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ABSTRACT

Growing pressures in the pharmaceutical industry are driving the need to optimise processes used 

for the manufacture of drugs at commercial-scale, in order to improve cost of goods, product 

throughput and production times. Evaluating the impacts of process optimisation upon these metrics 

presents a challenge due to complexities and trade-offs that are often encountered when developing 

a typical bioprocess. Such factors have resulted in a range of novel simulation- and experimental- 

based techniques being developed which enable rapid, accurate and cost effective assessment of 

manufacturing options for commercial-scale production. This thesis proposes a combination of 

modelling and experimental methods for evaluating the business- and process-related impacts of 

implementing changes to pre-existing commercial-scale pharmaceutical manufacturing processes. 

The approaches are illustrated through an industrial case study, focusing upon a process operated 

by Protherics U.K. Limited for the manufacture of the FDA-approved rattlesnake anti-venom 

CroFab™ (Crotalidae Polyvalent Immune Fab (Ovine)).

The novel methods developed and illustrated in this thesis include:

•  Investigating the effects of process changes upon calculated yields and processing times within 

the production framework for a pre-existing FDA-approved bio-manufacturing process

•  Evaluating the impacts of both developing and implementing process changes, combining 

output metrics into a single value to simplify the assessment

•  Developing a multi-layered simulation methodology for the rapid and efficient evaluation of bio

manufacturing process options

•  Applying advanced sensitivity analysis techniques to identify the most critical factors that 

influence product yield and throughput

•  Evaluating a novel synthetic Protein A matrix for the recovery and purification of polyclonal 

antibodies from hyperimmunised ovine serum

•  Developing decision-support software to aid the design of chromatography steps for antibody 

purification at industrial scale

•  Demonstrating the utility of such models by application to data and constraints derived from a 

full-scale industrial facility
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NOMENCLATURE AND ABBREVIATIONS

Nomenclature:

A jth Fourier sine coefficient

B; jth Fourier cosine coefficient

B cip Base case buffer volume (L)

bi Centrifugal caulk width (m)

C Flowthrough concentration from a chromatography column (mol/m3)

Co Feed concentration to a chromatography column (mol/m3)

C m Concentration of mobile phase at equilibrium in batch mode

C n Number of operational cycles in a chromatography column (-)

Cs Concentration of bound solute at equilibrium with the mobile phase in batch mode

c Flowthrough concentration (mol/L) -  used in the Beer-Lambert Law

D Diafiltration ration (v/v)

Di/Wi Variance due to a specific input variable or combination of variables

D t / f a st Total model variance

d Particle diameter (pm)

dc Critical particle diameter -  the smallest size of particle sedimented in the centrifuge (pm)

E Extinction coefficient (M 1 cm 1) -  used in the Beer-Lambert Law

Es Efficiency (expressed as a fraction between 0 and 1) of process step S (-)

Fno Number of filter housing (-)

f l Centrifugal correction factor

fsed Fraction of solids in the centrifugal input stream (-)

G Dimensionless mobile phase flowthrough velocity (Thomas model)

G(d) Grade efficiency i.e. the fraction of particles of size (d) sedimented in the centrifuge (-)

Gi Transformation function used in FAST

9 Gravitational acceleration (m/s2)

H Chromatography bed height

b(x) Zero order-modified Bessel function of the first kind

J J function used in the Thomas model

k Term in the centrifugal grade efficiency expression (-)

ki Forward rate constant -  Thomas model (m3/mol/s)

K Term in the centrifugal grade efficiency expression (-)

Kd Equilibrium dissociation constant -  Thomas model (mol/m3)

J J function used in the Thomas model

L Length of a chromatography column (m)

L e x Unit loading of IgG to ion exchange per cycle (g/L)
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I Path length (cm) -  used in the Beer-Lambert Law

M a Actual product mass (g Fab)

Mo Lowest product mass set to represent the zero bound in normalisation (g F ab)

Mi Highest product mass set to represent the one bound in normalisation (g F ab)

MFab,in Inlet mass of F ab to a process step (g)

MFab.out Outlet mass of F Ab from a process step (g)

MigG.in.iEx Mass of IgG fed to ion exchange (g)

MigG,m,papain Mass of IgG fed into the digestion vessels (g)

Mys.Fab,inmai Mass of venom-specific Fab present at the start of the process (g)

Mvs.Fab,final Mass of venom-specific Fab present at the end of the process (g)

N Dimensionless number of transfer units (Thomas model)

Ncem Number of centrifugal cycles (-)

N e x  Number of ion exchange cycles (-)

N r  Centrifugal revolution speed (rps)

Ni Normalised value of the ith performance metric (-)

Nm Normalised product mass (-)

n Number of disks in the centrifuge (-)

i il f  Langmuir-Freundlich coefficient

P Maximum harmonic considered in the FAST calculations (-)

qm Equilibrium saturation capacity of solid chromatographic resin (mol/m3)

qms Equilibrium saturation capacity of settled chromatographic resin (mol/m3)

0  Centrifugal volumetric flowrate (m3/s)

Q l Linear column flowrate (m/hr)

Qv.cent Centrifugal volumetric flowrate (L/hr)

Qv.rner Volumetric flowrate of material in filtration (L/hr)

Q v  ,u f  Volumetric flowrate in ultrafiltration (L/hr)

Ri Inner disk radius (m)

R0 Outer disk radius (m)

Si Sensitivity index

Sri2 Total Sensitivity Index for variables one and two i.e. Si + S2 + S12

T Dimensionless residence time (Thomas model)

Tconc Time for concentration in ultrafiltration (hr)

Tdiafnter Time for diafiltration in ultrafiltration (hr)

TfiUSh Time for flushing depth filters (hr)

Tprime Time for priming depth filters (hr)

Tsetup Time for setting up depth filters (hr)

t Time (s or hr)

tequinbrate Duration of column equilibration (hr)

19



tc /ioad  Duration of applying feed to a chromatography column (s/hr)

teiute Duration of elution (hr)

tpermeate Duration of filtration (s)

tsamuse Duration of sanitisation (hr)

twash Duration of bed washing (hr)

v Interstitial velocity in a chromatography column (m/s)

VacHvator Volume of activator for enzymatic digestion (L)

Vbase Base case loading flowrate (m/s)

Vsed  Packed bed volume (mL)

Vconcentrate Concentrate volume in ultrafiltration (L)

VdiaMer Diafiltration buffer volume used in ultrafiltration (L)

V F Feed volume during ultrafiltration (L)

VfiUsh Flush volume in ultrafiltration (L)

Vin, 1-pass Volume at the centrifuge inlet per cycle (L)

V m,cent Volume of centrifugal input stream (L)

VinM er Feed volume into a filtration step (L)

Vin.iEx Volume of ion exchange feed (L)

Vin,Papain Inlet feed volume to papain digestion (L)

Vjn.pooi Inlet pool volume (L)

Vin.uF Inlet volume to ultrafiltration (L)

VL Volume loaded up to 10% breakthrough (mL) -  used in calculating DBC values

Vioad Volume of feed applied to a chromatography column per cycle (L)

Vm Volume of chromatography matrix (L)

Vmatrix Packed bed volume (L)

Vmatrix,a Actual volume of chromatography matrix bed (L)

V'outcent Volume of centrifugal sedimented product (L)

Vouwf Outlet volume from ultrafiltration (L)

Vpapain Volume of papain (L)

ypermeate Filtrate volume (m3)

Vprecip, 1-pass Precipitant volume used per centrifuge cycle for precipitate washing (L)

Vretentate Retentate volume during ultrafiltration (L)

V’terminator Volume of terminator for enzymatic digestion (L)

Vo Void volume of chromatography bed (mL)

Wi Weighting of the ith performance metric (-)

X  =C/Co (normalised breakthrough fraction)

V Dimensionless separation factor (Thomas model)

Ymax Highest possible yield achieved with a fresh batch of matrix
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Greek symbols:

a Argument of the J function in the Thomas model

0 Argument of the J function in the Thomas model

X Parameter used in enzyme progress curve

y Yield from a process step (specific unit operation or quantity identified in text by subscript)

e Voidage fraction of a chromatographic bed (-)

Si Bead porosity of a chromatographic bed (-)

<P Parameter used in enzyme progress curve

A Parameter used in enzyme progress curve

A Term in the centrifugal grade efficiency expression (-)

A gsa Input value in the zero to one range (-)

Al Real lower bound

A scaled Scaled input value (-)

A u Real upper bound

P Viscosity of feed to the centrifuge (NS/m2)

U) Centrifugal angular velocity = 2 ttN r

OJi Integer frequency used in the FAST method

Psolid Solids phase density (kg/m3)

Pliquid Liquid phase density (kg/m3)

Ap Density difference between solids and liquid phases in the centrifuge (kg/m3)

L Centrifugal sedimentation area (m2)

Tcolumn Throughput in a chromatography column (g product/hr org product/min)

Tprocess Throughput from a whole process (g product/hr org product/min)

e Half disk angle in the centrifuge (rad)

Ototal Total duration of column operation

Integration parameter used in the lo (x ) function

Abbreviations:

AU Absorbance Units

BPS BioProcess Simulator

CDR Complementary Determining Region

CF Concentration Factor in ultrafiltration

Chi-3 Constant regions 1 -3 of the heavy antibody chains

CIP Cleaning in Place

C l Constant regions of the light antibody chains

COG Cost of Goods

cGMP Current Good Manufacturing Practice

DBC Dynamic Binding Capacity
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DNA Deoxyribonucleic acid

DOE Design of Experiments

ELISA Enzyme Linked Immunosorbent Assay

F ab Antibody fraction for antigen binding

FAST Fourier Amplitude Sensitivity Test

F c  Antibody fraction that can be crystallised

FDA Food and Drug Administration

GA Genetic Algorithm

GP Genetic Program

GSA Global Sensitivity Analysis

IEX Ion exchange chromatography

IgG Immunoglobulin G

IOD Integrated Optical Density

LSA Local Sensitivity Analysis

mAb Monoclonal antibody

MADM Multi-Attribute Decision Making

MEP Mercapto-Ethyl-Pyridine

OR Overall Rank (-)

pAB Polyclonal antibody

PAGE Polyacrylamide Gel Electrophoresis

PAT Process Analytical Technology

PBS Phosphate Buffered Saline

pGH Porcine Growth Hormone

QBD Quality By Design

QC Quality Control

RMS Root Mean Square

SI Sensitivity Index

SDS Sodium Dodecyl Sulphate

SPD SuperPro Designer

UCL University College London

UF Ultrafiltration step

USD Ultra Scale-Down

VBA Visual Basic for Applications

Vh Variable regions of the heavy antibody chains

V l Variable regions of the light antibody chains
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1: INTRODUCTION

1.1 Challenges faced by the pharmaceutical industry

The growth in the number and variety of pharmaceuticals being developed as a result of advances in 

genetic engineering and cell culture technologies has enabled the commercialisation of many novel 

therapeutics (Karri et al.( 2001a; King et al., 2004), providing significant benefits to patients and 

pharmaceutical companies alike. From the instant that drug candidates are discovered, 

pharmaceutical companies have always strived to develop and market them as soon as possible 

(Levin and Papageorgiou, 2004; Hausner, 1998), because up to US $1 million income is lost for 

every day that a product is not on the market (Basu et al., 1998; Lim et al., 2004). To this end, 

companies historically spent little time in optimising manufacturing scale processes early in 

development, in order to minimise time to market and so maximise the returns made when selling 

under the exclusivity afforded by a patent. Any process optimisation that was attempted was often 

delayed until the latter stages of clinical trials, when the probabilities of drug success were 

sufficiently high to justify capital investment (Farid et al., 2000a). Due to high cash burn rates and 

with little time left before product launch, this typically meant that very few improvements were 

actually implemented (Mustafa et al., 2004), often resulting in technically and financially sub-optimal 

operation at large scale. Nevertheless, such strategies were often acceptable in the past because 

companies were able to command significant premiums for their drugs, resulting in revenues that far 

exceeded manufacturing costs (Pisano et al., 1995).

Recently, the pharmaceutical industry has experienced unprecedented commercial and regulatory 

pressures (Shah, 2004) that threaten the financial stability of the industry. The growing complexity of 

potential new therapeutics (e.g. genes or whole cells), the drive to apply current Good Manufacturing 

Practice (cGMP) to products early in development, longer times to market and more extensive 

clinical burdens have all driven up development costs and times (Drews and Ryser, 1997; Karri et 

al., 2001b; Rooney et al., 2001; Titchener-Hooker et al., 2001; Schmid and Smith, 2002). New 

therapeutics may cost US $500 - 800 million or more to develop and take upto 15 years to arrive in 

the marketplace (Bauer and Fischer, 2000; DiMasi et al., 2003), in part driven by the growing 

complexities of manufacturing technologies (Lim et al., 2004) and time required to complete clinical 

programs. For drugs that are successfully commercialised, shorter effective patent lives, greater 

worldwide competition, generic substitution and reimbursement pressures all jeopardise their 

profitability (Tranter, 1999; Terzi and Cavalieri, 2004; Deeds et al., 2000; Doblhoff-Dier, and Bliem, 

1999; Karri et al., 2001 a/b). Such problems are compounded by the high attrition rate of drugs, with 

75% of development costs associated with the expense of previous failures (Clewlow, 2004). All of 

these factors point towards a growing need to accelerate process development studies, maximise 

yields, improve resource utilisation and reduce cost of goods (Farid et al., 2000b).
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1.2 Process development strategies

To achieve these goals, a number of manufacturing strategies are available which demonstrate 

potential to reduce manufacturing costs and times whilst boosting product throughput. The purpose 

of this thesis is to explore the challenges involved in adopting these changes for processes that are 

already used for commercial production. Examples of strategies being explored industrially include:

Techniques Example Potential considerations

Increasing initial 

product concentration

Fermentation and cell culture 

product titres have improved 

significantly resulting in far 

greater quantities of product 

being subjected to downstream 

purification

Although titre improvements 

potentially enable an increase in the 

amount of final product, it also 

increases the probability of 

bottlenecks appearing in recovery and 

purification

Consolidating multiple 

steps into a single 

step

Precipitation and centrifugation 

steps used for the initial capture 

of an antibody product could be 

replaced with a single 

chromatography column step

Any possible reduction in processing 

times and costs need to be balanced 

against the need for process re

validation

Replacing one unit 

operation with 

another

Replacing a centrifuge used for 

initial cell harvesting with 

microfiltration

The lower shear environment in 

filtration may provide advantages over 

centrifugation when processing 

delicate biological materials

Removing unit 

operations

Removing one or more purifying 

chromatography columns from a 

sequence of such steps

The cost and time advantages would 

need to be balanced against the 

added purification burden presented to 

operations further downstream

Table 1: Examples of strategies considered for their potential to achieve improvements to commercial-scale 
manufacturing processes

The challenge of evaluating these options has driven the development of methodologies for the 

rapid, inexpensive assessment of the likely financial and technical performance of production 

processes. These techniques include ultra scale down (USD), which facilitate rapid early stage 

evaluation of manufacturing options with millilitre quantities of process material (Varga et al., 1998; 

Boychyn et al., 2000) and bioprocess manufacturing simulations, which have attracted recent 

interest (Ungarala and Co, 2000; Lim et al., 2004) for their ability to evaluate and compare novel 

process routes (Petrides et al., 1989; Rouf et al., 2001; King et al., 2004; Farid et al., 2005; Chhatre 

et al., 2006). This thesis employs a combination of modelling and USD experimental techniques to 

evaluate the impacts of implementing changes such as those given in Table 1 to pre-existing
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commercial manufacturing operations and illustrates the utility of these approaches by an industrial 

case study. A summary of these techniques is presented below.

1.3 Simulation-based approaches to evaluating process changes

1.3.1 Advantages of bioprocess modelling

Mathematical simulations provide a potentially valuable design tool for the bioprocess industry (Zhou 

et al., 1997) for reducing the times and costs of both process development and product manufacture 

(Titchener-Hooker et al., 2001; Karri et al., 2001a). Models which address both business and 

process aspects enable an engineer to answer technical and financial questions simultaneously (e.g. 

identifying the effects of changing column operating conditions on product yield as well as resource 

utilisation -  Farid et al., 2000a). The benefits of employing such models are listed in Table 2 (Page 

26); ultimately, these advantages enable a company to identify the best route(s) for optimising a 

process and to get it right the first time around (Venkatasubramanian, 2005). To put these 

advantages into context, the next section describes the development of bioprocess simulations to 

date and the current status of the field.

1.3.2 Current status of the bioprocess simulation field

The use of modelling software has increased rapidly within the manufacturing sector as a whole, 

driven by a growth in the size, cost and intricacy of projects and the need to achieve success the first 

time around (Giannasi et al., 2001). Despite the aggressive deployment of simulators for process 

design in sectors such as polymers or chemicals (Lim et al., 2004), its acceptance in the 

bioprocessing industry has been noticeably slower (Shanklin et al., 2001; Mustafa et al., 2006) and 

the technique remains underdeveloped for the description of industrial scale bio-manufacturing 

processes due to the following factors:

•  Many unit operations are only poorly characterised and involve complex biophysical 

phenomena, meaning that the mathematical equations used to describe their behaviour only 

provide approximations of likely performance

•  Products can include proteins, DNA or whole cells, the properties of which may be unknown or 

variable from batch to batch. Default values are often used in such cases, making it difficult to 

construct robust simulations

•  The lack of available process data often results in simulations relying on, ‘default,’ input values 

that may vary significantly from reality

•  Mainstream simulation packages generally model continuous processes, whereas bioprocesses 

predominantly operation in batch mode

•  The impacts of interactions between process steps are often not incorporated into simulations
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Focus laboratory and pilot scale development on the most worthwhile options and so allow a company to reduce the total number of studies required (Petrides et al.,

2002a). Furthermore, options can be assessed more quickly and cheaply on a computer than by experimentation

Evaluate the likely capital investment and production costs of a manufacturing process in siiico before committing resources to a project (Lim et al., 2004)

Compare different flowsheet choices to determine which one meets required goals, such as on grounds of cost effectiveness (King et al., 2004; Mustafa et al., 2004) 

Quantify the impact of a process change, so providing justification for its implementation (Watson et al., 2000)

Provide a rationale for capital investment or process optimisation, ultimately facilitating fast and efficient process development (Ernst et al., 1997)

Determine the impacts of changes to one unit operation and the knock-on effects downstream on yields, costs, times and throughputs (Pisano, 1996; Groep et al., 

2000). This is especially useful where the impacts of process change are unexpected or counter-intuitive (Williams, 1999)

Calculate resource utilisation (Workman, 2000) in order to eliminate bottlenecks and identify the best way to make more efficient use of limited resources (Petrides et 

al., 2002a)

Introduce a common language to facilitate communication between different groups such as primary recovery and purification (Petrides, 1994) or within research and 

development to achieve commercialization (Lim etal., 2005)

Allow investigation of an experimental design in order to shed light on the assumptions underlying a model (Holford et al., 2000)

Table 2: Advantages of bioprocess modelling
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1.3.3 Commercially developed bio-simulation software

These restrictions have meant that (bio-) pharmaceutical simulations have only developed within the 

last two decades, with the majority of publications on the subject coming from the creators of 

commercially available software (Lim et al., 2004). There are two main packages in existence -  

BioProcess Simulator (AspenTech) and SuperPro Designer (Intelligen). BioProcess Simulator (BPS) 

contains an extensive bank of unit operations models which can be used to simulate a bioprocess 

flowsheet -  from ancillary functions such as mixing and splitting modules, sterilising systems and 

heat exchanger systems, through to primary unit operations such as fermentation, centrifugation, 

ultrafiltration and chromatography. Petrides et al. (1989) used the package to model the 

manufacture of porcine growth hormone (pGH) and assess the financial viability of the proposed 

flowsheet with respect to capital and production costs. A critical drawback of the package is that the 

costing calculations are based on the chemical engineering simulation package Aspen Plus (Rouf et 

al., 2001), meaning that BPS fails to consider the higher expenses imposed by stringent regulatory 

requirements.

SuperPro Designer (SPD) works in a similar fashion, with a series of unit operations models 

represented graphically by icons that are cloned to a workspace and connected together in the 

required sequence to simulate the flow of materials between stages (Petrides et al., 2002b). 

Economic evaluation is achieved through a costing module that is specific to bioprocesses, making 

SPD superior to BPS in this respect (Rouf et al., 2001). For example, Fee (2001) used SPD to 

calculate the relative economic merits of different wash strategies during the expanded bed-based 

recovery of a protein product.

Despite their potential advantages, these commercial packages still present distinct problems which 

hamper their deployment for the routine design and development of bio-manufacturing processes:

•  Such packages are static i.e. they do not account for the dynamic resource allocation over the 

time course of a simulation as dependent upon availability and demand by other parts of the 

process (Lim et al., 2004)

•  The lack of rigorous unit operation mass balance models (with little or no capability to customise 

the in-built equations or enter user-defined equations and data) limits the ability of SPD or BPS 

to make accurate predictions (Shanklin et al., 2001). The resulting over-simplifications can often 

mean that little detailed process insight can be achieved

• These programs only tend to consider capital and manufacturing throughput and generally 

neglect costs and times involved in developing and implementing process improvements (Baker 

and Wheelwright, 2004)

•  A review of the literature indicates that published studies have mainly focused on hypothetical 

case studies, thus neglecting the complexities and constraints imposed upon real industrial 

processes
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1.3.4 Academic bio-simulation software

The current generation of bioprocess simulations produced by academic research groups have 

predominantly focused on individual unit operations alone (Pinto et al., 2001; Groep et al., 2000), 

often involving the solution of complex ordinary or partial differential equations to evaluate material 

balances, such as for fermentation (Gebicke et al., 1993; Jang and Barford, 2000; Chowdhury et al., 

2003), homogenisation (Siddiqi et al., 1996; Wong et al., 1997), primary recovery such as filtration or 

centrifugation (Maybury et al., 1998; Shanklin et al., 2001; Chan et al., 2003; Reynolds et al., 2003) 

and chromatography (Li et al., 1998; Fee, 2001). By definition, models of individual unit operations 

fail to consider the likely interactions between process steps and although they constitute a useful 

first step toward the production of robust and predictive modelling packages, it is the simultaneous 

consideration of all operations and replication of the interactions between them that is needed for the 

assessment of whole process feasibility. The majority of models available only consider interactions 

in a qualitative, rather than quantitative fashion (Samsatli and Shah, 1996). Unit operations do not 

operate in isolation and even small changes at any given stage can dramatically affect operation 

there and further downstream. If a researcher purely optimises individual operations separately, with 

respect to the objectives defined for each stage alone, then the performance of the overall process is 

likely to be suboptimal (Groep et al., 2000). For the simulation to be beneficial, a completely 

interactive process flowsheet needs to be considered. Advances in this area so far have centred 

primarily on establishing modelling methodologies through the study of generic process flowsheets 

(Zhou and Titchener-Hooker, 1999a; 1999b) e.g. evaluation of the relative merits of expanded bed 

capture of a fermentation product as compared to the more conventional packed bed route (Mustafa 

et al., 2004) and the comparison between different process options for the manufacture of 

monoclonal antibodies (Lim et al., 2005). The methods developed in this thesis to overcome these 

problems are outlined in section 1.6 and are illustrated through an industrial case study described in 

the next section.

1.4 Simulations for assisting with regulatory concepts for design and manufacture

Growing emphasis is now being placed on using approaches such as Quality By Design (QBD) 

which employs DOE to achieve thorough process characterisation and thereby gain valuable 

understanding of which parameters are especially important in controlling a process and allowing it 

to satisfy product requirements. This information can be particularly useful in uncovering interactions 

between steps that can complicate the choice of the best operating conditions and utimately, this 

technique can help to achieve the most robust manufacturing strategy that can tolerate process 

variations without compromising on product quality. Nevertheless, although systematic application 

of the QBD philosophy provides useful data, time pressures within a typical drug development 

programme can make it difficult to carry out such a complete process characterisation. To 

circumvent this issue in the past, heuristics based on previous experience may have been used to 

identify an operating location, which may have met company and market goals but may not
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necessarily have been optimal in a financial or scientific sense. In light of the growing commercial 

and regulatory pressures in this area indicated above, a more rigorous QBD-based evaluation of the 

design space is becoming increasingly necessary to allow production to match economic and 

technical expectations more closely.

Successful implementation of QBD will require methods for rapidly identifying the most critical 

process parameters and then characterising the behaviour of the process as a function of those 

parameters. Simulations can help to achieve these objectives by allowing a user to explore the 

design space rapidly and so gain insight into the likely shape of the response curve, determining 

where the flat regions are that enable robust operation and also where edges of failure exist in a 

process. The knowledge gained from these studies can then prompt fractional factorial design 

experiments that concentrate upon the most relevant variables alone in order to investigate robust 

process regions in depth and work out the most suitable way to achieve satisfactory product quality 

in a reproducible, controlled fashion.

The understanding provided by models can also help with the implementation of other regulatory 

initiatives such as Process Analytical Technology (PAT), which use real time process testing and 

manipulation of, ‘critical quality and performance attributes,’ (http://www.emea.europa.eu/) to 

counteract variations in feed or process properties. At present, protocols for operating processes 

are fixed towards the end of clinical trials (end of phase II or the start of phase III), meaning that it 

can be difficult to accommodate variability and leading to potentially unacceptable inconsistency in 

the quality and quantity of the product. Knowledge gained from modelling-driven DOE studies can 

help to suggest PAT strategies that can counteract the variation and so allow a process to recover 

acceptable product characteristics. For example, if the titres from a monoclonal antibody cell culture 

vary over a certain range, then DOE studies can be undertaken to investigate the how variables 

such as the flowrate in a subsequent Protein A column need to be adjusted across that titre range in 

order to prevent breakthrough on the column and thereby achieve a consistent antibody recovery.

1.5 Industrial case study

1.5.1 Introduction

To provide industrial validity to the methods proposed in this thesis, their utility is illustrated by 

application to a process operated by Protherics U.K. Limited (Blaenwaun, Ffostrasol, Llandysul, 

Wales, U.K.) for the manufacture of the FDA-approved rattlesnake anti-venom CroFab™ 

(Newcombe and Newcombe, 2006). Approximately 100,000 people are killed by snake bites every 

year worldwide and antibody-based therapeutics purified from animal sera offers the best treatment 

modality at present (Boyer et al., 2001; Neal et al., 2003), due to the high specificity of binding 

between the venom and antibody molecules and the complex number of toxins present within snake
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venom. For example, rattlesnakes cause the largest number of snakebites and resultant fatalities in 

the United States of America (Juckett and Hancox, 2002) and hence there is a clear need for an 

effective treatment for both the local and systemic effects of rattlesnake envenomation. CroFab™ is 

an antibody fragment purified from ovine serum obtained from sheep that have been immunised with 

venom extracted from rattlesnakes. The product binds venom molecules and enables their 

distribution away from target tissues and hence their subsequent elimination (Neal et al., 2003). To 

put the characteristics and behaviour of this product into context, the next section discusses antibody 

generation through the immune response and the methods employed industrially for their 

purification.

1.5.2 The immune response and natural antibody manufacture

The immune system in humans and species employed to defend against attack by foreign particles 

can be divided into two groups: (1) the innate element, which consists of those parts which an 

individual has at birth and (2) the acquired element, which is more specialised and results from 

contact with the invader (immunisation), activating cells that manufacture bio-molecules to destroy 

the foreign agent (Abbas and Lichtman, 2004). Characteristics of acquired immunity include:

•  Tailored: the response is specific to each foreign agent

•  Adaptive: a response can be mounted against previously unknown molecules

•  Discriminatory: the system distinguishes between ‘self and ‘non-self cells to target the 

response

• Anamnestic: the system retains knowledge of previous contact, generating an ability to resist 

subsequent exposure and responding more rapidly and extensively

The cells involved in acquiring immunity are lymphocytes and fall into two groups -  B and T cells and 

the specificity of their immune response is explained by the clonal selection theory (Skerra, 2003):

•  Self reactive lymphocytes that respond against self cells are eliminated during early 

development, allowing all reactivity to be focused on invaders

•  T/B lymphocytes exhibit a very wide repertoire of specificities prior to association with the

foreign agent, enabling a response that is specific to potentially unseen non-self entities

•  Foreign bodies possess characteristic structures called antigens which are used by the immune 

system to recognise them as non-self. Lymphocytes bind to the antigen and hence the cells 

become activated and releases bio-active products

•  Each lymphocyte is specific to one binding site on the antigen

The bio-active products manufactured by B cells are antibodies, which are glycosylated proteins that 

circulate in the bloodstream and bind to the antigen of non-self particles, inducing their neutralisation 

and ultimate agglutination and disintegration (Bailey and Ollis, 1986). Antibody binding occurs 

through a complementary ‘lock and key’ fit (Roque et al., 2004) with a portion of an antigen called an
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epitope, by a range of non-covalent interactions such as hydrogen, ionic and hydrophobic bonds as 

well as London Dispersion and dipole-dipole forces. The epitope is typically a few amino acids long 

and there may be several on each antigen. Each foreign agent induces antibody production against 

each epitope of each antigen, resulting in a mixed antibody population termed a polyclonal response. 

The structure of an antibody facilitates its action (adapted from Coico et al., 2003):

Heavy chains

Figure 1: Antibody structure 
V = variable; C = constant; H = heavy; L = light. A complementarity determining region (CDR) is shown in the Vh 

part of the molecule. The thick black bars represent interchain disulphide bonds.

Antibodies consist of two heavy chains and two light chains, with interchain disulphide bonds 

providing stability to the molecule. There are also intrachain disulphide bonds, around which the 

chains fold into compact globular domains possessing homologous sequences; light chains have two 

domains (one in the variable region, one in the constant region), whilst heavy chains have one in the 

variable region and three in the constant region (Farid, 2001). Hydrophobic interactions between 

certain domains also further stabilise the molecule (Vh-Vl; Chi-Cl; Ch2-Ch2; Ch3-Ch3). The greatest 

variability between different antibodies is found in three regions of the N-terminal 110 amino acid 

sequence of both light and heavy chain of the first domain (Vl and Vh) -  Coico et al. (2003). These 

areas are said to be hypervariable and since they are complementary to the structure of the epitope, 

are called complementary determining regions (CDR). Differences in CDRs between different 

antibodies provide for their antigen binding specificities (Brekke and Sandlie, 2003). It should also 

be noted that the hinge region between the first and second CH provides flexibility in opening up the 

two diagonal arms to bind to epitopes or antigens that may be some distance away from each other.

In addition to hypervariability in the N-terminal region, there are also a number of different types 

(isotypes) of antibodies, which are normally classified by the type of heavy chain (y , a ,  \i, 5, c ) and 

light chain (k ,  A,). The different heavy chain antibodies are called immunoglobulin isotypes -  each 

with the same epitope specificity but a different biological function -  and are referred to IgG, IgA, 

IgM, IgD and IgE, with IgG being the most prevalent (-80%). These differ according to the structure

VH

Vl

Chi

Ci

Ch2

Ch3
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in the constant domains of the heavy chains, such as with respect to their glycosylation patterns 

(Watt et al., 2003). It is this part of the molecule that mediates biological functions such as:

•  Neutralisation of toxins

•  Immobilisation and agglutination of organisms, which result in formation of precipitates that are 

readily eliminated by phagocytosis (Mackean and Jones, 1985; Davies, 1997)

•  Triggering the complement cascade -  a system of more than thirty proteins linked through an 

enzymatic sequence which produces a series of factors that destroy the foreign body

•  For large particles, antibody binding may be sufficient to prevent pathogenic action e.g. 

adhesion can block any interaction between foreign body and target human cells

It is possible to obtain a number of commercially interesting fragments from antibodies by enzymatic 

digestion. Papain, for example, is an endopeptidase that splits the antibody molecule above the 

disulphide bond at the hinge into two identical F ab components and one F c  component (Porter, 1959; 

Aubrey et al., 2004). F ab on its own is sometimes preferred to whole antibodies in terms of biological 

activity because of its smaller size and hence higher diffusion rates, faster clearance from circulation 

and reduced immunogenicity (Coleman and Mahler, 2003). In the case of CroFab™, the 

therapeutic activity of the anti-venom derives entirely from the Fab region; removing the Fc 

component reduces potential adverse immunogenicity and enables the smaller Fab fragment to 

leave the blood stream more quickly than intact IgG (Neal et al., 2003). Hence, IgG digestion by 

papain is used by Protherics for CroFab™ manufacture.

1.5.3 Therapeutic antibodies

Monoclonal antibody-based (mAb) therapies, containing immunoglobulins with only one specificity, 

have made many valuable clinical contributions (Farid, 2007), for conditions ranging from cancer and 

infectious diseases through to the treatment of autoimmune responses (Torphy, 2002). A number of 

monoclonal antibodies have received regulatory approval and have been commercialised including 

Rituxan (non-Hodgkins lymphoma), Herceptin (breast cancer) or Zenapax (kidney transplant 

rejection) with many more in the pipeline (Shukla et al., 2007). As such, antibodies constitute one of 

the most important classes of biotherapeutics in development and production (Flatman et al., 2007) 

-  a trend that is likely to continue for the foreseeable future.

Although the majority of antibodies of commercial interest are monoclonal, polyclonals (pAbs) 

nevertheless also constitute an important class of therapy for neutralising toxins and overcoming 

immunoglobulin deficiencies (Newcombe and Newcombe, 2007). As outlined above, a pAb 

population is the natural result in animals or humans following infection or immunisation resulting 

from the simultaneous activation of the clones from many different B lymphocytes. A pAb mixture 

therefore consists of many different antibodies that have been raised against a range of epitopes on 

each antigen on a foreign molecule. Although it is technically possible to manufacture all of these
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antibodies as separate monoclonals and mix them together, this would require multiple parallel 

culture systems for each mAb, which would be time consuming to set-up, difficult to control and 

highly capitally intensive. Furthermore, each separate antibody would require its own quality control, 

quality assurance and validation (Newcombe and Newcombe, 2007). These regulatory and financial 

obstacles makes polyclonal antibodies purified from animal sera more attractive and since there are 

many different antibody types in a pAb mixture, this also potentially offers greater efficacy than a 

mAb that is specific to one epitope alone, therefore enhancing the therapeutic value of a product 

such as CroFab™.

1.5.4 Details of the commercial manufacturing process

The process flowsheet used for CroFab™ manufacture is shown in Figure 2. Preparation of the 

antivenom product starts with hyperimmunisation of sheep. All flocks are located in Australia so as 

to comply with the regulatory requirement that serum-derived products can be certified as free of 

transmissible spongiform encephalopathies. Four different rattlesnake (Crotalidae) venoms are 

purified -  C. atrox (CCT), C. adamanteus (CCD), C. scutulatus (CCS) and Agkistrodon piscivorus 

(CAP). After approximately 26 weeks, when sufficient venom-specific IgG levels have built up, blood 

is collected by cannulation of the jugular vein, clotted, depth filtered and frozen prior to shipping to 

the U.K. Following thawing and pooling of the ovine serum, the material is depth filtered to remove 

any cryoprecipitates formed during freezing and thawing the bulk. Fractional precipitation by sodium 

sulphate is then used to sediment the antibodies (typical IgG purities at this stage are greater than 

85% -  Newcombe et al., 2005) and the floes are separated from the contaminating soluble phase by 

disk stack centrifugation. The sediment is washed in phosphate buffered saline and sodium 

sulphate and subjected to centrifugation, resulting in antibodies recovery in the solids phase again. 

Depth filtration clarifies the process stream and thus prepares it for enzymic digestion by papain in 

which the immunoglobulin molecule is broken at its hinge region into its F ab and Fc components. 

Following depth filtration, ultrafiltration is used in concentration and diafiltration modes to reduce the 

volume of the in process material and reduce the salt concentration respectively in preparation for 

the next step. Ion exchange chromatography removes the Fc fragment and other minor impurities 

such as residual albumin. Finally, the product fraction is purified by an affinity capture step, in which 

the resin consists of snake venom molecules immobilised to a glass base matrix. This is used to 

recover the efficacious F ab fragments and separate them from the non-specific F ab present at the 

start of the process. The process shown in Figure 2 is run four times to isolate the different anti

venom F ab species, which are then blended together in equal amounts to produce the final material, 

concentrated and filtered to produce the final pre-formulation drug substance. Pooling samples from 

the four different antibody types creates a broad spectrum treatment applicable to a range of 

different bites (Neal et al., 2003). After viral filtration of this solution, diafiltration into phosphate 

buffer saline, depth filtration and concentration, the material is then shipped backed to USA for 

lyophilisation and final distribution.
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Figure 2: CroFab™ process flowsheet
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1.6 Unit operation theory

1.6.1 Introduction

The following describes the theory underlying the unit operations used for this process. Their 

mathematical basis and the equations used for the models are specific to each chapter and are 

therefore presented later.

1.6.2 Precipitation

Precipitation is an operation involving simple process equipment whereby a previously soluble 

material comes out of solution as a solid and is commonly used at the start of a purification process 

to achieve inexpensive volume reduction and a potential increase in product purity (Harrison et al., 

2003). In its native form, the protein assumes a structure that locks the apolar hydrophobic residues 

in the centre to maximise their Van der Waals interactions and minimises the unfavourable 

interactions with water, leaving the polar and ionic groups on the surface to hydrogen bond with 

water. This achieves some degree of solubility, which is enhanced by the double hydration layer that 

typically forms around most proteins that force them apart from each other and hence encourage 

them to remain solvated. Nevertheless, this structure only has a relative small Gibbs free energy 

(around 10-20 kcal/mol), meaning that the structure may only have marginal stability (Harrison et al., 

2003) and can therefore be disrupted by modest alterations to the environment surrounding the 

proteins. This can be achieved by adding salts such as sodium sulphate (Neal, 2005) and 

depending upon the ionic strength, the protein may either remain soluble (a process called salting in) 

or precipitated (salting out). Solubility generally peaks at a relatively low salt concentration and any 

significant increase cause solubility to fall and precipitation begins to dominate. When using 

aqueous solvents, salting-out effects pre-dominate, although certain proteins such as albumins can 

remain highly soluble at high ionic strengths. This property is exploited in by Protherics in the 

CroFab™ process by fractionally precipitating the protein of interest (Neal et al., 2003, 2004) and 

leaving the majority of the remaining contaminating serum proteins in the mother liquid. This can 

achieve significant purification -  for CroFab™, 75-80% of the albumin in the feed is removed in this 

step.

1.6.3 Filtration

Filtration membranes separate particulates from soluble components in a fluid suspension or 

solution according to their size, by flowing the liquid phase across a porous medium across which a 

pressure gradient is established to force the bulk fluid flow through (Harrison et al., 2003). Filter 

separations rely on the use of a membrane with pores of a certain size which permit particles of that 

diameter or below to pass through into the permeate (also called the filtrate), whilst particles that are 

too large are rejected (or retained) in the retentate phase. Two main types of filtration exist -  (a) 

conventional/dead end filtration and (b) cross flow/tangential flow. In the first, the fluid flow
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containing solids is normal to a membrane surface, with the particulates accumulating as a cake on 

the surface of the membrane, whilst in cross flow mode, liquid is pumped in parallel across the 

membrane surface, as shown in Figure 3. For dead end filtration, the solids thickness continues to 

build up and permeate flux reduces with time until it reaches zero, whereas with cross flow filtration, 

where the scouring action of the flow removes some of the cake, the feed with either a solute or solid 

becomes concentrated at the surface and eventually, the permeate flux reaches a constant steady 

state value. For the CroFab™ process, dead end filtration using depth filters (which rely on the 

tortuosity of the channels through the membrane and statistical probability to remove particulates) 

are used throughout the process in order to remove colloidal material to reduce turbidity that results 

from either the ovine feed or the precipitation step. The ultrafiltration membrane used for CroFab™ 

has pore sizes which with a cut off size of 30 KDa, allowing retention of F ab from the previous 

digestion step, and is used in two modes:

•  Concentration mode, in which the product becomes concentrated on the retenate side, whilst 

smaller molecular weight species pass through with bulk permeate flow

•  Diafiltration mode, in which a buffer is added to the concentrate tank at the same rate as the 

permeate is formed when passing the feed across the membrane, meaning that the retentate 

phase retains the same volume. For the CroFab™ process, diafiltration reduces the salt 

concentration, conditioning the process stream for the subsequent ion exchange step, which 

requires a low ionic strength feed to encourage binding of the F c  component to the matrix

Membrane steps are also used after the main process in order to concentrate and depth filter the 

material and also to achieve viral elimination.

Feed

i *
Retentate

•  • Feed M Retentate

i i
Permeate Permeate

(a) Conventional filtration (b) Crossflow filtration

Figure 3: Modes of filtration 
(Adapted from Harrison et al., 2003)
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1.6.4 Centrifugation

Centrifugation is commonly used at large scale for separating solids from a liquid feed stream and 

relies on the density difference between the two phases to achieve partitioning. It is regularly 

employed for operations such for cell harvesting following fermentation or removing debris following 

cellular disruption by homogenisation. The rotational force achieved in a centrifuge provides 

enhanced settlement to a feed stream relative to that experienced purely under gravity and 

generates two discharge streams -  one consisting of heavy sediment (containing the majority of the 

heavy solid particles) and the other of the lighter, predominantly particle-free liquid (supernatant). 

Large scale centrifuges can achieve accelerations of 20000 times that of gravity (20000g). Many 

different types of production-scale centrifuge exist, including tubular bowl, scroll and basket. 

Protherics employ a disk stack, which is a system of rotating inverted conical disks stacked upon 

each other and separated by spacer caulks of about 1 mm in height, thus minimising the duration 

needed for recovering dense solids while also allowing continuous liquid feed and discharge 

(Harrison et al., 2003). The feed is applied through the central shaft at the top of the bowl and under 

pressure, the flow path moves to the bottom of the bowl and then back upwards between the disks, 

as indicated by the arrows in Figure 4. The net force on the solids causes them to emerge from the 

liquid stream and accumulate on the underside of the disks, where they slide down and are held in a 

holding area at the side of the bowl. There, they can either be collected continuously through 

nozzles, or be discharged at the end of a batch (intermittent discharge). Meanwhile, the supernatant 

flows up between the disks and is discharged from the top of the bowl.

Feed

Supernatant

To bowl side

Figure 4: Simplified cross section of a disk-stack centrifuge and mode of separation

1.6.5 Ion exchange and affinity chromatography

Chromatography is a method of purifying a feed stream by its application to a column containing a 

stationary matrix (resin). Due to their molecular characteristics, different feed solutes possess 

different affinities for the matrix, enabling their separation. Many different types of chromatography 

matrix exist, two of which are employed in CroFab™ manufacture: ion exchange and affinity capture.
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The ion exchanger uses an anionic matrix which therefore enables it to bind negatively charged 

impurities such as the F c  component remaining after digestion, as well as digestion excipients and 

other residual proteins such as albumin. The F ab exhibits very little interaction with the resin and the 

majority passes straight through the column. The feed is applied at low ionic strength using a weak 

phosphate buffer (hence the diafiltration step in the ultrafiltration), whilst elution of the adsorbed 

impurities occurs at a 100 fold higher salt concentration.

The affinity step uses venom molecules that are immobilised to a custom manufactured matrix. Four 

different custom matrices are used to capture each of the different F ab components. The matrix is 

equilibrated with a phosphate buffer, after which the feed is loaded with a saline solution and then 

eluted by a low pH glycine buffer to produce the final venom-specific product.

1.7 General aims of the thesis

Based on some of the key gaps in the field, the ultimate aim of the thesis was to produce a suite of 

development tools -  primarily modelling based -  for rapid day-to-day decision-making about the 

feasibility of options designed to achieve improvements to pre-existing processes. Since the 

majority of models available in the literature concentrate upon individual process steps, a key focus 

for this thesis was to simulate whole process sequences, populated by real industrial data and 

constraints rather than the more commonly used hypothetical input data. The models evaluate 

changes from both financial and process perspectives, examining both economic factors such as 

cost of goods alongside technical aspects such as product yield. This integrated approach provides 

an effective basis for rationalising process changes (Karri et al., 2001a).

1.8 Novel contributions made to the field by the thesis

1.8.1 Evaluating changes to pre-existing processes

The majority of bioprocess simulations focus upon modelling new processes for the manufacture of a 

brand new drug, covering all activities from initial drug discovery, through to clinical trials, process 

development and optimisation, plant installation, commissioning, validation and finally several years’ 

worth of manufacture. This thesis differs in that it evaluates changes to an existing process and 

determines whether the effort involved in developing those strategies or the resulting improvements 

in production are large enough to make the change worthwhile. For example, if multiple process 

units are replaced by a single step in an attempt to shorten manufacturing schedules and reduce 

expenditure, then the models described in this thesis can determine whether the time and cost 

involved, such as for purchasing new columns or revalidating the process, achieves a large enough 

improvement to make the upgrade commercially viable.
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1.8.2 Evaluating financial and technical performance of industrial manufacturing processes

In general, simulations are not as widely accepted for routine pharmaceutical process design 

compared to other sections of the process industries and in part, this stems from a lack of 

confidence that people have the robustness and validity of the calculated outputs. Many of the 

publicly-available simulations focus only on either the technical performance of an individual unit 

operation or the financial characteristics of a generic process flowsheet populated by industry- 

averaged data values. This thesis integrates both financial and technical factors together when 

evaluating potential improvements for whole processes and demonstrates the benefits of this 

approach using actual data and resource constraints gained from an FDA-approved production 

process. Use of company-derived data-sets gives the research a greater sense of commercial 

reality than it would otherwise have.

1.8.3 Novel techniques for assessing the feasibility of a process

The application of specific techniques to the evaluation of process changes demonstrates novelty 

e.g. the use of a multi-layered modelling approach which minimises the amount of time-consuming 

experimentation needed to obtain input data, or the application of global sensitivity analysis 

techniques to a sequence of steps in a bio-manufacturing processs.

1.9 Specific aims of the thesis

1.9.1 Software selection

In order to fulfil the aims in Section 1.6 successfully, the first task carried out in this thesis was to 

select the most suitable package in which to construct a bioprocess simulation. Due to the lack of 

suitable commercial or academic software for modelling bio-manufacturing operations as described 

above, the simulation environment was chosen by comparing a wide range of different packages on 

the market and quantitatively ranking them (see Chapter 2: Materials and Methods).

1.9.2 Framework for evaluating the manufacturing impacts of changing large scale processes

Having selected the most suitable software, it was then used to construct an initial modelling 

framework for the evaluation of the manufacturing impacts of implementing moderate changes to 

large scale processes in terms of product yields and process times. Changes examined included 

changing feed volumes or bed volumes used in purifying chromatography columns. This work 

provides the first application in the public domain of bioprocess modelling techniques to a real 

industrial process with its own data/resource constraints and serves as a reference point for future 

work reported in the thesis -  see Chapter 3.
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1.9.3 A multi-layered software methodology for the evaluation of bio-manufacturing options

Although the previous chapter illustrates the utility of biomanufacturing simulations, their wider 

industrial acceptance would be further enhanced by development of other approaches. Models often 

require large quantities of input data, which may need to be gathered from time-consuming 

experimental studies. Where many flowsheet options are evaluated and several turn out to be 

unfavourable, the laboratory time spent acquiring the relevant data will ultimately represent a waste 

of resources. Chapter 4 presents a multi-layered methodology designed to overcome this problem, 

enabling the efficient use of models and the underlying experimental studies. In each layer, inferior 

options are screened out, while more promising candidates are evaluated further in the subsequent, 

more refined layer, which uses more rigorous models that require more data from time-consuming 

experimentation. Screening ensures laboratory studies are focused only on options showing the 

greatest potential. To demonstrate the value of the methodology, it was used to investigate the 

attractiveness of options such as increasing feed volumes or replacing process steps.

1.9.4 Evaluation of the development and manufacturing impacts of changing processes

Whereas the first two research chapters concentrated upon assessing the manufacturing effects of 

changing a process, they did not consider the costs and timescales involved in doing so. Chapter 5 

therefore describes a two-part decision-support model which is used to assess both the 

development- and manufacturing- related impacts of implementing a series of major changes to 

large scale processes. A multi-attribute decision-making technique is described which integrates the 

outputs of the two models into a single value to simplify the comparison between strategies. 

Changes that were examined included increasing feed titres, replacing multiple steps with a single 

operation and removing unit operations altogether. These options were assessed in terms of both 

developmental costs and times as well as manufacturing production levels, COG and batch times.

1.9.5 Global Sensitivity Analysis for determining parameter importance in bioprocesses

In previous chapters, the process changes that were evaluated were selected as being those of 

typical industrial relevance; however, it is also possible that a company may not know which input 

parameters are the most important to a process. Knowledge of which changes are likely to have the 

greatest influence before running a model would enhance its utility by identifying those process 

attributes which offer the greatest potential for achieving manufacturing improvements. This issue is 

addressed in Chapter 6, which describes the application of a technique called Global Sensitivity 

Analysis (GSA) to mathematical models of bioprocess flowsheets in order to identify the most critical 

variables that influence product yield and throughput.
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1.9.6 Development of methods for the industrial-scale chromatographic purification of 

antibodies

Although simulations of whole processes are desirable in order to create methods that have 

industrial relevance, individual unit operations also require robust models in order to make accurate 

predictions of the best operating conditions to choose that satisfy production goals. This is 

particularly true of purification based on affinity chromatography, where expensive, custom-made 

resins may be employed for the purification of antibodies that are specific to particular antigens of 

interest (Thillaivinayagalingam et al., 2007). The high cost of such matrices necessitates efficient 

process design in order to maximise their economic potential and thus techniques identifying the 

most suitable conditions for achieving desired manufacturing performance provide significant value. 

Hence, the first part of Chapter 7 describes a computer model which incorporates the effects of 

capacity changes over consecutive chromatographic cycles in order to identify combinations of 

protein load and loading flowrate which satisfy preset constraints for product yield and throughput. 

The method is demonstrated by its application to an affinity column operated by Protherics for the 

manufacture of another polyclonal F ab product called DigiFab™, for the treatment of digoxin toxicity.

Another strategy considered industrially involves column chromatography for initial product recovery 

and purification, instead of more conventional operations such as precipitation or centrifugation 

(Chhatre et al., 2007a). Although resins such as Protein A are commonly employed to capture IgG 

in monoclonal antibody production, several problems arise, including their high purchase cost of the 

matrix and the need for expensive cleaning agents. Furthermore, low capture efficiencies and 

binding affinities observed with crude, highly viscous feeds (Huse et al., 2002) and other questions of 

resin shelf life and ligand leakage (Yavuz et al., 2006) have driven the development of novel 

matrices which employ low molecular weight synthetic ligands. The second part of Chapter 7 

focuses upon the evaluation of one such prototype agarose-based synthetic ligand adsorbent 

(Millipore, Consett, Co. Durham, U.K.) for recovering an antibody product from a crude industrial 

feedstock. The prototype is compared to commercially available matrices by static and dynamic 

capacity measurements and by inverted confocal microscopy to visualise product diffusion inside 

particles of the matrix.
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2: MATERIALS AND METHODS

2.1 Introduction

This chapter describes the techniques required to complete the modelling and experimental studies 

outlined in the first chapter. The challenges encountered when modelling bio-manufacturing 

activities are summarised, followed by selection of the appropriate dynamic software needed in order 

to meet these challenges and generate the required simulations. A generic hierarchical structure 

that was applied to the different dynamic models is then put forward, explaining how the simulations 

were constructed in order to capture all of the aspects associated with bioprocess manufacture. 

Finally, the details of the synthetic chromatography experiments are described.

2.2 Challenges of bioprocess modelling

The successful modelling of bio-manufacturing activities presents three main challenges:

•  Data relating to process costs, material balances and durations of unit operation activities need 

to be captured, entered into a suitable database and connected to the main modelling software

•  Resource pools for labour, chromatography columns, process vessels etc. need to be created 

from which activities can draw resources and then replenish after use, if appropriate (this does 

not occur for disposable/'single-use’ resources such as buffers)

•  The principal activities underlying the operation of individual stages need to be generated, 

incorporating functions to fetch and return resources and time-delay functions to represent the 

durations of those activities

Other requirements of the model include the need for an intuitive user interface for housing and 

manipulating the input data and also a logical structure for organising the model which ensures that 

all of the aspects relevant to biomanufacturing are incorporated.

2.3 Software selection

2.3.1 Software criteria

•  Overcoming these challenges requires a judicious selection of the most suitable modelling 

environment. Of these, there are many types available commercially and these can be 

categorised into two different groups -  (a) Static or dynamic and (b) continuous or discrete

Spreadsheets are classical examples of a static environment and traditionally, custom in-house 

process models were frequently constructed in spreadsheets (Lim et al., 2004). Although their use is 

still widespread for decision making (McGill and Klobas, 2004), their static nature makes them 

unable to account for typical bioprocess dynamics. Static programs are unable to account for the 

dimension of time during calculations. Hence, for example, if a formula representing an output as a
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function of time is entered into a cell in Microsoft® Excel (Microsoft Corporation, Washington, 

U.S.A.), the model will only be able to evaluate that equation at the values of the inputs, therefore 

only providing a single model output under the defined set of input conditions. Unless code is 

specifically introduced to iterate the calculation over different values of inputs, or the inputs are 

changed manually, the model will be unable to calculate the output function at any other input value. 

Dynamic simulations solve this problem by automatically calculating model values at each time step 

and permitting these to influence other parts of the model as needed. For example, dynamic 

modelling allows the presence of a pool from which resources are abstracted and replaced as 

necessary. Thus, if a particular resource is used up in one part of the manufacturing model, a call to 

use this resource from elsewhere will result in that part of the simulation halting and waiting until the 

resource is replenished in adequate quantities to cover the latest demand.

Models can alternatively be classified as either continuous or discrete event. In the former, there is a 

continuous flow of data values through the model, with data values re-calculated at regular intervals 

in time, enabling the model output to be evaluated if the input time is known. By their nature, 

manufacturing operations in a pharmaceutical facility occur irregularly -  it is impossible to say that a 

particular event will occur at any given time, as it depends on the state of the model at that time. For 

example, if insufficient manufacturing staff is unavailable to carry out a specific task in that facility, 

then the model will not allow a given event to occur unless and until enough labour becomes 

available. This situation can be modelled as a discrete event simulation, where product batches 

moving through a process are represented as, ‘items.’ The status of an item only changes when an 

event occurs and not as a direct function of time e.g. a product batch (item) only moves into a unit 

operation model once a resource constraint is lifted.

On this basis, the first task involved choosing appropriate dynamic and discrete event software, 

capable of calculating process times within the available resource constraints, as well as evaluating 

material balances and cost of goods. To this end, a review of available software was carried out on 

the World Wide Web, examining software reviews, images of the interfaces and downloaded sample 

simulations to identify their advantages and disadvantages. The following criteria required for each 

program were used in their appraisal, specifying that the software should...

1. Enable rapid model development, with the ability to add and manipulate parameters or 

properties to represent bioprocesses accurately

2. Have a graphical and intuitive interface

3. Use a hierarchical structure to enable inheritance of properties, reducing time involved in 

repeatedly configuring new objects

4. Not be excessively processor or memory intensive, as this could produce a slow simulation

5. Provide methods for the automatic export of output data from the simulation
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6. Use a programming language already known by the author (namely Visual Basic or C++)

7. Be relatively easy to learn

8. Have the capacity to correct model errors during the course of a simulation run (facilitates faster 

debugging)

Eighteen simulation environments were identified and scored between 0 and 10 for each of these 

features, zero representing a feature that is not supported at all and ten indicating a fully supported 

feature. Scoring was based upon the numerical representation of the qualitative impressions gained 

from each program. Where little information was available about a feature other than its existence, a 

default value of five was used. The details of each individual environment are given in Appendix 1.

2.3.2 Software evaluation

A more detailed summary of each piece of software, including the manufacturer, are in the appendix.

Criteria

1 2 3 4 5 6 7 8 Average (%)

Analytica 5 8 5 9 8 5 5 5 63

Anylogic 5 8 5 2 8 5 5 5 54

Arena 8 7 5 7 3 5 5 5 56

Crystal Ball 4 3 5 8 8 5 4 0 46

Decision Pro 5 8 5 8 8 5 5 5 61

emPower 5 7 10 3 8 5 5 5 60

Enterprise Dynamics 7 5 10 8 4 5 5 5 61

Flexsim l 9 8 10 5 6 7 5 5 69

GPSS World 6 8 10 8 4 4 4 5 61

Pasion Simulation System 7 7 10 8 7 3 4 0 58

PIMSS 4 7 5 3 4 5 4 5 46

Provision 5 6 10 5 8 5 5 0 55

Resource Manager 5 4 5 4 5 5 5 5 48

SansGUI 5 7 10 8 7 7 2 5 64

ShowFlow 7 8 10 8 7 5 5 5 69

VisSim 8 8 5 6 4 7 5 5 60

Visual Simulation Environ. 5 7 10 5 6 5 6 5 61

Table 3: Scores of eighteen different modelling environments
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Evaluation was carried out using a 1.4 GHz Pentium computer using 256 MB and operating on the 

UCL network with Windows® 2000 Professional. Based on the qualitative assessments and the 

scores above, ‘Extend™,’ version 6 (Imagine That, Inc., San Jose, U.S.A.) was selected. This is a 

powerful dynamic and discrete event simulation environment which accurately reflects the impacts of 

resource constraints upon manufacturing throughput. Additionally, Extend™ provides an intuitive 

modelling and data reporting system and consequently, has been used by other researchers to 

represent bio-manufacturing activities (e.g. Lim et al., 2004; Mustafa et al., 2004) and the drug 

development pathway (Rajapakse et al., 2004; Rajapakse et al., 2006). This experience was also a 

key motivating factor in choosing the package. All Extend models were developed and executed on 

a 1.4 GHz Pentium M 256 MB RAM computer running Microsoft® Windows® XP (Microsoft 

Corporation, Washington, U.S.A.).

2.4 Model construction in Extend™

Extend™ consists of many libraries which containing pre-coded modules (called blocks) which can 

be customised to represent the standard functions required to model a pharmaceutical production 

facility. Properties of the block can be manipulated by double clicking on them to access their dialog 

boxes. Data values can also be entered using data inlet ports which are attached to each block. 

Models of individual unit operations are constructed by cloning such blocks onto a workspace, 

adjusting their properties and linking them together with stream lines. These individual unit operation 

sub-models are then connected together to produce the dynamic model for the entire production 

process. The main block types required to achieve this are given in Table 4.

Extend™ automatically tracks the passage of time through a simulation in order to calculate 

campaign lengths. It should also be noted that model usage is aided by the animation facilities in 

Extend™, which enable visualisation of activities as they occur in the simulation. This feature is 

used by both the developer to eliminate coding errors and also by the end-user, such as for 

identifying bottlenecks. In the models developed in this thesis, outputs of total process duration, 

costs and material composition were exported from Extend™ back to a spreadsheet in Microsoft® 

Excel XP for further analysis.
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Block type Description

Program and Exit Program blocks generate items for use in the simulation, with its dialog box providing a means to enter a schedule for when batches start. Exit blocks take items out of simulations and provide a defined 

means for batches of product to leave the model

Activity delay These represent the duration of every step in every unit operation, with a data inlet port allowing time delay data to be inserted into that block and the item to be delayed for that duration

Attributes 

(‘Set’, ’Get’ and 'Change')

Attributes are stream properties that are loaded on to items to represent their physical state e.g. material balance data. Set attribute blocks are used to assign initial values to each attribute as an item 

commences its progress through the simulation. As an item moves through each unit operation model, attribute values can be retrieved by the Get Attribute block and updated by the Change Attribute 

block -  such as for mass balance calculations

Queues These can be used to store an in-process batch, representing a holding point

Resource pool 

('Get' and 'Release')

Resource pools are special types of queues. Pools are established for each resource (labour, holding vessels or disposable bags, specialised equipment (e.g. centrifuges/chromatography columns), 

chromatographic matrices, filter membranes and buffers). Get and release resource pool blocks are positioned either side of activity delay blocks in order to request and replenish the resource pools 

(the latter is not used for single use resources i.e. buffers/disposable bags). Items go into each Get Resource block and if sufficient resources are available to cover the demand, the items carries on -  

otherwise, the item is forced to wait until resources are freed from other tasks

Data communication Extend™ allows data to be imported and exported from sources such as spreadsheets. This enables input data to be stored externally and manipulated through an external user interface, such as one 

set-up in Visual Basic for Applications within Microsoft® Excel. This approach provides a more user friendly way of entering information into the model than can be achieved in Extend™ and also allows 

programming code to be entered in order to ensure that inserted data have an acceptable format or quantity (e.g., disallowing the entry of insufficient vessel numbers to hold process volumes)

Batching Batching is used to combine items together e.g. for the CroFab™ process, where items representing each of the four venom types are modelled, these need to be combined when the affinity purified 

Fabs are blended together to produce one process stream

Hierarchical blocks Extend™ provides an ability to group parts of a model together and hide their details within a 'hierarchical' block. Double clicking on the hierarchical block opens up a separate window including all of the 

selected blocks that were previously on the main workspace. This process can be repeated as many times as are needed, enabling hierarchical structures of blocks to be built up that provide a logical 

and ordered way of structuring a model. This also enables suitable groups of blocks to be re-used by simply copying and pasting their hierarchical 'container'. The structure of the model according to a 

hierarchical decomposition is outlined in Section 2.6

Throw and catch Extend™ allows different parts of a model to be segregated e.g. one part of the main workspace may contain a hierarchical block containing the mass balance models, whilst another may contain the 

resource blocks, a third set to represent each process step etc. As items go through each process step, they will ‘call’ the other relevant hierarchical blocks e.g. requesting resources or calculating a 

material balance. Throw and catch blocks are used to divert items from one hierarchical block to another and back again in order to achieve the desired flow of items through the simulation

Decision blocks These are another set of blocks which are used to determine the flow of items through a process -  depending on the conditions entered into a Decision block, this allows items to be routed into different 

parts of the model as required

Operators /equations Extend™ includes the full set of usual mathematical operators and there are also equation blocks which perform mathematical manipulations

Plotters These can be used to create resource utilisation profiles

Cost accumulator Resources can be assigned a cost as an amount per unit e.g. £/L. Usage is automatically tracked and a cost report is produced at the end of the simulation

Table 4: Blocks used in Extend™ 
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2.5 Example o f m odel construction

The figure below illustrates part of a model (from the elution sub-task of an ion exchange step) in the 

industrial case study, showing how blocks are connected together and how items pass between 

them. As outlined above, items mimic the flow of batches through a modelled process, passing 

through the simulation along stream lines (the double lines between blocks A-D in Figure 5), 

requesting and releasing resources or being delayed in the appropriate blocks to represent times 

spent in individual parts of the process.

EX. aiLts 3

Batch In
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Figure 5: Sample screenshot of the elution sub-task in the ion exchange step 
The circular item represents a product batch; Key: (A) ‘Queue, Resource Pool’ block, which requests elution 

buffer; (B) ‘Queue, Resource Pool’ block, which requests labour to perform the task; (C) ‘Activity, Delay' block, 
which represents the duration of the elution; (D) ‘Release Resource Pool’ block, returning labour to its pool

Figure 5 shows an item (represented by the darkened circle on the left hand side) progressing along 

a stream line and about to enter a ‘Queue, Resource Pool’ block (A) which requests the elution 

buffer. Subsequently, the item enters the next block which requests labour to perform the elution 

task (B), after which it passes into an ‘Activity, Delay’ block (C) which causes the item to wait for a 

set period of time,. Finally, it enters the ‘Release Resource Pool’ block (D) which returns the labour 

resource to its pool. If at any point insufficient resources are available (e.g. if insufficient 

manufacturing labour is present within the pool to cover the demand), the item is forced to wait until 

an adequate quantity of resources become available. The boxes marked Batchln and BatchOut 

represent the points at which the item moves into and out of the elution task sub-model from the 

previous and subsequent parts of the simulation respectively. Data values from the user interface 

which were saved in a spreadsheet were then linked to Extend™ through the data access points 

indicated as Datal—4ln in Figure 5.

2.6 H ierarchical decom position

As outlined above, the models were generally organised according to a hierarchical decomposition. 

These have been used several times to describe bioprocesses (e.g. Farid et al., 2000a) and form a 

logical structure on paper within which to create simulations, ensuring that all features of a 

manufacturing process are captured. Hierarchical representations of bio-manufacturing operations 

are described by Farid et al. (2000 a/b) as a series of layers, each of which contains blocks that 

represent a particular task and which act as containers for lower-level elements. The first layer of

jBatchOut |
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blocks represents the entire process or manufacturing campaign and decomposes into stages such 

as product manufacture, materials preparation and equipment preparation. Each of these 

subdivides into specific manufacturing operations in the next layer -  e.g. buffer preparation, CIP, up- 

and down-stream steps for product formation, recovery, dewatering, purification and concentration. 

Finally, individual steps in each unit operation can be detailed -  e.g. charge, react, hold, mix, load, 

wash, discharge etc. Similar decompositions have been used by other authors (e.g. Lim et al., 2004; 

Mustafa et al., 2004).

The hierarchical decomposition is similar in philosophy to the S88 standard (Nortcliffe et al., 2001). 

Overseen by the Instrument Society of America, S88 lays down guiding principles for how to 

organise a batch process using suitable models, language and data structures. These allow the 

complete description of all the features of that process and thereby standardises the operation and 

configuration of batch control systems, allowing the following goals to be met:

•  Defines a set way to determine how to organise and control batch operations

•  Provides a common terminology to allow users to communicate their requirements effectively to 

each other

•  Provides consistency between different vendors to allow integration of different equipment 

types/formats

•  Enables the straightforward configuration of batch control

To achieve these goals, the S88 consists of a hierarchical structure for breaking down an enterprise 

such as a pharmaceutical company into its physical sites, which then reduce down to areas of those 

sites, followed by individual processes and then the component parts of that process. An example of 

the breakdown is shown below (Nortcliffe et al., 2001; http://www.isa.org):

An organisation which operates one or more 
manufacturing sites

Enterprise

Control module

Area

Unit

Equipment module

Process cell

Site A defined main region or section of a 
manufacturing organisation/enterprise

A logically or geographically defined sub-section 
of a site

A set of all equipment in an area which is needed 
for the batch manufacture of a specific material

A set of all control and equipment modules needed for a 
specific step within the process cell

A set of all control and any other equipment modules needed to carry 
out a fixed number of processing activities within the unit

A set of all controlling devices which regulate the operation of process 
equipment within the equipment module

Figure 6: Outline of the S88 hierarchical standard for batch process control
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This structure allows an end user to identify all of the equipment in a process as well as defining and 

implementing recipes which specify which equipment and control activities are carried out and the 

order in which these occur. The standard therefore provides several benefits, including bringing 

greater consistency between steps in processes/sites, enabling recipes to be re-used between 

different units where appropriate and allowing easier maintenance (http://www.rovisys.com).

A similar approach to that given in Figure 6 was used in this thesis, where the framework presented 

in Figure 7 was employed and which is specific to the requirements for modelling the CroFab™ 

process. Hence the manufacturing block at the top represents the highest level and decomposes 

into the operational characteristics level, which includes a group of all pre- and post- unit operation 

tasks for all unit operations as well as the main process steps and resources, such as labour, 

matrices, vessels, equipment and buffer resources. These feed into the individual procedures level 

blocks and as appropriate, resources are deployed and replenished. The operational characteristics 

level splits up again into the procedures level, which includes steps such as CIP, QC assays, 

desludging, buffer addition, product loading etc. It is at this level that calculations for those specific 

unit operations such as the mass balancing and cost evaluation are completed.

2.7 General model requirements

To facilitate the successful achievement of these goals, the following guidelines were drawn up for 

generic characteristics that all models must have:

Characteristic Outcomes/comments

Ease of data manipulation To facilitate data manipulation an external user interface will be set

up where needed for data manipulation

Model speed Models must be created in such a way so as to run quickly and thus 

facilitate rapid flowsheet evaluation

Model outputs The main outputs needed will be percentage yield, final product 

mass, total process times, throughput and capital/running costs and 

the models will be coded to export those values automatically

Table 5: General requirements of models
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Figure 7: Hierarchical decomposition
Manufacturing block (representing the entire process train) Manufacturing 

campaign level
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2.8 User interface for the Extend™  simulations

2.8.1 Introduction

The models that have been developed include both the Extend™ simulation and the associated user 

interface (Visual Basic for Applications -  VBA -  within Microsoft® Excel XP). Although data values 

could have been manipulated exclusively within Extend™, an external user interface was adopted 

instead for the following reasons:

Validation The Visual Basic code allows for cross-checking and validation of data to be carried 

out, testing for mathematical and syntactic validity. Hence, such errors as negative 

durations or percentage efficiencies (or entering an insufficient number of vessels at a 

particular stage to hold the total volume of process fluid) can be intercepted before 

entering the main simulation in Extend™ and avoid model runs that would otherwise 

halt due to such deficiencies

Ease of 

navigation

The, ‘Extend™,’ interface is complicated and navigating the model to find a specific 

piece of data in order to change it would prove cumbersome. Using a Visual Basic 

program in the structured fashion described below allows for the end user to read and 

edit the entered data more efficiently and intuitively (Workman, 2000). The interface 

provides every unit operation with its own separate dialog box to facilitate navigation 

and data entry

Data

protection

The interface saves the data to an external spreadsheet that is picked up by, 

‘Extend™.’ If all of the data was instead stored within Extend and any corruption 

occurred, then the model would need to be corrected and the malformed data would 

need to be updated/replaced. With an external data set, loss of data within the model 

ceases to be a problem, because the data is called in anew every time the simulation 

is activated. Hence such separation between the model and its data entry tables 

ensures that a degree of data protection is conferred to the system.

Table 6: Advantages of using an external interface

2.8.2 Structure of the user interface

The interface was written in VBA within Microsoft® Excel (on the 256 MB Pentium M 1.4 GHz 

computer) because Extend™ provides functions to connect the model to a spreadsheet containing 

the input data. When data values in the VBA interface are changed, they are automatically saved to 

a spreadsheet and the next time the Extend™ simulation is executed, it updates the new values from 

Excel. A spreadsheet also enables straightforward listing of results such as costs, times and final 

product yields that are exported back from Extend™. Parameters manipulated within the interfaces 

included:
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Feed volumes

Fixed process times

Types of process vessels

Material balance and volumetric recovery data

Numbers of manufacturing staff for each task in each unit operation

Identities of buffers for each task

Volumes of chromatography matrix

Flowrates in centrifuge or column steps

Resource costs for labour, matrices, buffers and disposable product bags

Some data values are determined by equations -  e.g. volumes of buffers or numbers of process

vessels were dependent upon the process volume entering the unit operation e.g.:

Feed volume
Number o f vessels = Round up

Volume per tank

2.8.3 Overall model operation

Overall operation of the model can be summarised by the following:

New parameter 
value

\ V
Results output VBA interface within

= ^ >
Excel data input

spreadsheet and 
analysis of results

Excel spreadsheet

V
Outputs of yields, Unit operation Data array within
costs and times model within z 1--------

Nj-------- Extend™
Extend™

Figure 8: Depiction of how the different parts of the model integrate with each other

2.9 DigiFab™ experimental protocols

2.9.1 DigiFab™ affinity process

This section describes the experimental protocols used for the affinity column in the DigiFab™ 

process in order to populate the simulation described in Chapter 7 (laboratory studies conducted by 

Thillaivinayagalingam et al., 2007). The DigiFab™ production process is similar to CroFab™: 

initially, sheep are immunised with an analogue of digoxin, digoxin-dicarboxymethoxylamine 

(DDMA). After several months, when the antibody concentration has risen to a sufficient level, the 

sheep are bled and the serum is collected. Precipitation and centrifugation eliminate unwanted



proteins from the ovine serum, prior to IgG digestion by papain to leave a complex concentrated 

mixture consisting primarily of monovalent F a b . No ion exchange chromatography is then 

undertaken (unlike CroFab™ manufacture) -  instead, digoxin-specific F ab is isolated by affinity 

chromatography directly, using a custom matrix consisting of DDMA coupled to 6-amino Sepharose 

(GE Healthcare) as per the protocol in Table 7  to separate digoxin-specific polyclonal F ab from the 

mixed papain-digested antibody fragment population.

Stage Buffer Column

volumes

Production 

flowrate (L/hr)

Scale-down 

flowrate (cm/hr)

Load Filtered ovine serum - 9.6 30

Initial wash 12mM disodium tetraborate 

pH 9.2

3 13 40

Acid wash 1% v/v propionic acid pH 3.7 14 13 40

Elution 5% v/v acetonitrile and 3.6% 

v/v propionic acid pH 2.6

19 4 13

Equilibration 12mM disodium tetraborate 

pH 9.2

4 13 40

Sanitisation 20% v/v ethanol and 0.1M 

sodium hydroxide

4 13 40

Table 7: Operating protocol for the DigiFab™ affinity purification step 
The load range of total protein is between ~200 and 500 mg/mL. The loading flowrate achieves a residence time of 

over 11 minutes, sufficient to ensure complete pore penetration. Flowrates used in the scale-down model 
described later were chosen to maintain the same residence times as used at commercial scale

An A280 trace outlining the main purification steps and buffer changes is shown in Figure 9. A 

12mM disodium tetraborate (pH 9.2) wash is used to equilibrate the column prior to loading the F ab 

mixture. After feed application, a 1% v/v propionic acid wash is used to eliminate adsorbed 

impurities such as non-specific F ab or in-process impurities including the digestion excipients, prior to 

the low pH elution of specific F ab using a mixture of 5% v/v acetonitrile and 3.6% v/v propionic acid.
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Figure 9: A 280nm chromatogram showing the main purification steps involved when applying the Fab feed to the
DigiFab column

(1) wash with 12mM disodium tetraborate (pH 9.2); (2) eliminate impurities with an acid wash: 1% v/v propionic 
acid (pH 3.7); (3) elute with 5% v/v acetonitrile and 3.6% v/v propionic acid (pH 2.5-2.7)

2.9.2. DigiFab™ scale-down mimics

2 .9 .2 .1  Column studies

A complete experimental description can be found in Thillaivinayagalingam et al. (2007). A 500 mL 

frozen production sample of papain digested IgG was thawed overnight and stored at 2-8°C. The 

total protein concentration of the load material was 59mg/mL as determined by UV 

spectrophotometry at 280nm (using an absorption coefficient at 1.0 mg/mL of 1.4 - the value used for 

evaluating polyclonal antibody concentrations by the quality control laboratories at Protherics). To 

imitate production scale operations, the protein sample was filtered to remove any insoluble proteins 

using 0.2 pm syringe filters (Sartorius Limited, Surrey, U.K.). Scale down affinity chromatography 

was then undertaken by packing a C10/10 column (GE Healthcare) with a 5.5 cm high bed of the 

custom DigiFab affinity matrix (packed bed volume of 4.32 mL). The scale-down runs involved a 20- 

fold reduction in column diameter, while bed height and processing times were unchanged from the 

commercial-scale process. An AKTA Explorer (GE Healthcare) was used to run all separations, 

using the protocol in Table 7. Five consecutive affinity runs were undertaken at each of four different 

total protein loadings (174, 260, 347 and 500 mg of protein per millilitre of packed matrix). Freshly 

packed columns were used for each experiment with a given total protein concentration. Eluates 

from each column run were assayed for F ab concentration by UV absorbance at 280 nm.
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2 .9 .2 .2  D eterm in a tio n  o f  the m axim um  binding cap ac ity

The maximum capacity of the adsorbent was calculated by batch experimentation. A stock of the 

DigiFab™ affinity matrix was equilibrated in PBS and 100 pL (packed volume) was pipetted into 

each of twelve eppendorf tubes. A stock of purified F ab prepared from previous affinity runs 

(Thillaivinayagalingam et al., 2007) was diluted in PBS to create twelve solutions in the range of 1 to 

22 mg/mL, from which 100 pL samples were withdrawn and added to the eppendorf tubes. These 

were placed on an end-over-end stirrer for 24 hours, after which the matrix was packed down by 

spinning the eppendorf tubes in a Beckman GS-6R centrifuge (Beckman Coulter U.K. Limited, 

Buckinghamshire, U.K.) at 1300 rpm for 2 min. 80 pL of the mobile phase was removed from each 

tube and analyzed for their total protein concentration. A Langmuir-Freundlich isotherm was 

selected as it provided the best fit to the adsorption data -  polyclonal antibody feeds usually produce 

nonlinear Scatchard plots, indicating deviation from Langmuir behaviour and Langmuir-Freundlich 

provides a better fit when dealing with a polyclonal antibody (Thillaivinagagalingam et al., 2007):

Cs =
q C%M ms m

- L  - I -  C n"
K. +  m

(1)

Cs represents the concentration of bound solute at equilibrium with the mobile phase of 

concentration Cm. qms is the maximum capacity of the settled matrix volume, Ka is the association 

constant and ni_F is the Langmuir-Freundlich coefficient. The maximum capacity was calculated by 

iteration using SigmaPlot (Systat Software UK, Hounslow, UK) -  Thillaivinayagalingam et al., 2007.

2.10 Synthetic ligand experimental protocols

2.10.1 Introduction

This section presents the methods used to evaluate the novel adsorbent for capturing polyclonal 

antibodies from crude ovine serum (Chapter 7). Process scale chromatography requires a robust 

protocol that achieves consistently high yields and purities over repeated feed cycles. To determine 

whether the prototype adsorbent was capable of achieving these goals, the following investigations 

were conducted:

•  Calculation of static and dynamic capacities for the prototype and four commercially available 

matrices when challenged with purified IgG

• Determination of column re-use capacity when challenged with ovine serum

• Evaluation of cleaning protocols for the novel adsorbent

•  Application of confocal microscopy to compare protein uptake patterns between the prototype 

and commercially available Protein G Sepharose (GE Healthcare, Buckinghamshire, U.K.)
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Unless otherwise stated, all chemicals used during experimentation were obtained from Sigma- 

Aldrich (Poole, Dorset, U.K.).

2.10.2 Static capacity measurements

The static antibody binding capacities of the five matrices were determined in order to provide an 

indication of the amount of IgG needed to achieve dynamic breakthrough from packed columns. 100 

pL of each adsorbent (Table 8) was pipetted into eppendorf tubes and spun down at 3000 rpm for 

two minutes, after which the supernatant was withdrawn and discarded. Each matrix was 

equilibrated by adding an excess (500 pL) of the relevant buffer (composition and concentration 

given in Table 9), agitated on a Minishaker (IKA Works, Wilmington, North Carolina, U.S.A.) at 2000 

rpm for ten minutes and spun down by centrifugation at 3000 rpm for two minutes. This was carried 

out in triplicate to leave the matrix fully immersed in equilibration buffer. To ensure that the matrix 

was fully saturated with protein, each tube was then overloaded with 500 pL of 98% pure IgG, 

produced using MEP Hypercel (IgG concentration of 30 mg/mL in 10 mM sodium phosphate pH 7.6, 

as determined by absorbance at A280 and a molar extinction coefficient of 225,000 M-1cm-1).

Adsorbent Manufacturer Batch/lot number Storage medium

Prototype Millipore (Consett, Co 

Durham, U.K.)

20% ethanol

MEP Hypercel Pall BioSepra (Cergy- 

Saint-Christophe, 

France)

12035-010/

200920/C271

1M NaCI and 20% 

ethanol

ProSep G Millipore (Consett, Co 

Durham, U.K.)

115113324/

1000002

0.1 M sodium acetate, 

0.5M NaCI and 1% 

benzyl alcohol

MAbsorbent®

A2P

Prometic Biosciences 

(Cambridge, U.K.)

3901-0100/ 

FA 0673

20% ethanol

ProSep-vA Ultra Millipore (Consett, Co 

Durham, U.K.)

CAE003324 / 

0320001

Sodium acetate and 

1% benzyl alcohol

Table 8: Adsorbents evaluated
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Adsorbent Equilibration buffer Washing buffer Eluting buffer

Prototype 25mM sodium 

phosphate/HCI pH 7.6

25mM sodium 

phosphate/HCI pH 7.6

100mM glycine/HCI pH 2.8

MEP Hypercel 100mM sodium 

phosphate/HCI pH 7.8

150mM mixed buffer 

(sodium phosphate, 

sodium chloride, caprylic 

acid) pH 7.6

100mM citric acid 

monohydrate pH 2.3

ProSep G 0.01 M PBS pH 7.4 0.01 M PBS pH 7.4 100mM glycine/HCI pH 2.8

MAbsorbent® A2P 25mM sodium 

phosphate/HCI pH 7.6

25mM sodium 

phosphate/HCI pH 7.6

50mM sodium citrate pH 4

ProSep-vA Ultra 0.01 M PBS pH 7.4 0.01 M PBS pH 7.4 100mM glycine/HCI pH 2.8

Table 9: Buffer compositions 
All chemicals were obtained from Sigma-Aldrich Limited (Poole, Dorset, U.K.). All columns were equilibrated for 

five column volumes; washing and elution steps were carried out to base line in the UV trace

Antibody purity was confirmed by non-reduced SDS PAGE gel analysis and scanning densitometry 

as described in section 2.8.7). Separate 100 pL aliquots of washed and equilibrated matrices were 

also incubated with ovine serum obtained from Protherics U.K. Limited (IgG concentration of 34 

mg/mL determined by gel analysis, CCT stage 002, batch 4081, bag 03). Prior to use, the serum 

was filtered using 0.2 pirn Minisart syringe filters (Sartorius Limited, Surrey, U.K., 16534/060031) to 

remove particulates that could potentially interfere with IgG binding. Both sets of eppendorf tubes 

were agitated on the Minishaker at 2000 rpm for twenty-four hours. This duration was selected to 

provide conditions for maximal protein uptake. The tubes were spun down at 3000 rpm for two 

minutes and the supernatants were withdrawn and assayed for IgG concentration by SDS PAGE gel 

analysis.

2.10.3 Dynamic capacity measurements

Dynamic capacities of the five adsorbents were determined at 10% breakthrough. All resins were 

packed into a C10/10 column (GE Healthcare) at 3.95 mL/min (300 cm/hr) with five column volumes 

of water and the beds were then operated with the buffers given in Table 9 using an AKTA Basic 100 

(GE Healthcare). For each packed bed, the operational flowrate was selected to achieve a 

residence time of six minutes i.e. sufficient time to allow adequate diffusive penetration of the matrix 

particles by the load. Each bed was overloaded with 5 mL (150 mg) of 98% pure IgG (using the 

same MEP Hypercel-purified stock as above) in order to create breakthrough curves. Dynamic

57



capacities were then calculated as follows: the UV absorbance, A (arbitrary absorbance units: AU) of 

the flowthrough from the column was determined by the Beer-Lambert law:

A = E c l  ( 2 )

E is the extinction coefficient (225,000 M 1cm 1), c is the flowthrough molar concentration of IgG at 

10% breakthrough (3.0 mg/mL; 20pM) and the path length I is 0.2 cm in the UV cell of the AKTA 

Basic 100 (GE Healthcare). Based on this data it was determined that the 10% breakthrough point 

would occur at an absorbance of 900 mAU (280 nm). Capacities (DBC) were then determined from 

the following equation (Millipore Technical Brief, Literature Number TB1175EN00):

DBC = c , x ( K - v > )
V, (3)

Bed

Where C o  is the IgG feed concentration ( 3 0  mg/mL), V l is the volume loaded up to 1 0 %  

breakthrough at 9 0 0  mAU, V o  is void volume of the beds (void fraction of 0 .4  assumed for all 

matrices) and VBed is the packed bed (all volumes in millilitres). Bed volumes and flow rates used in 

the study are given in Table 1 0 . DBC results were averaged over three repeat runs (± 4 .5 % ) .

Adsorbent Bed height (cm) Bed volume (mL) Flowrate (mL/min) Flowrate (cm/hr)

Prototype 4.2 3.3 0.55 42.0

MEP Hypercel 3.9 3.1 0.51 39.0

Prosep G 3.0 2.4 0.39 29.8

MAbsorbent®

A2P

5.0 3.9 0 . 6 6 50.4

ProSep-vA Ultra 5.3 4.2 0.69 52.7

Table 10: Bed volumes and operational flowrates used in the dynamic capacity study 
Flowrates were used for all washing, eluting and re-equilibrating steps with each matrix. All flowrates were set to 
achieve residence times of six minutes for every bed. The diameter o f ail packed beds was 1 cm (C10/10 column)

2.10.4 Prototype re-use study

The re-use capacity of the prototype was determined over ten cycles using the C10/10 column, 

again operating with a flow rate set to achieve a residence time of six minutes. Based on the results 

of the static and dynamic capacity measurements, 1 mL of 0.2 pm filtered ovine serum was applied 

to a 2.98 mL packed bed (3.8 cm high, packed at 3.95 ml/min) and the flowthrough was fractionated 

into 1 mL aliquots. The serum was washed through the column until the UV trace returned to



baseline (< 50 mAU), after which the IgG was eluted using 100 mM glycine/HCI pH 2.8 in a single 

eluted fraction. The flowthrough and elution portions were both analysed by SDS PAGE and the ten- 

cycle run was repeated on a 3.14 mL bed using a mixed sodium phosphate/caprylic acid wash 

(same as the washing buffer for MEP Hypercel -  see Table 9 for composition) prior to elution in an 

attempt to remove adsorbed albumin and other minor impurities to improve eluted IgG purity 

(Newcombe et al., 2005). To determine the impact of repeated purification cycles, the dynamic 

capacity of the adsorbent was then determined again after ten repeat runs by the method in section

2.8.3.

2.10.5 Column cleaning

Relatively harsh cleaning agents are desirable for process-scale chromatography when purifying 

antibodies or proteins from crude materials in order to eliminate adsorbed protein and remove the 

potential risk of bioburden that could adversely affect subsequent column runs and product quality. 

Although chaotropic agents such as urea or guanidine hydrochloride are commonly used for 

cleaning Protein A columns and are highly efficient agents for removing unwanted impurities, their 

high costs and the disposal problems associated with their use can make them unattractive for 

commercial operation (Shukla et al., 2007). A major advantage of the prototype adsorbent is that it 

utilises a conjugated chemical ligand and may therefore show tolerance to alternative cleaning 

solutions. Alternatives were considered for this study: 0.5 M NaOH and 0.1M HCI were evaluated to 

determine their cleaning power and the impacts upon column capacity over multiple loading cycles.

2.10.6 Inverted confocal scanning laser microscopy

Inverted confocal laser microscopy was used to visualise the uptake of labelled IgG by individual 

beads of the prototype. Visualisation was achieved using the fluorescent Cy™3 dye (GE Healthcare 

-  catalogue number PA23001, expiry July 2008, transported to UCL and stored at 2-8°C) which was 

used to tag purified IgG prior to incubation with the matrix. As a control, the experiment was also 

repeated with Protein G Sepharose 4 Fast Flow (GE Healthcare -  lot 310734, stored in 20% 

ethanol). The spherical beads of Protein G Sepharose were used instead of the ProSep G used in 

sections 2 . 1  and 2 . 2  because the latter consists of angular beads owing to its glass base matrix, 

complicating its direct comparison with the spherical particles of the novel adsorbent.

The method used by Thillaivinayagalingam et al. (2007) was employed to label the IgG. Two stocks 

of IgG were prepared by diluting a portion of the 30.0 mg/mL stock of MEP-Hypercel purified IgG 

described above down to 2.0 mg/mL -  one in 0.1 M sodium carbonate (buffer pH adjusted to 9.3) and 

the other in 0.01 M PBS pH 7.4. 1 mL of the sodium carbonate diluted IgG was then labelled 

fluorescently by addition to a vial of the Cy™3 dye and inverted gently by hand for forty minutes 

(owing to its light sensitivity, the dye was protected at all times by storing it inside its foil pouch). 

Subsequently, the contents of the vial were added to 4 mL of the PBS-diluted IgG to produce a
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solution containing a total of 10 mg of IgG. To prepare the adsorbents, 100 pL of each resin was 

spun down at 3000 rpm for two minutes and washed three times using 1 mL of 0.01 M PBS. This 

resin volume was chosen to ensure that it would be completely saturated by the 10 mg IgG solution. 

After adding the PBS-washed matrix to the 10 mg of IgG, it was inverted gently and two 300 pL 

samples were withdrawn -  one immediately after incubation and the other after 150 minutes 

(duration chosen to maximise uptake of IgG). Each 300 pL sample was spun down to recover the 

matrix and then washed three times with 1 mL of 0.01 M PBS to remove any unbound IgG and 

fluorophore. Each sample of matrix was then resuspended in 20 pL of PBS and analysed using an 

inverted confocal laser microscope (Leica Microsystems U.K., Buckinghamshire, U.K.) at a twenty 

fold magnification using an excitation wavelength of 568 nm. The image of each bead was focused 

upon its central plane to ensure that the intensity of the monitored emissions accurately reflected IgG 

uptake along the entire cross section of the bead. Intensity values for each bead were averaged 

over three scans and three beads were analysed at each time point to verify that similar intensity 

profiles were obtained.

Two further control experiments were also performed. Firstly, the fluorescence signal from a sample 

of the novel adsorbent was monitored every three minutes over a fifteen minute period (the total 

duration taken to analyse a total of three beads at any time point) to determine whether there was 

any significant fluctuation over the course of the experiment as a result of photobleaching. 

Secondly, Sepharose CL 4B agarose beads without any ligand attached (GE Healthcare) were also 

analysed by the Cy™3 protocol to determine whether there was any non-specific binding of the 

fluorescently labelled IgG to the base matrix which would potentially interfere with the evaluation of 

the intensity profiles.

2.10.7 SDS PAGE

Antibody concentrations were determined by non reducing denaturing SDS PAGE, using pre-cast 4- 

20% Novex® Tris-Glycine gels (Invitrogen U.K., Paisley, U.K.). 10pL of each sample was mixed with 

an equal volume of 2><SDS sample buffer (Invitrogen) and heated in boiling water for two minutes. 

Each well in the gel was loaded with 10pL of the heated samples (approximate protein loadings of 5 - 

10 pg per lane) and electrophoresed at 150 V for ninety minutes. Protein bands were visualised by 

staining with SafeStain (Invitrogen) for one hour, after which the gel was destained with water for 

one hour and then placed into fresh water overnight. The integrated optical densities (IOD) of each 

band were then determined by scanning densitometry (LabWorks™ version 4.5, Ultra-Violet 

Products Ltd, Cambridge, U.K.), and compared to calibrated IgG concentrations. IgG purities were 

calculated from the percentage band intensities as evaluated by densitometry analysis.
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2.10.8 Matrix particle sizing

The size distribution of the prototype adsorbent particles were evaluated using a Mastersizer 2000 

(detection range of 0.02 -  800 pm) equipped with a small volume sample dispersion unit (Malvern 

Instruments Ltd, Malvern, UK). The matrix was well mixed and added to the sample dispersion unit 

until an obscurance of 12% was reached. Sizes were evaluated with respect to the percentage of 

total particle volume. Measurements were repeated three times, with high levels of reproducibility 

observed between samples.

2.11 Conclusion

This chapter has described the simulation and experimental methods used to evaluate the effects of 

making changes to the commercial-scale CroFab™ process. Initially, the challenges involved in 

understanding a process and translating that knowledge into a functioning model were discussed, 

along with the selection of the most suitable modelling package for achieving these objectives. The 

ways in which the selected environment (Extend™) can then be used to create models was 

described, as well as how they were structured according to a hierarchical decomposition in order to 

capture every salient feature of the manufacturing process. Coupled to this was an explanation of 

how the user interface in Visual Basic for Applications was set-up in order to house the input 

database and interfaced with Extend™. Finally, the details of the experimental protocols used in the 

the DigiFab and synthetic affinity adsorbent experiments were given.

Having outlined the methodologies used in this thesis, the next chapter describes how the modelling 

techniques in Extend™ were utilised in constructing a model in order to illustrate the effects of 

changing Protherics’ process.
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3: FRAMEWORK FOR EVALUATING THE MANUFACTURING 

IMPACTS OF CHANGING LARGE SCALE PROCESSES

3.1 Introduction

As outlined in the introduction, the proven advantages of simulations in fields such as chemicals or 

polymers have established modelling as a commonplace technique for process design and 

evaluation in these sectors (Shanklin et al., 2001; Petrides et al., 2002). Although technical models 

of single stages (Pinto et al., 2001), such as fermentation (Richard and Margaritis, 2004), filtration 

(Reynolds et al., 2003), centrifugation (Clarkson et al., 1996; Maybury et al., 1998), homogenisation 

(Siddiqi et al., 1996; Wong et al., 1997) and ion exchange, size exclusion, affinity and expanded bed 

chromatography (Kaczmarski et al., 2001; Li et al., 1998; Vunnum et al., 1995; Bruce et al., 2002) 

exist, the development of multi stage simulations has been limited largely to 3-4 unit operations (e.g. 

Zhou et al., 1997). Whilst such models constitute a useful first step towards the production of robust 

and predictive modelling packages, it is the simultaneous consideration of all operations and 

replication of the interactions between them that is needed for the assessment of whole process 

feasibility. Advances made in this area thus far have centred primarily on establishing modelling 

methodologies through the study of generic process flowsheets (Zhou et al., 1999a/b). Bioprocess 

simulations remain considerably under-developed for the description of real production processes 

and without the presence of such examples in the literature, the pharmaceutical and biotechnology 

industries are unlikely to gain the confidence in modelling that is necessary for the potential 

advantages of the technique to be exploited fully. The aim of this chapter is to construct a simulation 

in order to evaluate the financial and technical impacts of implementing strategies designed to 

improve product yield and process duration, illustrating its utility by application to the CroFab™ 

process. The resulting work has been published (Chhatre et al.., 2006).

The studies presented in this chapter include:

•  Comparing production scale data with model outputs to verify its accuracy and validity

•  After this, a yield sensitivity analysis is used to identify the unit operations that provide the 

greatest potential for increasing product throughput

•  A quantification of the interactions between process steps is also presented

•  A process duration sensitivity analysis is used to identify the input factors that make the largest 

contribution towards total process duration

•  Based on this data, the effects upon processing time as a result of changing properties such as 

feed or chromatography column volumes are then finally calculated
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3.2 Modelling equations and data used in this chapter

3.2.1 Introduction

The model was set to run for four batches to simulate one complete pass per F ab fragment to create 

all the material needed for a single final formulated product batch, with 500L of serum taken as the 

base case feed volume processed per batch (see Section 1.4.4 for further CroFab™ manufacturing 

details; the flowsheet (Figure 2 on Page 34) is reprinted below in Figure 10 for clarity).

Serum

□

do

Depth filtration Precipitation Disk stack centrifugation Depth filtration

□
L

do M k M A

Papain digestion Depth filtration Ultrafiltration Depth filtration lEX

Blended F ab product

Depth filtration Affinity capture Depth filtration

Figure 10: CroFab™ process flowsheet 
(Reprint of Figure 2 on Page 34)
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Assumptions made during model construction included:

•  For this model, only the venom-specific F ab component in each of the process streams was

tracked i.e. the quantities of the impurities through the process were not taken into account

•  Fugitive losses between stages were assumed negligible and were not incorporated

•  For this model (and all subsequent models in this thesis), there was no value attached to the

cost of using larger volumes of serum. Although using a higher amount of ovine serum would 

attract a greater expenditure (e.g. greater expenses at source in Australia or increasing the 

shipping costs), since the process envelope for these models concentrated upon those 

operations in the facility in Wales alone, the feedstock was assumed to cost nothing extra to the 

process as modelled

•  Data used in model construction were provided by Protherics and included the following:

Initial serum feed volume for each F ab stream 500 L

Number of passes simulated 4 (one complete blended F ab batch)

Feed total IgG concentration for each F ab stream 30 g/L

Feed venom specific IgG concentration per F ab stream 8  g/L

Current affinity column linear flow rate 1.54 m/hr

Costs per litre for all buffers/chemical solutions were provided by Protherics*

Buffer costs account for 5% of the total product cost per gram

Table 11: Modelling data
*Cost values were incorporated into the model via the Visual Basic user interface (see Section 3.2.9)

The following section lists the modelling equations used to calculate recoveries and durations from 

each process step operated by Protherics for CroFab™ manufacture. These equations were used 

as the basis of all models described in this thesis. Some of the relationships that calculate times and 

volumes use current manufacturing data and are scaled accordingly for the volume of operation; the 

current values are referred to as base case data below:

3.2.2 Precipitation

Steps modelled included: transfer feed to precipitating tank, heat vessels, add sodium sulphate and 

mix

For this model, as per operation at commercial-scale, the following data were employed:

•  The volume of precipitating agent was set equal to the volume of the incoming feed serum

•  The duration needed to transfer the feed into the precipitating tank was set to equal to the time 

needed for the preceding depth filtration

•  Durations for heating the mixture, adding sodium sulphate and mixing were constant values



3.2.3 Centrifugation

Steps modelled included: CIP, connect and setup, flush, transfer feed, desludge, resuspend

The volume of the sedimented product (Voutcem) was evaluated as a function of the fraction of solids 

in the input stream (fsed), the volume of the input stream (Vin.cent), the volume of the resuspending 

agent used per cycle (VPrecip.i-Pass) and the number of cycles in centrifugation (Ncent). Ncent was equal 

to the number of precipitation vessels used in the previous step:

^ out,cent ~  ^ s ed ^ in  .cent ^  cen t^ p rec ip , 1 -pass (4)

A number of the durations of different steps in centrifugal operation (CIP, connect & set-up, flush, 

desludging and resuspension) were constant. The time for transferring feed material into the bowl 

per cycle (Tester [hr]) was calculated from the volume at the inlet per cycle and the volumetric 

flowrate (Qv.cent):

-T- _  ^ in  ,1-pass
I ttransfer q  ( 5 )

* y  .cent

fsed Solids fraction in feed [-]

Vin.cent Total feed volume [L]

Ncent Number of centrifugal cycles [-]

Vprecip, 1-pass Sodium sulphate volume per cycle for washing precipitate [L]

Vin, 1-pass Volume at the inlet per cycle [L]

Qv.cent Volumetric flow rate in bowl [L/hr]

3.2.4 Digestion

Steps modelled included: add papain, add activator, digest, terminate digestion

The volumes [L] of the 4% w/w papain/IgG (Vpapain), its 11% v/v cysteine/EDTA activator and 11% v/v 

iodoacetamide terminator (Viator and Vterminator respectively) used in the process were calculated as 

functions of the IgG mass and feed volumes to the step. The volume of papain was calculated from 

the mass of IgG fed into the digestion vessels ( M lgGinpapain) [g] and the papain concentration

(20g/L). Vin,papain in the following refers to the inlet process volume [L] being transferred into the 

digestion vessels:
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^  IgG,in,papain
(6)

V = 0 .0 4 xv papain 0.04 x —
20

activator in,papain

terminator activator (8)

Durations of each step during digestion were constant values (based on data from Protherics).

3.2.5 Ion exchange and affinity chromatography

Steps modelled included: CIP, equilibration, regeneration, load, wash and elution

Corresponding equations to the following were used for the venom-specific affinity step. The 

number of cycles required to process the feed to each column (load, wash and elute tasks) is 

calculated using the mass of antibody (MigG.in.iEx) [g], the volume of the bed matrix (V matrix,a) [L] and 

the unit IgG loading used per cycle (L iex) [g/L]:

The volume of feed loaded onto the column per cycle OW iex) [L] was then calculated from Vm.iEx 

i.e. the total volume [L] applied to the column and Ne x :

The relationship for the volume of eluted material was determined experimentally by Protherics (the 

value of 6  in Equation (11) is the hold-up volume) -  personal communication, A. Newcombe, 

Protherics U.K. Limited):

Volumes of buffers used for other steps such as preparing the column e.g. equilibration, 

regeneration or CIP were calculated as follows, using the CIP buffer as an example:

\  matrix,a J
(9)

(10)

(11)

V matrix,B
matrix,A (12)
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B is the ‘base case’ buffer volume [L] determined experimentally by Protherics relative to a base 

case matrix volume (V matrix,B). The actual volume of buffer required is then determined by scaling. 

Process times for a number of different steps in the process were calculated as a function of base 

case durations [hr], the height of the column (H) [m] and the linear flowrate ( Q l) [m/hr]. Thus for the 

duration of a CIP step [hr], the expression was:

Tap
( a  Y  f-j A

&cip

V ^matrix,B J
(13)

3.2.6 Depth filtrations

Steps modelled included: setup filter, prime filter, filter the feed and flush

Common formulae were used for all depth filtration steps shown in Figure 2. The number of filter 

housings (Fno) was calculated from the total filtrate volume (Vout,fitter) [L] and the maximum volume of 

the holding vessel for the filter (Vvessei max) [L]:

Fm =  Round u p l ^ - \  (14)
\  vessel .max /

The durations [hr] of the set-up, priming and flushing phases were calculated as functions of the 

number of filter housings needed. As standard practice, the setting up, priming and flushing steps 

take 1/ 4  hour for every filter.

^'setup ~  prime ~~ ^flush ~ 0 - 2 5 x F no (15)

The time needed for filtration itself (Tfiiter) was calculated from the total inlet volume (Vinifitter [L]) and 

the volumetric flowrate of material (Q v,mer [L/hr]):

Tfilter

V,in filter

Qv filter
(16)

3.2.7 Ultrafiltration

Steps modelled included: setup, sanitise, concentrate, diafilter, transfer, flush

The sanitisation buffer volume was set to a constant value, whilst the diafiltration buffer volume 

{Vdiafnter) was a function of the concentrate volume {Vconcentrate -  [L]) and the diafiltration ratio D (v/v):
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^diafilte r ^'concentrate X  ^   ̂ ^

The volume [L] of flush buffer (VfiUSh) was scaled from the pooled inlet volume [L] prior to the initial 

depth filtration {Vin,p0oi) by dividing by 400 (based on experimental data from Protherics); the Fab is 

present at this stage in 10mM phosphate and 10 mM sodium chloride: hence the value is multiplied 

by 1 0 + 1 0  = 2 0 :

Vflush = - ^ ^ - x 2 0  (18)flush 4 ( j 0

The times [hr] for the setup, sanitise, transfer and flush steps were set as constant values, whilst for 

the concentration and diafiltration steps (Concentrate and Tdiamer) respectively:

t  . .
concentrate q  \ ' z,I

<v,UF

T  -  ^ diaf!lter /on\
diafilter ^  ( t V )

* * v,UF

Vin.uF Inlet process volume [L]

Vouwf Outlet process volume [L]

Q v,uf Volumetric flow rate in ultrafiltration [L/hr]

3.2.8 Definitions of efficiency and yield

The yield of F ab from any given part of the process was defined using a step efficiency (Es):

F  ^F ABlout

s Mf „ (21)
r AB <ln

E values were defined for five parts of the process:

Ei At the initial depth filtration step

E2  At the filtration that follows the second centrifugation step

E3 At the ultrafiltration step

E4 At the ion exchange chromatography step

E5 At the affinity chromatography step

Yield was then calculated as the product of the E factors:
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y F abfinal n w  E j (22)

This is applicable to the four different F ab products and the blended F ab yield (across all four streams 

that are operated) was then taken to be the mean of the four y F ^  values [-].

3.2.9 Visual Basic data entry interface

This section gives an indication of how the Visual Basic interface enables the straightforward entry of 

data into the model and shows a sample screenshot. The shaded boxes in Figure 11 represent 

those data values that are automatically recalculated based upon other information about this or 

previous unit operations. (A), for example, shows the inlet feed volume, which is taken directly from 

the previous step, whilst (B) shows the number of separation cycles for which the centrifuge is run, 

which is equal to the number of precipitation vessels.

rm
PooI1 Depth filter | Precipitation Centrifugation j Centrifugation 2 | filter 1 | Digestion | filter 2 | UF 1 | Filter 3 | EX | Filter 4 | Afftvty | Fiter 5 |

m

Volume in (from 
predpitatjon)

Volume percentage 
sedimented

Vessel type

Number of vessels 

Volumetric flowrate (L/hr)

CIP

Connect and setup 

Flush

Transfer and process 
vessel (per cyde)

Desludge (per cyde) 

Resuspend (per cyde) 

Flush

250 L Mobile vessel 3

Time (hours)

Volume of resuspension 
sodium sulphate per cyde

Number of cydes 

Total outlet volume 

Volume o f first flush 

Volume of second flush

Labors’ nos

B
| 54S.5 ■ ■ ■ ■
| 200

Buffer type and costs (1/1}

3 m

"3 s i m

d

Sava Recover... Exit...

Figure 11: Sample screenshot of the Visual Basic interface 
(Using the centrifugation step as an example)

This logic is used throughout the interface to facilitate updating of the values as a result of changes 

made elsewhere. The other entry boxes shown in white enable the entry of other values, such as 

identities and volumes of buffers or the durations of individual steps e.g. for CIP, desludging or
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flushing etc; all the necessary data values are then saved to a spreadsheet, which is connected to 

Extend™ to enable the model to run.

3.3 Results and Discussion

3.3.1 Verification of model outputs

To verify whether the model accurately reflected operation at large scale, the total process yield as 

well as intermediate and final product concentrations were compared to production scale data. The 

predicted total process yield was 30%, whilst the actual production value is 25%. Although these 

values are not identical, the fact that this chapter was based upon an analysis with comparatively 

simple black box modelling equations, it may not be unreasonable to expect a 5% discrepancy 

between manufacturing and simulation outputs. Figure 12 plots the intermediate and final quantities 

of specific F ab mass produced throughout the process, calculated by multiplying the model abd 

production specific Fab concentrations by the process volumes present at each stage. The 

predicted data values (black bars) are similar to those values achieved from production, implying that 

the simulation provides a good representation of the performance achieved in industrial operation.

5000 -|

Q. 2000

1 2 3 4 5

Stage

Figure 12: Venom-specific Fab masses achieved at different process steps 
Numbers refer to the amounts produced from the numbered groups o f unit operations identified in Section 3.2.8 

(black bars = model output data; white bars = production scale data)

Furthermore, the cost of goods value that was predicted by the model was shown to Protherics; 

although for reasons of commercial sensitivity the company was unwilling to disclose the exact 

production value, it was able to provide a qualitative indication that the model prediction was similar 

to the actual cost. Although it is recognised that this is not a quantitatively rigorous comparison, this 

assertion provided somewhat greater confidence in the simulation.
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It should be noted that in this thesis, data provided by Protherics which were entered into the model 

were averages from production and were assumed to be fixed for simplicity i.e. a deterministic 

analysis was carried out. In reality, values might vary depending upon the errors inherent to typical 

analytical assays, such as for:

1) The feed and intermediate specific titres as judged by a small scale affinity column

2) The total IgG feed titre as determined by a Protein G column

3) The initial and in-process impurity levels (primarily albumin)

4) The final amount of product, for example judged by absorbance measurements

Protherics indicated that the analytical errors would lie in the range of +/- 10%, meaning that the 

exact values entered into the model could alter in that range and hence the outputs could potentially 

change, depending upon exactly which data were selected. Thus, although what follows below was 

developed on the basis of assuming a fixed set of values for the input parameters, if the modelling 

framework was to be applied to the CroFab process again, the impact of measurement errors upon 

the input data values and hence the quality of the modelling predictions would need to be taken into 

account. This could be achieved by running the models over the range of input data values obtained 

from analysis and hence determining a range of possible output values.

3.3.2 Yield sensitivity analysis

The relative contributions of the different steps in the process towards the blended F ab yield (i.e. 

overall averaged final yield achieved across all four operated streams) were identified by examining 

the impact of changes made in the F ab efficiencies E, of the various unit operations. Values of E, for 

the main groups of unit operations were increased relative to their original values and the blended 

yield recalculated each time, producing the linear lines in Figure 13. Normalised blended yields were 

defined as the gradient of each of these lines and specify the percentage improvement in blended 

F ab yield achieved for every percentage improvement in step efficiency. Unit operations that have 

larger normalised values provide greater potential for increasing the final product mass and hence 

should form the focus of process development effort. Figure 14 represents these results and shows 

that the papain digestion and affinity stages are predicted to have a 30% greater impact on the 

normalised blended yield than do the precipitation, centrifugation or ion exchange steps.
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Figure 13: Impact of percentage step efficiencies upon percentage blended Fab yield 
Filled circles = affinity capture; empty circles = papain digestion; filled triangles = precipitation and two 
centrifugations; crosses = IEX. Precipitation and centrifugation were grouped together as this was how  

Protherics’ manufacturing data were available

0.5

IEX Precip. & 2 Papain Affinity 
cent. digestion capture

Figure 14: Sensitivity analysis of blended yield to changes in step efficiencies 
(Expressed on a normalised basis - normalised blended yield = % increase in blended yield divided by % rise in 

step efficiency). The affinity and papain steps have the most significant impact upon blended yield)
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3.3.3 Quantification of interactions between process steps

The effect of changing the efficiencies of both the papain and the affinity stages upon the blended 

Fab yield was analysed to quantify the impact of simultaneous changes made to the two stages. The 

three lines on Figure 15 represent constant yield values. The extreme left hand line represents the 

current blended yield of 30% and was generated by altering papain stage efficiencies in the 45-95% 

range and at each alteration, manually iterating upon the affinity efficiency needed to retain 30% 

yield. 35% and 40% curves were created in the same fashion. Practical industrial limits of the 

affinity and papain stage efficiencies were set at 95%.

I
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Papain digestion efficiency (%)

Figure 15: Blended Fab yield achieved when improving the efficiencies of papain and affinity stages for all four
products simultaneously

(30% — ; 35% ------ ; 40% — -). Values are bounded by 95% efficiency limits for both steps. •  = current operating
position on the 30% blended yield line; m = new location on the 40% blended yield line, as described in the text

Each yield line also represents constant blended product masses. Since total costs do not change 

on a given line, each one therefore also specifies constant costs per gram. Hence, the graph can 

additionally be used to assess the financial impact of changing the stage efficiencies. For this 

model, only buffer/solution costs were taken into account. Data from Protherics suggested that 

these represent approximately 5% of total costs and so for the calculation of cost of goods, total 

solution costs were adjusted accordingly to arrive at the final result. The calculated cost of goods 

values for the current manufacturing operation was verified to be in the range of actual commercial 

values (commercial data not shown). The points on Figure 15 show that if the papain recovery is 

increased from the current operating position by 25% whilst retaining approximately constant affinity 

efficiency, the overall yield rises by 10% whilst the cost per gram is cut by 25%.
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3.3.4 Extent of optimisation required for yield improvements

The four F ab specific matrices have different binding capacities for their products. The effect of 

varying the affinity capture efficiency value on the blended F ab yield was investigated to estimate the 

level of improvement needed to produce a useful increase in final blended F ab yield. Figure 16 

shows that changing the efficiency of any one matrix alone has only a moderate effect upon yield. 

Significant changes to raise the yields to 85% or above for all four matrices simultaneously are 

required to achieve substantial increases overall. This implies upgrades in F ab production cannot be 

based upon one venom-specific matrix alone, but that a more development-intensive route of 

successive improvements to several matrices is needed to achieve commercially useful results.

15

10

5

0
65 8575 95

Affinity capture efficiency (%)

Figure 16: Blended Fab yield achieved as a function of affinity capture efficiencies 
In excess of current averaged value of 65% for Fab 1 - 4 : - -  blended yield; — = individual specific Fab  products. A 

30% increase in the efficiency for each Fab  results in an increase of just less than 15% blended yield

3.3.5 Process duration sensitivity analysis

In addition to investigating the effects of process changes on blended yield, the model was also used 

to determine which input parameters have the greatest impact on total process duration. The key 

variables likely to affect duration were altered one at a time in the ranges shown below, whilst others 

were kept constant (Table 12 on Page 75).

The results in Figure 17 show that the feed volume, the affinity flow rate and the affinity matrix 

volume make the greatest impacts upon process duration, whilst the volume of ion exchange matrix 

and the centrifugal flow rate have the smallest effects. This reflects, in particular, the fact that the 

affinity operation is the rate limiting step in the process and that making alterations here results in the 

largest change in process duration compared to the other changes in Table 12. The following 

investigations therefore focused on the impacts of changing the feed volume, affinity matrix volume 

and affinity flow rate on process time.
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Input variable Percentage change relative to the base case

Feed volume (L) -20/+100

Affinity flow rate (m/hr) -30/+200

Volume of affinity matrix (L) -50/+200

IEX flow rate (m/hr) -30/+200

IgG titre (g/L) -33/+33

Volume of IEX matrix (L) -50/+200

Centrifuge flow rate (L/hr) -25/+15

Table 12: Percentage ranges over which input variables were altered to determine process duration sensitivity 
Percentages were chosen based on discussions with Protherics. The IgG titre range was selected based on die 

variability observed in different production batches of ovine sera (Newcombe et al., 2006)

Feed volume

Affinity flow rate

Affin ity matrix volume

□  Decrease
IEX flow rate

■  Increase

IgG titre

IEX matrix volume

Centrifuge flow rate

-50 0 50 100 150

Change in total process time (hours)

Figure 17: Tornado diagram showing sensitivities of process duration to input variables 
Values show the change in duration relative to the base case (current operation)

3.3.6 Impact of increasing affinity matrix volume on unit operation time

Since the number of chromatography cycles (N) is calculated based upon the volume of affinity 

matrix (Equation (9)), increasing the quantity of resin results in a reduced value of N and reduced 

duration. The possibility of decreasing the chromatography cycle time by increasing the volume of 

the matrix was investigated. The results in Figure 18 show that, for example, a volume increase of 

nearly 70% (14 L) for each Fab resin would be needed to provide a cumulative time saving of over 80 

hours over the four process runs, although this would need to be balanced against the associated 

increase in matrix cost. In order to accommodate the extra resin volume, additional column shells 

would be needed. Although the availability of suitably sized columns and the validation of these 

have not been considered within this study, such constraints would need to be accounted for when 

assessing the feasibility of increasing the matrix volume by 70%.
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Figure 18: Cumulative saving in chromatography cycle process time 
The cumulative saving is defined as the sum of the time savings for the load, wash and elution affinity cycles as 

the volumes of the four Fab affinity matrices are increased

3.3.7 Comparison between papain and affinity improvements

Sections 3.3.3 and 3.3.4 showed that the blended yield can be raised from 30 to 40%, by increasing 

the levels of recovery in either the digestion or affinity capture steps. Data from Protherics indicated 

that the product loss currently observed in the papain stage is due to digested F ab being inactivated 

or precipitated and thus lost during the depth or ultrafiltration steps. These effects might be 

mitigated if a suitable buffer such as phosphate buffered saline was used to wash the digested 

material, potentially resolubilising and stabilising the F a b - Alternatively, recovery in the affinity step 

could be raised by using a larger volume of resin for each F ab type. Assuming that step yield was 

directly proportional to matrix volume (increasing the matrix volume by, for example, 5 %  would 

increase the number of binding sites available for interaction with the product by 5 %  and hence raise 

product recovery by the same amount), then with reference back to Figure 16, using an extra 20% of 

the matrices for each F ab type would achieve a recovery of 8 5 %  at the affinity stage and hence an 

additional 10% blended F ab yield. Such results would need to be verified experimentally. Table 13 

outlines the impacts of these changes.

Change Advantages Disadvantages
Papain Washing digested 

material with 
phosphate buffered 
saline

Achieve 40% blended 
yield with minimal 
additional manufacturing 
cost

May require PQ and PV, but 
probably at minimal expense of cost 
and time

Affinity Increase in matrix 
volume by 20%

40% blended yield with 
cumulative time saving of 
30 hours

Matrices’ costs rise by 20% and 
extra validated chromatography 
columns would be required

Table 13: Comparison of changes to digestion and affinity stages 
Given the heavier expenses of the affinity option, it is likely that the change to the papain step may be preferential
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Washing the digested material with phosphate buffered saline would be a cheaper way of attaining 

the 10% improvement and has less impact upon cost of goods than increasing the volume of capture 

resin, especially when considering the significant expense of affinity matrices. Increasing the resin 

volume by 20% (4 L) would, however, save a total of 30 hours (see Figure 18).

3.3.8 Matching initial process volume to available time window

As the time sensitivity analysis in Figure 17 highlighted, the volume of starting serum and flow rate in

the affinity column each have significant implications for total process duration. The effects of

changing these parameters were studied so as to evaluate the trade off against the total process 

time needed to make all four Fab products at a theoretical base case 30% yield. Data suggested that 

the rigid controlled pore glass matrix (Bioprocess Division, Millipore (U.K.) Limited, U.K.) used in the 

manufacture of the venom-specific affinity matrix would be able to withstand pressures from flow 

rates of over 10 m/hr (Millipore application note TB1010EN00, 2002) and hence process duration 

was evaluated at flow rates of the current 1.54 m/hr as well as 2 - and 3-fold higher. Figure 19 

shows that when operating at the lowest linear velocity in the affinity column, process time increases 

by 120 hr (25%) if feed serum volume is doubled. Similarly, a 20% increase in time (100 hr) is seen 

at the highest velocity for the same feed volume increase. The majority of the improvements in 

process duration can be achieved by making relatively small increases in flow rate. Hence if the 

feed volume is doubled and the linear flow rate is increased from the base case to 3 fold higher, of 

the total time saving, 75% is achieved between the current and doubled flow-rates, whilst the 

remainder occurs in the two-fold to three-fold range.
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Figure 19: Impact of varying the initial serum volume above the base case 500L initial serum on the additional total 
process time needed to manufacture the four Fab products at each linear flow rate.

Current affinity flow rate = 1.54 m/hr (upper line); 2-fold and 3-fold higher flow rates have also been plotted below 
respectively. Points A and B refer to calculations carried out in the main text
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These results allow additionally for the initial feed volume of serum for processing to be matched to 

the amount of time available within the schedule of the plant. If, for example, a given batch takes 

longer than expected, perhaps due to resource constraints, then this may affect the time that is 

available to process subsequent batches. Figure 19 can be used in such a scenario to match 

processing volumes to the timeframe available. Point A shows operation occurring at a linear flow 

rate of 1.54 m/hr and with a feed volume of 80% over the base case conditions, which are located at 

the origin for the 1.54 m/hr line in Figure 19. This requires a total process time of approximately 566 

hours, 100 more than the base case. If the flow rate is doubled and the additional process time 

available over the base case becomes only forty hours, a maximum feed volume of just over 40% 

over the base conditions can be processed (point B).

3.3.9 Impact of feed and affinity matrix volume on total process duration

The combined effects of the requirement to process additional feed material and the use of extra 

affinity matrix for the four F ab products simultaneously are presented in Figure 2 0 .  The concave 

upwards plot shows that the process time reduces rapidly when the presence of small additional 

matrix volumes combines with the need to handle large additional process volumes. Thus, when 

doubling the feed volume, 35% of the reduction on the time axis is exhibited in the first 15% increase 

on the matrix volume axis. This, however, equates to only a 4% reduction in total process duration 

and suggests that increasing the volume of affinity matrix by relatively small amounts when 

processing large feed volumes does not reduce total process time significantly. Hence if this 

strategy is considered by Protherics, then it would need to make significant investment into 

additional column sizes in order to achieve appreciable reductions in process time.

120
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Additional matrix volume (L) 30

40 20 Percentage increase in feed volume over base case

Figure 20: Impact of matrix and feed volume upon additional time required to process the material for the four Fab 

species relative to the duration when processing 5 00L  of feed using the current matrix volume
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3.4 Conclusions

This chapter has presented an analysis of an FDA-approved antibody purification process and 

created a simulation which assesses a series of proposed strategies designed to achieve 

manufacturing improvements to determine their impact upon product yield and process durations. 

Unit operations have been ranked and the interactions between them captured. The research 

identified the papain digestion and affinity chromatography stages as being especially critical in 

determining blended F ab yield and process time. The trade-offs presented between key attributes 

provide useful information in guiding enhancements to the manufacturing process. Nevertheless, 

the black box material balancing models employed are relatively simplistic and thus do not give a 

proper representation of the impacts of making alterations. Hence the next chapter introduces a new 

multi-layered modelling methodology based on mathematically rigorous mass balance expressions 

in order to enable more accurate calculations and thereby facilitate comparison of bioprocess 

options.
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4: A MULTI-LAYERED SOFTWARE METHODOLOGY FOR THE 

EVALUATION OF BIO-MANUFACTURING PROCESS OPTIONS

4.1 Introduction

The current generation of commercially available bio-manufacturing models, such as those 

presented in the previous chapter, are predominantly black box in nature and utilise simple material 

balancing methods such as assigning yield fractions to quantify levels of product recovery from each 

unit operation (Petrides, 1994). By limiting models in this way, the impact of changing more 

fundamental parameters such as the flowrate in a solid-liquid separation step upon the composition 

of the outlet streams and hence recovery from that step cannot be investigated properly. In order for 

this type of analysis to be conducted, ‘detailed’ material balance models are required that use 

mathematically rigorous expressions to quantify recovery, thus providing greater insight into the 

likely manufacturing performance and so creating greater confidence in simulation outputs. An 

example is the use of the Rosin-Rammler-Sperling-Bennett grade efficiency expression for the 

quantification of particulate recovery in a centrifuge as a function of flow rate and particle size 

(Clarkson et al., 1996) or the Thomas model for calculation of product capture in a chromatography 

step as a function of feed concentration and matrix capacity (Montesinos et al., 2005). To date, very 

few simulations have used rigorous material balance models to quantify product recovery and those 

which have tended to be established within simulation environments such as MATLAB®. These 

environments do not account for dynamic resource constraints such as the levels of manufacturing 

staff or equipment available for processing (e.g. Groep et al., 2000 or Varga et al., 2001), although in 

some cases, additional software packages have been developed to handle dynamic resource 

constraints such as Stateflow® for MATLAB®. As mentioned in the first chapter, these constraints 

are key features of bio-manufacturing operations and should be captured in any simulation in order 

to give a more realistic representation of product throughput and batch times. A bioprocess 

simulation which was both based on rigorous material balance equations and established in a 

dynamic simulation environment would provide valuable process insight and allow the evaluation of 

bio-manufacturing strategies designed to optimise outputs such as product recoveries, costs and 

batch times. The development and application of this type of process simulation is the subject of this 

chapter. This work has been published (Chhatre et al., 2007c).

4.2 Challenges in using rigorous material balance models

As outlined above, rigorous material balancing models provide a more accurate representation of 

process operation than black box approaches and so give greater confidence in the predicted 

outputs. Despite their advantages, however, the use of rigorous material balance equations in 

simulations may necessitate extensive and time-consuming experimentation in order to collect all 

the data needed to populate these equations (Zhou and Titchener-Hooker, 2003). Additionally, if
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there are many potential manufacturing options under consideration, there may be prolonged model 

execution times compared to black box simulations. Should any particular option turn out to be 

unfavourable, the experimental and computational time spent on assessing them will ultimately 

represent a waste of resources. This chapter proposes a software methodology that is designed to 

avoid this problem and thereby facilitate the rapid evaluation of the attractiveness of process options. 

The methodology comprises three layers, each containing its own dynamic simulation. The first 

layer contains a simplified version of the overall process model and requires relatively sparse input 

data. All the postulated manufacturing options are evaluated rapidly in this layer. Subsequently, the 

least favourable with respect to a series of pre-determined metrics, such as production levels, costs 

or times, are screened out and not evaluated any further. The more promising candidates are 

retained and then evaluated in a similar fashion in the lower two layers, each containing a more 

computationally—intensive and accurate model that is populated by larger quantities of input data and 

which therefore requires more data from time-consuming experimentation. By adopting this 

approach, the total amount of input data needed to evaluate all options can be kept to a minimum 

and time-consuming laboratory work can be focused on those manufacturing strategies which show 

the greatest potential. The final output emerging from the methodology is a set of the most 

favourable process options. This chapter describes the development of the methodology and 

illustrates it utility through its application to the CroFab™ process in order to identify the most 

favourable options for achieving manufacturing improvements. Strategies that have been examined 

include increasing the feed volume, replacing centrifugation with microfiltration and replacing 

precipitation/centrifugation with a Protein-G column.

4.3 Chapter structure

The remainder of this chapter is now structured as follows: a description of the modelling framework 

is given, followed by details of how the manufacturing models were set-up and how they were used 

to evaluate multiple process options. Application of the software is then demonstrated through the 

evaluation of a series of proposed changes to the CroFab™ process.

4.4 Methodology

4.4.1 Structure of the modelling methodology

Every layer in the methodology contains its own dynamic manufacturing model. Figure 21 (Page 83) 

shows a schematic of how the methodology operates and Table 14 summarises the differences 

between the layers. Since the first layer is less accurate than the second layer, which in turn is less 

accurate than the third, acceptance criteria specifying which manufacturing options should be 

screened in and out at each layer are set accordingly. Less stringent criteria are used in the first 

layer than the second, which in turn uses less stringent criteria than the third. This prevents
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screening out options in the upper layers which are favourable, but which would be eliminated due to

inaccuracies in the simulations. Details of acceptance criteria are provided later in section 4.5.5/6.

First layer Second layer Third layer
Material
balance
models

Simplified versions of ‘detailed’ material balance 
equations are used e.g. a simplified grade efficiency 
expression for the centrifuge (Svarovsky, 2000) -  see 
Table 17 on Page 92

Rigorous forms of 
equations e.g. a rigorous 
grade efficiency expression 
is used for the centrifuge 
(Table 17)

Volumetric
recovery

Calculated by assigning a percentage recovery for every 
unit operation

Calculated from buffer 
volume addition/reduction 
by concentration

Model
organisation

Individual sub-tasks in every unit 
operation are grouped together e.g. in 
chromatography, preparatory steps 
such as matrix packing are grouped 
into an ‘initiation’ subtask; operative 
steps (loading/washing/eluting) are 
grouped into an ‘operation’ subtask 
and post-operative steps such as re
generation are grouped into a 
‘termination’ subtask

Every subtask for every unit operation is 
modelled explicitly, each with its own 
individually calculated duration. Costs are 
calculated based on resource usage as 
outlined below

Resource
constraints

For simplicity, only buffer 
consumption is tracked and an 
approximation for the fraction that 
buffer costs contribute to overall 
process expenditure is used to 
determine cost of goods (see below).

Resource pools exist for: labour, buffers, 
process vessels, equipment (centrifuges, filter 
housings and column shells), filter membranes 
and chromatographic media. Models 
accumulate costs of new resources purchased 
when previous batches are exhausted

Time & cost 
calculations

For each of the three grouped sub
tasks, base case values for times and 
buffer costs are assigned relative to a 
base case feed volume. One cost 
and one time is assigned to each of 
the initiation, operation and 
termination sub-tasks for each unit 
operation. When the feed volume 
increases, times/buffer costs are 
scaled proportionately

Process costs are incurred dependent on the 
utilisation of resources. Resource utilisation is 
determined by equations that use 
manufacturing data such as process volumes, 
product concentrations, column capacities etc., 
to calculate quantities of resources needed. 
Step-specific equations are used to determine 
the durations of each unit operation

Table 14: Organisation of models in the different layers of the methodology 
See Table 17 for further details of material balance equations

Successive layers incorporate additional detail and refinement in terms of:

•  the degree of complexity of the material balance and volumetric recovery equations used

•  the number of resource constraints applied in the simulation

•  the organisation of the model

•  the specific calculations for determining batch times and costs
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1st layer (least rigorous model)

Multiple manufacturing options

Simplified material balance models 
Simplified volumetric recovery models (black box)
Unit operation steps grouped into l/O/T
Only buffer resource consumption is tracked
One base case time and cost assigned to each l/O/T in each
unit operation; real costs/times are scaled from these values

Screen out 
the worst 
option(s)

2nd layer (more rigorous model)

Simplified material balance models 
Simplified volumetric recovery models (black box)
Unit operation steps modelled explicitly
Consumption of all resources is tracked
Times calculated based on step specific equations and costs
calculated based on full resource consumption data

Screen out 
the worst 
option(s)

3rd layer (most rigorous model)

Rigorous material balance models
Volumetric recovery calculated by unit operation activities
Unit operation steps modelled explicitly
Consumption of all resources is tracked
Times calculated based on step specific equations and costs
calculated based on full resource consumption data

Screen out 
■ the worst 
option(s)

Most favourable option(s)

Figure 21: Schematic of how the methodology is used to evaluate process options 
(See Table 14 for more details. f l/0 /T =  initiation, operation and termination; steps in each unit operation are

grouped into these sub-tasks in the first layer)

4.4.2 Details of the different layers

4 .4 .2 .1  F irs t la y e r

The first layer contains a simplified version of the model used in the subsequent lower two layers 

and so allows an initial rapid evaluation of manufacturing options with minimal input data 

requirement. The first layer uses simplified versions of the ‘detailed’ material balance equations, 

such as a simplified expression for determining product recovery in a chromatography column [C n =  

number of cycles; Vm = matrix volume; DBC = dynamic binding capacity (g/L)]:
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Quantity bound = Cn x Vm * DBC (23)

For simplicity, only one resource constraint is considered and an estimate for the percentage 

contribution of that resource towards total process expenditure is used to determine the cost of 

goods value (see the modelling assumptions section later for details on how this was applied in the 

industrial case study). This avoids the need to spend time gathering cost data for all other resources 

until the second layer is reached, by which point the least viable options have been screened out so 

as to focus effort on the more promising candidates. In the first layer, the model is organised such 

that steps required within each unit operation are grouped appropriately into initiation, operation and 

termination subtasks (see Table 14), with one buffer cost and one time value assigned to each of 

these. Inferior options at the first layer in terms of the metrics given in Table 15 are then screened 

out, leaving the remainder to be assessed by the second layer model.

Manufactured product mass (g)
Cost of goods (£/g)

_______________ Batch times (hours)_______________

Table 15: Manufacturing metrics used to assess process options 
For the industrial case study, batch time was taken to be the duration needed to manufacture the first blended,

concentrated and filtered batch of product

4 .4 .2 .2  Second lay er

More rigorous models are deployed in the second layer, primarily to incorporate constraints for all 

resources required for the process. As a consequence, process costs are now calculated based 

upon resource utilisation levels, rather than scaling upon buffer consumption. In the problems 

simulated in this work, the second layer models took approximately four times longer to compute 

than the first layer models. The second layer uses the same material balance equations as the first 

layer. The simulation is also organised such that every sub-task is modelled explicitly (i.e. each task 

is modelled with its own time and cost, as opposed to the grouping of steps into initiation, operation 

and termination sub-tasks that occurred in the first layer). Again, the most inferior options emerging 

from the second layer with respect to Table 15 metrics are screened out, leaving the most promising 

options to be subjected to the third layer model.

4 .4 .2 .3  T h ird  la y e r

The third and final layer is much more computationally intensive and hence time-consuming than the 

upper two layers. The third layer takes an order of magnitude longer to execute than the second 

layer, owing to the use of the fully rigorous material balance equations, such as the Thomas model 

(Montesinos et al., 2005) for simulating chromatographic breakthrough curves. Since this layer is 

challenged with a reduced set of only the most promising manufacturing process options, the user 

makes the most efficient use of (a) the longer computational time needed to run a third layer model
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and (b) in collecting only the relevant input data to the model, such as parameter estimation for the 

detailed material balance equations collected from laboratory experimentation.

4.4.3 Construction of manufacturing models in the methodology

For ease of data manipulation, input values for the manufacturing models in each of the layers were 

entered into Visual Basic for Applications user interfaces (Microsoft® Excel XP) and saved to 

spreadsheets. These were connected to the main manufacturing models themselves, which were 

constructed in Extend™. For the manufacturing models described in this chapter, the following 

entities were constructed by placing suitable combinations of blocks onto the Extend™ workspace:

•  Resource pools for labour, buffers, process vessels, equipment, filter membranes and 

chromatographic media (buffers only for the first layer model)

•  Methods to draw from and replenish the resource pools

•  Methods to calculate durations of activities in every unit operation

•  Material balance calculations for every unit operation

Each of the three models was modularised, such that there was one code block to represent the 

material balancing calculations, one block to represent the calculation of process durations for a 

given unit operation etc. Adopting this approach reduced duplication of model functions and enabled 

faster debugging and execution of the model. The simulation comprised icons for each unit 

operation, copies of which were cloned to a workspace and connected together in the appropriate 

order to simulate the desired flowsheet. As a product batches moved through the process, 

represented by an item, it called the relevant unit operation model, executed instructions encoded in 

the Extend™ blocks and accumulated time, cost and material balancing data. At the end of a 

simulation run, data acquired for all manufactured product batches were collected together and 

exported to a Microsoft® Excel spreadsheet automatically to enable further analysis.

4.4.4 Details of model set-up in Extend™

To illustrate the way in which a model is constructed, Figure 22 (Page 89) gives an example of what 

the Extend interface looks like and how it is used to develop simulations, using the third layer model 

of the CroFab™ model described later as an example. The screen is divided into two parts -  the 

workspace on the left hand side onto which the unit operation blocks in the required sequence for 

the process, whilst on the right hand side, there are various palettes, each of which represents a 

combination of blocks that carry out specific functions such as resource allocation or material 

balancing. The first block placed onto the workspace is the Start block, which is responsible for 

‘creating’ items that pass through the process and assigning feed properties such as volumes or 

concentrations. The Start block is then connected to a box marked ‘unit operation’; double clicking 

on this brings up a dialog box that allows the end user to select a specific unit operation type.



Connection between the blocks is achieved by the thick white lines, which represent the streamlines 

down which items (i.e. batches) pass when moving from unit operation to unit operation. The 

remainder of the unit operation blocks are then added in the required order to simulate the process, 

with data transfer lines (the thin black lines) between unit operations carrying information such as 

process volumes. Finally, the End block removes items and sends data to the Output data block, 

which exports output information back to the spreadsheet.

4.4.5 Overall Ranking

Assessing the impacts of changing a process is complicated by the fact that some performance 

metrics may improve whilst others deteriorate -  for example, increasing feed volumes will result in a 

higher product mass at the expense of extended batch times. Alternatively, removing a unit 

operation may potentially reduce manufacturing costs, but increase the purification burden 

downstream and hence necessitate revalidation of the remainder of the process. Such conflicts can 

make it difficult to assess whether to pursue a new process option or simply to retain the existing 

manufacturing process. In this chapter, the decision-making process was simplified by combining 

performance metrics into a single value using multi-attribute decision-making (MADM) in order to 

quantify the desirability of a strategy (Farid et al., 2005). A range of different MADM methods are 

available; for example, the lexicographic technique (Volgenant, 2002) involves ranking the different 

outputs in the order of their importance and then optimising each model output successively in this 

order for as long as a choice remains until a unique point is reached. The Electre method (Steuer 

and Na, 2003) involves the outranking principle, in which a solution to a model is said to outrank 

other options if it as good or better than others with respect to most of the key outputs and not 

significantly inferior for one or more of the remaining outputs. Another approach that is often seen in 

the literature is Pareto optimisation (e.g. Zhou and Titchener-Hooker, 2003), which involves the 

generation of a series of non dominated (optimal) solutions. A solution is said to be Pareto optimal if 

it is not possible to improve one output objective without causing a deterioration in at least one other. 

Although these are valuable techniques for allowing multiple-objective decision-making, due to the 

relative complexities involved with using these methods (George et al., 2007), this chapter instead 

uses a classical additive weighting approach, which is applied regularly as it provides a 

straightforward way to combine several output criteria into a single number that quantifies the 

feasibility of a strategy (Hwang and Yoon, 1981).

In the classical approach, results for each attribute (e.g. product mass, development costs or 

manufacturing process times) derived from simulations were normalised to a zero to one scale, with 

the zero bound representing the worst possible value and the one bound representing the best. For 

example, for product mass, the normalised value is given in Equation (24):
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(24)

N m represents the normalised product mass, MA is the actual product mass calculated by the 

simulation, Mo is the lowest product mass out of all simulation runs (set to represent the zero bound) 

and Mi is the highest product mass, thus set to represent the one bound. Similar formulae can be 

applied to all other metrics. Normalised values are each further multiplied by a zero to one weighting 

so as to place particular emphasis on those metrics deemed especially important, such that the more 

important metrics attract higher weightings. The sum of the weightings is equal to one. By applying 

this approach, it is possible to arrive at an assessment of a strategy consistent with commercial aims 

and objectives. Addition of the component weighted and normalised values, as calculated by 

Equation (24), creates a single metric, the Overall Rank (OR):

Here, Wi and Ni respectively represent the weighting and the normalised values of the ith performance 

metric. The Overall Rank has a value between zero and one, respectively representing the least and 

most attractive outcomes resulting from the development and implementation of process change 

strategies. The Overall Rank for the existing manufacturing process is also determined to provide a 

benchmark against which proposed options are compared.

It is recognised that the perceived importance of different output metrics as represented by the 

weighting value may change depending upon the circumstances facing a company from week-to- 

week or month-to-month. For example, if product throughput (mass of purified product generated 

per unit amount of time) is high and well above the level needed to maintain adequate market 

supply, then the impact of any process change upon throughput may not be that crucial. 

Conversely, if market demand increases appreciably, the ability to supply product by achieving a 

high enough throughput will become more critical and hence greater emphasis will be attached to 

that objective at that time. Since the process changes considered in this thesis are are intended for 

implementation into a facility for an extended duration (e.g. for several years of operation), the 

weighting value needs to reflect the average importance over this period instead and hence for this 

research, the weights were assigned with the intention that they would represent the average 

significance of each metric to a company over an extended period of time.

4.4.6 Criteria for screening options in and out

Acceptance criteria were specified for each layer in order to determine which options would be 

screened in and out, with the least attractive options in each layer being eliminated and the 

remainder passed to the next layer for further evaluation (or selected as amongst the best emerging

(25)
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from the third layer). To reflect the differing levels of refinement and accuracy of the three layers, 

less stringent criteria were used for the first layer than for the second, which in turn used less 

stringent criteria than the third. This avoided screening out options in the first and second layers 

which were favourable, but which would otherwise be eliminated due to simulation inaccuracies. For 

layers one and two, the criteria for new process options to pass down to the next layer were:

O R  New option '> Current operation ^ 1  (26)

OR New option ^  Current operation ^ 2  (27)

In the third layer, the criterion by which options would be judged sufficiently superior to the current

operation and so make them the best out of all under consideration was:

O R  New option ^  ^^Currenf operation ^  3 ( 2 8 )

M i,  M 2  and M 3  specify the margin in Overall Rank units by which an option should be greater than

(and therefore superior to) the current operation in order to pass it into the next layer (or be selected 

as one of the best options from the third layer). Values are set such that M 3 >  M 2 >  M i  (reflecting the 

greater stringency of lower layer models). For the industrial case study presented below, 

normalisation bounds and weightings used to calculate Overall Rank values, acceptance criteria and 

the values of M 1 -3  are specified in Section 4.5.9 and 4.6.2 later.



Figure 22: Sample screenshot from the third layer model
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4.4.7 Industrial case study

The multi-layer modelling methodology was used to assess a range of options for their potential to 

achieve manufacturing improvements in the CroFab™ process. The current manufacturing 

flowsheet is shown on the left hand side of Figure 23 for comparison with the potential changes. 

Manufacturing options under consideration are indicated as A-E in Figure 23 (Page 91) and their 

potential advantages are presented in Table 16 below. The manufacturing methodology was used to 

evaluate and compare these options according to the metrics in Table 15, both individually and in 

combinations, leading to a total of fifteen alternative manufacturing options.

Alternative manufacturing option Potential advantages

(A) Increase the feed volume to 1000L (maximum 

volume under consideration within the facility)

Increasing the volume will increase 

throughput, but also manufacturing times

(B) Vary the concentration of sodium sulphate 

precipitating agent (testing 24% and 48% w/v 

sodium sulphate concentrations instead of the 

current 36% w/v)

Experimental data indicated that using these 

sodium sulphate concentrations could make a 

significant difference to the quantity of 

antibody precipitated (Neal, 2005)

(C) Use a microfiltration step to separate the 

precipitated antibody from the contaminating 

albumin instead of the centrifuge

For the industrial process under 

consideration, microfiltration is a viable 

alternative to centrifugation, providing 

comparable antibody yields (Neal et al., 2004)

(D) Use a Protein-G step to capture IgG in the 

feed, instead of using precipitation and 

centrifugation

Data collected by Neal (2005) in the 

evaluation of ovine IgG capture by Protein G 

was used to populate the model. Potential 

advantages of consolidating two steps into 

one include a reduction in the cost of goods. 

The use of an additional concentration step 

will also lower the downstream process 

volume and hence may further reduce costs 

as well as batch times, although this may be 

mitigated by product loss during concentration

(E) Use a Protein-G step to capture IgG in the 

feed, instead of using precipitation and 

centrifugation, followed by concentration by 

ultrafiltration at 120 L/hr

Table 16: Alternative manufacturing options and their potential advantages 
Letters refer to strategies indicated in the flowsheet (Figure 23). The five individual options (A—>E) were modelled, 
along with the following combinations: A—► B [@ 24% & 48%]; A —> C; A —► D; A —> E; A ->  B [@ 24% & 48%] —* 

C; B [@ 24% & 48%] —» C, leading to a total of fifteen options
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Ion exchange

in
Affinity capture

"  I
Blend Fab 1 -  4, concentrate and depth filter to create the purified product

Figure 23: Process flowsheet 
This shows the current process in Figure 2 for comparison with the alternatives under consideration (A to E) -  see 
Table 16 on Page 90 for further details. The process is operated once for each of the four rattlesnake anti-venoms 

and then the outputs are blended, concentrated and filtered

The process changes being appraised here move the process in the opposite direction to that taken 

by other parts of the industry such as for the production of monoclonal antibodies, where the high 

expense of chromatography resins such as Protein A is instigating the study of alternatives such as 

precipitation or centrifugation. In CroFab™ manufacture, however, the existing precipitation and 

centrifugation steps are somewhat time-consuming and column steps are being considered actively 

by Protherics for their potential to reduce process times, whilst also theoretically decreasing 

manufacturing costs and reducing the number of places in the process where product can be lost by 

virtue of merging two steps into one (see the next chapter for the trade-off of this with the additional 

development burden needed to bring the change into the production facility). It is for this reason that 

chromatography steps were considered as the basis of the evaluation.
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4.4.8 Modelling equations and data

4 .4 .8 .1  Introduction

Material balancing equations and input values for the case study are provided below. Due to 

corporate restrictions, commercially sensitive details such as process costs that were used to 

construct the simulations have not been given in these tables. Model inputs were based upon 

laboratory studies and trend analysis of manufacturing data. The same feed composition data were 

used for all simulation runs in all three layers of the methodology.

Unit operation First and second layers Third layer

Precipitation Data from Neal et al. (2003) related the sodium sulphate concentration to the 

amounts of IgG and albumin that were sedimented

Centrifugation Particle size distribution data (Neal et 

al, 2003) and physical and operational 

properties of the production scale 

centrifuge were used to determine the 

critical particle diameter (dc) and 

recovery using a simplified Rosin- 

Rammler-Sperling-Bennett grade 

efficiency expression -  see below

The same particle size distribution data 

was used as for the first two layers, in 

conjunction with the same equation for 

critical particle diameter and the 

mathematically rigorous version of the 

Rosin-Rammler-Sperling-Bennett 

expression -  see below

Microfiltration

(replacing

centrifugation)

Particle size distribution and membrane 

pore size (0.2 pm) data were used to 

quantify recovery of the precipitated IgG 

particles

The same approach for material 

balancing as for the first and second 

layers was used, in conjunction with a 

cake deposition filtration model (Neal 

et al, 2004) to determine the duration 

of cake filtration of the precipitated IgG 

particles -  see below

Papain

digestion

A percentage defined the amount of 

IgG digested

Experimental data relating enzyme 

concentration, temperature and 

duration were used in conjunction with 

a GPt to create an equation relating 

input variables to quantity of IgG 

digested

All

chromatography

steps

Quantity bound = Cn * V w * DBC Quantity bound determined by 

simulated breakthrough curves 

produced by the Thomas model 

(Montesinos et al, 2005) -  see below

Table 17: Principal unit operation material balance equations usecfat the different layers of the methodology 
t  GP -  i.e. a Genetic Program (Goldberg, 1989) -  see below for further details.
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4 .4 .8 .2  P re c ip ita tio n  d a ta

The data relating precipitant concentration to IgG and albumin recovery was taken from Neal (2005):

Na2S04 (% w/v) % IgG recovered in the solid Albumin (mg/ml) Total protein (mg/ml)

12 0 0 0

16 0 0 0

20 0 0 0

24 40 2.5 20

28 75 3 30

32 75 1 4 35

36 75 5 35

40 70 6 35

44 65 7.5 35

48 60 12 35

Table 18: Data used to model recovery in precipitation as a function of sodium sulphate concentration 

4 .4 .8 .3  C entrifu g ation  m odel

The simplified grade efficiency expression used for the centrifugation model in the first second layers 

was as follows (Svarovsky, 2000). The critical particle diameter was calculated by (see Table 20 

below for definitions of the terms):

. 18 -Q -v

(29)

The proportion of the solid material that was then recovered, G(d), was then determined by:

G(d) =

f  w VI “  I A A—  d < d c

^ ‘ ’  (30)

1 d > d „

Using the same expression for critical particle diameter i.e. Equation (29), the mathematically 

rigorous version of the grade efficiency expression required for the third layer was then used to 

determine recovery (Clarkson et al, 1996):

- f - TG(d) =  1 -  e ^ dc'  (k = 1; A = 2: Values assumed from Varga et al (2001) (31)
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The data used to populate these models are given in Table 20 and using the values, the critical 

particle diameter was calculated by Equation (29) to be 3.82 x10 7 m i.e. 0.38 pm. The value of 

sigma in Table 20 (sedimentation area of the centrifuge) was evaluated as follows:

£ = 2 ^ ( Ro3 _ R i3)cot( ^

3g
(32)

Parameter Description Value

n Number of disks (-) 95

N r Revolution speed (rps) 125

CO Angular velocity = 2 ttN r 47,100

9 Gravitational acceleration (m/s2) 9.81

R0 Outer disk radius (m) 0.1

Ri Inner disk radius (m) 0.045

9 Half disk angle 55

Table 19: Centrifuge data

fi is a correction factor calculated by Equation (33) to account for the presence of the spacer ribs that 

interfere with the fluid flow (causing back mixing of sedimented material into the fluid) and reducing 

the sedimentation area, bi is the width of the caulk = 3.77 x 10 3 m and gives fi = 0.25, resulting in 

I  = 8,400 m2.

r,= 1 3 nb,
1 -

R.

v *o
4/zft (33)

Variable Data value

psoiid [kg/m3] (Solids phase density) 1300

Piiquid [kg/m3] (Liquid phase density) 1170

Ap [kg/m3] (Density difference) 130

p [NS/m2] (Feed viscosity) 2.4x10-3

S [m 2] (Sedimentation area) 8400

g [m/s2] (Gravitational acceleration) 9.81

Q [m3/s] (Volumetric flowrate) 3.61x10-5

Table 20: Modelling data used for the centrifugation model 
The first four values were taken from Neal (2005) and Neal et al., 2003; the sedimentation area was evaluated as 

described above, whilst Q was calculated from data provided by Protherics
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Particle size distribution data relating particle size to volume percentage of the stream from Neal et 

al. (2003) and Neal (2005) was also used to populate the centrifugation model.

4 .4 .8 .4  Papain digestion model

Cresswell et al. (2005) showed that papain digestion of ovine IgG was sensitive to the concentration 

of the enzyme, the temperature of the reaction and its duration. No equations could be found in the 

literature relating these variables to the extent of antibody digestion and in order to create such a 

relationship, experiments were conducted in which the impact of these parameters upon IgG 

cleavage was evaluated. F ab concentrations in each sample were determined by using the Agilent 

2100 Bioanalyzer system (Agilent Technologies Incorporated, Palo Alto, California, U.S.A.). In order 

to create an equation that calculates the extent of IgG digestion, these data were then encoded into 

a Genetic Program (GP). GPs are based on Genetic Algorithms (GA), which enable a population of 

trial solutions for a problem to be evolved to create individuals that more closely fit a desired solution 

(Holland, 1973). A GP allows the production of computer programs by application of GAs in order to 

investigate the solution space (Goldberg, 1989), computationally evolving a mathematical equation 

by random alteration, with the aim of giving it a structure that more accurately fits experimental data. 

Equations are exposed to multiple evolutionary rounds, with fitness judged by measures such as the 

root mean square difference (RMS). If the RMS fitness of the new equation is superior to the old 

one, the new equation is entered into a further round of evolution. Alternatively, if fitness is worse, 

the newly evolved equation is discarded and the old one re-used as the basis of the next 

evolutionary round.

For this work, an enzyme progress curve describing product concentration (and so yield) as a 

function of duration was entered into a GP:

7 Papain  =  ?  +  #  '  t en z  +  /  * C z  +  A  ' ^enz  +  • • * ( 3 4 )

The starting values of (p, / ,  and A were selected arbitrarily and for practical purposes, the equation 

was truncated to a four term partial sum. The GP was encoded in MATLAB® and evolved over 300 

iterations, after which no further improvements in RMS fitness were observed. The final evolved 

equation was then encoded into the main manufacturing model.

4 .4 .8 .5  Chrom atography model

The Thomas model was used to simulate breakthrough curves for the chromatographic material 

balancing calculations in the third layer model (Montesinos et al., 2005). This model is based upon 

the following assumptions:

•  There is no axial dispersion of the product i.e. plug flow operates in the column

• The column is initially completely free of the binding species of interest



•  The process of product binding to the matrix can be represented by adsorption kinetics alone

i.e. the rate of mass transfer into the model was assumed to be far greater than the rate of 

binding between solute molecules and the ligand

Initially, the following dimensionless terms are required (their definitions and data values are given 

below):

T =  (Dimensionless residence time) (35)

The equilibrium saturation capacity of the solid adsorbent (qm) is determined from the equilibrium 

saturation capacity of the settled adsorbent (qms) by Equation (39):

Breakthrough curves ( X  =  C / C o  as a function of time) can then be obtained from the following 

equation (valid for T > 1):

L

(Dimensionless number of transfer units)
ev

(36)

(Dimensionless separation factor) (37)

r  =  t J < X ( T - 1 ) (Dimensionless mobile phase flowthrough velocity) (38)

(39)

X = J(N/Y,NG)
(40)

J(N/Y,NG)+ [1 -  J(N ,N G /Y)]exp[(l -  1 /Y \N - NG)]

J(a,($) is a function defined by Equation (41):

(41)

The lo function is defined by Equation (42):
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(i x 2Yi (x)=yco M-_-
'o v v  Z-*=o ^ jy (42)

The breakthrough curve was numerically integrated by the trapezium rule to determine the quantity 

of each component that passed into the flowthrough and hence from material balance the quantity 

that remained bound to the matrix. For all column steps, it was assumed that elution conditions were 

able to achieve complete recovery of all bound components.

Data values used for the different inputs in the Thomas model for the three columns are given below. 

Values which were not dependent upon the nature of each feed component (e.g. flowrate or bed 

voidage) were defined as follows:

Data value

Variable Definition Ion exchange Venom-specific affinity Protein G

v (m/s) Interstitial velocity 3.94 x 10-4 4.28 x 10-4 4.39 x 10-4

M-l Bed voidage fraction 0.4 0.4 0.4

* [ - ] Bead porosity fraction 0.75 0.75 0.75

L [m] Column length 0.2 0.34 0.2

Table 21: Data values used for the Thomas model

The bed voidage and bead porosity fractions were chosen as they represented typical values found 

in the literature for many commercially available matrices. Flowrate and bed height data were 

provided by Protherics. The concentration of each feed component was determined by the model. 

The equations used to calculate the duration of feed application to the column is given below:

Ion exchange column:

The capacity of the ion exchange column were assumed to be 120 mg/mL for all feed components

i.e. F ab, F c , albumin, IgG and minor feed proteins (value taken from GE Healthcare literature number 

71-5017-51 - description of HiTrap columns for the matrix used by Protherics (qms in the equation 

below). For a bead porosity of 0.75 and a void fraction of 0.4, the equilibrium capacity of the matrix 

skeleton is then determined by the following (Montesinos et al., 2005):

(43)

On this basis, the matrix capacity (qm) was determined to be 800 mg/ml. This was divided the values 

by the molecular mass of the different feed components to give values in mol/L and converted to
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mol/m3 by multiplying by 1000 in order to be dimensionally consistent with the other data values used 

in the model. Molecular weights were assumed to be:

F ab 45,000 g/mol

Fc 50,000 g/mol

Albumin = 55,000 g/mol

IgG 150,000 g/mol

On this basis, the values for the capacity of the ion exchange matrices were calculated as follows (at 

commercial scale, only impurities bind to the ion exchange column and F ab flows through with 

negligible interaction with the matrix; hence for the model, it was assumed that complete Fab 

recovery could be achieved in the ion exchange column):

F c  = 1 6  mol/m3

Albumin = 14.5 mol/m3

Sundry proteins = 14.5 mol/m3 (assumed the same as albumin since both are serum proteins)

Intact IgG = 5.33 mol/m3

For the value of the equilibrium desorption constant, Kd [mol/m3], the following logic was used to

derive a value: at the post centrifugation stage, the IgG purity is approximately 90%. Given that the 

IgG concentration represents about 30 mg/ml, the total protein concentration is then approximately 

33 mg/ml. F c  (being a third of the IgG molecule and hence with a concentration of 10 mg/ml) 

represents about 10/33 ~ 30% w/w of total protein and albumin is -  3/33 = 11% ~ 10% of the total 

protein. Across the filiations and ultrafiltrations, it was assumed that none of the contaminating F c  

or albumin was lost in the permeate (for the ultrafiltration step, the filter used has a cut off size that is 

significantly below the 50 KDa size of F c  and the 55KDa size of the albumin). Hence, the 

composition of the stream on a % w/w protein basis was assumed not to change. Based on data 

from Protherics, the ion exchange outlet typically contains F c ,  albumin and sundry protein 

components that comprise a total of ~ 3% w/w of the total protein. This reflects the observation at 

commercial scale that the vast majority of the feed impurities are bound by the ion exchange matrix. 

Hence the concentration in the matrix phase is likely to be very high relative to the mobile phase. If 

the equilibrium is defined in terms of the following relationship:

Impurity + Matrix Impurity-Matrix complex

Hence the standard equilibrium (adsorption) constant can be defined as:
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^  _ [im purity (matrix phase)] 
A [im purity (soluble phase)] (44)

From above, the impurities represent 30% + 10% = 40% w/w of total protein when applied to the 

column, whilst emerging from the column outlet, they represent only ~ 3%. Hence the ratio of bound 

concentration to mobile concentration in the above equilibrium expression = (40-3) = 37:3 equals 

approximately 12), meaning that the inverse i.e. the desorption (i.e. Kd) is very low (1/12 = 0.083 ~

0.1). For the sake of simplicity, this value of Kd was assumed for all impurities fed to the ion 

exchange column. Since the primary impurity in the feed binding to the column is Fc and since this 

is also the part of the IgG molecule that is primarily responsible for the interaction with Protein A, it 

was assumed in the absence of other data for the forward rate constant ki [m3/mol/s] that this value

was likely to be similar between Protein A and ion exchange matrices. Values given by Hahn (2003)

obtained at 100 cm/hr (closest flowrate to that used at commercial scale) for a series of Protein A 

adsorbents ranged between 0.035 and 0.24 m3/mol/s, with an average of 0.129. As an 

approximation, this was rounded to 0.1 and entered into the model.

Venom-specific affinity column:

The capacities of thus column were determined in a similar way to that described above for both 

venom specific components (i.e. F ab and IgG). Data from Protherics suggested that qms could be 

estimated to be 50 mg/ml. With a bead porosity of 0.75 and a voidage fraction of 0.4, this resulted in 

a qm equal to 333 mg/ml. This was divided by the molecular weights of the two species to give a 

value in mol/L which was then converted to mol/m3 using the following:

F ab = 45,000 g/mol —> qm = 7.4 mol/m3 

IgG = 150,000 g/mol —► qm = 2.2 mol/m3

There was no data available from Protherics regarding the binding of impurities to the affinity 

column, primarily because the matrix is considered to be highly specific to the anti-venom F ab and 

without any significant propensity to interact with the other components. Investigations with the 

model also indicated that the impact of qm of the impurities upon their recovery was minimal, 

because within the constraints of the other values, changing qm did not influence predicted binding 

levels and hence predicted product impurity levels significantly. Thus qm was assumed to be a 

significantly low value at which little to no impurity recovery occurred (giving close to 1 0 0 %  F ab 

purity). Trial and iteration with the model indicated that a qm capacity of 0.001 was suitable and 

hence this value was entered into the model.

The values for Kd were calculated in a similar way as for the ion exchange column: data from 

Protherics indicated that venom-specific F ab recovery from the final affinity column is 0.56. Hence
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the concentration in the mobile phase = 1 -  0.56 = 0.44, resulting in an equilibrium adsorption 

constant (Ka) of 0.5610.44 = 1.27. Taking the inverse gives a Kd of 0.79 for the venom-specific F ab.

For the impurities, Kd was determined as follows based on data from Protherics: the eluate from the 

ion exchange column contains approximately 3% w/w of impurities (97% total F ab). Out of the total 

quantity of F ab that is fed to the venom-specific affinity column, there is a 50:50 split between the 

specific and non-specific. Hence, the feed to the affinity column contains 97/2 = 48.5% as specific 

F ab, leaving the remaining 51.5% as impurities. These impurities are eliminated to a large extent by 

the column and emerge as 10% of the total protein in the eluate. Hence the ratio of the bound to the 

mobile phase = 10: [51.5-10 = 41.5] = 10:41.5 = Ka. Taking the inverse gives Kd = 4.15. Again as a 

convenient approximation, this value was rounded to 4 and for simplicity, was assumed to be the 

same for all impurities fed to the venom-specific affinity column.

For this column, ki was not available in the literature and hence the value was determined by 

iterating on the breakthrough curve until the yield calculated by integration (see below) equalled that 

achieved at commercial scale (0.56). For the venom specific component, this value was equal to

0.045 and for simplicity, this value was assumed for all impurity components as well.

Protein G column:

As with the previous two columns, the capacity of the Protein G step was determined for both major 

feed components (IgG and albumin). The qms value was assumed to be 19 mg/ml (Neal. 2005), 

giving a qm value of 130 mg/mL. Assuming a molecular weight for IgG of 150,000 Da and converting 

to mol/m3 gives qm = 0.87 mol/m3. For the albumin, data from Protherics indicated approximately 3 g 

from the ovine serum could be expected to bind per litre of matrix (qms). Accounting for the bead and 

bed porosity, this results in qm = 20 g/L. Assuming a molecular weight for albumin of 55,000, this 

gives a capacity of 0.36 mol/m3. Kd and ki values were taken from Neal (2005):

Variable IgG Albumin

Kd [mol/m3] 3.33 x 10 4 9.09 x 10-2

ki [m3/mol/s] 0.5 0.055

Table 22: Values of Kd and ki used for the Protein G Thomas model

Column loading durations:

The durations of loading onto the column steps (tc) were determined by:

h  =

V,load
V H

V\  matrix /
(45)
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Yield calculation:

Figure 24 plots a theoretical breakthrough curve. ‘X’ ranges from zero to one and represents the 

fraction of the component concentration in the feed that flows through the column without interacting 

and which is therefore not recovered. The areas above and below the breakthrough curve 

respectively represent the mass of that component that is bound and so recovered by the matrix and 

the quantity that flows through the column without interacting with the matrix and which is thus lost. 

In order to determine recovery (yield), it was assumed that all molecules bound to the matrix were 

successfully recovered by elution from the column. Recovery could then be calculated directly by 

integration of the breakthrough curve in Figure 24 using the trapezium rule to calculate the 

proportion of antibody mass that is lost (AreaLost)- Areaiotai in Equation (46) represents the total 

amount of each component in the feed applied to each column:

AreaTM = AreaBoml + A re a ^  = t c x1 =  t 

A r e a ^  = AreaTM, - AreaLosl

(46)

(47)

The proportion of antibody recovered i.e. the yield is then calculated from:

Yield = A re a ,
Area (48)

Component
recovered

X

Component lost
0

Time

Figure 24: Theoretical breakthrough curve

4 .4 .8 .6  M ic ro filtra tio n  m odel

A cake deposition model was employed to calculate the time needed for cake filtration of the 

precipitate (Neal et al., 2004) in the case that this option was used instead of the 

precipitation/centrifugation steps (when the filter was used elsewhere as in the current process, the 

same equations as given in Chapter 3 were used for time calculations). Darcy’s law states that, for a 

volume of permeated fluid { V permeate), the duration of filtration (tpermeate) can be determined by:
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t (V  \  1i . * permeate 11 permeate

V,
-  K 1

permeate

+ (49)

Neal et al. (2004) fitted data at different transmembrane pressures relating t/Vpermeate to Vpermeate, 

resulting in the following values for Ki and Fo:

Transmembrane pressure (bar) Fo K i

0.5 10 1.5 x 10-3
1 25 1.0 x 103

1.5 7.1 1.5 x 10-3

Table 23: Fitted data to Darcy's law

Based on these data, Equation (49) was used to determine the duration of the microfiltration 

operation.

4 .4 .8 .7  O ther d a ta  inputs

Other key values that were used are given in the table below:

Variable Assumed value

Current feed volume for each anti-venom IgG stream [L] 500

Number of F ab types processed per blended batch [-] 4

Number of blended batches simulated 10

Initial total IgG feed titre [g/L] 25

Initial venom-specific IgG feed titre [g/L] 12

Percentage sodium sulphate used currently in precipitation [% w/v] 36

Percentage w/v sodium sulphate concentrations investigated 24 &48

Microfiltration membrane pore size (replacing centrifugation) [pm] 3

Centrifugal flowrate [L/hr] 130

Volume of Protein-G matrix [L] 56

Protein-G IgG binding capacity [g/L] 19

Table 24: Key input assumptions

4.4.9 Modelling assumptions used for the CroFab™ process

1. The number of batches required to be manufactured was constant

2. There was no significant reduction in the capacity of a batch of chromatographic media over

multiple loading cycles for the lifetime of that batch of media (assumption based on large scale 

data)

3. Complete recovery of all bound components was achieved in all chromatographic steps
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4. Sufficient facility space exists to house any extra manufacturing equipment

5. Buffer costs comprise 5% of total CroFab™ cost of goods (Chhatre et al., 2006) and in the first

layer model, this value was used to determine the annual cost of goods by multiplying the total 

buffer costs by 20. Buffer costs were used because they constitute a resource that every unit 

operation uses and hence scaling from their costs is likely to provide the most accurate final 

cost of goods value compared to all other resources

6. The normalisation of batch times required to computer the Overall Rank for the case study was

based on the time needed to create the first blended, concentrated and filtered batch of purified

product

7. Discussions with Protherics identified the most important output metrics (Table 15 on Page 84). 

Based on this, weightings for the Overall Ranking procedure were assigned, with manufactured 

product mass and cost of goods each assigned values of 0.4 and batch time assigned a 

weighting of 0.2

4.5 Results and Discussion

4.5.1 Simulation results

Graphs in this section (created using Microsoft® Excel XP) plot the change in Overall Rank (OR) 

relative to current operation, which involves processing a 500L feed with the existing flowsheet.

4.5.2 Case study acceptance criteria

The following values were industrially validated and set for the acceptance criteria:

Options assessed in the first layer which had OR values that were larger than for current operation 

were passed into the next layer, whilst the remainder were screened out i.e. the acceptance criterion 

was:

O R * ,* * ,  > ORCmM ^  (Equation (26) with M, = 0) (50)

In the second layer, more stringent acceptance criteria were set. For an option to be deemed 

sufficiently superior to current operation, and thus allow it to be passed into the next layer, it needed 

to provide improvements in the order of a 20% increase in product mass, a 15% reduction in cost of 

goods and a 5% reduction in batch time. Together, these equate to an Overall Rank that is at least

0.1 greater than current operation. Any option providing improvements in product mass, cost of 

goods and batch time which resulted in an Overall Rank that was 0.1 greater than current operation 

was passed into the next layer i.e. the acceptance criterion was:
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OR,New option ■> O R 'Current operation
+0.1  (Equation (27) with M2 = 0.1) (5 1 )

In the third layer, the most stringent criteria were set. For an option to be sufficiently superior to 

current operation and thus allow it to be chosen as one of the best options of all under consideration, 

it needed to provide improvements in the order of a 50% increase in product mass, a 40% reduction 

in cost of goods and a 5% reduction in batch time. Together, these equate to an Overall Rank that is 

at least 0.2 greater than current operation. Any option providing improvements in product mass, cost 

of goods and batch time which resulted in an Overall Rank that was 0.2 greater than current 

operation was selected as being amongst the best process options i.e. the acceptance criterion was:

4.5.3 Results from the first layer

The current operation and the fifteen manufacturing alternatives were initially modelled in the first 

layer. Figure 25 plots the changes in Overall Rank for the alternatives relative to the current 

process. Eight options were superior to the current operation, with the three best results all involving 

doubling the feed volume to 1000 L. The most superior alternative is achieved when the feed 

volume is increased to 1000L and the Protein-G and concentration steps (option A—>E) replace the 

existing precipitation and centrifugation combination. A breakdown of the weighted and normalised 

ranks for this option (black bars in Figure 26) shows this being due to an improvement in product 

mass and cost of goods, which significantly outweigh a slight increase in batch time. The second 

best level of improvement occurs when option A->D is employed, where a 1000 L feed is combined 

with the use of Protein-G IgG capture without the concentration step. When option A—>D (white bars 

in Figure 26) is compared with option A-»E, it can be seen that although the latter is inferior in terms 

of product mass owing to loss during the concentration step, this is more than outweighed by option 

A—>E having a superior cost of goods value and also by the additional batch time taken by option 

A—>D that results from not concentrating the process stream.

Amongst the other favourable options, using a 1000 L feed with a microfiltration step in place of the 

centrifugation (option A—>C) is approximately as favourable as either using the Protein-G and 

concentration steps with a 500 L feed (option E) or simply employing a 1000 L feed with the current 

flowsheet (option A). The other superior options include using a 500 L feed with an altered flowsheet 

based on either replacing the centrifuge with the microfiltration or using a Protein-G column on its 

own (options C and D respectively). The final superior option using a 1000 L feed, 48% sodium 

sulphate and a microfiltration unit (A—>B @ 48%—>C) is only just better than current operation, with 

the advantages resulting from an improvement in product mass only just surpassing the 

disadvantage of additional batch time.

O R  >  O R^  New option Current operation + 0.2 (Equation (28) with M3 = 0.2) (52 )
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Figure 26: Breakdown of the individual component normalised and weighted ranks in the first layer 
for option A—»E (black bars) and option A—>D (white bars)

The remaining seven options, all involving a change in sodium sulphate concentration, were inferior 

to current operation. Use of 48% w/v sodium sulphate, either in isolation or in combination with any 

other process change, outweighed the use of any option involving 24% w/v sodium sulphate (Neal,

2005). Use of the latter precipitant concentration resulted in especially inferior alternatives, even 

when combined with an increase in feed volume and a change from the centrifuge to the 

microfiltration step. Option B @ 24% —► C (i.e. using 24% w/v sodium sulphate and a microfiltration 

step) in particular provided the worst result, primarily due to a 50% reduction in product mass and a 

70% increase in cost of goods compared to the current process. These inferior options were 

screened out in this layer, leaving the remaining eight to be evaluated by the model in the next layer.

4.5.4 Results from the second and third layers

Figure 27 plots the results from the second layer. Three options fall below the acceptance criterion 

and one other option is only just favourable. The more refined second layer model shows that option 

A—>D (1000 L feed volume and a Protein-G step without the concentration step) has the best result 

and although the best option from the first layer (A—>E -  1000 L feed with both the Protein-G and 

concentration steps) still meets the acceptance criterion, analysis using more accurate models has 

moved it to third place, with similar OR values to options A and A—>C (1000 L feed without and with 

the microfiltration step respectively). The breakdown of options A—>D and A-»E for this layer is 

given in Figure 28 and shows that option A—>D is more favourable in terms of product mass and 

cost of goods. Contrary to the conclusion drawn in the first layer, this now outweighs the 

disadvantage of the higher batch time which results from not concentrating the stream. This 

highlights a key point: owing to its simplifications, the first layer only returns an approximation of the 

feasibility of options and should only be used as a basis for screening and not final decision-making.
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Figure 27: Results from the second layer 
The dotted line represents the acceptance criterion for options in this layer
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Figure 28: Breakdown of the individual component normalised and weighted ranks in the second layer 
for option A—>E (black bars) and option A—>D (white bars)

Options A—>D, A, A—>E, A—>C and D were passed to the third layer for further analysis and the 

results are shown in Figure 29. Only options A—>D and A—>E exceed the acceptance criterion of 

being at least 0.2 units greater than the Overall Rank of the current process and hence out of all 

available options, these would be deemed the only feasible manufacturing strategies. Option A—>D 

is significantly better than A—>E and so would be the recommended process change out of all 

manufacturing alternatives under consideration.
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Figure 29: Results from the third layer 
The dotted line represents the acceptance criterion for options in this layer

4.5.5 Verification of model consistency and compatibility between the three layers

In order to build confidence in the methodology and to verify how accurately the upper two layers 

reflected the manufacturing performance predicted by the third layer, every option was simulated 

and compared in all three layers. A summary of the results is provided in Table 25, which shows 

that all three layers predicted options A—>D and A—>E as being amongst the top three (based on 

their changes in Overall Rank relative to the current process). All three layers also made almost 

identical predictions for which options would be worse than the current process and which should 

therefore definitely be screened out.

Layer
First Second Third

</) A—»C A A —>C
o
Q_
O A—»D A —*•D A— D

£
m A —>E A - * E A —>E

A B @ 24%

mT<

@ 24% A —► B @ 24%

A B @ 24% c A —*• B @ 24% — C A —  B @ 24% c

<s>
c.o

B @ 24% B @ 24% B @ 24%

CL
o
£2o
§

B @ 24% — C B @ 24% C B @ 24% -> c

B @ 48% B @ 48% B @ 48%

B @ 48% — C B @ 48% C B @ 48% — c

A -» B @ 48%

Table 25: Verification of which options were the best and worst in all three models 
The best options were those in the top three out of all options tested, whilst the worst options were those which 

had Overall Rank values that were lower than the current process. Options are arranged in alphanumerical order
for ease of comparison
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4.5.6 Sensitivity analysis

To determine how robust the analysis was, the effect of varying the weighting values on the 

computed Overall Rank was determined. Since the weightings represent the relative importance 

attached to the different performance metrics, varying their values provides an indication of how 

alterations in priorities between the metrics affect the Overall Rank values and hence the standing of 

the different process options. By way of illustration, two studies were conducted to capture the 

impact of making hypothetical changes to the weightings. Weightings of two metrics for the most 

favourable options returned from the third layer analysis (A—>D and A—>E) were varied and the 

Overall Rank values were re-calculated. In each study, the weighting of the third metric remained 

unchanged.

a) Part of the reason why options A—>D and A—>E are superior to current operation stems from 

improvements in the cost of goods value, which help to outweigh the disadvantage of additional 

batch time caused by the need to process a larger feed volume. The situation is also helped by 

batch time having a lower weighting than cost of goods (0.2 and 0.4 respectively). This study 

therefore examines what would happen if the importance of batch time relative to the cost of 

goods was changed -  Figure 30

b) Product mass and cost of goods are equally important in the calculation of Overall Rank 

(weightings of 0.4 each). This study examines what would happen if the importance of product 

mass relative to cost of goods was changed -  Figure 31
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Figure 30: Impact of varying the batch time weighting on Overall Rank 
(White squares = option A—*D; black squares = option A—>E). The cost per gram weighting was adjusted to suit 
as described in the text. The black dotted line represents the acceptance criterion in the third layer. The base 

case weightings for batch time and cost of goods are 0.2 and 0.4 respectively. The product mass weighting
remained unchanged for this study
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Figure 31: Impact of varying the product mass weighting on Overall Rank 
(White square = option A—>D; black square = option A -*E ). The cost per gram weighting was adjusted to suit as 

described in the text. The dotted line represents the acceptance criterion in the third layer. The base case 
weightings for both metrics were 0.4. The batch time weighting remained unchanged for this study

In study (a), increasing the batch time weighting from 0 to 0.5 and adjusting cost of goods to suit, 

leads to a reduction in the Overall Rank relative to the current process for both options. These fail to 

meet the third layer acceptance criterion once the batch time weighting exceeds approximately 0.2 

for option A—>E and approximately 0.3 for option A—>D. This demonstrates that in order for these 

options to be favourable compared to the current process, the relative importance of batch time 

compared to the cost of goods needs to be maintained below these levels.

Study (b) shows that as the product mass weighting increases, option A—>D becomes more 

favourable than the current process for weightings greater than approximately 0.15, whilst option 

A-»E only becomes favourable at weightings greater than approximately 0.3. This is because 

option A—>D results in a larger final product mass than option A—>E, as product is lost in the latter 

case during the concentration step and consequently, as product mass becomes more important, 

option A—>D becomes superior more rapidly than option A—>E.

Additionally, it is also noticeable in both Figure 30 and Figure 31 show that over the majority of the 

weighting range examined, option A—>D is superior to option A—>E and mostly still exceeds the 0.2 

acceptance criterion. This indicates that for a wide range of corporate priorities, option A-»D would 

still be the more favourable process change to implement.
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4.5.7 Conclusion

The above sections have described a deterministic analysis for identifying the most favourable 

manufacturing strategy to adopt for commercial operations. This approach does not account for the 

potential uncertainties that occur within a typical bioprocess, such as with respect to the level of 

market demand or the titre of product at the start of purification. Incorporation of uncertainty forms 

the subject of the next section.

4.6 Decision support modelling under uncertainty

4.6.1 Introduction

A follow-up study to the work described above was carried out by application of Monte Carlo 

modelling techniques and was applied to the third layer model of the CroFab™ process. Monte- 

Carlo analysis permits the incorporation of processing uncertainties into models to calculate the most 

likely values for outputs and works by assigning probability distributions to the uncertain input 

variables, running the models repeatedly and averaging the outputs to calculate the most likely 

values (Farid et al., 2005). This technique was used to examine two specific problems in relation to 

the CroFab™ process:

1. The current formulation consists of only four types of anti-venom Fabs and therefore only serves 

a limited percentage of the patient population. Adding extra rattlesnake Fabs to the CroFab™ 

formulation would increase the pharmacological relevance of the product and potentially open it 

up to a wider market and so more lucrative financial returns

2. Future vial requirements are likely to outstrip the current capacity to supply and hence strategies 

for satisfying market demands need to be identified and evaluated

For CroFab™, the key variable of uncertainty lies in the IgG titre and hence a range and a probability 

distribution (19-41 mg/mL normally distributed -  Newcombe et al., 2006) were assigned to this input 

before entering it into the third layer model of Protherics’ process. In relation to the two problems 

raised above, two specific scenarios were analysed using Monte Carlo simulation:

1. Firstly, if extra F ab components, how does this affect key outputs such as COG, batch times and 

levels of resource utilisation? The study examined the effects of adding up to two extra Fabs

2. Secondly, what is the best operating strategy to adopt with respect to numbers of batches and 

volumes of feed per batch if demand for the product increases?

4.6.2 Study 1: Adding extra Fab components

Turning to the first of the two studies, Figure 32 illustrates the effect of adding components upon the 

cost of goods for four, five and six component formulations. Adding one extra component results in 

a 17% reduction in the cost of goods between modal results, whilst adding another component (i.e. a 

total of six) results in a reduction by 26% relative to a four component formulation).
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Figure 32: Probability distribution of cost of goods values resulting from adding up to two extra Fab components 
(Numbers indicate total number o f Fab species -  four is the number o f components used at present)

It is also noticeable that as the number of components increases, the data becomes more tightly 

distributed -  something that is shown more clearly by Figure 32. This demonstrates that the 

standard deviation reduces markedly from four to five components and to a far smaller extent from 

five to six. If standard deviation is taken to be a measure of risk, it then follows that increasing the 

number of components increases the chance of obtaining the mean COG and so reduces the 

economic variability of the process.

Standard
deviation

4 5 6

Num ber o f com ponents

Figure 33: Standard deviation of the cost of goods distributions given in Figure 32
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In the second part of the first study, the effect of adding more components upon campaign duration 

was calculated (Table 26) and it was shown that approximately 2.5% is added for each extra F ab . 

This equates to around 100 hours per annum, suggesting that the impact of putting more Fabs into 

the formulation upon the manufacturing schedules of other products in the facility should be fairly 

limited.

Number of components Percentage increase relative to four components

5 2.5

6 5.0

Table 26: The impact of adding extra Fab components upon campaign duration

In the final part of this study, the impact of adding extra components upon levels of resource 

utilisation was examined, using labour as an example. Figure 34 plots the total amount of time that 

labour remains unused in the process. For example, for the four component formulation (the black 

bars), out of the total time needed for manufacturing all ten product batches, a total of 196 hours are 

spent with four manufacturing staff members remaining unused; similarly, when processing a six 

component formulation (grey shaded bars), a total of 166 hours are spent with ten staff remaining 

unused. For clarity, the absolute minimum numbers of manufacturing staff remaining available over 

the entire time-course of ten successive batches for the four, five and six component formulations 

are shown again in Figure 35. For the four component formulation, for the majority of the time, either 

six or eight people remain free in the labour resource pool, suggesting that these staff members 

could be redistributed to other tasks within the facility. At a minimum, there are always four people 

who are unused (Figure 35). Adding one extra component causes the labour to become used more 

frequently; again, having either six or eight people available is a regular occurrence, but the 

minimum pool remaining dips occasionally to two people. This becomes more pronounced when six 

components are used (Figure 35), where the manufacturing staff level of two occurs more frequently 

and on a few occasions, no members remain in the pool at all. Hence, labour is more of an issue 

with the six component product than with the four component product and thus this resource is more 

likely to constrain throughput -  especially if other changes such as increasing feed volumes or 

annual batch numbers are also implemented which are likely to increase the demands on staff within 

the facility. Hence, this suggests that if more components were to be added, it might be prudent to 

consider training extra staff to cover this potential problem.
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Figure 35: Minimum numbers of manufacturing staff remaining available over the entire time course of the 
simulation for four, five and six component formulations 

Zero members remain available in the pool for a total o f 2 hours, as indicated on the left hand side o f Figure 34

Hence overall, the impact of adding more components is favourable, resulting in:

•  A better COG

• A minimal impact on processing times

• The potential need to add resources e.g. labour
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4.6.3 Study 2: Response to growing product demand

The strategy being considered by Protherics in response to this issue is to adjust the number of 

batches and the volume of feed per batch. Specifically, the tool was used to identify the ideal 

combination of the numbers of batches and volumes of feedstock needed to satisfy processing 

constraints with respect to costs, times and vial numbers -  both for current production levels and for 

future demand. Following on from the previous study, this analysis was completed for the six 

component formulation, for between eight and twelve feed batches for each F ab component and for 

400, 600 and 800 L feedstocks. The constraints that were set were that:

• 40,000 < Vial numbers < 100,000

•  COG/Campaign time<=Current value

The following plot (Figure 36) refers to current market demand and shows combinations of feed 

volume and numbers of batches processed. The current process operates with 400L per batch for 

10 batches. The darkened areas represent those combinations of the two inputs that fail due to cost 

of goods. Each square reflects the mean value produced from repeatedly running the simulation at 

each combination of batch numbers and feed volumes until the rolling average of the outputs 

levelled off.

400 

600 

800
Figure 36: Cost of goods results for combinations of feed volume and batch numbers 

Those areas that fail to m eet the criterion are represented by the darkened squares, whilst the lighter coloured
areas m eet the criterion

If those areas that are unsatisfactory on the grounds of processing time are added in, Figure 37 

results and if vial number constraints are then added in, the final plot in Figure 38 is achieved:

Number of batches
8 9 10 11 12

g p s i E S I
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Figure 37: Combined cost of goods and processing time results for combinations of feed volume and batch

numbers
Those areas that fail to m eet the criterion are represented by the darkened squares, whilst the lighter coloured

areas m eet the criterion
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Figure 38: Combined cost of goods, processing time and vial number results for combinations of feed volume and

batch numbers
Those areas that fail to m eet the criterion are represented by the darkened squares, whilst the lighter coloured

areas m eet the criterion

Operating at 600 L per batch for 8 batches meets the acceptance criteria and in fact, is superior to 

the current position. Hence, for current product demand requirements, this is the best choice to 

make in terms of all three output metrics. Conversely, if the market demand increases by the 50% 

that it is anticipated to rise by, then the plot changes to Figure 39, showing that to meet the 

constraints, the necessary conditions are 800L per batch for 8 batches:
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Figure 39: Combined cost of goods, processing time and vial number results for combinations of feed volume and
batch numbers for a 50% higher market demand 

Those areas that fail to m eet the criteria are represented by the dark red squares

4.7 Conclusions

This chapter has described a methodology that minimises the computational effort needed to 

evaluate the commercial attractiveness of process options and also focuses experimental studies in 

order to provide model input data only for those options which show the greatest potential. The 

utility of the methodology has been illustrated through application to the CroFab™ process. Results 

showed that after assessment of all options, doubling the feed volume and employing a Protein-G 

step resulted in the most superior alternative to the current process and hence would be the 

recommended process change strategy. At the time of writing, Protherics is developing a new 

CroFab process with the intention of replacing the precipitation and centrifugation steps with column 

steps for direct antibody product capture from ovine serum. Hence the positive result for the Protein- 

G column option fits in well with what Protherics anticipates would be feasible. More generally, the 

methodology can be used to evaluate manufacturing options for any biotherapeutic and so identify 

the optimal flowsheet that meets a company’s strategic priorities with respect to production levels, 

product costs and process times. As an extension to the study, Monte Carlo analysis was applied to 

the third layer model of the CroFab™ process, which showed that adding extra components to the 

product formulation would generally be favourable and which also identified the most suitable feed 

volumes and batch numbers for current and future levels of product demand.

Whereas the research presented in the previous two chapters assessed the impacts of changing 

processes in terms of manufacturing metrics alone, additionally evaluating the costs and times 

involved in developing and implementing changes would increase the utility of the techniques. This 

topic forms the subject of the next chapter.
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5: EVALUATION OF THE DEVELOPMENT AND

MANUFACTURING IMPACTS OF CHANGING PROCESSES

5.1 Introduction

The previous research chapters concentrated upon creating simulations that evaluate process 

change options in terms of manufacturing metrics such as product yields, cost of goods and 

processing times alone. Although the data generated by applying these models to a process is 

important to a company, greater value would be gained by additionally considering the costs and 

times involved in developing and implementing those changes. Hence, this chapter describes the 

construction of a computer simulation that evaluates the potential financial and technical impacts of 

making changes to an existing industrial bio-manufacturing process from both development and 

manufacturing perspectives. The methods presented in this chapter are illustrated by application to 

the CroFab™ process. Modifications designed to increase annual production, reduce process time 

and decrease production cost are assessed, including increasing the feed volume and titre, replacing 

initial downstream processing stages by an affinity column step operating in packed or expanded 

bed modes and removing the ion exchange step. These options are evaluated in terms of 

manufactured product mass, cost of goods and manufacturing batch times as well as the costs and 

timescales of development. The work in this chapter has been published (Chhatre et al., 2007a).

5.2 Assessment of developmental and manufacturing metrics

As with the previous chapter, the assessment of process change is complicated by the potential for 

certain outputs to improve whilst others deteriorate. To overcome this challenge, the multi-attribute 

decision-making technique employed in the previous chapter was used again to integrate several 

metrics into a single value in order to simplify their assessment.

5.3 Industrially relevant development strategies

5.3.1 Introduction

The following section outlines a series of proposed development strategies, each of which could, in 

isolation or in combination, provide a viable option for manufacturing improvement. These form the 

basis of the industrial case study, which establishes the ability of the methods proposed in this 

chapter to evaluate, quantify and rank process alternatives. Specific details of how these strategies 

were applied to CroFab™ are given in Section 5.6.

5.3.2 Increasing feed titres and batch volumes

A common strategy for improving annual production is to increase its initial feed titre. Methods of 

achieving this include metabolic engineering of an organism used in fermentation (Li and Townsend,

2006) or, for polyclonal processes, optimisation of the immunisation protocol and the selective
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breeding of animals. Increasing the initial feed volume per batch will also generate larger quantities 

of final product, but if no extra equipment or vessels are available to hold the material, this change 

may generate bottlenecks in production and hence come at the expense of extended processing 

times per batch. Centrifuges and chromatography columns, for example, may have to operate for 

greater numbers of cycles in order to process all the material fed to those steps.

5.3.3 Replacing multiple steps with a single operation

Consolidating a series of steps into a single stage can reduce process costs and times and improve 

product yield. An option that attracts industrial interest is the replacement of potentially time 

consuming operations such as precipitation or centrifugation by an affinity step that selectively binds 

product molecules (Lowe et al., 2001), operating in either packed or expanded bed modes (Chase, 

1998; Gonzalez et al., 2003).

5.3.4 Removing a downstream operation

Removal of a step can increase yields and reduce costs ancf times as a consequence of the shorter 

process train, but may place a greater purification burden on subsequent stages. Hence elimination 

of a unit operation can necessitate alterations and re-validation of steps further downstream.

5.4 Construction of the development model

The development model used to evaluate the options in Section 5.3 was set-up in a spreadsheet. 

For strategies involving capital expenditure, correlations were used to relate equipment capacity to 

purchase costs (Harrison et al., 2003) and then updated to current day prices by assuming a 3% 

annual inflation. Bioprocess Lang factors (Novais et al., 2001) were used to calculate other costs 

e.g. validation (Table 27 -  Page 120). Where a unit operation was removed, the cost of revalidating 

the remainder of the process was included in the model. For feed titre improvement strategies, the 

costs accounted for included those of purchasing assay systems to determine feed titres. For the 

purposes of the industrial case study, all developmental costs were treated as exceptional 

expenditures in year one. The durations of the different development strategies that were modelled 

were specific to the case study and are discussed later. The manufacturing models were 

constructed in Extend™ in the same way as described previously and used to track product mass, 

cost of goods and processing durations of the various manufacturing flowsheets that were evaluated.

5.5 Overall Ranking

As with the previous chapter, to enable comparisons between the available process options, a 

weighted sum additive weighting multi-attribute decision-making technique was used within each 

layer to combine manufacturing outputs into a single value. The technique initially involves 

normalising the simulation results for each output performance metric produced by the simulations in 

the methodology to a zero to one scale, where the zero and one bounds represent the least and 

most attractive values out of all manufacturing simulation runs respectively.
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Item Lang factor {flj

1 Capital investment (e.g. for columns or filter housings = A) 1

2 Qualification and validation 1.06

3 Installation 0.9

4 Instrumentation 0.6

5 Process control 0.37

6 Electrical supply 0.24

7 Detail engineering 0.77

8 Contingency factor 1.15

Calculated cost
a - ' . - L V .

Table 27: Lang factors used to calculate development costs (adapted from Novais et al., 2001)

5.6 Process change strategies for CroFab™

5.6.1 Introduction

The following sections provide more details about how the development strategies outlined in 

Section 5.3 were interpreted and thus modelled for the CroFab™ process.

5.6.2 Increase IgG feed titres and batch volumes to the process

Given sufficient time and funding, it is feasible that the venom-specific IgG feed titre could be 

increased by up to 80% by selective breeding of sheep and optimisation of the protocol used to 

immunise flocks, with respect to the quantity of antigen, the adjuvant and the frequency of 

immunisation. It was assumed that serum titres would increase linearly with development time (see 

Table 29 on Page 123). Although techniques such as ELISA can be used to determine feed IgG 

concentrations, their uses are limited owing to the long times required to analyse large numbers of 

samples (Newcombe et al., 2006). Alternative techniques such as biosensor assays (Biacore 

International Aktiebolag P.L.C., Uppsala, Sweden) permit rapid evaluation of specific antibody titres 

for many serum samples in order to screen and identify sheep which are high responders. The 

resulting improvements in final product mass are self evident, but this option requires significant 

investment in purchasing the assay units. In conjunction, a rise in feed volume up to the maximum of 

1000 L that can be accommodated within the existing facility was also considered.

5.6.3 Replacement of precipitation and centrifugation by a single column capture step

Chromatographic capture of feed IgG operating either in packed or expanded modes has been 

proposed using a synthetic protein A resin (MAbsorbent® A2P -  Prometic BioSciences Limited, 

Cambridge, U.K.), followed by ultrafiltration to concentrate and diafilter the eluate. Although 

commercial-scale use of expanded bed IgG capture is not widespread, the advantages it provides in
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potentially purifying a crude feedstock without any prior clarification and in achieving concentration 

and clarification of product in a single step means that it is an attractive manufacturing option. It has 

been demonstrated that comparable IgG purities and recoveries can be achieved between the 

MAbsorbent® A2P and the sodium sulphate precipitation step used at present (Newcombe et al., 

2005). A synthetic ligand was chosen to purify the IgG instead of the commonly used recombinant 

Protein A (Tejeda-Mansir et al., 1997), because the latter binds sheep antibodies only weakly (Huse 

et al., 2002) and because of the higher capacity and lower cost of the synthetic material, as well as 

its ability to tolerate the harsher cleaning conditions needed when subjected to crude feedstocks.

5.6.4 Removal o f the ion exchange step

Eliminating the ion exchange step from the existing flowsheet (Figure 2) could potentially reduce 

manufacturing times and expenditure, but requires revalidation of the process downstream of the ion 

exchange step. Loading digested IgG directly onto the venom-specific affinity column may 

potentially result in non-specific adsorption to the affinity matrix and it was assumed that an extra 

wash step prior to elution from the affinity column would be needed to eliminate this and so ensure 

that the eluate met specification. This assumption was based upon the operating protocol for a 

similar process operated by Protherics for the purification of a different polyclonal F ab product called 

DigiFab™ (Thillaivinayagalingam et al., 2007), in which digested IgG is loaded directly onto a F ab 

specific affinity column without prior purification in an ion exchange step. When operating this 

affinity column, a wash step is used to eliminate non-specifically adsorbed material such as F c .

5.7 Modelling details of the case study

5.7.1 Introduction

As outlined in earlier chapters, for convenience, input model data for calculating costs, times and 

material balances were entered into a Visual Basic for Applications user interface (within Microsoft® 

Excel XP) and connected to Extend™ (Table 28).

5.7.2 Manufacturing model

Figure 40 outlines the structure of the manufacturing model. Data used to calculate process costs, 

durations and mass balances were provided by Protherics (Table 2 8 ) .  Venom-specific F ab mass 

balances were calculated in Extend™ using data provided by Protherics which specified yields 

achieved by groups of unit operations (see section 3 .2 .8 ) .  The manufacturing model accumulates 

costs for purchasing new matrices or membranes when previous stocks of those resources are 

exhausted. The model also automatically accounts for extra materials such as larger buffer volumes 

and the resultant higher costs incurred when processing larger volumes or higher titre feeds. For the 

titre improvement option, operational costs for the Biacore sy^Jem were negligible (-0.1%) relative to 

purchasing costs and therefore were not included in the analysis.
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Variable Assumed value

Assumed current feed volume for each feed F ab stream [L] 600

Number of F ab types processed [-] 4

Assumed number of blended batches manufactured per annum [-] 12*

Assumed current initial total IgG titre [g/L] 30

Assumed current initial venom-specific IgG titre [g/L] 8

Overall process duration for the first blended batch in current operation [hrs] 623

Volume of MAbsorbent® A2P matrix [packed and expanded columns -  L] 56

Current overall yield per blended batch [%] 26%

Percentage IgG recovery using MAbsorbent® A2P [%] 95%

Table 28: Sample modelling data

Figure 40: Structure of the manufacturing model
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5.7.3 Development model

The periods of time required to develop the different options and bring them into the manufacturing 

facility were estimated from discussions with Protherics (Table 29). Development costs were 

calculated as detailed previously. Where combinations of options were modelled, individual 

development costs were added together.

Process change 

strategy

Estimated duration 

(months)

Tasks involved

Titre improvement Up to 19 One month to develop the Biacore assay; six months to write 

a validation protocol, undertake all the experiments and sign 

off the assay; two months to undertake trials on small sheep 

flocks and then scale up the immunisation protocol. 

Furthermore, based on an assumed 8% increase in titre per 

month, up to a maximum 80% rise, up to 10 further months 

would be needed

Packed and 

expanded bed IgG 

capture

6 Purchasing, validating and qualifying the column and the 

subsequent ultrafilter as well as installing the associated 

instrumentation, process control equipment and electrical 

supply and then revalidating the remainder of the process 

downstream of where the centrifuge was originally

Removing the ion 

exchange step

5 Development of the extra affinity wash step and revalidation 

of the affinity step and the filtration operations downstream

Table 29: Estimated durations of developing and implementing process changes

5.7.4 Modelling assumptions

The following assumptions were made based on discussions with Protherics:

Sufficient space is available in the facility to house any extra equipment required

The entire time-course of the development involved for any of the options was assumed to occur 

before their implementation in the manufacturing facility

No time slippage contingency would need to be allowed for in developing and implementing a given 

process change option

Where combinations of development options were modelled, sufficient resources (e.g. staff or 

funding) would be allocated to allow different projects to start simultaneously, meaning that the total 

duration for those combinations was set equal to the duration of the slowest strategy to be 

implemented

Table 30: Assumptions made for the development model
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The flow rate used in the packed bed model was half of that used for expanded bed operation

Elution volumes in expanded mode were half of those used in the packed bed model (assumption 

based upon advice offered by Protherics)

Based upon the evaluation of the MAbsorbent® A2P resin (Newcombe et al., 2005)), it was 

assumed that recovery was constant across all operational cycles and that ligand leaching was 

negligible over those cycles

Currently, the MAbsorbent® A2P resin is not available on expanded bed adsorption beads, but for 

the purposes of the analysis, it was assumed that the binding and purification characteristics of the 

MAbsorbent® A2P matrix would be identical in packed and expanded modes (an assumption that 

would need to be verified experimentally)

Initial titres for each of the four rattlesnake anti-venom IgGs were the same for every batch of 

starting serum

The number of batches manufactured per annum remains unchanged (Table 28)

Table 31: Assumptions made for the manufacturing model

5.7.5 Application of the MADM technique

Table 32 provides the metrics used to assess the industrial development options and values 

assigned to the bounds for the normalisation as detailed in the previous chapter. Values quoted for 

the zero and one bounds are the highest and lowest values from the entire set of simulation results 

for all options and combinations of options examined. Development times were normalised relative 

to the strategy taking the longest time -  namely increasing the IgG titre (maximum of 19 months). 

The current process with no need for development was assigned a normalised rank of 1 for each of 

the two development metrics. Overall Ranks for each process change option were then calculated 

by Equation (24) and Equation (25).

Metric Zero bound One bound

M
an

uf
ac

tu
rin

g

Annual product mass ( g  F a b ) -40,000 -  147,000

Cost per gram (£/g F a b ) Current level 70% lower

Batch time (hours) i C
O

o -470

D
ev

el
op

m
en

t

Cost (£) Maximum value from all simulation runs 0

Time (months) 19 months 0 months

Table 32: Values used to normalise the output values of the five performance metrics onto a zero to one scale 
The highest and lowest values from the entire set of simulation results were used to set the zero and one bound 

values for the five metrics. Manufacturing batch time was that measured for the first blended batch
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Based on discussions with Protherics, the annual manufacturing cost per gram and F a b  product 

mass were taken as being the most important metrics and assigned weights of 1/4 each, whilst the 

other three metrics were given equal weighting (1/6), resulting in the following required relation:

(53)

The Overall Rank benchmark for the current process was calculated to be 0.42 using the current 

manufacturing conditions given in Table 28 on Page 122.

5.8 Results and discussion

5.8.1 Simulation results

Simulation results were represented graphically using Microsoft® Excel XP and MATLAB® (version 

6.5.2, The Math Works Incorporated, Massachusetts, U.S.A.). Where appropriate, graphs plot the 

change in Overall Rank relative to that of the current operation (i.e. the existing process flowsheet 

operated with the current feed volume and IgG titre -  see Table 28). Outcomes of simulated options 

that are superior to the current operation appear above the x axis or the x-y plane (also known as the 

‘Titre-volume’ plane at Overall Rank = 0), for 2 and 3D graphs respectively, whilst inferior options 

appear below.

5.8.2 Impact of increasing the feed volume

Figure 41 shows the impact of increasing the feed volume to the current manufacturing process and 

to variants based on the use of MAbsorbent® A2P. Use of either packed or expanded bed column 

capture of IgG from a 600 L feed results in an inferior solution relative to the current manufacturing 

process. A breakdown of the normalised and weighted individual performance metrics in Figure 42 

indicates that although the manufacturing ranks for the MAbsorbent® A2P column-based options 

exceed those for the current process, there is a heavy price to be paid in terms of additional 

development costs. The methodology used in this chapter calculates development costs as 

exceptional expenditures in year one and balances these against the manufacturing metrics shown 

in Table 32 for a single year’s worth of production. Calculated in this way, the expenditure in 

development that has to be borne more than outweighs the advantages of increased annual product 

mass, reduced cost per gram and decreased batch times. Figure 41 also indicates that when 

operating with a 600 L feed, the Overall Rank of the packed bed option is slightly inferior to the 

expanded bed option, with Figure 42 showing that operation in expanded mode reduces the cost per 

gram and batch time to a greater extent than if using a packed bed.
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Figure 41: Impact of operating with 600 L, 800 L, 1000 L feed volumes on Overall Rank 
for the current (black bars), packed (grey bars) and expanded bed (white bars) processes
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Figure 42: Breakdown of Figure 41 of the individual ranks for the five metrics 
for the packed bed (grey bars) and expanded bed (white bars) processes operating with a 600 L feed. Values 
plotted for each metric show the change relative to the weighted and normalised value for that metric in the 

current process flowsheet operated with a 600 L feed. A = manufacturing Fab mass; B = manufacturing cost per 
gram; C = manufacturing batch time; D = development cost; E = development time
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As the process volume is increased to 800 L and then 1000 L, the Overall Rank increases for all 

three options by virtue of increased annual production and reduced manufacturing cost per gram 

values. Nonetheless, the current process flowsheet still outperforms the other two options at 800 L 

and 1000 L scales of operation. This conclusion again arises from treating the development costs as 

exceptional expenditures. Calculated in this way, there appears to be no justification for changing 

from the current manufacturing process to either IgG column capture method on their own, even if 

combined with an increased feed volume to 1000 L. If, on the other hand, the development cost was 

depreciated over several years of manufacturing operations, it is likely that the improved 

manufacturing performance in that timeframe would merit the developmental expenditure.

5.8.3 Impact of increasing the feed volume and IgG titre

Figure 43 demonstrates the effects of increasing the venom-specific IgG titre by up to 80% (a 

realistic upper limit based on existing antibody variability within individual sheep and assuming 

sufficient time and money are available) on Overall Rank at 600 L, 800 L and 1000 L feed volumes 

both for the current process and the expanded bed option. For all combinations of feed volumes and 

titres that were tested and based on the assumptions given earlier, the expanded bed-based 

process outperforms the current flowsheet (the packed bed results lie in-between -  data not shown 

for clarity). The levels of titre improvement required to generate a superior alternative can be 

determined from Figure 43. When operating with a 600 L of feed to the current process, increases in 

titre of up to 80% were incapable of achieving a superior Overall Rank, because improvements in 

cost per gram and annual product mass were outweighed by heavy developmental times and costs 

incurred. With an 800 L feed, operation is superior to the Overall Rank for current operation 

provided that titre improvements of 35% or more are achieved. With a 1000 L feed, operation is 

more favourable than current operation with even modest titre improvements. In part these results 

are due to an improvement in annual product mass, but they also stem from a reduction in cost per 

gram e.g. with an 800 L feed to the existing process and an 80% improvement in titre, cost per gram 

is reduced by over 50% relative to current operation. The overall implication is that in order for 

improvements in titre to realise significant benefits for the current process, they have to be large 

(greater than 35%) and they need to be combined with an increase in feed volume of at least one- 

third.

When operating the expanded bed process, a similar pattern is seen -  feeding 600 L of serum to the 

expanded bed process and increasing the titre by up to 80% reduces the Overall Rank relative to 

current operation, whilst if the feed volume is increased to 800 L, the Overall Rank is superior to the 

current operation provided that the IgG titre is increased by a minimum of 20%. Expanded bed 

operation is favourable over the entire titre range if a 1000 L feed is utilised.
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Figure 43: Impact of increasing the venom-specific IgG feed titre upon Overall Rank for the current process and 
the expanded bed variant operating with 600 L, 800 L and 1000 L feed volumes 

Superior performance relative to current operation is achieved by combinations o f feed volume and titre above the 
titre-volume plane i.e. the plane representing zero Overall Rank

5.8.4 Impact of removing the ion exchanger

Figure 44 examines the impact of eliminating the ion exchanger from the existing flowsheet when 

operating with 600 L, 800 L and 1000 L feed volumes. A small reduction in rank is seen at 600 L, 

because improvements achieved in the manufacturing metrics are just offset by development costs 

and durations. This suggests that removing the ion exchange step on its own from the current 

process would not be favourable. Increasing the feed volume to 800 L and 1000 L and eliminating 

the ion exchanger is beneficial, but still inferior to the option of simply employing the existing process 

with 800 L and 1000 L feed volumes. Conversely, Figure 45 demonstrates that at the feed volumes 

tested, the packed and expanded bed options without the ion exchange step outperform the current 

flowsheet and the packed and expanded bed options, when the ion exchanger is still in place. This 

is due to cumulative improvements in the manufacturing metrics which significantly outweigh the 

development costs. The implication is that using direct column capture whilst also eliminating the ion 

exchange step can achieve a superior process compared to current operation.
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Figure 44: Impact of retaining and removing the ion exchange step from the current process on Overall Rank, 
operating with 600 L (black bars), 800 L (grey bars) and 1000 L (white bars) feed volumes 

Presence or absence o f the ion exchanger is denoted by IEX+ and IEX- respectively
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Figure 45: Impact of retaining and removing the ion exchange step from the packed and expanded bed processes 
on Overall Rank, operating with 600 L (black bars), 800 L (grey bars) and 1000 L (white bars) feed volumes. 

Presence or absence o f the ion exchanger step is denoted by IEX+ and IEX- respectively
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5.8.5 Impact of removing the ion exchanger and also increasing the IgG titre

Figure 46 shows the effects of increasing the titre by up to 80% and also removing the ion exchange 

step upon Overall Rank at 600 L, 800 L and 1000 L feed volumes for the current process and the 

expanded bed option. The expanded bed option outperforms the packed bed option, which in turn 

outperforms the current flowsheet for all combinations of feed volumes and titres tested. In order to 

achieve better operation using a 600 L feed than at present, a titre increase of 20% is needed for the 

expanded bed option without the ion exchanger, whilst for the current process flowsheet operating 

without the ion exchange step, an increase of 65% is required. At 800 L, a titre improvement of 20% 

is required for the current process without the ion exchange step in order to achieve a superior 

Overall Rank, whilst operating with 800 L for the packed and expanded bed options without the ion 

exchanger results in a better alternative to the current operation over the complete 80% titre range. 

In all three cases at 1000 L, the altered process flowsheets are superior to the current operation. In 

particular, the Overall Rank for the expanded bed option without the ion exchanger operating with a 

1000 L feed (66% higher than at present) and an 80% increased titre was the highest seen out of all 

the options examined (Point A on Figure 46). This provides the greatest return in manufacturing for 

the investment in development and hence would be the most desirable replacement to the current 

operation.

0.25</>(/><D Expanded
bed8

£  0.2 -  
I
3
« 0.15-XI
O
a>
£  0 .1 -

Current
process

cssa>

|  0.05-

15 Titre-volume
plane

I
c
a>O)
§ -0.05 -

xz
O

1000
- 0.1

800
40

F e e d  v o l u m e  ( L )600
P e r c e n t a g e  i n c r e a s e  i n  t i t r e

Figure 46: Impact of removing the ion exchange step and increasing the venom-specific IgG feed titre on Overall 
Rank for the current and expanded bed flowsheets, operating with 600 L, 800 L and 1000 L feed volumes 

Superior performance relative to current operation is achieved by combinations o f feed volume and titre above the
titre-volume plane
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5.9 Conclusions

This chapter has used a computer simulation to evaluate the impact of developing and implementing 

a series of alternative industrial production process scenarios, subject to predicted levels of changes 

in key input variables such as feed titre. Each option was assessed using a multi-attribute decision 

making technique, both in terms of annual manufactured product mass, costs of goods and 

manufacturing batch times as well as developmental costs and durations. Of all the process change 

options that were modelled, combining an expanded bed column with a 66% higher feed volume and 

an 80% higher titre together with the elimination of the ion exchange step provided the most 

desirable alternative to current operation. Amongst other changes evaluated, the simulation 

demonstrated that if the feed volume to the existing process was increased from 600 L to 800 L and 

the titre was increased by 80%, the cost per gram could be reduced by over a half. Such data can 

be used for the rapid assessment of process alternatives in line with commercial aims and objectives 

and thus ensure that the most attractive new process scenario is selected to replace current 

operation.

In these last three chapters, the process change scenarios examined through simulation were 

defined by Protherics; it is also possible, however, that the company may not know exactly which 

other factors or properties of the process provide the greatest potential for achieving manufacturing 

improvements. Such knowledge would be highly beneficial and the use of sensitivity analysis 

techniques for acquiring this information forms the subject of the next chapter.
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6: GLOBAL SENSITIVITY ANALYSIS FOR DETERMINING 

PARAMETER IMPORTANCE IN BIOPROCESSES

6.1 Introduction

Although computer simulations such as those presented in previous chapters offer the potential for 

determining the impacts of changing manufacturing variables such as titres or flowrates, their 

effective use for process optimisation also requires knowledge of the relative influence that each 

input variable exerts upon outputs, allowing development studies to be concentrated upon the most 

important factors controlling manufacturing performance (Chhatre et al., 2007d). When simple 

material balance expressions such as black box models are employed, identifying the most critical 

variables can be achieved readily by visual inspection, but when more complicated, mathematically 

rigorous expressions (such as the non-linear equations given in Chapter 4) are used, inspection may 

prove difficult or impossible because of the complexity and size of the design space. In such 

circumstances, more sophisticated approaches are required.

One such method which has attracted recent interest is the use of sensitivity analysis techniques, 

which use calculus-based algorithms to determine how variations in model outputs are influenced by 

changes to the inputs (Saltelli et al., 2000). Local Sensitivity Analysis (LSA), for example, involves 

calculation of the partial derivative with respect to individual input variables at specific points on the 

output function (McRae et al., 1982). Although a partial derivative provides valuable data about what 

occurs at that point and in its immediate vicinity, this approach is inadequate for describing the 

behaviour elsewhere in the model. To determine sensitivities at other parts of the function using 

LSA would require the computationally intensive and time consuming evaluation of partial derivatives 

at every point of interest. Furthermore, LSA only analyses one input at a time (King et al., 2007), 

such that complete model characterisation would necessitate separate calculations for every 

variable. Global Sensitivity Analysis (GSA) is a more powerful method that assesses all input 

parameters simultaneously over their full ranges of uncertainty and ranks them on a zero to one 

scale to signify the average contribution that each one makes towards the variance of the model. 

Variable ranks can be used to quantify both the impact of individual variables on a model as well as 

their interactions. By identifying the most critical input factors in this way, GSA concentrates process 

development efforts upon the most important variables and aids identification of the most suitable 

conditions for operating a drug manufacturing process.

Although GSA has been used previously to assess the sensitivities of processes in sectors such as 

the chemical industry (Schaibly and Shuler, 1973), its application in the bioprocess arena has been 

limited to individual unit operations. Kontoravdi et al. (2005), for example, applied GSA to a model of 

mammalian cell culture producing monoclonal antibodies, while King et al. (2007) used the method
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for the centrifugal clarification of fermentation broths. The wider application of GSA would bring 

significant benefits to the bioprocessing sector, as it can be used in conjunction with regulatory 

concepts such as Quality By Design (QBD) in order to achieve more efficient process development. 

QBD argues for a thorough characterisation of the design space by quantifying the influence of each 

variable upon the process. The resulting information can then be used to determine the most 

suitable operating position with respect to technical outcomes such as yield, purity, product quality 

and process robustness (i.e. operating away from edges of failure). GSA can help to achieve this 

goal by calculating the relative control exerted by different manufacturing variables and thus enabling 

unimportant variables to be screened out. By uncovering the most critical process parameters in this 

way, GSA establishes a basis for choosing the most suitable fractional factorial design for those key 

inputs alone. Hence in order to illustrate the utility of GSA in bio-manufacturing, this chapter 

describes the first application of the technique to mathematical models of bioprocesses, again using 

the CroFab™ process as a case study. Two sets of studies have been undertaken, both of which 

have been submitted to journals (Chhatre et al., 2007d; Chhatre et al., 2007e):

1) Applying the GSA methodology to the synthetic Protein A-based purification of ovine serum

2) Widening the first study to consider the variable sensitivities of the whole CroFab™ process

6.2 Description of case studies

6.2.1 Synthetic Protein-A purification

In this first study, GSA was used to determine variable importance for the synthetic Protein A 

purification of IgG. Although recombinant Protein A is regularly employed industrially for the 

purification of feeds such as monoclonal antibodies from clarified cell culture supernatant (Fahrner et 

al., 1999; Swinnen et al., 2007), high resin costs and the requirement for expensive cleaning 

solutions such as urea or guanidine hydrochloride have prompted the development of synthetic 

alternatives with potentially greater affinity for antibodies from feeds such as crude ovine serum 

(Hober et al., 2007). This study therefore models the synthetic adsorbent-based chromatographic 

capture of antibodies from sheep serum (Newcombe and Newcombe, 2007; Chhatre et al., 2007b; 

Chhatre et al., 2007f). As described in the previous chapter, the synthetic adsorbent step was 

simulated using the Thomas model (Montesinos et al., 2005), in order to predict the amounts of 

antibody that are captured upon serum application to the column. Assumed data values obtained 

from Protherics (Newcombe et al., 2005) were used to populate the Thomas model, after which it 

was subjected to GSA to quantify the influence exerted upon antibody yield by the IgG 

concentration, duration of feed application, matrix capacity and flowrate.

133



6.2.2 Whole process modelling

To extend the application of the technique, GSA was then used to quantify the impact of different 

input variables upon the yield and throughput of the final CroFab™ product, using one of the 

proposed processes described in Chapter 4. In the process, the hyperimmunised serum feed is 

initially subjected to a synthetic affinity ligand adsorbent step to recover the antibodies, after which 

they are digested by papain, concentrated and diafiltered by ultrafiltration, ion exchanged and finally 

affinity purified to recover the venom-specific product. This study modelled the purification of a 

single batch of ovine serum passed through this process.

6.3 Synthetic Protein-A purification

6.3.1 Mathematical basis to GSA

As outlined above, GSA calculates the relative importance of every input variable by assessing its 

contribution to the variance of the model function. This variance-based rank for each variable is 

called its sensitivity index (SI) and is expressed on a zero to one scale. The GSA method used in 

this part of the chapter to calculate the SI terms (Sobol’, 2001) relies on defining the function f(x) of n 

arguments within an nth dimensional unit hypercube with each input value ranging from zero to one 

(its ‘range of uncertainty'). The function can then be expressed as a series of summands of 

increasing dimensionality:

This equation implies that any function f(x) can be represented as a sum of functions fn...,s which take 

arguments from within x. Upon expansion, Equation (54) becomes Equation (55):

Equation (55) requires that fo is a constant and that the integrals between unit limits of every 

summand of any of its own variables are equal to zero:

From Equation (56), it follows that the members of Equation (54) are mutually orthogonal and can be 

expressed as integrals of f(x):

(54)

(55)

(56)

(57)
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k * i

r f ( x j dx k I = f 0 +  f , (x , )  +  f t(x j )  +  f j x ^ x j
\ k * i , j

(58)

(59)

(60)

(61)

(62)

In Equation (59), fijfaxj represents the interaction between the two input variables. This expansion 

can be continued for higher order terms. If f  (x) is assumed to be square integrable, then it follows

that all of the f(. ,■ terms are square integrable as well. Squaring Equation (54) and integrating over

the unit hypercube generates the following expression:

The left and right hand sides of Equation (60) can be re-written as follows:

or = l f 2m - fo

;  ~  jT .  , • •. ^  • .

D j and D. are the total and partial variances respectively, such that:

D = y n y n q

Taking the ratio between the partial variance and total variance in Equation (61) generates

Sensitivity Indices (S, j  ), each with values between zero and one. SI terms can be calculated to

quantify both the importance of individual variables (‘first order’ indices) and their interactions 

('interaction' or ‘higher order’ indices). The sum of all indices always equals 1.

(64)

6.3.2 Modelling details

The synthetic Protein A-based purification was modelled using the Thomas model (see previous 

chapter), simulating breakthrough curves for the amount of antibody that flows through without being 

captured by the column. Figure 47 plots a theoretical breakthrough curve, in which ‘X’ ranges from 

zero to one and represents the fraction of the antibody in the feed that flows through the column 

without interacting with the matrix and which is therefore not recovered. The areas above and below 

the breakthrough curve respectively represent the quantities of antibody that are bound and lost.
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'koad is the duration for which feed is applied to the column. In order to determine antibody recovery 

(i.e. yield), it was assumed that all antibody molecules bound to the matrix were successfully 

recovered by elution from the column. Recovery was then calculated directly by integration of the 

breakthrough curve using the trapezium rule to determine the proportion of antibody mass that is lost 

(,Areau>st). Area^ai in Equations (65) and (66) represents the total amount of antibody applied:

AreaTotal = AreaBound + AreaLost = tLoad x 1 = tLoad (65)

AreaBound = AreaTotal -  AreaLost (66 )

1

Antibody
recovered

X

Antibody lost

0
Time0 t

Load

Figure 47: Theoretical breakthrough curve

The proportion of antibody recovered i.e. the yield is then determined by the following equation: 

Area ,
r  =

Bound

Area
(67)

Total

Input variables were split into two groups -  one for those where sensitivity indices were required for 

reasons of commercial interest (see Table 33) and the other for the remaining inputs (Table 34):

Variable Value

Co Feed concentration (mol/m3) 0.15-0.2

t^d  Duration of feed application (s) 900- 1000

qm Matrix capacity (mol/m3) 0.15-0.20

v Linear flowrate (m/s) 3 - 4 * 1 0 ^

Table 33: Input uncertainty ranges of values for variables for which SI terms were calculated
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For the remaining variables, the following values were assigned:

Variable Value and comment

Kd Equilibrium desorption constant (-) 10-4 These data were based upon literature values 

(Hahn et al., 2003)
Ki Adsorption rate constant (m3/mol/s) 0.129

e Bed porosity (-) 0.4 Values assumed from Montesinos et al. (2005)

L Column length (m) 0.2 Assumed column length (Protherics)

Table 34: Values for variables that were fixed during the GSA analysis

6.3.3 Input variables scaling

Although the inputs for variables in the GSA method range from zero to one, values for

chromatography model do not take that range and were therefore scaled using Equation (68):

^Scaled ~  ^ G S A  x  i /^ U  ~  +

Ascaled is the scaled input value, Agsa is the input value in the zero to one range and A l and Au are the

real lower and upper bounds respectively representing the zero and one bounds in the GSA method. 

For example, 'iMgsa is 0.5, Al is 0.15 and Au is 0.2, then Ascaied is calculated by Equation (21):

ŝca/ed = 0 .5 x (0 .2 -0 .1 5 )+ 0 .1 5  = 0.175 (69)

6.3.4 Implementation

The GSA methodology given in Section 6.3.1 had already been encoded into MATLAB® by Dr Josh 

King (Department of Biochemical Engineering, University College London) and hence this used to 

complete the analysis for this case study. In this analysis, the four variables for which sensitivity 

indices were calculated were the antibody feed concentration (Co), matrix capacity (qm), duration of 

feed application (tLoad) and mobile phase flowrate (v); all other variables were kept constant for the 

analysis. All integrals in the GSA method were evaluated using a four strip trapezium rule. The 

MATLAB® code has been placed into Appendix 2.

6.3.5 Manufacturing strategies evaluated in the study

6 .3 .5 .1  Base case

The sensitivities of the antibody recovery calculation i.e. Equation (67) were initially established by 

applying the GSA method to the Thomas model using the data values given in Table 33 and Table 

34 in order to create an initial base case set of results. After this, three process changes were made 

to investigate their impacts upon parameter importance
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6 .3 .5 .2  V ary the loading duration

To examine the effects of varying the loading duration upon the sensitivity indices, the following 

ranges were entered into the model instead of the base case 900-1000s: 700-800; 800-900; 1000- 

1100 and 1100-1200 seconds. There are both positive and negative outcomes from either 

increasing or decreasing the loading duration range. Higher durations result in moving further up the 

breakthrough curve, causing greater product loss in the flowthrough -  although this needs to be 

balanced against more of the feed being processed per loading cycle. Conversely, lower loading 

times result in higher yields at the expense of extended processing times (resulting from the potential 

requirement to increase the number of operational cycles in order to process all of the feed). This 

suggests that a trade-off between the inputs is needed in order to identify the optimal operating 

conditions that satisfy requirements for outputs such as product yield and throughput. Based upon 

the Global Sensitivity Analysis data, this trade off was quantified through a window of operation.

6 .3 .5 .3  V ary the f lo w ra te

Again, varying this variable will have potentially conflicting effects in terms of processing times and 

recovery and hence establishing the impact of the different variables upon product yield is critical. 

Instead of using the base case range of 3 - 4 *10-4 m/s, the effects of using the following ranges 

upon the sensitivity indices were determined: 4-5, 5-6 and 6-7 x 1(H m/s (all ranges fall within the 

maximum flowrate that can be tolerated by the synthetic matrix upon which the study was based i.e. 

MAbsorbent® A2P -  see Chapter 7 and Newcombe et al., 2005).

6 .3 .5 .4  Increase the level o f  u ncerta in ty  in the inputs

Another application of the technique involves examining the impact of greater uncertainty in the input 

ranges. During process development, it is possible that values of variables may not be well defined 

and hence may be open to wider ranges than first thought. For example, if a feedstock has not been 

well-characterised, then the product concentration fed to the downstream process could vary over 

more extensively than originally anticipated. Alternatively, a development group may wish to 

examine the impact of using a wider range of flowrates upon product yield. To illustrate the effect of 

this uncertainty upon the sensitivity indices, the final study widened the input ranges for C o  and v to 

0.15 -  0.4 mol/m3 and 2 -  6 * 10 4 m/s respectively, while all other variables remained unaltered (the 

upper end of the C o range was chosen as it is a value that can be achieved without causing solubility 

problems for the antibody [A.R. Newcombe, Protherics U.K. Limited, personal communication]).

6.3.6 Results and Discussion

6 .3 .6 .1  In itia l base case

Figure 48 plots the results for the initial base case, using the inputs given in Table 33. The antibody 

binding capacity was the single most important parameter affecting recovery (SI = 0.32), followed by
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the flowrate (SI = 0.30) and then feed concentration (SI = 0.28). These factors should therefore form 

the focus of process optimisation studies. Conversely, the duration of feed application makes 

relatively little impact upon recovery (SI = 0.04) and thus if all other parameters were kept constant, 

yield would not change significantly over the 900-1000 second duration. It is also important to note 

that predominantly, the four input variables act independently, with little interaction between the 

terms (interactive SI of 0.06 only).

^Load’

0.30

Interactions,
0.06

Figure 48: Base case sensitivity indices 
The first order indices account for 94% o f the m odel variance

6 .3 .6 .2  Vary the loadins duration

One of the simplest alternatives to the process involves changing how long the antibody feed is 

applied to the column. The duration of feed application (‘tLoad’) was varied in the ranges of 700-800; 

800-900; 1000-1100 and 1100-1200 seconds as well as the base case (900-1000s). The impact 

upon the SI values is plotted in Figure 49, which shows that as the loading duration increases, its 

impact diminishes and the other three variables become progressively more important. Additionally, 

at the lowest loading duration range (700-800 seconds), the GSA method predicts that the first order 

indices sum to a value of approximately 0.65, with fairly significant interactions of just under 0.1 for 

each of the following pairs of variables: Co/qm; CoN and qm/v (Figure 50). Hence if the duration of 

feed application was reduced to maximise antibody recovery, feed concentration, column capacity 

and flowrate would need to be optimised together, as their interactions make a significant 

contribution to the output yield values. In addition, this implies that the process is more complicated 

at lower loading durations -  the interactions make it more difficult to control, resulting in implications 

for validation due to the process becoming harder to control. Thus any improvements in yield 

achieved by reducing the loading duration would need to traded off against potential process stability 

issues.
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Figure 49: Impact of varying the loading duration (tLoad) on first order indices 
In order from left to right for each variable:700-800, 800-900,900-1000 (base case), 1000-1100 and 1100-1200 s
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Figure 50: Interaction indices obtained at the lowest loading duration tested (700-800s)

6.3 .6 .3  GSA as a technique fo r developing windows of operation

Knowledge of variable sensitivities enables optimisation of the most important inputs in order to 

achieve desired manufacturing performance. For example, the knowledge that feed concentration 

becomes more important as loading duration increases (Figure 49) encourages further investigation 

into the model to determine the exact nature of the relationship between Co, tLoad and antibody yield.
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Figure 51 plots percentage antibody recovery as a function of feed concentration and loading 

duration and verifies the GSA prediction that as loading duration increases, feed concentration 

exerts a greater impact upon product recovery, with yield dropping away more dramatically towards 

the 1200 seconds end of the loading duration range as compared to 700 seconds.
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L o a d i n g  d u r a t i o n  ( s )
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F e e d  c o n c e n t r a t i o n  ( m o l / m ^ )

Figure 51: Impact of varying the feed concentration and duration of feed application upon percentage antibody
recovery (yield)

A ll other parameters were maintained at fixed values (qm and v were fixed at the m idpoints o f their ranges)

The model can also be used to determine throughput as a function of loading duration and feed 

concentration (Figure 5 2 ) .  Throughput ( i c o i u m n  in Equation ( 2 2 )  measured in grams of IgG processed 

by the column per hour) was calculated by accounting for equilibration, loading, washing and eluting 

times as well as acid/alkali cleaning steps:

y - M F
rcolumn . . . , . . (70)

h q u il +  Load +  *Wash +  ^ Elute +  ‘ HC/ +  *NaOH
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Figure 52: Impact of varying the feed concentration and duration of feed application upon antibody throughput

Ultimately, Figure 51 and Figure 52 provide information which aids in the construction of windows of 

operation (Woodley and Titchener-Hooker, 1996), thereby enabling identification of the most suitable 

conditions for operating this column. For example, if the target minimum for antibody yield was 85% 

and throughput was constrained to between 6000 and 6500 g/hr, sections can be taken through 

Figure 51 and Figure 52 and the feasible operating space which meets these criteria can then be 

plotted (Figure 53). The inverted L-shaped region indicated as A in this plot encloses an area that 

satisfies the throughput constraint, whilst the dark region (B) meets the yield target. Overlapping A 

and B produces the grey area in the centre of the graph (C), which represents the feasible window of 

operation for this column that satisfies both yield and throughput requirements. Hence using Global 

Sensitivity Analysis has allowed us to identify the key input variables, thus providing a rational basis 

for process design as visualised through windows such as Figure 53. A key problem often 

associated with modelling approaches is the lack of confidence in their outcomes -  this can be 

overcome by techniques methods such as windows of operation, which enable complex modelling 

outputs to be visualised in an intuitive fashion, ultimately enabling identification of the most 

appropriate operating conditions for a given process specification (Titchener-Hooker et al., 2001).
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Figure 53: Window of operation showing the feasible operating region for feed concentration and loading duration. 
Areas A and B identify those regions which satisfy throughput and yield constraints respectively. Area C is the

window created by overlapping regions A and B

6 . 3 . 6 . 4  V a r y  th e  f lo w r a t e

The impact of employing flowrates in the ranges 3-4 (base case), 4-5, 5-6 and 6-7 x 1(H m/s upon 

the sensitivity indices are shown in Figure 54. Increasing the flowrate diminishes its impact upon 

yield, whilst feed concentration and saturation capacity become more important to roughly the same 

extent as each other. At relatively low value ranges of v, the flowrate is able to exert significant 

control over the yield from the column, but once its value increases, any further influence it has is 

lost and the yield limiting variables shift further towards Co and qm. Hence, the higher the flowrate, 

the less worthwhile it becomes to optimise this variable.
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Figure 54: Impact of varying the flowrate upon the first order sensitivity indices 
(Black = 3-4 (base case); white = 4-5; striped = 5-6; grey = 6-7 x 104 m/s)

6 .3 .6 .5  Increase the level of uncertainty in the inputs

The final study examined the effect of increasing the range of uncertainty for the feed concentration 

and flowrate. The resulting SI values are presented in Figure 55 and show that these changes 

increase the influence of these variables significantly, at the expense of the other two inputs 

(especially qm). This result was again illustrated by using the model to calculate yield as a function of 

feed concentration/flowrate (Figure 56) and again as a function of matrix capacity/loading duration 

(Figure 57) when employing greater uncertainty. Figure 56 shows that Co and v have a dramatic 

impact, confirming the GSA results for feed concentration and flowrate, whereas Figure 57 shows 

that recovery is now a far weaker function of qm and tLoad. Ultimately, such data enables the efficient 

identification and selection of process optimisation strategies in order to achieve required goals for 

outputs such as yield or throughput.
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Figure 55: Impact upon first order indices of widening the Co/v range 
(Black = base case ranges; white = widened ranges)

Feed concentration (mol/m^) 

(Sq)

Flowrate (m/s) x 10 
(v)

Figure 56: Impact upon recovery of varying Co and v when using a wider Co/v range
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Figure 57: Impact upon recovery of varying qm and tuad when using a wider Co/v range 

6.3.7 Conclusions of the case study

This first GSA investigation has used Global Sensitivity Analysis to evaluate parameter importance in 

the chromatographic capture of antibodies from ovine serum. Under base case conditions, the feed 

concentration, binding capacity and flowrate were found to have the greatest influence upon 

recovery. Further studies investigated the effects of varying input values such as the loading time, 

which showed that at the lower end of the duration range, interactions between feed concentration, 

flowrate and matrix capacity made important contributions towards yield. Another study which 

widened the input ranges for feed concentration and flowrate showed that greater uncertainty in 

these variables increased their predicted influence upon recovery. Although such results illustrate 

the utility of GSA, its value would be enhanced by application of the technique to a whole drug 

manufacturing process and this is the subject of the next section of this chapter.

6.4 App lica tion  o f GSA to a whole process m odel

6.4.1 Introduction

The second case study expands the GSA treatment to the whole manufacturing process for 

CroFab™, looking at which variables most significantly influenced both the yield and throughput of 

the product. The process used as the basis of the exercise was as follows: a synthetic adsorbent 

column was used initially to recover IgG, after which digestion by papain yielded a mixture containing

146



Fab and Fc. After ultrafiltration, ion exchange and venom-specific affinity purification steps were 

employed to yield the final product. For simplicity, the intervening depth filtration steps that are 

found in the current CroFab™ process were not modelled. The unit operation equations used to 

simulate the process were as follows:

All chromatography steps were simulated using the Thomas model, populated by data provided 

earlier. Throughput for each column was calculated using an equation of the form of Equation 

(70), accounting for loading, washing, eluting, regeneration and re-equilibration steps 

The papain digestion equation developed in the previous chapter was employed for this step 

A concentration factor (CF) was defined to calculate the concentration of material fed to the 

subsequent ion exchange step (V f = feed volume; VRetentate = retentate volume). The duration of 

the ultrafiltration step included times for concentration, diafiltration, transferring processed 

material and filter flushing:

CF =  (71)
Retentate

The final expression used to calculate the quantity of venom-specific F a b  emerging from the end of 

the process was defined as follows:

M V S  FAB, Final
7 VS Fab,Final ~  . , (72)

IVI VS F.„, Initial

The initial mass of specific F a b  fed to the start of the process (jMvsf M/a, ) was calculated from the 

initial IgG titre and feed volume (see Table 35 and Table 36 below). Throughput (Tpr0cess) of the final 

venom specific F a b  (g/hr) was then determined by dividing M VSF Final by the total processing time 

for all five unit operations:

r = ____________________ M VS FAB, Final_____________________
1 Process . . t  t t t ' '

Synthetic adsorbent Papain UF Tex CroFab affinity

Again, as with the first investigation, the inputs to these unit operation equations were divided into 

two groups -  one for those variables for which SI terms were required and another for the remaining 

inputs (values obtained from Protherics).
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Variable Assumed ranges
Feed properties
Initial total IgG feed concentration (mol/m3) 0.15-0.20

Synthetic ligand column
IgG matrix capacity (mol/m3) 
Flowrate (m/s)

0.5 -0.7*
3 x 10-4-5 x 10-4

Ultrafiltration
Concentration factor (-) 2-4

Ion exchange column
Flowrate (m/s) 3 x 10'4 -  5 x 1 (H

CroFab™ venom-specific affinity column
Venom-specific F a b  matrix capacity (mol/m3) 
Flowrate (m/s)

6 - 8  
3 x 10-4 — 5 x 10"4

Table 35: Assumed base case data values for key variables which are mapped to the zero to one input ranges in
the GSA analysis

Input ranges reflect uncertainty or variability in properties of the process or the feed modelled in the case study (* 
- a higher capacity matrix was used than in the previous study to determine the effects o f this upon the sensitivity

indices)

Variable Assumed values
Feed properties
Feed volume (m3) 0.50
Proportion of total IgG that is assumed to be venom specific (-) 0.5

Synthetic ligand column
Column dimensions (diameter * height) (m * m) 0.60 x 0.20
Voidage fraction (s) (-)______________________________ 0.4

Papain digestion
Temperature of digestion (°C) 40
Duration of digestion (hr) 7
Concentration of enzyme (%) 1.75

Ultrafiltration
Yield of F a b  ( - ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 0.65

Ion exchange column
Column dimensions (diameter x height) (m x m)_________ | 0.30 x 0.20

FAB-specific affinity column
Column dimensions (diameter x height) (m x m) 0.27 x 0.34
Voidage fraction (e) (-) 0.4

Table 36: Assumed data values for variables which were fixed during the GSA analysis

6.4.2 Modelling assumptions

•  The purification process was simulated for a single batch of feed

•  Fugitive losses between steps in the process were assumed to be negligible

•  Before any of the purification cycles, all columns were assumed to be free of any adsorbate



•  There was assumed to be no loss in matrix capacity between chromatography cycles

•  As with Chapter 5, papain digestion conditions were chosen to achieve near-complete IgG 

digestion

•  Sufficient resources were assumed to be available in the facility to allow all processing steps to 

occur sequentially without any delay or holding time between them -  hence times used in the 

throughput calculation were only affected by the durations of running each unit operation

6.4.3 GSA methodology

6 .4 .3 .1  Fourier A m plitude S ensitiv ity  Test

Although the Sobol’ method implemented in the previous investigation was adequate for systems of 

up to four variables, it was found that the time taken by the MATLAB® code to determine the SI 

terms when more than five inputs were involved was excessive (in the order of several hours). In 

order to model these equations more efficiently, an alternative GSA method called Fourier Amplitude 

Sensitivity Test (FAST) was used (Chan et al., 1997; Saltelli et al., 2000). As described later, FAST 

enables more rapid calculation of sensitivity indices than the Sobol' method.

Fourier Amplitude Sensitivity Test (FAST) involves initially converting the n-dimensional integral of 

the model function f(x) into a single dimension f(s), through use of a transformation function (Gi) and 

a set of integer frequencies (cu,). The resulting function is then Fourier analysed to determine the 

partial variance due to individual inputs and the total model variance. One transformation function 

and one frequency are assigned to each input variable /' for which an SI needs to be determined. 

The general form of the G function is given in Equation (74):

s is a scalar parameter ranging from - tt to it  and x, ranges from 0 to 1, with f(s) as the resulting 

transformed function (see Equation (79) for details):

As with the previous sections, although the inputs to x, in FAST range from zero to one, these need 

to be scaled to the real input values. The total model variance of f(s), D fa s t , can then be calculated 

using Equations (76) -  (78):

(74)

f(s) =  f ( x )  =  f(G 1(sin(uj1s)),G2(sin(uj2s)):G3(sin(uj3s)),.. .,Gn(sin(ujns))) (75)

(76)
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A/ = ^ z L f ^ cos^ s
(77)

B, = ^ f j ( s ) s i n ( j s ) d s (78)

where Aj and Bj are the jth sine and cosine Fourier coefficients respectively, P is the maximum 

harmonic considered and o w  is the highest value in the set of angular frequencies used. P was set 

to 4, because any additional contributions made towards Dfast by terms computed at higher 

harmonics are insignificant (Saltelli et al., 2000).

SI calculation requires definition of the transformation function, G, as well as the frequency set: 

several different G functions have been proposed in the past (e.g. Cukier et al., 1973; Koda et al., 

1979). This chapter uses Equation (79) proposed by Saltelli et al. (2000), because out of all 

transformations, it provides the most uniform coverage of G-space. The transform relies on the 

periodicity of the inverse sine function when implemented in programming languages.

1 1
x, =  -  +  — s in 1 (s in ((jjjS )); - tt < s < tt (79)

2 7T

In theory, values of the different frequencies Wi should be incommensurate i.e. the values should be 

chosen such that none of them can be formed by a linear combination of any of the other frequency 

values using integer coefficients, because otherwise Wi will interfere and lead to inaccuracies. In 

practice, incommensurate sets are impossible and instead, frequencies are chosen judiciously such 

that they are free of interference to a certain number of harmonics (the value stipulated by P), above 

which further contributions to the variance become negligible. Frequency sets used in this work 

were taken from literature (Schaibly and Shuler, 1973).

The contribution that the ith variable makes to the variance of f(s) can then be determined by 

evaluating Aj and Bj for the fundamental frequency cu, and its higher harmonics, up to the value of P -  

namely 2w,, 3cu, and 4u)h by Equation (80):

(80)

The SI value for the ith input variable is then calculated by Equation (81):

(81)
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The values of the first order SI terms calculated by the Sobol’ and FAST methods in Equations (64) 

and (81) respectively are equivalent (Saltelli and Bolado, 1998). FAST is far more computationally 

efficient than Sobol’ when calculating the first order indices, because the partial variances can be 

determined directly from the same calculations used to evaluate the total model variance {Dfast). 

Unlike Sobol', however, FAST does not permit straightforward calculation of the interaction indices 

(Saltelli and Bolado, 1998), which is necessary for studying the significant interactions that often 

occur between unit operations in bioprocess flowsheets (Groep et al., 2000). Hence for the research 

presented in this part of the chapter, both FAST and Sobol’ methods are employed -  the first order 

indices are calculated by FAST and their sum is determined to see whether it exceeds a pre

specified threshold. If this is the case, no further calculations are undertaken, but otherwise the 

Sobol’ method is used to evaluate the interaction indices. This way, the time consuming Sobol’ 

calculation of interactions is only undertaken if necessary. Nevertheless, any calculation of 

interaction terms by the previously implemented Sobol’ method would still be too time consuming 

and hence in an attempt to accelerate the calculation, Monte Carlo integration was used instead.

6 .4 .3 .2  M onte Carlo  in tegration

Monte Carlo methods rely on evaluating the area of the bounded region by picking points at random 

from the input space and calculating the number that lie above and below the function f(x). Dividing 

the number of points below the function by the total number of points selected and then multiplying 

the result by the volume of the input space provides an approximation for the value of the integral. 

For example, for the function f(x) = x2, the following diagram may result:

100

Figure 58: A sample result from a Monte Carlo integration of the function y = x2 
The solid line is the analytical function whilst the 100 points are random samples of the input space (graph

produced using MATLAB®)
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In total, there are 100 points, of which 39 fall below the line. Hence the integral can be calculated as 

(39 100) x (100 -  0) x (10 -  0) = 390. The actual value of the integral can be determined

analytically:

1000

3
1

= 333—
3

In general, the accuracy increases as the number of points that is selected rises. The theory is 

equally applicable to multidimensional cases, again by picking points at random and determining 

whether they lie above or below the hyper-dimensional surface. Sobol’ (1993) describes a Monte 

Carlo method by which the values of fo, Dt and Di can be evaluated by calculation of f(x) alone rather 

than the time consuming process of calculating every summand in Equation (54). The independent 

variables are partitioned into two groups denoted by, ‘y,’ and, ‘z,’ resulting in the following:

f M = f o + fi ( y ) + f2(z) + M y . z) (82)

The terms on the right hand side of Equation (82) are defined as follows:

y, (y) = l - - - l f (x)dz ~ fo (83)

h ( z) =  f . . . f f ( * M y - / o  (84>

k  ( y .z ) = f  M  -  fa  +  f, (y ) + f2 (z0  (85)

The variances of these functions can then be expressed as the following integrals:

^ = j j 2{x )d x -fo 2 {Total model variance) (86)

D, =  | ... | f*{y )d y  {Total variance due to subset 1) (87)

D2 = (z)dz (Total variance due to subset 2) (88)

The integrals in Equations (86) to (88) are then calculated by Monte Carlo integration, selecting the 

values of y and z uniformly from [0,1]:
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(91)

(90)

(89)

The v subset of inputs represents the same group of variables as z, but with different random 

realisations within [0,1]. For example, to calculate the interaction variance between the first and 

second inputs in a seven variable system, the ‘y’ input set is used to represent variables 1 and 2, 

whilst the z and v sets are used to represent variables 3-7; Equation (90) is then used to determine 

the total model variance, while Equation (91) calculates the total variance due to the first and second 

inputs. The ratio of Di/D is defined by the following equation:

St 12 represents the contribution made towards the total model variance by the first and second 

variables, in both a first order and an interactive manner. Thus to calculate the interaction SI term 

(S12), initially S™ is determined by the Monte Carlo Sobol’ method, after which the lower order terms 

calculated by FAST (Si and S2) are subtracted to compute S12. This procedure is continued for all 

other second order terms (e.g. S13, S14, S25, S6 7 ...) and higher orders (e.g. S236, S1457, S2 3 5 6 7...).

Use of Equations (89) to (91) also requires a sufficient number of random samples of the input space 

to be taken to ensure that the values of fo, D  and D 1 converge. Although the maximum number of 

iterations set in the code was N  = 1,000,000 (a high value set for its strong likelihood of achieving 

convergence), it was anticipated that convergence might potentially occur earlier and hence the 

following three parameters were also defined:

•  Lower limit = 50000

•  Range = 1000

•  Variation = 5%

The absolute minimum number of points calculated was 50,000, after which the following test was 

applied: if the difference between the averaged variance calculated over the previous 1,000 

iterations was less than 5%, then adequate convergence had occurred. Values of the Lower limit, 

Range and Variation were chosen after experimentation with the program showed that these 

consistently achieved convergence. To provide a further check on the convergence, the variance for

(92)
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each sensitivity index was plotted as a function of N. For the industrial case study, these graphs 

showed that stability was achieved consistently when calculating the interaction terms.

This software was developed in MATLAB® and the code has been placed in the appendix. As with 

the previous study, input values were rescaled to match the zero to one input scale of the GSA 

methods, as per Equation (68) on Page 137.

6.4.4 Base case and process change strategies

6 .4 .4 .1  Base case

Initially, the values for parameters given in Table 35 and Table 36 were used to populate the model 

and create a base case set of sensitivity indices, after which the impacts of making a series of 

process changes of industrial relevance were evaluated.

6 .4 .4 .2  Increase the synthetic  a ff in ity  ligand adsorbent capacity

Several different matrices are available commercially which provide higher capacities than the 0.5- 

0.7 mol/m3 range used in the base case (Chhatre et al., 2007f). The impacts of using matrices with 

capacities of 0.7-0.9 and 0.9-1.1 mol/m3 were investigated whilst keeping all other parameters 

unchanged.

6 .4 .4 .3  P re-concentrate the feed

The base case range of antibody feed concentration was 0.15-0.20 mol/m3 (Table 35). Pre

concentrating the feed at source in Australia prior to its shipment to the U.K. could potentially reduce 

the costs involved in transporting ovine serum to the manufacturing facility. For the purposes of this 

study, it was assumed that the feed concentration could be increased up to three times it base case 

value and the impact of doubling and tripling the IgG concentration about the mid point of its base 

case range to 0.325-0.375, 0.5-0.55 mol/m3 whilst leaving the feed volume unchanged was 

examined. This study also examined the combined effect of increasing both feed concentration and 

synthetic affinity ligand adsorbent capacity upon the sensitivity indices.

The model was also used to assess the impact of greater variability in the IgG feed titre between 

batches. Although this normally lies in the 0.15 -  0.20 mol/m3 range, it is possible for it to fluctuate 

more significantly to between 0.13 and 0.27 mol/m3 as a result of natural variability between high and 

low responding sheep (Newcombe et al., 2006). Hence this study examined the effect of widening 

the range of IgG feed titre upon the sensitivity indices whilst leaving all other variables unchanged.
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6 .4 .4 .4  Vary the synthetic a ff in ity  ligand adsorbent f lo w ra te

Varying the flowrate will have conflicting impacts on yield and throughput -  a reduction will result in 

more IgG binding to the column at the expense of extended process times, whilst increasing it will 

reduce yield but also process the feed more rapidly. In this situation, a trade-off will be required and 

establishing sensitivities will help to decide which variable(s) exert the greatest influence.

6 .4 .4 .5  Vary the capacity  and volume o f the CroFab™ a ff in ity  column

The CroFab™ column uses an expensive custom-made affinity resin and a reduction in its volume 

could make significant cost savings to the process, although this needs to be offset against the 

potential capacity loss observed at commercial scale. Hence, the effects of simultaneously varying 

the capacity and volume of the column upon the sensitivity indices were determined.

6.4.5 Results and Discussion

6 .4 .5 .1  Base case

The base case results in Figure 59 shows that product yield is most strongly controlled by the 

flowrate used in the synthetic affinity ligand step (SI = 0.57), followed by the capacity of this 

adsorbent and the IgG feed concentration at SI = 0.24 and 0.17 respectively. None of the other 

inputs were significant (SI values <7.6*10-4).

0.6

Feed Synthetic Synthetic UF conc. factor IEX flow rate CroFab CroFab
concentration adsorbent adsorbent  ̂ capacity flowrate

capacity flow rate

Figure 59: Base case sensitivity indices 
(■ = yield; □ = throughput)

Conversely, throughput is primarily controlled by the capacity of the synthetic ligand adsorbent step 

(SI = 0.57), followed by the ultrafiltration rig concentration factor (SI = 0.23) and then the CroFab™ 

affinity column flowrate (SI = 0.12). Overall, the synthetic adsorbent column is the single most 

important unit operation controlling process performance. It should also be noted that under base
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case conditions, neither yield nor throughput exhibited any significant interactions between the input 

variables, suggesting that the process could be optimised by considering each variable 

independently.

To verify the accuracy of the information provided by the sensitivity indices, the yield output was 

chosen as an example and the model was used to identify how F ab recovery varied across the full 

range of the inputs given in Table 35. The results in Figure 60 plot the change in yield relative to that 

obtained at the lowest input value for each variable. This demonstrates that the SI values correctly 

predicted the relative importance of the variables, with the synthetic column flowrate shown to have 

the most significant impact on yield, whilst the synthetic affinity capacity and feed concentration exert 

smaller but still notable effects. None of the other inputs resulted in any measurable change in yield, 

reflecting their negligible SI values.
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Figure 60: Verification of the base case yield sensitivity indices 
This shows the change in yield over the ranges of the inputs relative to the yield obtained at the lowest input value 

for each variable: solid line = feed concentration; long dashed = synthetic adsorbent capacity; short dashed = 
synthetic adsorbent flowrate. Other inputs are represented by the symbols on the zero change in yield)

6 .4 .5 .2  Increase the synthetic  a ff in ity  ligand adsorbent capac ity

When the use of improved adsorbent capacities was simulated, the synthetic adsorbent flowrate 

remained the single most important input influencing yield, but its importance reduced significantly 

(Figure 61), along with those for the feed concentration and synthetic matrix capacity. None of the 

SI terms for the other variables changed, but the interactions rose as capacity increased, with 

significant interaction indices observed between feed concentration and synthetic adsorbent flowrate
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as well as synthetic adsorbent capacity and flowrate. This was especially true at the 0.9 -  1.1 

mol/m3 binding capacity (Table 37).

0.6 j

Feed concentration Synthetic Synthetic
adsorbent capacity adsorbent flow rate

Figure 61: Impact of increasing the synthetic adsorbent capacity upon the yield sensitivity indices 
(Black = 0.5 ■ 0.7; white = 0.7 - 0.9; grey = 0.9 ■ 1.1 mol/m3)

Synthetic adsorbent capacity (mol/m3)

Variables 0 .7 -0 .9 0 .9 -1 .1

Feed concentration/synthetic adsorbent flowrate 0.03 0.13

Synthetic adsorbent capacity/flowrate 0.03 0.09

Table 37: Interaction sensitivity indices for yield resulting from increasing the synthetic adsorbent capacity

There were also a number of notable interactions between synthetic adsorbent flowrate and the 

other four inputs (UF concentration factor, IEX flowrate, CroFab™ capacity and CroFab™ column 

flowrate) with SI values of around 0.04 to 0.05 each at 0.9 -  1.1 mol/m3. This suggests that using a 

higher capacity synthetic adsorbent complicates process optimisation efforts by making yield more 

strongly dependent upon combinations of inputs. The nature of these interactions was explored 

further by using the feed concentration and synthetic adsorbent flowrate variables as an example. 

Figure 62A simulates the yield results obtained from the 0.7-0.9 mol/m3 matrix capacity and shows 

that increasing the flowrate at a constant IgG concentration of 0.15 mol/m3 results in a moderate 

reduction in yield -  a drop which becomes more pronounced as feed concentration rises 

simultaneously to 0.2 mol/m3. Hence the synthetic adsorbent flowrate is still a controlling variable in 

its own right (reflected by its first order sensitivity index of 0.50 -  see Figure 61), but its interaction
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Figure 62: Impact of varying the feed concentration and synthetic adsorbent flowrate upon yield 

(A = 0.7- 0.9 moi/m3; S = 0.9 - 1.1 mol/m3 synfbef/c adsorbent capac/fy)

with feed concentration also becomes important towards the upper end of (interaction SI = 0.03).
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Conversely, when employing the 0.9-1.1 mol/m3 matrix (Figure 62B), yield remains virtually 

unchanged across the flowrate range when using a 0.15 mol/m3 feed concentration and it requires 

the simultaneous use of both a high flowrate and a high IgG titre to cause a drop in Fab recovery. 

Flowrate now has a relatively small effect on its own compared to before (SI = 0.20 -  see Figure 61) 

and as predicted by GSA, becomes more important when acting in concert with feed concentration 

(interaction SI = 0.13).

6.4.5 .3  Pre-concentrate the feed

Increasing the feed concentration reduces its impact upon yield, whilst the synthetic adsorbent 

capacity and flowrate used for the primary capture of IgG become more important. The change is 

most noticeable when doubling the IgG titre, with a more modest effect observed between the 

doubled and tripled concentrations (Figure 63). The throughput sensitivities remained unaffected by 

feed pre-concentration.

Figure 63: Impact of pre-concentrating the feed on the yield sensitivity indices 
Black = 0.15-0.2; white = 0.325-0.375 (2 x base case); grey = 0.5-0.55 m ol/m 3 (3 x base case)

Combining the use of higher feed concentrations with higher capacity synthetic adsorbent matrices 

resulted in no interactions between any of the variables for either yield or throughput. For yield, 

increasing titre and capacity together most notably caused the synthetic adsorbent flowrate to 

become far more important (SI = 0.83 at 0.9-1.1 mol/m3 matrix capacity and a tripled concentration, 

compared to 0.57 in the base case). This contrasts with Section 6.4.5.2, where only increasing the 

capacity resulted in a reduction in the importance of flowrate and a growth in its interaction with feed

0.7

Feed concentration Synthetic adsorbent Synthetic adsorbent
capacity flow rate
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concentration. Hence the use of higher capacity synthetic adsorbent matrices in conjunction with 

high titre feedstocks enable the process to be optimised by considering each input variable 

independently, with the major focus on the synthetic adsorbent flowrate. For throughput, using 

higher capacities and feed concentrations together caused a reduction in the importance of the 

synthetic adsorbent capacity compared to base case (where SI was 0.57), although this still 

remained a more important variable than if capacity was increased without feed pre-concentration 

(e.g. at the highest capacity and titre, the synthetic adsorbent capacity SI was 0.39, as compared to 

0.001 at the highest capacity and base case titre). The ultrafiltration concentration factor and 

CroFab™ column flowrate became more important factors when using higher feed concentrations 

and capacities.

Finally, the effects of incorporating greater uncertainty into the IgG titre were assessed and the 

results for the yield SI values are shown in Figure 64. Higher levels of uncertainty in the feed titre 

make this a far more important variable, resulting from the wider input concentration range causing a 

wider output range data set. This illustrates the point that the greater the biological variability for a 

given input, the higher the likelihood of that variable dominating the GSA results.

0.6

Feed concentration Synthetic adsorbent Synthetic adsorbent 
capacity flow rate

Figure 64: Impact of widening the feed concentration range on the yield SI terms 
(u = base case; □ = widened feed titre)

6 .4 .5 .4  V ary the synthetic  a f f in ity  column flo w ra te

Figure 65 plots the impact of varying the synthetic adsorbent column flowrate upon the yield 

sensitivity indices. Flowrate remains a reasonably significant factor over the full range of values
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tested, although its importance peaks at the base case range (3-5 x 10-4 m/s). It is the dominant 

variable up to 5-7 x 10-4 m/s, after which synthetic adsorbent capacity becomes more important. 

The process displays few interactions except at the lowest flowrate range (1-3 x 1 0 - 4  m/s), where the 

sum of the first order indices is only equal to 0.36 and feed concentration, synthetic adsorbent 

capacity and flowrate interact strongly. The flowrate also displays modest second order interactions 

of around 0.05 with the remaining input variables at the 1-3 x 1(H m/s flowrate range (Table 38). 

Hence although lowering the flowrate is likely to increase the product yield, this again results in the 

need to optimise several variables simultaneously in order to achieve maximal product recovery. 

Conversely, there are no interactions between variables for throughput at any flowrate range and 

furthermore, Figure 66 shows that the synthetic adsorbent flowrate is only significant at the lowest 

flowrate range -  above this, its importance diminishes rapidly, whilst the synthetic adsorbent 

capacity and the UF concentration factor become the key variables. Hence, this analysis suggests 

that if optimisation was to be undertaken on the basis of throughput alone, the impact of flowrate can 

be ignored above 3 * 1CH m/s, whereas if yield is the more important output, the flowrate needs to 

be selected carefully whatever its operational range. Thus, for example, if throughput is the key 

output and operation within 1 -  3 x 1CH m/s is planned, then it is especially important to check that 

the correct flowrate within that range has been chosen, whereas if operation within 5 -  7 x 1 0 - 4 m/s 

is planned, optimising the flowrate within this range will make little difference.
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Figure 65: Impact of varying the synthetic adsorbent flowrate upon the yield sensitivity indices 
(Thick solid line = feed concentration; long dashed = synthetic adsorbent capacity; short dashed = synthetic 

adsorbent flowrate; thin solid line = sum of all interactions)
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Variables Interaction sensitivity index
Feed concentration/ synthetic adsorbent flowrate 0.09

Synthetic adsorbent capacity/flowrate 0.13
Synthetic adsorbent flowrate and the other four inputs -0 .05  for all

Table 38: Yield interactions seen when reducing the synthetic adsorbent flowrate range to 1-3 x 10 4 m/s
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Figure 66: Impact of varying the synthetic affinity flowrate upon the throughput sensitivity indices 
{Thick solid line = UF concentration factor; long dashed = synthetic adsorbent capacity; short dashed = synthetic 

adsorbent flowrate; thin solid line = sum of all interactions)

6 .4 .5 .5  V ary the capacity  and volume o f  the CroFabw a ff in ity  column

Although previous studies indicated the importance of the synthetic adsorbent column to both yield 

and throughput, it was hypothesised that if sufficiently small column capacities and bed volumes 

were used for the CroFab™ affinity step, this unit operation might become a more important factor in 

the process. Hence GSA was used to determine the SI values at various combinations of CroFab™ 

column volumes (-90 to +30% around the base case) and capacity ranges (from the base case value 

down to around 30% of that value) whilst leaving all other variables unchanged. The results were 

used to identify the column volume at each capacity where the CroFab™ affinity column became 

more important than the synthetic adsorbent step. The results for both yield and throughput in 

Figure 67 demonstrate that using small volume CroFab™ columns that have lost a significant 

amount of capacity leads to that step being a greater determinant of process performance, whereas 

if the capacity or bed volume is increased, this increases the potential for product capture in the 

CroFab™ affinity step and means that yield and throughput switch back to being predominantly
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controlled by the synthetic affinity column. Consequently, this plot ultimately facilitates identification 

of the most suitable basis for process optimisation.

20

o
Synthetic adsorbent > CroFab

-20 I

LL
2 -40

O)
-60

CroFab > Synthetic adsorbent

20 40 60 80

Percentage of the base case CroFab capacity

Figure 67: Plot indicating where the synthetic adsorbent column is more important 
(Indicated by the *>’ symbol) than the CroFab™ affinity step and vice versa (solid line = yield; dashed line = 
throughput). Axes plot percentage change in CroFab™ column capacity and volume relative to base case

conditions

6.4.6 Whole process case study summary

This section has described the application of Global Sensitivity Analysis in identifying the most 

important attributes influencing the performance of industrial bio-manufacturing processes and the 

interactions within and between unit operations. Results produced from modelling the CroFab 

process showed that the synthetic ligand adsorbent step was a key factor in determining both final 

product yield and throughput. Data from the study also showed that process interactions only 

occurred in the yield output and were predominantly restricted to the feed concentration, synthetic 

adsorbent capacity and flowrate.

6.5 Chapter conclusions

This chapter has presented the first application of Global Sensitivity Analysis (GSA) to the 

determination of parameter importance in a synthetic Protein A column and also to an entire 

production process. The feed concentration, synthetic adsorbent capacity and flowrate were 

identified as being critical parameters for optimisation in CroFab™ manufacture -  a fact which is in 

line with the expectation expressed by Protherics that this step is likely to be the most critical one for
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controlling product recovery and throughput. Other steps are already operated in an optimal fashion 

e.g. the conditions for achieving complete Fab recovery in papain digestion are known and are used 

at commercial scale already, whilst the I EX step is deliberately underloaded to achieve 95% Fab 

recovery and complete elimination of impurities. The operation of the final venom-specific affinity 

step also involves deliberately underloading it to avoid capacity loss and thus achieve consistently 

high recoveries across multiple cycles. Conversely, Protherics has spent a great deal of time 

optimising the operation of the synthetic adsorbent step in an attempt to achieve high binding 

capacities and thus IgG recoveries from the serum. Hence the GSA prediction that this is likely to be 

a key step fits in with what is anticipated by the company.

From a more generic perspective, GSA can also be applied to any other production process and the 

resulting sensitivity data can allow a research and development group to focus optimisation efforts 

on the most significant controlling factors. Hence the use of GSA as described in this chapter 

promotes the efficient design and development of manufacturing operations.

Thus far, the thesis has focused upon whole process modelling and the evaluation of strategies to 

achieve improvements in product yield, cost and time. The next chapter instead concentrates 

ostensibly upon one unit operation in particular -  chromatography -  and describes methods 

developed for assessing the performance of column steps used to purify antibody products.
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7: DEVELOPMENT OF METHODS FOR THE INDUSTRIAL-SCALE 

CHROMATOGRAPHIC PURIFICATION OF ANTIBODIES

7.1 Introduction

Although this thesis was primarily aimed at developing simulations for investigating whether specific 

alterations to a sequence of process steps was feasible, the full remit of the research involved 

looking at a range of different methods (both in silico as well as experimental) in order to evaluate 

the impacts of process change. Since a large percentage of the development work carried out by 

Protherics focuses upon optimising expensive chromatographic purifications, this chapter 

concentrates upon this operation and presents a combination of simulation and experimental 

methods for evaluating the performance of column steps for antibodies and their fragments. Two 

studies are presented below:

1) Development of decision-support software for the chromatographic purification of antibody 

fragments. The method is tested by its application to an affinity column operated by Protherics 

for the manufacture of polyclonal F ab used to treat digoxin toxicity (product name DigiFab™)

2) Evaluation of a novel agarose-based synthetic ligand adsorbent for antibody recovery from 

ovine serum, using the CroFab™ feedstock to test the matrix

7.2 Software for the industrial-scale chromatographic purification o f antibodies

7.2.1 Introduction

As outlined in previous chapters, polyclonal antibodies and their fragments purified from antisera 

have been used for many years to treat the harmful effects of many acute clinical indications and as 

a consequence, have resulted in significant financial gains for companies that manufacture these 

therapeutics. One of the major challenges in purifying such feedstocks lies in separating the 

product-specific IgGs from the remainder of the contaminating antibody repertoire and 

chromatographic purifications using highly specific, custom-made affinity matrices are commonly 

employed for this purpose (Fluse et al., 2002). The high cost of such supports necessitates efficient 

design in order to maximise the economic value of the process and thus techniques which identify 

the most suitable operating conditions for achieving desired levels of manufacturing performance 

offer significant value. Many factors influence the design of such steps, including the likely protein 

loading range, matrix capacity loss over repeated loading cycles and flowrate. The values of these 

variables must be chosen carefully so as to achieve yields and throughputs that will satisfy market 

demand and ensure a financially viable process. The potential complexity of this task has driven the 

development of methods which identify the optimal operating location. Joseph et al. (2006), for
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example, developed a computer-based design tool for the initial sizing of columns and selection of 

flowrates for achieving threshold levels of throughput and cost productivity. Many of these computer 

simulations have focused predominantly upon predicting the technical performance of the purification 

of highly clarified solutions consisting of either one or two components alone. Such models fail to 

represent adequately the challenge involved in separating product species from concentrated and 

highly complex protein feedstocks (Bak et al., 2007).

This chapter instead describes a simulation which seeks to optimise the operating conditions of pre

existing industrial-scale columns whilst trading off potentially conflicting requirements for yield and 

throughput. The method accounts for the impact of mass of protein loaded on to the column upon 

dynamic binding capacities over repeated loading cycles in order to predict breakthrough curves at a 

range of loading flowrates. The method is illustrated by application to the affinity purification step 

used in the manufacture of DigiFab™, another FDA-approved polyclonal antibody fragment purified 

from ovine serum by Protherics for the treatment of digoxin toxicity. The model was populated with 

data obtained from scale-down experimental studies of the commercial-scale affinity purification 

step, which correlated measured changes in matrix capacity with the total protein load and number 

of resin re-uses. To enable a trade-off between yield and throughput, output values were integrated 

together using multi-attribute decision making techniques in order to identify the most suitable 

flowrate and feed concentration required for achieving target levels of DigiFab™ yield and 

throughput. This work has been published (Chhatre et al., 2007g).

7.2.2 Section structure

The remainder of this section of the chapter is structured as follows: the DigiFab™ affinity 

purification process is described, along with the ultra scale-down experimentation undertaken in 

relation to this step. The mathematical description of this step is then provided, outlining how the 

simulated outputs were used to evaluate yield and throughput and how these were integrated 

together by multi-attribute-decision-making to simplify their evaluation. Finally, a discussion of the 

results concludes the work.

7.2.3 Methodology

For the DigiFab affinity step, breakthrough curves were modelled by the Thomas model presented in 

earlier chapters. The data used to populate the model was obtained from the methods described in 

Section 2.9. As with previous work, it was assumed that complete elution from the column could be 

achieved and that product yield ( y )  could therefore be calculated by direct integration of the 

breakthrough curve. Throughput (icoiumn) was determined by dividing the product mass recovered 

from the column by the total duration for which the column was operated (0totai), accounting for the 

loading time (calculated according to the feed volume and operating flowrate), as well as the elution, 

equilibration and sanitisation steps:
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a — f
u  total 1 equilibrate sanitise (93)

column (94)

The main design problem addressed by the model was to examine the impact of varying the loading 

flowrate and level of protein loading in order to identify the optimal combinations of those input 

variables which meet industrial goals for product yield and throughput. The model uses the ultra 

scale-down experimental data to relate product yield to the number of operational cycles and the 

mass of protein loaded on to the column per cycle. For each of these yield values, the model 

iterates upon the matrix capacity to locate values which satisfy the yield requirement. No other 

factors are altered in the iteration procedure. The calculated capacity values are then fixed for a 

given combination of protein load and number of matrix re-uses when conducting any further 

investigations.

In order to simplify the process of evaluating the effects of changing flowrates and protein loadings, 

model outputs were combined together into a single value by multi-attribute decision-making in a 

similar fashion to earlier chapters. Initially, the yield and throughput values were each normalised to 

a zero to one scale, which respectively represent the least and most attractive values:

Ny and NT are the normalised yield and throughput, ya and xA are the actual yield and throughput 

values calculated by the model, yo and to  are the lowest yield and throughput values out of all model 

runs and thus set to represent the zero bound and yi and n  are the highest values and set to 

represent the upper unity bound. Each normalised value was then further weighted by multiplying it 

by a value between zero and one (w) to place particular emphasis on the more important outputs 

Addition of the weighted (w) and normalised (N) values generated the Overall Rank (OR):

As with earlier work, OR varies between zero and one, respectively representing the least and most 

attractive combined yields and throughputs.

OR = w yN y + w t N (97)
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7.2.4 Results and Discussion

7 .2 .4 .1  Model inputs and outputs

Assumed input values to the DigiFab™ affinity model are given in Table 39.

Parameter Assumed value

M -) 0.6

M -) 0.75

Kd (mol/m3) 0.066

qms (mol/m3) 1.3

Vbase (m/s) 8.5 x 10-5

L (m) 0.055

ki (m3/mol/s) 3.12* 10-4

Table 39: Assumed inputs to the DigiFab™ model 
£ and ti were chosen as typical values found in the literature. Kd was calculated from the batch binding data 
(inverse of the equilibrium adsorption constant). Vbase = base case loading flowrate; other assumptions are 

explained below. Simulation results were generated by varying the flowrate (range =0.9 Vbase to 2 Vbase).

The capacity of the settled affinity bed volume (qms) was determined by the method in section 7.2.3.2 

to be 45 ± 15 mg/mL, corresponding to a maximum capacity of 60 mg/mL (1.3 mol/m3). The 

equilibrium desorption constant (Kd) required for the Thomas model was determined by calculating 

the inverse of Ka in Equation (1). The adsorption rate constant (ki) given in Table 39 was calculated 

by keeping all other parameters fixed and manually iterating upon ki until the calculated yield 

reached 82% (ymax). This is the highest recovery possible when challenging a fresh batch of matrix 

with the lowest protein load tested by Protherics (100 mg protein/mL matrix) at the same loading 

flowrate of 30 cm/hr used in this study (Thillaivinayagalingam et al., 2007). The value of ki was then 

fixed for all further investigations. The yield at any given protein load was calculated as the average 

over five consecutive runs to determine overall recovery and throughput with a given batch of matrix. 

Five cycles were modelled as this is close to the seven for which a batch of matrix is used at large 

scale before it is replaced. The simulation results were visualised in Microsoft® Excel and 

MATLAB® to identify combinations of feed volume and flowrate which met preset criteria for product 

yield and throughput.

7 .2 .4 .2  Results o f  scale down studies

Figure 6 8  plots the change in specific F ab yield observed when the columns were challenged with 

different protein loads over five consecutive loading cycles. In general, yield dropped over the five 

cycles, such that the rate of yield loss increased with protein concentration. These data values were 

used as outlined in section 7.3.3 to determine the capacities of the columns which would achieve the 

corresponding yields; capacity values were then used by the model to determine the impact of 

flowrate upon yield and throughput as outlined below.
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Figure 68: Experimental results obtained when challenging the affinity matrix with feed over five loading cycles 
The graph plots the change in yield relative to the base case 82% (ymax). Each line refers to one protein load: + =

174 mg/mL; ♦ = 260 mg/mL; A  = 347 mg/mL; m = 500 mg/mL

7 .2 .4 .3  Im pact o f f lo w ra te  upon y ie ld

The flowrate used in the simulation was varied to between -90 to +100% around the base case value 

(Vbase) given in Table 39 (equivalent to 30 cm/hr) to determine the impact upon average yield over 

five loading cycles (Figure 69). As expected, the yield declines at higher flowrates and protein 

loadings, as product flows through the bed without being captured by the resin. The yields achieved 

at 174 and 260 mg/mL loadings are very similar for all flowrates tested, while yields at 347 and 500 

mg/mL are much lower. This result is consistent with earlier data (Thillaivinayagalingam et al., 2007) 

which showed that loading more than 300 mg/mL oversaturates the matrix and so leads to 

deterioration in column performance. The difference in yields becomes wider at higher flowrates e.g. 

the gap between the yields at 174 and 500 mg/mL increases from 3% to 30% across the full range of 

flowrates tested. It is also noticeable that the yield initially drops away more quickly at 500 mg/mL 

compared to the other three protein loads.

These data can be used to identify how operation needs to be changed dependent upon the protein 

load in order to achieve preset goals for yield. For example, in order to achieve ymax using a 500 

mg/mL protein load, the flowrate has to be reduced by over 70% compared to Vbase. Conversely, 

operating at the two lowest protein loads (174 and 260 mg/mL), the ymax is realised at a flowrate 

close to Vbase, meaning there is far greater flexibility in selecting the flowrate when operating at the 

lower end of the feed loading range.

Cycle number
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Figure 69: Impact of varying the simulated flowrate from 0.9vbase to 2Vbase on average predicted yield over five runs 
The dotted line marks the maximum possible yield (ymax) obtained with a fresh batch of matrix. + = 174 mg/mL; ♦ =

260 mg/mL; A  = 347 mg/mL; ■ = 500 mg/mL

7 .2 .4 .4  Im pact o f flo w ra te  upon throughput

As outlined in the previous chapter, reducing the flowrate will increase product yield, but potentially 

at the expense of extended processing times and so a lower throughput. Hence, the impact of 

simultaneously varying both the flowrate and the protein load upon product throughput over the five 

loading cycles was investigated (Figure 70). For all protein loading values, throughput initially 

increases sharply as a function of flowrate towards an optimum level the optimal flowrates lie at 

between 50 and 70% below Vbase. Throughput then falls away more gently as flowrate rises to 

double that of the base case. In the -30 to +100% flowrate range, throughputs are at their highest 

when loading at 347 mg/mL. Conversely, the highest throughput observed from all simulation runs 

occurs when applying a 500 mg/mL feed at a flowrate 70% below Vbase-
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Figure 70: Impact of varying the flowrate by 0.9vbase to 2vbase on predicted throughput over five runs

7 .2 .4 .5  T ra d e -o ff  betw een y ie ld  and throughput

By comparing Figure 69 and Figure 70, it is clear that the operating conditions which maximise yield 

do not coincide with those that maximise throughput - the highest yield is achieved at the lowest 

flowrate and protein load, whereas throughput peaks at a flowrate that is 70% below the base case 

and at the highest protein load. Hence there is a need to trade off flowrate and feed load in order to 

identify suitable combinations of values for these variables that achieve industrial goals for a 

minimum yield and throughput. Based on discussions with Protherics, the minimum yield was set to 

80% and minimum throughput was set to 3.38 g F ab/I i  (achieved at the current production flowrate 

with the lowest protein loading in this study of 174 mg/mL). Combinations of feed load and flowrate 

fulfilling these criteria are represented by the white squares in Figure 71, whilst the black squares 

correspond to conditions which fail to meet the criteria. In all cases, operation needs to take place at 

or below the base case flowrate in order to meet both threshold values for yield and throughput. In 

general, as the flowrate is decreased from Vbase, the protein load needs to increase in compensation. 

To identify the most suitable operating location from within the white square region, the outputs of 

yield and throughput were combined together using the multi-attribute decision making technique 

detailed in section 7.2.3.3. Discussions with Protherics identified yield and throughput to be as 

equally important as each other and as a result, equal weightings (w) of 0.5 were assigned to each 

and then used to calculate the Overall Rank from the yield and throughput data (Equation (97)). The 

results in Figure 72 indicate that the most favourable conditions with respect to the Overall Rank 

occur at a load concentration of 347 mg/mL and at a flowrate 70% lower than the base case. This
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suggests that operating at significantly below the base case flowrate and in the middle of the protein 

loading range is the most suitable location. Although reducing the flowrate by 70% increases 

processing times, the advantage of higher product recovery more than compensates for this, 

resulting in the most favourable Overall Rank.
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Figure 71: Plot indicating which combinations of operational flowrate and protein load achieve a yield and 
throughput over five runs that matches or exceeds a yield of 80% and a throughput of 3.38 g F a b / I i  respectively
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Figure 72: Overall Rank for those operational conditions that meet acceptance criteria as identified in Figure 71 
+ = 174 mg/mL; ♦ = 260 mg/mL; A  = 347 mg/mL; m = 500 mg/mL. The asterisk marks the most favourable 

conditions according to the Overall Rank compared to any other location (at a flowrate that is 70% below the base 
case and with a 347 mg/mL protein load). This provides a yield of 0.97 and a throughput of 6.28 g FAB/h

7.2.5 Case study summary

This section of the chapter has described the development of software which aids decision making 

during chromatographic separations of antibodies. The software simulates breakthrough behaviour 

in order to predict product yield and throughput, based upon scale-down column data which relate 

yield to the protein load and number of matrix re-uses. Outputs are combined together into a single 

value using multi-attribute decision-making techniques to identify the most suitable protein load and 

flowrate at which to operate. The application of the methodology to the DigiFab™ affinity step 

identified the most favourable operating conditions for achieving target yield and throughput values.
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7.3 Evaluation of a novel agarose-based synthetic ligand adsorbent for the recovery 

of antibodies from ovine serum

7.3.1 Introduction

The increasing interest in the use of antibodies as clinical treatments (Flatman et al., 2007) has 

resulted in them becoming one of the largest categories of biotherapeutics currently in development 

(Roque et al., 2004; Shukla et al., 2007). The initial recovery step for many antibody manufacturing 

processes involves either fractionation or chromatographic purification using ion exchange or affinity 

matrices (Farid et al., 2006). Recombinant Protein A, derived from the cell wall of Staphylococcus 

aureus (Luo et al., 2002; Hober et al., 2007), for example, is an industrial standard that is commonly 

used to recover mAbs from clarified cell culture liquor (Fahrner et al., 1999; Swinnen et al., 2007). 

Unfortunately, several problems exist with this resin including the high purchase cost of Protein A 

and Protein G, poor stability when subjected to standard CIP solutions such as sodium hydroxide 

and the low capacities exhibited when challenged with crude, highly viscous feedstocks (Newcombe 

et al., 2005). Such issues have driven the manufacture of a series of next-generation synthetic 

ligand adsorbents (Hober et al., 2007) which have demonstrated considerable potential in capturing 

antibodies (Chhatre et al., 2007b). These are typically cheaper than recombinant Protein A or 

Protein G and permit robust alkaline cleaning protocols which do not adversely affect binding 

capacity, thus making them highly attractive for the purification of antibodies from a crude feed, such 

as recovering pAbs from hyperimmunised ovine serum (Bak and Thomas, 2007; Newcombe and 

Newcombe, 2007). This chapter evaluates a prototype affinity adsorbent utilising an undisclosed 

synthetic ligand (Millipore, Consett, Co Durham, U.K.) and compares its performance with four 

commercially-available resins (Table 40), as well as the precipitation and centrifugation steps 

employed at present for CroFab™ manufacture, to determine the ability of the prototype to recover 

and purify polyclonal IgG from ovine serum.

Adsorbent Manufacturer Base matrix Ligand Particle size (pm)

Prototype Millipore (Consett, Co 

Durham, U.K.)

Agarose Not disclosed due to 

commercial limitations

20-100t

MEP

Hypercel

Pall BioSepra (Cergy- 

Saint-Christophe, France)

Cellulose 4-Mercapto-Ethyl-

Pyridine

80-100

ProSep G Millipore (Consett, Co. 

Durham, U.K.)

Controlled Pore 

Glass (CPG)

Recombinant Protein G 75-125*

MAbsorbent®

A2P

Prometic Biosciences 

(Cambridge, U.K.)

Agarose Di-substituted phenolic 

derivative of tri- 

chlorotriazine

75-125

ProSep-vA

Ultra

Millipore (Consett, Co 

Durham, U.K.)

CPG Native protein A 75-125

Table 40: Adsorbents used in the study and details of their composition and size 
( f  = determined by method in 2.7; f  = assumed to be the same as ProSep A since both have a CPG base matrix)
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A robust method is required for the operation of a commercial scale column in order to achieve high 

recoveries and impurity clearance over repeated feed applications. To establish the ability of the 

prototype to satisfy these objectives, the following scale-down studies were conducted:

•  Calculation of static and dynamic matrix capacities when challenged with purified IgG

•  Determination of novel adsorbent column re-use capacity when challenged with ovine serum

• Evaluation of cleaning protocols for the prototype

•  Application of confocal microscopy to compare protein uptake patterns between the prototype 

and commercially available Protein G Sepharose (GE Healthcare)

The methods used to carry out these studies can be found in Section 2.9.

7.3.2 Results and Discussion

7 .3 .2 .1  S ta tic  and dynam ic capacity  measurem ents

Figure 73 shows the static IgG capacities of the five matrices and demonstrates that the prototype 

has the highest binding capacity when challenged with both purified IgG and ovine serum. Except 

for ProSep G, the capacities are all higher for ovine serum compared to the pure IgG, with the 

prototype having a capacity of 54 mg/mL -  a value that is comparable to ProSep-vA Ultra and higher 

than MAbsorbent® A2P, MEP Hypercel and ProSep G. Based on these results and to determine 

accurate dynamic IgG binding capacities, 150 mgs of purified IgG (5 mL of 30 mg/mL) was applied to 

overload a packed bed of each matrix and breakthrough curves were generated. The volume of 

feed loaded up to 10% breakthrough at 900 mAU (see section 2.8.3) was measured and inserted 

into Equation (3) (see page 58) in order to calculate the dynamic binding capacities of the matrices. 

The results in Table 41 show that the prototype adsorbent has the highest capacity out of the five 

evaluated, with a dynamic binding capacity of 29.2 mg IgG/mL matrix under the conditions described 

-  approximately 30% higher than the best commercial adsorbent evaluated.

Adsorbent Dynamic binding capacity (mg/mL)

Prototype 29.2 (±1.5)

MEP Hypercel 21.3 (±0.3)

ProSep G 18.7 (±0.4)

MAbsorbent® A2P 16.3 (±1.1)

ProSep-vA Ultra 13.7 (±0.1)

Table 41: Calculated dynamic capacities of each adsorbent 
The standard deviation (1 d.p.) is shown in brackets
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Figure 73: Static capacities of the five adsorbents 
(■ = purified IgG; □ = serum)

7 .3 .2 .2  Re-use s tu d y  o f  the  nove l a d s o rb e n t

A packed column (C10/10 column, GE Healthcare) of the prototype was operated as described in 

section 2.8.4 for a total of ten cycles and the main flowthrough and elution peaks were fractionated 

and subjected to non reduced SDS PAGE analysis. The sample chromatogram in Figure 74 was 

taken from the first run and shows that both the main flowthrough and elution peaks have small 

shoulders next to them (F1 and E1 respectively in Figure 74). The flowthrough was collected in 

three 1 mL fractions, with the first consisting of the shoulder, whilst the eluate was collected in two 

separate fractions -  the first containing the shoulder (E1) and the second containing the primary 

peak (E2). A gel of the flowthrough peaks from the third cycle is shown in Figure 75, along with an 

elution shoulder. The flowthrough shoulder contains a small amount of both IgG and albumin, 

whereas the main flowthrough peaks and the shoulder of the elution peak mainly contain only 

albumin.



0 5 10 15 20 2 5  30
Volume (ml)

Figure 74: A 280 nm chromatogram produced when challenging a packed bed of the prototype adsorbent with 0.2
micron filtered ovine serum

Labels refer to lanes in the gel image in Figure 75. F1 refers to the fraction taken consisting of the shoulder on the 
flowthrough, whilst F2 and F3 lie within the main flowthrough peak. E l refers to the shoulder on the elution peak,

whilst E2 is the primary elution peak

The ten cycle re-use experiment was also repeated with a 3.14 mL column using a post serum-load 

caprylic acid wash to determine whether this would improve the purity of the eluted IgG. Figure 76 

shows a gel of the primary elution peaks (i.e. peak E2 in Figure 74) from both re-use studies. Yields 

of 85% or above were obtained consistently, both with and without the caprylic acid wash -  

comparable to the precipitation and centrifugation steps employed currently by Protherics for 

manufacture of CroFab™. Notably, after the fourth loading cycle when operating without the caprylic 

acid wash, the albumin-rich elution shoulder merged with the main IgG elution peak, reducing its 

purity and overall, purities ranged from 86-91% (cycles 1-4) and 79-84% (cycles 5-10). Addition of 

caprylic acid substantially removed residual albumin remaining on the column after serum 

application, resulting in high IgG purities of 92-98%, comparing well with the 91% value achieved 

using the precipitation and centrifugation steps employed at present (Newcombe et al., 2005). The 

dynamic binding capacity of the caprylic acid-washed bed was then evaluated again after ten 

consecutive runs and an average of 27.2 mg/mL was obtained -  close to the 29.2 mg/mL obtained in 

section 3.1, suggesting minimal loss of binding capacity. It should be noted that when operating 

under the conditions described, the volume of the eluate was around 10-11 mLs from each column 

run (10x the load volume; it is proposed that this is due to gradual elution of polyclonal isoforms from 

the column -  this is based on the fact that in general, monoclonal antibodies would be expected to 

elute into relatively small volumes [personal communication, A.R. Newcombe, Protherics U.K. 

Limited]) suggesting that concentration would be needed before subsequent processing.
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Albumin

Figure 75: SDS PAGE gel showing the fractions identified in Figure 74 
(Taken from the third cycle of the ten cycle run. F1 = shoulder of the main flowthrough peak; F2/F3 = second and 

third fractions of the flowthrough peak; E1 = shoulder of the main elution peak)

7 . 3 . 2 . 3  C o lu m n  c le a n in g

Given that sodium hydroxide is commonly used to clean non-protein ligands, initial experiments to 

evaluate the cleaning and sanitisation of the prototype adsorbent used five column volumes of 0.5M 

NaOH. A 3.14 mL packed bed of the prototype adsorbent was subjected to 1 mL of ovine serum, 

washed and eluted as described in section 2.8.4 and then cleaned and sanitised with 0.5M NaOH, 

prior to re-equilibration and application of another 1 mL of ovine feed. The chromatogram in Figure 

77 was then obtained, with no initial shoulder and only a small elution peak. The flowthrough was 

collected in 1 mL fractions and was shown by SDS PAGE analysis to contain large amounts of IgG 

and serum proteins whilst the eluate lane only contained a faint band of IgG (Figure 78). The gel 

also revealed a significant amount of ‘smearing’ along the flowthrough lanes. Given that the only 

difference between this bed and those described in section 3.2 was the application of a 0.5M NaOH 

sanitisation step, the smearing may therefore represent leached ligand arising from NaOH wash that 

in turn results in a reduced column capacity. In this respect, the prototype behaves similarly to 

conventional Protein A resins in terms of its low tolerance of high pH conditions. Conversely, when 

five column volumes of 0.1 M HCI were used to clean a 3.38 mL column of the prototype and the 

subsequent 1 mL ovine feed was applied, a similar chromatogram to Figure 74 was obtained. 

Fractions of the flowthrough and the elution peaks were also shown by gel analysis to contain similar 

proportions of IgG and serum proteins to those obtained previously in section 7.3.2.2 (Figure 75 and 

Figure 76). Closer examination of the UV trace during the HCI wash showed small peaks appearing
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within one to two column volumes, suggesting that there was very little build-up of adsorbed protein 

to the bed. The HCI washing experiment was continued for repeated loading cycles, which 

demonstrated that consistently high yields (just under 90%) and purities (95%) were achieved over 

nine affinity cycles Hence 0.1M HCI appears to be a suitable agent for cleaning the prototype 

adsorbent when purifying polyclonal antibodies from serum.

M j (KDa) Serum Eluate from ten consecutive runs

▼
116.3

97 .4

66 3

55.4

A
36.5 

31.0

21.5

14.4 

6.0

Albumin

MfCKDa) Serum Eluate from ten consecutive runs

Albumin

Figure 76: SDS PAGE gel of the eluates 
Primary peaks i.e. E2 in Figure 74, collected from ten consecutive runs when a packed bed o f the prototype was 

challenged with 1 mL o f 0.2 pm filtered ovine serum: (A) w ithout a caprylic acid wash; (B) with caprylic acid. 
Purity drops appreciably during runs 5-10 when operating w ithout a caprylic acid wash
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Figure 77: Chromatogram obtained when applying ovine serum after a five column volume 0.5M NaOH wash
Minimal IgG appears to bind to the column

<  IgG

*  A lbum in
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Figure 78: SDS PAGE gel of the flowthrough and elution fractions after 0.5M NaOH washing 
Lanes: 1 -  marker; 2 -  ovine serum; 3 to 11 - t h e  nine flowthrough fractions; 12 ■ eluate

7.3 .2 .4  Inverted confocal microscopy

Confocal microscopy was used to evaluate binding and subsequent diffusion of fluorescent IgG over 

time. Figure 79 shows the fluorescence intensity profiles along the cross sections of the beads of 

both the prototype and Protein G Sepharose immediately after matrix incubation, whilst Figure 80 

shows the equivalent profiles after 150 minutes. Immediately after incubation, the prototype shows 

similar intensities at the edge of the beads compared to the Protein G Sepharose. Conversely, the 

Protein G adsorbent shows no protein binding at all across most of the central 50% of the bead,

116.3
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55.4
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14.4
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\ i f  (KDa) Serum F low th rough  frac tions  1-9 Eluate
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whereas for the prototype there is an appreciable IgG concentration in the centre. After 150 

minutes, both matrices exhibit similar profiles (Figure 80).
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Figure 79: Fluorescence intensity profile along the cross section of the adsorbent particles immediately after
matrix incubation 

(--------= prototype adsorbent;-------= Protein G Sepharose)
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Figure 80: Fluorescence intensity profile along the cross section of the adsorbent particles after incubation for 150
minutes

(— —  = prototype adsorbent;------- = Protein G Sepharose)

Despite deliberately over-saturating with protein, however, the IgG appears to concentrate primarily 

along the outer 20% of the beads in the case of both resins, leaving a central core that exhibits only 

a third of the intensity seen on the outside. The experiment was repeated with a 24 hour incubation 

of the prototype adsorbent. The results in Figure 81 show that after this period of time, the intensity 

profile is similar to that obtained after 150 minutes, suggesting that equilibrium has been reached 

and no further IgG can bind. These data therefore imply that the IgG uptake characteristics of the

180



novel adsorbent are similar to those of Protein G Sepharose and that the prototype may be a viable 

option for the commercial-scale capture and purification of polyclonal antibodies from crude industrial 

feedstocks such as ovine serum. Due to commercial limitations at the time of writing, details of the 

bound synthetic chemical ligand (structure, charge, bead density and hydrophobicity) have not been 

disclosed and hence no further characterisation was undertaken.
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Figure 81: Fluorescence intensity profile along the cross section of a bead of the prototype adsorbent after
incubation for 24 hours

In control experiments, the intensity profile was shown to remain constant in the fifteen minutes 

during which analysis of the prototype adsorbent occurred, implying that there was no 

photobleaching over the course of the experiments. The following graph was taken from a prototype 

adsorbent bead after 150 minutes incubation and the intensity profile was scanned at five 3-minute 

intervals. In all cases, the fluorescence traces were found to be very similar:
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Figure 82: Constant intensity profiles over a fifteen minute period during the control experiment
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It was also shown that there was no binding of the fluorescently labelled IgG to the Sepharose CL 4B 

agarose beads, implying that the fluorescence patterns seen with the prototype and Protein G 

Sepharose were due to the binding of IgG to the ligand and not due to non-specific binding of 

fluorophore. Intensity profiles were also comparable for each of the three beads analysed at each 

time point, suggesting that the data that formed the basis of the evaluation were a representative 

sample.

7.3.3 Case study summary

This section of the chapter has evaluated a prototype adsorbent for its ability to recover and purify 

polyclonal antibodies from crude hyperimmunised ovine serum. The adsorbent was shown to have a 

higher dynamic capacity for polyclonal IgG than a range of other commercially available matrices 

and with a post-load caprylic acid wash, was shown to achieve consistently high yields and purities 

over ten purification cycles with minimal drop in binding capacity. It was also demonstrated that than 

0.1 M hydrochloric acid could be applied to clean the column efficiently. Inverted confocal 

microscopy was used to visualise the antibody binding characteristics for individual beads of the 

prototype matrix, producing similar results to those achieved with a commercially available Protein 

G. Although the adsorbent evaluated is not currently available commercially and the details of the 

bound ligand have not been disclosed, these data indicate that the prototype adsorbent is a feasible 

option for the recovery of polyclonal antibodies from ovine serum and may therefore have wider 

applicability to other complex feedstocks of industrial relevance. The high binding capacities and 

eluted IgG purities observed suggest that this 'next generation’ synthetic alternative to Protein A or G 

chromatography adsorbents may be suitable for the commercial scale purification of other products 

such as therapeutic monoclonal antibodies from mammalian cell culture or from feedstocks 

produced using transgenic technologies.

7.4 Chapter conclusions

This chapter has focused upon the development of simulation and experimental methods for 

evaluating the performance of chromatographic matrices in recovering polyclonal antibodies and 

their fragments from complex protein feeds. Thus, for example, capacity, re-use and cleaning data 

obtained from the assessment of the prototype adsorbent facilitate good column design and 

selection of the optimal operating conditions in order to achieve required goals for outputs such as 

yield, throughput and purity of the product.
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8: COMMERCIALISATION, MANAGEMENT AND VALIDATION 

ISSUES RELATING TO THE RESEARCH

8.1 Introduction

As part of the Engineering Doctorate scheme, it is a requirement for the thesis to include sections 

describing commercialisation and validation issues arising from the thesis. For example, the 

research described in the previous chapters has the potential to provide substantial industrial 

benefits by enabling the rapid identification and appraisal of manufacturing strategies which satisfy 

both business and market driven goals. Hence this work could form the basis of a start-up company 

providing these services to other organisations such as pharmaceutical, biotechnological, or contract 

manufacturers that are actively seeking to exploit new approaches for drug development. This 

chapter focuses upon how to commercialise the technology described previously.

8.2 Commercialisation of the technology

8.2.1 Introduction

This section of the chapter addresses the following topics associated with setting up a new company 

based upon the software technologies proposed previously:

•  Identify the industrial need for the models developed in this thesis

• Determine the value of these technologies and how they would meet these needs

• Specify the services offered by the start-up

• Identify the companies which constitute the best targets for marketing

•  Determine the potential advantages of the start-up compared to competitors

•  Summarise the costs involved in setting up the company and how funding would be acquired

• Identify potential risks to the new business

8.2.2 The need for software technology

The development of pharmaceutical and biotechnological processes has become an increasingly 

time-consuming and expensive process which can still fail to locate the conditions needed to 

optimise financial and technical performance. Although the operation of sub-optimal systems was 

acceptable in the past, owing to the high premiums that new drugs were able to attract, costs have 

now risen and revenues have fallen to the point where drug manufacture is becoming progressively 

less economically viable. This is compounded by other factors which increase the difficulty that 

companies have in planning for commercial-scale operation at early stages of development:
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•  Uncertainties in titres achieveable upon scale-up or dosage needed to for acceptable efficacy

•  The requirement for large process volumes during pilot studies which may be costly or 

unavailable early-on

•  The lack of sufficient time available for process optimisation (at pilot and commercial scale) 

during development, meaning that companies are forced to sacrifice development in favour of 

rapid market access in order to exploit patent cover. This can often give rise to processes that 

lack robustness and cost-effectiveness

• Growing global competition, increasing numbers of drug substitutes, reimbursement pressures, 

regulatory moves to apply cGMP standards to materials in early-stage development and 

growing clinical burdens mean that operating inefficient processes is becoming increasingly 

uneconomic

These factors have all increased the need for designing processes quickly and correctly, especially 

when considering the growing complexity of drugs that are now being developed, which tends to 

increase the time and money needed to bring them to full-scale production.

8.2.3 Value proposition in commercialising the software

New methods now being investigated for the design of pilot- and commercial-scale production 

systems include high throughput screening, ultra-scale down techniques and modelling software. 

The latter has attracted renewed interest as a means for overcoming the current challenges and 

typical questions that can be answered by software fall into three groups:

•  Process-related e.g. what is the most suitable flowrate to optimise yield and throughput?

•  Facility-related e.g. what is the best approach to resource deployment to eliminate bottlenecks?

•  Business-related e.g. which operating strategy minimises the cost of goods?

A software company based on the research in this thesis can be set-up to provide simulation 

methods to major pharmaceutical and biotechnological companies in order to answer these types of 

questions. Ultimately this would help to get drugs to market more quickly and cheaply, giving 

benefits to both companies and patients alike.

8.2.4 Intellectual property rights

The intellectual property rights for the start-up company take the form of the copyright that subsists 

within the software. For each individual client, the models produced will be bespoke solutions and 

provided on licence. In all cases, the copyright will be retained by the start-up company.

8.2.5 Services provided by the company and its novelty

The services being offered by the new software company are wide ranging and include:
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•  Identifying the most critical input variables in a unit operation or whole process by Global 

Sensitivity Analysis, in order to determine the most suitable process development strategies

•  Investigating and evaluating process development strategies by using models developed for 

individual unit operations (e.g. chromatography) or whole process models constructed in 

Extend™. The results can then be used to make decisions, such as determining the best unit 

operations for a given process duty and the operating conditions required to achieve required 

goals. The software can also be used to address related problems e.g. highlighting constraints 

upon throughput, pinpointing possible solutions and evaluating their relative merits

•  Using multi-attribute decision-making techniques to integrate development and manufacturing 

model outputs together in order to trade off their values and so determine the best overall option

•  Models can also be offered to simulate a drugs portfolio of at various stages of development and 

manufacture, enabling a more holistic representation of the activities of a typical company

The novelty of the business lies in troubleshooting pre-existing processes that need improvement by 

using model-driven implementation of Quality By Design. Growing emphasis is being placed by 

regulatory authorities upon using a systematic approach for exploring the design space to work out 

the most robust operating region. As indicated earlier in the thesis, performing a full factorial design 

by experimentation can be time-consuming and hence simulation approaches can be a useful way to 

narrow down the size of the design space to those key factors of critical importance. A fractional 

factorial experimental design can then be set-up focusing upon those factors or those process 

options that have been highlighted by the model to be promising approaches.

8.2.6 The target market

The target market for these software methodologies includes medium to large size pharmaceutical 

and biotechnology companies such as Pfizer, Eli Lilly or Genentech and also contract manufacturers 

(such as Avecia or Lonza) that develop or modify processes for pilot- or full-scale production.

•  Where a new process is being designed, USD studies can be undertaken during early 

development to gather the data needed to populate simulations. Experimental studies at this 

scale are best suited to early development as there is normally insufficient process material 

available to conduct pilot- or full-scale trials and reluctance to procure larger scale equipment 

owing to a lack of efficacy data. The populated models can then be used for optimisation e.g. 

making choices for the type, number and sequence of unit operations in a flowsheet. As these 

studies are being undertaken far earlier than in ‘normal’ development, this leaves a larger 

window of time to optimise the process, increasing the chances of doing so satisfactorily

•  Alternatively, where changes to an existing process are being countenanced, simulations can 

investigate development options, followed by a limited number of full-scale verification runs
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Clients benefit from this approach in several ways:

•  A company could potentially reduce the time to market for a new candidate or reduce the time 

taken to re-start pre-existing processes that are undergoing optimisation. By accelerating 

development, the money saved could be diverted to other company activities such as new drug 

research and development or implementing facility improvements

•  Models can help with process robustness (e.g. windows of operation can determine how wide 

the operating boundaries need to be to satisfy production goals). Ultimately, this can lead to 

better process design, higher manufacturing consistency and thus fewer regulatory recalls

•  Higher quality processes increase regulatory compliance and therefore enhances the reputation 

of a client with government bodies such as the NHS. This reputation also encourages other 

companies to go into partnership with the client for the development/manufacture of other 

products i.e. the benefits can extend into future projects

8.2.7 Competition to the new software company

Commercially-available software for modelling bio-manufacturing operations includes SuperPro 

Designer (Intelligen) or BioProcess Simulator (AspenTech) and there are several examples in the 

literature describing the application of these packages to the production of commercially relevant 

bioproducts e.g. Harrison et al. (2003) describe the use of SPD in simulating the production of 

monoclonal antibodies and insulin. Nevertheless, these programs are hampered by restrictions:

•  Their static nature is unable to account for dynamic resource allocation/deallocation in a process

• The currently available packages are generic, thus making it harder to capture the unique 

characteristics of each process

•  Unit operation models are often highly simplified, meaning that they provide little process insight

The methods developed by the new company instead utilise dynamic simulation software which

incorporate mathematically rigorous design equations in order to generate more comprehensive 

process understanding. In addition, the models will be custom-built for each client, allowing any 

unique process characteristics to be incorporated.

Further competition comes in the form of consultancies such as Biopharm Services, which already 

provides custom-built Extend modelling solutions to organisations such as Cancer Research U.K. or 

GlaxoSmithKline. Possible competitive advantages compared to Biopharm Services include:

•  Biopharm Services does not provide the actual final model to the client, whereas the new 

company will do so, with full training and after-support in how to use and maintain the simulation

•  The company is founded at University College London, with access to other process 

development technologies such as Ultra Scale Down that can assist with acquiring input data
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8.2.8 Company start-up

Initially, staff members with a background in Biochemical Engineering would be recruited. These 

individual would have a good working knowledge of how difficult unit operations work, how they are 

modelled as well as how processes are developed and optimised. Other requirements would include 

an understanding of cost evaluation and facility analysis. These people could come from the 

Department of Biochemical Engineering at University College London, with an additional source of 

employees coming from institutions such as the London Business School, who develop the 

marketing skills needed in order to advertise the company.

University contacts would be used to gain the initial contract in the first year of company operation, 

which would need to be for a major pharmaceutical or biotechnological client. This would provide an 

illustrative ‘showcase’ which demonstrates the utility of the methods and thus give the start-up a high 

profile. This company could be Protherics, since the collaborative EngD has demonstrated the 

potential of the modelling techniques to the company. Furthermore, a partnership that Protherics 

has entered into with AztraZeneca for another novel product currently going through development 

could also be a useful source of future contracts. Immediately after this, additional business would 

be solicited by direct application to companies including Pfizer, GlaxoSmithkline, Eli Lilly, Amgen and 

also contractors. Again, the high profile of these organisations would be useful in giving wider 

exposure to the software technology. Advertisements placed in the trade press, on websites (both 

self and others e.g. Pharmiweb, Bioindustry Association and BioprocessUK), through published 

papers and at conferences would also be used to market the company.

8.2.9 Expenditure and revenues

8 .2 .9 .1  E xpenditure

• In the initial six month period of the company, seed finance of around £20,000 would be needed 

to acquire equipment (computers etc.), rent out premises, conduct initial market research and 

advertise the company. This would be sought from sources including self financing (including 

friends and family of the founder), DTI grants and angels

During this period, the copyright of the technology which is currently owned by University College 

London would need to be licensed out or transferred, in return for payment such as a nominal one- 

off fee in addition to a royalty stream in the event of the company being successful. In the 

subsequent six to twelve months, another £50,000 would be needed for company expansion, 

involving further marketing and building up the client base.
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8 .2 .9 .2  Revenues

All projects will incur revenue by charging a percentage of future product sales -  typically, the 

industry norm is approximately 1% (Neal, 2005). No upfront charge would be made (at least during 

the early years of company operation) in order to attract companies. Based on the work carried out 

by this thesis, it is known that it takes around three months to complete each modelling exercise and 

hence potentially, over a ten year period, a total of forty contracts could be undertaken. From its 

website, Biopharm Services has worked with around fifty companies from 1992 to 2007 and hence 

forty contracts over a ten year period for the new company seems reasonable. If it is assumed that 

the start-up works on one to two drugs which become blockbusters, while the remainder of the forty 

contracts attract lower revenue streams, then the following approximate calculations can be made 

(the exact values depend upon future sales values, which by their nature are uncertain and depend 

upon a range of factors, including the value and demand of other competing products in the 

marketplace). Hence, the values given are approximate:

Blockbuster? Numbers of candidates Sales (£M) Value at 1% of sales (£M)

2 500 10

X 38 125 47.5

Total (£M): 57.5

Table 42: Sales values for the new company 
The £125M safes value was chosen as this is below the 'radar' for most major pharmaceutical companies which 

normally seek blockbusters (£0.5 billion is the normal threshold for a new product to be defined as a blockbuster). 
Hence £125M is used to represent a typical 'modest' sales revenue figure

Hence the new company could stand to make around £57.5 million over a ten year period. Even if 

sales revenue was far lower e.g. if there were no blockbusters and the sales revenue for each 

candidate was only (say) £25M instead of £125M, the start-up would still stand to make 0.01 x 40 * 

25 = £10M, which is still a reasonable amount for a small software consultancy.

8.2.10 Potential risks to the business

•  Not attracting enough clients (e.g. due to an inability to acquire a sufficiently high profile)

•  Other companies e.g. Biopharm Services, or future competition such as other spin-out 

companies set-up by future doctoral students

•  In the experience of the author, the industry is sceptical generally about the use of software for 

process design and this needs to be overcome before a viable business could be created

Initial marketing efforts will be critical in mitigating these factors to ensure success, as outlined 

further in the next section.
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8.2.11 Case study

In order to make the set-up described above more specific and to demonstrate the utility of the start

up organisation, this section describes a hypothetical scenario in which the services of the company 

are called upon to help a client. The scenario is not real and is only used to illustrate how 

commercialising the techniques developed in this thesis could be of benefit to industry.

I) Scenario:

It is assumed that a client company has a process used currently for the full-scale production of a 

soluble therapeutic protein (e.g. a monoclonal antibody), but which is at risk of losing market share 

due to the following:

•  Product yield is inconsistent, meaning that market supply can be difficult to maintain sometimes

• Batches need to be re-processed on occasion due to an inability of the process to meet purity 

specifications. Problems include leached ligand that may not be cleared completely

•  The multi-product facility used to manufacture the product is employed continuously for other 

products and so there is little room to increase the number of feed batches processed per year 

for the monoclonal antibody in question.

•  The low yield and the need for re-processing means that the cost of goods is high and hence 

the price to the consumer is large. There is therefore a risk that agencies such as the National 

Institute for Health and Clinical Excellence in the U.K. may re-examine whether the monoclonal 

is a viable product to buy, especially since product alternatives may become available in the 

next few years with similar efficacy profiles but at a lower cost.

•  The company has very little time or money to spend on improving these issues itself due to 

other projects -  but it nevertheless wishes to improve the prospects for the monoclonal antibody 

in the long term

II) Company strategy for dealing with problems:

The software consultancy has been approached to try and find ways that can increase production 

levels and decrease costs. The approach taken by the company involves:

a) Examining the process and identifying possible problems e.g. where costs are high or where 

product is lost

b) Using process data to determine likely data values and equations. Laboratory experiments may 

also have to be performed to populate equations fully. Precise equations to choose will be 

determined by the type of unit operation being considered - for example in a column step, 

molecular properties such as size, charge, hydrophobicity, kinetic and mass transport properties 

will affect the type of equation that is suitable (e.g. pore diffusion, film mass transfer or solid 

diffusion etc.). Genetic algorithms may have to be encoded to fit literature equations to the data

c) Applying GSA to those equations generated in part (b) to identify the key variables for all 

flowsheet development options
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d) Using an Extend model to explore the response curve for those key variables (as determined by 

GSA) and for all flowsheet options, thereby determining likely operating regions

e) Using this information to confirm the exact operating points/regions where robust operation can 

be achieved by fractional factorial design (taking into account only those variables within an 

experimental set-up that have been determined by GSA to be relevant)

III) Application of the strategy to the scenario:

For this scenario, it is assumed that the monoclonal antibody production follows a standard process 

-  e.g. a cell culture step, followed by an initial clarification by centrifugation, Protein A 

chromatographic purification, intermediate clarifying steps (e.g. filtration), purifying ion exchange 

chromatography and final polishing such as by size exclusion. The key problems with the process 

(part (a)) have already been identified from the scenario. Following the process of fitting equations 

to data from this process (as per part (b) above), it is assumed that GSA (i.e. part (c)) has revealed 

the following variables to be critical to the process:

•  Fermentation titre

•  Clarifying centrifuge flowrate

•  Capacity of the direct capture Protein A column

• Flowrate and volume of the purifying ion exchange column

This information forms the basis of potential solutions to the problems faced by the client company. 

Simulations can then be run in Extend to determine exactly which problems exist in the process (part 

(d) in the strategy above). Hypothetically, this might show that:

•  Cell culture titres vary depending upon the nutrient feed strategy (amount, rate and frequency), 

thereby affecting product yield

•  Poor efficiency of clarification prior to the column capture step hampers the latter step’s effective 

dynamic binding capacity due to the high solids concentraton being present

•  The effective capacity of the purifying ion exchange step is too low owing to the use of only a

small column size and a high flowrate

Based on the knowledge of exactly which factors are most important and how they affect the 

process, scale-down studies of the process can then be completed to optimise these variables:

•  The nutrient feeding strategy

•  The clarifying centrifuge flowrate

•  The volume and flowrate used in ion exchange

A Design of Experiments approach (part (e)) can be taken to investigate these factors and so identify 

suitable operating values that work in flat (robust) regions of the response curve. The overall result 

of this approach should be an improved process that operates with greater consistency and
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robustness with respect to product mass and manufacturing costs, without significantly changing the 

time needed for manufacture (i.e. without affecting the schedule of other manufactured products) 

and providing a better resistance against the influx of product alternatives into the market.

8.2.12 Conclusion

This section has described how the software research proposed in this thesis could be developed 

into a business and given the potential benefits of the technology, it stands a good chance of 

succeeding and making a profit. The next section goes into further details about how the software 

methods provided by the company would help with process development.

8.3 Software approaches to managing process development

In the past, most companies were unwilling to acquire or commit pilot or full-scale facilities to a 

project until convincing signs of drug efficacy had been established. This often left very little time 

prior to market launch in which to conduct process optimisation and so this was often sacrificed in 

order to minimise the time to market. Although this strategy was economically viable in the past, this 

is no longer the case and optimisation is becoming increasingly important to making drug 

manufacture profitable. This change has been caused by a variety of factors:

•  Reductions in drug premiums owing to reimbursement pressures from bodies such as the 

National Institute of Health and Clinical Excellence when deciding whether to use a new drug

•  The complexity of products being developed has increased (partly because the industry is 

focusing more upon complex biopharmaceuticals rather than simpler new chemical entities), 

resulting in longer and more expensive development

•  Clinical trials now take far longer to complete than before, resulting from larger numbers of 

patients being tested and greater numbers of trials in each phase. This also necessitates a 

more extensive data management exercise, increasing the costs involved

•  Nowadays, patents now provide fewer barriers to new competition entering the marketplace

Hence the industry generally needs to develop processes in a better way by starting their 

optimisation long before the acquisition of capital. This leaves a larger window of time in which to 

identify the most suitable manufacturing flowsheet and operating conditions. Development needs to 

cover issues of cost effectiveness, robustness, recoveries and purities i.e. business and process 

factors need to be integrated together in decision-making. The software methods proposed in this 

thesis enable a fast, simple and inexpensive means of achieving these goals and unlike a laboratory 

experiment, a simulation can easily be re-run at minimal expense of time or money. Nevertheless, 

the current status of the bioprocess software field still presents certain problems that need to be 

resolved before modelling becomes more widely accepted in the industry:
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•  How can an end user be certain that the results from a simulation accurately reflect ‘real-life’ 

performance? The only true way to verify model outputs at present would be to validate at 

scale, which may be impossible if no such process exists

•  It can be very difficult to capture every possible aspect of a facility which could ever influence its 

performance and in addition, every process is unique - hence the use of a generic modelling 

framework may only approximate likely manufacturing performance

• One way of trying to solve these problems would be to develop more generic models which 

simulate performance of each unit operation at the molecular level, rather than the more general 

mathematical (and especially calculus-based) approaches used to date

8.4 Software validation issues arising from the thesis

8.4.1 Introduction

Technically, since the modelling tools proposed in this thesis are for process development only and 

hence are ‘offline’, there is no explicit need to validate them in the same way as for ‘online’ process 

control software. Nevertheless, if they were to be analysed in the same way, this would give 

regulators confidence that a rigorous basis was used for process development. FDA software 

guidelines formed the basis of the research presented in the previous chapters and the steps taken 

to validate software can be expressed as the ‘V’ model, which encompasses the planning, design, 

commissioning, testing and on-going operation/maintenance of the software (Figure 83):

Build the system

Create the functional

specification

Create the design 

specification

Plan what needs to be

validated

Create a specification of 

what the user requires

OQ

On going assessment

PQ

Figure 83: 'V  model of validation 
The thin horizontal lines indicate how planning/design tasks (on the left) are implemented (on the right)
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8.4.2 Software planning phase

The first step in the Y  model identifies the key things to be delivered in the project, the personnel 

responsible for doing so and the timescales involved. The outcome from the planning stage is the 

development of a User Requirements Statement (URS), setting out what the program needs to do.

•  In the case of each model set-up for Protherics, there was always a thorough discussion with 

their development and management staff in order to identify their key requirements, often 

formulated in the guise of questions that need to be answered -  e.g. what are the advantages 

and disadvantages of using a synthetic adsorbent step at the start of the CroFab process?

8.4.3 Specification and design phases

A functional specification is used to determine how the URS is met, by defining the programming 

code needed to build the system.

•  The component parts of each model were always identified on paper and the outline (pseudo- 

English) code was always written down before coding. The efficiency of the code was also a 

key factor at this point and a modular approach was typically employed in order to reduce the 

amount of re-coding, thus also making it easier to identify and correct bugs.

8.4.4 Qualification phases

The qualification phases are used to review the quality of the program, eliminating any redundant 

code and documenting any changes after model construction. /4s part o f this, PQ involves 

documented testing against the URS to show that the program works correctly in routine use.

•  As per the defect prevention guidance given by the FDA, processes were put into place when 

generating the research to ensure quality by preventing the entry of defects into the code in the 

first place, rather than testing quality into the system after it has been built. Although testing is 

important, the complexities of a typical program make it difficult to check every feature 

exhaustively, meaning that defects may remain hidden. For this reason, software construction 

requires the use of suitable methods which detects errors when the code is first generated and 

in the Extend™ or MATLAB® models, the software engines have routines in place to trap illegal 

errors (e.g. division by zero, making a call to a file that does not exist etc.). The Visual Basic for 

Applications engine also includes this protection and as an additional safeguard, further code 

was added e.g. when entering the number of vessels needed to hold the volume present at a 

particular stage, if too small a number was inserted, then the interface would flag this up as an 

error and stop further processing. Nevertheless, it was realised at the start of the doctorate that 

such methods may still allow certain unexpected errors through and hence whenever a model 

was built, each component part was also tested using ‘dummy’ and ‘real’ data before being used 

in the main simulation. Each completed model was also run through step by step (e.g. using 

debug points in the MATLAB® code, or by using Pause or Count blocks to check on the 

progress of items between different sections of Extend codeblocks) in order to ensure that the
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behaviour was as expected. It was only after such a process that any model was then used to 

generate the research results.

8.4.5 Ongoing assessment

This is used to ensure that any changes required are identified and implemented in a controlled 

manner before retesting, both when problems are encountered and also as a periodic review to 

check that the system still functions as expected.

•  After model construction, the author periodically reviewed its operation to see if any further 

changes were needed. Due to the complexity of software, any change -  however small -  could 

potentially have a wider impact on the model and hence after implementing an alteration, its 

effect upon the validation status of the software always needs to be re-established in order to 

show that nothing adverse or unexpected occurs and that the intended effects of the change are 

observed. Where a change was required in Protherics’ models, it was always planned and its 

implementation accompanied by a thorough re-test of the relevant component part of the model; 

if the change was also likely to affect other parts of the model, the whole simulation was then re

tested to check for any possible deleterious effects.

8.4.6 Software as a tool for scale-up

The software developed in this thesis could help with the scale-up from laboratory to pilot or 

commercial-scale operation and thus models could be built to predict the impact of increasing scale 

upon processing characteristics. For example the chromatography ‘wall effect’, which describes the 

support that the side of a column provides to a bed at small scale, is lost when moving up to a larger 

column -  models could be developed to predict the resulting impacts upon performance.

8.5 Synthetic adsorbent column validation

8.5.1 Introduction

If the synthetic adsorbent evaluated in Chapter 7 was to be used as the basis of commercial 

operation, the following validation tasks would need to be carried out (in addition to others such as 

IO, OQ and PQ of the full-scale equipment as mentioned above):

8.5.2 Critical parameter identification

The impact of varying inputs such as flowrate, temperature, pH, conductivity etc would need to be 

evaluated through either single parameter investigation or factorial analysis, in order to identify the 

critical process parameters that affect performance. On this basis, acceptable levels for these 

variables would need to be set in order to achieve robust operation (Figure 84).
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Product aggregation/damage

Tested range
Incomplete product elution

Acceptably low damage Complete product recovery 
Acceptable range

Acceptably low damage
Operational range

Complete product recovery

* \

Increasing elution pH

Figure 84: Different types of limits set for critical process parameters (using elution pH as an example)
The operational range inside the acceptable range minimises damage, maximises recovery and also allows for

potential variability during processing)

8.5.3 Consistency

This is one of the most important aspects of validation and normally requires three to five sequential 

full scale lots in order to characterise the recovery of product from a chromatography step and the 

whole process, the level of impurity/contaminant clearance and product stability.

8.5.4 Resin re-use

This requires a combination of laboratory and full-scale data and test to check whether consistent 

results are achieved in the following properties across multiple runs with a given batch of matrix:

•  The chromatographic profiles need to be comparable (e.g. for an elution profile, the number of 

peaks, the relative peak heights and the elution peak volume should all be similar)

•  Levels of ligand leakage into the product

•  Product recovery and impurity reduction

•  Product integrity and activity

•  Viral reduction (see below)

•  Residual impurity levels after processing (checked with blank buffer runs)

8.5.5 Spiking studies

These involve operating a scale-down mimic of the commercial column. Effective scaling requires 

the following rules to be observed in order to achieve the same product yield, purity, retention time 

and elution profile:

•  Same residence time (i.e. linear flowrate)

•  Same buffer composition and numbers of column volumes for each step

•  Same feed materials as used at full scale

The study then involves spiking a sample of the feed material with an impurity in order to determine

whether the log clearance of that component is acceptable in the scale down mimic.
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8.5.6 Viral clearance

The raw material to the CroFab process (ovine serum) is a potential source of endogenous viruses 

and hence the synthetic adsorbent step could also act as a viral reduction step in the process, in 

addition to the two currently validated methods used at full-scale (i.e. a low pH hold after venom- 

specific affinity purification and a viral filtration during the pre-formulation stages). Some of the 

aspects which need to be considered in a viral reduction study are given below (based on a lecture 

delivered by Julian Bonnerjea (Lonza) to the Planning and Implementation of the Development and 

Manufacture of Biopharmaceuticals MBI module, UCL, April 2004):

Aspect Description

Selection of 

model viruses

•  Viruses that resemble those which may contaminate the serum need to be 

selected. To provide the most comprehensive testing, a number of different 

viruses (of different sizes, morphologies, resistance to inactivation, DNA/RNA 

contents etc.) need to be selected

• These need to be viruses which could be present at high concentrations in the 

feed stream and for which a reliable assay is available

Validation of 

viral assays

•  Assays that can be used include infectivity assays and those based on 

transmission electron microscopy as well as the polymerase chain reaction

•  Several conditions that occur during normal processing could potentially interfere 

with these assays e.g. high conductivities, the presence of cytotoxic species etc. 

Pre-treatment can be used to eliminate these factors before conducting the assay, 

although it is necessary to show that pre-treatment does not reduce the viral 

content prior to assaying

•  The same needs to be demonstrated for storage conditions e.g. does retention at 

low temperatures affect viral titre?

Statistical 

evaluation of 

results

•  Viral assays experience the same degree of variability as any other biological 

assay and hence in order to demonstrate reproducibility, 95% confidence limits 

need to be set at ± 1/2 logio difference

• When low sample volumes or low viral concentration samples are taken, there is 

always a probability that an infection could be missed -  hence more steps may 

need to be taken e.g. calculating the probability of a viral particle being missed 

and therefore taking more samples to compensate, developing a superior assay, 

designing the process carefully to reduce the risk of possible contamination etc. 

The results from the viral clearance study of the synthetic adsorbent column would 

need to be integrated together with the data from the equivalent studies on other 

process steps in order to achieve the industrial standard of reducing viral infection 

to only one in a million final doses

Table 43: Viral clearance validation studies
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8.6 Chapter conclusions

This chapter has concentrated upon the commercialisation and validation issues that arise from the

research described in this thesis:

•  Setting up a company based upon the proposed simulation methods was shown to be an 

economically viable proposition, although a number of issues surrounding the use of bioprocess 

models still need to be resolved before the financial potential can be realised fully

•  Validation studies in relation to both the software and the chromatography experiments were 

outlined, showing how product quality, robustness and regulatory compliance could be achieved
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9: CONCLUSIONS AND FUTURE WORK

9.1 Summary of the doctoral research

The research in the previous chapters has focused upon the development of techniques designed to 

evaluate the impacts of changing commercial-scale bio-manufacturing processes. The first chapter 

started by outlining some of the challenges facing the pharmaceutical/biopharmaceutical sector and 

then described a range of process changes which are typically considered for their potential to 

overcome these problems and so improve financial and technical performance. The utility of 

modelling techniques in achieving this was summarised, along with the gaps that currently exist 

within the field and how the methods proposed in this thesis set out to bridge them. A summary of 

the experimental work into the synthetic adsorbent step was also given.

The second chapter introduced the modelling and laboratory techniques needed to carry out the 

studies described in the previous chapter. After a review of available software, Extend™ was 

selected as it provided the most suitable environment for constructing the dynamic, discrete event 

models needed to represent a bio-manufacturing process accurately. The hierarchical structure 

used to organise and structure all modelling efforts in Extend™ was also put forward. Finally, the 

experimental methods such as static/dynamic capacity measurements and confocal microscopy 

were outlined.

In the third chapter, a simulation methodology for assessing the impacts of making moderate 

changes within the current production framework for CroFab™ was introduced, focusing primarily 

upon a yield/time sensitivity analysis and the effects of increasing the volumes of feed material, 

columns flowrates and volumes of affinity matrices. In particular, results showed that the final 

product yield was most strongly controlled by the papain and affinity steps, but that due to the cost 

involved, changing the way in which the papain step is operated was likely to be the more cost 

effective option. This work was extended in the fourth chapter, in which a novel three-layered 

software technique was proposed in order to enable the most efficient use of simulations and the 

underlying experimentation needed to collect the data required to populate them. In each layer, 

inferior changes are screened out, while the more promising options are sent to the subsequent, 

more refined layer, for further evaluation using more rigorous models that require additional data 

inputs from potentially time-consuming laboratory work. Screening ensures that laboratory 

experimentation concentrate solely upon those strategies which show the greatest potential. 

Alternatives to the CroFab™ process that were evaluated included increasing the feed volume, 

replacing centrifugation with microfiltration and replacing precipitation/centrifugation with a Protein-G 

column. Results showed that after assessing every option, doubling the volume of feedstock and 

using a Protein-G column was the best way to alter the existing process and so would be the
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recommended process change strategy. As a check, every option was also run through every layer 

and this showed that all three layers were very similar in terms of which options were predicted to be 

particularly good or unsuitable. Building upon this work and since all manufacturing models to that 

point had been deterministic, this chapter also utilised Monte Carlo techniques to incorporate the 

effects of uncertainty into the simulations. These were applied to the main variable that tends to 

change -  namely the IgG titre. Scenarios investigated included the effect of adding up to two extra 

anti-venom components to the formulation; this was shown to be beneficial in terms of cost of goods 

with minimal impact upon processing times, although it was found that the change might place 

additional burdens upon resources such as labour availability in the facility.

Whereas the the previous two chapters concentrated upon assessing the manufacturing impacts of 

process change, the fifth chapter sought to analyse both the development and manufacturing 

consequences of implementing alterations in order to find the best overall strategy which traded off 

development effort (time and money) against improvements in manufacturing (product mass, cost of 

goods and processing time). The method was illustrated through some radical alterations to 

CroFab™, including changing the precipitation/centrifugation steps to a synthetic adsorbent column 

step operating in either packed or expanded modes, increasing the feed titre/volume and removing 

downstream purification steps. Outputs from the study showed that the best performance in terms of 

manufacturing gains that outweighed development burdens was achieved by implementing a range 

of strategies simultaneously involving the use of an expanded bed column with the synthetic 

adsorbent, the highest feed volume and titre possible whilst operating without the ion exchange step.

Although the simulations described in previous chapters determine the financial and technical 

impacts of changing input variables, their utility would be enhanced by knowledge of which inputs 

were the more important ones to focus upon during development studies. Hence the sixth chapter 

examined the use of GSA, which provides a rigorous sensitivity analysis technique for determining 

the importance of both individual variables and their interactions. This allows a company to prioritise 

development activities upon the essential parameters alone. In this chapter, GSA was used to 

evaluate the parameters that have the greatest impact upon the performance of a manufacturing 

flowsheet, using both a synthetic adsorbent column and also the CroFab™ process as an example 

to illustrate the technique. Inputs that were assessed for their influence on product yield and 

throughput included flowrates, matrix capacities, loading durations and feed concentrations. 

Variables such as the feed concentration and the capacity/flowrate used in the synthetic adsorbent 

column were found to be especially critical in determining the level of yield and throughput. 

Ultimately, this type of knowledge facilitates Quality By Design by enabling a more efficient 

exploration of the operating space through fractional factorial design focusing upon only those 

variables deemed relevant by GSA.
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The seventh chapter was divided into two parts; firstly, a simulation of the DigiFab™ affinity process 

was created, identifying the best conditions that achieved target levels for yield and throughput and it 

was shown that for this column, operating in the middle of the protein loading range (200-500 

mg/mL) and at a flowrate that is 70% below the current level resulted in the best performance. 

Secondly, an experimental evaluation of a novel synthetic ligand adsorbent was used to show that it 

could achieve comparable or superior results to other commercially available matrices. The resin is 

capable of a high dynamic binding capacity (29.2 mg/mL), a consistently high yield (85%) over 

repeated cycles and comparable purification characteristics to another resin (Protein G) as shown by 

confocal microscopy. The resin may also have validity in applications to other feeds such as 

monoclonal antibodies. After this, the eighth chapter described the commercialisation and validation 

issues arising from the work.

9.2 Practical conclusions from the industrial case study

The key issues that have to be addressed by Protherics include the need to increase production 

levels, reduce manufacturing costs, minimise disruption to the existing facility from implementing 

CroFab process changes to the facility and speed up processing. In light of these and after 

application of the techniques proposed in this thesis to the operations carried out by Protherics, the 

following conclusions have been drawn:

•  Increasing the feed volume and titre are generally beneficial, with the improvements in product 

mass outweighing factors such as additional processing times or development costs

•  At the front end of the process, there are several options available for IgG capture. For 

example, replacing the existing precipitation and centrifugation steps during CroFab™ 

manufacture with column capture stages using synthetic ligands or Protein G matrices can help 

to improve processing times and costs. This conclusion is in line with the general development 

strategies of Protherics, which seeks to use column steps at the start of its polyclonal antibody 

processes. Optimising the capacities and flowrates of these steps is especially important to 

ensure adequate yield

•  Changing the number of feed batches or venom components can affect cost of goods, times 

and resource usage and hence the effects of these changes need to be considered if 

implemented

•  Eliminating downstream steps such as ion exchange columns also results in better processes 

that are faster and cheaper to operate

9.3 Future work

Research ideas that follow on from the work in this thesis include the following:

•  More work is required in modelling individual unit operations based on fundamental engineering 

understanding e.g. kinetics, rather than the more generic mathematical approach that is used at
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present. Ultimately, this will enable more robust modelling and so provide greater 

understanding of how to optimise a bioprocess

•  The modelling approaches need to be extended to consider fermentation-based processes in 

order to make the techniques developed in this thesis more generically applicable

•  More work is needed in simulating the campaign manufacture of multiple products, especially in 

light of the added burden that any newly developed candidates would place on a manufacturing 

facility already making approved products. The impacts of adding novel therapeutics to a pre

existing manufacturing portfolio would be evaluated in terms of factors such as resource 

availability or risks of a campaign overrunning

•  Simulation work to date has concentrated upon scenario analysis i.e. testing strategies 

presented to the model. A better idea would be to use the model to work out the optimal 

operating strategy itself with respect to target levels for outputs such as resource utilisation, 

yield and throughput, purity and capital/production costs

•  Whole process ultra scale-down mimics that could be developed include:

a) Linking the synthetic affinity column to the remainder of the process, either with or without 

the ion exchange step

b) Evaluating an alternative such as using an ion exchange step for IgG capture (with a 

caprylic acid wash to eliminate adsorbed albumin), followed by digestion and an affinity step

c) Using immobilised papain instead of soluble enzyme

•  The prototype adsorbent should be tested with feeds other than ovine sera to identify its 

potential wider applicability
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APPENDIX 1: EVALUATION OF SOFTWARE ENVIRONMENTS

The following gives an outline of the qualitative assessment of each simulation package assessed,

which formed the basis of the scores given in Table 3 (Page 44).

Analytica (Lumina Decision Systems - Los Gatos, California, U.S.A.)

•  Simple model construction -  graphical with dragging and dropping of icons to create the objects 

on the screen

• Pre-programmed modules would aid swift replication of the CroFab™ process

•  Run time debug is allowed -  hence parameters could be changed, ‘on the fly’

•  More attuned to the business aspects of modelling, with risk analysis and decision making being 

at the core of the program

•  Very low computational burden -  this software should therefore run fairly quickly

•  Includes a reasonably powerful package for analysing output data

•  Does not provide any tools to allow dissemination of the final simulation to the end user who 

may not have this piece of modelling software

•  Provides methods of evaluating the effects of risk and uncertainty within the process setup

Anylogic (XJ Technologies • St. Petersberg, Russian Federation)

•  Graphical structure, with pre-programmed modules and run time debug available

•  Predictive piece of software -  useful in answering, ‘what if,’ scenarios

•  Supports a large number of experimental types e.g. Monte Carlo and sensitivity analysis

•  Includes a wide range of statistical functions that can be used to operate on output values, as

well as graphing and reporting utilities

•  The complete model can also be packaged such that users who do not possess Anylogic 

software can still look at the simulation

•  The program is very large, requiring a large amount of memory (512 MB recommended) and

can only run on Microsoft® Windows® 2000 and XP. If an inferior computer specification was

used, the modelling could prove slow and inefficient

•  Not specifically targeted at a manufacturing process and so many need a fair amount of work to 

modify the existing pre-programmed modules into a useful form

Arena (Rockwell Software - Warrendale, Pennsylvania, U.S.A.)

•  A reasonably powerful product, possessing a high amount of functionality

•  A product that is targeted far more at manufacturing processes than Anylogic

•  Does not require too much memory (64 MB) and can run on a number of different operating 

systems from Microsoft® Windows® 95 upwards i.e. the software should run fairly quickly
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•  Dragging and dropping of icons for object creation

•  Pre-programmed and user defined modules available; run time debug allowed

•  Completed models can be packaged such that any users who do not have Arena can look at the

simulation

•  Lacks any significant output data statistical analysis tools; sensitivity analysis and Monte Carlo 

setups are not available either

Crystal Ball (Decisioneering Incorporated • London, U.K.)

•  Targeted at the process industries (pharmaceutical companies specifically listed as a key target 

market for the software), but primarily involved in business planning analysis, evaluation of costs 

and benefits, risk and project management, rather than manufacturing simulation

•  Create turnkey applications with this Microsoft® Excel add in -  Excel models enhanced with

Crystal Ball can be viewed by anyone with Excel

•  Very small memory requirements and can easily run on a variety of Windows platforms -  

important if the model is moved from UCL to Protherics

•  Possesses a tool that allows automatic optimisation of a given model and transfer back into an 

Excel spreadsheet (this can lead to excessive dependency by the user if too much trust is 

placed in the model’s optimisation routines)

•  Use of automatic optimisation routines also assumes that the modelling software provides the 

best fit that the user would wish to see to a given problem -  if it does not and if this is not 

noticed by a end user who is not well versed to the technology, this inaccuracy may be carried 

through to another part of the model

•  Provides a method for forecasting of future outcomes based on historical data

•  Can run multiple simulations simultaneously to test different assumptions

•  Dragging and dropping of icons is not available = rather difficult to model

•  No pre-programmed modules available: run time debug disallowed

Decision Pro (Vanguard Software Corporation - Cary, North Carolina, U.S.A.)

•  More attuned to business management decisions than manufacturing objectives

•  Strategic analysis in relation to, for example, competitive threat, financial outlook and marketing

are all covered

•  Decision tree analysis and Monte Carlo simulation are present

•  Some operational modelling can be done in relation to process simulation, optimisation and 

scheduling

•  Only moderate amounts of processing power are needed

• Graphical construction, with models being represented in an easy to visualise hierarchical tree 

format

•  Both pre-programmed modules and simulation run time debug are present
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•  Graphical presentation of simulation statistics and results of sensitivity analysis

•  Models can easily be distributed to end users

emPower (Technomatix Technologies Incorporated - Surrey, U.K.)

•  Designed to model a number of different scenarios, from manufacturing and material handling 

through to scheduling

•  Very high computer requirements (a recommended 512 MB of memory). If the software is 

upgraded, then this requirement is likely to increase, potentially beyond the specification of the 

computer

•  Graphical construction (as opposed to using a programming language to create the model), pre

programmed modules and run time debug are present

•  Provides a statistical data tool for analysis of output values

•  Technology allows for dissemination of model to end users

•  Allows for optimisation of material flows, plant resource utilization and planning

•  Object-oriented technology and object libraries that are present can be readily customized, 

whilst user defined objects are also permitted

•  Object orientation allows for creation of hierarchical trees to aid modelling

•  Provides tools for, ‘what if,' scenarios as well as charts to evaluate graphically differing 

manufacturing strategies or test proposed changes to given process parameters

•  Primarily focused on non process industry related modelling and its intrinsic objects reflect this -  

such as its use for car manufacture. Although objects for Protherics’ model could be created 

from scratch and added in, there are other types of modelling software available providing ready 

to use objects, targeted at the pharmaceutical industry

Enterprise Dynamics (Incontrol Enterprise Dynamics - Cheshire, U.K.)

•  Contains a dedicated simulation suite for manufacturing and material handling

•  Does not require significant quantities of computational power

•  Graphical construction/pre-programmed modules/run time debug are present

•  Capacity for graphing and reporting the results of simulations, but this does not seem to be as 

extensive as for some of the other packages

•  Object oriented programming is present to allow for class inheritance

• Claims to be able to integrate with other software systems -  could be useful if development in a 

particular part of the project can be carried out more readily in another development 

environment -  this could allow seamless integration of any existing models into this project

Extend™ (Imagine That Incorporated - San Jose, California, U.S.A.)

•  Good for modelling large scale simulations in manufacturing in a similar fashion to that 

envisaged for this project
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•  Moderate demands for computational power

•  Drag and drop/pre-programmed modules/ run time debug are present

•  Supports execution of a range of scenarios

•  Technology allows for dissemination of model to end users

•  Allows for modification or addition of objects as well as their reuse

•  Programming language/graphical simulator hybrid

•  Graphically represents the flow of materials and associated property values and hence leads to

an interface that is relatively straightforward to understand

•  Allows for data stored in an Excel spreadsheet to be picked up and used

Flexsim (Flexsim Software Products Incorporated - Orem, Utah, U.S.A.)

•  Suited to manufacturing and material handling, as well as a wide range of other functions, 

including transport and storage of products

•  Software is able to integrate modelling of manufacturing, logistics and administration (i.e. can 

provide a business and manufacturing viewpoint)

•  Fairly heavy computational load

•  Seems to be quite a complicated program to learn

•  Graphical and hierarchical construction provide a class structure that allows for property and 

variable values inheritance from higher order entities

•  Objects within the environment can be customised

•  Code reuse can be readily achieved

• Model can be converted into its own executable

•  Incorporates C++ into a graphical modelling environment. Hence C++ can be used directly in

defining model logic and compiled into the application -  providing the power to change things 

when such cannot be done graphically

•  Scenario analyser can provide answers to, ‘what if,’ questions and information gathered can be 

automatically put out into the reports, tables and graphs

•  A fairly extensive data analysis package allows use of pre-defined and user-defined indicators 

(e.g. utilization, throughput, lead-time and costs) allowing for analysis of performance of each 

scenario

•  Data import or export from/to Microsoft® Word or Excel is possible if a data source is available -

especially useful to Protherics’ case if that data can simply be picked up from an Excel

spreadsheet

GPSS World for Windows (Minuteman Software)

•  Seems more attuned to modelling telecommunications systems, although it claims a general 

purpose capacity for modelling manufacturing
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•  Low requirements for computer memory or hard disk space (and hence can run multiple 

concurrent simulations fairly quickly if needed)

•  Graphical user interface is provided, along with pre-programmed modules

•  Some data analysis available (but less extensive than for other programs)

•  Provides no tools to support model distribution to end user

•  Own proprietary programming language (which would need to be learnt from scratch)

•  Object oriented interface with many 'windows’ onto the process available

Pasion Simulation System (Stansilaw Raczynski - Mexico D.F.Mexico)

•  Universities listed specifically as part of targeted audience i.e. may be suited to students not 

especially familiar with such simulation software

•  Fairly low computational needs

• Graphical construction is present, but run time debug is not allowed

• Fairly extensive data analysis is provided

•  Reuse of coded elements seems to be limited and there are no tools for packaging the model 

into a form that is accessible by the end user

•  Object oriented, but based on Pascal (author has no experience with this language)

•  Presence of inheritance mechanism so as to allow addition of new properties to existing 

processes without affecting previously declared elements

PIMSS (MJC2 Limited - Crowthorne, Berkshire, U.K.)

•  Main focus is on scheduling and planning of complicated manufacturing operations, producing 

detailed statistics and graphs on resource usage and labour requirements

•  Extremely memory intensive -  likely to be rather slow to run

•  Pre-programmed module s/run time debug are all available

•  Reasonably friendly graphical user interface

•  A limited amount of graphical analysis of output information

•  No tools for model packaging to end user

•  Process costing is not a prominent part of the program

Provision (Proforma Corporation - Southfield, Michigan, U.S.A.)

•  Seems less focused on manufacturing and more on telecommunications and administration 

based projects

•  Medium to heavy load on the computer

•  Simple, graphical construction, but there are no pre-programmed modules, nor is runtime debug 

allowed

• Extensive charting functionality for usage of money, time and resources

•  Full user packaging features for the model
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•  A highly structured and object orientated system

• Allows extensive, “what if,” style testing of scenarios and storing/reuse of process objects

•  Includes the capacity to look at the probabilities of using manufacturing strategies and assess 

them using the Monte Carlo simulation system etc

•  Has a system for identifying process improvements, along with supporting costs, benefits, risks 

and required resources

•  Can allow you to see whether a change in the process is feasible given the pool of resources 

available (and hence if not, what resources are needed)

•  Graphical representation can allow for visualisation on screen of any bottlenecks that may 

develop during the course of a given simulation run

•  Output simulation data can be easily migrated to other programs such as Excel

Resource Manager (User Solutions Incorporated)

• Primarily concerned with resource planning and utilisation as well as scheduling of a process, 

rather than manufacturing or costing aspects

• Has a rather heavy computational load

• Pre-programmed modules and runtime debug are allowed, but construction is not especially 

graphical (i.e. no icons or drag and drop controls are available)

• Limited graphical or statistical interpretation of output data

• Model packaging is available

• Designed to integrate as a Microsoft® Office add-in

• Provides for relatively straightforward, “what if," scenario analyses

SansGUI Modelling and Simulation Environment (ProtoDesign Incorporated ■ Bolingbrook,

Illinois, U.S.A.)

• A simulation program built for a wide variety of purposes (i.e. not specifically targeted at a 

pharmaceutical manufacturing base) -  so may need a fair amount of effort to use for the 

intended model

• Low demands placed on the computer

• Graphical construction, pre-programmed modules and runtime debug allowed

• Can connect to C++ code and has a wide range functions for producing graphs

• Provides an interactive and object-oriented simulation environment, without necessitating any 

code being written

• Little capacity for code reuse, but does allow packaging of model into a form that can be 

disseminated to the end user

• Model building blocks are specified in the code, within a hierarchical structure, which are then 

compiled into a supported programming language in order to produce the desired behaviour of 

the blocks
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• Appears by reading available literature to be rather complicated -  would need a long time to 

learn the relevant jargon and methodology

ShowFlow (Webb Systems Limited ■ Warrington, U.K.)

• A simulation software that focuses on bottleneck analysis, time reduction, resource 

consumption, staffing level analysis etc. in addition to material handling

• Low computational burden

• Reasonably swift in building a model

• Presence of simple graphical user interface/pre-programmed modules and runtime debug

• Objects that are present can be modified simply

• Reports and graphs are defined by the user and can be exported to Excel

• Feeds back statistics during the course of process run, not just at the end

• Packaging system for the model is available

• Suited to generating scenarios to test different manufacturing strategies

• Can simulate perishable or time limited items such that the real resource pool in the plant can

be more accurately represented

• Has an attached costing module to perform any financial calculations

VisSim (Visual Solutions - Westford, Massachusetts, U.S.A.)

• A reasonably powerful package that targets, amongst other aspects, process simulation

• Moderate computational requirements

• Graphical construction/pre-programmed modules/runtime debug available

• Some features for producing graphs of the process, but this seems to be fairly narrow in reach

• Monte Carlo simulation support allowing effects of risk and probabilities of particular events 

occurring to be incorporated

• Packaging function available

• Does not need programming code in order to create simulation i.e. is fully graphical

• Can perform extensive, “what if," testing scenarios

• Can be compiled into the programming language, 'C /fn  order to be run on a compatible system

Visual Simulation Environment (Orca Computer Incorporated • Blacksburg, Virginia)

• A general purpose simulation environment that lacks the necessary building blocks which could 

be adapted for the project -  this would make the simulation more time consuming and awkward

• Reasonably high requirements of memory

• Graphical construction and run time debug are available

• Output analyser tool provides support for evaluating data generated from the system

• No packaging function is available for model distribution

• Object-oriented and picture-based visual modelling and simulation tool
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APPENDIX 2: MATLAB® CODE

GSA code

The structure of the GSA program used when modelling the whole process is as follows:

Model inputs

Sensitivity Indices

(Creates a cache for data storage 

in next step)

CreatelnitStore.m

(Computes first order indices by 

the FAST method)

Fourier2.m

(For higher order indices, using 

the Monte Carlo Sobol’ method)

VarianceCalc PDIP.m

WriteGsExpressionToFile.m

(Creates ‘FunctionToCall’, which 

allows calculation of variances)

(Shell program that calls all other 

main components)

RunGSAv7.m

Figure 85: Schematic of GSA program operation

The MATLAB® code created for these steps (please see next pages) are aided by other files 

(Roundup, TrapeziumRule [for trapezium rule integration] and CreateRandom_0jo_1_Number 

[generates random inputs in the zero to one range]).
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C:\My Documents\Sensitivity analysis\Multi-variable GSA\Final program files\RunGSAv7.m
05 June 2007

Page 1
12:03:29

function RunGSAv7(NumberOfInputVariables,NumberOfOutputVariables,Limit,ModelFileName)
%THIS VERSION USES A DEFINED INPUT MESH (AND CALCULATES AT ALL POINTS) FOR DETERMINING HIGHER ORDER SENSITIVITY INDICES
% I I I I I I I I 1 I I I I  1 I I I I I I t I I I I I I  1 I I I I  I I I 1 I I I I I  I I I I I 1 I !  I I I I I I I I I I I I I I I I 1 I I I I I I I 1 I I I I I  I I I  I I I I I I I I I I I I  I I I t I I I I I I I I I I

%THIS FILE ONLY WORKS FOR A MODEL WITH A MAXIMUM OF 19 VARIABLES - THIS IS THE MAXIMUM FROM THE CUKIER PAPER
% I I 11 I I I I I I I I I I I I I I I I  I I I I I I I I I I I I I I  I I I I I I I I I I I I t ! I I I I I I I I t I I I I I I 1 I I I I I I I  I I I I I I I t I I I I I I I I  I I I I I I I I I I I I I I I 1 I IIt I I I

clear global
global SensitivityIndexMatrix%Used in the fWriter5.m file to calculate interaction indices with the MC Sobol
global OverallVariance% Used in fWriter5.m/VarianceCalc.m to multiply the lower order Sis (1st order) to calc, their variances 
tic

%Delete previous files which stored the sensitivity index values ( SX_Y.m)
delete('GSA S*.m');
delete('SIM.mat'); 
rehash;

%Limit (as a decimal) sets the lower limit below which first order variances do not 
%adequately approximate the overall variance. N.B. this, 'Limit,' is NOT the 
%same as, 'LimitsLower,' used to calculate f_0 
global StringOrlndiv;
StringOrIndiv=0;%Set this to 0 in order to return all outputs as a string or 1 for expressions/results emerging individually 
global CurrentOPVar;
CurrentOPVar=0;%Set to 0 in order to initialise variable

format long 
OverallVariance=0;
strFunction=ModelFileName;%Assign to use later
SecondHoldTerm='';%This string is set to be empty in preparation for its use in Monte Carlo integration, if required 

%First order sensitivity indices as calculated by FAST
SensitivityIndexMatrix=Fourier2(NumberOfInputVariables,ModelFileName,NumberOfOutputVariables);
NeedToCalculateMCSobol=0;%Will use this variable to determine whether the MC Sobol method needs to run or not

SumOfFirstOrders=[];
for intCounter=l:1:NumberOfOutputVariables

SumOfFirstOrders=[SumOfFirstOrders;sum(SensitivitylndexMatrix(:,intCounter))];
end
for intCounter=l:1:NumberOfOutputVariables

if sum(SensitivitylndexMatrix(:,intCounter))<Limit 
NeedToCalculateMCSobol = l; 
break
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end
end

pack;

%Need to save the values of the sensitivity indices to file to be picked up 
%later if necessary by Monte Carlo Sobol - file name SX_Y where X is the 
%number of the input variable and Y is the number of the output variable 
for intRowCounter=l:1:NumberOfInputVariables

for intColCounter=l:1:NumberOfOutputVariables
FunctionName=strcat('GSA S ', num2str(intRowCounter), ,num2str(intColCounter));
StringToFile=strcat('function Result=', FunctionName, '()');
StringToFile=strcat(StringToFile,'\r\n','Result = ',num2str(SensitivitylndexMatrix(intRowCounter,intColCounter)),';');
SavedIndexFile=fopen(strcat(FunctionName,'.m'),' w');
fprintf(SavedlndexFile, StringToFile);
fclose('all');
rehash;

if NeedToCalculateMCSobol==l
%Execute the Monte Carlo Sobol code for the higher order terms 
global gnsteps;
gnsteps = 4;%Number of steps in the trapezium rule - this number is set to 25 for purposes of accuracy

global DefinedMesh;%Used to refer to the defined inputs into the function file 
DefinedMesh=[0:(1/gnsteps):1];%Number of strips in the calculation

CreatelnitStore(NumberOfInputVariables);%Generate a store to hold the outputs in a cache when recalled later

limitsLower = zeros(NumberOfInputVariables,1); 
limitsUpper = ones(NumberOfInputVariables,1);
DT_Definedlnput=(];
DT=[]; 
f_0Str='’;
strFunction = strrep(ModelFileName,'inner',1');%Eliminate the 'inner' literal from the file name, to operate on the file sue /

end
end

rehash;

global f_0
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h as ’WholeProcess,' rather than, 'innerWholeProcess. 
pack;

NumberOfIterations=(gnsteps+1)*NumberOfInputVariables;%e.g . for four strips and three inputs = 5*3 = 125 

%Create the f_0_DT_FunctionToCall file
String=strcat('function Result = f _ 0 _ D T _ F u n c t i o n T o C a l l \ r \ n g l o b a l  g n s t e p s \ r \ n \ r \ n T e m p = 0 ; T e m p D T = 0 ; \ r \ n '

for intNumberOf_f_OVariables=l:1:(NumberOfInputVariables)
String=strcat(String,’for InputMatrix',num2str(intNumberOf_f_OVariables),'=0: (1/gnsteps):1','\r\n');

end
String=strcat(String,'TempValue=',strFunction, ' (');

for intf_0Counter=l:1:NumberOfInputVariables
String=strcat(String,'InputMatrix',num2str(intf_0Counter),',');

end

SizeOfString=size(String);%Get rid of final comma 
String=String(1:SizeOfString(2)-1);

String=strcat(String, ');');
String=strcat(String,'\r\n',’Temp=Temp+TempValue;');
String=strcat(String,'\r\n','TempDT=TempDT+TempValue*2;'); 
for intNumberOf_f_0Variables=l:1:(NumberOfInputVariables)

String=strcat(String,'\r\n','end');
end
String=strcat(String,'\r\n','Result=[Temp,TempDT];');
filename=strcat('f_0_DT_FunctionToCall.m’);
file=fopen(filename, 'w');
fprintf (file, String);
fclose ('all');
rehash;
%Use the above file to calculate f_0 and DT 
for intCounter=l:1:NumberOfOutputVariables

CurrentOPVar=intCounter;%Required by the main outer function file 
f_0_DT_value=f_0_DT_FunctionToCall;%Get the values of f_0 and DT 
f_0=[f 0;f_0_DT_value(1)/NumberOfIterations];%f_0 value
DT_Definedlnput=[DT_Definedlnput;((f_0_DT_value(2)/NumberOfIterations)-f_0(intCounter))];%DT value

end

) ;
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DT_Definedlnput 
pause(10)

global DFAST 
OverallVariance=DFAST;
%Calculate the ratio of the pseudo to the FAST - derived DT 
global DTRatio
DTRatio = OverallVariance'./DT_Definedlnput;

%Run the method to calculate higher order variances
PreTerms='';%Initialise matrix to hold the IDs of the relevant nos which get concatenated with 'f' to produce 'fl2' etc.
Terms=[];
NumberOfTermsAtEachDepth=[];% Variable set to det how many combos of fl2 (1st depth), fl23 (2nd depth), fl234 (3rd depth)...

% there are such that the MC Sobol can be 
% run for each depth in full and can then 
% stop if need be

%NoOfIndivNosInTerms=[];%Sets the number of individual numbers in each nchoosek call - used later in fWriter2 and then Varia ̂  
nceCalc

for intOutsideCounter=2:1:NumberOfInputVariables
Combination = nchoosek(1:1:NumberOfInputVariables,intOutsideCounter);%Creates all combos of fl2, fl3, fl23, fl345 etc. 
SizeOfMatrix=size(Combination);
SizeOfMatrix=SizeOfMatrix(1);
NumberOfTermsAtEachDepth=[NumberOfTermsAtEachDepth;SizeOfMatrix]; 
for intInsideCounter=l:1:SizeOfMatrix

PreTerms=strvcat(PreTerms,num2str(Combination(intlnsideCounter,:)));%vert. concatenates string versions of fl2, fl3.tf

%NoOfIndivNosInTerms=[NoOfIndivNosInTerms;NumberOfInputVariables];%Sets the number of individual numbers in each nch 
oosek call - used later in fWriter2 and then VarianceCalc 

end
end
SizeOfMatrix=size(PreTerms);
SizeOfMatrix=SizeOfMatrix(1);

HoldTerm='';
SizeOfElementsInTempTerms=[];
%The string version of the various f 
%order residuals (fl2, fl3, fl23...) 
%string version of the first is, '1 
%The following code concatenates the 
%etc.

functions relating to the higher 
are not held together e.g. the 
2,' not, '12.'
terms to convert, '1 2,' to, '12'
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for intOutsideCounter=l:1:SizeOfMatrix
TempTerms = str2num(PreTerms(intOutsideCounter,:));%Creates a numerical version of the intOutsideCounter row of PreTerms 
NewSize=size(TempTerms);
NewSize=NewSize(2);%Determine the number of rows in the TempTerms vector for the following for...next loop 
TempSizeOfElementsInTempTerms=size(TempTerms) ;
TempSizeOfElementsInTempTerms=TempSizeOfElementsInTempTerms(2);
SizeOfElementsInTempTerms=[SizeOfElementslnTempTerms;TempSizeOfElementsInTempTerms]; 
for intInsideCounter=l:1:NewSize

HoldTerm=strcat(HoldTerm,num2str(TempTerms(1,intlnsideCounter)));
end
SecondHoldTerm=strvcat(SecondHoldTerm,HoldTerm) ;
HoldTerm=' ';

end
SizeOfTerms=size(SecondHoldTerm);
SizeOfTerms=SizeOfTerms(1) ;
save('SecondHoldTermList', 'SecondHoldTerm' ); 
rehash;
%Adjust the size of the SensitivitylndexMatrix to accommodate extra zeros, which will hold the final SecondHoldTerms numbers 
% 'NumberOfOutputVariables'
%NumberOfOutputVariables
SensitivityIndexMatrix=[SensitivitylndexMatrix;zeros(SizeOfTerms,NumberOfOutputVariables)]; 

rehash;
OriginalNumberOfTermsAtEachDepth=NumberOfTermsAtEachDepth;%Reassign this so that when the code reloops for the next output v ^  

ariable, it return to the original list of numbers of terms at each depth 
SavingVarianceTemp=[];
for intOuterCounter=l:1:NumberOfOutputVariables 

rehash;
NumberOfTermsAtEachDepth=OriginalNumberOfTermsAtEachDepth; 
rehash;
if sum(SensitivitylndexMatrix(:,intOuterCounter))>=(Limit)

strcat('First order variances (variable numbernum2str(intOuterCounter), ') are greater than', ' '' '' ', num2str(*'
Limit),' of the overall variance')

'Do not recalculate';
else

CurrentOPVar=intOuterCounter;%Referenced to collect the correct f_0 value in higher order term calculation later
StringOrIndiv=0;
for intCounter=l:1:SizeOfTerms

if NumberOfTermsAtEachDepth(1)==0 
NumberOfTermsAtEachDepth(!)=[];



C:\My Documents\Sensitivity analysis\Multi-variable GSA\Final program files\RunGSAv7.m
05 June 2007

Page 6
12:03:29

end
rehash;%Ensure that active memory content is refreshed with files from disk 
pack;
%Create the relevant expression and integrate it using the variance function
Expr=deblank(SecondHoldTerm(intCounter,:))
rehash;
%DO **NOT** REMOVE THE FOLLOWING PAUSE STATEMENT!!!! 
pause(10)
Variance=((VarianceCalc_PDIP(Expr,NumberOfInputVariables,strFunction))/OverallVariance(intOuterCounter)) ; 
SensitivitylndexMatrix((intCounter+NumberOfInputVariables),intOuterCounter)=Variance; 
save('SIM’,'SensitivitylndexMatrix');
%Save the value of the latest Sensitivity Index Matrix to file
FunctionName=strcat('GSA S ',Expr, ,num2str(intOuterCounter) ) ;
StringToFile=strcat('function Result=',FunctionName, '()');
StringToFile=strcat(StringToFile,'\ r \ n R e s u l t  = ',num2str(SensitivitylndexMatrix((intCounter+NumberOfInputVari 

ables),intOuterCounter)),';');
SavedIndexFile=fopen(strcat(FunctionName,'.m'),'w'); 
fprintf(SavedlndexFile, StringToFile); 
fclose('all'); 
rehash;
NumberOfTermsAtEachDepth(1)=NumberOfTermsAtEachDepth(1)—1; 
rehash;
if (sum(SensitivitylndexMatrix(:,intOuterCounter))>=Limit & NumberOfTermsAtEachDepth(1)==0) 

break
else

'Do nothing';
end
pack;%Re-organise memory for efficiency

end
end

end
rehash;

else
'Do nothing';%Does not calculate MC Sobol if all SI values are greater than the limit

end

%Adjust the SI data to scale back (else will give a sum(SI) of > 1 
SizeOfSIMatrix=size(SensitivitylndexMatrix);
SizeOfSIMatrix=SizeOfSIMatrix (1);
for intCounter=l:1:NumberOfOutputVariables
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HOI_THEORY=l-SumOfFirstOrders(intCounter);%What the Higher Order Indices should add up to
HOI_REALITY=sum(SensitivitylndexMatrix(:,intCounter))-SumOfFirstOrders(intCounter); %What higher order SI really add up to 
SensitivitylndexMatrix((NumberOfInputVariables+1):SizeOfSIMatrix,intCounter)= (HOI_THEORY/HOI_REALITY)*SensitivityIndexMatrix 

((NumberOfInputVariables+1):SizeOfSIMatrix,intCounter); 
end
'The following is a list of the sensitivities in the following order:'

FirstOrderLabel='';
for intCounter=l:1:NumberOfInputVariables

FirstOrderLabel = strvcat(FirstOrderLabel,num2str(intCounter));
end

Label=FirstOrderLabel;

if isempty(SecondHoldTerm)==1 
strcat('Do nothing');

else
Label=strvcat(FirstOrderLabel, SecondHoldTerm) ;

end
Label
SensitivitylndexMatrix
save(strcat('SIM_',s t r r e p ( s t r r e p ( d a t e s t r ( n o w ) ','_')),'SensitivitylndexMatrix'); 
toe
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function OutputValues = Fourier2(NumberOfInputVariables, FileName,NumberOfOutputVariables)

%Sensitivity index computed by dividing variance for one specific variable 
%by the variance of the entire function; the variances are determined by 
%numerical integration of the Fourier coefficients' integrals

%Run the Fourier2.m file for each variable across the number of j iterations 
%specified in 'NumberOfJIterationsMaxForOverall'

%NumberOfForwardIterations = number of steps forward from the lower bound to the upper bound 
MaxHarmonicVarOfInt=4;%Assume that we only require the first four harmonics
load('OmegaTable','OmegaTable');%Loads minimal sets of Omega, taken from Cukier et at al 1973 paper II 

Omega = OmegaTable((NumberOfInputVariables)%Delimits Omega to correct row
OmegaMax = max(OmegaTable((NumberOfInputVariables)%Gets the maximum harmonic value in the omega set 
NumberOfForwardlterations = ((2*MaxHarmonicVarOfInt*OmegaMax)+1);%Calculated by the Nyqvist criterion 
NumberOfJIterationsMaxForOverall = OmegaMax*MaxHarmonicVarOfInt;
Value=zeros(NumberOfJIterationsMaxForOverall,NumberOfOutputVariables);

intCounter=0;%For...Next loop counter variables 
intRowCounter=0;%For...Next loop counter variables 
intColCounter=0;%For...Next loop counter variables
IndivVar=zeros(NumberOfInputVariables,NumberOfOutputVariables);%Sets up a zeros matrix to hold the variances of individual varia ̂  
bles at the fundamental
%Gs vector for holding the transformations:
%This vector must contain sufficient rows to hold all of the GS values 
%corresponding to one variable. The number of columns must be equal to the 
%number of variables. Set a zero based array aside for holding this data 
Gs=zeros(NumberOfForwardlterations+l,NumberOfInputVariables); 
svector=[J; %Vector for holding the s values
%Vectors to hold the results of the Aj and Bj calculations for later 
%integration by the trapezium rule
FinalCOSVector=zeros(NumberOfForwardIterat ions,NumberOfOutputVariables);
FinalSINVector=FinalCOSVector;%Same dimensions - hence copy the zeros matrix as for the cosine vector

TrapRuleNum=NumberOfForwardIterations;%Set the number of trapezium rule strips for numerical integration 
LowerBoundForlntegration = -pi;%This sets the lower bound for the integration - as per Saltelli et al (2000) 
UpperBoundForlntegration = pi;%This sets the upper bound for the integration - as per Saltelli et al (2000)
interval = (UpperBoundForlntegration-LowerBoundForlntegration)/NumberOfForwardlterations; %Sets up intervening values for s vect ̂
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or
svector=[(-pi):interval:pi]';%Choose s between -pi to pi and as determined by Saltelli equations 

%Calculate the Gs terms
for intColCounter=l: 1 -.NumberOf InputVariables

for intRowCounter=l:1:(NumberOfForwardlterations+l)
Gs(intRowCounter,intColCounter) = (0.5+(1/pi)*asin(sin((Omega(intColCounter)‘svector(intRowCounter)) ) ) ) ;

end
end

WriteGsExpressionToFile(FileName,NumberOfInputVariables);%Creates a file called FunctionToCall which in turn calls the model *Fi ̂
leName'
rehash;

%Perform the Aj and Bj calculations

TempVector=zeros(NumberOfForwardlterations+l,NumberOfOutputVariables); 
for intCounter=l:1:(NumberOfForwardlterations+l)

%Calculates the function value at the specific value of Gs (as 
%determined by the relevant point in s space and the relevant variable)
Temp=(FunctionToCall(Gs,intCounter));
for intOPVarCounter=l:1:NumberOfOutputVariables

TempVector(intCounter,intOPVarCounter)=Temp(intOPVarCounter);
end
%intCounter

end

for LoopVariable = 1:1:NumberOfJIterationsMaxForOverall 
for intCounter=l:1:(NumberOfForwardlterations+l)

%The following lines calculate the f (s) values, for multiplication
%later by either cos(js) or sin(js)
for intInternalCounter=l:1:NumberOfOutputVariables

TempCOS=TempVector(intCounter,intlnternalCounter)*cos(LoopVariable*svector(intCounter));
TempSIN=TempVector(intCounter,intlnternalCounter)*sin(LoopVariable*svector(intCounter));
FinalCOSVector(intCounter,intlnternalCounter)=TempCOS;
FinalSINVector(intCounter,intlnternalCounter)=TempSIN;

end
end

for intCounter=l:1:NumberOfOutputVariables
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AreaA = (1/(2*pi))*TrapeziumRule(FinalCOSVector(:,intCounter),svector(1),svector(NumberOfForwardlterations + l) , TrapRuleNu ̂
m) ;

AreaB = (1/(2*pi))*TrapeziumRule(FinalSINVector(:,intCounter),svector(1),svector(NumberOfForwardlterations+l), TrapRuleNu
m) ;

Value (LoopVariable, intCounter) = (2* (AreaA^2+AreaB'v2) ) ;
end
%strcat(num2str(LoopVariable), num2str(NumberOfJIterationsMaxForOverall), 1 Fourier iterations completed')%Reports the o /

utputs 
end

format long
%YOU NEED TO BE ABSOLUTELY SURE THAT THESE VALUES HAVE CONVERGED AND THAT 
%YOU ARE NOWHERE NEAR A POINT OF SUPERPOSITION WHERE FREQUENCIES MAY 
%INTERFERE, RESULTING IN A SPIKE IN THE OUTPUT VALUE OF THE Aj/Bj INTEGRALS 
%CHECK THE OUTPUT OF 'VALUE' AFTER EVERY RUN 
SizeOfValue=size(Value);
SizeOfValue=SizeOfValue(1);
OverallVariance=zeros(1,NumberOfOutputVariables);
%Calculates the overall variance of the model function f (x) 
for intExternalCounter=l:1:NumberOfOutputVariables 

for intCounter=l:1:SizeOfValue
OverallVariance(1,intExternalCounter)=OverallVariance(1,intExternalCounter)+Value(intCounter,intExternalCounter);

end
end

%Determine the individual variances of specific variables as the sum over 
%the first 'MaxHarmonicVarOfInterest' number of harmonics 
for intIPCounter=l:1:NumberOfInputVariables

for intOPCounter=l:1:NumberOfOutputVariables 
for intRowCounter=l:1:MaxHarmonicVarOfInt

IndivVar(intlPCounter,intOPCounter) = IndivVar(intlPCounter,intOPCounter) + Value((intRowCounter*Omega(intlPCounter) ^  
) ,intOPCounter); 

end
end

end

%Fourier results
OutputValues=zeros(NumberOfInputVariables,NumberOfOutputVariables); 
for intOPCounter=l:1:NumberOfOutputVariables

OutputValues(:,intOPCounter)=IndivVar(:,intOPCounter)/OverallVariance(1,intOPCounter);
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end
%Make the overall variance global so that it can be accessed in the 
% main RunGSAvX program 
global DFAST 
DFAST=OverallVariance;
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function WriteGsExpressionToFile(FileName, NumberOfVariables)
%Works in the Fourier method
%Creates the file for 'FunctionToCall', which calls the model 'FileName' 
header= sprintf('function result=%s(%s)', 'FunctionToCall', 'Gs,intCounter');

LoopCounter=0;
Argument='';

for LoopCounter=l:1:NumberOfVariables 
if LoopCounter==l

Argument='G s (intCounter, 1) ';
else

Argument=strcat(Argument, ', Gs(intCounter, ', num2str(LoopCounter),') ');
end

end

func = strcat(header, '\n\n', 'result=', FileName, '(', Argument , ');');
FileName='FunctionToCall.m ';
file=fopen(FileName, 'w');
fprintf(file, func);
fclose (' all');
rehash;
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function CreatelnitStore(dims)
%Create the valueStore variables to the dimensionality of 'dims'
%later in the calculation of the higher order indices
global valueStoreYield;
global valueStorePurity;
global gnsteps

dimensionsArray^[];

for i=l:dims
dimensionsArray=[dimensionsArray (gnsteps+1)];

end

valueStoreYield = zeros(dimensionsArray); 
valueStorePurity = zeros(dimensionsArray);

recalled
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function Variance = VarianceCalc_Definedlnput(Terms,NumberOfInputVariables, strFunction)
%This file creates the file 'D_FunctionToCall' (for higher order indices)
%It is the same as VarianceCalc_Partial_Definedlnput, but the name was
%shortened to allow it to run on UNIX
global f_0;
global CurrentOPVar;
global OverallVariance

%Set-up the y, z and v vectors 
% global y 
% global z 
% global v

%Calculate the number of terms present 
SizeOfTerms=size(Terms);
SizeOfTerms=SizeOfTerms(2);%Get the number of numbers in the Terms argument e.g. for 1246, SizeOfTerms = 4 

y=zeros(SizeOfTerms,1);
z=zeros(NumberOfInputVariables-SizeOfTerms,1); 
v=zeros(NumberOfInputVariables-SizeOfTerms,1);

%Set up the following variables for use later 
LowerOrderValues=0;
LatestValue=0;
LatestVariance=[];

%The following code calculate the lower order variance values (to be taken 
%away from the calculated higher order one at the end of this file 
HoldValuesl=[];
for intCounter=l:1:SizeOfTerms

HoldValuesl=[HoldValuesl , str2num(Terms(intCounter))];%Values of the input terms which are used to construct the lower orde ̂  
r subtraction 
end
HoldValues2=[];
for intFirstCounter=l:1:(SizeOfTerms-1)

HoldValues2=nchoosek(HoldValuesl,intFirstCounter);
SizeOfHoldValues2=size(HoldValues2);
NumberOfRows=SizeOfHoldValues2(1);
NumberOfCols=SizeOfHoldValues2 (2); 
for intSecondCounter=l:1:NumberOfRows
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Expression=''; 
for intThirdCounter=l:1:NumberOfCoIs

Expression=strcat(Expression,num2str(HoldValues2(intSecondCounter,intThirdCounter)));
end
rehash;
LowerOrderValues=LowerOrderValues+eval(strcat('GSA S ', Expression, ,num2str(CurrentOPVar)));

end
end
LowerOrderValues=LowerOrderValues*OverallVariance(CurrentOPVar);

VarConstant=[];
for intCounter=l:1:SizeOfTerms;
VarConstant=[VarConstant;str2num(Terms(intCounter))];%Create a matrix containing the numbers within 'Terms' 
end

%The expression to be called is f(y,z)*f(y,v)
%Hence need to set up/initialise arguments 
VarCounter=l;
ConstantCounter=l;
FirstArg='';
SecondArg='';

%Create f(y, z)
for intFirstCounter=l:1:NumberOfInputVariables 

if VarCounter<=SizeOfTerms
if intFirstCounter==VarConstant(VarCounter)

FirstArg=strcat(FirstArg, 'y', num2str(VarCounter), ',');
VarCounter=VarCounter+l;

else
FirstArg=strcat(FirstArg,'z ' , num2str(ConstantCounter), ',');
ConstantCounter=ConstantCounter+l;

end
else

FirstArg=strcat(FirstArg,'z ' , num2str(ConstantCounter), ',');
ConstantCounter=ConstantCounter+1;

end
end

VarCounter=l;
ConstantCounter=l;
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%Create f(y,v)
for intSecondCounter=l:1:NumberOfInputVariables 

if VarCounter<=SizeOfTerms
if intSecondCounter==VarConstant(VarCounter)

SecondArg=strcat(SecondArg, 'y', num2str(VarCounter), ',');
VarCounter=VarCounter+l;

else
SecondArg=strcat(SecondArg,'v ' , num2str(ConstantCounter), ',');
ConstantCounter=ConstantCounter + l;

end
else

SecondArg=strcat(SecondArg,'v' , num2str(ConstantCounter), ',');
ConstantCounter=ConstantCounter+1;

end
end

%Need to strip out the final comma from the two strings; since the two arguments are the same size, only do this once 
SizeOfArg=size(FirstArg);
FirstArg=FirstArg(1:SizeOfArg(2)-1) ; %Does this work????
SecondArg=SecondArg(1:SizeOfArg(2)-1);

% Parameters used to carry out the integration 
Range=1000;
LowerLimit=50000;
FractionalVariation=0 .05;
NumberOfIterations=1000000;%Set this value to 1M to provide a good chance of convergence

%Generate the D_FunctionToCall file to evaluate the variance 
FunctionName='D_FunctionToCall';
StringToFile=strcat('function Result=',FunctionName, '(NumberOfIterations, Range, LowerLimit, FractionalVariation, Terms)'); 
StringToFile=strcat(StringToFile,'\r\nLatestVariance=(];');%Use this to hold the accumulating variance values 
StringToFile=streat(StringToFile,'\r\n1,'global gnsteps;');
StringToFile=streat(StringToFile,'\r\n','global CurrentOPVar');
StringToFile=strcat(StringToFile,'\r\n','Temp=0;');

StringToFile=strcat(StringToFile,'\r\n','for Counter=l:1:NumberOfIterations');
%StringToFile=streat(StringToFile,'\r\n','Counter');
StringToFile=strcat(StringToFile,'\r\n');
%Choose random number in the range [0;1/gnsteps;1]
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for int_y_Counter=l:1:SizeOfTerms

StringToFile=strcat(StringToFile,'\r\n','y ', num2str(int_y_Counter) ,'=CreateRandom_0_to_l_Number;1);
end

for int_z_Counter=l:1:(NumberOfInputVariables-SizeOfTerms)
StringToFile=strcat(StringToFile,'\r\n','z', num2str(int_z_Counter) ,'=CreateRandom_0_to_l_Number;');

end

for int_v_Counter=l:1:(NumberOfInputVariables-SizeOfTerms)
StringToFile=strcat(StringToFile,'\r\n','v', num2str(int_v_Counter) ,'=CreateRandom_0_to_l_Number;');

end

StringToFile=strcat(StringToFile,'\r\n','Temp=Temp+',strFunction,'(',FirstArg,1)','*',strFunction,'(',SecondArg,');'); 
StringToFile=strcat(StringToFile,'\r\n','LatestVariance=[LatestVariance;Temp/Counter]; ') ;

StringToFile=strcat(StringToFile,'\r\n','if Counter<(LowerLimit+Range)');
StringToFile=strcat(StringToFile,’\r\n',' ''Do nothing''; ');
StringToFile=strcat(StringToFile,'\r\n','elseif abs(((max(LatestVariance(Counter-Range:Counter))-min(LatestVariance(Counter-
Range:Counter)))/min(LatestVariance(Counter-Range:Counter))))<FractionalVariation;');
StringToFile=strcat(StringToFile,'\r\n','break’);
%StringToFile=strcat(StringToFile, '\r\n ', ' else ');
%StringToFile=strcat(StringToFile,'\r\n',' ''Do nothing;''; ’);
StringToFile=strcat(StringToFile,'\r\n','end');

StringToFile=strcat(StringToFile, '\r\n', 'end');
StringToFile=streat(StringToFile,'\r\n','save(strcat(''LatestVariance_'',Terms,''_'',num2str(CurrentOPVar)),''LatestVariance''); ^  
');%Save the accumulated variance values
StringToFile=strcat(StringToFile,'\r\n','Result = ','Temp/Counter;’);
SavedIndexFile=fopen(strcat(FunctionName,'.m'),'w '); 
fprintf(SavedlndexFile, StringToFile); 
fclose('all'); 
rehash;

global DTRatio %Adjust the value of D to suit (else overestimates the value of higher order indices. DTRatio calculated in RunG ̂  
SAvX)
Variance=((D_FunctionToCall(NumberOfIterations, Range, LowerLimit, FractionalVariation, Terms))-(f 0 (CurrentOPVar))~2)-LowerOrde
rvalues;
Variance=DTRatio(CurrentOPVar)*Variance; 
if Variance<0 

Variance=0;
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end
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function Result = RoundUp(InputNo) 
if(InputNo<0)

'This function only works with positive numbers'
else

if InputNo==0 
Result=0 

elseif InputNo<l 
Result=l; 

elseif intl6(InputNo) < InputNo
Result = double(intl6(InputNo))+1; 

elseif intl6 (InputNo) == InputNo;
Result = InputNo;

end
end
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function Result = TrapeziumRule(XHolder,a,b,n)

%Area = [ (b-a)/2n]* [f(a) + f (b) +.2*(f(all the rest))] 
Tmp=0;
intCounter=0;

for intCounter = 2:1:(n)
Tmp = Tmp+XHolder(intCounter);

end
Result = ((b-a)/ (2*n))*(XHolder(1) + XHolder(n+1) + 2*Tmp);
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function Result=CreateRandom_0_to_l_Number()
%Creates a number between 0 and 1 
global gnsteps
Result=round(gnsteps * rand)/gnsteps;



Genetic Program

The structure of the MATLAB® code used for the Genetic Program employed to create the digestion 

equation is given below. Each term in the equation (i.e. either a constant number or one of the input 

variables [temperature, time and enzyme concentration]) of the initial/evolved equations was held in 

a separate disk file. These were then altered at random by the GP to achieve greater fitness.

Repeat cycle starting with Evolve.m until no further 

improvement is observed

Experimental data 

(Laboratory data on 

yield as a function of 

time, concentration and 

temperature)

(Shell program that calls Evolve)

GP.m

(Creates the initial equation which is subjected to GP)

InitialiseTree.m

File structure matrices 

(Holds a list of every 

term in the equations 

on disk file and the 

mathematical 

relationship between 

the terms)

(Backs up the current file structure, chooses a row of the 

file structure matrix and then randomly changes it and the 

associated disk file)

Evolve.m

(Determine the RMS fitness difference between the newly 

evolved equation and the experimental data. If the fitness is 

better, the new equation is retained -  otherwise, the old one

CalculateRMS.m

NewVarConstEqn.m

(Creates new files to replace the old ones and populates 

them at random with either references to other new files, 

constants or variables)

Figure 86: Schematic of GP program operation

Other files used by the program include:

MathsOperator.m - determines which mathematical operator to choose when evolving 

NewFile.m - creates new files when evolving 

fWriter.m - writes file to disk

246
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function InitialiseTree () 
clear all
load ('InitialFileRefTable2') 
load (' Data')
%Delete the existing Ref???????.m files and CurrentDiskFile from line 183 (Evolve.m) from disk 
DirList=dir('Ref*.m');
SizeOfDirList=size(DirList);
SizeOfDirList = SizeOfDirList (1);
ConstantFiles=[]; 
if SizeOfDirList>0 

delete('Ref* .m')
end

if exist('CurrentDiskFile.mat')~=0 
delete ('CurrentDiskFile.mat')

end
%This section of the file reestablishes the original equation
%The equation used comes from Ainsworth (Steady State Enzyme kinetics) and
%expresses the progress curve of the reaction (trace of P [and hence yield]
%against t) as a polynomial function which has been approximated to a 
%third order partial sum:

%ProductConc = alpha + beta*time + gamma*time/'2 + delta*time/'3 [+ other 
%terms, unnecessary as they do not make a significant contribution]

body = ’(Ref0000002(ConcIP,TempIP,TimelP))*(Ref0000003(ConcIP,TempIP,TimelP));’; %Temp * rest 
fWriter('Ref0000001', body)

body = 'TempIP;'; 
fWriter('Ref0000002', body)

body = '(Ref0000004(ConcIP,TempIP,TimelP))+(Ref0000005(ConcIP,TempIP,TimelP));'; %alpha plus rest 
fWriter('Ref0000003', body)

body = '-0.02;'; %Value of alpha - originally -1 - then -1 - then 0 
fWriter('Ref0000004', body)
ConstantFiles=[ConstantFiles;'Ref0000004'];

body = 'Ref0000006(ConcIP,TempIP,TimelP) + Ref0000007(ConcIP,TempIP,TimelP);'; %beta*time plus rest of string 
fWriter('Ref0000005', body)
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body = 'Ref0000008(ConcIP,TempIP,TimelP) * Ref0000009(ConcIP,TempIP,TimelP);'; %beta*time 
fWriter('Ref0000006' , body)

body = 'Ref0000010(ConcIP,TempIP,TimelP) + RefOOOOOll(ConcIP,TempIP,TimelP);';%gamma*time/'2 plus rest of string 
fWriter('Ref0000007', body)

body = ’0.5;'; %beta - originally 0.5 - then 0.05 
fWriter('Ref0000008', body)
ConstantFiles=[ConstantFiles;'Ref0000008' ];

body = 'TimelP;'; %time 
fWriter('Ref0000009', body)

body = 'Ref0000012(ConcIP, TempIP, TimelP) * Ref0000013(ConcIP, TempIP, TimelP);'; %gamma*time/v2 
fWriter('Ref0000010', body)

body = 'Ref0000014(ConcIP,TempIP,TimelP) * Ref0000015(ConcIP,TempIP,TimelP);'; %delta*time~3 
fWriter('Ref0000011', body)

body = '0.5;'; %gamma - originally 0.05 
fWriter('Ref0000012', body)
ConstantFiles=[ConstantFiles;'Ref0000012'];

body = 'Ref0000016(ConcIP,TempIP,TimelP) * Ref0000017(ConcIP,TempIP,TimelP);'; %gamma*time/'2 
fWriter('Ref0000013', body)

body = '0.0001;'; %delta 
fWriter('Ref0000014', body)
ConstantFiles=[ConstantFiles;'Ref0000014’];

body = 'TimeIPA3;'; %Time 
fWriter('Ref0000015', body)

body = 'TimelP;'; %time 
fWriter('Ref0000016', body)

body = 'TimelP;'; %time 
fWriter('Ref0000017', body)
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%The following is the original equation - it has been substituted for by 
%the equation above in order to achieve a better fit with temperature 
% body = '(Ref0000002(ConcIP,TempIP,TimelP))+(Ref0000003(ConcIP,TempIP,TimelP)) 
% fWriter('Ref00000011, body)
%

% body = '(Ref0000002(ConcIP,TempIP,TimelP))+(Ref0000003(ConcIP,TempIP,TimelP)) 
% fWriter('Ref0000001', body)

% body = '0;'; %Value of alpha - originally -1 - then -1 
% fWriter('Ref0000002', body)
% ConstantFiles=[ConstantFiles;'Ref0000002'];
%
% body = 'Ref0000004(ConcIP,TempIP,TimelP) + Ref0000005(ConcIP,TempIP,TimelP);' 
% fWriter('Ref0000003', body)
%

% body = 'Ref0000006(ConcIP,TempIP,TimelP) * Ref0000007(ConcIP,TempIP,TimelP);' 
% fWriter('Ref0000004', body)

% body = 'Ref0000008(ConcIP,TempIP,TimelP) + Ref0000009(ConcIP,TempIP,TimelP);' 
% fWriter('Ref0000005', body)
%

% body = '0.5;'; %beta - originally 0.5 - then 0.05 
% fWriter('Ref0000006 ', body)
% ConstantFiles=[ConstantFiles;'Ref0000006'];

% body = 'TimelP;'; %time 
% fWriter('Ref0000007', body)
%

% body = 'Ref0000010(ConcIP,TempIP,TimelP) * Ref0000011 (ConcIP,TempIP,TimelP);' 
% fWriter('Ref0000008', body)

% body = 'Ref0000012(ConcIP,TempIP,TimelP) * Ref0000013(ConcIP,TempIP,TimelP);' 
% fWriter('Ref0000009', body)

% body = '0.5;'; %gamma - originally 0.05 
% fWriter('Ref0000010', body)
% ConstantFiles=[ConstantFiles; 'Ref0000010'];
%

% body = 'Ref0000014(ConcIP,TempIP,TimelP) * Ref0000015(ConcIP,TempIP,TimelP);' 
% fWriter('RefOOOOOll', body)

'; %alpha plus rest

'; %alpha plus rest

; %beta*time plus rest of string

; %beta*time

; %gamma*time/'2 plus rest of string

; %gamma*time/'2

; %delta*time/v3

; %gamma*time~2
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%

% body = '0.0001;'; %delta 
% fWriter('Ref0000012 ', body)
% ConstantFiles=[ConstantFiles;'Ref0000012'];
%

% body = 1TimelP^S;'; %Time 
% fWriter('Ref0000013', body)
%

% body = 'TimelP;'; %time 
% fWriter(’Ref0000014', body)
%

% body = 'TimelP;'; %time 
% fWriter('Ref0000015', body)

RMSError = CalculateRMS('InitialFileRefTable2')

FileNumber=[17];

cd('C:/My Documents/Sunil/Papain_evolution/GP2/Backup') 
delete('Ref*.m')
cd('C:/My Documents/Sunil/Papain_evolution/GP2')

save('FileRefTable','Row','LHS','Operator','RHS','FileNumber')
save('RMSError', 'RMSError')
save('ConstantFiles','ConstantFiles')
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function GP(NoOfRounds) 
for intCounter = l:NoOfRounds 

clear all 
Evolve
%ChangeConstants

end
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function Evolve() 
global NewlyCreatedFiles 
NewlyCreatedFiles=[];
%Keep existing file structure
copyfile('Ref*.m', 'C:/My Documents/Sunil/Papain_evolution/GP2/Backup')
load ('FileRefTable')
load ('RMSError')
rand('state',sum(100*clock)) ;
%Select one of the rows 
NumberOfFirstEntries=[];
NumberOfRows = size(Row);
NumberOfRows = NumberOfRows(1);
ChoiceOfRow = round(NumberOfRows * rand(l)); 
if ChoiceOfRow==0 

ChoiceOfRow=l;
end
Operator(ChoiceOfRow,:)=MathsOperator;

%If a file exists in the LHS or RHS matrices of that chosen row, then need to access them and 
%mark them for deletion 
FilesToBeDeleted=[];

if LHS(ChoiceOfRow,:)~= ' '
FilesToBeDeleted=[FilesToBeDeleted;LHS(ChoiceOfRow,:)];
NumberOfFirstEntries = 1;

end
if RHS(ChoiceOfRow,:)~=' '

FilesToBeDeleted=[FilesToBeDeleted;RHS(ChoiceOfRow,:)];
NumberOfFirstEntries=2;

end
if LHS(ChoiceOfRow,:)==' '

FileNumber=F ileNumber+1;
LHS(ChoiceOfRow,:)=NewFile(FileNumber);
fWriter(Row(ChoiceOfRow, :) , strcat(LHS(ChoiceOfRow,:), ' (ConcIP,TempIP,TimelP);'));

end
%Go through the row matrix and look for the entry which corresponds to the 
%first (and also second, if it exists) in the FilesToBeDeleted matrix, 
if isempty(FilesToBeDeleted)==0

for intCounter = 1:NumberOfRows
if strcmp(Row(intCounter,:),FilesToBeDeleted(1,:))==1
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%Add any referenced files to FilesToBeDeleted matrix and eliminate 
%the first entry in this matrix 
if LHS(intCounter,:)~=' '

FilesToBeDeleted^[FilesToBeDeleted; LHS(intCounter, :) ] ;
LHS(intCounter,:)='

end
if RHS(intCounter,:)~=1 '

FilesToBeDeleted=[FilesToBeDeleted;RHS(intCounter, :)];
RHS(intCounter,:)=' ';

end
Operator(intCounter,:)=' '; 
fWriter(FilesToBeDeleted( 1 )
FirstReferencedFileLocation=intCounter; %Use later to refill the matrix

end
if NumberOfFirstEntries==2

if strcmp(Row(intCounter,:),FilesToBeDeleted(2, :))==1
%Add any referenced files to FilesToBeDeleted matrix and eliminate 
%the first entry in this matrix 
if LHS (intCounter, :)~=' '

FilesToBeDeleted=[FilesToBeDeleted;LHS(intCounter, :)];
LHS (intCounter,:) = 1 ';

end
if RHS(intCounter,:)-=' '

FilesToBeDeleted=[FilesToBeDeleted;RHS(intCounter,:)];
RHS(intCounter,:)=' ';

end
Operator(intCounter,:)=' '; 
fWriter(FilesToBeDeleted(2,:),'')
SecondReferencedFileLocation=intCounter; %Use later to refill the matrix

end
end

end
end
StartPtForRepop=FilesToBeDeleted; 
if NumberOfFirstEntries==l

%delete(strcat(FilesToBeDeleted(l, :)))
FilesToBeDeleted(1,:)=[];

end
if NumberOfFirstEntries==2

%delete(strcat(FilesToBeDeleted(1,:)))
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FilesToBeDeleted(1,:)=[];
%delete(strcat(FilesToBeDeleted(1,:)))
FilesToBeDeleted(1,:)=[];

end

%Now need to find and remove all of the other references to the other files 
%Also need to empty the disk files of all of these references (as well as 
%those above)
NumberOfRows=size(Row) ;
NumberOfRows=NumberOfRows(1) ; 
while isempty(FilesToBeDeleted)==0

%Delete any files in the FilesToBeDeleted matrix from the three
%matrices and delete the operator as well
for intCounter=l:NumberOfRows

if intCounter <= NumberOfRows
if isempty(FilesToBeDeleted)==0

if strcmp(Row(intCounter,:),FilesToBeDeleted(1, :)) ==1 
Row(intCounter,:)=[]; 
if LHS(intCounter, : ) ~ = ' '

FilesToBeDeleted=[FilesToBeDeleted;LHS(intCounter,:) ] ;
end
if RHS(intCounter,:)~=' '

FilesToBeDeleted=[FilesToBeDeleted;RHS(intCounter, :)];
end
fWriter(FilesToBeDeleted(1, :) , '') 
delete (strcat (FilesToBeDeleted(1,:),'.m'))
FilesToBeDeleted(1,:)=[];
LHS(intCounter,:)=[];
RHS(intCounter,:)=[];
Operator(intCounter,:)=[];
NumberOfRows=size(Row) ;
NumberOfRows=NumberOfRows(1);

end
end

end
end
intCounter = 0;

end

%Now need to repopulate, starting from the the StartPtForRepop matrix.
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%Refill the LHS, RHS and operator matrices for the one or two entries in
%here first with new files (assuming that you actually want to do this - need to decide at random). 
if NumberOfFirstEntries==l 

FileNumber=FileNumber+l;
LHS(FirstReferencedFileLocation, :) = NewFile(FileNumber);
DoYouHaveAFileOnRHS = rand(l);
if DoYouHaveAFileOnRHS >0.5 %Determines whether you are going to add a file reference to the RHS/operator matrix if necessary

y
FileNumber=FileNumber+l;
RHS(FirstReferencedFileLocation,:) = NewFile(FileNumber);
Operator(FirstReferencedFileLocation) = MathsOperator;
fWriter(StartPtForRepop(1,:),strcat(LHS(FirstReferencedFileLocation,:),' (ConcIP,TempIP,TimelP) ',Operator(FirstReferenced iS 

FileLocation,:),RHS(FirstReferencedFileLocation,:),'(ConcIP,TempIP,TimelP);')) 
else

fWriter(StartPtForRepop(1,:),strcat(LHS(FirstReferencedFileLocation,:),'(ConcIP,TempIP,TimelP);'))
end

end

if NumberOfFirstEntries==2;

FileNumber=FileNumber+l;
LHS(FirstReferencedFileLocation,:) = NewFile(FileNumber);
DoYouHaveAFileOnRHS = rand(l);
if DoYouHaveAFileOnRHS >0.5 %Determines whether you are going to add a file reference to the RHS/operator matrix if necessary

Y
FileNumber=FileNumber+l;
RHS(FirstReferencedFileLocation,:) = NewFile(FileNumber);
Operator(FirstReferencedFileLocation) = MathsOperator;
fWriter(StartPtForRepop(1,:),strcat(LHS(FirstReferencedFileLocation, :), ' (ConcIP,TempIP,TimelP) ',Operator(FirstReferenced iS 

FileLocation,:),RHS(FirstReferencedFileLocation, :) , ' (ConcIP,TempIP,TimelP);’)) 
else

fWriter(StartPtForRepop(1,:),strcat(LHS(FirstReferencedFileLocation,:),'(ConcIP,TempIP,TimelP);'))
end

FileNumber=FileNumber+l;
LHS(SecondReferencedFileLocation,:) = NewFile(FileNumber); 
DoYouHaveAFileOnRHS = rand(l); 
if DoYouHaveAFileOnRHS >0.5
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FileNumber=FileNumber+l;
RHS(SecondReferencedFileLocation,:) = NewFile(FileNumber);
Operator(SecondReferencedFileLocation,:) = MathsOperator;
fWriter(StartPtForRepop(2, :) ,strcat(LHS(SecondReferencedFileLocation,:), ' (ConcIP,TempIP,TimelP) ',Operator(SecondReferenc ̂  

edFileLocation,:),RHS(SecondReferencedFileLocation,:),'(ConcIP,TempIP,TimelP);')) 
else

fWriter(StartPtForRepop(2,:),strcat(LHS(SecondReferencedFileLocation,:),'(ConcIP,TempIP,TimelP);'))
end

end

%Now have new filenames - add file references, constants, variable or a combination and add their names 
%to Row list. For any new file references, create those files and adjust 
%the LHS, RHS and Operator matrices as needed

while isempty(NewlyCreatedFiles)==0
Row=[Row;NewlyCreatedFiles(1,:)]; %Add the uppermost entry from the NewlyCreatedFiles matrix to the Row matrix 
IsThisFileGoingToReferToAnything = rand(l);
if IsThisFileGoingToReferToAnything > 0.3 %No reference to anything - changed from 0.5 to make it more likely

%that the branches will terminate
%Add an empty reference 
LHS=[LHS;' '];
RHS=[RHS;' '];
Operator=[Operator;'
%Then just populate this file with a variable, constant or a combination of the two 
fWriter(NewlyCreatedFiles(1,:),newVarConstEqn)

% elseif IsThisFileGoingToReferToAnything > 0.33 %A single reference (and hence LHS in nature)
% FileNumber=FileNumber+l;
% AnotherFile=NewFile(FileNumber);
% LHS=[LHS;AnotherFile];
% %Populate the NewlyCreatedFiles(1) file with a reference to the AnotherFile
% fWriter(NewlyCreatedFiles(1,:),strcat(AnotherFile,'(ConcIP,TempIP,TimelP)'));
% RHS=[RHS;'
% Operator=[Operator;' '];

elseif IsThisFileGoingToReferToAnything > 0 %Reference to two files 
FileNumber=FileNumber+1;
AnotherFile=NewFile(FileNumber);
LHS=[LHS;AnotherFile];
FileNumber=FileNumber+l;
AnotherFile2=NewFile(FileNumber);
RHS=[RHS;AnotherFile2];
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NewOperator=MathsOperator;
Operator=[Operator;NewOperator] ;
fWriter(NewlyCreatedFiles(1,:),strcat(AnotherFile,' (ConcIP,TempIP,TimelP)',NewOperator,AnotherFile2,' (ConcIP,TempIP,Time

IP); '));
%Populate the NewlyCreatedFiles(1) file with a reference to two files - hence the two fWriter statements in above codebl^

ock
end
NewlyCreatedFiles(1,:)=[]; %Remove this file from consideration and loop to the next

end

save('CurrentDiskFile','Row','LHS','Operator','RHS','FileNumber')
CurrentDiskFile=('CurrentDiskFile');
LatestRMSValue=CalculateRMS(CurrentDiskFile) 
if LatestRMSValue < RMSError

if isreal(LatestRMSValue)==1
%save('FileRefTable','Row','LHS','Operator','RHS','FileNumber') 
copyfile('CurrentDiskFile.mat','FileRefTable.mat')
RMSError = LatestRMSValue; 
save('RMSError','RMSError')
strcat('Latest best RMS value is: ', num2str(LatestRMSValue))

end
else

%Copy all the files back 
delete('Ref*.m')
cd ('C :/My Documents/Sunil/Papain_evolution/GP2/Backup')
copyfile('Ref*.m','C :/My Documents/Sunil/Papain_evolution/GP2')
delete('Ref*.m')
cd ('C :/My Documents/Suni1/Papain_evolution/GP2') 
clear

end
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function result = newVarConstEqn()
global NewlyCreatedFiles
load('ConstantFiles ')
rand('state',sum(100*clock));
% (A) Decide on the degree of complexity needed (i.e. how many terms are you going to have in the equation?)
% (B) Need to allow constants as well as part of this
% (C) Also need to decide on the terms themselves - from TimelP, TempIP, ConcIP - all of which need to be equally likely
% (D) Need to allow for combinations of the time, temp and cone terms in equations
% (E) Assume that the upper limit for number of terms is 2 in any single round of evolution

Term=0;
Constant=0;
MaxNumberOfTerms = 2;
ActualNumberOfTerms = round(MaxNumberOfTerms * rand(l)); 
if ActualNumberOfTerms ==0 

ActualNumberOfTerms =1;
end
if ActualNumberOfTerms >MaxNumberOfTerms 

ActualNumberOfTerms =MaxNumberOfTerms;
end

%Construct equation string 
NewEquationString=[];
for intCounter = 1:ActualNumberOfTerms

%Are you going to have a constant number or a variable?
ConstOrVar = rand(l); 
if ConstOrVar < 0.5 

Constant=l;
else

Term=l;
end

if Term==l
%Choose from one of the three variable types present - BIAS THIS 
%TOWARDS TEMPERATURE AND ENZYME CONC - AND AWAY FROM TIME ALTOGETHER 
TermType = rand(l);
if TermType > 0.87 5 %ORIGINALLY 0.8 

NewTerm = 'TimelP'; 
elseif TermType >0.75 %ORIGINALLY 0.4 

NewTerm = 'TempIP';



C :\My Documents\Sunil\Papain_evolution\GP2\ProgFilesBackup\newVarConstEqn.ra
05 June 2007

Page 2
13:51:37

else
NewTerm = 'ConcIP';

end
elseif Constant==l

NewTerm = 10*rand(l);
ConstantFiles = [ConstantFiles;NewlyCreatedFiles(1, :)] ; 
save('ConstantFiles','ConstantFiles')

end

if isempty(NewEquationString)==1
NewEquationString = num2str(NewTerm);

else
NewEquationString = strcat('(',NewEquationString, ')', MathsOperator, num2str(NewTerm));

end
Term=0;
Constant=0;

end
result = strcat(NewEquationString,';');
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function result=CalculateRMS(DiskFile)

load (strcat(DiskFile)) 
load('Data')
fWriter('FirstRef',strcat(Row(1,:),'(ConcIP,TempIP,TimelP);
%fWriter('FirstRef',strcat('RefOOOOOOl','(ConcIP,TempIP,TimelP);'));
MaximumFabConc=2 0;
NumberOfData=size(ConcData);
NumberOfData=NumberOfData(1);
CalcYield=[];

for intCounter = 1:NumberOfData
NextValue = FirstRef(ConcData(intCounter),TempData(intCounter),TimeData(intCounter)); 
CalcYield=[CalcYield;NextValue];

end

Difference=[];
%Find the difference between the values at each step
%Square them
%Take means of squares
%Take the root
for intCounter = 1:NumberOfData

Difference=[Difference;YieldMeasured(intCounter)-CalcYieId(intCounter)] ;
end
%Difference = Difference./MaximumFabConc;
Dif ference=Dif ference . ' ' 2 ;

MeanValue=mean(Difference);

RMS = MeanValue.~0.5; 
result=RMS;
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function result = MathsOperator() 
rand('statesum(100*clock)); 
Holder=rand(1); 
NumberOfMathsOps=5;

if Holder<l/NumberOfMathsOps 
result='+'; 

elseif Holder <2/NumberOfMathsOps 
result=' -'; 

elseif Holder <3/NumberOfMathsOps 
result='*'; 

elseif Holder<4/NumberOfMathsOps 
result='/'; 

elseif Holder<5/NumberOfMathsOps 
result=1A';

end
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function result=NewFile(LatestFileNumber) 
global NewlyCreatedFiles

LatestFileName = strcat('Ref 1,MillionNoFormat(LatestFileNumber)); 
NewlyCreatedFiles = [NewlyCreatedFiles;LatestFileName];
NewValue = rand(l);
fWriter(LatestFileName, NewValue) %Originally nothing, but this seems to cause 
result=LatestFileName;

some problems
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function fWriter(name, body)

header= sprintf(strcat('function result= %s(','ConcIP,TempIP,TimelP','%s) 
func = strcat(header, ')’, '\r\n', '\r\n','result=1, num2str(body)
filename=strcat(name, '.m'); 
file=fopen(filename, 'w'); 
fprintf(file, func); 
fclose('all');

'), name); 
);
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The Integrated Simulation and Assessment of the Impacts of Process Change in 
Biotherapeutic Antibody Production
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Growing commercial pressures in the pharmaceutical industry are establishing a need for robust 
computer simulations o f  whole bioprocesses to allow  rapid prediction o f  the effects o f changes 
made to manufacturing operations. This paper presents an integrated process simulation that 
models the cG M P  manufacture o f the FDA-approved biotherapeutic CroFab, an IgG  fragment 
used to treat rattlesnake envenomation (Protherics U .K . Lim ited, Blaenwaun, Ffostrasol, 
Llandysul, Wales, U .K .). In itia lly , the product is isolated from ovine serum by precipitation and 
centrifugation, before enzymatic digestion o f  the IgG  to produce FAB and F c  fragments. These 
are purified by ion exchange and affin ity chromatography to remove the Fc and non-specific 
F Ab fragments from the final venom-specific F Ab product. The model was constructed in a discrete 
event simulation environment and used to determine the potential impact o f  a series o f changes 
to the process, such as increasing the step efficiencies or volumes o f  chromatographic matrices, 
upon product yields and process times. The study indicated that the overall FAB yield was 
particularly sensitive to changes in the digestive and affin ity  chromatographic step efficiencies, 
which have a predicted 30%  greater impact on process FAB yield  than do the precipitation or 
centrifugation stages. The study showed that increasing the volum e o f  a ffin ity  matrix has a 
negligible impact upon total process time. Although results such as these would require 
experimental verification w ithin the physical constraints o f  the process and the facility, the model 
predictions are still useful in allowing rapid “w h a t-if  ’ scenario analysis o f  the likely  impacts o f  
process changes w ith in  such an integrated production process.

1. Introduction

W ithin the pharmaceutical and biotechnological industries, 
there is currently significant interest in optimizing the process 
development pathway ( / )  as a result o f the high costs and long 
times to market involved (2). Companies have to bear significant 
risks o f failure from competitive, regulatory, economic and 
clinical factors (3—7). Against this backdrop, a number of 
techniques now exist that w ill serve to accelerate and enhance 
R & D , including genomics and high throughput screening (5) 
and the application o f scale-down methodologies (9—12). 
Computer simulations have demonstrated a similar potential, 
enabling rapid and inexpensive exploration o f different process 
options (13) and facilitating comparison o f alternatives (14). 
Manufacturing models, in particular, can assist in the synthesis 
of process flowsheets and the study o f the knock-on effects o f 
changes in one operation on downstream operations (15). 
Consequently, segments o f the process that need improvement 
and the ways in which this could be achieved can be highlighted.

The proven advantages o f simulations in fields such as 
chemicals or polymers have established modeling as a com
monplace technique for process design and evaluation in these 
sectors (16, 17). The application o f process modeling within
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2961. Fax: (+44) 20 7916 3943. E-mail: e.keshavarz-moore@ucl.ac.uk. 

+ University College London, 
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the bioprocess sector is in its infancy (18). Technical models 
o f single stages (19), such as fermentation (20), filtration (21), 
centrifugation (22, 23), homogenization (24, 25), and ion 
exchange, size exclusion, affinity and expanded bed chroma
tography (26—29) do exist, but development o f multistage 
simulations has been limited largely to 3—4 unit operations, 
for example (30). W hile such models constitute a useful first 
step toward the production o f robust and predictive modeling 
packages, it is the simultaneous consideration o f all operations 
and replication o f the interactions between them that is needed 
for the assessment o f whole process feasibility. Advances made 
in this area thus far have centered primarily on establishing 
modeling methodologies through the study o f generic process 
flowsheets (31, 32). Bioprocess simulations remain considerably 
underdeveloped for the description o f real production processes, 
and without the presence o f such examples in the literature, the 
industry is unlikely to gain the confidence in modeling that is 
needed for the potential advantages o f the technique to be 
exploited fully. The aim o f this study is to apply modeling to 
an industrial manufacturing process. The study considers a 
process operated by Protherics U .K . Limited (Blaenwaun, 
Ffostrasol, Llandysul, Wales, U .K .) for the production o f 
polyclonal FAB purified from ovine serum used for the treatment 
o f rattlesnake (Crotalidae) envenomation (33). The FD A - 
approved product, designated as CroFab, is generated by 
enzymatic digestion o f whole antibody molecules just above 
the hinge region on their heavy chains to produce two separate
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