discussed below. This 
knowledge will allow comparison with results from patients with specific urinary 
problems.

Tests involved 
Brain scans
We will perform a series of PET (positron emission tomography) scans in volunteers; 
this is a safe, non-invasive method of scanning, where the subject lies on her back, 
with a large “polo-mint” around the head effectively taking a series of pictures. Every 
scan lasts upto 90 seconds, with 8 mins interval between each of 6 scans. The entire 
session is repeated once. The technique involves a very small dose of radiation (about 
the same as an intravenous urogram, a kidney function test, but less than that for a 
barium enema), and is equivalent to living in London for two years. Further details 
can be found in the attached “Volunteer’s guide to a PET scan” booklet.

Bladder tests
You will undergo a cystometry and a urethral pressure profile, which are routine 
bladder tests. Cystometry involves filling the bladder with water through a fine 
catheter (and placing another pressure-recording line in the rectum) and measuring the 
pressure changes in the bladder; during the urethral pressure profile a fine catheter is 
slowly withdrawn from the bladder, measuring the pressure at the urethra as it is 
pulled out. There is only a small chance of urinary infection (<4%), for which 
antibiotics are not routinely prescribed but will be available if necessary.

Urethral sphincter MRI
You may also be eligible for a Magnetic Resonance Imaging (MRI) scan of the pelvic 
region, which will allow us to better visualise the urethral sphincter than current 
diagnostic ultrasound tests. This is a painless, non-invasive investigation with no 
significant side-effects.



Subjects
You are eligible to take part if you are a female over the age of 40 years, with no 
kidney or bladder disorders, no neurological conditions and are not pregnant (we will 
perform a pregnancy test before you are enrolled in the study).

The whole study will require 3 or 4 visits to the department, 1 or 2 visits for the 
bladder tests, and 2 separate sessions for brain scanning (with bladder full/empty; 
randomised order for sequence of bladder fullness for different patients). At the end of 
this, you will receive a T-shirt with a unique anatomical image of your brain, and 
expenses as agreed.

Your participation is entirely voluntary; you are free to enter or withdraw from the 
study at any time, without giving a reason. If you choose not to enter the study, this 
will in no way affect your future medical care. All information will remain strictly 
confidential, and will only be used for medical purposes. Your medical records may 
be inspected only by competent authorities and properly authorised persons. 
Participation in this study will in no way affect your legal rights. The study has been 
reviewed by the National Hospital for Neurology and Neurosurgery and the Institute 
of Neurology Joint Research Ethics Committee.

Please contact any of the staff below if you have any queries regarding any aspect of 
the study, on the following telephone number:

Contact Tel No : 

Mr Ranan DasGupta Research Registrar 
Professor Clare J Fowler Professor of Uro-Neurology 
Mrs Collette Haslam Continence Nurse Specialist 



Appendix C

CONSENT FORM

Study: Brain imaging and urodynamic study of bladder function, and the effects 
of sacral neuromodulation.

Investigators: Professor Clare Fowler, Professor of Uro-Neurology 
Mr Ranan DasGupta, Research Registrar 
Department of Uro-Neurology, Tel 0207-837-3611 ext 3418

1. Have you read the information sheets? Yes No

2. Have you had an opportunity to ask questions? Yes No

3. If so, have you received satisfactory answers to your questions? Yes No

4. Which doctor have you spoken to about this study? ....................

5. Do you understand that you are free to withdraw from this study:

at any time Yes No
without giving a reason Yes No
without affecting your future medical care Yes No

6. Do you agree to take part in this study? Yes No

Subject name (print):.......................................................................

Subject signature: .......................................................................

Date:....................................

Doctor: ...........................................................................................................

Signed Print name
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